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Editor’s Statement 

A large body of mathematics consists of facts that can be presented and 

described much like any other natural phenomenon. These facts, at times 

explicitly brought out as theorems, at other times concealed within a proof, 

make up most of the applications of mathematics, and are the most likely to 

survive change of style and of interest. 

This ENCYCLOPEDIA will attempt to present the factual body of all 

mathematics. Clarity of exposition, accessibility to the non-specialist, and a 

thorough bibliography are required of each author. Volumes will appear in 

no particular order, but will be organized into sections, each one comprising 

a recognizable branch of present-day mathematics. Numbers of volumes 

and sections will be reconsidered as times and needs change. 

It is hoped that this enterprise will make mathematics more widely used 

where it is needed, and more accessible in fields in which it can be applied 

but where it has not yet penetrated because of insufficient information. 

GIAN-CARLO ROTA 

We are happy to inaugurate the Combinatorics Section of the Encyclo- 

pedia. Professor Tutte, one of the founders of graph theory, is presenting 

here the jewels of a subject rich in deep results, in a volume that will long 

remain definitive. 

xiii 
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Foreword 

It is both fitting and fortunate that the volume on graph theory in the 
Encyclopedia of Mathematics and Its Applications has an author whose 

contributions to graph theory are—in the opinion of many—unequaled. 

Indeed, the style and content of the book betray throughout the influence of 

Professor Tutte’s own work and the distinctive flavor of his personal 

approach to the subject—a flavor familiar to those of use who have heard 

his beautifully constructed lectures on many occasions and are delighted to 

see so much of this exposition now recorded in permanent form for a wider 

audience. 
The book deals with many of the central themes that one might 

expect to find in books on graph theory, such as Menger’s Theorem and 

network flows, the Reconstruction Problem, the Matrix-Tree Theorem, the 

theory (largely created by Professor Tutte) of factors (or matchings) in 

graphs, chromatic polynomials, Brooks’ Theorem, Grinberg’s Theorem, 

planar graphs, and Kuratowski’s Theorem. However, this is by no means 

“just another book on graph theory,” since the treatment of all these topics 

is unified into a coherent whole by Professor Tutte’s highly individual 

approach. Moreover, the more customary topics are leavened with some 

“pleasant surprises,” such as the author’s attractive theory of decomposition 

of graphs into 3-connected “3-blocks” (not found in other books except [5]), 

an interesting and remarkable approach to electrical networks, and— perhaps 

particularly—the classification theorem for closed surfaces. This theorem is 

XV 



i Foreword 
Xvi 

usually considered as part of topology, but Professor Tutte shows us that it 

fits admirably into a work on graph theory, where indeed the essentially 

combinatorial nature of the arguments may be more at home. 

From these remarks, it will be clear that the book has much to offer 

to any reader interested in graph theory. It draws together some important 

themes from the rapidly growing literature of the subject, and by no means 

duplicates any other expository writing at present available. It will also 

provide an excellent preparation for some slightly more specialized topics, 

including much of Professor Tutte’s own work—for example, his extensive 

theory of planar enumeration and chromatic polynomials of maps, his 
theorem on Hamiltonian circuits in 4-connected planar graphs, the Five-Flow 

Conjecture (see Chapter IX, Sec. IX.4), and the interactions of matroids 

with graphs (see Chapter VIII, Sec. VIII.11). The treatment of minors 

provides background for (among many other things) the conjecture about 

well-quasi-ordering of graphs by the relationship of one graph being a 

minor of another (see the second half of Note 1 at the end of Chapter II). 

Current work of G. N. Robertson (a former student of Professor Tutte) and 

P. D. Seymour seems to promise exciting developments related to this 

problem. Some of these—and other—topics might provide ample material 

for a sequel volume, if Professor Tutte, or someone close to his thinking, is 

impelled to write one. 

In the Introduction, Professor Tutte describes his early encounters 

with graph theory, particularly as a student at Cambridge. This cannot but 

provoke one’s own early recollections, a favorite topic of conversation 

among graph-theorists being what first drew one’s attention to graph theory. 

My own answer is “Nothing: I just invented it.” In other words, when 

Starting work as a research student, also at Cambridge, I felt that there 

ought to be a branch of mathematics dealing with this kind of thing, and, if 

there was not, I would create it. (References to binary relations in algebra 

courses might have helped to foster this idea.) It is a measure of the little 

known state of graph theory at that time that it took me some weeks to 

discover that I was not its first inventor and to hear of the one existing 
textbook on the subject, K6énig’s Theorie der endlichen und unendlichen 
Graphen, published eighteen years earlier in 1936. After Konig, I turned to 
the few research papers on graph theory then available, and I recall many 
hours in the library studying Professor Tutte’s work on factors of graphs, 
liberally armed with colored pencils (especially red and bue ones, of course) 
to draw the diagrams needed to aid one’s imagination. The reader is advised 
to equip himself similarly when he reaches Chapter VII, if indeed he has not 
already found this to be essential at a much earlier stage in the study of this 
or any other book on graph theory. 

During the early part of my career, working in graph theory was a 
rarity and an idiosyncrasy. A graph-theorist could not expect to have others 
among his colleagues and might be hard pressed to find them in the same 
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country: one simply did not expect to interact with other mathematicians 

except through published literature. Undergraduate and even graduate 

courses in the subject were virtually unknown. To some mathematicians, it 

even seemed questionable whether graph theory was worthwhile mathe- 

matics at all. Doubts seemed to center on its lack of elaborate techniques 

and its lack of unification and relevance, in the sense that it seemed to 

consist largely of solutions to isolated problems, not interacting closely with 

one another or with the rest of mathematics. 

However, in fairness I must say that, for every mathematician who 

may have harbored such doubts, there were others who seemed sympathetic 

and interested. Not least among these, when I became a University lecturer, 

was my first Head of Department, Professor E. M. Wright (now Sir Edward 
Wright), whose own work has taken a distinctly graph-theoretic turn in 

more recent years. 
In those early years, I would have thought a person almost demented 

if he had predicted the subsequent explosive growth in graph theory and 

other areas of combinatorial mathematics, which must be among the most 

remarkable experiences of those of us who have lived through it. Writers of 

futuristic novels do well to remember that truth is often stranger than 

fiction. It would have seemed absurd to predict that names like G. A. Dirac, 

F. Harary, and W. T. Tutte (then just meaningless cryptograms attached to 

research papers) would quite soon become those of some of the mathemati- 

cians whom I would know best personally, that graph theory would take me 

across the Atlantic to join a “Department of Combinatorics and Optimi- 

zation,” where for several years Professor Tutte and I would occupy 

adjacent offices, that there would be more combinatorial conferences than 

any one person could attend, and that the combinatorial literature would 

expand to its present size, including at least six journals (and perhaps more, 

depending on the method of counting) devoted entirely to combinatorics. 

The first of these to emerge, the Journal of Combinatorial Theory, has 

for many years had Professor Tutte as its editor-in-chief (or in recent times, 

since proliferation of material forced it to subdivide, as editor-in-chief of 

half of it). The editor of this Encyclopedia, Professor G.-C. Rota, was one of 

the organizers responsible for getting the Journal started, and I was reliably 

informed by Blanche Descartes at that time that she had selected its title as 

an anagram of OUR FOE JIAN-CARLO ROTA BIMONTHLY. 

Despite all this increased recognition of combinatorics (including 

graph theory) as part of mathematics, traces of the controversy about its 

value still persist. In the introduction to [1], L. Lovasz rightly responds by 

pointing to the increasing body of techniques and unifying theory that the 

subject is acquiring. Nevertheless, some further remarks may be relevant. As 

another former colleague of mine, J. Sheehan, has suggested [4], there may 

still be important parts of combinatorics that do not fit well into any such 

unifying framework. There is surely some satisfaction in solving an obvious, 
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natural and tough problem, even if the solution seems, at least for the 

present, to stand on its own. If (as sometimes seems to be suggested) a 

theorem can be significant only by virtue of its helpfulness in proving or 

illuminating other theorems, then one must go on to ask why those other 

theorems are significant, and a reductio ad absurdum is eventually reached. 

To prove that a branch of mathematics is interesting, must one necessarily 

demonstrate that it is exactly like other branches of mathematics, or might 

part of the appeal of mathematics lie in its diversity? 

On the other hand, it is unquestionable that interplay between ideas 

from different sources, and elaborate techniques successfully applied, are 

among the features that make much of mathematics fascinating. Moreover, 

mathematics does often display a tendency to unify itself and to build up a 

body of technique. Therefore one may well guess (despite my caution 

against predicting the future) that graph theory, as it matures, will continue 

to develop its own characteristic techniques and that many of its results will 

become increasingly unified, both among themselves and with the rest of 

mathematics. The present book may be expected to play a considerable part 

in placing graph theory on a sound theoretical and technical footing. 

I have written elsewhere what little I can about some aspects of the 

present state of graph theory [3] and Professor Tutte’s immense influence on 

it [2]. This, and an early publication deadline, must be my excuse for a 

comparatively short Foreword consisting largely of random reminiscences 

and reflections that may interest nobody, with the possible exception of 

myself. Perhaps some future historian of mathematics may glean a crumb or 

two of something or other from them; but I will detain the reader no longer 

from the rich harvest in store. 

C. Sr. J. A. NASH-WILLIAMS 
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Introduction 

The author encountered graph theory in high school, in the early thirties, 

while reading Rouse Ball’s book Mathematical Essays and Recreations. He 

then learned of Euler paths (Sec. VI.3), map-colorings (dualized in Sec. 

IX.3), factors of graphs (Sec. VII.6), and Tait colorings (Sec. [X.5) [5]. 

As an undergraduate at Cambridge he joined with R. L. Brooks, 

C. A. B. Smith, and A. H. Stone in the study of their hobby-problem of 

dissecting a square into unequal squares [3]. This soon called for much 

graph theory. It was linked, through a “Smith diagram,” with the study of 

3-connected planar graphs (Sec. XI.7), and with Kirchhoff’s Laws for 

electrical circuits (Sec. VI.5). It was linked through rotor theory (Sec. VI, 

Notes) with graph symmetry (Sec. I.2). It was linked through the tree-number 

(Sec. II.2) with the theory of graph functions satisfying simple recursion 

formulae (Sec. IX.1). 

All this is explained in the Commentaries of [4]. That is one reason 

why I do not discuss squared rectangles and the analogous triangulated 

triangles in the present work. Another is that I visualize the book as a work 
on pure graph theory, making no appeal either to point-set topology or to 

elementary geometry. 
I became acquainted with some graph-theoretical literature at Cam- 

bridge. I read Sainte-Lagué’s description of the proof of Petersen’s Theorem 

(Sec. VII.6). I found the classical papers of Hassler Whitney, published in 

1931-3, and the famous book of Dénes KOnig, the first textbook devoted 

xix 
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entirely to graph theory. I was there at Cambridge at the time of the births 

of Smith’s Theorem (Sec. IX.5) [7] and Brooks’ Theorem (Sec. IX.3) [2]. 

Stone’s discovery of flexagons came a little later. 

Having meditated upon these things for 45 years I now present some 

of them in the present work. It is an attempt at the reference book I would 

have liked to have in 1936—40. In electrical theory it is important to know 
whether you have a connection between the two terminals, and what 

happens when you remove a wire. Chapter I deals graph-theoretically with 

these matters. Chapter II deals with the effect of contracting an edge, or 

shall we say making a short circuit. The theory of 3-connection is discussed 

in Chapter IV, and the halfway stage of 2-connection in Chapter III. 

Chapter V, on reconstruction, is less directly related to squared squares and 
rectangles. I came to it by way of reconstruction formulae for some of the 

above-mentioned recursive graph functions [11]. 

Chapter VI concerns digraphs and a generalized theory of Kirchhoff’s 

Laws. It arose out of a study of triangulated triangles by the four under- 

graduates. We were sometimes reproached for basing our mathematical 

theory on physical laws. We protested, of course, that for us Kirchhoff’s 

Laws were axioms of a purely mathematical system, but we were glad to be 

able to emphasize this by introducing generalized Laws, describing a kind of 
electricity that never was on land or sea. 

Chapter VII derives from Sainte-Lagué’s paper, with some gaps filled 

and some extensions made. Chapter VIII is about cycles and coboundaries, 

generalizations of Kirchhoff flows. It attempts to describe some parts of 

graph theory algebraically, and most of it derives from my doctoral thesis of 
1948 [9]. 

Chapter VIII is about the recursive graph functions. It derives from a 
paper of 1947 [8]. It discusses the dichromatic polynomial, the dichromate, 
the chromatic polynomial, and the flow-polynomial, all of which can be 
referred to the theory of map-colorings and to the dual theory of vertex- 
colorings. 

So far there is one important omission, that of a theory of planarity. 
The graphs of interest in connection with squared rectangles and triangu- 
lated triangles are all planar, so Chapter X prepares for the introduction of 
planarity by giving a general theory of maps on surfaces. But this is to be a 
purely graph-theoretical work, and so the maps of Chapter X are structures 
defined by purely combinatorial axioms. Surfaces are defined as classes 
of maps. The discussion is an adaptation of the classical theory of 
H. R. Brahana [1]. Planar maps can now be defined as maps of Euler 
characteristic 2. 

Chapter XI gives a theory of planarity. It gives duality theorems for 
the tree-number and the dichromate, and it gives a combinatorial version of 
Jordan’s Theorem. It goes on to some tests for the planarity or nonplanarity 
of a given graph, MacLane’s and Kuratowski’s among them. This part 
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derives from my paper “How to draw a graph,” of 1964, but it skips the 

actual drawing, that being a matter of elementary geometry rather than 

graph theory. 
I take this opportunity to express my indebtedness to Brooks, Smith, 

and Stone, without whose missionary zeal | might now be writing on some 

other subject. 
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Chapter I 

Graphs and Subgraphs 

I.1. DEFINITIONS 

In this section we give a formal definition of a graph and introduce some of 

the basic terminology of graph theory. We give examples of graphs and 

some sample theorems. 

A graph G is defined by a set V(G) of elements called vertices, a set 

E(G) of elements called edges, and a relation of incidence, which associates 

with each edge either one or two vertices called its ends. 

The present work is concerned only with finite graphs, those in which 

the sets V(G) and E(G) are both finite. Much interesting work has been 

done on the other graphs, the infinite ones. But even the theory of finite 

graphs is too big to be adequately covered in one volume. Let us therefore 

make the rule that from here on the word “graph” is to mean a finite graph 

unless the contrary is stated explicitly. 
The terminology of graph theory is not yet standardized. Some 

authors prefer to use the terms “point” and “line” rather than “ vertex” and 

“edge.” This usage may be found inconvenient in problems involving both 

‘ graphs and geometrical or topological structures. In some of the older 
papers we may find “branch” used for “edge,” and “node” for “ vertex.” 

An edge is called a link or a loop according as the number of its ends 

is two or one. We shall however get into the habit of saying that each edge 

has two ends, with the explanation that in the case of a loop the two ends 
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are coincident. The two ends of an edge are said to be joined by that edge, 

and to be adjacent. Accordingly we say that a vertex is joined to itself, or is 

adjacent to itself, if and only if it is incident with a loop. Two or more links 

with the same pair of ends are said to constitute a multiple join. A graph 

without loops or multiple joins is called a strict graph. 

There are many problems of graph theory in which only strict graphs 

are of interest. Accordingly some authors restrict the term “graph” to mean 

what we have called a strict graph. When they have occasion to add loops or 

multiple joins to their structures they speak of “multigraphs.” 

Examples of graphs are not difficult to find. For one, the edges and 

vertices of a convex polyhedron are the edges and vertices, respectively, of a 

graph G. The ends in G of an edge are its ends in the geometric sense. We 

call G the graph of the polyhedron. 
A roadmap can be interpreted as a graph. The vertices are the 

junctions, and an edge is the stretch of road from one junction to the next, 

or from a junction back to itself. Similarly an electrical circuit may give us a 

graph in which the vertices are terminals and the edges wires. 
It is not difficult to see graphs in genealogical tables and computer 

programs. All through mathematics they are visible to the graph-theoretical 

eye of faith, for much of mathematics can be described in terms of binary 

relations, and what is a binary relation but a graph? 

It is customary to represent a graph G by a drawing on paper. The 

vertices are drawn as dots. A link with ends x and y is represented by a 

straight or curved line joining the dots of x and y, and not meeting any 

other vertex-dot. A loop with end x is drawn as a curve leaving the dot of x 

and returning to it again, without meeting any other vertex-dot on the way. 

In such a drawing it may happen that two edge-curves intersect at 

some point away from all the vertex-dots. Normally such edge-crossings are 

ignored as not representing anything in the structure of G. But when we ask 

what is the least possible number of edge-crossings in a drawing of G, deep 

and difficult problems arise. (See [8], 122-3.) 

Some examples follow. Fig. I.1.1 is a drawing of the graph of a cube, 
and Fig. I.1.2 shows a graph with loops and multiple joins. 

Some graphs with simple structures are thought to deserve special 

names. For some purposes it is convenient to recognize a null graph, having 

no edges and no vertices. A vertex-graph is an edgeless graph having exactly 

one vertex (Fig. I.1.3(i)). A loop-graph consists of a single loop with its one 
end (Fig. 1.1.3(ii)), and a link-graph consists of a single link with its two 
ends (Fig. I.1.3(iii)). 

Let n be a nonnegative integer. Then an n-clique is defined as a 
loopless graph with exactly n vertices and $n(n—1) edges, each pair of 
vertices being joined by a single link. Thus the n-cliques are strict graphs. 
Evidently the null graphs are the 0-cliques, the vertex-graphs are the 
I-cliques, and the link-graphs are the 2-cliques. Figure 1.1.4 shows a 
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FIGURE L1.1 

3-clique, a 4-clique and a 5-clique, labeled respectively (i), (11) and (iii). Note 

the edge-crossing in the diagram of the S-clique. 

Now let n be a positive integer. We define an n-arc as a graph G with 

n edges and (n +1) vertices, having the following property: The edges can 

be enumerated as A,, A;,...,A,,, and the vertices as dy, a), @),...,@,,, in such 

a way that the ends of A; are a,_, and a,, for each relevant suffix /. 
The l-arcs are the link-graphs. Fig. I.1.5 shows a 2-arc a 3-arc and a 

4-arc, labelled (i), (ii) and (iii), respectively. 

For any positive integer n we define an n-circuit as a graph G with n 

vertices and n edges, having the following property. The vertices can be 

enumerated as aj, d),...,a,, and the edges as A, A;,...,A,,, in such a way 

Aor? 
FIGURE 1.1.2 

(i) (ii) (iii) 

FIGURE 1.1.3 
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(i) (ii) (iii) 

FIGURE 1.1.4 

that the ends of A, are a,_, and a; (where ay) =a,,) for each edge A;. The 
l-circuits are the loop-graphs and the 3-circuits are the 3-cliques. Figure 

1.1.6 shows a 2-circuit, a 3-circuit, and a 4-circuit, labelled (i), (ii) and (iii), 

respectively. 

When it is unnecessary to assert or reassert the value of the integer n, 

an n-clique, n-arc, or n-circuit may be called simply a clique, arc, or circuit, 

respectively. In the two latter cases n is called the /ength of the arc or circuit 

concerned. 

Let us now define the valency val(G, x) of a vertex x in a graph G. It 

is the number of edges incident with x, loops being counted twice. It is clear 

that 

> val(G, x) =2|E(G). (1.1.1) 
xEV(G) 

Here and in the following pages we denote the cardinality of a finite set S$ 

by |S|. From Eq. (1.1.1) we can deduce the following theorem. 
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FIGURE 1.1.5 
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FIGURE 11.6 

Theorem I.1._ In any graph the number of vertices of odd valency is 

even. (This is one of the oldest and best-known results in graph theory.) 

The term “valency” or “valence” is suggested by a chemical anal- 

ogy. But many workers in graph theory say “degree” instead. 

A vertex of zero valency is said to be isolated. For example, the single 

vertex of a vertex-graph is isolated. It is convenient to describe a vertex of 

valency 1 as monovalent, one of valency 2 as divalent, and so on. Thus the 

single vertex of a loop-graph is divalent and the two vertices of the 

link-graph are monovalent. Each vertex of a circuit is divalent, and each 

vertex of an n-clique has valency (n — 1). 

Consider an n-arc. Let its vertices and edges be enumerated in the 

manner specified in its definition. Then it is clear that a) and a,, are 
monovalent, and that every other vertex is divalent. It is usual to describe 

the two monovalent vertices of an arc as its ends. The remaining vertices, all 

divalent, are called the internal vertices of the arc. 

A graph in which each vertex has the same valency n is called a 

regular graph of that valency. Thus every circuit is a regular graph of 

valency 2. If the integer m is positive, then each m-clique is a regular graph 

of valency (m—1). Regular graphs of valency 3 are of special interest in 

graph theory. They are called the cubic graphs. 

1.2. ISOMORPHISM 

Given two graphs, such as the graphs of a large and a small cube, we may 

decide that they are not essentially different. We may say that they have the 

same structure, or that each is a copy of the other. What is meant is that the 

two graphs can be represented by the same diagram. To make our meaning 

precise we may appeal to the following notion of isomorphism. 
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Let G and H be graphs. Let f be a 1-1 mapping of V(G) onto V( 1 )s 

and ga 1-1 mapping of E(G) onto E(H). Let @ denote the ordered pair 

(f,g). We say that @ is an isomorphism of G onto H if the following 

condition holds: The vertex x is incident with the edge A in G if and only if 
the vertex fx is incident with the edge gA in H. 

If such an isomorphism @ exists, we say that the graphs G and H are 

isomorphic. Clearly we then have 

|V(G)|=|V(H)| and = |E(G)| = |E( A). 

We may think of @ as an operation transforming G into H, and we 

accordingly write 9G = H. {t is also convenient to write 6v = fv and 6A = gA 

for each vertex v and edge A of G. Clearly G and H can be represented by 

the same diagram. The representative of an edge or vertex x of G can be 

reinterpreted as the representative of @x in H. 

It is possible for G and H to be the same graph. An isomorphism of 
G onto itself is called an automorphism of G. Any graph G has the identical 

or trivial automorphism J such that [x = x for each edge or vertex x of G. 

The relation of isomorphism between graphs is reflexive, because of 

the trivial automorphisms. It is symmetrical; if 6 = (f, g) is an isomorphism 

of G onto H, then there is an inverse isomorphism 6~'=(f~', g~') of H 

onto G. Finally, it is transitive; if @ = (f, g) is an isomorphism of G onto H 

and ¢=(/f;, g,) is an isomorphism of H onto K, then there is an isomor- 

phism $6 = (f, f, 2,8) of G onto K. Here ff is the mapping obtained by 
applying first f and then /,. Similarly $@ is the isomorphism obtained by 
applying first 6 and then 9. It is easy to verify that the multiplication of 
isomorphisms thus defined is associative. 

We have now verified that isomorphism is an equivalence relation. It 
therefore partitions the class of all graphs into disjoint nonnull subclasses, 
called isomorphism classes, such that two graphs belong to the same isomor- 
phism class if and only if they are isomorphic. 

Pure graph theory is concerned with those properties of graphs that 
are invariant under isomorphism, for example the number of vertices, the 
number of loops, the number of links, and the number of vertices of a given 
valency. It is therefore natural for a graph theorist to identify two graphs 
that are isomorphic. For example, all link-graphs are isomorphic, and 
therefore he speaks of the “link-graph” as though there were only one. 
Similarly one hears of “the null graph,” “the vertex-graph,” and “the graph 
of the cube.” When this language is used, it is really an isomorphism class 
(also called an abstract graph) that is under discussion. 

It is a convention rather than a theorem that all null graphs are 
isomorphic. We can justify it by postulating that if S and T are null sets, 
there is a unique 1-1 mapping of S onto T. The author remembers being 
taught that there is only one null set. Those who adhere to this mystical 
doctrine must hold that there is only one null graph, the unique member of 
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its isomorphism class. The null graph often fits rather oddly into combina- 
torial definitions. 

Theorem 1.2. Let G and H be strict graphs. Let f be a 1-1 mapping 
of V(G) onto V(F) having the following property: Two distinct vertices x and 

y of G are adjacent in G if and only if the corresponding vertices fx and fy of H 

are adjacent in H. Then there is a uniquely determined 1-1 mapping g of 

E(G) onto E(#) such that ( f, g) is an isomorphism of G onto H. 

Proof. Let A be any edge of G. It has distinct ends x and y, since G 

is strict. By hypothesis there is a uniquely determined edge A’ of H whose 

ends are fx and fy. We define a 1-1 mapping g by the rule that gAd = A’ for 

each edge A of G. It is then clear that ( /, g) is an isomorphism of G onto H. 

Conversely, if there is a g such that (f, g) is an isomorphism of G onto H, 

then g must satisfy the above rule. oO 

In a theory of strict graphs an isomorphism of G onto H is often 

defined as a 1-1 mapping of V(G) onto V(H) that preserves adjacency. 

This specialization can be regarded as an application of Theorem I.2. 

Let n be a non-negative integer, and let G and H be n-cliques. They 

are strict graphs. There exists a 1-1 mapping f of V(G) onto V(#7), and any 

such mapping preserves adjacency by the definition of an n-clique. Accord- 

ingly G and H are isomorphic, by Theorem I.2. 
Now let 1 be a positive integer, and let G and H be n-arcs. In their 

defining enumerations let the vertices of G be enumerated as do, dj,...,a, 

and those of H as bo, b,,...,5,. Let f be the 1-1 mapping of V(G) onto 
V(#) such that fa; = 6; for each suffix j. Then f has the property specified in 

the enunciation of Theorem I.2, and therefore G and H are isomorphic. 

A similar argument shows that if n is any integer exceeding 2, then 

any two n-circuits are isomorphic. It is a trivial matter to extend this result 

to the cases n=1 and n=2. But the 1-circuit and 2-circuit are not strict 

graphs, and so Theorem I.2 does not apply. If G and H are 2-circuits, as 

shown in Fig. I.1.6(i), then any 1-1 mapping of V(G) onto V(H) can be 

combined with any 1-1 mapping of E(G) onto E(#) to yield an isomor- 

phism of G onto H. 

The automorphisms of a graph G are the elements of a group A(G) 

with respect to the associative multiplication of isomorphisms defined 

above. The unit element of A(G) is the trivial automorphism. The inverse of 

an automorphism 6 in A(G) is the inverse isomorphism 6—' defined above. 

A product $8 of isomorphisms is defined only when @ is a mapping onto, 

and ¢ is a mapping from, the same graph G. But in the case of automor- 

phisms this condition is always satisfied. We call A(G) the automorphism 

group of G. 

Mathematical structures other than graphs have their theories of 

isomorphism. For example, two groups P and Q are said to be isomorphic if 
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there is a 1-1 mapping f of P onto Q such that f and f | preserve products. 

We should note the following theorem. 

Theorem 13. Isomorphic graphs have isomorphic automorphism 

groups. 

Proof. Let 6 be an isomorphism of a graph G onto a graph H. Then 

if £ is in A(H), the isomorphism 67 '€@ is in A(G). Similarly, if n is in A(G), 

then 070~' is in A(H). So we have a 1-1 correspondence n > 6767 ' of 

A(G) onto A(#), and this clearly preserves products. oO 

We can now assert that the automorphism group of a graph, regarded 

as an abstract group, is invariant under graph isomorphism. It is thus a 

legitimate concern of the pure graph theorist. 

Let us investigate the automorphism groups of the graphs so far 

defined. For the null graph, the vertex-graph, and the loop-graph, there is 

only the trivial automorphism. Hence the automorphism group of each of 

these graphs is “trivial”; that is, it consists of a unit element only. 

Now consider an n-clique G, with n > 0. Referring to Theorem I.2 we 

see that any permutation of the n vertices defines a unique corresponding 

automorphism of G. We deduce that A(G) is isomorphic to the group of 
permutations of n objects. 

Consider next an n-arc g with ends x and y. We have a defining 

enumeration in which the vertices are enumerated as dp, a,,...,a, and the 

edges as A,, A,,...,A,. We may suppose that a) = x and a, = y. We can get 
a second defining enumeration, called the reverse of the first, by reversing 

the order of edges or vertices in each of the above sequences. Adjusting the 

notation we can say that in the reverse enumeration a) = y and a, =x. 

However, a defining sequence is uniquely determined by valency considera- 
tions as soon as dy is given: A, must be the single edge incident with ap, a, 
must be the other end of A,, A, must be the other edge incident with a, (if 
n>1), and so on. Evidently an automorphism of G is determined by an 
ordered pair of defining enumerations: It maps the first member onto the 
second. We deduce that A(G) has exactly two elements, say J and 6. The 
nontrivial automorphism @ interchanges the two ends of G; it changes each 
defining enumeration into its reverse. 

Consider next an n-circuit G, with n > 1. We have a defining enumer- 
ation in which the vertices are enumerated as a, ,...,a, and the edges as 
A,, A,,...,A,. Evidently there is an automorphism @ that increases each 
suffix by 1. (Addition and subtraction in the suffixes is to be modulo n.) 
There is also an automorphism ¢ that reverses the original sequence of 
vertices, and that reverses the original cyclic sequence of edges. Using the 
powers of 6 and their combinations with ¢, we find that it is possible to 
obtain a defining enumeration of the circuit in which a, is an arbitrary 
vertex and A, is any edge incident with a,. But it follows from valency 
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considerations that a defining sequence is fixed uniquely when a, and A, are 
given. As with the arcs, an automorphism is uniquely determined by an 
ordered pair of defining enumerations. We deduce that A(G) has exactly 2n 
elements, which we can write as 

Ty, Ott 8 hcOd, OFd 2::,07..'d, 

Indeed A(G) is a dihedral group of order 2n; its generators 6 and ¢ satisfy 

the generating relations 0” = J, ¢ = J, and 0¢ = 98" '. 

1.3. SUBGRAPHS 

In constructing a theory of graphs, we can start with the observation that 

some graphs contain other graphs. A graph H contained in a graph G is 

called a subgraph of G. We shall use the following precise definition. 

A graph H is said to be a subgraph of a graph G if 

V(H)cV(G), E(H)CE(G), 

and each edge of H has the same ends in H as in G. Under these conditions 

we say also that H is contained in G. 

According to the above definition, G is itself a subgraph of G. The 

other subgraphs of G are called its proper subgraphs. They are said to be 

properly contained in G. We write H C G to indicate that H is a subgraph of 

G, and HCG to indicate that H is a proper subgraph of G. We use a 

corresponding notation for finite sets. Thus S C T means that S is a subset 

of T, and S CT that S is a proper subset of T. 
The above formal definition leads to the following rule for construct- 

ing subgraphs. 

Rule 1.4. Let G be a graph, P a subset of V(G) and Q a subset of 

E(G). Then the necessary and sufficient condition for the existence of a 

subgraph H of G such that V(H)= P and E(H)=@Q is that P shall contain 

both ends of each member of Q. 

Condition I.4 is always satisfied when P =V(G). We then call H a 

spanning subgraph of G. We shall denote the spanning subgraph of G with 

edge-set S by G: S. Those spanning subgraphs of G that are circuits are 

called its Hamiltonian circuits; those that are regular graphs of valency | are 

called its 1-factors. Both Hamiltonian cireuits and 1-factors are prominent 

in the graph-theoretical literature. 

If S is any set of edges of G, let J(S) denote the set of all vertices v 

of G such that v is incident with a member of S. By Rule 1.4 there is a 

subgraph H of G such that V(H)= J(S) and E(H)=S. We call H the 

reduction of G to S, and we denote it by G-S. We note that a reduction can 

have no isolated vertex. In particular G- E(G) is the graph obtained from G 

by deleting all its isolated vertices. 
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If Uis any set of vertices of G, let J(U) denote the set of all edges of 

G having both ends in U. By Rule I.4 there is a subgraph H of G such that 

V(H)=U and E(H)=J(U). 

We call such a subgraph an induced subgraph of G. In particular, H is the 

subgraph of G induced by U; we denote it by G[U]. 

Each graph G has a null subgraph, which we denote by @. This null 

subgraph is both a reduction and an induced subgraph of G, but it is not a 

spanning subgraph of G unless G itself is null. 
Let H and K be subgraphs of G, not necessarily distinct. By I.4 there 

is a subgraph L of G such that 

V(L)=V(H)UV(K) and = E(L)=E(H)UE(K). 

We call L the union of H and K, and we denote it by H U K. By I.4 there is 

also a subgraph M of G such that 

V(M)=V(H)OV(K) and E(M)=E(H)NE(K). 

We call M the intersection of H and K, and we denote it by HM K. For 

obvious reasons, unions and intersections of subgraphs obey algebraic rules 

like those for unions and intersections of subsets of a finite set. For 

example, 

(HUK)QNL=(AHOL)U(KNL). (1.3.1) 

Two subgraphs H and K of G are said to be disjoint if they have no 

common edge and no common vertex. One way of asserting the disjointness 
is to write 

HOK=2. 

There is a similar device for asserting that a graph G is nonnull: We write 
OCG. 

The following theorem is an easy consequence of the definition of a 
subgraph. 

Theorem I.5. Any subgraph of a subgraph of G is a subgraph of G. 

We can go further. Any spanning subgraph of a spanning subgraph 
of G is a spanning subgraph of G, any reduction of a reduction of G is a 
reduction of G, and any induced subgraph of an induced subgraph of G is 
an induced subgraph of G. 

We conclude the section with a notation for relating the subgraphs of 
two isomorphic graphs G and H. Let 6=(f, g) be an isomorphism of G 
onto H. 

If S is any subset of V(G), then f maps S onto a subset fS of V(#). 
This is the set of images under f of the members of S. We can denote it also 
by 8S. The restriction f-S of f to S is the 1-1 mapping of S onto fS that 
agrees with f for every member of S. Similarly, if T is any subset of E(G), it 
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is mapped by g onto a subset gT of E(H), also denoted by OT. We then 
have the restriction g-T of g to T, a 1-1 mapping of T onto eT. 

Let L be any subgraph of G. Then there is a subgraph L’ of H such 
thar 

V(L')=fV(L) and E(L’)=gE(L). 

We write L’= 6L and say that @ maps L onto L’. In this way @ sets up a 1-1 
correspondence L — @L between the subgraphs of G and the subgraphs of 
H. Moreover for each L there is an isomorphism (f:V(L), g-E(L)) of L 
onto @L. We denote this isomorphism by @:L and call it the restriction of 0 
to L. 

Let us define a structural property of a graph as one invariant under 

isomorphisms. The above discussion shows that if H is a fixed graph, then 

the number of subgraphs of G isomorphic to H is a structural property of G. 

We shall make use of this particular structural property in Chapter V on the 
Reconstruction Problem. 

1.4. VERTICES OF ATTACHMENT 

A subgraph is joined onto the rest of its graph at certain vertices called its 

“vertices of attachment.” In this section we give a formal definition of these 

vertices, adopt a notation for discussing them, and derive a few theorems. 

Let H be a subgraph of a graph G. A vertex of attachment of H in G 

is a vertex of H that is incident with some edge of G that is not an edge of 
H. We write W(G, H) for the set of vertices of attachment of H in G, and 

w(G, H) for the number |W(G,H)| of such vertices. Thus w(G,G)= 

w(G, @)=0. 

In this work we shall need theorems relating the vertices of attach- 

ment of two subgraphs H and K to the vertices of attachment of their union 

and intersection. Some simple rules are given in the following theorem. 

Theorem I.6. Let H and K be subgraphs of a graph G. Then each 

vertex of attachment of H U K or HC K is a vertex of attachment of H or K. 

On the other hand, each vertex of attachment of H is a vertex of attachment of 

HUKorH(K. 

Proof. Let v bea vertex of attachment of H U K. Then v is incident 

with an edge A of G belonging neither to H nor to K. Accordingly, v is a 

vertex of attachment of whichever subgraph H or K it belongs to. 

Next let v be a vertex of attachment of HM K. By definition it is 

incident with an edge A of G that may belong to one of H and K but cannot 

belong to both. Accordingly, v is a vertex of attachment of whichever 

subgraph H or K does not have A as an edge. 
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Finally let v be a vertex of attachment of H or K, let us say of H. It 

is incident with an edge A of G not in E(#). If A is not in E(K), then v is a 

vertex of attachment of H U K. If A is in E(K ), then v is a vertex of HM K, 

and it is a vertex of attachment of that subgraph. Oo 

If H and K are subgraphs of G, let us write Q(G; H, K ) for the set of 

all vertices x of G such that x belongs to W(G, H) and W(G, K ) but not to 

W(G, H U K). Alternatively we may characterize x as incident with an edge 

of H not belonging to K and with an edge of K not belonging to H, but not 

incident with any edge of G outside both E(H) and E(K). We write also 

q(G; H, K)=|Q(G; H, K)|. 

In later work we shall make use of the following theorem. 

Theorem I.7._ Let H and K be subgraphs of a graph G. Then 

w(G,HUK)+w(G, HN K)=w(G, H)+w(G, K)—q(G; H, K). 
(1.4.1) 

Proof. Consider any vertex x of G. We may suppose it to belong to 

W(G,HUK) or W(G, HK) since otherwise, by Theorem I.6, it makes 

no contribution to either side of Eq. (1.4.1). 

Suppose first that x belongs to W(G, H UK). Then it is incident 

with an edge A of G not belonging to H or K. If x belongs to HO K, then it 

belongs also to H and to K, and it is a vertex of attachment of each of the 

subgraphs H, K, H U K and H / K. Since it does not belong to Q(G; H, K), 

it makes the same contribution 2 to each side of Eq. (1.4.1). If x does not 

belong to HM K, we can assume without loss of generality that x belongs to 
H but not to K. It then belongs to W(G, H). Since it does not belong to 

Q(G; H, K ), it makes the same contribution | to each side of Eq. (1.4.1). 

In the remaining case x belongs to W(G;HMK) but not to 

W(G, HU K). By Theorem I.6 it belongs to one or both of W(G, H) and 

W(G, K). But if it belongs to both these sets, it belongs also to Q(G; H, K ). 

Hence x makes the same contribution 1 to each side of Eq. (1.4.1). Our 

proof is now complete. 0 

We take note of one more theorem, an obvious one. 

Theorem 1.8. Let K be a subgraph of a subgraph H of a graph G. 
Then each vertex of attachment of K in H is a vertex of attachment of K in G. 
Moreover, each vertex of attachment of K in G is either a vertex of attachment 
of K in H or a vertex of attachment of H in G. 

Further information about vertices of attachment can be found in 

[9]. 
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Let H be a subgraph of a graph G. It follows from Rule 1.4 that there 
is a subgraph H* of G such that 

E(H*)= E(G)- E(#) and V(H°) = (V(G)—-V(H))UW(G, B). 
We call H* the complementary subgraph to H in G. Thus GS =@ and 2 =G. 
For another example, let H be the vertex-graph defined by a vertex x in G. 
If x is an isolated vertex of G, then H° is the graph obtained from G by 
deleting x. But if x is not isolated, then H* = G. 

Theorem 1.9. The vertices of attachment of H° are those vertices of 
attachment of H that are not isolated vertices of H. 

Proof. Let x be any vertex of attachment of H°. It is incident with 
an edge of H and is therefore a vertex of H. Hence, by the definition of H°, 
it is a vertex of attachment of H. We note that it is not isolated in H. 

On the other hand let x be a vertex of attachment of H. Then it is a 

vertex of H*. It is a vertex of attachment of H° if and only if it is not 

isolated in H. Oo 

Corollary 1.10. No vertex of attachment of H‘° is isolated in H*. 

Let us now consider the complementary subgraph H“ to H° in G. It 
is clear that E( HH“) = E( A). We have also 

V(H™) = {V(G)—(V(G)—V(H))UW(G, H)}}UW(G, H*) 
= {(V(G)—W(G, H))—(V(G)—V(H))}UW(G, H*) 
= (V(H)-W(G, H))UW(G, H*). 

Combining these results with Theorem I.9, we obtain the following theorem. 

Theorem I.11. H“ is the graph obtained from H by deleting those of 

its vertices of attachment that are isolated in H. 

Corollary 1.12. If no vertex of attachment of H is isolated in H, then 

AW =H. 

Let us define a complementary pair of subgraphs of G as a pair 

{H, K) such that each of H and K is the complementary subgraph to the 
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FIGURE 1.4.2 

other in G. By Corollaries I.10 and I.12, such a complementary pair can be 

any pair of subgraphs of G of the form {H, H*) such that no vertices of 

attachment of H are isolated in H. In particular, for any subgraph H of G 

the pair {H°, H“)} is complementary. 

If (H, K} is any complementary pair of subgraphs of G, we have 

W(G, H)=W(G, K), by Theorem I.9. We call W(G, H) the binding set and 

w(G, H) the binding number of the complementary pair. Figures I.4.1 and 

1.4.2 show complementary pairs of subgraphs of G with binding numbers 1 

and 2, respectively. 

15. COMPONENTS AND CONNECTION 

A subgraph H of a graph G is said to be detached in G if it has no vertices of 
attachment in G. Thus G itself and its null subgraph are detached in G. 

Theorem 1.13. If H and K are detached subgraphs of G, then so are 

HU K and H ( K (by Theorem I.6). 

Theorem 1.14. If H is a detached subgraph of G, then the comple- 

mentary subgraph H° to H in G is detached in G. Moreover, H° is disjoint 
from H, and H™ = H. 

The first part of Theorem I.14 is a consequence of Theorem I.9. 
Disjointness follows directly from the definition of a complementary sub- 

graph. Theorem I.11 shows that H° = H. 

Theorem 1.15. A detached subgraph of a detached subgraph of G is a 
detached subgraph of G (by Theorem 1.8). 

A component of G is a minimal nonnull detached subgraph of G, that 
is, a nonnull detached subgraph of G that contains no other nonnull 
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detached subgraph of G. From this definition and the finiteness of G, we 
derive the following theorem. 

Theorem 1.16. If H is a nonnull detached subgraph of G, then there is 
a component C of G such that C C H. 

Theorem 1.17. Distinct components of G are disjoint. 

Proof. Let H and K be distinct components of G. Assume that they 

are not disjoint. Then HK is a nonnull detached subgraph of G, by 

Theorem I.13. By the minimality of H and K, we hve H=HAK=K,a 

contradiction. Oo 

Theorem 1.18. Let x be any edge or vertex of G. Then it belongs to 

exactly one component of G. 

Proof. We note that x belongs to the nonnull detached subgraph G 

of G. By finiteness it belongs to a nonnull detached subgraph H of G such 

that no proper subgraph of A is a nonnull detached subgraph of G 
including x. 

Assume that H is not a component of G. Then it contains a nonnull 

detached subgraph K of G to which x does not belong. Let K’ be the 

intersection with H of the complementary subgraph K‘* to K in G. Then K’ 

is a proper subgraph of H including x. Moreover, K’ is detached in G, by 

Theorems I.13 and I.14. But this contradicts the definition of H. oO 

We have now proved that x belongs to some component H of G. It 

can belong to no other component of G, by Theorem [.17. 

Theorem 1.19. Let x be an isolated vertex of G. Then the correspond- 

ing vertex-graph is a component of G. 

To prove this we observe that the vertex-graph is a detached nonnull 

subgraph of G and that it has no nonnull proper subgraph. 

We denote the number of components of a graph G by p)(G). In the 

terminology of algebraic topology, it is “the Betti number of G of dimension 

zero.” 
If G is null, we have p,)(G) = 0, because components are nonnull. but 

for a nonnull graph G, po(G) is always positive, by Theorem I.18. If 

Po(G) =1, we say that G is connected and if po(G)>1, we say that G is 

disconnected. 
According to these definitions the null graph is the only graph that is 

neither connected nor disconnected. 

Theorem 1.20. Let G be an edgeless graph. Then py)(G) =|V(G)|. 

This result follows from Theorems I.17 and I.19. 

Let us note that p,(G) is a structural property of G. This follows 

from the remarks on isomorphism at the end of Sec. I.3, with the further 
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observation that @ maps W(G, L) onto W(H, @L) for each subgraph L of G. 

Actually most of the properties of graphs discussed in this work are 

structural, being defined ultimately in terms of the incidence relations only. 

We need no longer emphasize structurality. It will be enough to point out 

the occasional nonstructural property as it comes under discussion. 

We now give some examples of connected graphs. Any nonnull 

clique is connected, for by its definition no nonnull proper subgraph of the 

clique can be detached. 
Consider an n-arc G. In some defining enumeration of G, let the 

vertices be enumerated as dp, d),...,a,. Let C be the component of G 
including ay. (See Theorem I.18.) If there are vertices of G not belonging to 

@& letia j be the one with least suffix. But then a feb being incident with A ip is 

a vertex of attachment of C in G, which is impossible. Hence C includes all 

the vertices of G. Accordingly pyp(G) =1, by Theorem I.17. 

Now we consider an n-circuit G. In some defining enumeration, we 

suppose the sequence of vertices to be a,,a),...,a,. We let C be the 

component of G including a,, and we continue the argument as in the case 

of the n-arc. 

We conclude that each arc and circuit is connected. 

We continue with some general theorems about connected graphs 

and subgraphs. 

Theorem I.21. A graph G is connected if and only if no nonnull 

proper subgraph of G is detached in G, provided that G itself is nonnull. 

Proof. \f G has a detached nonnull proper subgraph, then G has at 

least two components, by Theorems I.16 and 1.18. In the remaining case G is 

a minimal nonnull detached subgraph of G, that is, a component of G. By 
Theorem I.17, it is the only component of G. Oo 

Theorem 1.22. Each component of a graph G is a connected graph. 

Proof. Let C be a component of G. It has itself a component D, by 
Theorem I.18. But D is a detached subgraph of G, by Theorem I.15. Hence 
D=C and p)(C) = 1, by the minimality of C. oO 

Theorem 1.23. Let H be a subgraph of G. Then H is a component of 
G if and only if it is both detached in G and connected. 

Proof. If H is a component of G, it satisfies the stated condition, by 
Theorem 1.22. Conversely, if H is both detached in G and connected, it is a 
minimal nonnull detached subgraph of G, by Theorems I.8 and 1.21. 
(Theorem I.8 shows that if a subgraph of H is detached in G, it is also 
detached in H.) im) 

Theorem 1.24. Let H be a connected subgraph of G. Then there is a 
unique component C of G such that H CC. 
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Proof. Let x be any vertex of H. There is a component C of G 
including x, by Theorem I.18. The intersection C  H is nonnull. 

Assume that C  H is a proper subgraph of H. It is not detached in 
H, by Theorem I.21. Hence some vertex u of C 0 H is incident with an edge 
A of H not belonging to C. But then uw is a vertex of attachment of C in G, 
which is impossible. 

We deduce that CO H is the whole of H, that is, that H CC. oO 

Theorem 1.25. Let H and K be connected subgraphs of G whose 
intersection is nonnull. Then H U K is connected. 

Proof. H and K are contained in components C and D, respectively, 
of HUK, by Theorem 1.24. We must have C =D, by Theorem [.17. 
Accordingly, 

C=HUK and p,(HvUK)=1. Oo 

We conclude the section with two characterization theorems. 

Theorem 1.26. A graph G is an arc if and only if it is connected, has 

iwo vertices of valency 1, and has all its other vertices of valency 2. 

Proof. Suppose first that G is an arc. We have observed in this 

section that G is connected, and, in Sec. I.1, that it has the other two 

required properties. 

Conversely, suppose G to be a graph having the three stated proper- 

ties. We denote one of the monovalent vertices by ay. We then write A, for 
the single edge incident with ay, a, for the other end of A,, A, for the 
second edge incident with a, (if any), a, for the other end of A,, and so on. 
Evidently no edge can be repeated in this sequence until some vertex has 

been repeated, and the first-repetition of a vertex has been repeated, and the 

first repetition of a vertex would violate the valency conditions. So the 

sequence continues without repetition until it terminates. It can terminate 

only at the second monovalent vertex, a,,, say. In the sequences dp, @),...,a,, 
and A,, A,,...,A,, we see the defining enumeration of an n-arc L that is a 

subgraph of G. But L is detached in G, for each of its vertices has the same 

valency in L as in G. Hence G = L, by Theorem I.21. oO 

Theorem 1.27. A graph G is a circuit if and only if it is a connected 

regular graph of valency 2. 

Proof. Suppose first that G is a circuit. We have observed in this 

section that G is connected, and, in Sec. I.1, that G is a regular graph of 

valency 2. 
Conversely, suppose G to be a connected regular graph of valency 2. 

Let a, be one of its vertices and A, an edge incident with a). We write a, for 
the other end of A,, A, for the second edge incident with a,, a, for the other 
end of A,, and so on, until some edge or vertex is repeated. Evidently the 
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first repetition must be that of a vertex, and by the valency conditions it 

must be of the form a, = dp. (If A, is a loop, then n = 1.) In the sequences 

,,4>,.-.,a, and Aj, A>,...,4,, we see a defining enumeration of an n-cir- 

cuit J contained in G. But J is detached in G, since each of its vertices is 

divalent in both J and G. Hence, G = J, by Theorem 1.21. | 

1.6. DELETION OF AN EDGE 

In this section we consider the effect of deleting an edge A from a graph G. 

The operation replaces G by its spanning subgraph G:(E(G)—{A}), which 

we denote also by the simpler symbol G. The theory is based on the 

following observation. 

Proposition 1.28. Let A be an edge of a graph G, and let C be the 

component of G including A. Then the components of Gj, are the components of 

G other than C, together with the components of C4. Moreover, each compo- 

nent of C; includes at least one end of A. 

Proof. The components of G other than C and the components of 

C’, are clearly detached subgraphs of Gj, together including all the vertices 

of G;,. Hence they are the components of Gj, by Theorems 1.23 and 1.7. 

Moreover, if C; had a component D not including an end of A, then D 
would be a detached subgraph of G. This would contradict the minimality 

0) ia Oe oO 

There are two possibilities. Either Cj, has exactly two components, 

each including a single end of A in G, or Cj is connected. In the first case we 

say that A is an isthmus of G, and that the components of Cj are the two 

end-graphs of A in G. 

As an immediate consequence of Proposition 1.28, we have Theorem 

1.29. 

Theorem 1.29. Let A be an edge of a graph G. If A is not an isth- 

mus of G, then po(G4) = Po(G). But if A is an isthmus of G, then po(G4) = 

PA(G)+1. 

The single edge of a link-graph is an isthmus. It can further be 

verified that each edge of an arc is an isthmus of the arc. Let us note also the 
following rules. 

Theorem 1.30. Let x be a monovalent vertex of a graph G, and let A 
be its incident edge. Let C be the component of G including x and A. Then A is 

an isthmus of G. One of its end-graphs is the vertex-graph X defined by x. The 

other is the graph obtained from C by deleting x and A. 

Proof. X is a component of Cj, by Theorem I.19. Since x is 
monovalent, A is a link, with a second end y not belonging to X. Hence 4 is 
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an isthmus of G and X is one of its end-graphs. The second must be the 

complementary subgraph to X in Cj. Oo 

Theorem 1.31. A circuit has no isthmus. 

Proof. This result can be verified directly from the definitions of 

arcs and circuits. We observe that the deletion of an edge from a circuit 

changes it into a vertex-graph or an arc, that is, into a connected graph. 

Another proof uses Theorem I.1. Suppose A to be an isthmus of a 

circuit C. Let H be an end-graph of A in C, and let x be the single end of A 

belonging to H. Now in C each vertex has valency 2. Hence in H the vertex 

x has valency | and every other vertex has valency 2. But this is impossible, 

by Theorem I.1. Oo 

By definition, an isthmus is necessarily a link. Isthmuses satisfy the 

following persistence theorem. 

Theorem 1.32. Let A be an isthmus of a graph G. Let H be a 

subgraph of G having A as an edge. Then A is an isthmus of H. 

Proof. Suppose A is not an isthmus of H. Then both ends of A are 

in the same component D of Hj. But D is a connected subgraph of Gj. It is 
contained in a component C of Gj, by Theorem 1.24. Hence both ends of A 

are in the same component of Gj, contrary to the definition of A as an 

isthmus of G. oO 

A graph in which every edge is an isthmus is called a forest. A 

connected forest is a tree. Thus, by Theorem I.32, each component of a 

forest is a tree. We note that the null graph is a forest but not a tree. It is the 

only forest that contains no tree. As a more general application of Theorem 

1.32 we have: 

Theorem 1.33. Any subgraph of a forest is a forest. 

We define the cyclomatic number p,(G) of a graph G, also known as 

the Betti number of dimension 1, by the following equation: 

p\(G) =|E(G)|—|V(G)| + po(G). (1.6.1) 

Theorem 1.34. Let A be an edge of a graph G. If A is an isthmus 

of G, then p,(G4) = p\(G). But if A is not an isthmus of G, then p,(G4,)= 

p,(G)—1 (by Eq. (1.6.1) and Theorem 1.29). 

Theorem 1.35. The cyclomatic number of a graph G is nonnegative. 

It is zero if and only if G is a forest. 

Proof. Suppose first that G is edgeless. Then p,\(G)= 0, by Eq. 

(1.6.1) and Theorem I.20. An edgeless graph is, of course, a forest. 

Suppose next that G is a forest having at least one edge. We delete its 

edges one by one until we have an edgeless graph H. Each deletion leaves 
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the cyclomatic number unchanged, by Theorems 1.32 and 1.34. Hence 

p\(G) = p\(H) = 0. | 
In the remaining case G is not a forest; it has some edge A that is not 

an isthmus. Deleting A we reduce the cyclomatic number by 1, by Theorem 

1.34. If the resulting graph is not a forest, we repeat the process, and so on. 

After some positive number 7n of such deletions of nonisthmus edges, we 
arrive at a forest F. We then have p,(G) =n + p,(F)=n> 0. Oo 

A spanning tree of a graph G is a spanning subgraph of G that is a 

tree. We shall have much to say about spanning trees in later chapters. Here 

we prove a single theorem about them. 

Theorem 1.36. A graph G has a spanning tree if and only if it is 

connected. 

Proof. If G has a spanning tree it is connected, by Theorem [.24. 

Conversely, suppose G to be a connected graph. Let us delete 

nonisthmus edges one by one until no more remain. We then have a 

spanning subgraph H of G that is a forest. But H is connected, by Theorem 

[.29. It is thus a spanning tree of G. oO 

As examples of trees we can take the vertex-graph and the link-graph. 

Once we have verified that each edge of an arc is an isthmus, we can assert 

that each arc is a tree, by Theorem I.26. 

We now take note of two rather obvious properties of trees. 

Theorem 1.37. If T is any tree, then |V(T)|=|E(T)| +1. 

Proof. We have p)(T)=1. But p,(T)=0, by Theorem I.35. Our 

theorem is thus a consequence of Eq. (I.6.1). oO 

Theorem 1.38. Let A be an edge of a tree T. Then the end-graphs of 
A in T are trees (by Theorem I.33). 

By Theorem 1.37, the vertex-graph is the only tree with a single 
vertex, and the only edgeless tree. It is also the only tree with an isolated 
vertex, by Theorem I.19. 

Further properties of trees can be deduced from a modification of 
Eq. (1.1.1). We subtract 2|V(G)| from each side of Eq. (1.1.1). We then use 
Eq. (1.6.1) to obtain the following theorem. 

Theorem 1.39. If G is any graph, then 

XL (val(G, x)—2) = 2( p\(G)— p(G)). (1.6.2) 
x€V(G) 

Theorem 1.40. If T is any tree other than the vertex-graph, it has at 
least two monovalent vertices. If it has only two monovalent vertices, it is an 
arc. 
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Proof. For T the right side of Eq. (1.6.2) takes the value —2. Since 
T has no isolated vertex it follows from Eq. (1.6.2) that T has at least two 
monovalent vertices; and if it has only two, then every other vertex is 

divalent. The theorem follows, by Theorem I.26. Oo 

The next theorem is easily derived directly from the definition of an 
arc, but as an exercise let us deduce it from Theorem 1.39. 

Theorem 1.41. Every arc is a tree. Let A be an edge of an arc L and 

let the ends of A be x and y. Let H be the end-graph of A in L including x. If x 

is an end of L, then H is the vertex-graph defined by x. In the remaining case 

H is an arc with one end at x and the other at an end of L. 

Proof. For an arc L, the left side of Eq. (1.6.2) takes the value —2 

and, moreover, py(L) =1, by Theorem I.26. Hence p,(L) = 0 by Eq. (1.6.2), 

and L is a forest, by Theorem 1.35. By connection, L is a tree. 

If x is an end of L, we complete the proof by using Theorem I.30. In 

the remaining case, x is a monovalent vertex of H, and each other vertex of 

H has the same valency in H as in L. But H is a tree, by Theorem I.38, and 

so it has at least one other monovalent vertex, by Theorem I.40. Such an 

other monovalent vertex can only be an end of L. But H can include only 

one end of L; the other must belong to the second end-graph of A by similar 

reasoning. Hence H is a tree with only two monovalent vertices. The 

theorem now follows from Theorem 1.40. Oo 

Corollary 1.42. Let A be an edge of an arc L. Then the two ends of L 

belong to distinct end-graphs of A in L. 

We conclude this section with some theorems concerning the occur- 

rence of arcs and circuits as subgraphs. 

Theorem 1.43. Let x and y be distinct vertices of a graph G. In order 

that some subgraph of G shall be an arc with ends x and y, it is necessary and 

sufficient that x and y shall belong to the same component C of G. The arc is 

then a subgraph of C. 

Proof. Suppose first that such an arc L exists. It is contained in a 

component C of G, by Theorems I.24 and 1.26. Then x and y both belong 

to C. 

Conversely, suppose x and y to belong to the same component C of 

G. Then C has a spanning tree, by Theorem I.36. We can therefore assert 

the existence of a tree T that is a subgraph of C, that includes both x and y, 

and that has the least number of edges consistent with these conditions. 

Suppose T to have a monovalent vertex z distinct from x and y. Let 

A be the edge of T incident with z. Then one end-graph of A in T is a tree 

including both x and y, by Theorems 1.30 and I.38. But this contradicts the 
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definition of T. It follows from Theorem I.40 that T is an arc with x and y as 

its monovalent vertices. OD 

Theorems 1.44. Let x and y be distinct vertices of a tree T. Then T 

contains exactly one arc with ends x and y. 

Proof. One such arc exists, by Theorem I.43. Suppose there are two 

distinct arcs, L, and L,. Without loss of generality we can suppose L, to 

include an edge A not belonging to L,. Let the ends of A be u and v. We can 

adjust the notation so that one end-graph H of A in L, includes u and x, 

while the other K, say, includes v and y, by Corollary 1.42. (We may have 

u=x or v= y.) There are components B, C, and D of T;, containing H, K 

and L,, respectively, by Theorem 1.24. But then B= D=C, by Theorem 

1.17. We deduce that A is not an isthmus of T, which is a contradiction. O 

Theorem I.45. Let A be an edge of a graph G. In order that some 

subgraph of G shall be a circuit including A, it is necessary and sufficient that 

A shall not be an isthmus of G. 

Proof. Suppose G to contain a circuit K that includes A. If A is an 

isthmus of G, it is an isthmus of K, by Theorem I.32. Hence A is not an 

isthmus of G, by Theorem 1.31. 

Conversely, suppose A is not an isthmus of G that is, the two ends x 

and y of A belong to the same component C of Gj. If x = y, the loop A 

determines a 1-circuit in G, and the theorem is satisfied. In the remaining 
case G/, contains an arc L with ends x and y, by Theorem I.43. Adjoining A 

to L we obtain a subgraph K of G that is connected, includes A, and is 

regular of valency 2, by Theorem 1.25. K is a circuit, by Theorem I.27. Oo 

Because of Theorem I.45 we can characterize a forest as a graph 

containing no circuit, and a tree as a connected graph containing no circuit. 

By Theorems I.34 and I.35, we can characterize p,(G) as the least number 

of edges whose deletion from G destroys every circuit. 

1.7. LISTS OF NONISOMORPHIC CONNECTED GRAPHS 

To add a twig to a graph H is to adjoin a single new vertex v and a single 

new link A joining v to some vertex x of H. Let G be the resulting graph. 

The twig is the link-graph G-{ A}, and we say it is added to H at x. 

If H is connected, then so is G, by Theorem I.25. In the general case, 

we have po(G) = po(H), by Proposition I.28 and Theorem 1.30, and there- 
fore p,(G) = p,(#) by Eq. (1.6.1). It follows that if H is a tree, then so is G. 

On the other hand if T is a tree other than a vertex-graph, it has a 

monovalent vertex, by Theorem 1.40. It can therefore be obtained from a 
smaller tree by adding a twig at some vertex, by Theorems I.30 and I.38. 
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It is clear that, to within an isomorphism, only one graph can be 
obtained from a given graph G by adding a twig at a given vertex x. 

Let us apply these observations to the construction of a complete list 

L,, of nonisomorphic trees of n edges. We start with L, and then take L,, 
L,, L3, etc., in turn. Evidently Ly has the vertex-graph as its only member. 
For n>0 we can derive L,, by listing the results of adding a twig at each 

vertex of each graph of L,,_ ,, and then rejecting isomorphic duplicates. It is 

the recognition of these duplicates that is the most difficult part of the 

procedure. We note one simplification: If two vertices of a member S of 

L,,-, are equivalent under some isomorphism of S, it is necessary to add a 
twig at only one of them. 

There is only one way of adding a twig to a vertex-graph. Hence L, 

has the link-graph as its only member. Since the link-graph has an isomor- 

phism interchanging its ends, there is essentially only one way of adding a 

twig to it. Accordingly L, has the 2-arc as its only member. A twig can be 

added to the 2-arc, either at an end or at an internal vertex. Accordingly, L, 
has exactly two members as shown in Fig. I.7.1. The first of these is the 

3-arc; the second we call the 3-star. In general, for any nonnegative integer 

n we define an n-star as a graph defined by (n + 1) vertices ag, a,,...,a,, and 

n edges A, Aj,...,A,, the ends of A; being ay and a;. Evidently all n-stars 
with the same n are isomorphic. The vertex-graph is the 0-star, the link-graph 

is the l-star, and the 2-arc is the 2-star. 

From L, we can obtain L,, shown in Fig. I.7.2. It is made up of the 

4-arc, the 4-star, and one other tree. This other tree can be obtained either 

by adding a twig at an internal vertex of the 3-arc or by adding one at a 

monovalent vertex of the 3-star. Each list L,, should be checked to see that 
there are no isomorphic duplicates. The checking is easy for L,, since the 

three proposed members have different maximum valencies. 

One more step brings us to L;, shown in Fig. 1.7.3. With each step it 

becomes a little more difficult to check for any remaining isomorphic 

duplicates. There are two members of L, with four monovalent vertices. But 

they are nonisomorphic because one has a four-valent vertex and the other 

does not. There are two members, each with three monovalent vertices, two 

FIGURE 1.7.1 The list L3. 
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FIGURE 1.7.2 The list L4. 

divalent vertices, and one trivalent one. They are nonisomorphic because 
one has a vertex joined to two monovalent vertices and the other does not. 

Now let us write M, for a complete list of nonisomorphic, loopless 

connected graphs with n edges. Clearly, M, contains L,. Any member of M,, 

that is not in L, has a nonisthmus edge A. It can therefore be obtained from 
a member H of M,_, by adding a link, that is, by adjoining a new edge A 

and specifying its ends as two distinct vertices of H. Apart from isomorphic 

duplicates, only one graph can be obtained from a given H by adding a link 

with given ends. On the other hand, any graph obtained from a member of 

M,,_ , by adding a link is a connected loopless graph of n edges, by Theorem 
E25. 

We note that M, consists solely of the vertex-graph. Since the 

vertex-graph does not have two distinct vertices to be joined by a new link, 

a 
(eae 

FIGURE 1.7.3 The list Ls. 
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aE Ow, 
FIGURE 1.7.4 The list M). 
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FIGURE I.7.5_ The list M,. 
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FIGURE 1.7.6 The list M,. 

25 



26 Graphs and Subgraphs 

we have also M, = L,. However, it is possible to join anew the two ends of 

the link-graph. Accordingly, M, has two members, the 2-arc and the 

2-circuit, as shown in Fig. 1.7.4. 

From the 2-arc we can obtain two members of M, by adding a link, 

one of them being the 3-circuit. Another, called the 3-/inkage, arises when a 

link is added to the 2-circuit. For any positive integer n we define an 

n-linkage as a graph made up of two vertices x and y and n links joining 

them. Thus the 1-linkage is the link-graph, and the 2-linkage is the 2-circuit. 

Two n-linkages with the same n are isomorphic. 

sw ra ee 
FIGURE I.7.7_ The list N,. 

ee 
FIGURE 1.7.8 The list N. 

arn 

FIGURE 1.7.9 The list N,. 
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Let us now define N, as a complete list of nonisomorphic connected 
graphs of n edges, looped as well as loopless. In constructing these lists we 
use the rule that the members of N, not belonging to M, are the graphs 
obtainable from the members of N,_, by the operation of adding a new 
loop at some vertex. Thus the vertex-graph, by loop-addition, gives rise to 
the loop-graph. Accordingly, N, has two members, the link-graph and the 
loop-graph, as shown in Fig. 1.7.7. 

We obtain N,, as shown in Fig. 1.7.8, by adjoining to M, the graphs 
obtained by adding loops to the members of N,. Another step brings us to 
the list V, of Fig. 1.7.9. 

Such lists lead us to some of the major enumerative problems of 

graph theory. How many trees are there with n edges? How many members 
have M, and N, for an arbitrary n? Such problems are now dealt with by 
means of a general enumerative problem of G. Polya. But Polya enumera- 

tion is one of many branches of graph theory not dealt with in this work. 

We refer interested readers to Reference [8]. 

1.8. BRIDGES 

Here we generalize the theory of detached subgraphs set out in Sec. I.5. We 

discuss a graph G and a fixed subgraph J of G. A subgraph H of Gis said to 

be J- detached in G if all its vertices of attachment are in J. Thus if J is the 

null subgraph of G, the J-detached subgraphs are simply the detached ones. 

Our first theorem generalizes Theorems 1.13 and I.14. 

Theorem 1.46. The union and intersection of any two J-detached 

subgraphs of G are J-detached, and the complementary subgraph in G to a 
J-detached subgraph of G is J-detached (by Theorems I.6 and 1.9). 

A bridge B of J in G is a subgraph of G satisfying the three following 

conditions. 
i) B is not a subgraph of J. 

ii) B is J-detached in G. 

iii) No proper subgraph of B satisfies both (i) and (ii). 

We express Condition (iii) by saying that B is minimal with respect to 

the pair of properties (i) and (ii). Condition (i) implies that B is nonnull. 

Bridges generalize components. In fact, if J is null, its bridges in G are the 
components of G. Bridges of J are called “components mod J” in [9]. 

Theorem 1.47. A bridge B of J in G has no edge in J. 

Proof. Suppose A is an edge of B in J. Then By, satisfies (i) and (ii), 

contrary to the minimality of B. oO 

Theorem 1.48. Let B be a bridge of J in G. Let x be a common vertex 

of B and J. Then x is incident with at least one edge of B. 
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Proof. If x is isolated in B, let B, be the induced subgraph of G 

obtained from B by deleting x. Then B, satisfies (i) and (ii), contrary to the 

minimality of B. oO 

A common vertex x of B and J is not necessarily a vertex of 

attachment of B. But if it is not, it is isolated in J, by Theorem I.47. 

Consider any bridge B of J in G. We refer to the common vertices of 

B and J as the outer vertices of B. An edge of B incident with an outer 

vertex x of B is said to be J-bound to x. If it is also incident with a vertex y 

of B not in J, we say it is J-bound from y to x. By Rule 1.4 there is a 

subgraph N(B) of B obtained from B by deleting the outer vertices and the 

J-bound edges. We call N(B) the nucleus of B. 

Theorem 1.49. Let A be any edge of G that is not in J, but which has 

both its ends in J. Then the link-graph or loop-graph G -{ A) is a bridge of J in 

G (by Conditions (i)—(iii)). 

Bridges of the kind determined by Theorem 1.49 are called degener- 
ate. Evidently a degenerate bridge has a null nucleus. 

Theorem 1.50. Let C be a component of the induced subgraph 

G[V(G)—V(J)] of G. Let B be the subgraph of G obtained from C by 

adjoining to it each link of G with one end in C and one in J, together with the 

end of that link in J. Then B is a nondegenerate bridge of J in G, and C is its 

nucleus. 

Proof. By its definition B satisfies Conditions (i) and (ii). Assume 

that B is not a bridge of J in G. Then it fails to satisfy Condition (iii). Hence 

there is a proper subgraph H of B satisfying (i) and (ii). By (i) the graph 

HMC must be nonnull. Moreover, HMC is a proper subgraph of C, for 
otherwise H would include every edge and vertex of B. 

Applying Theorem 1.21 to C, we find that some vertex x of HNC is 

incident with an edge A of C not belonging to H. But then x is a vertex of 

attachment of H that is not in J, contrary to the definition of H. We 

conclude that B is in fact a bridge of J in G. By the construction of B, it is 
nondegenerate and C is its nucleus. Oo 

Theorem I.51. Any two distinct bridges of J in G have an intersection 

that is contained in J. The only bridges of J in G are those specified by 
Theorems 1.49 and 1.50. Any edge or vertex of G not in J belongs to just one 
bridge of J in G. 

Proof. Suppose H and K to be distinct bridges of J in G such that 
Hf ( K is not a subgraph of J. But then H = HO K = K by Theorem I.46 
and the minimality of H and K, and we have a contradiction. 

To complete the proof we have only to observe that the bridges 
determined by Theorems 1.49 and 1.50 together include all the edges and 
vertices of G not in J. 

By Theorem 1.25 we have the following corollary. O 
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Corollary 1.52. Every bridge of J in G is connected. 

Figure 1.8.1 shows the bridges of a circuit J in a graph G. The 
J-bound edges of these bridges are shown by broken lines. There are two 
degenerate bridges B, and B, and three nondegenerate ones B,, B,, and B,. 

We next state two theorems that are now rather obvious. It is 
convenient to be able to quote them in applications. 

Theorem 1.53. Let H be any connected subgraph of G disjoint from J. 
Then H is contained in the nucleus of some nondegenerate bridge B of J inG 
(by Theorems I.24 and I.50). 

Theorem 1.54. Let B be any nondegenerate bridge of J in G. Let S be 
any set of outer vertices of B. Let H be the subgraph of G obtained from N(B) 
by adjoining the members of S and those edges of B that are J-bound to 
members of S. Then H is connected. 

For Theorem 1.54 we should perhaps remark that N(B) is connected, 
by Theorems I.50 and I.51. This disposes of the case in which S$ is null. In 
the remaining case, each vertex of S is incident with one of the adjoined 
edges, by Theorem I.48 and the fact that B contains no degenerate bridge 
(by Theorem I.51). So the theorem follows, from Theorem I.25. It includes 
Corollary 1.52. 

We now come to two theorems that together constitute an analogue 

of Theorem 1.43. Let us say that an arc L contained in G avoids J if it has 
no edge or internal vertex in J. 

Theorem 1.55. Let L be an arc in G avoiding J. Then L is a subgraph 

of some bridge B of J in G. 

Proof. If L is a l-arc its edge belongs to some B, by Theorem I.51, 
and L C B. We may therefore suppose L to be an n-arc with n > 1. 

Delete from L its ends in J, if any, with their incident edges. There 

remains a connected subgraph of G disjoint from J, by Theorem I.26 and at 

FIGURE 1.8.1 
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most two applications of Theorem 1.30. This subgraph is contained in the 

nucleus of some nondegenerate bridge B of J in G, by Theorem 1.53. Hence 

LC B, by Condition (ii). oO 

Theorem 1.56. Let x and y be two distinct vertices of a bridge B of J 

in G. Then there exists an arc L that is a subgraph of B, which avoids J and 

which has x and y as its ends. 

Proof. If B is degenerate, it must be a link-graph. The theorem then 

holds with L = B. 
In the remaining case, let H be the graph obtained from B by 

deleting each outer vertex that is not x or y together with its incident edges. 

Then H is connected, by Theorem I.54, and it includes both x and y. There 

is an arc L contained in H that has ends x and y, by Theorem I.43. But L 

must avoid J, by the definition of H. Oo 

Sometimes it is necessary to relate the bridges of two different 

subgraphs J and K of G. The following theorem may then be helpful. 

Theorem 1.57. Let J and K be subgraphs of G. Let B be a bridge of J 

in G having no edge in K and such that each vertex of B in K is a vertex of J. 

Then B is a subgraph of some bridge B’ of K in G. If, in addition, each vertex 

of B in J is a vertex of K, then B’= B. 

Proof. If B is degenerate, the first part of the theorem follows from 

Theorem I.51, and the second part from Theorem I[.49. 

If B is nondegenerate, we apply Theorem 1.54, with S the set of 
vertices of B that are in J but not in K. The corresponding subgraph H of G 

is contained in the nucleus of some bridge B’ of K in G, by Theorems I.53 

and I.54. By Condition (11), B’ includes all the J-bound edges of B, and 

therefore B’ contains B. If B has the same vertices in K as in J, then it 

satisfies Conditions (i) and (ii) with respect to K. So then B’= B, by the 

minimality of B’. 

1.9. NOTES 

1.9.1. History 

Graph theory begins in 1736 with Euler’s solution of the K6énigsberg 

Bridges problem. For an account of its development during the next two 

centuries, reference may be made to [4]. 

1.9.2. Textbooks 

The first textbook on graph theory is that of the Hungarian graphman 

Dénes KO6nig. It was preceded by an important series of papers by Hassler 
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Whitney, published in the years 1931-33. Collected they would have made 
an excellent textbook in English, had such a work been then in demand. 
Even before 1931 some information on graph theory was available in the 
semi-popular work “Mathematical recreations and essays”, noted in the 
Introduction. Some textbooks now in common use as references are noted 
below as [1], [2], [5] and [7]. 

1.9.3. The automorphism group 

Much work has been done on highly symmetrical graphs, those in which the 

order of the automorphism group is at least equal to the number of edges. 
(See [3], [6] and [9].) 

EXERCISES 

1. Show that all arcs of length 3 in the Thomsen graph (see Sec. IV.2) are 

equivalent, in the sense that any one can be transformed into any other 

by an automorphism of the graph. Are all the arcs of length 4 equiva- 

lent? 

2. Construct a graph whose automorphism group has only three elements. 
Find the simplest strict graph that has only the trivial automorphism. 

3. Prove the following formula for vertices of attachment: 

W(G,H)=W(K, HN K)U{V(H)AW(G, HUK)). 

Here H and K are arbitrary subgraphs of G. 
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Chapter II 

Contractions and the Theorem of Menger 

Il.1. CONTRACTIONS 

In Chapter I we constructed a theory of graphs based on the observation 

that some graphs contain others. It can be said that this construction is 

continued in the present chapter, but with a more liberal interpretation of 

the term “contain.” 

Let G be a graph, and let S and T be complementary subsets of 

E(G). Consider the spanning subgraph G: S of G. There exists a graph H 

whose vertices are the components of G: S, whose edges are the members of 

T, and which has the following rule of incidence: The ends in H of an edge 
A of T are those components of G: S that include at least one end of A in G. 
We call H the contraction of G to T, and we denote it by G x T. We say also 

that H is formed from G by contracting away S. 
The above rule of incidence ensures, as it should, that each edge of T 

has at least one but not more than two ends in G Xx T. It should be noted, 
however, that a link of T may have both its ends in G in the same 
component of G: S. Hence an edge of T may be a link in G but a loop in 
G XT. On the other hand, a loop of G in T remains a loop in G XT. 

Figure II.1.1 shows a contraction G xT. The first diagram shows 
G: S in G, and the edges of T are represented by broken lines. The second 
diagram shows G X T, with its vertices as dots. The letters A to F indicate 
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components of G: S in the first diagram, and corresponding vertices in the 
second. 

Since the vertices of G XT are defined as graphs, it is possible to 

speak of the vertices and edges of the vertices of G X T, and in this section 

at least it is necessary to do so. But often it is convenient to replace these 

vertices by others for which no internal structure is defined, perhaps by 

some of the vertices of G. In this connection we introduce the notion of 

vertex isomorphism. Two graphs H and K are said to be vertex-isomorphic if 

there is an isomorphism 6 = (f,q) of H onto K in which g is the identical 

mapping of E(H) onto E(K). Then H and K have the same edges but may 

have different vertices. But vertices of H and K corresponding under f are 

incident with the same edges in each graph. We say that 6 is a vertex 

isomorphism of H onto K. We remark that vertex isomorphism of graphs is 
an equivalence relation. 

In such equations as (1.3.1) we use the equality sign to indicate that 

the graphs specified on the two sides are identical; that is, they have the 

same vertices, the same edges, and the same incidence relations. To indicate 

that two graphs H and K are vertex-isomorphic, we shall use the equality 
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sign with the suffix v, as follows: 

H=, K. 

To indicate that two graphs H and K are isomorphic, we shall write 

H=k. 

For an example of vertex isomorphism, we consider the case in which 

S is null. Then G: S is edgeless, and its components are the vertex-graphs 

contained in G, by Theorem I.19. Hence there is a vertex isomorphism 6 of 

G XT onto G. It maps each vertex-graph contained in G onto the corre- 

sponding vertex of G. Now in a formal development of graph theory, a 

vertex-graph is not to be regarded as the same thing as its vertex, though in 

the practice of graph theory the distinction between them may not be 

important. Thus in the present case we may say that G and G XT are 

essentially the same graph. But it is more precise to say that they are 

equivalent under a vertex isomorphism, namely 9. We note the rule that, for 

any graph G, 

Gx E(G)=, G. (11.1.1) 

Let us now return to general S and 7, and consider the relation 

between the subgraphs of G Xx T and those of G. We will say that a subgraph 

H of G conforms to S if each component of G: S is either a subgraph of H 

or disjoint from H. 

Let K be any subgraph of G X T. Its vertices are components of G: S. 

By Theorem I.4 there exists a subgraph f;K of G whose vertices are the 

vertices of the vertices of K and whose edges are the edges of the vertices of 

K, together with the edges of K. Evidently f, K is uniquely determined by K, 

and different subgraphs K of G x T determine different subgraphs f, K of G. 

We can therefore regard the symbol f, as representing a 1-1 mapping of the 

set X of subgraphs of G X T onto some set Y of subgraphs of G. We note 

further that each member of Y conforms to S. 

Conversely, consider any subgraph H of G that conforms to S. The 

components of H:(SME(#H)) are those components of G:S that are 

contained in H, by Theorem 1.23. Hence H X(T E(#)) is a subgraph K 

of G x T, and it is clear that f,K is identical with H. We can now identify Y 
as the set of all subgraphs of G conforming to S. We can state the rule 

fsK X E(K)=K (11.1.2) 

as the general relation between the subgraphs K of GXT and those 
subgraphs f,K of G that conform to S. We summarize the preceding results 
in the following statement. 

Theorem III. Let S and T be complementary subsets of E(G). Then 
there is a 1-1 mapping fs of the set X of subgraphs of G X T onto the set Y of 
subgraphs of G conforming to S, f, being defined as follows. If K € X, then 
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fs K is the subgraph of G determined by the edges and vertices of the vertices of 
K, together with the edges of K. The mapping fy satisfies Eq. (11.1.2). 

Theorem II.2._ The mapping f, preserves proper inclusion of sub- 
graphs, that is, if K C L€ X, then f,K C f,LeEY. 

Theorem I.2 follows immediately from the definition of f;. In the 
next result we relate vertices of attachment. 

Theorem II.3. Suppose K CL © X. Then a vertex x of K belongs to 

W(L, K) if and only if some vertex x’ of the component x of G: S belongs to 

W(fsL, fsK ). 

Proof. The vertex x of K belongs to W(L, K) if and only if it is 
incident with an edge A of E(L)— E(K) in K, that is, if and only if some 

vertex x’ of the component x of G:S is incident with an edge A of 

E(L)— E(K) in G. But an edge of E(L)— E(K ) incident with x’ in G can 

equally well be described as an edge of E( f;L)— E(f,K) incident with x’ 

in G. For the edges of G:S incident with x’ in G are edges of x and 

therefore edges of f;K. Hence x is in W(L, K ) if and only if some vertex x’ 
of the component x of G: S is incident with an edge A of E( f;L)— E(f(K) 

in G, that is, if and only if some such x’ belongs to W(f,L, f,K ). oO 

Let L be any member of X. We deduce from Theorem II.3 that f¢ 
maps those subgraphs of L that are detached in L onto those subgraphs of 

f,L that are detached in f;L and conform to S. But any subgraph of f5L 

that is detached in f, ZL must conform to S, by Theorem I.24. Using Theorem 

II.2 we deduce the following: 

Theorem II.4. If L is any member of X, then fs maps the components 

of L onto the components of f,L. 

Putting L = G XT in Theorem II.4, we obtain: 

Theorem I1.5. If T is any subset of E(G), then 

Po(GXT)=p)(G). (1T-1;3) 

Theorem II.6. The subgraphs of the contractions of G are the contrac- 

tions of the subgraphs of G. 

Proof. Any subgraph of a contraction of G can be taken as the 

graph K on the right of Eq. (II.1.2). The equation expresses it as a 

contraction of a subgraph of G. 

Conversely, let H be any subgraph of G and let HXU be a 

contraction of H. Let Q be the complement of U in E(#). The components 

of H: Q are those components of G: Q that are contained in H, by Theorem 

1.23. It follows that H x U is a subgraph of the contraction G X(E(G)-Q) 

of G. O 
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Theorem I1.7. Suppose U CT C E(G). Then 

(GxXT)xU=,G XU. (11.1.4) 

Proof. Let the complementary sets of T and U in E(G) be S and R, 

respectively. 

The vertices of (G X T)XU are the components of (G X T):(T—U). 

This is a spanning subgraph K of G X T. It is mapped by f, onto a spanning 

subgraph f,K of G defined by the edges and vertices of the components of 

G:S and the edges of T-U=R-—S. Thus {,K =G: R. So by Theorem 

II.4, f; induces a 1-1 mapping f of the vertices of (G X T)XU onto the 

components of G: R, that is, the vertices of G x U. 

Let A be any edge in U, and let x and y be its ends in (G X T)XU. 

They are components of (G X T):(T —U), and they include the ends x’ and 

y’, respectively, of A in G XT. But x’ and y’ are components of G: S, and 

they include the ends x” and y”, respectively, of A in G. But by the 

definition of f;, the vertices x” and y” belong to the subgraphs f,x and f, y, 

respectively, components of G: R. Hence f,x and f,y are the ends of A in 

G XU. Accordingly, (f, J) is a vertex isomorphism of (G X T)XU onto 

G XU, where I,, is the identical mapping of U onto itself. oO 

A subgraph of a contraction of G is called a minor of G. Any 

contraction of G is thus a minor of G and, to within a vertex isomorphism, 
any subgraph of G is a minor of G. (See Eq. (II.1.1.) Minors obey the 
following simple law. 

Law II.8. A minor of a minor of G is, to within a vertex isomor- 
phism, a minor of G. 

Proof. A minor of a minor of G is a subgraph of a contraction of a 
subgraph of a contraction of G. It is thus a subgraph of a subgraph of a 
contraction of a contraction of G, by Theorem II.6, and therefore vertex- 
isomorphic to a subgraph of a contraction of G, by Theorems I.5 and II.7. 

O 

If we ignore distinctions between vertex-isomorphic graphs, we can 
now recognize some symmetry between subgraphs and contractions. Under 
this symmetry, Theorem II.7 corresponds to Theorem I.5, and Theorem II.6 
corresponds to itself. These symmetries give us our first intimations of the 
far-reaching theory of graph-theoretical “duality.” Later on we shall at- 
tempt a rigorous definition of “duality.” Meanwhile we will use it informally 
as a term of rather vague meaning. We will use it when we seem to have 
evidence of a symmetry based on or associated with that of subgraphs and 
contractions. Thus we will say that Theorem II.7 is the dual theorem to 
Theorem I.5, and that Theorem II.6 is self-dual. “Subgraph” and “contrac- 
tion” are dual concepts, and “minor” is self-dual. It will be found 
convenient to regard “loop” and “isthmus” as dual concepts. Trouble is 
encountered when we try to identify the dual concept to “ vertex.” 



Contraction of an Edge yi 

II.2. CONTRACTION OF AN EDGE 

Let A be an edge of a graph G. We specialize the theory of Sec. II.1 to the 
case in which S={A) and T= E(G)-—(A). We denote the contraction 
G X(E(G)—{A}) by GY, and say it is the graph derived from G by 
contracting the edge A. By Theorem II.5 we have 

Po (Gi) = po(G). (11.2.1) 

Let x be any vertex of G. If it is incident with A, we write x” for the 

loop-graph or link-graph G-{ A). But if x is not A-incident we write x” for 

the vertex-graph in G with vertex x. Then the components of G:{A) are the 

graphs x”, where x © V(G). These components are the vertices of G. We 

refer to G-{ A) as the A-vertex of G7, and we denote it by v,. We say that 

the vertices x of G and x” of Gj are equivalent to one another if x is not 
A-incident in G. When one tires of keeping up the distinction between a 
vertex-graph and its vertex, one says in this case that x and x” are the same 

vertex. 

The mapping f, will now be written as f,. It is a mapping of the set XY 

of subgraphs of G/ onto the set Y of subgraphs of G conforming to {A}. We 

observe that to belong to Y a subgraph H of G must satisfy one of two 

conditions. Either it includes the edge A or it includes no A-incident vertex. 

If K is any member of X we can reformulate the definition of f, K as follows. 

Its vertices are the vertices x of G such that x’’& V(K ). Its edges other than 

A are the edges of K. It includes the edge A if and only if v, ©V(K). We 

can add that, by the definition of G7, an edge of K with ends x and y inG 

has ends x” and y” in K. 

Figure II.2.1 shows .G and Gj for a case in which A is a link of G. It 
shows also a circuit K = a"b"c’""d"e""v, of Gj and the corresponding graph 

f,K in G. Edges not in K or f, K are shown by broken lines. 
We adjoin two comments, in the form of theorems, on the 

mapping f,. 

Theorem II.9. Let K be a subgraph of Gi including v,. Then 

(f,K ),=K (by Eq. (II.1.2)). (11.2.2) 

Theorem 11.10. Let K be a subgraph of G4 not including v,. Then the 

correspondence x > x" of V(G) onto V(G{’) induces a vertex isomorphism of 

f,K onto K. 

We continue with some theorems and examples on edge-contrac- 

tions. 

Theorem II.11. If A is a loop of G, then the correspondence x > x" 

of V(G) onto V(G{) is one-to-one, and it induces a vertex isomorphism of G4 

onto Gj. 
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FIGURE 11.2.1 

This theorem follows immediately from the definitions. Because of it 

we usually take the contraction-edge A to be a link of G in applications. 

