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Preface 

The exciting and rapidly growing area of graph theory is rich in theoretical 
results as well as applications to real-world problems. In this edition of Graphs & 

Digraphs, as in the first, our major emphasis is on the theoretical aspects of graph 
theory, and we have included what we believe to be the most interesting and important 

results in the field. In addition, however, we have introduced the reader to types of 

problems that can be modeled by graphs and we have indicated efficient algorithms for 
their solutions. In keeping with our belief that a background emphasizing theory and 

proof techniques is indispensable for the student of graph theory, we have included 

careful proofs that the algorithms do, in fact, accomplish what they claim. Exercises 
reflecting the addition of these algorithms as well as a substantial number of new 
exercises have been added. 

A second major change in this edition is the integration of graph and digraph 
theory. The material on digraph theory, self-contained in the first edition, is now 

developed parallel to that ot (undirected) graphs. This allows, for example, the max- 
flow min-cut theorem to be introduced early in the text and then used to establish 
results on connectivity and matching. 

This text is intended for an introductory sequence in graph theory at the senior or 

beginning graduate level. However, a one-semester course could easily be designed 
by selecting those topics of major importance and interest to the students involved. To 
facilitate such a choice in this edition, we have judiciously chosen a number of topics 
to introduce and develop in the exercises rather than in the text itself. Three topics that 
are introduced early in the text can be omitted with little effect on the material that 
follows, namely Section 2.4 on the Reconstruction Problem, Section 3.2 on n-ary 
trees, and Sections 4.4-4.6 on embedding graphs on surfaces of positive genus. 

It is a pleasure to thank a number of individuals who assisted us with this edition 

in a variety of ways. The discussions we had with Farhad Shahrokhi on graph algo¬ 
rithms were very useful to us, and we are most appreciative of the time and effort he 

spent on our behalf. We are grateful for the suggestions made by Garry Johns, Paresh 
J. Malde, Ortrud R. Oellermann, Robert Rieper, and Farrokh Saba. The advice given 
to us by reviewers of this edition was very helpful; we are delighted to thank Ruth A. 

Bari, Ralph Faudree, Ronald J. Gould, Jerrold R. Griggs, F. C. Holroyd, Gary T. 

Myers, and Richard D. Ringeisen. Our gratitude goes to Margo Johnson for her 
consistently excellent typing. Finally, we thank the staff of Wadsworth & Brooks/Cole 
Advanced Books & Software, particularly John Kimmel, for their interest in and 
assistance with this edition. 

Gary Chartrand 

Linda Lesniak 
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Chapter One 

Graphs and Digraphs 

In many disciplines we are faced with situations in which we want to find out 
how or whether a finite number of objects are related. If the relation is 

symmetric, we can model the situation by a graph. More generally, we can 
model the structure by a digraph. Hence, graphs and digraphs occur naturally 
and often. We begin our study with these two basic concepts. 

1.1 Graphs 

Many situations and structures give rise to graphs. Before we offer a precise 
definition of a graph, we present a few examples. 

Assume that a California-based airline services several cities within 
California as well as Reno and Las Vegas, Nevada. These cities are indicated 
on the map shown in Figure 1.1(a). 

This airline has several direct routes between certain pairs of these cities; 
the flying patterns are illustrated in Figure 1.1(b). The diagram in Figure 1.2(a) 
representing the cities serviced and the flying routes is a graph. 

At times it is convenient to include additional information in a graph. For 
example, we might want to know the cost of each direct route. These costs (or 
weights) can be assigned to the edges of Figure 1.2(a), producing the network 
of Figure 1.2(b), where the labels a, b, and so on represent the costs. 

By inspecting Figure 1.2, we can answer questions such as whether one 
can fly from San Diego to Reno and, if so, which route is least expensive. Of 
course, as graphs become more complex, solutions by inspection are no longer 
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Figure 1.2 A graph and a network 
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feasible. In Chapter 2 we will discuss an efficient means of finding a “shortest 
path” in any graph. 

As a second example, assume that a business is expanding and plans to 
add . several new positions; namely, a draftsman, an engineer, a computer 

programmer, a data analyst, and an assistant personnel manager. Seven 
individuals apply for these five positions, some of whom have the qualifica¬ 
tions for two or more of the positions. This situation can be represented by the 
graph shown in Figure 1.3, where five points (denoted DRA, ENG, PRO, 

ANL, and PER) are used to indicate the positions and seven points (1,2, 
7) are used to indicate the applicants. Each point on the top of the graph 

represents an applicant, and each point on the bottom represents a position. A 
line is drawn between two points if the person is qualified for that position. A 
question that might be of interest is whether there are five individuals, from 
among the seven, who can be hired to fill all five positions. In graph theoretic 
terms, we are asking whether the set of jobs can be “matched” to a subset of 

the applicants. An algorithm that answers such questions will be discussed in 
Chapter 8. 

1 2 3 4 5 6 7 

Figure 1.3 A graph of jobs and applicants 

As a last example, let us suppose that eight experimental chemicals (A, 
B, ...,//) are to be stored in large (expensive) storage bins. Some chemicals 
have the potential to interact with each other and, consequently, should not be 

stored in the same bin. This situation is illustrated in the graph of Figure 1.4, 
where each chemical is represented by a point and two points are joined by a 
line if the corresponding chemicals should not be stored together. We might 
ask: What is the least number of storage bins that are needed to store all eight 
chemicals? This type of question is of particular interest to graph theorists. At 

the present, the only known algorithms to solve problems of this type are very 
inefficient, and many mathematicians believe that no efficient solution exists. 
We will see in Chapter 10 an example of an efficient “heuristic” algorithm for 
this problem; that is, an algorithm that describes a small, but not the least, 

number of bins that will suffice. 
Each of the examples discussed so far was based on a collection of objects 

(cities, people, jobs, chemicals), and relationships between certain pairs. These 
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A 

G C 

E 

Figure 1.4 A chemical interaction graph 

ideas are easily abstracted to produce the concept of a graph. 
A graph G is a finite nonempty set of objects called vertices (the singular 

is vertex) together with a (possibly empty) set of unordered pairs of distinct 
vertices of G called edges. The vertex set of G is denoted by F(G), while the 

edge set is denoted by E(G). 

The edge e = {u, v} is said to join the vertices u and v. If e= {u, v} is an 

edge of a graph G, then u and v are adjacent vertices, while u and e are 

incident, as are v and e. Furthermore, if ex and e2 are distinct edges of G 
incident with a common vertex, then ex and e2 are adjacent edges. It is con¬ 
venient to henceforth denote an edge by uv or vu rather than by {u, v}. 

The cardinality of the vertex set of a graph G is called the order of G and 

is denoted by p(G), or more simply, p, while the cardinality of its edge set is 

the size of G and is denoted by q(G) or q. A (p, q) graph has order p and size 

fl¬ 
it is customary to define or describe a graph by means of a diagram in 

which each vertex is represented by a point (which we draw as a small circle) 
and each edge e = uv is represented by a line segment or curve joining the 

points corresponding to u and v. 
A graph G with vertex set V(G) = {vl5 v2, ... , vp) can also be described 

by means of matrices. One such matrix is the p x p adjacency matrix A(G) = 

[a,y], where 

1 if VjVj e E(G) 

0 if VjVj <£ E(G) 

Thus, the adjacency matrix of a graph G is a symmetric (0, 1) matrix having 

zero entries along the main diagonal. 
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For example, a graph G is defined by the sets 

V(G) = {vx, v2, v3, v4} and E(G) = {vxv2, v2v3, v2v4, v3v4}. 

A diagram of this graph and its adjacency matrix are shown in Figure 1.5. 

0 10 0 

10 11 

0 10 1 

0 110 

Figure 1.5 A graph and its adjacency matrix 

The adjacency matrix representation of a graph is often convenient if one 

intends to use a computer to obtain some information or solve a problem 
concerning the graph. On the other hand, an adjacency matrix contains a great 
deal of extraneous data—often many 0’s and twice as many l’s as needed. This 
unsatisfactory characteristic of the adjacency matrix is often alleviated by 

inputting the graph in a variety of other manners. For example, one could 
input the edge set and the order, or one could input adjacency arrays, where 
the vertices adjacent to a given vertex are listed. There are several other 

possibilities. The manner in which a graph is input normally depends on the 
problem to be solved and affects the algorithm and method chosen to solve the 

problem. 
Two graphs often have the same structure, differing only in the way their 

vertices and edges are labeled or in the way they are drawn. To make this idea 
more exact, we introduce the concept of isomorphism. A graph Gx is 
isomorphic to a graph G2 if there exists a one-to-one mapping <(), called an 

isomorphism, from F(G:i) onto V(G2) such that (j> preserves adjacency; that is, 
uv e E(GX) if and only if fyufyv e E(G2). It is easy to see that “is isomorphic to” 
is an equivalence relation on graphs; hence, this relation divides the collection 
of all graphs into equivalence classes, two graphs being nonisomorphic if they 
are in different equivalence classes. If Gx is isomorphic to G2, then we say Gx 

and G2 are isomorphic and write Gx — G2. 

Each of the graphs G,, i= 1, 2, 3, of Figure 1.6 is a (6, 9) graph. Here, 

Gi and G2 are isomorphic. For example, the mapping 4>: F(Gi)-* V{G2) 

defined by 

CjlV! = VX, <t>V2 = V3, (j)V3 = V5, <t>v4 = v2, cj>v5 = v4, 4>v6=v6 

is an isomorphism. On the other hand, Gx £ G3 since, for example, G3 contains 
three pairwise adjacent vertices whereas Gx does not. Of course, G2^G3. 
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Figure 1.6 Isomorphic and nonisomorphic graphs 

If G is a (p, q) graph, then p ^ 1 and 0 s£ ?*£(?) = pip - 1)12. There is 
only one (1, 0) graph (up to isomorphism), and this is referred to as the trivial 

graph. A nontrivial graph then has p 2^2. 
Two graphs G\ and G2 are identical, denoted G\ = G2, if F(Gi) = V(G2) 

and E(Gi) = E{G2). Clearly, two graphs may be isomorphic yet not identical. 

The graphs Gx and G2 of Figure 1.6 are not identical (even though F(G,) = 

V(G2) and G, = G2) since, for example, VjVs e E(Gi) and V!V5 ^ E(G2). 

All 20 nonidentical graphs of order 4 and size 3, having vertex set 

{1,2, 3,4}, are shown in Figure 1.7. Among these graphs, there are only three 

1 

1 

4 

3 

1 

3 

2 

4 

2 

1 

3 

4 

1 

7 

Figure 1.7 The nonidentical (4, 3) graphs having vertex set {1, 2, 3, 4} 
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nonisomorphic classes of graphs. The total number of nonidentical graphs 
having vertex set {1, 2, 3, 4} is 64; in fact, the total number of nonidentical 
graphs of order p with the same vertex set V is 2p(p~l)/1. This is obvious for 
p = 1. If p^ 2 and G is a graph with vertex set F(G), then for each pair u, v of 
distinct vertices, there are two possibilities depending on whether uv is or is not 

an edge of G. Since there are p(p — l)/2 distinct pairs of vertices, there are 
2p('P~1)/2 such nonidentical graphs G. 

With the exception of the order and the size, the numbers that one 

encounters most frequently in the study of graphs are the degrees of its 
vertices. The degree of a vertex v in a graph G is the number of edges of G 

incident with v. The degree of a vertex v in G is denoted degG v or simply deg 
v if G is clear from the context. A vertex is called odd or even depending on 
whether its degree is odd or even. A vertex of degree 0 in G is called an 
isolated vertex and a vertex of degree 1 is an end-vertex of G. In Figure 1.8, a 

graph G is shown together with the degrees of its vertices. 

Figure 1.8 The degrees of the vertices of a graph 

Observe that for the graph G in Figure 1.8, p = 9 and <7=11, while the 
sum of the degrees of its nine vertices is 22. The fact that this last number 
equals 2q for the graph G is not merely a coincidence. Every edge is incident 
with two vertices; hence, when the degrees of the vertices are summed, each 
edge is counted twice. We state this as our first theorem, which, not so 
coincidentally, is sometimes called “The First Theorem of Graph Theory”. 

Theorem 1.1 Let G be a (p, q) graph where V(G) = {vx, v2, . .. , vp}. Then 

p 

£ deg v,-= 2q. 
i= 1 

This result has an interesting consequence. 

Corollary 1.1 In any graph, there is an even number of odd vertices. 

Proof Let G be a graph of size q. Also, let W be the set of odd vertices of G and let 
U be the set of even vertices of G. By Theorem 1.1, 
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Y deg v = Y deg v + E de§ v = 2<?- 
v e v(G) veW veU 

Certainly, Ewef/ deg v is even; hence T,veW deg v is even, implying that |W| is 

even and thereby proving the corollary. ■ 

Frequently, a graph under study is contained within some larger graph 

also being investigated. We consider several instances of this now. A graph H 

is a subgraph of a graph G if V(H) C V(G) and E(H) C E(G); in such a case, 
we also say that G is a supergraph of H. If G and H are graphs, not all of 
whose vertices are labeled, then H is also considered to be a subgraph of G if 

any unlabeled vertices can be labeled so that V(H) C K(G) and E(H) C E(G). 

If H is a subgraph of G, then we write HOG. 

The simplest type of subgraph of a graph G is that obtained by deleting a 

vertex or edge. If v e V(G) and \V(G)\^2, then G-v denotes the subgraph 
with vertex set V(G) — {v} and whose edges are all those of G not incident 

with v; if ee E(G), then G-e is the subgraph having vertex set V(G) and edge 
set E(G)-{e}. The deletion of a set of vertices or set of edges is defined 

analogously. These concepts are illustrated in Figure 1.9. 

Figure 1.9 The deletion of an element of a graph 

If u and v are nonadjacent vertices of a graph G, then G+f, where 

f=uv, denotes the graph with vertex set V(G) and edge set £(G)U{/}. 

Clearly, G C G + /. 
We have seen that G — e has the same vertex set as G and that G has the 

same vertex set as G+f. Whenever a subgraph H of a graph G has the same 

order as that of G, then H is called a spanning subgraph of G. 
Among the most important subgraphs we shall encounter are the 

“induced subgraphs”. If U is a nonempty subset of the vertex set V(G) of a 

graph G, then the subgraph (U) of G induced by U is the graph having vertex 
set U and whose edge set consists of those edges of G incident with two 
elements of U. A subgraph H of G is called vertex-induced or induced, denoted 
H<G, if H=(U) for some subset U of V(G). Similarly, if F is a nonempty 

subset of E(G), then the subgraph < F) induced by F is the graph whose vertex 
set consists of those vertices of G incident with at least one edge of F and 
whose edge set is F. A subgraph H of G is edge-induced if H as (F) for some 
subset F of £(G). It is a simple consequence of the definitions that every 
induced subgraph of a graph G can be obtained by removing vertices from G 
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while every subgraph of G can be obtained by deleting vertices and edges. 
These concepts are illustrated in Figure 1.10 for the graph G, where 

V(G) = {vj, v2, v3, v4, v5, v6}, U = {vl5 v2, v5}, and F= {vjv4, v2v5}. 

Figure 1.10 Vertex-induced and edge-induced subgraphs 

The reader should be aware of possible confusion between nonisomor¬ 
phic and nonidentical subgraphs. For example, in graph G3 of Figure 1.6, how 
many subgraphs of G3 have three vertices and three edges? The answer is 
obviously “two”, since what is certainly desired here is the number of non¬ 

identical such subgraphs. The reader could incorrectly give an answer of “one” 
here, interpreting the question as the number of nonisomorphic such subgraphs. 
Hence the reader must consider carefully the context in which the question is 
pbsed. 

There are certain classes of graphs that occur so often that they deserve 
special mention and in some cases, special notation. We describe the most 
prominent of these in this section. 

A graph G is regular of degree r if for each vertex v of G, deg v = r; such 

graphs are also called r-regular. The 3-regular graphs are referred to as cubic 

graphs. A graph is complete if every two of its vertices are adjacent. A 
complete (p, q) graph is therefore a regular graph of degree p— 1 having 

q—p(p — l)/2; we denote this graph by Kp. In Figure 1.11 are shown all 
(nonisomorphic) regular graphs with p — 4, including the complete graph 

G3 = K4. 

The complement G of a graph G is the graph with vertex set F(G) such that 
two vertices are adjacent in G if and only if these vertices are not adjacent 

in G. Hence, if G is a (p, q) graph, then G is a (p, q) graph, where q + q = (f). 
In Figure 1.11, the_ graphs G0 and G3 are complementary, as are Gx and G2. 
The complement Kp of the complete graph Kp has p vertices and no edges and 
is referred to as the empty graph of order p. A graph G is self-complementary if 

G = G. 
A graph G is n-partite, n^ 1, if it is possible to partition V{G) into n 

subsets F[, V2, . .. , V„ (called partite sets) such that every element of E(G) 

joins a vertex of Vt to a vertex of Vj, i E j. If G is a 1-partite graph of order p, 
then G = Kp. For n — 2, such graphs are called bipartite graphs; this class of 
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O O 

G0'. 

O o 

G i: 

Q Q 

Figure 1.11 The regular graphs of order 4 

graphs is particularly important and will be encountered many times. In Figure 

1.12, a bipartite graph G, is shown; a second graph G2, identical to Gj, is also 
given to emphasize the bipartite character of Gj. If G is a regular bipartite 

graph with partite sets V, and V2, then IV^I = \V2\ (see Exercise 1.10; also see 

[ACLOl]). 

V, V4 Vs V-7 V! v3 v5 V7 

Figure 1.12 A bipartite graph 

A complete n-partite graph G is an n-partite graph with partite sets Vx, 

V2, ..., V„ having the added property that if u e V, and veV}, i±j, then 
«ve £(G). If | Vi\ =pi, then this graph is denoted by K(p\, p2.pn). (The 

order of the numbers px,p2, ■ ■ ■ , Pn is not important.) Note that a complete n- 

partite graph is complete if and only if p, = 1 for all i, in which case it is Kn. If 
Pi = t for all i, then the complete n-partite graph is regular and is also denoted 

by Kn(t). Thus, K„(l) = Kn. 

A complete bipartite graph with partite sets Vx and V2, w'here | Vj| =m 

and | V2 \ = n, is then denoted by K(m, n). The graph K{ 1, rt) is called a star. 

There are many ways of combining graphs to produce new graphs. We 
next describe some binary operations defined on graphs. This discussion 
introduces notation that will prove very useful in giving examples. In the 
following definitions, we assume that Gx and G2 are two graphs with disjoint 

vertex sets. 
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The union G = GXGG2 has V(G) = V^Gj) U V(G2) and E(G) = 

E(GX) U E(G2). If a graph G consists of n (3= 2) disjoint copies of a graph H, 
then we write G = nH. The graph 2Kx U 3K2 U /C(l, 3) is shown in Figure 1.13. 

The join G - Gx + G2 has V(G) = V(GX) U V(G2) and 

E(G) = E(GX) U E(G2) G {uv\u e V(GX) and veV(G2)}. 

Using the join operation, we can see that K(m, n) = Km +Kn. Another 
illustration is given in Figure 1.14. 

O 

O 

G2: 

O 

o 

o 

Figure 1.14 The join of two graphs 

The cartesian product G = Gx x G2 has V(G) = U(G,) x V(G2), and two 
vertices (ux, u2) and (vj, v2) of G are adjacent if and only if either 

ux = v, and u2v2e E(G2) 

or 

u2 = v2 and uxvxeE(Gx). 

An example is shown in Figure 1.15. 

Figure 1.15 The cartesian product of two graphs 
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An important class of graphs is defined in terms of cartesian products; 

these are the “cubes”. The n-cube Q„ is the graph K2 if n = 1, while for n> 1, 
Qn is defined inductively as Qn-\ x K2. The cube Qn can also be considered as 

that graph whose vertices are labeled by the binary n-tuples (a}, a2, . . . , an) 

(that is, a, is 0 or 1 for 1 i =£ n) and such that two vertices are adjacent if and 
only if their corresponding n-tuples differ in precisely one position. It is easily 
observed that Qn is an n-regular graph of order 2n. The n-cubes, n = 1, 2, and 
3, are shown in Figure 1.16 with appropriate labelings. 

(0, 1,0) (1,1,0) 

(0) (1) 
Q i: o-o 

(0,1) (1,1) 

<23: 

(0,0) (1,0) 
(0.0,0) (1,0.0) 

Figure 1.16 Cubes 

Exercises 1.1 

1.1 Figure 1.6 shows two nonisomorphic (6, 9) graphs. Give another example of two 

nonisomorphic graphs H\ and H2 such that p(Hx) = p(H2) and q(H\) = q(H2). 

1.2 Determine all nonisomorphic graphs of order 5. 

1.3 Determine all nonidentical (4, 4) graphs having vertex set {1, 2, 3, 4}. 

1.4 Prove or disprove: Let V = {v,, v2, . .. , vp}. The number of nonidentical (p, q) 

graphs having vertex set V equals the number of nonidentical (p, (5) — q) graphs 

having vertex set V. 

1.5 Let p be a given positive integer, and let m and n be nonnegative integers such 

that m + n=p and n is even. Show that there exists a graph G of order p having 

m even vertices and n odd vertices. 

1.6 Determine all nonisomorphic subgraphs of the graph G of Figure 1.9. How many 

of these are induced? How many are edge-induced? 
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1.7 For a graph G, let Fj, F2CF(G), where V\, F2 and ViDV2 are nonempty. 
Prove that 

(a) £((y1))U£((V2))C£((]/1U^2>), and 

(b) £((F1))DE(<y2)) = £((l/1nt/2)). 

1.8 Show that it is not always the case that every edge-induced subgraph of a graph G 
can be obtained by removing edges from G. 

1.9 How many subgraphs of the graph G of Figure 1.10 contain four vertices and four 
edges? 

1.10 Prove that if G is a regular bipartite graph with partite sets F, and F2, then 
\Vi\ = \V2\. 

1.11 Let G be a graph such that n is the largest degree of its vertices. Prove that there 
exists a supergraph H of G such that G<H and H is n-regular. 

1.12 If H < G, does it follow that H < G? 

1.13 Prove that there exists a self-complementary graph of order p if and only if p = 0 
(mod 4) or p = 1 (mod 4). 

1.14 Determine all self-complementary graphs of order 5 or less. 

1.15 Let G be a self-complementary graph of order p, where p = 1 (mod 4). Prove that 
G contains at least one vertex of degree (p - l)/2. (Hint: Prove the stronger 
result that G contains an odd number of vertices of degree (p - l)/2.) 

1.16 The eigenvalues of a graph G of order p are the eigenvalues of its adjacency 
matrix; that is, if G has adjacency matrix A, then the eigenvalues of G are the p 
(not necessarily distinct) numbers satisfying the determinant equation 

det(X/p - A) = 0 

where Ip is the p x p identity matrix. 
Determine the eigenvalues of: 

(a) K3, (b) K( 1, 2), and (c) K( 1, 3). 

1.17 Let G be a nonempty graph with the property that whenever uv t E(G) and 
vw £ E(G), then uw £ E(G). Prove that G has this property if and only if G is a 
complete n-partite graph for some n 3= 2. 



14 Chapter 1 Graphs and Digraphs 

1.2 Digraphs 

A directed graph or digraph D is a finite nonempty set of objects called vertices 
together with a (possibly empty) set of ordered pairs of distinct vertices of D 
called arcs or directed edges. As with graphs, the vertex set of D is denoted by 
V(D) and the arc set is denoted by E{D). A digraph D with V{D) = {u, v, w} 
and E(D) = {(«, w), (w, u), (u, v)} is illustrated in Figure 1.17. Observe that 
when a digraph is described by means of a diagram, the “direction” of each arc 
is indicated by an arrowhead. 

D: 

Figure 1.17 A digraph 

Digraphs are more natural (and useful) than graphs for representing 
situations in which order or direction is involved in the relationships between 
pairs of objects. For example. Figure 1.18(a) indicates the street system of a 
small town, including one-way streets (unmarked streets are two-way). In 
Figure 1.18(b), the vertices correspond to street intersections and there is an 
arc from u to v if it is legal to drive from the intersection associated with u to 

w 

L_ 

(a) (b) 

Figure 1.18 A street system digraph 
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the intersection associated with v (without passing through any other intersec¬ 

tion). 
Flowcharts that display the logical flow possibilities in computer programs 

are another example of the use of digraphs to represent a situation. 
The terminology used in discussing digraphs is quite similar to that used 

for graphs. The cardinality of the vertex set of a digraph D is called the order 

of D and is denoted by p(D), or simply p. The size q(D) (or q) of D is the 
cardinality of its arc set. A (p, q) digraph is a digraph D with order p and size 

<?• 

If a — (u, v) is an arc of a digraph D, then a is said to join u and v. We 
further say that a is incident from u and incident to v, while u is incident to a 
and v is incident from a. Moreover, u is said to be adjacent to v and v is 
adjacent from u. In the digraph D of Figure 1.17, vertex u is adjacent to vertex 

v, but v is not adjacent to u. Two vertices u and v of a digraph D are 
nonadjacent if u is neither adjacent to nor adjacent from v in D. 

The outdegree od v of a vertex v of a digraph D is the number of vertices 

of D that are adjacent from v. The indegree id v of v is the number of vertices 
of D adjacent to v. The degree deg v of a vertex v of D is defined by 

deg v = od v + id v. 

In the digraph D of Figure 1.17, od u- 2, id u = id v = id w = od w = 1, while 
od v = 0. For the same digraph, deg u = 3, deg w = 2, and deg v = 1. 

We now present the “First Theorem of Digraph Theory”. 

Theorem 1.2 If D is a digraph of order p and size q with V(D) = {vl5 v2, . . . , v^}, 

then p p 

£ od v, = £ id ^ = q. 
i=i i=i 

Proof When the outdegrees of the vertices are summed, each arc is counted once, 
since every arc is incident from exactly one vertex. Similarly, when the 
indegrees are summed, an arc is counted just once since every arc is incident 

to a single vertex. ■ 

A digraph Dx is isomorphic to a digraph D2 if there exists a one-to-one 

mapping <j), called an isomorphism, from V(DX) onto V(D2) such that (u, 

v) e E(Dx) if and only if (<j>w, 4>v) 6 E(D2). The relation “is isomorphic to” is 
an equivalence relation on digraphs. Thus, this relation partitions the set of all 
digraphs into equivalence classes; two digraphs are nonisomorphic if they 

belong to different equivalence classes. If Dx is isomorphic to D2, then we say 

Dx and D2 are isomorphic and write Dx = D2. 
There is only one (1, 0) digraph (up to isomorphism); this is the trivial 

digraph. Also, there is only one (2, 0), (2, 1), and (2, 2) digraph (up to 
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Figure 1.19 The (3, 3) digraphs 

u v 

D2: 

W X W X 

Figure 1.20 Isomorphic, nonidentical digraphs 

isomorphism). There are four (3, 3) digraphs, and they are shown in Figure 
1.19. 

Two digraphs Dx and D2 are identical, written DX = D2, if V(Dl) = 
V(D2) and E(DX) = E(D2). Two identical digraphs are necessarily isomorphic, 
but not conversely. The digraphs of Figure 1.20 are isomorphic, but not 
identical. 

A digraph D{ is a subdigraph of a digraph D if V(DX) CV(D) and 
E(DX) C E(D). If Dx and D are digraphs, not all of whose vertices are labeled, 
then D{ is also considered to be a subdigraph of D if any unlabeled vertices can 

be labeled so that V(DX)CV(D) and E(DX)CE(D). We write D,CD to 
indicate that D, is a subdigraph of D. A subdigraph D, of D is a spanning 
subdigraph if Dx has the same order as D. 

If D is a nontrivial digraph and v e V(D), then D-v is that digraph with 
vertex set V{D)-{v) and whose arcs are all those of D that are neither 
incident to nor from v. If a e E(D), then D - a is the subdigraph with vertex 

set V(D) and arc set E(D) - {a}. The deletion of a set of vertices or set of arcs 
is defined analogously. 

If D is a digraph such that u, veV(D) and (u, v) g E(D), then the 
digraph D + a, where a = (u, v), has vertex set V(D) and arc set E(D) U {a}. 

If U is a nonempty subset of the vertex set of a digraph D, then the 
subdigraph (U) of D induced by U is that digraph having vertex set U and 
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whose arc set consists of all those arcs of D joining vertices of U. A subdigraph 
Dx is said to be induced and denoted Dx < D if Dx = ( U) for some subset U of 

V(D). If F is a nonempty subset of £(£>), then the subdigraph (F) induced by 
F is that digraph whose vertex set consists of those vertices of D incident to or 
from at least one arc of F and whose arc set is F. A subdigraph D, of D is arc- 
induced if £>, = (F) for some subset Fof E(D). As with graphs, every induced 
subdigraph of a digraph D can be obtained by removing vertices from D and 

every subdigraph of D can be produced by removing vertices and arcs. We 
illustrate these ideas in Figure 1.21 for the digraph D, where 

V(D) = {vi, v2, v3, v4}, U= {vj, v2, v3}, and 

F= (0i> v2), (v2, v4)}. 

D (U) (F) 

Figure 1.21 Induced and arc-induced subdigraphs 

We now consider certain types of digraphs that occur regularly in our 
discussions. A digraph D is called symmetric if, whenever (u, v) is an arc of D, 
then (v, u) is as well. There is a natural one-to-one correspondence between 
the set of symmetric digraphs and the set of graphs. A digraph D is called an 

asymmetric digraph or an oriented graph if whenever (u, v) is an arc of D, then 
(v, u) is not an arc of D. Thus, an oriented graph D can be obtained from a 

graph G by assigning a direction to (or by “orienting”) each edge of G, thereby 
transforming each edge of G into an arc and transforming G itself into an 
asymmetric digraph: D is also called an orientation of G. The digraph Dx of 
Figure 1.22 is symmetric while D2 is asymmetric; the digraph D3 has neither 
property. 

A digraph D is called complete if for every two distinct vertices u and v of 
D, at least one of the arcs (u, v) and (v, u) is present in D. The complete 
symmetric digraph of order p has both arcs (u, v) and (v, u) for every two 
distinct vertices u and v and is denoted by K*. Indeed, if G is a graph, then G* 
denotes the symmetric digraph obtained by replacing each edge of G by a 
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Figure 1.22 Symmetric and asymmetric digraphs 

symmetric pair of arcs. The digraph K* has size p(p — 1) and odv = idv=p — 1 
for every vertex v of D. The digraphs K*, K2, , and K% are shown in Figure 

1.23. 
A complete asymmetric digraph is called a tournament and will be studied 

in some detail in Chapter 7. 
A digraph D is called regular of degree r or r-regular if od v = id v = r for 

every vertex v of D. The digraph K* is (p — l)-regular. A 1-regular digraph Dx 

and 2-regular digraph D2 are shown in Figure 1.24. The digraph D2 is a 
tournament. 

Figure 1.24 Regular digraphs 
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Exercises 1.2 

1.18 Determine all (pairwise nonisomorphic) digraphs of order 4 and size 4. 

1.19 Prove or disprove: For every integer p 2=2, there exists a digraph D of order p 
such that for every two distinct vertices u and v of D, od u 4= od v and id u E id v. 

1.20 Prove or disprove: No digraph contains an odd number of vertices of odd 

outdegree or an odd number of vertices of odd indegree. 

1.21 Let Di and D2 be isomorphic digraphs. 

(a) Prove that Dx and D2 have the same order and the same size. 

(b) If <j) is an isomorphism from V(DX) onto V(D2), then prove that for every 

v e V(D!), odDlv = odD24>v and idDjv = idD24>v. 

1.22 Prove or disprove: If D\ and D2 are two digraphs with V(D{) = {uu u2, . . . , up) 
and V(D2) = {v1; v2, . . . , vp} such that idDlu, = idD2v, and odDlu, = odD2v, for 
i = 1,2, . . . , p, then Dx = D2. 

1.23 Prove that if every proper induced subdigraph of a digraph D of order p3=4 is 
regular, then E(D) = 0 or D = K*. 

1.24 Prove or disprove: If r and p are integers with 0^r<p, then there exists an r- 
regular digraph of order p. 

1.25 Let D be a digraph, and let r = max ({od v|v e V(D)} U {id w\w e F(D)}). Prove 

that there exists an r-regular digraph H such that D < H. 

1.26 Prove that there exist regular tournaments of every odd order but there are no 

regular tournaments of even order. 

1.27 The adjacency matrix A(D) of a digraph D with V(D) = {vj, v2, . . . , vp} is the 

p Xp matrix [a,j\ defined by 1 if (v,, v;) e E(D) and a,j = 0 otherwise. 

(a) What information do the row sums and column sums of the adjacency matrix 
of a digraph provide? 

(b) Characterize matrices that are adjacency matrices of digraphs. 

1.3 Degree Sequences 

In this section, we investigate the concept of degree in graphs and digraphs in 
more detail. 

A sequence d{, d2, ... , dp of nonnegative integers is called a degree 
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sequence of a graph G if the vertices of G can be labeled vx, v2, . . . , vp so that 

deg v, = d, for all i. For example, a degree sequence of the graph of Figure 1.25 

is 4, 3, 2, 2, 1 (or 1, 2, 2, 3, 4, or 2, 1, 4, 2, 3). 

Given a graph G, a degree sequence of G can be easily determined, of 

course. On the other hand, if a sequence s: dx, d2, ... , dp of nonnegative 
integers is given, then under what conditions is s a degree sequence of some 

graph? If such a graph exists, then s is called a graphical sequence. Certainly 
the conditions d, sg p - 1 for all i and E? i d, is even are necessary for a 

sequence to be graphical, but these conditions are not sufficient. The sequence 
3, 3, 3, 1 is not graphical, for example. A necessary and sufficient condition for 
a sequence to be graphical was found by Havel [H8] and later rediscovered by 

Hakimi [H2], 

Theorem 1.3 (Havel-Hakimi) A sequence s: dx, d2, ..., dp of nonnegative 

integers with dx ^ d2 5= . . . ^ dp, p^ 2, d\ 5= 1, is graphical if and only if the 

sequence .sq: d2 — 1, <i3 — 1, ..., ddl + l — 1, ddl+2, dp is graphical. 

Proof Assume that is a graphical sequence. Then there exists a graph Gx of order 
p — 1 such that s, is a degree sequence of G,. Thus, the vertices of G\ can be 

labeled as v2, v3, ... , vp so that 

[ di - 1 2 *£ i dx + 1 
deg V/= T ' 

(a, dx + 2 i =£ /? 

A new graph G can now be constructed by adding a new vertex Vj and the dx 

edges V!v,, 2^idx + l. Then in G, deg v, = dj for 1 =£/and so s: dx, d2, 

... , dp is graphical. 
Conversely, let s be a graphical sequence. Hence there exist graphs of 

order p with degree sequence 5. Among all such graphs let G be one such that 
V(G) = {v1? v2, ... , vp}, deg v, = dt for i= 1, 2, ... , p, and the sum of the 

degrees of the vertices adjacent with V! is maximum. We show first that v, is 
adjacent with vertices having degrees d2, J3, .. . , dd] + l. 

Suppose, to the contrary, that V] is not adjacent with vertices having 

degrees d2, d3, ..., ddx + x. Then there exist vertices vt and v* with dj>dk such 
that V] is adjacent to v* but not to v;. Since the degree of v; exceeds that of vk. 
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there exists a vertex v„ such that v„ is adjacent to vy but not to vk. Removing 
the edges vxvk and vyv„ and adding the edges VjV, and v*v„ results in a graph 
G' having the same degree sequence as G. However, in G' the sum of the 

degrees of the vertices adjacent with vj is larger than that in G, contradicting 
the choice of G. 

Thus, vj is adjacent with vertices having degrees d2, d3, ... , dd +1, and 
the graph G - v, has degree sequence Sj so that is graphical. ■ 

With the aid of Theorem 1.3, we may now present an algorithm that 
allows us to determine whether a finite sequence of nonnegative integers is 
graphical. 

Algorithm 1A Given a sequence of p($T) nonnegative integers: 

1. If some integer in the sequence exceeds p - 1, then the sequence is not 
graphical. Otherwise, continue to Step 2. 

2. If all integers in the sequence are 0, then the sequence is graphical. If the 
sequence contains a negative integer, then the sequence is not graphical. 
Otherwise, continue to Step 3. 

3. Reorder the numbers in the current sequence, if necessary, so that it is a 
nonincreasing sequence. 

4. Delete the first number, say n, from the sequence, and subtract 1 from the 
next n numbers in the sequence. Return to Step 2. 

Theorem 1A Algorithm 1A determines whether a given sequence of p(^ 1) non¬ 
negative integers is graphical. 

Proof If the algorithm stops before Step 4, then the result is immediate. We may thus 
assume that the algorithm has proceeded through Step 4 at least once. 

The proof will therefore be complete once we show that by repeating 
Step 4, we eventually arrive at a sequence every term of which is 0 or at a 

sequence containing a negative integer. Since the algorithm has proceeded 
through Step 1, every term in the original sequence is at most p — 1. If every 
term of this sequence is at most p —2, then certainly applying Step 4 produces a 
sequence with p — 1 terms, each of which is at most p — 2. If some term of the 

original sequence equals p — 1, then since 1 is subtracted from each of the 
remaining terms, every term of the resulting sequence is at most p — 2. Hence, 
if Step 4 is applied a second time, a sequence with p - 2 terms is produced in 

which each term is at most p — 3, and, in general, if Step 4 is applied k times, 
l^k^p — 1, a sequence with p — k terms is produced in which each term is at 
most p — k— 1. If Step 4 were applied p — 1 times, the resulting sequence 
contains one term that is at most 0. Therefore, we must eventually arrive at a 
sequence with the desired property. ■ 
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We now illustrate Algorithm 1A with the sequence 

5: 5, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 0, 0. 

We immediately proceed to Step 4, getting 

5i: 2, 2, 2, 2, 1, 2, 2, 1, 1, 1. 

Reordering this sequence, we obtain 

sp. 2, 2, 2, 2, 2, 2, 1, 1, 1, 1. 

Continuing to apply Algorithm 1A, we have 

sh: 1, 1, 2, 2, 2, 1, 1, 1, 1 
s2: 2, 2, 2, 1, 1, 1, 1, 1, 1 

53 = 53: 1, 1, 1, 1, 1, 1, 1, 1 
5;: 0, 1, 1, 1, 1, 1, 1 
54: 1, 1, 1, 1, 1, 1, 0 
5^: 0, 1, 1, 1, 1, 0 
5s: 1,1, 1,1,0, 0 
5^: 0, 1, 1, 0, 0 

56: 1, 1, 0, 0, 0 
s7 = s7: 0, 0, 0, 0. 

Algorithm 1A therefore shows that s is graphical. If we can observe that some 

sequence prior to s7 is graphical, then we can conclude by Theorem 1.3 that s is 
graphical. For example, the sequence 53 is easily seen to be graphical since it is 

the degree sequence of the graph G3 of Figure 1.26. By Theorem 1.3, each of 
the sequences s2, sx, and s is in turn graphical. To construct a graph with 
degree sequence s2, we proceed in reverse from s3 to s2, observing that a vertex 

should be added to G3 so that it is adjacent to two vertices of degree 1. We 
thus obtain a graph G2 with degree sequence s2 (or s2). Proceeding from s2 to 
$!, we again add a new vertex joining it to two vertices of degree 1 in G2. This 

gives a graph Gi with degree sequence 5! (or sj). Finally, we obtain a graph G 
with degree sequence 5 by considering s\; that is, a new vertex is added to Gh 
joining it to vertices of degrees 2, 2, 2, 2, 1. Graph G is then completed by 

inserting two isolated vertices. 
It should be pointed out that graph G in Figure 1.26 is not the only graph 

with degree sequence 5. Indeed, there are graphs that cannot be produced by 

the method used to construct graph G of Figure 1.26. For example, graph H of 

Figure 1.27 is such a graph. 
A good graph-theoretic algorithm is one in which the number of 

computational steps required for its implementation on any graph (or digraph) 
of order p is bounded above by a polynomial in p. For example, it can be 
verified that Algorithm 1A is a good algorithm. 
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Figure 1.27 A graph that cannot be constructed by the method following 

Theorem 1.3. 

Another result that determines which sequences are graphical comes from 
Erdos and Gallai [EG2], 

Theorem 1.4 (Erdos and Gallai) A sequence du d2, ..., dp of nonnegative 
integers with dx d2 3= .. .5= dp is graphical if and only if Ef=1 d, is even and for 
each integer n, \ ^ n ^ p — 1, 

n p 
d,s£/i(« — 1) + min {n,dj}. 

(=1 i = n + 1 

When considering degree sequences, we are interested not only in 

degrees but also in their frequencies. We now delete this last requirement. 
Denote the degree set of a graph G (that is, the set of degrees of the vertices of 
G) by 2)g. For example, if G = /C(l,2, 4), then 2)G = {3, 5, 6}. We now 
investigate the question of which sets of positive integers are the degree sets of 
graphs. This question is completely answered by a result of Kapoor, Polimeni, 
and Wall [KPW1]. 

Theorem 1.5 For every set S = {ax, a2, ... , an}, 1, of positive integers, with 

ax<a2<... <an, there exists a graph G such that 2)G = S. Furthermore, the 

minimum order p(S) = p(fli, a2, . .. , an) of such a graph G is p(5) = a„ + 1. 

Proof If G is a graph such that 2)G = 5, then G has order at least an + 1. Thus we 
must show that such a graph G having order exactly an + 1 exists. We proceed 
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by induction on n. For n = 1, we observe that every vertex of the complete 
graph Ka< + 1 has degree a{ so that p(ai) = ai + 1. For n = 2, the vertices of the 
graph F= Kai + (/Ca,_„] + 1) have degrees a, and a2, and since F has order 

+ 1, we conclude that p(fl!, a2) = a2 + 1. 

Let n 5= 2. Assume for every set 5 containing m positive integers, where 
1 ra n, that p(5) = + 1, where is the largest element of S. Let Sx- 
{bi, b2, . . . , bn+l} be a set of n + 1 positive integers such that bx < b2 < . . . < 
bn+l. By the inductive hypothesis, 

\i(b2-bu b3-bl, bn-bx) = (bn-bx) + \. 

Hence, there exists a graph H of order (bn- bx) + 1 such that 

2~bx, b3 — b\, bn — b\}. 

G = Khl + (A-bn+l-bn U A/) 

has order bn+l + 1, and 2bG={bl, b2, ..., bn+x}\ hence, p(/?,, b2, 
bn+1) = bn+1 + 1, which completes the proof. ■ 

When considering degree sequences for digraphs, it is necessary to 
account for both the outdegree and indegree of each vertex. A sequence 

(•*1, M, (s2, t2), . . . , (sp, tp) of ordered pairs of nonnegative integers is called a 
degree sequence of a digraph D if the vertices of D can be labeled vl5 v2, . .. , 
vp so that od Vj — Sj and id v,- = t, for all i. For example, a degree sequence of 
the digraph of Figure 1.28 is (2, 1), (1, 2), (0, 2), (2, 0). 

Figure 1.28 A degree sequence of a digraph 

A sequence ($1, tx), (s2, t2), .. . , (sp, tp) of ordered pairs of nonnega¬ 
tive integers is called a digraphical sequence if it is a degree sequence of some 

digraph. Clearly, if the sequence (sx, tx), (s2, t2), ..., (sp, tp) is digraphical, 
then ,j, = E'’ , t,, and we have st^p- 1 and t^p- 1 for all /. That these 

conditions are not sufficient for a sequence to be digraphical is illustrated by 
the sequence (1, 1), (0, 0). However, necessary and sufficient conditions for a 
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sequence to be digraphical were discovered independently by Fulkerson [F7] 

and Ryser [R11]. 

Theorem 1.6 (Fulkerson-Ryser) A sequence (S], r(), (s2, h), •••, (sp, tP) °f 
ordered pairs of nonnegative integers with S\^ s2^ . . . 5= sp is digraphical if and 

only if 

(a) Si^p- 1 and t^p- 1 for l^i^p, 

p p 

(b) E s'= E b, and 
i=i i=i 

n n P 

(c) E ^ E rnin{n-1. *«} + E rnin{n,ti) for \^n<p. 
i=l i'=l ' =«+1 

Exercises 1.3 

1.28 Determine whether the following sequences are graphical. If so, construct a 

graph with the appropriate degree sequence. 

(a) 4, 4, 3, 2, 1, 0 

(b) 3, 3, 2, 2, 2, 2, 1, 1, 0 

(c) 7, 4, 3, 3, 2, 2, 2, 1, 1, 1, 0 

1.29 Show that no nontrivial sequence with distinct terms is graphical. 

1.30 Show that the sequence dy, d2, . . . , dp is graphical if and only if the sequence 

p - di - 1, p - d2~ 1, ... , p - dp - 1 is graphical. 

1.31 (a) Using Theorem 1.4, show that 5: 7, 6, 5, 4, 4, 3, 2, 1 is graphical. 

(b) Prove that there exists exactly one graph with degree sequence 5. 

1.32 Show that the condition given in Theorem 1.4 is necessary for a sequence to be 

graphical. 

1.33 Find a graph G of order 8 having 9)G= {3, 4, 5, 7}. 

1.34 Show that conditions (a), (b), and (c) in Theorem 1.6 are necessary for a 

sequence to be digraphical. 
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Connected Graphs and Digraphs 

The most basic property that a graph or digraph may possess is that of being 
connected; that is, where one may proceed from one vertex to another by 
means of a sequence of edges. This concept is now investigated. 

2.1 Paths and Cycles 

Let u and v be (not necessarily distinct) vertices of a graph G. A u-v walk of G 
is a finite, alternating sequence 

ll IIq, • • • ? — i , € n 9 11^ V 

of vertices and edges, beginning with vertex u and ending with vertex v, such 
that e, = W/_in, for i = 1, 2, . .. , n. The number n (the number of occurrences 
of edges) is called the length of the walk. A trivial walk contains no edges; that 
is, n = 0. We note that there may be repetition of vertices and edges in a walk. 

Often only the vertices of a walk are indicated since the edges present are then 
evident. Two u-v walks u = u0, U\, ...,«„ = v and u = v(), v(.v„, = v are 
considered to be equal if and only if n = m and n, = v, for 0 ^ ^ n\ otherwise, 
they are different. Observe that the edges of two different u — v walks of G 
may very well induce the same subgraph of G. 

A u-v walk is closed or open depending on whether u = v or u ± v. A 

u-v trail is a u-v walk in which no edge is repeated, while a u-v path is a u-v 
walk in which no vertex is repeated. A vertex u forms the trivial u-u path. 
Every path is therefore a trail. In the graph G of Figure 2.1, Wp. v,, v2, v3, v2. 
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v5, v3, v4 is a v,-v4 walk that is not a trail, W2: vx, v2, v5, v,, v3, v4 is a 
Vi-v4 trail that is not a path, and VP3: v,, v3, v4 is a v,-v4 path. 

v2 

By definition, every path is a walk. Although the converse of this state¬ 
ment is not true in general, we do have the following theorem. A walk VP is 
said to contain a walk VP' if VP' is a subsequence of VP. 

Theorem 2.1 Every u-v walk in a graph contains a u-v path. 

Proof Let VP be a u-v walk in a graph G. If VP is closed, the result is trivial. Let VP: 

u = u0, U\, u2, . . . , u„ = v be an open u-v walk of a graph G. (A vertex may 
have received more than one label.) If no vertex of G occurs in VP more than 
once, then VP is a u-v path. Otherwise, there are vertices of G that occur in VP 

twice or more. Let i and j be distinct positive integers, with i<j say, such that 
Ui = Uj. If the terms uh ui+,, . . . , Uj_x are deleted from VP, a u-v walk VP, is 

obtained having fewer terms than that of VP. If there is no repetition of vertices 
in Wj, then VP, is a u-v path. If this is not the case, we continue the above 
procedure until finally arriving at a u-v walk that is a u-v path. ■ 

As the next theorem indicates, the nth power of the adjacency matrix of a 
graph can be used to compute the number of walks of various lengths in the 
graph. 

Theorem 2.2 If A is the adjacency matrix of a graph G with V(G) = { v,, v2, ... , 

vp}, then the (i, j) entry of A'\ n 2* 1, is the number of different vrVj walks of 
length n in G. 

Proof The proof is by induction on n. The result is obvious for n = 1 since there exists 
a vrVj walk of length 1 if and only if v,v; e E(G). Let An~x = [a,^_1)] and 
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assume a\” 1} is the number of different v,-v; walks of length n — 1 in G; 

furthermore, let A" = [a^]. Since An = An~1 - A, we have 

4«= £ «!r‘V (2.i) 
* = i 

Every v,-v;- walk of length n in G consists of a vrvk walk of length n — 1, where 
vk is adjacent to v,, followed by the edge vkVj and the vertex v;. Thus by the 

inductive hypothesis and equation (2.1), we have the desired result. ■ 

A nontrivial closed trail of a graph G is referred to as a circuit of G, and a 

circuit Vi, v2, ... , v„, vx(n 5= 3) whose n vertices v, are distinct is called a cycle. 
An acyclic graph has no cycles. The subgraph of a graph G induced by the 
edges of a trail, path, circuit, or cycle is also referred to as a trail, path, circuit, 
or cyc/e of G. A cycle is even if its length is even; otherwise it is odd. A cycle of 
length n is an n-cycle; a 3-cycle is also called a triangle. A graph of order n that 

is a path or a cycle is denoted by Pn or C„, respectively. 
The concepts discussed in this section for graphs have analogues for 

digraphs. The important difference is that the directions of the arcs must be 
followed in a walk (and hence a trail, path, circuit, or cycle) in a digraph. 

Specifically, let u and v be vertices of a digraph D. By a u-v walk of D is meant 

a finite, alternating sequence 

u Hq , a j, ii\ i a2, .. . , —i , an, un v 

of vertices and arcs, beginning with vertex u and ending with vertex v, such 

that a, = («,_!, ui) for i = 1, 2, ..., n. As with walks in graphs, only the 
vertices need be listed since the arcs are then discernible. The number n is 
called the length of the walk. Trivial walks, equal walks, open and closed 

walks, trails, paths, circuits, and cycles are defined in the obvious manner for 

digraphs. 
The following theorem is analogous to Theorem 2.1 (both in statement 

and proof). 

Theorem 2.3 Every u-v walk in a digraph contains a u-v path. 

We now consider a very basic concept in graph theory, namely connected 
and disconnected graphs. A vertex u is said to be connected to a vertex v in a 
graph G if there exists a u-v path in G. A graph G is connected if every two of 
its vertices are connected. A graph that is not connected is disconnected. The 
relation “is connected to” is an equivalence relation on the vertex set of every 
graph G. Each subgraph induced by the vertices in a resulting equivalence class 
is called a connected component or simply a component of G. Equivalently, a 

component of a graph G is a connected subgraph of G not properly contained 
in any other connected subgraph of G; that is, a component of G is a subgraph 
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that is maximal with respect to the property of being connected. Hence, a 
connected subgraph F of a graph G is a component of G if for each connected 

graph H with FC H C G where V(F) C V(H) and E(F) C £(//), it follows that 
F=H. The number of components of G is denoted by k(G); of course, 
k(G) = 1 if and only if G is connected. For the graph G of Figure 2.2, 
k(G) = 6. 

Figure 2.2 A graph with six components 

For a connected graph G, we define the distance d(u, v) between two 

vertices u and v as the minimum of the lengths of the u-v paths of G. Under 
this distance function, the set U(G) is a metric space. 

The eccentricity e(v) of a vertex v of a connected graph G is the number 

maxu€V(G)d(u, v). The radius rad G is defined as minvev/(G)c(v) while the 
diameter diam G is max^^^v). It therefore follows that diam 

G = maxu,veV(G)d(u, v). A vertex v is a central vertex if e{v) = rad G and the 
center Z(G) of G consists of its central vertices. 

For the graph G of Figure 2.3, rad G = 3 and diam G = 5. Here, Z(G) = 

{u, v, w). The vertices x and y have maximum eccentricity 5. 

The radius and diameter are related by the following inequalities. 

u 

Figure 2.3 A graph with radius 3 and diameter 5 

Theorem 2.4 For every connected graph G, 

rad G diam G sS 2 rad G. 

Proof The inequality rad G=Sdiam G is a direct consequence of the definitions. In 

order to verify the second inequality, select vertices u and v in G such that 
d(u, v) = diam G. Furthermore, let w be a central vertex of G. Since d is a 
metric on V(G), 

d(u, v)^d(u, w) + d(w, v)^2 rad G. ■ 
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Theorem 2.4 gives a lower bound (namely, rad G) for the diameter of a 

connected graph G as well as an upper bound (namely, 2 rad G). This is the 
first of many results we shall encounter for which a question of “sharpness” is 
involved. In other words, just how good is this result? Ordinarily, there are 

many interpretations of such a question. We shall consider some possible 
interpretations in the case of the upper bound. 

Certainly, the upper bound in Theorem 2.4 would not be considered 

sharp if diam G <2 rad G for every graph G; however, it would be considered 
sharp indeed if diam G — 2 rad G for every graph G. In the latter case, we 
would have a formula, not just a bound. Actually, there are graphs G for 

which diam G < 2 rad G and graphs H for which diam H = 2 rad H. This alone 
may be a satisfactory definition of “sharpness”. A more likely interpretation is 
the existence of an infinite class of graphs H such that diam H = 2 rad H for 
each He ^Such a class exists; for example, let 2t consist of the graphs of the 
type Kn + K2. One disadvantage of this example is that for each H e , diam 

H = 2 and rad H= 1. Perhaps a more satisfactory class (which fills a more 
satisfactory requirement for sharpness) is the class of paths P2n+1, n 3s 1. In this 
case, diam P2l,+ i =2n and rad P2n+\ = n\ that is, for each positive integer n, 
there exists a graph G such that diam G = 2 rad G = 2n. (See also Exercise 
2.7.) 

The concept of distance in graphs can be generalized in a most natural 
manner. By a weighted graph, we mean a graph in which each edge e is 
assigned a positive real number, called the weight of e, and denoted by w(e). 

The length of a path P in a weighted graph G is the sum of the weights of the 
edges of P. For connected vertices u and v of G, the distance d(u, v) between u 

and v is the minimum of the lengths of the u-v paths of G. If each edge of G 
has weight 1, then G can be regarded as a graph, where the definitions of 
lengths of paths and distance in G coincide with those given earlier for graphs. 

We next introduce a good algorithm, due to Dijkstra [D2], which 
determines, for a fixed vertex u0 in a connected weighted graph G, the distance 
d(uQ, v) from u0 to each vertex v of G. as well as a shortest u0-v path in G. 

This algorithm will thus provide a means of solving the airline problem 
described in Section 1.1, where Figure 1.2(b) displays a weighted graph with 
the weight of an edge being the cost of a direct flight. Finding the distance 
between two vertices in this weighted graph corresponds to finding the minimum 
cost of flying from one city to another, while a shortest path is a flying route 
between two cities with the lowest cost. 

Before stating Dijkstra's algorithm formally, we present some preliminary 
facts that help explain it. Let un be a fixed vertex in a connected weighted 
graph G. Further, let S C V(G) such that u{) 6 S and define S = F(G) - S. The 
distance d(u0, S) from u0 to S is defined by 

d(uQ, S) = min {d(un, *)}. 
ieS 

Necessarily, there exists at least one vertex v e S such that d(uu, v) = d(u{) 5). 
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Further, if 

P: uq , U\, i<2, • • • , u„, v 

is a shortest Uq-v path in G, then 

(a) Uj e 5 for i = 0, 1, ... , n, and 

(b) u0, ux, ... , un is a shortest u0-un path. 

Moreover, 

d(uQ, S) = min {d(u0, u) + w(uv)}, 

where the minimum is taken over all u e S and veS (such that uv is an edge of 

G). Finally, if this minimum is attained when u = x and v = y, then 

d(uo, y) = d(uf>, x) + w{xy), (2.2) 

which provides an expression for the distance between u0 and y. 

The algorithm begins by defining S0= {m0}. Then 

d(u0, S0) = min {d(u0, u) + vv(uv)}, 
u e 5q, v e So 

so that 

d(u0, S0) = min {w(u0v)}. 
veSo 

If this minimum occurs at v = v1? then we have determined d(u0, v,). We then 

define Sx = {u0> ^1} and proceed, as above, until arriving at Sp^i =0, where 

G has order p. 
Throughout the algorithm, various labelings of the vertices of G are 

produced where, at its conclusion, a vertex v( + u0) will be labeled by the 

ordered pair (L(v), u) such that L(v) = d(u0, v) and u is the predecessor of v 
on a shortest u0-v path. Initially, u0 is labeled L(u0) = 0 and all other vertices 
are labeled °o. For v =£ uQ, the label L(v) changes (perhaps several times) from 

oo to d(u0, v) as this distance is determined. 

Algorithm 2A (Dijkstra) Given a connected weighted graph G of order p and a 

vertex u0 of G: 

1. Set i = 0, S0 = {«(»}, L(uq) = 0, and L(v) = « for v ± u0. If p = 1, then stop; 

otherwise, go to Step 2. 
2. For each veSit replace L(v) by 

min{L(V), L(uf) + w(u,v)}. 

If this produces a new value of L(v), then label v by the ordered pair 

(L(v), Ui). 
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3. Determine min {L(v)} and let ui+] be a vertex where the minimum is 

attained. 

4. Let S/+1 = S,U {«/+,}. 
5. Replace i by /' + !. /// = /?- 1, then stop; otherwise, return to Step 2. 

Theorem 2A Algorithm 2A determines the distance from a fixed vertex u0 of a 
connected weighted graph G of order p to every vertex of G; namely, at the 

termination of the algorithm, 

L(v) = d(u0,v) for all v e F(G). (2.3) 

Further, for v 4= u0, 
u0=w0, wj, w2, wk = v (2.4) 

is a shortest u(rv path, where w, is labeled (L(w,), H',^) for i= 1,2, . . . , k. 

Proof First we verify (2.3). To do this, we proceed by induction and show after 

5,(0 — 1) is constructed that 

L(v) = d(u0, v) for all v e 5,. (2.5) 

This is certainly true for i = 0. Assume that (2.5) holds for a given i 
(0^i<p — 1); we show that (2.5) holds for t + 1. It suffices to prove that 
L{ui+X) = d(u0, ui+,). By Algorithm 2A, u,+1 is a vertex where min{L(v)} is 

attained. However, 

L(ui+i) = min (L(v)} 
v e S, 

= min _ {L{u) + w(uv)} 
U 6 Si, V € 5, 

= min {d(u0, u) 4- iv(nv)}, (2.6) 
u e St, v € Sj 

where the last equality follows by the inductive hypothesis. The minimum in 
the expression (2.6) occurs for v = ui+x so by (2.2), 

L(ui+X) = d(uQ, «i+i). 

In order to verify (2.4), let veV(G), with v^u0, and suppose at the 
completion of the algorithm that v has been labeled (L(v), vq). We know, 
however, that 

L(v) = L(vx) + w(v,v) 

or, equivalently, that 

d{u(), v) = d(uu, V]) + w(V]V). 
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This implies that Vj is the next to last vertex on some shortest «0-v path. 
Continuing in this manner, we produce a shortest u0-v path, 

P: u0 = vn, vn—i, . .. , vl5 v, 

where v, is labeled (L(v,), v,+ 1) for i = 1, 2, .. . , n- 1, verifying (2.4). ■ 

Consider the weighted graph G of Figure 2.4. We compute d(u0, v) for 
each ve V(G) and determine a shortest u0-v3 path. 

o / 
d 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Step 5. 

Step 2. 

Step 3. 

Step 4. 

Step 5. 

Set i = 0, S0 = {«<)}, L(m0) = 0 and L(v) = °° for v P u0. 

Set L(v2) = 13. Label v2 by (L(v2), u0). 
Set L(v4) = 16. Label v4 by (L(v4), m0). 

Set L(v5) = 8. Label v5 by (L(v5), u0). 

Among the vertices in 50, the minimum label is 8, which occurs at v5. 

Let Sj = {u0, v5}. 

Set i = l. Since /< 5, return to Step 2. 

Set L(v!) = 18. Label V[ by (L(vj), v5). 
Set L(v3) = 25. Label v3 by (L(v3), v5). 

Set L(v4) = 15. Label v4 by (L(v4), v5). 

Among the vertices in Si, the minimum label is 13, which occurs at 

v2- 

Let S2 = {u0, v2, v5}. 

Set i = 2. Since i< 5, return to Step 2. 
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Step 2. No change in labels. 

Step 3. Among the vertices in S2, the minimum label is 15, which occurs at 

v4. 

Step 4. Let S3 = {u0, v2, v4, v5}. 

Step 5. Set i = 3. Since i< 5, return to Step 2. 

Step 2. Set L(v3) = 20. Label v3 by (L(v3), v4). 

Step 3. Among the vertices in S0, the minimum label is 18, which occurs at 

Vl- 

Step 4. Let S4 = {w„, vu v2, v4, v5}. 

Step 5. Set i = 4. Since i < 5, return to Step 2. 

Step 2. No change in labels. 

Step 3. Among the vertices in S4, the minimum label is 20, which occurs at 

v3- 

Step 4. Let S5 = {w(), v,, v2, v3, v4, v5}. 

Step 5. Set / = 5. Since i = 5, the algorithm stops. 

We have thus computed the following distances: 

d(u0, w0) = L(u„) = 0 d(un, v3) = L(v3) = 20 
d\u(), v,) = L(vt) = 18 d(u0, v4) = L(v4) = 15 
d(u0, v2) = L(v2) = 13 d(u0, v5) = L(v5) = 8 

To determine a shortest w0-v3 path, we note that the second label of v3 is 

v4, that of v4 is v5, and that of v5 is w„. Hence, this path is w0, v5, v4, v3. 

We now present a useful characterization of bipartite graphs. 

Theorem 2.5 A nontrivial graph is bipartite if and only if it contains no odd cycles. 

Proof Let G be a bipartite graph with partite sets V\ and V2. Suppose C: vlt v2, .. . , 
v*, V! is a cycle of G. Without loss of generality, we may assume v, e K|. 
However, then v2eV2, v3e v4eV2, and so on. This implies k = 2s for 
some positive integer s\ hence, C has even length. 

For the converse, it suffices to prove that every nontrivial connected 
graph G without odd cycles is bipartite, since a nontrivial graph is bipartite if 
and only if each of its nontrivial components is bipartite. Let ve L(G) and 
denote by V, the subset of V(G) consisting of v and all vertices u of G with the 
property that any shortest u-v path of G has even length. Let V2 = V(G) - . 

We now prove that the partition Vt U 1A ot V(G) has the appropriate properties 
to show that G is bipartite. 



Section 2.1 Paths and Cycles 35 

Let u and w be elements of Vx, and suppose uw e E(G). Necessarily, 
then, neither u nor w is the vertex v. Let v = ux, u2, . .. , u2n+l = u, n ^ 1, and 
v = Wj, w2, .. . , w2m+1 = w, m^l, be a shortest v-w path and a shortest v-w 
path of G, respectively, and suppose w' is a vertex that the two paths have in 
common such that the w'-w subpath and w'-w subpath have only w' in common. 