Loop-contractions can be dealt with as loop-deletions. 

Theorem I1.12. If A is a link of G, then 

P\(Gi) = p\(G), (11.2.3) 

but if A is a loop of G, then 

p\(Gi) = p,(G)=1. (11.2.4) 
Proof. By Eggs. (II.2.1) and (1.6.1), 

P\(G)— p, (G7) =1—{|V(G)| — |V(G4))}, 

which is 0 or | according as A is a link or a loop of G. Oo 

Theorem II.13. Let A be a link of G with ends x and y. Then 

val(GY, v,) = val(G, x)+val(G, y)—2. (11.2.5) 
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But if z is a vertex of G not incident with A, we have 

val(G4’, 2’) = val(G, z). (11.2.6) 

Theorem II.13 comes directly from the definitions. We apply it in the 
two theorem-examples following. 

Theorem 11.14, Let G be an n-circuit with n > 1, and let A be an edge 

of G. Then G4 is an (n — 1)-circuit. 

Proof. Gj is connected, by Eq. (II.2.1) and Theorem 1.27. It is 

regular of valency 2, by Theorem II.13. Hence it is a circuit by Theorem 

tea & Oo 

Theorem I1.15._ Let G be an n-arc with n > 1, and let A be an edge of 

G. Then GY is an (n —1)-arc. 

Proof. Gj is connected, by Eq. (11.2.1) and Theorem 1.26. Its 

vertices are divalent except for the two corresponding to the ends of G 

under the mapping x > x”, and these two are monovalent, by Theorem 

II.13. Hence G7 is an arc, by Theorem 1.26. oO 

We go on to some theorems concerned with the subgraphs of G7 and 

the corresponding subgraphs of G. 

Theorem II.16. Let A be a link of G, and let K be a subgraph of Gj. 

Then 

Pol( LK) = po(K), (11.2.7) 

P\(fyK) = pK). CI28) 

Proof. We may suppose k to include v, since otherwise the theorem 

is a consequence of Theorem II.10. So Eq. (II.2.7) follows from Eqs. (II.2.1) 

and (II.2.2), while Eq. (11.2.8) is a consequence of Eqs. (II.2.3) and (II.2.2). 
Oo 

Theorem II.17. Let A be a link of G. Then f, induces a 1-1 mapping 

of the set X, of spanning subgraphs of Gi onto the set Yo of those spanning 

subgraphs of G that include the edge A. 

Proof. Suppose K € X). Then f,K is a spanning subgraph of G, 

and so includes both ends of A in G. Since it conforms to {A}, by Theorem 

II.1, it must therefore include A. Thus f,K € Yo. 

Conversely, consider a member H of Yo. It conforms to {A}. Hence it 

is of the form f,K, where K is a subgraph of Gj, by Theorem II.1. But then 

K € X,, for otherwise f, K would not be a spanning subgraph of G. Oo 

Let us define the tree-number T(G) of a graph G as the number of 

spanning trees of G. By Theorem 1.36, T(G) is nonzero if and only if G is 

connected. Now a tree can be characterized as a graph H satisfying the two 

conditions p)(H)=1 and p,(H)=0, by Theorem [.35. It follows, from 
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Theorems II.16 and II.17, that the spanning trees of Gj are in 1-1 
correspondence with those spanning trees of G that include the edge A. We 

can add that the spanning trees of G that do not include A are of course the 

spanning trees of G. We thus have the following recursion theorem. 

Theorem 11,18. Let A be a link of G. Then 

T(G) =7T(G,)+T(G{). (11.2.9) 

Theorem I1.19. Let us define Q(G;i, 7) as the number of spanning 

subgraphs H of G such that p)(H) =i and p,(H)= j. Then if A is any link of 

G, we have 

OUG3T, J) ~OGi 7) * Oley ste) (1I.2.10) 

for arbitrary nonnegative integers i and j. 

The proof of Theorem II.19 is closely similar to that of Theorem 

II.18. We take note of a generalization of Theorem II.19, for the sake of a 
later application. We first agree to write 

RiGiggepignT) 

for the number of spanning subgraphs H of G having i, components of 

cyclomatic number 0, i, of cyclomatic number 1, and so on. The generaliza- 
tion is as follows. 

Theorem I1.20. Let A be a link of G. Then 

BU Gals trie, ty RG 16, staan: re (Ge tar te) 

(11.2.11) 

for an arbitrary sequence (ig, i), i,...) of nonnegative integers having a finite 
sum, 

Proof. If K is a spanning subgraph of G7, it corresponds to the 
same sequence (9,1), /,...) as does f,K, by Theorems II.4 and II.16. Using 
Theorem II.17 we find that the set of spanning subgraphs of G{ correspond- 
ing to a given sequence is in 1-1 correspondence with the set of those 
spanning subgraphs of G that correspond to the same sequence and include 
the edge A. Moreover the spanning subgraphs of G that correspond to this 
sequence and do not include A are the spanning subgraphs of G/, corre- 
sponding to the sequence. The theorem follows. Oo 

We ought to explain why Theorem I1.20 is called a generalization of 
Theorem II.19. To do this we need the following auxiliary theorem. 

Theorem 11.21. The cyclomatic number of a graph is the sum of the 
cyclomatic numbers of its components. 
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Proof. Let G be a graph, with components G,, Gy,«..3G,,..For each 
component G; we have 

P(G)=|E(G)|-|V(G)l+1 (by Eq. (1.6.1)), 

¥ (3) =|E(G)|- |V(G)| + po(G) 

=p(G) — (by Eq. (1.6.1). 
From Theorem II.21 we can deduce that Q(G;r,s) is the sum of those 
numbers R(G; io, i, i>,-..) for which 

Li=r and Vii;=s. 

Hence Theorem II.19 is a consequence of Theorem II.20, by way of 
Theorem II.21. So Theorem II.20 may legitimately be called a generalization 
of Theorem II.19. oO 

There are some evidences of duality in the present section. It is fairly 

clear that deletion and contraction of an edge should be regarded as dual 

operations, and Theorems II.18, II.19, and II.20 look like self-dual theo- 

rems. The self-duality is indeed not perfect, for “link” is not a self-dual 

concept. To get truly self-dual theorems, we should replace it by “edge not a 
loop or an isthmus.” The coming theory of duality will indeed recognize 

Theorems II.18 and II.19, mutatis mutandis, as self-dual. But it will not so 

recognize Theorem II.20, having no dual concept to “component.” 

11.3. VERTICES OF ATTACHMENT 

Some general theorems about graphs can be proved by induction over the 

number of edges. Commonly the crucial step in such a proof is as follows: 

For some link A of G we assume that the theorem is true for Gj and Gj, 
which have fewer edges than G. From this assumption we try to deduce the 

theorem for G. 

It is therefore desirable to make a careful study of the relations 

between the subgraphs of G, G, and Gj. To some extent this has been done 
in Chapter I and the preceding sections of the present chapter. We continue 

the study in the present section by developing some theorems about vertices 

of attachment. 

Theorem 11.22. Let A be any link of G, and let H be any subgraph of 

G/,. Then one of the three following propositions holds. 

i) w(G,, H)=w(G, H). 
ii) w(G, H U(G-{A))) < w(G, H), and both the ends of A in G are in 

V(A). 
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iii) w(G,,H)=w(G, H)—1, and just one end x of A in G is in V(H). 

Moreover, apart from A, x is incident in G only with edges of H. 

Proof. A vertex of H is, apart from A, incident with the same edges 

in G as in Gj. Hence each vertex of attachment of H in Gj is a vertex of 
attachment of H in G. But consider a vertex x of H that is not a vertex of 

attachment of H in Gj. It is a vertex of attachment of H in Gif and only if 
it is incident with A. 

Assume that (i) does not hold. Then, by the preceding observation, 

some end x of A in G is, apart from A, a vertex of H that is incident in G 

only with edges of H. 

Suppose the other end y of A to be in H. Then, by adjoining A to H, 

we obtain the subgraph H, = H U(G-{A)) of G. The adjunction of A to H 

destroys x and possibly y as vertices of attachment, retains all the other 

vertices of attachment, and introduces no new ones. So Proposition (ii) 

holds. 

In the remaining case, y is not in V(H). Then x is the only vertex of 

attachment of H in G that is not a vertex of attachment of H in Gj. Thus 
Proposition (iii) is true. Oo 

Theorem 11.23. Let A be any link of G, and let K be any subgraph of 

Gj. Then one of the two following propositions holds. 
i) w(Gy,K)=w(G, f,K). 

li) w(Gy,K)=w(G, f,K)—1, v, is a vertex of K and both ends of A are 

vertices of attachment of f,.K in G. 

Theorem [1.23 follows from Theorem II.3, with L = Gj. Our next 
theorem involves both Gj and Gj. 

Theorem 11.24. Let A be any link of G, let H be any subgraph of Gj, 

and let K be any subgraph of Gi. Then one of the four following propositions 
holds. 

i) w(G,,H)=w(G, A). 
il) w(Gy,K)=w(G, f,K). 

lil) w(G,HUS,K)+w(G, HO f,K)<w(G, H)+w(G, f,K). 
iv) w(G, H U(G-{A}) < w(G, H), and both the ends of A in G are in V(A). 

Proof. Assume that (i), (ii), and (iv) do not hold. Then, as in the 
proof of Theorem II.22, A has just one end x in V(H). Moreover, x is, apart 
from A, incident in G only with edges of H. But, by Theorem II.23, x is a 
vertex of attachment of f,K in G. We deduce that x is incident with an edge 
A of f,K not in E(H), that x is incident with some edge of H not in 
E(f,K), and that x is incident with no edge of G outside both E (#7) and 
E(f,K), by Theorem II.23. So, in the notation of Sec. I.4, x belongs to the 
set O(G; H, f,K) and the number q(G: H, f,K ) is nonzero. Proposition (iii) 
of Theorem II.24 now follows as a consequence of Theorem I.7. O 
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II.4. SEPARATION NUMBERS 

In this section we prepare for our proof of Menger’s Theorem. We consider 
a graph G in which two disjoint subsets P and Q of E(G) are specified. 

Two subgraphs of G are called edge-disjoint if they have no common 
edge. We define a cutting pair of P and Q in G as an ordered pair (H, K) of 
edge-disjoint subgraphs of G such that 

PCE(H), QCE(K), and HUK=G._ (I4.1) 
At least one such cutting pair exists. An example is (G: P, G:(E(G)— P)). 

We define the order of a cutting pair (H,K) of P and Q as 
|V( HO K)|, the number of common vertices of H and K. It is customary to 
say that the member vertices of V(H \ K ) separate P and Q in G. 

Theorem 11.25. Let (H, K) be a cutting pair of P and Q in G. 

Then (H, H‘) and (K‘,K) are cutting pairs of P and Q in G. More- 

over, V(HO A°)=W(G,H)CV(HOK) and V(K°OK)=W(G,K)¢C 

V(HOK). 

Proof. A vertex of attachment of H or K is a vertex of one of these 

graphs incident with an edge of the other, by Eq. (11.4.1). Hence W(G, H) 

and W(G, K) are subsets of V(H  K ). The remaining part of the theorem 

follows from the definitions in Sec. I[.4. Oo 

We now define A(G; P, Q) as the least number of vertices required to 

separate P and Q in G. Thus 

A(G; P,Q) = Min |V(HOK)|, (11.4.2) 
GH Ka 

where the minimum is taken over all cutting pairs (H, K ) of P and Q in G. 

By the symmetry of our definitions, we have the general rule 

\(G: P,Q) =X(G: O, P). (11.4.3) 

We call A(G; P,Q) the separation number of P and Q in G. A cutting 

pair of P and Q of order A(G; P, Q) is said to be minimal. 

Theorem 11.26. Let m be the number of common vertices of G-P and 

G-Q. Then 

m<X(G; P,Q) <Min{|V(G-P)|, |V(G-Q)|}. 

Proof. The common vertices of G-P and G-Q belong to V(H1 K) 

for every cutting pair (H,K) of P and Q. So the first part of the 

theorem follows from Eq. (II.4.2). To complete the proof we have only to 

observe that (G-P,(G-P)°) and ((G-Q)°,G-Q) are cutting pairs of P and 

QinG. Oo 

Theorem 11.27. Let (H, K) be a minimal cutting pair of P and Q in 

G. Then W(G, H)=W(G, K)=V(H OK). Accordingly, (H, K) is a com- 

plementary pair of subgraphs of G with binding number \(G; P,Q). 
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Proof. By Theorem 11.25, (H, H°) is a cutting pair of P and Q, and 

V(H 0 H°)=W(G, H)CV(HOK). Hence W(G, H)=V(H1 K), by the 

minimality of (H,K). Similarly, by the symmetry of our definitions, 

W(G, K)=V(H1 K). The rest of the theorem follows from the definitions 

of Sec. I.4. Oo 

Theorem 11.28. (G; P,Q)=Min,,w(G, H), where the minimum is 

taken over all subgraphs H of G such that E(H) contains P and is disjoint 

from Q. 

Proof. Write » for the expression on the right in the equation. 

Given an H, we note that (H, H°) is a cutting pair of P and Q, and that its 

order is w(G, H), by Theorem II.25. Hence p > A(G; P,Q), by Eq. (II.4.2). 

Conversely, let (H, K) be a minimal cutting pair of P and Q. Then 

w(G, H)=X(G; P,Q), by Theorem II.27. Hence p < A(G; P,Q). This com- 

pletes the proof. Oo 

The remaining theorems of the section relate separation numbers in 

graphs G, Gj, and Gj. 

Theorem II.29._ Let A be a link of G not in P or Q. Then 

A(G; P,O)—-A(G,; P,Q) =0or1. 

Proof. Let (H,K) be a minimal cutting pair of P and Q in G. 

Assume that A is not in E(H). Then by Theorem II.22, we have w(Gj, H) 

<w(G,H). For Proposition (ii) of Theorem II.22 does not hold, by 

Theorem I].28 and the minimality of (H, K). Hence 

(G4; P,Q) <A(G; P,Q), 
by Theorem II.28. If A is in E( 7), we repeat the argument, interchanging P 

with Q and H with K, and use Eq. (II.4.3). We then get the same inequality 

as before. 

Now let (L, M) be a minimal cutting pair of P and Q in Gj, so that 

A(G4; P,Q) =w(G4, L), by Theorem II.27. If the edge A of G has both its 

ends in L, it is clear that 

w(G4, L)=w(G, LU(G-{A})) >A(G; P,Q). 

In the remaining case, we have w(Gj, L) > w(G, L)—1, by Theorem II.22. 

In either case, we can deduce from Theorem II.28 that 

A(Gi; P,Q) >A(G; P,Q)-1. 

This completes the proof. O 

Theorem 11.30. Let A be any link of G not in P or Q. Then 

A(G; P,Q)—A(GY; P,Q) =0orl. 
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Proof. Let (H, K) be a minimal cutting pair of P and Q in G. Then 
A(G; P,Q) =w(G, H) = w(G, K ), by Theorem II.27. Suppose 4 is in E(H). 
Then H conforms to {A}. Hence, there is a subgraph L of Gi such that 
f,L = H. We note that L, like H, includes all the edges of P but none of 
those of Q. By Theorem II.23 we have w(G/, L) < w(G, f,L)=X(G; P,Q). 
Hence, by Theorem II.28, 

A(G7; P,Q) <A(G; P,Q). 

If A is not in E(#), we have only to interchange P with Q and H with K in 
the above argument. Using Eq. (II.4.3), we arrive at the same inequality. 

Now let (L, M) be a minimal cutting pair of P and Q in G7. Then 
(GY; P,Q) = w(GY, L), by Theorem II.27. But by Theorem II.23 we have 
w(G{, L) > w(G, f,L)—1. Hence, by Theorem II.28, 

A(G/; P,Q) >=A(G; P,Q)-1. 

This completes the proof. Oo 

Theorem II.31. Let A be any link of G not in P or Q. Then either 

A(G4; P,Q) or (G4; P,Q) is equal to \(G; P,Q). 

Proof. Assume the contrary. Let (H, H,) be a minimal cutting pair 

of P and Q in Gj, and let (K, K,) be a minimal cutting pair of P and Q in 

G7. Then by Theorems II.29 and II.30 we have 

w(G,, H)=w(Gj, K)=A(Gj; P,Q) 

=)(G/; P,Q)=(G; P,Q)-1. (11.4.4) 

We note that the edge A of G does not have both its ends in H, for, if 

it did, we would have 

w(G,, H)=w(G, HU(G-{A})) >A(G; P,Q), 

by Theorem II.28. But this is contrary to Eq. (II.4.4). We can therefore 

deduce from Theorems II.22 and II.23 that 

WAGUH =a 4, K)=A(Gs PLO): (11.4.5) 

We now apply Theorem II.24. Its Propositions (i), (ii), and (iv) are 

ruled out by the preceding observations. Hence (iii) must hold. But then 
either w(G, HO f,K) or w(G, HU f,K) is less than A(G; P,Q), by Eq. 

(11.4.5), and this is impossible, by Theorem IJ.28. This contradiction estab- 

lishes the theorem. O 

We seem to smell duality again in Theorems II.29 and II.30, and 

self-duality in Theorem II.31. 
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11.5. MENGER’S THEOREM 

There are many equivalent ways of stating Menger’s Theorem. We start with 

the form that seems easiest to prove in terms of the theory of Sec. II.4. 

Theorem 11.32. Let P and Q be disjoint subsets of E(G). Then there 

exists a subgraph H of G with the following properties: 

i) H has no edge in P or Q. 

ii) po(H) =N(G; P,Q). 
iii) Each component of H has at least one vertex in G-P and at least one in 

Ga: 

Proof. Let M be the set of common vertices of G-P and G-Q. 

We proceed by induction over the number n of links of G not in P or 

Q. Suppose first that n is zero. Then the cutting pair (G-P,(G-P)*°) of P 

and Q in G satisfies 

V((G-P)A(G-P))=M, 

and therefore A(G; P,Q) =|M|, by Theorem II.26. We take H to be the 

edgeless subgraph of G whose vertex set is M. It satisfies (i), (11), and (111), by 

Theorem I.20. 

Assume, as an inductive hypothesis, that the theorem is true whenever 
n is less than some positive integer g, and consider the case n = q. Choose a 

link A of G not in P or Q. 

It may happen that A(G4; P,Q) =A(G; P,Q). Then, by the inductive 

hypothesis, there is a subgraph H of Gj, satisfying the three conditions in 

Gj. Clearly H satisfies them in G, too. 

In the remaining case, A(G{; P,Q) =A(G; P,Q), by Theorem II.31. 

There is a subgraph K of G/ satisfying the three conditions in that graph. 
But then /,K satisfies them in G, by Theorem II.4. 

Thus the induction succeeds and the theorem is established. Oo 

Theorem II.32 states a “best possible” result, as we proceed to show. 

Theorem 11.33. Let P and Q be disjoint subsets of E(G). Let H bea 

subgraph of G having no edge in P or Q and such that each of its components 

meets both G- P and G-Q. Then 

Po(H) <A(G; P,Q). 

Proof. Let (K, L) be any cutting pair of P and Q in G. Let C be 

any component of H. Then CM K and C/N L are nonnull subgraphs of C 

whose union is C. They are not disjoint, by Theorem I.21. Hence K and L 

have a common vertex in each component of H, and so p)p(H) <|V(K N L)|. 
Since this is true for every (K, L), the theorem follows, from Eq. (11.4.2). 0 
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Our next version of Menger’s Theorem depends on the notion of a tie 
between two disjoint subsets P and Q of E(G). There are two kinds of tie. A 
tie of the first kind is a vertex-graph contained in both G- P and G -Q. A tie 
of the second kind is an arc in G with one end in G- P but not G-Q, with its 
other end in G-Q but not G- P, and with no edge or internal vertex in either 
G=Pror G-Q. 

Theorem 11.34. Let P and Q be disjoint subsets of E(G). Then the 
maximum number of disjoint ties between P and Q in G is X(G; P,Q). 

To prove this we consider the subgraph H of Theorem II.32. Let its 
components be C), C,,...,C,,, where m = A(G; P,Q). We replace each C, by 
a tie T; contained in it. 

If we can find a vertex x of C, belonging to both G- P and G-Q, we 
take T; to be the corresponding vertex-graph. 

In the remaining case we can, by Theorem I.43, find an arc L in CG 

with one end in G-P and one in G-@. If L has an internal vertex in G- P or 

G-Q, it contains another such arc as a proper subgraph. This is by the 

definition of an arc, or by an application of Theorem I.43. We deduce that L 
can be so chosen as to be a tie between P and Q. 

We now have our A(G; P,Q) disjoint ties between P and Q. This is 

the maximum number, by Theorem II.33. O 

The common form of Menger’s Theorem depends on the notion of 
internally disjoint arcs. Let L,, L,,...,L, be a set of arcs in G. These arcs 

are said to be internally disjoint if no edge or internal vertex of any one of 

them belongs to another. We note that two or more internally disjoint arcs 

can have the same pair of ends. The usual version of the theorem runs as 

follows. 

Theorem 11.35. Let p and q be distinct nonadjacent vertices of G. Let 

d be the least number of vertices required to separate p and q in G. Then we 

can find d, but not more, internally disjoint arcs in G with ends p and q. 

In order to relate this proposition to Theorem II.34, we define P as 

the set of all edges of G incident with p, and Q as the set of those incident 

with g. We interpret, or rather define, A as the least number of vertices 

required to separate P and Q in G, that is, as A(G; P,Q). 

We appeal to Theorem II.34 for A disjoint ties 7,, 7,,...,7, between 

P and Q. We convert each tie 7; into an arc L, with ends p and q, by 
adjoining the vertices p and q, an edge A, from p to the vertex or an end of 

T,, and an edge B; from q to the vertex or an end of 7;. (See Fig. II.5.1.) We 

now have A internally disjoint arcs L; with ends p and q. It follows from 

Theorem I1.34 that we cannot have more. For each arc in G with ends p and 

q gives rise to a tie between P and Q when we delete from it its two ends 

and their incident edges. 
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FIGURE I1.5.1 

The helpfulness of Menger’s Theorem to the graph theorist is limited 

by the difficulty of determining the value of A(G; P,Q) in a given case. I 

cannot recall having used it at all in my research, except in very simple and 

nonessential ways. The notions involved in Menger’s Theorem and its 
analogues are indeed important in transportation theory. But there the 

theorem is usually replaced by a construction that gives simultaneously a 

maximal set of internally disjoint arcs from p to q, and a minimal cutting 

pair of P and Q. Each step in this construction starts with a set X of k 

disjoint ties between P and Q, and either proves it maximal or derives from 

it a set of (k +1) such ties. 

We can modify Theorem II.34 to assert this possibility of starting 

with an incomplete set of ties and then improving it. Given a set X of 

disjoint ties between P and Q, we define its P-base X(P) as the set of ends 

in G-P of members of X. We define the Q-base X(Q) of X analogously. The 
modified theorem runs as follows. 

Theorem 11.36. Let P and Q be disjoint subsets of E(G). Let X be a 

set of disjoint ties between P and Q with P-base X(P). Then there exists a set 

Y of X=X(G; P,Q) disjoint ties between P and Q whose P-base Y(P) 
contains X(P). 

We can call Y an improvement rather than a replacement of X¥ 
because not all traces of X are lost in the change to Y. The original P-base 
remains as part of the new one. 

We can prove Theorem II.36 by repeating the proof of Theorem 
1.32 with minor modifications. No change is necessary in the discussion of 
the case n = 0, since X(P) is necessarily a subset of M. 
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In the next step we have to choose A, assume the theorem for G/, and 
Gj, and deduce it for G. Here it is permissible to assume that the given _X is 
maximal, in the sense that no tie of P and Q can be found that is disjoint 
from every member of X. We can also assume that X has fewer than \ 
members, since otherwise there is nothing to prove. The maximality of X 
ensures that G-P and G-Q have no common vertex outside X(P), or 
outside X(Q). Let us enumerate the members of X as T,, T,,...,T,, where 
w<X. 

We choose A to be incident with some vertex u of Q not in X(Q). 

This is possible; if it were not, then the members of the cutting pair 

((G-Q)°,G-Q) of P and Q in G would have only the vertices of X(Q) in 

common, contrary to Eq. (II.4.2). 

The other end v of A may or may not be in one of the ties T,. If v is 

not in T;, we write S;=T;. If v is the vertex x; of T; in P we take S; to be the 

corresponding vertex-graph. In the remaining case we take S; to be the arc 

in T; with ends x; and v. Figure II.5.2 shows an example in which v is a 
vertex of 7}. 

It may happen that A(G4; P,Q)=A(G; P,Q). In that case the truth 

of the theorem for Gj, with the given set X of ties, implies its truth for G. 

In the remaining case, A(G//; P,Q) =A(G; P,Q), by Theorem II.31. 

For each vertex w of G we define the corresponding vertex w” of G7, as in 
Sec. II.2. We note that the mapping w > w” converts the set of subgraphs S; 

of Ginto a set X” of p disjoint ties between P and Q in Gj. It also induces a 

1-1 mapping of X(P) onto the P-base X”(P) of X” in G7. Since we are 

assuming the truth of the theorem for G/ we can assert the existence of a set 
Y” of A disjoint ties between P and Q in Gj with a P-base containing that 

of X”. 
There is a subgraph -K of G/ whose components are the members of 

Y”. As in the proof of Theorem II.32, the subgraph f,K of G has A 

FIGURE IL5.2 
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components, each meeting both G- P and G-Q. But now each component of 

{,K has only one vertex in G- P. Moreover, the mapping w > w” induces a 

1-1 correspondence betwen the set W of vertices of f{,K in G-P and the set 

Y’(P). Thus X(P) is a subset of W. 

We now reduce each component of f, K to a tie between P and Q, as 

in the discussion of Theorem II.34. We thus get a set Y of A disjoint ties 

between P and Q whose P-base W contains X(P). Thus the induction 

succeeds and the theorem is true. Oo 

11.6. HALL’S THEOREM 

In yet another version of Menger’s Theorem, we consider two subsets U and 

V of V(G), and we ask for the maximum number of disjoint ties between U 

and V. In this case, a “tie” can be a vertex-graph in G whose vertex is 

common to U and V. Alternatively, it is an arc in G with one end in U but 

not V, with the other end in V but not U, and with no internal vertex in 

either U or V. 

We define a cutting pair of U and V in G as an ordered pair (H, K ) 

of edge-disjoint subgraphs of G such that 

UcCV(A), VcoV(K), and AHUK=G._ (II.6.1) 

The separation number u(G; U,V) of U and V in G is defined as follows: 

u(G;U,V) = Min|V(HOK)|, (11.6.2) 
H,K 

where the minimum is taken over all cutting pairs (H, K) of U and V in G. 

We could develop a theory like that of Sec. II.4 but with Eqs. (II.6.1) 

and (11.6.2) replacing (11.4.1) and (II.4.2). However, theorems on vertices of 

attachment would be less directly applicable. 

There is a simple transformation that relates the old theory to the 

new. To each vertex u of U we attach a new loop B,(U), and to each vertex 

v of V a new loop B,(V). A vertex x common to U and V gets two distinct 

new loops B,(U) and B,(V). The adjunction of these loops converts G into 

a new graph G,. Let P be the set of loops B,(U), where u runs through the 

vertices of U, and let Q be the corresponding set of loops B,(V). The 

construction is illustrated in Fig. 11.6.1, with U=({ U,,U,,u,) and V= 

(01, 02, 03}. 
A cutting pair (H, K) of U and V in G becomes a cutting pair of P 

and Q in G, when the loops of P and Q are adjoined to H and K, 
respectively. Conversely, a cutting pair (H,, K,) of P and Q in G, becomes 
a cutting pair of U and V in G when the loops of P and Q are deleted from 
its member graphs. We deduce that 

u(G;U,V)=A(G,; P,Q). (11.6.3) 
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FIGURE I1.6.1 

A set of disjoint ties between U and V in Gis a set of disjoint ties between P 

and Q in G,, and conversely. So by applying Theorem II.34 to G,, we 

obtain the following theorem about G. 

Theorem II.37. Let U and V be subsets of V(G). Then the maximum 

number of disjoint ties between U and V in G is (G; U,V). 

A bipartition of a graph G is an ordered pair (U,V) of complemen- 

tary subsets of V(G) such that each edge of G has one end in U and one in 

V. A bipartite graph is one that has a bipartition. Thus a bipartite graph can 
have no loop. We proceed to apply Theorem II.37 to the theory of bipartite 

graphs. We shall be concerned with the 1-factors defined in Sec. I.3. 
A partial |-factor F of a graph G is a subgraph of G that is regular of 

valency 1. Evidently the components of such an F must be link-graphs. If 

V(F)=V(G), we say simply that F is a 1-factor of G. 

Now let G have a bipartition (U,V) and let F be a partial 1-factor of 

G. We define the U-deficiency 5, (F ) of F as the number of vertices of U not 

incident with edges of F. The V-deficiency 6,(F) of F is defined analo- 

gously. 

Theorem I1.38. Let (U,V) be a bipartition of a graph G and let n be 

a positive integer. Then in order that G shall have no partial 1-factor whose 

U-deficiency is less than n, it is necessary and sufficient that the members of 

some subset S of U shall be adjacent to fewer than (\S|—n) vertices of V. 

Proof. We deduce from Theorem II.37 that the maximum number 

of edges in a partial 1-factor of G is u(G; U,V). Let (H, K) bea cutting pair 

of U and V in G such that |V(H 1 K)|=p(G; U,V). Let Xy be the set of 

vertices of U in K, and X,, the set of vertices of V in H. Then 

|Xul + |Xvl =|V(HOK)|=n(G;U,V). 

So for any partial 1-factor F of G we have 

6) (F)=|U|—“(G; U,V), 

op (2) 2 (Ul — Ag sy 
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Now write S=U— X,. The members of S can be adjacent only to 
members of X,, since their incident edges are all in H. Hence the members 

of S are adjacent to at most |X,|, and therefore at most |S|—6,(F), 

vertices of V. So if 6,(F') > n for every F, then the vertices of S are adjacent 

to fewer than (|S|— 7) vertices of V, and the theorem is satisfied. 

Conversely, suppose U to have some subset S whose members are 

adjacent to exactly k <|S|—n vertices of V. Then for each partial 1-factor 

F of G, at most k edges incident with members of S can belong to F. It 

follows that 6,,(F) > n. oO 

If G is to have a 1-factor, it is clear that U must have the same 
number of elements as V. We can regard this as a consequence of Theorem 
11.38 with n = 1, applied to the two bipartitions (U,V) and (V,U). A further 
application of Theorem II.38 leads to the following theorem. 

Theorem 11.39. Let (U,V) be a bipartition of G. In order that G may 
have a \-factor, it is necessary that |U|=|V|. Subject to this condition, G has 
a |-factor if and only if there is no subset S of U whose members are adjacent 
to fewer than |S| members of V. 

Theorem II.39 is known as Hall’s Theorem. It was first published by 
P. Hall in 1935 [1]. K. Menger published his theorem in 1927 [2]. 

The problem dealt with in Theorem II.38 is often called the Assign- 
ment Problem. The members of U are called “applicants” and those of V 
“jobs.” An edge of G indicates that the corresponding applicant is qualified 
for the corresponding job. A partial l-factor of G with the maximum 
number of edges is an arrangement whereby as many applicants as possible 
are assigned to jobs for which they are qualified. 

I1.7. NOTES 

11.7.1. Minors 

For each graph G there is a least integer n = n(G) such that some minor of 
G is an n-clique. This number is of interest in connection with a famous 
conjecture of H. Hadwiger, that G, if loopless, can be vertex-colored in not 
more than n(G) colors. (See Sec. IX.3.) 

Another well-known conjecture concerned with minors can be stated 
as follows: Let S be an infinite set of graphs. Then S has a finite subset T 
such that each member of S has a minor isomorphic to a member of T. For 
cubic graphs, this is “Kruskal’s Conjecture.” 
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11.7.2. Recursion formulae 

There are many interesting functions of graphs satisfying formulae like Eqs. 

(11.2.9), (11.2.10), and (I1.2.11). Some of them are discussed in Chapter IX. 

11.7.3. Menger’s Theorem 

This theorem can be proved by the methods of transportation theory (Sec. 

VI.7). Many proofs have been given; there has been something of a 

competition to find the shortest one. (See [3].) 

EXERCISES 

1. Show that the cube graph has a minor that is a 4-clique. There is a 

theorem asserting that the graph of every convex polyhedron has such a 

minor. Test this theorem in a few simple cases. 

2. Use Eq. II.2.9 in conjunction with Theorem I.36 to find the tree-number 

of the 4-clique. 

3. For the graph of a convex polyhedron show that any two nonadjacent 
vertices are separated by a least three others. 

4. Show that every bipartite cubic graph has a 1-factor. 

5. Write a formal proof that any two distinct vertices of a circuit are 

joined by two and only two arcs, these being internally disjoint. 

6. What graphs can be transformed into (i) the cube graph, (ii) the 

octahedron graph, by contracting a single edge? 
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Chapter III 

2-Connection 

{lI.1.. SEPARABLE AND 2-CONNECTED GRAPHS 

A nonnull proper subgraph of a connected graph G has at least one vertex 
of attachment, by Theorem I.21. The present chapter is based on a theory of 
those subgraphs of G that have exactly one vertex of attachment. 

A |-separation of a connected graph G is an ordered pair (H, K ) of 
subgraphs of G, each having at least one edge, such that HU K =G and 
H ( K is a vertex-graph. The vertex of HO K is called the cut-vertex of the 
1-separation. 

A connected graph is said to be separable or nonseparable according 
as it does or does not have a 1-separation. In addition, it is customary to 
count the disconnected graphs as separable. We shall not describe the null 
graph as either separable or nonseparable. The term “2-connected” is used 
as a synonym of “nonseparable.”’ 

According to the above definition, a connected graph with at most 
one edge must be 2-connected. This covers the cases of the vertex-graph, the 
loop-graph, and the link-graph. 

Theorem III.1. Let G be a connected graph, and let (H, K) be a 
1-separation of G with cut-vertex v. Then H and K are connected graphs, and 
each of them has v as its only vertex of attachment. 

54 
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Proof. If H is not connected, it has a component C not including v. 
But then C is a detached proper subgraph of G, contrary to Theorem I.21. 

We conclude that H, and similarly K, is connected. 

It follows that v is not isolated in either H or K. Since H and K have 
no common edge, v is therefore a vertex of attachment of both subgraphs. 

A second vertex of attachment of H or K would be a second vertex 

of H 1 K, which is impossible. Oo 

Consider any l-separation (H, K) of a connected graph G. In the 

terminology of Sec. 1.4, H and K are the members of a complementary pair 

of subgraphs of G with binding number 1, by Theorem III.1. 

Theorem III.2._ Let G be a connected graph. Let H be a proper 
subgraph of G with at most one vertex of attachment. Let H have either an 

edge or a vertex that is not one of attachment. Then (H, H“) is a \-separation 

of G. 

Proof. By the definition of H‘, the graphs H and H“ have G as their 

union. But they have no common edge, and their only common vertices are 
the vertices of attachment of H. But H, as a nonnull proper subgraph of a 

connected graph, has at least one vertex of attachment. Hence, by hypothe- 

sis, it has exactly one, v, say. The intersection of H and H* is thus the 

corresponding vertex-graph. 
It remains to show that H and H* each have an edge. But if H is 

edgeless, it has, by hypothesis, a vertex x distinct from v and so not in H*. 

Moreover, if H* is edgeless, it has a vertex y not in H, since otherwise H 

would not be a proper subgraph of G. In either case, x or y must be isolated 

in G, contrary to the connection of that graph. Oo 

Theorem III.3. The only 2-connected graph with a loop is the loop- 

graph, and the only 2-connected graph with an isthmus is the link-graph. 

Proof. Let A be an edge of a connected graph G. Suppose first that 

A is a loop. If G-{A} is a proper subgraph of G, then G is separable, by 

Theorem III.2 with H=G-{A). So if G is 2-connected, it must be the 

loop-graph G -{ A}. 

Next let A be an isthmus of G. If G is not a link-graph, then A has 

some end-graph H that is not a vertex-graph. But then (H,H"*) is a 

1-separation of G, by Theorem III.2. oO 

Theorem III.4. Let G be a connected graph having a \-separation 

(H, K) with cut-vertex v. Let J be a subgraph of G that is either a circuit with 

an edge in E(H) or an arc with both its ends in V(A). Then J CH. 

Proof. We recall that circuits and arcs are connected graphs. We 

note also that if J 0 K has a vertex x distinct from v, then x must have the 

same valency 2 in JM K as in J. 
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Suppose first that v is not a vertex of J M K. Then, by the preceding 

observations, J M K is a proper detached subgraph of the connected graph 

J. Hence JQ K is.null and J C H. 

In the remaining case, v belongs to J N K. Its valency in J Q K is at 

most 2. If this valency is 2, then JK is a detached nonnull proper 

subgraph of the connected graph J which is impossible. The valency of v in 

JK is not 1, by Theorem I.1. But if this valency is zero, then JQ H is a 

detached nonnull subgraph of the connected graph J, and it is therefore the 

whole of J. Thus J C H. O 

Theorem III.5. Every circuit is 2-connected. 

Proof. Suppose some circuit G to have a 1-separation (H, K ). Then 

G has an edge in H, and therefore GC H by Theorem III.4. This is 

impossible, since G must have also an edge in K. 0 

The next two theorems are important for applications of the results 
of Secs. 1.8 and II.5. 

Theorem III.6. Let G be a 2-connected graph. Let H be a nonnull 
subgraph of G that is not a vertex-graph. Let B be a bridge of H in G. Then B 
has at least two vertices in H. 

Proof. Assume that B has fewer than two vertices in H. Referring to 
the definition of a bridge in Sec. I.8, we see that all the vertices of 
attachment of B are in H. Hence B has at most one vertex of attachment. 
Moreover, B is not a subgraph of H, and so it has either an edge or a vertex 
that is not one of attachment. It follows by Theorem III.2 that G is 
separable, and this is contrary to hypothesis. O 

Theorem III.7._ Let G be a 2-connected graph. Let P and QO be 
disjoint nonnull subsets of E(G). Then \(G; P,Q) > 2. 

Proof. Suppose A(G; P,Q) <2. By Theorem II.28, there is a sub- 
graph H of G such that P is contained in E(H) and Q is disjoint from 
E(#), and which has at most one vertex of attachment. This implies that G 
is separable, by Theorem III.2, and this is contrary to hypothesis. Oo 

IHI.2. CONSTRUCTIONS FOR 2-CONNECTED GRAPHS 

In this section we continue the work of Sec. I.7 by showing how to make a 
complete list of nonisomorphic 2-connected graphs with a given number of 
edges. We begin with some theorems showing how some 2-connected graphs 
can be derived from smaller ones. 
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Theorem II1.8. Let G be a connected graph having a 1-separation 
(H, K) with cut-vertex v. Let J be a 2-connected subgraph of G having an 
edge, or a vertex other than v, in H. Then J CH. 

Proof. As a proper subgraph of J, the graph JM K can have no 
vertex of attachment in J other than v. Hence, by Theorem III.2, J 0 K has 

no edge and no vertex other than v. The theorem follows. oO 

Theorem III.9._ Let H and K be 2-connected subgraphs of a graph G, 

and let them have either an edge or two distinct vertices in common. Then 

H U K is 2-connected. 

Proof. HU K is connected, by Theorem 1.25. Assume that it is not 

2-connected. Then it has a l-separation (L, M) with a cut-vertex v. We can 

adjust the notation so that L includes either a common edge of H and K or 

a common vertex of those subgraphs distinct from v. But then HU K CL, 

by Theorem III.8. This is impossible, since M includes an edge of H U K not 

in 2. Oo 

Theorem III.10._ Let H be a 2-connected subgraph of a graph G, and 

let N be an arc in G whose ends are both in H. Then H U N is 2-connected. 

Proof. HUN is connected, by Theorem 1.25. Assume it is not 

2-connected. Then it has a l-separation (L, M). We may suppose H C L, by 

Theorem III.8. Then NV C L, by Theorem III.4. Hence HUN CL, and we 

have a contradiction. a 

Theorem III.11. Let G be a 2-connected graph having at least two 

edges. Then G can be represented as a union of a 2-connected subgraph H of G 

and an arc L in G that avoids H but has both its ends in H. 

Proof. Each edge ‘A of G defines a 2-connected proper subgraph 

G-{A) of G. We can therefore assert the existence of a 2-connected proper 

subgraph H of G having the greatest possible number, n say, of edges. 

Clearly n> 0. 
Since H is proper in G, there exists a bridge B of H in G, by 

Theorem I.51. This bridge has two distinct vertices x and y in H, 

by Theorem III.6. These are the ends of an arc L in B that avoids H, by 

Theorem 1.56. 

The subgraph H U L of G is 2-connected, by Theorem III.10. It is 

not a proper subgraph of G since it has more than n edges. Hence it is G 

itself. 0 

We now use a construction in which a graph G is formed by uniting 

a graph H with an arc L. The ends of L are to be vertices of H, but no edge 

or internal vertex of L is to belong to H. In the final graph G, H appears as 

a subgraph, and Z as an arc in G avoiding H. We say that G is formed from 

H by adjoining the arc L. 
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Theorem III.10 tells us that the result of adjoining an arc to a 
2-connected graph H is always 2-connected. We learn from Theorem III.11 
that every 2-connected graph with at least two edges can be derived from a 
smaller 2-connected graph in this way. 

Let L,, denote a complete list of nonisomorphic 2-connected graphs 
of n edges. Thus Lo has the vertex-graph as its only member, and L, consists 
only of the loop-graph and the link-graph. If m > 1 and the lists Ling lA, 3 
L,,—, are known, then we can find L,,. We have only to adjoin suitable arcs 
in all isomorphically distinct ways to the members of Ly to L,,_ ,, and then 
reject any duplicates. Actually we can ignore L, here since there is no way 
of adjoining an arc to a graph of only one vertex. 

LU 
FIGURE III.2.1 The list L 3. 

_| o> @ 
FIGURE II1.2.2. The list L 4. 

CF OS 
I> AD 
FIGURE III.2.3 The list Ls. 
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FIGURE III.2.4 The list Lg. 

As an example we find the members of L, by adjoining a 1-arc in all 

possible ways to each member of L,. In practice this means by adjoining a 

l-arc in the only possible way to a link-graph. Thus L, has only one 
member, the 2-circuit. 

To get L, we have to adjoin 2-arcs to members of L, and 1-arcs to 

members of L,. We deduce that L, has just two members, the 3-circuit and 
the 3-linkage, as shown in Fig. III.2.1. 

The rule for L, is to adjoin 3-arcs to members of L,, 2-arcs to 
members of L,, and l-arcs to members of L,. The resulting list is shown in 
Fig. II1.2.2. The lists L; and L, are shown in Fig. III.2.3 and III.2.4, 
respectively. 

A list of the connected separable graphs of n edges can be obtained 

from the list M,, of Sec. I.7 by deleting the members of our present L,,. For 

example, the connected separable graphs of four edges are those shown in 

Fig. T1.2.5. 
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FIGURE III.2.5 Connected separable graphs of four edges. 

Il.3. BLOCKS 

A block in a graph G is a maximal 2-connected subgraph of G, that is, a 

2-connected subgraph of G that is not contained in any other. 

Theorem III.12. Let H be a 2-connected subgraph of a graph G. 

Then H is contained in some block of G. Moreover, if H is not a vertex-graph, 

it is contained in exactly one block of G. 

Proof. The first part of the theorem follows from the finiteness of 
G. To prove the second, suppose H to be contained in two blocks B, and B,. 
Since H is not a vertex-graph, the union B, U B, is 2-connected, by Theorem 

III.9. Hence B, = B, U B, = B,, by the maximality of B, and B,. O 

Theorem ITI.13. Let G be any graph. Then each edge or vertex of G 

belongs to some block of G. Moreover, each edge belongs to exactly one block 
of G. 

Proof. Since the vertex-graph, loop-graph, and link-graph are 2- 

connected, this is a consequence of Theorem III.12. 0 
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Theorem III.14. The blocks of a graph G are the blocks of its 
components. 

Proof. A block of G, being connected, is contained in some compo- 
nent C of G, by Theorem 1.24, and is clearly a block of C. Conversely, a 
block of a component C of G must be a block of G, since any 2-connected 
subgraph of G containing it would be a subgraph of C, by Theorem I.24. O 

Because of this theorem there is no real loss of generality in restrict- 
ing the further theory of blocks to the case in which G is connected. 

Theorem III.15. A 2-connected graph has exactly one block, itself. A 
separable graph has two or more blocks. 

Proof. The first part is true by the definition of a block. The second 

part follows from Theorem III.13, since each block of a separable graph G 

must be a proper subgraph of G. oO 

Theorem III.16. Let G be a connected graph that is not a vertex- 

graph. Then each block of G has at least one edge. 

Proof. Let B be a block of G. If it is edgeless it must, by its 
connection, be a vertex-graph. Then let its vertex be x. By hypothesis, x is 

incident with an edge A of G. By Theorem III.13 there is a block B’ of G 

that includes A. But then B is a proper subgraph of B’, contrary to the 

definition of a block. O 

Theorem III.17._ If A is a loop or isthmus of a graph G, then G-{ A} 

is a block of G. 

Proof. By Theorem III.13, A belongs to a block B of G. Then A is a 

loop or isthmus of B, by Theorem 1.32. Hence B is a loop-graph or a 

link-graph, by Theorem III.3. Hence B = G-{ A}. Oo 

Theorem III.18. Let A, and A, be distinct edges of a graph G. Then 

they belong to the same block of G if and only if some circuit in G includes 

them both. [2]. 

Proof. Suppose A, and A, to be edges of some circuit Q in G. Then 

Q is a subgraph of some block B of G, by Theorems HI.5 and III.12. The 

theorem is satisfied. 
Conversely, suppose A, and A, to be edges of the same block B of G. 

By Theorem III.7, A(B;{A,)},{A,}) = 2. By Theorem II.34, there are two 

disjoint ties T, and T, between {A,} and {A,} in B. We must suppose A, to 

have one end x, in 7, and the other end x, in 7,, while A, has one end y, in 
T, and the other end y, in T,. We may have x, = y, or x, = y,. Taking the 
union of 7, and 7, and adjoining to it the edges A, and A,, we obtain a 

regular graph Q of valency 2. It is connected, by Theorem [.25. It is 

therefore a circuit in B and G, by Theorem I.27. O 
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In the remainder of this section, we study the relation between the 

blocks of a connected graph G and the cut-vertices of G, that is, the 

cut-vertices of the.l-separations of G. 

Theorem III.19. Let G be a connected graph. Let v be a cut-vertex of 

G, corresponding to a 1-separation (H, K ). Then v is a vertex of at least two 

distinct blocks of G. Of these blocks, at least one is contained in H, and at least 

one in K. 

Proof. v is incident with an edge A,, of H and an edge A, of K, by 

Theorem III.1. These edges belong to blocks B,, and B,, respectively, of G, 

by Theorem III.13. But B,, C H and B, C K, by Theorem III.8. O 

Theorem III.20._ Let G be a connected graph. Let B be a block of G, 

and let x be a vertex of B. Let H be the component of G:(E(G)— E(B)) that 

includes the vertex x. Then either H is a vertex-graph or (H, H‘) is a 

l-separation of G. In the latter case, x is the cut-vertex of (H, H°). 

Proof. We note first that H has no vertex other than x in B. For if y 
were another, there would be an arc L in H with ends x and y, by Theorem 

1.43. The subgraph BU L of G would be 2-connected, by Theorem III.10, 

and this is impossible, by the maximality of B. 

Suppose H is not a vertex-graph. Then by Theorem III.16, the 

connected graphs H and B each have an edge incident with x. Hence x is a 

vertex of attachment of H. By the result of the preceding paragraph, it is the 

only vertex of attachment of H. It follows from Theorem III.2 that (H, H°) 

is a 1-separation of G, and from Theorem III.1, that x is the corresponding 

cut-vertex. O 

Theorem III.21. Let G be a connected graph, and let B be a block of 
G. Then the cut-vertices of G included in B are the vertices of attachment of B. 

They can also be characterized as the vertices at which B meets other blocks 
of G. 

Proof. Let x be a cut-vertex of G included in B. Then B meets 
another block at x, by Theorem III.19. 

Now let y be any vertex at which B meets another block. Since G has 
more than one block, it is not a vertex-graph. So the second block must have 
an edge incident with y, by Theorem III.16 and the connection of a block. 
Hence y is a vertex of attachment of B. 

Finally, let z be any vertex of attachment of B. Then the component 
H of G:(E(G)— E(B)) that includes z is not a vertex-graph. So z is a 
cut-vertex of G, by Theorem III.20. 

The theorem follows from these three results. 0 

Theorem II1.22, Let G be a connected graph. Let (H,K) be a 
1-separation of G with cut-vertex x. Then the blocks of G are the blocks of H 
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and K. Moreover, the cut-vertices of G are the cut-vertices of H and K, 
together with x. 

Proof. A block of G is contained in H or K, by Theorem IIL8, 
and must therefore be a block of H or K. But H and K can have no other 
blocks, by Theorems III.13 and III.16. It now follows from Theorem III.21 
that the cut-vertices of G other than v are the cut-vertices of H and K other 
than v. oO 

We can indicate the relations between the blocks and cut-vertices of 
a connected graph G by means of its block-graph BIk(G). This is a strict 
graph with a bipartition (U,V). There is a 1-1 mapping f of the blocks of G 
onto the vertices of U, and a 1-1 mapping g of the cut-vertices of G onto 
the vertices of V. A vertex fB of U is adjacent to a vertex gx of V if and only 
if the block B includes the cut-vertex x in G. 

If G is a vertex-graph, then Blk(G) is also a vertex-graph, its single 
vertex being in U. 

Figure III.3.1 shows a connected separable graph G together with its 
block-graph BIk(G). Blocks of G are denoted by capitals and cut-vertices by 
small letters. 

In Sec. I.3 we defined the union and intersection of two subgraphs H 
and K of a graph G. It should be noted that these definitions extend to sets 

of three or more subgraphs. Thus the union of subgraphs H dion dlp OL G 

is the subgraph of G made up of the edges and vertices of the k graphs H i 

The intersection of the k subgraphs is the subgraph of G made up of the 

edges and vertices common to them all. The k subgraphs H, are not 

necessarily all distinct. We shall make use of these extended definitions from 
here on. 

Theorem III.23. Let G be a connected graph. Then B\k(G) is a tree. 

G Blk (G) 
FIGURE II1.3.1 
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Proof. Suppose first that BIk(G) is not connected. Let C be one of 

its components. Let H be the union of the blocks of G represented by the 
vertices of U in C, and K the union of all the other blocks of G. Now each 

component of BIk(G) includes a vertex of U, by Theorem III.19. Hence the 

subgraphs H and K of G have each at least one edge, by Theorem III.16. 
Moreover, each edge of G belongs to exactly one of them, by Theorem 

III.13. By the connection of G, the subgraph H has a vertex of attachment 

x, and this must be a common vertex of a block contained in H and a block 

contained in K. But then the vertex gx of BIk(G) is adjacent to a vertex of U 

in C and a vertex of U not in C. This contradicts the definition of C as 

detached in BIk(G). 

Suppose next that not every edge of BIk(G) is an isthmus. Then 

Blk(G) contains a circuit, by Theorem I.45. Thus, since Blk(G) is strict, we 

can find n > 2 distinct blocks B,, B,,...,B, of G and n distinct cut-vertices 
X1,X,.+.,X, Of G satisfying the following rule. For each /, x; is a common 

vertex of B,_, and B;, where By = B,. Let H be the union of all the B; other 
than B,. It is a connected subgraph of G, by repeated application of 

Theorem [.25. It contains an arc L with ends x, and x,, by Theorem I.43. 
But then B, UL is a 2-connected subgraph of G having B, as a proper 

subgraph, by Theorems III.13 and III.4. This contradicts the maximality 
of B,. 

We can now assert that BIk(G) is a connected forest, that is, a tree. 0 

We can now apply the theory of trees to that of blocks. For example, 
let us define an extremal block of a connected graph G as a block of G that 

includes exactly one cut-vertex of G. Then the extremal blocks of G 

correspond to the monovalent vertices of U in BIk(G). Since each vertex of 

V in BIk(G) is at least divalent, by Theorem III.19, we can apply Theorem 
1.40 to deduce the following theorem. 

Theorem III.24. Let G be a connected separable graph. Then it has 
at least two extremal blocks. 

Iil.4. ARMS 

Let G be a connected graph. Let x be a vertex of G and let X be the 
corresponding vertex-graph. We define an arm of G at x as a bridge of X 
in G. 

Theorem III.25. An arm of G at x is a connected graph that is not a 
vertex-graph. It includes the vertex x. 

. Proof. Let U be an arm of G at x. If U is disconnected, or if it does 
not include x, then it has a component C that does not include x. Since x is 
the only possible vertex of attachment of U in G, by the definition of a 
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bridge, it follows that C is a detached subgraph of G. But this is impossible, 
by the connection of G. 

We can now assert that U is connected and that it includes x. It is 
not a subgraph of X, by the definition of a bridge. Hence it is not a 
vertex-graph. Oo 

If G is a vertex-graph, there is no arm of G at x, by Theorem III.25. 
In the remaining case there is at least one such arm, by Theorem I.51. If 
there is just one arm U of G at x, then G=U by Theorem I.51. For two or 
more arms, we have the following theorem. 

Theorem III.26. Let there be at least two arms of G at x, and let U 
be one of them. Then (U,U*) is a 1-separation of G with cut-vertex x (by 
Theorems III.2 and III.25). 

We go on to relate the arms to the blocks of G. 

Theorem III.27. Let U be an arm of G at x. Then there is exactly one 
block B of G such that B includes x and is contained in U. 

Proof. U has an edge A incident with x, by Theorem III.25. This 
belongs to a block B of G that includes x, by Theorem III.13. But then B is 

contained in U. If U is the only arm at x, this follows from the fact that 

U=G. In the remaining case, it is a consequence of Theorems III.26 and 

II1.8. 

If B is the only block of G that includes x the theorem is satisfied. 

Suppose therefore that G has a second such block B’. Then x is incident 

with some edge E of G that is in B’ but not in B, by Theorem III.13. Hence 

the component H of G:¢E(G)— E(B)) that includes x is not a vertex-graph. 

So, by Theorem III.20, (H, H°) is a 1-separation of G with cut-vertex x. By 

the definition of H, all the edges of H* incident with x are in E(B). 

Now H* is X-detached in G. Hence H° MU is X-detached in G, by 
Theorems III.1 and 1.46. But this intersection is not a subgraph of X, since 

it includes all the edges of B incident with x. It follows, by the bridge- 

minimality of U, that U C H°. Hence all the edges of U incident with x are 

in B; E is not one of them and therefore B’ is not contained in U. oO 

Theorem III.28. Let the connected graph G be not a vertex-graph. 

Then the blocks of G are the blocks of the arms of G at x. The cut-vertices of G 

other than x are the cut-vertices of the arms of G at x. The vertex x is not a 

cut-vertex of any arm of G at x. 

Proof. Let B be any block of G. It has an edge A and this belongs 
to some arm U of G at x, by Theorem I.51. But then B CU, by Theorem 
III.8 and the fact that U= Gif U is the only arm at x. By its maximality in 

G, B must be a block of U. All the blocks of all the arms of G at x are thus 

accounted for, by Theorem IIIJ.13. The statements about cut-vertices now 

follow from Theorems III.21 and II.27. Oo 
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From Theorems III.27 and III.28, we see that the arms of G at x are 

in 1-1 correspondence with the blocks of G having x as a vertex. Each such 

arm contains exactly one such block, and each such block is contained in 

exactly one such arm. There are two or more arms at x if and only if x is a 

cut-vertex of G, by Theorem III.21. 

The preceding theory is of special interest when G is a tree. Then the 

blocks of G are the link-graphs defined by its edges, by Theorem IJI.17. The 

number of arms at a vertex x is val(G, x), and each edge incident with x 

belongs to exactly one of these arms. Each arm of G at x is itself a tree, 

being a connected forest, by Theorems III.25 and 1.33. An arm U of G at x 

has x as one of its monovalent vertices, and as its only vertex of attachment. 

Each other vertex of U is incident with the same edges in U as in G, and has 

the same valency in U as in G. By Theorem I.40, the arm U must include at 
least one monovalent vertex of G distinct from x. 

In particular, G may be an arc L with ends y and z, and x may be an 

internal vertex of L. Then there are just two arms at x. By the preceding 

observations and by Theorem I.40, one of them is an arc L,, with ends x 
and y, and the other is an arc L,., with ends x and z. Their intersection is the 
vertex-graph X and their union is G, by Theorem I.51. We say that x 

decomposes L into the two arcs L,,, and L,,. This decomposition of L is, of 
course, easy to describe in terms of its defining enumeration. 

For an example of a connected separable graph G that is not a tree, 

we can take the first diagram of Fig. III.3.1. Here there are three arms at b. 

One of them is made up of the blocks A and B; another, of the blocks C and 

D; and the third, of the blocks E and F. Of the two arms at a, one is the 

loop-graph G-{ A}, and the second is the union of all the other blocks. 

11.5. DELETION AND CONTRACTION OF AN EDGE 

Let G be a connected graph. We describe it as a string of blocks if, for some 
integer k > 2, we can enumerate its blocks as B,, B,,...,B, and its cut- 
vertices as 0), 0>,...,0,_, So that the following condition holds. The cut- 
vertex v, belongs to B; and B,,, but to no other block, for each relevant 
suffix j. Clearly a connected graph is a string of blocks if and only if its 
block-graph is an arc. 

In the above string of blocks just two blocks are extremal, B, and B,. 
Let us adjoin a new link A with one end x in B, but distinct from v,, and 
the other end y in B, but distinct from v,_,. We say that A closes the string 
of blocks. 

Theorem III.29._ Let a graph K be formed by closing a string G of 
blocks with a new link A. Then K is 2-connected. 
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Proof. We use the above notation but write x =v, and y = v,. In 
each block B; there is an arc L, with ends v;_, and v;, by Theorem 1.43. The 
union of the arcs L, is connected, by repeated application of Theorem [.25. 
It is an arc L with ends x and y, by Theorem I.26. Adjoining the link A to it, 
we obtain a circuit C, by Theorems I.27 and 1.43. But C has an edge in each 
of the blocks B, of G. Hence K is 2-connected, by Theorems III.5 and III.9. 

O 

Theorem III.30._ Let G be a 2-connected graph having at least two 

edges, and let A be an edge of G. Then either G4, is 2-connected or it is a string 
of blocks that is closed by A. 

Proof. Gj, is connected and 4 is a link of G, by Theorem III.3. 
Suppose Gj is not 2-connected, and so has at least two blocks, by Theorem 
III.15. Let B be an extremal block of Gj. Then some vertex of B other than 
its Cut-vertex must be an end of A in G, for otherwise (B, B°) would be a 

1-separation of G, by Theorem II.2. It follows, by Theorem III.24, that Gj 

has exactly two extremal blocks, each including an end of A that is not a 

cut-vertex of Gj. Thus BIk(Gj4) is an arc, being a tree with just two 

monovalent vertices, by Theorems III.23 and 1.40. We deduce that Gj is a 

string of blocks, closed by A to form G. Oo 

Let us now seek a corresponding theorem for Gj’. We use the 

notation of Sec. II.2. 

Theorem III.31. Let A be an edge of a 2-connected graph G. Then 

either Gi is 2-connected or it has v, as its only cut-vertex. In the latter case A 

is a link of G and for each block B of Gi the subgraph f,,B of G is 2-connected. 

Proof. Gi is connected, by Theorem II.5. Suppose Gj’ is not 

2-connected. Then it has at least two blocks, by Theorem III.15, and at least 

one cut-vertex by Theorem III.21. It has at least two edges, by Theorem 

III.16, and so A is a link of G, by Theorem III.3. 

Suppose some vertex x of Gj other than v, is a cut-vertex of G/. 

Then it corresponds to a |-separation (H, K ) of Gj with v, in H. But then 

f,K is a subgraph of G having only one vertex of attachment, by Theorem 

II.3. But this is impossible, by Theorem III.2 and the 2-connection of G. 

Since Gj has at least one cut-vertex, we deduce that v, is the only cut-vertex 

OL G,. 
Now consider a block B of Gj. Its only vertex of attachment is 

v,. Hence the only possible vertices of attachment of /,B in G are the 

ends x and y of A. Suppose f,B is not 2-connected. Then it has a 

1-separation (H, K ), with cut-vertex z, say, such that A is an edge of H. But 

now z is the only vertex of attachment of K in G, which is impossible by 

2-connection. Oo 

Theorem III.32. Let A be an edge of a 2-connected graph G. Then 

either Gi is 2-connected or G is the union of two or more 2-connected graphs 
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H,, H>,...,H,, each with at least two edges, such that the intersection of any 

two of them is the link-graph G -{ A). 

This result follows from Theorem III.31. The H, are the graphs /,B 

such that B is a block of Gj. 

Theorem III.33. Let G be a 2-connected graph with at least two 

edges. Let A be an edge of G. Then either G4, or Gi is 2-connected. 

Proof. A is a link of G, by Theorem III.3. Let its ends be x and y. 

Assume that neither Gj nor G7 is 2-connected. Then by Theorem 
III.30, no block of G4 includes both x and y. Referring to Theorem III.32, 

we see that each of the graphs (H;)’, is connected, by Theorem III.3. Hence 

x and y are the ends of an arc L, in (#,)’, and an arc L, in (H,)',, by 
Theorem 1.43. These two arcs are internally disjoint and their union is a 

circuit, by Theorems I.27 and 1.43. By Theorems III.5 and III.12, this circuit 

is contained in a block of Gj, and this block includes both x and y. Our 
assumption has led to a contradiction, and the theorem is established. oO 

Ill.6. NOTES 

11.6.1. 2-connection and planarity 

The property of 2-connection or non-separability is of special interest in 
connection with planar graphs. When a connected graph is drawn on the 
2-sphere, the remainder of the surface is decomposed into a finite number of 
topological discs. In the 2-connected case, each of these discs is bounded by 
a circuit of the graph. This is a topological theorem: the corresponding 
combinatorial result is Theorem XI.22. One of the classical papers of 
Hassler Whitney is entitled “Nonseparable and planar graphs” [2]. 

EXERCISES 

1. Ifa, b, and c are three distinct vertices in a 2-connected graph G, show 
that (i) there is an arc in G with ends b and c that does not pass through 
a, (ii) there is an arc in G with ends b and c that does pass through a. 

2. Let the number of blocks of a connected graph G be N, and the number 
of cut-vertices r. Let n; be the number of arms at the ith cut-vertex. 
Prove Harary’s formula ({1]) 

N-Yn,+r=1., 
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3. Let x and y be distinct cut-vertices of a connected graph G, y being in 
the arm U of G at x. Describe the arms of G at y in terms of those of G 
at x and those of U at y. 

REFERENCES 

[1] Harary, F., An elementary theorem on graphs, Amer. Math. Monthly 66 (1959), 
405-407. 

[2] Whitney, H., Nonseparable and planar graphs, Trans. Amer. Math. Soc., 34 

(1932), 339-362. 



Chapter IV 

3-Connection 

IV.1. MULTIPLE CONNECTION 

The notion of 2-connection studied in Chapter III can be generalized as 
follows: 

Let G be a connected graph. For any positive integer n, we define an 
n-separation of G as an ordered pair (H, K ) of edge-disjoint subgraphs of G 
satisfying the three following conditions: 
1) HUK=G. 
ii) H and K have exactly n common vertices. 
li) H and K have each at least n edges. 

We say that G is m-connected, where m is a positive integer, if it has 
no n-separation for any n < m. Thus, to say that G is 1-connected is simply 
to repeat that it is connected. Our definition of m-connection agrees with 
that of 2-connection in Chapter III. 

There are well-known variants on the above definitions. Suppose, for 
example, we replace Condition (iii) by the following: 

iii)’ H and K have each a vertex not belonging to the other. 

We shall then call a pair (H, K ) satisfying (i), (ii) and (iii)’ a vertical 
n-separation of G. We shall likewise say that G is vertically m-connected if it 
has no vertical n-separation for anyn<m. 
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In another variant, Condition (iii) is replaced by 

(ui)” Hand K have each a circuit. 

The pair (H, K ) will then be called a cyclic n-separation of G, and the new 
kind of m-connection will be called cyclic m-connection. 

In this work we shall usually be concerned with n-separation and 

m-connection as defined by Conditions (i), (ii), and (iii), but we shall 

sometimes have occasion to mention the other two kinds of m-connection. 

It should be noted that most authors use the term “m-connection” 

for what is called here “ vertical m-connection.” Our “m-connection” has 

the advantage of generalizing to the theory of matroids in a self-dual way. 

We begin our study with two theorem-examples. 

Theorem IV.1. Let G be a connected graph having a circuit C such 

that |E(C)|<3|E(G)|. Then (C,C°) is an n-separation of G for some 

n<|E(C)|. 

Proof. The number n of common vertices of C and C* is at most 

|V(C)| =|£(C)|. By hypothesis, C and C° have each at least |E(C)| edges. 

Hence, Conditions (i), (ii), and (ili) are satisfied with H=CandK=C*. O 

Corollary IV.2. A 2-connected graph with at least two edges is 

loopless. A 3-connected graph with at least four edges is strict. 

The first part of the Corollary is, of course, included in Theorem 

III.3. 

Theorem IV.3. Let G be a connected graph which is not a vertex- 

graph. Let x be a vertex of G such that val(G, x) <+|E(G)|. Let H be the 
subgraph of G defined by x, its incident edges, and their other ends. Then 

(H, H°) is an n-separation of G for some positive integer n < val(G, x). 

Proof. We note that val(G, x) is positive, by the connection of G. 

Let n be the number of common vertices of H and H°. Allowing for the 

possibility of loops, we can write 

1 <|E(H)| < val(G, x). (IV.1.1) 

Hence, by hypothesis, H and H° have each at least one edge. By the 

connection of G, they must have at least one common vertex. Thus the 

integer n is positive. 

Now n cannot exceed |E(H)|. Hence by Eq. (IV.1.1) and our 

hypothesis, it cannot exceed |E(H°)|. Accordingly, Conditions (i), (ii), and 

(iii) are satisfied with K = H*. 0 

Theorem IV.4. If a 3-connected graph has four edges, it has at least 

six. Moreover, it has at least four vertices. 
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Proof. Since such a graph G is strict, by Corollary IV.2, it must 

have more than three vertices. Each vertex is at least trivalent by Theorem 

IV.3. So the number of edges is at least six, by Eq. (1.1.1). oO 

If there is a greatest integer k such that the connected graph G is 

k-connected, we call k the connectivity of G and write it as k(G). If there is 

no such integer, we say that the connectivity k(G) is infinite. We note that a 

connected graph G is m-connected for every positive integer m not exceed- 

ing its connectivity. Let us make a list of the graphs of infinite connectivity. 

We can use the following rule. 

Theorem IV.5. Let G be a k-connected graph with at most (2k —1) 

edges. Then k(G) =o. 

This is because Condition (iii) cannot be satisfied for any n > k. Our 

list is given in the next theorem. We do not count the null graph because it 

is not connected, and so the definition of k-connectivity does not apply to it. 

Theorem IV.6. The graphs of infinite connectivity are the 2-connected 

graphs of at most three edges. Thus they are the vertex-graph, the loop-graph, 
the link-graph, the 2-circuit, the 3-circuit, and the 3-linkage. 

Proof. ‘he six graphs here listed are the 2-connected graphs of at 

most three edges, by the results of Sec. III.2. They have infinite connectivity, 
by Theorem IV.5. 

Suppose G is another graph of infinite connectivity. It has at least 
four edges. It is strict, by Corollary IV.2, and has at least four vertices, by 
Theorem IV.4. The valency of each vertex is at least 3. 

Choose a vertex x of minimum valency b. Let H be the graph 
obtained from G by deleting x and its incident edges. Then H has at least 

three vertices, each with valency at least (b — 1). By Eq. (1.1.1) the number 

of edges of H is at least 3(b — 1)/2. Since b is at least 3, this number is not 

less than b. Hence G is at most b-connected, by Theorem IV.3, contrary to 

our assumption of infinite connectivity. oO 

We conclude with some theorems about deletions and contractions. 

Theorem IV.7. Let A be an edge, not an isthmus, of a connected 
graph G of finite connectivity x. Then x(G,) > —1. 

Proof. Gj, is connected by hypothesis, so k(G,) is defined. Assume 
that k(G,)<«—1. Then there exists an n-separation (H, K) of G4 with 
n<«—2. If the ends of A are both in H or both in K, we can get an 
n-separation of G by adjoining A to H or K, respectively. This being 
impossible, we must suppose A to have one end x in H but not K , and the 
other end y in K but not H. 



Multiple Connection 3 

Each of H and K has at least n edges. If each has only n, then G has 
infinite connectivity, by Theorem IV.5. This being contrary to hypothesis we 
can assume without loss of generality that |E(K )|>n. 

Form H, by adjoining A and y to H. Then (Hj, K) is an (n + 1)- 

separation of G, contrary to hypothesis. The theorem follows. Oo 

Sometimes the connectivity of a graph G is increased by the deletion 

of an edge A. Obvious examples occur in which G has just one loop, or just 

one multiple join. When m-connection is defined as what we have called 

vertical m-connection, it is permissible to ignore loops and multiple edges 

and to treat each graph as strict. It is then usual to make a special 

convention about the connectivity of the n-clique, and so to arrange that the 

deletion of an edge can never increase the connectivity. But with our 

definition we shall have to endure the possibility of increases on deletion. 

Theorem IV.8. Let A be an edge of a connected graph G of finite 

connectivity k. Then k(G4) > —1. 

Proof. Gj is connected, by Eq. (11.2.1). Accordingly «(G/) is 

defined. Assume that «(Gj)<«-—1. Then there exists an n-separation 

(H, K) of Gj with n <x —2. By taking the least possible value of n, we 

ensure that the nm common vertices of H and K are the vertices of attachment 

of H, and of K, in G7. For example, a common vertex isolated in H could 

be deleted from that subgraph but retained in K. If f,H has only n vertices 

of attachment in G, then G has the n-separation ( f,H,(f,H)°). This being 

impossible, we can deduce from Theorem II.23 that f,H, and similarly f, K, 

has just (7 +1) vertices of attachment in G, and that two of these are the 

ends x and y of A in G. 
Each of H and K has at least n edges. If each has exactly n, then G 

has infinite connectivity, by Theorem IV.5. This being contrary to hypothe- 

sis, we can assume without loss of generality that |E(K )| > 7. 

We can now infer that (f,H,(f,H)°) is an (n + 1)-separation of G, 

which is contrary to hypothesis. The theorem follows. oO 

Theorem IV.9. Let G be a connected graph with at least two vertices. 

Let x be a vertex, but not a cut-vertex of G. Let H be the graph obtained from 

G by deleting x and its incident edges. Then k(H)=«(G)—1. 

Proof. H is connected, for otherwise x would have to be a cut-vertex 

of G. Accordingly, «(H) is defined. Assume that k(H) <«(G)—1. Then H 

has an n-separation (L, M) for some n <x(G)-—2. If no vertex of V(L)— 

V(M) is joined to x by an edge of G, then (L, L*) is an m-separation of G 

for some m <n, contrary to hypothesis. We deduce that some vertex of 

V(L)—V(M), and similarly some vertex of V(M)—V(L) is joined to x by 

an edge of G. Let L, be the subgraph of G formed from L by adjoining x 
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and the edges from x to vertices of V(L)—V(M). Then (Lj, L{) is an 

m-separation of G for some m<n-+1, contrary to hypothesis. This con- 

tradiction completes the proof. Oo 

IV.2. SOME CONSTRUCTIONS FOR 3-CONNECTED GRAPHS 

From now on we shall consider the theory of 3-connected graphs. We begin 

by showing that for strict graphs is does not matter whether we speak of 

3-connection or of vertical 3-connection. 

Theorem IV.10. Let G be a strict connected graph. Then the \-sep- 

arations of G are its vertical 1-separations. Moreover, if G is 2-connected, then 

the 2-separations of G are its vertical 2-separations. Hence G is 2-connected if 

and only if it is vertically 2-connected, and 3-connected if and only if it is 

vertically 3-connected. 

Proof. Let (H, K) be a 1-separation of G. Each of H and K has an 

edge. Hence, by strictness, each has a vertex not belonging to the other. 

Conversely, let (H, K) be a vertical l-separation of G. Each of H 

and K has a vertex not belonging to the other. Hence, by connection, each 

has an edge. 

This completes the first part of the proof. We note the implication 
that G is 2-connected if and only if it is vertically 2-connected. In the rest of 
the proof we may suppose G to be 2-connected. 

Let (H, K) be a 2-separation of G. H has at least two edges. By 

strictness they cannot both join the two common vertices of H and K. 

Hence H has a vertex not in K, and similarly K has a vertex not in H. 

Conversely, let (H, K ) be a vertical 2-separation of G. Then H has a 

vertex A not in K, and K has a vertex k not in H. By the 2-connection of G, 

h and k are at least divalent. Hence H and K have each at least two edges. 
This completes the proof. oO 

In view of Corollary IV.2, the requirement of strictness in Theorem 
IV.10 asks very little. 

We go on to consider some constructions whereby 3-connected 
graphs are derived from smaller ones. First, we-have the operation of 
link-adjunction, described in the following theorem. 

Theorem IV.11. Let x and y be nonadjacent vertices of a 3-connected 
graph H. Let a new link A be adjoined to H, with ends x and y, to form a new 
graph G. Then G is 3-connected. 

Proof. G is 2-connected, by Theorem III.10. Assume that it is not 
3-connected. Then it has a 2-separation (L, M), where we may suppose A in 
L. This implies that H has at least three edges, and is therefore loopless, by 



Some Constructions for 3-Connected Graphs 75 

Corollary IV.2. But L must have exactly two edges. For otherwise (L’,, M) 
would be a pair of complementary detached subgraphs of H, or a 1-separa- 
tion or 2-separation of H, contrary to the 3-connection of H. 

The two edges of L do not have the same two ends, by hypothesis. 
Hence L must have a vertex x that does not belong to M. But then x can be 
incident with only one edge of H. This is contrary to the 3-connection of H, 
by Theorem IV.3. Oo 

The next operation is a kind of inverse of edge-contraction. We call it 
vertex-splitting. Let x be a vertex of a strict graph H. We replace x by two 
new vertices x, and x,. Each edge of H joining x to another vertex y is 
replaced by an edge joining y and x,, by an edge joining y and x,, or by 
both. Finally we adjoin a new link A with ends x, and x. If we replace each 
edge incident with x by one edge only, then the operation is vertex-splitting 
“without duplication of edges.” The next three theorems are concerned with 
the properties of the resulting graph G. The process is illustrated in Fig. 
Lv 24. 

Theorem IV.12. Let a graph G be derived from a strict connected 
graph H by splitting a vertex x. Then G is strict and connected. 

Proof. We first observe that, to within a vertex-isomorphism, G7 
has H as a spanning subgraph. Hence Gj is connected, and therefore G is 

connected, by Eq. (II.2.1). As for strictness, we note that the only new edges 

in G are those incident with x, and x,. By the definition of vertex-splitting 
these are links, and no two of them have the same two ends. oO 

Theorem IV.13._ Let a graph G be derived from a strict 2-connected 

graph H by splitting a vertex x. Let the new vertices x, and x, be at least 

divalent in G. Then G is 2-connected. 

Proof. G is connected and strict, by Theorem IV.12. Assume it not 

2-connected. Then by Theorem IV.10 it has a vertical l1-separation (L, M). 

We may suppose the new edge A, joining x, and x,, to belong to L. The 

common vertex u of L and M may or may not be incident with A. 

FIGURE IV.2.1 
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L has a vertex # not in M, and M has a vertex m not in L. By 

connection, each of these is incident with an edge of G. Since x, and x, are 

at least divalent each of £ and m is incident in G with an edge of H. Let M” 

be the subgraph of H defined by the edges and vertices of M,u being 

replaced by x if uw is x, or x,. Then M” is a proper subgraph of H having at 

least one edge and at most one vertex of attachment. But this implies that H 

is separable, by Theorem III.2. We conclude that in fact G is 2-connected. O 

Theorem IV.14. Let a graph G be derived from a strict 3-connected 

graph H by splitting a vertex x. Let the new vertices x, and x, be at least 

trivalent in G. Then G is 3-connected. 

Proof. G is 2-connected and strict, by Theorem IV.13. Assume it 

not 3-connected. By Theorem IV.10 it has a vertical 2-separation (L, M), 

where we can suppose the new edge A joining x, and x, to be in L. Let u 

and w be the two common vertices of L and M. 
L has a vertex # not in M, and M has a vertex m not in L. By 

Theorem IV.3 each of these vertices is incident with at least two edges of G. 

Since x, and x, are at least trivalent, each of # and m is incident in G with at 
least two edges of H. Let M” be the subgraph of H defined by the edges and 

vertices of M, a vertex u or w being replaced by x if it is incident with A. In 

the extreme case in which A joins u and w, these two vertices of M are 

identified in M’’. By the preceding considerations M” has at least two edges, 
and so does its complementary subgraph (M”)° in H. But M” and (M”)* 

have at most two common vertices, the only possibilities being u and w, or 

their replacements. But this means that H has a 1-separation or 2-separation 

(M”,(M”)°), which is contrary to hypothesis. oO 

So far the only 3-connected graphs to be noted are the six graphs of 

infinite connectivity listed in Theorem IV.6. The operation of link-adjunc- 

tion is not applicable to any of these. The operation of vertex-splitting, with 

the requirement of trivalency, is applicable only to the 3-circuit, and it 

converts that graph into the 4-clique. We can now assert that the 4-clique is 

3-connected. But this result is part of the following more general theorem. 

Theorem IV.15. For each positive integer n, the n-clique is 3-con- 
nected. 

Proof. Let G be an n-clique. We can assume n> 4, by Theorem 

IV.6. We noted in Sec. I.5 that such a G must be connected. If it is not 

3-connected, it has a vertical b-separation (L, M), where b is 1 or 2, by 

Theorem IV.10. L has a vertex £ not in M, and M has a vertex m not in L. 

But £ and m are joined by an edge A in the clique G. This edge must belong 

either to L or to M, and therefore £ and m are both in L or both in M. This 

contradiction establishes the theorem. oO 
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Our next construction can be called link-adjunction with subdivision. 
To subdivide an edge A with ends x and y, in a graph H, is to replace it bya 
new vertex z, a new edge A, with ends x and z, and a new edge A, with ends 
y and z. (See Fig. IV.2.2.) We say that the resulting graph G is obtained 
from H by subdividing A at z. 

We note that when a loop is subdivided it is replaced by a 2-circuit. 
Hence by two applications of the operation of subdividing every edge, we 
can convert any graph into a strict graph. In a strict graph H any 
subdivision of an edge can be described as a vertex-splitting. In terms of 
Fig. IV.2.2 we subdivide A by splitting the vertex x, to within a vertex-iso- 
morphism, and the two “new” vertices are x and z. 

From the definitions of arc and circuit, we can infer the following 
rules. When an edge of an n-arc L is subdivided, the graph is converted into 
an (n+1)-arc with the same ends. When an edge of an n-circuit C is 
subdivided, the graph is converted into an (n + 1)-circuit. 

The operation of link-adjunction with subdivision occurs in two 
forms. The first kind involves a link A and a vertex ¢ not incident with it. It 
is described in the following theorem. 

Theorem IV.16. Let H be a 3-connected graph with at least four 
edges. Let A be a link of H and let t be a vertex of H not incident with A. Let a 
graph G be formed from H by subdividing A at z and then adjoining a new link 
B with ends t and z. Then G is 3-connected. 

Proof. We first observe that each vertex of H is at least trivalent in 
H, by Theorem IV.3. 

Let the ends of A in H be x and y. The procedure is illustrated in 
Fig. IV.2.3. There may or may not be a link C in H with ends x and ¢. The 
possibility of such a link is indicated in Fig. IV.2.3 by a broken line. 

If the link C exists we can obtain G from H by splitting the vertex x. 

In this operation C is replaced by two links, one called C from ¢ to x and 

one called B from ¢ to z. The requirement of trivalency is clearly satisfied. So 

in this case G is 3-connected, by Theorem IV.14. 

In the remaining case, H has no link from ¢ to x. We then adjoin a 

new link D with these ends. The resulting graph H, is 3-connected, by 

Theorem IV.11. But G can be derived from H, by splitting the vertex x, the 

link D being replaced by a single new link with ends ¢ and z. Hence G is 

3-connected, by Theorem IV.14. Oo 

A A, A2 
x y x z y 

H G 
FIGURE IV.2.2 
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The first kind of link-adjunction with subdivision is important in 

connection with the theory of wheels. A wheel W,,, of order n, is formed from 

an n-circuit C, by adjoining a single new vertex h, and then joining x to each 

vertex of C, by a single new link. We call A the hub of the wheel W,,, C, its 

rim, and the new edges its spokes. We note that the 4-clique can be regarded 

as the wheel of order 3. For it, the choice of one vertex as hub is arbitrary. 

The second graph of Fig. III.2.2 is the wheel of order 2. Figure IV.2.4 shows 

the wheels from W, to Ws. 

Theorem IV.17, For n> 3 the wheel W,, is 3-connected. 

Proof. We use induction over n. For n = 3 the wheel is the 4-clique, 

and it is 3-connected, by Theorem IV.15. Assume as an inductive hypothesis 

that the theorem holds whenever n is less than some integer q > 3, and 

consider the case n = q. 

We 

Wa Ws 

FIGURE IV.2.4 
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By the inductive hypothesis, the wheel W,_, is a 3-connected graph 
of at least six edges. Let us subdivide some edge A of its rim at a new vertex 
z. Then the rim becomes a g-circuit. We now obtain W, by adjoining a new 
link from z to the hub of W,_,. Thus W, is derived from W,-, by the 
operation described in Theorem IV.16. Accordingly, W, is 3-connected. The 
induction succeeds and the theorem is true. O 

We go on to the second kind of link-adjunction with subdivision. It 
is the process described in the following theorem. 

Theorem IV.18. Let H be a 3-connected graph with at least four 
edges. Let A and B be distinct edges of H. Let them be subdivided at new 
vertices Z4 and zp, respectively, and then let z, and z, be joined by a new link 
C. Then the resulting graph G is 3-connected. 

Proof. The graph H is of course strict, and each of its vertices is at 
least trivalent, by Theorem IV.3 and Corollary IV.2. 

Our procedure is illustrated in Fig. IV.2.5. We first derive from H a 
graph H, by subdividing A at z, and then joining z, to an end u of B not 
incident with A in H. The graph H, is 3-connected, by Theorem IV.16. But 
now G can be obtained from H, by splitting the vertex u. Hence G is 
3-connected, by Theorem IV.14. Oo 

The second kind of link-adjunction with subdivision has the interest- 
ing property of changing cubic graphs into cubic graphs. Figure IV.2.6 
shows an example in which A and B are links of the 4-clique with no 
common end. The resulting graph is called the Thomsen graph. 

The Thomsen graph is an example of a complete bipartite graph. By 

definition such a graph is strict and has a bipartition (U,V). Moreover, each 

vertex of U is joined to each vertex of V by a single link. If |U| =r and 

| V| =, then the complete bipartite graph, or rather its isomorphism class, is 

denoted by K, ,. The Thomsen graph is K; ;. In Fig. IV.2.6 the outer edges 
in the drawing of G= K,, define a 6-circuit, and members of U and V 
occur alternately in this circuit. The construction illustrated in Fig. IV.2.6 

shows that K; , is 3-connected. 

A 7A 
>; bs a b 

~~ B Nel u| U2 Vv 

25 

FIGURE IV.2.5 



80 3-Connection 

H G 

FIGURE IV.2.6 

Since the Thomsen graph is strict, any of its automorphisms is 

determined by the corresponding permutation of the vertex-set, by Theorem 

1.2. An automorphism leaving U and V invariant can be any permutation of 

U combined with any permutation of V. An automorphism interchanging U 

and V can be any 1-1 mapping of U onto V combined with any such 

mapping of V onto U. There is no other possibility. We conclude that the 
automorphism group of K, ; has 72 elements. 

Clearly, K;, is a cubic graph having no circuit of fewer than four 
edges. It can be shown that K,, has the least number of edges consistent 
with these properties. Indeed K,, is the only cubic graph of nine edges 
having no circuit with fewer than four. 

We have one more construction to discuss in this section. It is 
applied to a 3-connected graph H of at least four edges. We have seen that 
such a graph is strict and that each of its vertices is at least trivalent. It is 
called expansion of a vertex into a circuit. Let v be a vertex of H of valency 
b. Let S, be the set of the b edges of H incident with v. We replace v by an 
n-circuit C, made up of new edges and vertices, where 3 <n < b. Each edge 
of S, is made incident with some vertex of C, instead of with v. The 
incidences between edges of S,, and vertices of C are assigned arbitrarily, 
except that each vertex of C is required to be incident with at least one 
member of S,. This requirement ensures that the vertices of the resulting 
strict graph G are at least trivalent in G. In Fig. IV.2.7 we see the operation 
of vertex-expansion applied to the 4-clique and the 4-wheel. 

In these two examples, G can equally well be derived from H by the 
second kind of link-adjunction with subdivision. Figure IV.2.8 shows a more 
complicated example in which the hub of the 5-wheel is expanded into a 
5-circuit. The graph G of this figure is known as the Petersen graph. 

Theorem IV.19._ Let v be a vertex of a 3-connected graph H having 
at least four edges. Let G be obtained from H by expanding v into a circuit C 
of at least three edges. Then G is 3-connected. 

Proof. Let n be the number of vertices of C. We begin by consider- 
ing the case in which n has its least possible value, 3. If the valency b of v in 
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H is also 3, then the vertex-expansion can be effected by an edge-adjunction 
with subdivision, as we saw in the case of the first example of Fig. IV.2.7. So 
G is 3-connected, by Theorem IV.18. 

Suppose now that 5 exceeds 3. Let the vertices of C be a,, ay, and a. 
Let 7; be the set of members of S, that are to be made incident with a, 
(i =1,2,3). We can adjust the notation so that 7, has at least two members. 

We now split the vertex v in H so that, apart from the new link A, one new 

vertex v, is incident only with the members of 7, and the other new vertex 

b 

Cc 
5 

Cc 

a a 

d 

i d 

e 

FIGURE IV.2.8 
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v, is incident only with the members of 7, and 7;. The resulting graph H, is 

3-connected, by Theorem IV.14, the requirement of trivalency being obvi- 

ously satisfied. But now G can be derived from H, by splitting the vertex v), 

the link A being replaced by two edges of C. So G is 3-connected by 

Theorem IV.14. 
We have proved that the theorem is true when n = 3. Assume as an 

inductive hypothesis that it is true whenever 7 is less than some integer 

q > 3, and consider the case n = q. 
We wish to expand v into a q-circuit C,. Let the sequence of vertices 

in some defining enumeration of C be a, a),. vraelae and the corresponding 

sequence of edges A,, A,,...,4,. Let 7; denote the set of those edges of S, 
that are to be made incident with a; (1<i<q). Let us, however, first 

expand v into a (q — 1)-circuit C,_,. We can take the sequence of vertices 1n 

some defining enumeration of C,_, to be aj, 4),...,a,_,, and the corre- 

sponding sequence of edges to be A,, Az,...,A,_,. For i<q—1 we make 

the members of 7; incident with a;, and we make the members of both T,_, 
and T, incident with a,. By the inductive hypothesis, the resulting graph 

H,_, is 3-connected. But the required graph G can be obtained from it by 

splitting the vertex a,_,. The new link introduced by this operation, joining 

the two new vertices, is called A be The two new vertices are denoted by a at 

and a,. The new a,_, is taken to be incident with A,_,, A, and the 
members of T,_,. The new vertex a, is taken to be incident with A, A, and 

the members of 7,. Figure IV.2.9 illustrates the case q=5. So G is 

3-connected, by Theorem IV.14. 

Hq- 

FIGURE IV.2.9 
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The induction has succeeded, and we can assert the truth of the 
theorem. oO 

Using this theorem we can assert the 3-connection of the Petersen 
graph. Instead of defining this graph by reference to a diagram, we can 
introduce it more formally as follows: It is formed from the union of two 
disjoint 5-circuits a,a,a,a,a, and b,b,b,b,b, by adjoining five new links, 
one from a; to b, for each i. 

We note a similarity between the Thomsen and Petersen graphs. For 

any graph G that is not a forest, we define the girth of G as the least integer 

n such that G contains an n-circuit. We have remarked, though without a 

complete proof, that the Thomsen graph is the simplest cubic graph of girth 

4. Here “simplest” means “with the least number of edges.” It can be 

shown that the Petersen graph is the simplest cubic graph of girth 5. 

The Petersen graph is related to the regular dodecahedron. If diamet- 

rically opposite points of the surface of that solid are identified, its graph of 

geometrical edges and vertices condenses into a Petersen graph. This ob- 
servation shows that the Petersen graph has high symmetry. It is found, 

indeed, that the automorphism group has 120 elements. 

IV.3. 3-BLOCKS 

In Sect. III.3, we discussed the breakdown of a connected graph into its 

maximal 2-connected subgraphs or “blocks.” Here we describe a somewhat 

similar decomposition of a 2-connected graph G into its “3-blocks.” These 

are not exactly subgraphs of G. A 3-block must be either a 3-connected 

graph, an n-circuit, or an n-linkage, with n > 3 in the last two cases. 

The given graph G may be 3-connected. We then say that it has 

exactly one 3-block, which is G itself. 

In the remaining case, G has a 2-separation (H, K ). It therefore has 

at least four edges, and is loopless, by Theorem III.3. We refer to the two 

common vertices of H and K as the hinges of the 2-separation. Some basic 

properties of the 2-separations of G are recorded in the following theorems. 

Theorem IV.20. Let a 2-connected graph G be the union of two 

edge-disjoint subgraphs H and K with just two common vertices, b and c. Let 

H and K have each at least one edge. Then H and K are connected graphs. 

Proof. Suppose H is disconnected. Then either some component C 

of H includes neither b nor c, or some component D of H has at least one 

edge and includes one, but not both, of b and c. In the first case, C is a 

detached nonnull proper subgraph of G, contrary to Theorem I.21. In the 

second case, G is separable, by Theorem III.2. This being contrary to 

hypothesis, we conclude that H, and similarly K, is connected. O 
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Theorem IV.21. Let (H, K) be a 2-separation, with hinges b and c, 

of a 2-connected graph G. Let graphs H, and K, be formed from H and K, 

respectively, by adjoining a new edge A with ends b and c. Then H, and K, are 
2-connected. 

Proof. H, and K, are connected, by Theorems IV.20 and I.25. 
Suppose H, separable, having a 1-separation (L, M) with cut-vertex v. We 

may suppose A to be an edge of M. But then L is a nonnull proper subgraph 

of G with v as its only vertex of attachment. Accordingly, G is separable, 

contrary to hypothesis, by Theorem III.2. We conclude that H,, and 

similarly K,, is 2-connected. O 

It is convenient to say that the graph H, of Theorem IV.21 is derived 
from G by replacing K by an equivalent edge A. “Equivalent” in this sense 
means that the ends of A are the hinges of (H, K). 

Considering the graphs G that are 2-connected but not 3-connected, 
we classify them into three types with respect to a distinguished edge A. 
Type I consists of those graphs G for which the subgraph G-{ A} has two or 
more bridges in G. Type II consists of those for which G-{ A} has just one 
bridge B, and B is separable. Type III represents the remaining case, in 
which G-{A} has just one bridge B, and B is 2-connected. 

In all these cases let us denote the ends of A by b andc. A bridge B 
of G-{A} in G must have b and c as its two vertices of attachment, by 
Theorem III.6, and it must be connected and so have have at least one edge, 
by Corollary 1.52. If B has only one edge it cannot be the only bridge of 
G-{A} in G, by Theorem I.51. Hence such a bridge can occur only for Type 
I. The bridge B of Types II and III is identical with Gi: 

A 2-separation (H, K ) of G is said to be A-maximal if A is an edge 
of H and there is no other 2-separation (H’, K’) of G such that A is in H’ 
and K is a subgraph of K’. Now it is clear that no two distinct 2-separations 
(H, K) of G can have the same second member K, for K determines the 
edge-set of H and therefore it determines H, by connection. (See Theorem 
IV.20.) Hence the requirement “K is a subgraph of K”” in the above 
definition can be replaced by “K is a proper subgraph of K””. It follows that 
if (L, M) is any 2-separation of G with A in L, there exists an A-maximal 
2-separation (H, K) of G such that M is a subgraph of K. We need the 
following theorem about A-maximal 2-separations. 

Theorem IV.22. Let A be an edge of a 2-connected graph G of Type 
HT. Let (H,, K,) and (H,, K,) be distinct A-maximal 2-separations of G. 
Then K, and K, are edge-disjoint, and each of their common vertices is a 
common hinge of the two 2-séparations. Moreover, the two 2-separations do 
not have both hinges in common. 

Proof. Consider the four intersections H, 0 H,, H,0 Ky, H,1K,, 
and K,™ K,. No two of thent have an edge in common, and the union of 
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the four is G. The first one has at least the edge A. If the second is edgeless, 
then K, has all its edges in K,. But then K, C K,, since K, is connected, by 
Theorem IV.20. This is contrary to our hypothesis that the given 2-separa- 
tions are A-maximal and distinct. We conclude that H, Q K,, and similarly 
H, (1 K,, has at least one edge. 

We need to prove that K, 1 K, is edgeless. Let us therefore assume 
that it has at least one edge, and study the consequences of this assumption. 

Now each of the four intersections has. at least two vertices of 
attachment in G, by Theorem III.2. Moreover, we can show that each of 
them has exactly two such vertices, for otherwise one of the four unions 
H,UK j would have fewer than two vertices of attachment, by Theorem I.7, 

and so G would be separable, by Theorem III.2. We can now deduce from 
Theorem IV.20 that each of our four intersections is connected. 

The intersection H, H, must be the link-graph G-{A), for other- 

wise the intersection, being connected, would have at least two edges and 

the pair (H, Hj, K,U K,) would be a 2-separation of G. (See Theorem 
1.7.) But this is not possible because of the A-maximality and distinctness of 
the given 2-separations. 

Let us discuss the vertices of attachment of the four intersections. 
Any common vertex of two of them is a vertex of attachment of both, by 

their connection, and of course any vertex of attachment of one of the 

intersections is a vertex of two of them. Moreover, a common vertex of two 

of the intersections must be a common vertex either of H, and K, or of H, 
and K,. It must therefore be a hinge of (H, K,) or (H), K>). 

Let the hinges of (H,, K;) be denoted by x; and y,, (i=1,2). We can 

now assert that each intersection includes exactly two distinct vertices of the 

collection {x,, x5, ¥,, ¥)}. Moreover, these two vertices are its vertices of 
attachment, and the only vertices at which it can meet another of the four 

intersections. 
The vertices of attachment of H, H,, that is, G-{ A}, must be the 

two ends of A. We can adjust the notation so that one end of A is x,. Then 
the other is not y,, for if it were, then G-{A} would have at least two 

bridges, one a subgraph of K, and one including an edge of H,M K,. Then 
G would be of Type I, contrary to hypothesis. By a further adjustment of 

notation, we can arrange that the second end of A is x,. We have proved 
incidentally that x, is distinct from x, and y,. Similarly, x, is distinct from 

y,. The possibility that y, = y, is not yet ruled out. 

Let us next consider the subgraph H, with its two vertices of 

attachment x, and y,. The intersection H,M H, consists of A and its two 

ends x, and x,. Moreover, x, is distinct from both x, and y,. (See Fig. 

IV.3.1.) For later reference we infer that x, is not a vertex of K, and, 
similarly, x, is not a vertex of K,. The intersection H, M K, includes y, since 
that vertex of H, is not in H, M Hj. It must also include x, since that vertex 
is not monovalent in G, by Theorem III.3. It follows that the two vertices of 
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FIGURE IV.3.1 The subgraph H,. 

attachment of H,  K, in G are x, and y,. Similarly, those of H,  K, are x, 

and y,. 
From the foregoing observations, neither x, nor x, can be a vertex of 

K,™ K,. The vertices of attachment of that intersection are therefore y, and 
ys, which are now seen to be distinct. We deduce that G has the form shown 
in Fig. IV.3.2. The graph B=Gj is separable, having at least the two 

l-separations: (K,, H, K,), and (K,, H,K,), with cut-vertices y, and 

yy, respectively. This means that G is of Type IJ, contrary to hypothesis. 

We can now assert that K, 1 K, is edgeless. By Theorem IV.20, this 
implies that K, C H, and K,C H,. So any common vertex of K, and K, 
belongs also to H, and H,. It is thus a common hinge of the two given 
2-separations. 

It only remains to prove that the two given 2-separations do not have 
both hinges in common. Assume that they do, the two hinges being x and y. 

If these are the two ends of A, then G-{ A} has at least two bridges in G, one 

being contained in K, and the other in K,. But then G is of Type I, contrary 

to hypothesis. In the remaining case, H,H, has at least two edges, 

incident with an end of A not x or y. Accordingly, (H, N Hj, K,U K,)isa 

2-separation of G, contrary to the A-maximality and distinctness of the 

given 2-separations. This completes the proof of the theorem. Oo 

Ho 11 Kk, 

HK 
FIGURE IV.3.2 
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We return to the consideration of a graph G that is 2-connected but 
not 3-connected, and in which some edge 4 is distinguished. We call A the 
intake of G. 

We propose to distinguish certain 2-separations (H,, K,), 1<i<m, 

of G as its A-major 2-separations. We require these to satisfy the following 
conditions. 

i) A is in H, for each i. 

ii) Ifi* j, then K, and K, are edge-disjoint. Moreover, any common vertex 

of K; and K, is a common hinge of (H;, K;) and (H,, K;). 

If these conditions are satisfied we denote the intersection of all the graphs 
Hi; by J. 

Theorem IV.23. If Conditions (i) and (ii) are satisfied, then an edge 

of G belongs to J if and only if it belongs to none of the graphs K;. Moreover, J 

includes the hinges of all the A-major 2-separations. 

Proof. The first part follows from Condition (ii) and the definition 

of J. By Condition (ii), H; contains K, for each j + i. Hence each H; includes 

the hinges of all the A-major 2-separations. 0 

Theorem IV.24. If Conditions (i) and (ii) are satisfied, then each 

edge or vertex of G that is not in J belongs to exactly one of the graphs K;. 

Proof. For each such edge or vertex, there is an H; to which it does 

not belong, and therefore a K; to which it does belong. But it cannot belong 

to two of the K,, by Condition (ii). oO 

With Conditions (i) and (ii) satisfied, it is convenient to introduce m 

new edges, called virtual edges of G. We enumerate them as A), A),...,A,, 

and postulate that the ends of A; are the hinges of (H,, K;), for each suffix i. 
Adjoining these virtual edges to J we obtain a graph D called the /eading 

3-block of G, with respect to A. We refer to A as the intake of D, and to the 

virtual edges A, as the outlets of D. The graph K; is called the outflow from D 

at the outlet A,. Adjoining A; to K; as an extra edge, we obtain a graph 
F(A,) which we call the closed outflow from D at A;. The graph F(A,) is 

2-connected, by Theorem IV.21. We adopt 4; as its intake. 

We go on to complete the definition of A-major 2-separations for 

each of the three types. 

For Type I we enumerate the bridges of G-{A} as B,, B),..., By, 

where k > 2. Each bridge has the two ends b and c of A as its vertices of 

attachment, by Theorem III.6. Each has at least one edge incident with b 

and at least one incident with c, by Theorem I.48, and each is connected, by 

Theorem IV.20. Thus a bridge B, may be a link-graph, but otherwise it must 

have at least two edges. 
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It may happen that each B, is a link-graph. Then G is a (k + 1)-linkage, 

and we say that G is its own leading 3-block D. In this case, no A-major 

2-separations are defined, and D has no outlets. 
In the remaining case we may suppose the bridges that are not 

link-graphs to be B,, B,,...,B,, for some positive integer s < k. Since each 
such B, has at least two edges, it is the second member of a 2-separation 

(H,, B,) of G, with A in H;. We adopt the 2-separations (H;, B;), 1<i<s, 

as the A-major ones, Conditions (i) and (ii) being then obviously satisfied. 

Each such pair (H,, B,) has a corresponding virtual edge A,;. For j > 5 we 
write A, for the actual edge of B;. The leading 3-block D of G is a 

(k + 1)-linkage with vertices b and c, and its edges other than A are 

A,, A>,...,A,. The first s of these are the outlets of D. The construction just 
described is illustrated in Fig. IV.3.3. Here virtual edges are shown by 

broken lines. 

For Type II the single bridge B=G) of G-{A} is separable. It 

follows by Theorem III.30 that B is a string of blocks, closed by A. We can 

enumerate the blocks of B as B,, B,,...,B,, where k > 2, and the cut-vertices 

of B as 0), 0U),...,0,_,. By the definition of a string of blocks, we can 

suppose v, to belong to B; and B;, ,, but to no other block, for each i. 

FIGURE IV.3.3 
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We now introduce a (k + 1)-circuit D. Its vertices are b,c, DWIYs ccs 
v,—-,- One of its edges is A, with ends b and c. The other edges are 
enumerated as A,, A,,...,A,. The ends of A, are b and v,, and the ends of 
A, are v,_, and c. The ends of any other A; are v,_, and »,. 

It may happen that each B; is a link-graph. Then G can be identified 
with the (k +1)-circuit D. We say that G, that is, D, is its own leading 

3-block. No A-major 2-separations are defined, and D has no outlets. 

If the loopless 2-connected graph B,; is not a link-graph, it must have 

at least two edges. It is then the second member of a 2-separation (H,, B,) of 
G with A in H;. We adopt the 2-separations of G of this form as the A-major 

ones, Conditions (i) and (ii) being obviously satisfied. Each such 2-separa- 

tion (H;, B;) has its associated virtual edge A;. But if B, is a link-graph, we 
use the symbol A, for its actual edge. We now take D to be the leading 

3-block of G, with respect to A. The virtual edges A, are its outlets. An 

example of the procedure just described is shown in Fig. IV.3.4. As before, 

virtual edges are indicated by broken lines. 
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In Case III we take the A-major 2-separations to be the A-maximal 

ones as defined for Theorem IV.22. By that theorem, Conditions (i) and (11) 

are Satisfied. oO 

Theorem IV.25. For Type III, the leading 3-block of G is a 3-con- 

nected graph with at least six edges. 

Proof. If there is only one A-maximal 2-separation the graph J 

includes two edges of G, and there is one virtual edge to be added in the 

formation of D. If there is more than one A-maximal 2-separation, then D 

includes A and at least two virtual edges. Moreover, G, not being 3-con- 

nected, has at least one 2-separation. We conclude that the leading 3-block 

D must have at least three edges. 
Now D is 2-connected, by repeated application of Theorem IV.21. If 

D has only three edges, then, by the results of Sec. III.2, there are only two 

possibilities: D is a 3-circuit or a 3-linkage. But then it is clear that G is of 

Type I or Type II, contrary to hypothesis. We infer that D has at least four 

edges. 

Suppose D is not 3-connected. Then it has a 2-separation (L, M) 

with A in L, and with hinges x and y, say. From L we form a subgraph L’ of 

G by taking the union of LMJ and the subgraphs K, corresponding to 

virtual edges A; of D in L. Analogously, we form M’ from M. Using 

Theorems IV.23 and IV.24, we find that L’ and M’ are edge-disjoint 
subgraphs of G whose union is G and which have each at least two edges. 

Moreover, their only common vertices are x and y. Hence (L’, M’) is a 

2-separation of G with A in L’. But now there must be an A-maximal 
2-separation (L’”, M”) of G with M’C M”. But M”= K, for some j. It 

follows that M can have only one edge, the corresponding A j- This con- 

tradicts the definition of (L, M) as a 2-separation of D. 

We can now assert that D is a 3-connected graph with at least four 

edges. It has at least six edges, by Theorem IV.4. oO 

Figure IV.3.5 shows the extraction of the leading 3-block of G for a 
graph of Type III. 

A complete set of 3-blocks of G, with respect to A, is obtained by 
taking the leading 3-block of G, then the leading 3-blocks of the graphs 
F(A;), then the leading 3-blocks of their closed outflows, and so on. To 
justify the procedure we should make the following observation. 

Theorem IV.26. Let A be the intake of a 2-connected graph G that is 
not 3-connected. Let D be the leading 3-block of G with respect to A, and let 
F(A;) be the closed outflow of D at an outlet A;. Then F(A;) has fewer edges 
than G. 

Proof. For all three types, D has at least two edges other than A peat 
one of these is a virtual edge A j» we have a subgraph K ; of G with at least 
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F(A,) F(A>) F(A3) 
FIGURE IV.3.5 

two edges, none of them in F(A,), by Theorem IV.24. So G always has at 

least two edges not in F(A;). On the other hand, all the edges of F(A,), 

except A,, are in G. The theorem follows. oO 

We can describe the determination of the 3-blocks of G, with respect 

to A, more formally as follows: For each nonnegative integer n in turn, we 

make two lists L, and M,,. Initially we have Ly null and M, with the single 
member G. In general, L,, is to consist of recognized 3-blocks and M,, of 
3-connected graphs, each member of M,, having at least three edges and 

having one of them distinguished as its intake. When the pair (L,, M,) has 

been found, we construct (L,,,,M,,,) as follows: L,,, consists of the 

members of L, and the leading 3-blocks of the members of M,. M,,_ 

consists of the closed outflows of the leading 3-blocks of the members of M,. 

By Theorem IV.26 the procedure must lead eventually to a null M,,. 

Thereafter, increases in the suffix leave the pair of lists unchanged. The 

3-blocks of G, with respect to A, are the members of L,, at this final state. 

At each state in the process we may have to introduce more virtual 

edges. These are always to be distinct new edges, that is, no two 3-blocks are 

to be given a common outlet. All these virtual edges can be referred to as 

virtual edges of G, with respect to A. 

Of course, the chosen set of virtual edges of G can be replaced by 

another set by way of a one-to-one correspondence. When we speak of 
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“the” 3-blocks or virtual edges of G, with respect to A, we admit the 

possibility of such a substitution. 
We can exploit the recursive nature of our definition of 3-blocks with 

respect to A in the proof of theorems about them. For it implies that the 

3-blocks of G with respect to A are the leading 3-block D and the 3-blocks 

of the closed outflows from D, each with respect to its own intake if it is not 

3-connected. Since no two of these closed outflows have any edge in 
common, by Theorems IV.23 and IV.24, and since no virtual edge is used 

twice, it follows inductively that no 3-block is counted twice in the above 

classification. 
We can now prove the following theorem by a further obvious 

induction. 

Theorem IV.27. Each edge of G belongs to exactly one 3-block of G 

with respect to A. Also, each virtual edge of G with respect to A occurs in 

exactly two 3-blocks, in one as an outlet and in the other as the intake. 

V4 
FIGURE IV.3.7  3-blocks of F(A). 
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Figure IV.3.6 shows the complete decomposition of the graph F(A,) 
of Fig. 1V.3.4 into 3-blocks, with respect to A. Each intake is marked with a 
cross. Figure IV.3.7 shows the decomposition of F(A,) of Fig. IV.3.4. 

In view of Theorem IV.27, we can regard the 3-blocks of G with 
respect to A as the vertices of a graph Blk;(G,.A) whose edges are the 
virtual edges of G. In Blk,(G, A) the ends of an edge E are the two 3-blocks 
of G in which it appears, once as intake and once as outlet. If A is an edge 
of a 3-connected graph G, we define Blk;(G, A) to be a vertex-graph, with 
G as its vertex. This happens also when G is an n-circuit or n-linkage, with 
n>4. 

In the case of the graph G of Fig. IV.3.4, we can easily construct 
Blk ,(G, A) by making use of Fig. IV.3.6 and IV.3.7. The result is shown in 
Fig. IV.3.8. The arrow on each edge is directed from the 3-block in which 
the edge is an outlet, and to the one in which it is the intake. 

This diagram suggests the general theorem that Blk 3(G, A) is a tree. 
In preparation for this theorem, we supplement the results on trees in Sec. 
1.6 with the following proposition. 

Theorem IV.28. Let a graph H be the union of two trees T and U 
whose intersection is a tree. Then H is a tree. 

Proof. H is connected, by Theorem I.25. Using the definition in Eq. 
(1.6.1), we can verify that 

p,(H)= P(T)+p\(U)-p(TOUV). 

Hence H is a connected forest, that is, a tree, by Theorem I.35. Oo 

Theorem IV.29. Let A be an edge of a 2-connected graph G. Then 
Blk,(G, A) is a tree. 

Dg D, D7 Dg Dg 

Dio 
FIGURE IV3.8 Blk,(G, A). 
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Proof. Let n, be the number of 3-blocks of G with respect to A. If 

n,=1, the theorem is trivial, BIk,(G, A) being a vertex-graph. 

We induce over n,. Assume the theorem true for n, <q, where q is 

an integer not less than 2, and consider the case n , = q. Then the 3-block D 
of G has outlets A,, A5,...,4,, where s>1. Let F(A,) denote the closed 

outflow at A,. By our recursive definition of 3-blocks, and by Theorems 

1V.23 and IV.24, the graphs Blk,(F(A;), A;) occur as disjoint subgraphs of 

Blk,(G, A). That graph is formed from their union by adjoining the vertex 

D and the edges A,, A3,...,A, joining D to the leading 3-blocks of the 

outflows F(A,). By the inductive hypothesis, each Blk ,( F(A;), 4;) is a tree. 
Hence Blk ,(G, A) is a tree, by repeated application of Theorem IV.28. 

The induction has succeeded, and the theorem is proved. O 

We conclude this section with a supplement to Theorem IV.27. 

Theorem IV.30. Let A be an edge of a 2-connected graph G. Let x be 

a vertex of G that belongs to two distinct 3-blocks D, and D, with respect to A. 

Then x is an end in G of each edge of the unique arc in Blk,(G, A) joining D, 

and D,. (See Theorem 1.44.) 

Proof. We use the notation of Theorem IV.29, and make an analo- 

gous induction. If n, =1, the theorem is vacuously true. If n, is the “q” of 

this induction, we consider the following cases. 

Case I: D.=D, and D, is a 3-block of some closed outflow F(A,). 
By the definition of a leading 3-block, the only common vertices of D 

and F(A,) are the hinges of the corresponding A-major 2-separation, that is, 

the ends of A;. (See Theorem IV.23.) So x is an end of A; and a vertex of D 
and the leading 3-block D, of F(A;), which are joined by A; in Blk,(G, A). 

Now D, may be D,. But if not, then x is an end in G of each edge of the arc 
joining D, and D, in Blk,(F(A;), 4;), by the inductive hypothesis. In either 
case the theorem is satisfied in Blk ,(G, A). 

Case II: D, and D, are 3-blocks of distinct closed outflows F(A;) 
and F(A,), respectively. 

In this case, x is a common end in G of A; and A,, by Condition (ii). 

It is therefore a vertex of D. In Blk3(G, A) the arc joining D, and D, is 

clearly the union of the arcs joining D to D, and D,. So the theorem is 
satisfied, by the result of Case I. 

Case III: The remaining case. 
Now D, and D, are 3-blocks of the same closed outflow F(A,). The 

theorem is satisfied in Blk,(F(A,), 4;) by the inductive hypothesis, and 
therefore it is satisfied in Blk,(G, A). 

The theorem thus holds when n,=g. By induction, it is true in 
general. O 
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We describe some more properties of Blk 3(G, A) is the next section. 
The most important result perhaps is that Blk ,(G, A) is independent of A. 

IV.4. CLEAVAGES 

The “cleavages” of this section can be defined either in terms of a given 
edge or in an absolute manner. They can therefore be used in a proof that 
Blk ,(G, A) is independent of A. (See [4].) 

Let (H, K) be a 2-separation of a 2-connected graph G, with hinges 
x and y. We say that H or K is split in (H, K), or by x and y, if it is the 
union of two edge-disjoint subgraphs of G, each with at least one edge, 
having x and y as their only common vertices. Let us define the hinge-graph 
X of (H, K) as the edgeless subgraph of G constituted by x and y. Then our 
two edge-disjoint subgraphs are unions of bridges of X in H or K. 

We call (H, K) a cleavage of G if H and K are not both separable, 
and not both split in (H, K). 

Theorem IV.31. Let (H, K ) be a 2-separation of a 2-connected graph 
G. Then if H or K is split in (H, K), it is 2-connected. 

Proof. Let H, be formed from H by adjoining a new edge A whose 
ends are the hinges of (H, K ). Then H, is 2-connected, by Theorem IV.21. 

Suppose H to be split in (H, K ). Then (H,)%j is separable, with cut-vertex 

v,, by Theorem II.3. Hence (H,)’,, that is, H, is 2-connected, by Theorem 

III.33. Since H and K can be interchanged in this argument, the theorem 

follows. Oo 

We now come to’ some propositions about a given 2-separation 

(H, K) of a graph G that is 2-connected but not 3-connected. We suppose 

some edge A of G to be chosen as intake, and we write D for the leading 

3-block of G with respect to A. We adjust the notation so that A is in H. 

Theorem IV.32. Suppose that no outflow from D contains K as a 

subgraph. Then D is a linkage or a circuit, and any outflow from D either is 

contained in K or is edge-disjoint from K. 

Proof. Let the hinges of (H,K) be x and y. Let the A-major 

2-separations of G be enumerated as (H,, K;), (1<i<k). Let A; be the 

outlet of D associated with the outflow K,, and let F(A;) be the correspond- 
ing closed outflow. 

Suppose first that G is of Type III with respect to A. There is an 

A-maximal, and therefore A-major, 2-separation (H’, K’) of G such that 

K C K’. But this is contrary to hypothesis. Hence G is of Type I or Type II, 

that is, D is a linkage or a circuit. 



96 3-Connection 

Let us say that K breaks K, if it includes one edge but not all the 

edges of K;. Then K 1 K, has at least two vertices of attachment in F(A;), 
by Theorem IV.21. These are vertices of attachment of K in G, and so can 

only be x and y. 

Suppose G to be of Type I. We assume first that K breaks some K,, 

so that x and y are vertices of K,;. Then by hypothesis, K includes an edge of 

some bridge B of G-{ A} other than K,. If B is an outflow K; broken by K, 

then x and y must be the common vertices of K; and K,, the two ends of A. 
(See Fig. IV.3.3.) If B is not a broken K,, there are two possibilities: It may 

still be a K,, or it may be a link-graph contained in D. In either case, it is a 
subgraph of K, wherefore the ends of A are vertices of attachment of K in 

G, that is, they are again x and y. But if x and y are the ends of A, then K; is 

split in (H,, K;), into the two nonnull subgraphs K  K, and H / K;,. This is 
inconsistent with the definitions of Type I. We conclude that, in fact, no 

outflow is broken by K; that is, that the theorem is satisfied. 

In the remaining case, G is of Type II. Suppose first that K breaks 

some K,. Then, by hypothesis, K has an edge in some block B of Gj other 

than K,. Such a B cannot be an outflow of D broken by K, for two distinct 

blocks of the string Gj, have at most one vertex in common. (See Fig. 
IV.3.4.) So B is either an unbroken outflow or a link-graph contained in D. 

In either case, B is contained in K. But if K contains one or more blocks of 

the string other than K;, then K must have at least one vertex of attachment 

in G that is not in K;, and more than two vertices of attachment in all. This 
being impossible, we deduce that, in fact, K breaks no outflow K;. This 

completes the proof of the theorem. 0 

The next theorem is concerned with the same graphs but goes into 
further detail. 

Theorem IV.33. Let the graph K of Theorem 1V.32 be the union of 

two edge-disjoint subgraphs L and M, each with exactly two vertices of 

attachment in G, and each with at least one edge. Then under the conditions 

of Theorem IV.32, each outflow from D is either contained in L, contained in 
M, or edge-disjoint from both L and M. 

Moreover, D is a linkage if L and M have the same two vertices of 
attachment, and a circuit if they do not. 

Proof. Suppose some outflow K; from D to have one edge in L but 
not all its edges in L. Then LC K,. For if L has only one edge, this result is 
trivial, and in the remaining case it follows from Theorem IV.32, with L 
replacing K. But now K;, is contained in K, by Theorem IV.32. It follows 
that K; has one edge, but not all its edges, in M. Hence, M C K,, by the 
above reasoning, with M replacing L. We deduce that K is a subgraph of K 
contrary to the hypothesis of Theorem IV.32. 
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We infer that each outflow K, from D is either contained in L or is 
edge-disjoint from L. Similarly, it is contained in M or is edge-disjoint from 
M. The first part of the theorem follows. 

Suppose L and M to have the same two vertices of attachment in G. 
Then they must be x and y, the vertices of attachment of K. Hence K is 
2-connected, by Theorem IV.31. If G is of Type II, it follows that K is 
contained in some block of G4, that is, of some outflow from D, by Theorem 
IV.20. But this is contrary to the hypothesis of Theorem IV.32. Since G is 
not of Type III, by the proof of Theorem IV.32, we deduce that, in fact, G is 
of Type I, and hence that D is a linkage. 

It remains to consider the case in which L and M do not have the 
Same vertices of attachment. They do have one common vertex of attach- 
ment, Z, say, since K is connected, by Theorem IV.20. It follows that K has 
the l-separation (L, M), with cut-vertex z, by Theorem III.2. Since the 
vertices of attachment of K are x and y, and G is 2-connected, we can take 
the vertices of attachment of L to be x and z, and those of M to be y and z. 
(See Fig. IV.4.1.) 

Let X be the hinge-graph of (H, K). Then K is a bridge of X in G, 
since K is not split in (H, K) by Theorem IV.31. Hence, by Theorem I.57, K 
is contained in some bridge of G-{ A} in G. Accordingly, G is not of Type I, 
by the hypothesis of Theorem IV.32. So G must be of Type II, and D is a 
circuit. 0 

In connection with the last two theorems, we recall that, by the 
theory of Sec. IV.3, the leading 3-block D is a linkage if G is of Type I with 
respect to A, a circuit if G is of Type II, and a 3-connected graph with at 
least six edges if G is of Type III. In the last case, D is not a linkage or a 
circuit, by Theorems IV.1 and IV.3. In the first two cases, D has at least 
three edges. 

We proceed to some theorems having to do with the structure of 
Blk,(G, A). The following definition is convenient. Let C be any 3-block of 
G with respect to A. Then the overflow of C is the union of C, with its intake 
and outlets deleted, and the outflows from C. Adjoining the intake of C to 

this overflow, we obtain the closed overflow of C. Thus the closed overflow 

of D is G. In any other case, the intake of C is an outlet of some other 

FIGURE IV.4.1 
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3-block C’ of G with respect to A. Then the overflow of C is the outflow 

from C’ at this outlet. In general, we denote the overflow of C by K-, and 

the closed overflow by Fc. 

Theorem IV.34. Let C be any 3-block of G with respect to A. Let L 

be any subgraph of its overflow Ke. Then L has the same vertices of 

attachment in Fo as in G. 

Proof. If C =D, there is nothing to prove. In the remaining case, 

Kis an outflow from another 3-block C’ with respect to A. Any vertex of 

attachment of L in Fy. is either a vertex of attachment of L in K;- or a vertex 
of attachment of K; in F... (See Theorem I.8.) But vertices of the latter 
kind, being incident in K. with the intake of C, are still vertices of 

attachment of L in FL. We conclude that L has the same vertices of 
attachment in F.. as in F.. By repetition of this argument we obtain the 

required result. O 

We return to the given 2-separation (H, K ) of G. 

Theorem IV.35. Let K be a proper subgraph of the overflow K¢ of 

some 3-block C of G with respect to A. Then K is the second member of a 

2-separation (H’, K ) of the closed overflow F. of C, with hinges x and y. 

Proof. By Theorem IV.34, K is a subgraph of Fo with x and y as its 

vertices of attachment. Its complementary subgraph H’ in Fv has at least 

two edges, the intake of C being one. The theorem follows. Oo 

We define an A-carrier of (H, K ) as follows. It is a 3-block C of G 

with respect to A such that K is a proper subgraph of the overflow of C, and 

such that each outflow from C is either contained in K or is edge-disjoint 
from K. 

Theorem IV.36. The 2-separation (H, K ) has exactly one A-carrier. 

Proof. We return to the lists L, and M, defined in Sec. IV.3, 
remarking that the members of the lists M@, are the closed overflows of the 

3-blocks of G with respect to A. For a given n there can be at most one 

member of M,, having K as a subgraph, by repeated application of Theorem 

IV.24. On the other hand K is a proper subgraph of the single member G of 

Mo). Hence there is a greatest integer q such that K is a proper subgraph of 

some member F, of M,. For each integer i such that 0 <i <q there is a 

unique member F, of M; having K as a proper subgraph. Moreover, if i < q, 
then F;,, must be a closed outflow from the leading 3-block C, of F. 

By the definition of an A-carrier, any A-carrier of (H, K) must be 
the leading 3-block C, of some F., and by the preceding observation Fis the 
only possibility. But F, is indeed an A-carrier of (H, K ) by Theorems IV.32 
and IV.35, the former being applied to Bee oO 
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In the next two theorems we record some properties of A-carriers. 

Theorem IV.37. If H is split in (H, K ), then the A-carrier of (H, K) 
is a linkage. 

Proof. Let X be the hinge-graph of (H,K). We can find two 
bridges L and M of X in H such that A is in M. It may happen that M has 
only the one edge A. Then the ends of A are x and y, G is of Type I, and D 

is a linkage. Moreover, each outflow from D is a bridge of X in H or K, by 

Theorem 1.46. Accordingly, D is the A-carrier of (H, K ), and the theorem 
holds. 

In the remaining case, M has at least two edges and there is a 

2-separation (H’, K’) of G such that K’= K U L. Its hinges are x and y. Let 

C be the A-carrier of (H’, K’). 

It may happen that K’ is an outflow from C at some outlet E. Then 

the ends of E are x and y. The leading 3-block C’ of the closed outflow at E, 

like D in the above argument, must be a linkage and the A-carrier of K. In 

the remaining case, C is a linkage and the A-carrier of (H, K ), by Theorem 

IV.33. oO 

Theorem IV.38. If H is separable, then the A-carrier of (H, K ) is a 

circuit. 

Proof. By Theorems IV.21 and III.30, H is a string of blocks that 

would be closed by an edge joining x and y. From this string we select one 

block L including x or y but not A, and the block M containing A. We 

adjust the notation so that L includes x. It will then not include y. 

It may happen that M has only the one edge A, so that A is an 

isthmus of H, by Theorems I.45 and III.5. Then A has end-graphs H, and 

H, in H including x and y, respectively, since G is 2-connected. Of these, H, 

is not a vertex-graph; it contains L, by Theorem III.8. 

We now observe that Gj is separable, having the 1-separation 

(H,,H,UK), with cut-vertex x. If H, is not a vertex-graph, then Gj has 

also the 1-separation (H,, H, U K), with cut-vertex y. (See Fig. IV.4.2.) 

Now G is of Type IJ and D is a circuit. Moreover, each outflow from 

D is a block of H,, H,, or K, by Theorem III.22. Accordingly, D is the 

A-carrier of K. . 
In the remaining case, M has at least two edges and there is a 

2-separation (H’, K’) of G such that K’= K CL. We note that K’ has the 

1-separation (K, L) with cut-vertex x. The hinges of (H’, K’) are y and the 

cut-vertex z of H that belongs to L. Let C be the A-carrier of (H’, K’). 

It may happen that K’ is an outflow from C at some outlet E. Then 

the leading 3-block C’ of the closed outflow from E, like D in the preceding 

argument, must be a circuit and the A-carrier of (H, K ). In the remaining 

case, C is a circuit and the A-carrier of (H, K ), by Theorem IV.33. oO 
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FIGURE IV.4.2 

Theorem IV.39. (H,K) is a cleavage of G if and only if K is an 
outflow from some 3-block C of G with respect to A. 

Proof. Suppose K is such an outflow. Then C is the A-carrier of 
(H, K ). If H is split in (H, K), then C is a linkage, by Theorem IV.37. This 
means that Fo is of Type I with respect to its intake. Accordingly, K is not 
split by x and y. If H is separable, then C is a circuit, by Theorem IV.38. 
Then Fi is of Type II and its outflow K is 2-connected. We deduce that, in 
all cases, (H, K) isa cleavage of G. 

Conversely, suppose (H, K) to be a cleavage of G. Assume that K is 
not an outflow from C, the A-carrier of (H, K ). By Theorems IV.32 and 
IV.35, C must be a linkage or a circuit. 

Suppose, first, that C is a linkage. Then K is the union of two or 
more bridges of F.-{E}, where E is the intake of C. But it is not the union 
of all such bridges, being a proper subgraph of K-. The ends of E are 
vertices of attachment of K and are therefore x and y. It follows that each of 
H and K is split in (H, K ), by Theorem IV.34, contrary to our supposition 
that (H, K) is a cleavage. 

Suppose next that C is a circuit, with intake E. Then K is the union 
of two or more blocks of (F.)‘z, but not of all such blocks. Accordingly, K 
is separable. The blocks belonging to K must be consecutive in the string of 
blocks ( F()‘z, since K has only two vertices of attachment. We can therefore 
assert that (F.)’, is the union of K with two other graphs K, and K, such 
that K and K, have only the vertex x in common, such that K and K, have 
only the vertex y in common, such that K x and K,, are not both vertex-graphs, 
and such that E has one end b in K, and one end c in K,. (See Fig. IV.4.3.) 

Now (F)'; appears as a subgraph of G with the same vertices of 
attachment b and c, by Theorem IV.34. It follows that H is separable, 
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having at least one of b and c as a cut-vertex. This is contrary to our 
supposition that (H, K ) is a cleavage. 

We conclude that if (H, K) is a cleavage of G, then K is an outflow 
from the A-carrier C of (H, K ). The proof is now complete. oO 

We can express Theorem IV.39 by saying that there is a 1-1 
correspondence between the cleavages of G and the virtual edges of G with 
respect to A. A virtual edge A; is an outlet of exactly one 3-block C of G 
with respect to A. The outflow K from C at A, is the second member of the 
cleavage (H,K) corresponding to A,. If in what follows (H,K) is a 
cleavage of G, we shall refer to H and K as its wings. We shall write F (K ) 
for the closed outflow from the A-carrier associated with the outflow K. 

The importance of the correspondence is that the definition of a 
cleavage of G does not depend on any intake. We are now entitled to say 
that, for every choice of intake, we get the same set of virtual edges, one for 
each cleavage. Let us go on to show that for every such choice we get the 
same 3-blocks and the same tree Blk,(G, A). 

Theorem IV.40. Let (H,, K,) and (H,, K,) be distinct cleavages of 
G. Then one wing of (H,, K,) is a proper subgraph of one wing of (H,, K,). 

Proof. In the notation of Sec. IV.3 we may suppose F(K,) to 
belong to M, and F(K,) to M,, for an arbitrarily chosen intake A, and we 
can adjust the notation so that r <s. Using Theorem IV.24, as in the proof 
of Theorem IV.36, we find that just one member of M,, F(K4) say, has K, 
as a subgraph. If K; = K,, then r <s and K, is a proper subgraph of K, by 
Theorem IV.26. 

In the remaining case F(K,) and F( K;) are distinct members of M.. 

Then, by Theorem IV.24, K} is a subgraph of H,. Moreover, K; is a proper 

Kx 

on LLY y 

Ky 
FIGURE IV.4.3 
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subgraph of H,. For we must have r > 0, whence A belongs to H, but not to 

K;. Hence K, is a proper subgraph of Hj. oO 

Let us now consider three distinct cleavages (H,, K;) of G (i = 1,2, 3). 

It may happen that each (H,, K,) has a wing W, such that W, C W, C W,. If 
so, we say that (H,, K,) intervenes between (H,, K,) and (H), K,). We say 
that two distinct cleavages are adjacent if no third cleavage intervenes 

between them. We note that this definition of adjacency does not depend on 

any intake. Nevertheless, adjacency can be characterized in terms of the 

3-blocks with respect to a particular intake A. 

Theorem IV.41. Let (H,, K,) and (H,, K,) be distinct cleavages of 
G. Let A be any edge of G. Then the two cleavages are adjacent if and only if 

one of the two following conditions is satisfied. (We take A to be in H, and 

Hy.) 

i) K, and K, are distinct outflows from some 3-block C of G with respect 

to A. 

il) One of K, and K, is the overflow of some 3-block C of G with respect to 

A, and the other is an outflow from C. 

Proof. We use the notation of Theorem IV.40, observing that K4 is 

one wing of a cleavage (H}, K4) of G, by Theorem IV.39. 

Suppose first that K, = K,. If s > r +1, then some cleavage (H”, K”’), 
where F( K’’) € M,,, ,, intervenes between (H,, K,) and (H,, K,), and neither 

(i) nor (ii) can be satisfied. We assume therefore that s = r + 1, in which case 

Condition (ii) holds. If now some cleavage (H”, K”’) intervenes between 

(H,, K,) and (H,, K,), and if we take A to be in H”, then we can have only 

Keg GK IAG K, or KG KECK: 

But we must assign F(K”’) to some M,, and these inclusions imply r+1> 1 

> r. We infer that the two given cleavages are in fact adjacent. 

In the remaining case, K, and K3 are distinct. If K3 is not K,, then 
neither (i) nor (ii) can hold. On the other hand, (3, K) intervenes between 
(H,, K,) and (H,, K,): K,C K,C H,. We therefore assume that K} = K,. 

If now K, and K, are outflows from distinct 3-blocks of G with 
respect to A, they are contained in distinct members F( Kj’) and F(K%’), 
respectively, of M,_,. Then neither (i) nor (ii) holds. On the other hand 
there is a cleavage (H;’, K;’) that intervenes between (H,, K,) and (H,, K,): 
hy COR: 

There remains only the case in which K, and K, are outflows from 
the same 3-block C with respect to A. They are then contained in the same 
member F(K) of M,_,, K being the overflow of C. Thus Condition (i) 
applies. If some cleavage (H”,K”) intervenes between (H ;,K,) and 
(/1,, K,), it must have a wing W” such that K, CW” C H, or K, CW" H,. 

We can replace the subgraphs involved in these formulae by their 
complementary subgraphs, provided that we reverse the inclusions. We can 
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therefore adjust the notation so that K, C K” C H, and A is in H”. We must 
assign K” to some M,, and by the inclusions, ¢ <r. But the member of M, 
that contains K, contains also the overflow of C, and this contains K,. This 
contradicts our conclusion that W” Cc H,. So in this case, the original two 
cleavages must be adjacent. The proof is now complete. oO 

If v is a vertex of a graph N, let us define the corresponding 
vertex-bond as the set of all links of N incident with v. In a tree it is clear 
that no two distinct vertices can have the same vertex-bond unless they are 

both monovalent and the tree reduces to a link-graph. Let us consider the 
vertex-bonds of the tree Blk ,(G, A). 

Theorem IV.42. The vertex-bonds of Blk,(G, A) are independent of 
the choice of A. 

Proof. Theorem IV.41 tells us that the edges of a vertex-bond S of 
Blk,(G, A) must correspond to mutually adjacent cleavages of G. But 

consider a particular virtual edge A; of G, corresponding to a cleavage 

(H,, K;). It occurs in two 3-blocks C, and C, of G with respect to A, in C, as 
an outlet and in C, as intake. In Blk,(G, A) the two ends of A; are C, and 
C,. By Theorem IV.41 the cleavages adjacent to (H;, K;) correspond to the 

members, other than A,, of the vertex-bonds of C, and C, in Blk,(G, A). 

Moreover, two of them are adjacent if and only if they correspond to 

members of the same one of these two vertex-bonds. 

These observations imply that we can determine the vertex-bonds of 

Blk ,(G, A) containing the edge A, without reference to A. We need only the 

cleavages of G and their relations of adjacency. The theorem follows. oO 

Theorem IV.43. Let S be a vertex-bond of Blk ,(G, A) corresponding 

to a vertex C of that graph: Let its members be enumerated as A,, Aj,..., Ax. 

Then the cleavage of G corresponding to A, can be written as (U,, W,), for each 

i, so that no two of the wings W, have any edge or vertex in common, apart 

from common hinges of their cleavages. Moreover, if k = 2, the wings W, are 

uniquely determined by this rule. 
If k >2, then C is formed from the intersection of the wings W, by 

adjoining the members of S. If k =1, it is formed from U, or W, by adjoining 

the member of S. 

Proof. Let us write the cleavage corresponding to A, also as (H,, K;), 

with A in H,. We now write W, = H, or K; according as A, is the intake or an 

outlet of C. Referring to the definition, in Sec. IV.3, of a 3-block with 

respect to A, we see that the wings W, now satisfy the required rule. 

Moreover, C is as specified in the enunciation. 

Suppose k > 2. Let two distinct members A, and A, of S correspond 

to cleavages (H,, K,) and (H;, K;), respectively, where we no longer assume 

A to be in H; and H;. By Theorem IV.40 we may suppose K;, to be a proper 
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subgraph of K,. Then H; must have an edge in each of H; and K,. We are 
therefore forced to put W, = K,. The proof is now complete. 0 

Theorem IV.44._ Let S be a vertex-bond of Blk,(G, A), and let this 

tree be not a link-graph. Then the corresponding 3-block C of G with respect to 

A is the same for all choices of A, apart from the location of its intake. 

Proof. If |S| = 2, this follows from Theorem IV.43. Suppose there- 

fore that |S| =1. In the notation of Theorem IV.43, C is either U, or W,. By 
hypothesis, G has a second cleavage, and one wing of this is a proper 

subgraph of either U, or W,. Irrespective of the choice of A, C must be the 
other member of the pair (U,, W,). O 

The excluded case in which Blk,(G, A) is a link-graph is trivial. 

There is only one cleavage (U, W) and the two 3-blocks are obtained from U 

and W by adjoining the virtual edge, a construction independent of the 

choice of A. 

In view of this observation we can express Theorem IV.44 by saying 

that G has the same 3-blocks with respect to every edge, provided that we 

ignore the distinction between intake and outlets for each 3-block. So we 

may now speak simply of the 3-blocks of G, not of the 3-blocks with respect 

to some specified intake A. We likewise write Blk ,(G, A) simply as Blk,(G), 
calling it the tree of 3-blocks of G. In this section we have supposed G to 

have a 2-separation. But if G is 3-connected, we take its only 3-block to be G 

itself, so that BIk,(G) is a vertex-graph. 

We conclude this section with a theorem on the structure of Blk ,(G). 

Theorem IV.45._ Let C and C’ be 3-blocks of G that are adjacent 
vertices of Blk,(G). Then they are not both linkages and not both circuits. 

Proof. With respect to some intake A, we may suppose C’ to be the 

leading 3-block of a closed outflow from C. This closed outflow will be the 
closed overflow F.. of C’. Let E and E’ be the intakes of C and C’, 
respectively. 

Suppose C to be a linkage. Then Fy is of Type I with respect to E, E 
and E£’ have the same ends, and the outflow K-. is not split by these ends. 
So Fo, is not of Type I with respect to E’, and C’ is not a linkage. 

Suppose next that C is a circuit. Then F. is of Type II with respect to 
E, and the outflow K,, is 2-connected. Hence F.. is not of Type II with 
respect to E’, and C’ is not a circuit. Oo 

IV.5. DELETIONS AND CONTRACTIONS OF EDGES 

In this section, G is a 3-connected graph having at least six edges. (See 
Theorem IV.4.) A set (A, B,C) of three edges of G is a triangle if it is the 
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edge-set of a 3-circuit of G, and a triad if it is the vertex-bond of a trivalent 
vertex. By Theorems IV.1 and IV.3, we have the following theorem: 

Theorem IV.46. If A is a member of a triangle of G, then Gi is not 
3-connected. If A is a member of a triad of G, then Gj, is not 3-connected. 

Let A be an edge of G with ends b and c. We proceed to a detailed 
study of the case in which Gj is not 3-connected. We note first that Gj, is 
still 2-connected, by Theorem IV.7. We can decompose it into its 3-blocks 
by the method explained in Sec. IV.3. 

Consider an extremal 3-block of Gj, that is, one corresponding to a 
monovalent vertex of Blk,(Gj). It has only one virtual edge E and it must 
have at least two edges in G. Let J be the subgraph of G formed from it by 
deleting E. Since J is not to be a member of a 2-separation of G, we must 

suppose that one end of A is in J and is distinct from each end of E. 

Now Blk3;(Gj) has at least two monovalent vertices, by Theorem 
1.40. It must therefore have exactly two, one for each end of A. It is thus an 

arc, again by Theorem I.40. We express these results by saying that Gj is a 

string of 3-blocks, closed by A. 

By the definition of an arc, the 3-blocks of G can be enumerated as 
C,,C,,.-.,G,,,, and the virtual edges as A,, A,,...,A,,, where n > 1, so that 
A, belongs only to C, and C,, ,. We can adjust the notation so that b belongs 
to C, and c to C,,,. We denote the ends of A; by a(i,1) and a(i,2). It is 

sometimes convenient to write also 

a(0,1)=a(0,2)=b 

and 

a(n+1,1)=a(n+1,2)=c. 

We write J, for the subgraph of G obtained from C, by deleting its 

virtual edge or edges. We call J, a segment of Gj, the ith segment counting 

from b and the (n + 2—1)th counting from c. 

Figure IV.5.1 gives an example in which C, and C; are circuits and 

C, is a 3-linkage. 
In the terminology of Sec. II.5, the ends of A; separate b and c. 

Hence there are at most two internally disjoint arcs in G, with ends b and c, 

FIGURE IV.5.1 
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by Theorem II.35. On the other hand, it follows from Theorems II.35 and 

III.7 that at least one pair of such internally disjoint arcs exists. 

Theorem I1V.47. If Gi, is not 3-connected, then the maximum number 

of internally disjoint arcs in Gj, joining b and c is 2. 

Perhaps we should make it explicit that no edge of Gj joins b and c, 

by Theorem IV.1. 

Consider two internally disjoint arcs F, and F, in Gj joining b and c. 
Their union is a circuit F. We call F an A-frame of G and say that F, and F, 

are its sides. It is clear that each virtual edge A; has one end in F, and one in 
F,. Having chosen an A-frame F, we adjust the notation so that a(i, /) is 

always in F (j = 1,2). 

A cross-join of the frame F is an arc in G4 avoiding F, with one end 

in F, but not F,, and with the other end in F, but not F,. The A-frame F is 
doubly crossed if it has two disjoint cross-joins. 

A virtual edge A, corresponds to a cleavage (U,, W,) of Gj, where U, is 

the union of the segments J, with k <i and W, is the union of the segments 
with k > i. Of the two arms of F; at a(i, j), one is an arc in U; with ends b 

and a(i, 7), and the other is an arc in W, with ends a(i, j) and c. (See Sec. 

III.4.) Neither of them can include the other end of 4,. 
Suppose 1 <i<n. It may happen that a(i, 7)=a(i+1, /) for some 

j. Then the arm of F; at a(i, 7) is contained in W,,,. Accordingly, the 

intersection of J; and F; is a vertex-graph, with vertex a(i, j). We then say 

that J; is pinched on F,. In Fig. IV.5.1 we can take F to be the outer 
boundary of Gj, F, being above and F, below. Then C, is pinched on both 

F, and F,. No such effect can occur for either extremal 3-block C, and C,, ;, 

since neither b nor c is incident with any virtual edge of Gj. Suppose, 

however, that a(i, 7) and a(i+1, j) are distinct. Then the intersection of J, 

with F; is an arc L(i, j), with ends a(i, j) and a(i+1, 7). We can find it by 

taking the arm L of F; at a(i, /) that is in W,, and then taking the arm of L 

at a(i+1, /) that is not in W,,,. This latter rule extends to the cases i = 0 
I 

and i =n: The intersection of J, and F, is the arm of F, at a(1, j) including 

b, and the intersection of J, ,, and F; is the arm of F, at a(n, /) including c. 
In every case, we denote the intersection of J, and F; by F(i, j) and call it 

the border of J; in F;. We note that F, is the union in it of the borders of the 
(n +1) segments of Gi, by Theorem I.26. 

Theorem IV.48. If C, is a circuit, it is a 3-circuit, and its two edges 
incident with b form with A a triad of G. 

Proof. If C, has a vertex other than b, a(1,1), and a(1,2), then that 
vertex is divalent in G, contrary to Theorem IV.3. Since b is not incident 
with A,, the theorem holds. O 
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We associate Theorem IV.48 with the following triviality. 

Theorem IV.49. If F; has just two edges, these form with A a triangle 
of G. 

We have seen that F; must have an edge in J, and an edge in SEN 
it has only two edges, then all the other segments are pinched on F,. Their 
borders in F; coincide, the vertex of each being the single internal vertex 
of F.. 

Theorem IV.50._ Let there be a 2-arc L in Gi, with ends b and c. Then 
there is an A-frame of G having L as one of its sides. 

Proof. Consider any A-frame F of G, with sides F, and F,. We can 
adjust the notation so that F, does not include the internal vertex of L. 
Then L and F, are internally disjoint; they constitute the required A-frame. 

O 

Theorem IV.51. If C, is not a circuit, then J, contains a cross-join of 

any A-frame F of G. 

Proof. Let H, be the union of the borders of J, in F, and F,. It is not 
the whole of J,, for otherwise C, would be a circuit. Hence there is at least 
one bridge of H;, in J,. 

Some bridge B of H;, in J, has one vertex of attachment p in F(i, 1) 

but not F(i,2), and one vertex of attachment q in F(i,2) but not F(i, 1), for 

otherwise the union of one of these borders with the bridges having all their 

vertices of attachment in it would be a member of a 1-separation or 

2-separation of G. By Theorem I.56 the required cross-join exists in B, with 

ends p and q. O 

Theorem IV.52. Let Gi, be not 3-connected. Let F be an A-frame of 
G with sides F, and F,, and let F, be a 2-arc with edges X and Y. Then either 

A belongs to a triad of G or G‘, is 3-connected. 

Proof. Assume that A is in no triad of G. Then neither C, nor C,,, | 
is a circuit, by Theorem IV.48, with the enumerations reversed in the case of 

C,,,- Let x denote the internal vertex of F,. We can adjust the notation, 
reversing enumerations if necessary so that X is incident with b. (See Fig. 

TV 2.25) 
Since C, is not a circuit or a linkage it is, by the theory of Sec. IV.3, a 

3-connected graph with at least six edges. So (C))’y, like Gj, is 2-connected. 

By Theorems II.35 and III.7, there are two internally disjoint arcs N, and N; 
in it, with ends b and x. But b and x are joined also by a 2-arc N, in G with 

edges Y and A. If neither N, nor N; includes A,, then N,, Nj, and N; are 
three internally disjoint arcs in Gi with ends b and c. Accordingly, Gy is 

3-connected, by Theorem IV.47. 
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FIGURE IV.5.2 

In the remaining case, we may suppose A, to be in N53, as indicated in 

Fig. IV.5.2. There is a cross-join T of F in J, , ,, by Theorem IV.51. One end 

of T must be x. The other is a vertex u of F(n+1,1), necessarily distinct 

from c. If wis a(1, 1), let S be the corresponding vertex-graph. Otherwise let 

L be the arm of F; at a(1, 1) including c, and let S be the arm of L at u that 

includes a(1,1) (and so not c). In either case the union of S, 7, and the 

graph obtained from Ny; by deleting A, is an arc N, in Gy joining b and x. 

The three arcs N,, N,, and N; in Gy are internally disjoint, and so G is 
3-connected, by Theorem IV.47. Oo 

We must now pay some attention to the case in which G7, but not 
necessarily Gj, has a 2-separation. 

Theorem IV.53. Let A be an edge of G and let Gi be not 3- 
connected. Then Gj, is the union of two edge-disjoint connected subgraphs H 
and K with exactly three vertices in common, two of these being the ends b and 
c of A inG. 

Proof. G4 has a 2-separation (P,Q), by Theorem IV.8. Hence G is 
the union of the two subgraphs f, P and /,0, whose only common edge is A. 
Their common vertices correspond to the hinges of (P,Q). Hence there are 
at most three common vertices, and if three, then two of them are the ends b 
and c of A. 

Write H=(f,P)’, and K =(f,Q),. Then G;, is the union of its two 
edge-disjoint subgraphs H and K, each with at least two edges. By the 
3-connection of G, any component of H or K with at least one edge must 
have at least two vertices of attachment in G, and any such component with 
at least two edges must have at least three vertices of attachment in G. It 
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follows from these observations that H and K are connected and that they 
have just three common vertices b, c, and d, where b and c are the ends of A 
in G. 0 

Theorem IV.54. Suppose that neither Gi, nor Gi) is 3-connected. 
Suppose further than A belongs to no triangle of G. Let H and K be as in 
Theorem 1V.53, with common vertices b, c, and d. Then no A-frame of G is 
contained in H or K. Moreover, there is an A-frame F of G, not including d, 
which has one side F, in H and the other side F, in K. This A-frame is not 
doubly crossed. 

Proof. By Theorem 1.43, there is an arc in H with ends b and c. 
Suppose that all such arcs include d. Then d is the cut-vertex of a 
l-separation (H,, H,) of H, since the deletion from H of d and its incident 
edges would put } and c in different components of the resulting graph. But 

then H, and H, have each only two vertices of attachment in G, either b and 
d or ¢ and d. Hence each is a link-graph by the connection of H and the 

3-connection of G. But then the two edges of H form with A a triangle of G, 
which is contrary to hypothesis. 

We deduce that there is an arc F, from } to c in H that does not 
include d. Similarly, there is an arc F, in K from b to c that does not include 

d. The union of these arcs is the required A-frame F. By applying Theorem 

II.34 to the sets of edges of F, and F,, we find that F is not doubly crossed. 
(We then have A(Gj; P, Q) <3 by virtue of the cutting pair (H, K )). 

To complete the proof, it is sufficient to show that no A-frame of G is 

contained in H. But the two sides of such a frame, together with the above 

arc F,, would make three internally disjoint arcs from b to c in G4, which is 
contrary to Theorem IV.47. oO 

Let us say that an edge A of a 3-connected graph G is essential if 

neither Gj, nor Gj’ is 3-connected. 

Theorem IV.55. If the edge A is essential, it belongs either to a 

triangle or a triad of G. 

Proof. Assume that A belongs to no triangle of G. Let H, K, and F 

be as in Theorems IV.53 and IV.54. Then d is incident with no virtual edge 

of G,. Hence d belongs to exactly one of the segments J, by the construction 
of Sec. IV.3 (or by Theorem IV.30). We can adjust the notation, reversing 

enumerations if necessary, so that this segment is not J,. But then J; 0 H 
and J, K have only the vertex b in common, and therefore J, can contain 
no cross-join of F. Accordingly, C, is a circuit, by Theorem IV.51, and A 

belongs to a triad of G, by Theorem IV.48. Oo 

Theorem IV.56. Let A be essential. Let b be trivalent in G, and 

incident with edges X and Y in Gi. Then either A belongs to some triangle of G 

or Gy. is 3-connected. 
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Proof. Let H, K, and F be as in Theorems IV.53 and IV.54. We 

may suppose X and Y to be in F, and F,, respectively. Let the ends other 

than b of X and Y be x and y, respectively. Let us assume that A belongs to 

no triangle of G, and that G¥ is not 3-connected. 
Deleting from F, and F, the end b and the edges X and Y, we obtain 

arcs L, and L,, respectively, the first from x to c and the second from y to c. 
Deleting b, X, and Y from Gj, we obtain a graph G, containing L, and L,. 
At least one of the segments J; contains a cross-join of F, necessarily in G,, 

by Theorems IV.45 and IV.51. On the other hand, F does not have two 

disjoint cross-joins, by Theorem IV.54. Applying Theorem II.34 to the 

edge-sets of L, and L, in G,, we find that G, must be the union of two 
edge-disjoint subgraphs H’ and K’ such that L, C H’, such that L, Cc K’, 

and such that H’ and K’ have just one common vertex ¢ other than c. (See 
Fig. [V.5.3.) 

Now consider Gy. By Theorem IV.3, it is not 3-connected. By 
Theorem IV.54, G has an X-frame V that is not doubly crossed. Let its sides 
be V, and V,, with A in V, and Y in V,. The arm R of V, at c that includes x 
must be a subgraph of H’, for H’ has only two vertices of attachment ¢ and c 
in Gy, and ¢ must be in V,. Similarly, the arm S of V, at ¢ that includes x 
must be a subgraph of H’. 

By an argument like that in Theorem IV.51, we now show that V has 
a cross-join 7, in H’ that does not include c. Suppose first that RU S = H’. 
Then R is a 1-arc, since otherwise G would have a divalent vertex, contrary 
to Theorem IV.3. This contradicts our assumption that A is in no triangle of 
G. In the remaining case, there is at least one bridge of RUS in H’. In 

FIGURE IV.5.3 
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order that G may have no 2-separation, there must be a bridge B of RU S in 
H’ with not all its vertices of attachment in R and not all of them in S. If 
one of the vertices of attachment of B is an internal vertex of R, then the 
required cross-join T, exists, by Theorem 1.56. Suppose, however, that no 
such bridge B has any vertex of attachment in R other than x and c. Then, 
since R cannot be a I-arc, the union of R and those bridges of RUS in H’ 
that have all their vertices of attachment in R must be one member of a 
2-separation of G with hinges x and c. But this is impossible. 

There exists an arc in K’ that is disjoint from 7,, which has one end 
in V, but not in V,, and which has its other end in V, but not in V,, for L, is 
an example. A shortest arc with these properties is a cross-join T, of V, for if 

it had an internal vertex u in V we could replace it by one of its arms at u, 

for u could not be one of the common vertices b and x of V, and V,. But we 
have now established that V is doubly crossed, which is a contradiction. The 

theorem follows. oO 

In the following section we apply the results of the present one to the 

case in which every edge of G is essential. 

IV.6. THE WHEEL THEOREM 

Let G be any 3-connected graph with at least six edges. 

Theorem IV.57. In order that every edge of G shall be essential, it is 

necessary and sufficient that each edge of G shall belong to both a triangle and 

a triad of G. 

Proof. Sufficiency follows from Theorem IV.46. In proving neces- 
sity, we assume that each edge is essential. Then each edge belongs either to 

a triangle or a triad, by Theorem IV.55, each edge belonging to a triangle 

belongs also to a triad, by Theorem IV.52, and each edge belonging to a 

triad belongs also to a triangle, by Theorem IV.56. O 

Theorem IV.58 (The Wheel Theorem). Jn order that every edge of 

G shall be essential, it is necessary and sufficient that G shall be a wheel, of 

order at least 3. 

Proof. Sufficiency follows from Theorem IV.57. In proving neces- - 

sity, we assume that each edge is essential, and apply Theorem IV.57. We 

first note that G has a 3-circuit C and that each edge of C is incident with a 

trivalent vertex. We denote the vertices of C by h, a,, and a), so that a, and 

a, are trivalent in G. We write S, for the edge joining h and a,, S, for the 
edge joining h and a,, and A, for the edge joining a, and a). By its 

trivalency, a, is incident with a third edge A,. Let the other end of A, be a3. 

By strictness, a, is distinct from a,, a), and h. Since A, belongs to a triangle, 

there is an edge S, joining a, either to A or to aj. (See Fig. IV.6.1.) 
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FIGURE IV.6.1 

Let H be the reduction of G with edges A,, A,, S,, S,, and S;. If S; is 
incident with a,, then H has only the two vertices of attachment a, and h. 
The complementary subgraph H° must be a link-graph, by the 3-connection 

of G. But then G is a 4-clique, that is, a wheel of order 3. We may assume 

from now on that S; joins a, and h. If h is trivalent in G, the same sort of 
argument applies, the two vertices of attachment of H being now a, and aj. 
So we may assume from now on that val(G, h) > 4. 

We may now assert the existence in G of an arc L and a vertex h not 

belonging to L, such that the following conditions hold: 
i) L has at least two edges. 

il) Lach internal vertex of L is trivalent in G. 

ill) Each vertex of L is adjacent to h in G. 

iv) val(G,h)> 4. 

We have constructed such an L and h. Our arc L is a 2-arc, with edges A, 
and A,. But it may be possible to satisfy the conditions with a longer arc L. 
Let us now choose L and 4, satisfying the four conditions, so that L has as 
many edges as possible. 

We write the defining sequence of vertices of L as (a), a),...,a,), 
and that of edges as (A), A>,...,4,_,), with n > 3. Let S; be the edge of G 
joining h and a;(1< j <n). (See Fig. IV.6.2.) 

Since S,, is in a triad, the vertex a, must be trivalent. It is therefore 
joined by a new edge A, to some vertex a,,,, of G that is not h or a,_ He 
Suppose a,,, is not in L. Then since A, is in a triangle of G, there is an 
edge S,,, of Gjoining a,,, toa,_, orh. But S, , , is not incident with on, 
by the trivalency of that vertex. Hence S, , , joins a, , , toh. This means that 
we can replace L by a longer arc, adjoining A,, and a,,, ,, and still satisfy the 
four conditions. This being contrary to the choice of L and h, we infer that 
a, belongs to L. But A, cannot be incident with an internal vertex of L, 
by Condition (ii). We must therefore identify a,,, with a,. We observe 
further that since S, belongs to a triad, the vertex a, is trivalent in G, that is, 
incident only with S,, A,, and A,. 

The edges A, and S,, 1< j<n, with their incident vertices, now 
constitute a wheel of order n, a subgraph of G that can have no vertex of 
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FIGURE IV.6.2 

attachment other than h. Since G is 3-connected, this wheel must be the 
whole of G. O 

In connection with the Wheel Theorem, we recall that all wheels of 
order 3 or more are 3-connected (Theorem IV.17). 

By the Wheel Theorem, any 3-connected graph of six or more edges 
that is not a wheel can be obtained from a 3-connected graph of one edge 
fewer, either by link-adjunction or by vertex-splitting, as these operations 

are defined in Sec. IV.2. (See Theorems IV.11 and IV.14.) This result could 

be used in the construction of a catalogue of 3-connected graphs. Indeed it 

has been so used, quite extensively, in the case of the planar ones [2]. 

To start such a catalogue, we would observe that there is no 

3-connected graph of five edges, by Theorem IV.4. Hence the only one with 

six edges is the wheel of order 3, commonly called the 4-clique. Since this 

does not admit the kind of link-adjunction or vertex-splitting (without 
duplication of edges) required by Theorems IV.11 and IV.14, we deduce 

that there is no 3-connected graph of seven edges, and that the only one of 
eight edges is the wheel of order 4. 

We find three 3-connected graphs of nine edges. One is the graph of 

the trigonal bipyramid, obtained from the wheel of order 4 by link-adjunc- 

tion. The other two are obtained by splitting the hub of W,. They are the 

Thomsen graph and the graph of the triangular prism. In extending this 

catalogue, the main difficulty is that of recognizing isomorphic duplicates. 

IV.7. NOTES 

IV.7.1. 3-Connection and Planarity 

In the theory of planar graphs, the connectivity x(G) is of interest as an 

invariant under duality (Theorem *I.1). The six nonnull graphs of infinite 

connectivity are all planar. Using Theorem XI.4, we can show that every 

other planar graph has connectivity not exceeding 3. Steinitz’ Theorem 
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asserts that the planar graphs of connectivity 3 are, to within isomorphism, 

the graphs of the convex polyhedra [1]. 

IV.7.2. 2-Isomorphism 

It is possible for two nonisomorphic graphs to have the same set of 3-blocks. 

In the terminology of Hassler Whitney, such graphs are 2-isomorphic ((5]). 

EXERCISES 

—_— What is the connectivity of the graph of the octahedron? 

2. A graph G has a bipartition (U,V) such that each vertex of U is joined 

to each vertex of V by exactly one edge. Discuss the connectivity, 

vertex-connectivity, and cyclic connectivity of G for the case 4 <|U|< 

|V|. 
3. Use the operations of Sec. IV.2 to show that the graph of (i) a cube and 

(11) a regular dodecahedron is 3-connected. 

4. What are the 3-blocks of a theta graph? (Definition p. 307). 

5. Let G be as in Exercise 2, but with |U| = 2 and |V|=3. Determine the 
3-blocks and the cleavages of G. 

6. Interpret the monovalent vertices of Blk,(G) in terms of the structure 
of G. 

7. Show how to transform the cube-graph into a wheel by a sequence of 

edge-deletions and edge-contractions, each of which preserves the prop- 
erty of 3-connection. 
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Chapter V 

Reconstruction 

V.1. THE RECONSTRUCTION PROBLEM 

There are deep and difficult questions concerned with the isomorphism of 
graphs, and the best known of them is the Reconstruction Problem. 

Let G be a graph, with vertices enumerated as 0), 0;,...,0,. Let G; 
denote the graph obtained from it by deleting the vertex v; and its incident 

edges. We will refer to the k subgraphs G; of G as its primal subgraphs. 

C, (The Reconstruction Conjecture). Let the isomorphism classes of 

the k primal subgraphs of G be given. Then if k = 3, the isomor- 

phism class of G is uniquely determined. 

Two or more of the graphs G, might be isomorphic. It is assumed in 

the conjecture that each isomorphism class of a primal subgraph is given 

with the appropriate multiplicity. Up to the time of writing, the conjecture 

has remained unproved 

It is not difficult to see why k is required to be at least 3 in C,. If 

k =1, the only primal subgraph of G is the null graph, and this tells us 

nothing about the number of loops of G. If k = 2, the two primal subgraphs, 

having only one vertex each, tell us nothing about the number of links of G. 

So we assume from now on that |V(G)| > 3. 

If some property of G can be inferred from the isomorphism classes 

of the G,, it is said to be reconstructible, and it is said also that the graphs 
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having that property are recognizable. An example of a reconstructible 

property of G is its number k of vertices. It exceeds by | the vertex-number 

of each G,, and it is the number of given isomorphism classes. 

Theorem V.1. The numbers a(G) and B(G) of loops and links of G, 

respectively, are reconstructible. 

Proof. Each loop of G occurs in exactly (k — 1) of the graphs G,, 
and each link of G in exactly (k —2) of them. Hence, 

(k—1)a(G) = Yia(G)), (V.1.1) 

(k —2)B(G) = VB(G,). (V.1.2) 

There is no harm in speaking of the vertex v, of G as something 
known. It is the vertex of G that corresponds to the jth given isomorphism 

class. Oo 

Theorem V.2. The numbers a;(G) and B,(G) of loops and links of G, 

respectively, incident with the vertex v;, are reconstructible. Hence va\(G, v;) is 
reconstructible. 

Proof. The theorem follows from Theorem V.1, since a (i (G) = a(G) 
—a(G;) and B(G)=B(G)—f(G,). Then val(G, vj) =2a,(G)+B(G), by 
Sec. I.1. O 

Corollary V.3. Regular graphs are recognizable. 

Let M(G) be the maximum valency, and m(G) the minimum, to 
occur in G. Both these numbers are reconstructible, by Theorem V.2. 

We supplement Theorem V.2 with the following obvious rule. 

Rule V.4. Let HT, be a member of the isomorphism class of G;, and let 
6 be an (unknown) isomorphism of H, onto G,. Let x be any vertex of H,, and 
let r(x) be the number of links of G joining 0x to v;. Then 

M(G)—val( H,, x) > r(x) = m(G)—val(H,, x). (V.1.3) 

A graph G is said to be reconstructible if its isomorphism class is 
reconstructible, that is, if it satisfies the Reconstruction Conjecture. 

Theorem V.5. If G is regular, it is reconstructible. 

Proof. Let H;, be as in Rule V.4. By Theorem V.2 and Corollary V.3, 
we can recognize G as regular and determine its valency val(G). This being 
both M(G) and m(G), we can determine the numbers r(x) of Rule V.4, by 
Eq. (V.1.3). We can therefore construct a graph G’ isomorphic with G by 
adjoining to H, a new vertex w, joining each vertex x of H , to w by exactly 
r(x) new links, and then attaching exactly a,(G) new loops on w. O 
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Theorem V.6. The numbers po(G) and P\(G) are reconstructible. 

Proof. Suppose we find, using Theorems V.1 and V.2, that B(G )= 
B(G;) for some j. Then one component of G must consist of v, with its 
incident loops, and the others must be the components of G;. So, in this 
Case, Py(G) is determined by the formula 

Po(G) = po(G,) +1. (V.1.4) 

In the remaining case, each component of G has at least one vertex in 
each G,. Let C, be the one including v;. Let H; be the graph obtained from 
C; by deleting the loops. It is connected, for a loop cannot be an isthmus. 
Clearly, po(G) < Po(G;), with equality if and only if v; is not a cut-vertex 
of H,. 

If the graph H, is separable, it has an extremal block B. This has at 

least two vertices, and only one of them is a cut-vertex of H,. (See Theorems 

III.16 and III.24.) We conclude that, in every case, Hi; has at least one vertex 

that is not a cut-vertex. Accordingly, py(G) is determined as follows: 

Po(G) = Min{ po(G,)}. (V.1.5) 

The reconstructibility of p,(G) now follows from Eg. (1.6.1) and the 

observations of the present section. Oo 

Since a tree can be characterized as a graph with p,.(G)=1 and 

P,(G) =0, we have the following corollary. 

Corollary V.7. Trees are recognizable. 

Theorem V.8. 2-connected graphs are recognizable. 

Proof. By Theorem V.6, we can determine whether G is connected. 

By Theorem V.1, we can find if it has a loop. If it does, it is, of course, 

separable. We may therefore suppose that G is connected and loopless. If it 

has a cut-vertex then one of the graphs G; is disconnected. If it is 2-con- 

nected, then each of the graphs G; is connected, by Theorem IV.9. O 

This sequence of theorems could be continued. We could show, for 

example, that 3-connected graphs are recognizable, the condition being that 

G is 2-connected and that no G; has a 2-circuit or 1-separation. We could 

expand the argument of Theorem V.6 to show that disconnected graphs are 

reconstructible. A theorem of P. J. Kelly asserts that trees are reconstruct- 

ible, and there are several later variations on his result [1, 3]. 

In the following sections we discuss theorems applicable to general 

graphs. We shall note, however, that one of them implies, in a special case, 

the reconstructibility of disconnected graphs. 
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V.2. THEORY AND PRACTICE 

There seem to be two main problems in the theory of reconstruction. One, 

of course, is the theoretical proof of the Reconstruction Conjecture. The 

other is that of finding a good algorithm for finding the graph or graphs G 

whose primal subgraphs have given isomorphism classes, or showing that no 

such G exists. Following J. Edmonds, we can define a good algorithm as one 

whose difficulty, measured by computer time required, increases only as a 

polynomial in the number of vertices, not exponentially or worse. Thus the 

instruction to test every graph with the right number of vertices, though 

short and simple, is bad. 

The following algorithm for determining the component of a graph G 

including a given vertex v is acknowledged to be good. We list the vertex v, 

then the set S, of vertices adjacent to v, then the set S, of the remaining 

vertices adjacent to members of S,, and so on, until the process terminates 

with a null S,. The induced subgraph H of G determined by the listed 

vertices is then clearly detached in G. It is connected, by Theorem I.25. It is 
the required component, by Theorem I.23. 

The algorithm for finding components can be used to find the 

bridges in G of a subgraph H, by way of Theorems I.49, 1.50, and 1.51. We 

can find the cut-vertices and 1-separations of a graph G by finding the 

bridges of the vertex-graphs contained in it. (See Sec. III.4.) We can thus 

determine if G is 2-connected. If it is, we can infer its 2-separations from the 

bridges of its edgeless subgraphs of 2 vertices. We thus determine whether 

or not G is 3-connected. If it is not, then the list of 2-separations will enable 
us to break it up into its 3-blocks by the methods of Sec. IV.3. 

Reconstruction is concerned with isomorphism classes. Its practice is 
likely to lead us to the Isomorphism Problem, that of determining whether 
or not two given graphs are isomorphic. The author is not an expert in the 
algorithmic art, but he understands that no good algorithm is known for the 
Isomorphism Problem, and it is suspected that no such good algorithm 
exists. 

This does not mean that the Isomorphism Problem cannot be easy in 
particular cases. Given two graphs G and H, it is usually possible to 
subdivide their vertex-sets into corresponding smaller subsets, so that any 
isomorphism of G onto H must map each such subset of V(G) onto the 
corresponding subset of V(H). We can assume, of course, that |V(G)| = 
|V(1)|. Initially, we can subdivide V(G) and V(H) according to valency. 
Having obtained subdivisions, we may be able to proceed to finer ones, 
perhaps classifying the vertices of one subset according to the numbers of 
adjacent vertices in the other subsets. No doubt other possibilities will occur 
to the reader. We can hope, in any ordinary case, to reduce the Isomor- 
phism Problem to a managable size or even make it completely trivial by 
such subdivisions. 
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Presumably the difficult cases of the Isomorphism Problem occur 
when the number of different valencies is unusually small. In the extreme 
case, G would be regular. Yet for regular graphs, the Reconstruction 
Problem is trivial, by Theorem V.5. An optimist might seize upon this fact 
to argue that there may be a good reconstruction algorithm after all: 
perhaps whenever the Isomorphism Problem becomes difficult, it can be 
avoided. 

It is at least possible to give a reconstruction algorithm that will work 
if the various cases of the Isomorphism Problem occurring in it can be dealt 
with. We shall be given graphs H, and H,, isomorphic with G, and G), 
respectively. The algorithm requires us to find all the isomorphisms of a 
primal subgraph of H, onto a primal subgraph of H,. Each of these 

represents a way in which G, and G, might overlap in G, and so determines 
a possible structure of G. This must be checked against the other G;. 

Whatever the optimist may say in favor of this algorithm, it offers no clue to 
any proof of the Reconstruction Conjecture. 

The upshot of these speculations is that, if we are trying to find a 

proof of the Reconstruction Conjecture, there is no point at the present 

stage in trying to make that proof also a good algorithm. So in the following 

sections we shall discuss properties of graphs that could not conceivably be 

_ determined by any good algorithm, but which have the advantage of being 

reconstructible according to our definition. 

V.3. KELLY’S LEMMA 

If H and K are graphs, we write y( H, K ) for the number of subgraphs of H 

isomorphic with K. It seems unlikely that there is a good algorithm for 

determining this number. However, in a theoretical argument, we can 

suppose it known whenever the isomorphism classes of H and K are given. 

Theorem V.9 (Kelly's Lemma). The number y(G,K) is a recon- 

structible property of G, for any graph K such that |V(K )|#|V(G)|. 

Proof. If K has more vertices than G, then clearly y(G, K)=0. We 

may therefore assume that |V(K )| <|V(G)|. 

A subgraph of G isomorphic with K occurs as a subgraph in exactly 

|V(G)|—|V(K)| of the primal subgraphs G,. Hence y(G, K ) is determined 

as follows: 

(\V(G)|-|V(K I) 1G, K) = L(G, K). yal) 
j 

We can regard Theorem V.1 as asserting the special cases of Kelly’s 

Lemma in which K is a loop-graph or a link-graph. 
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We go to see if any information can be obtained in the case 

|V(K)|=|V(@)|. 
Consider a sequence 

aK Oi oe J Bei rd (V.3.2) 

of h>1 graphs H,. A realization of S in a graph K is a sequence 

(K,, K>,..-,K,) of A subgraphs of K such that H,=K;, for each j. The 

carrier of this realization is the subgraph of K defined as the union of the h 

subgraphs K,. If J is any subgraph of K, we write 6(/, S) for the number of 

realizations of S in K having J as carrier. We now have 

[Iv(G, 4,) = Y v(G, K)8(K,S), (V.3.3) 
i) (K) 

where the symbol (K ) indicates that we are summing over a complete set of 

nonisomorphic subgraphs K of G. This is because each side of the equation 

gives the total number of realizations of S in G. oO 

Theorem V.10. Let S be a sequence of two or more graphs, each of 

which has fewer vertices than G. Then the sum 

Lv(G, K)8(K,S), 
taken over a complete set of nonisomorphic subgraphs K of G such that 

|V(K )|=|V(G)|, is reconstructible. 

This theorem follows from Eq. (V.3.3), for by Kelly’s Lemma the 

product on the left of Eq. (V.3.3) is reconstructible, and so is the contribu- 

tion to the sum, on the right, of those graphs K for which |V(K )| <|V(G)|. 

We go on to consider some special cases of Theorem V.10. Suppose 

first that the sequence S of Eq. (V.3.2) is such that 

LIV A) =1V(G)I- 

If K is acarrier of S in G with | V(G)| vertices, it can only be a disconnected 

subgraph of G with A components K,, K,,...,K, isomorphic with 

H,, H,...,H,, respectively. Thus the isomorphism class of K is uniquely 
determined. If the H; are defined as the components of a disconnected graph 

H, then K is isomorphic with H. Now there is only one non-zero term 

y(G, K)5(K,S) in the sum of Theorem V.10. Moreover, the number 

6(K,S) can be calculated. Let C,,C,,...,C,, be the isomorphism classes 

represented in S, and let c; denote the number of terms of S (and 
components of K ) belonging to C;. Then 

8(K, S)= (a), (V.3.4) 

Thus y(G, K ) can be determined. We state this result as a theorem. 
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Theorem V.11. Let H be a disconnected graph such that |V(H)| = 
|V(G)|. Then y(G, H) is a reconstructible property of G. 

Theorem V.12. Disconnected graphs are reconstructible. 

Proof. If G is disconnected, we can recognize it as such and 
determine the number of its components, by Theorem V.6. Given any graph 
H with the same numbers of edges, vertices, and components as G, we can 
(in principle) reconstruct y(G, H). If G is isomorphic with H, this number 
will be 1; otherwise it will be zero. So G can be reconstructed by testing all 
possible structures; the argument tell us that only one can work. O 

Theorem V.13. Theorem V.10 remains valid when we impose on the 
graphs K the extra condition that they be connected. 

Proof. The contribution to the sum in Theorem V.10 of discon- 
nected graphs K is reconstructible, by Theorem V.11. Oo 

For our next application of Theorem V.10, we shall need the follow- 
ing theorem. It is a supplement to the theory of Sec. III.3. 

Theorem V.14. Let a connected graph H be expressed as a union of h 
distinct 2-connected subgraphs H,, H5,...,H,, each having at least one edge. 
Then the H, are the blocks of H if and only if 

LIV (A) =|V(A) +A 1. (V.3.5) 

Proof. If the H, are the blocks of H, then Eq. (V.3.5) follows from 

the fact that Blk( #7) is a tree. (See Theorems I.37 and III.23.) 

Conversely, suppose Eq. (V.3.5) to hold. Let R , denote the union of 

the subgraphs H; such that i < j. Since H is connected, we can adjust the 

enumeration so that H;,, has at least one vertex in common with R,, for 
1 < j <h. Then each R; is connected. Moreover, H,,, and R, have only one 

vertex in common, by Eq. (V.3.5). Repeated application of Theorem III.22 

shows that the blocks of R, are H,, H),... »H,, for each j. 8 

Let us now suppose that, in the sequences S of Eq. (V.3.2), each H; is 

a 2-connected graph having fewer vertices than G. Let us suppose, further, 

that the H; satisfy Eq. (V.3.5). Then if K is a connected carrier of a 

realization of S in G, it must be a separable graph whose blocks are, to 

within isomorphism, the terms of S, by Theorem V.14. Formula (V.3.4) for 

6(K,S) is still valid, and it gives the same number for each such K. We 

deduce from Theorem V.13 that the sum Ly(G, K), taken over all con- 

nected K whose blocks are to within isomorphism the terms of S, is 

reconstructible. Another way of stating this result is as follows. 
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Theorem V.15. The number of spanning connected subgraphs K of G 

such that K has a given number of blocks in each isomorphism class, but no 

spanning block, is a reconstructible property of G. 

If a spanning connected subgraph K of G does have a spanning 

block, then any other block must be a loop-graph. The requirement of no 

spanning block excludes, in particular, the case in which K is 2-connected. 

Theorem V.16. Graphs having no spanning block are recognizable. 

For each such graph, the number of blocks in any given isomorphism class is 

reconstructible. 

Proof. The first part follows from Theorem V.1 and V.8. In proving 

the second part, we can assume G to be connected, by Theorem V.12, and 

with no spanning block. 
Consider any suggested list U of blocks of G, so many from each 

isomorphism class. This list U is required to give G the right number of 

edges and vertices. According to Theorem V.15, the number n(U) of 

connected spanning subgraphs of G with U as block-set is reconstructible. 

But clearly n(U) =1 if U is indeed a list of the blocks of G, and n(U)=0 

otherwise. So G has a determinable list of blocks. Oo 

Theorem V.17. Theorem V.10 remains valid, with the extra condition 

on the graphs K that each one has a spanning block. 