(Note that w' may be v.) The two v-w' subpaths so determined are then 
shortest v-w' paths. Thus, there exists an i such that w' = u, = w,. However, w,, 

ui+1, . .. , u2n+1, w2w+1, w2m, . .. , w, = u, is an odd cycle of G, which is a 
contradiction to our hypothesis. Similarly, no two vertices of V2 are adjacent. ■ 

In Theorem 2.5, the graphs do not contain odd cycles. We now consider 

graphs that do not possess “small” cycles. The length of the shortest cycle in a 
graph G that contains cycles is called the girth of G and is denoted by g(G). 
For the graph G of Figure 2.3, we have g(G) = 3. Moreover, g(Kp) = 3 for 

3, g(K(m,n)) = 4 for m, nS=2, and g(Cn)-n for n 5= 3. As might be 
expected, no formula exists for the girth of a graph in general. This, however, 
has not been the problem most often considered; instead, it has been the 
following problem: For positive integers r ^ 2 and « 2= 3, determine the smallest 
positive integer /(r, n) for which there exists an r-regular graph with girth n 

having order /(r, n). The /--regular graphs of order /(/-, n) with girth n have 
been the object of many investigations; such graphs are called (r, n)-cages. The 
(3, n)-cages are commonly referred to simply as n-cages. We introduce the 
notation [r, n\-graph to indicate an /--regular graph having girth n. Thus, an 

(r, n)-cage is an [r, /z]-graph; indeed, it is one of minimum order. 
It is clear that /(r, n) 2* max {r+\,n}. Thus, /(2, n) = n since C„ is a 2- 

regular graph with girth n. Likewise, f(r, 3) = r+ 1 since Kr+X is an /--regular 
graph having girth 3. In fact, the complete graph K4 is the unique 3-cage. That 
/(/-, n) always exists has been shown by Erdos and Sachs [ESI]. 

Theorem 2.6 For every pair of positive integers r, 3, the number f (r, n) exists 
and in fact 

Hr, n) S [y^)l(r - l)"'1 + (r - l)"”2 + (r - 4)]. 

Proof Since 

r-' 

and 

r 

it follows that 
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(|—j)[(r— l)”-1 -I- (r- l)"-2 + (r-4)] 

is an integer. Denote this integer by p, and let S be the set of all graphs H of 

order p such that g(H) = n and A(H)^r. Note that p^n. The set 5 is 
nonempty since the graph consisting of an n-cycle and p-n isolated vertices 

belongs to 5. For each H e S, define 

M(H) = {v e V(H)\degv <r}. 

If for some He S, M(H) = 0, then we have the desired result; thus we assume 

for all H e S, M{H)±0. For H e 5, we define m(H) to be the maximum 
distance between two vertices of M(H). (We define d(ux, u2) = +x if Ui and u2 

are not connected.) 
Let 5, be those graphs of S containing the maximum number of edges, 

and denote by S2 the set of all those graphs H of 5! for which \M(H)\ is 
maximum. Now among the graphs of S2 let G be chosen so that m(G) is 

maximum. 
Let u, v e M(G) such that d{u, v) = m(G). Suppose m(G) 5= n- 1 2s 2. By 

adding the edge uv to G, we obtain a graph G' of order p having g(G') = n and 

A(G')sSr. Hence G' e S; however, G' has more edges than G, and this 
produces a contradiction. Therefore, m(G)^n - 2 and d(u, v)s£n- 2. (The 

vertices u and v may not be distinct.) 
Denote by W the set of all those vertices w of G such that d(u, w) ^n — 2 

or d(v, w)^n- 1. From our earlier remark, it follows that u, veW. The 
number of vertices different from u and at a distance at most n 2 from u 

cannot exceed 

while the number of vertices different from v and at a distance at most n - 1 

from v cannot exceed 

"E(r-l)' = (^^)[(r-l)”-1 - 1). 

Hence the number of elements in W is at most 

1)"-2- + 1)"" -11; 

however, [(r — l)/(r — 2)][(r — 1)” ' + (r— 1)" “ — 2] =p — r + 1 <p. There¬ 

fore, there is a vertex w, e F(G) - W, so d(u, wx)^n — 1 and d(v, wy)^n. 

Since d(u,W\)>m(G) and «eM(G), it follows that w, <£ M(G) and 
degw! = r^3. Therefore, there exists an edge e incident with w{ whose 

removal from G results in a graph having girth /?. Suppose e = iv,h’2. Clearly, 

d(v, w2) ^ n — 1 so that w2 $ M(G) and deg w2 = r. 
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We now add the edge uwx to G and delete the edge wxw2, producing the 
graph Gj. The graph G, also belongs to S and, in fact, belongs to 5^ The set 
M(Gi) contains all the members of M(G) except possibly u and, in addition, 

contains w2. From the manner in which G was chosen, \M(GX)| =£\M(G)\, so 
that utM(Gx) and |M(Gj)| = \M(G)\. Therefore, degu = r in Gu implying 

that, in G, degn = r-l. Furthermore, G, belongs to S2. 
We now show that u is not the only vertex of M(G), for suppose it is. 

Since there is an even number of odd vertices, we must have r and p odd; 
however, this cannot occur since p is even when r is odd. We conclude that n 

and v are distinct vertices of M{G). 
The vertices v and vv2 are distinct vertices of M{GX). If there exists no v- 

w2 path in Gj, then m(Gx) = +°o, and this is contrary to the fact that m{Gx) s= 
m(G). Thus v and w2 are connected in Gx. Let P be a shortest v-w2 path in Gt. 
If P is also in G, then P has length at least dG(v, w2) in G, but 

dG(v, w2) ^ n — 1 > m(G), 

which is impossible. If P is not in G, then P contains the edge uwx and a u-v 
path of length dG{u, v) as a subpath. Hence P has length exceeding dG(u, v) = 

m(G), again a contradiction. 
It follows for some H in S that M(H) = 0, that is, H is an r-regular graph 

of order p having girth n. ■ 

We now determine the value of the number /(r, 4). 

Theorem 2.7 For 2, /(r, 4) = 2r. Furthermore, there is only one (r,4)-cage; 

namely, K(r, r). 

Proof Suppose G is an [r, 4]-graph, and let w, e F(G). Denote by v,, v2, . • • , vr the 
vertices of G adjacent with ux. Since g(G) = 4, v, is adjacent to none of the 
vertices v,-, 2hence G contains at least r 1 additional vertices u2, M3, 

ur. Therefore, f(r, 4) ^2r. Obviously, the graph K{r, r) is r-regular, has 

girth 4, and has order 2r, thus implying /(r, 4) = 2r. 
To show that K(r, r) is the only (r, 4)-cage, let G be a [r, 4]-graph of 

order 2r whose vertices are labeled as just stated. Since every vertex has degree 
r and G contains no triangle, each ux is adjacent to every vy; therefore, 

G = K{r, r). ■ 

By Theorem 2.7, there is a unique 4-cage: the graph K(3, 3). There is no 

other value of n > 4 for which /(r, /1) is known for all values of r, nor is there a 
value of r> 2 for which/(r, n) is known for all values of n. In these cases, only 
bounds have been determined. We illustrate this type of result by establishing a 
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lower bound for f(r, 5). It was shown in [B7] that/(r, 5) ^ r2 + 1 for all 2. 
Hoffman and Singleton [HS1] proved that equality holds for r = 2, 3, and 7, 
and perhaps 57, since it is not known whether there is a [57, 5]-graph of order 

572 + 1. 

Theorem 2.8 For r^ 2, f(r, 5) 2s r2 + 1. Furthermore, for rF 57, equality holds if 
and only if r = 2, 3, or 7. 

Proof Let G be an [r, 5]-graph, and let e F(G). Denote by v2, v3, ... , vr+J the 
vertices of G adjacent with Vj. Since g(G) = 5, no two vertices v, and v;, 1 < / < 
y«cr-f 1, are adjacent with each other or with a vertex different from v,. Thus 
each vertex vt, 2 sS i r + 1, is adjacent with r- 1 new vertices. Hence G has at 
least r(r - 1) + (r + 1) = r2 + 1 vertices, so that f(r, 5) 5= r2 +1. 

Suppose now that G has order r2 + 1 and that the remaining vertices are 
labeled so that V(G) = {v,|t = 1, 2.r2 + 1}. Let A be the adjacency matrix 

of G. 
First, we show that 

A2 + A=J + (r- 1)7, (2.7) 

where J is the (r2 + 1) x (r2 + 1) matrix, all of whose entries are 1, and 7 is the 
(r2 + 1) x (r2+ 1) identity matrix. Since every vertex of G has degree r, each 
diagonal entry of A2 is r, and therefore each diagonal entry of A2 + A is r. It is 
easy to verify that each diagonal entry of J + {r — 1)/ is r also. Because the 
(j, /)-entry, i Fj, of J+(r- 1)1 is 1, it remains to show that each such entry of 
A2 + A is 1 also. Denote the (/, ;')-entry of A by aih and that of A2 by a\2). By 
definition, a,, = 1 if and only if v,v, e E(G), and a,, = 0 otherwise. By Theorem 
2.2, a(if] represents the number of paths of length 2 between v, and vy. Since 
g(G) = 5, a\2) = 0 or 1. If a,y=l, then a\2) F 1, for otherwise, G contains a 
triangle. Hence in this case a]f) = 0. Suppose next that a,, = 0. Because G is an 
[r, 5]-graph having order r2 F 1, no two vertices can have a distance exceeding 
2. Thus since d(vt, v,)F\, we have d{vh vy-) = 2, thereby proving equation 

(2-7). 
Next we show that r2 + r is an eigenvalue of A~ + A of multiplicity 1 and 

that r—1 is an eigenvalue of A2 + A of multiplicity r2. Since A~ + A = J + 
(r — 1)7, the eigenvalues of A2 + A are the roots of the equation 

\a2 + a-xi\ = 

r-l 1 
1 r-X 

0. 

1 1 • • • r — X 

If we add to the first row all other rows and factor out the common term 
r^ + r-X, we obtain 
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A2 + A — XI \ — [r2 + r — X] 

11 1 • • • 1 
1 r-X 1 • ■ • 1 
1 1 r-X • • • 1 

11 1 • • • r-X 

Subtracting the first row from each of the other rows, we obtain 
\A2 + A — XI \ = (r2 + r — X) (r — 1 — X)'"', which gives us the desired result. 

Let Xh i = l,2, .. . , r2 + 1, denote the eigenvalues of A. Therefore, the 

eigenvalues of c|)(A) = A2 + A are cj>(X,), i = 1, 2, . . . , r2 + 1. Let — r2 + r 
and 4>(X,) = r — 1 for 2 r2 + 1. 

Necessarily, Xj = r, for if a = (1, 1, . . . , 1) is a vector all of whose r2 + 1 
entries are 1, then Aa' = m1, where a' is the transpose of a. This shows that r 
is an eigenvalue of A. 

The remaining r2 eigenvalues are roots of the equation 

X2 + X = r — 1. 

Hence, each X,-, 2 ^ r2 + 1, has either the value 

( - 1 + V47^3) ( - 1 - V47^3) 
-2- °r -2- 

Assume then that k of the eigenvalues, OsSXsSr2, are ( — 1 + V4r — 3)/2, while 
the remaining r2 — k eigenvalues are (—1 — V4r — 3)12. 

Since the sum of the eigenvalues is zero. 

X(-1 + V4r^3) (r-k)(-1 - V4r=3) n 
r + —-^-- +  -——^---- = 0. (2.8) 

Solving for 2k in equation (2.8), we obtain 

2 k = 
V4T^3 

Since k is a nonnegative integer and r^2, either r =2 or 4r — 3 is the square 
of an odd positive integer, say 4r - 3 = (2m + l)2, where m is a positive integer. 

In the latter case, r — m2 + m + 1, which implies that 

2k = 2m - 1 + ^-(2m + 3 - 2^+ j) + (m2 + m + l)2. 

The integers m2 and 2m + 1 are relatively prime so 2m + 1 divides 15; hence, 
m = 1, 2, or 7. Then r = m2 + m + 1 implies that r = 3, 7, or 57 so that r has one 

of the values 2, 3, 7, or 57. 
Conversely, if r = 2, 3, or 7, there is known to exist an [r, 5]-graph of 
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order r*+ 1. As mentioned earlier, it is not known whether a [57, 5]-graph of 

order (57)2 + 1 exists. ■ 

When r = pm + 1 for some prime p and positive integer m, then 

f(r, 6) = 
2(r~l)3 —2 

r —2 

and the (r, 6)-cage is unique (see [BIO], Chap. 23). For example, /(4, 6) 26 

and the (4, 6)-cage is shown in Figure 2.5. 

Figure 2.5 The (4, 6)-cage 

Two other “small” cages, namely the (4, 5)-cage and (5, 5)-cage, are 

shown in Figure 2.6. The (6, 5)-cage has order 40 while the (7, 5)-cage, as 

mentioned earlier, is known to have order 50. 
Returning to Theorem 2.8, we note that /(3, 5) = 10. It is not difficult to 

verify that the graph of Figure 2.7 is a 5-cage; in fact it is the only 5-cage. This 

graph is called the Petersen graph and it is quite possibly the most famous 
graph in all of graph theory. Its fame stems from the unusual list of properties 
it possesses and fails to possess. (For more information about this well-known 

graph, see [CW2].) We now verify that it is the only 5-cage. 
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Figure 2.6 The (4, 5)-cage and (5, 5)-cage 
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V\ 

Theorem 2.9 The Petersen graph is the unique 5-cage. 

Proof As mentioned earlier, it is not difficult to show that the Petersen graph is a 5- 
cage. In order to see that it is unique, assume G is a [3, 5]-graph of order 10. 

We show that G is isomorphic to the Petersen graph. 
Let V! e V(G), and suppose v2, v3, and v4 are the vertices adjacent to vx. 

Since g(G) = 5, each v,, i = 2, 3, 4, is adjacent to two new vertices of G. Let v5 
and v6 be adjacent with v2, v7 and v8 with v3, and v9 and v1() with v4. Hence 

V'(G) = {v,|i = 1, 2, ... , 10}. The fact that the girth of G is 5 and that every 
vertex of G has degree 3 implies that v5 is adjacent with one of v7 and v8 and 
one of v9 and v10. Without loss of generality, we assume v5 to be adjacent to v7 
and v9. We must now have v6 adjacent to v8 and v10. Therefore, edges v7v10 
and v8v9 are also present and no others. Thus, G is isomorphic to the Petersen 

graph. ■ 

There is only one 6-cage, referred to as the Heawood graph, and this is 

shown in Figure 2.8. 
There are only three other known n-cages, n^l. The 7-cage (known as 

the McGee graph) and the 8-cage (the so-called Tutte-Coxeter graph) are shown 

in Figure 2.9. The 12-cage has order 126. 
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Figure 2.8 The Heawood graph: the unique 6-cage 

Figure 2.9 The 1-cage and 8-cage 

Exercises 2.1 

2.1 Let u and v be arbitrary vertices of a connected graph G. Show that there exists a 
u-v walk containing all vertices of G. 

2.2 Prove that “is connected to” is an equivalence relation on the vertex set of a 
graph. 

2.3 (a) Let G be a graph of order p such that deg v^(p- l)/2 for every veV(G). 
Prove that G is connected. 
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(b) Examine the sharpness of the result in (a). 

2.4 (a) Let G be a (p, q) graph. Determine a sharp bound/(p) such that if q >f(p), 

then G is connected. 

(b) Show that if G is a (p, q) graph for which q<p - 1, then G is disconnected. 

2.5 Show that if G is a graph of order p and size p:/4, then either G contains odd 

cycles or G = K(pl2, p/2). 

2.6 (a) Let G be the weighted graph shown below. Use Dijkstra’s algorithm to 

compute d(u0, v) for each veV(G) and to determine a shortest u0-v6 path. 

(b) Let H be the graph obtained by deleting the weights from the edges of the 

weighted graph in (a). Use Dijkstra’s algorithm to compute d{un, v) for each 

ve V(H) and to determine a shortest u0-v6 path. 

2.7 Let n and m be positive integers such that n^m^2n. Prove that there exists a 

graph G such that rad G = n and diam G = m. 

2.8 (a) Prove that every circuit of a graph G contains a cycle of G. 
(b) Prove that if a vertex is repeated in a trail of G, then the trail contains a cycle 

of G. 

2.9 Give another proof of Theorem 2.5 using the distance concept. 

2.10 Prove Theorem 2.3. 

2.11 Prove that if a digraph D contains a u-u circuit, it also contains a u-u cycle. 

2.12 Prove that every walk in an acyclic digraph is a path. 

2.13 Prove that each of the following conditions is sufficient for a digraph D to contain 

cycles. 

(a) Every vertex of D has positive outdegree. 

(b) Every vertex of D has positive indegree. 

2.14 Prove that if A is the adjacency matrix of a digraph D with V(D)= {v,, v2, .. • , 

vp}, then the (i, j) entry a),n) of A", n =s 1, is the number of different walks of 

length n in D. (See Exercise 1.27.) 

2.15 Prove that a graph G is connected if and only if for any partition U(G) = 

V\ U V2(V\ =£ 0, V2 ±0), there exists an edge of G joining a vertex of V, 

and a vertex of V2. 
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2.16 Define a connected graph G to be degree linear if G contains a path P with the 

property that for each de 2)c (the degree set of G), there exists a vertex of 

degree d on P. 

(a) Let G be a connected graph with 2)c={d|, d2}, d\<d2. Prove that G is 

degree linear by proving that G contains a path of length 1 containing 

vertices of degrees d\ and d2. 

(b) Determine the maximum value of k such that every connected graph having a 

A>element degree set is degree linear. 

2.17 Characterize those graphs G having the property that every induced subgraph of 

G is a connected subgraph of G. 

2.18 Prove that if G is a disconnected graph, then G is connected. 

2.19 Prove that there exist exactly two 4-regular graphs G of order 7. (Hint: Consider 

G.) 

2.20 Let G be a connected graph with cycles. Show that g(G)< 2 diam (G) + 1. 

2.21 (a) Prove that /(3, 6) = 14. 
(b) Prove that the Heawood graph is the only 6-cage. 

2.22 Let G be an [r, u]-graph (r=s2, n=s3) of order/(r, n)\ that is, let G be an (r, n)- 
cage. Prove that if H = G x K2 is an [,v, u]-graph, then H cannot be an (s, /z)-cage. 

2.2 Cut-Vertices, Bridges, and Blocks 

Some graphs are connected so slightly that they can be disconnected by 
removing a single vertex or single edge. Such vertices and edges play a special 

role in graph theory, and we discuss these next. 

A vertex v of a graph G is called a cut-vertex of G if k(G - v)> k(G). 

Thus, a vertex of a connected graph is a cut-vertex if its removal produces a 
disconnected graph. In general, a vertex v of a graph G is a cut-vertex of G if 
its removal disconnects a component of G. The following theorem characterizes 

cut-vertices. 

Theorem 2.10 A vertex v of a connected graph G is a cut-vertex of G if and only if 

there exist vertices u and w (u, wd= v) such that v is on every u-w path of G. 

Proof Let v be a cut-vertex of G so that the graph G — v is disconnected. If u and w 
are vertices in different components of G - v, then there are no u-w paths in 
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G-v; however, since G is connected, there are u-w paths in G. Therefore, 

every u-w path of G contains v. 
Conversely, assume that there exist vertices u, weV(G) such that the 

vertex v lies on every u-w path of G. Then there are no u-w paths in G-v, 

implying that G — v is disconnected and that v is a cut-vertex of G. ■ 

The complete graphs have no cut-vertices while, at the other extreme, 
each nontrivial path contains only two vertices that are not cut-vertices. In 

order to see that this is the other extreme, we prove the following theorem. 

Theorem 2.11 Every nontrivial graph contains at least two vertices that are not cut- 

vertices. 

Proof Assume the theorem is false. Then there exists a nontrivial connected graph G 
containing at most one vertex that is not a cut-vertex; that is, every vertex of G 
with at most one exception is a cut-vertex. Let u and v be vertices of G such 

that d(u, v) = diam G. 
At least one of u and v is a cut-vertex, say v. Let w be a vertex belonging 

to a component of G - v not containing u. Since every u-w path in G contains 

v, we conclude that 

d(u, w)>d(u, v) = diam G, 

which is impossible. The desired result now follows. ■ 

Analogous to the cut-vertex is the concept of a bridge. A bridge of a 
graph G is an edge e such that k(G - e)> k(G). If e is a bridge of G, then it is 

immediately evident that k(G - e) = k(G) + 1. Furthermore, if e = uv, then u 
is a cut-vertex of G if and only if degn> 1. Indeed, the complete graph K2 is 
the only connected graph containing a bridge but no cut-vertices. Bridges are 
characterized in a manner similar to that of cut-vertices; the proof too is similar 

to that of Theorem 2.10 and is omitted. 

Theorem 2.12 An edge e of a connected graph G is a bridge of G if and only if there 

exist vertices u and w such that e is on every u-w path of G. 

For bridges, there is another useful characterization. 

Theorem 2.13 An edge e of a graph G is a bridge of G if and only if e is on no cycle 

of G. 
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Proof We assume G to be connected. Let e = uv be an edge of G, and suppose e lies 
on a cycle C of G. Further, let wx and w2 be arbitrary distinct vertices of G. If e 
does not lie on a wx-w2 path P of G, then P is also a w,-w2 path of G — e. If, 
however, e lies on a w1-w2 path Q of G, then replacing e by the u-v path (or v- 
u path) on C not containing e produces a wx-w2 walk in G — e. By Theorem 

2.1, there is a wx-w2 path in G — e. Hence e is not a bridge. 
Conversely, suppose e = uv is an edge of G that is on no cycle of G, and 

assume e is not a bridge. Thus G — e is connected. Hence there exists a u-v 

path P in G — e; however, P together with e produce a cycle in G containing e, 
which is a contradiction. ■ 

A cycle edge is an edge that lies on a cycle. From Theorem 2.13, a cycle 
edge of a graph G is an edge that is not a bridge of G. A bridge incident with 

an end-vertex is called a terminal edge. 
Many of the graphs we encounter do not contain cut-vertices; we discuss 

these next. A nontrivial connected graph with no cut-vertices is called a block. 

Nontrivial connected graphs that are not blocks contain special subgraphs in 
which we are also interested. A block of a graph G is a subgraph of G, which is 

itself a block and which is maximal with respect to that property. A block is 
necessarily an induced subgraph, and, moreover, the blocks of a graph parti¬ 

tion its edge set. Every two blocks have at most one vertex in common, namely 
a cut-vertex. The graph of Figure 2.10 has five blocks B,, 1 i ^ 5, as indicated. 
The vertices v3, v5, and v8 are cut-vertices, while v3v5 and v4v5 are bridges; 

moreover, v4v5 is a terminal edge. 

v9 ^10 

Figure 2.10 A graph and its five blocks 

Two useful criteria for a graph to be a block are now presented. 

Theorem 2.14 A graph G of order p^3 is a block if and only if every two vertices of 

G lie on a common cycle of G. 
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Proof Let G be a graph such that each two of its vertices lie on a cycle. Thus G is 
connected. Suppose G is not a block; hence G contains a cut-vertex v. By 
Theorem 2.10, there exist vertices u and w such that v is on every u-w path. 

Let C be a cycle of G containing u and w. The cycle C determines two distinct 
u-w paths, one of which cannot contain v, contradicting the fact that every u-w 

path contains v. Therefore, G is a block. 
Conversely, let G be a block with p 5= 3 vertices. We show that every two 

vertices of G lie on a common cycle of G. Let u be an arbitrary vertex of G, 
and denote by U the set of all vertices that lie on a cycle containing u. We now 
prove U=V= V(G). Assume U + V so that there exists a vertex veV — U. 

Since G is a block, it contains no cut-vertices, and furthermore, since p > 3, the 
graph G contains no bridge. By Theorem 2.13, every edge of G lies on a cycle 

of G; hence, every vertex adjacent with u is an element of U. Since G is 
connected, there exists a u-v path W: u = u0, U\, u2, ..., un = v in G. Let / be 
the smallest integer, 2=S/=Su, such that u, £ U; thus u,_] e U. Let C be a cycle 
containing u and u,_i. Because u,_i is not a cut-vertex of G, there exists a u,-u 

path P: u, = v0, vl5 v2, ..., vm = u not containing u,_If the only vertex 
common to P and C is u, then a cycle containing u and u, exists, which 
produces a contradiction. Hence P and C have a vertex in common different 
from u. Let j be the smallest integer, 1 such that vy- belongs to both P 
and C. A cycle containing u and u, can now be constructed by beginning with 
the urVj subpath of P, proceeding along C from v, to u and then to m,_|, and 

finally taking the edge u,_iM, back to u,. Thus, a contradiction arises again, 
implying that the vertex v does not exist and that every two vertices lie on a 
cycle. ■ 

An internal vertex of a u-v path P is any vertex of P different from u or v. 

A collection {Pj, P2, ..., P„} of paths is called internally disjoint if each 
internal vertex of P,(i = 1,2, . . . , n) lies on no Pj(j ± i). In particular, two u-v 
paths are internally disjoint if they have no vertices in common, other than u 
and v. Edge-disjoint u-v paths have no edges in common. A second char¬ 

acterization of blocks is now apparent. 

Corollary 2.14 A graph G of order p 3; 3 is a block if and only if there exist two 
internally disjoint u-v paths for every two distinct vertices u and v of G. 

Theorem 2.14 suggests the following definitions: A block of order p^s 3 is 
called a cyclic block while the block K2 is called the acyclic block. 

We now state a theorem of which Theorem 2.11 is a corollary. 

Theorem 2.15 Let G be a connected graph with one or more cut-vertices. Then 
among the blocks of G there are at least two, each of which contains exactly one 
cut-vertex of G. 
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In view of Theorem 2.15, we define an end-block of a graph G as a block 
containing exactly one cut-vertex of G. Hence every connected graph with at 

least one cut-vertex contains at least two end-blocks. In this context, another 
result that is often useful is presented. Its proof is left to the reader. 

Theorem 2.16 Let G be a graph with at least one cut-vertex. Then G contains a cut- 
vertex v with the property that, with at most one exception, all blocks of G 
containing v are end-blocks. 

Another interesting property of blocks of graphs was pointed out by 
Harary and Norman [HN2], 

Theorem 2.17 The center of every connected graph G lies in a single block of G. 

Proof Suppose G is a connected graph whose center Z(G) does not lie within a single 
block of G. Then G has a cut-vertex v such that G — v contains components Gx 
and G2, each of which contains elements of Z(G). Let u be a vertex such that 
d(u, v) = e(v), and let Pl be a v-u path of G having length e(v). At least one of 

Gi and G2, say G2, contains no vertices of Px. Let w be an element of Z(G) 
belonging to G2, and let P2 be a w-v path of minimum length. The paths Px 
and P2 together form a u-w path P3, which is necessarily a u-w path of length 

d(u, w). However, then e(w)> e(v), which contradicts the fact that weZ(G). 
Thus Z(G) lies in a single block of G. ■ 

A graph G is a critical block if G is a block and for every vertex v, the 
graph G — v is not a block. Hence a block G is noncritical if and only if there 

exists a vertex v of G such that G — v is also a block. There is an analogous 
concept concerning edges. A graph G is a minimal block if G is a block and for 
every edge e, the graph G — e is not a block. 

The block Gx of Figure 2.11 is minimal and noncritical, while the block 

G2 is critical but nonminimal. 

Figure 2.11 Minimal and critical blocks 

In each of the graphs of Figure 2.11, there are vertices of degree 2. All 
minimal and critical blocks have this property, as we shall see. 
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Theorem 2.18 Every critical block of order at least 4 contains a vertex of degree 2. 

Proof Let G be a critical block of order at least 4. Thus, for each vertex x in G, there 
exists a vertex y in G - * such that G-x-y is disconnected. Among all pairs 

x, y of distinct vertices of G, let u, v be a pair for which G-u-v contains a 
component G\ of minimum order n, and let G2 be the union of the remaining 

components of G — u — v. 
We prove that n = 1, which implies that the only vertex of Gx has degree 

2. Assume, to the contrary, that n 3= 2. Let 

H — ( V(Gi) U {u, v}>, 

which, then, is connected. Let w, e L(G,), and let w2 be a vertex of G - w, 

such that G — w j — w2 is disconnected. We consider two cases. 

Case 1: Suppose that w2eV{H). Since both (L(G2)U{»}) and 
( V(G2) U {v} ) are connected, some component of G - wl — w2 has order less 

than n, producing a contradiction. 

Case 2: Suppose that w2 e L(G2). Since G-wx-w2 is disconnected, H -w{ 
must contain exactly two components, namely a component Hu containing u 
and a component Hv containing v. If either H„ or Hv is trivial, then G has a 

vertex (namely u or v) of degree 2; so we may assume that H„ and Hv are 
nontrivial. However, then, there is a component Hx of G — wx — u that is a 
subgraph of Hu-u, so that Hx has order less than n, yielding a contradic¬ 

tion. ■ 

Corollary 2.18 If G is a minimal block of order at least 4, then G contains a vertex 

of degree 2. 

Proof Suppose that G is a minimal block of order at least 4, but that G contains no 

vertices of degree 2. By Theorem 2.18, G is not a critical block. Thus, G 
contains a vertex w such that G - w is a block. Let e be an edge of G incident 

with w. Since G is a minimal block, G - e is not a block, and therefore G - e 
contains a cut-vertex u( =£ w). Hence G — e — u( = G — u — e) is disconnected so 
that e is a bridge of G — u. On the other hand, since G — u — w( = G — w — u) 
is connected, e is a terminal edge of G - u and w is an end-vertex of G - u. 
Therefore, w has degree 1 in G - u and degree 2 in G. This is a contradic¬ 

tion. ■ 
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Exercises 2.2 

2.23 Prove Theorem 2.12. 

2.24 Show that every connected (p, p - 1) graph, p^ 3, contains a cut-vertex. 

2.25 Prove that every connected (p, q) graph, 3=£ps£g, contains a cycle edge. 

2.26 Prove that every graph containing only even vertices is bridgeless. 

2.27 Prove that if v is a cut-vertex of a connected graph G, then v is not a cut-vertex 
of G. 

2.28 Write out the details of the proof of Corollary 2.14. 

2.29 Let G be a block of order p^ 3, and let u and v be distinct vertices of G. If P is a 
given u-v path of G, does there always exist a u-v path Q such that P and Q are 
internally disjoint u-v paths? 

2.30 For a nontrivial connected graph G, define the block-cut-vertex graph bc(G) of G 

as that graph whose vertices are the blocks and cut-vertices of G and where two 

vertices of bc{G) are adjacent if and only if one is a cut-vertex of G and the other 
is a block of G containing the cut-vertex. 

(a) Prove that bc{G) is connected and acyclic. 

(b) Prove Theorem 2.15. 

(c) Prove Theorem 2.16. 

2.31 Assuming Theorem 2.15, prove Theorem 2.11. 

2.32 Let G be a graph with V(G) = {v,, v2, . . . , vp}, p 3= 3. Let H be a graph with 
V(H) = [ux, u2, . .. , up}. 

(a) Vertices ut and u, are adjacent in H if and only if v, and vy belong to a 

common cycle in G. Characterize those graphs G for which H is complete. 

(b) Vertices u, and uy are adjacent in H if and only if degGv,-+ degGvy is odd. 
Prove that H is bipartite. 

2.33 An element of a graph G is a vertex or edge of G. Prove that a graph G of order 
p^ 3 is a block if and only if each pair of elements of G lie on a common cycle 
of G. 

2.34 The block index b(v) of a vertex v of a graph G is the number of blocks of G to 

which v belongs. Let b{G) denote the number of blocks of G. Prove that 

b(G) = k(G)+ £ [b(v)~ 1]. 

ve V(G) 

2.35 Let G be a graph having four blocks with V(G) = {v], v2, . .. , v8}. Suppose each 

v,-, 1 =£/=£6, lies in exactly one block while each of v7 and v8 belongs to exactly 

two blocks. Prove that G is disconnected. 

2.36 Let G be a cyclic block, and let v e V{G). Prove that there exists a vertex u of G 

such that uv e E(G) and G — v — u is connected. 
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2.37 Let v be a vertex of a cyclic block G. Suppose that G — v contains a cut-vertex u. 
Let F be a component of G-v-u. Prove that ( V(F) U {«, v} > is a connected 

subgraph of G. 

2.38 Does there exist a noncritical block G containing an edge e = uv such that G-e 
is a block, but neither G — u nor G — v is a block? 

2.39 Does there exist a graph other than K2 and the u-cycles, n>4, that is a critical 

block as well as a minimal block? 

2.3 Eulerian Graphs and Digraphs 

In this section we discuss those trails and circuits in graphs and digraphs which 

are historically the most famous. 
It is difficult to say just when and where graphs originated, but there is 

justification to the belief that graphs and graph theory may have begun in 
Switzerland in the early 18th century. In any case, it is evident that the great 
Swiss mathematician Leonhard Euler [E7] was thinking in graphical terms 
when he considered the problem of the seven Konigsberg bridges. 

Figure 2.12 shows a map of Konigsberg as it appeared in the 18th 
century. The river Pregel was crossed by seven bridges, which connected two 

islands in the river with each other and with the opposite banks. We denote the 
land regions by the letters A, 5, C and D (as Euler himself did). It is said that 
the townsfolk of Konigsberg amused themselves by trying to devise a route that 
crossed each bridge just once. (For a more detailed account of the Konigsberg 
Bridge Problem, see Biggs, Lloyd, and Wilson [BLW1, p. 1].) 

Euler proved that such a route over the bridges of Konigsberg is 
impossible—a fact of which many of the people of Konigsberg had already 
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convinced themselves. However, it is probable that Euler’s approach to the 
problem was a bit more sophisticated. 

Euler observed that if such a route were possible it could be represented 

by a sequence of eight letters, each chosen from A, B, C, and D. A term of 
the sequence would indicate the particular land area to which the route had 
progressed while two consecutive terms would denote a bridge traversed while 

proceeding from one land area to another. Since each bridge was to be crossed 
only once,'the letters A and B would necessarily appear in the sequence as 

consecutive terms twice, as would A and C. Also, since five bridges lead to 
region A, Euler saw that the letter A must appear in the sequence a total of 
three times—twice to indicate an entrance to and exit from land area A, and 
once to denote either an entrance to A or exit from A. Similarly, each of the 

letters B, C, and D must appear in the sequence twice. However, this implies 
nine terms are needed in the sequence, an impossibility; hence the desired 

route around Konigsberg is also impossible. 
The Konigsberg Bridge Problem has graphical overtones in many ways; 

indeed, even Euler’s representation of a route around Konigsberg is essentially 
that of a walk in a graph. If each land region of Konigsberg is represented by a 

vertex and two vertices are joined by a number of edges equal to the number 
of bridges joining corresponding land areas, then the resulting structure (see 
Figure 2.13) is referred to as a multigraph. In general, if one allows more than 

one edge (but a finite number) to join pairs of vertices, the result is called a 

multiple graph or multigraph. 
The Konigsberg Bridge Problem is then equivalent to the problem of 

determining whether the multigraph of Figure 2.13 has a trail containing all its 

edges. 
The Konigsberg Bridge Problem suggests the following two concepts. An 

eulerian trail of a connected graph (multigraph) G is an open trail of G 
containing all the edges of G, while an eulerian circuit of G is a circuit 
containing all the edges of G. A graph (multigraph) possessing an eulerian 
circuit is called an eulerian graph (multigraph). The graph G\ of Figure 2.14 

contains an eulerian trail while G2 is an eulerian graph. 
Simple but useful characterizations of both eulerian multigraphs and 

c 

Figure 2.13 The multigraph of Konigsberg 
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IW 
Figure 2.14 Graphs with eulerian trails and eulerian circuits 

multigraphs with eulerian trails exist; in fact, in each case the characterization 
was known to Euler [E7], Complete proofs of these results were not given until 
1873, however, in a paper by Hierholzer [H12]. The proof of the next result is 

based on one due to Fowler [F5]. 

Theorem 2.19 (Euler) Let G be a nontrivial connected multigraph. Then G is 

eulerian if and only if every vertex of G is even. 

Proof Let G be an eulerian multigraph with eulerian circuit C, and let v be an 
arbitrary vertex of G. If v is not the initial vertex of C (and therefore not the 
final vertex either), then each time v is encountered on C, it is entered and left 

by means of distinct edges. Thus each occurrence of v in C represents a 
contribution of 2 to the degree of v so that v has even degree. If v is the initial 

vertex of C, then C begins and ends with v, each term representing a contribu¬ 
tion of 1 to its degree while every other occurrence of v indicates an addition of 

2 to its degree. This gives v an even degree. In either case, v is even. 
For the converse, we proceed by induction on the size q of a nontrivial 

connected multigraph in which every vertex is even. If q = 2, then the multi¬ 

graph consists of two vertices joined by two edges, which has an eulerian 
circuit. Assume that every nontrivial connected multigraph of size less than 
<7=23 and having only even vertices contains an eulerian circuit, and let G be 

such a multigraph of size q. 
If G has order 2, then the two vertices are joined by an even number (at 

least 4) of edges and G is eulerian. Otherwise, G contains a vertex v adjacent 
with distinct vertices u and w. Let G' be the multigraph obtained by deleting 
one of each of the edges uv and vw and adding an edge uw. If G' is connected, 
then G' contains an eulerian circuit C by the inductive hypothesis. Replacing 
an edge uw on C' by deleted edges uv and vw produces an eulerian circuit 

of G. 
Assume now that G' is disconnected. Then G' contains two components, 

namely a component Gj containing u and w and a (possibly trivial) component 
G'2 containing v. By the inductive hypothesis, G\ contains an eulerian circuit C\ 

and, if G'2 is nontrivial, it contains an eulerian circuit C2. An eulerian circuit C 
of G can then be produced by replacing an edge uw on Cj by deleted edges uv 

and vw, where at v we insert C2 if this circuit exists. ■ 

A characterization of graphs containing eulerian trails can now be 
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presented. Obvious analogues of this and the next two results exist for multi¬ 
graphs. It will therefore follow from Theorem 2.19 and the multigraph analogue 
of Theorem 2.20 that the multigraph of Figure 2.13 contains neither an eulerian 

trail nor an eulerian circuit. 

Theorem 2.20 (Euler) Let G be a nontrivial connected graph. Then G contains an 
eulerian trail if and only if G has exactly two odd vertices. Furthermore, the trail 
begins at one of these odd vertices and terminates at the other. 

Proof If G contains an eulerian u-v trail, then, as in the proof of Theorem 2.19, every 
vertex of G different from u and v is even. It is likewise immediate that each of 

u and v is odd. 
Conversely, let G be a connected graph having exactly two odd vertices u 

and v. If G does not contain the edge e = uv, the graph G + e is eulerian. If the 
edge e is deleted from an eulerian circuit of G + e, then an eulerian trail of G 

results. In any case, however, a new vertex w can be added to G together with 
the edges uw and vw, obtaining a graph FI in which every vertex is even. 
Therefore, H is eulerian and contains an eulerian circuit C. The circuit C 
necessarily contains uw and vw as consecutive edges so that their deletion from 

C yields an eulerian trail of G. Moreover, this trail begins at u or v and 

terminates at the other. ■ 

Naturally the eulerian trail of Theorem 2.20 has even or odd length, 

according to whether the graph G has even or odd size. Theorem 2.20 was 

extended in [CPS1]. 

Theorem 2.21 Let G be a connected graph with 2n odd vertices, n 2* 1. Then E(G) 

can be partitioned into subsets Ex, E2, . . . , En so that for each i, ( E,) is a trail 
connecting odd vertices and such that at most one of these trails has odd length. 

Proof Let H denote a graph obtained by adding to G a total of n new vertices 
xfi = 1, 2, .. . , n) of degree 2 such that each odd vertex G is adjacent to 

exactly one xThe graph H is eulerian and therefore contains an eulerian 

circuit C. If the xt are deleted from C, we obtain trails Tfi= 1, 2, ...,/?) 
connecting odd vertices w, and v, of G such that every edge of G lies on 

precisely one such trail. 
If at most one trail T, has odd length, then, of course, there is nothing 

further to prove. Thus, suppose there are at least two trails T, of odd length. 
If two trails 7} and Tk of odd length have a common vertex w, then there 

exist trails T* and T*k of even length such that 

E(Tf)U E(T*k) = E(Tj)U E(Tk). 

In order to see this, let T] denote a urw subtrail of 7}, and let T” denote the 
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remaining w-v, subtrail of 7}. Similarly, let T'k denote a uk-w subtrail of Tk, and 
let Tk denote the remaining w-vk subtrail of Tk. The lengths of 7, and Tt are 
of opposite parity, as are the lengths of Tk and Tk. Thus, 7} may be paired 
with either Tk or Tk to produce a trail T* of even length, while 7■ and that 

subtrail T'k or Tk not on 7* form a trail T*k also of even length. 
We may continue this process until no two trails 7, of odd length remain 

having a vertex in common. If at most one trail 7, of odd length remains, then 
the proof is complete. Assume then that there exist two trails, Tr and Ts of odd 

length that have no vertex in common. 
We define the distance d(Tr, Ts) between Tr and Ts as the minimum of 

the distances between a vertex of Tr and a vertex of Ts. Thus, d(Tr, Ts)^ 1. 
Let wr and w5 be vertices of Tr and Ts, respectively, such that d(wr, ws) = 

d(Tr, Ts), and let P be a wr-ws path length d{wr, w5). 
Let wrw0 be the edge of P incident with wr. In the present decomposition 

of G into n trails, assume wrw0 belongs to trail 7. Necessarily T has even 
length. Suppose that T is a u-v trail. Let T be a u-wr subtrail of 7, and let 7" 
be the remaining wr-v subtrail. Without loss of generality, we assume that 7 
contains the edge wrw(). Also, let T'r be a ur-wr subtrail of Tr, and let Tr be the 

remaining wr-vr subtrail of Tr. Either the lengths of Tr and 7 are of opposite 
parity or the lengths of 7" and T" are of opposite parity; without loss of 
generality, assume the former. Define 7,!1’ to be the trail composed of Tr and 

7"; the trail 7r(1) has odd length and d{T?\ Ts)<d(Tr, Ts). Note that the trail 

composed of 7," and 7' has even length. 
If 7r(1) and 7V have a vertex in common, then, as we have seen, these 

trails may be replaced by two trails of even length. Otherwise, we may repeat 
the above process with 7,. and Ts replaced by 7,(l) and T5, obtaining trails 7,( 

and Ts of odd length for which d(T(r2\ 7V)<^(7/1), Ts). This process may be 
continued until trails T* and Ts of odd length that have a common vertex are 
obtained. In this process no other trail of odd length is altered. The trails T* 

and Ts may then be replaced by two trails of even length. 
This argument may then be repeated as many times as there are pairs of 

trails having odd length, arriving at a collection of n trails, at most one of 

which has odd length. ■ 

We next present a characterization of eulerian graphs of a completely 
different nature. The necessity is due to Toida [T7] and the sufficiency to 

McKee [M4]. 

Theorem 2.22 A nontrivial connected graph G is eulerian if and only if every edge of 

G lies on an odd number of cycles. 

Proof First, let G be an eulerian graph and let e = uv be an edge of G. Then G — e 
is connected. Consider the set of all u-v trails in G -e for which v appears only 
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once, namely as the terminal vertex. There is an odd number of edges possible 
for the initial edge of such a trail. Once the initial edge has been chosen and 
the trail has then proceeded to the next vertex, say w, then again there is an 
odd number of choices for edges incident with w and different from uw. We 

continue this process until we arrive at vertex v. At each vertex different from 
v in such a trail, there is an odd number of edges available for a continuation of 

the trail. Hence there is an odd number of these trails. 

Suppose that Tx is a u-v trail containing v only once, which is not a u-v 
path. Then some vertex v^^v) occurs at least twice on Tx, implying that Tx 

contains a Vj-V! circuit, say C: v1? v2, .. . , v„, vx. Hence, there exists a u-v trail 
T2 identical to Tx except that C is replaced by the “reverse” circuit C': vx, v„, 
v„_!, ... , v2, vx. This implies that the u-v trails that are not u-v paths occur in 
pairs. Therefore, there is an even number of such u-v trails that are not u-v 

paths and, consequently, there is an odd number of u-v paths in G — e. This, in 
turn, implies that there is an odd number of cycles containing e. 

For the converse, suppose that G is a nontrivial connected graph that is 
not eulerian. Then G contains a vertex v of odd degree. For each edge e 
incident with v, denote by k(e) the number of cycles of G containing e. Since 
each such cycle contains two edges incident with v, it follows that E k(e) equals 

twice the number of cycles containing v. Because there is an odd number of 
terms in the sum T.k(e), some k(e) is even. ■ 

The preceding characterizations presented of eulerian graphs and graphs 

possessing an eulerian trail are existential in nature. We now introduce a good 

algorithm, due to Fleury (see [BM2]), which allows us to construct an eulerian 

circuit in an eulerian graph. 

Algorithm 2B (Fleury) Given an eulerian graph G: 

1. Select an arbitrary vertex v0 of G and define T0:v0. 
2. Given that the trail r,:v0, ex, vx, e2, .. ., eb v, has been constructed, select an 

edge ei+ x from 

E(G) - {ex, e2, ..., e,} 

subject to the conditions: 
(a) e,+x is incident with vt; 
(b) unless there is no other choice, ei+x is not a bridge of the graph 

Gi = G — {ex, e2, ..., e,}. 

If no such edge ei+x exists, then stop. 
3. Define Ti+X: v0, ex, vx, e2, ..., ei+x, vi+x, where ei+x = v,v,+1. 

4. Replace i by i + 1 and return to Step 2. 
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Theorem 2B Any trail constructed by Fleury's algorithm in an eulerian graph is an 

eulerian circuit. 

Proof Let v0 be an arbitrary vertex in an eulerian graph G. Suppose that the trail 

Tn: v0, el7 vt, e2, ., e„, v„ 

is constructed by Fleury’s algorithm. We show that T„ is an eulerian circuit. 

For i'=l,2, . . . , n, let 

Gj — G — {eu e2, ... , et}. 

First we show that v0 = v„. Certainly degCnv„ = 0 since Fleury’s algorithm 
terminates at v„. Every vertex different from v0 and v„ is incident with an even 
number of edges in Tn and so has even degree in G„. If v0^v„, then every 
occurrence of v0 in Tn after its first must be an interior vertex so that degGnV0 is 

odd. Flowever, then v0 is the only odd vertex of G„, which is impossible by 
Corollary 1.1. Thus, v0 = v„ and every vertex of Gn has even degree. 

It now remains to show that Tn contains every edge of G. Suppose that 

this is not the case. Since G is connected, there are vertices on T„ that have 
positive degree in G„. Let 5 be the set of all vertices of G having positive 
degree in G„ and_let S = V(G) - 5. Let vk be the last vertex of Tn that belongs 

to 5. Since vneS, it follows_that k<n. 
From the definition of S, each edge of Gk that joins 5 and S is on Tn. We 

conclude then, from the choice of v*., that ek+\ is the only edge of Gk that joins 

S and S. Hence, ek+x is a bridge of Gk. 
Let e' be any other edge of Gk that is incident with vk. By Step 2, since 

ek+i is a bridge of Gk, so too is e'. Let Hk— (S)Gk and Hn = (S)Gn■ Since e' 
is a bridge of Hk and HnCHk, it follows that e' is a bridge of Hn. Moreover, 
since ek+l is a bridge of Gk and vk is the last vertex of Tn that belongs to 5, we 
see that Hk = Hn, and degH/( v = degc v for every vertex v of H„. Thus, every 
vertex of Hn has even degree, implying that Hn is bridgeless (see Exercise 
2.26). This produces a contradiction. ■ 

We now turn our attention to the directed analogue of eulerian graphs. 

Two definitions will be helpful. First, the underlying graph of a digraph D is 
that graph G obtained from D by deleting all directions from the arcs of D 

(equivalently, replacing each arc (w, v) by the edge uv) and deleting an edge 
from a pair of multiple edges if multiple edges should be produced. A digraph 
D is then said to be connected if its underlying graph G is connected. 

The concepts of eulerian trail, eulerian circuit, and eulerian digraph are 
very much patterned after their graphical counterparts. An eulerian trail of a 

connected digraph D is an open trail of D containing all the arcs of D\ an 
eulerian circuit of D is a circuit containing every arc of D. A digraph that 
contains an eulerian circuit is called an eulerian digraph. The digraph D\ of 
Figure 2.15 is eulerian while D2 contains an eulerian trail. 
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Figure 2.15 Digraphs with eulerian circuits and eulerian trails 

We now present a characterization of eulerian digraphs whose statement 
and proof is very similar to Theorem 2.19. 

Theorem 2.23 Let D be a nontrivial connected digraph. Then D is eulerian if and 
only if od v = id v for every vertex v of D. 

With the aid of Theorem 2.23, it is easy to give a characterization of 

digraphs containing eulerian trails. 

Theorem 2.24 Let D be a nontrivial connected digraph. Then D has an eulerian trail 

if and only if D contains vertices u and v such that 

odw = idn + l and idv = odv+l 

and od w = id w for all other vertices w of D. Furthermore, the trail begins at u 

and ends at v. 

Theorem 2.24 can be extended as follows. 

Theorem 2.25 Let D be a connected digraph such that 

|od v — id v| = 2€, 
ve V(D) 

where 1. Then E(D) can be partitioned into subsets Ex, E2, ... , E( so that 

(Ej) is a trail for each i = 1,2, ...,€. 

A related result is also of interest. 

Theorem 2.26 Let D be a connected digraph with vertices u and v such that 

odn = idn + € and id v'= od v + f?, 

where i is a positive integer and such that od w = id w for all other vertices w of 
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D. Then D contains t arc-disjoint u-v paths. 

The concepts of eulerian graphs and digraphs are applicable to many 

problems such as the routing of street-cleaning and snow-removal vehicles or 
the inspection of highways in a county system. If a single vehicle or inspector is 

to be used, then in both cases one would like to find a route that includes each 
section of street or highway exactly once, i.e., an eulerian circuit or trail in the 
associated graph. For example, the graph G associated with a county highway 
system has vertices corresponding to the cities in the county, and two vertices 

are adjacent if and only if the corresponding cities are connected directly by a 
highway. Theorems 2.19 and 2.20 give the exact conditions under which the 
highways can be optimally inspected—if the number of vertices of odd degree 
in G is 0 or 2. If G has more than two vertices of odd degree, then an 

alternative is to use an inspection crew, where each member of the crew 
inspects highways corresponding to an open trail in G. Then Theorem 2.21 

indicates that the smallest such crew would have n members, where 2n is the 
number of odd vertices in G. If, however, we are restricted to a single vehicle, 
then some highway must be traveled more than once. The problem of minimiz¬ 
ing repeated highways is equivalent to the well-known Chinese Postman 

Problem, first formulated by Kwan [K13], 
A mail carrier picks up mail at the post office, delivers the mail to each 

block in the territory, and then returns to the post office. The carrier wishes 
to choose a route that minimizes the distance traveled. The vertices and edges 
of the graph G modeling this situation correspond to the street corners and 
connecting blocks of the mail carrier’s territory. The solution, then, to the 
Chinese Postman Problem is a closed walk of minimum length in G that uses 

every edge at least once. If G has two or more odd vertices, Goodman and 
Hedetniemi [GH1] observed that the problem of finding a solution is equivalent 
to finding the minimum number of edges of G that need to be doubled in order 

to obtain an eulerian multigraph. By considering all possible pairings of the 
vertices of odd degree and taking the minimum of the sum of the distances 
between paired vertices, a solution is obtained. An observation of Edmonds 

[E2] provides an efficient means of implementing such an approach. 

Exercises 2.3 

2.40 In present-day Konigsberg (Kaliningrad), there are two additional bridges, one 

between regions B and C, and one between regions B and D. Is it now possible to 

devise a route over all bridges of Konigsberg without recrossing any of them? 

2.41 Prove that a nontrivial connected graph G is eulerian if and only if E(G) can be 

partitioned into subsets £,, where (£,) is a cycle of G for each i. 

2.42 Let G be a connected graph with 2n odd vertices, n ^ 1. Show that if m<n, then 
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E(G) cannot be partitioned into subsets Ely E2, ... , Em so that (£,•) is an open 

trail for each i. 

2.43 Determine an algorithm to construct an eulerian trail in a graph containing an 

eulerian trail. 

2.44 A graph G is randomly eulerian from a vertex v if every trail of G with initial 

vertex v can be extended to an eulerian v-v circuit of G. Give examples of 

eulerian graphs that are randomly eulerian from none, one, two, or all of their 

vertices. 

2.45 Prove that an eulerian graph G is randomly eulerian from a vertex v if and only if 

every cycle of G contains v. 

2.46 Prove that if a graph G is randomly eulerian from v, then A(G) = degv, where 

A(G) is the maximum degree among the vertices of G. 

2.47 Let G be an eulerian graph of order p 5= 3. Prove that G is randomly eulerian 

from exactly none, one, two, or all of its vertices. 

2.48 Let G be a graph that is randomly eulerian from a vertex v. If deg u = A(G), 

where u ± v, then prove G is randomly eulerian from u. 

2.49 Using Exercise 2.46 and 2.48, determine a necessary condition for an eulerian 

graph to be randomly eulerian from one or more vertices. 

2.50 Prove Theorem 2.23. 

2.51 Prove that a nontrivial connected digraph D is eulerian if and only if E(D) can be 

partitioned into subsets E\, E2, . .., E( such that (£,) is a cycle for each 

z'(ls£fs=€). 

2.52 Prove Theorem 2.24. 

2.53 Prove Theorem 2.25. 

2.54 Prove Theorem 2.26. 

2.55 A digraph D is randomly eulerian from a vertex v if every trail of D with initial 

vertex v can be extended to an eulerian v-v circuit of D. Give examples of 

eulerian digraphs that are randomly eulerian from none, one, two, or all of their 

vertices. 

2.56 Prove that an eulerian digraph D is randomly eulerian from a vertex v of D if and 

only if every cycle of D contains v. 

2.57 Prove that if an eulerian digraph D is randomly eulerian from a vertex v, then the 

maximum outdegree among the vertices of D equals od v. 

2.58 Let D be a digraph that is randomly eulerian from a vertex v and let u e V(D) 

such that od u = odv. Prove that D is randomly eulerian from u. 

2.59 Use the result of Exercises 2.57 and 2.58 to establish a property of randomly 

eulerian digraphs. 

2.60 Prove that if an eulerian digraph D of order p(2*2) is randomly eulerian from 

exactly n vertices, then either 0n =£p/2 or n=p. 
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2.4 An Unsolved Problem in Graph Theory: 

The Reconstruction Problem 

Probably the foremost unsolved problem in graph theory is the Reconstruction 

Problem. This problem is due to Paul J. Kelly and S. M. Ulam and its origin 

dates back to 1941. We discuss it briefly in this section. 
A graph G with V(G) = {vu v2, . • •, vp} is said to be reconstructive if 

for every graph H having V(H) = {u\, u2, ■ ■ ■, wp}, G — v, = H — ut for i — 1,2, 
_p implies that G = H. Hence, if G is a reconstructible graph, then the 

subgraphs G- v, ve V(G) determine G uniquely. 
We now state a conjecture of Kelly and Ulam, the following formulation 

of which is due to Frank Harary. 

The Reconstruction Conjecture Every graph of order at least 3 is reconstructible. 

The Reconstruction Problem is thus to determine the truth or falsity of 

the Reconstruction Conjecture. 
The condition on the order in the Reconstruction Conjecture is needed 

since if Gx = K2, then Gx is not reconstructible. If G2 = 2 Kx, then the sub¬ 

graphs G\ — v, where ve V{Gi), and the subgraphs G2-v, for ve U(G2), are 
precisely the same. Thus Gx is not uniquely determined by its subgraphs 
Gi - v, ve U(Gi). By the same reasoning, G2 = 2KX is also nonreconstructible. 
The Reconstruction Conjecture claims that K2 and 2KX are the only nonrecon¬ 

structible graphs. 
Before proceeding further, we note that there is a related problem we 

shall not consider. Given graphs Gx, G2, ... , Gp, does there exist a graph G 

with T(G) = {vx, v2, ... , vp} such that G, = G - v, for i = 1, 2.pi The 
answer to this question is not known in general. Although there is a similarity 

between this question and the Reconstruction Problem, the question is quite 

distinct from the problem we are interested in. 
If there is a counterexample to the Reconstruction Conjecture, then it 

must have order at least 10, for, with the aid of computers, McKay [M3] and 
Nijenhuis [N3] have shown that all graphs of order less than 10 (and greater 

than 2) are reconstructible. 
There are several properties of a graph G that can be found by con¬ 

sidering the subgraphs G —v, ve V(G). We begin with the most elementary 

properties. 

Theorem 2.27 If G is a (p, q) graph with p ^ 3, then p and q as well as the degrees 

of the vertices of G are determined from the p subgraphs G — v, v e V(G). 

Proof It is trivial to determine the number p, which is necessarily one greater than 
the order of any subgraph G — v. Also, p is equal to the number of subgraphs 
G — v. 
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To determine q, label these subgraphs by G,, / = 1, 2, p, and 

suppose G, = G — V,-, where v, e F(G). Let q( denote the size of G,. Consider 
an arbitrary edge e of G, say e = VyV*. Then e belongs to p - 2 of the subgraphs 

G,-, namely all except G, and G*. Hence, Ef=1 qt counts each edge p - 2 times; 
that is, £f=1 <7, = (p — 2)g. Therefore. 

P 

E«< 

The degrees of the vertices of G can be determined by simply noting that 
deg V; = q — qt, i = 1, 2, . . . , p. ■ 

We illustrate Theorem 2.27 with the six subgraphs G — v shown in Figure 
2.16 of some unspecified graph G. From these subgraphs we determine p, q, 

and deg v, for / = 1, 2,-6. Clearly, p = 6. By calculating the qh i= 1, 2, 
. . . , 6, we find that q = 9. Thus, deg v, = deg v2 = 2, deg v3 = deg v4 = 3, and 
deg v5 = deg v6 = 4. 

Figure 2.16 The subgraphs G — v of a graph G 
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We say that a graphical parameter or graphical property is recognizable 

if, for each graph G of order at least 3, it is possible to determine the value of 
the parameter for G or whether G has the property from the subgraphs G - v, 
ve V(G). Theorem 2.27 thus states that for a graph of order at least 3, the 
order, the size, and the degrees of its vertices are recognizable parameters. 
From'Theorem 2.27, it also follows that the property of graph regularity is 

recognizable; indeed, the degree of regularity is a recognizable parameter. For 

regular graphs, much more can be said. 

Theorem 2.28 Every regular graph of order at least 3 is reconstructible. 

Proof As we have already mentioned, regularity and the degree of regularity are 
recognizable. Thus, without loss of generality, we may assume that G is an r- 

regular graph with V(G)= {vu v2, ... , vp}, p 5=3. It remains to show that G 
is uniquely determined by its subgraphs G - v,, /'= 1, 2, . . . , p. Consider 
G-Vi, say. Add vertex v, to G-Vj together with all those edges vqv where 

degG_,.1v = r- 1. This produces a graph isomorphic to G. ■ 

If G has order p^ 3, then it is discernible whether G is connected from 

the p subgraphs G - v, v e K(G). 

Theorem 2.29 For graphs of order at least 3, connectedness is a recognizable 

property. In particular, if G is a graph with V{G) = {v1? v2... , v^}, p 2= 3, then 
G is connected if and only if at least two of the subgraphs G - v, are connected. 

Proof Let G be a connected graph. By Theorem 2.11, G contains at least two vertices 

that are not cut-vertices, implying the result. 
Conversely, assume there exist vertices v,, v2eV(G) such that both 

G — Vj and G — v2 are connected. Thus, in G — V\ and also in G, vertex v2 is 

connected to v,, i 2s 3. Moreover, in G - v2 (and thus in G), Vj is connected to 
each v,, /2s3. Hence every pair of vertices of G are connected and so G is 

connected. ■ 

Since connectedness is a recognizable property, it is possible to determine 

from the subgraphs G — v, v e F(G), whether a graph G of order at least 3 is 
disconnected. We now show that disconnected graphs are reconstructible. 

There have been several proofs of this fact. The proof given here is from 

Manvel [Ml], 

Theorem 2.30 Disconnected graphs of order at least 3 are reconstructible. 



Section 2.4 An Unsolved Problem in Graph Theory 65 

Proof We have already noted that disconnectedness in graphs of order at least 3 is a 

recognizable property. Thus, we assume without loss of generality that G is a 
disconnected graph with V’(G) = {v1, v2, -vp}, p 3. Further, let G, = 
G - vt for i= 1, 2, .. .p. From Theorem 2.27, the degrees of the vf, i= 1, 2, 

• • • , P, can be determined from the G- v,. Hence, if G contains an isolated 
vertex, then G is reconstructible. Assume then that G has no isolated vertices. 

Since every component of G is nontrivial, it follows that k(G,) k(G) for 
i= 1,2, . . . , p and that k(Gj) = k(G) for some j satisfying Hence the 

number of components of G is min{fc(G,-)|/ = 1, 2, . . . , p}. Suppose F is a 
component of G of maximum order. Necessarily, F is a component of maximum 

order among the components of the graphs G,; that is, F is recognizable. 
Delete a vertex that is not a cut-vertex from F, obtaining F'. 

Assume there are n(> 1) components of G isomorphic to F. The number 
n is recognizable, as we shall see. Let 

S={Gf-|*(Gf) = *(G)}, 

and let S' be the subset of S consisting of all those graphs G, having a minimum 

number m of components isomorphic to F. (Observe that if n = 1, there exist 
graphs G, in 5 containing no components isomorphic to F; that is, m = 0.) In 
general, then, n = m + 1. Next let S” denote the set of those graphs G, in S' 
having a maximum number of components isomorphic to F'. 

Assume Gt, G2, ... , G, (t^ 1) are the elements of S" . Each G, in S" 
has k(G) components. Since each G,(l =£ i r) has a minimum number of 
components isomorphic to F, each vertex v,(l sS i ^t) belongs to a component 
F, of G isomorphic to F, where the components F, of G(ls=/^r) are not 
necessarily distinct. Further, since each G,(l ^ t) has a maximum number of 
components isomorphic to F', it follows that F, - v, = F' for each /= 1, 2, 

t. Hence, every two of the graphs Gls G2, . .. , G, are isomorphic, and G can 
be produced from Gj, say, by replacing a component of G} isomorphic to F' by 
a component isomorphic to F. ■ 

It can be shown that (connected) graphs of order at least 3 whose 
complements are disconnected are reconstructible (see Exercise 2.64). 
However, it remains to be shown that all connected graphs of order at least 3 
are reconstructible. 
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Exercises 2.4 

2.61 Reconstruct the graph G whose subgraphs G- v, ve V(G), are given in Figure 

2.16. 

2.62 Reconstruct the graph G whose subgraphs G - v, veV(G), are given in the 

accompanying figure. 

2.63 Let G be a graph with R(G) = {vi, v2, ..., v7} such that G — v,=K(2, 4) for 
i= 1, 2, 3, and G - v,- = K(3, 3) for i = 4. 5, 6, 7. Show that G is reconstructible. 

2.64 (a) Prove that if G is reconstructible, then G is reconstructible. 

(b) Prove that every graph of order p(S*3) whose complement is disconnected is 

reconstructible. 

(a) Prove that the property of a graph being eulerian is recognizable. 

(b) Prove that eulerian graphs are reconstructible. 

2.65 Prove that bipartiteness is a recognizable property. 

2.66 Reconstruct the graph G whose subgraphs G - v, veL(G), are given in the 

accompanying figure. 

G li ■ 

O 

O 
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Trees 

Among the connected graphs, the simplest yet most important are the trees. 
Moreover, “spanning” trees appear in all connected graphs. Trees are rich in 
applications, particularly in computer science. 

3.1 Elementary Properties of Trees 

A tree is an acyclic connected graph. There are several observations that can be 
made regarding trees. First, by Theorem 2.13, it follows that every edge of a 
tree G is a bridge; that is, every block of G is acyclic. Conversely, if every edge 
of a connected graph G is a bridge, then G is a tree. 