Proof. We note that this condition implies the condition of Theo- 

rem V.13. To prove Theorem V.17, we have only to observe that the 

contribution to the sum of Theorem V.10, as restricted by Theorem V.13, of 

connected graphs K with no spanning block is reconstructible, by Theorem 

V.15 and the preceding observation about 6(K, S). oO 

The results of this section can be used to show that some well-known 

properties of graphs, for example the characteristic and chromatic poly- 

nomials, are reconstructible. At first these results were startling, but now we 

can recognize them as mere exercises on Kelly’s Lemma. (See [4].) 

V.4.. EDGE-RECONSTRUCTION 

Let G be a graph with edges enumerated as Ayr Asn Aare G; now 

denote the subgraph of G obtained by deleting the edge A 3 

C, (The Edge-Reconstruction Conjecture). Let the isomorphism 
classes of the k graphs G,, as just defined, be given. Then if k = 4, 

the isomorphism class of G is uniquely determined. 



Notes 123 

G 
FIGURE V.4.1 

The reason for the restriction to the case k > 4 can be seen from Fig. 
V.4.1. It shows two graphs G and H, for which the operation of deleting an 
edge gives the same set of three subgraphs, to within isomorphism. 

A theory analogous to that of the preceding sections can be set up 
for the Edge-Reconstruction Conjecture, which, like C,, is still unproved. 

The analogue of Kelly’s Lemma asserts that the number of spanning proper 

subgraphs of G belonging to any given isomorphism class can be determined 
from the isomorphism classes of the graphs G;. We express this by saying 

that the number is edge-reconstructible. This result seems to give a vast 

quantity of information about G, but so far it has not been found to be 
enough to determine the structure of G. 

V.5. NOTES 

V.5.1. Generalizations 

It might be convenient to have a generalized Reconstruction Conjecture, 

with vertex-reconstruction and edge-reconstruction as special cases. One 

possibility is to define a structure on a finite set S simply by assigning a 

nonnegative integer n(T) to each subset T of S. Given such a structure J on 

S, and a member x of S, we can define a structure J, on S — {x} by giving to 

each subset T of S —{x} the same number n(T) as before. 

We define isomorphism of structures in the obvious way. We may 
now ask “If the isomorphism classes of the structures J,, x © S, are given, 

and if the value of n(S) is stated, is the isomorphism class of J uniquely 
determined?” A Reconstruction Conjecture would assert that, for all struc- 

tures satisfying certain stated conditions, the answer to the above question is 

““Yes.” For example, S could be the set of vertices of a graph G, and n(T) 

could be the number of edges with both ends in T. Our question would then 

pose the ordinary Reconstruction Conjecture for graphs. The information 

about n(S) would then be redundant in nontrivial cases, by Theorem V.1. 

But with it we would no longer have to admit the existence of a counter- 



124 Reconstruction 

example in the case of two vertices. For the Edge-Reconstruction Conjec- 

ture S would be the set of edges of G, and n(T) would be the number of 

vertices incident with members of 7. 

It would be going too far to assert a Reconstruction Conjecture for 

structures in general. That would imply a Reconstruction Conjecture for 

matroids, one for which nontrivial counterexamples have been given [2]. But 

perhaps we can specify a class of structures that includes those of purely 

graph-theoretical interest, and for which the Reconstruction Conjecture still 

seems plausible. 

EXERCISES 

1. List the primal subgraphs of the 5-arc, the 5-circuit, and the 5-wheel. In 

each case prove that your set of primal subgraphs can be derived from 

one graph only. 

2. Could you reconstruct each graph of Exercise | if you were given only 

one member of each isomorphism class of primal subgraphs? 

3. Can you find a good algorithm for reconstructing a disconnected graph 

G, based on a. discussion of the components of the primal subgraphs? 
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Chapter VI 

Digraphs and Paths 

VI.1. DIGRAPHS 

A digraph T is something like a graph. It is defined by a set V(I) of 

elements called vertices, a set W(T) of elements called directed edges or 

darts, and two relations of incidence. These associate each dart D, the one 

with a vertex h(D) called its head and the other with a vertex t(D) called its 

tail. In this work we shall always suppose V(T) and W(T) to be finite. 

Any dart D will be said to be directed from t(D) and to h(D). It is a 

loop-dart if its head and tail coincide and a link-dart if they do not. The 

invalency inv(T’, x) of a vertex x of I is the number of darts of I having x as 

head. The outvalency outv(T, x) of x is the number of darts of I having x as 

tail. We say that the digraph I is Eulerian if, for every vertex, the invalency 
is equal to the outvalency. 

From the above definitions we can deduce the following formula. 

yy inv(l,x)= > outv(l)x)=|w(T)" (VI.1.1) 
xEV(T) xEV(T) 

Each digraph has an underlying graph U(T) defined as follows: Its 

vertices are the vertices of I and its edges are the darts of I’. The ends of an 

edge of U(T) are its head and tail in I’. 

Let T and A be digraphs. We say that A is a subdigraph of I if 

V(A)CV(T), W(A)Cw(T), 

125 
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and each dart of A has the same head and tail in A as in I. Clearly there is a 

1-1 correspondence between the subdigraphs of I and the subgraphs of 

U(T) such that each subdigraph A of TI corresponds to its own underlying 

graph U(A). 
Suppose we are given a tree T in which one vertex r is distinguished. 

We can construct a digraph [ as follows: We put 

V(T)=V(T) and W(T)=E(T). 

An edge A of T has two end-graphs H and K in T, the components of 7). 

(See Sec. 1.6.) We may suppose r to be in K. We define the head and tail of 

A in T as the ends of the edge A of T in H and K, respectively. This 

completes the definition of I. A digraph [ so defined is called an arbores- 

cence diverging from r. 

Theorem VI.1. Let 1 be an arborescence diverging from a vertex r. 

Then r is the head of no dart of 1, and each other vertex is the head of exactly 

one dart of I. 

Proof. By the definition of an arborescence, U(T) is a tree T. Let v 

be any vertex of I. We can enumerate the edges of T incident with v as 

A,, A>,...,A,, and the arms of T at v as Y,, Y5,..., Y,, so that A; is an edge 

of Y, for each suffix i. (See Sec. III.4.) Here we are supposing T to have at 

least one edge, because otherwise the theorem is trivial. One end-graph of A; 

in T is the union of the arms at v other than Y, if such arms exist, and is the 

vertex-graph defined by v in the remaining case. The other end-graph is 
obtained from Y, by deleting v and 4;,. 

Suppose v = r. By the above observations and the definition of an 

arborescence, r is the tail in l of each of the k edges A,, that is, of each dart 

of I incident with it. In the remaining case, r belongs to just one of the Y,, 

let us say, to Y,. We then find that v is the head of A, and the tail of each 
other A;. The theorem follows. O 

Three examples of arborescences are given in Fig. VI.1.1. Here, and 

in our other drawings of digraphs, we show the underlying graph, with an 
arrow on each edge directed from tail to head. 

Each arborescence in the figure diverges from a vertex labelled r. 

Theorem VI.2._ Let T be a digraph such that U(T) is a tree and no 

vertex is the head of more than one dart. Then T is an arborescence diverging 
from some vertex r. 

Proof. Since U(T) is a tree the number of vertices of I exceeds the 
number of darts by 1, by Theorem I.37. So I’ has one vertex r that is the 
head of no dart, and each other vertex must be the head of exactly one dart. 

Consider any dart A of I. Let its end-graphs in U(T)=T be H and 
K, with r in K. Assume that the end of A in K is the head of A in T. Then 
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FIGURE VI.1.1 Arborescences. 

the number of vertices of K must exceed the number of edges of K by 2. 
Hence, K is disconnected, by Theorem I.31, contrary to its definition as a 
component of 7;. Accordingly, the head of A must in fact be in H. The 
theorem follows. oO 

Theorem VI.3._ Let I’ be an arborescence diverging from a vertex r. 
Let A be a dart of T with end-graphs H and K in U(T), r being in K. Then the 
subdigraph of T corresponding to H is an arborescence diverging from the end 
of A in H, and the one corresponding to K is an arborescence diverging from r. 

Since H and K are trees, by Theorem 1.38, Theorem VI.3 is an 
immediate consequence of Theorem VI.2. 

To reverse a digraph I is to redefine the incidence relations so as to 
interchange the head and tail of each dart. If T is an arborescence diverging 
from r, then its reversed digraph is called an arborescence converging to r. 
The theory of converging aborescences is the same as that of diverging ones, 
with the terms “head” and “tail” interchanged. 

A pairing of a digraph T is a mapping 6 of W(T) onto itself that 
satisfies the following three conditions. 

i) For each AG W(T) the darts A and @A are distinct. 

iil) 6(0A)= A, for each AE W(T). 

ili) The head and tail of A are the tail and head, respectively, of 0A, for each 
AEW(L). 

Not every digraph has a pairing. A digraph I and a pairing 6 of T are said 
to define a paired digraph (T, @). 

A paired digraph (IT, @) has an equivalent graph G defined as follows: 

The vertices of G are the vertices of [T. The edges of G are in 1-1 

correspondence with the unordered pairs of darts of I that are the orbits of 

the permutation @. The ends of an edge of G are the head and tail of each 
member of the corresponding pair. 

There is a converse construction whereby we form from a given 

graph G an equivalent paired digraph (1,6). We associate with each edge E 

of G two distinct elements E* and E™ called the darts on E. Darts associated 
with distinct edges of G are to be distinct. To each dart on E we assign one 
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end of E as head and the other as tail. The head and tail of E* are to be the 

tail and head, respectively, of E~. We now have our paired digraph (T’, @). 

The vertices of T’ are the vertices of G and its darts are the darts on the 

edges of G, with their specified heads and tails. Now @ is the permutation of 

W(T) that interchanges the two darts on each edge of G. Hence (I’, 6) is, by 

definition, an equivalent paired digraph of G. If we start with (T’,@) then G 

is an equivalent graph of this paired digraph. 
We shall use the correspondence between graphs and equivalent 

paired digraphs to deduce theorems about graphs from theorems about 

digraphs. It will not be necessary to go through the definition of an 

equivalent paired digraph anew for each application. Instead, we shall take 

it for granted that, on each edge of any given graph G, we are given the two 

darts E* and E~ with heads and tails as specified above. These define I’ and 

6. We call T the equivalent digraph of G, and @ the pairing of G. Together 

they constitute the equivalent paired digraph (T, @) of G. The darts of I’ can 

be called the darts of G, and their heads and tails in I can be called their 

heads and tails in G, respectively. 
In terms of a diagram of G, the darts E* and E~ represent the two 

directions in which an arrow can be drawn on the corresponding edge-curve. 

Even for a loop there are two such distinguishable directions, and even on a 

loop we suppose two distinct darts to exist. The edge of a dart D of G is the 

edge of G on which D is defined. The two darts E* and E~ on an edge E of 

G are said to be opposites. The opposite of a dart D is often denoted by D~!. 

If H is a subgraph of G, we normally take the darts on an edge of H 
to be the same as in G. We can then say that the equivalent digraph [,, of H 

is a subdigraph of I, and that the pairing 6,, of H is the restriction of @ to 
the set of darts of H. 

An orientation or oriented form of G is a spanning subdigraph of 

having exactly one dart on each edge of G. As with subgraphs, the adjective 

“spanning” indicates that the subdigraph includes all the vertices of I. 

Clearly, if A is an orientation of G, the graphs U(A) and G can be identified. 

More precisely, there is an isomorphism of U(A) onto G that maps each 

vertex onto itself and each edge of U(A), that is, each dart of A, onto its 

edge in G. 

We conclude this section with some simple examples of graph— 
digraph correspondence. 

Theorem VI.4._ Let T be a tree and r a vertex of T. Then T has 

exactly one orientation that is an arborescence diverging from r, and exactly 

one that is an arborescence converging to r. 

Proof. The definition of an arborescence tells us what must be the 
head and tail of the dart to be chosen on any edge A of T. Since A cannot 
be a loop this uniquely determines one of the two darts on A. Oo 
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Theorem VI.5._ Let G be a graph and ra vertex of G. Then there is a 
1—1 correspondence between the spanning trees of G and the spanning arbores- 
cences of its equivalent digraph T diverging from (converging to) r, each such 
arborescence being an orientation of the corresponding tree in G. 

Proof. Let S be any spanning arborescence of [ diverging from 
(converging to) r. Let T be the unique spanning subgraph of G of which S is 
an orientation, that is, whose edges are those of the darts of S. Then U(S) is 
a tree, by the definition of an arborescence, and therefore T is a spanning 
tree of G. 

Conversely, if T is a spanning tree of G, there is a unique orientation 
of T that is an arborescence diverging from (converging to) r, by Theorem 
VI.4. This is a spanning arborescence of I’. O 

VI.2. PATHS 

A nondegenerate path in a digraph I is a sequence 

PCD DISORD. ) (VI.2.1) 

of n> 1 darts D, of I, not necessarily all distinct. It is required that the head 
of D, shall be the tail of D,,, whenever 1 < j <n. The tail of D, is called the 
jth vertex of P. The head of D, is called the last or (n + 1)th vertex of P. 
The first and last vertices of P, that is, the tail of D, and the head of D,, are 
called the origin and terminus of P, respectively. The number n is the length 
s(P) of P. 

It is convenient to recognize also certain degenerate paths in I’. There 
is exactly one of these, denoted by P,,, associated with each vertex v of I; Pe 
has no member darts. We say that its length s(P,) is zero, and v is both its 
origin and its terminus. 

In what follows, a “path” may be either degenerate or nondegener- 
ate. In either case it is said to be directed from its origin and fo its terminus. 

Consider two paths P and Q in. If the terminus of P is the origin of 

Q, there is a path PQ in I’ formed by writing down the terms of P, in their 

order in P, and continuing with the terms of Q, in their order in Q. If P or 

Q is degenerate, we take this to mean that PQ is Q or P, respectively. We 

say that PQ is the product of P and Q, in that order. If the terminus of P is 

not the origin of Q, then no product PQ is defined. If PQ is defined, we 
have 

s(PQ)=s(P)+s(Q). (V2.2) 

Moreover, the origin of PQ is the origin of P and the terminus of PQ is the 
terminus of Q. 
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It is easy to verify that multiplication of paths is associative, but not 

in general commutative. When we write an equation 

P(QR)=(PQ)R 

expressive of associativity, we imply that all the products occurring are 

defined. Here this means that the terminus of P is the origin of Q and that 

the terminus of Q is the origin of R. Associative products of three or more 

terms, in a definite order, may be written without brackets, without ambigu- 

ity. We may speak of a product 

P,P,---P. 
m 

of paths P, (1< j<m). We shall then imply that the terminus of P, is the 

origin of P, ,, whenever 1< j<m. The product is the path formed by 

writing first thie terms of P, in proper order, then those of P,, and so on. Its 

origin is the origin of P, deve its terminus is the terminus of P,,. 

Let v, denote the kth vertex of the path P of Eq. (VI.2.1). If 

l<i< j<n+l, we write P[i, 7] for the path 

Uae Dis1s+ sm 

whose origin is v; and whose terminus is v;. We call it the part of P 

extending from the ith vertex to the jth. We also write P[i,i] for the 

degenerate path on the /th vertex. 

Lety5 51); Daa ecnal gs where q > 2, be integers such that 

kan; opaipSe Vey em 

Then we can write 

q 

Eerdleh lin j+i] 

where the factors are multiplied in the order of 7 increasing. We refer to this 

formula as the factorization of P imposed by the sequence (i), 17,...,/,_,). If 

q = 2 we have the factorization P = P[1,i,]P[i,,1 +1], which we can say is 

imposed by the integer /,. 

We now define some special kinds of path. The path P of Eq. 

(VI.2.1) is reentrant if its origin and terminus coincide. Thus every degener- 

ate path is reentrant. We say that P is dart-simple if no dart is repeated in it. 

It 1s head-simple (tail-simple) if no vertex occurs twice as head (tail) of a 

term of P. It is simple if it is both head-simple and tail-simple. 

A head-simple or tail-simple path is necessarily dart-simple. If a 

tail-simple path is not simple, its terminus must be the head of two of its 
darts. We count degenerate paths as simple. A nondegenerate simple path is 

called a circular path if it is reentrant, and a /inear path if its origin and 
terminus are distinct. 
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The digraph TP) of a path P in T is defined as the subdigraph of [ 
whose darts are those occurring in P and whose vertices are the heads and 
tails of these darts, if P is nondegenerate. For a degenerate path P, we take 
['(P,) to have no darts, and to have the single vertex v. The digraph of a 
circular path is called a directed circuit. The digraph of a linear path with 
origin x and terminus y is called a directed arc from x to y. 

The underlying graph U(P) of a path P of T is the underlying graph 
of its digraph ['(P). If P in Eq. (VI.2.1) is a linear path with origin x and 
terminus y, then U(P) is an arc in U(T) with ends x and y. For it satisfies 
the definition of an are with (0), 0),...,v,,,) as defining sequence of 
vertices and P as defining sequence of edges. If instead P is a circular path, 
then U(P) is a circuit. We can take (v,, Uz,...,0,) aS defining sequence of 
vertices and P as defining sequence of edges. If P is a linear path, it follows 
from Theorem VI.2 that I'(P) is an arborescence diverging from the origin 
of P and converging to its terminus. 

Theorem VI.6. Let P be a path in. Then U(P) is connected. 

Proof. We may suppose P to be a nondegenerate path, as in Eq. 
(VI.2.1), since otherwise the theorem is trivial. 

Assume U(P) disconnected. Let C be a component of U(P) not 
including the terminus of P. Let k be the greatest integer such that the kth 
vertex of P belongs to C. Then D, has its tail in C and its head not in C. So 
C is not detached in U(P), contrary to its definition as a component. O 

As with graphs we write I, CT, to denote that the digraph I, is a 
subdigraph of the digraph I. If, in addition, I’, is distinct from T’,, we call 
I’, a proper subdigraph of IT, and write T, CT). 

Theorem VI.7. Let x and y be distinct vertices of a digraph T. Then 
there exists a linear path P from x to y in if there is any path Q from x to y 
in T’. Moreover, we can choose P so that 1(P) C1(Q) and s(P) <s(Q), with 
equality only if Q is linear. 

Proof. If Q is not linear, there is a repeated head or repeated tail. 

Hence Q = P,P, P;, where P, is reentrant and nondegenerate. But now P,P, 
is a path from x to y in I such that P'(P,P;) CT(Q) and s(P,P;) < s(Q). If 

P, P; is not linear, we repeat the process, and so on, to termination. We then 
have the required path P, and s(P) <s(Q). If Q is linear, we putP=Q. O 

Theorem VI.8._ Let I be an arborescence diverging from a vertex r. 

Let v be any vertex of 1. Then there is just one path P., in T from r to v, and 

P.,, is either degenerate or linear. Moreover, any path in T is a factor of some 

path P..,. 

Proof. By the definition of a diverging arborescence, the (+ 1)th 

vertex of any path P in I’ determines the jth dart (7 =1,2,...). Hence P is 
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uniquely determined when its origin and terminus are given. (See Theorem 

VI.1.) So by Theorem VI.7, P is either degenerate or linear. 

Let X be the set of all vertices of I to which there is a path in I’ from 

r. Let H be the subgraph of U(T) induced by X. Then H is connected, by 

Theorem VI.6 and I.25. Suppose U(T) to have an edge D with one end a in 

X and one end b outside X. One end-graph of D in U(T) contains H and so 

includes both a and r, by Theorem 1.24. So in T we have a=1r(D) and 

b =/h(D), by the definition of a diverging arborescence. This contradicts the 

definition of H, for the product P.,(D) is a path from r to b. Hence 

H =U(T), by the connection of U(T). (See Theorem I.21). Hence v is in X 

and the path P,,, exists. 
To complete the proof, let P be any path in I, say from u to v. By 

the foregoing results, the product P., P must be identical with P,,,. Oo 

The structure BIk,(G, A) of Sec. IV.3, though described there as a 

graph, is best regarded as an arborescence diverging from the leading 
3-block of G, for is not Fig. IV.3.8 a drawing of an arborescence? A virtual 

edge A is a dart, an outlet of its tail in BIk,(G, A) and the intake of its head. 

More than one kind of connection is recognized for digraphs. A 

digraph I is said to be strongly connected if, for any ordered pair (x, y) of 

vertices of I’, there is a path in T from x to y. If we can only say of such a 

pair that there is a path either from x to y or from y to x, then we say only 

that I’ is connected. Let us say also that [ is graph-connected if U(T) is 

connected. Thus an arborescence diverging from r is graph-connected. But 

in general it is not connected and a fortiori not strongly connected, for there 

can be no path in it joining two monovalent vertices of U(I) neither of 

which is r. It is clear, however, that a directed arc is connected though not 

strongly connected, and that a directed circuit is strongly connected. 

Let us now consider a graph G with its equivalent digraph I and its 

pairing @. Paths in I are called also paths in G. A path in G is edge-simple if 
no two of its terms are darts on the same edge of G. Thus an edge-simple 

path is necessarily dart-simple. The graph G(P) of a nondegenerate path P 

in G is the reduction of G defined by the edges to which the darts of P 

belong. The graph G(P,,) of a degenerate path P,, is the vertex-graph defined 

by v. In any case, G(P) is obtained from I'( P) by replacing its darts by the 

edges on which they are defined. If '( P) has at most one dart on each edge 
of G, then I'(P) is an orientation of G(P). 

From the definitions of arc and circuit we have the following rules. 

Theorem VI.9. A subgraph H of G is an arc with ends x and y if and 
only if H=G(P), where P is a linear path in G from x to y. 

Theorem VI.10. A subgraph H of G is a circuit if and only if 
H =G(P), where P is an edge-simple circular path in G. 
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The requirement in Theorem VI.10 that P be edge-simple is redun- 
dant unless s( P) = 2. But the two darts D and D~! on any link of G define a 
circular path (D, D~') that is not edge-simple. The graph of this path is not 
a circuit but a link-graph. 

Theorem VI.11. If P is a path in G then G(P) is connected. 

To prove this we use the argument of Theorem VI.6 with GCP) 
replacing U(P). 

Theorem VI.12._ If G is connected, then T is strongly connected, by 
Theorems V1.9 and 1.43. 

Given a path P in G from x to y we can construct a path P~'inG 
from y to x by writing the terms of P in reverse order, and then replacing 
each by its opposite. We call P~! the inverse of P. Clearly, inverse paths 
satisfy the following rules: 

(P|) =P, (Poy ‘=o71P-!. (VI.2.3) 
We shall often make use of the following combination of Theorems 

VI.9 and I.43. 

Theorem VI.13. Two distinct vertices x and y of a graph G belong to 
the same component of G if and only if there is a linear path in G from x to y. 

V1.3. THE BEST THEOREM 

We have defined an Eulerian digraph in Section 1. A graph is called 
Eulerian if each vertex has even valency. An Eulerian path in a digraph I is 
a reentrant dart-simple path P such that ['(P)=I. An Eulerian path in a 

graph G is a reentrant edge-simple path P such that G(P)=G. Thus the 
Eulerian paths of G are the Eulerian paths of the orientations of G. 

Theorem VI.14. If a digraph T has an Eulerian path P, then T is 
strongly connected and Eulerian. 

Proof. Let x and y be distinct vertices of T. We can adjust the 

notation so that P = P, P, P,, where P, has origin x and terminus y. But then 
P, is a path from x to y and P,P, is a path from y to x. We deduce that T is 
strongly connected. 

It is clear that the number of darts in P having a given vertex v as 

head is equal to the number having v as tail. Thus inv(T, v) = outv(T, v). 

Accordingly, I’ is Eulerian. 0 

Theorem VI.15. If a graph G has an Eulerian path P, then G is 

connected and Eulerian. 
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Proof. Gis connected, by Theorem VI.11. P is an Eulerian path in 

an orientation A of G, and A is Eulerian, by Theorem VI.14. We thus have 

val(G, v) = inv(A, v)+outv(A, v) = 2inv(A, v) for each vertex v of G. Thus 

G is Eulerian. oO 

Theorems VI.14 and VI.15 have converses, and the converse of 

Theorem VI.14 is the main theorem of this section. The converse of 

Theorem VI.15 was studied by Euler, in a paper which is held to mark the 

beginning of graph theory [6]. 

Theorem VI.16. Let G be an Eulerian graph with at least one edge. 

Then G-E(G) is a union of edge-disjoint circuits. 

Proof. If a component C of G has an edge, it is not a tree, by 

Theorem I.40. Hence G contains a circuit J,, by Theorem 1.45. The graph G, 

obtained from G by deleting the edges of J, is Eulerian. It therefore contains 

a circuit J,, unless it is edgeless. Proceeding in this way, we obtain a 

sequence J,, J>,...,J, of edge-disjoint circuits of G whose union is G- E(G). 

O 

Theorem VI.17._ Every Eulerian graph has an Eulerian orientation. 

Proof. We may suppose our graph G to have an edge, since other- 

wise the theorem is trivial. Consider the sequence of circuits J; derived in 

Theorem VI.16. Each is the graph of an edge-simple circular path P; in G, 

by Theorem VI.10. The darts of these circular paths define an Eulerian 

orientation of G. oO 

Theorem VI.18._ Let T be a digraph, and let r be a vertex of Y. Let 

there be a path in T from r to each other vertex. Then I has a spanning 

arborescence diverging from r. , 

Proof. Let us say that a sequence S=(vp,0,,...,0,) Of distinct 

vertices of I has property P if vy =r and, for each other vertex v; of S, there 

is a dart D, of I such that A(D,) = 0, and ¢(D,) is a vertex v; of S such that 

i < j. Suppose that we have such a sequence S and that u is a vertex of I 
that does not belong to it. By hypothesis, there is a path in T from r to u. 

This path must include a dart D, , , such that ¢(D,,) isin S but h(D,, ,) is 
not in S. By adjoining h(D,,,) to S as a new last vertex v,,, we obtain a 
sequence S’ of (k +2) distinct vertices of I, still with property P. 

By starting with S=(r) and repeatedly applying the above proce- 

dure, we arrive at a sequence Z=(vp, v),...,0,) with property P that 

enumerates all the vertices of I. The corresponding darts D,, D,,...,D, 

define a spanning subdigraph A of T. Moreover, U(A) is connected, by 

repeated application of Theorem 1.25. Hence U(A) is a tree, by Eq. (1.6.1). 

Accordingly, A is an arborescence diverging from r, by Theorem VI.2. oO 
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Theorem VI.19. Let r be a vertex of a digraph T. Let P be an 
Eulerian path from r to r in Y. For each vertex x of I’, other than r, let D, be 
the first dart of P having x as head. Then the darts D,. are those of a spanning 
arborescence A of T diverging from r. 

Proof. Consider the sequence Z of vertices of T starting with r and 
continuing with the heads of the darts D,, in the order of those darts in P. 
Then Z is an enumeration of the vertices of P “with property P” as defined 
in the proof of Theorem VI.18. It follows, as in that proof, that the darts D. 
define the required arborescence. Oo 

We call A the residual arborescence of the Eulerian path P. 
Let us now consider an Eulerian digraph I’, a vertex r of T, and a 

spanning arborescence A of I diverging from r. Let the vertices of T be 
enumerated as v9, 0),...,0,, Where vy =r, and let the invalency and outva- 
lency of v; be n,, for each j. For each vertex v; let there be given an ordering 
of the n, darts with head v;, the one in A being put last when j + 0. The 
number N of ways of so ordering the darts of I is 

N=noTI (n,;-1)!. (VI.3.1) 

We now construct a sequence 

R= (D, Wy) 
of darts of I by the following rules. D, is the first dart with head at r in the 
dart-order at r. Having constructed the sequence as far as D, we define D,., 
as the first dart not already chosen, if such exists, in the dart-order at t(D,). 
We note that if t(D;) is not r, then the dart D,,., exists. For up to and 
including D,, the sequence. R includes one more dart with tail at t(D) than 
with head at ¢(D), and T is Eulerian. We deduce that R terminates with a 
dart D,, having r as its tail, that its terms are all distinct, and that it includes 
all the darts incident with r. It is not a path in I, for its darts have their 
heads and tails in the wrong order. It is, however, a path in the reverse of I. 

Let us say that a vertex x of I is filled if all its incident darts are in 
R, and is unfilled otherwise. Assume that at least one unfilled vertex exists. 
Then there is a shortest path S in A whose origin is r and whose terminus f 
is unfilled. (See Theorem VI.8.) Considering the factors of S with origin r, 

we see that all the vertices of S except the last are filled. But R does not, by 
its construction, include the last dart of S. Hence the last vertex but one of 
S is unfilled. From this contradiction we deduce that in fact all the vertices 
of I are filled. So by taking the terms of R in reversed order, we obtain an 

Eulerian path from r to r in I, with A as its residual arborescence. 
For each set of dart-orders the above construction determines such 

an Eulerian path uniquely, and different sets of dart-orders give different 

Eulerian paths. On the other hand we can find a set of dart-orders that 
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determines any given Eulerian path P having A as its residual arborescence. 

We have only to take the darts with heads at a vertex x in the reverse order 

of their appearance in P. We can now assert the following theorem. 

Theorem VI.20. Let r be a vertex of an Eulerian digraph T, and let A 

be a spanning arborescence of T diverging from r. Then the number of 

Eulerian paths from r to r in having A as residual arborescence is the number 

N of Eq. (V1.3.1). 

Theorem VI.21. Let r be a vertex of a strongly connected Eulerian 

digraph T. Then T has at least one Eulerian path from r to r. 

This converse of Theorem VI.14 is a consequence of Theorems VI.18 

and VI.20. 
For any digraph I’, whether Eulerian or not, let us denote by 7’(T) 

the number of spanning arborescences of I diverging from the vertex r, and 

by 7,(I) the number of spanning arborescences of I converging to r. 

We can now give the number of Eulerian paths from r to r in an 

Eulerian digraph I as 

N.T'(L), 
by Theorem VI.20. We can get a neater expression by introducing the 

notion of an Eulerian tour. 
We define a four in a digraph I as a cyclic sequence C of distinct 

darts of I such that the head of each member of C is the tail of its successor. 

The tour is Eulerian if it includes all the darts of I. 
Now let I be an Eulerian digraph in which no outvalency is zero 

(and in which V(T) is nonnull). Then from each Eulerian path in T we can 

derive an Eulerian tour in which the first dart of the path is the successor of 
the last. Conversely, given an Eulerian tour C of I and a dart D of I, we 

find that there is a uniquely determined Eulerian path P of I that starts with 

D and continues with the terms of C in order until it ends with the 

predecessor of D in C. We then say that P belongs to C. Thus, the number 

of Eulerian paths belonging to C and having a given vertex r as origin is the 

outvalency of r. We note also that each Eulerian path in [ belongs to some 

Eulerian tour. Applying these results to Theorem VI.20, we arrive at the 

following theorem. 

Theorem VI.22._ Let r be a vertex of an Eulerian digraph T in which 

no outvalency is zero. Let C(I) denote the number of Eulerian tours of I. 

Then, in the notation of Eq. (V1.3.1), 

q 
Cir) = [1 (ajoa)in(r). (VI.3.2) 

Theorem VI.23. Let 1 be a nonnull Eulerian digraph. Then there 

exists an integer T(I’) that is equal to T'(1) and T,(T) for each vertex r of Y. 
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Proof. Suppose first that some vertex r of I’ has zero outvalency and 
therefore zero invalency. If I has any other vertex, it can have no spanning 
arborescence of any kind. The theorem then holds, with 7(T) = 0. If I’ has 
no other vertex the theorem is still true, with 7T(T)=1. In the remaining 
case we apply Eq. (VI.3.2), noting that the expression on the left is 
independent of r. We find that T'(1) has the same value for each r. Now 
the Eulerian tours of the reverse of I’ are those of I with the cyclic orders of 
their terms reversed. So, by applying Eq. (VI.3.2) to both I and its reverse, 
we find that T’(T) = 7,(T) for each vertex r. O 

We call 7(I’) the tree-number of I. We can restate Theorem VI.22 in 
terms of 7(T) as follows: 

Theorem VI.24. Let T be a nonnull Eulerian digraph in which no 
outvalency is zero. Let the vertices of T be enumerated as 09, V1,-.+,0g5 and let 
the outvalency of v; be n;. Then 

C(P)= I (n,—-1)!7(T). (VI.3.3) 

This result is known as the BEST Theorem. In this acronym, B and E 
stand for N. G. de Bruijn and T. van Aardenne-Ehrenfest, who published 
the theorem in 1951. [1] The S and T stand for C. A. B. Smith and W. T. 
Tutte, who solved the special case in which each n , 18 2 in 1941 [11]. They 
are also associated with the Matrix-Tree Theorem, which gives a formula for 
1cens 

We have still to prove a converse of Theorem VI.14. 

Theorem VI.25._ Let G be a connected Eulerian graph. Then it has at 
least one Eulerian path. 

Proof. In a nontrivial case G has an edge, and therefore a circuit 
and a circular path, by Theorem VI.10 and VI.16, this path being edge- 
simple. Hence there exists in G an edge-simple reentrant path P of maxi- 
mum length s(P). Let H be formed from G by deleting the edges with darts 
in P. If possible choose a component C of H having at least one edge. 

By connection some vertex v of C is incident with a dart of P. 
Clearly, C is Eulerian. Hence by Theorem VI.16 there is an edge-simple 
circular path J in C from v to v. But we can write P = QR, where Q has 

terminus v. Then QJR is an edge-simple reentrant path in G whose length 

exceeds s(P). This contradiction shows that H is edgeless. Hence P is an 

Eulerian path in G. Oo 

The combination of Theorems VI.14 and VI.25 is called Euler’s 

Theorem. 
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V1.4. THE MATRIX-TREE THEOREM 

The theory of this section is based on the following characterization of 

diverging arborescences. 

Theorem VI.26. Let r be a vertex of a digraph T and let A bea 

spanning subdigraph of T. Then in order that A shall be an arborescence 

diverging from r, it is necessary and sufficient that the following conditions 

shall be fulfilled: There must be no circular path in A, the invalency of rin & 

must be 0, and the invalency of every other vertex in A must be 1. 

Proof. Let A be a spanning arborescence of I’ diverging from r. 

Then A satisfies the conditions, by Theorems VI.1 and VI.8. 

Conversely, let A be a spanning subdigraph of I satisfying the stated 

conditions. Let v be any vertex other than r. We construct a sequence 

(D,, D,...) of darts of A such that v = A(D,) and t(D,_,) = A(D,) whenever 

j > 1. If this sequence can be continued to a dart D, with tail r, then by 

reversing its terms we obtain a path in A from r to v. If this has not 

happened within |V(T)| steps, there must be a first dart D, having the same 

tail as some preceding dart, say D,. But then A has the circular path 

(D,,, Dy \s-»+»Dj+1), which is impossible. 

By Theorems VI.6 and 1.25, U(A) is connected. The conditions imply 

that |V(A)|=|W(A)| +1. Hence U(A) is a tree. Hence A is a spanning 

arborescence of I diverging from r, by Theorem VI.2. Oo 

Now let I be any nonnull digraph. With each dart D of I we 

associate a conductance c(D). Usually we can take c(D) to be a real or 

complex variable. More algebraically, we can define it as an indeterminate 

over the ring of integers. If A is any subdigraph of I’, we write II(A) for the 
product of the conductances of the darts of A. If A has no darts, we write 

IT(A)=1. 
We enumerate the vertices of I as v,, v),...,v0,. We define ann Xn 

matrix K(I’), called the Kirchhoff matrix of I, as follows. The ith diagonal 

entry k;; is the sum of the conductances of the link-darts with v, as head. 
The entry k,, in the ith row and jth column, where i + /, is minus the sum 

of the conductances of the darts with head ov, and tail v,. We note that 
loop-darts are ignored in the construction of K(I). From these definitions 

we have 

Pee = Os (VI.4.1) 
dj} 

det K(T) =0. (VI.4.2) 

If r is any vertex of I, we write K,(I°) for the submatrix of K(T) 

obtained by striking out the row and column corresponding to r. Let us 

investigate the expansion of det K,(I’) on the assumption that r = v,. 
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By the definition of a determinant, we can write, if n > l, 

det K (T)= > A Be Silas Kins, (VI.4.3) 
bs: 5 a Ss 

where (a, b,...,5) is any permutation of (1,2,...,n — 1) and N(ab---s) is 1 
or —I1 according as this permutation is even or odd. Let us call each 
product k,,k»,°+-k,,—), an initial product of our expansion. It can be any 
product of (m —1) entries in K,(T) with one factor from each row and one 
from each column. 

A given initial product can be written as PQ, where P is the product 
of its factors k,, from the diagonal of K,(I'), and Q is the product of its 
nondiagonal factors. If Q is not an empty product, it can be resolved 
uniquely into factors called cycles. A cycle is a product of the form 
Kapkpykys***Ky»kyq, Where the integers a, B,...,u,» are all distinct. For 
any initial product X let the number of cycles be g( X) and the number of 
cycles of even length qo(X). It is found that the coefficient (ab: - +s) of X 
is 1 or —1 according as go( X) is even or odd. 

Let us now suppose that each k,, is written in terms of the conduc- 
tances and that det K,(I) is then further expanded as a linear combination 
of products of conductances. We then have 

det K,(T) = 5 M(A)TI(A), (VI.4.4) 
A 

where A can be any spanning subdigraph of I, and N(A) is an integer 
whose value we must now investigate. 

Now each product II(A) corresponds to one or more of the initial 

products X if N(A) is nonzero. The correspondence means that we can form 

the product II(A) by taking exactly one conductance from each factor k;, jof 

X. For this to be possible the invalency of r in A must be zero, and the 

invalency of any other vertex in A must be 1. So from now on we may 

suppose the sum in Eq. (VI.4.4) to be restricted to spanning subdigraphs A 

satisfying these conditions. We describe the above correspondence by saying 
that II(A) is picked out of X. 

Let X,, an initial product, be the product of the diagonal elements of 

K,(1). Every I1(A) occurring in Eq. (VI.4.4) can be picked out of Xp. If 

II(A) is picked out of any other X, then the conductances taken from any 

one of its cycles must correspond to the darts of a circular path in A. We 

deduce from Theorem VI.26 that if A is an arborescence diverging from r, 

then II(A) can be picked out only from X,. This implies that N(A) = 1. 

In the remaining case, A has at least one circular path. Then II(A) 

can be picked out of an initial product X if and only if each cycle of X 

corresponds to a circular path in A. Now the circular paths in A determine 

t>O distinct tours such that the corresponding vertex-sets are disjoint. 

These define a set T of t possible cycles such that II(A) can be picked out of 
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X if and only if the cycles of X constitute a subset of 7. In particular, X may 

be X,. Suppose such an X to have j cycles. Since conductances taken from 

nondiagonal entries in K,(I.) come with a negative sign, the contribution of 

X to the coefficient N(A) in Eq. (VI.4.4) is (—1)/. But there is just one X 

whose cycles are any given j elements of T. Accordingly, 

N(A) = 2 (em -a=n'<o 

We conclude that Eq. (VI.4.4) remains valid when A is restricted to be 

a spanning arborescence of I diverging from r, and each N(A) is set equal 

to. 
Let us now consider the effect of changing from one enumeration of 

the vertices of T to another. Then in each of the matrices K(T) and K,(T), 

the rows are permuted and the same permutation is applied to the columns. 

So the determinants of these matrices are unchanged. Hence the validity of 

Eq. (VI.4.4) in its new restricted form is not really dependent on r being v,,. 

We may summarize our results as follows. 

Theorem VI.27 (The Matrix-Tree Theorem). Jf r is a vertex of a 

digraph Y, and if K(1) is defined in terms of an arbitrary enumeration of the 

vertices, then 

det K (T) =) T1(A), (VI1.4.5) 
A 

where the sum is over all spanning arborescences A of T diverging from r. 

Strictly we have proved this only for the case n > 1. We can make it 
true when n =1 by postulating that the determinant of a 0X0 matrix is 1. 

Consider the effect of substituting the value 1 for each conductance 

c(D). The Matrix-Tree Theorem tells us that 

T’(T)=det K,(T). (VI.4.6) 

Moreover, by applying Eq. (VI.4.6) to the reverse digraph I’ of I’, we have 

T.(T) = det K,(T’). (VI.4.7) 

Thus the numbers T7’(I) and 7,(1) can be found by evaluating determi- 

nants. 

Even with general conductances, there is a close resemblance be- 

tween the matrices K(I°) and K(I’). The first can differ from the transposed 

matrix of the second only in its diagonal elements. In K(T) the diagonal 

terms are chosen to make the row-sums vanish, as asserted by Eq. (VI.4.1); 

in K(I’), transposed, they are chosen to make the column-sums vanish. The 

matrix K(I’) is identical with the transpose of K(I’) if and only if the 

conductances are restricted to satisfy the following condition. For each 
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vertex v,; the sum of the conductances of the link-darts with heads at v, is 
equal to the sum of the conductances of the link-darts with tails at v;. 

For unit conductances this condition is satisfied when TI is Eulerian. 
Then, from the fact that K(T) is the transpose of K(T’), we can deduce 
from Eqs. (VI.4.6) and (VI.4.7) that T(T)=T'(T). Indeed from these 
equations and the elementary theory of determinants, we can prove the 
whole of Theorem VI.23. This is done, for example, in [12]. The Matrix-Tree 
Theorem, combined with Theorem VI.23, gives us the following rule. 

Theorem VI.28. Let T be a nonnull Eulerian digraph. Then we can 
find its tree-number T(T) by constructing the Kirchhoff matrix K(1) with unit 
conductances, striking out from it any row and the corresponding column, and 
evaluating the determinant of the resulting matrix. 

Let us derive a corresponding theory for graphs. Now we associate a 
conductance c(A) with each edge A of a nonnull graph G. We enumerate 
the vertices of G as 0), v),...,v, and define a Kirchhoff matrix K(G) of G as 
follows: The ith diagonal entry k,, is the sum of the conductances of the 
links incident with v;. The entry k, ; mm the ith row and jth column, where 
i+ j, is minus the sum of the conductances of the edges joining v, and v,. 
We observe that K(G) is a symmetric matrix. We have 

Lk; =0, Lk, =0, (VI.4.8) 
J i 

det K(G) =0. (V1.4.9) 

For any vertex r of G we write K,(G) for the submatrix of K(G) obtained 
from it by striking out the row and column corresponding to r. 

Consider G in relation to its equivalent digraph I. We assign to each 

dart on an edge A the conductance c(A) of A. This makes the matrices 

K(G) and K(T) identical. 

For any subgraph H of G we write II(#/) for the product of the 

conductances of the edges of H. We can now combine Theorems VI.5 and 

VI.27 to obtain the following theorem. 

Theorem VI.29 (The Matrix-Tree Theorem for graphs). Jf r is a 

vertex of a graph G, and if K(G) is defined in terms of an arbitrary 

enumeration of the vertices, then 

det K,(G) = )-11(T), (VI.4.10) 

where the sum is over all spanning trees T of G. Thus for unit conductances, 

det K,(G) = T(G). (See Sec. II.2.) 

The next result is a famous theorem of Cayley [5]. 
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Theorem VI.30. Let G be an n-clique, with n > 2. Then 

T(G) =n? (VI.4.11) 

Proof. In K,(G), each diagonal entry is (n — 1), and each nondiago- 

nal entry is — 1. Subtracting the first row from each of the others and then 

dividing each of the (n —2) rows other than the first by n, we obtain a 

matrix M with the following structure: Its first row is that of K,(G). In each 

other row, the first element is — 1, the diagonal element is 1, and each other 

entry is zero. Adding each other row of M to the first, we obtain a matrix 

whose determinant is obviously 1. The theorem follows. 0 

VI.5. THE LAWS OF KIRCHHOFF 

We continue with the theory of a nonnull digraph [ with a conductance 

c(D) assigned to each dart D. We will refer to the subdigraphs of a digraph 

A corresponding to the components of U(A) as the components of A. We call 

A a multiple diverging arborescence if each of its components is an arbores- 

cence diverging from a vertex. If the number of components is 2 or 3, we 

can speak instead of a double or triple arborescence. 

We shall use symbols such as the following. 

S = (abc, defg,h, ij,...,yz). (VI.5.1) 

Between the angular brackets we have k groups of letters separated by 

commas. S denotes a sum of conductance-products II(A) over spanning 

k-tuple diverging arborescences A of I’. The letters refer to vertices of I. 

Such a A contributes to the sum S if and only if its components can be 

ordered so that the qth one includes all the vertices of the qth letter-group 

of S and diverges from the first of them. Usually we shall be interested only 

in such simple cases as (a, b) and (ax, by). The first of these is the sum of 
the conductance-products of the double arborescences diverging from a and 

b, and spanning I. The second is defined similarly except that the compo- 

nent of the double arborescence diverging from a must include x and the 

other component must include y. 

We now take note of some rules for operating with the symbols S of 
Eq. (Vi5:1), 

Theorem VI.31. If some vertex v appears in two distinct letter-groups 

of S, then S = 0. If some vertex w appears twice in the same letter-group of S, 

its second appearance there can be deleted without changing the value of S. 

Theorem VI.32. Let v be any vertex of T. Let S;(v) denote the 
symbol formed from S by adjoining v to its jth letter-group as the new last 



The Laws of Kirchhoff 143 

letter. Then 

k 
S= )) S(v). (VI.5.2) 

j=l 

The results follow immediately from the definitions, plus the observation for 
Theorem VI.32 that v must belong to some component of each spanning 
subdigraph of I. 

For any vertices a, b, x, y of T, we write 

[ ab, xy] = (ax, by) —(ay, bx). (VI.5.3) 

We call [ab, xy] a transpedance of I. A transpedance of the form [ab, ab] is 
called an impedance. From Theorem VI.31 and the definition (VI.5.3), we 
have the following identities. 

[aa, xy] = [ab, xx] =0, (VI.5.4) 

[ab, xy] = —[ba, xy] =—[ab, yx], (VE.5%5) 

[ab, ab] =<a,b). (VI.5.6) 

By Theorem VI.32 we have 

(ax, b) = (axy, b) + (ax, by) 

and 

(ay, b) = (axy, b) + (ay, bx). 

Hence Eq. (VI.5.3) can be rewritten as 

[ab, xy] = (ax, b)—<ay, b). (VI.5.7) 

Theorem VI.33 (Kirchhoff’s Second Law). The transpedances of T 
satisfy the transitive identity 

[ab, xy]+[ab, yz]=[ab,xz], by (VI.5.7). (VI.5.8) 

Theorem VI.34 (Kirchhoff’s First Law). The transpedances of T 

satisfy the identity 

dL [ab, 1(D) y]e(D) = (a)8(b, y)—(b)8(a, y), — (VIS.9) 

where the sum is over all darts D of T such that h(D)= y. 

Here (a), for example, is one of the symbols S of Eq. (VI.5.1). Its 

contributors are the spanning arborescences of I’ diverging from a. Here 

6(b, y) is 1 if b= y, and 0 otherwise. Loop-darts make zero contributions to 
the sum, by Eq. (VI.5.4). 

Proof. We may suppose a = b, for otherwise Eq. (VI.5.9) is trivial. 
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By Eq. (VI.5.3) we can write the sum ¥ on the left of Eq. (VI.5.9) as 

P — Q, where 

P=S(at(D),by)c(D),  Q= Lay, bt(D))c(D).  (VI.5.10) 

Consider first the case y = b. Then by Theorem VI.31, 

b= P=) (at(D), b)c(D). 
D 

If, to a double arborescence A contributing to (at(D), b), we adjoin the 

extra dart D, we obtain a spanning arborescence of I’ diverging from a, by 

Theorems VI.2 and IV.28. Conversely, if we have such a spanning arbores- 

cence it will have just one dart with its head at b by Theorem VI.26, and the 

deletion of D from it will give a contributor A to (at(D), b). We conclude 

that in this case L = P = (a). (See Fig. VI.5.1.) 
To deal with the case y = a, we have only to interchange a and b in 

the above argument, for 

(ay, bt(D)) = (bt(D), ay), 
by the definition of the symbols S. We find L=—-Q=-—(b). 

In the remaining case, y is neither a nor b. Any contributor T to 

(at(D), by) has two components, X diverging from a and including ¢(D), 

and Y diverging from b and including y. There is just one dart E in Y with 

its head at y. If we delete E from y, we decompose Y into two arborescences, 

Y, diverging from b and including ¢(£), and Y, diverging from y, by 

Theorem VI.3. If we now adjoin D we unite X and Y, into a single 
arborescence, diverging from a and including y. (See Fig. VI.5.2.) In this 

way we convert 7 into a contributor 7’ to (ay, bt(£)). Another way of 

putting this is to say that we have transformed a contributor T to P into a 

FIGURE VI5.1 
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FIGURE VL.5.2 

contributor 7” to Q. The same procedure applied to contributors to QO 
changes them into contributors to P, reversing the preceding transforma- 
tion. We deduce that there is a 1-1 correspondence between the contribu- 
tors to P and those to Q, under which corresponding double arborescences 
make equal contributions to P and Q. So in this case Y = P — Q = 0. This 
completes our verification of Eq. (VI.5.9). Oo 

It is true that Theorems VI.33 and VI.54 are not quite the same as 
Kirchhoff's Laws for ordinary electrical networks, though we hope to 
exhibit them soon as a simple generalization. Nevertheless, it is now 
convenient to introduce some more “electrical” terminology. 

Let us say that the distinct vertices a and b of T are chosen as 
positive and negative poles, respectively. It follows from Theorem VI.33 that, 
with respect to this choice of poles, we can associate a potential V(x) with 
each vertex x so that 

[ab, xy] =V(x)-V(y) (VI.5.11) 

for all choices of x and y. A potential can be chosen arbitrarily at one vertex 

in each component of I’. The remaining potentials are then fixed by the 

transpedances, by (VI.5.11). Accordingly, we may speak of a transpedance 

[ab, xy] as the fall of potential from x to y, with the given poles. 

The current in a dart D, with the given poles, is defined as 

[ab,t(D)h(D)]c(D). 

It is always zero if D is a loop-dart. The First Law says that the sum of the 

currents in the darts with a given head x distinct from a and b is zero. The 

corresponding sums at a and b are — (b) and (a), respectively. To balance 

the currents at these vertices, we say that a current (b) enters I’ at a and 

that a current (a) leaves it at b. We note that the current entering at a is 
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not, in general, equal to that leaving at b, a departure from the usual 

electrical rule. 

There is an extension of the Matrix-Tree Theorem expressing trans- 

pedances as determinants. We can substitute Eq. (VI.5.11) in Eq. (V1.5.9) to 

get the following linear equations for potentials: 

LX (V(t(D))—V(y))e(D) = (ay 8(b, y)—(b)8(a, y). 
D 

Let us rewrite this in the notation of Sec. VI.4: 

Lk, V(y) = (b)8(a,v,)—(a)8(b,v,), (i= 1,2,...,n).  (VI-S.12) 

To simplify the discussion, let us put a= v, and b= v,. We are free 

to reduce the number of unknowns by writing V(v,) = 0. Correspondingly, 

we set aside the nth equation. We now have (n —1) linear equations in 

(n — 1) unknown potentials, the matrix of our equations being K,(I°). These 

equations have a unique solution if det K,(I’) = 0. Whether we take general 

or unit conductances, this happens if [ has a spanning arborescence 

diverging from b, by Theorem VI.27, and therefore, if there is a path in [ 

from b to each other vertex, by Theorem VI.18. Then by Cramer’s Rule, 

V(v;) is the cofactor of k,, in K,(1), if in. 

Consider for example the digraph shown in Fig. VI.5.3. Taking a and 

b to be the vertices numbered 1 and 4, respectively, and using unit 

conductances, we have 

] 0 Ge =] 
As 1 1 0 0 

OL) hese 1 Pio) 
OlveIhest 2 

By the Matrix-Tree Theorem 

1 Cee 1 0 0 

(ay=|-1 2 Of=4, (b)=|/-1 1 Of=2. 
edad idowe2 ade tanls tc 

' 4 

3 

FIGURE VI.5.3 
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Since (b) is nonzero, we can calculate our potentials by the rule given 
above. Thus, 

V(ay=|_} 9[=2,  V(e)=-[ 7} Sma, 

V (v5) =| - _t|-2, V(b) =0. 

Any required transpedance, with the chosen poles, can now be found 
from Eq. (VI.5.11). With such a simple diagram it is easy to verify Eq. 
(VI.5.3) and the Matrix-Tree Theorem directly. The corresponding distribu- 
tion of currents in I’ is shown in Fig. VI.5.4. 

We note that there is a current of magnitude 2 entering at a= v,, 
and one of magnitude 4 leaving at b = 0,. 

It seems natural to divide the currents of Fig. VI.5.4 by their 

common factor 2. Currents as defined above, with the chosen poles, are 

often said to constitute the full flow from a to b. If they are all multiplied by 

a constant, the result is still called a flow from a to b, and the multiplied full 

currents are called the “currents” of this flow. When the full currents are 

integers, division by their highest common factor gives the reduced flow from 
a to b. 

Consider the special case in which I is Eulerian, with unit conduc- 
tances. If 7(I) is nonzero, Eq. (VI.5.12) has a unique solution for any 

choice of poles. Moreover, the current entering at the positive pole is equal 

to that leaving at the negative. (See Theorem VI.23.) We note that T(T) is 

nonzero if and-onty+f- is strongly connected, by Theorems VI.14, VI.18, 

and VI.20. There are some interesting relations between the full flows in T° 

and those in its reversed digraph I’. We have 7(I’)=7 (1), by Theorem 

VI.23. Since K(T’) is the transpose of K(I’), an impedance [ab, ab] has the 

same value in I’ as in T. 

We next derive an analogous theory for a graph G in which each 

edge A has an associated conductance c(A). We enumerate the vertices as 

V), 0>,-.-,U,- The symbol S of Eq. (VI.5.1) with its k letter-groups, now 

FIGURE VIL.5.4 
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denotes a sum of conductance-products of spanning subgraphs of G, each 

with just k components. Such a subgraph contributes to the sum if and only 

if its components can be ordered so that the qth one includes all the vertices 

of the gth letter-group, for each q. 

Consider the equivalent digraph I of G. As in Sec. VI.4, we give to 

each dart on an edge A the conductance c( A) in I’. The theories of I and G 

can be related by the following observation: 

Theorem VI.35. The symbol S of Eq. (V1.5.1) has the same value for 

T as for G. 

Proof. A contributor to S for I’ is an orientation of a contributor to 

S for G, and the two contributors have the same conductance-product. 

Moreover, a contributor for G has a uniquely determined orientation as a 

contributor for [, by Theorem VI.4. 0 

We now define the transpedances and potentials of G as the corre- 

sponding transpedances and potentials of [. We have already seen that G 

and I have the same Kirchhoff matrix. For both G and I we have the same 

algebra, based on the same symbols S. It is only the interpretation of these 

symbols that is different. 

The two darts on an edge A of G can be said to define two opposite 

directions in A. For a given choice of poles, the current in one direction is 

the negative of that in the other, by Eq. (VI.5.5) and the definition of a 

current. Theorem VI.34 now becomes the familiar Kirchhoffs First Law. It 

says that the sum of the currents flowing to a vertex x of G, other than a 

pole, in the edges incident with x is zero. Clearly, (uw) has the same value for 
each vertex u of G. Hence, by Theorem VI.34, the current entering G at the 

positive pole is equal to the current leaving it at the negative. 

We now note some theorems about the transpedances of graphs that 
are not true for general digraphs. 

Theorem VI.36. In the case of a graph, the symbol S of Eq. (V1.5.1) 

is not altered in value when the elements of any one letter-group are permuted. 

This is true by the definition of S for a graph. The first element of a 
letter-group is no longer distinguished as a center of divergence. 

Theorem VI.37. The transpedances of a graph satisfy the identity 

[ab, xy] =[xy, ab], (VI.5.13) 

by Eq. (V1.5.3) and Theorem V1.36. 

Theorem V1I.38. The transpedances of a graph satisfy the identity 

2[ ab, xy] = [ay, ay]+[bx, bx] 

—[ax, ax]—[by, by]. (VI.5.14) 
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Proof. By Theorems VI.33 and VI.37, we have 

[ab, bx] = [ab, ba]+[ab, ax], 

[ab, bx] = [ ax, bx]+[xb, bx]. 
Adding and using Eq. (VI.5.5), we find 

2[ ab, bx] = [ab, ax]+[ax, bx] 

—[ab, ab]—[bx, bx], 

2[ ab, bx] = [ax, ax]—[ab, ab]—[bx, bx], (VI.5.15) 
by Theorems VI.33 and VI.37. We rewrite this with y replacing x and then 
subtract Eq. (VI.5.15). By Theorem VI.33, we then have Big i(V1-551 3). oO 

We observe that the transpedances of a graph can be expressed in 
terms of its impedances, that is, in terms of its symbols of the form (u,v), 
by Eq. (VI.5.6). 

VI.6. IDENTIFICATION OF VERTICES 

Let S = {a,, a>,...,a,} be a set of k >1 distinct vertices of a digraph I. We 
can obtain a new digraph I” by identifying the members of S. By definition, 
I’ has the same darts as I’, and the same vertices except that the members of 
S are replaced by a single new vertex a. A dart has the same head or tail in 
I’ as in T, except that any head or tail in S is replaced by a. 

If A is a spanning subdigraph of I, the identification of the vertices 
of S converts it into a spanning subdigraph A’ of I’. 

Suppose A to be a k-tuple diverging arborescence such that each 
component includes exactly one member of S and diverges from it. By 
Theorem IV.28, the graph U(A’) is a tree. Hence, A’ is an arborescence 
diverging from a, by Theorem VI.2. Conversely, suppose A’ to be such an 
arborescence. We can deduce from Eq. (1.6.1) that U(A) has at least k 
components. Each of these must include a member of S, since otherwise it 
would be a component of U(A’). Hence, U(A) has exactly k components, 

each including exactly one vertex of S. It follows from Eq. (1.6.1) that U(A) 

is a forest, and so each of its k components is a tree. So each component of 

A is an arborescence diverging from its vertex in S, by Theorem VI.2. 

Let each dart D have a conductance c(D), the same in I’ as in I. 

Then the above result is expressed by the following formula, in which the 

prime denotes that the symbol (a) refers to the digraph I’: 

(d,,4y,...,€,) =a)’. (VI.6.1) 

Let us carry the theory of Sec. VI.5 a little further. Let K(i, j') be the 
matrix obtained from K(I) by striking out the ith row and jth column, 
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K(ij, 2m), the one obtained by striking out the th and jth rows and the #th 

and mth columns, and so on. In the latter example we suppose i + j and 

£ * m, so that we shall not be called upon to strike out any row or column 

twice. We find that 

det K(i, /) =(—1)'*7(0,). (VI.6.2) 

If j =i, this is Theorem VI.27. If j i, we add all the other columns 

of K(i, j) to the ith, that is, the column of v,. An entry k,, in that column is 

then replaced by —k,,, by Eq. (V1.4.1). By |f—Jj|—1 interchanges of 
consecutive columns, we can convert the resulting matrix into K(i,/). 

Equation (VI.6.2) now follows from Theorem VI.27. 
In solving Eq. (VI.5.12), we are allowed to put V(v,) = 0. So, by Eq. 

(VI.5.11), [v,v,, 0;0,] is the cofactor of k,, in the matrix K,(I°), that is, in 

K(n,n). So we have 

[v,v,,0,v,] =(—i)'* ‘det K(1n, in) (VI.6.3) 

if i+n. This formula can be generalized as 

[v,0,, 0,0] =(-1)) 7" *'*/det K(1n, i/), (VI1.6.4) 

where i < j. If 7 =n, then Eq. (VI.6.4) merely repeats Eq. (VI.6.3). If j =n, 

we can prove Eq. (VI.6.4) as follows: We add all the other columns of 

K(1n, ij) to the last, thus replacing each element k,, in this column by 

=k ki by Eq: (VEAA) So 

det K(1n, ij) = —det A; —det 4,, 

Sy? 

where A,, for example, is obtained from K(1n, ij) by replacing each element 

k,,, the last column by the corresponding k,;. Allowing for interchanges 

of columns, we find that 

det A, =(—1)"*‘det K(1n, jn) 

det A, = (—1)"*/*'det K(1n, in). 

It follows that : 

(—1)'*"*** det K(An, ij) 

= (-1)’det K(In, jn)+(—1)/*'det K(In, in) 

= Or 04, [| 010.0. |, (by Eq. (VI.6.3)) 

=[v,0,,0;0,], (by Eq. (VI.5.8)). 

We have now proved Eq. (VI.6.4). We can extend to the case i > j by 
introducing a symbol o( p,q) referring to distinct integers p and g. We 
define it to be 0 if p<q and 1 if p > gq. We make the extension by adding 
o(i, ) to the index of (— 1) in Eq. (VI.6.4). As a final generalization of Eqs. 
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(VI.6.3) and (VI.6.4), we offer 

[v,0, , v,0,] = (— 1) “det K( gh, if), (VI.6.5) 
where g +h, i+ j, and 

a=gt+th+it+ j+o(g,h)+o(i, /). (V1.6.6) 
To justify this, we observe that an interchange of two consecutive vertices in 
the enumeration changes at most the sign on each side of Eq. (VI.6.5), and 
moreover makes the same change of sign on each side. Hence, Eq. (VI1.6.5) 
follows from Eq. (VI.6.4). 

One way of stating Eq. (VI.6.5) is to say that [v,v,,0;0,] is the 
cofactor of the element k,, in the matrix K(h, /), multiplied by (—1)"*, 
This is put, rather loosely, in some papers as follows: The transpedance is 
the cofactor of k,; in the cofactor of k,,in K(1). 

Since transpedances can be expressed in terms of determinants, we 
can expect to get relations between them by using determinantal identities. 
Consider, for example, the matrix K s(1), obtained from K(T) by striking 
out the rows and columns corresponding to the vertices in S. By Eq. (VI.6.1) 
and the Matrix-Tree Theorem, we have 

det K,(T) = (a), a3,...,a,) =(ay. (VI.6.7) 
Now K,(I)) is a submatrix of K,(T), where r = a,. If (r) is nonzero, we can 
express det K,(I°) in terms of (r) and the cofactors of K,(I') by using 
Jacobi’s Theorem on the minors of an adjugate matrix. We find that 

det K,(T) = (r)~** det M, (VI.6.8) 

where M is a (k —1)X(k —1) matrix such that the entry in the ith row and 
jth column is [a;a,, a,a,]. 

Let us now discuss a graph G in which each edge 4 has its 
conductance c(A). We take I to be the equivalent digraph of G, each dart 

being assigned the conductance of the corresponding edge of G. We can 

form a new graph G’ by identifying the vertices a, of the set S to form a new 

vertex a. By definition G’ has the same edges as G and the same vertices, 

except that the members of S are replaced by a. An edge has the same ends 

in G’ as in G, except that any end in S is replaced by a. Evidently the 

equivalent digraph of G’ is [’. We can now apply Theorem VI.35. It tells us, 

for example, that Eq. (VI.6.1), though derived as a relation between I’ and 

I’, can equally well be interpreted as a relation between G and G’. Since [ 

and G have the same Kirchhoff matrix, we can also regard Eqs. (VI.6.7) and 

(VI.6.8) as relating G and G’. 

; Combining Eq. (VI.6.8) with Theorem VI.38, we arrive at the follow- 

ing theorem, valid for graphs but not for general digraphs. 

Theorem VI.39. Let G be a connected graph. Let G’ be formed from 

G by identifying the members of a set S = (a), az,...,a,,) of k = 3 vertices a; of 
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S to give a new vertex a. Write r= a,. Then the product 

(ayn? 
can be expressed as a polynomial in the expressions (a;,a;)with l<i< js k, 

in which the coefficients are integers not dependent on the structure of G. 

Here the connection of G makes (7) nonzero, by Theorem 1.36. 

Hence Eqs. (VI.6.7) and (VI.6.8) are applicable. Since the result of Theorem 

VI.39 concerns a polynomial identity in the conductances, it is not difficult 

to extend it to the case in which (r) = 0. 

In the case of unit conductances, (r) is T(G) and (a)’ is T(G’). By 

Eq. (VI.6.1), (a;,4;) is the tree-number of the graph obtained from G by 

identifying a, and a,. 

VI.7. TRANSPORTATION THEORY 

Let x and y be distinct vertices of a digraph I’. We define a path-bundle X of 
I from x to y as a set of dart-simple paths from x to y in I’, no two of them 

having a dart in common. The number |X| of paths in X is the order of the 

path-bundle. 
In this section we discuss how to find the maximum possible order 

for a path-bundle in T from x to y. It seems convenient to make the 

following definitions. 
The digraph T(X) of X is the subdigraph of I defined by the darts of 

the paths of X, and their incident vertices. It is the union of the digraphs of 

the members of P. If v is a vertex of [(X) other than x or y, then the 

invalency of v in I'(X) is equal to the outvalency, and we call it the strength 

of X at v. For a vertex v of I that is not in [(X), and is not x or y, we say 

that the strength of X at v is zero. If the paths of X are linear, we can 

describe the strength of X at v as the number of members of X passing 

through v. 

We call X rotational if there is a directed circuit in ['(X), and 

irrotational otherwise. 

Theorem VI.40. If X is irrotational, then each member of X is linear. 

Proof. Suppose that some member P of X is a nonlinear path from 

x to y. Then P has a nondegenerate reentrant factor. Such a factor of 
minimum length is a circular path, determining a directed circuit of [(.X). O 

Theorems VI.41._ Let T(X) contain a directed 2-circuit A. Then there 

is another path-bundle X’ from x to y in T such that |X’|=|X| and T(X’) is 
obtained from T(X) by deleting the two darts of A. 
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FIGURE VIL.7.1 

Proof. Let the darts of A be D, with tail wu and head v, and D, with 
tail v and head wu. (See Fig. VI.7.1.) Let P, be the path of X including D, 
(i =1,2). We can factorize P, and P, as follows: 

P,= R,(D,)S,, P,=R,(D,)S. 

We can obtain a path-bundle X’ with the required properties by replacing 
P, and P, by R,S; and R,S, in X. 0 

Let us say that the path-bundle X from x to y is reducible if there 
exists another path-bundle X’ from x to y in IT such that |X’| = |X], 
T(x’) CT(X), and ['(X’) has fewer darts than T'(X). To reduce X is to 
replace it by such an X’. 

Theorem VI.42. If the path-bundle X is rotational, it is reducible. 

Proof. Suppose first that '( X) has a loop-dart D. Then one path P 
of X can be factorized as P = R(D)S. We can reduce X by replacing P by 
RS. 

Suppose next that I'(X) has a directed 2-circuit. Then X is reducible, 
by Theorem VI.41. From now on, we may suppose I'(X) to have no 
directed 1-circuit or 2-circuit. It must have a directed n-circuit A for some 
n>3. 

Choose a dart D of A. Let P be the path of X that includes D. We 
may suppose D to be the first dart of A to occur in P, perhaps by modifying 
the choice. Now A has a circular Eulerian path Q = (D,, D,,...,D,), where 
D, = D. We write v, for the head of D,. Thus we can factorize P as RP,, 
where v, is the terminus of R and D= D, is the first dart of P,. (See Fig. 
Vild23) 

Suppose ¢(D,) to be repeated in P, so that P can be factorized as 
P = RTP), where t(D,) is the terminus of R and the origin of P,, and where 
D, is a dart of T. Then we can reduce X by replacing P by RP,. From now 

on we may suppose that 7(D,) is not repeated in P,. So, in particular, D, is 
not a dart of P). 
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FIGURE VI.7.2 

There is a greatest integer r such that r <n and », is a vertex of P. 
Then none of the darts D,, D,, ,,...,D,, can belong to P,, or indeed to P. We 

factorize P, as P,S, where v, is the origin of S. 
Now to I we adjoin (n — r) new darts E,,,, E,,>,...,£,, making the 

rule that the head and tail of £; are the tail and head, respectively, of D; 

(r < j <n). Let us denote the resulting digraph by [,. We convert X into a 

path-bundle X, in I, by replacing P by R(E,, E,_),...,£,4,,)S. Now, by 
(n —r) applications of Theorem VI.41, we obtain from X, a path-bundle X’ 

in I, such that |X’|=|X,|=|X|, and such that the digraph of X’ is 

obtained from that of X, by deleting all the darts D, and E; such that 

r<j<n. But then X’ is a path-bundle in from x to y. We have therefore 
succeeded in reducing X. O 

By repeated application on Theorem VI.42, we have the following 

rule. 

Theorem VI.43. Let X be any path-bundle in Tl from x to y. Then 

there exists an irrotational path-bundle X’ in TV from x to y such that 

|X’| =|X| and TCX’) c T(X). 

We now consider the problem of finding a path-bundle of highest 

possible order from x to y. First, however, we generalize. We introduce a 

function f that associates with each vertex v of I’ a nonnegative integer f(v) 

called its capacity. We impose upon the required path-bundle X the condi- 

tion that the outvalency in [( X) of any vertex v must not exceed f(v). Let 

us say that a path-bundle satisfying this condition is f-/imited. 
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A cut between x and y is an ordered pair (U,, U,) of complementary 
subsets of V(I’) such that x is in U, and y in U,. If u is any vertex of U,, we 
write B(u) for the number of darts of T with tail at u and head in U,. We 
call u an outlet of U, if B(u) > 0. We define the capacity C(U,,U,) of the cut 
(U,,U,) as follows: 7 

C(U,,U,)= YL Min( f(u), B(u)). (VIRTEL) 
uel, 

Theorem VI.44._ Let (U, ,U,) be any cut between x and y in T. Let X 
be any f-limited path-bundle from x to y. Then 

|X| <C(U,,U,). 

Proof. Each path of X must have at least one dart with its tail in U. 
and its head in U,. But of the B(w) darts with tail at u © U, and head in Us 
the number belonging to paths of X does not exceed Hoe The ficorem 
follows. Oo 

Let us now suppose that we have found an f-limited path-bundle X 

from x to y in I’ of order k. We admit the possibility that k may be zero. By 

Theorem VI.43 we can arrange that X is irrotational, without changing k. 

Then each member of X is linear, by Theorem VI.40. 

It is convenient to represent I as an orientation of a graph G. We 

form G by replacing each dart D by an edge Ap with the same incident 

vertices. We denote the equivalent digraph of G by A. We take one of the 

two darts of A on any edge A, of G to be the corresponding dart D of I. 

The other can be denoted by D™', as in Sec. VI.1. It is not a dart of I. 

We consider those dart-simple paths Q in A with origin x that satisfy 

the following conditions: - 

i) No dart of QO is in T(X). 

il) No two darts of Q in T have the same tail. 

iii) Jf a dart D of Q is not inT, then D~' is in T(X). 
iv) Jfadart D of Q is in I, then either it is the immediate successor in Q of a 

dart that is not in T or its tail u has outvalency less than f(u) in T(X). 

We denote the family of all such paths Q by J(x). In particular, J(x) 

includes the degenerate path at x. 

We discuss the case in which J(x) has a member Q from x to y. 

Then, by (i), we can adjoin Q to X and so obtain a path-bundle X, in A 

from x to y of order k +1. If u is any vertex of the digraph A(X,) of X, 

then its outvalency in A(X,) is at most f(u)+1, by (ii). Moreover, if the 

outvalency does attain this value, then one dart D of Q with head at uw is not 

in I, by (iv). Then D7! is one of the darts of I'(X) with tail u, by (iii). 

We now apply Theorem VI.41 to all pairs (D, D~') having both 

members in A(X,). By (iii), there results a path-bundle X’ in [ from x to y 
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of order k +1. Moreover, X’ is f-limited, by the results of the preceding 

paragraph. 

Let us now study the remaining case, in which there is no path of 

J(x) from x to y. We define U, as the set of all vertices v of such that 

there is a path of J(x) from x to v. We define U, as the complementary 

subset to U, in V(T). Then x € U, and y €U,, and ( U,,U,) is a cut between 

x and yin I. 

If a member Q of J(x) factorizes as QQ), it is clear that Q, satisfies 

the above Conditions (i)—(iv) and so belongs to J(x). Hence, each vertex of 

each member of J(x) must belong to U,. 
We say that a vertex v of I'(X) is filled if its outvalency in I'(X) is 

f(v). An outlet u of U, is choked if each dart of I with tail u and with head 

in U, belongs to some path of X. The next three theorems are concerned 

with "the relations between the cut (U,,U,) and the paths of X. 

Theorem VI.45. Let P be any path of X. Then P has exactly one dart 

Dp with tail in U, and head in U,. Moreover, when P is factorized as 

P,(Dp) Py, all the vertices of P, are in U, and all those of P, are in U,. 

Proof. Let us define D, initially as the first dart in P with its head 
in U,. Its tail must be in U,. Then P factorizes as P\(Dp)P,, where all the 
vertices of P, are in U,. 

Suppose P, to have a vertex in U,. Then some dart E of P, has its tail 
in U, and its head in U,. There is a path Q of J(x) from x to h(E). But then 

the path O(E~') from x to ¢(E) is in J(x), contrary to the definition of U,. 

We deduce that all the vertices of P, are in U,. The theorem follows. 
O 

Theorem VI.46. Let u be any unchoked outlet of U,. Let y(u) denote 

the number of darts of 1(X) with tail at u and head in U,. Then y(u) = f(u). 

Proof. Since u is not choked, there is a dart D of I, not in TCX), 

such that t(D) =u and h(D)€EU,. 

Suppose u is not filled. There is a path Q of J(x) from x to u. 

Replacing Q by a suitable factor if necessary we can suppose no dart of Q 

to have tail u. Then Q can be continued along D as a path Q(D) of J(x) 

from x to h(D), contrary to the definition of U.. We conclude that, in fact, 

u is filled. 

Suppose next that y(u) < f(u). Since wu is filled, there is a member P 

of X having a dart D, such that t(D,) =u and h(D,) €U.. Choose a path Q 
of J(x) from x to h(D,). 

Assume that Q has a dart E in I with tail u. Then Q factorizes as 
Q,Q,, where E is the first dart of Q,. By (iv), Q, is nondegenerate and its 

last dart is not in I’. But then Q,(D) is a path in J(x) from x to h(D), and 

we have a contradiction. So from now on we may assume that Q has no 
such dart E. 
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We now find that Q(D;',D)isa path of J(x) to h(D), contrary to 
the definition of U,. From this contradiction we deduce that in fact 
y(u) > f(u). Since X is f-limited, it follows that y(u) = f(u). oO 

Theorem VI.47. |X| = CCU. i). 

Proof. By Eq. (VI.7.1) and Theorem VI.46, C(U,,U,) is the number 
of darts of [(X) with tail in U, and head in U,. By Theorem VI.45, this 
number is |X}. Oo 

Theorem VI.48 (The Max Flow Min Cut Theorem). The greatest 
integer that is the order of an f-limited path-bundle from x to yin T is equal to 
the least integer that is the capacity of a cut between x and y in T (for any 
given capacity-function f ). 

Proof. Given an f-limited path-bundle X from x to y in I, we can, 
as explained above, reduce to the case in which X is irrotational, without 
reducing the order. If the corresponding path-family J(x) has a path from x 
to y, we can then improve upon X by constructing from it an f-limited 
path-bundle X’ from x to y in T of higher order. 

Starting with the trivial path-bundle from x to y of zero order, we 
can repeat the above procedure until we arrive at an irrotational X, of order 
k, say, such that there is no path in the corresponding J(x) from x to y. We 
then define U, and U, as above, and have a cut (U,, U,) between x and y in 
I whose capacity is k, by Theorem VI.47. By Theorem VI.44, k is both the 
least possible capacity for a cut between x and y and the greatest possible 
order for an f-limited path-bundle from x to y. oO 

We can claim that the above proof is constructive. It gives us a 
method for determining an actual example of an f-limited path-bundle of 
maximum order from x to y. The most difficult requirement is that of 
finding the path-family J(x). Actually, it is not necessary to find all paths in 

J(x). It is enough to find, for as many vertices v as possible, a single 
member of J(x) from x to v. When we have done this for some vertices, we 

can either extend to another or discover the set U, by arguments based on 
those of Theorems VI.45 and VI.46. 

The usual form of the Max Flow Min Cut Theorem discusses not 
path-bundles but flows of current. We will take up this form later, in 

connection with the theory of 0-chains and 1-chains, showing that it is 
equivalent to Theorem VI.48 [7,8]. 

In the next two theorems we take note of some special cases. 

Theorem VI.49._ Let x and y be distinct vertices in a digraph T. Then 
the maximum order for a path-bundle from x to y in T is the least integer k 

such that for some cut (U,,U,) between x and y in T the number of darts of T 

with tail in U, and head in U, is k. 
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To prove this we choose the capacity of each vertex to be at least 

equal to its outvalency in I’, and then apply Theorem VI.48. 
Given a set of linear paths from x to y in I’, we say that they are 

internally disjoint if no two of them have any common dart or any common 

vertex other than x and y. 

Theorem VI.50 (Menger’s Theorem for Digraphs). Let x and y be 

distinct vertices of a digraph T so that there is no dart of T from x to y. Then 

the maximum number of internally disjoint linear paths from x to y in T is the 

least integer k such that for some cut (U,,U,) between x and y in T’ the number 

of outlets of U, is k, and x is not one of these outlets. 

Proof. We put f(v)=1 for each vertex v other than x and y. But for 

x and y we make the capacity at least equal to the outvalency in I’. By 

Theorem VI.48, if 4 is the greatest order for an f-limited path-bundle from x 

to y in T, there is a cut (U,,U,) between x and y in I’ of capacity h, and no 

such cut of smaller capacity. By Theorem VI.43, there is an irrotational 

f-limited path-bundle X from x to y of order h. By Theorem VI.40, the paths 
of X are linear. 

Let T be the subset of U, defined by those vertices ¢ of U, such that 
there is a dart from x to ¢ in I. Then y is not in T, by hypothesis. If we 

transfer the members of T from U, to U,, we do not increase the capacity of 

the cut, since each vertex of T has only unit capacity. Neither, of course, do 
we decrease this capacity. We conclude that (U,,U,) can be chosen so that x 

is not an outlet of U.. Accordingly, h =k. 
No two members of X have a common dart, by the definition of a 

path-bundle. No two of them have a common vertex other than x and y, by 

our choice of f. The theorem now follows from the definition of h. Oo 

It should be noted that the form of Menger’s Theorem for graphs 

given in Theorem I.16 can be proved by applying Theorem VI.50 to the 

equivalent digraph of the relevant graph G. (See Theorem VI.9.) 

V1.8. NOTES 

VI.8.1. Textbooks 

Most books on graph theory give some attention to digraphs. For a 
textbook whose main concern is digraph theory, see [9]. 

VI.8.2. Alternating Maps 

There is an interesting theory of planar Eulerian digraphs. When one of 
these is drawn so that incoming and outgoing edges alternate around each 
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vertex, we have an “alternating map.” Alternating maps come in sets of 
three, much as undirected planar maps come in dual pairs. Their theory is 
discussed in [12] and [4]. The three alternating maps in one of the above sets 
all have the same tree-number. 

Reference [12] is concerned with triangulated triangles. It shows that 
the structure of one of these dissections can be represented by an alternating 
map and a set of Kirchhoff equations for the corresponding digraph. 

VI.8.3. Kirchhoff’s Laws for Digraphs 

Computations like those carried out for Fig. VI.5.3, but for other digraphs, 
can be found in [14]. The theory of Kirchhoff’s Laws for digraphs is carried 
further in [13]. 

VI.8.4. Rotors 

Theorem VI.39 appears in Sec. 7.2 of [2], though the proof is left to the 
reader and only a special case is considered. The argument shows that the 
tree-number of a graph does not change when a “rotor” in the graph is 
“reversed.” A rotor is a subgraph with rotational symmetry whose vertices 
of attachment are all equivalent with respect to this symmetry. To “reverse” 
a rotor is to replace it by its mirror image. The theory of rotors is discussed 
in [2], [3], and [13]. 

EXERCISES 

1. Construct an Eulerian orientation for the graph of the octahedron. Find 
some Eulerian tours of the resulting digraph, and discuss the corre- 
sponding arborescences. 

2. Use the Matrix-Tree Theorem to find the tree-number of your digraph 
of Example 1. Verify by an actual count of arborescences. 

3. Use the Matrix-Tree Theorem to find the number of spanning trees of 
the 4-clique and the 5-wheel. 

4. Find a general formula for the tree-number of the wheel of n spokes. 
(See [10].) 

5. In your digraph for Exercise 1, find some examples of f-limited path- 

bundles from one vertex to another, f(x) being 1 at each vertex. 
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Chapter VII 

Alternating Paths 

VII.1. CURSALITY 

In the first part of this chapter we consider a graph G with a given partition 
of E(G) into complementary subsets E, and E,, whose members are called 
blue and red respectively. To each dart of the equivalent digraph I’, we 
ascribe the color of the corresponding edge of G. 

A path in G is alternating if its darts are alternately red and blue. We 
consider all degenerate paths and all paths of length 1 to be alternating. 

Given a vertex r of G, we discuss the family J(r) of all edge-simple 
alternating paths P in G whose origin is r and whose first dart, if any, is red. 
We seek a necessary and sufficient condition, in terms of the structure and 
edge-coloring of G, for the existence of a path of J(r) from r to another 
given vertex s. In the second part of the chapter, we use such a condition in 
developing a theory of factorization of graphs. 

We note that if a path-product P,P, belongs to J(r), then its first 
factor P, belongs to J(r). 

Our first step is a classification of the darts and edges of G with 
relation to J(r). A dart is cursal if it belongs to some path of J(r), and 
noncursal otherwise. An edge is noncursal, unicursal, or bicursal according as 
the number of cursal darts on it is 0, 1, or 2. 

Theorem VII.1. Let A be any loop of G. Then A is either noncursal 
or bicursal. 

161 
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Proof. The two darts on A have the same head and tail. If one 

occurs in a path of J(r), we can replace it by the other, and so obtain 

another path of J(r). oO 

We note that a unicursal edge must be a link, with distinct ends x 

and y. Hence, each dart on such an edge A can be distinguished by giving its 

head or tail. If its cursal dart has tail x and head. y, we say that A is 

unicursal from x and to y. 

Theorem VII.2. Any two edges A and B unicursal to a vertex v must 

be of the same color. If v =r, then any edge unicursal to v must be blue. 

Proof. Suppose A and B to be of different colors. Interchanging 

their symbols if necessary, we can say that there is a path P of J(r) whose 

terminus is v, whose last dart D is on A, and that includes no dart on B. But 

then P(D,), where D, is the noncursal dart on B, is a member of J(r), and 

we have a contradiction. 

To prove the second part of the theorem, suppose that some edge C 

unicursal to r is red. Then the noncursal dart on C defines a path of J(r) of 

length 1, which is a contradiction. Oo 

A vertex v of G is bicursal if it is incident with some bicursal edge. It 

is noncursal if it is distinct from r and each of its incident edges is noncursal. 

In the remaining case, v is unicursal. Thus r is unicursal if it is incident with 

no bicursal edge. Any other vertex is unicursal if it is incident with at least 

one unicursal edge and no bicursal one. 
Now if v is not r and some member P of J(r) includes a dart with 

tail v, then P must have an immediately preceding dart with head v. So we 

have the following rule. 

Theorem VII.3. If v is a unicursal vertex, then either v =r or some 

edge is unicursal to v. 

A unicursal vertex v is blue-entrant if v =r or if some blue edge is 

unicursal to v. It is red-entrant if some red edge is unicursal to v. By 

Theorem VII.3, each unicursal vertex is either red-entrant or blue-entrant, 

and by Theorem VII.2 no unicursal vertex is both. We write U for the set of 

unicursal vertices of G, U, for the set of blue-entrant ones, and U, for the 
set of red-entrant ones. In what follows “color i” means “blue” or “red” 

according as i is 1| or 2. 

Theorem VII.4. Let v be in U,. Let A be an edge incident with v and 

not of color i. Then A is unicursal from v. 

Proof. If v=r, then i=1 and 4 is red. A dart on A with tail r 

defines a member of J(r) of length 1. Hence, A must be unicursal from v. 

In the remaining case, v is not r. By Theorem VII.3 there is a path P 

of J(r) having a dart d with head v. Taking P of minimum length, we 
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arrange that D is its last dart, and its only dart with head v. Now D has 
color i since v € U,. Hence, if D’ is the dart on A with tail v, then the path 
P(D’) is in J(r). We deduce that A is unicursal from v. Oo 

Theorem VII.5. Let v be in U,. Let A be an edge incident with v and 
of color i. Then either A is noncursal or it is unicursal to v. 

Proof. Suppose the theorem fails for A. Then A must be unicursal 
from v. Let D be its cursal dart. Some path P of J(r) includes D. But D is 
not the first dart of P, since A has color i. Let D’ be the immediately 
preceding dart, on an edge B. Then B is not of color i. Moreover, B, being 
not bicursal, is unicursal to v. But this is contrary to Theorem VII.4. O 

VIl.2. THE BICURSAL SUBGRAPH 

The bicursal edges and vertices of G define a subgraph W. We call it the 
bicursal subgraph of G (with respect to J(r)). By the definition of a bicursal 
vertex, W is a reduction of G. 

Let K be any component of W. Since each dart of K is cursal, there is 
a path of J(r) having its terminus in K. We choose such a path P of 
minimum length and call it the entry-path of K. We refer to the terminus of 
P as the entrance of K, and denote it by e. 

If r is in K, then P must be the degenerate path at r, and so e=r. 
If r is not in K, then the last dart of P is the entry-dart D, of K, and 

the corresponding edge A. of G is the entry-edge of K. In this case, P 
factorizes as R(D.), where the path R has no edge or vertex in K. We note 
that A, is not in K: It has one end e in K and a second end 1, the terminus 
of R, not in K. Hence A, is not bicursal. It must be unicursal to e. 

We write i(K)=1 if P is degenerate. Otherwise i(K) is 1 or 2 
according as the entry-edge A, is blue or red. 

We discuss the family J(K, e) of all edge-simple alternating paths Q 

in K whose origin is e and whose first dart, if any, has color other than i(K ). 

We note that for each such Q, the path PQ is defined and is in J(r). We 

note also that if the path-product Q,Q, is in J(K,e), then Q, is in J(K,e). 

Theorem VII.6. Let Q be a nondegenerate member of J(K,e). Let v 

be its terminus, and let its last dart D be on the edge A of K. Let some edge B 

of G incident with v be either noncursal or unicursal to v. Then either B is the 

entry-edge of K or it has the same color as A. 

Proof. Assume that B is not A, and that it differs in color from A. 
Let D’ be a dart on B with tail v. Then the path PQ(D’) is in J(r), contrary 

to the definition of B. oO 
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Theorem VII.7. K has at least one edge whose color is not i( K ) and 

which is incident with e. 