There is one tree of each of the orders 1, 2, and 3; while there are two 
trees of order 4, three trees of order 5, and six trees of order 6. Figure 3.1 
shows all trees of order 6. 

If u and v are any two nonadjacent vertices of a tree G, then G + uv 

contains precisely one cycle C. If, in turn, e is any edge of C in G + uv, then 
the graph G + uv — e is once again a tree. 

In a nontrivial tree G, it is immediate that the number of blocks to which 
a vertex v of G belongs equals degv. Thus, every vertex of G that is not an 
end-vertex belongs to at least two blocks and is necessarily a cut-vertex. By 
Theorem 2.11, we have the following. 

Theorem 3.1 Every nontrivial tree has at least two end-vertices. 
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Figure 3.1 The trees of order 6 

There are a number of ways to characterize trees (for example, see [B7, 
p. 152] and [H7, p. 32]); three of these are particularly useful. 

Theorem 3.2 A (p, q) graph G is a tree if and only if it is acyclic and p = q + 1. 

Proof If G is a tree, then it is acyclic by definition. To verify the equality p = q + 1, 

we employ induction on p. For p = 1, the result (and graph) is trivial. Assume, 
then, that the equality p = q+\ holds for all (p, q) trees with p^ 1 vertices, 

and let Gx be a tree with p+ 1 vertices. Let v be an end-vertex of Gj. The 

graph G2 = Gi~v is a tree of order p, and so p = q(G2) + 1. Since G, has one 
more vertex and one more edge than does G2, p(G,) = p + 1 = 
(q(G2)+ 1) + 1 = q(Gx) + 1. 

Conversely, let G be an acyclic (p, q) graph with p = q + 1. To show G is 
a tree, we need only verify that G is connected. Denote by Gj, G2, ... , Gk 
the components of G, where k^l. Furthermore, let G, be a (p,, q,) graph. 
Since each G, is a tree, p, = qt + 1. Hence, 

k k 

p-1 = q= Tt q>= E (pi- i)=p-k 
<=i /=i 

so that k= 1 and G is connected. ■ 

A forest is an acyclic graph. Thus each component of a forest is a tree. 
The proof of Theorem 3.2 provides us with the following result. 
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Corollary 3.2 A forest G of order p has p — k(G) edges. 

Another characterization of trees is presented next. 

Theorem 3.3 A (p, q) graph G is a tree if and only if G is connected and p = q + 1. 

Proof Let G be a (p, q) tree. By definition, G is connected and by Theorem 3.2, 

p = q + l. For the converse, we assume G is a connected (p, q) graph with 

p = q + 1. It suffices to show that G is acyclic. If G contains a cycle C and e is 
an edge of C, then G — e is a connected graph of order p having p — 2 edges. 
This is impossible by Exercise 2.4(b); therefore, G is acyclic and is a tree. ■ 

Hence, any two of the properties (1) connected, (2) acyclic, and (3) 
p = q + 1 characterize a tree. There is yet another interesting characterization 
of trees that deserves mention. 

Theorem 3.4 A graph G is a tree if and only if every two distinct vertices of G are 
joined by a unique path of G. 

Proof If G is a tree, then certainly every two vertices u and v are joined by at least 
one path. If u and v are joined by two different paths, then a cycle of G is 
determined, producing a contradiction. 

On the other hand, suppose G is a graph for which every two distinct 
vertices are joined by a unique path. This implies that G is connected. If G has 
a cycle C containing vertices u and v, then u and v are joined by at least two 

paths. This contradicts our hypothesis. Thus, G is acyclic so that G is a tree. ■ 

Every connected graph G contains a spanning tree. If G itself is a tree, 
then this is a trivial observation; if G is not a tree, then a spanning tree of G 
may be obtained by removing cycle edges, one at a time, until finally only 
bridges remain. If G has q edges, then, of course, it is necessary to delete 
q — p + 1 edges in order to obtain a spanning tree of G. A much stronger 
statement than this can be made, however. A spanning subgraph H of a 
connected graph G is said to be distance-preserving from a vertex v in G if 

dH(v, u) = dG(v, u) for every vertex u. (The following result can be found in 

[02, p. 102].) 

Theorem 3.5 For every vertex v of a connected graph G, there exists a spanning tree 

FI that is distance-preserving from v. 

Proof For / = 0, 1, 2, ... , let 
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Ai(v) = {u eV(G)\d(u, v) = i). 

Since G is connected, for u + v it follows that u e A,(v) for some i ± U. Further¬ 
more, such a vertex u is adjacent with at least one vertex of A,_](v) and 

possibly with vertices in A,(v) and Ai+\{v) as well. Delete all but one edge of 
the type uw, where w eA,_i(v). Also, remove every edge of the type uw, 
where weA,(v). Repeat this process for each u±v: the resulting graph is 
denoted by H. 

From the manner in which H was constructed, it is clear that H is 
connected since a u-v path exists in H for each u =£ v. It is likewise obvious that 
H is distance-preserving from v. To verify that H is a tree, it remains only to 
show that H is acyclic. Suppose H contains a cycle C. Let w be a vertex of C 

whose distance from v is maximum, and let w, and w2 be the vertices adjacent 
with w on C. Suppose w e Ak(v); hence w, e Ak(v) or w, e Ak_\(v) for i = 1, 2. 
If either wxeAk(v) or w2eAk(v), then we have a contradiction due to the 
manner in which H was constructed. Thus, w, eAk_x(v) and vv2 e Ak_x (v), 

which again gives a contradiction. Therefore H is acyclic and hence is a tree. ■ 

v v 

Figure 3.2 A connected graph G (with vertex v) and a spanning tree H that is 
distance-preserving from v 

Figure 3.2 shows a connected graph G and a spanning tree that is distance¬ 
preserving from a vertex of G. 

There are a number of applications involving spanning trees in connected 
graphs. The weight of a spanning tree T in a connected weighted graph G is the 

sum ot the weights of the edges of T. A minimum spanning tree is a spanning 
tree of G of minimum weight. 

Suppose we wish to construct a railroad system connecting certain cities 
and we know the cost to build tracks between each pair of these cities. This 
situation can be modeled naturally by a connected weighted graph G. Finding a 
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least expensive railroad system connecting all cities is equivalent to deter¬ 
mining a minimum spanning tree of G. 

We now describe a good algorithm, due to Kruskal [Kll], that allows us 
to construct a minimum spanning tree of a connected weighted graph. 

Algorithm 3A (Kruskal) Given a nontrivial connected weighted graph G: 

1. Set i = 1 and let E0 = 0. 

2. Select an edge e, of minimum value not in such that T, = U {<?,}) 

is acyclic and define E, = Et_x U {e,}. If no such edge exists, let T = () 
and stop. 

3. Replace i by i+ 1. Return to Step 2. 

Theorem 3A Algorithm 3A produces a minimum spanning tree in a nontrivial 

connected weighted graph. 

Proof Let G be a nontrivial connected weighted graph of order p. Certainly, the 
subgraph T produced by this algorithm is a spanning tree. By Theorem 3.2, T 

has size p — 1. Thus, 

E(T) = {eu e2, ... , ep_i}, 

and the weight w( T) of T is given by 

p-1 

w{T)= Yj w(ej). 
i= 1 

Suppose that T is not a minimum spanning tree. Among the minimum 
spanning trees of G, let H be one having a maximum number of edges in 

common with T. Since H and T are not identical, 7” has one or more edges that 
are not in H. Let eh l^i^p — 1, be the first edge of T that is not in H. We 
add the edge e, to H, producing a graph G0 that contains a cycle. Since T is 
acyclic, there exists a cycle edge e0 in G0 that is not in T. The graph T0 = 

G0 — e0 is also a spanning tree of G, and 

w( T0) = w(H) + w(e,) - w(ea). 

Since w(H) =£ w(T0), it follows that w(e0) ^ w(e,). However, by the algorithm, 

et is an edge of minimum weight such that ({eu e2, . . . , e,}) is acyclic. Since 

({el5 e2, ..., e,_!, e0}) is acyclic, w(e,) = w(e0) so that w(T0) = w(H). This 
says that T0 is also a minimum spanning tree of G, but T0 has more edges in 
common with T than does H, contrary to assumption. ■ 

Knowledge of properties of trees is often useful when attempting to prove 
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certain results about graphs in general. Because of the simplicity of the 
structure of trees, every graph ordinarily contains a number of trees as sub¬ 
graphs. Of course, every tree of order p or less is a subgraph of Kp. A more 

general result is given next. 
The minimum degree of the vertices of a graph G is denoted by <5(G). 

Theorem 3.6 Let T be any tree of order m, and let G be a graph with d(G)^m- 1. 

Then T is a subgraph of G. 

Proof The proof is by induction on m. The result is obvious for m = 1 since K\ is a 
subgraph of every graph and for m = 2 since K2 is a subgraph of every non¬ 

empty graph. 
Assume for any tree T of order m— 1, m 2= 3, and any graph H with 

<5(H) 5= m — 2 that T is a subgraph of H. Let T be a tree of order m and let G 

be a graph with b(G) ^ m — 1. We show that TC G. 
Let v be an end-vertex of T and let u be the vertex of T adjacent with v. 

The graph T—v is necessarily a tree of order m— 1. The graph G has 
<3(G)5= m — \ >m — 2; thus by the inductive hypothesis, T—v is a subgraph of 
G. Let u' denote the vertex of G that corresponds to u. Since deg^u' ^ m — 1 
and T—v has order m— 1, the vertex u' is adjacent to a vertex w that 
corresponds to no vertex of T—v. Therefore, T C G. ■ 

Although no convenient closed formula is known for the number of 
nonisomorphic trees of order p, such a formula does exist when one considers 
nonidentical trees. This result is due to Cayley [C3], but since the original 

proof, the result has been established by a variety of mathematicians using a 
variety of methods [M9], The proof given here is due to Clarke [C6], 

Theorem 3.7 (Cayley's Tree Formula) The number of nonidentical trees of order p 
is pp-2. 

Proof Let N be the number of trees, no two of which are identical, on the p vertices 

labeled vl5 v2, ..., vp. For d= 1,2, ..., p — l, denote by Nd the number of 
such trees with deg vp = d. We refer to these N(, graphs as trees of type d. We 
note further that 

p-1 

v= £ Nd. 
d= 1 

For d = 2,3, ..., p — 1, let G' be a tree of type d— 1 and let v,( ± vp) be 
one of the p — d vertices of G' not adjacent with vp. Suppose that vy is the 
vertex on the unique vrvp path that is adjacent with v,. Define a linkage as an 
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ordered pair (G, G') of trees for which G = G' + vtvp — v,v;. Since each tree of 
type d — 1 is linked to p — d trees of type d and no two of these trees of type d 
are identical, the total number of linkages is (p — d)Nd_1. 

We now derive another expression for the number of linkages. Let G be a 

tree of type d, and assume that the vertices adjacent with vp are vl5 v2, . . . , vd. 
Denote by G, the component of G - vp containing v,-, /= 1, 2, ... , d, and let 

G, have order p,. Any tree of type d- 1 linked to G may be obtained by 

adding to G - v,vp (for some / = 1,2, . . . , d) an edge joining v, and a vertex v, 
not in Gj. The number of different such edges is p - 1 — pc, hence the number 

of trees linked to G is Ef=1(p - 1 -/?,), and no two of these trees are identical. 
Since 

d 

£ (.p-l-pi) = (d- l)(p- 1), 
/= 1 

it follows that the total number of linkages is (d - 1 )(p- l)Nd. 

We therefore arrive at the recursive relation (p — d)Nd_l = (d — 1) 
(p - 1 )Nd for d = 2, 3, ... , p — 1. 

Using the fact that Np_x = 1, we see that Np_2 = (p ~ 2)(p - 1), and 
calculating Nd-{ from Nd, we arrive at 

N“=[d-2i yp-'y-d-'- 

Thus, 

n="t 11) (p - ly-= Ejp j 2) (p - ’)p-“-2, 

the latter expression being equal to the binomial expansion 

E [p ~a 2) (p - n'’"2"" ■=i(p -1) +1]'-:2=pp~2, 
d = o'1 w ' 

which completes the proof. ■ 

Theorem 3.7 might be considered as a formula for determining the 
number of nonidentical spanning trees in the labeled graph Kp. We now 
consider the same question for graphs in general. 

The next result, namely Theorem 3.8, is due to Kirchhoff [K3] and is 
often referred to as the Matrix-Tree Theorem. The proof given here is based 

on that given in [H6]. 

This proof will employ a useful result of matrix theory. Let M and M' be 

m x n and n x m matrices, respectively, with m^n. An m x m submatrix M, of 
M is said to correspond to the m x m submatrix M,' of M' if the column 
numbers of M determining M, are the same as the row numbers of M' 
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determining A/,'. Then 

det(MM')=£ (det A/,) (det M,'), 

where the sum is taken over all m x m submatrices A/, of M, and where M, is 
the m x m submatrix of M' corresponding to M,. The numbers det M, and det 

M'i are called the major determinants of M and A/', respectively. 

As an illustration, we have 

? — 1 r L 

1 -2 3 -4 3 
3 1 _ 

_2 0 4 .4 6_ 
0 2 _ 

which has a determinant of —36. Writing \A \ = det A, we see that 

1 -2 2 -1 1 3 2 -1 -2 3 3 1 

2 0 3 1 
+ 

2 4 0 2 
-1- 

0 4 0 2 

For a graph G with V(G) = {vl5 v2, .. • , vp}, the degree matrix C(G) = 
c = [c,y] is the p x p matrix with c„ = deg v,- and ctj = 0 for i + j. 

Theorem 3.8 (The Matrix-Tree Theorem) If G is a nontrivial labeled graph with 
adjacency matrix A and degree matrix C, then the number of nonidentical 

spanning trees of G is the value of any cofactor of the matrix C - A. 

Proof We note first that the sum of the entries of row i (column i) of A is deg v, so 
that every row (column) sum of C-A is zero. It is a result of matrix theory 

that all cofactors of C-A have the same value. 
Assume first that G is a disconnected graph of order p, and that G{ is a 

component of G with F(G1) = {v1, v2, v„}. Let C' be the (p — 1) x 
(p — 1) submatrix obtained by deleting from C —A the last row and last 

column. Since the sum of the first n rows of C' is the zero vector with p- 1 
entries, the rows of C' are linearly dependent, implying that det C' = 0. Hence 
one cofactor of C-A has value zero. This is, of course, the number of 

spanning trees of G. 
We henceforth assume G to be a connected (p, q) graph, where q^p - 1. 

Let B denote the incidence matrix of G and in each column of B, replace one 
of the two nonzero entries by —1. Denote the resulting matrix by M = [/n,y]. 

We now show that the product of M and its transpose AT is C —A. The (/, j) 

entry of MM' is 

<? 

£ mikmjk, 

* = i 

which has the value degv, if / =/, the value —1 if v,v/eE(G), and 0 other¬ 

wise. Therefore, MM' = C —A. 
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Consider a spanning subgraph H of G containing p - 1 edges. Let AT be 

the (p-l)x(p-l) submatrix of M determined by the columns associated 
with the edges of H and by all rows of M with one exception, say row k. 

We now determine | det AT |. If H is not connected, then H has a com¬ 
ponent Hi not containing vv The sum of the row vectors of AT corresponding 
to the vertices of Hx is the zero vector with p— 1 entries; hence det AT =0. 

Assume now that H is connected so that H is (by Theorem 3.3) a 
spanning tree of G. Let ux(±vk) be an end-vertex of H, and ex the edge 
incident with it. Next, let u2{ T v*) be an end-vertex of the tree H — ux and e2 

the edge of H - ux incident with u2. We continue this procedure until finally 
only vk remains. A matrix M" = [m"j can now be obtained by a permutation of 
the rows and columns of AT such that |m"-| = 1 if and only if u, and e, are 

incident. From the manner in which M" was defined, any vertex is incident 
only with edges eh where / i. This, however, implies that AT is lower 
triangular, and since |m”-| = 1 for all i, we conclude that | det M"\ = 1. However, 

the permutation of rows and columns of a matrix affects only the sign of its 
determinant, implying that | det M' | = | det A/" | = 1. 

Since every cofactor of C — A has the same value, we evaluate only the 
ith principal cofactor; that is, the determinant of the matrix obtained by 
deleting from C — A both row i and column i. Denote by M, the matrix 

obtained from M by removing row i, so that the aforementioned cofactor 
equals det (ATM'), which, by the remark preceding the statement of this 

theorem, implies that this number is the sum of the products of the cor¬ 
responding major determinants of M, and M\. However, corresponding major 

determinants have the same value and their product is 1 if the defining columns 
correspond to a spanning tree of G and is 0 otherwise. This completes the 
proof. ■ 

Exercises 3.1 

3.1 Draw all forests of order 6. 

3.2 Prove that the number of end-vertices in a nontrivial tree T with V(T) = {v;, v2, 
... , vp} equals 

2+ Yj (deg v, — 2). 
deg v, ^ 3 

3.3 Let v be a vertex of degree 2 in the complete bipartite graph K(2, 4). Show that 

this graph contains nonisomorphic spanning trees that are distance-preserving 

from v. 
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3.4 Use Kruskal’s algorithm to find a minimum spanning tree of the weighted graph 

in the accompanying figure. 

3.5 Show that every tree of order at least 3 contains a cut-vertex v such that every 

vertex adjacent to v, with at most one exception, is an end-vertex. 

3.6 Prove Theorem 3.7 as a corollary to Theorem 3.8. 

3.7 (a) Prove that a graph G is a forest if and only if every induced subgraph of G 
contains a vertex of degree at most 1. 

(b) Characterize those graphs with the property that every connected subgraph is 

an induced subgraph. 

3.8 A tree is called central or bicentral depending on whether its center consists of 

one vertex or two adjacent vertices. 

(a) Prove that every tree is central or bicentral. 

(b) Let T be a tree with diameter d and radius r. Prove that T is central or 

bicentral according to whether d = 2r or d = 2r - 1. 

3.9 Let G be the labeled graph below. 

G: 

CL-6 
Vl ^3 

(a) Use the Matrix-Tree Theorem to compute the number of nonidentical 

spanning trees of G. 

(b) Draw all nonidentical spanning trees of G. 

3.10 Let T be a nontrivial tree of order p such that T£ K( 1, p — 1). Prove that TC T. 

3.11 A (p, q) graph G is called graceful if it is possible to label the vertices of G with 

distinct positive integers in such a way that the induced edge labeling, which 

prescribes the integer | / — /1 to the edge joining the vertices labeled i and y, 
assigns the labels 1,2, . . . , q to the q edges of G. It has been conjectured that 

every tree is graceful. 
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(a) Prove that every path is graceful. 

(b) Prove that every star is graceful. 

(c) Show that every tree of order 6 is graceful. 

3.12 A unicyclic graph is a connected graph that contains exactly one cycle. Prove that 

a (p, q) graph G is unicyclic if and only if G has any two of the properties: (a) G 
is connected, (b) G has exactly one cycle, (c) p = q. 

3.13 A graph G is geodetic if, between every two vertices u and v of G, there is a 

unique u-v path of length d(u, v). A cactus is a connected graph, every cyclic 

block of which is a cycle. Thus every tree is both geodetic and a cactus. Prove the 
following. 

(a) If G is a geodetic graph, then any cycle of G having smallest length is odd. 

(b) If every cycle of a connected graph G is odd, then G is both geodetic and a 
cactus. 

3.2 n-Ary Trees 

A directed tree is an asymmetric digraph whose underlying graph is a tree. A 
rooted tree is a directed tree T with some vertex r (called the root) such that T 

contains an r-v path for every vertex v of T. Thus a rooted tree with root r 

contains no v-r path for each vertex v =£ r. Furthermore, id r = 0 and id v = 1 

for all v =£ r. Figure 3.3 shows a directed tree 7^ that is not rooted and a rooted 
tree T2 (with root r). 

w 

Tv T7: 

Figure 3.3 A rooted tree T2 and a directed tree T, that is not rooted 

The customary way to draw a rooted tree T is to place the root at the top. 

The vertices of T adjacent from the root are placed one level below the root; 
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the vertices of T adjacent from these vertices are placed another level below, 

and so on. Thus, the rooted tree T2 of Figure 3.3 can be redrawn as in Figure 
3.4(a). In fact, since all arcs are directed downward, we may remove all arrows 
and draw T2 as in Figure 3.4(b). Again we emphasize that the drawing of 

Figure 3.4(b) represents a rooted tree (a type of digraph), not a tree. 

r r 

(a) (b) 
Figure 3.4 A rooted tree 

If T is a rooted tree with root r and v is a vertex of T, then the level 

number of v is the length of the unique r-v path in T. The maximum of the 
level numbers of the vertices of T is called the height of T and is denoted by 

h(T). For the rooted tree T2 of Figure 3.4, the root r is at level 0, the vertices 
u, v, w\ and y are at level 1, and the vertices t, x, and z are at level 2. Also 

h(T2) ~ 2. 

In working with rooted trees, some rather descriptive terminology is often 

used. Let T be a rooted tree with root r. For any vertex v^r, the father of v is 

that unique vertex u that is adjacent to v. Conversely, v is the son of u. Two 
vertices having the same father are brothers. In the rooted tree of Figure 3.4, y 

is the father of x, while x is the son of y; the vertices x and z are brothers. 
Vertices of a rooted tree having no sons (having outdegree 0) are called 

leaves. All other vertices (those with sons) are called internal vertices. The 

rooted tree of Figure 3.4 has five leaves and three internal vertices. 
In most applications of rooted trees, there is a limit as to how many sons 

a vertex can have. If every vertex of a rooted tree T has n or fewer sons, then 
T is called an n-ary tree. If every vertex of T has either n or no sons, then T is a 

complete n-ary tree. A rooted tree T is ordered if the sons of each vertex of T 

are ordered (as first son, second son, and so on). In a drawing of an ordered 
tree, the sons are ordered from left to right. 

In Figure 3.5, the rooted tree T\ is a complete 3-ary tree while T2 is a 3- 
ary tree that is not a complete 3-ary tree. The rooted trees T$ and T4 are 
complete 2-ary trees. As ordered trees they are not equal since w is the first 
son of t in T2 while w is the second son of tin T4. As unordered trees, they are 
considered equal. 
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Figure 3.5 Ordered and unordered n-ary trees 

The following result provides us with an elementary formula involving the 
order and the number of internal vertices in a complete /7-ary tree. 

Theorem 3.9 A complete n-ary tree T with i internal vertices has order p = ni-1-1. 

Proof Since every internal vertex has n sons and every son has only one father, there 
are exactly ni sons in T. Because only the root is not a son, it follows that 
p = ni+ 1. ■ 

Corollary 3.9 A complete 2-ary tree T with i internal vertices has 2i + 1 vertices, i + 1 

of which are leaves. 

Proof By Theorem 3.9, T has order 2/+1. Since every vertex of T is an internal 
vertex or a leaf, T has i + 1 leaves. ■ 

We now present a relationship between the order of a 3-ary tree and its 

height. 

If T is a 2-ary tree of height h and order p, then 

h + l^p^2h+1- 1. 

Theorem 3.10 
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h 

Proof Let pk (O^k^h) be the number of vertices at level k\ hence, Pk~P- 

Since \^pk^2k, it follows that 

A + ! = Ei«Ep^E2‘=2^'-r 
*: = () /;=() * = 0 

producing the desired result. ■ 

A rooted tree T of height h is balanced if every leaf is at level h or h - 1. 

Figure 3.6 shows two complete 2-ary trees; the first is balanced while the 
second is not. An immediate corollary of Theorem 3.10 can now be given. For 

any real number x, we denote by \x] the ceiling function of x—that is, the 

smallest integer not less than x. 

Figure 3.6 Balanced and unbalanced complete 2-ary trees 

Corollary 3.10 If T is a 2-ary tree of height h and order p, then h ^ log2{(p + l)/2). 
If T is a balanced complete 2-ary tree, then h = \log2((p + l)/2]. 

Proof Let T be a 2-ary tree of height h and order p. By Theorem 3.10, p ^ 2h f 1 — 1 

or 2h (p + 1 )/2. Consequently, h 2* log2((/? + l)/2). If I is a balanced 
complete 2-ary tree, then it follows that p > 2h — 1 so that 21' — 1 <p ^ 2h+ 1 — 1 

and 

2/i-i < £Lt_L 2h 
2 

Hence, h— l<log2((p+ l)/2)s£/?, implying that h = [log2((p + l)/2)]. ■ 

One use of 2-ary trees is in scheduling playoffs among a certain number 

of individuals or teams. For example, suppose there are thirteen contestants 
for a tennis championship. Then a playoff scheme can be developed by means 
of any complete 2-ary tree with thirteen leaves. By Corollary 3.9, such a 
complete 2-ary tree has twelve internal vertices and order 25. Two such 
complete 2-ary trees T\ and 73 are shown in Figure 3.7. The root c in each case 

denotes the champion. 



Section 3.2 n-Ary Trees 81 

Figure 3.7 Two complete 2-ary trees with thirteen leaves 

When using a complete 2-ary tree to represent a playoff scheme, we 
normally draw the tree with the root at the bottom. For example if we were to 
draw the complete 2-ary tree Tx of Figure 3.7 in this manner, the result is the 

diagram of Figure 3.8. The labeling indicates that contestant 2 defeated 

contestant 1, contestant 4 defeated contestant 5, and so on. The champion is 
the winner of the match between contestants 6 and 9. 

In each complete 2-ary tree of Figure 3.7, p = 25 so, by Corollary 3.10, 
the height h is at least log213; so h 5s 4. The complete 2-ary tree Tl is balanced 
so that h = 4. This implies that every contestant must win either three or four 

matches to win the championship. On the other hand, T2 is not balanced; the 
height of T2 is 5. In this case, contestant 1 must win five matches to become 
champion while contestant 12, for example, need win only three matches. Such 
a disparity always occurs when one is dealing with an unbalanced 2-ary tree. 
An unbalanced 2-ary tree may be appropriate if certain contestants are required 
to win additional matches to qualify for a main tournament and/or past 
champions are required to win fewer matches. 

In many applications of 2-ary trees, every vertex other than the root is 
specified as the left son or right son of its father. Such 2-ary trees are referred to 

as binary trees. As we shall see, in binary trees the left son is often “less thgn” 
its father and the right son is “greater than” its father. Since a binary tree is a 
2-ary tree, Corollary 3.9, Theorem 3.10, and Corollary 3.10 provide results on 

binary trees. 
Binary trees are commonly used in a variety of searches. For example, 

they may be used in a search for a word W against words in some set 
containing W. The maximum number of tests needed to recognize W is the 
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Figure 3.8 Representing a playoff scheme by a complete 2-ary tree 

height of an appropriate balanced binary tree. Suppose we are searching for a 
letter of the alphabet. A search process can be illustrated by means of the 

binary tree of Figure 3.9. We choose the “middle” letter M as the root. This 
indicates that we first test to see if M is the letter we are searching for. If not, 
we test to determine whether the letter precedes M or follows M. If, for 

example, we learn that our letter follows M, we move to the right son of M and 
test to see if it is the letter T. If it is not T, we apply a test to determine 
whether it precedes T (and follows M) or follows T, and so on. The height of 

this tree is 4, implying that at most four tests are required to locate the letter. 

M 
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Exercises 3.2 

3.14 Let 7 be a directed tree with the property that id r = 0 for some vertex r of 7 but 

id v = 1 for all v r. Prove that 7 is a rooted tree with root r. 

3.15 Prove that the bounds given in Theorem 3.10 are sharp. 

3.16 Determine and prove a result that generalizes Theorem 3.10 to n-ary trees. 

3.3 Decomposition of Graphs into Acyclic Subgraphs 

We now return to our main topic in this chapter—(undirected) acyclic graphs 
in general, and trees in particular. 

One of the most common problems in graph theory deals with the 
decomposition of a graph into various subgraphs possessing some prescribed 

property. There are ordinarily two problems of this type, one dealing with a 
decomposition of the vertex set and the other with a decomposition of the edge 
set. One such property that has been the subject of investigation is that of 
being acyclic, which we now consider. 

For any graph G, it is possible to partition V(G) into subsets Vh 1 ^ i n, 

such that each induced subgraph (F,) is acyclic; that is, is a forest. This can 
always be done by selecting each F,- so that |F,-|sS2; however, the major 
problem is to partition F(G) so that as few subsets as possible are involved. 

This suggests our next concept. The vertex-arboricity a(G) of a graph G is the 
minimum number of subsets into which F(G) can be partitioned so that each 
subset induces an acyclic subgraph. It is obvious that «(G) = 1 if and only if G 
is acyclic. For a few classes of graphs, the vertex-arboricity is easily determined. 
For example, a(Cp) = 2. If p is even, a(Kp)~ p/2, while if p is odd, a(Kp) = 

(p +1)12. Also, a(K(m,n)) = 1 if m= 1 or n = 1, and a(K(m,n)) = 2 
otherwise. No formula is known in general, however, for the vertex-arboricity 
of a graph although some bounds for this number exist. First, it is clear that for 
any graph G of order p, 

*(G)sS 
P 
2 

(3.1) 

The bound (3.1) is not particularly good. In order to present a sharper 
bound, a new concept is introduced at this point. 



84 Chapter 3 Trees 

A graph G is called critical with respect to vertex-arboricity if a(G - v) < 

a(G) for all vertices v of G. This is the first of several occasions when a graph 
will be defined as critical with respect to a certain parameter. In order to avoid 

cumbersome phrases, we will simply use the term "critical when the 
parameter involved is clear by context. In particular, a graph G that is critical 
with respect to vertex-arboricity will be referred to in this section as a critical 
graph and, further, as an n-critical graph if a(G) = n. The complete graph 

K2n-1 is n-critical while each cycle is 2-critical. It is not difficult to locate 
critical graphs; indeed, every graph G with a(G) = /7 3= 2 contains an induced n- 

critical subgraph. In fact, any induced subgraph G' of G with a(G') = n and 

having minimum order is n-critical. 
Before presenting the aforementioned bound for a(G), we give another 

result. 

Theorem 3.11 If G is a graph having a(G) = n^ 2 that is critical with respect to 

vertex-arboricity, then 6(G) 5= 2(n — 1). 

Proof Let G be an n-critical graph, n 3= 2, and suppose G contains a vertex v of 
degree 2n — 3 or less. Since G is n-critical, a(G — v) — n ~ 1 and there is a 

partition V\, V2, . . . , Vn-\ of the vertex set of G - v such that each subgraph 
(Vi) is acyclic. Because degv=^2n-3, at least one of these subsets, say V), 
contains at most one vertex adjacent with v in G. The subgraph (VyU {v}) is 

necessarily acyclic. Hence Vl,V2, ..., VyU {v}, ..., Vn~\ is a partition of the 
vertex set of G into n - 1 subsets, each of which induces an acyclic subgraph. 

This contradicts the fact that a(G) = n. ■ 

We are now in a position to present the desired upper bound [CK1], 

(Recall that the notation H <G indicates that H is an induced subgraph of G.) 
The symbol [xj, for a real number x, is called the floor function of x and 

represents the greatest integer not exceeding x. 

Theorem 3.12 For each graph G, 

a(G)«Sl + 
max 6(G') 

where the maximum is taken over all induced subgraphs G' of G. 

Proof The result is obvious for acyclic graphs; thus, let G be a graph with a(G) = 

n 3s 2. Furthermore, let H be an induced //-critical subgraph of G. Since H itself 
is an induced subgraph of G, 

b(H) 5S max 6(G'). 
c<c 

(3.2) 
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By Theorem 3.11, 6(H)^2n-2, so by (3.2), 

max d(G') ^2n-2 = 2a(G)-2. 
G' <G 

This inequality now produces the desired result. ■ 

Let A(G) denote the maximum degree among the vertices of a graph G 

Since <5(G')s=A(G) for G' < G, we note the following consequence of the 
preceding result. 

Corollary 3.12 For any graph G, 

a(G) 1 + 
MG] 

2 

We now turn to the second decomposition problem. The edge-arboricity, 

or simply the arboricity, fli(G) of a nonempty graph G is the minimum number 

of subsets into which E(G) can be partitioned so that each subset induces an 
acyclic subgraph. As with vertex-arboricity, a nonempty graph has arboricity 1 

if and only if it is a forest. Unlike vertex-arboricity, however, there is a formula 
for the arboricity of any graph [Nl], 

Theorem 3.13 (Nash-Williams) For any nonempty graph G, 

q(H) 
a, (G) = max 

H<G pm-1 

where the maximum is taken over all nontrivial induced subgraphs FI of G. 

As a consequence of Theorem 3.13, it follows that 

mn 
«i (Kp) = and ax(K{m,n)) = 

m + n — 1 

It is interesting to note that when p is even, Kp can be expressed as the edge 

sum of p/2 spanning paths, as shown by Beineke [B2], and when p is odd, Kp 

can be expressed as the edge sum of (p + l)/2 subgraphs, (p - l)/2 of which are 
isomorphic to Pp_jU and the other isomorphic to K(l, p — 1). Decomposing 
a graph into pairwise edge-disjoint acyclic subgraphs is a special case of the 
more general subject of “factorization”, which will be considered in Chapter 8. 
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Exercises 3.3 

3.17 What upper bounds for a(K( 1, n)) are given by Theorem 3.12 and Corollary 

3.12? 

3.18 Let G be an ^-critical graph with respect to vertex-arboricity (n^3). Prove that 

for each vertex v of G, the graph G - v is not (n - l)-critical with respect to 

vertex-arboricity. 

3.19 Give an example of a graph G that has a nonempty induced subgraph H such that 

q(G) 

p(G) — 1 

q(H) 

p(H) — 1 

thereby proving that, in general, \q{G)/(p(G) - 1)]. Determine ai(G) 

for this graph. 
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Graph Embeddings 

We now consider graphs that can be drawn in the plane without their edges 
crossing. A formula developed by Euler plays a central role in the study of 
these “planar” graphs. We then extend this concept to graphs that can only be 
drawn on more complex surfaces. 

4.1 Euler's Formula 

A (p, q) graph G is said to be realizable or embeddable on a surface S if it is 
possible to distinguish a collection of p distinct points of S that correspond to 

the vertices of G and a collection of q curves, pairwise disjoint except possibly 
for endpoints, on 5 that correspond to the edges of G such that if a curve A 

corresponds to the edge e = uv, then only the endpoints of A correspond to 
vertices of G, namely u and v. Intuitively, G is embeddable on S if G can be 
drawn on 5 so that edges (more precisely, the curves corresponding to edges) 
intersect only at a vertex (that is, a point corresponding to a vertex) mutually 
incident with them. In this section we are concerned exclusively with the case 
in which 5 is a plane or sphere. 

A graph is planar if it can be embedded in the plane. Embedding a graph 
in the plane is equivalent to embedding it on the sphere. In order to see this, 
we perform a stereographic projection. Let S be a sphere tangent to a plane jt, 
where A is the point of S diametrically opposite to the point of tangency. If a 
graph G is embedded on S in such a way that no vertex of G is A and no edge 
of G passes through A, then G may be projected onto jt to produce an 
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embedding of G on n. The inverse of this projection shows that any graph that 
can be embedded in the plane can also be embedded on the sphere. 

If a planar graph is embedded in the plane, then it is called a plane graph. 
The graph GX = K{2, 3) of Figure 4.1 is planar, although, as drawn, it is not 
plane; however, G2 — K{2, 3) is both planar and plane. The graph G3 = K(3, 3) 
is nonplanar. This last statement will be proved presently. 

Probably the most practical use of planar graphs is in the design of 
electrical circuits. Indeed, printed circuit boards and integrated semiconductor 
chips are essentially planar graphs. If the graph corresponding to a printed 
circuit is planar, then a single circuit board suffices. Otherwise, modifications 
are necessary to avoid short circuits; for example, drilling holes in the board 
and using both sides, or using more than one board and connecting them by 

jumpers. 
Given a plane graph G, a region of G is a maximal portion of the plane 

for which any two points may be joined by a curve A such that each point of 
A neither corresponds to a vertex of G nor lies on any curve corresponding to 
an edge of G. Intuitively, the regions of G are the connected portions of the 

Figure 4.1 Planar, plane, and nonplanar graphs 

plane remaining after all curves and points corresponding, respectively, to 
edges and vertices of G have been deleted. For a plane graph G, the boundary 
of a region R consists of all those points * corresponding to vertices and edges 
of G having the property that x can be joined to a point of R by a curve, all of 
whose points different from x belong to R. Every plane graph G contains an 
unbounded region called the exterior region of G. If G is embedded on the 
sphere, then no region of G can be regarded as being exterior. On the other 
hand, it is equally clear that a plane graph G can always be embedded in the 
plane so that a given region of G becomes the exterior region. Hence a plane 
graph G can always be realized in the plane so that any vertex or edge lies on 
the boundary of its exterior region. The plane graph G2 of Figure 4.1 has three 
regions, and the boundary of each is a 4-cycle. 

The order, size, and number of regions of any connected plane graph are 
related by a well-known formula discovered by Euler [E8]. 

Theorem 4.1 (Euler's Formula) If G is a connected plane graph with p vertices, q 
edges, and r regions, then 

p — q + r = 2. 
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Proof We employ induction on q, the result being obvious for q = 0 since in this case 

p = 1 and r— 1. Assume the result is true for all connected plane graphs with 
fewer than q edges, where q^l, and suppose G has q edges. If G is a tree, 
then p = q + 1 and r = 1 so that the desired formula follows. On the other 
hand, if G is not a tree, let e be a cycle edge of G and consider G-e. The 

connected plane graph G-e has p vertices, q- 1 edges, and r — 1 regions so 
that by the inductive hypothesis, p - (q - 1) + (r - 1) = 2, which implies that 
p — q + r = 2. ■ 

From the preceding theorem, it follows that any two embeddings of a 
connected planar graph in the plane result in plane graphs having the same 

number of regions; thus one can speak of the number of regions of a connected 
planar graph. For planar graphs in general, we have the following result. 

Corollary 4.1 If G is a plane graph with p vertices, q edges, and r regions, then 
p — q + r= 1 + k(G). 

A planar graph G is called maximal planar if, for every pair of non- 

adjacent vertices u and v of G, the graph G + uv is nonplanar. Thus in any 
embedding of a maximal planar graph G having order 3, the boundary of 
every region of G is a triangle. For this reason, maximal planar graphs are also 
referred to as triangulated planar graphs', triangulated plane graphs are often 
called simply triangulations. 

On a given number p of vertices, a planar graph is quite limited as to how 
large its size q can be. A bound on q follows from our next result. 

Theorem 4.2 If G is a maximal planar (p, q) graph with p^ 3, then 

q = 3p — 6. 

Proof Denote by r the number of regions of G. In G the boundary of every region is 
a triangle, and each edge is on the boundary of two regions. Therefore, if the 
number of edges on the boundary of a region is summed over all regions, the 
result is 3r. On the other hand, such a sum counts each edge twice so that 
3r = 2q. Applying Theorem 4.1, we obtain q = 3p — 6. ■ 

Corollary 4.2a If G is a planar (p, q) graph with p^3, then 

q^3p-6. 

Proof Add to G sufficiently many edges so that the resulting (p\ q') graph G' is 
maximal planar. Clearly, p = p' and q^q'. By Theorem 4.2, q' = 3p - 6 and 

so q ^ 3p — 6. ■ 
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An immediate but important consequence of Corollary 4.2a is given next. 

Corollary 4.2b Every planar graph contains a vertex of degree at most 5. 

Proof Let G be a planar (p, q) graph with V(G) = {vl5 v2, ... , vp}. If p ^ 6, then 

the result is obvious. Otherwise, q^3p-6 implies that 

p 

E deg v, = 2<7=S6p- 12. 
;= 1 

Not all p vertices of G have degree 6 or more, for then 2q^6p. Thus G 

contains a vertex of degree 5 or less. ■ 

We next consider another corollary involving degrees. In it we make use 

of the fact that the minimum degree is at least 3 in a maximal planar graph of 

order at least 4. 

Corollary 4.2c Let G be a maximal planar graph of order p 2s 4, and let pi denote the 

number of i-vertices of G, where i = 3,4, . .. , n = A(G). Then 

3pi + 2p4 + p5 = Pi + 2p8 + ... +(n- 6)pn + 12. 

Proof Let G have size q. Then, by Theorem 4.2, q = 3p-6. Since 

n n 

p = Ypi and 2?=E lP" 
/=3 <=3 

it follows that 

n n 

E 1p> =6 E pt -12 
i=3 1=3 

and, consequently, 

3p3 + 2p4 + p5 = p7 + 2p8 + ... + (n - 6)pn + 12. ■ 

An interesting feature of planar graphs is that they can be embedded in 

the plane so that every edge is a straight line segment. This result was proved 

independently by Fary [FI] and Wagner [Wl]. 
The theory of planar graphs is very closely allied with the study of 

polyhedra; in fact, with every polyhedron P is associated a connected planar 
graph G(P) whose vertices and edges are the vertices and edges of P. Neces¬ 

sarily, then, every vertex of G(P) has degree at least 3. Moreover, if (>(P) is a 
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plane graph, then the faces of P are the regions of G(P) and every edge of 

G(P) is on the boundary of two regions. A polyhedron and its associated plane 
graph are shown in Figure 4.2. 

Figure 4.2 A polyhedron and its associated graph 

It is customary to denote the number of vertices, edges, and faces of a 
polyhedron P by V, E, and F, respectively. However, these are the number of 
vertices, number of edges, and number of regions of a connected planar graph, 
namely G(P). According to Theorem 4.1, V, E, and F are related. In this 

form, the statement of this result is known as the Euler Polyhedron Formula. 

Theorem 4.3 (Euler Polyhedron Formula) If V, E, and F are the number of 

vertices, edges, and faces of a polyhedron, then 

V-E + F= 2. 

When dealing with a polyhedron P (as well as the graph G(P)), it is 
customary to represent the number of vertices of degree n by Vn and the 

number of faces (regions) bounded by an n-cycle by Fn. It follows then that 

2E=YinVn=YinFn. (4.1) 
3 n 2*3 

By Corollary 4.2b, every polyhedron has at least one vertex of degree 3, 

4, or 5. As an analogue to this result, we have the following. 

Theorem 4.4 At least one face of every polyhedron is bounded by an n-cycle for 

some n = 3, 4, 5. 

Proof Assume that F3 = F4 = F5 = 0 so that by equation (4.1), 

2 E= 2 nFn^Ya 6F„ = 6£F„ = 6F. 
n ^ 6 n^6 6 

Hence E^3F. Also, 

2E= Yj nVn3* Y 3K, = 3£ V„ = 3V. 
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By Theorem 4.3, V - E + F= 2; therefore, E ^ ~3E + \e - 2 = E - 2. This is a 

contradiction. ■ 

A regular polyhedron is a polyhedron whose faces are bounded by 

congruent regular polygons and whose polyhedral angles are congruent. In 

particular, for a regular polyhedron, V=Vk for some A, and F= Fh for some h. 
For example, a cube is a regular polyhedron with V= V3 and F= F4. There are 

only four other regular polyhedra. These five regular polyhedra are also called 
platonic solids. The Greeks were aware, over two thousand years ago, that 

there are only five such polyhedra. 

Theorem 4.5 There are exactly five regular polyhedra. 

Proof Let P be a regular polyhedron and let G(P) be an associated planar graph. 
Then V - E + F= 2, where V, E, and F denote the number of vertices, edges, 

and faces of P and G(P). Therefore, 

_8 = 4£-4L-4T 

= 2£ + 2£-4L-4F 

3 n» 3 3 nSs 3 

= £ (n — 4)F„ + S (n-4)Vn. 
n > 3 n ^ 3 

Since P is regular, there exist integers h(^3) and A(5= 3) such that F= Fh and 
V = Vk. Hence -8 = (h - 4)Fh + (A - 4) Vk. Moreover, we note that 3s£ h ^5, 

3^ A^5, and hF,, = 2E = kVk. This gives us nine cases to consider. 

Case 1: (h = 3, A = 3) Here we have 

—8=— F3 — V-i and 3F^ = 3V^, 

so that Ft, = V3 = 4. Thus P is the tetrahedron. (That the tetrahedron is the only 
regular polyhedron with V3 = = 4 follows from geometric considerations.) 

Case 2: (h = 3, A = 4) Therefore 

-8 =-F3 and 3F3 = AVa. 

Hence F3 = 8 and L4 = 6, implying that P is the octahedron. 

Case 3: {h = 3, A = 5) In this case, 

—8 =-F3+V5 and 3F3 = 5V5, 
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so that F3 — 20, V5 = 12, and P is the icosahedron. 

Case 4: (h = 4, k = 3) We find here that 

— 8 = - V3 and 4F4 = 3F3. 

Thus V3 = 8, F4 = 6, and P is the cube. 

Case 5: (h = 4, & = 4) This is impossible since -8 + 0. 

Case 6: (h = 4, A = 5) This case, too, cannot occur, for otherwise -8 = V5. 

Case 7: (h = 5, k = 3) For these values, 

-8 = F5-V3 and 5F5 = 3V3. 

Solving for F5 and V3, we find that F5 = 12 and F3 = 20 so that P is the 
dodecahedron. 

Case 8: (h = 5, A: = 4) Here —8 = F5, which is impossible. 

Case 9: (A = 5, k = 5) This, too, is impossible since -8F F5 + V5. This 
completes the proof. ■ 

The graphs of the five regular polyhedra are shown in Figure 4.3. 

tetrahedron cube octahedron 

dodecahedron icosahedron 

Figure 4.3 The graphs of the regular polyhedra 
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Exercises 4.1 

4.1 Give an example of a planar graph that contains no vertex of degree less than 5. 

4.2 Show that every planar graph of order p 4 has at least four vertices ot degree less 

than or equal to 5. 

4.3 Prove Corollary 4.1. 

4.4 (a) Prove that a planar (p, q) graph with p2=3 is maximal planar if and only if 

q = 3p - 6. 

(b) Prove that there exists only one 4-regular maximal planar graph. 

4.5 Let 3 be an integer, and let G be a (p, q) plane graph where p^n. 

(a) If g(G)^n, then determine an upper bound B for q in terms of p and n. 

(b) Show that your bound B in (a) is sharp by determining, for arbitrary 3, a 

(p, q) plane graph G with g(G)^n such that q = B. 

4.6 Let T be a nontrivial tree with p, vertices of degree i (i= 1,2.n = A(T)). 

Prove that 

Pi = Pi + 2p4 + 3p5 + • • • + (n — 2 )p„ + 2. 

4.2 Characterizations of Planar Graphs 

There are two graphs, namely K5 and K(3, 3) (shown in Figure 4.4), that play 

an important role in the study of planar graphs. 

Figure 4.4 The nonplanar graphs K$ and K{3, 3) 

Theorem 4.6 The graphs A's and K(3, 3) are nonplanar. 

Proof Suppose, to the contrary, that A5 is a planar graph. Since K5 has p = 5 vertices 

and q — 10 edges. 
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10 = q > 3p - 6 = 9, 

which contradicts Corollary 4.2a. Thus K5 is nonplanar. 

Suppose next that K(3, 3) is a planar graph, and consider any plane 
embedding of it. Since K(3, 3) is bipartite, it has no triangles; thus each of its 
regions is bounded by at least four edges. Let the number of edges bounding a 
region be summed over all r regions of K(3, 3), denoting the result by N. Thus, 

N^Ar. Since the sum N counts each edge twice and K(3, 3) contains q = 9 
edges, N=18 so that r=S 9/2. However, by Theorem 4.1, r = 5, and this is a 
contradiction. Hence K(3, 3) is nonplanar. ■ 

For the purpose of presenting two useful, interesting criteria for graphs to 
be planar, we describe two relations on graphs in this section. 

An elementary subdivision of a nonempty graph G is a graph obtained 
from G by removing some edge e = uv and adding a new vertex w and edges 

uw and vw. A subdivision of G is a graph obtained from G by a succession of 
elementary subdivisions. A graph H is defined to be homeomorphic from G if 

either H=G or H is isomorphic to a subdivision of G. A graph Gx is 
homeomorphic with a graph G2 if there exists a graph G3 such that each of Gx 
and G2 is homeomorphic from G3. 

In Figure 4.5 the graphs Gx and G2 are homeomorphic with each other 
since each is homeomorphic from G3. However, neither Gx nor G-, is 
homeomorphic from the other. 

Figure 4.5 Homeomorphism 

The relation “is homeomorphic with” is an equivalence relation on graphs. 
We thus refer to two graphs as being homeomorphic if either is homeomorphic 
with the other. Hence the set of graphs may be partitioned into equivalence 
classes, two graphs belonging to the same class if and only if they are 
homeomorphic. 

It should be clear that any graph homeomorphic from a graph G is planar 
or nonplanar according to whether G is planar or nonplanar. Also it is an 
elementary observation that if a graph G contains a nonplanar subgraph, then 
G is nonplanar. Combining these facts with our preceding results, we obtain 
the following. 

Theorem 4.7 If a graph G contains a subgraph homeomorphic with either K5 or 
K(3, 3), then G is nonplanar. 
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The remarkable property of Theorem 4.7 is that its converse is also true. 

These two results provide a characterization of planar graphs that is un¬ 

doubtedly one of the best known theorems in the theory of graphs. Before 
presenting a proof of this result, first discovered by Kuratowski [K12], we need 

one additional fact about planar graphs. 

Theorem 4.8 A graph is planar if and only if each of its blocks is planar. 

Proof Certainly, a graph G is planar if and only if each of its components is planar, so 
we may assume G to be connected. It is equally clear that if G is planar, then 

each block of G is planar. For the converse, we employ induction on the 
number of blocks of G. If G has only one block and this block is planar, then, 

of course, G is planar. Assume every graph with fewer than n ^ 2 blocks, each 
of which is planar, is a planar graph, and suppose G has n blocks, all of which 
are planar. Let B be an end-block of G, and denote by v the cut-vertex of G 
common to B. Delete from G all vertices of B different from v, calling the 

resulting graph G'. By the inductive hypothesis, G' is a planar graph. Since the 
block B is planar, it may be embedded in the plane so that v lies on the 
exterior region. In any region of a plane embedding of G' containing v, the 

plane block B may now be suitably placed so that the two vertices of G' and B 
labeled v are “identified”. The result is a plane graph of G; hence G is a 

planar. ■ 

We can now give a characterization of planar graphs. The proof of the 

following result is based on a proof by Dirac and Schuster [DS1]. 

Theorem 4.9 (Kuratowski) A graph is planar if and only if it contains no subgraph 

homeomorphic with or K(3, 3). 

Proof The necessity is precisely the statement of Theorem 4.7; thus we need only 
consider the sufficiency. In view of Theorem 4.8, it is sufficient to show that if a 

block contains no subgraph homeomorphic with Ks or K(3, 3), then it is 
planar. Assume, to the contrary, that such is not the case. Hence among all 
nonplanar blocks not containing subgraphs homeomorphic with either K5 or 

K(3, 3), let G be one of minimum size. 
First we verify that 6(G) 5= 3. Since G is a block, it contains no end- 

vertices. Assume, then, that G contains a vertex v with degv = 2, such that v is 
adjacent with u and tv. We consider two possibilities. Suppose uweE(G). 

Then G — v is also a block. Since G — v is a subgraph of G, it follows that 
G — v also contains no subgraph homeomorphic with K5 or K(3, 3); however, 
G is a nonplanar block of minimum size having this property so that G — v is 
planar. However, in any plane graph of G — v, the vertex v and edges uv and 
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vw may be inserted so that the resulting graph G is plane, which contradicts the 

fact that G is nonplanar. Next, suppose that uw£E(G). The graph G' = 
G - v + uw is a block having smaller size than G. Furthermore, G' contains no 

subgraph homeomorphic with either K5 or K(3, 3); for suppose it contained 
such a subgraph F. If F failed to contain the edge uw, then G would also 
contain F, which is impossible; thus F contains uw. If to F- uw we add the 

vertex v and edges uv and wv, the resulting graph F' is homeomorphic from F. 
However, F' is a subgraph of G, which is impossible. Thus G' is a block of size 
less than G that contains no subgraph homeomorphic with either K5 or 
K(3, 3), so that G' is planar. However, since G is homeomorphic from G', this 
implies that G too is planar, which is a contradiction. Thus, G cannot contain a 
vertex of degree 2, so that <5(G)5=3, as claimed. 

By Corollary 2.18, G is not a minimal block so that there exists an edge 
e = uv, such that FI = G - e is also a block. Since H has no subgraph 
homeomorphic with either K5 or K{3, 3) and H has fewer edges than does G, 
the graph H is planar. Since H is a cyclic block, it follows by Theorem 2.14 that 

H possesses cycles containing both u and v. We henceforth assume H to be a 
plane graph having a cycle, say C, containing u and v such that the number of 
regions interior to C is maximum. Assume C to be given by 

U = Vo, Vj, . .. , v, = v, ..., vn = u, 

where 1 < i < n — 1. 

Several observations regarding the plane graph H can now be made. In 
order to do this, it is convenient to define two special subgraphs of H. By the 
exterior subgraph {interior subgraph) of H, we mean the subgraph of G induced 

by those edges lying exterior (interior) to the cycle C. First, since the graph G 
is nonplanar, both the exterior and interior subgraphs exist, for otherwise, the 
edge e could be added to H (either exterior to C or interior to C) so that the 
resulting graph, namely G, is planar. 

We note further that no two distinct vertices of the set {v0, vl5 . . . , v,} 
are connected by a path in the exterior subgraph of H, for this would con¬ 
tradict the choice of C as being that cycle containing u and v having the 
maximum number of regions interior to it. A similar statement can be made 
regarding the set {v,, vI+1, ... , v„}. These remarks in connection with the fact 
that H + e is nonplanar imply the existence of a vy — vk path P, 0 </ <i < k <n, 
in the exterior subgraph of H such that no vertex of P different from vy and vk 
belongs to C. This structure is illustrated in Figure 4.6. We further note that no 
vertex of P different from v, and vk is adjacent to a vertex of C other than v. or 
v*., and, moreover, any path joining a vertex of P with a vertex of C must 

contain at least one of v; and v^. 
Let Hi be the component of H — {vw|0 m < n, mFj, k} containing P. 

By the choice of C, the subgraph Hx cannot be inserted in the interior of C in a 
plane manner. This, together with the assumption that G is nonplanar, implies 
that the interior subgraph of H must contain one of the following: 
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Figure 4.6 Structure of the graph H of Theorem 4.9 

(a) A vr-vs path Q, 0<r<j, i<s<k, (or, equivalently, j<r<i and 
k<s<n) none of whose vertices different from vr and vs belongs 

to C. 

(b) A vertex w not on C that is connected to C by three internally 
disjoint paths such that the end-vertex of one such path P is one of 
v0, vj, v,, and vk. If P ends at v0, the end-vertices of the other paths 
are vr and vs, where j^r<i and i<s^k but not both r = j and 

s = k hold. If P ends at any of vy, v, or vk, there are three analogous 

cases. 

(c) A vertex w not on C that is connected to C by three internally 

disjoint paths Pu P2, P3 such that the end-vertices of the paths 
(different from w) are three of the four vertices v0, v;, v,, vk, say v(), 
vh vj, respectively, together with a v,-vk path P4(v, ^v0, v,, w) 

where v, is on Px or P2, and P4 is disjoint from P,, P2, and C except 
for v, and v*.. The remaining choices for P\, P2 and P3 produce three 

analogous cases. 

(d) A vertex w not on C that is connected to the vertices v0, vr v,, v* by 

four internally disjoint paths. 

These four cases exhaust the possibilities. (This is a fact of which one 
must convince oneself.) In each of the first three cases, the graph G has a 
subgraph homeomorphic with K{3, 3) while in the fourth case, G has a sub¬ 
graph homeomorphic with K5. However, in any case, this is contrary to 

assumption. Thus no such graph G exists, and the proof is complete. ■ 

Thus the Petersen graph (see Figure 4.7(a)) is nonplanar since it contains 

the subgraph of Figure 4.7(b) that is homeomorphic with K(3, 3). Despite its 
resemblance to the complete graph K$, the Petersen graph does not contain a 

subgraph homeomorphic with K$. 
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Figure 4.7 The Petersen graph and a subgraph homeomorphic with K{3, 3) 

For graphs Gx and G2, a mapping <j> from V(GX) onto V(G2) is called an 
elementary contraction if there exist adjacent vertices u and v of Gx such that 

(a) 4>w = 4>v, and {ux, Vj} + {u, v} implies cj>tzj + cjivj, 

(b) {ux, v,} H {u, v} = 0 implies uxvxeE(Gx) if and only if 

e E(G2), and 

(c) for w e F(G,), w + u, v, then uw e E{GX) or vw e E(GX) if and only 
if 4>u(j)w e E(G2). 

We say here that G2 is obtained from Gx by the identification of the adjacent 

vertices u and v. A contraction is then a mapping from F(G)) onto V(G2) that 
is either an isomorphism or a composition of finitely many elementary contrac¬ 
tions. 

If there exists a contraction from V(GX) onto V(G2), then G2 is a 

contraction of Gx, and Gx contracts to or is contractible to G2. A subcontraction 
of a graph G is a contraction of a subgraph of G. 

There is an alternative and more intuitive manner in which to define 
“contraction”. A graph G2 may be defined as a contraction of a graph G, if 
there exists a one-to-one correspondence between V(G2) and the elements of a 
partition of F(G!) such that each element of the partition induces a connected 
subgraph of Gx, and two vertices of G2 are adjacent if and only if the subgraph 
induced by the union of the corresponding subsets is connected. 

In Figure 4.8, the graph G is a contraction of H, obtained by the 

identification v2 and v5. It might also be considered as the contraction resulting 
from the partition 
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O 

//: G: 

^4 6- ■O ^3 

Figure 4.8 Contraction 

V(H) = {vl} U {v2, v5} U {v3} U {v4}. 

A relationship between contraction and homeomorphism is given in the 

following theorem. 

Theorem 4.10 If a graph H is homeomorphic from a graph G, then G is a contrac¬ 

tion of H. 

Proof If G = H, then clearly G is a contraction of H. Hence we may assume H is 
obtained from G by a sequence of elementary subdivisions. Suppose G' is an 

elementary subdivision of G; then G' is obtained from G by removing some 
edge av and adding a vertex w together with the edges uw and vw. However, 
then G' is contractible to G by an elementary contraction 0, which fixes every 
element of C(G) and 0w = 0w. Hence G can be obtained from H by a mapping 

that is a composition of finitely many elementary contractions so that G is a 

contraction of H. ■ 

Corollary 4.10 will actually prove to be of more use than the theorem 

itself. 

Corollary 4.10 If a graph H contains a subgraph homeomorphic from a connected 

nontrivial graph G, then G is a subcontraction of H. 

We can now present our second characterization [H3, HT2, W2] of 

planar graphs. 

Theorem 4.11 A graph G is planar if and only if neither K5 nor K(3, 3) is a 

subcontraction of G. 

Proof Let G be a nonplanar graph. By Theorem 4.9, G contains a subgraph 
homeomorphic with (or equivalently here, homeomorphic from) K$ or K(3, 3). 

Thus by Corollary 4.10, K$ or K(3, 3) is a subcontraction of G. 
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In order to verify the converse, we first suppose that G is a graph such 
that H = K(3, 3) is a subcontraction of G. We show, in this case, that G 

contains a subgraph homeomorphic with /C(3, 3), implying that G is non- 
planar. Denote the vertices of H by u, and u'h 1 /=S3, such that every edge of 
H is of the type Taking the alternate definition of contraction, we let G,, 
l=S/sS3, be the connected subgraph of G corresponding to and let G' 

correspond to u\. Since e E{H) for 1 s£/s£3, 1 s£/s£3, in the graph G there 
exists a vertex v,y of G, adjacent with a vertex v,y of G'r Among the vertices v;1, 

vi2, v,3 of G,, two or possibly all three may actually represent the same vertex. 
If v(1 = Vy2 = Vy3, we set each v,y = v,; otherwise, we define v, to be a vertex of G, 

connected to the distinct elements of {vn, vi2, v(3} with internally disjoint paths 
in G,. (It is possible that v,- = v,y for some j.) We now proceed as above with the 
subgraphs Gy, thereby obtaining vertices v\. The subgraph of G induced by the 
nine edges viyviy together with the edge sets of any necessary aforementioned 
paths from a vertex v, or v' is homeomorphic with K(3, 3). 

Assume now that H=K5 is a subcontraction of G. Let V(H) = {ut\^i 
s2 5}, and suppose Gy is the connected subgraph of G that corresponds to 
As before, there exists vertex v/y of G, adjacent with vertex vy/ of Gy, i Ej, 1 ^ /, 
j 5. For a fixed i, 1 ^ / =£ 5, we consider the vertices v,y, j ± i. If the vertices v,y 

represent the same vertex, we denote this vertex by Vy. If the vertices v,y are 
distinct and there exists a vertex (possibly some v,y) from which there are 
internally disjoint paths (one of which may be trivial) to the v,y, then denote 
this vertex by Vy. If three of the vertices v,y are the same vertex, call this vertex 
vy. If two vertices v/y are the same while the other two are distinct, then denote 
the two coinciding vertices by v, if there exist internally disjoint paths to the 

other two vertices. Hence in several instances we have defined a vertex v,-, for 
ls£/s£5. Should v, exist for each i= 1, 2, . . . , 5, then G contains a subgraph 
homeomorphic with K5. 

Otherwise, for some i, there exist distinct vertices w, and w- of Gy, each 
of which is connected to two of the v,y by internally disjoint (possibly trivial) 
paths of G, while wt and wj are connected by a path of Gy, none of whose 

internal vertices are the vertices v,y. If two vertices v,y coincide, then this vertex 
is Wy. If the other two vertices v,y should also coincide, then this vertex is w,'. 
Without loss of generality, we assume i = 1 and that Wj is connected to v12 and 
v13 while wj is connected to v14 and v15 as described above. 

Denote the edge set of these five paths of Gj by Ex. We now turn to G2. 
If v21 = v24 = v25, we set E2 = 0; otherwise, there is a vertex w2 of G2 (which 
may coincide with v21, v24, or v25) joined by pairwise internally disjoint 
(possibly trivial) paths in G2 to the distinct elements of {v21, v24, v25}. We then 
let E2 denote the edge sets of these paths. In an analogous manner, we define 
accordingly the sets £3, E4, and E5 with the aid of the sets {v31, v34, v35}, {v41, 
v42, v43}, and (v51, v52, v53}, respectively. The subgraph induced by the union 
of the sets E, and the edges v,yvy, contains a subgraph F homeomorphic with 

K(3, 3) such that the vertices of degree 3 of F are w,, wj and the vertices w,, 
i = 2, 3, 4, 5. In either case, G is nonplanar. ■ 
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As an application of this theorem, we again note the nonplanarity of the 

Petersen graph of Figure 4.7(a). The Petersen graph contains K5 as a sub¬ 

contraction that follows by considering the partition Vx, V2, V3, V4; V5 of its 

vertex set, where V, = {v,, v,+5}. 
Next we describe a good algorithm, for deciding whether a given graph is 

planar, from Demoucron, Malgrange, and Pertuiset [DMP1]. In order to do 

this, we introduce some additional terminology. 
Let G be a graph and H a subgraph of G. Define a relation ~ on 

£(G) - E(H) by e ~f if there exists a walk W in G - E(H) whose first and last 

edges are e and / and no internal vertex of W belongs to H. Then ~ is an 
equivalence relation on E(G) - E(H). The subgraphs of G - E(H) induced by 

the resulting equivalence classes are called the fragments of H in G. The 
subgraph H of the graph G of Figure 4.9 has the three fragments F,, F2, and 

F3. 

V5 

Figure 4.9 

Let H be a plane subgraph of a graph G. We say that El is G-extendable if 

G is planar and the plane embedding of H can be extended to a plane 
embedding of G. Let G be the graph of Figure 4.10. For the plane subgraphs 

/7, and H2 of Figure 4.10, where £/, = H2, we note that H, is G-extendable but 

H2 is not G-extendable. 
Let H be a plane subgraph of a graph G and R a region of H. A fragment 

F of H in G is an R-fragment if all vertices of F belonging to El lie in the 
boundary of R. The set of regions R for which Fis an /^-fragment is denoted by 
.'W(F, El). Let H be the plane subgraph of G shown in Figure 4.11. Then F 

(also shown in Figure 4.11) is a fragment of El in G, and ,9f(F, H)= {Fi}. 
It is now apparent that if a plane subgraph H of a planar graph G is G- 
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Figure 4.10 

G: 

H: F: 

Figure 4.11 

extendable, then for every fragment F of H in G, -h'(F, H) j=0. We are now 

prepared to present the algorithm. Given a graph G, the algorithm describes a 

sequence Gj, G2, ... , G„ of plane subgraphs of G such that G;CG,+ 1 for 
/ = 1,2, ..., n — 1. Then G is planar if and only if G„ = G. 
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Algorithm 4A Given a connected graph G: 

1. If G is a tree, then G is planar and stop. Otherwise, go to Step 2. 

2. Let G, be a cycle of G such that Gx is embedded in the plane. Set i= 1. 
3. If E(G) — E(Gj) = 0, then G is planar and stop. Otherwise, determine all 

fragments of the plane subgraph G, in G, and for each such fragment F, 

determine the set 3i(F, G,). 
4. If there exists a fragment F of G, in G for which 31 (F. G,) = 0, then G is 

nonplanar and stop. If there exists a fragment F such that \ 3i(F, G,)| = 1, 

then let 3l(F, G,) = {R}. Otherwise, let F be an R-fragment of G, in G, where 

R is a region of G,. 
5. Select a path P in F connecting two vertices of G„ and let Gi+1 denote that 

plane subgraph obtained by drawing P in R. Replace i by i + 1 and go to 

Step 3. 

Theorem 4A Algorithm 4A determines whether a given connected graph is planar. 

Although the proof of Theorem 4A is too involved to present here, we 
describe the essential steps. It suffices to show that if G is planar, then each 

term of the sequence Gx, G2, • • • , G„ of plane subgraphs is G-extendable. 
This is verified by induction. Certainly a plane embedding of G, is G- 

extendable. 
It is assumed that G, is G-extendable (1 ^/<m) and shown that Gx+x is 

G-extendable. Since G, is G-extendable, we can extend the embedding of G, to 
a plane embedding of G. Let F and R be selected as in Step 4. If 131 (F, 

G,)| = 1, then F is drawn in R (in the extension of G, to G) and G,+1 is G- 
extendable. Otherwise, \3t(F, G,)| ^2 and there is no fragment of G, in G that 

is an 5-fragment for only one region 5 of G,. If F is drawn in R, then, once 
again, Gi+X is G-extendable. Suppose, to the contrary, that F is drawn in a 

region R' of G that is different from R. Further, assume that F' is a fragment 
of G, in G that is drawn in R whose vertices of G, belong to the common 
boundary of R and R’. Then Fand F may be interchanged across this common 
boundary to produce a new embedding of G in the plane in which F is drawn in 

R. Consequently, GI+1 is G-extendable. 
We now present two examples to illustrate Algorithm 4A. We determine 

whether the graph G of Figure 4.12 is planar, where Gx is the indicated 5-cycle. 

The plane subgraph G, has four fragments Fx, F2, F3, F4. A sequence Gx, G2, 
.. . , G7 (which is not unique) is shown together with the sets 3i(F. G2) for 

each fragment Fof G2 in G. Since G = G7, G is a planar graph. For graph G of 
Figure 4.13, a sequence Gx, G2, G3 is shown. Since 31 (Fb, G3) = 0 , graph G is 

nonplanar (actually G = K(3, 3)). 
More information on this algorithm may also be found in [BM2]. 
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G: 

Gv 

^ A o a/ 

F\ = <{V2V5’ V3V5’ V4V5- V5^6})> 

F2 = <iv’i^4}>, Y3 = <{v’2v’4}), F4 = <{v2v6}) 

IR(Fh G,)| = 2 (/ = 1, 2, 3, 4) 

G-,: 

G,: 

G6: 

v2 

^5 = <{VIV4})’ F6 = <{^2^4})’ ^7 = <{V2V5»’ 

= <{V2V6))’ ^9 = <1V3VS» 

/?(F5, G2) = {/?,, /?3}, K(F6, G2) = {/?,, fi3} 

/?(F7, G2) = {/?3}, K(F8, G2) = {/?,, /?3} 

/?(f9, G2) = {R3} 

Fw = <{viV4}), Fu = <{v2v4}), 

F12 = <{^2V6»’ *13 = <{^3V5l) 

|K(*i, G3)| = 1 (I = 10, 13) 

|/?(F,., G3)| =2 (i = 11, 12) 

F14 = <{v2v4}>, F1S = <{v2v6}), F16 = <{v3v5}) 

IR(F„, G4)| = 2, IR(F„ G4)| = 1 (/ = 15, 16) 

Fn = <{v2v4}>, F\s = <{V2V6» 

\R(F„ G5)| = 1 (*' = 17, 18) 

G7 = G 

Figure 4.12 
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vi 

fa = <{v2v5}), F5 = <{v3v6}> 

IR(F„ G2)| = 1 (/ = 4, 5) 

G3: 
Fb = ({v3v6}) 

g3;| = o 

Figure 4.13 

Exercises 4.2 

4.7 Show that the converse of Theorem 4.10 is not. in general, true. 

4.8 Show that the Petersen graph (of Figure 4.7(a)) is nonplanar by 

(a) showing that it has K(3, 3) as a subcontraction, and 

(b) using Exercise 4.5(a). 
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4.9 Let r be a tree of order at least 4, and let eu e2, e3eE(T). Prove that 
T + ex + e2 + e3 is planar. 

4.10 Use Algorithm 4A to test 

(a) K5 for planarity by taking G, to be a 4-cycle; 

(b) graph G below for planarity by taking G, to be the cycle v,, v2, v3, v4, v6, v,. 

G: 

4.11 A graph G is outerplanar if it can be embedded in the plane so that every vertex 

of G lies on the boundary of the exterior region. Prove the following: 

(a) A graph G is outerplanar if and only if G + is planar. 

(b) A graph is outerplanar if and only if it contains no subgraph homeomorphic 
from K4 or K(2, 3). 

(c) If G is a (p, q) outerplanar graph with p3=2, then q^2p-3. 

4.3 Nonplanar Graphs 

There are a variety of ways of measuring how nonplanar a graph is. In the 
remainder of this chapter, we discuss several of these “measures”. 

Nonplanar graphs cannot, of course, be embedded in the plane. Hence, 
whenever a nonplanar graph is “drawn” in the plane, some of its edges must 
cross. This rather simple observation suggests our next concept. 

The crossing number v(G) of a graph G is the minimum number of 

crossings (of its edges) among the drawings of G in the plane. Before proceed¬ 
ing further, we comment on the assumptions we are making regarding the idea 
of “drawings”. In all drawings under consideration, we assume that 

(a) adjacent edges never cross, 

(b) two nonadjacent edges cross at most once, 

(c) no edge crosses itself, 

(d) no more than two edges cross at a point of the plane, and 
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(e) the (open) arc in the plane corresponding to an edge of the graph 

contains no vertex of the graph. 

A few observations will prove useful. Clearly a graph G is planar if and 

only if v(G) = 0. Further, if GCH, then v(G) *£ v(H), while if H is obtained 
from G by inserting vertices of degree 2 into the edges of G, then v(G) = 
v(H). For very few classes of graphs is the crossing number known. It has been 
shown by Blazek and Koman [BK1] and Guy [G8], among others, that for 

complete graphs. 

p P-1 P-2 P — 3 
.2. l 2 2 L 2 

(4.2) 

and Guy has conjectured that equality holds in (4.2) for all p. As far as exact 

results are concerned, the best obtained is the following (see Guy [G9]). 

Theorem 4.12 For 1 ^p =£! 10, 

v(*„) = 7 
1 P P- 1 P — 2 P — 3 

4 .2. 2 L 2 2 
(4.3) 

Since Kp is planar for l^p^4, Theorem 4.12 is obvious for ls£p^4. 

Further, K5 is nonplanar; thus, v(K5)^ 1. On the other hand, there exists a 

drawing (see Figure 4.14) of K5 in the plane with one crossing so that v(K^) = 1. 

Figure 4.14 A drawing of K$ with one crossing 

The inequality v(Kh) 3 follows from Figure 4.15, where a drawing of K(, 

with three crossings is shown. We now verify that v(Kh)~^ 3, completing thes 
proof that v(K),) = 3. Let there be given a drawing of K6 in the plane with 
c- v(/C6) crossings, where, of course, 1. At each crossing we introduce a 

new vertex, producing a connected plane graph G of order 6 + c and size 

15 + 2c. By Corollary 4.2a, 

15 + 2c ^ 3(6 + c) — 6 
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Figure 4.15 A drawing of Kb with three crossings 

so that c5s3 and, consequently, v(/C6)^ 3. 

Considerably more specialized techniques are required to verify Theorem 
4.12 for 7sSp^lO. 

It was mentioned in Section 4.1 that every planar graph can be embedded 
in the plane so that each edge is a straight line segment. Thus, if a graph G has 

crossing number 0, this fact can be realized by considering only drawings in the 
plane in which the edges are straight line segments. One may very well ask if, 
in general, it is sufficient to consider only drawings of graphs in which edges 
are straight line segments in determining crossing numbers. With this question 
in mind, we introduce a variation of the crossing number. 

The rectilinear crossing number v(G) of a graph G is the minimum 
number of crossings among all those drawings of G in the plane in which each 
edge is a straight line segment. Since the crossing number v(G) considers all 

drawings of G in the plane (not just those for which edges are straight line 
segments), we have the obvious inequality 

v(G) v(G). (4.4) 

As previously stated, v(G) = v(G) for every planar graph G. It has also been 
verified that v(Kp) = v(Kp) for 1 7 and p = 9; however, 

v(/C<)=18 and v(KH) = 19 

(see [G9]) so that strict inequality in (4.4) is indeed a possibility. 
We return to our chief interest, namely the crossing number, and consider 

the complete bipartite graphs. The problem of determining v(K(m, n)) has a 
rather curious history. It is sometimes referred to as Turan’s Brick-Factory 
Problem (named for Paul Turan). We quote from Turan [Til]: 

We worked near Budapest, in a brick factory. There were some kilns where 

the bricks were made and some open storage yards where the bricks were 

stored. All the kilns were connected by rail with all the storage yards. The 
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bricks were carried on small wheeled trucks to the storage yards. All we 

had to do was to put the bricks on the trucks at the kilns, push the trucks to 

the storage yards, and unload them there. We had a reasonable piece rate 

for the trucks, and the work itself was not difficult; the trouble was only at 

the crossings. The trucks generally jumped the rails there, and the bricks 

fell out of them; in short this caused a lot of trouble and loss of time which 

was precious to all of us. We were all sweating and cursing at such occasions, 

I too; but nolens volens the idea occurred to me that this loss of time could 

have been minimized if the number of crossings of the rails had been 

minimized. But what is the minimum number of crossings? I realized after 

several days that the actual situation could have been improved, but the 

exact solution of the general problem with m kilns and n storage yards 

seemed to be very difficult ... the problem occurred to me again ... at my 

first visit to Poland where I met Zarankiewicz. I mentioned to him my 
“brick-factory”-problem . . . and Zarankiewicz thought to have solved (it). 

But Ringel found a gap in his published proof, which nobody has been able 

to fill so far—in spite of much effort. This problem has also become a 

notoriously difficult unsolved problem .... 

Zarankiewicz [Z2], thus, thought that he had proved 

v(K(m, n)) = 
m m — 1 n n — 1 

.2 . L 2 J 1.2 J L 2 
(4.5) 

but, in actuality, he only verified that the right hand expression of (4.5) is an 

upper bound for v(K(m, /?)). As it turned out, both P.C. Kainen and G. 
Ringel found flaws in Zarankiewicz’s proof. Hence, (4.5) remains only a 
conjecture. It is further conjectured that v(K(m, n)) = v(K(m, n)). The best 

general result on crossing numbers of complete bipartite graphs is the following 

due to Kleitman [K6]. 

Theorem 4.13 For 1 ^ min {m, «}=£ 6, 

v(K(m, n)) = 
m 

2 
m- 1 n - 1 

It follows, therefore, from Theorem 4.13 that 

v(K(3,n)) = 

v(K(5, n)) = 4 

n - 1 
2 

, v(/C(4, n)) = 2 
n n - 1 

2_ 2 1 

n - 1 1 n n - 1 
, and v(/C(6, n)) = 6 

2. 2 J 

for all n. For example, v(/C(3, 3)) = 1, v(K{4, 4)) = 4, v(/C(5, 5)) = 16, and 
v(K(6, 6)) = 36. A drawing of K(4, 4) with four crossings is shown in Figure 

4.16. Thus, the simplest complete bipartite graph whose crossing number is 
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Figure 4.16 A drawing of K(4, 4) with four crossings 

unknown is K(7, 7). Kleitman [K6], however, has verified that v(K(7, 7)) has 
one of the values 77, 79, or 81. 

As would be expected, the situation regarding crossing numbers of 
complete ^-partite graphs, 3, is even more complex. For the most part, 
only bounds and highly specific results have been obtained in these cases. On 
the other hand, some of the proof techniques employed have been enlightening. 
As an example, we establish the crossing number of K(2, 2, 3) (see White 
[W4, p. 77]). 

Theorem 4.14 The crossing number of K(2, 2, 3) is v(K(2, 2, 3)) = 2. 

Proof Let v(K(2, 2, 3)) = c. Since K(3, 3) is nonplanar and K(3, 3) C K(2, 2, 3), it 

follows that K(2, 2, 3) is nonplanar so that c3= 1. Let there be given a drawing 
of K(2, 2, 3) in the plane with c crossings. At each crossing we introduce a new 
vertex, producing a connected plane graph G of order p = 1 + c and size 
q — 16 + 2c. By Corollary 4.2a, q s£ 3p — 6. 

Let Wju2 and be two (nonadjacent) edges of K{2, 2, 3) that cross in 
the given drawing, giving rise to a new vertex. If G is a triangulation, then C: 

ux, V!, u2, v2, «i, is a cycle of G, implying that the induced subgraph ( {w,, u2, 

r1!, v2}) in K(2, 2, 3) is isomorphic to /C4. However, /C(2, 2, 3) contains no 
such subgraph; thus, G is not a triangulation so that q<3p — 6. We have 

16 + 2c < 3(7 + c) — 6, 

from which it follows that c2= 2. The inequality c^2 follows from the fact that 
there exists a drawing of K(2, 2, 3) with two crossings (see Figure 4.17). ■ 

Other graphs whose crossing numbers have been investigated with little 

success are the «-cubes Qn. Since Qn is planar for n = 1, 2, 3, of course. 
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Figure 4.17 A drawing of K(2, 2, 3) with two crossings 

v(Qn) = 0 for such n. Eggleton and Guy [EG 1 ] have shown that v(^4) = 8 but 

v(Qn) is unknown for n 2= 5. One might observe that 

Q4 = K-2 X Kn X K2 x /C2 = C4 X C4 

so that v(C4 x C4) = 8. This raises the problem of determining v(Cm x C„) for 
m, n^3. For the case m = n = 3, Harary, Kainen, and Schwenk [HKS1] 
showed that v(C3 x C3) = 3. Their proof consisted of the following three steps: 

1. exhibiting a drawing of C3 x C3 with three crossings so that 

v(C3xC3)$3; 

2. showing that C3 x C3 - e is nonplanar for every edge e of C3 x C3 so 

that v(C3 x C3) 5= 2; and 

3. showing, by case exhaustion, that it is impossible to have a drawing 
of C3 x C3 with exactly two crossings so that v(C3xC3)^3 (see 

Exercise 4.17). 

Ringeisen and Beineke [RBI] then extended this result significantly by 

determining v(C3 X C„) for all integers n 2= 3. 

Theorem 4.15 For all n^3, 

v(C3 x C„) = n. 

Proof We label the vertices of C3 x C„ by the 3n ordered pairs (0,/), (1,/), and 

(2, /), where ;' = 0, 1, ..., n - 1, and, for convenience, we let 

Uj = (0, ;), v; = (1, ;'), and wy = (2, /). 

First, we note that v(C3 x C„)s£/?. This observation follows from the fact 

that there exists a drawing of C3 x C„ with n crossings. A drawing of C3 x C4 
with four crossings is shown in Figure 4.18. Drawings of C3xC„ with n 

crossings for other values of n can be given similarly. 
To complete the proof, we show that v(C3 x Ctl)^n. We verify this by 

induction on 3. For n = 3, we recall the previously mentioned result 

v(C3 x C3) = 3. 
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Wq Wl 

Figure 4.18 A drawing of C3 x C4 with four crossings 

Assume that v(C3xCt)^i', where k 2* 3, and consider the graph 
C3 x Ck+\. We show that v(C3xQ+1)^H1. Let there be given a drawing 
of C3 x Ck+l with v(C3 x Q + 1) crossings. We consider two cases. 

Case 1: Suppose that no edge of any triangle 7} = ( {uj, vy, Wj) ), j = 0, 1, . . . , 
k, is crossed. For j = 0, 1, ... , k, define 

Hj = <{Uj, vj, wh uj+1, vj+1, wy+1}), 

where the subscripts are expressed modulo k + 1. We show that for each j = 0, 
l, ... , k, the number of times edges of Hj are crossed totals at least two. 
Since, by assumption, no triangle 7} has an edge crossed and since every edge 
not in any 7} belongs to exactly one subgraph 77,, it will follow that there are at 
least k+ 1 crossings in the drawing because then every crossing of an edge in 
Hj involves either two edges of 77, or an edge of Hj and an edge of 77, for some 

i±j- 
If two of the edges n;u;+1, v,v,+1, and w;w;+,1 cross each other, then two 

edges of 77, are crossed. Assume then that no two edges of 77, cross each other. 
Thus, Hj is a plane subgraph in the drawing of C3 x Ck+x (see Figure 4.19). 
The triangle Tj+2 must lie within some region of 77,. If Tj+2 lies in a region of 
Hj bounded by a triangle, say 7), then at least one edge of the cycle u0, ux, 
.. . , uk, u0, for example, must cross an edge of 7}, contradicting our assump¬ 
tion. Thus, Tj+2 must lie in a region of Hj bounded by a 4-cycle, say Uj, uj+x, 
Wj+x, Wj, Uj, without loss of generality. However then edges of the cycle v0, v3, 
..., v*, v0 must cross edges of the cycle Uj, u;+1, wj+x, Wj, ut at least twice and 
hence edges of 77, at least twice, as asserted. 
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Figure 4.19 The subgraph Hj in the proof of Theorem 4.15 

Case 2: Assume that some triangle, say T0, has at least one of its edges crossed. 

Suppose that v(C3 x Ck+X)<k+ 1. Then the graph C3 x Ck+X - E(Ta), which 
can be obtained by inserting vertices of degree 2 into the edges of C3 x Ck, is 

drawn with fewer than k crossings, contradicting the inductive hypothesis. ■ 

The only other result giving the crossing number of graphs Cm x C„ is the 

following formula by Beineke and Ringeisen [BR1]. 

Theorem 4.16 For all n^4, 

v(C4 x C„) = In. 

Beineke and Ringeisen [BR1] have also found a formula for v(K4x C„). 

Theorem 4.17 For all n^3, 

v(K4 x C„) = 3n. 

In addition to the crossing number, other topological parameters have 
proved to be interesting when applied to nonplanar graphs. Prior to defining 

these, however, we introduce a class of parameters whose definitions bear a 

striking similarity. 
Let P be any property possessed by the trivial graph Kx (such as being 

acyclic or planar). By the vertex covering number of a graph G with respect to P 

is meant the minimum number of elements V, in a partition of V(G) such that 
each induced subgraph (L, ) has property P. The vertex packing number of G 
with respect to P is the maximum number of mutually disjoint nonempty 
subsets Vi of V(G) such that no subgraph (L, ) has property P. In a completely 
analogous manner, one can define the edge covering number and edge packing 

number of a nonempty graph G with respect to any property possessed by the 

graph K2. 
We have already seen examples of these types of parameters. The 

arboricity ax(G) of a nonempty graph G (defined in Chapter 3) is the edge 
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covering number of G with respect to the property of being acyclic while the 

vertex-arboricity a(G) of G is the corresponding vertex covering number of G. 

The number that might be considered “dual” to ^(G) is the edge packing 
number of G with respect to the property of being acyclic. It is not difficult to 

see that this is the maximum number of edge-disjoint cycles contained in G. 
For this reason, this number is referred to as the cycle multiplicity of G; we 

denote it by «i(G). As expected, no formula exists for the cycle multiplicity of 
an arbitrary graph G; however, formulas have been found [CGH1] for ax(G) 
when G = Kp and G = K{m, n). 

Formulas for the vertex analogue of cycle multiplicity are very easy to 
derive in the case of complete graphs and complete bipartite graphs; in fact, a 
formula exists [CKW1] for any complete n-partite graph. 

Another property that has given rise to parameters of the above type is 
planarity. The edge-thickness or simply the thickness 0X{G) of a nonempty 

graph G is the edge covering number of G with respect to planarity; that is, 
@j (G) is the minimum number of pairwise edge-disjoint planar spanning sub¬ 

graphs of G whose edge sum is G. This provides another measure of the 
nonplanarity of a graph. Once again, it is the complete graphs, complete 
bipartite graphs, and n-cubes that have received the most attention. 

A formula for the thickness of the complete graphs was established 
primarily due to the efforts of Beineke [B3], Beineke and Harary [BH2], 

Vasak [VI], and Alekseev and Gonchakov [AG1], 

Theorem 4.18 The thickness of Kp is given by 

Qi(Kp) = ] 
p + 1 

L 6 J 
3 

p± 9, 10 

P = 9, 10. 

Although only partial results exist for the thickness of complete bipartite 
graphs (see [BHM1]), a formula is known for the thickness of the n-cubes, due 
to Kleinert [K5], 

Theorem 4.19 The thickness of Qn is given by 

01 (Qn) 
n + 1 

4 

The vertex analogue of thickness is the vertex-thickness 0(G); very little is 
known about this parameter. The^ edge packing number of a graph G with 
respect to planarity is denoted by 0i(G) and is referred to as the coarseness of 
G. There has been little success in the study of coarseness, though some 

progress has been made by Guy and Beineke [GB1]. 
Other parameters of the type discussed in this section will be encountered 

in Chapter 10. 
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Exercises 4.3 

4.12 Draw K-, in the plane with nine crossings. 

4.13 Determine v(K(3, 3)) without using Theorem 4.13. 

4.14 Show that v(K(l, 7))^81. 

4.15 Determine v(K(2, 2, 2)). 

4.16 Determine v(/C( 1, 2, 3)). 

4.17 Show that 2 < v(C3 x C3) =£ 3. 

4.18 Prove that v(C3 X C„) = n for n 2* 3. 

(a) It is known that v(W4 X K2) = 2, where W4 is the wheel C4 + K, of order 5. 
Draw W4 X K2 in the plane with two crossings. 

(b) Prove or disprove: If G is a nonplanar graph containing an edge e such that 
G — e is planar, then v(G) = 1. 

4.19 Define the vertex analogue a(G) of the parameter cycle multiplicity. Derive 
formulas for a(Kp) and a(K(m, n)). 

4.20 Develop a formula for a(Qn). 

4.21 Develop a formula for ax(Qn). 

4.22 Prove that 6{(Kp)^ [(p + 7)/6j for all positive integers p. 

4.23 Verify that 6x(Kp) = [(p + 7)/6j for p = 4, 5, 6, 7, 8. 

4.24 Give a definition for 6(G). Develop a formula for 6(Kp). 

4.25 Define the parameter 6(G). Develop a formula for 6(Kp). 

4.26 Define the parameter 0i(G). Determine an upper bound for 0x(Kp). 

4.27 Define the vertex covering number of a graph G with respect to the property of 
being disconnected or trivial. Determine the value of this parameter for all 
complete n-partite graphs. 

4.28 Let P denote the property that a graph G has no induced subgraph isomorphic to 
the path P„ for any 3. Find the vertex covering number ((G), the vertex 
packing number ( (G), the edge covering number fi(G) and edge packing 
number €i(G) of G with respect to P for G = C„(n^3). 
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4.4 The Genus of a Graph 

We now introduce the best known parameter involving nonplanar graphs. A 

compact orientable 2-manifold is a surface that may be thought of as a sphere 
on which has been placed a number of “handles” or, equivalently, a sphere in 
which has been inserted a number of “holes”. The number of handles (or 
holes) is referred to as the genus of the surface. By the genus y(G) of a graph G 

is meant the smallest genus of all surfaces (compact orientable 2-manifolds) on 
which G can be embedded. Every graph has a genus; in fact, it is a relatively 
simple observation that a graph of size q can be embedded on a surface of 
genus q. 

Since the embedding of graphs on spheres and planes is equivalent, the 
graphs of genus 0 are precisely the planar graphs. The graphs with genus 1 are 

therefore the nonplanar graphs that are embeddable on the torus. The 
(nonplanar) graphs K5 and K(3, 3) have genus 1. Embeddings of K(3, 3) on 
the torus and on the surface of genus 2 are shown in Figure 4.20(a) and (b). 

Not only is K5 embeddable on the torus, but so are K6 and K7. (The 
graph Ks is not embeddable on the torus.) Figure 4.21 gives an embedding of 

K7 on the torus. The torus is obtained by identifying opposite sides of the 
rectangle. The vertices of K7 are labeled v0, vls ... , v6. Thus note that the 
“vertices” located at the corners of the rectangle actually represent the same 

vertex of K7, namely the one labeled v5. 
For graphs embedded on surfaces of positive genus, the regions and the 

boundaries of the regions are defined in entirely the same manner as for 



118 Chapter 4 Graph Embeddings 

Figure 4.21 An embedding of Kj on the torus 

embeddings in the plane. Thus, if G is embedded on a surface S, then the 
components of S - G are the regions of the embedding. In Figure 4.20(a) there 

are three regions, in Figure 4.20(b) there are two regions, and in Figure 4.21 

there are 14 regions. 
A region is called a 2-cell if any simple closed curve in that region can be 

continuously deformed or contracted in that region to a single point. 

Equivalently, a region is a 2-cell if it is topologically homeomorphic to 2- 
dimensional Euclidean space. Although every region of a connected graph 
embedded on the sphere is necessarily a 2-cell, this need not be the case for 
connected graphs embedded on surfaces of positive genus. Of the two regions 

determined by the embedding of K(3, 3) on the "double torus’ in Figure 
4.20(b), one is a 2-cell and the other is not. The boundary of the 2-cell is a 4- 
cycle while the boundary of the other region consists of all vertices and edges 

of K(3, 3). 
An embedding of a graph G on a surface S is called a 2-cell embedding of 

G on S if all the regions so determined are 2-cells. The embeddings in Figure 

4.20(a) and Figure 4.21 are both 2-cell embeddings. 
In order to present an extension of Theorem 4.1 to surfaces of positive 

genus, we introduce some new terms. A loop-graph is a finite nonempty set V 

of vertices together with a (possibly empty) set E (of edges) consisting of one- 
or two-element subsets of F, each one-element subset being referred to as a 
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loop. A loop-graph that admits multiple edges (including multiple loops) is 
called a pseudograph. 

Theorem 4.20 Let G be a connected (p, q) pseudograph with a 2-cell embedding on 
the surface of genus n and having r regions. Then 

p-q + r = 2-2n. (4.6) 

Proof The proof is by induction on n. For n = 0, the formula holds for connected 

graphs by Theorem 4.1. If G is a connected (p, q) pseudograph (which is not a 
graph) embedded in the plane and having r regions, then a plane graph H is 
obtained by deleting from G all loops and all but one edge in any set of 

multiple edges joining the same two vertices. If H has order px, size qx, and rx 
regions, then px - qx + rx = 2 by Theorem 4.1. We now add back the deleted 

edges to form the originally embedded pseudograph G. Note that the addition 

of each such edge increases the number of regions by one. If G has k more 
edges than does H, then p = px, q = qx + k, and r = rx + k so that 

p-q + r = p1-(ql + k) + (r1+k)=p1-q1 + r1 = 2, 

producing the desired result for n = 0. 

Assume the theorem to be true for all connected pseudographs that are 2- 
cell embedded on the surface of genus n — 1, where az>0, and let G be a 

connected (p, q) pseudograph that is 2-cell embedded on the surface S of 
genus n and having r regions. We verify that (4.6) holds. 

Since the surface S has genus n and n > 0, 5 has handles. Draw a curve C 
around a handle of S such that C contains no vertices of G. Necessarily, C will 

cross edges of G; for otherwise C lies in a region of G and cannot be 
contracted in that region to a single point, contradicting the fact that the 
embedding on S is a 2-cell embedding. By re-embedding G on 5, if necessary, 
we may assume that the total number of intersections of C with edges of G is 

finite, say k, where k > 0. If ex, e2, ..., em are the edges of G that are crossed 
by C, then l^m^k (see Figure 4.22). Moreover, if edge e,, l=S/=£ra, is 
crossed by C a total of €, times, then Y.ljLx€i = k. 

At each of the k intersections of C with the edges of G we add a new 

vertex; further, each subset of C lying between consecutive new vertices is 
identified as a new edge. Moreover, each edge of G that is crossed by C, say a 
total of (. times, is subdivided into ( + 1 new edges. 

Let the new pseudograph so formed be denoted by G'; further, suppose 
G' has order p', size q', and r' regions. Since k new vertices have been 
introduced in forming G', it follows that p' = p +k. The curve C has resulted in 
an increase of k in the number of edges. Also, each edge eh 1 has 
given rise to an increase of it edges and since T.^Ll€i = k, the total increase in 
size from G to G' is 2k\ that is, q' = q + 2k. 
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Each portion of C that became an edge of G' is in a region of G. Thus, 

the addition of such an edge divides that region into two regions. Since there 
exist k such edges, r' = r + k. Because every region of G is a 2-cell, it follows 

that every region of G' is a 2-cell. 
We now make a “cut” in the handle along C, separating the handle into 

two pieces (as shown in Figure 4.23). The two resulting holes are 'p^hed or 
“capped”, producing a new (2-cell) region in each case. (This is called a 

“capping” operation.) 

Figure 4.23 Capping a cut handle 

In the process of performing this capping operation, several changes have 

occurred. First, the surface S has been transformed into a new surface S". The 
two capped pieces of the handle of S are now part of the sphere of S". Hence S" 

has one less handle than S so that 5" has genus n-\. Furthermore, the 
pseudograph G' itself has been altered. The vertices and edges resulting from 

the curve C have been divided into two copies, one copy on each of the two 
pieces of the capped handle. If G" denotes this new pseudograph, then G" has 
order p" = p' + k = p + 2k and size q" = q' + k = q + 3k. Also, the number f of 

regions satisfies r" — r' + 2 = r + k + 2. Since each of these r" regions in the 
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connected pseudograph G" is a 2-cell, the inductive hypothesis applies so that 

p" — q" + r" = 2 — 2(n — 1) or 

(p + 2k) ~ (q + 3k) + (r + k + 2) = 2 — 2fn — 1); 

thus, 

p — q + r=2 — 2n. 

giving the desired result. ■ 

Restating Theorem 4.20 for graphs, we have the following. 

Corollary 4.20 Let G be a connected (p, q) graph with a 2-cell embedding on the 

surface of genus n and having r regions. Then 

p — q + r~2 —2n. 

In connection with Corollary 4.20 is the following result. Proofs of this 
theorem (see Youngs [Yl], for example) are strictly topological in nature; we 

present no proof. 

Theorem 4.21 If G is a connected graph embedded on the surface of genus y(G), 

then every region of G is a 2-cell. 

Corollary 4.20 and Theorem 4.21 now immediately imply the following. 

Theorem 4.22 If G is a connected (p, q) graph embedded on the surface of genus 

y(G) and having r regions, then 

p — q + r = 2 — 2y(G). 

An important conclusion, which can be reached with the aid of Theorem 

4.22, is that every two embeddings of a connected graph G on the surface of 
genus y(G) result in the same number of regions. With the theorems obtained 
thus far, we can now provide a lower bound for the genus of a connected graph 

in terms of its order and size. 

Theorem 4.23 If G is a connected (p, q) graph (p 5= 3), then 
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Proof The result is immediate for p = 3, so we assume that p ^ 4. Let G be embedded 
on the surface of genus y(G). By Theorem 4.22, p — q + r — 2 — 2y(G), where 
r is the number of regions of G. (Necessarily, each of these regions is a 2-cell 
by Theorem 4.21.) Since the boundary of every region contains at least three 

edges and every edge is on the boundary of at most two regions, 3r 2q . Thus, 

2q 
2 - 2y(G) = p — <7 + rs=p-g + y. 

and the desired result follows. ■ 

The lower bound for y(G) presented in Theorem 4.23 can be improved 

when more information on cycle lengths in G is available. The proof of the 

next theorem is entirely analogous to that of the preceding. 

Theorem 4.24 If G is a connected (p, q) graph with girth n, then 

r(G)^q{ i —i)/2 —f+ i. 

A special case of Theorem 4.24 that includes bipartite graphs is of special 

interest. A graph is often called triangle-free if it contains no triangles. 

Corollary 4.24 If G is a connected, triangle-free (p, q) graph (p^ 3), then 

*G)»S-f+l. 

As one might have deduced by now, no general formula for the genus of 
an arbitrary graph is known. Indeed, it is unlikely that such a formula will ever 
be developed in terms of quantities that are easily calculable. On the other 
hand, the following result by Battle, Harary, Kodama, and Youngs [BHKY1] 

implies that, as far as genus formulas are concerned, one need only investigate 

blocks. We omit the proof. 

Theorem 4.25 (Battle, Harary, Kodama, and Youngs) If G is a graph having 

blocks Bx, Bi, ..., Bn, then 

y(G)=X]y(fl,). 
<■= i 

The following corollary is a consequence of the preceding result. 
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Corollary 4.25 If G is a graph with components G1? G2, . .. , Gk, then 

k 

r(G) = £ y(C,). 
I — 1 

As is often the case, when no general formula exists for the value of a 
parameter for an arbitrary graph, formulas (or partial formulas) are established 

for certain families of graphs. Ordinarily the first classes to be considered are 
the complete graphs, the complete bipartite graphs, and the n-cubes. The 

genus offers no exception to this rule. 
In 1968, Ringel and Youngs [RY1] completed a proof of a result that has 

a remarkable history. They solved a problem that became known as the 
Heawood Map Coloring Problem; this problem will be discussed in Chapter 10. 

The solution involved the verification of a conjectured formula for the genus of 
a complete graph; the proof can be found in (and, in fact, is) the book by 

Ringel [R6]. 

Theorem 4.26 (Ringel and Youngs) The genus of the complete graph is given by 

Y(KP) = 
(P~3)(p~4) 

12 
p^3. 

A formula for the genus of the complete bipartite graph was discovered 

by Ringel [R5]. We shall also omit the proof of this result. 

Theorem 4.27 (Ringel) The genus of the complete bipartite graph is given by 

y(K{m, n)) = 
(.m — 2 )(n — 2) 

4 
m, ft 2= 2. 

A formula for the genus of the n-cube was found by Ringel [R4] and, 
independently, by Beineke and Harary [BH1]. We prove this result to illustrate 

some of the techniques involved. We omit the obvious equality y((2i) = 0. 

Theorem 4.28 (Ringel; Beineke and Harary) For n^2, the genus of the n-cube is 

given by 

y(Qn) = (n~ 4)-2-3 + l. 

Proof The n-cube is a triangle-free (2n, n-2"-1) graph; thus, by Corollary 4.24, 

y(Qn)^(n- 4)-2-3+l. 

To verify the inequality in the other direction, we employ induction on n. 
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For 2, define the statement A(n) as follows: The graph Qn can be 
embedded on the surface of genus (n - 4) • 2"~3 + 1 such that the boundary of 
every region is a 4-cycle and such that there exist T~2 regions with pairwise 
disjoint boundaries. That the statements A (2) and ,4(3) are true is trivial. 

Assume A(k-l) to be true, A: 2? 4, and, accordingly, let S be the surface of 
genus (A - 5) • 2fc-4 + 1 on which Qk is embedded such that the boundary of 
each region is a 4-cycle and such that there exist 2k~3 regions with pairwise 
disjoint boundaries. We note that since Qk_x has order 2k~l, each vertex of 

Qk_, belongs to the boundary of precisely one of the aforementioned 2*~3 

regions. Now let <2^-1 be embedded on another copy S' of the surface of genus 
(A - 5) • 2*-4 4- 1 such that the embedding of Qk-\ on S' is a “mirror image” of 
the embedding of Qk-X on 5 (that is, if v,, v2, v3, v4 are the vertices of a region 

of Qk-\ on S, where the vertices are listed clockwise about the 4-cycle, then 
there is a region on S', with the vertices vl5 v2, v3, v4 on its boundary listed 
counterclockwise). We now consider the 2k~3 distinguished regions of 5 
together with the corresponding regions of S', and join each pair of associated 

regions by a handle. The addition of the first handle produces the surface of 

genus 2[(A — 5) • 2*~4 4- 1] while the addition of each of the other 2k~3 — 1 
handles results in an increase of one to the genus. Thus, the surface just 
constructed has genus (A — 4)-2*_3+ 1. Now each set of four vertices on the 
boundary of a distinguished region can be joined to the corresponding four 

vertices on the boundary of the associated region so that the four edges are 
embedded on the handle joining the regions. It is now immediate that the 

resulting graph is isomorphic to Qk and that every region is bounded by a 4- 
cycle. Furthermore, each added handle gives rise to four regions, “opposite” 
ones of which have disjoint boundary, so that there exist 2k~2 regions of Qk 

that are pairwise disjoint. 
Thus, A(n) is true for all n^2, proving the result. ■ 

Exercises 4.4 

4.29 Determine n = y(K(4, 4)) without using Theorem 4.27 and label the regions in a 

2-cell embedding of A^(4, 4) on the surface of genus n. 

4.30 (a) Show that y(G)^v(G) for every graph G. 

(b) Prove that for every positive integer n, there exists a graph G such that 
y(G) = 1 and v(G) = n. 

4.31 Prove Theorem 4.24. 

4.32 Use Theorem 4.25 to prove Corollary 4.25. 
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4.33 Show that y{Kp). 
(p -3)(p- 4) 

12 
3. 

4.34 

4.35 

4.36 

4.37 

Show that y(K(m, n)). 
{m — 2) (n — 2) 

, m, n : 

(a) Find a lower bound for y(K(3, 3) + /(„). 

(b) Determine y(/f(3, 3) + Kn) exactly for n — 1, 2, and 3. 

Determine y(/G x C4 x C6). 

Prove, for every positive integer n, that there exists a connected graph G of 

genus n. 

4.38 Prove, for each positive integer n, that there exists a planar graph G such that 

y(G x K2) 3= n. 

4.5 2-Cell Embeddings of Graphs 

In the preceding section we saw that every graph G has a genus; that is, there 
exists a surface (a compact orientable 2-manifold) of minimum genus on which 

G can be embedded. Indeed, by Theorem 4.21 if G is a connected graph that is 
embedded on the surface of genus y(G), then the embedding is necessarily a 2- 
cell embedding. On the other hand, if G is disconnected, then no embedding of 
G is a 2-cell embedding. 

Our primary interest lies with embeddings of (connected) graphs that are 

2-cell embeddings. In this section, we investigate graphs and the surfaces on 
which they can be 2-cell embedded. It is convenient to denote the surface of 
genus n by Sn. Thus, 50 represents the sphere (or plane), Sj represents the 
torus, and S2 represents the double torus (or sphere with two handles). 

We have already mentioned that the torus can be represented as a 
rectangle with opposite sides identified. More generally, the surface S„(n> 0) 
can be represented as a regular 4«-gon whose 4n sides can be listed in 

clockwise order as 

a,Mi lb\ xa2b2a2 1b21.. .anbnan xbn \ (4.7) 

where, for example, ax is a side directed clockwise and axx is a side also 
labeled ax but directed counterclockwise. These two sides are then identified in 

a manner consistent with their directions. Thus, the double torus can be 
represented as shown in Figure 4.24. The “two” points labeled X are actually 
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the same point on S2 while the “eight” points labeled Y are, in fact, a single 

point. 
Although it is probably obvious that there exist a variety of graphs that 

can be embedded on the surface Sn for a given nonnegative integer n, it may 
not be entirely obvious that there always exist graphs for which a 2-cell 

embedding on S„ exists. 

a i 

Y Y 

Figure 4.24 A representation of the double torus 

Theorem 4.29 For every nonnegative integer n, there exists a connected graph that 

has a 2-cell embedding on Sn. 

Proof For n = 0, every connected planar graph has the desired property; thus, we 

assume that n > 0. 
We represent Sn as a regular 4/?-gon whose An sides are described and 

identified as in (4.7). First, we define a pseudograph H as follows. At each 
vertex of the 4/7-gon, let there be a vertex of H. Actually, the identification 

process associated with the 4/i-gon implies that this is only one vertex of H. Let 
each side of the 4/i-gon represent an edge of H. The identification produces 2n 
distinct edges, each of which is a loop. This completes the construction of H. 

Hence, the pseudograph H has order 1 and size 2n. Furthermore, there is only 
one region, namely the interior of the polygon; this region is clearly a 2-cell. 
Therefore, there exists a 2-cell embedding of H on Sn. 

To convert the pseudograph H into a graph, we subdivide each loop 
twice, producing a graph G having order An A- 1, size 6/7, and again a single 2- 
cell region. ■ 

Figure 4.25 illustrates the construction given in the proof of Theorem 4.29 
in the case of the torus 5,. The graph G so constructed is shown in Figure 
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4.25(a). In Figures 4.25(b) through (e) we see a variety of ways of visualizing 
the embedding. In Figure 4.25(b), a 3-dimensional embedding is described. In 

Figures 4.25(c) and (d), the torus is represented as a rectangle with opposite 

sides identified. (Figure 4.25(c) is the actual drawing described in the proof of 
the theorem.) In Figure 4.25(e), a portion of G is drawn in the plane, then two 

circular holes are made in the plane and a tube (or handle) is placed over the 
plane joining the two holes. The edge uv is then drawn over the handle, 
completing the 2-cell embedding. 

The graphs G constructed in the proof of Theorem 4.29 are planar. 

Hence, for every nonnegative integer n, there exist planar graphs that can be 2- 

G: 

la) 

6 

o-o-o 

6 

(d) (e) 

Figure 4.25 A graph 2-cell embedded on the torus 
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cell embedded on S„. It is also true that for every planar graph G and positive 
integer n, there exists an embedding of G on S„ that is not a 2-cell embedding. 

In general, for a given graph G and positive integer n with n>y(G), there 

always exists an embedding of G on S„ that is not a 2-cell embedding, which 
can be obtained from an embedding of G on Sy(c) by adding n — y(G) handles 
to the interior of some region of G. If n = y(G) and G is connected, then by 
Theorem 4.21 every embedding of G on Sn is a 2-cell embedding while, of 

course, if n<y(G), there is no embedding whatsoever of G on Sn. 
Thus far, whenever we have described a 2-cell embedding (or, in fact, any 

embedding) of a graph G on a surface S„, we have resorted to a geometric 

description, such as one shown in Figure 4.25. There is a far more useful 

method, algebraic in nature, that we shall now discuss. 

Figure 4.26 A 2-cell embedding of K$ on the torus 

Consider the 2-cell embedding of K5 on 5, shown in Figure 4.26, with the 

vertices of K5 labeled as indicated. Observe that in this embedding the edges 
incident with vj are arranged cyclically counterclockwise about v, in the order 

induces a cyclic permutation of the subscripts of the vertices adjacent with 
Vj, namely = (2 3 4 5), expressed as a permutation cycle. Similarly, this 
embedding induces a cyclic permutation it2 of the subscripts of the vertices 

adjacent with v2; in particular, ji2 = { 1 5 4 3). In fact, for each vertex 
v,(l 5), one can associate a cyclic permutation with v,-. In this case, we 

have 

jr, = (2 3 4 5), 

= (1 5 4 3), 
jr3 = (1 2 5 4), 

jt4 = (1 3 2 5), 
jr5 = (1 4 3 2). 

In the 2-cell embedding of on Si shown in Figure 4.26, there are five 

regions, labeled /?,, R2, ..., R5. Each region 5) is, of course, a 2- 
cell. The boundary of the region R\ consists of the vertices vl5 v2, and v5 and 
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the edges vxv2, v2v5, and v5v,. If we trace out the edges of the boundary in a 

clockwise direction, that is, keeping the boundary at our left and the region to 
our right (see Figure 4.27), beginning with the edge v,v2, we have vxv2. 

Figure 4.27 Tracing out a region 

followed by v2v5, and finally v5V!. This information can also be obtained from 
the cyclic permutations jt1, jz2, .. . , jz5; indeed, the edge following v, v2 = v2vx 

as we trace the boundary edges of in a clockwise direction is precisely the 
edge incident with v2 that follows v2vx if one proceeds counterclockwise about 
v2; that is, the edge following vxv2 in the boundary of Rr is v2vjr9(1) = v2v5. 
Similarly, the edge following v2v5 = v5v2 as we trace out the edges of the 

boundary of in a clockwise direction is v5vjr5(2) = VgV,. Hence with the aid of 
the cyclic permutations jzu jz2, ... , n5, we can trace out the edges of the 
boundary of Rx. In a like manner, the boundary of every region of the 
embedding can be so described. 

Since the direction (namely, clockwise) in which the edges of the boundary 
of a region are traced in the above description is of utmost importance, it is 
convenient to regard each edge of K5 as a symmetric pair of arcs and, thus, to 
interpret K5 itself as a digraph D. With this interpretation, the boundary of the 
region R\ and thus Rx itself can be described, starting at vx, as 

Or, v2), (v2, v„2(1)), (v5, v^5(2)) 

or 

(Vi, V2), (v2, v5), (v5, Vj). (4.8) 

We now define a mapping jz: E(D)^> E(D) as follows. Let aeE(D), 
where a = (v,-, Vj). Then 

Jt(a) = Vj)) = Jl(vh Vj) = (Vj, vn.(i)). 

The mapping jz is one-to-one and so is a permutation of E(D). Thus, jz can be 
expressed as a product of disjoint permutation cycles. In this context, each 
permutation cycle of jz is referred to as an “orbit” of jz. Hence (4.8) cor¬ 
responds to an orbit of jz and is often denoted more compactly as v1 — v2 — v5 — 
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v, (Although this orbit corresponds to a cycle in the graph, this is not always 

the case for an arbitrary orbit in a graph that is 2-cell embedded.) For the 
embedding of /C5 on Sx shown in Figure 4.26, the list of all five orbits (one for 

each region) is given below: 

Rx: V! — v2- v’5 - Vi, 
/?2- Vj V3 Vj, 

/?3: Vj V4 V3 Vj, 

R4: Vi — v5 — v4 — Vi, 

R5: v2 - v3 - v5 - v2 - v4 - v5 - v3 - v4 - v2. 

The orbits of n form a partition of E(D) and, as such, each arc of D 
appears in exactly one orbit of n. Since D is the digraph obtained by replacing 
each edge of K5 by a symmetric pair of arcs, each edge of Ks appears twice 
among the orbits of jr, once for each of the two possible directions that are 

assigned to the edge. 
The 2-cell embedding of K5 on Sx shown in Figure 4.26 uniquely 

determines the collection {nx, n2, ns} at permutations of the subscripts of 

the vertices adjacent to the vertices of K$. This set of permutations, in turn, 

completely describes the embedding of K$ on 5] shown in Figure 4.26. 
This method of describing an embedding is referred to as the Rotational 

Embedding Scheme. Such a scheme was observed and used by Dyck [D9] in 
1888 and by Heffter [HI 1] in 1891. It was formalized by Edmonds [El] in 1960 

and discussed in more detail by Youngs [Yl] in 1963. 
We now describe the Rotational Embedding Scheme in a more general 

setting. Let G be a nontrivial connected graph with E(G) = {vi, v2, .. • , vp}. 

Let N(Vj) denote the neighborhood of the vertex v,; that is, 

N(v,) = {Vj e V(G)\viVj e E(G)} 

and let 

V(i) = {j\vJeN(vi)}. 

For each i'(ls£/s£p), let jr,: V(i)-> V(i) be a cyclic permutation (or rotation) 
of V(i). Thus, each permutation jr, can be represented by a (permutation) cycle 
of length |V(i)| = |N(Vi)| = degv,. The Rotational Embedding Scheme states 
that there is a one-to-one correspondence between the 2-cell embeddings of G 

(on all possible surfaces) and the p-tuples (jij, jt2, ■ ■ ■ , np) of cyclic permuta¬ 

tions. 

Theorem 4.30 (The Rotational Embedding Scheme) Let G be a nontrivial 

connected graph with V(G) = {vj. v2, . . . , v^}. For each 2-cell embedding of G 

on a surface, there exists a unique p-tuple (jt, , tt2, .... Jip), where for i= 1,2, 
. .. , p, rep !/(/)—► V(i) is a cyclic permutation that describes the subscripts of the 
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vertices adjacent to y in counterclockwise order about y. Conversely, for each 

such p-tuple (jtx, tc2, . . . , Tip), there exists a 2-cell embedding of G on some 
surface such that for i= 1,2, ... , p, the subscripts of the vertices adjacent to y 
and in counterclockwise order about y are given by jrf. 

Proof Let there be given a 2-cell embedding of G on some surface. For each vertex y 

of G, define Tip. V(i)-> V(i) as follows: If v[Vj e E{G) and yv* (possibly k = /) 
is the next edge encountered after yy as we proceed counterclockwise about 
Vi, then we define Jifj) = k. Each ji, so defined is a cyclic permutation. 

Conversely, assume that we are given a p-tuple (jiu ji2, ... , np) such 
that for each i( 1 ^i^p), np V(i)-+ V(i) is a cyclic permutation. We show that 
this determines a 2-cell embedding of G on some surface. (By necessity, this 
proof requires use of properties of compact orientable 2-manifolds.) 

Let D denote the digraph obtained from G by replacing each edge of G 
by a symmetric pair of arcs. We define a mapping ti: E(D)^> E(D) by 

v,)) = n(yt, vj) = (y, vn.(i)). 

The mapping ti is one-to-one and, thus, is a permutation of E{D). Hence, n 

can be expressed as a product of disjoint permutation cycles. Each of these 
permutation cycles is called an orbit of k. Thus, the orbits partition the set 
E(D). Assume that 

R- (Oo v,)(y, Vk)-- (ye, V/)) 

is an orbit of ti, which we also write as 

R: Vj Vj vk -ve- Vi. 

Hence, this implies that in the desired embedding if we begin at y and proceed 
along (y, vj) to y, the next arc we must encounter after (y, Vj) in a counter¬ 
clockwise direction about y is (y, vnj{i)) = (vy, v*). Continuing in this manner, 
we must finally arrive at the arc (ve, v,) and return to v,-, in the process 

describing the boundary of a (2-cell) region (considered as a subset of the 
plane) corresponding to the orbit R. Therefore, each orbit of ti gives rise to a 
2-cell region in the desired embedding. 

To obtain the surface S on which G is 2-cell embedded, pairs of regions, 
with their boundaries, are “pasted” along certain arcs; in particular, if (v,, y) is 
an arc on the boundary of /?, and (y, y) is an arc on the boundary of R2, then 
(v,-, Vj) is identified with (y, y) as shown in Figure 4.28. The properties of 

compact orientable 2-manifolds imply that S is indeed an appropriate surface. 
In order to determine the genus of S, one needs only to observe that the 

number r of regions equals the number of orbits. Thus, if G has order p and 
size q, then by Corollary 4.20, S = Sn where n is the nonnegative integer 
satisfying the equation p — q + i = 2 — 2n. ■ 
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Figure 4.28 A step in the proof of Theorem 4.30 

As an illustration of the Rotational Embedding Scheme, we once again 

consider the complete graph K5, with V(Ks,) = {Vj, v2, v3, v4, v5}. Let there be 

given the 5-tuple (jti, jt2, jt3 , jz4 , ), where 

jtj = (2 3 4 5), 

ji2 = (1 3 4 5), 

jt3 = (1 2 4 5), 
jr4 = (1 2 3 5), 
Jt5 = (1 2 3 4). 

Thus, by Theorem 4.30, this 5-tuple describes a 2-cell embedding of Ks on 

some surface Sn. To evaluate n, we consider the digraph D obtained by 
replacing each edge of K5 by a symmetric pair of arcs and determine the orbits 
of the permutation jt: F(D)—> E(D) defined in the proof of Theorem 4.30. The 

orbits are 

Ri: v, - v2 - v3 - v4 — v5 - vj, 
R2: Vj — V3 V2 V4 V3 V5 — V4 — Vt — V5 — V2 — V\ , 

R2: v, - v4 - v2 - v5 - v3 - V!; 

and each orbit corresponds to a 2-cell region. Thus, the number of regions in 

the embedding is r= 3. Since K5 has order p = 5 and size q = 10, and since 
p - q + r = -2 = 2 - 2n, it follows that n = 2, so that the given 5-tuple describes 

an embedding of K5 on S2. 
Given a p-tuple of cyclic permutations as we have described, it is not 

necessarily an easy problem to present a geometric description of the em¬ 
bedding, particularly on surfaces of high genus. For the example just presented, 
however, we give two geometric descriptions in Figure 4.29. In Figure 4.29(a), 

a portion of K5 is drawn in the plane. Two handles are then inserted over the 
plane, as indicated, and the remainder of K$ is drawn along these handles. The 
edge = v2v5 is drawn along the handle H\, the edge e2 = v3v5 is drawn along 
H2 while e3=V!V3 is drawn along both H\ and H2. The three 2-cell regions 

produced are denoted by R\, R2, and /?3. 
In Figure 4.29(b), this 2-cell embedding of /C5 on S2 is shown on the 

regular octagon. The labeling of the eight sides (as in (4.7)) indicates the 

identification used in producing S2. 
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As a more general illustration of Theorem 4.30 we determine the genus 

of the complete bipartite graph K(2m, 2n). According to Theorem 4.27, 
y{K(2m, 2n)) = (m- l)(n- 1). That (m-l)(n-l) is a lower bound for 
y(K(2m, 2n)) follows from Exercise 4.36. We use Theorem 4.30 to show 
K(2m, 2n) is 2-cell embeddable on 5(m_1)(„_1), thereby proving that y(K(2m, 
2n)) (m — l)(n - 1) and completing the argument. 

Denote the partite sets of K(2m, 2n) by U and VT, where \ U\ = 2m and 
| VV| = 2«. Further, label the vertices so that 

U={vi , v3, v5, . .. , v4m_,} and W= {v2, v4, v6, . . . , v4„}. 

Let there be given the (2m + 2n)-tuple (assuming that m^n) 

(jT| , JT2, • • . , JT4m — i, JT4m, ^4^ + 21 , JT4n), 

where 

jt, = jt5 = ■ ■ ■ = 3 = (2 4 6 - • An), 

jt3 = jz7 = ■■■ = jt4m_i = {An ■ ■ ■ 6 4 2), 

Jt2 = JZ6 = ■ ■ ■ = jz4n_2 = (1 3 5 • • • 4m - 1), 
jt4 = jis= ■ ■ ■ = Ji4n = (4m — 1 ■ • • 5 3 1). 

By Theorem 4.30, then, this (2m + 2n)-tuple describes a 2-cell embedding of 
K(2m, 2n) on some surface Sh. In order to evaluate h, we let D denote the 
digraph obtained by replacing each edge of K(2m, 2n) by a symmetric pair of 
arcs and determine the orbits of the permutation jt: E(D)^> E(D) defined in 
the proof of Theorem 4.30. 

Every orbit of jt contains an arc of the type (va, vb), where va e U and 
vheW. If a = l (mod 4) and b= 2 (mod 4), then the resulting orbit R contain¬ 
ing (va, vb) is 

R- Va-Vh- Va+2 - vb_2 - Vfl, 

with a + 2 expressed modulo 4m and b — 2 expressed modulo 4n. Note that R 

also contains the arc (va+2, vfc_2), where, then, a+ 2 = 3 (mod 4) and 6-2 = 0 
(mod 4). If a= \ (mod 4) and b = 0 (mod 4), then the orbit R' containing 
(va, vb) is 

R'- Va-Vb~ V a —2 ~ Vb-2 ~ Vfl, 

where, again, a — 2 is expressed modulo 4m and 6 — 2 expressed modulo An. 

The orbit R' also contains the arc (va_2, vfc_2), where a —2 = 3 (mod 4) and 
b — 2 = 2 (mod 4). Thus every orbit of jt is either of the type R (where a= 1 
(mod 4) and b = 2 (mod 4)) or the type R' (where a = 1 (mod 4) and 6 = 0 

(mod 4)). Since there are m choices for a and n choices for 6 in each case, the 
total number of orbits is 2mn\ therefore, the number of regions in this em¬ 
bedding is r = 2mn. 
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6. 

b2 

(b) 

Figure 4.29 A 2-cell embedding of on the double torus 
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Since K(2m, 2n) has order p — 2m + 2n and size q = Amn and because 
p — q + r = 2 — 2h, we have 

(2m + 2 n) — Amn + 2 mn = 2 — 2 h 

so that h = (m - l)(n - 1). Hence there is a 2-cell embedding of K(2m, 2n) on 
S(m—1)(„—i), as we wished to show. 

As a theoretical application of Theorem 4.30, we present a result that is 
referred to as the Ringeisen-White Edge-Adding Lemma (see [R3]). 

Theorem 4.31 (Ringeisen-White Edge-Adding Lemma) Let G be a connected 

graph with V(G) = {v,, v2, .. . , vp} such that v, and vy are distinct nonadjacent 
vertices. Suppose there exists a 2-cell embedding of G on some surface Sh with r 
regions such that v, is on the boundary of region R, and v; is on the boundary of 
region Rr Let H = G + v, vf. Then 

(a) if R, Rj, then there exists a 2-cell embedding of H on Sh + l with r — 1 

regions in which v, and v;- are on the boundary of the same region, 
while 

(b) if R, = Rjt then there exists a 2-cell embedding of H on Sh with r + 1 

regions in which each of v, and v;- belongs to the boundaries of (the 
same) two distinct regions. 

Proof By hypothesis, there exists a 2-cell embedding of the (p, q) graph G on Sh with 

r regions such that v, is on the boundary of region Rt and vy is on the boundary 
of region Rj. By Theorem 4.30, a p-tuple (jt,, jt2, . . . , np) of cyclic permuta¬ 
tions corresponds to this embedding, namely for t = 1, 2, ... , p, jir: V(t) 
is a cyclic permutation of the subscripts of the vertices of N(v,) in counter¬ 
clockwise order about vt. 

Let D denote the symmetric digraph obtained from G by replacing each 
edge by a symmetric pair of arcs and let jt. E(D)-+ E(D) be defined by 
n(vm, v„) = (v„, vjrn(m)). Since the given embedding has r regions, jz has r 
orbits. Denote each region and its corresponding orbit by the same symbol; in 
particular, R, and Rj are orbits of jc. 

Suppose that RtERj. We can therefore represent orbits /?, and Rj as 

Rd v/-vfc--vk'-v. 

and 

Rj- Vj Vf • • • - Vr - Vj. 

It therefore follows that 

jtj(k') = k and jry(€') = €. 
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We now consider the graph H = G + v,vy and define 

V'(t) = {r| vrv,e £(//)} 

for r= 1, 2, ..., p. Thus V'(t) = V(t) for t±i, j, and V'(i)= V(i)L> {;} while 
V'(j) — V(j)U {/}. For the graph H, we define a p-tuple (jtJ, ... , Jip) of 

cyclic permutations, where n't: V'(t)—*V'(t) for t=\, 2, p such that 

jr,' = ji, for t=f=i, j. Furthermore, 

{Jtj(a) if a ¥= k' 

7t'i (a) = | j if a = k' 
{k if a=j 

and 

Jtj(a) = 

jtj(a) 

i 
e 

if a =£ €' 

if a = V 
if a = i. 

Let D' be the digraph obtained from H by replacing each edge of H by a 

symmetric pair of arcs. Define the permutation jt': E(D')—>E(D ) by n (vm, 

v„) = (v„, LT (m)). The orbits of k' then consist of all orbits of n different 

from Ri and R, together with the orbit 

R: V,- — Vj — V( — • • • — vr — Vj — vt — vk— • • • vv vh 

Thus, rc' has r- 1 orbits and the corresponding 2-cell embedding of El has r— 1 
regions. Moreover, v,- and v, lie on the boundary of R. Since p-q + r = 2-2h, 

it follows that p - (q + 1) + (r - 1) = 2 - 2{h + 1) and H is 2-cell embedded on 

Sh+l. This completes the proof of (a). 
Suppose that Ri = R,. We can represent the orbit /?,(=/?,) as 

Rp. Vi — vk— ■ ■ ■ — Vc — Vj — V( — • • • —vk'~ 

(Note that v, and v, cannot be consecutive in R, since v,vy E(G).) It follows 

that 

jti(k') = k and ;r;(€') = €. 

We again consider the graph H - G + v,vy and once more define 

V'(t) = {r\vrv,e E(H)} 

for t= 1, 2, ... , p. We define a p-tuple (jt',, n'2.jfp) of cyclic permuta¬ 

tions, where n\: V'(t)^ V'(t) for t= 1, 2.p such that n\ = n, for t±U j- 

Also, 



Section 4.5 2-Cell Embeddings of Graphs 137 

if a + k' 
Jt'i(a) = ' j if a = k' 

,k if a= j 

and 

Jij{a) if a E € 

i if a = € 
€ if a = 

Again we denote by D' the digraph obtained from H by replacing each 
edge of H by a symmetric pair of arcs and define the permutation jz'\ E(D')^> 

E(D') by v„) = (v„, The orbits of n' consist of all orbits of n 
different from /?, together with the orbits 

Rv,- V,- V( -vk' vt 

and 

R”: Vj - Vi - v* --vr - vr 

Therefore, n' has r-El orbits and the resulting 2-cell embedding of H has r + 1 
regions. Furthermore, each of v, and v, belongs to the boundaries of both R' 
and R". Here p — q + r =2 — 2h implies that p — (q + 1) + (r + 1) = 2 — 2h, and 

H is 2-cell embedded on Sh, which verifies (b). ■ 

A consequence of Theorem 4.31 will prove to be useful. 

Corollary 4.31 Let e and f be adjacent edges of a connected graph G. If there exists a 
2-cell embedding of G'= G - e - f with one region, then there exists a 2-cell 

embedding of G with one region. 

Proof Let e = uv and/= vw, where then uEw. Let there be given a 2-cell embedding 
of G' with one region R. Thus all vertices of G' belong to the boundary of R, 
including u and v. By Theorem 4.31(b), there exists a 2-cell embedding of 
G' + e with two regions where u and v lie on the boundary of both regions. 
Therefore, v is on the boundary of one region and w is on the boundary of the 

other region in the 2-cell embedding of G' + e. Applying Theorem 4.31(a), we 
conclude that there exists a 2-cell embedding of G' + e+f=G with one 

region. ■ 

We now turn our attention for the remainder of the section to the 

following question: Given a (connected) graph G, on which surfaces Sn do 
there exist 2-cell embeddings of G? As a major step towards answering this 
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question, we present the following “interpolation theorem” of Duke [D8]. 