Proof. We‘know that K has at least one edge incident with e. 

Assume that all such edges have color i( K ). Let A be one of them. Let D be 

a dart on A with tail e. Now D belongs to a path S of J(r). It is not the first 

dart of S, since it has color i(K ). Hence, it has an immediately preceding 

dart D’ in S. The dart D’ has head e. It is on an edge B of G whose color is 

not i(K). Evidently B must be either bicursal or unicursal to e. The first 

alternative is contrary to our assumption. The second contradicts Theorem 
Wil. Oo 

Theorem VII.8. Let Q be a path of J(K, e) from e to another vertex 
v. Then v is incident with both a red and a blue edge of K. 

Proof. Assume that all the edges of K incident with v have the same 

color i. One of them, A say, carries the last dart of Q. Call this dart D. 

The dart D~' belongs to some path S of J(r), in which there is an 

immediately preceding dart D’. (If.v=r, then v=e.) The edge B of G 

carrying D’ is incident with v and not of color i. Now B is either bicursal or 

unicursal to v. The first alternative puts B in K and contradicts our 

assumption. The second is ruled out by Theorem VII.6. Oo 

Theorem VII.9. Let D be a dart of K belonging to some path Q of 

J(K,e). Then D~' belongs to some path of J(K, e). 

Proof. Let D be on the edge A of K. We may suppose D to be the 

last dart of Q. If A is a loop, we can replace D by D~' in Q and so obtain a 

path of J(K, e) that includes D~'. We may assume therefore that A is a link 

with ends x and y, and that D is a dart from x to y. (See Figs. VII.2.1 and 
VII.2.) 

There is a member S of J(r) having D~' as its last dart. If S is a path 

in K, we must have e =r, i(K )=1. But then S belongs to J(K,e). We can 

therefore assume that S has a last‘dart D, that is not in K. The vertex h(D,) 
is then in K. Moreover, we can factorize S as S,(.D,)S5, where S, is a path 
in K with D~' as its last dart. We note that the edge A, of D, is unicursal to 
h(D,). 

Suppose h(D,)= e. Thus D, is blue if e = r and otherwise D, has the 
color of the entry-dart of K, by Theorem VII.2. In either case, S, is a path 
of J(K, e), and the theorem holds. From now on we may assume that h(D,) 
Is not e. 

There is a first dart D, of Q such that either D, or Dy' belongs to S,. 
(For D is in Q and D™' is in S,.) We factorize Q as Q,(D,)Q, and S, as 
either S,(D,)S, or S,;(Dz')S,. With the first factorization of S,, we find 
that Q,(D,)S, is a path of J(K, e) including D~'. (See Fig. VII.2.1.) With 
the second. possible factorization of S, we find that ODS, '*(D,) ‘isa 
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FIGURE VII.2.1 

path of J(r). But this is impossible since A, is unicursal to h(D,). (See Fig. 
MIR Oo 

Theorem VII.10. Each dart of K belongs to some path of J(K, e). 

Proof. By Theorem VII.9, we can partition E(K) into complemen- 
tary subsets X and Y such that each dart on each member of Y belongs to 
some path of J(K,e), and no dart on any member of Y belongs to any path 
of J(K,e). 

From Theorem VII.7, we infer that X is not null. 
Assume that Y is nonnull. By connection there is a vertex v of K 

incident with at least one edge of X and at least one edge of Y. We can find 

S4 

4 

C= 

FIGURE VII.2.2 
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a member of J( K, e) from e to v having its last dart on an arbitrary member 

of X incident with v. Since no such path can be continued along an edge of 

Y at v, we infer that all the edges of K incident with v have the same color. 

Hence, v = e, by Theorem VIL.8. It follows that no edge of K incident with e 

has color i(K) by Theorem VII.7. Hence, all the edges of K incident with 

v =e are in X. But this contradicts the definition of v. 

We infer that in fact Y is null, i.e., that the theorem is true. Oo 

If H is a subgraph of G, let us define an edge of attachment of H as 

an edge of G that is not in H but has at least one end in H. Thus the ends in 

H of the edges of attachment of H are the vertices of attachment of H. If H 

is an induced subgraph of G, then each of its edges of attachment is a link, 

having one end in V(H) and one in V(G)—V(/Z). 

Theorem VII.11. Let K be any component of W. Then K is an 

induced subgraph of G. Moreover, any edge of attachment of K is either the 

entry-edge of K or unicursal from its end in K. 

Proof. Let A be any edge of E(G)— E(K) that has an end x in K 

and is not the entry-edge of K. It carries a dart D with head x. Clearly, A is 

not bicursal: that would put it in K. 

By Theorem VII.10 we can find a nondegenerate member of J(K, e) 

from e to x, with its last dart D’ on an arbitrary edge of K incident with x. 

If A is not unicursal from x, it follows from Theorems VII.1, VII.2, and 

VII.3 ihat x =e and that A is not of color i(K ). But now we have a path 

P(D~') of J(r), where P is the entry-path of K. Hence 4 is still unicursal 

from x, a contradiction. 

We now know that A is not a loop, by Theorem VII.1. It remains to 
show that the link A does not have both ends x and y in K. But if it does, 

then the above argument proves it unicursal from y as well as x, which is 

impossible. 
We remark in conclusion that the entry-edge of K, if any, is by its 

definition a link having only the one end e in K. The proof of Theorem 

VII.11 is now complete. Oo 

It follows from Theorem VII.11 that we have no freedom of choice 

for the entry-edge and entry-dart of K. If r is in K, there is no entry-dart, 

and every edge of attachment of K is unicursal from its end in K. If r is not 
in K, then all but one of the edges of attachment of K are unicursal from 

their ends in K. The exception has to be taken as the entry-edge. It is 

unicursal to its end in K. 

Theorem VII.12. Each vertex of a component K of W is at least 

divalent in K. 

Proof. For a vertex other than e this follows from Theorem VIL.8. 
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The entrance e is incident with some edge A of K on which there is a 
dart D with tail e. The dart D~! belongs to some path Q of J(K,e), by 
Theorem VII.10. If the tail of D~' is e, then e is at least divalent in K. In 
the remaining case, D~' is not the first dart of Q. But the first dart of Q is 
on an edge B of K incident with e, and B is not A because Q is edge-simple. 

O 

VIL.3. BICURSAL UNITS 

We continue with the theory of Sec. VII.2. Let us define Z as the set of all 
edges A of G such that A is not in W but has both ends in W. 

By Theorem VII.11 the ends of A are in two distinct components K i 
and K, of W, say x in K, and y in K,. By Theorem VII.11, 4 is unicursal, 
let us say from x to y. So, again by Theorem VII.11, A is the entry-edge 
of K,. 

Adjoining the members of Z to W, we obtain an induced subgraph 
W" of G. The components of W’ are the bicursal units of G, with respect to 
Jtr). 

Let B be any bicursal unit of G. We define the constituents of B as 
the components of W contained in it. Then B is formed from the union of 
its constituents by adjoining the edges in some subset Z p Of Z. Let m(B) be 
the number of constituents of B. It is nonzero. 

Theorem VII.13. There is at least one constituent of B having no 
entry-edge in Zp. 

Proof. Choose a constituent K of B with an entry-path P of 
minimum length. If s(P) =0, the theorem holds; K includes r and has no 
entry-edge. In the remaining case, the last dart of P has a tail not in B. 
Hence the entry-edge of K is not in Zz. Oo 

Since each edge of Z, is the entry-edge of exactly one constituent of 
B, we infer that 

|Zp|<m(B). (VII.3.1) 

Theorem VII.14._ The bicursal unit has exactly one constituent with 

no entry-edge in Z,. Moreover, each edge of Z, is an isthmus of B. 

Proof. Let us start with the union of the constituents of B, a graph 

with just m(B) components. Let us adjoin to it the edges of Z,, one by one. 

This reduces the number of components to 1. But each adjunction of an 

edge reduces the number of components by at most 1, by Theorem I.29. 
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Hence, by Eq. (VII.3.1), we have 

|Z,|=m(B)-1, (VII.3.2) 

and the first part of the theorem is proved. The last edge to be adjoined 

must be an isthmus of B, by Theorem 1.29. Since the edges Z, can be 

adjoined in any order, the theorem follows. oO 

Theorem VII.15. Let B be a bicursal unit of G. With at most one 

exception, each edge of attachment of B is unicursal from its end in B to some 

unicursal vertex of G. The exception occurs if and only if r is not in B. It is 

then unicursal from some unicursal vertex of G to its end in B. 

Proof. Let A be any edge of attachment of B. Since W’ is an 

induced subgraph of G, this edge has one end x in B and one end y not in B. 

But A is unicursal, by Theorem VII.11. Hence y is a unicursal vertex of G; 

otherwise, A would be in Z and therefore in B. 

If A is unicursal to x, then by Theorem VII.11, A is the entry-edge of 

the single constituent of B with no entry-edge in Zg. Hence, there is just one 

such edge A if r is not in B, and none at all if r is in B. oO 

If r is not in B, it is natural to refer to the single edge unicursal to a 

vertex of B as the entry-edge of B, and to its cursal dart as the entry-dart 

of B. 
Consider again the set U of unicursal vertices of G. Let us call G[U] 

the unicursal graph of G. The components of G[V(G)—U] are the nuclei of 

the bridges of G[U] in G. Among them we can recognize the bicursal units 

of G, by Theorem VII.15. The other components of G[V(G)—U] are made 

up of noncursal edges and vertices. Let us call them the noncursal units of G. 

Their edges of attachment are all noncursal and have each one end in U. 

VII.4. ALTERNATING BARRIERS 

We proceed to prove the connection theorem foreshadowed in Sec. VII.1. It 

is convenient to extend the definition of U, and U,. We now take them to be 

any two disjoint subsets of V(G), and we write x for the ordered pair 

(U,, U;). 
The union of U, and U, is the set U of inner vertices of x. Its 

complement in V(G) is the set of outer vertices of x. The set V(G)—U 

induces a subgraph of G called the outer graph of x. Its components are 

called the components of x. 

Consider an edge A of attachment of some component M of x. It has 

one end x(A) in M and the other end y(A) in U. We call A an entry-edge of 

M, with respect to x, if A is red and y(A) in U,, or if A is blue and y(A) 

in U). 



Alternating Barriers 
169 

We call x an alternating barrier of G, with center r, if it satisfies the 
following conditions. 
i) Ifreu, thenr EU,. 
ii) If each end of an edge A of G is in U, then one end is in U, and one in U). 
iil) A component of x has at most one entry-edge. A component of x including 

r has no entry-edge. 

Let us describe a component of an alternating barrier x as accessible 
if it includes r, the center, or has an entry-edge, and is inaccessible 
otherwise. Thus for an inaccessible component M, each red edge of attach- 
ment has an end in Uj, and each blue one an end in U,. 

Theorem VII16. Let x = (U,,U,), where the U, are defined as in 
Sec. VII.1. Then x is an alternating barrier of G with center r. Its accessible 
components are the bicursal units of G, with respect to r. 

Proof. Condition (i) holds by the definitions of Sec. VII.1. To prove 
(i), we first observe that A must be unicursal, and so not a loop by Theorem 
VII.1. The condition now follows from Theorems VII.4 and VIL5. 

The bicursal units are components of x Satisfying (iii), by Theorem 
VII.15 and the definition of W’. They are clearly accessible, by Theorem 
VII.15. For any other component M of x, the vertices are all noncursal, and 
therefore the edges of attachment are all noncursal. Each such edge is 
incident with an inner vertex of its own color, by Theorem VII.4. So M 
satisfies Condition (iii) and is inaccessible. oO 

Let us refer to the alternating barrier recognized in Theorem VII.16 
as the cursal barrier with center r. 

Theorem VII.17. Let x =(U,,U,) be any alternating barrier of G 
with center r. Let s be a vertex of an inaccessible component M of x. Then 
there is no path of J(r) from r to s. 

Proof. Assume that there is a path P of J(r) from r tos. Let us call 
a dart D of P irregular if its tail is an inner vertex of x of the same color as 
D. This means that ¢(D) is in U, or U, according as D is blue or red. For 
example, P must have a first dart whose head is in M, and this dart must be 
irregular, by the inaccessibility of M. 

Let us now take D to be the first irregular dart in P. It is not the first 
dart of P, since P is in J(r). Let D’ be the immediately preceding dart of P. 
Suppose that ¢(D’) is an inner vertex. Then it differs in color from ¢(D), by 
Condition (ii). But D and D’ differ in color since P is an alternating path. 
Hence D’ is irregular, contrary to the definition of D. 

In the remaining case t(D’) belongs to some component N of x. 
Moreover, D’ is on an entry-edge A of N. Hence, N is accessible, and it does 

not include r, by (iii). Now P has a first dart D” whose head is in N, and D” 
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must come before D and D’ in P. Since D” is not on the entry-edge A of N, 

it must be irregular in P, contrary to the definition of D. O 

Theorem VII.18 (Theorem of Alternating Connection). Let r ands 

be distinct vertices of G. In order that there shall be no path in J(r) from r tos, 

it is necessary and sufficient that G shall have an alternating barrier whose 

center is r and one of whose inaccessible components contains Ss. 

Proof. Suppose there is no path in J(r) from r to s. Let x be the 

cursal barrier with center r. With respect to J(r), s is a noncursal vertex and 

so belongs to a noncursal unit, that is to an inaccessible component of x. 

Conversely, suppose G to have an alternating barrier x with center r 

and with s in an inaccessible component. Then there is no path of J(r) from 

r tos, by Theorem VII.17. oO 

Let us define the accessible vertices of an alternating barrier of G as 

those not belonging to its inaccessible components. Consider the cursal 

barrier with center r. Its accessible vertices are those we can reach from r by 

paths of J(r). By Theorem VII.17 all of them are accessible with respect to 

any other alternating barrier of G with center r. Hence, the cursal barrier is 

minimal with respect to the number of accessible vertices. 

VIL.5. f-FACTORS AND f-BARRIERS 

We now come to an application of the theory of alternating paths. We 

consider a graph G and a function f that associates with each vertex x an 

integer f(x) such that 

0 < f(x) < val(G, x). (VII.5.1) 

A spanning subgraph F of G will be called (limited if 

val( F, x) < f(x) (VII.5.2) 

for each x © V(G). For such an F, we write also 

6(F, x) = f(x)—val(F, x), (VII.5.3) 

S(E)= So OCF x): (VII.5.4) 
x€V(G) 

We note that 6(F, x) is always nonnegative. We say that a vertex x is filled 

or unfilled by F according as 5(F, x) is zero or positive. 

We call 6(F) the deficiency of F. If it is zero, that is, if every vertex 

of G is filled by F, we call F an f-factor of G. In another terminology, 
f-limited spanning subgraphs are “f-matchings” and f-factors are “perfect 
f-matchings.” 
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In what follows we seek necessary and sufficient conditions for the 
existence in G of an f-factor. One rather trivial necessary condition should 
be noted now. 

Theorem VII.19. If G has an f-factor, then 

De) = 0 Ghmod2). (VII.5.5) 
xEV(G) 

We prove this by applying Eq. (1.1.1) to an f-factor F. 
It is convenient to define another function f’ on V(G) by 

f'(x) = val(G, x)— f(x). (VII.5.6) 

Then Eq. (VII.5.1) also holds with f’ replacing f. With each f-factor F of G, 
there is associated a unique f’-factor F’, whose edges are those edges of G 
not belonging to F. The correspondence F > F’ imposes a kind of duality 
on the theory of graph factors. 

Here is a very simple factor theorem. 

Theorem VII.20. Let G be a connected Eulerian graph, and let 
f(x) = 4val(G, x) for each vertex x. Then G has an f-factor if and only if 
|E(G)| is even. 

Proof. If |E(G)| is odd, there is no f-factor, by Theorem VII.19 
and Eq. (1.1.1). There is an Eulerian path P in G by Theorem VI.25. If 
|E(G)| is even, then by taking every other edge in P, we obtain the edge-set 
of an f-factor F. Oo 

It is sometimes possible to find in G a structure, called an f-barrier, 
that imposes a lower bound on the deficiencies of the f-limited spanning 
subgraphs. In describing an f-barrier, we shall use the following definitions. 

Let Y bea subset of V(G), and let x be a vertex of G. If x is not in Y, 

we define A(Y, x) as the number of links of G joining x to vertices of Y. If x 

is in Y, then A(Y, x) is the number of links of G joining x to other vertices 
of Y, plus twice the number of loops of G on x; for disjoint subsets X and Y 
of V(G), we define A(X, Y) as the number of links of G with one end in X 
and one in Y. 

Our definition of an f-barrier is rather like that of an alternating 

barrier in Sec. VII.4. We start with an ordered pair B=(S,T) of disjoint 

subsets of V(G). We write U=V(G)—(SUT). The set U induces a 

subgraph G[U] of G that we call the outer graph of B. We refer to the 

components of this outer graph as the components of B. We proceed to 

classify these components as even or odd. 

Let K be any component of B. We write 

I(KR y= >, f(b)+A(VCK),T), (VII.5.7) 
bEV(K) 
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and we say that K is even or odd according as the integer J(K ) is even or 

odd. 

We denote the number of odd components of B by h(B). We write 

also 

5(B)=h(B)- ¥& f(s)-— ¥& f(t) +XS,T). (VII.5.8) 
ses reT 

We call 5(B) the deficiency of B. We say that B is an f-barrier if 6(B) is 

positive. 

Theorem VII.21._ If G has an f-barrier, it has no f-factor. 

Proof. Assume that G has both an f-factor F and an /-barrier 

B=(S,T). 
Let K be an odd component of B. Clearly, the number of links of F 

joining vertices of K to vertices not in K has the parity of 

Dal Ge): 
xEV(K) 

It is therefore not A(V(K), 7), by Eq. (VII.5S.7). Hence either there is an 

edge of F joining a vertex of V(K ) to one of S, or there is an edge not in F 

that joins a vertex of V(K ) to one of T. Let there be a odd components of B 
for which the first alternative holds and b for which the second is true. Then 

a+b>h(B). (VII.5.9) 
Let m be the number of edges of F with one end in S and one in T. 

Then we have 

peal dR ase (VII.5.10) 
ses 

The number of edges of F with one end in U and one in T is at most 

A(T, U)— b. The number with both ends in 7, loops counted twice, is the 

sum of the numbers A(T, t) over the vertices t of 7, at most. We deduce that 

m> > f(t)-A(T,U)— ¥& A(T, t) +b 
news (eT 

=b+ ¥ f(t)— ¥& val(G,t)+A(S,T), 
Cer reT 

m>b— > f'(t)+A(S,T). (VII.5.11) 
teT 

Combining Eggs. (VII.5.9), (VII.5.10), and (VII.5.11), we find that 

eae 10 ket el Ae ety Mal A aac Ph 
Cor ses 

0>65(B). 

This contradicts the definition of B as an f-barrier. oO 
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We conclude with some minor theorems about f-barriers. 

Theorem VII.22. Let B=(S,T) be any ordered pair of disjoint 
subsets of V(G). Then 

d(B)= Yo f(x) — (mod2). (VII.5.12) 
x€V(G) 

Proof. From Eggs. (VII.5.7) and (VII.5.8), we have 

6(B)= Y f(u)t+A(T,U)+ Y f(s)+ ¥ f(t) 
ses uEeU teT 

+ }' val(G,1)+A(S,T) 
reT 

= LD f(x)+ ¥ val(G,t)+A(SUU,T) — (mod2), 
xeEV(G) teT 

and Eq. (VII.5.12) follows. oO 

Because of Theorem VII.19 we are usually concerned with the case in 
which f is even-summing, that is, in which the sum on the right of Eq. 
(VII.5.12) is even. The fact that 5(B) is then always even is often helpful. 

We now have some comments on the duality of f and f’. Let h’(B) 
and 6’(B) denote the functions h(B) and 6(B) calculated in terms of Ff 
instead of f. Then B being the ordered pair (S,T), let us write also 
B’=(T,S). 

Theorem VII.23. If K is an odd component of B=(S,T) with 
respect to f, then K is an odd component of B’ = (T,S) with respect to i ae 

Proof. B and B’ have the same set U. Hence K is a component of B’ 
as well as B. Let J’(K) be defined like J(K) in Eq. (VII.5.7) but with fi 
replacing f and with S replacing T. Then, by Eq. (VII.5.7), 

J(K)= Y val(G,b)+ YY f'(b)+A(V(K),T) 
bEV(K) bEV(K) 

=(V(K),SUT)+ YY f'(b)+A(V(K),T) 
bEV(K) 

=MV(K).S)+0 Do. f'() 
beV(K) 

=J'(K) —_(mod2), 

and the required result follows. Oo 

Since ( f’)’= f, we can infer the identities 

h'(B’)=h(B), 5’(B’) = 6(B), (VII.5.13) 

for cach ordered pair B = (S,7) of disjoint subsets of V(G). 
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VIL6. THE f-FACTOR THEOREM 

An algorithmic search for an f-factor in G might proceed as follows: Having 

found one f-limited spanning subgraph F of G, we would try to transform it 

into another with fewer unfilled vertices. By repetition of this process we 

would hope to reduce the number of such vertices to zero. 

The initial choice for F could be the edgeless spanning subgraph. 

Suppose that, at some stage in the algorithm, we have an f-limited spanning 

subgraph F and are trying to improve it. We describe the edges of F as blue 

and the other edges of G as red, and we use the terminology of the theory of 

alternating paths. 

We choose an unfilled vertex r of F (if F is not an f-factor). We 

consider the family J(r) of alternating paths from r. Suppose one such path 

P to terminate at another unfilled vertex s. We delete from F all the blue 

edges of P and adjoin to it all the red edges of P, thus converting F into a 
new spanning subgraph F, of G. It is clear that F, is f-limited, having the 

following properties: 

SUF anim b¢hux eal, (VIL.6.1) 
6(F,,5)=8(F,s5)+1, (VII.6.2) 

ICR aCe bs (VII.6.3) 
itis NOUr OLS: 

In transforming from F to F,, we have not increased the number of 
unfilled vertices, and we have diminished 6(F,r). We count this as an 

improvement. 
If there is no such path P, then every unicursal and bicursal vertex of 

G, other than r, is filled by F. Even in this case, there is one possibility of 

improvement. It occurs when r is a bicursal vertex and 6( F, r) => 2. Then r is 

the entrance of some bicursal component K. By Theorems VII.7 and VII.10, 

there is a nondegenerate reentrant path Q of J(K,r) whose first and last 

darts are red. We now form a spanning subgraph F, of G from F by deleting 

the blue edges of Q and adjoining the red ones. We find that F, is f-limited, 

having the following properties: 

6(F,,r)=8(F,r)-2, (VII.6.4) 

6(F,t)=8(F,t)=0 ift*r. (VII.6.5) 

Again we have improved F by diminishing 6( F, 7) without increasing 

the number of unfilled vertices. Indeed, if either kind of improvement 
reduces 6( F,r) to zero, the number of unfilled vertices is diminished. 

Let us consider the case in which no improvement of either kind is 

possible. Then r is unfilled by F but every other unicursal or bicursal vertex, 

with respect to J(r), is filled. Moreover, if r is bicursal we can only have 

6(F,r) =1. It is convenient to write o(7) = 0 or | according as r is unicursal 
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or bicursal. We write S and T for the sets of red and blue unicursal vertices, 
respectively, and put B = (S,T). Let a be the number of bicursal units with 
a red entry-edge, and b the number with a blue one. 

The bicursal units are components of B. We proceed to show that 
they are odd. Let K be a bicursal unit. Suppose first that it has an 
entry-edge. Then the number of blue edges of attachment of K is either one 
greater or one less than A(V(K ), 7), according as the entry-edge is blue or 
red. This follows from Theorem VII.15. Since F fills every vertex of K, it 
follows that J(K ) is odd. Suppose next that K has no entry-edge, so that it 
includes r. Now the number of blue edges of attachment of K is exactly 
A(V(K), T). But now 6(F,r)=1 and r is the only unfilled vertex of K. So 
again J(K ) is odd. We deduce that 

h(B)>a+b+o(r). (VII.6.6) 

Let m be the number of blue edges with one end in S and one in T. 
Any blue edge incident with a member of S is unicursal, either to a vertex of 
T or to a vertex of some bicursal unit K by Theorems VII.4 and VILS. In 
the latter case, the edge is the entry-edge of K. Moreover, each member of S 
is filled by F, for if r is a unicursal vertex, it is a blue one, by definition. We 
thus have 

LU f(s)=m+o. (VII.6.7) 

Similarly, the red edges incident with members of T are all unicursal 
to members of S, except for red entry-edges of bicursal units. Hence the 

number of blue edges with one end in T and one in U=V(G)—(S UT) is 
A(T,U)—a. We deduce that 

m= ¥ val(F,t)— ¥ A(T,t)—(A(T,U)—a) 

= DV f(t)—-1+ 0(r)+a- Yd val(G,t)+A(S,T), 

m=a-—l+o(r)— > f(t)+A(S,T). (VII.6.8) 

Hence, by Eq. (VII.6.7), 

l=a+b+t+o(r)— ¥ f(s)- ¥ f(t)+A(S,T). 
SieiS: new” 

It follows from Eggs. (VII.5.8) and (VII.6.6) that 

6(B)>1. 

Thus B is an f-barrier. 

We conclude that we can either find an f-barrier or use our algorithm 

to improve F. So, if G has no f-barrier, we can eventually reduce the 

deficiency of r to zero without introducing any new unfilled vertices. Then 
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we can do the same for another unfilled vertex, and so on until none are left. 

We than have an f-factor. We can now assert that G has either an f-factor or 

an f-barrier. Combining this result with Theorem VII.21, we have: 

Theorem VII.24 (The f-Factor Theorem). For a given f satisfying 

Eq. (VIL5.1), G has either an f-factor or an f-barrier, but not both [12]. 

In the solution of problems it is often useful to supplement Theorem 

VII.24 with further information about the family of f-barriers of G, assum- 

ing such f-barriers to exist. For example, our algorithmic study shows that 

one of these f-barriers is a cursal barrier. 
As another example, we can choose to work with the maximal 

f-barriers, those with the greatest possible deficiency. These have some 

special properties derivable from the theorems that follow. 
Now let B = (S, 7) be any ordered pair of disjoint subsets of V(G). 

Write U=V(G)-—(S UT). If x is any vertex of S or T, we write (x) for the 

number of odd components K of B such that some edge of G incident with x 

has an end in K. Let us consider the effect of transferring x to U, thus 

replacing B by a new ordered pair B,, either (S —{x}, T) or (S, T —{x}). We 

then absorb u(x) odd components of B into a single component L of B, 

including x. We write n(x) =0 or | according as this component of B, is 

even or odd. The other components of B, apart from even ones absorbed in 

L, persist as components of B,, without change of parity. From these 

observations and the definition of 6(B), we derive the following rules. 

Theorem VII.25. If x © S, then 

8(B)—8(B,) =p(x)—f(x)+A(T, x)— n(x). 
- Theorem VII.26. If x &T, then 

8(B)—8(B,) =m (x)—f'(x)+A(S, x)— n(x). 
These two results correspond under the duality between f and /’. In 

view of Theorem VII.22, we can characterize y(x) in each case as that 

number 0 or | that makes the right of the equation even. In each case, the 

right of the equation is nonnegative if B is a maximal f-barrier, and 

nonpositive if B, is a maximal /-barrier. If the right side is zero and one of B 
and B, is a maximal f-barrier, then so is the other. In the next theorem we 
see one application of Theorems VII.25 and VII.26. 

Theorem VII.27. If G has an f-barrier, then it has a maximal 

f-barrier B =(S,T) such that f(x) >= 2 if x €T, and f(x) =1 if x is not in S. 

Proof. Let B=(S,T) be a maximal f-barrier of G with the least 
possible number of vertices x violating the above conditions. 

Suppose that some x € T satisfies f(x) <1. Then f(x) > val(G, x)—1. 
Since val(G, x) > (x)+A(S, x), the right of Theorem VII.26 is nonposi- 
tive. Hence B, is also a maximal f-barrier, contrary to the definition of B. 
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We deduce that each ¢ € T satisfies f(t) = 2. Now suppose that some 
x in U satisfies f(x)=0. We consider the effect of transferring x to S, so 
changing B into a new ordered pair B,. We apply Theorem VII.25 with the 
expressions on the right defined in terms of B,. Then the left side of 
Theorem VII.25 can be written as 5(B,)—6(B), and the right side is 
nonnegative. Hence B, is also a maximal f-barrier of G, contrary to the 
definition of B. We deduce that, in fact, B satisfies the required conditions. 

O 

Special interest attaches to the case in which f(x) =1 for each vertex 
x. We then describe an f-factor as a 1-factor. Given a subset S of V(G), it is 
then convenient to define h(S) as the number of components of G[V(G)— S$] 
having an odd number of vertices. 

Theorem VII.28 (The 1-Factor Theorem). G has either a 1-factor or 
a subset S of V(G) such that |S|<h(S), but not both ki 

Proof. By the f-factor Theorem, G has either a 1-factor or an 
f-barrier B = (S,T), but not both. (Here f(x) =1 for all x.) If there is such a 
B, we can arrange that T is null, by Theorem VII.27. Then the odd 
components of B are those with an odd number of vertices. We then have 
|S| < A(S), by the definition of 5(B). Conversely, if |S| < h(S) for some S, 
it is clear that the pair (S, ©) is an f-barrier of G. Oo 

It should be noted that for a general f that is not even-summing, the 
pair (2, ©) is an f-barrier. We have already seen that there is no f-factor in 
this case. 

We conclude the section with a proof of one old and famous factor 
theorem [10]. 

Theorem VII.29 (Petersen’s Theorem). Let G be a connected cubic 

graph which either has no isthmus or is such that all the isthmuses lie in a 
single arc. Then G has a 1-factor. 

Proof. The number of vertices of G is even, by Eq. (1.1.1). We 
therefore have a zero-summing function /. 

Assume that G has no 1-factor. By Theorem VII.28, there is a subset 

S of V(G) such that |S|<h(S). Since |V(G)| is even, the difference 

h(S)—|S| is even. We therefore have 

h(S)>|S|+2. (VII.6.9) 

Consider an odd component K of G[V(G)—S]. It is clear that 

A(V(K ), S) is odd. Let there be a cases in which this number is 1, and b in 

which it is 3 or more. Then h(S)=a+ b. 

Let m be the number of edges of G having one end in S and one in 

an odd component of G[V(G)—S]. By the above definitions and observa- 
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tions, and by the trivalency of G, we have 

3|S|>m>at+3b= 3h(S)—2a >3|S|+6-—2a. 

It follows that a > 3. 
We deduce that G has three distinct isthmuses A,, A,, and A, having 

end-graphs K,, K,, and K;, respectively, that are distinct odd components 

of G[V(G)—S]. If all the isthmuses of G lie in an arc L of G, then each of 

K,, K, and K, must contain an end of L, which is clearly impossible. (See 
Theorems I.41 and [.24.) oO 

VII.7. SUBGRAPHS OF MINIMUM DEFICIENCY 

Let G and f be as in Sec. VII.5. Even if G has no f-factor, we may wish to 

determine the least possible deficiency for an f-limited spanning subgraph of 

G. We write 

4 Ghd Me agip robe AG G6 (VII.7.1) 
xEV(G) 

and we note the following rule. 

Theorem VII.30. Let F be any f-limited spanning subgraph of G. 

Then 5(F) has the parity of o(f ). 

This follows from Eq. (VII.7.1) and an application of Eq. (I.1.1) to F. 

We now choose a positive integer k having the parity of o( f ) and try 

to find a condition for the existence in G of a spanning subgraph f such that 

6(F)<k. To this end, we construct from G a graph H as follows: 

We choose a positive integer m > 4k, and another positive integer g 

that is not less than any f(x), x © V(G). To form H, we adjoin to G a new 

vertex w, and join w to each vertex of G by q new links. We then attach m 

loops to w. Finally we extend f by putting f(w) = k. Now f is even-summing 
in the new graph H. 

Theorem VII.31. G has an f-limited spanning subgraph F such that 
6(F) <k if and only if H has an f-factor. 

Proof. Suppose, first, that H has an f-factor F,. The number of links 
of F, joining w to vertices of G is at most k. Deleting w and its incident 

edges from F,, we obtain an /f-limited spanning subgraph F of G such that 
6(F)<k. 

Suppose next that G has an f-limited spanning subgraph F such that 
6(F) < k. We form an f-limited spanning subgraph F, of H as follows: First 
we adjoin w to F. Then for each x © V(G) we adjoin exactly 5(F, x) of the 
edges of H joining x to w. The resulting spanning subgraph F, of H fills 
every vertex of G. Moreover, 6(F,,w) is even, by Eq. (VII.7.1) and the 
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choice of k. We can therefore convert F, into an f-factor F, of H by 
adjoining some or none of the loops of H on w. oO 

Theorem VII.32._ Let k be any positive integer with the parity of 
o(f). Then G has either an f-limited spanning subgraph F such that O(F)<k 
or an f-barrier B such that 6(B) > k, but not both. 

Proof. Suppose first that G has no such F. Then H, as defined 
above, has no f-factor, by Theorem VII.31. Hence H has an f-barrier 
B=(S,T), by Theorem VII.24. We choose B from among all the f-barriers 
of H according to the following rules. 
i) If possible, w is to be in S. 

li) If we cannot have w in S, then, if possible, w is to be in U=V(G)— 

(SUT). Then, subject to this rule, B is to be chosen so that \T| is as 
small as possible. 

Assume, first, that neither of these choices is possible, so that we 

have w € T. Consider the effect of transferring w to U, thus changing B into 

another ordered pair B,. We apply Theorem VII.26 to H, recalling that now 

f'(x) = val(H, x)— f(x). 

Because of the m loops on w, the number val(H, x) is at least equal to 

f(w)+A(S,w)+u(w). Hence the right of Theorem VII.26 is nonpositive, 

and B, is another f-barrier of H. This is contrary to our assumption. 

Assume, next, that w is in U. Consider the effect of transferring to U 

a vertex t of T. We first note that B has now only one component, and 

therefore at most one odd component. Hence h(B) <1 and p(t)<1. We 

have also 

val(G,1)>q+A(S,t)=f(t)+AX(S,¢). 

Thus the right side of Theorem VII.26 is nonpositive, by our characteriza- 
tion of n(x), and therefore the transfer of t changes B into another /-barrier 

of H. This is impossible by the choice of B, as described in (ii). There still 

remains the possibility that T is null. But then, since h(B) <1, it follows 

from Eg. (VII.5.8) that 6(B)=1. This is impossible by Theorem VII.22, 

since f is even-summing in H. 

We can now assert that w is in S. Deleting it from S, we obtain an 

f-barrier B, = (S —{w}), T) of G such that 6(B,) > k for, in going from H to 

G, the decrease in A(S,7) is exactly balanced by the decrease in f’(t), 
teT. Oo 

The combination of Theorems VII.27 and VII.32 can be stated in 

maximum-—minimum form. The minimum deficiency for an f-limited span- 

ning subgraph of G is equal to the maximum deficiency for an ordered pair 

(S, 7) of disjoint subsets of V(G). In this connection we note that 6(S, T) 

> 0 when S and 7 are null. 
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We can apply Theorem VII.32 to the special case in which f(x) =1 

for each x. We then say “1-limited” rather than “f-limited.” By Theorem 

VII.27, we need only consider f-barriers for which T is null. We obtain the 

following result, called Berge’s Extension of the 1-Factor Theorem [1]. 

Theorem VII.33. Let k be a positive integer having the parity of 

|V(G)|. Then G has either a \-limited spanning subgraph F such that 

6(F)<k or a subset S of V(G) such that h(S)>|S|+ k, but not both. 

VIL8. THE BIPARTITE CASE 

In this section we suppose G to have a bipartition (U,V). We denote the 

sums of f(x) over U and V, respectively, by X(U) and X(U ). We say that f 
is balanced if X(U) = X(V ). 

Theorem VII.34. If G has an f-factor, then f is balanced. 

We say this because each of 2X(U) and L(V) is equal to the number 

of edges of the f-factor. 

Let B=(S,T) be any ordered pair of disjoint subsets of V(G). In 

the bipartite case we replace 6(B) by the simpler function 

p B= MST lan) tae (VII.8.1) 

We note that 

p(U,V)=X(V)-X(UV). (VII.8.2) 

From Eq. (VII.8.1) we can deduce the following equations (VII.8.3) 

and (VII.8.4). Here s is any vertex of S and ¢ any vertex of T. 

p(S—{s},T)=p(S,T)+f(s)—A(T,s), (VII.8.3) 

o(S,T—{t})=p(S,T)—f(t)+A(V(G)-S, t). (VII.8.4) 

These two equations would be valid even in a nonbipartite graph. 

Theorem VII.35. Let f be balanced. Then G has either an f-factor or 
an ordered pair B = (S,T) such that S CU, T CV, and p(B) > 0, but it does 
not have both. 

Proof. Suppose, first, that G has such a pair B=(S,T). Assume 
that G has an f-factor F. Let m be the number of edges of F joining S and T. 
Then 

Li f(s)=m= ¥Y (f(t)-A(U-S, t)) 
ses teT 

= AST en }) Y(t). 
teT 

Thus p(B) < 0 and we have a contradiction. 
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Suppose next that G has no such pair B. Let the algorithm of Sec. 
VII.6 be applied until we have an f-limited spanning subgraph F of G that 
cannot be further improved. Let us assume that F is not an f-factor. Then, 
since f is balanced, we can find a vertex r of V that is not filled by F. As in 
Sec. VII.6 we consider the path-family J(r). Each nondegenerate path P of 
J(r) has a red first dart with head in U. The second dart, if any, is blue and 
has its head in V. A third dart would be red and have its head in U, and so 
on. We deduce that there are now no bicursal edges. Moreover, if S and T 
are the sets of red-entrant and blue-entrant unicursal vertices, respectively, 
we have S CU and T CV. The argument of Sec. VII.6 leads to the equation 

l=at+b+o(r)— ¥ f(s)— YS f(t) +A(S,T). 
seS rTeT 

But a + b + o(r) is the number of bicursal units, and this is now zero. So we 
have p(B)=1. Thus B satisfies the stated conditions, and we have a 
contradiction. O 

Consider the case in which f(x) =1 for each x. Then if there is any 

B=(S,T) such that p(B) > 0, we can find one such that no vertex of T is 

joined by an edge to any vertex not in S, by Eq. (VII.8.4). So the argument 

of Theorem VII.35 gives us another proof of Hall’s Theorem. (See Theorem 

11.39.) 

Problems about general f-limited spanning subgraphs can often be 

reduced to problems about f-factors. Suppose, for example, that in the 

bipartite graph G we seek a condition for the existence of an /-limited 
spanning subgraph F whose “U-deficiency” does not exceed some positive 

integer k. Here the U-deficiency 5( F,U) is the sum of the numbers 6(F, x) 

for all the vertices x of U. We may assume that )(U) <(V)+k, since 

otherwise no such F exists. 

We form from G a new graph H by adjoining a new vertex u* to U 

and a new vertex v* to V, joining u* to each vertex of V by a large number 

of new edges and then joining v* to each vertex of U, and to u*, by a large 

number of new edges. Finally we extend f by writing f(v*) = & and choosing 

f(u*) to balance f in H. If those large numbers are big enough, we can say 

that G has a subgraph F of the required kind if and only if H has an f-factor 

[13]. 

VIL9. A THEOREM OF ERDOS AND GALLAI 

We discuss partitions (/;, f,,...,f,) of a positive integer 2q into p positive 

parts. We order the parts so that f,>f,>--->/f,. We recall such a 

partition P strictly graphic if there is a strict graph G of p vertices such that 

the numbers f, are the valencies of those vertices. P. Erdés and T. Gallai 

have proved the following [3]. 
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Theorem VII.36. P is strictly graphic if and only if 

r P 

Yf<r(r-l+ YL Min(r, fi) (VII.9.1) 
i=] i=rt+l 

for each integer r satisfying l1<r<p—|. 

To make applicable the methods of the present chapter we introduce 

a p-clique K, with vertices enumerated as 0, Veter es We then write 

f(v,) =f for each vertex v,. Evidently P is strictly graphic if and only if K 

has an f-factor. 
Suppose Eq. (VII.9.1) to fail for some r. Then we write T for the set 

of r vertices with suffixes from 1 to r, and S for the set of all other vertices x 

such that f(x)<r. As usual, we put U=V(G)—(S UT). Then, by our 

supposition, 

De hele) tee tO) 
SPS teT read. 

= ) val(K,t)-A(S,T)+ > f(s), 
teT sESs 

whence 6(S,7)>0, K has no f-factor by Theorem VII.24, and P is not 

strictly graphic. 
Conversely, suppose that P is not strictly graphic. Then K has an 

f-barrier B = (S,T). Since K is a clique, we have h(B) <1 for each such B, 

and therefore u(x) in Theorems VII.25 and VII.26 is either 0 or 1. We 

choose B to have maximum deficiency. We then put |7|=r. By Theorem 

VII.25 we can arrange that 

u(x)—f(x)+A(T, x)—n(x)>0 (VII.9.2) 

if x is in S and 

u(x)—f(x)+A(T, x)—n(x) <0 (VII.9.3) 

if x is in U. We deduce that f(x) <r in the first case and f(x)>~,r in the 

second. We use the fact that the expression on the left is even, so that if 

f(x) =A(T, x) =r, then w(x) = n(x) =0 or 1. We now have 

EFe ELK) 
i=] Lows 

26(S,T)+ > f(s)+ L val(K,2)-A(S,T) (by Eq. (VIL5.8)) 
ses teT 

> DY f(s)tr(r-1)+r|U| 
ses Pp 

=r(r-1)+ ) Min(r, f). 
i=r+l 

Thus if P is not strictly graphic, Eq. (VII.9.1) must fail for some r. This 
completes the proof. oO 
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VII.10. NOTES 

VII.10.1. Cursality 

The theory of the first four sections of this chapter can be extended to any 
number of colors. This is explained in a paper by the author that is to be 
published in Combinatorica. 

VII.10.2. Algorithms 

There is a good algorithm for finding 1-factors and f-factors, or demonstrat- 
ing their nonexistence. See [2]. 

VII.10.3. Pfaffians 

Consider a loopless graph G, with conductances associated with the edges as 
in Section VI.4. Let its vertices be enumerated as 0,, v,,...,v0,. We associate 

with it a square matrix {u,,), where u; ; 1S plus or minus the sum of the 

conductances of the edges joining v,; and v;. We arrange that u;,=—u ie 

that is, that the matrix is skew-symmetric. If n is even, then the determinant 

of {u;;} is the square of a polynomial P in the conductances called the 

Pfaffian of {u;;}. This Pfaffian can be defined explicitly as follows 

P= Let; Up Unn i 
Frs2 

where i < j,k </, etc., andi<k<m<--- <r, and where (i, j,k,/,...,r, 5) 

is a permutation of the sequence of integers from 1 to n. The coefficient e is 

1 or — 1 according as the permutation is even or odd. It can be seen that the 

terms of P, each the product of $n distinct conductances, are in 1-1 

correspondence with the 1-factors of G, but some have a positive sign and 

some a negative. 

The theory of 1-factors given in [11] is based on the properties of 

Pfaffians. F. G. Maunsell showed in [9] that the appeals to Pfaffians could 

be replaced by simple graph-theoretical arguments. Later, P. Kasteleyn 

showed that, for a planar graph with unit conductances, the signs could be 

adjusted so as to ensure that the value of the Pfaffian would be the number 

of 1-factors. He thus found the numbers of 1-factors for some planar graphs 

of interest to physicists [7]. His method can be extended to some nonplanar 

graphs ([5, 6, 8]). 

EXERCISES 

1. Color the edges of a cube-graph red and blue. Choose a vertex r and 

classify the edges as unicursal, bicursal, or non cursal with respect to r. 



184 Alternating Paths 

2. Find a 9-circuit in the Petersen graph. Color its edges blue and the 

remaining edges in the graph red. Find an alternating path that begins 

and terminates at the remaining vertex r (and is not degenerate). Use 

this path to change the complement of the 9-circuit into a 1-factor. 

3. Are the sequences (3, 2,2, 1) and (5,5,5,3, 3,2) strictly graphic? Test your 

conclusions against the Erdés—Gallai Theorem. 

4. Show that any 4-connected 5-regular graph with an even number of 

vertices has a 1-factor. 
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Chapter VIII 

Algebraic Duality 

VIII.1. CHAIN-GROUPS 

In this chapter we apply linear algebra to graph theory. We start with a 

finite set S whose members are called cells, and with a commutative ring R 

having a unit element. We denote the zero and unity of R by 0 and 1, 

respectively. In applications, S is likely to be the vertex-set or edge-set of a 

graph. 

A chain on S to R is a mapping f of S into R. If x € S, then the 

element f(x) of R is called the coefficient of x in f. If S is nonnull, there is a 

zero chain on S in which each coefficient is 0, and a unit chain in which each 

coefficient is 1. When S is null, we say that there is just one chain on S to R, 

and we call it a zero chain. 
If fis a chain on S to R and if A € R, then we define the product Af 

as the chain on S to R given by the following rule: The coefficient (Af )(x) 

of x inAf is A. f(x) for each x € S. If f, and f, are chains on S to R, then 

their sum f, + f, is the chain on S to R defined as follows: The coefficient 
(f, +f) (x) of x nf, +f, is f,\(x)+ f(x) for each x © S. Addition thus 

defined is commutative and associative. We can extend it in the usual way to 

sums of three or more chains. Moreover, multiplication by an element of R 

is distributive over addition. A difference f,— f, of chains is defined as 

fi sh, te If. 

185 
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Consider a nonnull collection F = (f), f5,-..-,f,) of chains on S to R, 

not necessarily all distinct. Suppose that some chain f on S to R satisfies 

n 

f= iiyh= Ait Arh bore (VIII.1.1) 
j=l 

where the A; are elements of R. Then we say that f is expressed as a /inear 

combination of the members of F, with the A ; as coefficients. If the zero chain 

can be so expressed, with coefficients not all zero, then we say that the 

members of F are linearly dependent. This happens, for example, when one 

member of F is zero, or when two of them are equal. If the zero chain 

cannot be so expressed, then the members of F are /inearly independent. In 

that case they are nonzero and distinct. 

The support Sp(f) of a chain f on S to R is the set of all x © S such 

that f(x) is nonzero. If f and g are two chains such that Sp(g) C Sp(f), we 

say that f encloses g. If, moreover, Sp( g) is properly contained in Sp(/), we 

say that f properly encloses g. 

A chain-group on S to R is a nonnull set N of chains on S to R that is 

closed with respect to addition and with respect to multiplication by an 

element of R. Considering the zero element of R, we see that N must 

contain the zero chain. With any chain f, the chain-group must include also 
its negative —f, that is (—1)f, which satisfies f+(— f)=0. Here and 

elsewhere we use the symbol 0 to denote the zero chain. More generally, we 

observe that any linear combination of members of N must be a member 

of N. 

An elementary chain of N is a nonzero chain of N that properly 
encloses no other nonzero chain of N. 

Theorem VIII. If f © N has the same support as some elementary 

chain g of N, then f is itself elementary (by definition). 

Theorem VIII.2, Each nonzero chain f of N encloses an elementary 
chain of N. 

Proof. Of the nonzero chains of N enclosed by f, f being one, 
choose one with minimal support. This is elementary. a) 

A cell-base of N is a subset D of S that meets the support of each 
nonzero chain of N, and that is minimal with respect to this property. 

Theorem VIII.3. Each chain-group N on § to R has at least one 
cell-base. 

Proof. Let F be the class of all subsets T of S that meet the support 
of each nonzero chain of N. Then F is nonnull since it has § as a member. 
Choose a member D of F with as few cells as possible. Then D is a cell-base 
of N. O 
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Theorem VIII.4. Let D be a cell-base of a chain-group N on S to R, 
and let x be any cell of D. Then there is an elementary chain g of N such that 
Sp(g) meets D only in x. 

Proof. By the minimality of D there is a nonzero chain f of N such 
that Sp(f) does not meet D —{x)}. But f encloses an elementary chain g of 
N, by Theorem VIII.2. The support of g must meet D, and it can do so only 
in x. Oo 

Consider any subset T of S. If fis any chain on S to R, we define its 
restriction f-T to T as that chain on T to R for which each cell of T has the 
same coefficient as in f. Evidently, if N is any chain-group on S to R, then 
the restrictions to T of the chains of N constitute a chain-group N-T on T to 
R. We call this the reduction of N to T. It is also clear that the restrictions to 
T of those chains f of N for which Sp(f) C T constitute a chain-group N x T 
on T to R. We call this the contraction of N to T. From these definitions, we 
can deduce the following general rules, for U CT CS: 

(N-T)-U=N-U, (VIII.1.2) 

(NXT)XU=NXU, (VIII.1.3) 

(N xXT)-U=(N-(S—(T-U)))xU. (VIII.1.4) 

The last of these is perhaps less obvious than the other two. To prove it, we 

observe that each side is the set of restrictions to U of those chains of N 
whose supports do not meet S — T. 

We refer to a chain-group of the form (N xX 7)-U as a minor of N. 

Evidently N XT and N-T are minors (N XT)-T and (N XS)-T of N, 

respectively. N itself is the minor (N X S)-S of N. Moreover, each minor of 

N can be written in the form (N-T)XU, by Eq. (VIII.1.4). 

Theorem VIII.5. A minor of a minor of N is a minor of N. 

This follows from Eqs. (VIII.1.2), (VIII.1.3), and (VIII.1.4). Compare the 

proof of Theorem II.8. oO 

If f and g are chains on S to R, we define their scalar product (f-g) 

as follows 

ey Doria). (VIII.1.5) 

We note the following identities: 

Oi? al Cee (VIII.1.6) 

Ati g)=(Afrg), (VIII.1.7) 
(f+g)h=(f-h)+(g-h) (VIHI.1.8) 

If (f-g)=0, we say that the chains f and g are orthogonal. 
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Now let N be any chain-group on S to R, and let N* be the set of 

those chains on S to R that are orthogonal to all the chains of N. The zero 

chain is one such. By Eqs. (VIII.1.6), (VIII.1.7), and (VIII.1.8), N* is a 

chain-group on S to R. 

Theorem VIII.6. Let N be any chain-group on S to R. Then N € N** 

and N* = N***, 

Proof. Each chain of N is orthogonal to every chain of N*, and so 

belongs to N**. Thus N Cc N**. 
Similarly, N* Cc N***. On the other hand, each chain of N*** is 

orthogonal to each chain of N**, and so to each chain of N, by the result 

already proved. So we have also N*** C N*. Oo 

If N** = N, we say that N* is the dual chain-group of N. Then N is 

the dual chain-group of N*. For each of N* and N** is the dual of the 

other, by Theorem VIII.6. Here we encounter the “algebraic duality” of the 

chapter title. 

Theorem VIII.7. If T CS, then (N-T)* = N* XT. 

Proof. Consider any chain f on T to R that is in (N-T)*. Let f, be 

the chain on S to R such that f,;-7 =f and the coefficients outside T are 

zero. Then f, is orthogonal to each member of N and therefore f © N* x T. 
Conversely, if f is in N* X T, it is the restriction to T of a chain f, of 

N* specified as above. Hence f is orthogonal to the restriction to T of every 

chain of N. That is, f € (N-T)*. Oo 

VII.2. PRIMITIVE CHAINS 

We write R’ for the set of regular elements of R, that is, the elements of R 
having reciprocals in R. 

Theorem VIII.8. The product of a regular element X and a nonzero 

element p of R is nonzero. 

For suppose Ap = 0. Then p= (A~'A)w=A~"(Ap) = 0. 

Theorem VIII.9. The product of two regular elements d and u of R is 
regular. 

For Ap has the reciprocal A~'y~!. 
Now let N be any chain-group on S to R. We define a primitive chain 

of N as an elementary chain of N whose coefficients are all in R’. 

Theorem VIII.10. Let g be any primitive chain of N. Then the chains 
f of N such that Sp(f)=Sp(g) are the multiples of g by nonzero elements 
of R. 
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Proof. If wis a nonzero element of R, then ug is a nonzero chain of 
N with support Sp(g), by Theorem VIIL8. 

Conversely, suppose Sp( f) = Sp( g). Choose x © Sp(g) and write 
v= f(x)(g(x))~'. Then the support of f — vg is contained in Sp(g)—({x). 
Hence f = vg, since g is elementary. Oo 

Theorem VIII.11. Let g be a primitive chain of N, and let x be a cell 
of Sp(g). Then the multiples of g by elements of R’ are primitive chains of N. 
In one of them, the coefficient of x is 1. 

Proof. The multiples are elementary chains of N, by Theorems 
VIII.1 and VIII.8. They are primitive, by Theorem VIII.9. Since (2(x))r4s 
regular, the theorem follows. Oo 

We call a cell-base D of N primitive if, for each x € D, there is a 
primitive chain g of N such that DMSp(g) = {x). By Theorem VIII.11 we 
can choose g so that g(x) =1. Let us denote the chosen chain by g(D, x). 
Then g(D, x) is uniquely determined; if two chains satisfied its definition, 
the support of their difference would not meet D. 

The set of chains g(D, x), one for each cell x of D, is the chain-base 
B(D) corresponding to the primitive cell-base D. 

Theorem VIII.12._ Let D be a primitive cell-base of N. Then the 
members of B(D) are linearly independent. Moreover, each chain of N has a 
unique expression as a linear combination of members of B(D). 

Proof. Suppose 

5 A,.g(D, x) =0, 
xe D 

where the A, are in R. Then the coefficient of x in the sum on the left is A. 
Hence A, = 0 for each x. This proves the first part of the theorem. 

Now let f be any chain of N. The chain 

f- L f(x)g(D, x) 
x€ED 

has a support not meeting D and is therefore zero. Hence 

FES) FIR, x); (VIII.2.1) 
cep) 

f is expressed as a linear combination of members of B(D). 

Assume that f has a second such expression 

f= LD w,g(D,x). 
xED 

Then 

DV (u.-f(x))g(D, x) =0. 
x ED 
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Hence p, = f(x) for each x, by the result already proved. The expression in 

Eq. (VHI.2.1) for fis thus unique. Oo 

Corollary VIII.13. If a chain f of N has a support meeting D only in 

the cell x, then f is a nonzero multiple of g(D, x). 

Theorem VIII.14 (The Interchange Theorem). Let D be a primitive 

cell-base of N, and let x be a cell of D. Let y be a cell of g(D, x) distinct from 

x. Write D, = (D —{x)})U{y}. Then D, is a cell-base of N. 

Proof. By the Corollary VIII.13 the only nonzero chains of N with 

supports not meeting D —{x)} are the nonzero multiples of g(D, x). Hence 

the support of each nonzero chain of N meets D,. So D, satisfies the first 

condition for a cell-base. It remains to prove its minimality. 
We note that the support of g(D, x) does not meet D, —{y}, that is, 

D —{x). Now let z be any cell of D —{x). Write g(D, x) =h and g(D, z) =k. 

Since these two chains are primitive, we can construct the chain 

=1 
f=k—k(y)(h(y)) Ah. 

This is nonzero; we have f(z) =1. But the support of f does not include y, 

and it does not meet D, —{z}. We can now assert that no proper subset of 

D, meets the support of every nonzero chain of N. O 

The operation of constructing D, from D is called an interchange. If 

D, happens to be primitive, it may be possible to apply a second inter- 

change, going from D, to a third cell-base D,. 

Theorem VIIT.15. Let all the cell-bases of N be primitive. Let D and 

E by any two of them. Then it is possible to convert D into E by a finite 

sequence of interchanges. 

Proof. From the class of cell-bases of N consisting of D and all 
cell-bases derivable from it by finite sequences of interchanges, we select 

one, D’, having the greatest possible number of elements in common with E. 

If D'C E then D’= E, by minimality. In the remaining case, D’ has a cell x 

not in £. But then the support of g(D’, x) meets E in a cell y not belonging 

to D’. It follows from the Interchange Theorem that (D’—{x)})U{y) is a 
cell-base of N. But this contradicts the definition of D’. O 

Theorem VIII.16. Let all the cell-bases of N be primitive. Let g be 

an elementary chain of N. Then N has a cell-base D such that g is a nonzero 
multiple of a member of B(D). 

Proof. Choose a cell-base D of N having as few cells as possible in 
Sp(g). (It must have at least one.) Choose x © DM Sp(g). Suppose g(D, x) 

to have a cell y not in Sp(g). Then (D —{x})U{y) is a cell-base of N by the 
Interchange Theorem, and the definition of D is contradicted. We deduce 
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that Sp(g(D, x)) C Sp(g), and therefore Sp(g(D, x))=Sp(g) since g is 
elementary. The theorem follows, by Corollary VIII.13. Oo 

Let us say that the chain-group N is primitive if each of its elemen- 
tary chains is a multiple of a primitive chain. 

Theorem VIII.17. _N is primitive if and only if each of its cell-bases is 
primitive. 

Proof. Suppose N is primitive. Let D be any cell-base of N. For 
each x € D there is an elementary chain g of N such that DA Sp(g) = {x}, 
by Theorem VIII.4. Since each such g is a multiple of a primitive chain of N, 
it follows that D is primitive. 

Conversely, suppose that each cell-base of N is primitive. Then N is 
primitive, by Theorem VIII. 16. Oo 

Theorem VIII.18. If N is primitive, then each nonzero chain fofN 
can be expressed as a sum of nonzero multiples of primitive chains, each of 
these primitive chains being enclosed by f. 

Proof. If possible, let f be a nonzero chain of N for which the 
theorem fails. Let it be chosen so that |Sp(f)| has the least value consistent 
with this condition. Now f encloses a primitive chain g of N, by Theorem 
VIII.2. If x is some cell of Sp(g), we can arrange that g(x) =1, by Theorem 
VIII.11. Write 

h=f—f(x)g. (VIII.2.2) 
Then Sp(h) is a proper subset of Sp(g). (It does not include x.) So by the 
choice of f, the theorem is true for h. But then it is true also for f, by Eq. 
(VIII.2.2). This contradiction establishes the required result. oO 

If N is primitive, there is a number r(N) such that each cell-base of 
N and each associated chain-base has exactly r(N) elements. This follows 
from Theorems VIII.15 and VIII.17. We call r(N) the rank of N. By its 
definition, we have 

0<r(N)<|S}. (VIII.2.3) 

Theorem VIIL19. If N is primitive, then every minor of N is primi- 
tive. 

Proof. Consider an elementary chain g of N XT, where TCS. 

There is a chain g, of N such that Sp(g,)=Sp(g) and g=g,-T. But g, 

encloses a primitive chain h, of N, by Theorem VIII.18. The restriction h,-T 
is a chain h of N XT such that Sp(h) C Sp(g) and the nonzero coefficients 

in h are all in R’. Moreover, h is nonzero. Since g is elementary in N X T, we 

must have Sp(/) = Sp(g). Hence h is elementary in N XT, and therefore 

primitive in N xX 7, by Theorem VIII.1. By Theorem VIII.10, g is a nonzero 

multiple of h. 
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Consider next an elementary chain g of N-T. There is a chain g, of N 

such that g,-T = g. Using Theorem VIII.18, we find that there is a nonzero 

chain h of N-T whose nonzero coefficients are all in R’ and whose support is 

contained in that of G. As with N x T, it follows that g is a multiple of the 

primitive chain h of N-T. 
Suppose U CT CS. Then, by the preceding results, (N x 7)-U is 

primitive. Oo 

Theorem VIII.20. Let N be primitive. Let T and U be complemen- 

tary subsets of S. Let D, and D, be cell-bases of N x T and N-U, respectively. 

Then their union D is a cell-base of N. 

Proof. Let f be any nonzero chain of N. If f-U is nonzero, then 

Sp(f) meets D, and therefore D. If f-U is zero, then f-T is a nonzero chain 

of N XT, and therefore Sp(f) meets D, and D. So D meets the support of 

every nonzero chain of N. 

Choose x € D. If x is in D,, there is a chain of N x T in B(D,) whose 
support does not meet D, —{x}. This corresponds to a nonzero chain of N 

whose support does not meet D —{x). If x © D,, there is a nonzero chain f 

of N whose support does not meet D, —{x}. By subtracting chains of N 

corresponding to suitable multiples of members of B(D,) in N X T, we can 

transform f into a nonzero chain of N whose support does not meet D —{x). 

We conclude that no proper subset of D meets the support of every nonzero 

chain of N. Accordingly, D is a cell-base of N. Oo 

Theorem VIII.21. Let N be primitive. Let D be a set of r(N) 

elements of S with the following property: For each x € D, there is a chain f of 

N such that DOSp(f ) = {x}. Then D is a cell-base of N. 

Proof. D is clearly a cell-base, and the only one, of N-D. There is a 
cell-base D’ of N X(S—D), by Theorem VIII.3. But then DUD?’ is a 

cell-base of N, by Theorem VIII.20. Since each cell-base of N has exactly 

r(N) elements, D’ must be null. Hence D is a cell-base of N. O 

Theorem VIII.22. If N is primitive, then N* is primitive. Moreover, 

the cell-bases of N* are the complements in S of the cell-bases of N. 

Proof. Let D be any cell-base in N, and D* its complement in S. 
For each y € D*, we define a chain g(D*, y) on S to R as follows: The 
coefficient of y is 1 and the coefficient of each other member of D* is zero. If 
x € D, then its coefficient in g(D*, y) is minus the coefficient of y in 
g(D, x). 

It follows that each chain g(D*, y) is orthogonal to each chain of 
B(D), and therefore to each chain of N by Theorem VIII.12. Hence the 
chains g( D*, y) belong to N*. 
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Now any nonzero chain of N* has a support meeting D*, for 
otherwise it could not be orthogonal to every chain of B(D). We can now 
deduce that D* is a cell-base of N*. 

We observe that all the nonzero coefficients in g( D*, y) belong to R’. 
But, for each y, g(D*, y) encloses an elementary chain g of N*, by Theorem 
VIII.2. Since Sp(g) must meet D*, by the preceding result, the coefficient 
g(y) 1s nonzero. Consider the chain 

h=(y)g(D*, y)-g 
of N*. It is zero because its support does not meet D*. Since g is elementary, 
we deduce that g( D*, y) is an elementary and therefore a primitive chain of 
N*, by Theorem VIII.8. Accordingly, the complements of the cell-bases of N 
are primitive cell-bases of N*. 

Now consider any cell-base E of N*. Let D be a cell-base of N with 
as few cells as possible in common with E. If possible, choose a cell x in 
DOE. Then Sp(g(D, x)) has a cell y not in D or E; otherwise, g(D, x) 
could not be orthogonal to a chain f of N* with a support meeting E only in 
x. (See Theorem VIII.) But then (D —{x))U{y} is a cell-base of N, by the 
Interchange Theorem, and this.is contrary to the definition of D. We infer 
that D and £ are disjoint. Hence E is a subset of the cell-base D* of N*. But 
now E = D*, by the minimality of cell-bases. 

To complete the proof, we have only to show that N* is primitive. 
This follows from Theorem VIII.17. Oo 

Theorem VIII.23. If N is primitive, then N** = N, that is, N and N* 
are dual chain-groups. 

Proof. Let D be a cell-base of N. It is a cell-base of N**, by 
Theorem VIII.22. But the chains g(D, x), for a given x © D, in the two 
primitive chain-groups N and N** must be identical. Otherwise, by Theo- 

rem VIII.6, their difference would be a chain of N** with a support not 

meeting D. Hence the chains of N are the chains of N**, by Theorem 
VITII.12. oO 

Theorem VIII.24. If N is primitive and T CS, then (N-T )* = N* X 
T and (N XT)* = N*.-T. 

Proof. We have the first equation in Theorem VIII.7. Applying it to 

N*, we have (N*-T)*=N XT, equivalent to the second equation, by 

Theorems VIII.19, VIII.22, and VIII.23. Oo 

To conclude this section, we note two identities concerning rank, 

valid for all primitive chain-groups: 

r(N)=r(N XT)+r(N-(S-T)), PC SAG VIN) 

|S} =r(N)+r(N*). (VIII.2.5) 

They follow from Theorems VIII.20 and VIII.22, respectively. 
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We should also note, as a consequence of Theorem VIII.24, that, if N 

is a primitive chain-group, then the minors of N* are the duals of the minors 

of N. 

VIII.3. REGULAR CHAIN-GROUPS 

In this section we write J for the ring of integers and J, for the ring of 

residues modulo a positive integer n. We note that the only regular elements 

of J are 1 and —1. A primitive chain-group to J is called a regular 

chain-group. (See [1].) 

Consider two chains f and g on S to J. We say that f conforms to g if 

Sp( f) C Sp(g) and for each x € Sp( f) the numbers f(x) and g(x) have the 

same sign. The two following rules are easily verified for chains on S to J. 

Theorem VIII.25. If f conforms to g and g toh, then f conforms toh. 

Theorem VIII.26. If Sp(f)cSp(g) and the coefficients in f are 

restricted to the values 0, 1, and —1, then g — f conforms to g. 

Such a restriction on the coefficients applies whenever f is a primitive 

chain of a regular chain-group. 

Theorem VIIT.27. Let N be a regular chain-group on S. Then each 

nonzero chain f of N has a conforming primitive chain of N. 

Proof. If possible, choose f so that the theorem fails and |Sp(/)}| 

has the least value consistent with this condition. Choose x € Sp(/f). By 

Theorems VHI.11 and VIII.18, f encloses a primitive chain g of N such that 

g(x)=1. Write o=1 or —1 according as f(x) is positive or negative. 

Consider the chain h, = f —og of N, which conforms to f, by Theorem 

VIII.26. We note that h,(x) is one less than f(x) in absolute value. If 

Sp(,) = Sp(/), we consider h, = h, — og, and so on. Each of the resulting 

chains h,,h,,h3,... conforms to f, by Theorems VHI.5 and VII.26. But 
after at most f(x) steps, we come to an h, whose support is a proper subset 

of Sp(f). 
If h, =0, then fis a positive integral multiple of og, and therefore f 

satisfies the theorem. Otherwise, some primitive chain k of N conforms to 

h,, by the choice of f, and therefore to f by Theorem VIII.25. These 

contradictions establish the theorem. Oo 

Theorem VIII.28. Let N be a regular chain-group on S. Then each 
nonzero chain f of N can be represented as a sum of primitive chains of N, each 
conforming to f. 

Proof. For each chain q of N, let M(q) denote the sum of the 
absolute values of its coefficients. 
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If possible, choose f so that the theorem fails and M(f) has the least 
value consistent with this condition. By Theorem VIII.27, f has a conform- 
ing primitive chain g. Then f—g conforms to f, by Theorem VIII.26. 
Moreover, it is clear that M( f — g)< M(f). 

By the choice of f, the chain f — g is a sum of primitive chains of N, 
each conforming to f — g and therefore to f, or it is zero. But f=(f—g)+g, 
and therefore f satisfies the theorem, which is a contradiction. [3] 

Let n be an integer > 2. To reduce modn a chain f on S to J is to 
replace each coefficient by its residue class mod n. The operation transforms 
finto a chain f, on S to I. We call f, the residual chain of f mod n. 

If N is a chain-group on S to J and we replace each chain of N by its 
residual chain mod n, we obtain the chains of a chain-group N,, on S to J,. 
This is the residual chain-group of N modn. A given chain of N,, may 
correspond to infinitely many chains of N. 

Theorem VIII.29. Let N be regular and let q be a chain of N,. Then 
there is a chain f of N satisfying the two following conditions: 
1) q is the residual chain of f mod n. 

il) Each coefficient in f has absolute value <n. 

Proof. By the definition of N,,, there exists a chain f of N satisfying 

(i). For each such f, let Z( f) denote the number of cells of Sp( f) having 

coefficients not less than n in absolute value. If Z( f) = 0, there is nothing to 

prove. We may assume, therefore, that Sp(f) has a cell x such that 

If(x)|> 2. 
By Theorem VIII.28 there is a primitive chain g of N, conforming to 

f, such that x € Sp(g). Consider the chain f, = f — ng of N, whose residual 

chain mod n is still g. If f(y) =0, then f,(y)=0. If 0<|f(y)| <x, then 

Ifi(y)| is [f(y)| or n—|f(y)| and, in either case, 0<|f,(y)| <n. But 

If,.(x)| = |f(x)|— 1. So, if we replace f by f,;, we preserve (i), we do not 

introduce any new cells y with coefficients n or more in absolute value, and 

we diminish the absolute value of f(x) by n. By sufficiently many repetitions 

of this procedure, we can reduce Z(f), while still preserving (1). 

Continuing in this way we can reduce Z(/) to zero. We then have a 

chain f of N satisfying (i) and (ii). Oo 

It is often convenient to use matrices in the study of a regular 

chain-group N on a set S. We assume that S is nonnull and that r(N) > 0. 

We fix an enumeration (x,, X3,...,x,) of the s cells of S. For any chain f on 
S to I, we define its representative vector as the row-vector 

V(f) =(F( 21), $42). f(%5))- 
In the preceding discussions using the general ring R of Sec. VILL, 

we did not assume any previous knowledge of the related theory of linear 
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dependence. But for the ring /, especially if it is regarded as embedded in 

the field of rational or real numbers, the theory of linear dependence is 

familiar to all likely readers. In particular, we can recognize r(N), for a 

regular N, as the maximum number of linearly independent chains of N. 

(See Theorem VIII.12.) 

Consider a matrix M of r(N) rows and s columns. Let its rows be 

representative vectors of chains of N. If they are linearly independent, we 

call M a representative matrix of N. 

Let D be any cell-base of N. We can write the representative vectors 

of the r(N) members of B(D) as the rows of a representative matrix M of 

N. We can order the rows so that the columns of M corresponding to the 

members of D constitute a unit matrix, of order r(N). We then call M the 

standard representative matrix of N with respect to D. 

For any representative matrix M of N and any subset 7 of S, we 

write M(T) for the submatrix of M made up of the columns corresponding 
to the members of T. 

Theorem VIII.30. Let M be the standard representative matrix of N 

with respect to a cell-base D. Let TF be any set of r(N) members of S. Then 

det M(T) is 1 or —1 if T is a cell-base of N, and det M(T ) = 0 otherwise. 

Proof. Let T be any cell-base of N. Let M, be the standard 
representative matrix of N with respect to T. By Theorem VIII.12, there is a 

square matrix Q of integers, of order r(N), such that QM, = M. Consider- 

ing the unit matrix M,(T), we deduce that Q = M(T). Considering M(D), 

we find that det(QM,(D)) =1. Hence, det Q, that is, det M(T), is 1 or —1. 

Now suppose that 7 is not a cell-base. If it meets the support of 

every nonzero chain of N, it has a minimal proper subset 7, with this 

property. But then 7, is a cell-base of N with fewer than r(N) elements, 
which is impossible. We deduce that in fact there is a non-zero chain f of N 
whose support does not meet T. But the representative vector of f is a linear 
combination of rows of M, by Theorem VIII.12, and therefore the rows of 
M(T) are linearly dependent. Hence det M(T) = 0. O 

Theorem VIII.31. Let M, be any representative matrix of N. Let T 
be any set of r(N) members of S. Then there is a positive integer m, with the 
following property: If T is a cell-base ci N, then det M\(T) =m, or —m,, and 
in the remaining case, det M,(T) = 

Proof. Let D be a cell-base of n and let M be the standard 
representative matrix of M with respect to D. By Theorem VIII.12, there is a 
Square matrix Q of integers such that QM = M.. Since the rows of M, are 
linearly independent, Q must be nonsingular. Let m, be the absolute vahie 
of its determinant. We have M,(T) = QM(T) for Bick T. Theorem VIII.31 
now follows from Theorem VIII.30. oO 
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VIlI.4. CYCLES 

Let G be a graph, and Q one of its orientations. If D is a dart of Q, we 
denote the corresponding edge of G by D’. We write S for the dart-set of Q. 
If T&S, then 7’ denotes the set of edges of G corresponding to the 
members of T. In particular, S’= E(G). 

For each dart D of Q and vertex v of G, we define an incidence-num- 
ber n(D, v) as follows: If D’ is a loop, or if D is not incident with v, then 
n(D, v) = 0. In the remaining case, with D’ a link of G, we write 4(D, v)=1 
or — 1, according as v is the head or tail of D. 

A chain on S to the ring R of Sec. VIII.1 is a 1-chain of 2 to R. A 
chain on V(G) to R is a 0-chain of Q, or of G, to R. 

Let f be any I-chain of Q to R. Its boundary Of is the 0-chain of G 
defined as follows: For each vertex v, 

(df)(v)= } n(D,v) f(D). (VIII.4.1) 

Thus if f(D) is called the “current” in D, we can describe (df )(v) as the 
total current in the darts with head v minus the total current in those with 
tail v, or simply as the net current to v in Q. 

From Eq. (VIII.4.1), we deduce the following identities: 

a(Af) =A- Af, (VIII.4.2) 

a(f+g)=dft dg. (VIII.4.3) 

Here f and g are |-chains of 2 to R, andA ER. 

A 1-chain f of 2 to R is called a cycle of Q to R if df =0. For 

example, the zero chain on S to R is a cycle of 2. By Eqs. (VIII.4.2) and 

(VIII.4.3), the cycles of 2 to.R are the elements of a chain-group T = I'(Q, R) 

on S to R. We call T the cycle-group of Q, with respect to R. 

We go on to give graph-theoretical interpretations of the elementary 

chains and the cell-bases of I’. These will be in terms of G, rather than Q, 

for, from the point of view of the present chapter, a change of orientation of 

G, say from Q to Q,, is but a trivial readjustment. In a certain subset U of S, 
each dart D is replaced by its opposite. An incidence number n(D, v) for 

such a dart is replaced by n(D~',v), that is, by — n(D, v). So each dart of 

U is replaced by its opposite as a cell of the chain-group, and the corre- 

sponding coefficient in each member-chain of [ is replaced by its negative. 

We say that ['(Q,, R) is derived from I'(Q, R) by a reorientation of U’. 

Sometimes 1=—1 in R, as when R=J,, and then changes of 

orientation become more trivial still. There is no alteration of coefficients. In 

this case, it is unnecessary to distinguish between a dart and its opposite, or 

between either and the corresponding edge of G. We can regard chains on S 

as chains on E(G), and we can speak of the 0-chains, 1-chains, and cycles 

“of G,” without reference to any particular orientation. 
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FIGURE VIII.4.1 

Consider an n-circuit C of G, with the notation of Sec. I.1. For each 

edge A,, let D; be its dart in S, shown by an arrow from tail to head in Fig. 

VIII.4.1 for the case n = 7. 

We define a chain p, on S as follows: For any dart D of S not on an 

edge of C, we write p-(D)=0. For D; on C we write p-(D;)=1 or —1, 

according as a, is the head or the tail of A;. These coefficients are written 
inside the circuit in Fig. VIII.4.1. For n =1, when A, is a loop, it is trivial 

that p- is a cycle of 2. For n > 1, we have the rules: 

n(D,,4;) Pc(D,) =1, (VIII.4.4) 

n(Dj,4;-1) Pc(D,) = —1. (VIII.4.5) 
From these and Eq. (VIII.4.1), we deduce that dp. =0. Summarizing, we 

have the following theorem. 

Theorem VIITI.32. For each circuit C of G, the chain pc is a nonzero 
cycle of 2 to R. Its coefficients are restricted to the values 0, 1, and — 1, and its 

support consists of the darts of C that are in S. 

Note that reversing the defining sequences of a circuit C replaces p. 
by its negative. 

Theorem VIII.33. Let f be any nonzero chain of T(Q, R). Then there 

is a circuit C of G such that f encloses pc. 

Proof. In the reduction G-Sp(f), each vertex v has valency at least 
2, since otherwise (df )(v) could not be zero. Hence, 

P,(G-Sp(f)) > 0, 

by Theorem I.39. Hence G-Sp(f) has a circuit C, by Thoerems 1.35 and 
1.45. But then C is a circuit of G, and f encloses pe. Oo 
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Theorem VIII.34. A chain f of T(Q, R) is elementary if and only if 
f = oc, where C is a circuit of G and o is a nonzero element of R. 

Proof. Suppose f = op.. Assume it is not elementary. By Theorem 
VIII.33, there is a circuit U of G such that Pc properly encloses p,,. But then 
U is a detached proper subgraph of C, contrary to the connection of C, by 
Theorem 1.27. 

Conversely, suppose f elementary. By Theorem VIII.33 there is a 
circuit C of G such that f encloses p.. Since f is elementary, we must have 
Sp( f) = Sp( p-). Hence p- is elementary, and therefore primitive, by Theo- 
rem VIII.32. So fis of the required form, by Theorem VIII.10. Oo 

Theorem VIII.35. [(Q, R) is a primitive chain-group. 

Proof. Any elementary chain f of I'(Q, R) is of the form Opc, for 
some circuit C of G, by Theorem VIII.34. But p, is primitive, by Theorem 
VIII.32. 0 

We refer to the chains p- as the elementary cycles of Q. 
Let us define a frame of a graph G as a spanning subgraph of G 

whose intersection with each component H of G is a tree, necessarily a 
spanning tree of /7. 

Theorem VIII.36. Let T be a subset of S. Then T is a cell-base of 
T(Q, R) if and only if G:(S’—T’) is a frame F of G. 

Proof. Suppose first that G:(S’—T’) is a frame F of G. It contains 

no circuit. Hence, by Theorem VIII.33, each nonzero chain of I'(Q, R) has a 

support meeting 7. But now let D be any dart of T, with head / and tail ¢, 

say. If D is on a loop of G, it constitutes by itself the support of an 

elementary chain of [(Q, R), by Theorem VIII.34. In the remaining case, h 

and ¢ are distinct vertices of a component H of G. Hence they are joined by 

an arc L in FH, by Theorem 1.44. Adjoining the edge of D to L, we 

obtain a circuit C such that Sp( p-) meets T only in D. We can now assert 

that T is a cell-base of ['(Q, R). 

Conversely, suppose we are given a cell-base T of [(Q, R). Write 

F=G-(S’—T’). Then F has no circuit, by Theorem VIII.32. Assume that it 

has two or more components contained in the same component of G, H say. 

Then there are complementary nonnull subsets U and W of V(#) that are 

joined only by links of T’. Since H is connected, we can find one such link A 

of 7’. By Theorems VIII.4 and VIII.34, there is a circuit C of G such that 

E(C)AT’= (A). By its connection, C is a subgraph of H. The complemen- 

tary arc of A in C, being connected, must include an edge that joins U and 

W, and this edge is not in 7’. We have a contradiction. So the intersection 

of F with each component of G is connected and has no circuit: F is a 

frame. O 
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We note that if G is connected, the number of cell-bases of [(Q, R) 

is equal to the tree-number of G. 

Theorem VIII.37. The rank of T(Q, R) is p\(G). 

Proof. Let T be any cell-base of I'(Q2, R). (See Theorem VIII.3.) If 

H is any component of G, then the number of edges of H not in 7” is 

|V(H)|—1, by Theorems VIII.36 and I.37. Hence 

|S’- T'| =|V(G)| — po(G), 

r(T) =|T’|=|E(G)| -—|V(G)| + po(G) 

= p(G), 

by Eq. (1.6.1). 0 

VIII.5. COBOUNDARIES 

Let g be any 0-chain of G (and 2) to R. We define its coboundary 8g as the 

1-chain of Q to T defined as follows: 

(dg)(D)= L n(D,v)g(v), (VIII.5.1) 
vEV(G) 

for each dart D of &. This is analogous to Eq. (VIII.4.1). It simplifies as 

(6g)(D) = g(h(D))— g(t(D)), (VIII.5.2) 
where h(D) and ¢(D) are the head and tail of D, respectively. 

From Eq. (VIII.5.1) we can deduce the following identities: 

d(yzg) =A-8g, (VIII.5.3) 

8(g+h)=dg+ 6h, (VIII.5.4) 

where g and A are 0-chains of Q to R, and AG R. We note that the 

coboundary of the zero 0-chain is the zero 1-chain. 

By Eqs. (VIII.5.3) and (VIII.5.4), the coboundaries of the 0-chains of 

Q to R are the elements of a chain-group A = A(Q, R) on S to R. Reorienta- 

tion is a trivial operation for this chain-group, also. If we change to a new 

orientation 2, of G, then A(Q,, R) is derived from A(Q, R) just as T(Q,, R) 
is derived from I'(Q, R), by a reorientation of the appropriate subset of 
E(G). We go on to discuss the elementary chains and cell-bases of A(Q, R). 
We call A the coboundary-group of Q. 

Suppose the vertex-set of G to be partitioned into complementary 
subsets X and Y. Here we write J(X, Y) for the set of all edges of G having 
one end in X and one in Y. 

If G is connected and the two induced subgraphs G[ X] and G[Y] are 
also connected, we call J(X, Y) a bond of G. We then call G[.X] and G[Y] 
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the end-graphs of this bond. This definition implies that J( X,Y) must be 
nonnull. If G is not connected, we define a bond of G as a bond of a 
component of G. We note that an isthmus of G is the single edge of a bond 
of G. The end-graphs of the isthmus are the end-graphs of the correspond- 
ing bond. 

Theorem VIII.38. Let X and Y be complementary subsets of V(G), 
and let J( X,Y) be nonnull. Then there is a bond B of G such that B C J( X,Y). 

Proof. Out of all pairs (Xp, Yj) of complementary subsets of V(G) 
such that SC J( Xp, ¥,) C J( X, Y), choose one so that |J( Xo, Yo)| has the 
least possible value. 

Suppose first that G is connected. If G[X,] is not connected, let its 
components be K,, K,,...,K,, (m> 1). By the connection of G, each of the 
sets J(V(K;),V(G)—V(K,)) is nonnull, and each is a proper subset of 
J( Xo, Yo). From this contradiction, we deduce that, in fact, G[X,], and 
similarly G[Y], is connected. So J( Xp, Yo) is the required bond B. 

If G is not connected, let H be a component of G including some 
edge A of J( X,Y). By the result already proved, the set J(XN V(A)YO 
V(#)) contains a bond B of H. But then B is a bond of G. oO 

Given a partition (X,Y) of V(G), we can define a 0-chain g of Q by 
writing g(x)=0 or 1, according as x is in X or Y. We then have 

Sp(6g) = J( X,Y). 
Moreover the nonzero coefficients in 8g are restricted to the values 1 and 
—1 of R. If J(X,Y) is a bond of G, we write 6g also as gz, where 
B=J(X,Y). 

Theorem VIII.39. Let f be any nonzero chain of A(Q, R). Then there 

is a bond B of G such that f encloses qp. 

Proof. There is a 0-chain g such that 6g=f. Since f is nonzero, 

there is a dart D of S, with head / and tail ¢, say, such that g(h) + g(t), by 

Eq. (VIII.5.2). Let X be the set of all vertices x of G such that g(x) = g(h), 

and let Y be the set of all other vertices of G. It is clear that J( X,Y) is a 

nonnull subset of Sp(/f). But it contains a bond B of G, by Theorem 

VIII.38. Hence f encloses g,. Oo 

Theorem VIII.40. A nonzero chain of A(Q, R) is elementary if and 

only if it is of the form oqz, where B is a bond of G and o is a nonzero element 

of R. 

Proof. Suppose f of the form ogq,. If it is not elementary, then, by 
Theorems VIII.38 and VIII.39, B must contain another bond B’ as a proper 

subset. But this is impossible, for let H be the component of G that includes 
the edges of B; then H is formed from the union of two disjoint connected 
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subgraphs H[X] and H[Y] of H by adjoining the edges of B, each such 
edge having one end in X and one in Y (see Fig. VIII.5.1). 

If we delete from H the edges of a proper subset of B, we leave a 

connected graph, by Theorem I.25. It follows that no proper subset B’ of B 
can be a bond of G. 

Conversely, suppose f elementary. By Theorem VIII.39, there is a 
bond B of G such that f encloses gz. Since f is elementary, we have 
Sp(f) = Sp(qg). But gz is elementary, and therefore primitive, by the result 
already proved. Hence f is of the required form oq,, by Theorem VIII.10. 

This completes the proof. O 

We have shown, incidentally, that each elementary chain of A(Q, R) 
is a multiple of a primitive chain. So we have the following corollary. 

Corollary VIII.41. A(Q, R) is a primitive chain-group. 

Theorem VIII.42,  1(Q, R) and A(Q, R) are dual chain-groups. 

Proof. Let f be an arbitrary 1-chain and g an arbitrary 0-chain, both 
of & to R. Then, by Eqs. (VIII.1.5) and (VIIL5.1), 

X (£2) Yad, x)g(x)| 
Des x €V(G) 

Y {a(x) L a(d,x)f(0)\. 
xEV(G) DES 

(f-8g) 
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In order that f shall be orthogonal to the coboundary of every 0-chain, it is 
therefore necessary and sufficient that 

Y n(D, x) f(D) =0 
Des 

for each vertex x. But this is the condition for f to be a cycle of Q, a member 
of T(Q, R). 

We now have 

(A(Q, R))*=T(Q, R). (VIII.5.5) 

Since the chain-groups concerned are primitive, by Theorems VIII.35 and 
VIII.41 we have also 

(T(Q, R))* = A(Q, R) (by Theorem VIII.23). 

(VIII.5.6) oO 

Theorem VIII.43. Let T be a subset of S. Then T is a cell-base of 
A(Q, R) if and only if G:T’ is a frame of G. 

Proof. By Theorems VIII.33 and VIII.42, T is a cell-base of A if and 
only if S—T is a cell-base of I. So our theorem follows, from Theorem 
VIII.36. oO 

Let D be a member of a cell-base T of A(Q, R). Let f, be the 
corresponding member of the corresponding chain-base. Then, by Theorem 
VIII.40, fp is of the form gz, for some bond B of G. We can write 
B= J(X, Y) and suppose the head of D to be in X. It is easy to verify that X 

is the set of vertices of the appropriate end-graph of the isthmus D’ in the 
forest GT”. 

Given a vertex v of G, we can consider the 0-chain g, of 2 in which 

the coefficient of v is | and the coefficient of every other vertex is 0. We refer 

to 6g, as the coboundary of v in Q and write it also as dv. It is a 
vertex-coboundary of Q. 

Theorem VIII.44. Each f = A can be expressed as a linear combina- 

tion of vertex-coboundaries. 

We have indeed 

f= LY fle)de, (VIII.5.7) 
vEV(G) 

by Eqs. (VIII.5.3) and (VIII.5.4). 

Theorem VIII.45. A 0-chain g of 2 to R has a zero coboundary if 

and only if for each component K of G all the vertices of K have the same 

coefficient in g. 