Theorem 4.32 (Duke) If there exist 2-cell embeddings of a connected graph G on 
the surfaces Sm and Sn, where m^n, and k is any integer such that m^k^n, 
then there exists a 2-cell embedding of G on the surface Sk. 

Proof Observe that there exist 2-cell embeddings of Kx only on the sphere; thus, we 

assume that G is nontrivial. 
Assume that there exists a 2-cell embedding of G on some surface S(. Let 

V(G) = {vi, v2, v(,},p2. By Theorem 4.30, there exists a p-tuple {kx, 
ni jr,) of cyclic permutations associated with this embedding such that 
for /= 1, 2^ . . . , p, Jtp.Vif)-^ V(i) is a cyclic permutation of the subscripts of 
the vertices of A^(v() in counterclockwise order about v,-. 

Let D be the symmetric digraph obtained from G by replacing each edge 
by a symmetric pair of arcs. Let jr: E(D)^E(D) be the permutation defined 
by jr(v,, vj) = (v,, v7t<0). Denote the number of orbits in jz by r; that is, assume 
there are r 2-cell regions in the given embedding of G on S(. 

Assume there exists some vertex of G, say Vj, such that deg 5= 3. Then 
m = (a b c ■ • •), where a, b, and c are distinct. Let vx be any vertex adjacent 
with vj other than va and vh, and suppose that Jri(x) = y. Thus 

= (a b c ■ ■ ■ x y •• •) 

where, possibly, x = c or y = a. Let £, be the subset of E(D) consisting of the 

three pairs of arcs 

(vfl, vO, (vl5 v6); (vfc, v,), (vt, vc); (vx, Vj), (vu vy). (4.9) 

Note that the six arcs listed in (4.9) are all distinct. By the definition of the 

permutation jr, we have 

v1) = (v1, vfr), n(vb, vj) = (vl5 vc), and ji(vx, v,) = (v,, vy). 

This implies that the arc (va, v,) is followed by the arc (vx, vh) in some orbit of 
jr, and that the edge vaV\ of G is followed by the edge V\Vb as we proceed 
clockwise around the boundary of the corresponding region in the given 
embedding of G in St. Also, (vb, v,) is followed by (vx, vc) in some orbit of jr 
and (vx, Vi) is followed by (vx, vv) in some orbit. 

We now define a new permutation it': E(D)^> E(D) with the aid of the 
p-tuple (jz{, tt'i, .... Jtp), where for /= 1, 2.p, Jt-: V(i)-» V(i) is a cyclic 
permutation defined by 

jit - 
■ x b y ■ ■ ■) if i=l 

if 2 i s£ p. 

We then define vy) = (v;, v„;(0). By Theorem 4.30, the p-tuple (jr',, jz'2. 



Section 4.5 2-Cell Embeddings of Graphs 139 

.. . , Ji'p) determines a 2-cell embedding of G on some surface, where for i = 1, 
2, ... , p, Jt'i is a cyclic permutation of the subscripts of the vertices adjacent to 
v, in counterclockwise order about v,. 

Three cases are now considered, depending on the possible distribution of 
the pairs (4.9) of arcs in Ex among the orbits of jt. 

Case 1: Assume that all arcs of Ex belong to a single orbit R of jt. Suppose, 
first, that the orbit R has the form 

R: V\-vy- • • • - vb - V! — vc — • • • - va - vx - vb - ■ ■ ■ - vx-vx. 

Here the orbits of Jt' are the orbits of jt except that the orbit R is replaced by 
the three orbits 

R'i- Vi -vy-- Vb ~ vx, 
R'2\ Vi- vc-vfl- vx, 

Rf- Vj - vb--vx- Vi. 

Hence, jt' describes a 2-cell embedding of G with r + 2 regions on a surface S'. 
Necessarily, then, S,' = 5f_1. 

The other possible form that the oribit R may take is 

R: v1-vy--va- vx - vb-vb- Vj - vc--v*- vx. 

In this situation, the orbits of ji' are the orbits of jt, except for R, which is 

replaced by the orbit 

R'- vx-Vy--va-vx-vc--Vx-Vl-Vb--Vfr-Vj. 

Here jt' has r orbits. 

Case 2: Assume that n has two orbits, say R{ and R2, with Ri containing two of 
the pairs of arcs in Ex and R2 containing the remaining pair of arcs. In this case, 
the orbits of ji' are those of jt, except for Ri and R2, which are replaced by two 
orbits RJ and R'2, where one of R\ and R'2 contains two arcs of £, and the other 

contains the remaining four arcs of Ex. In this case, jt' has r orbits. 

Case 3: Assume that jt has three orbits Rx, R2, and /?3 such that (va, is 
followed by (vi, vb) in Rx, (vb, v,) is followed by (vx, vc) in R2, and (vx, vx) is 

followed by (vx, vv) in R3. In this case, the orbits of jt' are the orbits of jt, 
except for Rx, R2, and R3, which are replaced by a single orbit R' of the form 

R': vx — vy- ■ ■ • — vx- vx — vb--va- vx — vc— • • • — vh- vx. 

In this case, jt' has r - 2 orbits so that jt' describes a 2-cell embedding of G on 

Sr+i- 
Thus, we can now conclude that the shifting of a single term in jtx 

(producing jrj) changes the genus of the resulting surface on which G is 2-cell 



140 Chapter 4 Graph Embeddings 

embedded by at most one. Having made this observation, we can now 

complete the proof. 
Let (|U,, ju-., .. . , pp) be the /7-tuple of cyclic permutations associated with 

a 2-cell embedding of G on Sm and let (v,, v2, ... , vp) be the p-tuple of cyclic 
permutations associated with a 2-cell embedding of G on Sn. If deg v( = 1 or 2 

for each i, ls£/s£p, then p-, = v, so that m = n and the desired result follows. 
Hence, we may assume that for some /, 1 sS i^p, deg v, 5=3. For each such /, p, 
can be transformed into v, by a finite number of single term shifts, as described 

above. Each such single term shift describes an embedding of G on a surface 
whose genus differs by at most one from the genus of the surface on which G is 

embedded prior to the shift. Therefore, by performing sequences of single term 

shifts on those p, for which degv,2s3, the /7-tuple (/q, p2, •••, Pp) can be 
transformed into (v,, v2.v,,). Since m^k^n, there must be at least one 

term (jix, Jti, . . . , np) in the aforementioned sequence beginning with (/q, p2, 
. . . , Pp) and ending with (V), v2, . . . , vp) that describes a 2-cell embedding of 

G on Sk. ■ 

Exercises 4.5 

4.39 (a) For the 2-cell embedding of K(3, 3) shown in Figure 4.20(a), determine the 

6-tuple of cyclic permutations k, associated with this embedding. Determine 

the orbits of the resulting permutation n. 

(b) For the 2-cell embedding of K7 on 5, shown in Figure 4.21, determine the 7- 

tuple of cyclic permutations Jr, associated with this embedding. Determine 

the orbits of the resulting permutation n. 

4.40 Let G = K4 x Kj- 

(a) Show that G is nonplanar. 

(b) Show, in fact, that y(G) = 1 by finding an 8-tuple of cyclic permutations that 

describes a 2-cell embedding of G on S\. Determine the orbits of the result¬ 

ing permutation n. 

4.41 Let G be a graph with V(G) = {v^, v2, vq, v4, v5, vft} and let (jq, n2, 7q, jt4, jts, 

;th) describe a 2-cell embedding of G on the surface Sk, where 

JT] = (2 5 6 3), jt2 = (3 6 1 4), q = (4125), 
tt4 = (5 2 3 6), «5 = (6 3 4 1), jt6=(1 4 5 2). 

(a) What familiar graph is isomorphic to G? 

(b) What is £? 

(c) Is A: = y(G)? 
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4.42 How many of the 2-cell embeddings of /C4 are embeddings in the plane? On the 
torus? On the double torus? 

4.43 (a) Describe an embedding of A^(3, 3) 6n S2 by means of a 6-tuple of cyclic 

permutations. 

(b) Show that there exists no 2-cell embedding of K(3, 3) on S3. 

4.6 The Maximum Genus of a Graph 

If G is a connected graph with y(G) = m, and n is the largest positive integer 

such that G is 2-cell embeddable on Sn, then it follows from Theorem 4.32 that 
G can be 2-cell embedded on Sk if and only if m^k^n. This suggests the 

following concept. 
Let G be a connected graph. The maximum genus Ym{G) of G is the 

maximum among the genera of all surfaces on which G can be 2-cell embedded. 
At the outset, it may not even be clear that every graph has a maximum genus 

since, perhaps, some graphs may be 2-cell embeddable on infinitely many 
surfaces. However, there are no graphs that can be 2-cell embedded on infinitely 
many surfaces, for suppose G is a nontrivial connected graph with L(G) = {v,, 

v2, ..., vp}. By Theorem 4.30, there exists a one-to-one correspondence 
between the set of all 2-cell embeddings of G and the p-tuples (jri, tc2, . . . , 
jip), where for / = 1, 2, .. . , p, jr(: V(i) —» V(i) is a cyclic permutation. Since the 
number of such p-tuples is finite, in fact, is equal to 

p 
I] (deg v(- 1)!, 
/= 1 

it follows that there are only finitely many 2-cell embeddings of G and there¬ 
fore that there exists a surface of maximum genus on which G can be 2-cell 
embedded. We can now state an immediate consequence of Duke’s Theorem. 

Corollary 4.32 A connected graph G has a 2-cell embedding on the surface Sk if and 

only if 

y(G)^k^YM(G). 

We now present an upper bound for the maximum genus of any connected 

graph. This bound employs a new but very useful concept. 
The Betti number 2&(G) of a (p, q) graph G having k components is 

defined as 
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<&(G) = q~p + k. 

Thus, if G is connected, then 

®(G) = q-p+l. 

The following result is due to Nordhaus, Stewart and White [NSW1], 

Theorem 4.33 If G is a connected graph, then 

yM(G) 
26(G) 

2 

Furthermore, equality holds if and only if there exists a 2-cell embedding of G 
on the surface of genus yM(G) with exactly one or two regions according to 

whether 2MG) is even or odd, respectively. 

Proof Let G be a connected {p, q) graph that is 2-cell embedded on the surface of 

genus yM(G), producing r (2-cell) regions. By Theorem 4.20, 

p- q + r = 2-2yM(G). 

Thus, 

26(G) = q - p + 1 = 2yM(G) + r- 1 

so that 

_ 26(G)+ l-r^ 26(G) 
ym{G) =-~ 

producing the desired bound. 

Moreover, we have 

7m{G) = 
26(G) + 1 ~ r 

2 

26(G) 

2 

if and only if r = 1 (which can only occur when 26(G) is even) or r - 2 (which is 

only possible when 26(G) is odd). ■ 

A (connected) graph G is called upper embeddable if the maximum genus 

of G attains the upper bound given in Theorem 4.33; that is, if Ym(G) = 

[26(G)/2j. The graph G is said to be upper embeddable on a surface S if 

5 = Sy (C). We can now state an immediate consequence of Theorem 4.33. 
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Corollary 4.33 Let G be a graph with even {odd) Betti number. Then G is upper 
embeddable on a surface S if and only if there exists a 2-cell embedding of G on 
S with one {two) region{s). 

A characterization of upper embeddable graphs was independently dis¬ 

covered by Jungerman [J2] and Xuong [XI]. In order to present this result it 
will be necessary to introduce a new concept. 

A spanning tree T of a connected graph G is a splitting tree of G if at most 
one component of G — E{T) has odd size. It follows therefore that if G — E{T) 
is connected, then T is a splitting tree. For the graph G of Figure 4.30, the tree 

G: 

Figure 4.30 Splitting trees of graphs 

r, is a splitting tree. On the other hand, T2 is not a splitting tree of G. 
The following observation that relates splitting trees and Betti numbers is 

elementary, but useful. 

Theorem 4.34 Let T be a splitting tree of a (p, q) graph G. Then every component 

of G — E{T) has even size if and only if 35(G) is even. 

Proof Suppose that every component of G — E{T) has even size. Then G — E{T) has 
even size. Since every tree of order p has size p — 1, the graph G — E{T) has 

size q — {p — 1) — q — p + l. Therefore, 35(G) = q — p + 1 is even. 
Conversely, suppose that 35(G) is even. The graph G - E{T) has size 

q-p + 1 = 2&(G). Since T is a splitting tree of G, at most one component of 

G — E{T) has odd size. Since the sum of the sizes of the components of 
G - E{T) is even, it is impossible for exactly one such component to have odd 

size, producing the desired result. ■ 

We now give a characterization of upper embeddable graphs. 
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Theorem 4.35 (Jungerman-Xuong) A graph G is upper embeddable if and only if 

G has a splitting tree. 

Proof Suppose that G is a (p, q) graph having a splitting tree T. We show that G is 
upper embeddable by considering two cases, depending on the parity of the 

Betti number of G. 

Case 1: Assume that 2£(G) = q - p + 1 is even. By Theorem 4.34, each 
component of G - E(T) has even size. By Theorem 2.21, every component C 
of G- E(T) is trivial or eulerian, or the edge set of C can be partitioned into 

subsets each of which induces an open trail of even length. Thus, the edge set 
of each nontrivial component of G — E(T) can be partitioned into adjacent 

pairs of edges, implying that the graph of G - E(T) itself can be expressed as 
the edge sum of (q -p+l)/2 = 28(G)/2 subgraphs of F,, ls£z'^ 9i(G)/2, each 

isomorphic to P3 U Kp_3. 
The tree T is 2-cell embeddable on the sphere with a single region. By 

repeated application of Corollary 4.31, it follows that the graph 

k 

T+ U EM) 
i= 1 

is 2-cell embeddable for k = 1, 2, . . . , 2&(G)/2 on some surface with a single 

region. Since 
28(G)/2 

G=T+ U Eft), 
/=i 

we conclude that G is 2-cell embeddable on a surface with one region, which, 
by Corollary 4.33, implies that G is upper embeddable. 

Case 2: Assume that 2&(G) is odd. Necessarily, G - E(T) has exactly one 
component of odd size; denote this component by H. If H is a tree, let e be a 
terminal edge of H (an edge incident with an end-vertex); otherwise, let e be a 

cycle edge of H. Since any bridge of G must belong to T, it follows that G — e 
is connected. Further, since H — e has only components of even size, every 
component of G - E(T) — e = G — e — E(T) has even size and T is a splitting 

tree of G — e. Since 2ft(G — e) is even, we conclude from Case 1 that G — e is 
upper embeddable and, so, is 2-cell embeddable on a surface with one region. 
Applying Theorem 4.31(b), we see that there is a 2-cell embedding of 
(G — e) + e = G on a surface with two regions which, by Corollary 4.33, implies 

that G is upper embeddable. 
For the converse, we suppose that G is a (p, q) upper embeddable graph 

(and consequently a connected graph) with F(G) = {vq, v2, . . . , v,,}. To show 
that G has a splitting tree, we again consider two cases according to the parity 

of the Betti number of G. 

Case 1: Assume that 9ft(G) = q — p + 1 is even. We proceed by induction on 
the size of G. If <7 = 0, then G=Ki and G is a splitting tree of itself. For the 
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inductive hypothesis we assume that all upper embeddable graphs with even 
Betti numbers having sizes less than q contain splitting trees. 

Since G is upper embeddable, it follows from Corollary 4.33 that G is 2- 
cell embeddable on the surface of genus yM(G) with one region, say R. By 
Theorem 4.30, corresponding to this 2-cell embedding, there exists a p-tuple 

(jtj, jt2, ..., jip), where for i = l, 2, .. . , p, ji,: V(i)-*V(i) is a cyclic 
permutation that describes the subscripts of the vertices adjacent to v, in 
counterclockwise order about v,. Denote by D the digraph obtained from G by 
replacing each edge of G by a symmetric pair of arcs. Since the embedding has 
one region, the mapping n: E(D)^> E{D) defined by 

vi) = 0/> j(i)) 

has one orbit, also denoted by R. Thus in R all arcs of D appear in a fixed 

(cyclic) order. Among the edges of G, let e=vevm be one with the property 
that in the orbit R, the resulting arcs ax = (vt, v,„) and a2 - (vm, vt) have the 

minimum number k of arcs between them. Without loss of generality, we 
assume that in R the number of arcs following ax but preceding a2 is k. Thus, 
the number of arcs following a2 and preceding ax is 2q-2-k, where then 
k^2q-2-k. 

If k = 0, than ax and a2 appear consecutively in the orbit R, in the order 
ax, a2. This further implies that degGv,„ = 1. The graph G — vm is clearly 2-cell 
embeddable on the same surface on which G is 2-cell embedded and also with 

a single region. Thus, G — vm is upper embeddable. Since G - vm has size q — 1 
and since 2S(G —v,„) is even, we may apply the inductive hypothesis and 
conclude that G-vm has a splitting tree Tx. Thus, the tree T produced by 
adding the vertex vm and the edge e to Tx is a splitting tree of G since the 

components of G — E(T) are the components of G — vm — E(TX) together with 
an additional trivial component, which, of course, has even size. 

Assume, then, that&>0. Thus, by assumption, in the orbit R there are k 
arcs following ax but preceding a2. Suppose that bx is the arc following ax in R, 
so that bi = (vm, v„), where n + Further, let f—vmvn denote the cor¬ 
responding edge of G and let b2 = (v„, vm) denote the other related arc of D. 
Necessarily the orbit R is of the form 

R: (ax bx ■ ■ ■ a2 ■ ■ • b2 ■ ■ •); 

that is, b2 must follow a2 and precede ax. Otherwise, if b2 follows bx but 
precedes a2, then the number of arcs in R between bx and b2 is less than k, 
contradicting the defining property of the edge e. The single orbit R of k can 

also be described as follows: 

R: V( vm vn vr -vs-vm-v(-vt--vx - v„ - vm - vy - ■ ■ ■ 
-vz- v(. 

This implies that G - e —f contains the closed spanning walk 
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thus, G-e-f is connected. The description of the orbit R also implies, for 

example, that 

ndm) = t, 7tm{n) = y, nn{m) = r. 

We next show that G-e-f is 2-cell embeddable on a surface with a 

single region. Define 

V'(i) = {y | v,-vy e E(G -e-f)} 

for i = l, 2, .p. Therefore, V(i)=V'(i) for i±€, m, n, while V(t) = 
V'(Z) U {m}, V(m) = V\m) U (f, n} and V{n) = V\n) U {m}. For the graph 
G - e -/, we define a p-tuple (jrl, jz'2, n'p) of cyclic permutations, where 
K<. ■ V'(i) for i=l,2, ..., p such that jr* = jt, for i + l, m, n. Moreover, 

nlQ) = Mj) for j * z while ne(z) = ne(m) = t; also for j + s and 
jzUs) = nm(n) = y\ finally, = n„(j) for j + x while <(*) = nn{m) = r. 

Let D' be the digraph obtained from G-e-f by replacing each edge of 
G-e-f by a symmetric pair of arcs. Define the permutation jr':E(D')-+ 

E(D') by Vj) = (Vj, There is a single orbit of jt', namely 

R': v( - v,-v* - v„ - vr-v, - vm - vy-vz - v€. 

Hence, corresponding to the p-tuple (jtJ , jt2, - ■ ■ , is a 2-cell embedding of 
G — e—f with one region. Therefore, G — e—f is upper embeddable. Since 

2&(G — e —f) is even, G-e-f has a splitting tree T by the inductive 

hypothesis. 
By Theorem 4.34, every component of G — e—f—E(T) has even size. 

Returning the two adjacent edges e and / to G — e —f— E(T) produces either 
the same number of components (if e and / are incident only to vertices in the 
same component of G-e-f- E(T)) or fewer components (if e and / are 

incident with vertices in two or three components of G - e -f- E(T)). In 
either case, every component of G — E(T) has even size and T is a splitting 

tree of G. 

Case 2: Assume that 2&(G) is odd- Since G is upper embeddable, it follows by 
Theorem 4.33 that there exists a 2-cell embedding of G with two regions. Let e 
be an edge of G that is on the boundary of both regions. (Necessarily, e is not a 
bridge of G.) Deleting e produces a 2-cell embedding of G—e with one region. 
Therefore, G — e is upper embeddable and since 9J(G — e) is even, it follows by 

the preceding case that G — e has a splitting tree T. Furthermore, by Theorem 
4.34 every component of G - e - E(T) has even size. Returning the edge e to 
G — e — E(T) produces a graph, namely G — E(T), having exactly one com¬ 

ponent of odd size. Therefore, T is also a splitting tree of G. ■ 
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Returning to the graph G of Figure 4.30, we now see that G is upper 

embeddable since G contains Tx as a splitting tree. On the other hand, neither 
the graph G, nor the graph G2 of Figure 4.31 has a single splitting tree, so, by 
Theorem 4.35, neither of these graphs is upper embeddable. 

Figure 4.31 Graphs that are not upper embeddable 

We mentioned earlier that no formula is known for the genus of an 
arbitrary graph. However such is not the case with maximum genus. With the 

aid of Theorem 4.35, Xuong [XI] developed a formula for the maximum genus 
of any connected graph. 

For a graph H we denote by £0(7f) the number of components of H of 
odd size. For a connected graph G, we define the number §(G) as follows: 

£(G) = min §0(G — E(T)), 

where the minimum is taken over all spanning trees T of G. 

Theorem 4.36 (Xuong) The maximum genus of a connected graph G is given by 

Y M(G) = |(&(G)-£(G». 

Proof Assume that G has order p and size q. Let G be 2-cell embedded on the 
surface of genus Ym(G) such that r regions are produced. First we show that 
r= 1 + £(G). Note that if £(G) = 0, then G contains a splitting tree and 2£(G) 
is even. Thus, G is upper embeddable on Sy (G) with one region; that is, 
r = 1 + £(G) if §(G) = 0. Similarly, if r = 1, then 26(G) is even and G is upper 

embeddable. Thus G has a splitting tree and £(G) = 0, so that r = 1 + £ (G) if 
r— 1. Therefore, we assume that £(G)>0 and r^ 2. 

Let Tx be a spanning tree of G such that 

UG-E(T1)) = Z(G). 

Let G,, /= 1, 2, .. . , £(G), be the components of odd size in G — E(TX). For 
i'=l,2, ..., 5(G), let e, be a terminal edge of G, if G, is a tree and let e, be a 
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cycle edge of G, if G, is not a tree. Define H = G - {e,, e2, ... , ^(G)}- Since 
7, is a spanning tree of H. the graph H is connected. Since every component of 
H — E{T\) has even size, 7, is a splitting tree of H. Therefore, by Theorem 
4.35, H is upper embeddable. Also, by Theorem 4.34, 2^(7/) is even. Hence, 

by Corollary 4.33, H can be 2-cell embedded on SYm(H) with one region. 
Adding the edges eu e2, .... e^G) to H produces the graph G. By the 
Ringeisen-White edge-adding lemma (Theorem 4.31), there exists a 2-cell 

embedding of H + e, on some surface (namely on SVu(H) in this case) with two 
regions. By £(G) applications of Theorem 4.31, it follows that there exists a 2- 

cell embedding of G = H + ex + e2+ ■ ■ ■ + eUG) on some surface S with at most 
1 + £(G) regions. Therefore, if G is 2-cell embedded on S with 5 regions, then 
necessarily s 1 + £(G). Since the minimum number of regions of any 2-cell 

embedding of G occurs when G is 2-cell embedded on Sy^G) and since such an 
embedding produces r regions, by assumption, we conclude that so that 

r«Sl + £(G). 
To verify that 1 + £(G), we again assume that G is 2-cell embedded on 

the surface of genus yM(G) with r(2s2) regions. Let/) be an edge belonging to 
the boundary of two regions of G. (Necessarily, /, is not a bridge of G.) Then 

G-fi is 2-cell embeddable on the surface of genus yM(G) with r- 1 regions. 

Furthermore, if r> 2, then for k-2, 3, ... , r - 1, let fk be an edge belonging 

to the boundary of two regions of G - {/,, f2, •. • , fk-\} • Then for k = 1, 2, 
..., r- 1, the graph G- _fk) is 2-cell embeddable on the surface 
of genus yM(G) with r-k regions; in particular, the graph G'= G - {/i,/2, 
... ,fr_i} is 2-cell embeddable on the surface of genus yM{G) with one region. 
Therefore, SS(G') is even and, by Corollary 4.33, the graph G' is upper 

embeddable on the surface of genus Ya*(G). By Theorem 4.35, G' contains a 
splitting tree 7', and all components of G'— 7(7') have even size. Thus, 

£0(G — £(7')) r - 1. Consequently, §(G) ^ §o(G — E(T')) ^ r — 1 so that 

1 + £(G). Therefore, r— 1 + £(G). 

By Theorem 4.20, 

p - q + r = 2- 2yM(G). 

Since r= 1 + §(G), it follows that 

2yM(G) = q-p+\-^G) 

or 

2yM{G)=\mG)-%{G)). M 

Returning to the graph Gj of Figure 4.31, we see that <3b(G\) = 6 and that 
§0(G] — E(T)) = 6 for every spanning tree 7. Therefore, §(G|) = 6 so that 

yw(Gl) = |(S6(G1)-|(G1)) = 0 



Section 4.6 The Maximum Genus of a Graph 149 

and Gi is 2-cell embeddable only on the sphere. 

With the aid of Theorem 4.36 (or Theorem 4.35), it is possible to show 
that a wide variety of graphs are upper embeddable. The following result is due 
to Kronk, Ringeisen and White [KRWlj. 

Corollary 4.36a Every complete n-partite graph, n ^ 2, is upper embeddable. 

From Corollary 4.36a, it of course follows at once that every complete 
graph is upper embeddable, a result due to Nordhaus, Stewart and White 
[NSW1]. We present a proof using Theorem 4.35. 

Corollary 4.36b The maximum genus of Kp is given by 

Ym(Kp) = 
(P~ 1)(P~2) 

4 

Proof If T is a spanning path of Kp, then Kp - E(T) contains at most one nontrivial 

component. Therefore, T is a splitting tree of Kp and, by Theorem 4.35, Kp is 

upper embeddable. Since <&(Kp) = (p - \)(p-2)!2, the result follows. ■ 

A formula for the maximum genus of complete bipartite graphs was 
discovered by Ringeisen [R3], 

Corollary 4.36c The maximum genus of K(m, n) is given by 

yM{K(m, n)) = 
(m — 1) (n — 1) 

Zaks [Zl] discovered a formula for the maximum genus of the n-cube. 

Corollary 4.36d The maximum genus of Qn, n 2s 2, is given by 

YM(Qn) = (n- 2)2"-2. 

We close this section with a few remarks about other schemes that have 
been employed for providing 2-cell embeddings of connected graphs as well as 
a few comments on embedding graphs on other “surfaces”. 

The reader who wishes to pursue the topic of graph embeddings in more 
depth would do well to familiarize himself with the dual topics of “current 
graphs” and “voltage graphs”. The theory of current graphs (see Gross and 
Alpert [GA1], [GA2], [GA3], Gustin [G6], and Youngs [Y2, Chap. 12]) was 

originally developed with the express purpose of generating rotational em- 
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bedding schemes for embedding complete graphs. It was later extended to 2- 

cell embeddings of arbitrary graphs. Gross [G5] dualized the ideas involved to 

obtain the theory of voltage graphs, which has proved to be a powerful tool for 

graph embeddings. , 
Finally we also note that it is possible to speak of embedding graphs on 

nonorientable surfaces such as the Mobius strip, projective plane, and Klein 

bottle As might be expected, every planar graph (as well as some nonplanar 
graphs) can be embedded on such surfaces. Figure 4.32 shows Ks embedded on 
the Mobius strip. These topics shall not be the subject of further discussion, 

however. 

Figure 4.32 An embedding of K5 on the Mobius strip 

Exercises 4.6 

4.44 Describe an embedding of /C5 on SYM{Ki) by means of a 5-tuple of cyclic permuta¬ 

tions. 

4.45 Determine the maximum genus of the graph G2 of Figure 4.31. 

4.46 Determine the maximum genus of the Petersen graph. 

4.47 (a) Let G be a connected graph with blocks B\, B2, • ■ • > Bn. Prove that 

n 

yM(G)* E Ym(Bi). 
i = 1 

(b) Show that the inequality in (a) may be strict. 
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4.48 Prove Theorem 4.35 as a corollary to Theorem 4.36. 

4.49 Prove Corollary 4.36a. 

4.50 Prove Corollary 4.36c. 

4.51 Prove Corollary 4.36d. 

4.52 Prove or disprove: For every positive integer n, there exists a connected graph Gn 
such that |®(G„)/2J -YM(G„) = n. 

4.53 Prove or disprove: If H is a connected spanning subgraph of an upper embed¬ 

dable graph G, then H is upper embeddable. 

4.54 Determine the maximum genus of the Heawood graph. 

4.55 For G= Cmx Cn(m, n 2=3), determine y(G) and yM(G). 

4.56 Prove that if each vertex of a connected graph G lies on at most one cycle, then 

G is only 2-cell embeddable on the sphere. 

4.57 Prove, for positive integers m and n with m^n, that there exists a graph G of 

genus m that can be 2-cell embedded on Sn. 

4.58 Prove that if G is upper embeddable, then G x K2 is upper embeddable. 



Chapter Five 

Connectivity and Networks 

The concepts of a cut-vertex, bridge, and block (introduced in Chapter 2) are 
generalized here to better describe the “connectivity” of a graph. An important 
and related result in digraphs, the max-flow min-cut theorem, is discussed, 

along with some of its many applications. 

5.1 n-Connected and n-Edge-Connected Graphs 

The vertex-connectivity or simply connectivity k(G) of a graph G is the minimum 
number of vertices whose removal from G results in a disconnected or trivial 
graph. The complete graph Kp cannot be disconnected by the removal of 

vertices, but the deletion of any p - 1 vertices results in K{\ thus k(Kp) = p — 1. 
It is an immediate consequence of the definition that a nontrivial graph G has 
connectivity zero if and only if G is disconnected. Furthermore, a graph G has 
connectivity 1 if and only if G = K2 or G is a connected graph with cut-vertices; 

k(G)^2 if and only if G is a cyclic block. 
Connectivity has an edge analogue. The edge-connectivity x',(G) of a 

graph G is the minimum number of edges whose removal from G results in a 
disconnected or trivial graph. Connectivity and edge-connectivity are related as 

we now see [W6], 

Theorem 5.1 For any graph G, 

k(G)^*,(G)«£6(G). 
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Proof Let v e L(G) such that deg v = d(G). The removal of the <3(G) edges of G 

incident with v results in a graph G' in which v is isolated so that G' is either 
disconnected or trivial; therefore, k-,(G) b(G). 

We now verify the other inequality. If ic1(G) = 0, then G is disconnected 
or trivial so that *:(G) = 0. If ic1(G) = 1, then G is connected and contains a 
bridge so that either G= K2 or G is connected and contains cut-vertices; thus 

k(G) = 1. In each of these cases, k(G) = k1(G). We henceforth assume 
*i(G)S*2. 

There exists a set of JC[(G) edges in G whose removal disconnects G. The 
removal of /C](G) — 1 of these edges results in a connected graph with a bridge 
e = uv. For each of the ic,(G)-l edges, select an incident vertex different 
from u and v. If the removal of these vertices results in a graph H that is 

disconnected, then k(G) <kx(G). If, on the other hand, H is connected, then 
either H = K2 or H has a cut-vertex. In either case, there exists a vertex of H 
whose removal results in a disconnected or trivial graph. Therefore, k(G) 
k\(G). U 

Figure 5.1 shows a graph G for which /c(G) = 2, ks (G) = 3, and 6(G) = 4. 

It can be shown (see Exercise 5.8) that if a, £>, and c are positive integers with 
a^b^c, then there is a graph G with ic(G) = a, k] (G) = b, and b(G) = c. 

A graph G is said to be n-connected, 1, if k(G)^h. Thus, G is 1- 

connected if and only if G is nontrivial and connected, and G is 2-connected if 
and only if G is a cyclic block. It might be further noted that a graph G is n- 
connected if and only if the removal of fewer than n vertices results in neither a 
disconnected graph nor the trivial graph. 

It is often the case that the knowledge that a graph is ^-connected for 
some specified n is as valuable as knowing the connectivity itself. The following 
theorem gives a condition under which a graph is n-connected. The result is 

due to Bondy [B13 ]; however, it is stated in the form given by Boesch [B11]. 

Theorem 5.2 

d i ' d2 

if 

Let G be a graph of order p 3= 2, the degrees di of whose vertices satisfy 
• • • dp, and let n be an integer such that 1 ^ n ^p — 1. 
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Proof 

dk k + n - 2 dp-n+x~ k 

for each k such that 1 ^k^[(p-n + l)/2j, then G is n-connected. 

Suppose k(G) < n. Then G is not complete, and there exists a set 5 of vertices 

of G such that G — S is disconnected, where k(G) |S| = n — 1. Let W be a 

component of G — S of minimum order k. Then 

, ^ p-n+l 

2 

Clearly, each vertex of H has degree at most k + n-2 in G, where 
k + n —2 <p — k. Since H has order k, this implies that dk^k + n- 2. By 
hypothesis, dp-n+x^p-k. For u e V(G) - V{H)-5, we have degw^ 
p - k- 1. Hence, only the vertices of S have degree at least p-k. Since 

dp—njf. \ 2-p k and dp 2s dp—i 2? • ■ ■ 3? dp—n+1, 

it follows that 5 contains at least n vertices, which is a contradiction. ■ 

In a certain sense, which we now describe, the result given in Theorem 

5.2 is sharp. For integers p, n, and m satisfying 2^n^p-\ and 1 =£ m «£ 

[(p — n + l)/2j, let 

G — Kn— | + [ivm U Kp-n-m+1 ] • 

If we denote the degrees of the vertices of G by dx d2 • • • =£ dp, then 

(m + n — 2 for l^k^m 
p — m — l for m+l^k^p — n+l. 
p — 1 for p — n + 2^k^p 

For each k such that 1 sS k sS [(p - {n - 1) + 1 )/2j, it can be verified that 

dk^k + (n- \)-2^>dp- (n-X)+\^p ~ k. 

Therefore, by Theorem 5.2, G is (n - l)-connected. Now suppose that 1 
[(/?-« + l)/2j and A: =£ m. If 1=£ k m - 1, then dk = m + n-2> k + n-2. If 

m + 1 sS k^ [(p - n + l)/2j, then dp-n+x =p - (m + 1) - k. Thus, 
dk^ k + n - 2^>dp-n+x 5= p - k. However, for k = m we have dk = k + n- 2 
and dp-n+x = p — k — 1. Hence the hypothesis of Theorem 5.2 is “not quite" 

satisfied and, obviously, G is not n-connected. 
Although Theorem 5.2 is often difficult to apply, it has a corollary that is 

more easily stated. 
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Corollary 5.2 Let G be a graph of order p 2s 2, and let n he an integer such that 
Is? n ^p — 1.7/ 

deg v S' 
p + n — 2 

2 

for every vertex v of G, then G is n-connected. 

Proof Let k be a positive integer such that [(p-n + l)/2j. Then k + n- 2 
{(p + n — 3)/2j. Since 

deg v is 
p + n — 2 

2 
> k + n — 2 

for every vertex v of G, it follows that the hypothesis of Theorem 5.2 is 
satisfied vacuously. Thus, G is n-connected. ■ 

A graph G is n-edge-connected, n ^ 1, if k,(G) n. Equivalently, G is n- 
edge-connected if the removal of fewer than n edges from G results in neither a 

disconnected graph nor a trivial graph. The class of n-edge-connected graphs is 
characterized in the following simple but useful theorem. 

Theorem 5.3 A nontrivial graph G is n-edge-connected if and only if there exists no 
nonempty proper subset W of V{G) such that the number of edges joining W 
and V(G) — W is less than n. 

Proof First, assume that there exists no nonempty proper subset W of V(G) for which 
the number of edges joining W and E(G) — W is less than n but that G is not n- 
edge-connected. Since G is nontrivial, this implies that there exist k edges, 

OsS/cCn, such that their deletion from G results in a disconnected graph H. 
Let Hx be a component of H. Since the number of edges joining V{HX) and 
V(G) — E(//i) is at most k, where k < n, this is a contradiction. 

Conversely, suppose G is an n-edge-connected graph. If there should 
exist a subset W of V(G) such that j edges, j </7, join W and V(G) — VP, then 
the deletion of these j edges produces a disconnected graph—again a contradic¬ 
tion. The characterization now follows. ■ 

According to Theorem 5.1, at, (G) 6(G) for every graph G. The follow¬ 
ing theorem of Plesnik [P2] gives a sufficient condition for equality to hold. 

Theorem 5.4 If G is a graph of diameter 2, then K\(G) = 6(G). 
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Proof Let S be a set of JC|(G) edges of G whose removal disconnects G, and let //1 

and H~> denote the components of G — S. Without loss of generality, assume 

that p(Hx)^p(H2). , u 
Suppose that some vertex u of H\ is adjacent in G to no vertex ot H2. 

Then dc(u, v) = 2 for each vertex v of /G, and each vertex v of H2 is adjacent 
to some vertex of Hx. Thus, either each vertex of Hx is adjacent to some vertex 

of Hor each vertex of H2 is adjacent to some vertex of Hx. In either case, 

kx(G) = \S\^ min {p(Hx), p(H2)} -p(Hx). (5-1) 

For each vertex ueV(Hx), let d,(u) denote the number of vertices of 

H,(i = 1, 2) adjacent to u in G. Then 

6(G) ^ deg w = dx(u) + d2(u) ^p(Hx) - 1 +d2(u). (5.2) 

Since 6(G) 3= kx (G), it follows from (5.1) and (5.2) that d2(u) 3= 1 for each 

vertex u of Hx. Let V(HX) = {«,, u2, .. . , u„}, where n=p(Hl). Then 

n n - 1 

kx(G) = \S\ = d2(Ui) = Yj d2(«/) + d2(un) 3= (n - 1) + d2(un) 
:= i i=i 

= p(Hx)-\+d2(un). (5-3) 

Again since 5(G) k'i (G), it follows from (5.2) and (5.3) that 

p(Hx) — 1 +d2(u„)^6(G)SzKl(G)2*p(HI)- 1 + d2(u„). 

Thus, /C!(G) = 6(G). ■ 

Corollary 5.4 If G is a graph of order p 3= 2 such that for all distinct nonadjacent 

vertices u and v, 

deg u + deg v 3sp - 1, 

then K\ (G) = 5(G). 

Exercises 5.1 

5.1 Determine the connectivity and edge-connectivity of each complete n-partite 

graph. 

5.2 Let G be an n-connected graph and let Vj, v2, . .. , v„ be n distinct vertices. Let 
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H be the graph formed from G by adding a new vertex of degree n that is 

adjacent to each of vl5 v2, . . . , v„. Show that k(H) = n. 

5.3 Let H = G + Kx, where G is n-connected. Prove that H is (n + l)-connected. 

5.4 A unicyclic graph is a connected graph with exactly one cycle. 

(a) If G is a unicyclic graph, show that k(G)=£2 and Ki(G)=£2. 

(b) For which unicyclic graphs G does k(G) = iqfG) = 2? 

(c) Is there a unicyclic graph G with k(G) = 1 and Kj(G) = 2? 

5.5 For a graph G of order /? 3= 2. define the ^-connectivity Kk(G) of G, 2^k =£p, as 

the least number of vertices whose removal from G results in a graph with at least 

k components or a graph of order less than k. (Note that k2(G) = k(G).) A graph 

G is defined to be (n, &)-connected if kk(G)^n. Let G be a graph of order p 
containing a set of at least k nonadjacent vertices. Show that if 

„ p + (k — l)(n — 2) 
degGv2i --- 

for every v e V(G), then G is (n, &)-connected. 

5.6 Prove Corollary 5.4. 

5.7 Let G be a graph of diameter 2. Show that if S is a set of Kj(G) edges whose 

removal disconnects G, then at least one of the components of G - S is isomorphic 

to /fi or K6(G). 

5.8 Let a, b, and c be positive integers with a^b^c. Prove that there exists a graph 

G with k(G) = a, Kj(G) = b, and 6(G) = c. 

5.9 (a) Verify that Corollary 5.2 is best possible by showing that for each positive 

integer n, there exists a graph G of order p(^n + 1) such that 6(G) = 

\{p + n — 3)/2] and k(G)</i. 

(b) Verify that Theorem 5.4 is best possible by finding an infinite class of graphs 

G of diameter 3 for which k^G) =£ 6(G). 

5.2 Menger's Theorem 

A nontrivial graph G is connected (or, equivalently, 1-connected) if between 
every two distinct vertices of G there exists at least one path. This fact can be 
generalized in many ways, most of which involve, either directly or indirectly, a 
theorem due to Menger [M5]. In this section, we discuss the major ones of 
these, beginning with Dirac’s proof [D7] of Menger’s Theorem itself. 

A set S of vertices (or edges) of a graph G is said to separate two vertices 
u and v of G if the removal of the elements of S from G produces a dis¬ 
connected graph in which u and v lie in different components. 
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In the graph G of Figure 5.2, there is a set S = {w,, w2, *v3} of vertices of 

G that separate the vertices u and v. No set with fewer than three vertices 
separates u and v. As is guaranteed by the next theorem, there are three 

internally disjoint u-v paths in G. 

W| 

Figure 5.2 A graph illustrating Menger’s Theorem 

Theorem 5.5 (Menger) Let u and v be nonadjacent vertices in a graph G. Then the 
minimum number of vertices that separate u and v is equal to the maximum 

number of internally disjoint u-v paths in G. 

Proof First, if u and v lie in different components of G, then the result is true; so we 
may assume that the graphs under consideration are connected. If the minimum 

number of vertices that separate u and v is n(5= 1), then the maximum number 

of internally disjoint u-v paths in G is at most n. Thus, if n = 1, the result is 
true (since we are assuming that G is connected). Denote by S„(u, v) the 
statement that the minimum number of vertices that separate u and v is n. 

Suppose that the theorem is false. Then there exists a smallest positive 

integer m(^2) such that Sm(u, v) is true in some graph G but there are fewer 
than m internally disjoint u-v paths. Among all such graphs G of smallest 

order, let H be one of minimum size. 
We now establish three properties of the graph H. 

(1) For adjacent vertices vt, v2 of H, where neither vx nor v2 is u or v, 
there exists a set U of m — 1 vertices of H such that U U {v,}, i— 1, 2, 
separates u and v. To see this, let e — ViV2 and note that Sm(u, v) is 
false for H — e by the minimality of H. However, Sm-j(u, v) is true 
for H-e; for suppose there exists a set U of vertices that separates 

u and v in H — e, where — 2. Then GU{v,}, t=l, 2, 
separates u and v in H, contradicting the fact that the minimum 
number of vertices that separate u and v in H is m. Therefore, 

v) is true in H-e and so there exists a set U that separates 
u and v in H-e, where | U\ = m - 1. However, then U U {v,>, i= 1, 

2, separates u and v in H. 

(2) For anv vertex w (=£ u, v) in H, not both uw and vw are edges of FI. 
If this were not the case, then v) is true for H-w. The 
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minimality of ra, however, then implies that H — w contains m - 1 
internally disjoint u-v paths so that H contains m internally disjoint 
u-v paths, which is a contradiction. 

(3) If W = {wi, w2, .. . , wm) is a set of vertices that separates u and v in 
H, then either uwte E(H) for all ie {1, 2, . . . , m) or vw, e E(H) 
for all ie {1,2, . . . , m). To see this, define Hu as the subgraph of H 
induced by the edges on all u-wt paths in H that contain only one 

vertex of VF, and define Hv similarly. Observe that V(HU) n 

V(Hv) = W. Suppose that it is not the case that uWjeE(H) for all 
ie {1, 2, ..., m} or that vwte E(H) for all ie {1, 2, . .. , m). Then 

p{Hu) Ss m + 2 and p(Hv) 5s m + 2. Define a new graph H* to consist 
of Hu, a new vertex v* together with all edges v*w,, and define H* 
similarly. Observe that H* and H* have smaller order than H. 
Further, Sm(u, v*) is true in H* and Sm(u*, v) is true in H*. 

Therefore, there exist m internally disjoint u-v* paths in H* and m 
internally disjoint u*-v paths in H*. These 2m paths produce m 
internally disjoint u-v paths in H, a contradiction. 

Let P be a shortest u-v path in H. By property (2) the length of P is at 

least 3. Thus we may denote P by «, Uj, «2, .. . , v, where ux, u2 ± v. By 
property (1) there exists a set U of m - 1 vertices such that both UU {ux} and 

UU{u2} separate u and v. In particular, UU{ux} separates u and v. Since 
uux e E(H), it follows from properties (2) and (3) that every vertex of U is 
adjacent to u. Consider now UU {u2}. No vertex of U is adjacent to v and 
hence, by property (3), u2 is adjacent to u, contradicting our choice of P. ■ 

With the aid of Menger’s Theorem, it is now possible to present Whitney’s 
characterization [W6] of n-connected graphs. 

Theorem 5.6 (Whitney) A nontrivial graph G is n-connected if and only if for 
each pair u, v of distinct vertices there are at least n internally disjoint u-v paths 
in G. 

Proof Assume G is an n-connected graph and that the maximum number of internally 
disjoint u-v paths in G is m, where m < n. If uv $ E(G), then by Theorem 5.5 
k(G) m < n, which is contrary to hypothesis. If uv e E(G), then the maximum 
number of internally disjoint u-v paths in G — uv is m— l<n— 1; hence 

k(G — uv) < n — 1. Therefore, there exists a set U of fewer than n — 1 vertices 
such that G — uv — IJ is a disconnected graph. Therefore, at least one of 

G — (U U {«}) and G — (LG {v}) is disconnected, implying that k(G) < n. This 

also produces a contradiction. 
Conversely, suppose that G is a nontrivial graph that is not n-connected 
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but in which every pair of distinct vertices are connected by at least n internally 

disjoint paths. Certainly, G is not complete. 
Since G is not n-connected, k(G)<n. Let W be a set of k(G) vertices of 

G such that G — W is disconnected, and let u and v be in different components 
of g-W. The vertices u and v are necessarily nonadjacent; however, by 

hypothesis, there are at least n internally disjoint u-v paths. By Theorem 5.5, u 
and v cannot be separated by fewer than n vertices, so a contradiction 

arises. ■ 

With the aid of Whitney’s Theorem, the following result can now be 

established rather easily. 

Theorem 5.7 If G is an n-connected graph and v, v1? v2, . . • , v„ are n + 1 distinct 
vertices of G, then for i =1,2, ...,«, there exist internally disjoint v-v, paths. 

Proof Construct a new graph H from G by adding a new vertex u to G together with 
the edges nv,, / = 1,2, ... , n. Since G is n-connected, H is n-connected. (See 

Exercise 5.2.) By Theorem 5.6, there exist n internally disjoint u-v paths in H. 
The restriction of these paths to G yields the desired internally disjoint v-v, 

paths. ■ 

One of the interesting properties of 2-connected graphs is that every two 

vertices of such graphs lie on a common cycle. (This is a direct consequence of 

Theorem 2.14.) There is a generalization of this fact to n-connected graphs by 

Dirac [D5]. 

Theorem 5.8 Let G be an n-connected graph, n^2. Then every n vertices of G lie 

on a common cycle of G. 

Proof For n = 2, the result follows from Theorem 2.14; hence, we assume n ^ 3. Let 
W be a set of n vertices of G. Among all cycles of G, let C be a cycle 
containing a maximum number, say m, of vertices of W. We observe that 

2. We wish to show that m = n. Assume, to the contrary, that m<n. Let 

w be a vertex of W such that w does not lie on C. 
Necessarily, C contains at least m + 1 vertices; for if this were not the 

case, then the vertices of C could be labeled so that C: wl7 vv2, ... , w,„, nq, 
where w, e W for 1 By Theorem 5.7, there exist internally disjoint w-w, 
paths Qj, 1 Replacing the edge Hqw2 on C by the nq-w2 path deter¬ 

mined by Qx and Q2, we obtain a cycle containing at least m + 1 vertices of W, 
which is a contradiction. Therefore, C contains at least m+ 1 vertices. 

Thus we may assume that C contains vertices vvt, w2, .. . , w,n, 



Section 5.2 Menger's Theorem 161 

where w,eW for 1 and wm+xiW. Since n^m + 1, we may apply 
Theorem 5.7 again to conclude that there exist m + 1 internally disjoint w-w, 
paths P,( 1 ^ i^ m + 1). For each /= 1, 2, ... , m + 1, let v;- be the first vertex 

on that belongs to C (possibly v, = w,) and let P' denote the w-v, subpath of 
Pj. Since C contains exactly m vertices of W, there are distinct integers j and k, 
1 =5;, m + 1, such that one of the two vrv* paths, say P, determined by C 
contains no interior vertex belonging to W. Replacing P by the vrvk path 
determined by Pj and Pk, we obtain a cycle of G containing at least m + 1 
vertices of W. This contradiction gives the desired result that m = n. ■ 

It follows from Corollary 5.2 and Theorem 5.6 that if G is a graph of 
order p 5= 2 and n is an integer with ls£n=Sp-l such that degv5s[(p + 
n - 2)12] for every vertex v of G, then for each pair a, w of distinct vertices of 
G, there exist n internally disjoint u-w paths in G. Hedman [H10] has shown 

that a considerably stronger conclusion can be made with only a slightly 
stronger hypothesis. 

Theorem 5.9 Let G be a graph of order p 2, and let n be an integer such that 
1 s£ n p — 1. If 

deg v 5? 
p + n — 1 

2 

for every vertex v of G, then for every two distinct vertices u and w of G there 
exist n internally disjoint u-w paths, each of length at most 2. 

Both Theorems 5.5 and 5.6 have “edge” analogues; the analogue to 
Menger’s Theorem was proved in [EFS1], [FF1 ]. It is not surprising that the 
edge analogue of Menger’s Theorem can be proved in a manner that bears a 
striking similarity to the proof of Menger’s Theorem. 

Theorem 5.10 If u and v are distinct vertices of a graph G, then the 

maximum number of edge-disjoint u-v paths in G equals the minimum number 
of edges of G that separate u and v. 

Proof We actually prove a stronger result here by allowing G to be a multigraph. 

If u and v are vertices in different components of a multigraph G, then 
the theorem is true. Thus, without loss of generality, we may assume that the 

multigraphs under consideration are connected. If the minimum number of 
edges that separate u and v is n, where n 5= 1, then the maximum number of 
edge-disjoint u-v paths is at most n. Thus, the result is true if n = 1. 

For vertices u and v of a multigraph G, let Sn(u, v) denote the statement 
that the minimum number of edges that separate u and v is n. 
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If the theorem is not true, then there exists a positive integer m(^2) for 

which there are multigraphs G containing vertices u and v such that Sm{u, v) is 
true, but there is no set of m edge-disjoint u-v paths. Among all such multi¬ 

graphs G, let F denote one of minimum size. 
If every u-v path of F has length 1 or 2, then since the minimum number 

of edges of F that separate u and v is m, it follows that there are m edge- 
disjoint u-v paths in F, a contradiction. Thus F contains at least one u-v path P 

of length 3 or more. Let ex be an edge of P incident with neither u nor v. Then 
for F-eu the statement S„,(u, v) is false but Sm-X(u, v) is true. This implies 

that e, belongs to a set of m edges of F that separate u and v, say {eu e2, ... , 

e } We now subdivide each of the edges et, ls£is£m; that is, let 
replace each et by a new vertex wh and add the 2m edges u,w, and w,v,, The 
vertices w, are now identified, producing a new vertex w and a new multigraph 

H. The vertex w in H is a cut-vertex, and every u-v path of H contains w. 
Denote by Hu the submultigraph of H determined by all u-w paths of //, 

the submultigraph Hv is defined similarly. Each of the multigraphs Hu and Hv 
has fewer edges than does F (since ex was chosen to be an edge of a u-v path in 

F incident with neither u nor v). Also, the minimum number of edges separat¬ 
ing u and w in Hu is m, and the minimum number of edges separating v and w 
in Hv is m. Thus, the multigraph Hu satisfies Sm(u, w), and the multigraph Hv 

satisfies Sm(w, v). This implies that Hu contains a set of m edge-disjoint u-w 
paths and Hv contains a set of m edge-disjoint w-v paths. For each i — 1, 2, 
_a u-w path and w-v path can be paired off to produce a u-v path in H 

containing the two edges u,w and wvr These m u-v paths of FI are edge- 
disjoint. The process of subdividing the edges e, = w,v, of F and identifying the 

vertices w, to obtain w can now be reversed to produce m edge-disjoint u-v 

paths in F. This, however, produces a contradiction. 
Since the theorem has been proved for multigraphs G, its validity follows 

in the case where G is a graph. ■ 

With the aid of Theorem 5.10, it is now possible to present an edge 

analogue of Theorem 5.6. 

Theorem 5.11 A nontrivial graph G is n-edge-connected if and only if for every two 
distinct vertices u and v of G, there exist at least n edge-disjoint u-v paths in G. 
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Exercises 5.2 

5.10 Let G be a graph with k(G) = 3 such that for some pair u, v of distinct non- 
adjacent vertices, the minimum number of vertices that separate u and v is 4. 

(a) What is the maximum number of internally disjoint u-v paths in G? 

(b) Give an example of a graph G satisfying the above properties. 

5.11 Prove that a graph G of order n + 1 & 3 is u-connected if and only if for each 
set S of n distinct vertices of G and for each two-vertex subset T of 5, there is a 
cycle of G that contains the vertices of T and avoids the vertices of S - T. 

5.12 Prove that a graph G of order p^2n is n-connected if and only if for every two 
disjoint sets V\ and V2 of n vertices each, there exist n disjoint paths connecting 
Vj and V2. 

5.13 Let G be an n-connected graph and let v be a vertex of G. For each positive 
integer k, define Gk to be the graph obtained from G by adding k new vertices 
«i, «2. • • • , uk and all edges of the form n,w, where ls£j's£/c and vweE(G). 
Show that Gk is n-connected. 

5.14 Show that if G is an ^-connected graph with nonempty disjoint subsets 5, and S2 
of V(G), then there exist n internally disjoint paths P\, P2, . . . , Pn such that P, is 
a urVj path, where w,eS] and vteS2, for i = 1, 2.n, and | S! FI V( P,-) | = 
\S2nV(Pl)\ = l. 

5.15 Prove Theorem 5.9. 

5.16 Prove Theorem 5.11. 

5.17 Prove or disprove: If G is an n-edge-connected graph and v, v1; v2, ■ ■ ■ , vn are 
n + 1 distinct vertices of G, then for /= 1, 2, .. . , n, there exist v-v, paths P, 
such that each P, contains exactly one vertex of {v,, v2, . .. , v„}, namely vh and 
for i =/=;, Pt and P, are edge-disjoint. 

5.18 Prove or disprove: If G is an n-edge-connected graph with nonempty disjoint 
subsets 5, and S2 of L(G), then there exist n edge-disjoint paths Px, P2, .. . , Pn 
such that P, is a urv, path, where n,e 51, and v,eS2, for /= 1, 2, . . . , n, and 
|5i n v(Pj) | = |s2n V{Pi)\ = l. 

5.19 Prove that K(Qn) = kx(Q„) = n for all positive integers n. 

5.20 Assume that G is a graph in the proof of Theorem 5.10. Does the proof, go 
through? If not, where does it fail? 

5.21 Let G be a graph with k(G)^ 1. Prove that 

p(G) 3= k(G) [diam G - 1] + 2. 
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5.3 Networks 

In Sections 5.1 and 5.2 we investigated connectivity properties in graphs. In the 
next two sections we turn our attention to related questions in directed graphs 

called networks. 
A network N is a digraph D with two distinguished vertices u and v, 

called the source and sink of N, respectively, and a nonnegative integer-valued 
function c on E(D). The digraph D is called the underlying digraph of N. The 
function c is the capacity function of N and its value c(a) = c(x, y) on an arc 
a = (x, y) is referred to as the capacity of a. 

Intuitively, the capacity of an arc (x, y) may be thought of as the 
maximum amount of some material that can be transported from x to y per 
unit time. For example, the capacity of the arc (x, y) may represent the 
number of seats available on a direct flight from city x to city y in some airline 
system. On the other hand, this capacity might be the capacity of a pipeline 
from city x to city y in an oil network, or perhaps the maximum weight of items 
that can be transported by truck along a highway from city x to city y. The 
problem in general, then, is to maximize the “flow” from the source u to the 
sink v without exceeding the capacities of the arcs. 

A network may be represented by drawing its underlying digraph D and 
labeling each arc of D with its capacity. Note, for example, that c(x, y) = 4 in 
the network of Figure 5.3. 

.X 

Figure 5.3 A network 

If x is a vertex of a digraph D, let N+(x) (respectively, 7V~(x)) denote the 
set of vertices of D adjacent from x (respectively, adjacent to x). Thus, 
N+(x) = {ye F(D)|(x, y) e E(D)} and N~(x) = {y e F(D)|(y, x) e E(D)}. 

A flow in a network N (with underlying digraph D, source u, sink v, and 
capacity function c) is an integer-valued function / on E(D) such that 

0^f(a)^c(a) for every a e E(D), (5.4) 

and 
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Z f(x,y)= Z f(y> x) for every x e V{D) - {u, v}. (5.5) 
yeN+(x) yeN~(x) 

The net flow out of a vertex x is defined as ZyeN+(x)f(x, y) - T,yeN~ix)f(y, x), 

while the net flow into x is, of course, Ly eN~(x)f(y, x) - Ly eN+Mf(x, 3;). Thus 
by condition (5.5), if x is an intermediate vertex, that is, if x is neither the 

source nor the sink, then the net flow out of x equals the net flow into x, and 
this common value is zero. 

The value f(a) =/(x, y) on an arc a = (x, y), called the flow in arc a, can 
be interpreted as the amount of material that is transported under the flow / 
along the arc (x, y). Condition (5.4) requires that this amount cannot exceed 

the capacity of (x, y). Condition (5.5), referred to as a conservation equation, 
requires that for an intermediate vertex x, the amount of material transported 
into x per unit time equals the amount of material transported out of x. 

An example of a flow is given in Figure 5.4. The first number associated 
with an arc is the capacity of the arc, and the second number associated with 
an arc is the flow in the arc. The arc (x, t) is said to be saturated (with respect 
to the given flow) since the flow in (x, t) equals the capacity of (x, /). On the 
other hand, the arc (w, x) is unsaturated. We note that in this example, the net 

flow out of the source u is equal to the net flow into the sink v. That this is 
always true will be shown in Theorem 5.12. 

x 4,0 y 

Before presenting our first result on networks, it is helpful to introduce 
some notation. Let D be a digraph and let X and Y be nonempty subsets of 
V(D). The symbol (X, Y) denotes the following subset of E(D): 

(X, Y) = {(x,y)eE(D)\xeX, yeY}. 

If X— {x}, we often write (x, Y) rather than ({x}, Y). Similarly, (X, y) denotes 
(X, {y}). If g is a real-valued function defined on E(D), then g{X, T) is 
defined by 
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g(x, y)= Y g(x<y)' 
(x.y)e(X. V) 

where g(X, Y) = 0 if (X, Y) = 0. Observe that if X, Y, Z are subsets of V(D), 

then 

g(*UZ, Y)=g(*, Y)+g(Z, Y)-g(xnz, Y). 

Furthermore, if x e V(D), then 

g(x,v(D))= Y g(x<y) and g(v(D)’x)= Y s(y<x)- 
yeN*(x) yeN'W 

Finally, 

g^,^))^^^)) and g(V(D),I)=Sgm4 
rp Y XtX 

Theorem 5.12 Let u and v be the source and sink, respectively, of a network N with 

underlying digraph D, and let f be a flow in N. Then 

f(u, V(D))-f(V(D), u)=f(V(D), v)-/(v, V(D)). 

Proof We first observe that 

Y f(x,V(D))= Y f(V(D),x) (5.6) 
xeV(D) xeV(D) 

since each side of the equation in (5.6) equals f(V(D), V(D)). However, by 

(5.5), 

f(x,V(D))=f(V(D),x) \ix±u,v. 

Thus, (5.6) becomes 

f(u, V{D)) +/(v, V(D)) =f{V(D), u) +f(V(D), v). ■ 

The value of a flow /in a network N, denoted val /, is defined as the net 

flow out of the source of the network; equivalently (by Theorem 5.12), val / 
equals the net flow into the sink of N. A flow /in N is called a maximum flow if 
val /^val /' for every flow/' in N. In Section 5.4 we will determine the value 
of a maximum flow in a given network and present an algorithm for constructing 

such a flow. 
Let N be a network with underlying digraph D, source u, and sink v. A 

cut in N is a set of arcs of the form (A\ V(D) — X) such tha/ ueX and 

v e V(D) — X. We often write X in lieu of V(D) — X. If K= (X, X) is a cut in 
N, then the capacity of K, denoted cap K, is given by cap K = c{X, X), where 
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c is the capacity function of N. In the network illustrated in Figure 5.4, the set 

K = {(x, y), (x, t), (w, z)} is a cut since K = ({w, x}, {u, x}), with u e {u, x} 
and v e {u, x}. The capacity of K is cap K = c(x, y) + c(x, t) + c(u,z) = 

4 + 3 + 4= 11. 
If AT is a cut in a network N, then any directed path from the source u to 

the sink v must contain at least one arc of K. Thus, if all the arcs of K were 
deleted from the underlying digraph D, there would be no path from u to v. In 
a certain sense, then, K “separates” u and v (this observation will be pursued 
further in the next section) and, intuitively, it appears that the value of a flow 
in N cannot exceed the capacity of K. That this is indeed the case is verified in 

Theorem 5.13. 

Theorem 5.13 Let f be a flow in a network N and let K = (X, X) be a cut in N. Then 

val f=f(X,X)- f(X, X) cap K. 

Proof Let D be the underlying digraph of N and let u and v be the source and sink, 

respectively. Since / is a flow in N, f satisfies the equations 

fix, V(D))-f(V(D),x) = 0, xeX-{u} 

f(u, V{D))-f(V(D), u) — val /. 

It follows that ZxeX{f(x, V(D))-fiV(D), x)} =val / since ueX. However, 

E {fix, V{D)) —f(V{D), x)} = E fix, V{D)) - E fiViD), x) 
xeX *eX xeX 

= /(X ViD))-f(V{D),X). 

Furthermore, f{X, V{D)) =_f{X, XU X) =f{X, X) + f(X, X) — f(X, XC\ X), 
and fiV(D), X)=f{X UX, X)=f{X, X)+f{X, X)-f(XnX, X). Since 
fix, xnx)_=f(xnx, X) = 0, we conclude that LxeX_{f(x, V(D)) -f{V{D), 
x)} =fiX, X) -f(X, X) and that valf = f(X, X) -f{X, X). 

The inequality f{X± X) ~f{X, X) ^ cap K follows from the facts that 

f{X, X) cap K and f{X, X)^0. ■ 

A cut K in a network N is called a minimum cut if cap K cap K' for 

every cut K' in N. 

Corollary 5.13a Let f be a flow and K be a cut in a network N. If val /- cap K, then 

f is a maximum flow and K is a minimum cut. 

Proof By Theorem 5.13, iff* is a maximum flow in N and K* is a minimum cut, then 

val /* ^ cap K*. However, valval f* and cap K* ^ cap K, so that 
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val val /* =S cap K * ^ cap K. 

Since val /= cap K, we have val /= val /* and cap K* = cap K. Thus / is a 

maximum flow and AT is a minimum cut. ■ 

Corollary 5.13b If f is a flow in a network N with capacity function c, and (X, X) is 

a cut in N such that 

f(a) = c(a) for every a e (X, X) 

and 

f(a) = 0 for every a e (X, X), 

then f is a maximum flow in N and (X, X) is a minimum cut. 

Consider the network N with source u and sink v illustrated in Figure 5.5 

where, as before, the first number associated with an arc a is its capacity c(a), 
and the second number, /(a), is the flow in a. We see that val /= 4. If X is the 

x 

set {«, x, y}, then (A\ X) is a cut in N and c(X, X) = 4. By Corollary 5.13a, 
then, / is a maximum flow and (X, X) is a minimum cut. 
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Exercises 5.3 

5.22 Show that every network has at least one flow and at least one maximum flow. 

5.23 Let N be the network with source u and sink v illustrated, where the label on 
each arc is its capacity. 

(a) Give an example of a flow / in N such that val /> 5. 

(b) Determine val /. 

4 

5.24 Let u and v be two vertices of a digraph D and let A be a set of arcs of D such 
that every u-v path in D contains at least one arc of A. 

(a) Show that there exists a set of arcs of the form (X, X), where XC V(D), 
ue X, and v e X, such that (3f, X) C A. 

(b) Show that (X, X) may be a proper subset of A. 

5.25 Prove Corollary 5.13b. 

5.26 Let N be a network with underlying digraph D, source «, and sink v. Show that if 
D contains no u-v path, then the value of a maximum flow in N and the value of a 
minimum cut in N are both zero. 

5.4 The Max-Flow Min-Cut Theorem 

It was shown in Corollary 5.13a that if val/= cap K for a flow / and a cut K in 
a network N, then / is a maximum flow in N and K is a minimum cut. In this 
section we prove the converse of this result; that is, in any network N, the 
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value of a maximum flow is equal to the capacity of a minimum cut. Before 

presenting a proof of this result, we need some additional definitions. 
A u-v semipath in a digraph D is a finite, alternating sequence 

P* u — U-O, a i, u i, a21 • • * ? |, an, un v 

of vertices and arcs, beginning with vertex u and ending with vertex v, such 
that no vertex of P is repeated, and either a, = (uf, i) or a, = (u,_,, u,) for 
/= 1, 2, .. . , n. Let/be a flow in a network N with underlying digraph D and 

capacity function c. A semipath vv0, ax, w,, a2, w2, .. . , w„_u an, w„ in D is 

said to be f-unsaturated if, for 1 ^ i ^ n, 

(a) f(ai)<c{ai) whenever a/ = (wf_i, w(), and 

(b) f{af)>0 whenever a, = (w,, w,^). 
If P is an /-unsaturated w-v semipath, where u and v are the source and 

sink of N, respectively, then P is called an f-augmenting semipath. For example, 
if/is the flow given in Figure 5.4, then u, (t, u), f, (x, t), x, (x, y), y, fy, v), v 

is an/-augmenting semipath. 
The relationship between augmenting semipaths and maximum flows is 

given in the following theorem of Ford and Fulkerson [FF1 ]. 

Theorem 5.14 Let N be a network with underlying digraph D. A flow f in N is a 

maximum flow if and only if there is no f-augmenting semipath in D. 

Proof Let u and v be the source and sink of N, respectively, and let c be the capacity 
function of N. Assume, first, that D contains an /-augmenting semipath. Thus 

there is a u-v semipath P 

u = w(), au w,, a2, w2, .. . , , an, wn = v 

such that for 1 

(a) /(a,)<c(a,) whenever a/=(w/_1, w,), and 

(b) /(a,)>0 whenever a, = (w,-, w,_!). 

Let E] = min (c(o,)—/(«,)), where the minimum is taken over all / such 

that a, = (w,-_j, w,); if no such i exists, set Ej = 1. Similarly, let e2 = min /(«,), 
where the minimum is taken over all / such that a, = (w,, w,_i); again, if no 

such i exists, set e2 = 1. Finally, let e = min(E|, e2). 
Define a function /* on E(D) as follows: 

/*(«) = 

f(a) + e if a = (w,_), w,) for some i, 1 ^ i ^ n, 

f(a) — e if a = (w,, h’,_i ) for some i, 1 ^ n, 

f(a) if atE(P). 
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Then clearly, /* is an integer-valued function on E(D) such that 0 f*(a) c(a) 

for every aeE(D). Thus /* satisfies condition (5.4). We show that /* also 
satisfies (5.5). Let x e V(D) - {u, v}. If x does not lie on P, then/*(x, V(D)) = 

/(x, V(D))=f(V(D), x) = f*(V(D), x). Therefore,/* satisfies condition (5.5) 
for all vertices x not on P. If, on the other hand, x lies on P, then we consider 
three possible cases. 

Case 1: Suppose the vertex x is incident to exactly two arcs of P. Then for some 

i, where lsSis£n-l, we have x=w,, a, = (w,-, w,^) and ai+x = (w,-, wI+1). 
Therefore, 

/*(x, V(D))=r(a,)+naHI) + £/(<,) 

where the sum is taken over all arcs aEah ai+x that are incident from x. 
Furthermore,/*(fl,)=/(a,)-£ and f*(ai+x) = /(a,+1) + s, so that /*(x, V(D)) 

= /(x, V(D)). Since f*(V{D), x) =f(V(D), x) and f(V(D), x) = /(x, V(D)), it 
follows that condition (5.5) holds in this case. 

In a similar manner it can be shown that /*(x, V(D)) = /*(L(D), x) in 
each of the remaining two cases. 

Case 2: Suppose the vertex x is incident from exactly two arcs of P. 

Case 3: Suppose the vertex x is incident from exactly one arc of P and incident to 
exactly one arc of P. 

Thus we conclude that /* is a flow in N, and that 

val f*=f*(u, V(D)) —f*(V(D), u). 

If ay = (w0, h^), then/*(u, V(D))=f(u, V(D)) + e andf*(V(D), u)=f(V(D), 
u). If fl, = (Wj, w0), then f*(u, V{D)) =f(u, V(D)) and f*(V(D), u) = f(V(D), 
u) — s. In either case, f*(u, V(D))-f*(V(D), u)=f(u, V(D))-f(V(D), 
u) + e. Thus, val /* = val /+e>val /, the last inequality holding since e^l, 
so that / is not a maximum flow. 

Conversely, assume that there is no /-augmenting semipath in D. 
According to Corollary 5.13b, the proof will be complete if we can exhibit a cut 

(X, X) in N such that /(a) = c(a) for every a e (X, X), and f(a) = 0 for every 
a e (X, X). (Such a cut will, in fact, be a minimum cut in TV.) 

Let X denote the set of all vertices x in D for which there exists an 
/-unsaturated u-x semipath. Then u e X and, by assumption, v £ X. Thus (A, X) 
is a cut in N. Suppose (y, w) e (X, X). Since y e X, there exists an /-saturated 
u-y semipath P in D. Therefore/(y, w) = c(y, w); otherwise, the semipath Q 
defined as P, (y, w), w would be an/-unsaturated u-w semipath, contradicting 

the fact that w£X. Similarly, if (y, w) e (X, X), then /(y, w) = 0. This 

completes the proof. ■ 



172 Chapter 5 Connectivity and Networks 

The following theorem, due to Ford and Fulkerson (FF1) and often 

referred to as the max-flow min-cut theorem, verifies the converse of Corollary 

5.13a. 

Theorem 5.15 (Ford and Fulkerson) In any network, the value of a maximum 

flow equals the capacity of a minimum cut. 

Proof Let / be a maximum flow in a network N (see Exercise 5.22). By Theorem 
5.14, there is no /-augmenting semipath in the underlying digraph D of N. 
However, it was shown in the proof of Theorem 5.14 that if D_contains no 
/-augmenting semipath, then there is a (minimum) cut K = (X,_X) such that 
each arc in (X, X) is saturated, while the flow in each arc in (X, X) is zero. 

Thus f(X, X)_= cap K and f(X, X) = 0. An application of Theorem 5.13 yields 

val f=f(X, X) ~f(X, X) = cap K. U 

The proof of Theorem 5.14 provides the basis of an algorithm, also due 
to Ford and Fulkerson [FF2], for finding a maximum flow and minimum cut in 

a network. A slight refinement of this algorithm, suggested by Edmonds 
and Karp [EK1], results in a good graph-theoretic algorithm. Both of these 
algorithms provide a systematic method for finding an /-augmenting semipath 

in a network with a given flow /. The Edmonds-Karp algorithm, which we 
describe next, searches for a shortest such semipath, i.e., one with the fewest 

number of arcs. 
Let u and v be the source and sink, respectively, of a network N with 

underlying digraph D. We begin the procedure with a given flow / in N 
(perhaps the zero flow). The computation progresses by a sequence of labelings 

of the vertices of D. A vertex w receives a label only if there is an /-unsaturated 
u-w semipath P in D. The label assigned to w is an ordered pair. If x is the 
vertex preceding w on P, then the first component of the label is x+ or x—, 
depending on whether the arc preceding w is (x, w) or (w, x). The second 

component of the label is a positive integer reflecting the potential change in / 
along P. If the sink v is labeled, then a new flow of greater value is obtained 
and the process is repeated. If the sink is not labeled, then /is a maximum flow 
in N, and the labels can be used to find a minimum cut. 

Throughout the algorithm, a vertex is considered to be in one of three 

states: unlabeled, labeled and unscanned, or labeled and scanned. Initially, all 
vertices are unlabeled. When a vertex receives a label, it is added to the 
bottom of the “labeled but unscanned’' list L. These vertices are scanned on a 
“first-labeled first-scanned” basis, which insures that a shortest /-augmenting 
semipath is selected. 
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Algorithm 5A (Edmonds and Karp) Given a network N with underlying digraph 
D, source u, sink v, and capacity function c: 
1. Assign values of an initial flow f to the arcs of D. 

2. Label u with ( — ,<») and add u to L, the list of labeled and unscanned 

vertices. 
3. Select and remove the first element of L, say x, with label (z+, e(x)) or 

(z—, £(x)). If L is empty, then stop. 
(a) To all vertices y that are unlabeled and such that 

(x, y) e E(D) and f{x,y)<c(x,y), 

assign the label (x+, £(y)), where 

£(>>) = min {£(*), c(x, y)-f(x, y)} 

and add y to the end of L. 
(b) To all vertices y that are unlabeled and such that (y, x)cE(D) and 

f{y, *)>(), assign the label (x—, £(y)), where 

£(y) = min {£(*), f(y, *)} 

and add y to the end of L. 
4. If v has been labeled, go to Step 5; otherwise, go to Step 3. 

5. The labels describe an f-augmenting semipath 

u = w0, au wu a2, w2, ... , w„_,, a„, wn = v 

where, for l^i^n, w,- is labeled (wi^l + , £(w,)) if a, = (w,-,, w,) and w,- is 
labeled £(h'/)) ifaj = (wj, w(_,). In the first case, replace /(w,_,, w() 

by f(Wj-i, Wi) + f(v); in the second case, replace f(wh w,-]) by f(wh 

W(-_0 - £(v). 
6. Discard all labels, remove all vertices from L, and go to Step 2. 

Theorem 5A Algorithm 5A terminates with a maximum flow f in M Furthermore, if 

X is the set of labeled vertices upon termination, then (X, X) is a minimum 

cut. 

Proof It follows from Theorem 5.14 that each time Step 5 is completed, a new flow in 
N with larger value has been constructed. Furthermore if, in Step 3, the list. Z. 
is empty, then there is no/-augmenting semipath and so, by Theorem 5.14, / is 
a maximum flow and (X, X) is a minimum cut. It remains to see that the 

process must, in fact, terminate, since for every flow / in N, 

val / sS c(u, V(D)), 

and thus Step 5 can be repeated at most c{u, F(D)) times. ■ 
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As an illustration of Algorithm 5A, let N be the network with source u 

and sink v given in figure 5.6(a). The labels on each arc a are the capacity c (rr) 

of a and the initial flow f(a) in a, respectively. Initially, u is labeled (-, °°), and 
L consists only of u. As the algorithm proceeds through Step 3 the first time, 

the set of labeled vertices and the value of L changes as follows: 

Labeled Vertices L 

u: (-, «0 u 

u: (-, «=), r: (u+, 3) r 

u\ (-, 0°), r. (u+, 3), s: (u—, 2) r, s 

Continuing through Step 3 again, we have 

u: (-, °°), r: (u+, 3), s: (u-, 2), 

y: (r+, 2) s, y 

u: (-, °°), r. (u+, 3), 5: (u2), 

y\ (r+, 2), w: (5—, 2) y, w 

u: (-, °°), r. (w+, 3), 5: (u-, 2), 

y: (r+, 2), w\ (5-, 2), t: (5 + , 2), y, w, t 

Finally, we obtain 

u: (-, °°), r: («+, 3), 5: (u-, 2), 

y: (r+, 1), w: (5—, 2), t: (i'+, 2), 

v: (y+, 2) w, t 

and we reach Step 4. 

Thus, from Step 5 we obtain the /-augmenting semipath 

u, (w, r), r, (r, y), y, (y, v), v 

and the flow in each of the arcs in this semipath is increased by e(v) = 2. The 

resulting flow / is shown in Figure 5.6(b). 
Proceeding through Step 6, Step 2, and then repeating Step 3 until v is 

again labeled, we have the following set of labeled vertices: 

u\ ( —, *), r: (w + , 1), s: {u — , 2), w: (5 — , 2), t: (i'+, 2), v: (w+, 2). 

Using the resulting /-augmenting semipath 

h, (.9, »), 5, (w, 5), w, (w, v), v 

with e(v) = 2, we obtain the flow /indicated in Figure 5.6(c). 
Beginning again with Step 2, we label the vertices 

u: (-, *), r: (t/ + , 1). 
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3, 1 

r 3, 3 

r 3, 3 

Figure 5.6 

However, once we “scan r”, i.e., remove r from L, the list L is empty and v is 
unlabeled. Thus we have a maximum flow, and the corresponding minimum 
cut is (X, X), where X = {u, r}. 

The definitions of network and flow in a network may be altered slightly 
to allow nonnegative real-valued capacity functions and flows. The max-flow 
min-cut theorem remains valid in this situation, although the aforementioned 
Ford and Fulkerson algorithm may not produce a maximum flow in such a 
case. However, the algorithm of Edmonds and Karp may still be used here. 

Although the networks considered so far have (by definition) a single 
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source and a single sink, a generalized structure with multiple sources and sinks 

is frequently more practical. 
We define a (generalized) network N as a digraph D with two distinguished 

sets of vertices S and T, the sources and sinks of /V, respectively, and a 

nonnegative integer-valued function c on E(D). The sets S and T are assumed 
to be nonempty and disjoint; the function c is the capacity function of N. A 

flow in N is an integer-valued function / on E(D) such that 

OsS/(a)^c(fl) for every a e £(D), 

and 

/(x, V(D)) =f(V{D), x) for every x e V(D) - (5 U T). 

The value of the flow /, denoted val /, is given by 

val f=f(S, V(D))-f(V(D),S). 

The problem of determining a maximum flow in a generalized network 

can be reduced to the case of a network with a single source and single sink, 

and thus easily handled by the theory developed in this section. 
For other examples of extensions of networks, see [FF3], 

Exercises 5.4 

5.27 Verify Cases 2 and 3 in the proof of Theorem 5.14. 
5.28 Show that the converse of Corollary 15.3b is true. That is, let N be a network 

with capacity function c, and show that if/is a maximum flow in N and (X, X) is 

a minimum cut, then 

f(a) = c(a) for every a e (A, A), 

and 

f(a) = 0 for every a e (A", X). 

5.29 Let N be a network with capacity function c and suppose that (V, X) is a 

minimum cut in N. _ 
(a) Prove or disprove: If /, and f2 are flows in N that agree on (A\ A") and 

(A\ A"), then fx and f2 are maximum flows in N. 

(b) Prove or_disprovej^ If f\ and f2 are maximum flows in N, then/, and f2 agree 

on (A\ A") and (X, A"). 

5.30 Begin with the flow in Figure 5.4 and use Algorithm 5A to find a maximum flow 

and the corresponding minimum cut in the given network. 



Section 5.5 Applications of the Max-Flow Min-Cut Theorem 177 

5.5 Applications of the Max-Flow Min-Cut Theorem 

As observed in Section 5.3, deleting the arcs of a cut “separates” the source 
and the sink of a network. Since Menger’s Theorem and its edge analogue each 
deal with sets that separate two vertices in a graph, it is, perhaps, not surprising 
that these two theorems are closely related to the max-flow min-cut theorem. It 

is this relationship that we now consider. 
Menger’s Theorem states that if u and v are distinct nonadjacent vertices 

of a graph G, then the maximum number of internally disjoint u-v paths in G 
equals the minimum number of vertices of G that separate u and v. There are 
other theorems that are often referred to as “forms of Menger’s Theorem”. 
We have seen one such theorem. Theorem 5.10, which is the edge form of 
Menger’s Theorem. The vertex and edge forms of Menger’s Theorem have 

natural analogues in the directed case. All four of the aforementioned results 
can be proved either directly or indirectly using the max-flow min-cut theorem. 
In each case, the key is to construct an appropriate network from the given 
graph or digraph. Furthermore, Algorithm 5A can be used to determine, for 

example, the minimum number of vertices of a given graph G that separate 
nonadjacent vertices u and v of G as well as such a set of vertices. 

We now introduce some additional terms involving separation. A set S of 

vertices of a digraph D (graph G) is said to be a u-v separating set of vertices, 
where u, v e V(D) - S (respectively, u, v e V(G) - S) if every u-v path in D (in 

G) contains at least one vertex of S. Similarly, a set 5 of arcs (edges) of a 
digraph D (graph G) is said to be a u-v separating set of arcs (u-v separating set 

of edges) if every u-v path in D (in G) contains at least one element of S. 

Observe that if S is a set of vertices (edges) of a graph G and u,veV(G), then 
S is a u-v separating set of vertices (edges) in G if and only if S separates u 

and v. 

Theorem 5.16 (The Arc Form of Menger's Theorem) If u and v are distinct 
vertices of a digraph D, then the maximum number of arc-disjoint u-v paths in D 

equals the minimum number of arcs in a u-v separating set of arcs in D. 

Proof If m denotes the maximum number of arc-disjoint u-v paths in D, and n equals 
the minimum number of arcs in a u-v separating set of arcs in D, then clearly 

m^n. Thus we need only show that m^n. 
Let N be the network with underlying digraph D, source u, and sink v, 

whose capacity function c satisfies c(a) = 1 for every aeE(D). By Theorem 
5.15, the value of a maximum flow /in N equals the capacity of a minimum cut 

K. The proof will be complete if we show that nsScap K and val f^m. 
Since K is a cut in N, the set K is a u-v separating set of arcs in D. 

Therefore n | K \ = cap K. 
Since / is a nonnegative integer-valued function, f(a) = 0 or 1 for every 
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aeE{D). Let Dx be the digraph obtained from D by deleting all arcs a such 

that f(a) = 0. Thus/(a) = 1 for each a e £(D,). Since/is a flow in D, we know 
that f(x, V(D)) =f(V(D), x) for each x e V(D) - {u, v}, and that /(«, 
V(D)) —f(V(D), u) — val f = f{V(D), v) -/(v, V(D)). However, for each 

w e V(D), /(w, V{D)) = od0| w and f(V(D), w) = idD] w. Therefore, 

id/^jr = odDxx if x eV(D) — {u,v} 

and 

odDlu - idD]w = val /= id0,v - odD]V. 

By Theorem 2.26, the digraph D,, and hence D, contains val / arc-disjoint u-v 
paths. Therefore m^val /, and so 

m — val /= cap K = n. ■ 

To determine, for example, the maximum number m of arc-disjoint u-v 
paths in the digraph D of Figure 5.7(a), we apply Algorithm 5A to the network 
N with underlying digraph D, source «, sink v, and whose capacity function 
satisfies c{a) = 1 for every aeE(D). We obtain the maximum flow / and 
minimum cut K indicated in Figure 5.7(b), so that m = val /=cap K = 3. In 
fact, / and K indicate a maximum set of arc-disjoint u-v paths in D and a 
minimum u-v separating set of arcs, namely 

{P\ \ u, «!, u2, u3, v, P2: u, u2, v, P3: u, u5, v} 

and {(u, ux), (u, u2), (u5, v)}, respectively. 

An alternate proof of the edge form of Menger’s Theorem (see Theorem 
5.10) can be obtained by applying Theorem 5.16 to the symmetric digraph D 

U2 U2 »| 1, 1 u2 1, 1 u3 

K = ({//, w4, m5}, {m, u4, u5\) 

(a) (b) 

Figure 5.7 
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corresponding naturally to a given graph G, and then verifying that if «, 

v e F(G), there is a one-to-one correspondence between the u-v paths in G and 
the (directed) u-v paths in D. 

Theorem 5.17 (The Edge Form of Menger's Theorem) If u and v are distinct 
vertices of a graph G, then the maximum number of edge-disjoint u-v paths in G 
equals the minimum number of edges in a u-v separating set of edges in G. 

We now turn to vertex forms of Menger’s Theorem. Two u-v paths P and 
Q in a digraph are called internally disjoint if V(P) IT V(Q) = {u, v}. 

Theorem 5.18 (The Directed Vertex Form of Menger's Theroem) If u and v are 
distinct vertices of a digraph D such that u is not adjacent to v, then the 
maximum number of internally disjoint u-v paths in D equals the minimum 

number of vertices in a u-v separating set of vertices in D. 

Proof If m is the maximum number of internally disjoint u-v paths in D and n is the 
minimum number of vertices in a u-v separating set of vertices in D, then 

obviously Thus we must show that m^n. 
Let D be the digraph obtained from D in the following manner. Replace 

each te V(D) - {u, v} with a pair of vertices, t' and t", together with the arc 
(t', t"). If (x,y)eE(D) and {x, y} <1 {u, v} = 0, then replace (x,y) with 

(x", y'). Replace (u, x) with (u, x') if (u,x)eE(D) and replace (x, u) with 

(x",u) if {x, u) e E(D) with x + v. Similarly, replace (x, v) with (x", v) if 
(x,v)eE(D) and replace (v, x) with (v, x') if (v, x) e E(D) and xEu. By 
Theorem 5.16, if m is the maximum number of arc-disjoint u-v 
paths in D and n is the minimum number of arcs in a u-v separating set of arcs 

in D, then n = m. Thus it suffices to show that n =£ n and m=£m. 
Let A be a u-v separating set of arcs in D with \A \ = n. Observe that A 

contains no arcs incident to u or incident from v. For each aeA, let wa be 
defined as follows. Since aeA, either a = (n, x'), a = (x\ x"), a = (/', x'), or 
a = (x", v), where x, y e V(D) - {u, v). In any case, let wa=x, and let 
W= {wa\aeA\. Then WC(D)- {u, v), and | W\^ | A | = n. Furthermore, that 
W is a u-v separating set of vertices is easily verified. Therefore, n ^ | W| 

Let F,, P2, • ■ • , Pm be a collection of fh arc-disjoint u-v paths in D. 

Each Pj is of the form 

and gives rise to a path P, in D, where Pp u, X\, x2, . • • , x<, v. By the way in 
which D was constructed, if i + j, then P, and P) are (distinct) internally 

disjoint u-v paths in D. Thus, ra2=ra, and so 

m — m = n = n. 
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If D is the digraph of Figure 5.8(a), then in order to determine the 
maximum number m of internally disjoint u-v paths, we first construct the 

digraph D of Figure 5.8(b). 

(a) (b) 

Figure 5.8 

We then proceed as in the example following Theorem 5.16 (applying 
Algorithm 5A) to find that the maximum number of arc-disjoint u-v paths in D 

is 1, and so m = 1. We can, in fact, use Algorithm 5A to find a maximum set of 
arc-disjoint u-v paths in D\ namely, {Pp. u, u2, u2, v}, and a minimum u-v 
separating set of arcs {(u2, u2)}. This results in the u-v path u, u2, v and the u- 

v separating set {u2} in D. 
The undirected vertex form of Menger’s Theorem can be obtained by 

applying Theorem 5.18 to the symmetric digraph that corresponds to a given 

graph. 

Theorem 5.19 (The Undirected Vertex Form of Menger's Theorem) If u and v 
are distinct nonadjacent vertices of a graph G, then the maximum number of 
internally disjoint u-v paths in G equals the minimum number of vertices in a 
u-v separating set of vertices in G. 

It is interesting to note that the directed vertex form of Menger’s Theorem 
was the basic tool used by Robacker [R7] in a proof of the max-flow min-cut 
theorem. 

Exercises 5.5 

5.31 Use Theorem 5.16 to prove Theorem 5.17. 
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5.32 Use Theorem 5.18 to prove Theorem 5.19. 

5.33 Describe a method to determine the connectivity (edge-connectivity) of a 

nonempty graph using Algorithm 5A. 



Chapter Six 

Hamiltonian Graphs and Digraphs 

We now consider graphs and digraphs that contain spanning cycles, and possess 

even more stringent properties. 

6.1 Hamiltonian Graphs 

A graph G is defined to be hamiltonian if it has a cycle containing all the 

vertices of G. The name “hamiltonian” is derived from Sir William Rowan 
Hamilton, the well-known Irish mathematician. Surprisingly, though, 
Hamilton’s relationship with the graphs bearing his name is not strictly 
mathematical (see [BLW1, p. 31]). In 1857, Hamilton introduced a game 
consisting of a solid regular dodecahedron made of wood, twenty pegs (one 
inserted at each corner of the dodecahedron), and a supply of string. Each 

corner was marked with an important city of the time. The aim of the game 
was to find a route along the edges of the dodecahedron that passed through 
each city exactly once and that ended at the city where the route began. In 
order for the player to recall which cities in a route he had already visited, the 
string was used to connect the appropriate pegs in the appropriate order. The 
dodecahedron proved to be rather awkward to manage so that Hamilton also 
produced a “planar graph” version of the game (see Figure 6.1). There is no 
indication that either version of the game proved successful. 

The object of Hamilton’s game may be described in graphical terms, 

namely, to determine whether the graph of the dodecahedron has a cycle 
containing each of its vertices. It is from this that we get the term 

“hamiltonian”. 
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It is interesting to note that in 1855, two years before Hamilton introduced 
his game, the English mathematician Thomas P. Kirkman posed the following 
question in a paper submitted to the Royal Society. Given the graph of a 
polyhedron, can one always find a circuit that passes through each vertex once 

and only once? Thus, Kirkman apparently introduced the general study of 
“hamiltonian graphs” although Hamilton’s game generated interest in the 

problem. 

Figure 6.1 The graph of the dodecahedron 

A cycle of a graph G containing every vertex of G is called a hamiltonian 

cycle of G; thus, a hamiltonian graph is one that possesses a hamiltonian cycle. 
Because of the similarity in the definitions of eulerian graphs and hamiltonian 
graphs, and because a particularly useful characterization of eulerian graphs 

exists, one might well expect an analogous criterion for hamiltonian graphs. 
However, such is not the case; indeed it must be considered one of the major 
unsolved problems of graph theory to develop an applicable characterization of 

hamiltonian graphs. 
There have been several sufficient conditions established for a graph to be 

hamiltonian. We consider some of these in this section. The following result is 

due to Ore [Ol]. 

Theorem 6.1 If G is a graph of order p^3 such that for all distinct nonadjacent 

vertices u and v, 

degu + deg v5sp. 

then G is hamiltonian. 

Proof Assume the theorem is false. Hence there exists a maximal nonhamiltonian 
graph G of order p ^ 3 that satisfies the hypothesis of the theorem; that is, G is 
nonhamiltonian and for every two nonadjacent vertices w, and vv2 of G, the 

graph G + W\W2 is hamiltonian. Since p^ 3, G is not complete. 
Let u and v be two nonadjacent vertices of G. Thus, G + uv is 

hamiltonian, and, furthermore, every hamiltonian cycle of G + uv contains the 
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edge uv. Thus there is a u-v path P: u — U\, u2, ... , up — v in G containing 

every vertex of G. 
If u\Ui e E(G), 2^i^p, then u,g (G); for otherwise, 

Ml, Uh U,+1, . . • , Up, U,_!, Uj—2, • • • , U, 

is a hamiltonian cycle of G. Hence for each vertex of {u2, u3, up} 
adjacent to U! there is a vertex of {u,, u2, ... , up-i} not adjacent with up. 

Thus, deg up^(p — 1) — deg ux so that 

degu + deg v^p — 1. 

This presents a contradiction, so G is hamiltonian. H 

If a graph G is hamiltonian, then certainly so is the graph G + uv, where 
u and v are distinct nonadjacent vertices of G. Conversely, suppose that G is a 

graph of order p with nonadjacent vertices u and v such that G + uv is 

hamiltonian; furthermore, suppose that degr;u + degC,V^P- If G >s not 
hamiltonian, then, as in the proof of Theorem 6.1, we arrive at the contradic¬ 

tion that degGu + degcv^p - 1. Hence we have the following result, which 

was first observed by Bondy and Chvatal [BC1]. 

Theorem 6.2 Let u and v be distinct nonadjacent vertices of a graph G of order p 
such that degu + degv=2p. Then G + uv is hamiltonian if and only if G is 

hamiltonian. 

Theorem 6.2 motivates our next definition. The closure of a graph G of 

order /?, denoted by C(G), is the graph obtained from G by recursively joining 
pairs of nonadjacent vertices whose degree sum is at least p (in the resulting 
graph at each stage) until no such pair remains. Figure 6.2 illustrates the 

closure function. That C(G) is well-defined is established next. 

Figure 6.2 The closure function 
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Theorem 6.3 If Gy and G2 are two graphs obtained from a graph G of order p by 
recursively joining pairs of nonadjacent vertices whose degree sum is at least p, 

then Gy = G2. 

Proof Let ey, e2, ... , e, and fy,f2, be the sequences of edges added to G to 
obtain Gy and G2, respectively. It suffices to show that each e, is an edge of 

G2(ls£/=S/) and that each f is an edge of Gyjl^i^k). Assume, to the 
contrary, that this is not the case. Thus we may assume, without loss of 
generality, that for some m satisfying Os£m=S/ — 1, the edge em+l = uv does 
not belong to G2; furthermore, e, e E{G2) for isSra. Let G3 be the graph 

obtained from G by adding the edges ex, e2, . . . , em. It follows from the 
definition of Gy that degc3u + degc3v^p. Since G3CG2, we have that 
degc-,u + degG^v^p. This is a contradiction, however, since u and v are non¬ 
adjacent vertices of G2. Thus each e, is an edge of G2 and each/, is an edge of 

Gy, that is, Gy — G2. ■ 

Our next theorem is a simple consequence of the definition of closure and 

Theorem 6.2. 

Theorem 6.4 A graph is hamiltonian if and only if its closure is hamiltonian. 

Since each complete graph with at least three vertices is hamiltonian, we 

obtain a sufficient condition for a graph to be hamiltonian. 

Theorem 6.5 (Bondy and Chvatal) Let G be a graph with at least three vertices. If 

C(G) is complete, then G is hamiltonian. 

According to Theorem 6.4, if the closure C(G) of a graph G is hamiltonian, 

so too is G. We next present a good algorithm, also due to Bondy and Chvatal, 
that describes how to determine a hamiltonian cycle of G given a hamiltonian 

cycle of C(G). [If, for example, C(G) is complete, then it is trivial to find a 
hamiltonian cycle of C(G).] The key step of this algorithm is the following 

modification process. 
Suppose C is a hamiltonian cycle of some graph H of order p ^ 4 and that 

e is an edge of C. Label the vertices of H so that C: Vy, v2, . . . , vp, vq and 

e = V\Vp■ ^ there is an integer i(3^i^p — 1) such that VjV, and Vj-yVp are 
edges of H, then C': v1; v2, . .. , v,_!, vp, vp-y, ... , vf, Vy is a hamiltonian 

cycle of H and E(C') = E(C) — {vi vp, U v,-, v,_iVp}. We say that 
V!v,- and v,-^ are modifying edges with respect to (C, e) and that C' is 

obtained by modifying C via (vqvq,, v, v,-, v,_i vp). 
In the following algorithm, we assume that in constructing C(G) each 

edge e of G is labeled £(e) = 1 and that if / is the kth edge added to G, then / is 
labeled €(f) = k+ 1. (This labeling, of course, need not be unique.) 
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Algorithm 6A (Bondy and Chvatal) Given the (edge-labeled) closure C(G) of a 

graph G and a hamiltonian cycle C of C(G): 

1. Set m = max {€(*)}. If m = 1, then stop; otherwise, let e be the unique edge 
e e E(C) 

of C labeled m and go to Step 2. 
2. Select edges ex and e2 of C(G) satisfying: 

(a) €(e,), £(e2)<m; 
(b) ex and e2 are modifying edges with respect to (C, e). 

3. Modify C via (e, ex, e2). 

4. Go to Step 1. 

Theorem 6A Algorithm 6A terminates with a hamiltonian cycle C of G. 

Proof We first show that Step 2 can always be completed. Let p = p(G) and label the 
vertices of C(G) so that C: vu v2, ...,vp, v, and e = vxvp. Let G' denote the 

spanning subgraph of C(G) with edge set E(G) U {f e £(C(G))| €(/) <m). 
Then C-e is a subgraph of G' and, by the way in which C(G) was constructed, 

deg^v, + degG'Vp^p. 

If follows (from an argument similar to the proof of Theorem 6.1) that there is 
an integer z(3 p — 1) such that V| v, and v,_ | vp are edges of G , i.e., ex and 

e2 are modifying edges with respect to (C, e) with t(ex), €(e2)<m. 

In order to complete the proof, we observe that since the value of m 

decreases by at least 1 each time Step 1 is repeated, the algorithm does indeed 

terminate with m= 1; i.e., with C a hamiltonian cycle of G. ■ 

If a graph G satisfies the conditions of Theorem 6.1, then C(G) is 
complete and so, by Theorem 6.5, G is hamiltonian. Thus, Ore s Theorem is 
an immediate corollary of Theorem 6.5 (although, chronologically, it preceded 

the theorem of Bondy and Chvatal by several years). Prior to the Bondy- 
Chvatal result, a number of sufficient conditions for a graph to be hamiltonian 
appeared in the literature. All of these can be deduced from (and, of course, 
are corollaries of) Theorem 6.5. We present one of the best known of these, 

due to Posa [P5]. The proof we present, however, is independent of Theorem 
6.5 in an attempt to give the reader a better idea of the kind of proof technique 

that is more typical in this area of graph theory. 

Theorem 6.6 (Posa) If G is a graph of order p^ 3 such that for every integer j with 

1 j< p/2, the number of vertices of degree not exceeding j is less than j, then 

G is hamiltonian. 
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Proof Assume the theorem is false. Then there exists a nonhamiltonian graph G of 
minimum size satisfying the hypothesis of the theorem. Since 3, G is not 
complete. 

Among all pairs of nonadjacent vertices of G, let Vi and vp be two 

nonadjacent vertices such that deg Vj + deg Vp is a maximum. Suppose 
deg ^ deg vp. Because of the way G is defined, the graph G+V\Vp is 
hamiltonian; indeed, every hamiltonian cycle of G + vxvp contains the edge 

V]Vp. This implies that vx and vp are the end-vertices of a path P: vl5 v2, . .. , 
vp in G containing every vertex of G. Now if a vertex v;, 2^/^p, is adjacent 
to vl5 then V;_] is not adjacent to vp\ for otherwise, 

V,, V/, v,+ 1, . . . , Vp, V(_! , Vi-2, • • • , D 

would be a hamiltonian cycle of G. Therefore for every vertex v,, 2^/^p, 
adjacent to vl5 there is a vertex v;_j not adjacent to vp, so that there are at 
least deg V] vertices in G that are not adjacent to vp. Hence there are at most 
p — 1 — degvj vertices adjacent to vp\ consequently, 

deg v, deg vp - 1 - deg v, 

so that deg Vi^(p — l)/2. From the manner in which Vi and vp were chosen, it 
follows that degv,-! ^degV) for all vertices v,_i not adjacent to vp. Thus there 

are at least degV] vertices having degree not exceeding degvj. However, 
1 ^degV] <pt2, so by hypothesis, there are fewer than degV] vertices having 
degree not exceeding degvj—a contradiction. ■ 

Perhaps the simplest sufficient condition is due to Dirac [D4], This result 
is a corollary of each of Theorems 6.1, 6.5, and 6.6. 

Corollary 6.6 (Dirac) If G is a graph of order p 2= 3 such that deg v3= pi2 for every 
vertex v of G, then G is hamiltonian. 

According to Dirac’s result, if a graph G of order p^3 satisfies 6(G) ^ 
pi2, then G is hamiltonian, i.e., G contains a cycle of length p = 2(pl2). Dirac 
[D4] has also shown that if G is a 2-connected graph of order p^2d and 
6(G)^d> 1, then G contains a cycle of length at least 2d. This result can be 
used to obtain the result of Nash-Williams [N2] that every /--regular graph 

(r2=2) of order 2r+l is hamiltonian. We note that such a graph G satisfies 
none of the sufficient conditions presented thus far since all of these conditions 
require the existence of vertices of degree at least pi2. In the same vein, 
Jackson [ J1] has shown that every 2-connected r-regular graph of order at most 

3r is hamiltonian. 
The sufficient conditions for a graph to be hamiltonian that we have 

presented involve the degrees of the vertices of the graph. In order to present a 
result of a different nature, we define the independence number of a graph. An 
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independent set of vertices of a graph G is a set of vertices of G whose elements 
are pairwise nonadjacent. The independence number /3(G) of G is the 
maximum cardinality among all independent sets of vertices of G. Our next 
result, due to Chvatal and Erdos [CE1], involves the independence number 
/3(G) and the connectivity k(G) of a graph G. 

Theorem 6.7 Let G be a graph with at least three vertices. If k{G) /3(G), then G is 

hamiltonian. 

Proof If /3(G) = 1, the result follows since G is complete. Hence we assume that 
/3(G) 2= 2. Let k(G) = n. Since n^2, G contains at least one cycle. Among all 
cycles of G, let C be one of maximum length. By Theorem 5.8, there are at 
least n vertices on C. We wish to show that C is a hamiltonian cycle of G. 
Assume, to the contrary, that there is a vertex w of G that does not lie on C. 
Since \ V(C)\^n, we may apply Theorem 5.7 to conclude that there are n 
paths Pi, P2, ■ ■ ■ , Pn having initial vertex w that are pairwise disjoint, apart 
from w, and that share with C only their terminal vertices Vi, v2, ..., v„, 
respectively. For each i= 1,2, ..., n, let u* be the vertex following v, in some 
fixed cyclic ordering of C. No vertex u, is adjacent to w in G; for otherwise we 
could replace the edge v,u, in C by the v,-«, path determined by the path P, and 
the edge w,w to obtain a cycle having length at least |V(C)| + 1, which is 
impossible. Let 5={w, ux, u2, ..., «„}. Since |S| = n + 1>/3(G) and 
wui € E(G) for i = 1, 2, ..., n, there are integers j and k such that UjUk e £(G). 
Thus by deleting the edges VjUj and S>kuk from C and adding the edge UjUk 
together with the paths Pj and Pk, we obtain a cycle of G that is longer than C. 
This produces a contradiction, so that C is a hamiltonian cycle of G. ■ 

A well-known problem of practical importance is the determination of a 
minimum hamiltonian cycle in a weighted complete graph G of order 
p{^ 3). This is referred to as the Traveling Salesman Problem. For example, if 
V(G) = {Vi, v2.vp) represents p cities and the weight w(v(vy) of the edge 
v,v, indicates the cost of a nonstop flight between v, and vy, then the Traveling 
Salesman Problem asks for the minimum cost of a round trip passing through 
all the cities v,(lsSis£p). Such a round trip can be determined by inspecting all 
(p — 1)1 hamiltonian cycles. Any algorithm that does this, however, is clearly 
not efficient; indeed, there is no known good algorithm to solve the Traveling 
Salesman Problem. Instead, we describe a good algorithm that produces a 
hamiltonian cycle in G which, though not necessarily a minimum one, is very 
close to the actual minimum. In order to apply this algorithm, the weighted 
graph G must satisfy the triangle inequality w(VjVk) sS rv(v,-Vy) + w(v;v*), which 
is not normally an unusual assumption. 

For the purpose of describing the next algorithm, we refer to a single 
vertex as a 1-cycle and a closed walk of length 2 as a 2-cycle. 
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Algorithm 6B Given a complete graph G of order p(^3): 

1. Select any vertex of G to form a 1 -cycle C \ in G. 

2. If the n-cycle Cn of G is given and 1 ^n<p, then find a vertex vn not on Cn 

that is closest to a vertex un on Cn, and go to Step 3. If n— p, then C is the 
desired hamiltonian cycle, and stop. 

3. Let Cn+i be the (n + 1 )-cycle obtained by inserting vn immediately before u„ 
in Cn, and return to Step 2. 

As an example, let G be a weighted complete graph with V{G) = {vt, v2, 
.. . , v6} where the weights of its edges are given by the matrix M= [m/y] of 
Figure 6.3, with m,y= w(v,v7). 

" 0 3 3 2 7 3 " 
3 0 3 4 5 5 

„ 3 3 0 1 4 4 
M = 

2 4 1 0 5 5 
7 5 4 5 0 4 

. 3 5 4 5 4 0 . 

Figure 6.3 

We apply Algorithm 6B by defining Since v4 is the vertex not on Cj 

closest to v3, we have C2: v3, v4, v3. Now v, is the vertex not on C2 closest to a 
vertex of C2 (namely v4) so that C3: v3, vx, v4, v3. This procedure produces the 
following “cycles” of G: 

C\ :v3 
C2:v3, v4, v3 

C3:v3, vx, v4, v3 
C4:v3, v2, vx, v4, v3 
C5:v3, v2, v6, v], v4, v3 

Q:v3, v2, v6, Vj, v4, v5, v3. 

The weight of the hamiltonian cycle C6 is 22. This compares with 18, which is 
the weight of a minimum hamiltonian cycle in G. Indeed, it can be shown that, 
in general, any hamiltonian cycle produced by Algorithm 6B is always less than 

twice the weight of a minimum hamiltonian cycle. (More information on this 

and other algorithms can be found in Tucker [T9].) 
As we have already indicated, obtaining an applicable characterization of 

hamiltonian graphs remains an unsolved problem in graph theory. In view of 
the lack of success in developing such a characterization, it is not surprising 
that special subclasses of hamiltonian graphs have been singled out for in¬ 
vestigation as well as certain classes of nonhamiltonian graphs. We now discuss 

several types of “highly hamiltonian” graphs and then briefly consider graphs 

that are “nearly hamiltonian.” 
A path in a graph G containing every vertex of G is called a hamiltonian 
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path. A graph G is hamiltonian-connected if for every pair u, v of distinct 

vertices of G, there exists a hamiltonian u-v path. It is immediate that a 
hamiltonian-connected graph with at least three vertices is hamiltonian. We 

define the (p+ 1 )-closure Cp+1(G) of a graph G of order p to be the graph 
obtained from G by recursively joining pairs of nonadjacent vertices whose 

degree sum is at least p + l until no such pair remains. We then have the 
following analogue to Theorem 6.5, also due to Bondy and Chvatal [BC1]. 

Theorem 6.8 Let G be a graph of order p. If Cp+X(G) is complete, then G is 

hamiltonian-connected. 

Proof If p= 1, the result is obvious; so we assume that p^2. Let G be a graph of 
order p whose (p + l)-closure is complete, and let u and v be any two vertices 
of G. We show that G contains a hamiltonian u-v path, which will then give us 

the desired result. 
Define the graph H to consist of G together with a new vertex w and the 

edges uw and vw. Note that H has order p' = p + 1. We determine C(H). Since 

degHx + degHy^p' 

for all nonadjacent vertices x and y of G, it follows that (V(G))C(H) — KP- 
Hence if xeV(G) and xw$E(H), then degC(W)X + dcgC(H^w so 
C(H) = Kp'. By Theorem 6.5, H is hamiltonian. Any hamiltonian cycle C of H 
necessarily contains the edges uw and vw, implying that G has a hamiltonian u- 

v path. ■ 

Two immediate corollaries now follow, the first of which is due to Ore 

[03]. 

Corollary 6.8a If G is a graph of order p such that for all distinct nonadjacent 

vertices u and v, 

deg u + deg v^p + 1, 

then G is hamiltonian-connected. 

Corollary 6.8b If G is a graph of order p such that deg v ^ (p + l)/2 for every vertex 

v of G, then G is hamiltonian-connected. 

A number of other sufficient conditions for a graph to be hamiltonian- 

connected can be deduced from Theorem 6.8. One of these is the analogue to 

Theorem 6.6 (see [CKK1]). 
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Corollary 6.8c If G is a graph of order p 2= 3 such that for every integer j with 
2 sSy ^ p/2, the number of vertices of degree not exceeding j is less than j — 1, 

then G is hamiltonian-connected. 

A connected graph G of order p is said to be panconnected if for each 
pair u, v of distinct vertices of G, there exists a u-v path of length £ for each £ 
satisfying d(u, v) £ =Sp — 1. If a graph is panconnected, then it is hamiltonian- 
connected; the next example indicates that these concepts are not equivalent. 

For k 2*3, let Gk be that graph such that V(Gk) = {vl5 v2, ... , v2k} and 
E(G) = {v,-vf+1|i = 1, 2, ..., 2k) U {v,-v,-+3| i = 2, 4, ..., 2k - 4} U {vx v3, 

V2k-2v2k}, where all subscripts are to be taken modulo 2k. Although for each 
pair u, v of distinct vertices and for each £ satisfying k^£^2k — 1, the graph 
Gk contains a u-v path of length £, there is no vx-v2k path of length £ if 
1 <£<k. Since d(vx, v2k)= 1, it follows that Gk is not panconnected. 

A sufficient condition [W7] for a graph G to be panconnected can be 
given in terms of the minimum degree of G. 

Theorem 6.9 If G is a graph of order p^4 such that deg v 2s (p + 2)12 for every 
vertex v of G, then G is panconnected. 

Proof If p = 4, then G = K4 and the statement is true. 

Suppose that the theorem is false. Thus there exists a graph G of order 

p2 5 with 6(G) ^ (p + 2)12 that is not panconnected; that is, there are vertices 
u and v of G that are joined by no path of length £ for some £ satisfying 
dfu, v) ^ ^p — 1. Let G* = G — {u, v}. Then G* has order p* = p — 2 ^ 3 

and 6(G*) ^ (p 4- 2)12 — 2 =p*/2. Therefore by Corollary 6.6, the graph G* 

contains a hamiltonian cycle C: vt, v2, ... , vp*, vx. 
If uvj e E(G), 1 / s£p*, then vv,+f_2 <£ E(G), where the subscripts are to 

be taken modulo p*; for otherwise, 

u, Vi, vi+1, ..., vI+€_2, v 

is a u-v path of length £ in G. Thus for each vertex of C that is adjacent with u 
in G, there is a vertex of C that is not adjacent with v in G. Since degc«^ 
(p + 2)12, we conclude that u is adjacent with at least p/2 vertices of C, so that 

degGv^l +P* —2=f — L 

This, however, produces a contradiction. ■ 

A graph G of order p is called pancyclic if G contains a cycle of length £ 

for each £ satisfying 3 f? sSp. We say that G is vertex-pancyclic if for each 
vertex v of G and for every integer £ satisfying 3 ^ £ s£p, there is a cycle of G 
of length £ that contains v. Certainly every pancyclic graph is hamiltonian, as is 
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every vertex-pancyclic graph, although the converse is not true. The next 
theorem, due to Bondy [B14], gives a sufficient condition for a hamiltonian 

graph to be pancyclic. In order to present a proof due to C. Thomassen, a 

preliminary definition will be useful. 
Let G be a hamiltonian graph and C: vx, v2, .. . , vp, V\ a hamiltonian 

cycle of G. With respect to this cycle, every edge of G either lies on C or joins 
two nonconsecutive vertices of C and is referred to as a diagonal. Any cycle of 
G containing precisely one diagonal is an outer cycle of G (with respect to the 

fixed hamiltonian cycle C). 

Theorem 6.10 If G is a hamiltonian (p, q) graph, where q^p2/4, then either G is 

pancyclic or p is even and G = K(p/2, p/2). 

Proof We first show that if G is a hamiltonian (p, q) graph, where p ^ 4 and q 5= p2/4, 
and G contains no (p - l)-cycle, then p is even and G = K{pl2, p/2). 

Let C: V,, v2, ... , vp, vx be a hamiltonian cycle of G and let v, and Vy+1 

be any two consecutive vertices of C (where all subscripts are taken modulo p). 

If 1 k s£p but k+j- 1 and k E j, then at most one of VjVk and vy+1 vk+2 is an 

edge of G; otherwise, 

Vy+1, Vy4-25 ■ ■ • ) Vk, L’ L—1, • • • » Vk+2.' Vj +1 

is a (p - l)-cycle of G. Thus for each of the deg Vy- 1 vertices in V(G) - {vy_i, 
vj} that is adjacent to vy, there is a vertex in V(G)- {v;+1, vj+2) that is not 
adjacent to v;+1. Thus deg v;+1 ^ (p — 2) — (degv; - 1) + 1, so that 

degv, + deg v;+1 s=p. (6.1) 

Suppose p is odd. Then by (6.1) there is some vertex, say vp, such that 

deg vp (p — l)/2. But then 

p-1 

2q=Yi de8 vi + de§ 
/= 1 

_ p(p - !) (p-1) p2 
" 2 2 2 ’ 

which contradicts the fact that q^p2!4. Thus p is even and 2q=T,f=\ degv, 
^p2/2, so that q sSp2/4. Since q 3= p2/4, we have that g = p2/4. This implies that 

equality is attained in (6.1) for each j. Therefore, 

VjVkeE(G) if and only if Vj+ivk+2€ E(G) k±j—\,j. (6.2) 

Suppose that G^K(pl2, p/2). Since g = p2/4, by Exercise 2.5, G has an 
odd cycle. This implies that G contains an outer cycle of odd length. Let vy, 

v.-+i, ... , Vj+m, vy be a shortest outer cycle of G of odd length m + 1 where, 
then, m is even and 4^m^p-4 since G contains no (p—l)-cycle. Since 
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VjVj+m e E(G), by (6.2), vy_1vy+m_2 <£ £(G). Then, again by (6.2), vy_2v;+m_4 e 
£(G). Therefore vy_2, vy_i, ... , vy+,„_4, vy_2 is an outer cycle of (odd) length 
m — 1, a contradiction. Thus G = K(p/2, p/2). 

We now show by induction on p that if G is a hamiltonian (p, <7) graph, 
where q 2sp2/4, then either G is pancyclic or p is even and G = K(p/2, p/2). If 

p = 3, then G = C3 and G is pancyclic. Assume for all hamiltonian graphs H of 
order p— 1 (2s 3) with at least (p — l)2/4 edges that either H is pancyclic or 

p — 1 is even and H= K((p — l)/2, (p — l)/2). Let G be a hamiltonian (p, q) 
graph with q 2sp2/4. Assume that either (a) p is even and G ^ K(p/2, p/2) or 
(b) p is odd. We show that G is pancyclic. Under these assumptions, it 

follows from the first part of the proof that G contains a (p — l)-cycle C*: w1? 
w2, ..., wy,_1, W], Let w be the single vertex of G not on C*. 

If degw^p/2, then for each integer m satisfying 3=Sm=Sp, the vertex w 
lies on an m-cycle of G; otherwise, whenever wwt e E(G), ls£/s£p — 1, then 

whv££(G), where € = i + m — 2 (mod p — 1). This, however, implies that 
deg ws£(p — l)/2, a contradiction. Thus G is pancyclic if deg w 2sp/2. 

If deg w<p/2, then G — w is a hamiltonian graph of order p— 1 with at 
least p2/4 — (p — l)/2 edges. Since p2/4 — (p — l)/2 > (p — l)2/4, it follows that 

G - w^K{(p - l)/2, (p — l)/2). Applying the inductive hypothesis, we con¬ 
clude that G — w is pancyclic. Thus G is pancyclic and the proof is complete. ■ 

If the sum of the degrees of each pair of nonadjacent vertices of a graph 
G is at least p, where p = | U(G)| 2= 3, then by Theorem 6.1, G is hamiltonian. 
Our next result shows that the condition of Theorem 6.1 actually implies much 

more about the cycle structure of G. 

Corollary 6.10 Let G be a graph of order p ^ 3 such that for all distinct nonadjacent 

vertices u and v, 

deg u + deg v^p. 

Then either G is pancyclic or p is even and G = K(pl2, p/2). 

Proof We need only show that |£(G)| ^p2/4, since G is hamiltonian by Theorem 6.1. 

Let k be the minimum degree among the vertices of G. If k^p/2, then clearly 
|£(G)|^p2/4. Thus we may assume that k<p/2. 

Let n denote the number of vertices of G of degree k. These n vertices 
induce a subgraph H that is complete; for if any two vertices of H were not 
adjacent, then there would exist two nonadjacent vertices the sum of whose 
degrees would be less than p. This implies that n k + 1. However, n £ k + 1; 
for otherwise, each vertex of H is adjacent only to vertices of H, which is 

impossible since G is connected. 
Let u be a vertex of degree k. Since n^ k, one of the k vertices adjacent 
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to u has degree at least k + 1, while each of the other k - 1 vertices adjacent to 
u has degree at least k. If w ± u is one of the p - k - 1 vertices of G that is not 

adjacent to u, then deg w + deg u so that deg w^p-k. Hence, 

\E(G)\=^ Yj deg v5s|[(p - k - \){p - k) + k2 + k + 1] 
veV(G) 

= ±[2k2 + (2-2p)k + (p2-p+l)}^11^-, 

the last inequality holding since for k^(p — l)/2, the expression -2[lk2 + 

(2 - 2p)k + (p2-p + 1)] takes on its minimum value when k = (p - l)/2. ■ 

The results presented in the preceding theorem and corollary have been 

extended in [HFS1]. It is interesting to note that many other conditions that 
imply that a graph is hamiltonian have been shown to imply that either the 

graph is pancyclic or else belongs to a simple family of exceptional graphs. 
We close this section with a brief discussion of nonhamiltonian graphs 

that are, in certain senses, “nearly hamiltonian”. Of course, if G is hamiltonian, 
then G has a hamiltonian path. Sufficient conditions for a graph to possess a 
hamiltonian path can be obtained from the sufficient conditions for a graph to 

be hamiltonian. For example, suppose that G is a graph of order p^2 such 

that for all distinct nonadjacent vertices u and v, we have degu + deg v^p - 1. 
Then the graph G + ATj satisfies the hypothesis of Theorem 6.1 and so is 
hamiltonian. This, of course, implies that G contains a hamiltonian path. 

If a graph G of order p has a hamiltonian path, then the length of a 

longest path in G is p - 1. The next result involves longest paths in graphs that 

are not hamiltonian. 

Theorem 6.11 Let G be a connected graph of order 3 or more that is not hamiltonian. If 

for all distinct nonadjacent vertices u and v, 

deg u + deg v 3= m, 

where m is a positive integer, then G contains a path of length m. 

Proof Let P: u0, ux, . . . , uk be a longest path in G. Since P is a longest path, each of u0 

and uk is adjacent only to vertices of P. 
If u0Ui e £(G), l^i'ssA:, then u^xuk $ E(G); for otherwise the cycle 

C. Wfl, U i , . . . , U,'_ j , lik , lik — i , * • * , tlj, W() 

of length k + 1 is present in G. The cycle C cannot contain all vertices of G since G 
is not hamiltonian. Therefore there exists a vertex w not on C adjacent with a 
vertex of C; however, this implies that G contains a path of length k+ 1, which is 



Section 6.1 Hamiltonian Graphs 195 

impossible. Hence uQ and uk are nonadjacent vertices of G. Furthermore, for each 
vertex of {ux, u2, . .. , uk} adjacent to u0 there is a vertex of {u0, ux, .. . , uk_x} 
not adjacent with uk. Thus deg uk ^ k — deg u0 so that 

k ^ degn0 + deg uk 2? m. ■ 

A graph G is hypohamiltonian if it is not hamiltonian but G — v is 
hamiltonian for every vertex v of G. Herz, Gaudin, and Rossi [HGR1] showed 
that hypohamiltonian graphs exist; in fact, they showed that the Petersen graph 

(see Figure 2.7) is the hypohamiltonian graph of smallest order. It was further 
shown by Herz, Duby, and Vigue [HDVI] that there is no hypohamiltonian graph 
of order 11 or 12 and that there is a nonregular hypohamiltonian graph of order 13. 
That there are infinitely many hypohamiltonian graphs is verified by the class of 
graphs independently discovered by Lindgren [L2] and Sousselier (see [HDV1]). 

Results by Chvatal [C4] and Thomassen [T2] have shown hypohamiltonian graphs 
of every order exist with only a small number of exceptions. 

Exercises 6.1 

6.1 Show that if a graph G is hamiltonian, then for every proper subset S of F(G), 

k(G — S) =£ |S|. 

6.2 (a) Prove that K(n, 2n, 3n) is hamiltonian for every positive integer n. 

(b) Prove that K(n, 2n, 3n + 1) is hamiltonian for no positive integer n. 

6.3 (a) Prove that if G and H are hamiltonian graphs, then G x H is hamiltonian. 

(b) Prove that the /7-cube Qn, /z3=2, is hamiltonian. 

6.4 Let G be a graph with 6(G) 3=2. Prove that G contains a cycle of length at least 
1 + 6(G). 

6.5 Let G be a (p, q) graph, where /? 2* 3 and q > (p2 - 3p + 6)/2. Prove that G is 
hamiltonian. 

6.6 Let G be a bipartite graph with partite sets U and W such that | U\ = | W| = n > 2. 
Prove that if degv>/i/2 for every vertex v of G, then G is hamiltonian. 

6.7 Let G be a graph of order p^3 that contains n vertices of degree p — 1. Prove 
that if 77^fi(G), then G is hamiltonian. 

6.8 In the weighted graph defined by the matrix of Figure 6.3, apply Algorithm 6.3 
by defining Cp. v, for each /'=£3. 
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6.9 The nth power Gn of a connected graph G, where n 3= 1, is that graph with 

V(Gn) = V(G) for which uv e £(G") if and only if \^dG(u, v)s=n. The graphs 

G2 and G3 are also referred to as the square and cube, respectively, of G. 
Although it is not true that the square of each connected graph of order 3 

or more is hamiltonian, it was conjectured independently by C. Nash-Williams 

and M. D. Plummer that for 2-connected graphs, this is the case. In 1974, 

Fleishner [F3] proved the conjecture to be correct. 

(a) Give an example of a connected graph G of order 3 or more such that G~ is 

not hamiltonian. 

(b) Let T be a tree of order 3 or more. Prove that T3 is hamiltonian. 

(c) Let G be a graph of order 3 or more. Prove that G3 is hamiltonian. 

6.10 Give a direct proof of Corollary 6.6 (without using Theorem 6.1 or 6.6). 

6.11 Show that if G is a (p, q) graph, where 4 and q^(P2l) + 3, then G is 

hamiltonian-connected. 

6.12 Let G be a hamiltonian-connected graph of order 4 or more. Prove that G is 3- 

connected. 

6.13 Give an example of a graph G of order 8 that is pancyclic but not panconnected. 

6.14 Prove or disprove: If G is any graph of order p 5* 4 such that for all distinct 

nonadjacent vertices u and v, 

deg u + deg v^p + 2, 

then G is panconnected. 

6.2 Hamiltonian Planar Graphs 

We have encountered many sufficient conditions for a graph to be hamiltonian. 

None of these, however, is also a necessary condition. For example, the cycle 
C„, the simplest hamiltonian graph of all, does not satisfy any of these condi¬ 
tions when n is large. In this section we are able to reverse our point of view in 

the case of planar graphs and consider a necessary condition for a graph to be 

hamiltonian. 
Let G be a hamiltonian plane graph of order p and let C be a fixed 

hamiltonian cycle in G. With respect to this cycle, a diagonal is, as before, an 

edge of G that does not lie on C. Let r,{i = 3,4, ..., p) denote the number of 
regions of G in the interior of C whose boundary contains exactly /' edges; 
similarly, let rj denote the number of regions of G in the exterior of C whose 
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boundary contains i edges. To illustrate these definitions, let G be the plane 
graph of Figure 6.4 with hamiltonian cycle C: vl9 v6, v7, v8, v9, v10, v5, v4, v3, 
v2, V!. Then r, = 0 if i ± 4 and r4 = 4. Also, r\ = 0 if / ± 4, 5 while r\ = 1 and 

r's = 2. 

Using the notation of the previous paragraph, we have the following 

necessary condition, due to Grinberg [G4], for a plane graph to be hamiltonian. 

Theorem 6.12 (Grinberg) Let G be a plane graph of order p with hamiltonian 
cycle C. Then with respect to this cycle C, 

Y O' - 2) Of ~r'i) = °- 
i = 3 

Proof We first consider the interior of C. If d denotes the number of diagonals of G 
in the interior of C, then exactly d + 1 regions of G lie inside C. Therefore, 

p 

Yt rt = d+ 1, 
i = 3 

implying that 

Let the number of edges bounding a region interior to C be summed over 
all d + 1 such regions, denoting the result by N. Hence N= Sf=3 irt. However, 
N counts each interior diagonal twice and each edge of C once, so that 

N = 2d + p. Thus, 

p 

Y in = 2d + p. 
i = 3 

Substituting (6.3) into (6.4) we obtain 

(6.4) 
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P P 

E in = 2^rr2+/?, 

so that 
p 

E 0'-2)r, = p-2. (6.5) 
i=3 

By considering the exterior of C, we conclude in a similar fashion that 

p 

£(i-2)r;=p-2. (6.6) 

It follows from (6.5) and (6.6) that 

p 

E(*-2)(r,-r;) = 0. ■ 

The following observations often prove quite useful in applying Theorem 

6.12. Let G be a plane graph with hamiltonian cycle C. Furthermore, suppose 

the edge e of G is on the boundary of two regions ft, and R2 of G. If e is an 
edge of C, then one of /?, and R2 is in the interior of C and the other is in the 
exterior of C. If, on the other hand, e is not an edge of C, then /?, and R2 are 

either both in the interior of C or both in the exterior of C. 
In 1880, the English mathematician P.G. Tait conjectured that every 3- 

connected cubic planar graph is hamiltonian. This conjecture was disproved in 
1946 by Tutte [T12], who produced the graph G in Figure 6.5 as a counter¬ 
example. In addition to disproving Tait’s conjecture, Tutte [T14] proved that 
every 4-connected planar graph is hamiltonian. This result was later extended 

by Thomassen [T6]. 

Theorem 6.13 Every 4-connected planar graph is hamiltonian-connected. 

As an illustration of Grinberg’s theorem, we now verify that Tutte’s 

graph is not hamiltonian. 
Assume that the graph G of Figure 6.5, which has order 46, contains a 

hamiltonian cycle C. Observe that C must contain exactly two of the edges e, 

/,, and/2. Let G, denote the component of G - {e, /i, /2} containing w. 
Consider the regions /?,, R2, and of G. Suppose that two of them, say 

R] and R2, lie in the exterior of C. Then the edges/, and f2 do not belong to C 
since the unbounded region of G also lies in the exterior of C. This, however, 

is impossible; thus at most one of the regions /?,, R2, and R3 lies in the exterior 
of C. We conclude that at least two of these regions, say /?, and R2, lie in the 
interior of C. This, of course, implies that their common boundary edge e does 
not belong to C. Therefore,/, and f2 are edges of C. Furthermore, C contains a 

v,-v2 subpath P that is a hamiltonian path of G\. Consider the graph 
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v] v2 

G2 = Gi + Vj v2. Then G2 has a hamiltonian cycle C2 consisting of P together 
with the edge ViV2. 