This is an obvious consequence of Eq. (VIII.5.2). 
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Theorem VIII.46. Let X be a subset of V(G) obtained from V(G) by 

deleting exactly one vertex x(K) from each component K of G. Then the 

coboundaries of the members of X are linearly independent, and each member 

of A can be expressed as a linear combination of them. 

Proof. Suppose we have a linear relation 

>, a(x) dx =0, 
xEeXx 

where the a(x) are elements of R, not all zero. We extend this definition by 

writing a(y) = 0 if y= v(K) for some component K. Consider the 0-chain 

trod GW )ay, 
vEV(G) 

Then 6f = 0, by Eqs. (VIHI.5.3) and (VIII.5.4). Hence each a(v) is zero, by 
Theorem VIII.45, a contradiction. 

On the other hand, each 5v(K) can be expressed as a linear 

combination of members of X, by Theorem VIII.45, and therefore each 

f © Acan be so expressed, by Theorem VIII.44. O 

We remark in conclusion that 

r(A) =|E(G)| — p,\(G) =|V(G)| — po(G), (VIII.5.8) 
by Theorems VIII.37 and VIII.42. So in what follows we may call p,(G) the 
cycle-rank and |V(G)|— po(G) the coboundary-rank of the graph G. 

VIII.6. REDUCTIONS AND CONTRACTIONS 

Let G, Q, and S be as in Secs. VIII.4 and VIII.5. The notions of spanning 
subgraph, reduction, and contraction of G extend to Q. Thus, let T be any 
subset of S. We define 2: T and Q-T as the orientations of G: T’ and G- rR 
respectively, in which the darts are the members of T, and each dart has the 
same head and tail as in (2. Similarly, 2 x T is an orientation of G X 7”. Its 
darts are those of T. The head and tail of a dart D in QXT are those 
components of G:(E(G)—T’), that is, G:(S’— 7’), which include the head 
and tail, respectively, of D in Q. 

The distinction between 2: T and Q-T disappears when we go over 
to the cycle-group or coboundary-group. 

Theorem VIII47, M(Q:T,R)=A(Q-T, R) and T(Q:T, R)= 
T(Q-T, R). 

Proof. Let W be the set of vertices of G-T7’. It follows from Eq. 
(VIIL.5.2) that, if f is any 0-chain of Q, then its coboundary in Q: T is 
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identical with the coboundary in Q-T of its restriction to W, and in each 

case the coboundary is 6/-7. This establishes the first equation. We can 

obtain the second by dualizing and using Theorem VIII.42. Oo 

Theorem VIII48. 5(Q2-T, R) = A(Q, R)-T and A(Q xX T, R)= 

A(Q, R)XT. 

Proof. Consider any 0-chain f of Q. By Eq. (VIII.5.2), its coboundary 

in 2:7 is the restriction to T of its coboundary in Q. We deduce that 

A(Q:7T, R)= A(Q, R)-T, and the first part of the theorem follows from 
Theorem VIII.47. 

Now consider any 0-chain h of Q X T. Let h’ be that 0-chain of Q in 

which each vertex has the same coefficient as does the vertex of G XT’ to 

which it belongs in h. Then Sp(6h’)C T. Moreover, 5h in 2 XT is the 

restriction of 5h’ to T. On the other hand, if g is a O-chain of Q such that 

Sp(6g) C7, then for each component of G:(S’—T’), all the vertices must 

have the same coefficient in g, by Eq. (VIII.5.2). Hence there is a 0-chain h 

of Q XT such that g=h’. From these observations we deduce the second 

part of the theorem. oO 

Theorem VIIL49. T(Q-T,R)=T(Q,R)XT and T(QXT, R)= 
T(Q, R)-T. 

To prove this, we take dual chain-groups in Theorem VIII.48, using 

Theorem VIII.24, and then apply Theorem VIII.42. 

The notation of G, and Gj can be extended to orientations and to 
general chain-groups. Thus, if D is a dart of S, we write: 

0, =2:(S—{D)), (VIII.6.1) 

2, =2x(S—{D)). (VIII.6.2) 

These digraphs are orientations of Gi, and G7, respectively. 

For any chain-group N on S to R, we make the following definitions: 

Ni, = N-(S—(D)), (VIII.6.3) 

Nv =Nx(S—(D)). (VIII.6.4) 

Applying the foregoing theorems to these definitions, we obtain the 

following identities: 

(A(Q)), = A(2',), (VIII.6.5) 

(A(2))% = A(Q%), (VIII.6.6) 

(T(2)), =T(2%), (VIII.6.7) 

(T(Q))% =1(Q',). (VIII.6.8) 
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VIII.7. ALGEBRAIC DUALITY 

Having constructed a theory Z of primitive chain-groups N from S to R, we 

can apply it to '(Q, R), where Q is an arbitrary digraph with dart-set S. We 

can regard Q as an orientation of an associated graph G. The definitions and 

theorems of Z then become statements about 2. They constitute a partial 

theory Z,; of digraphs 2. Similarly, we can get another partial theory of 

digraphs Q by using A(Q, R) instead of ['(2, R). We denote this by Z,. 

There is a 1-1 correspondence, called algebraic duality, relating the defini- 

tions and theorems of Z,; to those of Z,. Corresponding statements under 
this duality derive from the same statement of Z. Sometimes corresponding 

statements in Z, and Z, are identical. We then speak of a self-dual concept 

or theorem in the theory of digraphs. 

The darts of Q are the cells both of [(Q, R) and of A(Q, R). We say, 

therefore, that “dart” is a self-dual concept (for every R). Now consider the 

l-chain fp to R in which a given dart D has coefficient 1 and every other 
dart of S has coefficient 0. We see from Eq. (VIII.4.1) that df, = 0 if and 

only if D is a loop-dart of 0, a dart on a loop of G. So {D} is the support of 

a chain of ['(Q, R) if and only if D is on a loop of G. On the other hand, 

{D)} is the support of a chain of A(Q, R) if and only if D is an isthmus-dart 

of Q, that is, a dart on an isthmus of G. This follows from Theorem VIII.40. 

We may now assert that “loop-dart” and “isthmus-dart” are dual concepts 

in the theory of digraphs. 

Let T be any subset of S. Consider the reduction N-T in the theory 

Z. The corresponding concepts in Z, and Z, are [(Q, R)-T and A(Q, R)-T, 

that is, 1(QXT, R) and A(Q:7, R), respectively, by Theorems VIII.47, 

VIIL.48, and VIII.49. Similarly, N x T in Z gives rise to [(Q: T, R) in Z; 

and to A(Q x T, R) in Z,. It therefore seems proper to assert that contract- 

ing Q to T and taking the spanning subdigraph Q: T are dual operations. In 
particular, if D is any dart of &, then taking Q/, and taking Q% are dual 
operations. We recall that Q: T and Q-T are indistinguishable in terms of 
the structures of their cycle-groups and coboundary-groups, by Theorem 
VIII.47. 

Sometimes duality relates two statements about Q that can be stated 
in terms only of G (and perhaps R). We can then speak of dual concepts or 
theorems in graph theory. For example, “loop” and “isthmus” are such 
dual concepts. So are “circuit” and “bond,” or, more precisely, “edge-set of 
a circuit” and “bond.” The two latter derive from “elementary chain” in Z, 
by way of Theorems VIII.34 and VIII.40. For an example of dual theorems, 
we may take the assertions that no set of edges of G defining a circuit, or 
secondly a bond, has a proper subset with that property. These theorems are 
related, by way of Theorems VIII.34 and VIII.40, to the definition of an 
elementary chain in Z. 
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Our remarks about contractions and spanning subdigraphs can be 

transferred from digraphs to graphs. We can regard the constructions of 

G XT and G:T from G as algebraically dual operations. In particular G; 

and G/ are related by duality, for any edge A. It is this kind of duality that 

was foreshadowed in Sec. II.1. 

In order to give a new example, we make some new definitions. 

Consider any chain-group N on S to R. A subset T of S is detached, with 

respect to N, if the following condition is satisfied: Each chain f of N can be 

expressed as a sum f,+ f,, where f, and f, are chains of N such that 

Sp(f,) € T and Sp( f,) C S — T. We note that f encloses both f, and f, if this 

condition holds, and that the enclosure is proper if both f, and f, are 

nonzero. 
We observe that S§ and its null subset are detached, that any union or 

intersection of detached subsets of S is detached, and the complement in S 

of any detached subset of S is detached. 
A block-set of S, with respect to N, is a minimal nonnull detached 

subset of S—minimal in the sense of containing no smaller nonnull 

detached subset. Evidently each nonnull detached subset of S contains a 

block-set. From the preceding observations, we can deduce that the block- 

sets of S with respect to N are disjoint and that their union is S. So if S is 

nonnull, it has at least one block-set with respect to N. If it has only one we 

call N nonseparable; otherwise, N is separable. 

Theorem VIII.50. Let N be primitive. Then a subset T of S is 

detached with respect to N if and only if each primitive chain f of N satisfies 

either Sp( f) CT or Sp(f) GS —T. 

Proof. Suppose T detached. The primitive chain f satisfies f = f, + 

f;, where f, and f, are chains of N such that Sp( f,) ¢ T and Sp(f,) C S — T. 

But either f, or f, must be zero, for otherwise the elementary chain f would 

properly enclose both f, and f,. Hence f =f, or f,, and the theorem is 

satisfied. 

Conversely, suppose each primitive chain of N to have its support 

contained either in T or in S—T. Then, by Theorem VIII.18, each chain g 

of N is a sum g, + g>, where g, and g, are chains of N such that Sp(g,) CT 

and Sp(g,) Cc S — T. Oo 

Theorem VIII.51. Let N be any chain-group on S to R. Then a 

subset T of S is detached with respect to N if and only if 

N-T=NXT. (VIII.7.1) 

Proof. We note that N XT CN-T, by the definitions of reductions 

and contractions. 
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Suppose JT detached. Consider any g € N-T. Then g = f-T for some 
fEN. But f=f,+f,, where f, and f, are chains of N, Sp(f,) CT and 

Sp(f,)¢S—T._It follows that g=f,;-T<@©N XT. Hence Eq. (VIII.7.1) 
holds. 

Conversely, assume Eq. (VIII.7.1). Let f be any chain of N. Then 

f-T © N XT and therefore f-T is the restriction to T of a chain f, of N such 
that Sp(f,) Cc T. We now have 

f=fit(f-f), Sp(f)ST  andSp(f—f,)cS-T. 

Accordingly, 7 is detached. oO 

Theorem VIII.52._ Let N and N* be dual primitive chain-groups on S 
to R. Then they determine the same detached subsets of S, and therefore the 
same block-sets. 

Proof. Let a subset T of S be detached with respect to N. Then it 
satisfies Eq. (VIII.7.1), by Theorem VIII.51. Hence 

(N XT)*=(N-T)*, 

N*-T=N*XT (by Theorem VIII.24). 

Hence T is detached with respect to N*, by Theorem VIII.51. 
Replacing N by N* in the above argument and using Theorem 

VIII.23, we find that, if T is detached with respect to N* then it is detached 
with respect to N. 0 

If T is a block-set of S with respect to a chain-group N, we say that 
N-T is a block of N. This block can be written also as N X T, by Theorem 
VIII.51. If S is null, N has no block. Otherwise, it has exactly one block, N 
itself, if it is nonseparable, and more than one if it is separable. 

Theorem VIII.53. If N is primitive, then the blocks of N* are the 
duals of the blocks of N. 

This follows from Theorems VIII.51 and VHI.52, with the help of 
Theorem VIII.24. 

Theorem VIII.54. Let Q, with dart-set S, be an orientation of a 
graph G. Then a subset T of S is a block-set of S with respect to 1(Q, R) if and 
only if T’ is the set of edges of a block of G. 

Proof. Suppose first that G-7’ is a block of G. Let D and E be any 
two darts of 7. Then there is a circuit C of G such that wD, ByGE(Gjycr 
by Theorems III.12 and III.18. Hence there is a primitive chain of T(Q, R) 
Whose support includes both D and E, by Theorem VIII.34. Hence by 
Theorem VIII.50, some block-set U with respect to ['(Q, R) must contain T. 
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Suppose T is not the whole of U. Then by Theorem VIII.50, some 
primitive chain of [(2, R) has a support meeting both T and U—T. The 

corresponding circuit of G has one edge in 7’ and one not. By Theorem 
III.12, this contradicts the definition of G-T’ as a block of G. We conclude 

that T is the block-set U. 

Conversely, suppose T to be a block-set of S with respect to I'(Q, R). 

Then T includes a dart D, and D’ is an edge of some block G-U’ of G. By 

the preceding argument, U is a block-set. Since it meets the block-set T, it 

must be identical with T. O 

Theorem VIII.54 exhibits a 1-1 correspondence between the blocks 

of [(Q, R) and those blocks of G that have edges, that is, the blocks of 

G-E(G). In view of Theorem VIII.53 and the duality of [(Q, R) and 

A(Q, R), we can now assert that “block of G-E(G)” and “2-connection of 

G-E(G)” are self-dual concepts in graph theory. 

We note that a chain-group N on S to R is uniquely determined by 

its blocks. The blocks determine all chains of N with support confined to a 

single block, and the chains of N are simply the sums of chains of that 

special kind. (See Theorem VIII.51.) It follows that the cell-bases of N are 

the union of cell-bases of the blocks, one cell-base from each block. We thus 

have the following theorem. 

Theorem VIII.55. The rank of a primitive chain-group N is the sum 

of the ranks of its blocks. 

We further observe that it is impossible to distinguish, in terms of the 

properties of cycle groups and coboundary groups of the orientations, 

between two separable graphs having the same set of blocks, even to within 

a vertex-isomorphism. We can use Theorem VIII.54 to identify the blocks of 

the graphs concerned, but we cannot tell how the blocks fit together in each 
case. One of the graphs might be connected and the other disconnected. 

Clearly, connection is not one of the concepts of graph theory to which 

algebraic duality applies. We ought not to ask what is the algebraic dual of 

the concept “component.” 

VIIL8. CONNECTIVITY 

Having established the self-duality of 2-connection in graphs, we naturally 

ask if n-connection is self-dual for each integer n > 2. We exclude the case 

n=1, for l-connection is simply connection, and we have decided that 

algebraic duality does not apply to this. 

We begin by defining the connectivity of a primitive chain-group N. 

We then relate connectivity of primitive chain-groups to connectivity of 

graphs. 
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Theorem VIII.56. Let N be a primitive chain-group on S to R, and 

let T be any subset of S. Then 

r(NXT)<r(N-T), (VII.8.1) 

with equality if and only if T is detached with respect to N. 

Proof. Let D be any cell-base of N X T. It is clearly also a cell-base 

of N-D, that is, of (N-T)-D, by Eq. (VIII.1.2). By Eq. (VIII.2.4), 

r(NXT)=r(N-D)=r(N-T)—r((N-T)X(T— D)). 
If r((N-T)x(T— D)) is nonzero, then Eq. (VIII.8.1) holds with the strict 
inequality. In the remaining case, the support of each nonzero chain of N-T 

meets D. But then D, being a cell-base of N x T, satisfies the definition of a 

cell-base of N-T (for NXTCWN-T). The corresponding chain-base of 

N XT is thus a chain-base of N-7, and therefore N X T= N-T by Theorem 

VIII.12. Our theorem now follows from Theorem VIII.51. O 

If T and U are complementary subsets of S, we write 

E(N;T,U)=r(N)—r(N XT)—r(N XU)+1. — (VIII.8.2) 

We note the rules 

£(N;T,U) =&(N;U,T), (VIII.8.3) 

€(N;T,U)>1. (VIII.8.4) 

In VIII.8.4 there is equality if and only if T and U are detached with respect 

to N. 

To prove Eq. (VIII.8.4) and the following remark about equality we 
first use Eq. (VIII.2.4) to rewrite Eq. (VIII.8.2) as 

§(N;T,U)=r(N-T)-r(N XT)+41. (VIII.8.5) 

We then apply Theorem VIII.56. 

Theorem VIII.S7. &(N*;T,U)=&(N;T,U). 

Proof. We apply Eq. (VIII.8.5) to N* and use Theorem VIII.24 to 
get 

E(N*;T,U) =r((N XT)*)—r((N-T)*)4+1 

Hence 

§(N*;7,U) =r(N-U)—r(N XU)+41 (by (VIII.2.5)) 

=&(N;T,U) (by Eqs. (VIIL.8.3) and (VIIL8.5)). oO 
We say that the primitive chain-group N is k-separated, where k is a 

positive integer, if there are complementary subsets T and U of S such that 

t(N;T,U) =k (VIII.8.6) 
Min(|T|,|U|) >k. (VIII.8.7) 
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If there is a least k such that N is k-separated, we call it the connectivity 
Kk(N) of N. If there is no such k, we say that the connectivity k(N) is 

infinite. As a consequence of Theorem VIII.57, we have 

k(N*) =K(N) (VIHI.8.8) 

for any primitive chain-group N. 

Now let Q be an orientation, with dart-set S, of a graph G. For 

simplicity we postulate that G is connected and has at least one edge, so that 

G-E(G)=G. If T CS, then, as before, we write 7’ for the corresponding 

set of edges of G. We note that k(G) > 1. 

If T and U are complementary subsets of S, we write 

CG 7" i) 

for the number of common vertices of G-7’ and G-U’. 

Theorem VIII.58. If there is a least positive integer k such that, for 

some choice of T and U, 

&(G;T’,U') =k (VII.8.9) 

and 

Min(|7|,|U|) =k, (VIII.8.10) 

then k > «(G). In the remaining case, k(G)= ©. 

Proof. Suppose that some positive integer k satisfies Eq. (VIII.8.9) 

and (VIII.8.10). Since G is without isolated vertices, Conditions (i), (11), and 

(iii) of Sec. IV.1 are satisfied with n =k, H=G-T", and K =G-U’. Hence, G 

has a k-separation, and so k > k(G). 

On the other hand, if «(G) is finite, there are subgraphs H and K of 

G that satisfy (i)—-(iii) of Sec. IV.1 with n = «(G). If H had isolated vertices, 

we could transfer them to K without changing E(H) or E(K), but with a 

decrease in the number of common vertices of H and K. But this would 

contradict the definition of x(G). We deduce that H and K are reductions 

G-T’ and G-U’, respectively, of G, and that they satisfy Eqs. (VIII.8.9) and 

(VIII.8.10) with k = K(G). 

From these results, we conclude that if k(G) is finite it is the least 

positive integer k for which Eqs. (VIII.8.9) and (VIII.8.10) can be satisfied, 

and that if k(G) = 00, there is no positive k satisfying the conditions. Oo 

We now write T=I(Q,R), and establish a relation between 

é(1; T,U) and &(G; T’,U’). 

Theorem VIIL59. &(1;T,U) = &(G;T’,U)— py(G-T’)— po(G-U’) 

+2) 
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Proof. We put N=T in Eq. (VIII.8.2) and apply Theorems VIII.48 
and VIII.49, finding that 

€(1;7,U) =r(T(Q, R))—r(T(Q-T, R)) —r(T(Q-U, R))+1 

= p,(G)— p,(G-T’)— p,(G-U’)+1 (by Theorem VIII.37) 

= {{E(G)| —|V(G)| + 1}—{|T| — |V(G-T’)| + po(G-T’)} 

=O (VG) + p,(G°U)} +1 

= (Gu), Op (Gs Teh 0G iit. O 

From this theorem, we deduce that 

€(T;T,U) <&(G;T’,U’) (VIII.8.11) 

for any complementary nonnull subsets T and U of S. It follows that 

K(T) <«(G). (VIII.8.12) 

We now try to prove the reversed inequality of Eq. (VIII.8.12). We 
approach it by way of the following theorem. 

Theorem VIII.60. Let T and U be complementary nonnull subsets of 
S. Let k be a positive integer such that 

E(G;T’",U')<k+ Po(G-T’)+ po(G-U’)—2,  (VIII.8.13) 

Min(|7|,|U|) > k. (VIII.8.14) 

Then k > «(G). 

Proof. Assume x(G) > k. Let T and U be chosen so that £(G; 7’, U’) 
has the least value consistent with the above assumption. 

Now G has at least two edges since T and U are nonnull; hence it is 
loopless. If it had a loop, it would have a 1-separation, and so would satisfy 
K(G)=1<k. 

Each of po(G-T’) and po(G-U’) is at least 1. If each of them is equal 
to 1, we have &(G; T’,U’)<k, by Eg. (VIII.8.13). But then kK(G) <k, by 
Theorem VIII.58 and Eq. (VIII.8.14), contrary to our assumption. So we 
have 

Po(G-T’) + p.(G-U’) > 3. (VIII.8.15) 
Now each component of G-T’ and G-U’ has at least one edge and therefore 
at least two vertices, since G is loopless. Hence, 

|V(G)|>4. (VIII.8.16) 
If H is any component of G-T’ or G-U’, we write x(H) for the 

number of its vertices in the set W of common vertices of G-T’ and G-U’. 
We note that x(#) is nonzero, by the connection of G. We have 

1<x(H)<V(H)<|E(A)| +1, (VIII.8.17) 
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by Eq. (1.6.1) and Theorem 1.35. If |E(H)|>x(H)—1, we say that H is of 
Type I. In the remaining case, that is, if |E(H)| = x(H)-—1, we say that H 
is of Type II. 

If H is of Type II, it is a tree, by Eq. (1.6.1) and Theorem I.35. 

Lemma VIII.61. If H is a component of G-T’, then |T’— E(H)|<k. 

Proof. Assume |T’— E(H)|>k. Then 

Po(G:(T’ — E(H))) = po(G-T’)—-121. (VIII.8.18) 

The components of G-(U’U E(A)) are those of G-U’, except that those 

components of G-U’ that meet H, at most x(#) in number, are united with 

H into a single new component of G-(U’U E(#7)). Hence, 

Po(G:(U'U E(A))) = po (G-U’)—x(H)+1. — (VIII.8.19) 

We have also 

£(G;T’— E(H),U'U E(B )) =&(G;7’,U’)—x(4). 

eek Eggs. (VIII.8.13), (VIII.8.18), and (VIII.8.19) to this result, we find 

that 

£(G; T’— E(H),U'U E(H)) 
<k+p,.(G-(T’— E(H)))+ py (G:(WU E(A)))—2. (VIII.8.20) 

But |7’— E(A)| and |U’U E(#)| are each at least k. Hence Eq. (VIII.8.20) 

contradicts the choice of T and U. The lemma follows. A 

Lemma VIII.62. If |T\| > k, then one of the components of G-T" is of 

Type I. ; 

Proof. Suppose all the components of G-T’ to be of Type II. Since 

they are trees, we can find a vertex v of G-T” that is monovalent in G-7"’, by 

Theorem I.40. Let A be the edge of 7” incident with v, and let w be the other 

end of A. 
Here w is not monovalent in G-T7’, for otherwise G-{A} would be a 

component of G-T7’ and this would contradict Lemma VIII.61. Hence 

Po(G:(T’—{A})) = po(G:T), (VIII.8.21) 

for the components of G-(T’—{A)) are those of G-T’, except that the one 

containing A is replaced by the single edge-containing end-graph of its 

isthmus A. We have also: 

po(G-(U'U{A})) = po(G-U’) or = po(G-U’)—1, (VIII.8.22) 

according as the two ends of A belong to the same component or to 
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different components of G-U’. It is clear that 

§(G,T {4}, WU Ay) =2(6, 7 0 1 

Applying Eqs. (VIII.8.13), (VILI.8.21), and (VIII.8.22) to this, we find that 

et G; PGA) Urey) 

<k + po(G-(T’—(A)})) + po(G-(U’U{A}))—2.  (VIIL8.23) 

But 7’—{A} and U’U{A} have each at least k edges. Hence, Eq. (VII.8.23) 

contradicts the choice of T and U. The lemma follows. A 

Lemma _ VIII.63. One of G-T’ and G-U’ has a component of Type I. 

Proof. Suppose the contrary. Then |7|=k, by Lemma VIII.62, 

and, similarly, |U| =k (by Eq. (VIII.8.3)). Since only Type II components 

occur, the average valency in each of G:7’ and G-U’ is less than 2. Hence 

the average valency in G is < 4. 

Let w be a vertex of G of minimal valency. Then val(G,w) < 3. 

Moreover, |E(G)|>2 val(G,w), by Eqs. (VIII.8.16) and (1.1.1). Hence, 

k(G) < val(G,w) <3, by Theorem IV.3. It now follows, from our initial 
assumption, that k =1 or 2. 

Since |7|=|U|=k, the assumption that k=1 contradicts Egs. 
(VIII.8.15). Hence k =2 and, by Eq. (VIII.8.16), each of G-T’ and G-U’ 
must be the union of two disjoint link-graphs. Hence G, being connected, 
must be a 4-circuit. But then k(G) < val(G,w) = 2, which is contrary to our 
initial assumption. A 

Lemma VIII.64. If G-T’ has a component H of Type I, then H is 
the whole of G-T’. 

Proof. Suppose the contrary. Then G-T”’ has a component K other 
than H. We have 

|E(G)|>x(H)>1, 

|E(G)— E(H)|>|U'|=k, 
&(G; E(H), E(G)— E(H)) =x(H). 

If x(H) <k, these relations imply that «(G) < k, for kK(G)<x(A), 
by Theorem VIII.58. This is contrary to our initial assumption. But if x(#), 
and therefore |E(H)|, exceeds k, then the component K violates Lemma I. 

A 

By Eq. (VIII.8.3) and Lemmas VIII.63 and VIII.64, we can adjust the 
notation so that G-T”’ is connected, its only component being of Type I. 
Then G-U’ has at least two components, all of Type I, by Eq. (VIII.8.15) 
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and Lemma VIII.64. Moreover, |U| =k, by Lemma VIII.62. We now have 

&(G; T’,U’) =|V(G-U’)| (by Eq. (VIHI.8.17)) 

=|U| + po(G-U’) 

=k + p.(G-T’)+ po(G-U’)-1. 

But this is contrary to hypothesis. The proof of Theorem VIII.60 is now 
complete. Oo 

Theorem VIII.65. G being connected, k(G) < «(T). 

Proof. If x(1) = oo, the theorem is trivial. In the remaining case, we 

can find complementary subsets T and U of S such that 

E(PiPU y= nf), 

Min(|7|,|U|) >«(T). 

Then, by Theorem VIII.59, we have 

E(G; T’,U’) =«(T)+ po(G:T’) + po(G-U’)—2. 
Hence, «(G) < «(T), by Theorem VIII.60. Oo 

Theorem VIII.66. Let G be a connected graph with at least one edge, 

T an orientation of G, and R a ring satisfying the conditions of Sect. VIII.1. 

Then the connectivities of G,T(Q,R), and A(Q, R) are all equal. 

Proof. We have «(G)=x(T(Q, R)), by Eq. (VIII.8.12) and Theo- 

rem VIII.65. Since [(Q2, R) and A(Q, R) are duals, we complete the proof 

by applying Eq. (VIII.8.8). Oo 

This theorem exhibits connectivity as an algebraically self-dual prop- 

erty in the realm of connected graphs. 

VIII.9. ON TRANSPORTATION THEORY 

Consider a digraph & with dart-set S and with two distinguished vertices x 

and y. Let g be a 1-chain of & to J such that (dg)(v) = 0 for each vertex v of 

Q, other than x and y. By Eq. (VIII.4.1) we have 

(dg)(x)=—(4g)(y). (VIII.9.1) 

Here we call g a flow in Q, of magnitude (dg)(x), from x to y. (The “flows” 

of Sec. VI.5 obey different rules.) We can, of course, also call g a flow of 

magnitude (dg)(y) from y to x. Usually, if g is not a cycle, we choose the 

description that makes the magnitude positive. 

The outflow d(g, v) of a vertex v in g is the sum 

n(D,v)g(D), 
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taken over all darts D of Q such that n(D, v)g(D) is positive. We say that a 

1-chain k of Q is nonnegative if each of its coefficients is nonnegative. So if g 

is nonnegative, we can say that d(g, v) is the sum of g(D) over all darts D 

with head v. In all cases, d(g, v) is nonnegative. 

In a typical transportation problem, we assign an integral capacity 

c(D) to each dart D, and an integral capacity f(v) to each vertex v. We then 

ask for a flow g in Q from x to y having the greatest possible magnitude 

subject to the two following conditions: 

i) O0<g(D)<c(D) for each DES. 

lil) d(g,v)< f(v) for each vertex v. 

We shall say that a flow g satisfying these conditions is (c, f )-limited. If it is 

understood that c(D)=1 for each D, we say “f-limited” instead of “‘(c, f )- 

limited.” A (c, f)-limited flow of greatest possible magnitude is called 
maximal. 

A (c, f)-limited flow can be visualized as a flow of traffic in a 
network Q of one-way streets. The capacities measure maximum amounts 

per second of a commodity of interest that can be transported along a given 

street or through a given junction. If the restriction to integral capacities is 
thought artificial, there are standard devices for extending the theory from J 

to the ring of rational numbers, and thence to the real numbers. If a 

two-way street occurs, we suppose that it can be adequately represented as a 
pair of oppositely directed one-way streets. 

From now on, we suppose that c(D)=1 for each D. We can reduce 
the general integral case to this simplified one: We have only to replace each 
dart D by c(D) darts of capacity 1, with the same head and tail. We can 
assume each f(v) nonnegative. An f-limited flow g is now nonnegative. 
Indeed, each of its coefficients is restricted to the values 0 and 1. 

We complete Q by adjoining a new dart E with head y and tail x. 
Evidently the restrictions to S of the cycles k of the completed digraph such 
that k(E) = m are the flows in Q from x to y of magnitude m. Let us denote 
the completed digraph by ,. 

For our next theorem, we draw upon the terminology of Sec. VI.7. 

Theorem VIII.67. There is an f-limited flow g in Q from x to y of 
magnitude m if and only if there is an f-limited path-bundle X in Q from x to y 
of order m. 

Proof. If X is such a path-bundle, let g be the 1-chain of Q in which 
each dart of each path of X has coefficient 1 and each other dart of S has 
coefficient 0. It is easily verified that g is a flow in Q from x to y of 
magnitude m, and that it is f-limited. 

Conversely, suppose g to be as specified in the enunciation. We 
convert it into a cycle k of I(Q,, 7) by adjoining E with coefficient m. By 
Theorem VIII.28, we can represent k as a sum of primitive chains of 
P'(Q,, 7), each conforming to k. In each of these, the coefficients can be only 
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0 or 1, and each dart of S has coefficient 1 in at most one of these primitive 

chains. Exactly m of the primitive chains include E in the support, in each 

case with coefficient 1. Let these m be enumerated as h,, A5,...,h,,. At each 
vertex v we find at most f(v) of them, by the f-limitation of g. 

Referring to Theorem VIII.34 and the definition of p. in Sec. VIII.4 

we see that each /, corresponds to a circular path Q, and Q, in which E can 

be taken as the last dart. The darts of Q; have coefficient 1 in h,, and the 
other darts of S coefficient 0. Restricting attention to Q, in which each Q, 

reduces to a linear path from x to y, we find that the A, determine an 

f-limited path-bundle in Q from x to y of order m. Oo 

We deduce from this theorem that the maximum magnitude of an 

f-limited flow from x to y in Q is equal to the maximum order of f-limited 

path-bundles from x to y in Q. Given such a path-bundle of maximum 

order, a corresponding maximal flow can be obtained by the method of the 

first paragraph of the above proof. So we can attack the problem of finding 

an f-limited flow of maximum magnitude by the methods of Sec. VI.7. In 

particular, we can use the Max Flow Min Cut Theorem, VI.48. 

VIII.10. INCIDENCE MATRICES 

We consider an orientation 2, with dart-set S, of a graph G. Let the vertices 

of Q be enumerated as 0, 0),...,0,, and its darts as D,, D),...,D,,. Let 

H(Q) be the matrix of n rows and m columns such that the entry in the ith 

row and jth column is in every case n(D,, v;). We call H(Q) the incidence 

matrix of 2, with respect to the above enumerations. 

If Disa link-dart, its column in H(Q) has just two nonzero entries, 

one being +1 and the other —1. But if D, is a loop-dart, its column has 

only zero entries. The rows of H(Q) are the representative vectors of the 

vertex-coboundaries of Q (over J). If we select one vertex in each compo- 

nent of G and then strike out from H(D) the rows corresponding to the 

chosen vertices, we get a representative matrix M of A(&,/), by Theorem 

VIII.46. 

Theorem VIII.68. Suppose r(A(Q, 1))> 0. Let T be any subset of S 

such that |T|=r(A(Q,1))=r(M), where M is defined as above. Then 

det M(T) is 1 or —1 if T is a cell-base of A(, 1), and is zero otherwise. 

Proof. We use Theorem VIII.31. It is only necessary to show that 

the integer m, of that theorem is now unity. To do this, we consider any 

cell-base T. We have det M(T) =m, or —™,. 

Write Q, = M(T). If Q, has a row with exactly one nonzero element, 

we strike out from Q, one such row and the column of its nonzero element, 

so obtaining a smaller square matrix Q,. If Q, has a row with only one 
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nonzero element, we repeat the process with Q, replacing Qo, getting a still 

smaller square matrix Q,, and so on. Suppose we arrive in this way at a 

matrix Q,, where 0 < k <r(M). Then we have 

det M(T) = +det Q, +0. (VIII.10.1) 

It is clear from Eq. (VIII.10.1) that Q, can have no row of zeros only. 

Suppose, however, that each of its rows has at least two nonzero elements. 

But each column has at most two such elements since Q, is a submatrix of 

H(Q). Hence each row and column of Q, must have exactly two nonzero 

elements; and, moreover, the entries in each column sum to zero. This 

implies that det Q, is zero, contrary to Eq. (VIII.10.1). 

We conclude that the sequence Qy, Q,,Q>,... can be continued to a 
Q, of order 1. The single entry of Q, is nonzero, by Eq. (VIII.10.1), and so 

is either 1 or —1. Hence det M(7T) = +1, by Eq. (VIII.10.1) and therefore 

m, = 1, as required. oO 

Let us write P‘ to denote the transpose of a matrix P. We can verify 

that 

H(Q)-H'(2) = K(G), (VIII.10.2) 
the Kirchhoff matrix of G. 

Theorem VIII.69. Let M be a representative matrix of a regular 

chain-group N of nonzero rank. Let the integer m, of Theorem VIII.31 be 

unity. Then det MM‘ is the number of cell-bases of N. 

Proof. By the theory of determinants, 

det MM‘ = )" {det M(T )-det( M(T))‘} 
iE 

=) {det M(T))’, 
T 

where the sum is over all T CS satisfying |T|=r(N). An application of 

Theorem VIII.31 completes the proof. Oo 

Let us return to 2, with G connected and having at least two vertices, 
To obtain the representative matrix M from H(Q), we strike out the row of 
a single vertex, let us say v,. We then find that MM'=K,(G). So by 
Theorems VIII.68 and VIII.69, det K,(G) is the number of cell-bases of 
A(2, 7). Using Theorem VIII.43, we discover another proof of the theorem 
that det K,(G) is the number of spanning trees of G. (See Theorem VI.29.) 

VIIL11. MATROIDS 

Given a primitive chain-group N on S to R, let us consider the class Q of 
supports of primitive chains of N. Then Q is found to have the following 
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properties: 
i) If X and Y are in Q, then Y is not a proper subset of X. 

ii) If X and Y are in Q, a is a common cell of X and Y, and b is a cell of X 

but not of Y, then there exists Z © Q such thatb© ZC(X UY)—{a}. 

Property (i) follows from the definition of an elementary chain. To 

prove (ii), we take an appropriate linear combination of primitive chains on 

X and Y, to obtain'a chain f of N whose support includes b but not a. We 

then apply Theorem VIII.18. 

More generally, we may consider any family Q of nonnull subsets of 

a finite set S such that (i) and (ii) hold. We then say that Q is the set of 

circuits of a matroid on S. Each subset of S not containing a circuit is called 

an independent set of the matroid. In the usual definition of a matroid, (i) 

and (ii) are replaced by equivalent axioms about independent sets. Matroids 

can be regarded as generalizing both graphs and chain-groups. 

There is an extensive theory of matroids, also called the abstract 

theory of linear dependence. We cannot develop it in this work, but we 

ought to take note of its existence. (See [2,5].) 

VIIL.12. NOTES 

VIII.12.1. Unoriented Coboundaries 

The coboundaries of Sec. VIII.5 have an analogue in the theory of undi- 

rected graphs. There we consider “Q-chains” on V(G) and “1-chains” on 

E(G). In the coboundary of a 0-chain f, the coefficient of an edge A is the 

sum of the coefficients of its two ends in f. A cycle can be defined as a 

1-chain orthogonal to every coboundary. A theory of such coboundaries is 

given in [3]. It is shown that they are closely related to the f-factors of G. 

(See also [4].) 

EXERCISES 

1. A chain-group N over the ring of integers is defined by the following 

matrix: 

ee 4 
geese 2a 

There are four cells. Each row of M represents a chain of N with the 

coefficient of the jth cell appearing in the j th place; N consists of the 

chains defined by the two rows, and of all the linear combinations of 

these two chains over J. Find the elementary chains and the cell-bases 

of N. 

v-| 
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Repeat Exercise 1, but with J replaced by J, and all the elements of M 

interpreted as residues mod 5. 

Show that the number 7(1) of cell-bases of a primitive chain-group NV 

satisfies 

T(N)=T(N,)+T(N4), 
where A is any cell of N that belongs to the support of some chain but 

does not by itself constitute the support of any chain. 

Let M be a standard representative matrix of a regular chain-group N. 

Show that M is totally unimodular, that is, that the determinant of each 

square submatrix is 1, —1, or 0. 

The transpedances [ab, xy] of a digraph Q, with a and b fixed, can be 

interpreted as the coefficients of a 1-chain K (and their negatives). State 

Kirchhoff’s Laws for them in the terminology of cycles and coboundaries. 

Let T be a block-set of a primitive chain-group N. Let A and B be two 

cells of 7. Show that there is an elementary chain of N having both A 

and B in its support. (This is a generalization of Theorem III.18.) 
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Chapter IX 

Polynomials Associated with Graphs 

IX.1. V-FUNCTIONS 

We retain the ring R of Chapter VIII. Here it is usually either the ring J of 

integers or some ring of polynomials over J. 

Let f be a correspondence that associates with each graph G a unique 

element f(G) of R. We call f a graph-function to R if f(G) = f( 1) whenever 

G and H are isomorphic graphs. Thus a graph-function is really a function 

of isomorphism classes. 

A graph-function f is called a V-function if it satisfies the following 

three conditions. 

i) If Gis null, then f(G)=1. 

ii) If G is a union of two disjoint subgraphs H and K, then 

f(G)=f(H)-f(K). (IX.1.1) 
iii) Jf A is any link of G, then 

f(G)=f(Gi)+f(Gy). (IX.1.2) 

We note that (i) and (ii) are consistent, even though each graph is the 

union of itself and a null graph. As a consequence of (ii), we have the 

following theorem. 

Theorem IX.1. Let f be a V-function. Then its value for a graph G is 

the product of its values for the components of G. 

221 
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Several graph-functions of very common occurrence are V-functions. 
The tree-number 7(G) of G satisfies (iii) but not (ii), by Theorem II.18. 

We can define one very general V-function in terms of the numbers 

denoted by R(G; io, i), i2,-..) in Sec. 11.2. We take an arbitrary infinite 

sequence 

MEAGCH OT eT, (IX.1.3) 

and we define a graph-function f(G; S) by the following equation: 

Ge By [R(Giit.---) [1 sir}. (IX.1.4) 
) m=0 Gigitom 

The sum is over all sets of nonnegative integers ip, 7,,/5,.... Form- 
ally, we have an infinite sum of infinite products on the right of Eq. IX.1.4. 

But, since G is finite, only a finite number of the subgraph-numbers 

R(G; ig, t),...) can be nonzero, and so the right side of Eq. (IX.1.4) reduces 
to a finite sum for each G. 

Theorem IX.2._ The graph-function f(G; S) defined in Eq. (1X.1.4) is 
a V-function. 

Proof. If Gis null, then R(G; io, i,,...) is zero unless each i; 18 Zero, 

and in that case it is 1. Hence f(G; S$) satisfies Condition (i). 

Condition (ii) follows from the evident fact that R(G; ip,i,,i5,...) is 
the sum of all products 

RGAagigs dite) RUB aig kik & 

such that j, +k, =i, for each suffix q. Condition (iii) is a consequence of 
Theorem II.20. oO 

Sometimes we interpret the symbols s, of Eqs. (IX.1.3) and (IX.1.4) 
not as elements of R but as indeterminates over R. That is, we replace R by 
one of its extensions. 

Let us write X,, for a graph made up of a single vertex and exactly n 
loops (n= 0,1,2,...). Then each spanning subgraph of X, has exactly one 
component, and the number of components of cyclomatic number | is (Si. 
So, by Eq. (IX.1.4), 

eh $e (7 |5; (IX.1.5) 
j=0 

We continue with an existence theorem and a uniqueness theorem 
for V-functions. 

Theorem IX.3. Let T=(to,t),t,,...) be any infinite sequence of 
members of R. Then there exists a V-function f such that f( X,,) =t,, for each 
nonnegative integer m. 
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Proof. Wecan choose the sequence S of Eq. (IX.1.3) so as to satisfy 

co 

ike ys (jis, (IX.1.6) 
y= 0 

for each suffix n. We arrange this by writing 

< _,(n 
{i= Gee AR (1X.1.7) 

age 

By Theorem IX.2 we have the V-function f(G; S), and f(X,,; S)=t,, for 

each m, by Eqs. (IX.1.5) and (IX.1.6). Oo 

Theorem IX.4. If the value of a V-function f is known for each X,,,, 

then it is uniquely determined. 

Proof. Let #£(G) denote the number of links of a graph G. If 

£(G)=0, then f(G) is uniquely determined by (ii). In the remaining case, 

let A be any link of G. Then 

f(G) = f(G4)+ f(G1) 

by (iii). But each of £(G,) and £(G7) is less than £(G). So the theorem 

' follows, by induction over £(G). Oo 

Theorem IX.5. Let A be an isthmus of G. Let its end-graphs be H 

and K, K being a vertex-graph. Then, for any V-function f, 

f(G)= {1+ f( Xo) f(A). (IX.1.8) 

Proof. We use Eq. (IX.1.2), noting that Gj is the union of disjoint 

subgraphs H and X, = K, and that Gj is vertex-isomorphic to H. (See Fig. 

IX.1.1.) Oo 

FIGURE IX.1.1 
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Theorem IX.6. Let x be a divalent vertex of G, incident with two 

links A and B joining it to vertices y and z, respectively. Let G, be formed from 

G by deleting x, A, and B. Let G, be formed from G, by adjoining a new edge 

C with ends y and z. Then, for any V-function f, 

f(G) = (1+ f( Xo) HG) + (G2). (IX.1.9) 

Proof. The case y = z, in which C is a loop of G,, is not excluded. 

Portions of the graphs G, G,, and G, are sketched in Fig. IX.1.2 for the case 

yz. 
Let H be the component of Gj, including B. Then B is an isthmus of 

H. One of its end-graphs in H consists solely of the vertex x. Denote the 

other by Hy. Evidently the complementary subgraph K of H in G; is the 

complementary subgraph of Hy in G,. So we have 

f(G4) = f(A) S(K) = (1+ f( Xo) F(A )I(K) = 1+ f( XAG), 
where K is H° in Gj, by (ii) and Theorem IX.5. 

We note further that G7 = ,G,. The theorem follows, by (iii). Oo 

A graph-function is called topologically invariant if it is invariant 

under the operation of subdivision defined in Sec. IV.2. If graph X is 

obtained from graph Y by subdividing an edge, then we can take X and Y to 

be the graphs G and G,, respectively, of Theorem IX.6. So from that 
theorem we have the following: 

Theorem IX.7. Let f be a V-function such that f(X.) = —1. Then f is 
topologically invariant. 

There is a converse. 

Theorem IX.8._ Let f be any topologically invariant V-function. Then 
either f( Xq) = — 1 or f(K)=0 for every nonnull graph K. 

FIGURE IX.1.2 
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Proof. Suppose f(K ) +0 for some K. We can arrange for K to be 

the graph G, of Theorem IX.6. Then /(G)=/(G,) in Eq. (IX.1.9), by 

topological invariance. Hence, f( X)) = — 1, by Eq. (1X.1.9). Oo 

There is indeed a trivial, topologically invariant V-function that 

satisfies (i) but is zero for every nonnull graph. Another rather trivial 

V-function f, is defined by 

f.(G) = 212, (IX.1.10) 

It satisfies (i), (ii), and (111). But it is not topologically invariant, by Theorem 

IX.1.8. 
The general V-function f(G; S) of Eq. ([X.1.4) can be specialized by 

writing 

S,= tz", (1X.1.11) 

where ¢ and z are fixed elements fo R, for each suffix k. We denote the 

resulting V-function by Q(G; t, z). By Eq. (IX.1.4), with the help of The- 

orem II.21, we have 

Q(G;t,z)= a eed a) Ge) (1X 1712) 

SC E(G) 

We usually think of ¢ and z as indeterminates over R; this means that we 
should replace R by an appropriate extension in the definition of the graph 

function. Then Q(G; t, z) is a polynomial in two indeterminates, ¢ and z. We 

call it the dichromatic polynomial of G. Evidently, its degree in ¢ is |V(G)|, 

corresponding to a null S; and its degree in z is p,(G), corresponding to 

S = E(G). 
In addition to the usual properties of a V-function the dichromatic 

polynomial satisfies the following important theorem. 

Theorem IX.9. Let G be the union of two subgraphs H and K whose 

intersection is a vertex-graph. Then 

FOG 1, 2)= OLN, 2) Ol Kit. 2). (IX.1.13) 

Proof. Given S C E(G), we write S, and S, for its intersections with 

E(H) and E(K), respectively. Then G: S is the union of H: S, and K: S,, 

these two graphs having no common edge and exactly one common vertex. 

We infer that 

1+ po(G: S) = po( H: S,)+ po(K: S,). (1X.1.14) 

By Eq. (1.6.1), this implies 

p(GiS)=p,(H: S))+ pi(K: S,). (1X.1.15) 
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Hence, by Eq. (IX.1.12), 

tO(G;t z)= ry ay | (PoC Saye POUR: 2a) gg Bi See Fie e) | 

‘S| C E(H) S)C E(K) 

= OCHS 12 )OCRSE 2): O 

Only for very simple graphs is it convenient to use Eq. (I1X.1.12) ina 

direct determination of the dichromatic polynomial. We can check that 

O(X,36z)=10 Fz) (1X.1.16) 
” 

for each m. (See Eq. (IX.1.5). We can also verify the following: 

Theorem IX.10. If G is a link-graph, then Q(G; t,z)=t(1+t). 

For more complicated graphs, it is better to work upward from such 
simple cases by way of the recursion formulae (IX.1.1), (I1X.1.2), and 

(1X.1.13). Perhaps the following variation on Eq. (IX.1.13) deserves special 
notice. 

Theorem I[X.11. Let a connected graph G have an isthmus A with 
end-graphs H and K. Then 

10(G;t,z)=(1+ 14) O(A3t, z)O(K3t,z). (1X.1.17) 

It is proved by two applications of Theorem IX.9, with the help of Tkeorem 
IX.10. 

IX.2. THE CHROMATIC POLYNOMIAL 

We write 

P(GN) = (1) (OlGwe As ie (IX. 

taking R to be the ring of polynomials in an indeterminate A, with integral 
coefficients. By Eq. (IX.1.12), this definition is equivalent to 

BUG Amis (aly Aree (IX.2.2) 
SC E(G) 

We observe that (— 1)!“ !P(G; A) is a V-function, by Eq. (IX.2.1). 
Accordingly, P(G; ) has the following properties, derived from Conditions 
(i), (11), and (iii) of Sec. [X.1. 

Theorem IX.12. If G is null, then P(G; X) =1. 

Theorem 1X.13. If G is the union of disjoint subgraphs H and K, then 

P(G;) = P(H;A)P(K;)). (1X.2.3) 
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Theorem IX.14. If A is a link of G, then 

P(G;) = P(Gi;A)— P(Gj;A). (1X.2.4) 

Moreover, as a consequence of Theorem [X.9, we have: 

Theorem IX.15. If G is a union of subgraphs H and K such that 

H (1 K is a vertex-graph, then 

\P(G;X) = P(H;A)P(K;A). (aXaoa5) 

From these results, and the definition, we can derive other proposi- 

tions about P(G;A). Some simple examples appear below as Theorems 

IX.16 to IX.19. 

Theorem IX.16. P(X,,;) is if m=0, and zero if m>0, by Eq. 

(1X.1.16). 

Theorem IX.17. If G has a loop, then P(G; X) = 0. 

This follows from Eq. (IX.2.5) and Theorem IX.16, the latter for 

m=1, 

Theorem IX.18. If G is loopless, then P(G; X) is a polynomial in of 

degree |V(G)|. 

This follows from Eg. (IX.2.2), since G:S has exactly |V(G)| 

components if S is null, and fewer than | V(G)| components in every other 

case. 

Theorem IX.19. Let G have two links A and B with the same ends x 

and y. Then P(G; X) = P(Gj; A). 

This is a consequence of Eq. (IX.2.4) and Theorem IX.17, for B is a 

loop of G7. 
In view of Theorems IX.17 and IX.19, we can regard the study of 

P(G; 2) as basically a study of strict graphs, extensions to the nonstrict case 

being trivial. 

When A takes a positive integral value n, we can interpret P(G; A) in 

terms of the “n-colorings” of G. 

Let S, be the set of integers from | to n, here called the n “colors.” 

We define an n-coloring of G as a mapping of V(G) into S,, subject to the 

following restriction: The two ends of any edge must map onto two distinct 

colors. We write N(G; n) for the number of n-colorings of G. This is clearly 

a graph-function. The restriction just made implies that M(G,;n)=0 

whenever G has a loop. 

We adopt the convention that a null set has exactly one mapping 

into S,. We therefore write N(G; n) = 1 when G is null. 

Suppose G to be the union of two disjoint subgraphs H and K. Then 

the n-colorings of G are simply the combinations of one n-coloring of H 
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with one n-coloring of K. Thus 

N(G;n) = N(H;n)N(K;n). 

Suppose G to have a link A, with ends x and y. Then the n-colorings 

of G can be identified with those n-colorings of Gj for which x and y have 

different colors. Allowing for a coalescence of x and y we can identify the 

n-colorings of Gj’ with those n-colorings of Gi for which x and y have the 
same color. Hence 

N(G;n) =N(Gi;n)—N(Gj;n). 

We can now assert that (— 1)!"“©IN(G; n) is a V-function. Moreover, 
it is clear that N(X);n)=n and that N(X,,;n)=0 if m>0. Hence the 

V-functions (— 1)!““!N(G; n) and (— 1)!“@!P(G; n) are identical, by The- 
orems IX.4 and IX.16. We thus have the following theorem. 

Theorem IX.20._ Let n be any positive integer. Then the number of 

n-colorings of any graph G is P(G;n). 

Theorem [X.21. Let G be a loopless graph. Then P(G;n)>0 for 

each positive integer n, with strict inequality when n>|V(G)|. Moreover, if 

P(G;n)=0, then P(G; m) =0 for each positive integer m <n. 

The first sentence of Theorem IX.21 follows from Theorem IX.20, 

together with the fact that when n > |V(G)| we can get an n-coloring of G 
by giving the vertices all different colors. To complete the proof, we observe 
that an m-coloring is also an n-colouring. 

Because of Theorem IX.20, P(G;A) is called the chromatic poly- 
nomial of G. By Theorem IX.21, there is for each nonnull loopless graph G a 
least positive integer n such that G has an n-coloring. This is called the 
chromatic number of G, and a graph with chromatic number k is said to be 
k-chromatic. In view of Theorem IX.12, it seems convenient to assign a zero 
chromatic number to the null graph. 

Much work has been done by graph theorists on problems about 
n-colorings. Chromatic polynomials are regarded as important in graph 
theory mainly because of the interpretation given by Theorem IX.20. 
Historically, their study began as the theory of enumeration of n-colorings. 
From this point of view, Formula (IX.2.2), which serves us as a definition, 
becomes an important theorem giving an explicit formula for N(G;n). As 
such, it is due to Hassler Whitney [17]. Many of the following theorems of 
this section are commonly and easily proved as theorems about N(G; n). 
Some argument from the theory of polynomial identities may then be 
brought in to extend them to general A. However, we shall use proofs in 
which X is an indeterminate throughout. 

We make note of a variation on the interpretation of P(G;n) in 
Theorem IX.20. Let us say that a chain on a set S to a ring R of the type 
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considered in Sec. VIII.1 is nowhere zero if its support is S$. Consider an 

arbitrary orientation Q of G, with dart-set S. We now take R to be finite and 

with exactly n elements. It may, for example, be J,,. We ask for the number 

of nowhere-zero coboundaries to R in Q. 

Now a 0-chain f of 2 to R has a nowhere-zero coboundary if and 

only if each dart of Q has differing f-coefficients at its two ends. The number 

of such 0-chains f is clearly N(G; n), that is, P(G;n), by Theorem IX.20. 

But any member of A(Q, R) is the coboundary of exactly n?° distinct 
0-chains, by Theorem VIII.45. We thus have the following: 

Theorem IX.22. If Q is an arbitrary orientation of a graph G, and if 

R has just n elements, then the number of nowhere-zero coboundaries of 2 to R 

is 

n-P\)P(G:n). 

In connection with this result, we observe that the polynomial 

P(G; X) always divides by \?°“), by Eq. (IX.2.2). 
An orientation Q of G is called acyclic if it has no circular path. R. P. 

Stanley shows in [9] that the number of acyclic orientations of G is 

Pats — 1) 
We have P(G;A)=A for the vertex-graph, P(G;A)=0 for the 

loop-graph, and P(G; A) =A(A — 1) for the link-graph, by Theorem IX.10. 

To find P(G;) for other graphs, we use recursion formulae such as Eqs. 

(IX.2.3), (IX.2.4), and (IX.2.5). Two examples follow. 

Theorem 1X.23. If T is a tree of k edges, then 

P(T;A)=A(A-1)*. (IX.2.6) 

Proof. The theorem holds if k is 0 or 1 since Tis then a vertex-graph 

or a link-graph. In the remaining case, T is the union of a link-graph and a 

tree of (k —1) edges, the intersection of these being a vertex-graph, by 

Theorem 1.38 and I.40. So we can prove Theorem IX.23 by repeated 

application of Eq. (IX.2.5). 0 

Theorem 1X.24. Let C,, be a circuit of k edges. Then 

P(C,;d) = (A-1)£ +(-1)“(A- 1). (ix 2-7) 

Proof. For k=1, the circuit is a loop-graph and the theorem is 

trivially true. For k > 1, we choose some edge A, necessarily a link, of C,. 

We then observe that (C,), is an arc of (k —1) edges and that (C,)/ is a 

circuit C,_, of (k —1) edges. If the theorem holds for C,_,, then by Eqs. 

(IX.2.4) and (IX.2.5), we have 

Bi Genesio. —{(A=1)> +(-1) 7 (A-9)), 
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which is equivalent to Eq. (IX.2.7). So the theorem can be proved by 

induction over k. oO 

Let us define a vertex-join of a graph H as a graph G obtained from 

H by adjoining one new vertex x and then joining x to each vertex of H by 

one or more new links. 

Theorem IX.25. Let G be a vertex-join of H. Then 

P(G;A) =AP(H;A -1). (IX.2.8) 

Proof. In terms of n-colorings, this theorem is obvious. Keeping to 

a general A, we prove it inductively as follows: 

Suppose, first, that |E()| = 0. Then 

P(G;A)=A(A-1)'"! (by Theorems IX.19 and IX.23), 

P(H;A—-1)=(A-1)'"! (by Theorems IX.13 and IX.16). 

So the theorem holds in this case. Assume, as an inductive hypothesis, that 

it holds when every |E(#)| is less than some positive integer g. Consider 
the case |E(H)|= q. 

Choose an edge A of H. If A is a loop, the theorem is trivially true, 

by Theorem IX.17. If A is a link, we observe that G, and Gj are vertex-joins 
of H/, and Hj, respectively. We then have 

P(G;A) = P(Gij;A)—P(G7;A) (by Eq. (IX.2.4) 
=)P(H4;\—1)—-AP(H{;A—1) (by the inductive hypothesis) 

=)\P(H;\-1) (by Eq. (IX.2.4). 

The induction succeeds. oO 

Theorem IX.26. If G is an n-clique, then 

P(G;X) =A(A—1)(A—2)--- (A= 41). (1X.2.9) 

Proof. If n=0, we interpret the empty product on the right as 
unity. This is consistent with Theorem IX.12. Forn=1, Gis a vertex-graph 
and so Eq. (IX.2.9) is valid. We extend to other values of n by repeated 
application of Theorem IX.25. Oo 

Theorem IX.27. Let G be the union of two subgraphs H and K whose 
intersection is an n-clique Q. Then 

A(A —1)--:(A—n+1)P(G;A) = P(A: Od © .Ga,0 Fam (0, O81) 

Proof. When n=0 or 1, this theorem reduces to Theorem IX.13 or 
Theorem IX.15, respectively. For any larger value of n, we can use the 
following induction: 

Let w denote the number of edges of K not having two distinct ends 
in Q. 
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Suppose, first, that w = 0. Then K has one component Ko containing 
Q. Its other components are all vertex-graphs. Let there be m of them. Then 

P( KGS A) SPO; Ny PU KS A) =A"P(O; A), 

by Theorems IX.13 and [X.19. Similarly, 

P(HUKy;A)=P(H;A), P(G;’) =A"P( 4; A). 

These results, in combination with Eq. (IX.2.9), verify Eq. (IX.2.10). 

Assume the theorem true for all w less than some positive integer q. 

Suppose w = q. Choose an edge A of K not having two distinct ends in Q. If 

A is a loop, then Eq. (IX.2.10) holds trivially, by Theorem IX.17. If A is a 

link, we observe that 

G,=HUK; and Gi =H,UKY, 

where H, =,,H. Moreover, H 1 Ki, and H,Q Kj are still n-cliques. So 

P(Q;A)P(G;A) = P(Q;A){ P( G4; A)— P( G45. A)} 

= P(H;)P(Ki;)— P(A; A) P(K4;A) 

= P(H;)P(K;A), 
by Theorem IX.14 and the inductive hypothesis. Thus the theorem holds 

also when w = q. It follows, in general, by induction. oO 

Let us write P,(G) for the coefficient of A/ in P(G; A). 

|\V(G)| 

PLGpA) =i), we As (IX.2.11) 
j=0 

Theorem IX.28. Let G be a loopless graph of n vertices. Then P(G) 

is nonzero if and only if pyp(G) < j <1, and it then has the sign of (—1)". 

Moreover, P,(G) =1. ' 

Proof. If G is edgeless, then pyo(G) =n, and P(G; A) =A", by The- 

orems IX.12, IX.13, and IX.16. So the theorem holds. Assume it true for 

|E(G)| <q, q > 0, and consider the case |E(G)| = q. 

Choose an edge A of G. If it is part of a multiple join, we have 

P(G; A) = P(G4; A), by Theorem IX.19, and po(G) = po(G4), by Theorem 

1.29. The theorem being true for Gj, it is therefore true for G. 

In the remaining case, G, and Gj are both loopless. By Theorem 

IX.14, we have 

P,(G)= P,(G,)— P,(G4). (IX.2.12) 

The theorem holds for Gj, and Gj. Hence the nonzero values of P:(G4) 

extend from j = p)(G4) to j =7, and those of — P(G{) from j = Po(G{) to 

j=n—1. Moreover, if either P(G4) or — P(G4) is nonzero, it has the sign 

of (— 1)" ¥. Hence the theorem holds for G, by Theorems 1.29 and II.5. It 

follows, in general, by induction. 
Oo 
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We write 

P(G;2) =? U(G; A) (IX.2.13) 

for any graph G, where U(G; A) is a polynomial in A of degree |V(G)|— 

Po(G). Let us express U(G;) as a polynomial in (A —1). Let us write 

U,(G) for the coefficient of ( A — 1)/ in the resulting expression. 

We shall prove an analogue of Theorem IX.28 for the coefficients 

U(G). In it, po(G) is replaced by the block-number A(G) of G, defined as 

the number of blocks of G having at least one edge. Thus 8(G) is zero for 

edgeless graphs, and for these only. 

Theorem IX.29._ Let A be an edge of G that is neither a loop nor an 

isthmus. Then 

Min(B(G4), B(G4)}=B(G). (IX.2.14) 

Proof. Let B be the block of G that includes A. If B has no other 

edge and A is not a loop, then A must be an isthmus of G, by Theorems I.45 

and III.5. We deduce that B has at least two edges. 

Now it is clear that, to within vertex-isomorphism, the blocks of G 

other than B are blocks of Gj and Gj. Hence, 

Min{B(G;),B(G/)} = B(G), 

with equality if either Bj or BY is nonseparable. So our theorem follows 
from Theorem III.33. oO 

Corollary IX.30. If A belongs to a multiple join of G, then B(G4)= 
B(G). 

In the above proof, By now has a loop. It is thus 2-connected only if 
|E(B)| = 2, and in that case B’ is also 2-connected. O 

Theorem IX.31. Let G be a graph of n vertices. Then U(G) is 
nonzero if and only if B(G)< j<n— p(G), and it then has the sign of 
(—1)"-?@) J, Moreover, the leading coefficient (j =n — po(G)) is 1. 

Proof. Suppose first that G is a forest. Then 

P(G; A) = AP6D(A — 1)" PC), 
by Theorems IX.13, IX.23, and 1.37. Moreover, B(G) is now |E(G)|, that is, 
n— po(G), and so the theorem holds. 

We now carry out an induction on |E(G)| closely resembling that in 
Theorem IX.28. This time, however, we choose A to be not an isthmus of G, 
and we use the symbol £ instead of py. So when A belongs to a multiple 
join, we appeal to Corollary IX.30 instead of Theorem I.29, and in the 
remaining case we use Theorem IX.29 instead of Theorems 1.29 and IL5. O 
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The indeterminate A is often interpreted as a real variable. The 

results summarized below in Theorem IX.32, easily derived from Theorems 

IX.28 and IX.31, may then be of interest. 

Theorem 1X.32. Let G be a connected loopless graph of n vertices, 

with at least one edge. Then P(G; X) is nonzero when — 00 <X <0 with the 

sign of (— 1)", and nonzero when 0 < X <1 with the sign of (—1)""'. Ath =0 

it is zero and its slope is nonzero, with the sign of (—1)"*'. If G is 

2-connected, then P(G; 2) is zero at \ =1, and its slope there is nonzero, with 

the sign of (—1)". 

It is conjectured that the sequence of absolute values of the coefficients 

P,(G) is unimodal for each G, meaning that no P,(G) is less than both 

P,_,\(G) and P;, ,(G) in absolute value. An analogous conjecture can be 

made for the coefficients U;(G). In each case, no general proof is known and 

no counterexample has been found. 

IX.3. COLORINGS OF GRAPHS 

Chromatic polynomials were introduced to count n-colorings of graphs. It 

may be well therefore to give some further account of the theory of such 

mappings. Unfortunately, proofs in this theory are rare and usually difficult 

(if not trivial), especially when, as here, we make no use of planarity. Two 

examples follow, one trivial and one not. 

Theorem IX.33. Let G be a strict graph in which the maximum 

valency is k. Then G has a (k + 1)-coloring. 

To construct such a coloring, we assign one of the (k +1) colors to 

each vertex in turn, giving each vertex a color not already assigned to any 

adjacent vertex. 

Theorem IX.34. (Brooks’ Theorem). Let G be a connected strict 

graph in which the maximum valency is k > 2. Then either G is a(k + 1)-clique 

or it has a k-coloring. 

Proof. If possible, choose G so that the theorem fails and |V(G)| 

has the least value consistent with this condition. We construct a (k + 1)- 

coloring of G as for Theorem IX.33. We refer to the colors 1 to k in S, 4, as 

the ordinary colors, and to (k + 1) as the critical color. oO 

Lemma IX.35. Let L be an arc in G with ends x and y. Then we can 

construct a new (k + 1)-coloring of G from a given one, changing colors only at 

vertices of L, so that the critical color occurs at no vertex of L other than x. 
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Proof. We write the defining sequence of vertices of L as 

(dp ager ea), 

where a,= y and a,=x. We recolor the vertices of this sequence in 

succession, according to the following rules: 
i) We assign to a, an ordinary color not already appearing at any adjacent 

vertex other than a,. 
ii) Having recolored a,, where 0 < j <5 —2, we assign to a;,, an ordinary 

color not now occurring at any adjacent vertex other than a j+2° 

iii) Having recolored a,_,, we assign to a, a color, possibly critical, not now 

occurring at any adjacent vertex. 

The valency restriction makes this construction possible. It gives us 

the required new (k + 1)-coloring. A 

For any vertex x of G, we can, by repeated application of Lemma 

IX.35, obtain a (k + 1)-coloring of G in which only x has the critical color. 

(By the choice of G, we cannot get rid of the critical color completely.) We 

call this a critical coloring of G, with critical vertex x. 

Lemma IX.36.  G is regular of valency k. 

Proof. Suppose some vertex x to have valency less than k. Con- 
struct a critical coloring of G with critical vertex x. We can now change the 

color of x to an ordinary color, so as to obtain a k-coloring of G, contrary to 

the choice of G. A 

Lemma IX.37.  G is 2-connected. 

Proof. Suppose the contrary. Then G has a 1-separation (H, K), 

with a cut-vertex v. Each of H and K is connected, by Theorem III.1, and 

each has a vertex other than v, by Theorem IV.10. Neither of them can be a 

(k + 1)-clique, since v is incident with at least one edge of each. Evidently 

the maximum valency in each is k. It follows that both N(H;k) and 
N(K; k) are nonzero, by the choice of G. Hence N(G; k) is nonzero, by 
Theorems IX.15 and IX.20, a contradiction. A 

Lemma IX.38._ G is 3-connected. 

Proof. Suppose the contrary. Then G has a 2-separation (H, K), 
with hinges x and y, say. We recall that H and K are connected. (See 
Theorem IV.20.) Let G,, H,, and K, be formed from G, H, and K, 
respectively, by adjoining a new link A with ends x and y. Each of H and K 
has a vertex not x or y, by Theorem IV.10. Hence each of the connected 
graphs H, and K, has maximum valency k. 

Suppose, first, that neither H, nor K, is a (k+1)-clique. Then 
N(H,; k) and N(K,; k) are nonzero, by the choice of G. Hence, N(G,; k) is 
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nonzero, by Theorems IX.20 and IX.27. But a k-coloring of G, would be a 

k-coloring of G. 

We may now assume, without loss of generality, that H, is a 
(k + 1)-clique. But then H has a k-coloring Q, in which x and y receive the : 

same color. Moreover, x and y must each have valency | in K. Form Ky 

from K by identifying x and y. The maximum valency in Ko is k, the new 

vertex having valency only 2. Hence Ky has a k-coloring by the choice of G, 
and therefore K has a k-coloring Q, in which x and y have the same color. 

We can combine Q, and Q, to get a k-coloring of G. The Lemma follows. A 

Now G has at least (k + 1) vertices, by Theorem IX.21. We can find 

two nonadjacent ones, say ¢ and u, for otherwise G would be a (k + 1)-clique, 

by Lemma IX.36. By Lemma IX.35, we can find a critical coloring of G with 

critical vertex rt. Since u and its adjacent vertices receive only ordinary 

colors, there must be two vertices adjacent to u, say v and w, that receive the 

same color. Let T and U be the sets of edges incident with ¢ and u, 

respectively. G is vertically 3-connected, by Lemma IX.38 and Theorem 

IV.10. Hence the number A(G; T, U), as defined in Sec. II.4, is at least BESO. 

by Menger’s Theorem (1.34 or II.35), there exist three internally disjoint 

arcs in G from ¢ to u. Hence there is an arc L in G with ends ¢ and uw that 

does not include v or w. By Lemma IX.35, changing colors only in L, we 

can convert our critical coloring into a new one in which the critical vertex 

is u. But the vertices adjacent to u now have only ordinary colors, and at 

most (k —1) of those. Recoloring u with one of the remaining ordinary 

colors, we get a k-coloring of G. This contradiction establishes the theorem. 

fe 

For the case n = 2 we can replace Theorem IX.34 by the following 

Theorem IX.39. A 2-colorable graph is, of course, the same as a bipartite 

graph, as defined in Sec. II.6. 

Theorem IX.39. A graph G is bipartite (2-colorable) if and only if it 

has no circuit of odd length. 

Proof. A graph G with an odd circuit is clearly nonbipartite. 

Conversely, suppose G to be nonbipartite. If it has a loop, it has an 

odd circuit of length 1. In the remaining case, we can delete links from it, 

one by one, until we have an edgeless and therefore bipartite graph. At some 

intermediate stage, we have a nonbipartite graph H and a link A of H such 

that H’, is bipartite. Then the two ends x and y of A in H must have the 

same color in every bipartition of Hj. This can happen only if they are in 

the same component of H4; the two colors can be interchanged in any 

component. So x and y are joined by an arc L in Hj, It is of even length 

since vertices of the two colors must alternate in it. Adjoining A to L, we 

obtain an odd circuit of G. Oo 
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For completeness, let us add that G is 1-colorable if and only if it is 

edgeless, and 0-colorable if and only if it is null. 

Consider: a primitive chain-group N on a set S to a ring R. Let us 

define a Hamiltonian chain of N as a primitive chain h of N whose support 

has exactly (|S|—r(N)+1) cells. No primitive chain of N can have more 

than this number of cells in its support, by Theorem VIII.16. 
Now let G be a connected graph. Let Q be any orientation of G. By 

Theorem VIII.34, a Hamiltonian chain h of ['(Q, R) corresponds to a circuit 

H of G with (|E(G)| — p,(G)+1) edges, that is, |V(G)| edges, by Theorem 

VIII.37 and Eq. (1.6.1). Thus C is a circuit through all the vertices of G, a 

Hamiltonian circuit of G in the usual terminology. 

Consider a Hamiltonian chain h of A(Q; R). By Theorem VIII.40, it 

corresponds to a bond H of G with (|E(G)|—|V(G)| +2) edges, by Eq. 

(VIII.5.8). The two end-graphs X and Y of H have between them all the 

vertices of G, but only (|V(G)|—2) edges. Hence, each of them must be a 

tree. (See Theorem I.35.) We are led to the concept of a Hamiltonian bond of 

G, algebraically dual to that of a Hamiltonian circuit. It is a bond of G for 

which each end-graph is a tree, that is, a bond of exactly ( p,(G)+ 1) edges. 

Theorem IX.40. If a connected graph G has a Hamiltonian bond, 

then it has a 4-coloring. 

Proof. Trees are bipartite, by Theorem IX.39. So we can color one 

end-graph of the bond with two of the four colors, and the other end-graph 

with the other two colors. We then have a 4-coloring of G. Oo 

Theorem IX.41 (Grinberg’s Theorem). Let H be a Hamiltonian 

bond, with end-graphs X and Y, in a connected graph G. Let f,* and f,’ denote 

the number of vertices of X and Y, respectively, that have valency n in G 
(n=1,2,3...). Then 

co 

Le (n= 2) far) = 0. (IX.3.1) 

Proof. Using Theorem I.37, we find 

Y fil |B(0 +1. (1X.3.2) 

It is also clear that i 

x nf, =|E(H)|+2|E(X). (IX.3.3) 
n=1 

Hence, 

2 (n= 2) f* =|E(H)|=2: (IX.3.4) 
n=1 
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| - Se 3 

2 

There is an analogous equation with Y replacing X. We subtract it 

from Eq. (1X.3.4) to obtain Eq. (IX.3.1). Oo 

FIGURE IX.3.1 

Grinberg’s Theorem can sometimes be used to show that a given 

graph G has no Hamiltonian bond. Suppose, for example, that a connected 

graph G has all its vertices of valency congruent to 2 mod3, with just 

one exception. Then the left side of Eq. (IX.3.1) cannot be divisible by 3 

and therefore no Hamiltonian bond of G can exist. Figure IX.3.1 exhibits a 

simple example. 

In this figure we show a 4-coloring of G, lest it should be thought 

that Theorem IX.40 has a direct converse. 

Much work has been: expended in the search for conditions for the 

existence of an n-coloring in a connected graph G. The search has culminated 

in the recent immensely long proof of the “Four-Color Theorem” for planar 

graphs, by Haken and Appel [1,2]. But that proof is thought to be still in 

need of confirmation. For the graphs with which we are concerned here, and 

for a general n, only a conjecture can be offered. 

Hadwiger’s Conjecture asserts that, if G has no n-coloring, then some 

minor of G is an (n + 1)-clique. It has been proved for n < 3, and the case 

n=4 has been shown to be equivalent to the Four-Color Theorem. For 

other values of n, we have no proof and no counterexample. 

IX.4. THE FLOW POLYNOMIAL 

Like the chromatic polynomial, the flow polynomial F(G; A) of a graph G is 

a graph-function and a polynomial in an indeterminate A with integral 
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coefficients. We define it by: 

FIGEX = (ol) OG ean (1X.4.1) 

By Eq. (IX.1.12), this is equivalent to 

F(G;)) = (<1) FO" | (Sy rarne (IX.4.2) 
S€E(G) 

The flow polynomial has the following properties IX.42, IX.43, and 

1X.44, deriving from the definition of a V-function, and from Theorem IX.9. 

Property IX.42. If G is null, then F(G; X) =1. 

Property IX.43. If G is the union of two edge-disjoint subgraphs H 

and K with at most one vertex in common, then 

F(G;) = F(H;A)F(K;A). (IX.4.3) 

Property [X.44._ If A is a link of G, then 

F(G; A) = F(G/;A)— F(Gj; A). (1X.4.4) 

By Eq. (IX.1.16), we have the following theorems. 

Theorem IX.45.  F(X,,; 4) =(A—1)”™. 

Theorem IX.46. If G has an isthmus, then F(G; X)=0. 

Theorem I[X.47. F(G; 2) is topologically invariant. 

The last two results follow from Eq. (IX.4.1) and the fact that the 

V-function Q(G;—1,—A) takes the value —1 when G= Xp, by Eq. 

(IX.1.16). Now Theorem IX.46 follows from Eq. (IX.1.17), and Theorem 
IX.47 follows from Theorem IX.7. 

We now prove a companion theorem to Theorem IX.22, with 

nowhere-zero cycles in place of nowhere-zero coboundaries. As before, Q is 

an arbitrary orientation of G, with dart-set S, and the ring R of coefficients 

has exactly n members. (So n > 0.) Let us write M(Q, R) for the number of 

nowhere-zero cycles of Q to R. 

By the conventions of Sec. VIII.1, the chain-group T'(Q,R) has 

exactly one chain when S is null, called the zero chain. Paradoxically this 
zero chain is then nowhere zero. Thus 

M(Q, R)=1 

when G is edgeless, and in particular when G is null. 
Now let G be a union of disjoint subgraphs H and K. Then Q induces 

orientations 2,, and Q, of H and K, respectively, where the darts are the 
appropriate members of S with the same heads and tails as in 2. Each cycle 
of & to R is determined by its restrictions to the dart-sets of Q,, and Q,, 
and, by the definitions of Sec. VIII.4, these are cycles of Q,, and Q, 
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respectively. Moreover, a cycle of Q,, and a cycle of 2, together determine a 
unique cycle of 2, of which they are both restrictions. We infer that 

M(Q, R) = M(Q,,,R)M(Qx, R). 

Now let A be any link of G, corresponding to a dart D of Q. Then Q 

determines orientations 2), and Q%, of Gi and Gj, respectively, as in Sec. 
VIII.6. The cycles of 2%, to R are the restrictions to S —{D) of the cycles of 

Q, by Theorem VIII.49. Moreover, a given cycle of Q% is a restriction 

of only one cycle of Q. For otherwise, {D} would be the support of a cycle 

of 2, and so A would have to be a loop. 

The nowhere-zero cycles of 2, to R are the restrictions to S —{D}) of 

the nowhere-zero cycles of 2, and of the cycles of 2 with support S —{D). 

But the nowhere-zero cycles of ) are the restrictions to S—{D} of the 
cycles of Q with support S —{D}, by Theorems VIII.47 and VIII.48. From 

these observations, we infer that 

M(Q, R) = M(Q%, R)— M(Q%,, R). 
Consider the case G = X,,. Then every chain on S to R is a cycle of 

Q. It follows that 

M(Q,R)=(n-1)” §ifG=X,,. 

The results expressed in the last four equations suffice for an induc- 

tive proof that M(Q, R) is a graph-function, depending only on G and n. So, 

by the first three equations, (— 1)!4(@!*!’@IM(Q, R) is a V-function. By 

Theorem IX.4 we can identify it with the V-function Q(G; —1, — 17). So we 

have the following theorem. 

Theorem IX.48. The number of nowhere-zero cycles of % to R, where 

Q is an arbitrary orientation of G and the ring R has n elements, is F(G; n). 

Comparing this result with Theorem IX.22, we see that the graph- 

functions U(G,) and F(G; A) are algebraically dual, at least for positive 

integral values of A. 

Theorem IX.49. F(G;n) > 0 for each positive integer n, and for each 

G. Moreover, if F(G;n)=0 for one such n, then F(G;m)=0 for each 

positive integer m <n. 

Proof. The first part follows from Theorem IX.48. As for the 

second, suppose F(G; m) > 0. Then any orientation & of G has a nowhere- 

zero cycle to I,,, by Theorem IX.48. 

Now any cycle of 2 to J becomes one to I, when we replace each 

coefficient by its residue mod m. Moreover, each cycle to J, derives from 

one to J in this way. This statement is true for the elementary chains of 

T(Q, I,,) by Theorem VIII.34, and therefore for all chains of ['(Q, I,,) by 

Theorems VIII.18 and VIII.35. It follows from Theorem VIII.29 that there 
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is a nowhere-zero cycle of 2 to J in which each coefficient is less than m in 

absolute value. Replacement of its coefficients by their residues mod n gives 

us a nowhere-zero cycle of Q to J,. But then F(G; n) > 0, by Theorem IX.48. 

Oo 

In the analogous Theorem IX.21, it is obvious that P(G;n), or 

U(G;n) is nonzero for a sufficiently large integer n. A similar result can be 

proved here, using the following dual of Theorem IX.18. 

Theorem 1X.50. If G has no isthmus, then F(G; 2) is a polynomial in 

\ of degree p,(G). Hence it is not identically zero. 

This is a consequence of Eq. (IX.4.2) and Theorem I.34, for the only 

term on the right of Eq. (IX.4.2) in which the index of A is > p,(G) is that 

for which S = E(G). 

Theorem IX.51. If G has no isthmus, there exists a positive integer n 

such that F(G;n) > 0. 

Proof. Suppose the contrary. Then the polynomial F(G; A) vanishes 

for infinitely many values of A, taken to be a complex variable, and 

therefore F(G;A) is identically zero, by the Fundamental Theorem of 

Algebra. This is contrary to Theorem IX.50. oO 

There have been some noteworthy improvements upon this result. 

For each positive integer n, let us define an n-flow of G as a nowhere-zero 

cycle on some orientation 2 of G to J in which each coefficient has absolute 
value less than n. Given such an n-flow, we can always reorient so as to 

transform it into an n-flow in which each coefficient is positive. As in the 

proof of Theorem IX.49, we can show that G has an n-flow if and only if Q 

has a nowhere-zero cycle to J,, that is, if and only if F(G;n)>0, by 

Theorem IX.48. The Five-Flow Conjecture asserts that every isthmusless 

graph G has a 5-flow; that is, it satisfies F(G; 5) > 0. F. Jaeger showed in [6] 

that F(G; 8) > 0 for each such G, and P. Seymour bettered this result in [8], 

showing that F(G; 6) > 0. 

On the other hand, as we shall see in the next section, there are 

isthmusless graphs G for which F(G; 4) = 0. 

IX.5. TAIT COLORINGS 

Let G be any cubic graph. Consider a set T= (a, B,y) of three distinct 
elements called “colors.” A Tait coloring of G is a mapping t of E(G) into T 
so that the edges incident with any vertex x are mapped onto three distinct 
colors. This definition implies that, if G has a loop, it has no Tait coloring. 
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There is a ring R, of four elements, which we can write as 0,1, w, w’. 

It satisfies the multipicative rule w* =1 and the following additive rules: 

z+2=0" foreachz= R,, 

and 

l+wt+w*=0. 

Since each element of R, is its own negative, cycles and coboundaries to R, 

for G can be regarded as chains on E(G), with no reference to any 

particular orientation of G, as explained in Sec. VIII.4. The Tait colorings of 

G can be regarded as its nowhere-zero cycles to R,, the nonzero elements of 

R, being taken as the three colors. 

Theorem IX.52._ A cubic graph G has a Tait coloring if and only if 

F(G; 4) > 0, by Theorem IX.48. 

Theorem IX.53._ Let B be a bond of G, and t a Tait coloring of G. Let 

N4, Ng, and n,, be the numbers of edges of B colored a, B, and y, respectively, 

in t. Then n,, ng, and n, are either all odd or all even. 

Proof. B is the support of a coboundary of G to R, in which each 

coefficient is 1, by Theorem VIII.40. This coboundary is orthogonal to the 

cycle t, by Theorem VIII.42. Hence 

n,a+npB+n,y=0. 

The theorem now follows, by the rules of addition in R,. oO 

In particular, G can have no Tait coloring if it has an isthmus, as is 

required also by Theorem IX.46. 
Now let G be connected, and let B be a bond of G with end-graphs H 

and K. Suppose first that |B| = 2. From H we can form a new cubic graph 

H, by adjoining a new edge A, whose ends are the ends in H of the 

members of B. We call H, the residual graph of B containing H, and we 

refer to A, as its completing edge. There is, of course, a second residual 

graph of B, containing K. 

Suppose next that |B| = 3. From G we can form a new cubic graph 

H, by contracting K to a single new vertex k, incident with the three edges 

of B. Similarly, we form K, by contracting H. We now call H, and K, the 

residual graphs of B containing H and K, respectively. 

Theorem IX.54. Let G be a connected cubic graph having a bond B 

such that |B|=2 or 3. Suppose each of the two residual graphs of B in G to 

have a Tait coloring. Then G has a Tait coloring. 

Proof. Let the residual graphs of B be H, and K,, with Tait 

colorings s and t, respectively. 
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In the case |B| = 2, we permute the three colors in ¢, if necessary, so 

as to arrange that the completing edges of H, and K, have the same color, a 

say. We can now obtain a Tait coloring of G by assigning to each edge of B 

the color a, and to each other edge of G its color in s or f. 

In the case |B| = 3, we permute in ¢, if necessary, so as to give each 

edge of B the same color in ¢ as in s. We then form a Tait coloring of G by 

assigning to each edge its color in s or f. Oo 

Theorem IX.55. The Petersen graph has no Tait coloring. 

Proof. The Petersen graph, shown in Fig. IV.2.8, is described in Sec. 

IV.2 as consisting of two disjoint 5-circuits a,a,a,a,a, and b,b,b,b,b,, and 
five edges a,b,, one for each suffix i. These five edges make up a bond B 

having the two 5-circuits as its end-graphs. 
Suppose the graph to have a Tait coloring ¢. By Theorem IX.53, we 

may assume without loss of generality that three edges of B are colored a, 

one B, and one y. Let us assume that the ends in a,a,a,a,a, of the three 
edges of B colored a are not three consecutive vertices of that pentagon. 

Taking advantage of obvious automorphisms, we can suppose these ends to 

be a,, a3, and a., the vertices a, and a, being ends of edges of B of colors B 
and y, respectively. But now the edges a,a, and a,a, are both forced to 
have color y in ¢, and we have a contradiction. 

We infer that the edges of B colored a have ends at three consecutive 

vertices of the first pentagon, and similarly at three consecutive vertices of 

the second. But these two requirements are incompatible. Oo 

The Petersen graph satisfies F(G;4)=0, by Theorems IX.52 and 

IX.55. Consequently it has no 4-flow. The term “snark” is now used for a 

connected cubic graph that has no Tait coloring and no bond of fewer than 

four edges. The Petersen graph has been found to be the simplest example 

of a snark. A noncolorable graph with two or three edges in some bond B is 

easily reduced to a smaller one, a residual graph of B in the terminology of 

Theorem IX.54. So this case is regarded as trivial, and is excluded. The case 

of a bond of one edge is trivial by Theorem IX.46. 

For examples of snarks, some in infinite families, reference should be 

make to a paper of R. Isaacs, published in 1975 [5]. 

It has been conjectured that every snark has a minor that is a 
Petersen graph. 

We define a Tait subgraph of a cubic graph G as a spanning subgraph 

of G in which each component is a circuit of even length. If H is such a 

subgraph, then the corresponding Tait cycle of G is the chain on E(G) to I, 
whose support is E( #7). It is a cycle of T(G; J,). 

Consider any Tait coloring t of G. If 6 is any one of the three colors, 

then the edges of the other two colors define a Tait subgraph H,(t) of G, 

and we denote the corresponding Tait cycle by J;(t). In this way each Tait 
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coloring ¢ gives rise to three Tait cycles J,(t), Jg(t), an J,(t). Evidently they 

satisfy the equation 

J,(t) + Jg(t)+ J,(t) = 0. (1X.5.1) 

Let us consider a converse problem. Let J be a Tait cycle of G, 

corresponding to a Tait subgraph H. We ask how many distinct Tait 

colorings of G have J as an associated Tait cycle J;(t)? Here we count two 

Tait cycles as distinct if we cannot change one into the other merely by a 

permutation of the three colors. In view of this definition, we can suppose 

the color y given to the edges of G not in the support of J, and to these 

edges only. We can then arrange for the colors a and f to alternate in each 

component of H in 2?°‘”) ways. Allowing for an interchange of a with B, 

we arrive at the following result. 

Theorem IX.56. The Tait cycle determined by a Tait subgraph H of 

G is associated with exactly 

2 Pol) 

distinct Tait colorings of G. 

From this result we can derive information about the Hamiltonian 

circuits of a cubic graph G. We note that a Hamiltonian circuit of G can be 

characterized as a connected Tait subgraph. 

Let us sum Eq. (IX.5.1) over a complete set of distinct Tait colorings 

t of G. Since our coefficients are residues mod2, only the Tait cycles 

corresponding to Hamiltonian circuits, that is, those for which p)(H)=1, 

survive in the sum. Our result is that the sum of all such Tait cycles is zero. 

It can be stated as follows. 

Theorem 1X.57. (Smith’s Theorem). Let A be any edge of a cubic 

graph G. Then the number of Hamiltonian circuits of G that include A is even. 

(Let us not forget that zero is an even number). As a simple but 

striking consequence of Smith’s Theorem, we have: 

Theorem IX.58. If a cubic graph has a Hamiltonian circuit, then it 

has at least three. 

1X.6. THE DICHROMATE OF A GRAPH 

The dichromate x(G)=x(G; x, y) of a graph G is a slightly modified 

dichromatic polynomial. It is a graph-function that is a polynomial in two 

independent indeterminates x and y. It is symmetrically related to the two 

dual functions U(G; A) and F(G; A). We define it as follows: 

x(G;x, y)=(x-1) °° O(G;x-1,y—1). (1X.6.1) 
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By Eq. (IX.1.12), this is equivalent to 

OCG 7 ee ee ee eae 
< S'¢ E(G) 

(1X.6.2) 

It is clear that pyp(G) never exceeds po(G: S). So Eqs. (1X.6.1) and 

(IX.6.2) do indeed define a polynomial in x and y. From Eqs. (IX.2.1) and 

(1X.4.1), we have 

U(G: A), = 1) x (G;.1+A,0), (1X.6.3) 

F(G; A) = (—1)?"“x(G;0,1-A), (IX.6.4) 

where p(G) is the coboundary rank of G. 

The dichromate has the two following properties, derived from the 

definition of a V-function and from Eq. (1X.1.13). 

Theorem IX.59._ x(G; x, y)=1 if G is null. 

Theorem IX.60. If G is the union of two edge-disjoint subgraphs H 
and K, with at most one common vertex, then 

x(G)=x(H)x(K). (1X.6.5) 
Formula (IX.1.2) survives only in the following modified form. 

Theorem IX.61. Let A be an edge of G that is neither a loop nor an 
isthmus. Then 

x(G) =x(G)+x(G7). (IX.6.6) 
Proof. If A is not an isthmus of G, we have 

Po(G) a Po( G4) a Po(G4), 

by Theorems 1.29 and II.5. Hence Eq. (IX.6.6) follows from Eq. (IX.6.1) and 
the properties of V-functions. oO 

Let us evaluate x(G) in some simple cases. It follows from Eq. 
(IX.6.2) that x(G) is 1 for a vertex-graph, x for a link-graph, and y for a 
loop-graph. Hence, by Theorem IX.60, we have the following rules. 

Theorem 1X.62. If G is a forest, then x(G)=x'!®!| and if G is 
linkless, then x(G) = y|¥(, 

Let us now write C, and L, for a k-circuit and k-linkage, respec- 
tively. The case k = 1 is included in Theorem IX.62. For k > 1 we find, using 
Theorem IX.61, that 

XC) = x ON) Hel Cpaa) 
and 

KCL, eee Lgl ex (Xe4)s 
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G, Go G3 Ga 
FIGURE IX.6.1 

where N is an arc of (k—1) edges. From Theorem IX.62, by a simple 

induction, we find 

x(C,)=ytutx2t---4+xk!7 (1X.6.7) 

x(L,)=xtytyrte--ty*" (1X.6.8) 

We go on to the graphs of Fig. IX.6.1, applying Theorems IX.60 and 

IX.61, with the edge A as indicated. 

x(G1) =x(G)+x(G)x(C)) 
=(ytxt+x?)+(y+x)y 

=x*+xyty?+x4+y. 

x(Gy) =x(Gi)+x(L3)x(Ci) 

=x(G,)+(x+yty?)y 
=ytx*+2xyt+2y?+x+y. 

x(G3) =x(CG)x(L1)+x(G;) 

=x34+2x7+2xyt+ y?+x4+y. 

x(G,) = x(G3)+ x(G) 
=x 4+ y2 43x27 +4xy+3y7+2x4+2y. 

We write x, ;(G) for the coefficient of x'y/ in x(G). 

Theorem IX.63. x(G) has degree p(G) in x and p,\(G) in y. 

Proof. This is equivalent to the assertion that x(G), regarded as a 

polynomial in x — 1 and y —1, has degree p(G) in x —1 and p,(G) iny—1. 

But that follows from Eg. (IX.6.2). In each product on the right of Eq. 

(IX.6.2), the index of x — | is at most |V(G)| — Po(G) = p(G), and the index 

of y —1 is at most p,(G), by Theorem 1.34. Moreover, these maximal values 

do occur, the first for a null S and the second for S = E(G). oO 

We define the x-matrix of G as a matrix of (p(G)+1) rows and 

(p,(G)+1) columns, the entry in the (i+1)th row and (j+1)th column 

being x;;(G) (i, J = 0,1,2,...). By Theorem IX.63, all the nonzero coefficients 

in x(G) are elements of the x-matrix. When we write the x-matrix as a table 
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of the coefficients in x(G), we usually omit the zeros, or most of them. Thus 

in the case of the 3-wheel, G, of Fig. IX.1.1, we tabulate the coefficients as 

follows: 

—=WN © 

Nw 

to _ 

Theorem IX.64. The coefficients x;,;(G) are all nonnegative. 

Proof. For graphs with at most one edge, this follows from Theo- 
rems IX.59 and IX.62. Assume it true whenever |E(G)| is less than some 

positive integer g and consider the case |E(G)| = q. 
If every edge of G is an isthmus, the theorem is still true, by Theorem 

IX.62. In the remaining case, some edge A is not an isthmus. If A is a loop, 

we have x(G) = yx(Gj), by Theorems IX.60 and IX.62. The theorem holds 

for Gj by the inductive hypothesis, and therefore it holds for G. If A is not a 

loop, we have x(G)=x(Gi)+x(Gj), by Theorem IX.61. The theorem 

holds for Gi, and Gj, by the inductive hypothesis, and therefore it holds for 

G. So the theorem is true for |E(G)| = q, and the induction succeeds. oO 

It is conjectured that each row and column of a x-matrix is uni- 

modal, i.e., that no element in it is less than both its neighbors. 

Another regularity provable by induction is that x 9)(G) = 0 whenever 

G has an edge. This is just the first member of a family of linear relations 

between coefficients in x(G). The second member asserts that x9)(G) = 

X19(G), and the third that 

X20(G)+ Xo2(G) = Xi(G)+xi0(G). 

The second member is valid when | £(G)| > 2 and the third when | E(G)| > 3. 
These equations are related to the identity 

x(Gylt27!, 142) =2z-9O(1 4 2) FO! (IX.6.9) 

which is easily proved by substitution in Eq. (IX.6.2). To get a member of 
our family of equations, we differentiate 

Vx (G)0 a zh): (A a z)/ 
if 

n times with respect to z, substitute z = —1, and equate the result to zero. 
The equation will be valid when |E(G)|>n. 

For a connected graph G, the dichromate is closely related to the set 
of spanning trees of G. We can, for example, show that 

x(G;1,1) =7(G), (IX.6.10) 
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by substitution in Eq. (IX.6.2), for the surviving products on the right of Eq. 
(1X.6.2), each having the value 1, correspond to those edge-sets S for which 

Po(G: S)=1 and p,(G: S)=0, that is, for which G: S is a spanning tree 

of G. 

We go on to prove a more general theorem, after some preliminary 

definitions. 
Let the edges of a connected graph G be enumerated as A,, A,,...,A,,, 

and let T be any spanning tree of G. Now let A, be any edge of 7, and let 7, 

and T, be its end-graphs in T. It may happen that every edge A, of G that 

has one end in 7, and one in 7, satisfies 7 >k. If so, we say that A, is 
internally active in T. We write a(T) for the number of edges of T that are 

internally active in it. 
Now consider an edge A, of G that is not in T. If A, is a link, its ends 

are joined by a unique are L, in T, by Theorem 1.44, If A, is a loop, we 

write L, for the vertex-graph defined by its incident vertex. If every edge A; 

of G that belongs to L, satisfies j > k we say that A, is externally active in T. 
We write b(T) for the number of edges of G, all outside 7, that are 

externally active in T. 
According to these definitions, an isthmus of G, which must belong 

to every spanning tree of G, is internally active in every such tree and 

_ externally active in none. But a loop of G belongs to no spanning tree. It is 

externally active in every spanning tree of G and internally active in none. 

Theorem IX.65. If G is a connected graph, then 

OG xy) = oxy, (IX.6.11) 
jf 

for an arbitrary enumeration of the edges of G. 

Proof. Let us denote the sum on the right of Eq. (1X.6.1 1), defined 

in terms of an arbitrary enumeration E = (Aj, A,...,4,) of the edges, by 

W(G). 
If |E(G)|=0, then G is a vertex-graph. It has only one spanning 

tree, G itself, and a(G) and b(G) are both zero. Hence, W(G) =1, and the 

theorem holds, by Theorem IX.62. 

Assume as an inductive hypothesis that the theorem is true whenever 

|E(G)| is less than some positive integer q, and consider the case | E(G)| = q. 

Suppose first that each edge of G 1s a loop or an isthmus, there being 

i isthmuses and £ loops. Then there is just one spanning tree T, its edges 

being the isthmuses. By our preliminary observations, a(T ) =iand b(T)=
 #. 

Accordingly, W(G) = x'y’, Hence W(G)=x(G; x, y), by Theorems 1X.60 

and IX.62. 

In the remaining case, let A,, be the edge of greatest suffix that is 

neither a loop nor an isthmus of G. We write also A,, = A. To each of the 
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graphs G’, and G1, we assign the enumeration E’ of edges obtained from E 

by deleting A. 

As in Sec. II.2, the spanning trees of Gj are those spanning trees of G 

that do not include A, and the spanning trees of G7 are obtained from those 

spanning trees of G that do contain A, by contracting that edge. 

By the choice of m, the edge A can be neither externally nor 

internally active in any spanning tree of G. Hence, still by the choice of 

m, a(T) and b(T) have the same values in Gj, as in G, for any spanning tree 

T of G that does not include A. Furthermore, if T is any spanning tree of G 

that does include A, then the numbers a(7) and b(7) for G and E are the 

numbers a(Ty) and b(T;’), respectively, for Gi’ and E’. We deduce that 

W(G) =W(G;)+W(Gi) 
with respect to the enumerations E and E’. Hence, 

W(G) =x(Gy)+x(G4) (by the inductive hypothesis) 

= x(G) (by Theorem IX.61). 

We conclude that the theorem is true also when |£(G)| = q, and that 

the induction succeeds. Oo 

By Eq. (IX.6.11), the coefficient x;,(G), for a connected G, is the 

number of spanning trees T of G such that a(T) =i and b(T)= j. 

IX.7. SOME REMARKS ON RECONSTRUCTION 

Theorem I[X.66. The dichromate of a graph is reconstructible. 

Proof. Referring to Eq. (IX.6.2), we see that we can reconstruct 

x(G; x, y) if we can reconstruct the number of spanning subgraphs G: S of 

G with given values of pyo(G: S) and p,(G: S). But by Theorem V.11, we 

can reconstruct the number of disconnected spanning subgraphs of this 

kind. This leaves over spanning subgraphs G: S such that p)(G: S)=1 and 

therefore p,(G: S) =|S|—|V(G)| +1. So we now require to be able to find 

the number of connected spanning subgraphs of G with a given number of 

edges. But the number of spanning subgraphs with k edges is known; it is 

the number of ways of choosing k things out of |E(G)|. The number of 
disconnected ones is reconstructible by Theorem V.11, and so the number of 
connected ones can be found by subtraction. We conclude that the sum on 
the right side of Eq. (IX.6.2) is reconstructible. Oo 

The reconstructibility of the dichromate implies that of the dichro- 
matic polynomial, the chromatic polynomial, and the flow polynomial, by 
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Eqs. (1X.6.1), (1X.2.1), and (1X.4.1). In particular, the chromatic number 

and the property of having or not having a 5-flow are reconstructible. 

By a continuation of the argument for Theorem IX.66, we can prove 
the following theorem. 

Theorem 1X.67. The number of Hamiltonian circuits of a graph G is 

reconstructible. 

Proof. We saw, in the proof of Theorem IX.66, that the number of 

connected spanning subgraphs of G with k edges is reconstructible. But by 

Theorem V.15, the number of such subgraphs with no spanning block is 

reconstructible. So, by subtraction, we can find the number of connected 

spanning subgraphs of G with k edges and with a spanning block. But for 
k =|V(G)|, these are the Hamiltonian circuits of G. (See Eq. (I.1.1) and 

Theorem 1.27.) Oo 

We should perhaps add here a comment on the reconstructibility of 

the characteristic polynomial of a graph G, denoted here by J(G; A). It is 

usually discussed in terms of strict graphs. 
Let G be a strict graph, and let its vertices be enumerated as 

Oy, O56 5 v,,- TO avoid trivialities, we suppose m > 3. The adjacency matrix 
A(G) of G is an m Xm matrix for which the entry in the ith row and jth 

column is the number of edges, 1 or 0, joining v, and v,. The characteristic 

polynomial of G is defined as follows: 

J(G;) =det(AI — A(G)), (x01) 

where J is the unit matrix of order m. The zeros of J(G; ), the eigenvalues 

of A(G), have been much studied. See, for example, [3]. 

We can expand J(G; A) in the form 

J(G;A)= BM, (IX.7.2) 
i=0 

where the B, are integers. Apart from multiplication by (—1)”/, the 

number B; is the sum of the determinants of the adjacency matrices of the 

induced subgraphs of G with (m— /) vertices. Except for By = det A(G), 

the reconstructibility of each B; follows directly from Kelly’s Lemma. 

The reconstructibility of J(G; 4) now depends on that of det A(G). 

Considering the expansion of this determinant we see that each term 

corresponds to a spanning subgraph of G in which each component is either 

a circuit or a link-graph. We can indeed evaluate the determinant if we 

know the number of spanning subgraphs of G with k link-graphs and / 

circuits as components, for each pair (k, £). But for k + # > 1, this number 

is reconstructible, by Theorem V.11. For k + £=1, it is the number of 

Hamiltonian circuits, since m> 3, and this is reconstructible, by Theorem 

[X.67. We thus have another theorem. 
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Theorem IX.68. The characteristic polynomial of a strict graph G is 

reconstructible. 

Graph theorists sometimes express the hope that a reconstructible 

polynomial may be found whose coefficients determine the corresponding 

graph G uniquely. Then the reconstructibility of the polynomial will imply 

that of G. But if such a polynomial exists, it is not the dichromate and not 

the characteristic polynomial, for all forests of k edges have the same 

dichromate, by Theorem IX.62. Moreover, a construction is explained in 

[14] for “codichromatic” pairs of graphs with connectivities up to 5. A 

well-known theorem of A. J. Schwenk asserts that, for almost every tree, 

there is another tree with the same characteristic polynomial [7]. 

IX.8. NOTES 

IX.8.1. V-functions and 1-Factors 

It is shown in [10] and [15] that there is a V-function such that for a cubic 

graph of 2n vertices, (— 1)"V(G) is the number of 1-factors. We have 

V(X,) =4(3* +1)-(-1)°*". 

IX.8.2. The Beraha Numbers 

Chromatic polynomials are studied most often in connection with triangula- 

tions of the sphere. For these, some curious special theorems were found for 

the value \ =4(3+/5). This is one member of an infinite sequence of 

numbers, pointed out by S. Beraha, that seem to be of special importance in 

the theory, but their significance is not yet properly understood. See [12], 
[13], and [16]. 

IX.8.3. Grinberg’s Theorem 

E. Grinberg [4] presented his theorem as a result about planar graphs. In 
this chapter, I have taken the liberty of dualizing it, the dual form being 
valid for all graphs. 

IX.8.4. Rotors 

Reversing a rotor with at most 5-fold rotational symmetry does not alter the 
chromatic or dichromatic polynomial of a graph. (See [14].) 
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EXERCISES 

If a V-function satisfies V( X,) =4(3* + 1)(—1)‘*', find its values for 
the graphs of Figs. 1.7.4 and I.7.5. 

Find the dichromatic polynomials of the graphs of Figs. II.2.1. and 

11.2.2. 
Find the chromatic polynomial of (i) the wheel of order n, (ii) the 

vertex-join of this wheel, and (ii) the bipyramid B, obtained from two 

such wheels by identifying their rims. 
Find 3-colorings of the cube-graph and the Petersen graph. 

A cubic graph G is obtained from a cubic graph H by expanding one 

vertex into a 3-circuit (see Sec. [V.2). Show that G and H have the same 

number of Hamiltonian circuits. 
A graph G is defined by two circuits a,a)...a) and b,b,byb,bgb3b7bb¢, 

together with the joins a,b,. Show that G has exactly three Hamiltonian 

circuits, and no Tait coloring except the one given by these. 

Find a third member of the family of linear relations for coefficients in 

x discussed in Sec. IX.6. Can you find a general formula for such linear 

relations from Eq. (IX.6.9)? 
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Chapter X 

Combinatorial Maps 

X.1. DEFINITIONS AND PRELIMINARY THEOREMS 

In recent years, some purely combinatorial theories of maps have been 

presented [3, 4, 6, 7]. The following account is based on [9]. 

We postulate a finite set S of elements called crosses. The number of 

elements of S is to be divisible by 4. We write S=4n. The set S is 

partitioned into n disjoint quartets called cells. If X is any cross, then the 

other members of its cell are denoted by 0X, @X, and 0¢X. 

The symbols 0 and ¢ can be regarded as denoting two permutations 

of S. These permutations are required to satisfy the two following axioms. 

Axiom X.1. 0? =¢7 =I and 06= 990. 

Axiom X.2. If X is any cross, then the four crosses X, 0X, $X, and 

0X are all distinct. 

Here J denotes the identical permutation of S. We observe that each 

of the permutations @ and ¢ leaves each cell invariant, except for a 

permutation of its members among themselves. Each of @ and ¢ is an 

involution; it partitions S into disjoint pairs of distinct elements, and it 

interchanges the members of each such pair. We refer to @ as the first 

involution and to ¢ as the second involution. 

253 
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Now let P be any permutation of S. It arranges the crosses in disjoint 

cyclic sequences called the orbits of P. Each orbit is said to be through each 

of its member crosses. We can write the orbit through a cross X as 

SOPRA Y= XPPX, PO ree (X.1.1) 

where m is the least positive integer such that 

P™X =X. (X.1.2) 

Since an orbit is cyclic, it does not matter which of its crosses we write first; 

the orbit through X is also the orbit through PX and the orbit through POX 

and so on. 

The involutions 6 and ¢ have their orbits. In their case m=2 for 

each X. 
We say that the permutations @, ¢, and P define a premap L= 

L(0,, P) on S if the following two axioms are satisfied. 

Axiom X.3. P@O=6P~'. 

Axiom X.4._ For each cross X, the orbits of P through X and 6X are 

distinct. 

We then say that the premap L has @ and ¢ as its first and second 

involutions, respectively, and P as its basic permutation. 

We refer to the number of members of an orbit J/(Q, X) as the /ength 

of that orbit. 

Let us compare the orbits through X and @X in the case of a premap 

L=L(0@,9, P), for an arbitrary cross X. The two orbits are distinct by 

Axiom X.4. They also have the same length. For, if m is the length of 
J(P, X), we have 

P~-"0X =60X 0X = P™0X, (AT 3} 

by Eq. (X.1.2) and Axiom X.3. Hence the length of J( P, 9X) is not greater 

than that of J(P, X). Similarly the length of J(P, 7X), that is, J(P, X), is 
not greater than that of J( P, 0X). 

With J(P, X) given by Eq. (X.1.1), we can now write: 

J(P,0X) = (0X, POX, P?6X,...,P” '@X), 

J(P,0X) = (0X,0P~'X,0P~*X,...,0P~"*'Xx), 

U( POX y= (OX, OP? OX OP tx ae x (X.1.4) 

by Axiom X.3 and Eq. (X.1.2). 

Thus J(P, 6X) is formed from J(P, X) by reversing the cyclic order 
of the elements and then premultiplying each by 6. We express this relation 
by saying that J(P, 0X) is the conjugate orbit to J(P, X) in L. Conjugacy of 
orbits is evidently a symmetrical relation. 
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Theorem X.5. In any premap L = L(0, 9, P), the orbits of P through 

X and 6X are conjugate for any cross X. A cross Y then belongs to one of them 
if and only if 8Y belongs to the other. 

We define a vertex of the premap L= L(0,¢, P) as a pair v of 

conjugate orbits of P. Each of the two orbits is an oriented vertex of L, and 
an oriented form of v. 

A cell A =(X, 0X, 6X,0¢X) can be called an edge of L. Then the 

unordered pairs { X,@X)} and {¢X,@¢X) are its two half-edges in L. For 

each half-edge {Y,@Y)}, there is a unique vertex v of L such that Y belongs 

to one of the oriented forms of v, and @Y to the other. We express this 

relation by saying that v absorbs the half-edge, and that A is incident with v 

in L. The two half-edges of A may be absorbed by the same vertex or by 

two different vertices. In the first case, A is a Joop of L, and in the second 

case a link. 
The definitions above do not exclude the possibility that S is null. In 

that case, we postulate a unique permutation J on S. There is then a unique 

premap L(J,/, 7) on S. We call this a null premap. It has no vertex and no 

edge. 
With the above definition of incidence, the vertices and edges of L 

are the vertices and edges, respectively, of a graph G(L), called the graph of 

L. Evidently G(L) has no isolated vertex. The loops and links of L are the 

loops and links, respectively, of G(L). 
We shall say that a cross X belongs to any edge or oriented vertex of 

L of which it is an element, that it belongs to a vertex of L if it belongs to an 

oriented form of that vertex, and that it belongs to a subgraph H of G(L) if 

it belongs to some edge or vertex of H. 

Given a graph G with no isolated vertex, we may ask for a premap L, 

on some set S, such that G and G(L) are isomorphic. Such a premap can be 

found by Edmonds’ Construction [4]. Corresponding to each edge A of G we 

define a set A’ = (X,9X,¢X,0¢X) of four elements called crosses, making 

the eight crosses on any two distinct edges all distinct. We then have a set S 

of 4|E(G)| crosses, and the notation determines first and second involu- 

tions 6 and ¢ satisfying Axioms X.1 and X.2. We split each set A’ into its 

two pairs {X,9X) and (@X, 6X), assigning one of these pairs to each end 

of A. Both pairs are assigned to the same vertex if and only if A is a loop of 

G. For each vertex of G, it is now easy to arrange the members of its 

assigned pairs in two conjugate orbits so as to satisfy Axioms X.3 and X.4. 

We now have our required premap L(0@, 4, P). 

We return to our fundamental set S of crosses. A nonnull set K of 

permutations of S generates a group Vx of such permutations. It partitions 

S, if nonnull, into nonnull equivalence classes such that two crosses belong 

to the same equivalence class if and only if some member of ¥, maps one 
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onto the other. In the case of a premap L(6, ¢, P), we shall be interested in 

the cases K = (0,, P} and K = {09, P). 
Consider.the case K = {0,, P}. We then call the equivalence classes 

of Vx the connection-sets of L. If L has exactly one connection-set, neces- 

sarily S, we say that L is connected, or equivalently, that L is a map on S. 

Let T be any connection-set of L. The effect on T of a member Q of 

V, is to permute its elements among themselves. Thus each Q has a unique 

restriction Q, to T, that is a permutation of T having the same effect on 

each member of T as does Q itself. The restrictions to T of 6, ¢, and P 

evidently satisfy the four axioms for a premap L; = L(6,,$7, P;) on T. 

Moreover, 7 is a connection-set of L; and therefore L; is a map on T. The 
maps L; corresponding to the connection-sets of L are the components of L. 

These components clearly satisfy the rules presented in the following 

theorem. 

Theorem X.6. Let L be a premap on a nonnull set S. Then each cross 

of S belongs to exactly one component of L, and each edge, oriented vertex, 

and vertex of L is an edge, oriented vertex, and vertex, respectively, of some 

component of L. Moreover, the edges and vertices of a component L- of L are 

those edges and vertices of L whose crosses are all in the corresponding 

connection-set T of L. 

A null premap has no connection-sets and no components. 

Theorem X.7. Let L be a premap on a nonnull set S. Then the graphs 

of the components of L are the components of the graph of L. 

Proof. Let X and Y be crosses. If they belong to the same link-graph 

or loop-graph of G(L), then X can be transformed into Y by a sequence of 

permutations each of which is 6, ¢ or P, that is, by a member of WV, where 
K ={0,, P}. This follows from the definitions of an edge and vertex of L. 
It now follows, from Theorem I.43, that X is transformed into Y by some 
member of ¥, whenever X and Y belong to the same component of G(L). 

But if X and Y belong to different components of G(L) neither @, 4, 
nor P can transform X into ¥: Each of those operations preserves either an 
edge or a vertex of G(L). We infer that no member of VY, can then 
transform X into Y. 

We conclude that the crosses belonging to any given component of 
G(L) determine a connection-set of L. The theorem follows, by Theorem 
X.6. Oo 

In what follows we shall be interested in maps rather than premaps. 
We shall usually use the symbol M to denote a map. If a premap L(0, ¢, P) 
is a map we shall denote it also by M(@,, P). By definition, a map has 
exactly one connection-set, and therefore the null premap is not a map. We 
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have seen that: 

Theorem X.8. The components of a premap are maps. 

As a special case of Theorem X.7, we have: 

Theorem X.9. The graph of a map is connected. 

It follows from Theorem X.7 that whenever Edmonds’ Construction 
is applied to a connected graph (with no isolated vertex), the resulting 
premap is a map. 

X.2. ORIENTABILITY 

Let M=M(6@,9, P) be a map on a set S. We write H={0,¢, P) and 
K = (66, P). 

_ Theorem X.10. Any element h of V;, can be expressed in the form 
k@', where k © Vy and the index i is either 0 or 1. 

Proof. The rule 0f = f~'@ holds for f = 0 and for f = P, by Axioms 

X.1 and X.3. Since 6?=J, it follows that for each f © V, there exists 
f’ ©, such that 6f = f’@. But an arbitrary element h of 7, can be written 

h=k,0k,0k,0---k,,_ 0k 

where m is some positive integer and the k, are elements of ¥,. In some 

cases, k; may be the unit element of ¥,. Hence 

h=k,kyk3ky---k, Km OF = Ky Kk gk Ky K9, m—1"*m 

m—1 m? 

according as m is odd or even. oO 

Theorem X.11. Let X and Y be crosses of M. Then there is an 

element w of V, that transforms X into either Y or OY. 

Proof. By the definition of a map, there is an element h of V,, such 

that X=AY. By Theorem X.10, there exists k © ¥, such that X=k6'Y, 

where i = 0 or 1. We can take k~' as the required element y. oO 

Let us refer to the equivalence classes of V, as the orientation classes 
of M. It follows from Theorem X.11 that the number of such classes is 

either 1 or 2. Moreover, if there are two of them and the cross X is in one, 

then the crosses 0X and ¢X = (@¢)6@X must be in the other. We say M is 

orientable or unorientable, according as the number of its orientation classes 

is 2 or 1. Thus: 

Theorem X.12. A map M = M(60, 4, P) is unorientable if and only if 

some cross X of M is transformed into 0X (or into ¢X) by some operation 

of Vx. 
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We consider the orientable case, writing the two orientation classes 

as U and W. The permutation @ reduces to a 1-1 correspondence between U 

and W, as does @. Any orbit of P is in either U or W. Moreover, one 

member of each pair of conjugate orbits is in U and the other is in W. We 

note, too, that one member of each half-edge of M is in U, and the other 

in W. 

Consider a particular orientation class U. The permutations 0 and P 

have restrictions (0), =9 oy and P,, respectively, to U, and these two 

restrictions generate a permutation group ¥(U) acting on U. The members 

of VW, and y(U) effect the same transformations in U. Hence, y(U) is 

transitive on U, that is, has only one equivalence class. 
It may be convenient to have an independent definition of an 

“oriented map.” An oriented map Q = Q(&, P) is defined by a set T of an 

even number of elements, and two permutations € and P on T. The 

permutation & is restricted like 6 and @ in Axioms X.1 and X.2, that is, 

€?=] and €X is distinct from X for each X €T. The permutation group 

W(T) generated by € and P is required to be transitive on T, but otherwise 

P is unrestricted. 

An orbit (X, €X) of & is an edge, and an orbit of P a vertex of Q. An 

edge and vertex of Q are incident if some member of T belongs to both. An 

edge (X,€X) is a loop of Q if X and €X belong to the same vertex, and a 

link of Q otherwise. With this definition of incidence, the edges, vertices, 

loops, and links of Q are the edges, vertices, loops, and links, respectively, of 

a graph G(Q), called the graph of Q. 

Consider an orientable map M = M(6, 9, P), with its two orientation 

classes U and W. We observe that M determines an oriented map Q,, = 
QO((@¢)y, Py) on U, and an oriented map Q,=Q((9¢)y, Py) on W. 

These two oriented maps are the two orientations or oriented forms of M. 

The graph of each is isomorphic to G(M). Conversely, an orientable map M 

can be derived from any given oriented map by using the following 
theorem: 

Theorem X.13. Let a set S of 4n> 0 elements be partitioned into two 

sets U and W of 2n elements each. Let Q be any oriented map on U. Then we 

can construct an orientable map M on S having Q as one of its oriented forms. 

Proof. Write Q = Q(&’, P’). We set up a 1-1 mapping @ of U into 
W. We interpret @ as a permutation of S by taking it as its own inverse. We 

extend ’ and P’ as permutations € and P, respectively, of S by assigning to 

them in W orbits conjugate to those in U. Thus £6 = 6é and ¢? = 9? =/ in 
S. We now write ¢=£6, observing that ¢?=J and 06=086 in S. The 
permutations @, , and P of S now satisfy the four axioms of a premap 
L=L(6,¢, P) on S. Moreover, L is a map M = M(6, 4, P). This is because 
U must be contained in some connection-set T of L, by the definition of an 
oriented map, and T must also contain W by the operation of 6. But then M 
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is orientable by Theorem X.12, with orientation classes U and W, and Q is 

its oriented form on U. oO 

A premap L is said to be orientable if each of its components is an 

orientable map, and wnorientable if any one of its components is unorien- 

table. 

X.3. DUALITY 

Consider a premap L = L(6,¢, P) ona set S of crosses. There are construc- 

tions for deriving other premaps from it. For example, we can deduce from 

Axioms X.3 and X.4 that P?0 = @P~? and that the orbits of P? through X 
and @X are distinct, for each ¥ € S. We can therefore assert the existence of 

a premap L(6,¢, P*) on S. Another premap on S is L(@,¢, P~'), derived 
from L by reversing the cyclic order for each orbit of P. 

Let us study the permutation 

P* = PG. (X31) 

Theorem X.14. P*¢=0(P*)~'. 

To prove Theorem X.14, we observe that 

P*o= PO =6P-'=9$(¢0P~')=9(P*) |, by Axiom X.3 

Theorem X.15. For each cross X the orbits of P* through X and 6X 

are distinct. 

Proof. If the theorem is false, there is an X such that 

(P*)"oX=X (X32) 

for some nonnegative integer m. Choose such an X and m so that m has the 

least possible value. Then m > 0 by Axiom X.2. If m=1, we have (P09) oX 

= X, that is, P(@X) = X, and this is contrary to Axiom X.4. So m= 2. But 

for m> 2 we have 

(P*)”" > POX =(P*) |X =0@P~'X = $POX, 

by X.3.2 and Axioms X.] and X.3. Equivalently, we write 

(P*)” 76(bPOX) = oPOX. 

This contradicts the choice of X and m; we can reduce m by 2 if we replace 

X by the cross ¢P@X. The theorem follows. Oo 

By Theorems X.14 and X.15, together with Axioms X.1 and X.2, we 

see that the permutations ¢, 8, and P* satisfy the four axioms for a premap, 

Le = Lie. 8. PA) 

on S. Let it be emphasized that, in the passage from L to L*, first and 
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second involutions are interchanged. We call L* the dual premap of L. The 

definition of the dual implies the following: 

Theorem X.16. (L*)* = L, for any premap L. 

The oriented vertices and vertices of L* are called the oriented faces 

and faces of L, respectively. Then, in accordance with Theorem X.16, the 

oriented faces and faces of L* are the oriented vertices and vertices of L, 

respectively. 
The edges of L remain as the edges of L*, but they are partitioned 

differently into half-edges in the two premaps. Thus, an edge A= 

(X, 0X, >X,6¢X) has the half-edges {X,9X} and {(¢X,0¢X)} in L and the 
half-edges { X, ¢X)} and (6X, 0¢X)} in L*. 

We write a)(L), a,(L), and a,(L) for the numbers of vertices, 

edges, and faces of L, respectively. By the preceding definitions 

ao(L*)=a,(L), a(L*)=a(L),  a,(L*)=a9(L). 
(X.3.3) 

The combination 

N(L) =a)(L)—a,(L)+a,(L) (X.3.4) 

is called the Euler characteristic of the premap L. 

Theorem X.17._ Dual premaps have equal Euler characteristics, by 
Eqs. (X.3.3) and (X.3.4). 

It is clear that the permutations $¢, 6, and P* = P0@ generate the 

same permutation group as do 6, ¢, and P. Hence, L* has the same 
connection-sets as L. Within any one connection-set 7, we observe that 

(P*)7 = (P06) 7 = P,97¢,, 
by the definition of restrictions to T. We may therefore assert the following: 

Theorem X.18. The components of L* are the duals of the compo- 
nents of L. 

Theorem X.19. The dual of a map is a map (by Theorem X.18). 

By Theorem X.18, and Theorem X.6 applied to both L and L*, we 
have: 

Theorem X.20. The vertices, edges, and faces of a premap L are the 
vertices, edges, and faces, respectively, of the components of L, each appearing 
in exactly one component. 

By Theorem X.20, we can write 

k 

a,(0)= X a,(M;)  (i=1,2,0), (X.3.5) 
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where the maps M, are the components of L. Hence, by Eq. (X.3.4), we have 
the following theorem. 

Theorem X.21. The Euler characteristic of a premap is the sum of the 

Euler characteristics of its components. 

Now the permutations ¢@ and P* generate the same permutation 

group as do 6¢ and P. We thus have 

Theorem X.22. If M is an orientable map, then M* is orientable. 

Moreover, M and M* have the same orientation classes. 

We can define the dual of an oriented map Q=Q(é, P) as the 

oriented map Q* = Q(&, P&). Then the oriented forms of M* in Theorem 

X.22 become the duals of the oriented forms of M. 

X.4. ISOMORPHISM 

Consider two premaps L, = L(6,,¢,, P,) and L, = L(@,,$, P,) on sets S; 
and S,, respectively. An isomorphism of L, onto L, is a 1-1 mapping o of S, 

onto S, with the following property: If oX,= X,, where X, and X, are 

crosses of S, and S,, respectively, then also 

o(6,X,) = 4X, o($,X,) = 9%), and o( P,X,) =P) X). 

If such an isomorphism exists, we say that L, and L, are isomorphic. We can 

express the relation between L, and L, given by an isomorphism o of L, 

onto L, by the equation 

L, = L(000~',0¢0~',oPa~'). (X.4.1) 

The identical permutation of S, is an isomorphism of L, onto itself. 

If o is an isomorphism of L, onto L,, then o | is an isomorphism of L, 

onto L,. Moreover, if » is an isomorphism of L, onto a premap L,, then the 

mapping-product po is an isomorphism of L, onto L,. Isomorphism of 

premaps is an equivalence relation. It partitions the class of all premaps into 

disjoint nonnull isomorphism classes so that two premaps belong to the same 

class if and only if they are isomorphic. 

An isomorphism o of L, onto L, transforms the orbits of 4,, ¢,, and 

P, into those of @,, ¢), and P,, respectively. It therefore maps the oriented 

vertices, vertices, and edges of L, into those of L,. It transforms the group 

of permutations generated by 0,, $, and P, into that generated by 6), $5, 

and P,. It therefore preserves connection-sets, establishes a 1-1 correspon- 

dence between the components of L, and those of L,, and induces an 

isomorphism of each component of L, onto the corresponding component 

of L,. In particular, if L, is a map, then L, is a map. Since the isomorphism 



262 Combinatorial Maps 

transforms P* = P,6,¢, into P¥ = P,6,,, it determines an isomorphism of 

L¥ onto L¥. 
Let L, and L, be maps. Then o transforms the group of permuta- 

tions generated by 6,4, and P, into that generated by 6,¢, and P,. Hence, 
L, is orientable if L, is, and o maps the orientation classes of L, onto those 

of L;. 
Briefly, two isomorphic premaps are copies of one another. An 

isomorphism is the operation of making a copy. 

In order to have some simple examples, we now make a complete list 

of nonisomorphic maps of one edge only. Without loss of generality, we can 

write our set S as 

(X,0X, bX, 0pX), 

the involutions 6 and @ being supposed given. S is our single edge; all 

premaps on S are maps. Since orbits of P come in conjugate pairs, P is 

completely determined by its effect on X. Write M = M(6,¢, P) for a map 

on S. 

Suppose, first that PX = X. Then the oriented vertices of M are the 

four orbits (X), (0X), (¢X), and (6X). The vertices of M are the two 

pairs 

{(X),(9X)} and {($X),(86X))}. 
Each of these absorbs one of the half-edges, so that G(M) is a link-graph. 
We call M the link-map. 

Suppose next that PX = @¢X. Then the oriented vertices of M are 
(X,6¢X) and (@X,¢X). Together these constitute a single vertex, so that 

G(M) 1s a loop-graph. We now call M the /oop-map. 

Evidently the link-map and loop-map described above are duals. So, 
for the link-map, we have 

&(M)=2,  a,(M)=1, » a,(M)=1,>. .N(M)=2; 

For a loop-map M, in accordance with Eqs. (X.3.3) and (X.3.4), 

a(M)=1, oa(M)=1, «(M)=2, N(M)=2. 
The case PX = 0X is excluded by Axiom X.4, so there remains only 

the case PX=@X. The oriented vertices of M are now (X,¢X) and 
(0X, 0¢X). Again, G(M) is a loop-graph. For the orbits of P04, that is, the 
oriented vertices of M*, we find (X,6X) and (@X,0¢X). There is thus an 
isomorphism of M onto M*. This isumorphism leaves the crosses X and 
4X unaltered, but it interchanges 6X with ¢X. A map or premap isomor- 
phic with its own dual is said to be self-dual. The particular self-dual map 
under consideration is the canonical projective map. For it we have 

a(M)=1, a(M)=1 «(M)=1, N(M)=1. 
Our list of maps of one edge is now complete. 
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We note that the link-map and loop-map are orientable, with orien- 

tation classes {X,6¢X) and {@X,¢X)} in each case. But the canonical 

projective map is unorientable, for the group generated by 0¢ and P = 9 is 

transitive on S. 

An isomorphism of a premap L onto itself is an automorphism of L. 

The automorphisms of L are the elements of a permutation group A(L) 

called the automorphism group of L. Its unit element is the identical 

permutation on the set of crosses. We conclude this section with two 

theorems about the automorphisms of a map M. 

Theorem X.23. Let M = M(6,¢, P) be a map ona set S. Then if an 

automorphism o of M leaves any cross invariant, it is the identical automor- 

phism. 

Proof. If oX = X for some cross X of S, then also 

0(0X)=6X, 0(oX) =X, and o( PX) = PX, 

by the definition of an isomorphism. Hence o(y X) = WX for any element p 

of the group of permutations generated by 6,¢, P. But this group is 

transitive on S, since M is a map. Oo 

Theorem X.24. Let M=M(0,¢, P) be a map on a set S. Then the 

order of its automorphism group is a divisor of |S| [5). 

Proof. A(M) partitions the set S into disjoint nonnull equivalence 

classes so that two crosses belong to the same equivalence class if and only 

if each can be transformed into the other by the operation of some element 

of A(M). 

Let C be one of these equivalence classes, and X one of its crosses. 

Then the elements of C are the crosses 1X,  € A(M). But if Y, and y, are 

elements of A(M) such that p, X = YX, then we have p> ly ,X = X, whence 

W,=wv,, by Theorem X.23. We deduce that each equivalence class has 

exactly |A(M)| elements. Hence, |S|= q|A(™/)|, where g is the number of 

equivalence classes. Oo 

In enumerative map theory, use is made of the concept of a rooted 

map. A rooted map is a map M in which some cross X is distinguished as 

the root. The dual rooted map is then M* with the same cross as root. 

Theorem X.23 is basic in enumerative theory. It asserts that a rooted map 

has no nontrivial automorphism. 

X.5. DRAWINGS OF MAPS 

We consider how to represent a map M in a diagram. We can start with a 

drawing of the connected graph G(M). It may happen that we can draw 
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G(M) in the plane without crossings of edges. It is then found that the 

drawing partitions the rest of the plane into disjoint connected regions. 

These are called the faces of the diagram. Sometimes these faces can be 
made to represent the faces of M, according to the scheme described below. 

Consider an edge A in the drawing of G(M), with incident vertices x 

and y. An associated cross X of M is represented by an arrow drawn along 

the edge, not actually in the edge but displaced a little to one side. We make 

the rules that @X has an arrow drawn along A in the same direction as for X 

but on the opposite side, and that ¢X is to be drawn on the same side as X 

but in the opposite direction. So 6¢X has to be drawn on the opposite side 

to X and in the opposite direction. The four crosses associated with A are 

thus shown in Fig. X.5.1, which shows only a portion of a drawing of some 

map. (See Note 2.) 
It is well to regard A as cut at some internal point into two 

half-edges, one with end x and one with end y. These are to represent the 

half-edges of A in M. The crosses X and @X, constituting one half-edge of A 

in M, are to be drawn against the corresponding half-edge in the diagram, 

directed away from its end-vertex. Figure X.5.1 shows the case in which A is 

a link. Figure X.5.3 shows an edge A that is a loop. It is not necessary to 

show an actual point of subdivision of A into half-edges, provided that each 
arrow is drawn sufficiently near the vertex from which it is directed. Even 

this precaution is necessary only in the case of a loop. This assignment of 

crosses to the edges of the diagram specifies the two involutions @ and ¢ and 
makes it clear that they satisfy Axioms X.1] and X.2. 

Consider all the half-edges radiating from a vertex x. The diagram 

imposes a definite cyclic order on them. We count the diagram as represent- 
ing M if the permutation P rotates each cross X one place in the cyclic order 

at the end of its half-edge, to the side of that half-edge opposite X. Figure 

X.5.1 shows the operation of this rule at the two ends of A. We note that it 

requires 9P~'X to be identical with P@X for each X, that is, it necessitates 

FIGURE X.5.1 
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Axiom X.3. The two oriented vertices of M associated with the vertex x of 
the diagram are rotations around it in two opposite directions, each corre- 

sponding to the diagrammatic cyclic order of half-edges at x. The members 

of one oriented vertex of M occupy the right sides of the half-edges from x, 

and those of the other the left sides. This observation implies Axiom X.4. 

We have now imposed enough conditions on our diagram to make it 

represent some map M and to be a drawing, in the sense of Chapter I, of the 

connected graph G(M). 

Let us now interpret the faces of the diagram. Each has two 

bounding sequences, which we define informally below. (We consider that 
no formal definitions or proofs are needed in the present section.) One 

stands just inside a face F and walks round the boundary, keeping one hand 

on that boundary. One thus traces out a cyclic sequence of boundary edges, 

each on a definite side and in a definite direction. In other words, one traces 

out a cyclic sequence of crosses. This is a bounding sequence of F. Inspection 

of a diagram such as Fig. X.5.1 or Fig. X.5.3 shows that in any such 
bounding sequence a cross X must always be succeeded by POX. The 

bounding sequences of the faces of the diagram, therefore, are simply the 

orbits of P@, the oriented faces of M. So the faces of the diagram 

represent the faces of M. Each face of the diagram has two oppositely 

directed bounding sequences, and these constitute the corresponding face 

of M. 
In works on map theory, special attention is given to the “proper 

maps.” Such a map is represented by a diagram in which each face is 

bounded by a simple closed curve, corresponding to a circuit in the graph. 

Figure X.5.2 shows an example. 

We can give the oriented vertices of the map of Fig. X.5.2, showing 

one member of each conjugate pair, as 

(X,Y,Z),  (U,¢Y,00W),  (V,¢X,06U),  (W,$Z,09V). 

Wy 

FIGURE X.5.2 
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FIGURE X.5.3 

Likewise we can give the oriented faces as 

(U,V,W), (X,0V,0¢Z), (Y,0U, 0¢X), (Z,O0W,06Y). 

In Fig. X.5.3 we have a diagram of an improper map. We can give 

the oriented vertices as 

CDY) of at Xn lO RAs OL ne eae LOZ) 

and the oriented faces as 

(Y,0¢Y,0¢X) and (X,0Z,$Z). 

Figure X.5.4 gives diagrams of the loop-map and link-map. Their 

orbits are as found in Sec. X.4. 

So far our diagrams have been in the Euclidean plane. We can 

describe them as on a sphere, spherical diagrams being transformed into 

planar ones by the device of stereographic projection. Not all maps can be 

drawn on the sphere, but it is known that each can be drawn on some closed 
surface. Some can be drawn in the real projective plane. 

One such is the canonical projective map of Sec. X.4. A diagram of it 
appears below in Fig. X.5.5. 

WEN 
iy Vy, 

8x Y% IAs 

OD ax VIVX 
£7 (a4 
OpX OpX Ht Dx 

FIGURE X.5.4 
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FIGURE X.5.5 

In terms of the neighborhood of the vertex x, we have represented X 

and $X on opposite sides of the line A, and this may seem paradoxical. 

However, A is meant to be a complete projective line, broken into two 

half-edges by its point at infinity. We cannot distinguish two sides of a 

projective line. However, if we exclude a small neighborhood of x, we can 

distinguish two sides of the rest of the line, in its own neighborhood. Then X 

and @X, as shown in the diagram, are on the same side of the residual line. 

So we consider that the four crosses are properly drawn as shown. Our rule 

for P, which concerns only the neighborhood of x, gives us (X,¢X) and 

(@X, 0X) as the two conjugate oriented vertices. The diagram has only one 

face, the connected complement of A in the projective plane. To construct a 

bounding sequence, we can start with X, proceed to the point at infinity on 

A, and continue along the other half-edge back to x. This brings us back 

below the line, as shown in the figure, in opposition to ¢X. We continue to 

trace out the boundary by proceeding along @X. We take this to mean that 

@X succeeds X in the bounding sequence. Likewise, X succeeds 0X. We 

conclude that the two conjugate bounding sequences are (X,6X) and 

($X, 6X). These are the oriented faces of M as found in Sec. X.4. 

As another example of a surface, we take the torus. This is usually 

represented by a rectangle ABCD, with the rule that the directed side AB is 

to be identified with DC, and AD with BC. Figure X.5.6 shows a map on 

B 

FIGURE X.5.6 
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this torus. It has, in the diagram, two vertices x and y and two faces F, and 

F,. There are four edges. 
Here the rule for P gives the oriented vertices, one member of each 

conjugate pair, as (X, OY, OZ, Y) and (U, 0X, @6U, Z). We trace out the 

bounding sequence ( X, 6$U, 0¢X, OY ) for F,, and (Y, @6Z, U, Z) for F,. It 

can be verified that these bounding sequences are orbits of P@9¢. 

Topologically, a surface can be constructed to fit any given map. We 

start with the graph of the map and adjoin topological discs to it so that 

they have the orbits of P@@ as bounding sequences. But our object in this 

chapter is to emphasize that there is a purely combinatorial map theory, 

independent of topology. We therefore avoid topological concepts and 

constructions, unless our diagrams are to be counted as such. 

X.6. ANGLES 

Let M= M(6,¢, P) be a map on a set S. For any X © S we describe the 

ordered pair (X, PX) as a turn of M at the oriented vertex through X. There 

is a conjugate turn (OPX,0X), that is, (P~'@X,0X), at the conjugate 
oriented vertex. The unordered pair 

((X, PX), (P7'0X, 0X))} 

of conjugate turns is an angle at the corresponding vertex of M. This angle, 

denoted by a, is represented by a small shaded region in each diagram of 

Sec. X.5. We can think of this as the region across which P rotates X and 
EOOK 

The dual turn of (X, PX) is the turn (¢PX, 6X), that is (P*~'@X, 6X), 

of M*. Its conjugate turn in M*, allowing for the interchange of 6 and 4, is 

(0px, PX). These two turns constitute an angle a* at the corresponding 

vertex of M*. We call a* the dual angle of a. It can be represented by the 

same shaded region as a in a diagram, being called a “corner” of the face 
containing that region. 

A vertex and a face of M are said to be incident if some angle at the 

vertex has its dual angle at the face. If they are related in this way by m 
pairs of dual angles, they are said to be m-tuply incident. Thus, in Fig. X.5.3, 
x and F are doubly incident. 

X.7. OPERATIONS ON MAPS 

Let M= M(0@,9, P) be a map on a set S. As in Sec. X.3, we consider the 
formation of other maps from M. But now we allow the introduction of a 
new cell or the suppression of an old one. 
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Let a set S, be derived from S by adjoining a new cell A= 
(Z,9Z,¢Z,0Z). We extend the involutions @ and ¢ from S to S,, as 
indicated by the notation. Thus extended, they still satisfy Axioms X.1 and 

X.2. Let us now consider possible ways of converting P into a permutation 
P, on S). 

Choose X € S. We write the conjugate orbits of P through X and 6X 
as follows: 

ee LOX PX: BF Xolin Py 1X); 

u’=(0X,0P™-'X,0P™-?X,...,0PX), 

m being some positive integer. We now choose an integer j such that 

0 < j <™m, and we partition u into the following two linear sequences: 

hd, PARP IN), 

Yee U ak ef inet Hee ead? GP 

We also make a corresponding partition of u’ into linear sequences: 

f= OPI Xo,5,0PX, OX ), 

£5 = (OPM 'X)..50PI*'X, 0PIX). 

If j = 0, we interpret #, as a null sequence. Then /, is written just like u, but 
is regarded as linear, not cyclic. 

We now adjoin one of the new crosses to each of our four linear 

sequences, thereby converting them into the following cyclic sequences: 

Wer eA APA pee 

Wee (UorPIX EPs Xx Pe XY: 

wi = (0Z,OP/~'X,...,0PX,0X), 

w= (oZUR aX. ORI 'X, OPIX). 

If 7 = 0, then w, and wy are to be interpreted as the cyclic sequences (Z) and 

(9Z), of length 1, respectively. Then X is to be found in w,, not wy. 

Correspondingly, @X is in w 3, not wy. 

We take the orbits of P other than u and u’, together with the four 

new cyclic sequences w,, wj, W,, and w;. We then have the orbits of a 

permutation P, on S, that satisfies Axioms X.3 and X.4. One pair of 

conjugate orbits is {w,,w;}, and another is {w,,w;). We have a premap 

L,=L(6,¢, P;) on S;. 

We observe that the permutations P and P, have the same effect on 

any cross of S, except for 

[| Le Pre DG OX, and OP/X  =ifj>0 

and for 

P™-'x and 0X ~ ifj=0. 
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These exceptional crosses are transformed by P, into members of A. Of 

course, the effect of 6 or ¢ on any cross of S is the same in L, as in M. 

The premap L, is a map. For suppose not. Then it has a connection- 

set T that contains no member of A. Then T does not contain P”~ 'X or 6X, 

and if j > 0 it does not contain P/~'X or 6P/X. Hence the operations 6, 9, 

and P, of L, have the same effects on each cross of T as do 0, $, and P, 

respectively. This implies that JT is a connection-set of the map M, that is, 

T = S. But this contradicts the definition of 7, for the new orbit w, includes 

both a member of S and a member of A. Accordingly, we replace the 

symbol L, by M,, and write M, = M(9@, ¢, P,). 

We relate the operation to the two angles 

CEO dead a PY BAe eee a 

and 

B= (Pl 1X, P/X), (OPIN, GP? xX) 

at the vertex z of M defined by the orbits u and u’. (If j = 0, then a= B.) We 

say that M, is formed from M by splitting the vertex z between these two 

angles. Figure X.7.1 illustrates the operation in the case j = 0, and Fig. X.7.2 

in the case j > 0. 

In Fig. X.7.1 we note the replacement of z by two new vertices z, and 

z,. The latter is monovalent in G(M,). It corresponds to the new orbits (Z) 

and (0Z). 

It is clear from the construction that 

ao(M,)=a.(M)+1, a,(M,) =a,(M)+1. (X.7.1) 

To find the change in a,(M), we must study the dual maps 

M* = M(4, 8, P00) and M* = M(, 9, P,0¢). 

From the definition of P,, we see that P,@¢ has the same effect on 
each cross of S as does P0¢, except for @X and 66P™~'X, and for 6¢P/~ |X 

FIGURE X.7.1 
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M | 

FIGURE X.7.2 

and @P/X if j > 0. But if 7 = 0, we have 

P*oX = POX = $Z, 

P*oZ = P,OZ = 8Z, 

P*0Z = P,oZ = O0P™ ‘X= POX = P*X. 

By conjugacy in M¥ we have also 

P*0oP” 'X = O6Z, P*06Z = Z, and P#Z= X= P*OpP"—'X. 

We conclude that the effect on the orbits of P*, in the change to P¥, 

is to lengthen the members of one pair of conjugate orbits. This occurs by 

the insertion of ¢Z and @Z, in that order, in the turn (¢X, P*$X), and 

correspondingly 6¢Z and Z into the conjugate turn (6oP™ |X, X). Thus 

the number of orbits is the same for P* as for P*. 

Now take the case j > 0. We have 

P*pX=P,OX=0Z,  P*OZ= P\pZ=OP™"'X = P*HX, 

P*0@P"—'X=P,P™"'X=0$Z,  P#06Z = P,\Z= X= P*OP™ 'X, 

P*0@P/-'X=P,P/-'X=Z, P#Z = P\ObZ = P/X = P*O$P!"'X, 

P*pP/X=P\OP/X=$Z, PZ = P,OZ= OP! |X = P*HP!X. 

Thus the change from P* to P* is effected by inserting @Z into the turn 

(¢X, P*oX), Z into the turn (@¢P/~'X, P*6pP/—'X), and making the two 
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conjugate changes. So whether j is zero or nonzero, we can supplement Eq. 

(X.7.1) by writing 

a,(M,)=a,(M). (Xun) 

Theorem X.25. Let a map M, be formed from a map M by splitting a 

vertex z. Then N(M,)= N(M). Moreover, M, is orientable if and only if M is 

orientable. 

Proof. That N(M)=N(M) follows from Eqs. (X.7.1) and (X.7.2), 

together with the definition in Eq. (X.3.4). 

Suppose M is orientable, with orientation classes U and W. We may 

suppose X €U and 6X EW. Form U’ by adjoining Z and @¢Z to U, and 

form W’ by adjoining 8Z and $Z to W. The effect of P,, and of @¢ on U’ is 

simply to permute its elements among themselves. Hence M, is orientable, 

with orientation classes U’ and W’. 

Conversely, suppose M, orientable, with orientation classes U’ and 

W’. We may suppose U’ to include X, and therefore Z, 96Z, and P'X for 

each i, by our formulae for the new orbits of P,. Form U from U’ by 
deleting Z and 0¢Z; form W from W’ by deleting 6Z and $Z. Then the 

effect on U of the permutations P and 09 of M is simply to permute its 

elements among themselves. Hence, M is orientable, with orientation classes 

U and W. oO 

An operation that transforms orientable maps into orientable ones, 

and unorientable maps into unorientable ones, is said to preserve orientabil- 

ity-character. An operation that preserves both the Euler characteristic and 

the orientability-character of a map will be described in what follows as 

superficial. Thus Theorem X.25 asserts that vertex-splitting is a superficial 
operation. 

We go on to some operations in which the number of edges is 
diminished by 1. The first is that of contracting a link. 

Suppose a map M = M(6,¢, P) on S to have a link A incident with 
vertices x and y. We write the crosses of A as Z, OZ, ¢Z, and 0$Z. These 
must belong to four distinct orbits of P, in two conjugate pairs correspond- 
ing to the vertices x and y. Let us write the orbits through Z and 06Z as 

u=(Z, PZyPP Ze. QPIZ) 

and 

v= (06Z, PO$Z,...,P*66Z), 

where j is a nonnegative integer and k a positive one. We do not define the 
operation for the case j = k = 0, that is, we do not define it for the link-map. 

From the orbits u and v we construct the single cyclic sequences 

w= (PZ, P°Z,...,P/Z, PObZ, P?0$Z,...,P*0$Z). 
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From the conjugate orbits u’ and v’ of u and v, respectively, we likewise 
construct the cyclic sequence 

w’= (OP*O6Z,...,0P0$Z, OP/Z,...,0P°Z, OPZ). 

If 7 = 0, we interpret w as 

( PO$Z, P?0Z,...,P*0dZ), 

and w’ as 

(OP*OZ,...,0P70bZ, OPOGZ). 

The restriction on & ensures that w and w’ do not reduce to null cyclic 

sequences. 
We take the orbits of P other than u, u’, v, and v’, together with the 

new cyclic sequences w and w’. We then have the orbits of a permutation P, 

on S— A. Let us denote the restrictions of 6 and ¢ to S— A by the same 

symbols @ and ¢. Then the permutations 6, ¢, and P) on S— A satisfy 

Axioms X.1—X.4. We have a premap Ly) = L(6,¢, P)) on S— A, w and w’ 
being conjugate oriented vertices, corresponding to a vertex z. 

The premap L, is actually a map. One way to prove this is to observe 

that G(L,) can be identified with (G(M))’;. Hence, G(L,) is connected, by 

Theorem II.5, and so Ly is a map, by Theorem X.7. So we have a map 

M, = M(60,9, Py) on S— A. 

We say that M) is derived from M by contracting the link A. We can 

verify that M is derived from M, by splitting the vertex z between the angles 

corresponding to the turns (P/Z, P@@Z) and (P*6@Z, PZ) if j > 0 and to 

the turn (P*@¢Z, P@¢Z) if 7=0. So by Theorem X.25 we have the 
following: 

Theorem X.26. Let a map M, be formed from a map M by contract- 

ing a link A. Then N(M,) = N(M). Moreover, Mg is orientable if and only if 

M is orientable. 

Contracting a link is a superficial operation. 
The next operation is that of deleting an edge. As before, we consider 

a map M=M(6,¢, P) on S, with an edge A=(Z,0Z,$Z,0$Z)}. The 

operation simply deletes from each orbit of M the crosses belonging to A, 

while retaining the cyclic order of the other crosses. We apply it only when 

each orbit of M includes a cross not belonging to A; then no orbit reduces 

to a null cyclic sequence. The operation changes the orbits of P into the 

orbits of a permutation P, on S — A. We denote the restrictions of 6 and ¢ 

to S— A by the same symbols 6 and 4, respectively. We can now observe 

that the permutations 6, ¢, and Py on S— A satisfy Axioms X.1—X.4. We 

thus have a premap L, = L(6,¢, Py) on S— A. We say that it is derived 

from M by deleting A. We note that 

(Ly) = a(M), a,(Lo) =a,(M)-1. (X.7.3) 
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Let us now study the effect of the operation on M*. For X © S— A, 

we have 

P&*X = POX = POX = P*X 

unless POX, that is, P*X, belongs to A. One consequence of this observa- 

tion is that those orbits of P* that include no cross of A are also orbits of 

p**. As a further simple consequence, of some utility in the theory of planar 

maps, we have the following theorem. 

Theorem X.27. Let a premap Ly be derived from a map M by 

deleting an edge A, and let A be a loop of M*. Then N(L,) > N(M). 

Proof. There are a,(M)-—1 conjugate pairs of orbits of P* that 

involve no cross of A, and all these orbits are orbits of P;*. But Po must 
have at least one other orbit. For otherwise A would be a connection-set of 

M* and therefore identical with S, by Theorem X.19. But then the operation 

of edge-deletion would not be applicable to M. We deduce that 

a,(Lo) > a,(M). 

Hence, 

N(Ly) > aM )—a,(M)+1+a)(M), (by Eqs. (X.3.4) and (X.7.3)) 

> N(M) (by Eq. (X.3.4)). oO 

The case in which A is a link of M* is of more immediate interest. 

Then the four crosses on A belong to four distinct orbits of P*, in two 

conjugate pairs. Let the ones through Z and 0$Z be 

CR pF I TAR 

(OZ, P*O6Z,...,P**0@Z). 

It is not necessary to write down their conjugates in M*. We can specify / 

simply as a nonnegative integer, but then we must require k to be positive. 

For if j = k = 0, then M has only one edge by the connection of M*, and the 

operation of edge-deletion is not applicable. The apparent asymmetry 

between j and k involves no loss of generality. If 7 = 0, the first orbit is 

simply (Z). 

Suppose j = 0. By the preceding observations we have P*X = P*X 

for each cross X of S— A in the above two orbits, save only for P**6Z. 
But 

P(OpP**06Z)=06Z, P(0Z)=P*Z=Z, and P(Z)=P*O$Z. 

Hence P,(0¢P**06Z) = P*OoZ, that is, 

P*(P**06Z) = P*O6Z. 

The effect of the operation on M* is thus to suppress the orbit (Z) and its 
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conjugate (@?Z), and to delete 66Z and @Z from the orbits through these 
crosses. It is equivalent to contracting the link A in M*. 

When / > 0, the exceptional crosses in the two orbits are P*/Z and 

P**9oZ. But now P(0¢P*/Z) = Z and P(Z) = P*0pZ. Hence P,(0¢P*/Z) 
= P*@$Z. Similarly, P)(0¢P**86Z) = P*Z. So we have 

PXP*IZ = P*O6Z, P*P**6oZ = P*Z. 

The effect of the operation on M* is thus to replace the above two orbits of 

P* by the single orbit 

(PFPZy1, PZ, P*0Z;...5P**06Z) 

and to make the corresponding change of conjugate orbits. Again it is 

equivalent to contracting the link A in M*. 
Making use of Theorem X.26, we summarize and extend the above 

results as follows. 

Theorem X.28. Let a premap Ly be derived from a map M by 

deleting an edge A that is a link of M*. Then Lg is derived from M* by 

contracting the link A in that map. Hence Lj is a map. Accordingly, Lo is a 

map M, = M(@,¢, Po) on S —{ A}, by Theorem X.19. Moreover, by Theorems 

X.26, X.17, and X.22, N(M,) = N(M) and M, is orientable if and only if M 

is orientable. 

X.8. COMBINATORIAL SURFACES 

We define a surface as the class of all maps with a given Euler characteristic 

and a given orientability-character, provided that the class is nonnull. “A 

given orientability-character” means either all orientable or all unorientable. 

A map belonging to a combinatorial surface is usually said to be on that 

surface. 
Topologically, the maps of such a class can be defined as those 

realizable in a given 2-manifold. It is an important theorem for the classifi- 

cation of 2-manifolds that the transformations noted in Sec. X.7 as “superfi- 

cial” can be effected by constructions in the 2-manifold. Another important 

theorem is that if M, and M, are maps in the same 2-manifold, then M, can 

be transformed into an isomorph of M, by a finite sequence of superficial 

transformations. 

In what follows we prove an adaptation of the second theorem to the 

theory of combinatorial surfaces. The superficial transformations used will 

be vertex-splitting, contracting a link, and replacing a map by its dual. The 

last operation is superficial by Theorems X.17 and X.22. 

We make use of the following definitions: A map M is unitary if 

a )(M) = a,(M) =1. The canonical projective map of Sec. X.5 is an exam- 
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ple. The combinatorial sphere is the class of orientable maps with Euler 

characteristic 2, and maps on it are called planar. Thus the link-map and 

loop-map, studied in Sec. X.5, are planar. 

Theorem X.29. If M is a unitary map, then N(M) <2. 

This follows from Eq. (X.3.4) and the fact that each map has at least 

one edge. 

By Theorem X.29 there is no unitary map on the combinatorial 

sphere. However, a special convention is sometimes made to introduce such 

a map. It is the “ vertex-map,” with one vertex, one face, and no edges. In a 

diagram, one point of the plane is distinguished as the vertex and the rest of 

the plane represents the face. The “map” is regarded as self-dual. But we 
shall not recognize this vertex-map in the present section. 

We suppose given a surface U. 

Theorem X.30. Let M be a map on U. Then by contracting links in 

M, we can transform it into either a link-map or a map with just one vertex. 

Proof. We may suppose M to have at least two vertices. By connec- 

tion, it has a link A. If M is not a link-map, then one vertex incident with A 

is incident with a second edge, and the operation of link-contraction is 

applicable to A. We apply it. We repeat this process, diminishing the 

number of edges at each step, until it terminates. We must then have either 
a link-map or a map with a single vertex. oO 

Theorem X.31. Let M be a map on U. Then by a finite sequence of 
link-contractions and dual replacements, we can transform M into a link-map, 
a loop-map, or a unitary map. 

Proof. If aj(M)>1, then either we have a link-map or we can 
apply link-contraction, as in Theorem X.30. If a,(M)> 1, then either M* is 
a link-map, that is, M is a loop-map, or we can use link-contraction in M*. 
We apply link-contractions to M and M* until the operation is no longer 
possible. M must then have been transformed into a loop-map, a link-map, 
Or a unitary map. O 

Theorem X.32. Let M be a planar map. Then, by a finite sequence of 
link-contractions and dual replacements, we can transform M into a link-map. 

Since a link-map is the dual of a loop-map, this theorem follows 
from Theorems X.29 and X.31. 

Theorem X.33. There is no map whose Euler characteristic exceeds Pa 
and no unorientable map whose Euler characteristic exceeds 1. 

This is a consequence of Theorems X.29 and X.31, since the link-map 
and loop-map are both orientable. 
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Let us now study the case in which U is not the combinatorial 

sphere. Starting with an arbitrary map on U, we change it by superficial 
transformations, as in Theorem X.31, into a unitary map M on U. 

We write M = M(0@,¢, P). We specify the structure of M by giving 

an orbit u of P. It is not necessary to state the conjugate orbit explicitly. 

Let X be a cross of u. Then u must include also either ¢X or 0¢.X, 

but not both of them. The cross @X is excluded by Axiom X.4. It is 

convenient to write u as 

(XIRLGXER, or ORE RY OG HERI), 
where the symbols R, and R, stand for certain linear sequences of crosses, 
possibly null. Given such a sequence R,, we write R’, for the linear sequence 

obtained from it by reversing the order of the terms and then premultiplying 

each by 6. So with u written as above, we would write the conjugate orbit wu’ 

of P as 

(OX, R,,0¢X, R}) or (0X, Roi ox) R)). 

If X and @X occur in u, we say that the pair { X, @X) is a cross-cap of 

u. It is an assembled cross-cap of u if X and ¢X are consecutive crosses of u. 

If X and 6¢X occur in u, they constitute a conforming pair of u, assembled if 

they are consecutive. If { X, 8X) is one conforming pair of u, there may be 

a second, {Y,@¢Y)}, such that y can be written as 

CX Rita Ro Or, Re, ObheRas- 

We then say that the conforming pair { X,0¢X)} (and similarly (Y, @¢Y }) is 

bound in u, and that the four crosses X, Y, 0X, and 0$Y constitute a handle 

of u. Such a handle is assembled if its four crosses occur consecutively. 

Theorem X.34. By a finite sequence of vertex-splittings and link-con- 

tractions, we can convert a given unitary map M into another unitary map My 

for which all the cross-caps are assembled. 

Proof. Write M=M(6,9¢, P). Suppose an orbit u of P to have an 

unassembled cross-cap { X,@X)}. Then we can write u as (X, R,, ¢X, R»). 

By suitably splitting the vertex of M, we convert M into a map M,, 

of two vertices, in which the orbits of the basic permutation are 

CxP Ry. 21). (06Z,¢X,R>), 

and their two conjugates. Here Z and 6$Z are crosses of the new edge. We 

can equally well specify the structure of M, by the two orbits 

(XoRysZ) (0¢6X,Z, R45). 

We have replaced one orbit by its conjugate. Contraction of the link with 

crosses X and 0X gives us a new map Mg, of one vertex, in which these two 

orbits are replaced by the single orbit 

UR). 
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We note first that M, is unitary. For 

a (M,) = a9(M)=1, a,(M,)=a,(M), and N(M,)=N(M), 

since we have used only superficial transformations. Hence, a,(M),)= 

a,(M)=1, by Eq. (X.3.4). Next we observe that, in the passage from M to 

M,, the unassembled cross-cap { X, X} has been replaced by the assembled 

one {Z,@Z). Moreover, no assembled cross-cap in M has been lost; such a 

cross-cap {Y, ¢Y) persists either in R, or, in the form (OY, OY}, in R4. 

By this procedure we can reduce to the case in which every cross-cap 

of u is assembled. Then clearly every cross-cap in u’ is correspondingly 

assembled. O 

Theorem X.35. Let M = M(6,¢, P) be a unitary map on U. Then no 

orbit of P has an unbound conforming pair. 

Proof. Suppose the orbit u of P to have an unbound conforming 

pair (X,0¢X)}. We can write u as (X, R,,0¢X, R,), where R, may be null. 

Let R, be the linear sequence (R,, 0¢X). 

Let Y be any cross of R,. If Y=@oX, then P*Y = PX, whence 

P*Y ER,. If Yis in R,, then P*Y = PA@Y. But OY is in R, since { X, 09 X} 
is unbound. So again, P*Y € R,. 

We deduce that one orbit of P* consists solely of crosses from R;. 

But then P* must have a second orbit through X. This contradicts the 

hypothesis that M is unitary. O 

Consider our unitary map in which all the cross-caps are assembled. 

Then Theorem X.35 tells us that either the orbits of the basic permutation 

consist solely of cross-caps or each of them has a handle. The next theorem 
deals with the assembly of handles. 

Theorem X.36. By a finite sequence of vertex-splittings and link-con- 

tractions, we can convert a given unitary map into one in which the orbits of 

the basic permutation consist solely of assembled cross-caps and assembled 
handles. 

Proof. Suppose our unitary map M to have a handle. One of the 
orbits of its basic permutation P can be written as 

u=(X,R,,Y, R,,0¢X, Ry, 0¢Y, R,). 

By an alternating sequence of vertex-splittings and link-contractions, we 
transform wu as follows. 

u—>(R,, X,R,,Z), (06Z, Y, R,,06X, R;,0Y) 

> (R,, Z, Ry, Ry, O0Y, 06Z, Y, R5) 

> (Y,R,, Ri,T), (067, Z, Ry, R;; OY, 04Z) 

> (R, R,,T,0¢Z,.0¢T, Z, Ry, R;), 

Z and T being new crosses. 
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This process transforms M into another unitary map, by the argu- 
ment in Theorem X.34. The handle represented by X, Y, 0¢X, and @¢y has 

been replaced by the assembled handle (7,@¢Z, oT, Z). Any assembled 

cross-cap or other assembled handle of u appears as a subsequence of an R,, 

and is preserved. 

By repetition of the operation just described, we can replace unas- 

sembled handles by assembled ones until we have a unitary map of the kind 

required. (No crosses will be left over, by Theorem X.35.) O 

Theorem X.37. By a finite sequence of vertex-splittings and link-con- 

tractions we can convert a given unitary map into one in which the orbits of the 

basic permutation consist either entirely of assembled cross-caps or entirely of 

assembled handles. 

Proof. We may suppose our unitary map M = M(6,9, P) already 

in the form specified in Theorem X.36. Suppose it to have at least one 

assembled cross-cap and at least one assembled handle. Then an orbit u of 

P can be written as follows: 

u=(Y,Z,0oY,0¢Z, X,oX,R,). 

This form displays a handle immediately followed by a cross-cap. In the 

following formulae each line, as in Theorem X.36, describes a map by listing 

one oriented vertex from each conjugate pair. The transformation from one 

line to the next may represent a vertex-splitting, a link-contraction, or 

merely the replacement of an orbit by its conjugate. The symbols X, and X, 

stand for new crosses introduced by vertex-splitting: 

u— (X,, OY, 06Z, X), (06X,,oX, R,, Y,Z) 

— (X, X,,06Y, 06Z), (0¢X, X,, OZ, OY, Ri) 

— (X,, 06Y, 06Z, 6X), OZ, OY, R}) 

> (X,,06Z,6X,,0Z, OY), (0X, Ri, X, OY) 

— (OY, X;,0¢Z,$X,,0Z), (@Y, 0X), Ri, oX2) 

> (X,,06Z, $X,,9Z,0X,, R\,$X2). 

At this stage we still have a unitary map M,, by the argument in 

Theorem X.34. We have an assembled cross-cap in the form ($X,, X,) and 

an unassembled one, {6¢Z, 0Z}. The original assembled handles and cross- 

caps, other than {X,¢X)}, appear as subsequences of R, and are preserved. 

Our next step is to replace the cross-cap {0¢Z, 8Z} by an assembled 

one, as in Theorem X.34. The assembled cross-caps and handles of M, are, 

in the notation of Theorem X.34, represented by subsequences of R, and R, 

and are therefore preserved, perhaps in conjugate form. The remaining pair 

of crosses, {¢X;,6X,}, can only be converted into another cross-cap, by 

Theorem X.35. Finally, we assemble this cross-cap, too. We thus obtain a 
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unitary map, still of the form specified in Theorem X.36, but with one 

handle fewer and two more cross-caps. Repetition of the above procedure 

leads us to a unitary map in which the orbits of the basic permutation 

consist entirely of assembled cross-caps. 
Only if the orbits of P consist entirely of assembled handles is the 

above procedure inapplicable. The theorem follows. oO 

Let us define a canonical map as either a link-map or a unitary map 

M = M(06, 4, P) in which the orbits of P consist either entirely of assembled 

cross-caps or entirely of assembled handles. In the unitary case the number 

of cross-caps or handles is the genus of the canonical map. The genus of the 

link-map is taken to be zero. 

The link-map is orientable, and so is a unitary canonical map of 

handles, an orientation class being the set of crosses belonging to one orbit 

of P. But a canonical map of cross-caps is unorientable, by Theorem X.12. 

From now on, we distinguish the two kinds of unitary canonical map as 

“orientable” and “unorientable.” 

We observe that an orientable canonical map can be constructed 

with an arbitrary nonnegative integer as genus, and that an unorientable 

one can be constructed with an arbitrary positive integer as genus. There are 

no other possibilities for the genus. Since a canonical map is completely 
determined by one orbit of its permutation we have 

Theorem X.38. To within an isomorphism, there is at most one 

canonical map with a given genus and orientability-character. 

Theorem X.39. An orientable canonical map of genus k has Euler 
characteristic 2—2k. An unorientable canonical map of genus k has Euler 
characteristic 2—k. 

Theorem X.39 follows from the fact that the number of edges is 2k 
in the first case and k in the second. 

Theorem X.40. To within an isomorphism, there is exactly one canon- 
ical map on each combinatorial surface. 

Proof. First we show that there is a canonical map on any given 
surface. For the combinatorial sphere, we have the link-map. For any other 
surface, the reuired result follows from Theorems X.31 and X.37. We then 
observe that there is at most one canonical map on the surface, by 
Theorems X.38 and X.39. 0 

Theorem X.41. Let M, and M, be maps on the same surface. Then 
M, can be transformed into M, by a finite sequence of vertex-splittings, 
link-contractions, and dual replacements. 

Proof. Let C be the canonical map on the surface. Then, to within 
an isomorphism, each of M, and M, can be transformed into C by a 
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sequence of the kind specified, by Theorems X.32 and X.37. Since vertex- 

splitting and link-contraction are inverse operations, as pointed out in Sec. 
X.7, there is another such sequence transforming C into M,. The theorem 

follows. Oo 

The genus of a canonical map is also called the genus of its surface, 

and of any other map on that surface. A surface is called orientable or 

unorientable according as the maps on it are orientable or unorientable. We 

can now say that there is just one orientable surface whose genus is a given 

nonnegative integer, and just one unorientable surface whose genus is a 

given positive integer, and moreover there are no other surfaces. The 

unorientable surface of genus | is the combinatorial projective plane, and 

the one of genus 2 is the Klein bottle. The canonical map on the former is 

the “canonical projective map” described in Sec. X.5. The orientable surface 
of genus 0 is the combinatorial sphere. That of genus | is the combinatorial 

torus, on which we have the map of Fig. X.5.6. 

x.9. CYCLES AND COBOUNDARIES 

Let M and M* be dual maps on a set S, and on a surface V. Then G(M) 

and G(M*), or isomorphs thereof, are said to be dual graphs with respect 

rr, 

In this section we discuss the case in which V is orientable. We write 

M = M(6,¢, P), and denote the orientation classes of M by U and V. Let 

Q, and Q% be the oriented forms of M and M*, respectively, on U. (See 

Theorem X.22.) Instead of G(M) and G(M*), we can study their isomorphs 

G(Q,) and G(Qz,), respectively. In the notation of Sec. X.2, Q,, is the 

oriented map Q(¢, P,,) and Q% is Q(4¢, (PA>),,). The edges of each of 

the graphs G(Q,,) and G(Q},) are the orbits (X, 0¢X) of 6, the vertices of 

Q, are the orbits of P,,, and the vertices of Qj are the orbits of (P*)y = 

(P06), = Py9¢ = (Py)*. We have used the symbols @ and @ for the 

restrictions of these involutions to U. We say that Q, and Q% are dual 

oriented maps. 

Consider an orientation Q of the graph G(Q,,). We can identify the 

darts of G(Q,,) on an edge A with the two ordered pairs (X,0¢X) and 

(0X, X) of crosses of A. The head of the dart (X,4¢X) is the vertex 

through X, and the tail is the vertex through #¢X. One, but not both, of 

these two darts appears in 2. We denote the set of darts of Q by T. Given a 

cross X of U, we write 

B(Q, X)=1 or —1, 

according as the dart (X, 9X) or the dart (06X, X) belongs to T. We note 
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that 

B(2, X) =— B(2, 6X) (X.9.1) 

for each cross X of U. We write D(Q, X) for the dart of Q corresponding to 

the cross X. 

The numbers B(&, X) can easily be related to the incidence numbers 

n(D, v) defined in Sec. VIII.4. Let us take v to be the vertex through X. If 

the edge A of G(Q,,) corresponding to X is a link of G(Q_,), the definitions 

imply 

n(D(Q, X), 0) =B(Q, X). (X.9.2) 

If A is a loop of G(Q_,), that is, if both X and 6X are crosses of v, we can 

write instead 

n(D(Q, X),v) =0=B(2, X) + B(2, 06X), (X.9.3) 
by Eq. (X.9.1). 

Having chosen an orientation 2 of G(Q,,), we can recognize a 

corresponding orientation 2* of G(Q#%,) having the same dart-set T. We say 

that Q and Q* are dual digraphs with respect to the orientable surface V. We 

note that (Q*)* = Q, and that 

B(Q*, X)=B(Q, X) (X.9.4) 

for each X €U. 

We consider chains on T to a ring R, as described in Sec. VIII.1. We 
can call them the 1-chains of either Q or Q*. Let f be such a 1-chain and let 

Of be its boundary in 2. We discuss the coefficient in df of a vertex 

o> (Mig Xe) 

of &. By Sec. VIII.4, the coefficient is the sum of the products of the 
incidence numbers 7(D, v) with the corresponding coefficients f(D), taken 
over the darts D corresponding to the crosses of v. So, by Eqs. (X.9.2) and 
(X.9.3), we can write 

k 

(af)(v)= L B(Q, X,) f( D(a, X,)). (X.9.5) 
j=l 

We next study the vertex-coboundary dv in Q. By Sec. VIII.5, the 
coefficient of D(Q, X;) in it is B(Q, X;), where 1 < j <k. We investigate the 
boundary 0*(év) of this 1-chain in Q*. 

Let a be any vertex of &2*. In the orbit a of P,,, crosses of the form_X, 
or 0X; with X, belonging to v, occur as disjoint sequences of the form 
(OpX;, X;,,). (We put X,, , = X,.) Applying Eq. (X.9.5) in Q* to the I-chain 
dv, and using Eq. (X.9.4), we find that the contribution of such a pair to the 
expression on the right of Eq. (X.9.5) is 

B(Q, X,)B(2, 66X,)+ B(Q, X,,,)B(@, X4,) =(-1) +1=0. 
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It follows that the coefficient of a in 0*(8v) is zero. Since a can be chosen 

arbitrarily, we can assert that any vertex-coboundary of (2 is a cycle of Q*. 

Hence by Theorem VIII.44, we have the following theorem. 

Theorem X.42. Let Q and Q* be dual digraphs with respect to an 

orientable surface V. Then the coboundaries to R of either one are cycles to R 

of the other. 

In the usual terminology a cycle of Q is said to be bounding if it is a 

coboundary of Q*, and nonbounding otherwise. 

Let C be a cell-base of A(Q,R). Then C is also a cell-base of 

T(Q*, R)-C, by Theorem X.42. Hence, by Theorem VII.20, there is a 

cell-base C* of ['(Q*, R) such that C C C*. We have 

|C|=a.(M)-1 (by Eq. (VIII.5.8)) 

|C*|=a,(M*)—a,(M*)+1 (by Theorem VIII.37). 

Hence, 

|C*|—|C| =a,(M)-—a,(M)—a)(M)+2, 

|C*|-—|C|=2-—N(M). (X.9.6) 

Considering the chain-base of ['(Q*, R) corresponding to C*, we see 

that it must include nonbounding cycles of Q* unless N(M) = 2, that is, 

unless V is the combinatorial sphere. But when N(M) = 2, the sets C and 

C* are identical, and the chain-base of A(Q, R) corresponding to C is also 

the chain-base of ['(Q*, R) corresponding to C*. 

Theorem X.43. Let Q and Q* be dual planar digraphs. Then 

A(Q,R)=T(Q*,R) and T(@, RR) =A(M*, R). 

For any pair of dual planar graphs, Theorem X.43 tells us that the 

properties of one, insofar as they can be expressed in terms of cycles and 

coboundaries, are algebraically dual to the properties of the other. 

X.10. NOTES 

X.10.1. Rooted Maps 

There are many papers concerned with the enumeration of rooted maps of 

various kinds. Usually the maps are planar, as in [8]. But maps on other 

surfaces have been considered [2]. 

X.10.2. Crosses 

One way of representing a cross X on an edge A in a diagram is by two 

crossed arrows. One arrow is drawn along A and one across It. The 
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involution @ reverses the arrow crossing A, and ¢ reverses the arrow along A. 

The name “cross” was suggested by this representation. 

EXERCISES 

If the map of Fig. X.5.2 is denoted by M = M(0@, 9, P), determine the 

vertices, faces, and edges, and the components, of the premaps 

L(0,o, P*) and L(6,¢, P?). 
Show that there is a map M on the projective plane whose graph is a 

5-clique. Find the graph of the dual map. 

Consider the following variation on the operation of vertex-splitting 

defined at the beginning of Sec. X.7. Instead of introducing a new edge, 

we replace the two conjugate orbits u and u’ by the four sequences f,, 

4,,4£;, and £5, each made cyclic by taking the first term as the successor 
of the last. Under what conditions does this replacement leave the Euler 
characteristic unchanged? 

Can you construct a map on the 5-clique whose Euler characteristic is 

not 1? If so, determine its orientability character and Euler characteris- 
tic. 

Find a map on the projective plane having exactly three faces, each 

hexagonal, whose graph is the Thomsen graph. Find all the Hamilto- 

nian circuits, and distinguish the bounding ones from the nonbounding. 
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Chapter XI 

Planarity 

XI.1. PLANAR GRAPHS 

We defined a planar map in Chapter X as a map on the combinatorial 
sphere. So we can characterize it as a map (necessarily orientable) of Euler 

characteristic 2. 
In this section we acknowledge the vertex-map, as described in Sec. 

X.8. Its graph is the vertex-graph. 

We extend the definition of a premap by allowing it to have 

vertex-maps as components. A premap L is defined as in Sec. X.1, but with 

the adjunction of k > 0 vertex-maps as extra components. The dual L* of L 

is to be defined with the same number k of adjoined vertex-maps. Moreover, 

the vertices and faces of the vertex-maps of L* are to be the faces and 

vertices, respectively, of the vertex-maps of L. By this device, the validity of 

Theorem X.18 is preserved. 

A premap is called planar if its components are all planar maps. A 

graph is called planar if it is isomorphic to the graph of a planar premap, 

that is, if each of its components is the graph of a planar map. (See 

Theorems X.7 and X.8.) 

Two planar graphs G and G* are said to be dual to one another if 

there is a planar premap L such that 

GaGg(Lyt © tand' "Gre oenry: 

285 
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We should not ignore the possibility that there may be two or more 

nonisomorphic premaps L such that G=G(L), and that therefore the 

isomorphism class of G* may not be uniquely determined by G. However, 

we can assert that G* is connected if and only if G is connected, by 

Theorems X.7 and X.18 and our conventions about vertex-maps. Indeed, 

this assertion can be generalized as follows: 

Theorem XI.1. Let G and G* be dual planar graphs. Then they are 

either both connected or both disconnected. If they are connected, they have 

equal connectivities. 

Proof. The first part is already proved. If G is a vertex-graph, then 

G*, edgeless and connected, is also a vertex-graph. In the remaining case, 

there is a planar map M, not a vertex-map, such that G=G(M) and 

G* = G(M*). Let Q be an orientation of G(M), and Q* the corresponding 

orientation of G(M*). Then 

k(G)=«(G(M)) =«(T(Q, 1)) = «(A(Q*-7)) = «(G(M*)) = (G*), 

by Theorems VIII.66 and X.42. Here J is the ring of integers. O 

Two connected dual planar graphs G and G* can be drawn together, 

with their diagrams simply related. We put each vertex of G* in the 

corresponding face of the diagram of G, and draw each edge of G* across 

the corresponding edge of G. We then find that each vertex of G is 

represented within the corresponding face of G*. The next two figures give 

simple examples. Figure XI.1.1 shows the duality between the link-graph 

and the loop-graph. The symbol X represents a cross of a corresponding 

planar map. In all such diagrams a cross is to be represented twice, 

by arrows attached to corresponding edges of G and G*. It can be arranged 

that the arrow attached to G representing a cross X can be transformed, by 
a quarter-turn anticlockwise, into the X-arrow attached to G*. The quarter- 
turn is about the point of intersection of the curves for G and G* represent- 
ing the edge concerned. We make this arrangement in the following 
diagrams. 

oon mae 
\ x/f : 

\ 
hone se > 
\ ‘ / 
\ / 
N oo 
Se Och 

FIGURE XI.1.1 
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FIGURE XI.1.2 

The full lines in Fig. XI.1.2 represent a planar map M whose graph is 

a 2-circuit. The two vertices of one oriented form of M are the cyclic 

sequences ( X, Y) and (@¢X, 6¢Y ). Hence the faces of this form are (X, #¢Y ) 

and (Y,6¢X). The broken lines represent the dual map. 

We observe that the maps M and M* of Fig. XI.1.2 are isomorphic, 

and so the graphs G(M) and G( M*) are isomorphic. We therefore say that 

the 2-circuit is a self-dual planar graph. 