An application of Theorem 6.12 to G2 and C2 yields that 

1 (r3 - r'3) + 2(r4 - r4) + 3(r5 - r'5) + 6(r8 - r8) = 0. (6.7) 

Since V\V2 is an edge of C2 and since the unbounded region of G2 lies in the 
exterior of C2, we have that 

r3 — ^3= 1 — 0=1 and r8 — r8 = 0 — 1 = — 1. 

Therefore, from (6.7) we obtain 

2(g — r\) + 3(r5 — r'5) = 5. 

Since degG^H' = 2, both wwx and ww2 are edges of C2. This implies that 
r4 ^ 1 so that 

r4 — r'4 = 1 — 1 = 0 or r4 — r'4 = 2 — 0 = 2. 

If r4 — r'4 = 0, then 3(r5 — r() = 5, which is impossible. If, on the other hand, 
r4 — r'4 = 2, then 3(r5 — rs) = 1, again impossible. We conclude that Tutte’s 

graph is not hamiltonian. 
For many years Tutte’s graph was the only known example of a 3- 

connected cubic planar graph that was not hamiltonian. More recently, 
however, other such graphs have been found; for example, Grinberg himself 
provided the graph in Exercise 6.15 as another counterexample to Tait’s 

conjecture. 
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Exercises 6.2 

6.15 

6.16 

Show, by applying Theorem 6.12, that the Grinberg graph (below) is 

hamiltonian. 

Show, by applying Theorem 6.12, that the Herschel graph (below) is 

hamiltonian. 

non- 

non- 

6.17 Show, by applying Theorem 6.12, that no hamiltonian cycle in the graph of 

Figure 6.4 contains both the edges e and /. 
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6.3 Hamiltonian Digraphs 

The concept of hamiltonian graphs has a most natural counterpart in directed 
graphs. A digraph D is called hamiltonian if it contains a spanning cycle; such a 
cycle is called a hamiltonian cycle. As with hamiltonian graphs, no char¬ 
acterization of hamiltonian digraphs exists. Indeed, if anything, the situation 
for hamiltonian digraphs is even more complex than it is for hamiltonian 

graphs. While there are sufficient conditions for a digraph to be hamiltonian, 
they are analogues of the simpler sufficient conditions for hamiltonian graphs. 

We say that a vertex v is reachable from a vertex u in a digraph D if D 
contains a u-v path. A digraph D is called strongly connected, or more simply 

strong, if for every two distinct vertices of Z), each vertex is reachable from the 
other. Clearly, every hamiltonian digraph is strong (though not conversely). 

We state without proof the following theorem of Meyniel [M6] that gives 
a sufficient condition for a digraph to be hamiltonian. It should remind the 

reader of Ore’s Theorem (Theorem 6.1). 

Theorem 6.14 (Meyniel) Let D be a strong nontrivial digraph of order p such that 

for every pair u, v of distinct nonadjacent vertices, 

deg u + deg v^2p — 1. 

Then D is hamiltonian. 

The bound presented in Theorem 6.14 is sharp in the following sense. Let 
n and p be positive integers such that l^n^p — 1. Let D be the digraph 
obtained by identifying a vertex of (the complete symmetric digraph) K* and a 

vertex of Kf_n+l. (See Figure 6.6 for the case where n = 3 and p~ 4.) The 

strong digraph D of order p is nonhamiltonian and if u and v are nonadjacent 

vertices of D, then deg u 4- deg v = 2p — 2. 
Theorem 6.14 has a large number of consequences. We consider these 

now, beginning with a result originally discovered by Woodall [W9]. 

Corollary 6.14a (Woodall) Let D be a nontrivial digraph of order p such that 

whenever u and v are distinct vertices and (u, v) g £(£>), then 
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odw + idv^p. (6.8) 

Then D is Hamiltonian. 

Proof First we show that condition (6.8) implies that D is strong. Let u and v be any 
two vertices of D. We show that v is reachable from u. If (u, v) e £(D), then 
this is obvious. If (m, v) $ E(D), then by (6.8), there must exist a vertex w in 
D, with wEu, v, such that (u, w), (w, v)eE(D). However, then u, w, v is a 

path in D and v is reachable from u. Therefore, D is strong. 
To complete the proof we apply Meyniel’s Theorem (Theorem 6.14). Let 

u and v be any two nonadjacent vertices of D. Then by (6.8), od u + idv^p 

and odv + idnS;p so that degu + deg v 3= 2p. Thus, by Theorem 6.14, D is 

hamiltonian. ■ 

The following well-known theorem is due to Ghouila-Houri [G3]. The 

proof is an immediate consequence of Theorem 6.14. 

Corollary 6.14b (Ghouila-Houri) Let D be a strong digraph such that deg v3=p 

for every vertex v of D. Then D is hamiltonian. 

This result also has a rather immediate corollary. 

Corollary 6.14c Let D be a digraph such that 

od v 3= p/2 and id v 3= p/2 

for every vertex v of D. Then D is hamiltonian. 

A spanning path in a digraph D is called a hamiltonian path of D. With 

the aid of Theorem 6.14, we can present some sufficient conditions for a 

digraph to possess a hamiltonian path. 

Corollary 6.14d Let D be a digraph of order p such that for every pair u, v of 

distinct nonadjacent vertices, 

degn + deg v 3= 2p — 3. (6.9) 

Then D contains a hamiltonian path. 

Proof We construct a new digraph D' from D by adding a new vertex w and joining w 
in both directions to every vertex of D. The digraph D' is necessarily strong. 
Let u and v be nonadjacent vertices of D'. Then u and v are nonadjacent 

vertices of D and by (6.9), 

deg D u + dego'V 3 (2p — 3) + 4 = 2p + 1 = 2(p + 1) — 1. 
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Since D' has order p + 1, it follows from Meyniel’s Theorem that D' contains a 

hamiltonian cycle C. Deleting w and its incident arcs on C produce'" a 
hamiltonian path in D. ■ 

Analogues to Corollaries 6.14a, 6.14b, and 6.14c for digraphs poss 
hamiltonian paths are now easily obtained and are stated below. 

Corollary 6.14e Let D be a digraph of order p such that whenever u and v are dis ret 

vertices and («, v) £ E(D), then 

odu + idv^ p — 1. 

Then D contains a hamiltonian path. 

Corollary 6.14f If D is a digraph of order p such that deg v 3sp — 1 for each vertex v 

of D, then D contains a hamiltonian path. 

Corollary 6.14g If D is a digraph of order p such that od v 5= (p — l)/2 and 
id v ^ (p — l)/2 for every vertex v of D, then D contains a hamiltonian path. 

If, in the previous results, we restrict our attention to symmetric digraphs, 
then we have sufficient conditions for a graph to be hamiltonian and for a 
graph to possess hamiltonian paths. The theorems we obtain are those due to 
Ore (Theorem 6.1) and Dirac (Corollary 6.6f) as well as their analogues for 

graphs containing hamiltonian paths. 
We now consider some special classes of hamiltonian digraphs. A digraph 

D is hamiltonian-connected if D contains a hamiltonian u-v path for every two 
distinct vertices u, v of D. Clearly, every nontrivial hamiltonian-connected 
digraph is hamiltonian. The following sufficient condition for a digraph to be 
hamiltonian-connected is analogous to Woodall’s Theorem (Corollary 6.14a) 

on hamiltonian digraphs; the result is due to Overbeck-Larisch [04], 

Theorem 6.15 Let D be a nontrivial digraph of order p such that for every two 

distinct vertices u, v of D with (u, v) i E(D), 

odu + idv^p + 1. (6.10) 

Then D is hamiltonian-connected. 

Proof If p = 2, then D = K2 and the result follows, so we assume that p 3s 3. Let u and 
v be any two distinct vertices of D. We show that D contains a hamiltonian u-v 

path. 
Let D' = D — u — v. We construct a digraph D" from D' by adding a new 
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vertex w to D', an arc (w, z), z G V(D u v), if (u, z) is an arc in D and an 

arc (z, w), z g V(D -u-v), if (z, v) is an arc in D. 
We next verify that the digraph D" is strong. Let x and y be distinct 

vertices of D". We show that y is reachable from x. Assume first that wEx,y. 
If (x, y) e £(£>), the result is obvious, so suppose that (x, y) £ E(D). By 

hypothesis, 

odDx + \dDy^p + 1; 

thus, since there are p - 2 vertices of D different from x or y, there must be at 
least three vertices of D that are both adjacent from x and adjacent to y. In 
particular, there must be a vertex zEu, v such that (x, z), (z, y) e E(D) so 

that x, z, y is a path in D" and y is reachable from x. Suppose, next, that x = w. 
If (w, y) e E(D"), then y is reachable from w in D". If (w, y) £ E(D"), then 

(u, y) £ E(D). But, then, as we have seen before, this implies that there exists 
zeV(D-u-v) such that (u, z), (z, y)e£(D). However, if (u, z)eE{D), 

then (w, z) e E(D"), implying that w, z, y is a path in D" and y is reachable 
from w. Finally, assume that y = w. We show that w is reachable from x. This 

is immediate if (x, w)eE(D"), so we assume that (x, w) £ E(D"). Thus, 
(x, v)££(D). As before, there exists zeV(D -u-v) such that (x, z), 

(z, v) e E(D)- hence, (x, z), (z, w) e E(D") so that x, z, w is a path in D" and 

w is reachable from x. Therefore, D" is strong and has order p- 1. 
Let x and y be any two nonadjacent vertices of D", where w ± x, y. Then 

x and y are nonadjacent in D and by (6.10), 

degD»x + degD-y 2s 2(p + 1) - 4 = 2(p - 1). 

If x and w are nonadjacent in D", so that (u, x), (x, v) £ E(D), then 

degD"X + deg/)"W ^ (degDx — 2) + (od0u + idDv — 2) 
= (odDu + idDx) + (odDx + idDv) - 4 

5=2(p + 1) — 4 = 2(p — 1). 

Hence, by Meyniel’s Theorem, D" is hamiltonian and, thus, contains a 
hamiltonian cycle C. Deleting w from C produces a hamiltonian path P in D'; 

say P is a Wj-vv2 path. Since (w, Wi), (vv2, w) e £(D"), it follows that (u, Wi), 

(w2, v) e £(D). Thus, D contains a hamiltonian u-v path. ■ 

An immediate corollary is given below. 

Corollary 6.15 Let D be a digraph of order p such that od v 5= (p + l)/2 and id v 2s 

(p + l)/2 for every vertex v of D. Then D is hamiltonian-connected. 

One might be tempted to conjecture that if D is a strong digraph of order 
p such that degv$:p + l for every vertex v of D, then D is hamiltonian- 
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connected. However, such is not the case. Indeed, for nearly every positive 
integer p, Thomassen [T4] has constructed a strong digraph D of order p such 

that all vertices have degree at least p + 1 and D is not hamiltonian-connected. 
One such digraph is shown in Figure 6.7; this digraph has no hamiltonian u-v 
path. 

V u 

Figure 6.7 A strong digraph that is not hamiltonian-connected 

A digraph D of order p 2= 3 is pancyclic if D contains cycles of every 

length I for 3=£F=Sp. Of course, every pancyclic digraph is hamiltonian. If a 
pancyclic digraph D contains a symmetric pair of arcs, then D contains cycles 

of every length (. for 2^€^p. 
In Corollary 6.10 we stated the result by Bondy [B14] that if G is a graph 

of order p 2= 3 such that for all distinct nonadjacent vertices u and v, 
deg u + deg v 2=p, then either G is pancyclic, or p is even and G = K(p/2, p/2). 
This result has been extended to digraphs by Thomassen [T3]. We state this 
theorem without proof. By the digraph K*(m, n), m, n 2=1, we mean the 

symmetric digraph whose underlying graph is isomorphic to the graph K(m, n). 

Theorem 6.16 If D is a strong digraph of order p 2s 3 such that deg u + deg v 2= 2p 
for all distinct nonadjacent vertices u and v of D, then either D is pancyclic or p 

is even and D = K*(pl2, p/2). 

As a direct consequence of Theorem 6.16, we have the following result of 

Overbeck-Larisch [05], 

Corollary 6.16a If D is a strong digraph of order p 2s 3 such that deg u + degvS 

2p + 1 for all distinct nonadjacent vertices u and v of D, then D is pancyclic. 
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Another corollary was initially discovered by Haggkvist and Thomassen 

[HT1], 

Corollary 6.16b If D is a strong digraph of order 3 such that deg v^p for every 
vertex v of D, then D is pancyclic, or p is even and D = K*(pl2, pH). 

Exercises 6.3 

6.18 Show that the condition that the digraph D in the statement of Theorem 6.14 be 

strong cannot be removed from the hypothesis. 

6.19 (a) Show that Meyniel’s Theorem (Theorem 6.14) is stronger than Corollary 
6.14a by giving an example of a (hamiltonian) digraph that satisfies the 

hypothesis of Theorem 6.14 but not the hypothesis of Corollary 6.14a. 

(b) Repeat (a) with Corollary 6.14a replaced in each instance by Corollary 6.14b. 

6.20 Show that the condition that the digraph D in the statement of Corollary 6.14b be 

strong cannot be removed from the hypothesis. 

6.21 Prove Ghouila-Houri’s Theorem (Corollary 6.14b). 

6.22 Show that Meyniel’s Theorem is stronger than Ghouila-Houri’s Theorem. 

6.23 Show that neither Corollary 6.14a nor Corollary 6.14b is a corollary of the other. 

6.24 Prove that the bound presented in Corollary 6.14d is best possible. 

6.25 Prove Corollaries 6.14e and 6.14f. 

6.26 Prove that the bound presented in Theorem 6.15 is best possible. 

6.27 Give an example of a (hamiltonian-connected) digraph that satisfies the hypothesis 

of Theorem 6.15 but does not satisfy the hypothesis of Corollary 6.15. 

6.28 Let D be a digraph of order p 3=3 such that od v 3= (p + l)/2 and id v^(p+ l)/2 
for every vertex v of D. Prove that D is pancyclic. 

6.29 Use Theorem 6.16 to prove Corollaries 6.14a and 6.14b. 

6.30 Show that if a digraph D satisfies the hypothesis of Theorem 6.16 but contains no 

symmetric pair of arcs, then D is a pancyclic tournament. 

6.31 Show that the bound presented in Theorem 6.16 is sharp by verifying that the 

number 2p cannot be reduced to 2p — 1. 
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Oriented Graphs 

We now turn our attention to the topic of asymmetric digraphs. Among such 
digraphs, the tournaments are probably the most studied and most applicable, 
and it is these digraphs that we emphasize here. 

7.1 Robbins' Theorem 

Recall that an oriented graph D can be obtained from a graph G by assigning a 

direction to (or by “orienting”) each edge of G; the digraph D is also called an 
orientation of G. 

One application of oriented digraphs is in traffic flow problems, for 
example when two-way streets are changed to one-way streets during periods 
of heaviest traffic. Certainly, we want the digraph modeling the one-way 
system to be strongly connected so that it is possible to travel from any location 
to any other. If G is the graph of the two-way system and G has a bridge, then 
it is impossible to assign a direction to each edge of G so that the resulting 

digraph is strong. However, if G is a bridgeless connected graph, then G 
always has a strong orientation; that is, the edges of G can be directed in such a 
way that the resulting digraph is strong. This observation was first made by 
Robbins [R8]. 

Theorem 7.1 (Robbins) Every 2-edge-connected graph has a strong orientation. 
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Proof Suppose the theorem is false. Then there exists a 2-edge connected graph G 

that has no strong orientation. Among the subgraphs of G, let H be one of 
maximum order that has a strong orientation; such a subgraph exists since for 

each veV(G), the subgraph <{v}) trivially has a strong orientation. Thus, 
among the orientations of G, the maximum number of vertices that are pairwise 

mutually reachable is \ V(H)\. Since H has a strong orientation, so too does 
(V(H))g. Thus | V(H)\< | V(G)| since, by assumption, G has no strong 

orientation. 
Assign directions to the edges of H so that the resulting digraph D is 

strong, but assign no directions to the edges of G - E(H). Let ueV(H) and let 
v6 y(G)- V(H). Since G is 2-edge-connected, there exist two edge-disjoint 

(graphical) u-v paths in G. Let P be one of these u-v paths and let Q be the v-u 
path that results from the other u-v path. Further, let ux be the last vertex of P 

that belongs to H, and let Vj be the first vertex of Q belonging to H. Next, let 
Px be the ux-v subpath of P and let Qx be the v-vx subpath of Q. Direct the 
edges of Px from ux toward v, producing the directed path P\, and direct the 

edges of Qx from v toward vl5 producing the directed path Q\. 
Define the digraph D' by V(D') = V(D) U V(P[) U V(QX) and E(D ) = 

E{D) U E(P',) U E(Q\). Let w e V(D). Since D is strong, ux is reachable from 
w. Also, v is reachable from ux in D'. Therefore, v is reachable from w and, 

similarly, w is reachable from v in D'. It follows that there exists an orienta¬ 
tion of G that results in at least \V(H)\ + \ pairwise mutually reachable 

vertices, which contradicts the choice of H. ■ 

Exercises 7.1 

7.1 A digraph D is called unilateral if for every two distinct vertices u and v of D 

there is either a u-v path or a v-u path in D. 

(a) Prove or disprove: Every connected graph has a unilateral orientation. 

(b) Prove or disprove: Every orientation of a 2-edge-connected graph is a 

unilateral orientation. 
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7.2 Tournaments 

The class of oriented graphs that has received the greatest attention is the class 
of tournaments; that is, those digraphs obtained by orienting the edges of 
complete graphs. 

The number of nonisomorphic tournaments increases sharply w.ith order. 
For example, there is only one tournament of order 1 and one of order 2. 

There are two tournaments of order 3, namely the tournaments T\ and T2 
shown in Figure 7.1. There are four tournaments of order 4, twelve of order 5, 
and over nine million of order 10. 

Figure 7.1 The tournaments of order 3 

If T is a tournament of order p, then it follows since T is complete that its 
size is (^) and that, consequently, 

A tournament T is transitive if, whenever (u, v) and (v, w) are arcs of T, 
then (u, w) is also an arc of T. The tournament T2 of Figure 7.1 is transitive 
while Tx is not. The following result gives an elementary property of transitive 
tournaments. 

Theorem 7.2 A tournament is transitive if and only if it is acyclic. 

Proof Let T be an acyclic tournament, and suppose (u, v) and (v, w) are arcs of T. 
Since T is acyclic, (w, u) $ E(T); therefore, (u, w) e E(T) and T is transitive. 

Conversely, suppose T is a transitive tournament, and assume that T 
contains a cycle, say C: vx, v2, ... , v„, Vj (where n ^3 since T is asymmetric). 

Since (vj, v2) and (v2, v3) are arcs of the transitive tournament 7, (vj, v3) is an 
arc of T. Similarly, (v,, v4), (vq, v5), ..., (vl5 v„) are arcs of T. However, this 
contradicts the fact that (v„, vq) is an arc of T. Thus, T is acyclic. ■ 

Every tournament of order p can be thought of as representing or 
modeling a round robin tournament involving competition among p teams. In a 
round robin tournament, each team plays every other team exactly once and 



210 Chapter 7 Oriented Graphs 

ties are not permitted. Let v,, v2, ..., vp represent the teams as well as the 
vertices of the corresponding tournament T. If, in the competition between v, 

and v , i f j, team v, defeats team vf, then (v,, vy) is an arc of T. The number of 
victories by team v, is the number odv,-; for this reason, the outdegree of the 

vertex v, in a tournament is also referred to as the score of v,. 
A sequence su s2, ..., sp of nonnegative integers is called a score 

sequence (of a tournament) if there exists a tournament T of order p whose 

vertices can be labeled as Vi, v2, .. • , vp such that odv, = 5, for i= 1, 2, ..., p. 
The following result indicates exactly which sequences are score sequences of 

transitive tournaments. 

Theorem 7.3 A nondecreasing sequence if of p(^\) nonnegative integers is a score 
sequence of a transitive tournament of order p if and only if if is the sequence 0, 

1, • - • , p- 1- 

Proof First we show that if: 0, 1, . .. , p - 1 is a score sequence of a transitive 
tournament. Let T be a tournament defined by V(T) = {vi, v2, . - • , vp} and 

E(T) = {(v,, vy)| 1 sS;'<i^p}- Then od v, = i — 1 for i = 1, 2, ..., p\ so if is a 

score sequence of the transitive tournament T. 
Conversely, assume that T is a transitive tournament of order p. We show 

that^: 0,1, — 1 is a score sequence of T. It suffices to show that no two 

vertices of T have the same score (outdegree). Let u, ve V(T) and assume, 
without loss of generality, that (u, v) e E(T). If W denotes the set of vertices of 

T adjacent from v, then od v = | W\. Since (v, w) e E(T) for each w e W and 
(u, v) e E(T), it follows that (u, w) e E(T) for each weW, since T is transitive. 

Thus, od u ^ 1 + | W| = 1 + od v. ■ 

Corollary 7.3a. A nondecreasing sequence if of p(1) nonnegative integers is a 
sequence of indegrees of the vertices of a transitive tournament if and only if if is 

the sequence 0, 1, ... , p — 1. 

Another result that follows readily from Theorem 7.3 is given next. 

Corollary 7.3b For every positive integer p, there is exactly one transitive tournament 

of order p. 

Combining this corollary with Theorem 7.2, we arrive at yet another 

corollary. 

Corollary 7.3c For every positive integer p, there is exactly one acyclic tournament of 

order p. 
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We shall discuss score sequences of arbitrary tournaments in Section 7.4. 
Although there is only one transitive tournament of each order p, in a 

certain sense that we now explore, every tournament has the structure of a 
transitive tournament. The relationship “mutually reachable” is an equivalence 

relation on the vertex set of a tournament T and, as such, this relation 
partitions V(T) into equivalence classes V{, V2, . . . , V„(n 2= 1). Let 5, = (V,) 
for / = 1, 2, ... , n. Then it is easy to see that each S, is a strong subdigraph 
and, indeed, is maximal with respect to the property of being strong. The 
subdigraphs Sx, S2, .. . , S„ are called the strong components of T. 

Let Tbe a tournament with strong components Sl5 S2, ..., S„, and let T 
denote that digraph whose vertices ux, u2, ... , un can be put in one-to-one 
correspondence with the strong components (w, corresponds to S,-, i = 1, 2, . .., 
n) such that («,, uf) is an arc of T, i±j, if and only if some vertex of S, is 
adjacent to at least one vertex of S;. A tournament T and associated digraph T 
are shown in Figure 7.2. 

Observe that for the tournament T of Figure 7.2, T is also a tournament 
and, in fact, a transitive tournament. That this always occurs follows from 
Theorem 7.4 (see Exercise 7.6). 

Theorem 7.4 If T is a tournament with (exactly) n strong components, then T is the 
transitive tournament of order n. 

Since for every tournament T we have that T is a transitive tournament, 
it is easy to show that if T is a tournament that is not strong, then V(T) can be 

partitioned as Vx U V2 U .. . U V„(n 2=2) such that ( Vf) is a strong tournament 

for each i, and if vx e Vt and Vj e V-n where i>j, then (v,, Vj)eE(T). This 
decomposition proves useful in studying the properties of tournaments that are 

not strong. 
If u and v are vertices of a digraph D, and D contains at least one u-v 

path, then the length of a shortest u-v path is called the distance from « to v 

and is denoted by dD(u, v) or simply d(u, v). Our next three results involve 
the concept of distance in a tournament. 
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Theorem 7.5 Let v be a vertex of maximum score in a nontrivial tournament T. If u 

is a vertex of T different from v, then d(v, u)^2. 

Proof Assume od v = n. Necessarily, n 3* 1. Let v,, v2, ... , v„ denote the vertices of 
T adjacent from v. Then d{v, v,) = 1 for i= 1, 2, ... , n. If V{T) = {v, Vi, v2, 

..., v,,}, the proof is complete. 
Assume, then, that 1/(7)-{v, v,, v2, .... v„} is nonempty, and let 

ueV(T)- {v, vl5 v2, ..., v„}. If the vertex u is adjacent from some vh 
l^i^n, then d(v, u) = 2, producing the desired result. Thus, assume this is 

not the case. Then u is adjacent to all of the vertices v,, v2, ... , v„, as well as 
to v, so that od u 2* 1 + n = 1 + od v. However, this contradicts the fact that v is 

a vertex of maximum score. ■ 

Theorem 7.5 was first discovered by the sociologist Landau [LI] during a 

study of pecking orders and domination among chickens. In the case of 
chickens, the theorem says that if chicken c pecks the largest number of other 
chickens, then for every other chicken d, either c pecks d, or c pecks some 
chicken that pecks d. Thus c dominates every other chicken either directly or 

indirectly in two steps. 
Let D be a strong digraph. The eccentricity e(v) of a vertex v of D is 

defined as e(v) = maxweV(D)d(v, w). The radius of D is rad D = minv6V(D)e(v) 
and the center Z(D) of D is defined by Z(D) = {v| e{v) = rad D). Theorem 7.5 
provides an immediate result dealing with the radius of a strong tournament. 

Corollary 7.5 Every nontrivial strong tournament has radius 2. 

We conclude this section with a result on the center of a strong tourna¬ 

ment. 

Theorem 7.6 The center of every nontrivial strong tournament contains at least three 

vertices. 

Proof Let 7 be a nontrivial strong tournament. By Corollary 7.5, rad 7=2. Let w be 
a vertex having eccentricity 2. Since 7 is strong, there are vertices adjacent to 
w; let v be one of these having maximum score. Among the vertices adjacent 
to v, let u be one of maximum score. We show that each of the vertices u and v 

has eccentricity 2, which will complete the proof. 
Assume, to the contrary, that one of the vertices u and v does not have 

eccentricity 2. Suppose, then, that xe {u, v} and e(x)S=3. Hence, there exists 

a vertex y in 7 such that d{x, y) 5=3. Thus, y is adjacent to jc. Moreover, y is 
adjacent to every vertex adjacent from x. These observations imply that 

ody > odx. 
Suppose that x = v. Since a: is adjacent to w, it follows that y is adjacent 
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to w. However, ody>odv, which contradicts the defining property of v. 
Therefore, x = u. Here x is adjacent to v so that y is adjacent to v, but 
ody>odw. Hence, x =£ u and the proof is complete. ■ 

Exercises 7.2 

7.2 Draw all four (nonisomorphic) tournaments of order 4. 

7.3 (a) Show that every tournament has at most one vertex with score zero. 

(b) Show that every tournament has at most one vertex with indegree zero. 

7.4 (a) Prove Corollary 7.3a. 

(b) Prove Corollary 7.3b. 

7.5 Give an example of two nonisomorphic regular tournaments of the same order. 

7.6 Prove Theorem 7.4. 

7.7 Determine those positive integers p for which there exist regular tournaments of 
order p. 

7.8 Prove that every regular tournament is strong. 

7.9 Prove that every two vertices in a nontrivial regular tournament lie on a 3-cycle. 

7.10 Prove that if T is a nontrivial regular tournament, then diam T = 2. 

7.11 Prove that every vertex of a nontrivial strong tournament lies on a 3-cycle. 

7.12 Prove Corollary 7.5. 

7.13 (a) A vertex v of a tournament T is called a winner if d(v, m)^2 for every 
u e V(T). Show that no tournament has exactly two winners. 

(b) Show that if p is a positive integer, p =/= 2, 4, then there is a tournament of 
order p in which every vertex is a winner. 

7.3 Hamiltonian Tournaments 

The large number of arcs a tournament possesses produces a variety of paths 
and cycles. In this section we investigate these types of subdigraphs in tourna¬ 
ments. We begin with perhaps the most basic result of this type, a property of 
tournaments first observed by Redei [R2]. 
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Theorem 7.7 (Redei) Every tournament contains a Hamiltonian path. 

Proof Let T be a tournament of order p, and let P: Vj, v2, ■ • ■ , v*. be a longest path 
in T. If P is not a hamiltonian path of 7, then 1 k < p and there is a vertex v 

of 7 not on P. Since 7 is a longest path, (v, v,), (v*, v) £ 7(7), and so (v,, v), 

(v, vk) e £(7). This implies that there is an integer i, 1 1, such that 

(v,-, v)eE(T) and (v, v/+1)e£(7). But then 

Vq , v2, • • ■ > vi i V, P/'+l) • • • ’ Vk 

is a path whose length exceeds that of 7, producing a contradiction. ■ 

A simple but useful consequence of Theorem 7.7 concerns transitive 

tournaments. 

Corollary 7.7 Every transitive tournament contains exactly one hamiltonian path. 

The preceding corollary is a special case of a result by Szele [S3], who 
showed that every tournament contains an odd number of hamiltonian paths. 

While not every tournament is hamiltonian, such is the case for strong 

tournaments, a fact first observed by Camion [Cl], It is perhaps surprising that 
if a tournament is hamiltonian, then it must possess a significantly stronger 
property. A digraph D of order p 3= 3 is vertex-pancyclic if each vertex of D lies 

on a cycle of length € for each € = 3, 4, p. The following result was 
discovered by Moon [M8]; the proof here is due to C. Thomassen. 

Theorem 7.8 (Moon) Every nontrivial strong tournament is vertex-pancyclic. 

Proof Let 7 be a strong tournament of order /? 3= 3, and let V) be a vertex of 7. We 

show that V! lies on an €-cycle for each € = 3, 4, ..., p. We proceed by 

induction on 
Since 7 is strong, it follows from Exercise 7.11 that vq lies on a 3-cycle. 

Assume v{ lies on an €-cycle vx, v2, • • • , ve, Vj, where 3^€^p - 1. We prove 

that V! lies on an (€ + l)-cycle. 

Case 1: Suppose there is a vertex v not on C that is adjacent to at least one vertex 

of C and is adjacent from at least one vertex of C. This implies that for some i, 
1 ss/ssf’, both (v,, v) and (v, vI+1) are arcs of 7 (where all subscripts are 

expressed modulo l). Thus, iq lies on the (€ + l)-cycle 

vl5 v2, . • •, v, v,+1, . • • , vf, vj. 

Case 2: No vertex v exists as in Case 1. Let A denote the set of all vertices in 

V{T) - V(C) that are adjacent to every vertex of C, and let B be the set of all 
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vertices in V(T) — V(C) that are adjacent from every vertex of C. Then 
A U B = V(T) — V(C). Since T is strong, neither A nor B is empty. Further¬ 
more, there is a vertex b in B and a vertex a in A such that (b, a)eE(T). 

Thus, Vj lies on the (€ + l)-cycle 

a, vu v2, ... , v(-i, b, a. ■ 

Corollary 7.8 (Camion) A tournament of order 3 is hamiltonian if and only if 
it is strong. 

Exercises 7.3 

7.14 Prove that if 7" is not a transitive tournament, then Thas at least three hamiltonian 

paths. 

7.15 Use Corollary 7.7 to give an alternative proof of Theorem 7.3. 

7.16 Prove Corollary 7.8. 

7.17 Prove or disprove: Every arc of a nontrivial strong tournament T lies on a 

hamiltonian cycle of T. 

7.18 Prove or disprove: Every vertex-pancyclic tournament is hamiltonian-connected. 

7.19 Show that if a tournament T has an f-cycle, then T has an 5-cycle for 5 = 3, 4, 

7.4 Score Sequences of Tournaments 

Recall that a sequence 5l5 s2, .. . , sp of nonnegative integers is a score 
sequence (of a tournament) if there exists a tournament of order p whose 
vertices can be labeled as vl5 v2, ... , vp such that odv/ = 5, for /= 1, 2, ... ,p. 
From Theorem 7.3 and Corollary 7.3b, it follows that a nondecreasing sequence 

S’: sj, s2, • • • , sp of nonnegative integers is a score sequence of the transitive 
tournament if and only if 5,- = i — 1 for all i. In this section we investigate score 
sequences in more generality. We begin with a theorem similar to the Havel- 

Hakimi theorem on graphical sequences (Theorem 1.3). 
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Theorem 7.9 A nondecreasing sequence if: st, s2, • • ■ , sp (p^2) of nonnegative 
integers is a score sequence if and only if the sequence S’,: sh J2, .. . , sx , 

Ssp+i — 1) ... , sp-! - lisa score sequence. 

Proof Assume that if\ is a score sequence. Then there exists a tournament 7, of 
order p — 1 such that if] is a score sequence of 7,. Hence the vertices of 7j can 

he labeled as vlt v2, ... , vp^\ so that 

for 1 =£ i sn. 'p 
for i>sp. 

We construct a tournament 7 by adding a vertex vp to Tx. Furthermore, for 

1 i =Sp, vp is adjacent to v, if 1 i ^ sp, and vp is adjacent from v, otherwise. 

The tournament 7 then has id as a score sequence. 
For the converse, we assume that if is a score sequence. Hence there 

exist tournaments of order p whose score sequence is if. Among all such 

tournaments, let 7 be one such that V(T) = {v{, v2, ..., vp), odv, = s, for 
/= 1,2, .. . , p, and the sum of the scores of the vertices adjacent from vp is 

minimum. We consider two cases. 

Case 1: Suppose that T contains a vertex u with score sp such that u is adjacent 

to vertices having scores s{, s2, .... ss>. Then T—u is a tournament having 

score sequence if\. 

Case 2: Suppose no vertex u exists as in Case 1. Thus the vertex vp is not 
adjacent to vertices having scores sq, s2, ... , ss . Necessarily, then, there exist 
vertices vy- and v*., with Sj<sk, such that vp is adjacent to vk and vp is adjacent 

from vj. Since the score of vk exceeds the score of v7 , there must exist a vertex 
vn distinct from vp, vy, and vk such that vk is adjacent to v„ and v„ is adjacent 

to Vy. (See Figure 7.3(a).) Thus, a 4-cycle C: vp, vk, v„, vy, vp is produced. If 
we reverse the directions of the arcs of C, a tournament T is obtained also 
having if as a score sequence. (See Figure 7.3(b).) However, in 7', the vertex 
vp is adjacent to v; rather than vk. Hence the sum of the scores of the vertices 
adjacent from vp is smaller in 7' than in 7, which is impossible. Thus, Case 2 
cannot occur, returning us to Case 1 and the fact that ift is a score sequence. ■ 

v v n n 

V; 

(a) p (b) p 

Figure 7.3 A step in the proof of Theorem 7.8 
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As an illustration of Theorem 7.9, we consider the sequence 

if: 1, 2, 2, 3, 3, 4. 

In this case, sp (actually s6) has the value 4; thus, we delete the last term, 
repeat the first sp = 4 terms, and subtract one from the remaining terms, 
obtaining 

if[: 1, 2, 2, 3, 2. 

Rearranging, we have 

Sfj: 1, 2, 2, 2, 3. 

Repeating this process twice more, we have 

if2: 1, 2, 2, 1 

if2: 1, 1, 2, 2 

Sf3: 1, 1, 1. 

The sequence if3 is clearly a score sequence. We can use this information to 
construct a tournament with score sequence if. The sequence if3 is the score 
sequence of the tournament T3 of Figure 7.4. Proceeding from if3 to if2, we 
add a new vertex to T3 and join it to two vertices of T3 and from the other, 
producing a tournament 73 with score sequence if2. To proceed from if2 to 

T i: 

Figure 7.4 Construction of a tournament with a given score sequence 
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</>,, we add a new vertex to T2 and join it to vertices having scores 1, 2, and 2 
and from the remaining vertex of T2, producing a tournament 7, with score 

sequence idx. Continuing in the same fashion, we finally produce the desired 
tournament 7 with score sequence id by adding a new vertex to 7, and joining 

it to vertices having scores 1, 2, 2, and 3 and joining it from the other vertex. 
The following theorem by Landau [LI] gives a nonconstructive criterion 

for a sequence to be a score sequence. There are many proofs of this result; the 

one we give is due to Thomassen [T5], 

Theorem 7.10 A nondecreasing sequence id: s,, s2, ... , sp of nonnegative integers is 

a score sequence if and only if for each /c(l ^k^p). 

(7.1) 

with equality holding when k = p. 

Proof Assume that id: su s2, sp is a score sequence. Then there exists a 
tournament T of order p with V(T) = {v\,v2, . . . , vp} such that od^y, — s, for 
1=1,2, Let k be an integer with 1 ^ k ^p. Then T{ = {(vt, v2, • ■ • , 

vk)} is a tournament of order k and size (?)• Since odrv, odr, v, for 1 

it follows that 

with equality holding when k=p. 
We prove the converse by contradiction. Assume that id: sx, s2, . . . , sp is 

a counterexample to the theorem, chosen so that p is as small as possible and 

so that 5, is as small as possible among all counterexamples of length p. 
Suppose first that there exists an integer k with 1 1 such that 

(7.2) 

Thus the sequence idp. sx, s2, . . . , sk satisfies (7.1) and so, by the minimality of 
p, there exists a tournament Tx of order k having score sequence id 

Consider the sequence 3~: tx, t2, ... , tp_k, where r, = sk+i — k for / = 1, 2, 

..., p — k. Since 

A ' 

it follows from (7.2) that 
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Thus, since if is a nondecreasing sequence, 

ti = sk+i-k^sk+l -k5=0 

for /= 1, 2, . . . , p — k, and so 2T is a nondecreasing sequence of nonnegative 
integers. We show that 2T satisfies (7.1). 

For each m satisfying l^msSp — k, we have 

mm m m + k k 

S *1 = Ti (sk+i -k)=Yi sk+i -mk= Yisi~ _ mk- 
i = l i = 1 i = l i' = l i=l 

i + k 

Since s, 
m 

and Sj = 
/ = 1 

it follows that 

with equality holding for m=p — k. Thus, 2T satisfies (7.1) and so, by the 
minimality of p, there exists a tournament T2 of order p — k having score 
sequence 9". 

We construct a tournament T as follows: V(T)= V{TX)VJV{T2) and 

E(T) = E(Tx)UE(T2)U{(u, v)|ueV{T2), veV(Tx)}. 

Then if is a score sequence for 7, contrary to assumption. Thus for k= 1, 2, 

■■■, P~ 1, 

In particular, 5! >0. 
Consider the sequence if: sx — 1, s2, s^, .... 5^.!, 5^+1. Clearly if is a 

nondecreasing sequence of nonnegative integers that satisfies (7.1). By the 
minimality of Sj, then, there exists a tournament T of order p having score 
sequence if. Let x and y be vertices of T' such that ody-'X^Sp+l and 

odj-y = sx — 1. Since od^x 2* od^y + 2, there is a vertex wEx, y such that 
(x, w) e E(T’) and (y, w) £ E(T'). Thus, x, w, y is a path in T'. 

Let T be the tournament obtained from T by reversing the directions of 
the arcs of P. Then if is a score sequence for T, again producing a contradiction 

and completing the proof. ■ 

With a slight alteration in the hypothesis of the preceding theorem, we 
obtain a necessary and sufficient condition for a score sequence of a strong 
tournament. This result is due to L. Moser and may be found in [HM1], 
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Theorem 7.11 A nondecreasing sequence if: S\, s2, ... , sp of nonnegative integers is 

a score sequence of a strong tournament if and only if 

for 1 sSfcsSp - 1 and 

Furthermore, if if is a score sequence of a strong tournament, then every 

tournament with id as a score sequence is strong. 

Proof Let T be a strong tournament and suppose that if: Sj, s2, ■ ■. , sp is a score 
sequence of T, where sx V Since T is a tournament of order p. 

Let 1 k =£ p — 1 and define T\ = {{v\, v2, • • • , v*})• Since Tx is a tournament 

of order k, 

Since T is a strong tournament, some vertex v; in Tx(l^j^k) must be 
adjacent in T to a vertex not in T, so that odrvy->odrivy. Since ody-v, ^ odri v, 

for all i, 1 ssis£/c, we obtain 

For the converse, we assume that Sf: s|, s2, ■ ■ ■ ■> sp is a nondecreasing 

sequence of nonnegative integers such that 

for [sik^p- 1 and 

By Theorem 7.10, if is the score sequence of a tournament. Let 7 be a tourna¬ 

ment with score sequence if\ we show that T is strong. 
If T is not strong, it follows from Theorem 7.4 (and the discussion 

preceding it) that V{T) can be partitioned as (7U V¥ such that (u, w) e E(T) for 
every ueU and w e W. Thus, if TX = (W), then odrw = odriw for every 
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w e W. Let k=\W\, where, then, l^k^p— 1. Since if is a nondecreasing 
sequence and Tx is a tournament of order k, we have 

k 

Yis'^ J]odrw= J]odriw = 
/=1 w e W w e W 

contradicting the hypothesis. ■ 

In a similar fashion, the following result is obtained. 

Theorem 7.12 Let T be a tournament with score sequence if: sx, s2, .. . , sp, where 
S\^s2< ■ • • =£sp. Suppose that 

and 

£ s'> for n = k + l, k + 2, ...,€—1, 

where 0 k < € ^p. 
Then the subtournament induced by {v*+1, vk+2, . . . , v^} is a strong component 
of T with score sequence sk+x — k, sk+2 —k, ..., S( — k, where odvy = sf, 
j = kfl, kf 2, 

We close this section with a brief discussion of one other family of 
oriented graphs. A bipartite tournament is an orientation of a complete bipartite 

graph. If T is a bipartite tournament whose underlying graph G has partite sets 
U and W, then U and W are also referred to as the partite sets of T. Further¬ 
more, if \U\ = m and |VF|=n, then we say that T is an mxn bipartite 
tournament. Figure 7.5 shows the four (nonisomorphic) 2x2 bipartite tourna¬ 

ments. 

Figure 7.5 The four 2x2 bipartite tournaments 
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It will be convenient to have another method of illustrating a bipartite 

tournament. If T is a bipartite tournament with partite sets U and W, then we 

indicate those arcs from U to W by an edge. The remaining arcs are then 
obvious. Using this convention, we again show the four 2x2 bipartite tourna¬ 

ments in Figure 7.6. 

Figure 7.6 The four 2x2 bipartite tournaments 

Just as tournaments may be used to represent competition, so may 

bipartite tournaments. In the bipartite case there are two teams, and two 

individuals compete if and only if they are on opposing teams. 
There are many results for bipartite tournaments that are similar to 

tournament results (see, for example, [BM1]). Two such results involve score 

sequences. 
Two sequences ax,a2, ..., am and bu b2, of nonnegative integers 

are called score sequences of a bipartite tournament if there exists a bipartite 
tournament T with partite sets U = {ux, u2, ... , um} and W = (w,, w2, ..., 
wn} such that odu, = ah 1^/^ra, and odw, = £>,, Similar to 
Theorem 7.9 (both in statement and in proof) is the following. 

Theorem 7.13 Let si: at, a2, ... , am and 28: by, b2, be nondecreasing 
sequences of nonnegative integers. Then si and 28 are score sequences of a 
bipartite tournament if and only if the sequences six:ax, a2, ... , a„,_, and 

by, ... , bUm, bam +1 — 1, ... , bn - 1 are score sequences of a bipartite tourna¬ 

ment. 

To illustrate Theorem 7.13, we consider the sequences 

sl: 1, 1, 3, 5, 5 28: 1, 1, 2, 3, 4, 4. 
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We obtain the sequence by deleting the largest term am from si; the 
sequence 91j is obtained by repeating the first am = 5 terms of and sub¬ 
tracting 1 from the remaining terms. Thus, we have 

six: 1, 1, 3, 5 Sfcj: 1, 1, 2, 3, 4, 3. 

Rearranging 91 j produces 

•s4i: 1, 1, 3, 5 1, 1, 2, 3, 3, 4. 

Repeating this process twice more, we have 

si2: 1,1,3 ®2 = ®2- 1, 1, 2, 3, 3, 3 

si3: 1,1 283 = SS3: 1, 1, 2, 2, 2, 2. 

Sequences ,s43 and 283 are score sequences of the bipartite tournament T3 of 
Figure 7.7, with partite sets U3 and W. Proceeding from and 913 to si2 and 

282, we add a new vertex to U3 and join it to three vertices of W having scores 
1,1, and 2 and from the other vertices of W, producing a bipartite tournament 

T2 with partite sets U2 and W whose score sequences are s&2 and (3i2. Continuing 
in this fashion, we add a new vertex to U2 and join it to vertices of W having 
scores 1, 1, 2, 3, and 3 and from the remaining vertex of W, producing a 
bipartite tournament Tx with partite sets Ux and W and score sequences six and 

9b. We complete the construction by adding one vertex to Ux joined to vertices 
of W having scores 1, 1, 2, 3, 4 and from the remaining vertex of W. This 

produces the desired bipartite tournament T with partite sets U and W and 
score sequences si and 91. 

The final result of this section, which is stated without proof, is the 

analogue of Theorems 7.9 and 7.10 for bipartite tournaments. 
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Figure 7.7 Construction of a bipartite tournament with given score sequences 
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Theorem 7.14 Let si: au a2, ... , am and 95: bu b2, ... , bn be nondecreasing 
sequences of nonnegative integers. Then d and 9Ji are score sequences of a 

bipartite tournament if and only if 

k ( 

X>,.+ £b,a« 
i=l ;=1 

for l^k^m and 1 Ht^n, with equality when k-m and t = n. 

Furthermore, the bipartite tournament is strong if and only if the inequality 

is strict except when k = m and t = n. 

Exercises 7.4 

7.20 Which of the following sequences are score sequences? Which are score sequences 

of strong tournaments? For each sequence that is a score sequence, construct a 

tournament having the given sequence as a score sequence. 

(a) 0, 1, 1, 4, 4 

(b) 1, 1, 1, 4, 4, 4 

(c) 1, 3, 3, 3, 3, 3, 5 

(d) 2, 3, 3, 4, 4, 4, 4, 4 

7.21 What can be said about a tournament T with score sequences slt s2, ■ ■ ■ , sp such 

that equality holds in (7.1) for every k, 1 ^&=£p? 

7.22 Show that if if: .?], s2, ■ ■ ■ , sp is a score sequence, then if\:p—\—S\,p — \—s2, 
. . . , p — 1 — sp is a score sequence. 

7.23 (a) Use Theorem 7.11 to determine the score sequences of the strong components 

of a tournament T with score sequence 

9f\ 1, 1, 2, 3, 4, 4, 6, 8, 8, 8, 10. 

(b) A score sequence IF of a tournament is called simple if whenever T\ and 7\ 

are tournaments, each having score sequence if, then Ti = T2. Show that the 
sequence if of Exercise 7.23(a) is not simple. 

7.24 Use Theorem 7.11 to prove that every regular tournament is strong. 

7.25 Which of the following pairs of sequences are score sequences of a bipartite 

tournament? For each pair of sequences that are score sequences of a bipartite 

tournament, construct a bipartite tournament with the given pair as score 

sequences 

(a) si: 2, 2, 2, 3 35: 1, 1, 2, 3, 4 

(b) si: 1, 2, 2, 3 <&: 0, 1, 1, 5, 5 

7.26 Use Theorem 7.14 to prove that every regular bipartite tournament is strong. 



Chapter Eight 

Factors and Factorizations 

We now consider special subgraphs that a graph may contain or into which a 
graph may be decomposed. In particular, we emphasize isomorphic decomposi¬ 
tions. 

8.1 Matchings 

Two distinct vertices or edges in a graph G are independent if they are not 
adjacent in G. A set of pairwise independent edges of G is called a matching in 

G, while a matching of maximum cardinality is a maximum matching in G. In 
the graph G of Figure 8.1, the set A/j = {ex, e4) is a matching that is not a 
maximum matching, while M2 = {ex, e3, e5} and AT, = {e,, e3, e6} are maximum 
matchings in G. 

If M is a matching in a graph G with the property that every vertex of G 
is incident with an edge of A/, then M is a perfect matching in G. Clearly, if G 
has a perfect matching M, then G has even order and (A/) is a 1-regular 
spanning subgraph of G. Thus, the graph G of Figure 8.1 cannot have a perfect 
matching. 

Figure 8.1 Matchings and maximum matchings 
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In order to present a characterization of maximum matchings, we 

introduce a few new terms. Let M be a specified matching in a graph G. An 
edge e of G that is not in M is called a weak edge (with respect to M). A weak 

vertex (with respect to M) is a vertex of G incident only with weak edges. An 
alternating path of G is a path whose edges are alternately in M and not in M. 

The following theorem will prove to be useful. 

Theorem 8.1 Let Mx and M2 be matchings in a graph G. Then each component of 
the spanning subgraph H of G with E(H) = {MX — M2)U (M2 — Mx) is one of 

the following types: 
(a) an isolated vertex, 
(b) an even cycle whose edges are alternately in Mx and in M2, 
(c) a nontrivial path whose edges are alternately in Mx and in M2 and such that 

each end-vertex of the path is weak with respect to exactly one of M, and 

M2. 

Proof First we note that A(/Y)^2, for if H contains a vertex v such that degHv5=3, 
then v is incident with at least two edges in the same matching. Since A (H) ^ 2, 

every component of H is a path (possibly trivial) or a cycle. Since no two edges 
in a matching are adjacent, the edges of each cycle and path in H are alternately 

in My and in M2- Thus each cycle in H is even. 
Suppose e = uv is an edge of H and u is the end-vertex of a path P that 

is a component of H. The proof will be complete once we have shown that u 
is weak with respect to exactly one of Mx and M2. Since e e E(H), e e Mx — M2 

or e e M2 - Mx. If e e Mx — M2, then u is not weak with respect to Mb We 
show that u is weak with respect to M2. If this is not the case, then there is an 
edge /in M2 (thus fEe) such that/is incident to u. Since e and / are adjacent, 

f$Mx. Thus, fe M2 - Mx C E(H). This, however, is impossible since u is the 
end-vertex of P. Therefore, u is weak with respect to M2; similarly, if 

e e M2 — Mx, then u is weak with respect to Mx. ■ 

The following characterization of maximum matchings is due to Berge 

IBS]. 

Theorem 8.2 A matching M in a graph G is a maximum matching if and only if 
there exists no alternating path between any two distinct weak vertices of G. 

Proof Assume M is a maximum matching in G and that there exists an alternating 
path P between two distinct weak vertices of G. Necessarily, P has odd length. 
Let M' denote the edges of P belonging to M, and let M" = E{P) — M'. Since 

\M"\ = \M'\ + l, the set (M-M')UM" is a matching having cardinality 
exceeding that of M, producing a contradiction. 
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Conversely, let Mx be a matching in a graph G, and suppose there exists 
no alternating path between any two distinct weak vertices of G. We verify that 

Mi is a maximum matching. Let M2 be a maximum matching in G. By the first 
part of the proof, there exists, with respect to M2, no alternating path between 
any two distinct weak vertices of G. Let H be the spanning subgraph of G with 

E(H) = (Mi — M2) U (M2 — Mi). Suppose Hx is a component of H that is 
neither an isolated vertex nor an even cycle. Then it follows from Theorem 8.1 
that Hi is a path of even length whose edges are alternately in Mx and in AT>, 

for otherwise, there would exist an alternating path between two vertices that 
are both weak with respect to Mx or both weak with respect to M2. This is 

impossible, however. It now follows by Theorem 8.1 that \Mx — M2| = 
\M2 ~ A/i|, which, in turn, implies that | Mx \ = | M2\. Hence, Mx is a maximum 
matching. ■ 

According to Theorem 8.2, if a matching M is given, it is possible to 

decide whether M is a maximum matching by searching for all alternating u-v 
paths, where u and v are distinct weak vertices of G. 

In applications, maximum matchings in bipartite graphs have proved to 
be most useful. The next result, namely Theorem 8.3, attributed to Konig 
[K8] and Hall [H5], is of interest in its own right. 

In a graph G, a nonempty subset Ux of V(G) is said to be matched to a 

subset U2 of V(G) disjoint from Ux if there exists a matching M in G such that 
each edge of M is incident with a vertex of Ux and a vertex of U2 and every 

vertex of Ux is incident with an edge of M, as is every vertex of U2. If M C M*, 
where M* is also a matching in G, we also say that Ux is matched under M* to 

U2. 
Let U be a nonempty set of vertices of a graph G and let its neighborhood 

N(U) denote the set of all vertices of G adjacent with at least one element of 

U. Then the set U is said to be nondeficient if |/V(S)| 2= |S| for every nonempty 

subset S of U. 

Theorem 8.3 Let G be a bipartite graph with partite sets Vx and V2. The set Vx can 
be matched to a subset of V2 if and only if Vx is nondeficient. 

Proof Suppose that Vx can be matched to a subset of V2 under a matching M*. Then 
every nonempty subset 5 of Vx can be matched under M* to some subset of V2, 
implying that |A(5)|^|5| so that Vx is nondeficient. 

To verify the converse, let G be a bipartite graph for which Vx is 
nondeficient and suppose that Vx cannot be matched to a subset of V2. Let M 

be a maximum matching in G. By assumption, there is a vertex v in Vx that is 
weak with respect to M. Let S be the set of all vertices of G that are connected 
to v by an alternating path. Since M is a maximum matching, an application of 
Theorem 8.2 yields that v is the only weak vertex in 5. 
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Let W, = SD and let W2 = Sn V2. Using the definition of the set S, 

together with the fact that no vertex of S-{v} is weak, we conclude that 

Wx - {v} is matched under M to W2. Therefore, | W2\ = | W,| - 1 and W2C A/(W,). 
Furthermore, for every weN(Wx), the graph G contains an alternating v-w 

path so that N(Wx) C W2. Thus, N(WX) = VF2, and 

|N( Wi)| = | W2\ = |W’1| — l<|Wi|. 

This, however, contradicts the fact that Vx is nondeficient. ■ 

We are now in a position to present a well-known theorem due to Hall 

[H5]. A collection Sx, S2, ... , Sn, n 5= 1, of finite nonempty sets is said to have 
a system of distinct representatives or a transversal if there exists a set {5], s2, 

s„} of distinct elements such that s, e S, for (For a thorough 

treatment of transversals, see [M7].) 

Theorem 8.4 (Hall) A collection Su S2, ... , S„, n2* 1, of finite nonempty sets has 
a system of distinct representatives if and only if the union of any k of these sets 

contains at least k elements, for each k such that l^k^n. 

Proof From the collection Sx, S2, ... , S„, n 2* 1, of finite, nonempty sets we construct 
a bipartite graph G with partite sets Vx and V2 in the following manner. Let Vx 

be the set {vl5 v2, ... , v„} of distinct vertices, where v, corresponds to the set 

Sh and let V2 be a set of vertices disjoint from Vx such that | V2\ = |U?=i^«l, 
where there is a one-to-one correspondence between the elements of V2 and 

those of (J'=iS,, The construction of G is completed by joining a vertex v of Vx 

with a vertex w of V2 if and only if v corresponds to a set S, and w corresponds 
to an element of 5,. From the manner in which G is defined, it follows that Vx 
is nondeficient if and only if the union of any k of the sets S, contains at least k 
elements. Now obviously, the sets S, have a system of distinct representatives if 

and only if Vx can be matched to a subset of V2. Theorem 8.3 now produces 

the desired result. ■ 

The preceding discussion is directly related to a well-known combinatorial 

problem called the Marriage Problem: Given a set of boys and a set of girls 

where each girl knows some of the boys, under what conditions can all girls get 
married, each to a boy she knows? In this context. Theorem 8.4 may be 
reformulated to produce what is often referred to as Hall’s Marriage Theorem: 

If there are n girls, then the Marriage Problem has a solution if and only if 

every subset of k girls (l^k^n) collectively know at .east k boys. 
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Exercises 8.1 

8.1 Show that a tree has at most one perfect matching. 

8.2 Determine the maximum size of a graph of order p having a maximum matching 

of k edges, where (a) p = 2k and (b) p = 2k + 2. 

8.3 Use Menger’s Theorem to prove Theorem 8.3. 

8.2 Factorizations 

A factor of a graph G is a (possibly empty) spanning subgraph of G. If G^ 

G2, ..., G„(n$=2) are edge-disjoint factors of a graph G such that 

(J”=1£'(GI) = £(G), then we write G = G\@G2© • • • © G„ and say G is the 
edge sum of the factors G{, G2, . . . , Gn. This edge sum is called a factorization 

of G into the factors Gu G2, .. . , G„. We have actually already considered 
factorizations when we discussed the arboricity of a graph; namely, a nonempty 

graph G can be factored into at(G) acyclic factors. 
An r-regular factor of a graph G is referred to as an r-factor of G. Hence, 

a graph has a 1-factor if and only if it contains a perfect matching. If there 
exists a factorization of a graph G such that each factor is an r-factor (for a 

fixed r), then G is r-factorable. If G is an r-factorable graph, then necessarily G 

is /c-regular for some k that is a multiple of r. 
More generally, a spanning subgraph H of a graph G is called an isofactor 

of G if G contains a factorization, each factor of which is isomorphic to H. If H 

is an isofactor of G, then we also say that G is H-factorable and that G has an 
isomorphic factorization into the factor H. (Clearly, if a graph G is H- 

factorable, then q{H)\q(G).) Consequently, a graph G of order p = 2n (5s 2) is 
1-factorable if and only if nK2 is an isofactor of G (or, equivalently, G is nK2- 

factorable). 
The problems involving these concepts that have received the most atten¬ 

tion deal with whether a given graph contains a 1-factor and whether a given 
regular graph is 1-factorable. Graphs that contain 1-factors have been char¬ 

acterized by Tutte [T13]. 
The following proof of Tutte’s Theorem is due to Anderson [Al]. An odd 

component of a graph is a component of odd order. 
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Theorem 8.5 (Tutte) A nontrivial graph G has a \-factor if and only if for every 

proper subset S of V(G), the number of odd components of G - S does not 

exceed \ S |. 

Proof Let F be a 1-factor of G. Assume, to the contrary, that there exists a proper 
subset W of V(G) such that the number of odd components of G - W exceeds 
| W|. For each odd component H of G - W, there is necessarily an edge of F 

joining a vertex of FI with a vertex of W. This implies, however, that at least 
one vertex of W is incident with at least two edges of F, which is impossible. 

This establishes the necessity. 
Next we consider the sufficiency. For a subset S of V'(G), denote the 

number of odd components of G - S by k0(G - 5). Hence, the hypothesis for 
G may now be restated as k0(G - S) | S\ for every proper subset S of V(G). 

In particular, k0(G - 0) s* |0| = 0, implying that G has only even components 
and therefore has even order p. Furthermore, we note that for each proper 
subset S of F(G), the numbers k0(G - S) and \S\ are of the same parity, since 

p is even. 
We proceed by induction on even positive integers p. If G is a graph of 

order p = 2 such that k0{G - S) \S\ for every proper subset 5 of V(G), then 

G = K2 and G has a 1-factor. 
Assume for all graphs H of even order less than p (where p 3= 4 is an even 

integer) that if k0(FI - W) | W\ for every proper subset W of V(H), then FI 

has a 1-factor. Let G be a graph of order p and assume that k0(G - S) =£ | S\ for 

each proper subset S of V(G). We consider two cases. 

Case 1: Suppose that k{)(G - S) <\S\ for all subsets S of V(G) with 2 ^ | S\ <p. 

Since k0(G - S) and |S| are of the same parity, k0(G - S) |5| - 2 for all 
subsets S of V(G) with 2^|5|<p. Let e = uv be an edge of G and consider 
G — u — v. Let T be a proper subset of V(G — u — v). It follows that 
k()(G -u-v-T)^\T\, for suppose, to the contrary, that ku(G -u-v-T) 

>\T\. Then 

/c„(G — u — v — T) > 17j = | TU {u, v}| — 2, 

so that k0(G-(TU {u, v}))^ |TU {«, v}|, contradicting our supposition. 
Thus, by the inductive hypothesis, G - // - v has a 1-factor and, hence, so does 

G. 

Case 2: Suppose there exists a subset R of V(G) such that k()(G — R) = \R , 
where 2^\R\<p. Among all such sets /?, let S be one of maximum cardinality, 

where k0(G - S) = \S\ = n. Further, let G,, G2.G„ denote the odd 
components of G - S. These are the only components of G - 5, for if G„ were 

an even component of G — S and w„eK(G,)), then k()(G — (S U {«o})) ^ 

n + 1 = |SU {w»}|, implying necessarily that fc0(G - (SU {u0})) = |SU {u0}l» 
which contradicts the maximum property of S. 

For i=l,2./?, let 5, denote the set of those vertices of S adjacent to 
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one or more vertices of G,. Each set S, is nonempty; otherwise some G, would 
be an odd component of G. The union of any k of the sets Sl5 S2, . . . , Sn 

contains at least k vertices for each k with 1 n; for otherwise, there exists 
k (1 ^k^n) such that the union T of some k sets contains less than k vertices. 

This would imply, however, that MG - T) > \ T\, which is impossible. Thus, 
we may employ Theorem 8.4 to produce a system of distinct representatives for 

Si, S2, • ■ • , Sn. This implies that 5 contains vertices vx, v2, . .. , v„, and each 
G, contains a vertex ut (1 i s£/i) such that w,v, e E(G) for i = 1, 2, . . . , n. 

Let IT be a proper subset of F(G,- ut), We show that 
ko(G, - Ui - W) ^ | W\, for suppose that MG, - ut - W) > \ W\. Since G, - u, 

has even order, /c0(G, — w, — IT) and | VT| are of the same parity and so 
MG,-ut-W)^\W\ + 2. Thus, 

MG-(5U WU{m,))) = MG,-«,- W) + k0(G-S)- 1 
Ss | S| + \W\ + 1 
= | S U VTU {«,} |. 

This, however, contradicts the maximum property of S. Therefore, MG,- 

Uj— W)MW| as claimed, implying by the inductive hypothesis that, for /'= 1, 
2, . . . , n, the subgraph G, - has a 1-factor. This fact, together with the 
existence of the edges n,v, (IsS/sSn), produces a 1-factor in G. ■ 

By definition, every 1-regular graph contains a 1-factor and, trivially, is 1- 

factorable. A 2-regular graph G contains a 1-factor if and only if every 
component of G is an even cycle; such graphs are, of course, also 1-factorable. 
This brings us to the 3-regular or cubic graphs. First, not all cubic graphs 
contain 1-factors, as is shown by the graph of Figure 8.2. 

Petersen [PI], however, proved that every cubic graph that fails to 
contain a 1-factor possesses bridges. 

Figure 8.2 A cubic graph containing no 1 -factors 
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Theorem 8.6 (Petersen) Every bridgeless cubic graph can be expressed as the edge 

sum of a 1-factor and a 2-factor. 

Proof It is sufficient to show that every bridgeless cubic graph G has a 1-factor. 
Assume, to the contrary, that G has no 1-factor. Then by Theorem 8.5, P(G) 

has a proper subset S such that the number of odd components of G - S 

exceeds 151. Let k = | S | and let G,, G2.G„ (n > k) be the odd components 
of G- S. There must be at least one edge joining a vertex of G, to a vertex of 

S, for each i = 1, 2, for otherwise, G, is a cubic graph of odd order. On 
the other hand, since G contains no bridges, there cannot be exactly one such 

edge; that is, there are at least two edges joining G, and 5, for each i= 1,2, 

... , n. 
Suppose that for some / = 1, 2, ... ,n, there are exactly two edges joining 

G, and S. Then there are an odd number of odd vertices in the component G, 
of G - 5, which cannot happen. Hence, for each / = 1, 2, ..., n, there are at 

least three edges joining G, and S. Therefore, the total number of edges 

joining (J”=i V(Gf-) and 5 is at least 3n. However, since each of the k vertices 

of S has degree 3, the number of edges joining (J"=i v(Gi) and s is at most 3k■ 
Therefore, 3k^3n, which is a contradiction since 3n>3k. Hence, no such set 

S exists. By Theorem 8.5, then, we conclude that G has a 1-factor. ■ 

Theorem 8.6 states that every bridgeless cubic graph G can be factored 

into a 1-factor and a 2-factor. If the 2-factor can be factored into two 1-factors, 
then G is 1-factorable. However, not every bridgeless cubic graph is 1-factorable, 
as the Petersen graph (see Figure 8.3) illustrates and as is verified in the 

following theorem. 