Theorem XI.2._ A map whose graph is a tree is planar and has exactly 

one face. Moreover, any planar map with a single face has a tree as its graph. 

Proof. If the graph G(M) of a map M is a tree, then aj)(M)= 

~a,(M)+1, and therefore N(M)=.a,(M)+1. Since a,(M) is always posi- 

tive, it follows, by Theorem X.33, that a,(M)=1 and N(M) = 2. 

On the other hand, if M is planar and a,(M)=1, we have ay(M) = 

a,(M)+1. Since G(M) is connected, by Theorem X.7, it follows that 

p,(G(M)) = 0, and that G(M) is a tree, by Theorem 1.35. oD 

Theorem XI.3. To within an isomorphism, there is exactly one orien- 

table and exactly one unorientable map whose graph is an n-circuit, for each 

positive integer n. The orientable map is planar, and the unorientable one is on 

the combinatorial projective plane. 

Proof. Let M=M(6,¢, P) be a map such that G(M) is an n-cir- 

cuit. Let the defining sequence of vertices of the circuit be (a), a),...,d,) 

and the defining sequence of edges (A), A3,...,A,,), aS in Sec. I.1. We write 

the four crosses of A; as Xj, 6X;, oX;, and 6X. 

Now a, is incident only with A, and A,,; (4,41 = Aj): We can adjust 

the notation so that PX, = 6X;,,, whenever 1 < j <n. Then, as an oriented 

form of a,, we must have either (X,,,0¢X,) or (X,,,¢%,). For if n =1, the 

equalities PX, = X, and PX, = 6X, are ruled out by Axiom X.4 and the fact 

that a, is not monovalent. In the case n > 1, the crosses X; and 6X, belong 

to oriented forms of the different vertex a). 

Consider the first possibility PX, = @@X,. Then the orbits of P are 

the n cyclic sequences (X;,6¢X;,,) and their conjugates in M. We can 

verify that the four axioms for a premap are indeed satisfied, and that this 
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premap has the correct graph. In this case we call the map a circuit-map of 

order n. The orbits of P* in this circuit-map M are found to be 

ay age, a ts ee 88 F fone U Xer ea) 

and their conjugates in M*. So we have 

a)(M)=a,(M)=n, a,(M)=2, and N(M) =2. 

Hence the circuit-map is planar and therefore orientable. 

In the second case the orbits of P are the cyclic sequences 

(X,, 0¢X;,,) and (Xj, ¢X;,.,) for j <n, together with the cyclic sequences 
(X,,¢X,) and (@X,,6pX,). The four axioms are thus satisfied, and a 
corresponding map M exists. (See, Theorem X.7.) The map is unorientable, 

by Theorem X.12. It satisfies N(M)=a,(M)2>1. Hence, N(M)=1, by 

Theorem X.33. O 

X1.2. SPANNING SUBGRAPHS 

In any map M we define the valency of a vertex or face as the number of 

crosses in each of its oriented forms. Thus the valency of a vertex of M is its 

valency in G(M). 

Theorem XI.4._ In any planar map M, there is either a vertex of 

valency less than 3 or a face of valency less than 6. 

Proof. Suppose the theorem to fail for some planar map M. Then 

3a9(M)<2a,(M), 6a,(M)<2a,(M). 

Hence, 

N(M) < saan Ee a,(M) By 

contrary to the definition of a planar map. O 

Consider two dual planar graphs G and G*, and a planar map M 
such that G = G(M) and G* = G(M*). Then M determines a 1-1 mapping f 
of E(G) onto E(G*). The rule is that A © E(G) and {4 € E(G*) correspond 
to the same edge of M under the respective graph isomorphisms. We call f a 
duality-mapping. 

The next theorem is concerned with the cycle-ranks and cobound- 
ary-ranks of the spanning subgraphs of G and G*. As in Sec. VIII.5, the 
cycle-rank of a graph H is p,(H) and the coboundary-rank is [VCH )l 
Po(1), abbreviated here as p(#). 

Theorem XI.5. Let G and G* be dual planar graphs. Let f bea 
duality-mapping for them of E(G) onto E(G*). Let T be any subset of E(G). 
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Write T* = E(G*)— f(T). Then 

P\(G:T)+ p(G*: T*) = p(G*), (Xi) 

p,(G*: T*)+e(G:T) =p(G). (XI.2.2) 

Proof. Let M be the planar map defining f, by the isomorphisms 

G =G(M) and G* = G(M). Let Q and Q* be corresponding orientations of 

G(M) and G( M*), with dart-set W. Let U and U* be the sets of darts of W 

on the edges of G(M) and G( M*) corresponding to the edges of T and T* 

in G and G*, respectively. Thus U* = W — U. With chain-groups to the ring 
I we have: 

p(G:T)+p(G*: T*) 

= r(P(Q:U))+r(A(Q*: U*)) (by Theorem VIII.37 and Eq. (VIII.5.8)) 

= r(T(2)xU)+r(A(Q*)-U*) (by Theorems VIII.47-—49) 

= r(A(Q*)x U)+ r(A(Q*):U*) (by Theorem X.43) 

= r(A(Q*)) (by Eq. (VIII.2.4)) 

= p(G*) (by Eq. (VIII.5.8)). 

We thus have Eqs. (XI.2.1) and (XI.2.2) by interchanges of G with G* and T 

with 7*. 0 

In particular, 

P\(G)=p(G*), — p,(G*) = (G). (XI.2.3) 
For another consequence of Theorem XI.5, suppose G: T is a span- 

ning tree of G, that is, p,(G:T)=0 and G:T is connected. Since G is 

connected, being isomorphic to the graph of a map, the second condition is 

equivalent to p(G:T)=p(G). So, from Theorem XI.5, we can infer the 

following: 

Theorem XI.6. G:T is a spanning tree of G if and only if G* : T* is a 

spanning tree of G*. 

We note that dual planar graphs have equal tree-numbers. 

We now use Theorem XI.5 to prove a duality theorem for the 

dichromate. 

Theorem XI.7. Let G and G* be dual planar graphs. Then 

x(G; x, y)=x(G*; y, x). (X1.2.4) 

Proof. Equation (IX.6.2) is equivalent to 

Sc: (G:S) 
AGL) ba (AL) he es ERS IS Ds 

SC E(G) 

(X1.2.5) 
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By Theorem XI.5 we can rewrite the expression on the right as 

> ea ahaa yd are O84: 
TC E(G*) 

But this is x(G*; y, x) by Eq. (X1.2.5), applied to G*. oO 

We can now infer from Eqs. (IX.6.3) and (IX.6.4) that 

U(G*;A) = F(G;A). (X1.2.6) 

For a positive integral A, it now follows from the results of Chapter IX that 

G has a A-coloring if and only if G* has a A-flow. 

Theorem XI.8. Let G and G* be dual planar graphs, with a duality- 

mapping f of E(G) onto E(G*). Then an edge A of G is an isthmus of G if and 

only if fA is a loop of G*. 

Proof. A is an isthmus of G if and only if p(G,)=p(G)—1, by 

Theorem 1.29, that is, if and only if p,(G*:{ fA}) =1, by Theorem XI.5, that 

is, if and only if fA is a loop of G*. Oo 

The Four-Color Theorem, as usually stated asserts that every planar 

graph without a loop has a 4-coloring. An equivalent assertion, by Eq. 

(XI.2.6) and Theorem XI.8 is that every planar graph without an isthmus 

has a 4-flow. Analogously, the 5-Flow Conjecture is an attempted generali- 

zation of the Five-Color Theorem from planar graphs to general graphs. 

X13. JORDAN’S THEOREM 

We consider a planar map M = M(@, 4, P) and the associated graphs G(M) 

and G(M*). We denote the sets of vertices, edges, and faces of M by V(M), 
E(M), and F(M), respectively. 

Let U be an orientation-class of M, and let Q, and Q* be the 

oriented forms of M and M*, respectively, on U. The graph G(Q,,) is 

essentially the same as G(M). In passing from G(M) to G(Q,,), we replace 
each vertex by its oriented form in U and each edge by its pair of crosses in 
U, but the incidences remain as before. The same observation applies to 
G(M*) and G(Q5). 

Let 2 and Q* be corresponding orientations of G(Q,) and G(Q5%), 
respectively. The elementary chains of I(Q, 7) are those of A(Q*,/), by 
Theorem X.43. So by Theorems VIII.34 and VIII.40, we have the following 
theorem. 

Theorem X1.9._ Let T be any nonnull subset of E(M). Then T is the 
set of edges of a circuit of G(M) if and only if it is a bond of G(M*). 
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We offer Theorem XI.9 as a combinatorial analogue of Jordan’s 

topological theorem about simple closed curves on the sphere. Let C be any 

circuit of G(M). Then E(C) is a bond of G( M*) by Theorem XI1.9. Let H 

and K be the end-graphs of this bond. They are subgraphs of G(M*). We 

call them the residual graphs of C, with respect to M, considering them to be 

analogous to the two residual domains of Jordan’s curve. 

The trace T(u) in G(M) of a vertex or face u of M is the set of edges 

incident with u in M. The trace-graph of u in G(M) is the reduction 
G(M)-T(u). Sometimes the trace-graph is known to be a circuit, and we 

speak of a trace-circuit. 

Theorem XI.10. Let f be any face of M. Let (X,, X3,...,X,,) be one 

of its oriented forms. For each suffix j, let A, be the edge to which X, belongs, 

so that the edges A, constitute T( f) in G(M). Then for each j, there is a 

vertex v, of G(M) incident with both A, and A,,\(A,,41 = A,). Consequently, 

the trace-graph of f in G(M) is connected. 

Proof. We have only to demonstrate the existence of v,. But X},., = 

POX, (X,,.; = X;). Hence, there is a vertex of G(M) with an oriented 

form through 6¢X, and X,, ,. This is incident with both A; and A,,,, and 

can be taken as 0;. oO 

We return to our circuit C and its two residual graphs H and K. 

An edge A of M is an edge either of C or of one of its residual 

graphs. If A is an edge of H, we say also that it is enclosed by H. A vertex v 

of G(M) is enclosed by H if all the crosses belonging to v belong also to H. 

Theorem XI.11. A vertex v of G(M) is either (i) a vertex of C, (it) 

enclosed by H, or (iii) enclosed by K, and these three possibilities are mutually 

exclusive. 

Proof. v is a vertex of C if and only if some cross belonging to v 

belongs also to an edge of C. 

In the remaining case, all crosses belonging to v belong also to 

H UK. Hence the trace-graph 7, of v in G(M*) is a subgraph of HU K. 

But 7, is connected, by Theorem XI.10 applied to M*. Hence, 7, is a 

subgraph either of H or of K, by Theorem 1.24. oO 

Let us write the defining sequence of vertices of C as (a;, a, ae eas) 

and the defining sequence of edges as (455A,,.-+,A,,), a8 in Sec. I.1. Then 

A, is incident with a,_, and a; (a) = a,,). On the edge A,, we have the four 

crosses X;, 9X;, oX,, and O¢X,, for each j. We adjust the notation so that X; 

and @$X; are in U, so that the half-edge { X,, @X;} is absorbed by a,_,, and 

so that the half-edge ( X;, 0¢X;} is absorbed by a,. 

We suppose & specified so that the dart D, of Q corresponding to A; 

is the ordered pair (X,,99X;) for each j. Then, by the theory of Sec. X.9, 

there is an elementary chain of I'(Q, J), with support E(C), in which the 
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coefficient of each of these darts is 1. But this chain also corresponds to a 

bond E(C) of G(.M*), with end-graphs H and K. By Theorem VIII.40 and 

Sec. X.9, we can adjust the notation so that the n crosses X; belong to H and 

the n crosses 0X; to K. Then the crosses @X, must belong to H and the 

crosses 6X; to K. 

Consider a vertex a, of C, and its oriented form through X,. That 

cyclic sequence must take in the cross O9X; ,, from A j> not Xx; +1, because 

that is not in U. Since a; is incident only with A , and A,,, in C, the cyclic 

sequence involves only these two crosses from C. We can therefore write the 
oriented form of a, through X; as: 

(R,, Xj, R2,06X,,,). (X1.3.1) 

As in Sec. X.8 we write R; for a linear sequence of crosses, possibly null. In 

the notation of that section, we would write the conjugate of the cyclic 
sequence (XI.3.1) as (@X,,), R>,4X,, Ri). 

Theorem X1.12. Let a, be a vertex of C. Let its oriented form 
through X, be as in Eq. (X1.3.1). Then the crosses of R, belong to H, and those 
of R, to K. 

Proof. In the linear sequence (R,, X;), any two consecutive crosses 
belong to a common vertex of M*, by Theorem XI.10. Hence if the 
sequence R, is a nonnull, the edges to which its crosses belong define a 
connected reduction J; of HU K. Moreover, this reduction includes the 
vertex with cross X,, and this vertex belongs to H. Hence J, is a subgraph of 
the component H of H U K. Similarly, if R, is nonnull, its crosses define a 
connected reduction J, of H U K, J, involves the vertex with cross 99X) 41, 
and J, is a subgraph of K. Oo 

Let S;, be the set of crosses of M belonging to H or C. We proceed to 
define a permutation P,, of S,, by giving the orbits of P,,99. 

If a cross X of S;, belongs to a vertex of H, we put 

P,,06X = POX. 

We thus assign to P,,6¢ all orbits of P* = P0¢ that correspond to vertices of 
H. This leaves only the crosses of C that are denoted by O9X, and 0X;. For 
these, we write 

P1,94(86X,) = 06X, 41, P;,89(0X,) =0X,_,, J 

thus giving to P;,8o two new conjugate orbits, 

Orb(1) = (06X,, 0$X),...,06X, ) (XI.3.2) 
and 

Orb(2) = (8X, 0X,_,,...,0X,). (X1.3.3) 
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The definition of P,,@$, and therefore of P,,, as a permutation of S,, is now 
complete. 

With ¢ and @, restricted to S,,, as first and second involutions, 
respectively, the permutation P,,@¢ satisfies the four axioms for a premap 

L=L(9,9, P,4) on S;,. But G(L) is derived from H by adjoining a new 

vertex X,,, Corresponding to Orb(1) and Orb(2), and then adjoining the 

edges of C. Each of these is to be incident with x,, and with the vertex of H 
that is one of its ends in G(M*). In other words, G(L) is isomorphic with 

the contraction of G(M*) to E(C)U E(A), with invariance of edges: K 

contracts into x,;,. We note that G(L) is connected, by the connection of H. 

Accordingly, L is a map on S;,,. We call it the pinch-map 

Pin( M,C, H) = M(4, 9, P;,9¢) 

of C in M covering H. There is likewise a pinch-map Pin( M,C, K) of C in 

M covering K. We call the graph of Pin( M, C, H) the pinch-graph of C in M 

covering H. 

In naming the pinch-maps, we have in mind a diagram of M and M* 

on the sphere, with the circuit C along a great circle. We think of C asa 

string that can be drawn tight, thus pinching the sphere into two topological 

spheres and squeezing M* into the two pinch-maps. 
Let us determine the faces of Pin( M,C, H). First we make note of a 

lemma. 

Lemma X1I.13. If X © Sj, then P;,X = PX, unless X = X;, or $X; for 

some suffix j. 

Proof. We have P,,X = P,66(0¢X). By the definition of P;,49, this 

is P6(0¢X) = PX unless 49X is one of the crosses OpX; or 9X; belonging 

to Xp. A 

We now consider the orbits of P in M, which define the vertices of M 

and G(M). For a vertex of M enclosed by K, no cross of S;, is involved. For 

one enclosed by H, the orbits of P are orbits of P,,, by Lemma XI.13. Any 

remaining vertex is one of the vertices a i of C, by Theorem XI.11.3.3. In 

that case, we can represent one of its oriented forms by Formula (X.3.1), so 

that Theorem XI.12 holds. We then find that the cyclic sequence 

(R,, X;,06X,,,) (X1.3.4) 

is an orbit of P,,. For P),X, = P,99(89X;) = 6¢X,,,, by Eq. (X1.3.2) and 

for any other cross X appearing in Eq. (XI.3.4), P;,X is the same as PX, by 

Lemma XI.13. 

Similarly, the cyclic sequence (R,,4$X;,,, X;) is an orbit of Px. 

We refer to the orbits (R,, X;,0¢X,,,) and (R7,99Xj41, X;) of Py 

as the H-tightening and K-tightening, respectively, of the orbit (XI.3.1) 
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of P. Likewise, their conjugates (0X,,¢X;,,,R) and (X,,,,4X;, R}) are 

the K-tightening and H-tightening , respectively, of the orbit (¢X,,,, R4, 

OX,, Ri) of P. 
We see that an orbit of P persists as an orbit of P,, or Px, but not of 

both, unless it corresponds to a vertex of C. In that case, it splits into 

exactly one orbit of P,, and one of Px, the corresponding H-tightening and 

K-tightening. We deduce that: 

a,(Pin( M,C, H))+a,(Pin(M,C, K))=a,(M*)+n. (XI.3.5) 

But from the definitions we have 

a) (Pin( M,C, H))+a,(Pin( M,C, K)) =a 9(M*)+2, (XI.3.6) 

a, (Pin( M,C, H))+a,(Pin(M,C, K))=a,(M*)+n. (XI.3.7) 
Hence, 

N(Pin( M,C, H))+ N(Pin( M,C, K )) =N(M*)+2 

= 4. (X1.3.8) 

Applying Theorem X.33, we deduce that 

N(Pin( M,C, H)) = N(Pin( M,C, K )) =2. (X1.3.9) 

Theorem XI.14._ The pinch-maps of C in M are planar (by Eq. 
(X03.9)). 

We call the dual of Pin( M,C, H) the cap-map Cap( M,C, H) of C in 

M covering H. There is also the cap-map Cap( M,C, K ) = (Pin( M,C, K ))* 

of C in M covering K. 

From our determination of the structure of Pin(M,C, H), we see 

that the graph of Cap(M,C, H) is vertex-isomorphic with the subgraph 

Cap(G(M),C, H) of G(M) specified as follows: Its edges are the edges of 
C and H, and its vertices are those of C together with the vertices of M 
enclosed by H. Because this subgraph is isomorphic to the graph of a map, 
we have the following: 

Theorem XI.15. The graphs Cap(G(M),C,H) and Cap(G(M), 
C, K ) are connected. 

In the change from Cap(G(M), C, H) to the graph of Cap( M,C, H), 
we merely replace each oriented vertex belonging to C by its H-tightening: 
that is, we delete from it those of its crosses that belong to K. 

We call Cap(G(M),C, H) the cap-graph of C in M covering H. The 
two cap-graphs, by their definitions, have the following properties: 

Cap(G(M),C, H)UCap(G(M),C,K)=G(M), (XI.3.10) 

Cap(G(M),C, H)ACap(G(M),C, K) =C. (X1.3.11) 
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Cap(M,C,H), ~ Cap (M,C,K), 
Pin (M,C,H). Pin (M,C,K). 

FIGURE XI3.1 

Figure XI.3.1 shows M and C, with their pinch-maps and cap-maps, 

in a particular case. The edges of M and the cap-maps are shown with full 

lines, those of M* and the pinch-maps with broken ones. 

It is convenient to introduce here the notion of a subpremap of M. 

Let G, be a nonnull subgraph of G(M) without isolated vertices. Let Sp be 

the set of all crosses of M belonging to Gy. We form a permutation Pp of So 

by taking the orbits of P corresponding to the vertices of Gy and deleting 

from them all crosses not in Sj. We retain the cyclic order of the remaining 

crosses, of which there must be at least one. Another way of putting this is 

to say that for each X Sp, the cross Py X is the first member of the 

sequence PX, P?X, P?X,... that is in Sy. Then 6 and ¢, restricted to So, 

together with P), satisfy the axioms for a premap L = L(0, 6, Py) on Sp, and 
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the graph G(L) of L is vertex-isomorphic with Gp. We call L the subpremap 

of M on Gp. If Gp is connected, then L must be a map. We then call it the 
submap of M on Gy. These definitions can be applied to any map M, planar 

or not. They imply the rule: 

Theorem X1.16. Any subpremap of a subpremap of M is a subpremap 

of M. 

As an example we can take the submap M,. of our planar map M on 

the circuit C. Its oriented vertices are the cyclic sequences (X,, #¢X;,,) and 

their conjugates (0X,,¢X;,,). Hence, it follows that the oriented faces of 

M-¢ are the orbits Orb(1) and Orb(2) of Eqs. (XI.3.2) and (X1.3.3), together 

with 

OnmG) UX Xa Ay) (X1.3512) 

and 

Orb(4) = ($X,,¢X,,...,0X,,). (X1.3.13) 

Orb(1) and Orb(2) are the oriented forms of a face f,, of M-. Orb(3) 

and Orb(4) are the oriented forms of another face f,. We call f;, and f, the 

faces of M- opposite H and K, respectively. We note that M- is a circuit-map, 

as defined in the proof of Theorem XI.3. It is planar. 

We can now characterize Pin( M,C, H) as a map whose vertices are 

those of H, together with the face of M. opposite H. The face of M- 

opposite K appears as a vertex of Pin(M,C, H) only when H is a vertex- 

graph. In that case, Pin( M,C, K ) is identical with M*. 

We can characterize Cap(M,C,H) as the submap of M on 
Cap(G(M),C, H). If H is a vertex-graph, then Cap( M,C, #) is identical 
with M. Otherwise we can characterize the faces of Cap( M,C, H) as the 
face of M- opposite H, together with all faces of M having crosses belonging 
to H. By Theorem XI.16, Mc. is a submap of Cap(M,C,H) and of 
Cap( M,C, K). 

XI.4._ CONNECTIVITY IN PLANAR MAPS 

We call a map M k-connected if G(M) is k-connected. Thus, for planar 
maps, M* is k-connected if and only if M is k-connected, by Theorem XI.1. 

Let x be a vertex of a graph G. We denote the set of edges incident 
with x by E,. We call x a bond-vertex of G if E, is a bond of G. In that case, 
E£, is nonnull, x is incident only with links, and one end-graph of E,, is the 
vertex-graph at x. 

Theorem XI.17._ Let G be a connected graph that is neither a vertex- 
graph nor a loop-graph. Then a vertex x of G is a bond-vertex if and only if it 
is not a cut-vertex. 
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Proof. Suppose, first, that x is incident with a loop A. Then E. is 
not a bond of G. On the other hand, x is incident with at least one other 
edge, since G is not a loop-graph, and therefore x is a cut-vertex of G. From 
now on, we may suppose that x is incident only with links. 

Let H be the graph obtained from G by deleting x and its incident 

edges. If H is not connected, then x is a cut-vertex and E, is not a bond. If 
H is connected, then E, is a bond and x cannot be a cut-vertex. To complete 
the proof, we observe that H is nonnull because G is not a vertex-graph. 0 

Theorem XI.18. Let M be a planar map that is neither a vertex-map 

nor a link-map. Then, in order that the trace-graph in G(M) of each face of M 

shall be a circuit, it is necessary and sufficient that M shall be 2-connected. 

Proof. By Jordan’s Theorem (XI.9) the trace-graphs are all circuits 

if and only if the vertices of M* are all bond-vertices of G(M*), that is if 

and only if G( M*) is 2-connected, by Theorem XI1.17. Oo 

We now present some constructions for planar maps and graphs. 

Theorem XI.19. Every subgraph of a planar graph is planar. 

Proof. We first show that any connected subgraph H of a connected 

planar graph G is planar. We can identify G with the graph G(M) of some 

planar map M. 
If |E(G)| <1, the result is trivial, M being then the vertex-map, the 

link-map, or the loop-map. Assume that the theorem, in the connected case, 

holds whenever |E(G)| is less than some integer g > 2, and consider the 

case |E(G)| = q. 
If H =G, the theorem holds. We may therefore suppose G to have an 

edge A not in E(H). We can also assume that H is not a vertex-graph, that 

case being trivial. 

If A is not an isthmus of G, we can delete it from M to get a new 

planar map M, (by Theorem X.28). By the description of this operation in 

Sec. X.7, the graph of M, is vertex-isomorphic to Gj. Since H is a subgraph 

of Gj, it is planar, by the inductive hypothesis. 

If A is an isthmus of G, then H is a subgraph of an end-graph K of A 

in G. Moreover, we can contract the link A in M to get a new planar map 

M, (by Theorem X.26). As observed in Sec. X.7, the graph of M, can be 

identified with (G(M))j, that is, with Gj. But K is vertex-isomorphic to a 

subgraph of Gi, whence H is planar, by the inductive hypothesis. 

The induction has succeeded: The theorem holds in the connected 

case. Now consider a general subgraph H of a general planar graph G. Each 

component of H is a subgraph of a component of G, and each component 

of G is planar. Hence, each component of H is planar, by the result just 

proved. Thus H is a planar graph. oO 
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We go on to discuss the construction of a map M on a given 

connected graph G (with at least one edge). The construction assigns four 

crosses X, 0X, ¢X, and 0@X to each edge A, a set S of 4/E(G)| distinct 

crosses in all. We associate X and @X with one end of A, and ¢X and 6¢X 

with the other, albeit the two may coincide. For each vertex v, we arrange 

the associated crosses in two conjugate orbits, to obtain a permutation P of 

S. Our map is M = M(6,¢, P), the two involutions being determined by the 

notation. It is clear that G(M) and G are isomorphic. There is no harm in 

identifying them, saying that A is the edge of G(M) determined by the 

given four crosses. This is Edmonds’ Construction, as described in Section 

X.1. The following theorem gives an example of its use. 

Theorem XI.20. Let a connected graph G have a |-separation (H, K ), 

with cut-vertex v. Let H and K be planar. Then G is planar. 

Proof. We can identify H and K with the graphs of planar maps 

Mi, = M(6y,¢y, Py) and My = M(6x, $x, Px), respectively. We construct 
a map M = M(6, 9, P) on G as follows. 

The crosses of M are those of M,, and M,, and have the same 
associations with the vertices as in those maps. For each cross X, we put 

6X = 6,,X or 6, X according as X belongs to H or to K, and the same rule 
holds for ¢. The orbits of P are those of P,, and P,, except for orbits 

associated with v. 

Let Xi; Xe 5 Ky) and (Yj, Y,..., ¥,) be oriented forms of v in M,, 

and M,, respectively. From these we construct the cyclic sequence 

(GP ee a AE APS fry (X1.4.1) “ad 

We adopt this and its conjugate as orbits of P. The permutation P and the 

map M are now completely determined. We have: 

a,(M) = a,(M,,)+a,(Mx), (X1.4.2) 

a (M) = a9(M;,)+ a 9(M,)—1. (X1.4.3) 

By our construction, PX is equal to P,, X or Py, X except when_X is 
X,,Y,,9X,, or OY,. Hence P*X is PX or PX unless X is O6X,, O6Y,, OX, 
or $Y). In these cases, P*X is found to be Yj, X,, 0¥,, or 6X,, respectively. 
We infer that the face of M;, through 6¢X, and X, and the face of Mx 
through @Y, and Y, are combined into a single new face of M. The other 
faces of M,, and M, persist as faces of M. We infer that 

a,(M)=a,(M,,)+a,(M,)—-1. (X1.4.4) 

From Eqs. (X1.4.2)—(X1.4.4), we find that N(M) = N(M,,)+ N(M,)—2 =2. 
Thus M is a planar map and G is a planar graph. oO 

Theorem XI.21. A connected graph G is a planar if and only if its 
blocks are planar. 
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Proof. If the blocks of G are planar we can, by repeated use of the 
construction of Theorem XI.19, construct a planar map on G. (See Theorem 
111.22.) On the other hand, if G is planar then its blocks are planar, by 
Theorem XI.19 oO 

In the theory of planar graphs we are much concerned with tests for 

planarity. Our definitions tell us that we need such a test only for connected 

graphs, a graph being planar if and only if its components are planar. 

Similarly, by Theorem X1.21, we need a test only for 2-connected graphs. 

For other connected graphs, we resolve them into their blocks and test each 

block in turn. For 2-connected graphs, we describe a test due to S. MacLane 

[5]. 

A planar mesh in a graph G is a family 

PTCA Ae) 

of n circuits C; of G, not necessarily all distinct, which satisfy the three 

following conditions: 

i) The order n of F is p\(G)+1. 

il) For each edge A of G, there are exactly two suffixes j such that 

Ae E(C). 
iii) For each nonnull proper subset X of {1,2,...,n} there is an edge A of G 

such that A € E(C;)) for exactly one j € X. 

Condition (i) shows that the order of F is at least 1, and then (i1) 

shows that n > 2. If n= 2, then C, = C,, by (ii). This can happen only when 

G-E(G) is a circuit. If n > 2, then the n circuits CG must all be distinct. If, 

for example, C,; = C,, then (iii) fails when X = {1, 2). 

For n > 3, we can express Conditions (ii) and (iii) by saying that the 

only linear relation mod2 between the n sets E(C;) is 

x E(C,)=0. (XI.4.5) 

Here we identify a subset of E(G) with the chain on E(G) to J, of which it 

is the support. (See Sec. VIII.4.) Every proper subset of F is linearly 

independent. We shall have occasion to use this mod 2 algebra of subsets in 

what follows. 

Theorem X1.22. If a graph G without isolated vertices has a planar 

mesh F, then G is 2-connected. 

Proof. By (iii) we can enumerate the members of F as C,, C),..-,G,, 

so that each, except C,, has an edge in common with one of its predecessors. 

Using Theorems III.5 and III.9, we then find, for each integer & in 

succession from | to n, that the union of the first k members of the sequence 

is 2-connected. Oo 
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Theorem XI.23. Let M be a 2-connected planar map that is neither a 

vertex-map nor a link-map. Then G(M) has a planar mesh whose member-cir- 

cuits are the trace-graphs in G(M) of the faces of M. 

Proof. By Theorem XI.18 the trace-graphs of the faces of M con- 

stitute a family F = (C,, C,,...,C,) of n= a,(M) circuits of G(M). 

Now for any planar map M, 2-connected or not, we have 

a,(M)=N(M)+a,(M)—a)(M) 

=2+|E(G(M))|-|V(G(M))), 

a,(M)=p,\(G(M))+1. (X1.4.6) 

So our family F satisfies Condition (i). 

If Condition (ii) fails, then some edge A of M is incident with only 

one face. Then A is a loop of G(M*), and an isthmus of G(M), by Theorem 

XI.8. Since G(M) is 2-connected and not a link-graph, this is impossible, by 

Theorem III.3. 

Condition (iii) follows from the connection of G(M*). 0 

Theorem XI.24. Let G be a 2-connected graph with a planar mesh 

F=(C,,C,,...,C,). Then G is planar. 

Proof. Wecan assume that G is not a circuit, for circuits are planar, 

by Theorem XI1.3. So, by Theorem III.3, we may suppose G loopless. 

We attempt to construct an appropriate planar map on G. As in 

Edmonds’ Construction, we assign four crosses X, 0X, ¢X, and 8¢X to each 

edge A, associating X and #X with one end x, and ¢X and 6¢X with the 

other end y. But A belongs to two members of F, with distinct suffices. We 

make a second partition, assigning X and 0¢X to one of these members of 

F, and @X and $X to the other. 

Let S be the complete set of 4|E(G)| crosses. The notation defines 

involutions 8 and ¢ on S. We now define another permutation P* of S as 

follows: For an arbitrary member C; of F, we write the defining sequence of 

vertices as (a), 45,...,d,,) and the defining sequence of edges as (A,, A3,..., 

A,,) as in Sec. I.1. Then the ends of A; are a; and a;,, (@,,,) = 4), etc.). We 

write X; for the cross on A, that is associated with both a, and C,. We now 
assign to P* the orbit (X), X;,...,X,,), and its conjugate ($X,,,...,¢X)). 

This being done for each member C, of F, we have a permutation P* of S, 

and it satisfies the conditions for a map M* = M(¢, 0, P*). This has a dual 
map M = M(0,4¢, P), where P = P*69. 

Consider the orbits of P. Our cross X; is associated with C, and a. 
Hence O9X; is associated with a j+1 and therefore PX,, that is, P*OpX,, is 
associated with a;. We conclude that, in each orbit or pair of conjugate 
orbits of P, all the crosses are associated with the same vertex of G. 

We can now assert that there is a mapping f of V(M) onto V(G) 
such that all the crosses of a vertex v of M are associated with the vertex 
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f(v) of G. If f is a 1-1 correspondence, it follows that G and G(M) are 
vertex-isomorphic, and we are entitled to identify them and say that M is a 
map on G. We can prove that f is one to one by showing that |V(M)|= 
|V(G)|, in the following way: 

|V(M)| = N(M)+ a(M)-a,(M) 
<2+|E(G)|—n (by construction) 

<1+|E(G)|—p(G) (by (i)) 
<|V(G)|. 

But |V(M)| is certainly not less than |V(G)|. Hence, strict equality holds; 
|V(M)|=|V(G)| and N(M) = 2. Hence, M is a planar map on G, and G is 
a planar graph. oO 

The construction of Theorem XI.24 differs from that of Edmonds, in 

that orbits are chosen to fit circuits, required to be trace-graphs of faces, 

rather than vertices. It is best regarded as an example of the older construc- 

tion used by H. R. Brahana in his work on the topological classification of 
surfaces [1]. 

Theorem XI.24 gives us MacLane’s Test for planarity: a 2-connected 

graph, other than a vertex-graph or link-graph, is planar if and only if it has 

a planar mesh. (See Theorem XI.23 [5].) 

Theorem XI.25. Let G be a connected graph with a planar mesh 

F=(C,,C,,...,C,). Then there is essentially only one planar map M on G 

whose n faces have the C, as their trace-circuits. 

This is clear from the construction of Theorem XI.24. There each 

cross must be associated with just one C, and just one vertex. Each is 

uniquely distinguished by its two associations. In two constructions for M, 

crosses with different symbols could be assigned, but their pairs of associa- 

tions would be the same. These pairs determine the orbits of M and M*. So 

two maps M satisfying the requirements of Theorem XI.25 would be related 

by an isomorphism preserving each edge and vertex of G. 

We use MacLane’s Test in the following proofs. 

Theorem XI.26. Let G be the union of a graph, without isolated 

vertices, and an arc L that avoids H but has its two ends x and y in H. Let 

F=(C,,G,...,C,) be a planar mesh of H such that x and y are in V(C,), 

separating C, into two internally disjoint arcs L, and L,. Then G is planar, 

having a planar mesh F’ derived from F by replacing C, by the two new 

member-circuits LU L, and LUL). 

Proof. Since H is connected, by Theorem XI.22, it follows from Eq. 

(1.6.1) that p,(G) = p,(H)+1. Thus F’ satisfies Condition (1). It satisfies (11) 

by construction. 
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Suppose some proper subfamily of F’ sums, in its edge-sets, to zero 

mod2. Then it involves both LUL, and LUL,, or neither of them. 

Replacing the two new circuits by C, if necessary, we derive a proper 

subfamily of F that sums to zero. Hence, if Condition (iii) failed for F’, it 

would fail also for F. O 

Theorem X1I.27. Let a graph G be the union of two graphs H and K, 

without isolated vertices, whose intersection is a circuit C. Let H and K have 

planar meshes F,,=(C,,C,..-,C,) and Fx =(D), D2,...,D,), respectively, 

such that C, = D, = C. Then G is planar, having the planar mesh F = (C),..., 

Cy DrieDp): 

Proof. Using Theorem XI.22 and Eq. (1.6.1), we find that p,(G) = 

p,(H)+ p,(K)-1. Hence F satisfies (i). It satisfies (ii) by construction. 

Suppose some subfamily F’ of F to sum to zero. Then its members in 

(C,,...,C,) sum to 0 or C, since E(C) supports an elementary chain of 

I'(H, I,). Similarly, for the members of F’ in (D,,...,D,). Since Fy, and Fx 
satisfy (iii), it follows that the intersections of F’ with (C,,...,C,) and 

(D,,...,D,) are either both null or both exhaustive. Hence if F’ is not null, 

itis F. Oo 

Theorem X1I.28. Let (H, K ) be a 2-separation of a 2-connected graph 

G, with hinges x and y. Let H, and K, be formed from H and K, respectively, 

by adjoining a new link A with ends x and y. Let H, and K, have planar 

meshes (C,,C,,...,C,) = Fy and (D,, Do,...,D,) = Fx, respectively, where 

A belongs to C,, C,, D,, and D,. Then G is planar, having the planar 

mesh F=(Q,, Q>,C;,...5C,, D3,...,D,), where Q,=(C, UD,), and Q,= 

yy: 
Proof. Deleting A from C,, we obtain an arc L(C,), with ends x 

and y. Similarly, we have arcs L(C,), L(D,), and L(D,). The union of the 

two internally disjoint arcs L(C,) and L(D,) is a circuit, and it is Q). 

Similarly, Q, is a circuit, being the union of L(C,) and L(D,). 

The construction of this theorem is illustrated in Fig. XI.4.1. Sym- 

bols for circuits are placed inside the corresponding faces. 

Using Theorem IV.20 and Eq. (1.6.1) we find p,(G)= p,(H,)+ 

p,(K,)—1. Hence F satisfies (i). It satisfies (11) by construction. 

Suppose that some nonnull proper subfamily F’ of F sums to zero. 

Then its members in F;,, with the adjunction of C, whenever Q,; € F’, must 
sum either to @ or to {A}. Actually, they must sum to @, since {A} is not 

the support of a cycle of G to J,. Since F,, satisfies (iii), we infer that F’ 

includes all the members of F;, except C, and C, and includes Q, and Q, as 
well, unless it includes none of these circuits. A similar rule holds for Fx. 
We thus have the contradiction that F’ is either null or identical with F. So 

in fact F satisfies (i11). oO 



Connectivity in Planar Maps 303 

. x 

A A 

H, Y y K, 
x 

Qo 

G 
y 

FIGURE X1.4.1 

In view of Theorem XI.28, we can say that a test for planarity is now 

needed only for 3-connected graphs. The problem for a 2-connected graph 

G with a 2-separation (H, K) reduces to the problem for the two smaller 

2-connected graphs H, and K,. (See Theorem IV.21.) Using the theory of 

Secs. IV.3 and IV.4, we can say that a 2-connected graph is planar if and 

only if its 3-blocks are planar. Among these 3-blocks there may be some 

circuits and linkages. These are planar, being graphs of circuit-maps and 

their duals. 

It is possible to have two nonisomorphic planar maps on the same 

graph. Consider, for example, the construction of Theorem XI.20, of which 

a particular case is shown in Fig. X1.4.2. 

In this example we have complete freedom of choice as to how we 

open the cyclic sequence (Y, Y5, Y;, ¥4, Ys) into a linear sequence. We chose 

to break it at the turn (Y,, Y,). Had we broken it at (Y,, Y;), we would have 

got the map of Fig. XI.4.3, which is not isomorphic to that of Fig. XI.4.2. 

There is, of course, the same freedom of choice with the X’’s. 

In another variation on the construction, we replace (X,, X,, X;) by 

its conjugate sequence (0.X;,0X,,0X,), to obtain the map of Fig. X1.4.4. 



304 

FIGURE XI.4.3 

Planarity 
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There is also an ambiguity in the construction of Theorem XI.28. 

There we could interchange the roles of D, and D,, putting Q, =(C, U D,)’, 

and Q, =(C, U D,),. The construction would then go as in Fig. X1.4.5. The 

final maps of Figs. XI.4.1 and XI.4.5 are not isomorphic, and their duals do 

not even have isomorphic graphs, for the map of Fig. X1.4.5 has a face of 

valency 8 and that of Fig. XI.4.1 does not. (The duals of the maps of Figs. 

XI.4.2, X1.4.3, and X1.4.4 do have isomorphic graphs.) 

These ambiguities trouble us only for separable and 2-separable 

graphs. We shall prove a theorem of Hassler Whitney to the effect that a 

3-connected planar graph has only one planar mesh. 

X15. THE CROSS-CUT THEOREM 

Let M be a planar map, C a circuit of G(M), and H and K the residual 

graphs of C with respect to M. 

A subgraph J of G(M) is enclosed by H if each of its edges and 

vertices is enclosed by H. It is marginally enclosed by H if each of its edges 

and vertices either belongs to C or is enclosed by H. Referring to the 

definitions of cap-graph and cap-map in Sec. XI.3, we see that these 

definitions can be put equivalently as follows: J is marginally enclosed by H 

if it is a subgraph of Cap(G(M),C, 7). It is enclosed by H if it is such a 

subgraph not meeting C. 

Theorem X1.29. Let L be an arc in G(M) avoiding C. Then L is 

marginally enclosed either by H or by K. 

Proof. Write the defining sequence of vertices of L as (dp, @;,...,4,,), 

and that of edges as (A,, A),...,A,,). Since A, is not in E(C), it is enclosed 
by either H or K, let us say H. If possible, let A; be the first member of the 

edge-sequence not enclosed by H, that is enclosed by K. Then a j-1 is a 

vertex of C, by Eq. (XI.3.11), which is contrary to hypothesis. We conclude 

that each edge of L is enclosed by H, and therefore that L is marginally 

enclosed by H. oO 

An arc L in G(M) avoiding C but having its two ends x and y in C is 

called a cross-cut of C from x to y. It is a cross-cut through whichever 

residual graph H or K of C marginally encloses it. Only one of them can do 

so since the edges of L are outside E(C). By the definitions of arc and 

circuit x and y dissect C into two internally disjoint arcs L, and L, whose 

union is C and whose intersection is the edgeless subgraph U of C with 
vertices x and y. We can recognize L, and L, as the two bridges of U in C. 
We call them also the residual arcs in C of the cross-cut L, or of x and y. 

Theorem X1.30 (The Cross-Cut Theorem). Ler L be a cross-cut of C 
from x to y through H, with residual arcs L, and L, in C. Let H' be the 
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subgraph of G(M*) obtained from H by deleting the edges in E(L). Then H’ 
has exactly two components, one being a residual graph of the circuit LU L, 
and the other of LU Ly. 

Proof. One residual graph K, of L U L, must contain the connected 
subgraph K of G(M*):(E(M)-— E(C)). It therefore includes also the edges 

of L,. So the other residual graph, H, say, of L U L, must be a subgraph of 

H’, Similarly, the circuit L U L, has a residual graph H, contained in H’. 

H,, and similarly H,, is detached in H’, for any edge of G(M*), not 

in E(H,) but incident with a vertex of H), is an edge of L or L,. Hence H, 
and H, are components of H’. They are distinct components, being end- 

graphs of distinct bonds of G(M*). 

Suppose H’ to have a third component Hy. By the connection of 

G(M*), there is an edge A of that graph having one end a in V( H,) and one 

end } not in V(H,). If 6 is in V(A), then A must be in E(L). If 5 is in 

V(K), then A is in E(C). In either case, A belongs to one of the bonds 

E(L)U E(L,) and E(L)U E(L,) of G(M*), and its end a is a vertex of one 

of their end-graphs in H’, that is, of H, or H,. But this is contrary to the 

choice of A. We conclude that H, and H, are the only components of H’. O 

There is a more symmetrical way of putting the Cross-Cut Theorem. 

Let us write L = L, and K = H,. Then Theorem XI1.30 can be restated as 

follows: 

Theorem XI.31. Let Q be a subgraph of G(M) that is the union of 

three internally disjoint arcs L,, L,, and L, with common ends x and y. Then 

the subgraph G(M*):(E(M)— E(Q)) of G(.M*) has just three components 

H,, H,, and H,, these being residual graphs of the circuits L,U L,, L,; UL, 

and L, U L,, respectively. 

A graph such as Q in Theorem XI.31 which is the union of three 

internally disjoint arcs L,, L,, and L, with common ends, is called a 
theta-graph (@-graph). Its three circuits L,UL;, L;UL,, and L,UL, 
constitute a planar mesh. Thus, by Theorem XI.24, we have the following: 

Theorem XI.32. Every theta-graph is planar. 

Theorem XI.31 has the following generalization. 

Theorem X1I.33. Let M be a planar map. Let G be a 2-connected 

subgraph of G(M), not a vertex-graph or a link-graph. Then the number of 

components of G(M*):(E(M)— E(G)) is p\(G)+1, =n, Say. Suppose, 

moreover, that these components are enumerated as H,, H,...,H,. Then G 

has a planar mesh F =(C,,C),...,C,) such that H, is a residual graph of C, 

for each suffix j. 

Proof. If G is a circuit, and in particular if G is a loop-graph, the 

theorem holds, by Theorem XI.9. So the theorem is true for |E(G)|=1. 
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Assume it true whenever |E(G)| is less than some integer q>2, and 

consider the case |E(G)|= q. 

By Theorem III.11, G is the union of a 2-connected graph G’ and an 

arc L that avoids G’ but has its two ends x and y in G’. We can apply Eq. 

(1.6.1) to show that p,(G’) = p\(G)-l=n—2. 

Now G’ is not a vertex-graph since it has at least two vertices. If it is 

a link-graph, then G is a circuit and the theorem holds. In the remaining 

case, we apply the theorem to G’ as follows: The graph G(M*):(E(M)— 

E(G’)) has exactly (n—1) components H{, H},...,H,_,, and G’ has a 

planar mesh F’ = (Cj, C3,...,C/_ ,) such that 7 is a residual graph of C; for 

each suffix j. 

Now L has an edge in common with some Hj, let us say with H,,_ | 
Then L is marginally enclosed by H/_,, by Theorem XI.29. Since it avoids 

G’ it must be a cross-cut of C/_, from x to y through H7_ ;. 
Let the residual arcs of L in C/_, be L, and L,. Replacing C;_ , in F’ 

by the circuits C, = LUL, and C,=LUL,, we obtain a planar mesh 
F={ Cy). 23 Goa, Iv Cy) at G by Theorem XI.26. By the Cross-Cut 

Theorem, ihe graph H’_,:(E(H,,_,)— E(L)) has exactly two components 

ie Sansa residual graphs "of Cy qgrandac denies pu the 
components of G(M*):(E(M)— E(G)) are those Obed, aol EH, sh )— 

E(L)), together with the components of G(M*): (E(M (Gs )) other 

than H, since these other components involve no edges of L. So the n—-|? 

theorem is verified for M and G. It follows in general by induction. Oo 

The planar mesh F of Theorem XI.33 is uniquely determined by 

those bonds of G( M*) that have components of G(M*):(E(M)— E(G)) as 

end-graphs. We call it the planar mesh imposed by M on its subgraph G. 

Thus M imposes on G(M) the planar mesh whose members are the 

trace-circuits of the faces of M. (See Theorem XI1.23.) 

Besides saying that M imposes on G the planar mesh F = (C),...,C,), 
we can say that G decomposes M into the n cap-maps Cap( M, C,, H,). Each 

face of M (vertex of M*) is a face of just one of these. Moreover, all the 

faces of Cap(M, C,, H;) are faces of M, except for the one “external” face, 

with trace-circuit e associated with the second residual graph K; of C,. We 

can likewise say that G decomposes G(M) into the n cap-graphs 

Cap(G(M),C, H;). For distinct suffixes j and k it is clear from the 

definitions that Cap(G(M),C,, H;) is a subgraph of Cap(G(M), C,, K,). 

Hence the intersection of Cap(G(M ),C, H;) and Cap(G(M),C,, H;,) is 
C,C,, by Eqs. (X1.3.10) and (X1.3.11). 

We define a Y-graph as the union Y of three arcs, L,, L,, and L,, 
which have one end y in common but are otherwise mutually disjoint. We 

call y the center and the arcs L, the arms of Y. The end of L, other than y is 

the outer end x; of L;. The three vertices x,,x,,x, are the ends of Y. Its 
other vertices, including y, are its internal vertices. 
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Suppose ¥ to be a subgraph of a graph G. It is said to avoid another 
subgraph H of G if it has no edge or internal vertex in H. 

Theorem XI.34, Let M be a planar map. Let C be a circuit of G(M) 
with residual graphs H and K. Let Y, described above, be a subgraph of G(M) 
and let it avoid C. Then the Y-graph Y is marginally enclosed by either H 
or K. 

Proof. The center y of ¥ is enclosed by H or K, let us say by H, by 
Theorem XI.11. Hence L,, Lj, and L, are marginally enclosed by H, by 
Theorem XI.29. The theorem follows. 0 

Let us consider the special case of Theorem XI1.34 in which the ends 
of Y are vertices of C. By the definitions of arc and circuit x,, x,, and x, 
dissect C into three internally disjoint arcs N, with ends x, and x,, N, with 
ends x; and x,, and N; with ends x, and x,. The union of the N, is C and 
the intersection of any two is a vertex-graph (Fig. X1.5.1). 

Theorem XI.35. Let M, C, and Y be as in Theorem XI.34. Let 

the ends of Y be in C, dissecting it into three arcs N, as described above. 
Let Y be marginally enclosed by H. Then C UY is 2-connected. Moreover, M 

imposes on it the planar mesh whose members are C, N,\UL,UL,;, N,UL;, 

UL,, and N,UL,UL,. The corresponding residual graphs, components of 

G(M*):(E(M)—E(CUY)), are K, H,, H,, and H,, respectively, where H,, 

H,, and H, are disjoint proper subgraphs of H. 

Proof. First we adjoin to C the arc L, U L,. The resulting graph C’ 
has the planar mesh (C,N,UL,UL,, N,\UN,UL,UL,), by Theorem 
XI1.26. Moreover, by Theorem XI.30, this is the planar mesh imposed on C’ 

FIGURE X1.5.1 
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by M. The corresponding residual graphs are K for C and subgraphs H’ and 

H, of H for L, UL, UN, and N, UN, UL, U Ly, respectively. 

In adjoining L, we argue as for L in Theorem XI.33. Thus, L, is 

marginally enclosed by one of the three residual graphs, it is a subgraph of 

the corresponding cap-graph, and it has its two ends in the corresponding 

circuit of the planar mesh. This circuit can only be N, UN, UL,UL,. An 

application of Theorem XI.30, as in the proof of Theorem XI.33, now gives 

us the planar mesh of the enunciation, imposed on C UY by M. For the 

2-connection of C UY we can appeal to Theorem XI.22, or to Theorem 

ITT.10. Oo 

Let L and L’ be two cross-cuts of the circuit C in G(M). Let the 

ends of L be x and y, and those of L’ be x’ and y’. We say that L and L’ are 

skew if they are disjoint and the ends of L separate those of L’ in the circuit 

C. For the second condition, we can say equivalently that L’ has one end in 

each of the residual arcs of L in C. 

Theorem XI.36. Let M be a planar map, C a circuit of G(M), and L 

and L’ skew cross-cuts of C in G(M). Then no residual graph of C marginally 

encloses both L and L’. 

Proof. Let the residual arcs of L in C be L, and L,, L’ having an 

end in each of them. Using Theorem XI.30 and taking L to be marginally 

enclosed by H (see Theorem XI.29), we find that M imposes on C U L the 

planar mesh (C, LU L,, LU L,). These circuits have residual graphs, com- 

ponents of G(M*):(E(M)— E(CUL)), that are K, H,, and H,, respec- 

tively, where H, and H, are proper subgraphs of H. But now L’ must be 

marginally enclosed by one of these three residual graphs, and it must have 

its two ends in the corresponding circuit of the planar mesh. This circuit can 

only be C: L’ is marginally enclosed by K. Since L has no edge in E(K), 

and L’ no edge in E( #1), the theorem follows. O 

Theorem X1.37. Let M be planar map and C a circuit of G(M). Let 

Y, and Y, be Y-graphs in G(M) that avoid each other and C. Suppose, 
further, that they have their ends x,, x, and x, in common and that these ends 
are vertices of C. Then no residual graph of C marginally encloses both Y, 
and Y,. 

Proof. First we adjoin Y=Y, to C, obtaining the planar mesh 
described in Theorem XI.35. Ry Theorem XI.34, Y, must be marginally 
enclosed by one of the four corresponding residual graphs. It must be a 
subgraph of the corresponding cap-graph, and it must have its three ends in 
the corresponding member of the planar mesh. This member can only be C: 
Y, is marginally enclosed by K, whereas the description in Theorem XI.35 
has Y, marginally enclosed by H. The theorem follows. Oo 
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XI.6. BRIDGES 

Let C be a circuit in a connected graph G. If B is a bridge of C in G, we 
write w(B) for the number of its vertices of attachment. Thus w(B)>1 for 
each B. Moreover, if G is 2-connected, then w(B)>2 for each B, by 
Theorem III.6. 

If w(B)> 2, then the vertices of attachment of B decompose the 
circuit C into w(B) internally disjoint arcs. If the vertices of attachment are 
enumerated, in their cyclic order in C, as 0), 02,...,0,g), then these residual 
arcs of B can be enumerated as L,, L,, --++L,,(p), SO that the ends of L, are 
vj), and v, (vp = gy). The residual arcs of B in C are the bridges in C of 
the edgeless subgraph specified by the v,. 

Two distinct bridges B, and B, of C in G are said to avoid one 
another if either one of them has only one vertex of attachment or if all the 

vertices of attachment of one belong to a single residual arc of the other. 

This relation between two bridges is clearly symmetrical. Two bridges that 

do not avoid one another are said to overlap. 

Two distinct bridges B, and B, of C in G are called skew if some two 
vertices of attachment of B, separate some two vertices of attachment of B, 
in C. They are equivalent if they have the same vertices of attachment. A 

bridge B with w( B) = n is called an n-bridge. 

Theorem X1I.38. Let B, and B, be distinct bridges of C in G that are 

either skew or equivalent 3-bridges. Then B, and B, overlap. 

Proof. Suppose B, and B, skew, with vertices of attachment a, and 
b, of B, separating two vertices of attachment a, and 5, of B,. Then a, and 
b, partition C into two internally disjoint arcs L and L’, whereof one has a, 

and the other b, as an internal vertex. Each residual arc of B, in C isa 
subgraph either of L or of L’. Hence no such residual arc can include both 

a, and b,; B, and B, must overlap. 
If B, and B, are equivalent 3-bridges, then clearly each residual arc 

of B, in C includes only two vertices of attachment of B). oO 

Theorem XI.39. Let B, and B, be distinct overlapping bridges of C in 

G. Then either they are skew or they are equivalent 3-bridges. 

Proof. Suppose first that some vertex of attachment v of B, is nota 

vertex of attachment of B,. Then v is internal to some residual arc L of B, 

in C, with ends x and y say. Because of the overlap, B, must also have a 

vertex u of attachment that is internal to the complementary arc L’ to L in 

C. Hence B, and B, are skew. Similarly, they are skew if some vertex of 

attachment of B, is not a vertex of attachment of B). 

In the remaining case B, and B, are equivalent n-bridges for some 

integer n> 2. If n> 4, we can find two vertices of attachment separating 

two others in C, and therefore B, and B, are skew. If n = 2, then B, and B, 
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avoid one another, contrary to hypothesis. Hence B, and B, are equivalent 

3-bridges. Oo 

Theorem XI1.40. Let x, y, and z be distinct vertices of attachment of a 

bridge B of C in G. Then B contains a Y-graph, avoiding C, with ends x, y, 

and z. 

Proof. There is an arc L in B that joins x and y and avoids C, by 

Theorem I.56. It has an internal vertex rt, by Theorem 1.49. There is an arc N 

in B that joins ¢ and z and avoids C, by Theorem I.56. Choose t and N so 

that N has as few edges as possible. Then the intersection of N and L must 

be the vertex-graph at t, and N U Lis the required Y-graph. oO 

The next theorems show how bridge theory can be applied to 

problems of planarity. 

Theorem XI.41. Let G be the graph of a planar map M. Let B be a 

bridge of C in G. Then B is marginally enclosed by one and only one residual 

graph of C, with respect to M. 

Proof. Let the residual graphs of C be H and K. Choose an edge A 

of B. It belongs either to E(H) or to E(K), let us say to E(#). If B is 

degenerate, having only the one edge A, the theorem is established. 

If B is nondegenerate, then A has an end x in the nucleus N(B) of B. 

But x is enclosed by H but not by K, by Theorem XI.11. If y is any other 

vertex of N(B), then x and y are joined by an arc in B disjoint from C, by 

Theorem I.56. Hence y is enclosed by H but not by K, by Theorems XI.29 

and XI.11. Each edge of B has an end in N(B) and is therefore enclosed by 

H. Hence B is marginally enclosed by H, but not by K. oO 

Theorem XI.42._ Let G be the graph of a planar map M. Let B, and 

B, be overlapping bridges of C in G. Then they are marginally enclosed by 

distinct residual graphs of C, with respect to M. 

Proof. Suppose B, and B, skew. Then by Theorem I.56, we can find 

two skew cross-cuts of C in G(M), one in B, and the other in B,. Hence the 

residual graphs of C enclosing marginally B, and B, must be distinct, by 
Theorem X1.36. 

In the remaining case B, and B, are equivalent 3-bridges, by Theo- 
rem XI.39, let us say with vertices of attachment x, y, and z. By Theorem 
XI.40 we can find Y-graphs Y, and Y,, the first in B, and the second in B,, 
such that each avoids C and has x, y, and z as its ends. Hence B, and B, are 
marginally enclosed by distinct residual graphs of C, by Theorem XI.37. O 

We can often use Theorem XI.41 and XI.42 to demonstrate non- 
planarity. If, for example, we find that C has three mutually overlapping 
bridges in G, we can assert that G is nonplanar. 
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Let us define the bridge-graph of C in G as the strict graph whose 
vertices are the bridges of C in G, and in which two vertices are joined by an 
edge if and only if they overlap. Then we have the following test for 
nonplanarity. 

Theorem XI.43. If the bridge-graph of C in G is nonbipartite, then G 
is nonplanar. 

Proof. Suppose G is planar, so that we can identify it with the 
graph of some planar map M. We can arrange the bridges of C in G in two 
classes, according as to which residual graph of C marginally encloses them 
(see Theorem XI1.41). Two members of the same class do not overlap, by 
Theorem X1.42. Thus the bridge-graph of C in G is bipartite. oO 

Let a graph G,, in which six vertices a,, a), 43,b,, 5, b; are to be 
specified as the nodes, be defined as the union of nine internally disjoint arcs 

L,; (1, j=1,2,3), the ends of L;, being a, and b,. We call G, a subdivided 
K, ,. It is indeed a graph obtainable from K, , by repeated subdivision of 

edges. The arcs L;; are its branches. 

Similarly, we can define a graph G,, in which five vertices a, aj, a3, 
a,, and a, are specified as nodes, as the union of ten internally disjoint arcs 

L,; (1<i< j <5) called the branches. The ends of L;; are to be a; and a,. 

We call G, a subdivided 5-clique K,. 

Graphs G, or G, defined in these ways are called Kuratowski graphs. 

In each case the nodes are the nondivalent vertices and the branches are the 

bridges of the edgeless subgraph defined by the nodes. 

Theorem X1I.44._ The Kuratowski graphs are nonplanar. 

Proof. In the case of G, there is a circuit C made up of L,,, L3), 
L3,, L>,, Ly3, and L,;. (See Fig. X1.6.1.) Its three bridges L,,, L,,, and L,, 
are mutually overlapping. Hence G, is nonplanar, by Theorem XI.43. 

FIGURE Xt1.6.1 
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In the case of G,, Fig. XI.6.2, there is a circuit C made up of Lj, 
L 3, Ly4, L45, and L,,. In the cyclic sequence (L,3, L44, L35, L144, L25) of its 

five bridges, each overlaps its two neighbors. Hence G, is nonplanar, by 

Theorem XI.43. oO 

XI.7. AN ALGORITHM FOR PLANARITY 

We consider a circuit C in a 2-connected graph G. If B is a bridge of C in G, 
then its union with C is the corresponding bridge-fragment of G, with 
respect to C. 

Theorem XI.45. Each bridge-fragment of G is 2-connected. 

Proof. Let B be a bridge of C in G, and BUC the corresponding 
bridge-fragment. If BUC is not 2-connected, then it has a 1-separation 
(H, K) with a cut-vertex v. By Theorem III.4, we may suppose C to be a 
subgraph of K. But then G has the 1-separation (H, H°), with cut-vertex v, 
contrary to the definition of G. Oo 

If C has exactly one bridge in G, we call it a peripheral circuit of G. 

Theorem XI.46. A peripheral circuit of G is a member of every 
planar mesh of G. 

Proof. Let C bea peripheral circuit of G. Let F = (CG, Gp) 
a planar mesh of G. Then there is a planar map M whose graph can be 
identified with G and for which the C; are the trace-circuits of the faces in 
G=G(M), by Theorem XI.25. By Theorem XI.41, one of the residual 
graphs of C in M is edgeless, i-e., is a vertex-graph. Here E (C) is the trace 
of the corresponding vertex of M* and so C is the trace-graph of a face of 
M. It is thus a member of F. oO 
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Theorem XI.47. Let the bridge-fragments of G with respect to C be 
all planar, and let no two bridges of C in G overlap. Then G is planar and C is 
a member of one of its planar meshes. Moreover, if C has more than one 

bridge in G, then G has a 2-separation. 

Proof. Write m for the number of bridges of C in G. If m= 0, then 
G =C and the theorem is trivial. If m =1, then G is planar, by hypothesis, 

and the theorem follows from Theorem XI.46. Assume it true whenever m is 
less than some integer q > 2, and consider the case m = q. 

Choose two bridges B, and B, of C. There is a residual arc L of B, in 

C, with ends x and y say, that includes all the vertices of attachment of B,. 

Because no other bridge overlaps B,, we can now separate the bridges of C 

in G into two complementary nonnull classes U, and U,. Let L’ be the 
complementary arc to L in C. Then U, consists of B, and all the remaining 

bridges of C, other than B,, that have all their vertices of attachment in L’. 
The class U, consists of B, and those other bridges of C that have their 
vertices of attachment all in L but not all in L’. Some care is needed in this 
definition to take account of possible 2-bridges with vertices of attachment x 

and y, in both L and L’. 

We can now recognize a 2-separation (H, K) of G. Here H is the 

union of L’ and the members of U,, and K is the union of L and the 
members of U,. The hinges are x and y. Form H, and K, from H and K, 
respectively, by adjoining a new link A with ends x and y. 

Consider the union G, of C and the members of U, (i =1,2). Clearly 

the members of U, are the bridges of C in G;. They have the same residual 

arcs and determine the same bridge-fragments as in G. So, by the inductive 

hypothesis, G, is planar, and it has a planar mesh F; having C as one of its 

members. 4 

Now the two members of F, containing a given edge of L (one of 

which is C) must each contain the whole of L, for the internal vertices of L 

are divalent in G,. Let us delete the edges and internal vertices of L from 

each of these circuits, replacing them in each by the single link A. We thus 

convert F, into a family Fj of circuits of H, satisfying the conditions for a 

planar mesh of H,. We note that one member of F; is formed from L’ by 

adjoining A. Similarly, we can find a planar mesh of K, in which one 

member is formed from L by adjoining A. Applying Theorem XI.28, we find 

that G has a planar mesh F having L U L’, that is, C, as one of its members. 

Thus the theorem holds when m = q, by Theorem XI.24. It follows in 

general by induction. oO 

Theorem XI.48. Let the bridge-fragments of G with respect to C be 

all planar, and let the bridge-graph of C in G be bipartite. Then G is planar. 

Proof. We can arrange the bridges of C in G in two complementary 

classes U, and U, so that no two members of the same class overlap. Let G; 
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denote the union of C and the members of U, (i=1,2). The members of U;, 
are the bridges of C in G,, having the same residual arcs and determining 
the same bridge-fragments as in G. Thus no two of them overlap as bridges 

of C in G,. 
By Theorem XI.47, G, has a planar mesh F, having C as a member, 

for each i. Hence G is planar, by Theorem XI.27. oO 

Theorem X1.49._ Let G be any 2-connected graph that is not a 

vertex-graph, a link-graph, or a circuit. Then either G is a theta-graph or we 

can find in it a circuit C having at least two bridges in G. 

Proof. We can choose an edge of G, and this edge is not an isthmus. 

Hence we can find a circuit Q of G. But Q is not the whole of G and 

therefore Q has at least one bridge in G. If it has more than one, we have 

finished. Suppose therefore that Q is peripheral, with the single bridge B. 

Let L be a residual arc of B in Q, with ends x and y. Let L’ be its 

complementary arc in Q. By Theorem I.56, there is an arc N in B whose 

ends are x and y, and which avoids Q. Let C be the circuit N U L’. 

Now L is a subgraph of G having x and y as its only vertices of 

attachment. It is thus a bridge of C in G, by Theorem I.55. If C has a second 

bridge, the theorem holds. If not, then G is a theta-graph, being the union of 

the three internally disjoint arcs L, L’, and N. oO 

From the foregoing theorems we can construct an algorithm for 
determining whether a given 2-connected graph G is planar. First we check 
whether G is a vertex-graph, a link-graph, a circuit, or a theta-graph. In all 
these cases it is planar. (See Theorems XI.3 and XI.32.) In the remaining 

case we find a circuit C in G with two or more bridges, by the method of 
Theorem XI.49. We examine its bridge-graph. If this is not bipartite, we can 
assert that G is nonplanar, by Theorem XI.43. If the bridge-graph is 
bipartite, then G is planar if and only if all its bridge-fragments with respect 
to C are planar, by Theorems XI.19 and XI.48. The problem for G is thus 
reduced to that for some smaller 2-connected graphs, by Theorem XI.45. 

Consideration of this algorithm leads to the following necessary and 
sufficient condition for nonplanarity. 

Theorem XI.50. A 2-connected graph G is nonplanar if and only if it 
has a subgraph H in which there is a circuit C such that C has a nonbipartite 
bridge-graph in H. 

Theorem XI.51._ Let C be a circuit in a 2-connected planar graph G. 
Then C belongs to some planar mesh of G if and only if no two bridges of C in 
G overlap. 

Proof. Suppose C to belong to some planar mesh F of G. We can 
identify G with the graph of a planar map M so that the members of F are 
the trace-circuits of the faces of M, by Theorem XI.25. Since C is the 
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trace-graph of a face of M, one of its residual graphs with respect to M is a 
vertex-graph. The other must marginally enclose each bridge of C in G, by 
Theorem XI.41. Hence no two bridges of C in G overlap, by Theorem XI.42. 

Conversely, suppose that no two bridges of C in G overlap. Then the 
required planar mesh exists, by Theorems XI.19 and XI.47. oO 

Theorem XI.52._ Let G be a 3-connected planar graph, not a vertex- 
graph, a link-graph, or a circuit. Then G has one and only one planar mesh. 
The members of the planar mesh are the peripheral circuits of G. 

Proof. G has at least one planar mesh F, by Theorem XI.23. If C is 

a member of F, no two bridges of C in G overlap, by Theorem XI.51. 

Hence, by Theorem XI.47 and the 3-connection of G, C is a peripheral 

circuit of G. The theorem follows, by Theorem XI1.46. oO 

Because of Theorem XI.25, we can identify this with Whitney’s 

Theorem that a 3-connected planar graph can be drawn in the plane (i.e., on 

the sphere) in essentially only one way. Hence a 3-connected planar graph 

has, to within an isomorphism, only one dual graph [8, 9]. 

XI.8. PERIPHERAL CIRCUITS IN 3-CONNECTED GRAPHS 

In this section we take G to be a 3-connected graph, not necessarily planar, 
with at least four edges. It is not a circuit, by Theorem IV.3. We describe an 

algorithm for finding peripheral circuits in G. It is based on the following 

theorem. 

Theorem XI.53. Let C be a circuit in G having two or more bridges. 

Let B be one of these bridges. Then some other bridge of C in G overlaps B. 

Proof. We can construct a 2-separation (H, K) of G if no other 

bridge overlaps B. We do it exactly as in the proof of Theorem XI.47, with 

B as B, and any other bridge of C as B,. oO 

Let C be any circuit in G. Let B be one of its bridges in G. Suppose 

C to have a second bridge B’ overlapping B. Consider two vertices of 

attachment x and y of B’. We can find an arc N in B’ that joins x and y and 

avoids C. The vertices x and y partition C into two internally disjoint arcs 

L, and L,. We describe the circuit L, U N as a circuit based on B’. L, is its 

common arc with C, and L, is its complementary arc in C. It may happen 

that B has a vertex of attachment internal to L,. In that case, we call L; UN 

an augmenting circuit of B. 

Theorem XI.54. Let B and B’ be overlapping bridges of a circuit C in 

G. Let D be a circuit based on B’, and let it be an augmenting circuit of B. 

Then there is a bridge B, of D in G having both B and L, as proper subgraphs. 
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Proof. The circuit D has a bridge with B as a subgraph, by Theorem 

1.57, and a bridge with L, as a subgraph, by Theorem I.55. It is the same 

bridge B, in each case, for B and L, have a common vertex not in D. Since 
B and L, have no common edge, they are proper subgraphs of B,. oO 

Theorem XI.55. Let A be any edge of G. Then G has a peripheral 

circuit through A. 

Proof. A is not an isthmus of G: We can find a circuit C of G 

through A. If it is peripheral, we have finished. If not, choose a bridge B of 

C and another bridge B’ of C overlapping it. (See Theorem XI.53.) Retain- 

ing the above notation we take L, to be the residual arc of B’ in C that 
includes A. Then, because of the overlap, B has at least one vertex of 

attachment internal to L,. We construct a circuit D based on B’ and having 
L, as its common arc with C. Then D is an augmenting circuit of B. By 
Theorem XI.54, it has a bridge B, with B as a proper subgraph. Moreover, it 

has A as an edge. 

If D is peripheral, we have finished. If not, we repeat the process with 
D replacing C and B, replacing B. We then get a circuit through A with a 

bridge B, having B, as a proper subgraph. We repeat the process, making 

the chosen bridge bigger and bigger, until it terminates. We then have a 

peripheral circuit through A. 0 

Theorem XI.56. Let A be any edge of G. Let P be a peripheral circuit 

of G through A. Then we can find a second peripheral circuit Q through A such 
that 

PNQ=G-{A). 

Proof. Let the ends of A be b and c. Each is a vertex of attachment 
of the single bridge B, of P, by Theorem IV.3. Hence they are joined by an 
arc in B that avoids P. Adjoining A to this arc, we obtain a circuit C such 
that PAC =G-{A). 

Let S be the arc, with ends 5 and c, obtained from P by deleting A. It 
is a subgraph of a bridge B of C in G, by Theorem I.55. 

If C is peripheral, we can take it as Q. If not we find a bridge B’ of C 
overlapping B and proceed as in Theorem XI.55. The resulting bridge B, of 
D, like B, contains S as a subgraph, and the intersection of P with D is still 
G-{A}. We infer that the procedure of Theorem XI.55 now leads to a 
peripheral circuit Q of G satisfying the stated condition. Oo 

We now come to some theorems leading, in the planar case, to the 
construction of a planar mesh, and in the other case to a demonstration of 
nonplanarity. We use the same mod 2 addition as in Sec. XI.4. We identify a 
graph G with each of its orientations, and a member of I'(G, I,) with its 
support and with the corresponding reduction of G. Thus we identify the 
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elementary chains of I'(G, J,) with the circuits of G (see Theorem VIII.34). 
We use linear algebra appropriate to a vector space over a field, in this case 
the field GF(2). The number p,(G) is the rank of ['(G, J,), the maximum 

number of linearly independent members of I'(G, J,) and the maximum 

number of linearly independent circuits of G. (See Theorems VIII.12 and 
VIII.37.) 

Theorem XI.57._ We can find p,(G) linearly independent peripheral 
circuits of G (see [7]). 

Proof. We can find two linearly independent peripheral circuits of 

G, by Theorem XI.56. Suppose we have found a set T of m linearly 

independent ones, where 2 <m< p,(G). We consider how to locate an 

(m + 1)th peripheral circuit, independent of them all. 

We can find a circuit C of G linearly independent of 7. For the 

chain-base of I'(G, J,) associated with any cell-base must include at least 

one such elementary chain. If C is peripheral, we have finished. If not, we 

choose a bridge B of C in G, and then locate another bridge B’ overlapping 

it (see Theorem XI.53). 

Suppose first that B’ is skew to B. Keeping to the former notation, 

we choose our two vertices x and y of attachment of B’ so that they separate 

two vertices of attachment of B in C. Then both L,U WN and L, UN are 
augmenting circuits of B. But their mod2 sum is C. Hence, one of them is 

independent of T. 

In the remaining case B and B’ are equivalent 3-bridges, by Theorem 

XI1.39. Let their vertices of attachment be now x, y, and z. Then B’ contains 

a Y-graph Y that avoids C and has x, y, and z as its ends, by Theorem 

XI.40. Let C, denote the circuit made up of the residual arc of B and B’ in 
C with ends y and z, and of the arms of Y to these two vertices. Let C, and 

C, be defined analogously. Clearly C,, C,, and C, are circuits based on B’, 

and they are augmenting circuits of B. But their mod2 sum is C, and so at 

least one of them is linearly independent of T. 

In each case, we have found an augmenting circuit D of B that is 

independent of 7. By Theorem XI.54 it has a bridge B, containing B as a 

proper subgraph. If D is peripheral, we have finished. If not, we repeat the 

process with D replacing C, and with B, replacing B. Continuing in this way 

until the process terminates, we arrive at a peripheral circuit independent 

3) ol 

We can repeat the procedure for successively larger values of m until 

we have p,(G) linearly independent peripheral circuits. Oo 

Our p,(G) linearly independent peripheral circuits constitute a basis 

for the vector space I'(G, I,). So each circuit of G can be expressed as a sum 

of peripheral circuits. 
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Theorem X1.58. Let x be a vertex of G. Let the set E, of edges 

incident with x be partitioned into complementary nonnull subsets T and U. 

Then there is a peripheral circuit of G with one edge in T and one in U. 

Proof. LetA and B be edges of T and U, respectively. Let them join 

x to vertices a and b, respectively. Then a and b are distinct, by Theorem 

IV.1. Since x is not a cut-vertex of G, they are joined by an arc in G that 

does not include x. Hence there is a circuit C of G through A and B. It 

includes, of course, no other edge of E,. 
By Theorem XI.57, C is a mod2 sum of peripheral circuits. So, for at 

least one peripheral circuit, the number of common edges with T is odd. 
Such a peripheral circuit has the required property. Oo 

The next theorem provides another test for planarity. 

Theorem XI.59. A 3-connected graph is nonplanar if and only if it 

has three distinct peripheral circuits with a common edge. 

Proof. The application to the six graphs listed in Theorem IV.6, all 

planar, is trivial. So we can suppose |E(G)| > 4. 

If G has three such peripheral circuits, it has no planar mesh, by 

Theorem XI.52. It is nonplanar, by Theorem XI1.23. 

In the remaining case, G has exactly two peripheral circuits through 

each edge, by Theorem XI.56. Let there be 1 peripheral circuits in all. They 

sum to zero mod2. Hence, by Theorem XI1.57, n>p,(G)+1. But no 

nonnull proper subset of them sums to zero. Such a subset would define a 

partition of E(G) into two complementary nonnull subsets E, and E, such 

that no peripheral circuit had an edge in each of them. By the connection of 

G, this would contradict Theorem XI.58. Hence, if we take all but one of the 

peripheral circuits of G, we have a set of linearly independent circuits. Since 

the maximum number of linearly independent circuits of G is p,(G), we 
conclude that n= p,(G)+1. 

We have now shown that the set of peripheral circuits of G satisfies 
the three conditions for a planar mesh. Hence G is planar, by Theorem 

X1.24. 0 

X1.9. KURATOWSKI’S THEOREM 

The best-known test for planarity is Kuratowski’s Theorem [4], which runs 
as follows. 

Theorem XI.60. A graph G is nonplanar if and only if it has a 
Kuratowski graph as a subgraph. 

The theorem can be derived from one or other of the tests for 
planarity already established. Perhaps it is fair to say that most of the 
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published proofs, translated into the terminology of the present work, 
appear as developments of Theorem XI.50. Another approach is to work 
with 3-connected graphs and exploit Whitney’s Theorem (see [6]). For 
variety we derive it here from Theorem XI.59. Kuratowski’s Theorem has a 
generalization in the theory of matroids. There, tests for planarity are apt to 
reappear, perhaps in slightly more complicated from, as tests for graphical- 
ity. 

All proofs of Kuratowski’s Theorem seem to need the following 
lemma. 

Lemma XI1.61. Let A be a link of a graph G. Then if Gi has a 
Kuratowski subgraph, so does G. 

Proof. Let the ends of A in G be x and y. Let K be a Kuratowski 

subgraph of G/’. Let H be the reduction of G having the same edges as K, 

with the adjunction of A. The vertices x and y correspond to a single vertex 
v, in Gj. Otherwise we identify each vertex of G with its corresponding 
vertex in Gj. 

Suppose first that x is monovalent in H, incident only with A. 

Deleting A and x from H, we obtain a subgraph of G vertex-isomorphic 

with K, differing from K only in the replacement of v, by y. So the theorem 

holds. 
We may now suppose that each of x and y are at least divalent in H. 

Suppose x divalent in H. Then H is a Kuratowski graph, derived from K by 

lengthening one of the arcs L,, by a single new edge. 

We may now suppose each of x and y at least trivalent in H. This can 

happen only if K is a subdivided K, having v, as a node. We may suppose 

v, to be the node a,, and that it is replaced in H by x as the end of L,, and 
L,,, and by y as an end of L,, and L,,. (See Fig. XI.9.1.) In this connection, 

a “subdivided K,”’ may be simply a Ks. 
We now have to verify that the graph H represented in Fig. XI.9.1 

contains a subdivided K, ,. One such subdivided K, , has nodes x, a3, a4, y, 
a,, and a,, corresponding, respectively, to those denoted by aj, a>, a3, D,, 

b,, and b, in the description of G, in Sec. XI.6. The branches are 

H-{A}, Ly5, Lys, Ly3, 13, Ls, Lia, Log, and Lys. 

This verification completes the proof. oO 

Theorem XI.62. Let P and Q be distinct peripheral circuits in a 

3-connected graph G, having at least two vertices in common. Then either 

PQ is a link-graph or G contains a subdivided K, ,. 

Proof. Some common vertex x of P and Q is incident with an edge 

A of Q that does not belong to P, for otherwise P would include all the 

edges of Q, and P and Q would be identical, by Theorem [.27. 
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Now A must be part of an arc N, in Q that avoids P but has both its 
ends in P. One end is x. Let the other be y. The two ends of N, dissect P 
into two complementary arcs P, and P). 

If A is the only edge of N,, then G-{ A} must be the single bridge of P 

in G. Hence, G is a 3-linkage, by Theorem IV.3, and the theorem is trivially 

true. A similar argument applies if either P, or P, is a link-graph, unless that 

link-graph is contained in Q as well as P. But if P.C Q, then Q can only be 

the circuit N, U P;. Then PQ is a link-graph and the theorem is still 
satisfied. 

In the remaining case, each of N,, P,, and P, has an internal vertex, 

and so G has at least six edges. The bridges of P and Q in G each include all 

the vertices of G, by Theorem IV.3. By Theorem I.56, any internal vertex r 

of P, can be joined to any internal vertex s of P, by an arc N, in G that 
avoids Q. Choosing r, s, and N, so that N, is as short as possible, we can 
arrange that N, avoids P as well as Q. (See Fig. X1.9.2.) 

In N, and N, we have two skew cross-cuts of P. As with N,, we may 
suppose N, to have an internal vertex. Any internal vertex n, of N, can be 
joined to any internal vertex n, of N, by an arc L in G that avoids P, by 
Theorem 1.56. Choosing n,, n, and L so that L is as short as possible, we 
can arrange that L meets N, only in n,, and N, only in 7. 

We have now constructed a subdivided K, , in G. Its nodes are x, y, 
Nz, 1, S, and n,, corresponding to a), 4), 43, b,, by, b; in the description of 
G, in Sec. XI.4. The branches are L, the arcs into which N, and N, are 
dissected by n, and n,, respectively, and the four arcs into which P is 
dissected by x, y, r, and s. Oo 
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FIGURE XI.9.2 

Corollary XI.63. Let F be a planar mesh of a 3-connected graph G. 

Then the intersection of any two distinct members of F is null, a vertex-graph, 

or a link-graph. (See Theorem XI.52.) 

Proof of Theorem X1.60. First we note that, if G has a Kuratowski 

subgraph, it is nonplanar, by Theorems XI.19 and XI.44. 

Conversely, suppose G to be nonplanar. We try to show that it has a 

Kuratowski subgraph. 

Consider first the case in which G is 3-connected. By Theorem XI.59, 

it has three distinct peripheral circuits P,, P,, and P,; with a common edge 
A. Let the ends of A be x and y. By Theorem XI1.62 we may suppose that the 

intersection of any two of the P. is G-{ A}. The single bridge of any P, in G 

includes all the vertices of G, by Theorem IV.3. 

Let the complementary arcs of G-{A} in P,, P,, and P, be L,, Ly, 
and L,, respectively. Each of these has an internal vertex, by Theorem I.49. 
Any internal vertex r, of L, is joined to any internal vertex s, of L, by an 

arc N, in G avoiding P,;, by Theorem I.56. We choose r,, s;, and N; so that 
N, is as short as possible. Then N, meets L, only at r,, L, only at s,, and L, 
not at all. Similarly, we construct an arc N, with ends r, in L, and s, in L,, 
and an arc N, with ends r, in L, and s, in L;. Figure X1.9.3 shows a case in 

which N,, N,, and N, are mutually disjoint. 
Let us consider what happens if two of the N,, say N, and N,, have a 

common internal vertex. Then some internal vertex ¢ of N, is joined to s, by 

an arc T in N,. Choosing t and T so that T is as short as possible, we 

arrange that N, UT is a Y-graph with center ¢ and ends r,, s,, and s;. The 

union of this Y-graph with the three arcs L; is a subdivided K, ,. (See Fig. 

XI.9.4.) The six nodes are x, y, t, 5;, 53, and ry. 

We may now suppose N,, N,, and N, to be internally disjoint. The 

situation may not be quite so complicated as in Fig. XI.9.3. It may happen 

that r,=5,, %=5), and r,=53. In that “canonical” case, we have a 

subdivided K,. Its nodes are x, y, ", %, and 1. Its branches are 
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G-{A), N,, N,, N3, and the six arcs into which L,, L,, and L, are subdivided 
by r,, %, and r,, respectively. Even if none, or not all, of these three 

coincidences occur we can transform to the canonical form by contracting 

the edges of the subarc of L,, if any, that joins 7, and s,, for each suffix i. The 
contracted G then has a subdivided K,, and so the original G has a 
Kuratowski subgraph, by Lemma XI.61. This completes the argument for 

the 3-connected case. 

Now let G be, if possible, a 2-connected graph which is nonplanar 

but contains no Kuratowski subgraph. Choose such a G with as few edges as 

possible. By the results already proved, G has a 2-separation (H, K ), with 

hinges x and y, say. Form H, and K, from H and K, respectively, by 

adjoining a new edge A with ends x and y. By Theorem XI.28 we may 

suppose H, nonplanar. It has, by the choice of G, a Kuratowski subgraph J 

(see Theorem IV.21). But J remains a Kuratowski graph when we replace in 

it the edge A by any arc in the connected graph K joining x and y. (See 

Theorem IV.20.) We thus obtain a Kuratowski subgraph of G. This con- 

tradiction completes the argument in the 2-connected case. 

x 

Ls 

L, 

y 

FIGURE XI.9.4 
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For a general connected graph G, we observe that, if it is nonplanar, 
then one of its blocks is nonplanar, by Theorem XI.21, and that this block, 
a 2-connected subgraph of G, has a Kuratowski subgraph. If an arbitrary 
graph is nonplanar, then one of its components is nonplanar, and so has a 
Kuratowski subgraph. The proof of Kuratowski’s Theorem is now complete. 

O 

X1.10. NOTES 

XI.10.1. 3-Connected Planar Maps 

The construction suggested in Examples 1 and 2 below has been carried 

through for graphs of up to 21 edges. This was in connection with the 

problem of dissecting a square into unequal squares, as few as possible. (See 

{2] and [3].) 

XI.10.2. Cubic Planar Maps 

Theorem XI.4, applied to a planar map with a cubic graph, shows that there 

must be at least one face with valency 5 or less. This result is exploited in 

proofs of the Five-Color Theorem. 

EXERCISES 

1. Let G be a 3-connected planar graph having at least six edges. If G is 
not a wheel, show that either G or its dual can be derived from another 

planar 3-connected graph H by link-adjunction. 

2. Using the rule stated in Exercise 1, find all the 3-connected planar 

graphs of from 6 to 11 edges. 

Discuss the maps on a given theta-graph. 

4. For cubic maps on the torus, show that either every face has valency 6 

or there is at least one face whose valency exceeds 6. 

5. Consider the cube-map, whose graph G is that of a cube and whose 

faces correspond to those of the cube. Let C be a 6-circuit in G. Find 

its pinch-maps and cap-maps. 

6. Show that the graph of a convex polyhedron has a planar mesh and is 

therefore planar. 

7. The algebraic dual of a circuit is a bond. For 2-connected graphs, what 

is the algebraic dual of a bridge over the circuit? 

8. Use Theorem XI.43 to show that the Petersen graph is nonplanar. 

9. Verify Theorems XI.56 and XI.57 for the Petersen graph. How many 

peripheral circuits does this graph have through a given edge? 

ae 
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10. Find a Kuratowski subgraph in (i) the Petersen graph, and (ii) the 

graph obtained from the cube-graph by joining two opposite vertices 

by a new edge. 
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bicursal and unicursal, 162 
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ABOUT THE BOOK 

Graph Theory makes a major contribution to the burgeoning literature on combinatorics. 
The central themes of graph theory, such as Menger’s Theorem and network flows, the 
Reconstruction Problem, the Matrix-Tree Theorem, the theory (largely created by 
Professor Tutte) of factors (or matchings) in graphs, chromatic polynomials, Brooks’s 
Theorem, Grinberg’s Theorem, planar graphs and Kuratowski’s Theorem, are covered 
in this reference book. Other topics include the theory of decomposition of graphs into 
3-connected “3-blocks,” electrical networks, and the classification theorem for closed 
surfaces. Professor Tutte unifies these topics into a coherent whole and imbues them with 
his highly individual approach to the subject and with his lively writing style. 

Exercises, notes and exhaustive references follow each chapter, making this an outstanding 
textbook for advanced courses and an invaluable reference for anyone interested in graph 
theory. 
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Designed for the Aaa ce Graph 
reference tool for those interested in a & 

subject. Exercises, notes and ee. 

chapter, making it outstanding as both a text 

The author approaches the subject with a ely 
reader will delight to discover that the topics i 

coherently unified and include some of the deey 

developments in graph theory. 

W.T. Tutte studied at the University of Car 
a B.A. degree and a Ph.D. in 1938 and 1948 | 
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