Figure 8.3 The Petersen graph 
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Theorem 8.7 The Petersen graph is not 1-factorable. 

Proof Suppose, to the contrary, that the Petersen graph is 1-factorable. Then it can 

be factored into three 1-factors, one of which, say F, contains at least two 
edges of the set 5= {vfv/1/ = 1, 2, 3, 4, 5} (see Figure 8.3). Deleting any two 
edges of S and their incident vertices from the Petersen graph gives the graph 
shown in Figure 8.4, where the edges belonging to S are so labeled. The only 1- 

factor of this subgraph consists of the three edges in S, and so F must be the 1- 
factor induced by the elements of S. But then this implies that the graph 2C5 

that results by deleting the edges of S from the Petersen graph is 1-factorable, 
which is impossible. ■ 

Figure 8.4 A subgraph of the Petersen graph 

The preceding result shows that the graph 5K2 is not an isofactor of the 
Petersen graph; however, S. Ruiz verified that the Petersen graph has exactly 

ten isofactors of size 5. They are shown in Figure 8.5. 

Figure 8.5 The isofactors of size 5 of the Petersen graph 
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A useful device for showing that the graphs of Figure 8.5 are in fact 
isofactors of the Petersen graph involves the alternative drawing of the Petersen 

graph shown in Figure 8.6(a). We illustrate the method for F, (drawn in Figure 

8.6(b)). Rotating the edges of F, about vertex v in angles of 120° and 240°, 
respectively, produces an Fx-factorization of the Petersen graph. 

Figure 8.6 An isofactor of the Petersen graph 

We next consider a somewhat reverse question: Is the Petersen graph an 

isofactor of some graph? Of course, the Petersen graph is an isofactor of itself. 

Also, it is not difficult to show that the Petersen graph is an isofactor of a 6- 
regular graph. What is considerably less clear is whether the Petersen graph is 

an isofactor of Kw. This question is answered in the negative in the following 

result, the proof of which is due to A. J. Schwenk. 

Theorem 8.8 The Petersen graph is not an isofactor of Kw. 

Proof Assume, to the contrary, that Kw= F1©F2©P3, where P,, i = l, 2, 3, is 

isomorphic to the Petersen graph. Thus, 

A(Pl)+A(P2) + A(P3) = J-I, (8.1) 

where J is the 10 x 10 matrix each of whose entries is 1, / is the 10 x 10 identity 

matrix, and A{P,), i= 1, 2, 3, is the adjacency matrix of P,. 
The Petersen graph is known to have eigenvalues 3, 1 (of multiplicity 5) 

and -2 (of multiplicity 4). Since the Petersen graph is cubic, the column vector 

T = (l, 1, ..., 1)' is an eigenvector corresponding to the eigenvalue 3 for 
A(Pj), i= 1, 2, 3. Therefore, the eigenspaces corresponding to the eigenvalues 

1 and -2 lie in the 9-dimensional orthogonal complement S of the eigenspace 
spanned by T. For the eigenvalue 1, the eigenspaces of A(PX) and A{P2) are 
both 5-dimensional subspaces of S so that there exists a nonzero vector vv in the 
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intersection of these subspaces. Therefore, A(Pi)w=\w=w for /=1, 2. 
Equation (8.1) implies that 

A{P \)w + A(P2)w + A{P3)w = Jw — I w. (8.2) 

Since ~v and w are orthogonal, it follows that Jw = 0 and, consequently, (8.2) 
yields 

w 4- w + A {P3)w = 0 — w 

or, equivalently, A(P3)w= -3vv. This implies that -3 is an eigenvalue of 
A(P3), which produces a contradiction. ■ 

We now present some results concerning r-factorability for r= 1, 2. 
Although Theorem 8.7 shows that a regular graph of even order need not be 1- 

factorable, Konig [K7] has shown that every such bipartite graph is 1-factorable. 

Theorem 8.9 Every regular bipartite graph of degree r2= 1 is {-factorable. 

Proof We proceed by induction on r, the result being obvious for r=l. Assume, 

then, that every regular bipartite graph of degree r— 1, /-2=2, is 1-factorable, 
and let G be a regular bipartite graph of degree r, where Vx and V2 are the 
partite sets of G. 

We now show that Vx is nondeficient. Let 5 be a nonempty subset of V). 
The number of edges of G incident with the vertices of S is r|S|. These edges 
are, of course, also incident with the vertices of N(S). Since G is /--regular, the 
number of edges joining S and /V(S) cannot exceed r\ /V(S)|. Hence, r|N(5)| 5? 
r|S| so that |iV(S)| 2= | S|. Therefore, Vx is nondeficient, implying by Theorem 

8.3 that Vx can be matched to a subset of V2. Since G is regular of positive 
degree, | Vx \ = \ V2\; thus, G has a 1-factor F. The removal of the edges of F 

from G results in a bipartite graph G' that is regular of degree r— 1. By the 

inductive hypothesis, G' is 1-factorable, implying that G also is 1-factorable. ■ 

The 2-factorable graphs have been characterized by Petersen [PI]. We 
present this result next. 

Theorem 8.10 A nonempty graph G is 2-factorable if and only if G is 2n-regular for 

some n ^ 1. 

Proof Certainly if G is 2-factorable, then G is regular of even positive degree. 
Conversely, suppose G is 2rc-regular for some n^l. Without loss of generality, 
we assume that G is connected. Hence, G is eulerian and contains an eulerian 

circuit C. 
Let V(G) = {vi, v2, • • • , vp). We define a bipartite graph FI with partite 
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sets U= {u\, u2, ■ ■ ■ , up} and W — {wu w2, ..., wp}, where 

E(H) = {iijWj|Vj immediately follows v, on C}. 

The graph H is n-regular and so, by Theorem 8.9, is 1-factorable. Hence, 

H = Fl®F2@---@Fn, where Fk(l^k^n) is a 1-factor. 
Corresponding to each 1-factor Fk of H is a permutation <xk on the set {1, 

2, defined by ock(i)=j if u^-e F(F*). Let a* be expressed as a 
product of disjoint permutation cycles. There is no permutation cycle of length 

1 in this product; for if (z) were a permutation cycle, then this would imply that 
ock(i) = i. However, this further implies that zz,w, e E{Fk) and that v,v, e F(C), 
which is impossible. Also there is no permutation cycle of length 2 in this 
product; for if (zy) were a permutation cycle, then ock(i) =j and ock(j) = i. This 

would indicate that u.-wy, «yw, e E(Fk) and that v, both immediately follows and 
precedes v, on C, contradicting the fact that no edge is repeated on a circuit. 

Thus, every permutation cycle in ock has length at least 3. 
Each permutation cycle in uk therefore gives rise to a cycle in G, and the 

product of disjoint permutation cycles in ak produces a collection of mutually 
disjoint cycles in G containing all vertices of G; that is, a 2-factor in G. Since 
the 1-factors Fk in H are mutually edge-disjoint, the resulting 2-factors in G are 

mutually edge-disjoint. Hence, G is 2-factorable. ■ 

We now consider 1-factorization and 2-factorization of a very special class 

of graphs, namely the complete graphs. If Kp is 1-factorable, then certainly p 
must be even; if Kp is 2-factorable, then p is odd (and at least three) since Kp is 
{p- i)-regular. As the next two theorems indicate, it is, in fact, the case that 

K2n is 1-factorable and that K2n+l(n^l) can be factored into connected 2- 

factors. 

Theorem 8.11 For every positive integer n, the graph K2n is \-factorable. 

Proof The result is obvious for n = 1. Thus we assume /i 2* 2. Let V(K2n) = {v0, vu 

• • • , v2„_!}. Arrange the vertices vlf v2, ..., v2„_! in a regular {In - l)-gon, 
and place v0 in the center. Join every two vertices by a straight line segment. 
For i = 1, 2, ... ,2n-l, define the edge set of the factor F, to be the edge v0v, 

together with all those edges perpendicular to VoV,. Then K2n = f,®f2® 

■ • • ©F2„_i, where F, is a 1-factor of K2n, i= 1,2, ..., 2n - 1. ■ 

A generalization of this theorem will be presented in the next section. 

Theorem 8.11 and its proof are illustrated in Figure 8.7 for F6. 
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Theorem 8.12 For every positive integer n, the graph K2n+1 can be factored into n 
hamiltonian cycles. 

Proof Since the result is clear for n = 1, we may assume that n =2 2. Let V(K2n + l) = 

{vo, vi, ■ ■ ■ , v2„}. Arrange the vertices Vj, v2, .. . , v2n in a regular 2n-gon and 
place v0 in some convenient position. Join every two vertices by a straight line 

segment, thereby producing K2n+1. We define the edge set of F, to consist of 
V0V1, v0v„+1, all edges parallel to VjV2 and all edges parallel to v2„v2. (See F{ in 
Figure 8.8 for the case n = 3.) In general, for i= 1, 2, we define the 

edge set of the factor F, to consist of v0v(, v0v„+/, all edges parallel to v,v,+ 1 
and all edges parallel to where the subscripts are expressed modulo 
2n. Then K2n+l = F, ©F2© ■ • • ©F„, where F, is the hamiltonian cycle 

V0, V;, V;+], V(_j, V(+2, V,_2, . . . , V„+(+j, Vn+i, Vq. I 

This result is illustrated in Figure 8.8 for K7. 

Corollary 8.12 For every positive integer n, the graph K2n is the edge sum of n 
hamiltonian paths. 

Using the construction employed in the proof of Theorem 8.11, we can 
obtain the following related result. 

Theorem 8.13 For every positive integer n, the graph K2n is the edge sum of n — 1 
hamiltonian cycles and a l-factor. 



238 Chapter 8 Factors and Factorizations 

Figure 8.8 A factorization of K7 into hamiltonian cycles 

Exercises 8.2 

8.4 Show that each of the graphs of Figure 8.5 is an isofactor of the Petersen graph. 

8.5 Show that Pb U AKX is not an isofactor of the Petersen graph. 

8.6 Determine all isofactors of size 3 of the Petersen graph. 

8.7 An isofactor F of a graph G is called proper if 1 < q(F) < q(G). A graph G is 
prime if it has no proper isofactors. 

(a) Show that every graph of prime size is prime. 

(b) Give an example of a prime graph of composite size. 

8.8 Give an example of a connected graph G of composite size having the property 
that whenever F is a factor of G and q(F)\q(G), then F is an isofactor of G. 

8.9 (a) Prove that Qn is 1-factorable for all n 2s 1. 
(b) Prove that Qn is m-factorable if and only if m\n. 

8.10 Prove that every cubic graph with at most two bridges contains a 1-factor by using 
a technique similar to that used in the proof of Theorem 8.6. 

8.11 (a) Let G be a graph, all of whose vertices are odd, and let lG U V2 be a partition 
of U(G), where E' is the set of edges joining V] and V2. Prove that | Vt and 
\E'\ are of the same parity. 

(b) Prove that every (2m + l)-regular, 2m-edge-connected graph, m 2s 1, can be 
factored into a 1-factor and m 2-factors. 

8.12 Let n be a nonnegative even integer and p 2s5 an odd integer with n^p-3. 
Prove that there exists a graph G of order p having degree set 2>G={n» 

n + 2}. 

8.13 Using the proof of Theorem 8.10, give a 2-factorization of the graph of the 
octahedron (the graph KM2)). 
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8.14 Prove Corollary 8.12. 

8.15 Prove that /C„+1(/j 1) cannot be factored into hamiltonian paths. 

8.16 Give a constructive proof of Theorem 8.13. 

8.3 Decompositions 

Very similar to the concept of a factorization of a graph G is a decomposition 
of G. A decomposition of G is a collection {//,} of subgraphs of G such that 
Hi= (Ei) for some subset £, of E(G) and where {£,} is a partition of E(G). 
If {Hi} is a decomposition of G, then we write G as the edge sum 

Hi © H2 © • ■ • © Hn, where n - | { H,} |, as we do with factorizations. Indeed, 
if G = Hi@H2® ■ ■ ■ ®Hn is a decomposition of a graph G of order p and we 
define Ft = Ht U [p —p(//,)]Klf then Fx ©F2© • • • ©F„ is a factorization of 
G. If {H^ is a decomposition of a graph G and //, = // for each i, then G is H- 
decomposable. 

A /©decomposable complete graph is called a Steiner triple system. 
Kirkman [K4] has characterized Steiner triple systems. 

Theorem 8.14 The complete graph Kp is K^-decot n p os able if and only if p © 3) is 
odd and 3|Q. 

For Kp to be Kn+1 -decomposable, the conditions n\(p — 1) and ("2 !)| (2) 
are necessary. These conditions are not sufficient in general, however. For 

p = n2 + n + 1, Ryser [Rll] showed that Kp is Kn + l-decomposable if and only 
if there exists a projective plane of order n\ and in order for a projective plane 
of order n to exist, n must satisfy the Bruck-Ryser conditions [BR2] that n = 0 
or 1 (mod 4) and n=x2 + y2 for integers x and y. The smallest value of n for 
which the existence of a projective plane of order n is unknown is n = 10. 

Whenever Kp is decomposed into graphs Kn+X where n + \<p, then we 

have an example of the combinatorial structure referred to as a balanced 
incomplete block design. Thus the concept of graph decompositions may be 
thought of as a generalized block design. 

The vast majority of factorization and decomposition results deal with 
factoring or decomposing complete graphs into a specific graph or graphs. 
R. M. Wilson [W8] proved that for every nonempty graph H, there exist 

infinitely many positive integers p such that Kp is //-decomposable. As a 
consequence, there exists a regular //-decomposable graph for each nonempty 
graph H. This result also appears in [F2]. The proof we give is due to Fink and 
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Ruiz [FR1] and was inspired by a proof technique of Rosa [R9], 

Theorem 8.15 Let H be a graph without isolated vertices. Then there exists a regular 

H-decomposable graph. 

Proof Label the vertices of H with distinct positive integers so that the induced edge¬ 
labeling is one-to-one; i.e., let /: V(H)^>N (where /V is the set of natural 
numbers) be a one-to-one function such that uv, xy e E(H) and uv ± xy imply 

that the label | f(u) -/(v)| of uv is different from the label \f(x) ~f(y)\ of xy. 
(Although there are many ways to produce such a labeling, one method is to 

label the ith vertex of H by 2' '.) 
We now construct a regular, //-decomposable graph G of order p, where 

p = 1 + 2max {| f(u) —/(v)| |uv e £(//)}. 

Let R(G) = {v1, v2, ..., vpj and arrange the vertices cyclically in counter¬ 

clockwise order about a regular p-gon. Next we define a graph Hx by 

V(Hl) = {vflx)\xeV(H)} 

and 

E(Hi) — {Vf(X)Vf(y)\xy e E(H)}. 

For / = 2, 3.p, define H, by cyclically rotating Hx about the p-gon through 

a counterclockwise angle of 2jt(/— l)/p radians; in particular 

V(Hi)={vf(x)+i-l\xeV(H)} 

and 

E{Ht) = {vf(x)+i-xVAy)+i-Axy e E(H)} 

for i=l, 2, ..., p. The definition of G is completed by defining E(G) = 
|Jf=1 E{Hj). (See Figure 8.9 for a given graph //, a possible labeling of the 

vertices of //, the induced edge labels of //, the vertices of G, and the graphs 

Hi and //2, where the edges of H2 are drawn with dashed lines.) 
The graph G is therefore decomposable into the graphs Hx, H2, .... Hr, 

each of which is isomorphic to //, and G is 2qr-regular, where q is the size of H. 

This completes the proof. ■ 

Suppose, in the preceding proof, that H is graceful (see Exercise 3.11), 

i.e., it is possible to label the vertices of H so that the induced edge labels are 
2.q. Then G = K2q+\ and, consequently, K2q+, is //-decomposable. 

Certainly, every result dealing with factorizations can be reformulated in 

terms of decompositions. For example. Theorem 8.11 states that K2n is nK2- 
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G: 
v-jO 

Figure 8.9 Construction of a regular H-decomposable graph 

decomposable for every integer « 3= 1. This theorem has been generalized by 
Ruiz [RIO]. 

A linear forest is a forest each component of which is a path. Thus every 
1-factor is a linear forest. 

Theorem 8.16 If F is a linear forest of size n having no isolated vertices, then K2n is 
F-decomposable. 

Proof Since the result is obvious for n = 1, we assume that n 3= 2. Let the vertex set of 

K2n be denoted by {v0, vl5 v2, ... , v2„_i}. Arrange the vertices vl5 v2, ..., 
v2n-i cyclically in counterclockwise order about a regular (2n - l)-gon, calling 
the resulting cycle C, and place v0 in the center of the (2n — l)-gon. Join every 
two vertices by a straight line segment to obtain the edges of K2n. For the 
purpose of this proof, we refer to any edge joining v0 to a vertex of C as a fl¬ 
edge (there are obviously 2n — 1 such edges). Every other edge of K2n joins 

two vertices of C. If uv is an edge joining two vertices of C, then we call uv an 
/-edge if dc(u, v) = /. Note that 1 ^ n — 1 and that for each / = 1, 2, 
n — 1, the graph K2n contains 2n — 1 /-edges. 

We now describe two paths P and Q of length n in K2n. If n is even, then 

P- Vo, Vi, v2„ —1, V2, V2n-2, V3, . . . , Vn/2, V3„/2 

and 

Q• Vq, Vn, V„ + i, Vn_j, V„+2, V,|_2, . . . , ^(«+2)/2, ^3n/2, 

while if n is odd, then 

P- v0, Vj, V2„_1, V2, v2„_2, V3, . . . , V(3„+1)/2, V(„ + 1)/2 
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and 

Observe that, in either case, the z'th edge of P and the z'th edge of Q are (/- 1)- 

edges for i = 1, 2, ... , n. 
Assume that the linear forest 

F— Pn. + \ U P„ +! U • • • U /*„+!, 

where then Ef=1nt = n. We define a subgraph H of K2n as follows. The edge set 
E of H consists of the first n, edges of P, edges nx + 1 through nx + n2 of Q, 
edges ti\ + n2 + 1 through nx + n2 + ZI3 of P, and so on until finally the last n^ 

edges of Q if k is even or the last nk edges of P if k is odd. Define //=(£>. 
Note that H = F and that H contains exactly one /-edge for each i = 0, 1, 

n — 1. 

Now for ;'=1, 2, ..., 2n-l, define H, to be the subgraph of Kln 
obtained by revolving H about the (2n - l)-gon in a counterclockwise angle of 

2n(j - l)/(2n — 1) radians. Observe that for each / = 0, 1, ... , n - 1 and each 
7=1,2, ..., In - 1, the subgraph Hj contains exactly one /-edge. Since Hj = H 

for each 7= 1, 2, ... , In - 1 and Kln is decomposed into the subgraphs Hx, 

H2__Hjn—i> it follows that K2n is //-decomposable. ■ 

The preceding theorem and its proof are illustrated in Figure 8.10 for 
In = 12 and F= P2 U P3 U P4. The labeling of the vertices of Kx2 is shown along 

with the subgraph H (or Hx). 

vkO Or4 

VyC 

Figure 8.10 A step in the construction of an F-decomposition of K]2 for F= P2 U Px U I\ 
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Exercises 8.3 

8.17 (a) Find a /^-decomposition of K-, by using the fact that K3 is graceful, 

(b) Find a noncomplete, regular graph that is /^-decomposable. 

8.18 Find an F-decomposition of Ku where F = 2P2 U 2P3. 

8.19 Find a P6-decomposition of Kw. 

8.20 For each integer n^l, prove that 

(a) K2„+1 is F(l, ^-decomposable. 

(b) K2n is F(l, n)-decomposable. 

8.21 Let G be a connected graph. 

(a) Prove that G is P3-decomposable if and only if G has even size. 

(b) Show that the result in (a) is false if P3 is replaced by 2K2. 

8.4 Coverings 

Recall that an independent set of vertices in a graph G is one whose elements 
are pairwise independent (nonadjacent) and that the vertex independence 
number /3(G) of G is the maximum cardinality among the independent sets of 
vertices in G. One can similarly define an independent set of edges in G as a set 
of edges, each two of which are independent (nonadjacent). The edge in¬ 
dependence number fi\{G) of G is the maximum cardinality among the 

independent sets of edges in G. For example, if m^n, then /3(K(m, n)) = n 
and n)) = m. 

A vertex and an edge are said to cover each other in a graph G if they are 
incident in G. A vertex cover in G is a set of vertices that covers all edges of G. 
An edge cover in a graph G without isolated vertices is a set of edges that 
covers all vertices of G. 

The minimum cardinality of a vertex cover in a graph G is called the 
vertex covering number of G and is denoted by a(G). Suppose we represent a 
street system in a town by a graph G, in which the streets themselves (actually 
street segments) are the edges of G and the intersections are the vertices of G. 
Suppose further that we wish to station one law officer at each of various 
intersections so that some law officer can get to any location in the town 
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quickly, i.e., we wish to have a law officer stationed at one or both intersec¬ 

tions at the end of each street segment. Then the fewest such law officers 

needed is a(G). 
As expected, the edge covering number ar,(G) of a graph G (without 

isolated vertices) is the minimum cardinality of an edge cover in G. For m^n, 

we have a(K(m, n)) = m and ax(K(m, n)) = n. 
As an added illustration of the four parameters just presented, we note 

that for p ^ 2, p(Kp) = 1, Pi(Kp)= [p/2\, ae(Kp)=p- 1, and ax(Kp) = f p/2'1. 
Observe that for the two graphs G of order p considered above, namely 

K(m, n), with p = m + n, and Kp, we have 

a(G) + P(G) = al(G) + pl(G) = p. 

These two examples serve to illustrate the next theorem, due to Gallai [Gl], 

Theorem 8.17 (Gallai) If G is a graph of order p having no isolated vertices, then 

a(G) + P(G)=p (8.3) 

<*i(G) + P\(G) = p. (8.4) 

Proof We begin with (8.3). Let U be an independent set of vertices of G with | U\ = 
p(G). Clearly, the set V(G) -U is a vertex cover in G. Therefore, <*(G) =£p - 
P(G). If, however, W is a set of a{G) vertices that covers all edges of G, then 

V(G) - W is independent; thus /3(G) ^p - a(G). This proves (8.3). 
To verify (8.4), let Ex be an independent set of edges of G with \EX\ = 

px(G). Obviously, Ex covers 2fix(G) vertices of G. For each vertex of G not 
covered by Ex, select an incident edge and define E2 to be the union of this set 

of edges and Ex. Necessarily, E2 is an edge cover in G so that \E2\ 5sax(G). 

Also we note that |£j| + |£2| =p; hence ax(G) + px(G)^p. Now suppose E' 
is an edge cover in G with \E'\ = ax (G). The minimality of E' implies that each 
component of (£') is a tree. Select from each component of (£') one edge, 

denoting the resulting set of edges by £". We observe that \ E"\ ^ px(G) and 

that |£'| + | £"| = p. These two facts imply that Q'i(G) + fix(G) 2=p, completing 

the proof of (8.4) and the theorem. ■ 

If C is a vertex cover in a graph G and £ is an independent set of edges, 

then for each edge e of £ there is a vertex ve in C that is incident with e. 
Furthermore, if e,fe £, then ve ± vf. Thus for any independent set £ of edges 
and any vertex cover C in G, we have \C\^\E\. This, of course, implies that 

a(G) 2s fi\(G). In general, equality does not hold here. If, however, G is 

bipartite, then we do have a(G) = /8,(G), as was shown by Konig [K8], 
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The proof of Konig’s Theorem presented here employs the max-flow min- 
cut theorem and indicates a method for finding a maximum set of independent 
edges and a minimum vertex cover in a bipartite graph. 

Theorem 8.18 (Konig) If G is a bipartite graph, then 

a (G) = /3,(G). 

Proof Since a(G)2://(G), we need only show/i,(G) ^ a(G). Suppose G has partite 
sets Vx and V2. Let D be the digraph obtained from G by adding two new 
vertices u and v, all arcs from u to vertices in Vy, and all arcs from vertices in 

V2 to v, and by replacing each edge vxv2, where v, 6 Vy and v2 e V2, with the 
arc (vj, v2). Then N is taken to be the network with underlying digraph D, 
source u, sink v, and capacity function c on E(D) defined by 

, if a = (u, x) or a = (x, v) for some rekjU V2, 
Vy\ + 1, otherwise. 

By Theorem 5.15, the value of a maximum flow/in N equals the capacity 
of a minimum cut K = (X, X). The proof will be complete if we show that 

//(G)25val/and cap K^oc(G). Since the capacity of each arc a incident from 
u or to v is 1, it follows that f(a) = 0 or 1 for each such arc a. Furthermore, 

f(a) = 0 or 1 for every arc a of D since f(x, V(D)) = f(V(D), x) whenever 
x e V(D) — {u, v}. Suppose that val/=m. Thus there are distinct vertices ux, 
u2, ... , um of Vy such that f(u, n,) = 1 for i = 1, 2, .. . , m. It follows that 

/(«/, V2) = 1, ls£/s£ra, and that there is exactly one vertex w, e V2 such that 
(«,, w;) e E(D) and f{ui,wi) = 1. Since c{wh v) = l, we conclude 
that if i E j, then w, E Wj. Thus, {w/W,| l^i^m} is an independent set of edges 
of G, and so // (G) 2= m = val/. 

Let A = Vy <1X and B = V2E\X. By the way in which D was defined, 
then. 

K={u,A)\J{Vy-A, V2-B)U (B, v). 

However, since cap \ V, | and c(a) = | V{ | + 1 \i a e(Vx — A, V2 — B), we 
have that (Vy — A, V2 — B) = 0. Thus all arcs from Vy to V2 in D are incident 
from a vertex of A or to a vertex of B, and so A U B is a vertex cover in G. 
Furthermore, 

cap K = c(u, A) + c(B, v) = \A U B \. 

Hence, cap K = \A U 5| 2= a'(G), and so 

a(G) = |A U B\ = capK-val/=/3,(G). ■ 
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To determine, for example, a maximum independent set of edges and a 

minimum vertex cover in the bipartite graph G of Figure 8.11(a), we apply 
Algorithm 5A to the network N with underlying digraph D in Figure 8.11(b), 

source u, sink v, and whose capacity function c satisfies 

_ |1, if a = (u, x) or a = (x, v) for some x e Vx U V2, 

c(a^ - (6, otherwise. 

We obtain the maximum flow and minimum cut K indicated in Figure 8.11(c), 

so that o'(G) = /S1(G) = 4. Proceeding as in the proof of Theorem 8.18, we 

have 

A = V, n X= {u2, u3, u4, u5) and B=V2GX = 0- 

Thus, {u2, w3, t/4, u$) is a minimum vertex cover and {u2w2, u3w5, n4w3, 

U5W4} is a maximum independent set of edges in G. 
Next we present upper and lower bounds for the edge independence 

number, due to Weinstein [W3]. 

Theorem 8.19 Let G be a graph of order p without isolated vertices. Then 

P 
1 + A(G) 

Furthermore, these bounds are sharp. 

Proof It suffices to prove the theorem for connected graphs. The upper bound for 

/3t(G) is immediate and clearly sharp. 
In order to verify the lower bound, we employ induction on the size q of 

a connected graph. If q=l or <7 = 2, then the lower bound follows. Assume 
that the lower bound holds for all connected graphs of positive size not 

exceeding k, where k^2, and let G be a connected graph of order p having 

size k+1. If G has a cycle edge e, then 

p,(G)a/),(G-f)*1 + AfG_-7js rfku)' 

Otherwise, G is a tree. If G = K( 1, p- 1), then fr(G) =p/(l + A(G)) = 1 
(which also shows the sharpness of the lower bound). If G^ K( 1, p- 1), then 
G contains an edge e such that G-e has two nontrivial components Gj and 

G2. Let pi denote the order of G„ i = l, 2. Applying the inductive hypothesis 

to Gi and G2, we obtain 

P» | P^_ 

1 + A(Gi) 1 + A(G2) /31(G)^/3l(G1) + /i,(G2)^ 
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G: 

K = ({m, Mj}, {u, uj) 

(c) 

Figure 8.11 Maximum independent sets of edges and minimum vertex covers 
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^ P i | El = —E- ■ 
-"1 + A(G) 1 + A(G) 1 + A(G) 

Combining Theorems 8.17 and 8.19, we have our next result. 

Corollary 8.19 Let G be a graph of order p without isolated vertices. Then 

p P-A(G) 

2 
=£»! (G)=s L1 +A(G)J 

Furthermore, these bounds are sharp. 

It is easy to see for a graph G of order p without isolated vertices that 

1 /3(G) - 1 and that these bounds are sharp. This implies that 1 ^ cr(G) =£ 

p - 1 are sharp bounds for a(G). 
We briefly consider two other kinds of “covers”. A vertex dominating set 

for a graph G is a set S of vertices such that every vertex of G belongs to 5 or is 
adjacent to a vertex of S. Edge dominating sets are defined analogously. The 
minimum cardinality of a vertex dominating set in a graph G is called the i ertex 

dominating number of G and is denoted by a(G). The edge dominating number 

o}(G) is defined similarly. For the complete graph Kp, o(Kp) = 1 and o^Kp) = 

[p/2\. 
We next establish an inequality involving the independence and vertex 

dominating numbers of a graph. 

Theorem 8.20 For every graph G, 

a(G)s£/3(G). 

Proof Let U be an independent set of vertices of G with | U\ = 13(G). Every vertex 
veV(G)- U is adjacent to some vertex of U\ otherwise, U U {v} is an in¬ 
dependent set of vertices having cardinality /3(G) + 1. Thus U is a vertex 

dominating set so that o(G) fi{G). ■ 

In a similar fashion, the following result can be established. 

For every graph G, Theorem 8.21 

^(Gj^G). 
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Exercises 8.4 

8.22 Verify Gallai’s Theorem for the regular complete n-partite graph of order kn, 
where n is even. 

8.23 Prove or disprove: A graph G without isolated vertices has a 1-factor if and only 
if ar1(G) = j8,(G). 

8.24 Show that a graph G is bipartite if and only if /3(H) 2* | V(H)\/2 for every 
subgraph H of G. 

8.25 Prove that if G is a bipartite graph without isolated vertices, then a,(G) = (3(G). 

8.26 An independent set of vertices (edges) in a graph G is maximal independent if it 
is not properly contained in any other independent set of vertices (edges). Char¬ 

acterize those nonempty graphs with the property that every pair of maximal 
independent sets of vertices is disjoint. 

8.27 Let G be a graph and let UC V(G). Use Theorem 8.5 to prove that G has a set 

of independent edges covering U if and only if for every proper subset S of V(G), 
the number of odd components of G — S containing only vertices of U does not 
exceed |S|. 

8.28 (a) Let (3*(G) denote the minimum cardinality among the maximal independent 

sets of edges of a graph G. Prove that /3f(G) = at(G) for every graph G. 

(b) Prove Theorem 8.21. 

8.29 For each nonnegative integer n, determine a graph Gn for which (3(Gn) - 
o(Gn) = n and a graph Hn for which (3x(Hn) - a,(//„) = n. 

8.30 Use Menger’s Theorem to prove Theorem 8.18. 

8.31 Use Theorem 8.2 to prove Theorem 8.18. 

8.32 Use the max-flow min-cut theorem to prove Theorem 8.3. 



Chapter Nine 

Graphs and Groups 

With every set on which a relation or operation is defined, there exists a group 
of permutations that preserve that relation or operation. Graphs are no excep¬ 

tion. We describe here three groups and one graph defined in terms of certain 
adjacencies in a given graph. Conversely, some digraphs that arise very 

naturally from a given finite group are discussed. 

9.1 The Group and Edge-Group of a Graph 

An automorphism of a graph G is an isomorphism of G with itself, that is, a 

permutation on V(G) that preserves adjacency. It is an immediate consequence 

of the definition that if (p is an automorphism of G and veV(G), then 

deg (pv = deg v. 
It is straightforward to verify that (under the operation of composition) 

the set of all automorphisms of a graph G forms a group, denoted by si(G) 

and referred to as the automorphism group, the vertex-group, or simply the 
group of G. For example, si{Kp) is the symmetric group Sp of order p\ while 

s&(Cp) is the dihedral group Dp of order 2p. 
If T' and T" are isomorphic groups, then we w'rite F = F'. Our first 

theorem gives a simple, but useful, consequence of the definitions. 

Theorem 9.1 For any graph G and its complement G, s&(G) = sd(G). 
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Proof Every element cp of sd(G) is a permutation on V(G) that preserves adjacency 
in G. However, (p preserves adjacency if and only if (p preserves nonadjacency. 
Thus a permutation on V(G) is an automorphism of G if and only if it is an 
automorphism of G, implying that s£(G) = si(G). ■ 

We have already mentioned that s£(Kp) = Sp. Certainly, if G is a graph of 
order p containing adjacent vertices as well as nonadjacent vertices, then s£(G) 

is isomorphic to a proper subgroup of Sp. Combining this observation with 
Theorem 9.1 and Lagrange’s Theorem on the order of subgroups of finite 
groups, we arrive at the following. 

Corollary 9.1 The order |.s4(G)| of the group of a graph G of order p is a divisor of 
pi and equals pi if and only if G = Kp or G = Kp. 

With the aid of the group of a graph G of order p, it is possible to 
determine the number of nonidentical graphs that are isomorphic to G and 
labeled from the same set of p labels. 

Theorem 9.2 Let G be a graph of order p. The number of labelings of G from a set 

of p labels such that no two resulting graphs are identical is p!/|.s4(G)|. 

Proof Let {v!, v2, . . . , vp} be a set of p labels. Certainly, there exist pi labelings of 
G from this set of labels without regard to the number of resulting labeled 
graphs that may be identical. If Gx and G2 are two labeled graphs obtained 

from G, then the relation “Gx is identical to G2” is an equivalence relation on 
the set of labeled graphs obtained from G. For a given labeled graph Gj, each 
automorphism of G gives rise to a labeled graph that is identical to Gx, and 
conversely. Hence each equivalence class so determined contains |.s4(G)| 

elements, thus implying there are p!/|sJ(G)| equivalence classes in all. This 

proves the theorem. ■ 

We now turn our attention to a second group associated with a graph. 

Two nonempty graphs G and G' are called edge-isomorphic if there exists a 
one-to-one mapping (p from E(G) onto E(G') such that two edges e and /of G 
are adjacent if and only if the edges (pe and (pf of G' are adjacent. In this case, 
<p is called an edge-isomorphism from G to G'. 

If G and G' are nonempty isomorphic graphs, then they are edge- 
isomorphic. In order to see this, let (p be an isomorphism from a nonempty 

graph G to a graph G'. Then uxu2e E(G) if and only if (pux<pu2e E(G'). 
Moreover, the edges uxu2 and vxv2 of G are adjacent if and only if the edges 
(pux(pu2 and cpvx<pv2 of G' are adjacent. Hence, each isomorphism from G to 
G' gives rise to an edge-isomorphism from G to G'. Whenever an edge- 
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isomorphism can be obtained (in this sense) from an isomorphism, we refer to 

the edge-isomorphism as induced. Although every pair of nonempty isomorphic 
graphs are edge-isomorphic, the converse is not true in general; that is, it G 

and G' are edge-isomorphic, then G and G' need not be isomorphic. This fact 

is illustrated in Figure 9.1 with the graphs G, and G2. 
An edge-automorphism of a nonempty graph G is an edge-isomorphism 

of G with itself. The set of all edge-automorphisms of G (under composition) 
forms a group, called the edge-group of G and denoted by .sii(G). As examples, 

we note that ^(*(1, n)) = Sn and <Ax{Cp) = Dp. We have already noted that 
each isomorphism from G to G' induces an edge-isomorphism from G to G'. 

Figure 9.1 Edge-isomorphic graphs that are not isomorphic 

In the case that G' also denotes the graph G, then we speak of an induced 
edge-automorphism. The set of all induced edge-automorphisms of G forms a 

group, called the induced edge-group of G and denoted by sd*(G). Obviously, 
d*(G) is a subgroup of ^(G). To see that si*(G) may be a proper subgroup 

of s&i(G), consider the graphs G3, G4, and G5 shown in Figure 9.2. Using the 
labelings as indicated, we observe that each mapping <J>it i = 3, 4, 5, which 
follows, is an edge-automorphism of G, that is not an induced edge- 

automorphism. 

/viV2 V2V3 V2V4 V3V4\ 

\v3v4 V2V3 v2v4 ViV2/, 

{v\V2 v2v3 V2V4 V3V4 

\v2v3 V3V4 V2V4 ViV4 

(v iV2 V2V3 V2v4 V3V4 

\V3V4 v2v3 V2v4 ViV2 

ViV4\ 

VlV2j 

VjV4 

VjV4 

VlV3\ 

ViV3/. 

As an additional observation regarding the graphs G, of Figure 9.2, we 

remark that |^i(G,)| = 2|a4*(G,)|. We now consider a relationship between 

the group and the induced edge-group of a graph. 
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Figure 9.2 Graphs having edge-automorphisms not induced by any automorphism 

Theorem 9.3 Let G be a nontrivial connected graph. Then sd(G) = s£*(G) if and 
only if G¥ K2. 

Proof Since si(K2) = S2 while s£*(K2) = Si, the necessity is clear. For the sufficiency, 
we assume G to be a connected graph of order at least 3 so that |£(G)| 2? 2. 

Define a mapping 0: si(G)^si*(G) such that (pa=a* for aeM(G), 
where a* is the edge-automorphism of G induced by a. We show that 0 is a 
group isomorphism. By definition, the mapping 0 is onto s£*(G). 

We next verify that 0 is one-to-one. Let a, fesd(G) such that a + fi. We 
must show that a* + /?*; that is, there exists an edge e of G for which a*e L f*e. 

Let v e V(G) such that av 0 fv, and let u be a vertex of G adjacent with v. If 
either cat + fv or fit ± av, then for the edge e = uv, we have u*e f*e. Thus, 
we assume that <xu = fv and fu = ocv. There exists a vertex w in G adjacent 
with at least one of u and v, where w $ {u, v}. If e, = vw is an edge of G, then 
a*ei + I3*e{. If e2 = uw is an edge of G, then a*e2 ± f *e2. Hence, in any case, 
0 is one-to-one. 

It remains to show that 0 is operation-preserving; that is, for any e e E(G), 
we have (p{af) (e) = {<pa) (0/3) (e). Let e = uv and 

fu = u', fv = v', cat' = u", av' = v". 

Then 

0(a-/S)(e) = <p(af)(uv) = (af)u(af)v = cnt'av' = u"v" 

and 

(tpa) (0/8) (e) = (cpa) {(pf) (uv) = ((pa) (fufiv) = ((pa) (mV) = cnt'av' = u"v". 

Hence 0 is operation-preserving and is therefore an isomorphism between the 
groups si(G) and si*(G). ■ 

Theorem 9.3 may now be generalized to arbitrary graphs. 
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Corollary 9.3 Let G be a nonempty graph. Then d(G) = sd'*(G) if and only if G 
contains neither K2 as a component nor two or more isolated vertices. 

Figure 9.2 shows three graphs G for which sQ.x(G) and sd*(G) are not 

isomorphic. We now begin an investigation to determine those graphs G such 
that six(G) = s&*(G). For the purpose of doing this, we present a preliminary 

result that is due to Whitney [W6]. 

Theorem 9.4 Let (p be an edge-isomorphism from a connected graph Hx to a 

connected graph H2, where I f is different from the graphs G, (/= 1, 2, 3. 4, 5) 
of Figures 9.1 and 9.2. Then (p is induced by an isomorphism from ll, to H2. 

Proof We consider two cases. 

Case 1: Assume Hx has a vertex v0 of degree d^ 4. Denote by vb v2, . .. , vd 
the vertices of Hi adjacent with Vq. Let 0(vov,) = e,-, for i = 1, 2, ..., d. Since 
the edges v0v, are mutually adjacent, the edges ex of H2 are also mutually 

adjacent. Since d^ 4, there is a vertex u0 incident with all edges e,. Let 
e. = u0Ui, i = l, 2, ..., d. If v, and v;- are adjacent vertices in Hx, j ± 0, then 

the edge <y>(v,v7) of H2 is adjacent with each of u0Uj and u0Uj but not with u0uk, 

k±i, j. This implies that 0(v,v;) = m,m;. Let Ai=({vo, Vj, ..., vf/}) and 
B1=({u0, Ml, ...,ud}). Then the mapping V(AX)^>V(B0 defined by 
i^v. = ui, i = 0, 1, ... , d, is an isomorphism from A, to Bx. The mapping 
induces an edge-isomorphism (px from Ax to Bx \ namely, (px is the restriction of 

cp to E(AX). If Ai = HX, then the proof is complete. 
Assume AxfHx. Since Hx is connected, there exists a vertex vd+x in 

V(HX)-V(AX) such that vd+x is adjacent with a vertex vr of Ax. Let v* be a 

vertex of Ax adjacent with vr. The edge (p(vrvd+x) is not in Bx, but it is 

adjacent with the edge (p(vrvs) = urus in Bx. Thus there exists a vertex ud+x in 
H2 not belonging to Bx such that (p(vrvd+x) is either urud+x or usud+x. Now the 
edge (p(vrvd+x) is adjacent with urus and with every edge of Bx that is incident 

with ur. However, (p(vrvd+x) is adjacent with no edge of Bx that is incident 
with us, except urus. Since at least one of ur and us has degree at least 2 in Bx, 

it follows that (p(vrvd+x) = urud+x. 
The preceding argument applies to every edge of H, joining vd+x and a 

vertex of Ax. Hence, if VjVd+x is an edge of Hx, where then 
(p(Vjvd+x) = ujud+i. Let A2= (V(Ai)U {vd+x}) and B2= (V(BX)U {ud+x}). 

If we extend the aforementioned mapping xp by defining ^vf/ + 1 = wrf+1, we 
note that is an isomorphism from the connected graph A2 to the connected 
graph B2. Furthermore, \\> induces an edge-isomorphism (p2 from A2 to B2, and 

(p2 is the restriction of (p to E(A2). If A2 = HX, then the desired result follows. 
Otherwise, we proceed inductively until arriving at graphs Ap-d and Bp-d 

(with p denoting the order of Hx), where Ap_d = Hx, Bp-d = H2, and the 
mapping has been extended to an isomorphism from Hx to H2 such that (p is 

induced by rj). 
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Case 2: Assume that the degree of no vertex of Hx exceeds 3. We may further 
assume that Hx contains a vertex v0 of degree 3 since the theorem is obvious 
for all paths and for all cycles other than C3. Let vl5 v2, and v3 be the vertices 

of Hx incident with v0. The subgraph Ax = <{v0, v,, v2, v3}) is either the graph 
G2 of Figure 9.1 or one of the graphs G,, i = 3, 4, 5, of Figure 9.2. By 
hypothesis, Ax is a proper subgraph of Hx. Therefore, since Hx is connected, 
there is at least one other vertex v4 in Hx (but not in A!) adjacent with some 

vertex of Ax different from v0, say The edge (p(vxv4) of H2 is adjacent with 
4>(v0vx) but adjacent with neither (p(v0v2) nor 0(vov3). This implies that the 
edges 0(vov,), i = 1, 2, 3, do not form a triangle in H2\ however, since these 
three edges are mutually adjacent, they are all incident with a vertex m0 of H2. 

Let (p(v0Vj) = uxxUi, i=l, 2, 3. For each edge v,vy of Ax(i, j± 0), the edge 
<p{VjVj) of H2 is adjacent with both m0m, and u0My but not with the other edge 
incident with uQ. Hence 0(v,vy) = M,uy. 

Let Bx = ({«o, Mi, m2, m3}). Define the function V(AX)—*V(BX) by 

ipv; = M,-, i = 0, 1, 2, 3. The function ap is an isomorphism from the connected 
graph Ax to the connected graph Bx, and, moreover, induces an edge- 
isomorphism <px from Ax to Bx, where (f)x is the restriction of (p to E(AX). By 
employing an argument identical to that used in Case 1, we obtain a proof of 

the theorem in this case also. ■ 

We are now in a position to characterize those graphs G for which 

slx(G) = A*(G). 

Theorem 9.5 Let G be a nonempty graph. Then sij(G) = sd*(G) if and only if 
(a) not both Gx and G2 (of Figure 9.1) are components of G, and 
(b) none of the graphs Gh i = 3, 4, 5, (of Figure 9.2) is a component of G. 

Proof If six(G) = sd*(G), then conditions (a) and (b) must hold. We therefore 
consider the converse, and assume G to be a graph satisfying (a) and (b). Since 

5^*(G) is a subgroup of ^(G), it remains only to show that every edge- 
automorphism of G is induced by an automorphism of G. If G is connected, 

then Theorem 9.4 immediately implies that .^(G) = si*(G). 
Suppose that G is disconnected. Let a be an edge-automorphism of G. 

For every nontrivial component H of G, the subgraph (a(E(H))) is also a 
component of G. If H=GX or //=G2, then since G satisfies (a), we have 
H= (a(E(H))). Therefore, if a is restricted to H, then a is induced by an 

automorphism of H. If H is different from Gi and G2, then by (b), H^Gh 
i= 1, 2, 3, 4, 5. In this case. Theorem 9.4 implies that if a is restricted to H, 
then a is induced by an automorphism of H. Hence, by applying the above 
argument to every nontrivial component of G, we observe that a is induced by 

an automorphism of G, so that s£x(G) = M*(G). ■ 
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Corollary 9.5a Let G be a nonempty connected graph. Then ^,(G) = sd*(G) if and 

only if G is different from the graphs G,, i = 3, 4, 5 {of Figure 9.2). 

Combining Theorem 9.3 and Corollary 9.5a, we obtain the following. 

Corollary 9.5b Let G be a connected graph of order p^ 3. Then the groups sH(G), 
•s$i(G), and si*{G) are isomorphic to one another if and only if G is different 

from the graphs G(, i = 3, 4, 5 {of Figure 9.2). 

Exercises 9.1 

9.1 (a) How many nonidentical labelings (from a fixed set of n labels) are there for 

(i) C„ (az=s3); (ii) Pn (n5s2); (iii) K{1, n) (n 3= 2)? 

(b) How many nonidentical labelings (from a fixed set of 2n labels) are there for 

K{n, n)? 

9.2 Let v be a vertex of a graph G. Define a vertex u of G (not necessarily distinct 

from v) to be similar to v if there exists aesi{G) such that ocv = u. For which 

pairs n, p of positive integers, with «s=p, does there exist a graph G of order p 

and a vertex v of G such that there are exactly n vertices of G similar to v? 

9.3 Let G be a nonempty graph. Prove that ^(G) and si*{G) are indeed groups. 

9.4 Determine dl\{K{2, 3)). 

9.5 Determine .s4(G,) for the graphs G,, /= 1, 2, 3, of Figures 9.1 and 9.2. 

9.6 Let G be a nonempty graph. Determine necessary and sufficient conditions for G 

such that sd(G) = ^i(G) = s£*{G). 

9.2 Cayley Color Graphs 

We have seen that we can associate a group (in fact, three groups) with every 
graph. We now consider the reverse question of associating a graph with a 

given group. We consider only finite groups in this context. A nontrivial group 

T is said to be generated by the nonidentity elements hx, h2.hk (and these 
elements are called generators) if every element of T can be expressed as a 
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(finite) product of generators. Every nontrivial finite group has a finite gen¬ 
erating set (often several such sets) since the set of all nonidentity elements of 
the group is always a generating set. 

Let T be a given nontrivial finite group with A = {hi, h2, . .., hk} a 
generating set for T. We associate a digraph with T and A called the Cayley 
color graph of T with respect to A and denoted by Z)A(T). The vertex set of 

Da(T) is the set of group elements of T; therefore, DA(T) has order |T|. Each 
generator h, is now regarded as a color. For , g2 e T, there exists an arc (g,, 
g2) colored ht in DA(T) if and only if g2 = gj/i,. If h, is a group element of order 
2 (and therefore self-inverse) and g3z= g\ht, then necessarily g, = g2ht. When a 
Cayley color graph DA(T) contains each of the arcs (gj, g2) and (g2, gt), both 

colored hh then it is customary to represent this symmetric pair of arcs by the 
single edge gig2. 

We now illustrate the concepts just introduced. Let T denote the 
symmetric group S3 of all permutations on the set {1, 2, 3}, and let A = {a, b}, 
where a = (123) and b = (12). The Cayley color graph DA(T) in this case is 
shown in Figure 9.3. 

b 

Figure 9.3 A Cayley color graph 

If the generating set A of a given nontrivial finite group T is chosen to be 

the set of all nonidentity group elements, then for every two vertices g!, g2 of 
Da(T), both (g,, g2) and (g2, g,) are arcs (although not necessarily of the 
same color) and DA(T) is a complete symmetric digraph in this case. 

An automorphism of a digraph D is a permutation or on V(D) such that 

(u, v) is an arc of D if and only if (cat, av) is an arc of D. The set of all 
automorphisms of D forms a group under composition, and we denote this 
group by sd(D). Let T be a nontrivial finite group with generating set A. An 
element are ^(DA(T)) is said to be color-preserving if for every arc (g,, g2) of 

Da(T), the arcs (gi, g2) and (ag,, og2) have the same color. 
For a given nontrivial finite group T with generating set A, it is a routine 
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exercise to prove that the set of all color-preserving automorphisms of DA(T) 

forms a subgroup of sd(DA(Y)). A useful characterization of color-preserving 

automorphisms is given in the next result. 

Theorem 9.6 Let Y be a nontrivial finite group with generating set A and let a be a 
permutation on V{DA(Y)). Then a is a color-preserving automorphism of DA(Y) 

if and only if 

a(gh) = (ag)h 

for every g e Y and he A. 

The major significance of the group of color-preserving automorphisms of 

a Cayley color graph is contained in the following theorem. 

Theorem 9.7 Let Y be a nontrivial finite group with generating set A. Then the group 

of color-preserving automorphisms of DA(Y) is isomorphic to T. 

Proof Letr={g!,g2, ..., gp}. For i = 1, 2,-p, define ap C(DA(T))-* V(DA(Y)) 
by ar(.gm = gigm for 1 =£ m =£p. Since T is a group, the mapping a, is one-to-one 

and onto. Let h e A. Then for each i, 1 =St^p, and for each m, 1 ==ms£p, 

(Xi{gmh) = gi(gmh) = (g,gm)h = ((*igm)h. 

Hence, by Theorem 9.6, is a color-preserving automorphism of DA(T). 

Next we verify that the mapping 0, defined by 0g, = or,, is an isomorphism 

from T to the group of color-preserving automorphisms of DA(T). The 

mapping (p is clearly one-to-one since a, ^ a, for i 4= j. 
To show that (p preserves operations, let g,, g,e Y be given, and suppose 

that gigj = gk. Then 0(g,g,) = (pgk = <xk and (<pg,){<pg,) = a,,af. Now, for each m, 

1 ^ m ^p, akgm = gkgm. Furthermore, gkgtn = (g,g;)gm = g,(gjgm) = ocdg,gm) = 
cti(ccjgm) = (a,(Xj)g,„. Hence, for each m, l^m^p, akgm = {(XiOc^gm so that 

ak = aw, that is, (p(gigj) = {(pgi)(<pgj)- 
Finally, we show that the mapping (p is onto. Let a be a color-preserving 

automorphism of DA(Y). We show that a=a, for some i, 1^/sSp. Suppose 

that <xgi — gr, where g! is the identity of T. Let g,„ £ Y. Then gm can be 

expressed as a product of generators, say 

gm = h\h2■ ■ ■h„ 

where hj e A, 1 r. Hence, 

(Xgm = = a(glh\h2 • • h,). 

By successive applications of Theorem 9.6, it follows that 
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<*gm = (ag\)hlh2 - ■ ■h, = {agl)gm = grgm = arg,n. 

Therefore, a=ar and the proof is complete. ■ 

For more information on Cayley color graphs, see White [W4], 
In 1936 the first book on graph theory was published. In this book the 

author Konig [K9, p. 5] proposed the problem of determining all finite groups 

T for which there exists a graph G such that t&(G) = T. The problem was 
solved in 1938 by Frucht [F6] who proved that every finite group has this 
property. We are now in a position to present a proof of this result. 

If T is the trivial group, then sH(G) = T for G = K{. Therefore, let 
r = {gi, g2, ... , gp} be a given nontrivial finite group, and let A = {hi, h2, 
.. . , hn) be a generating set for T. We first construct the Cayley color graph 
Da(T) of T with respect to A; the Cayley color graph is actually a digraph, of 
course. By Theorem 9.7, the group of color-preserving automorphisms of 
Da(T) is isomorphic to T. We now transform the digraph DA(T) into a graph 
G by the following technique. Let (g,, gy) be an arc of Z)A(r) colored hk. 
Delete this arc and replace it by the “graphical” path g(, w,y, w'y, g;. At the 

vertex u,y we construct a new path P(y of length 2k — 1 and at the vertex u-j a 
path P'jj of length 2k. This construction is now performed with every arc of 
DA(Y), and is illustrated in Figure 9.4 for k = 1, 2, and 3. 

D,( T) G 

Figure 9.4 Constructing a graph G from a given group f 

The addition of the paths P,y and P'y in the formation of G is, in a sense, 

equivalent to the direction and the color of the arcs in the construction of 

£>A(r). 
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It now remains to observe that every color-preserving automorphism of 

£)a(F) induces an automorphism of G, and conversely. We state this below. 

Theorem 9.8 (Frucht) For every finite group Y, there exists a graph G such that 

si(G) = r. 

The condition of having a given group prescribed is not a particularly 

stringent one for graphs. For example, Babai [Bl] showed that for every two 
finite groups T] and T2, there exists a graph G and an edge e of G such that 

and si(G — e) = r2. Moreover, Izbicki [12] has shown that it is 

possible to prescribe a finite group T, a connectivity kS=2, a degree r^3 of 
regularity, and some values of certain other parameters (as well as combinations 
of these) and then construct a graph possessing all these characteristics. 

Exercises 9.2 

9.7 Construct the Cayley color graph of the cyclic group of order 4 when the 

generating set A has 

(a) one element; 

(b) three elements. 

9.8 Prove Theorem 9.6. 

9.9 Determine the group of color-preserving automorphisms for the Cayley color 

graph Da(T) below. 

a 

Da(Y): a 

a 

9.10 Determine the smallest integer p> 1 such that there exists a connected graph G 

of order p such that |s4(G)| = 1. 

9.11 Find a block G whose group is isomorphic to the cyclic group of order 3. 

9.12 For a given finite group T, determine an infinite number of mutually non¬ 

isomorphic graphs whose groups are isomorphic to F. 
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9.13 For a given finite group T, find two nonhomeomorphic graphs whose groups are 
isomorphic to T. 

9.14 For a finite group T generated by A(CT), let £>A(T) denote the Cayley color 
graph and GA(r) the underlying graph. 

(a) Show that the group of color-preserving automorphisms of DA(r) is a sub¬ 
group of sf(GA(r)). 

(b) If the group of color-preserving automorphisms of DA(T) is isomorphic to 
s4(GA(r)) and GA(r) = /^n, then find T. 

(c) Prove or disprove: If the group of color-preserving automorphisms of DA] (r,) 

is isomorphic to the group of color-preserving automorphisms of DA,(r2), 

then Tj s r2. 

(d) Prove or disprove: If -s4(GAl(r,)) = ,s£(GA2(r2)), then 

9.3 Line Graphs 

We have seen that for each nonempty graph G, there is the associated group of 
edge symmetries of G, namely the group si{(G) of edge automorphisms of G. 
In a very natural manner one can likewise associate with G a graph that 
describes the adjacencies among the edges of G. 

Given a nonempty graph G, we define the line graph L{G) of G as that 
graph whose vertices can be put in one-to-one correspondence with the edges 
of G in such a way that two vertices of L(G) are adjacent if and only if the 
corresponding edges of G are adjacent. (The line graph has also been referred 
to as the “interchange graph”, “adjoint”, “derived graph”, and “derivative”.) 
A graph and its line graph are shown in Figure 9.5. 

Figure 9.5 A graph and its line graph 
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It is relatively easy to determine the number of vertices and the number 

of edges of the line graph L(G) of a graph G in terms of easily computed 

quantities in G. Indeed, if G is a (p, q) graph with degree sequence dx, d2, 

dp and L(G) is a (p\ q') graph, then p’= q and 

since each edge of L(G) corresponds to a pair of adjacent edges of G. Further, 

it is immediate that for each nonempty graph G, d(L(G)) = six{G). 
Obviously, two nonempty isomorphic graphs have isomorphic line graphs. 

The converse is not true, however, since the graphs K3 and K( 1, 3) have K3 as 
their line graph. Among connected graphs, though, these are the only two 
nonisomorphic graphs with this property. This fact was first discovered by 

Whitney [W6]. 

Theorem 9.9 (Whitney) Let Gx and G2 be nontrivial connected graphs. Then 
L{GX) = L(G2) if and only if G, = G2, or one of G, and G2 is the graph K3 

and the other is K( 1, 3). 

Proof We have already noted that L{Kf) = L{K{ 1,3)) and that if GX = G2, then 
L(G!) = L(G2). Conversely, suppose that Gj and G2 are nontrivial connected 
graphs such that L(G,) = L(G2). We assume that G, and G2 are different from 

K3 and K(l, 3) and show that GX = G2. 
By the definition of the line graph function, for /= 1, 2, there exists a 

one-to-one mapping from £(G,) onto F(L(G,)) such that two vertices of L(G,) 
are adjacent if and only if the corresponding edges of G, are adjacent. Since 
E(GX) = L(G2), this implies the existence of a one-to-one mapping a from 
E(GX) onto E(G2) with the property that two edges of Gx are adjacent if and 

only if the corresponding edges of G? are adjacent, that is, or is an edge- 
isomorphism from Gx to G2. If G, is different from the graphs G3, G4, and G5 
of Figure 9.2, then it follows directly from Theorem 9.4 that a is induced by an 
isomorphism from Gx to G2. It is a straightforward exercise to verify for i = 3, 

4, 5 that G, is the only connected graph whose line graph is L(G,). ■ 

A graph H is called a line graph if there exists a graph G such that 

//= L(G). A natural question to ask is whether a given graph H is a line 
graph. The following theorem of Krausz [K10] gives one answer to this ques¬ 
tion; further, if H is a line graph, this theorem gives a method of finding those 

graphs G with H = L(G). 

Theorem 9.10 (Krausz) A nonempty graph H is a line graph if and only if E(H) 

can be partitioned into subsets so that 
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(a) the subgraph induced by each member of the partition is complete, and 

(b) no vertex of H lies in more than two of these induced subgraphs. 

Proof Since each trivial component of a graph is a line graph, it suffices to prove the 
result in the case that H has no isolated vertices. 

Suppose first that H is a line graph. Then there is a graph G, each of 
whose components has order at least 3, such that H = L(G). Each vertex v of 
G gives rise to a complete subgraph of H, which we denote by K(v), having 
order degcv. Let vl5 v2, .. . , vp denote the vertices of G where, then, A^Vj), 
K(v2), . . . , K(vp) are the corresponding complete subgraphs of H. 

Each vertex u of H corresponds to an edge ww' of G, so that u e V(K(v)) 
if and only if v = w or v = w'. Since no component of G has order 2, 
/C(w) F K(w'). Therefore each vertex of H lies in exactly two of the p distinct 
subgraphs /C(v,), /= 1, 2, ..., p. If e is an edge of H, then e corresponds to a 
pair of (adjacent) edges of G incident with a common vertex Vj, where l^j^p. 
Thus e is an edge of /C(v,) if and only if i = j. 

By deleting any empty sets from the collection E(K(vx)), E(K(v2)), . . . , 
E(K(vp)), we obtain a partition of E(H) with the desired properties. 

Conversely, suppose there is a partition Fu F2, ... , Fm of E(H) such 
that each subgraph (F,)H, 1 Hi^m, is complete and such that no vertex of H 
lies in more than two of these induced subgraphs. For i= 1,2, ... , m, define 
Hi = (Fj)H. Each vertex u of H is incident with at least one edge, and so 
belongs to //, for at least one value of i (1 ra). By hypothesis, u e V(Fli) 
for at most two values of i (1 m). Let ux, u2, . . . , ut be the vertices of H 
that belong to exactly one subgraph FI, (if no such vertices exist, set L = 0), and 
for m + 1 =Sz=Sm + €, define H, = ({«,_„,}) H. Then each vertex of H belongs 
to exactly two of the (distinct) subgraphs H\, H2, . . . , Hm+(, and each edge of 
FI belongs to exactly one such subgraph. Furthermore, OsS | V(Hj) D L(//;)| 1 
for 1 sS i <j^m + €. 

Let G be the graph defined by V(G) = {vl7 v2, ..., vm+e} and E(G) = 
{ViVj\V(Hi) n V(Hj) F 0}. The proof will be complete once we have shown 
that FI = L(G). For 1 i <j m + if V(Hj) D V(Hj) F 0, let u,y denote the 
unique vertex common to H, and Hj. Define the mapping a: E(G)—> V(H) by 
oc(vjVj) = u^. The map a is one-to-one since no vertex of FI belongs to more 
than two of the subgraphs Hfl sS / ^ m + €); the map a is onto since every 
vertex of H belongs to at least two of the subgraphs Ht (1 z'sS m + €). 
Suppose e and / are adjacent edges of G, say e=vtv2 and /=v1v3. Then 
V(HX) D V(H2) = {un} and V(HX) Cl V{Hf) = {mi3}, where uX2 F w13. Since u12, 
w13eV/(//1), it follows that U\2ux3 e E(HX) C E(Fl); that is, a(e)oc(f) e E{H). 
Suppose, on the other hand, that e and / are nonadjacent edges of G. Without 
loss of generality, assume e = v1v2 and /=v3v4, so that <x{e) = uX2 and 
a(/) = zv34, where V(HX) Cl V(H2) = {ul2} and V(H3) Cl V(FI4) = {w34}. Then 
ul2u34iE(H); otherwise, ul2u34e E(//y) for some jF 1, 2, 3, 4, which con¬ 
tradicts the fact that ux2$ V(FI,) if iF 1, 2. ■ 



264 Chapter 9 Graphs and Groups 

A Krausz decomposition of a graph H is a collection of complete sub¬ 

graphs of H (some possibly trivial) such that every edge of H lies in exactly one 
of these subgraphs and every vertex of H lies in exactly two subgraphs. It 

follows that if //, and H2 are members of a Krausz decomposition of H, then 
0<c | V(HX) H V(H2)\ ^ 1. Furthermore, a graph H has a Krausz decomposition 

if and only if H has no isolated vertices and there is a partition of E(H) 

satisfying properties (a) and (b) of Theorem 9.10. 
It was shown in the proof of Theorem 9.10 that if the vertices of a graph 

G can be put in one-to-one correspondence with the subsets in some Krausz 
decomposition of a graph H in such a way that two vertices of G are adjacent if 

and only if the corresponding subgraphs of H have a common vertex, then 
H = L(G). Conversely, we saw that if H = L(G), where G and H are graphs 
without isolated vertices and V/(G) = {v1, v2, vp}, then the collection 

{K(vi), K{y2), •K(vp)} of p complete subgraphs of H is a Krausz 
decomposition of H. Moreover, it is clear that in such a situation, v,v; e E(G) if 

and only if F(K(v,)) n V(K(Vj))±0. Thus we have the following. 

Corollary 9.10 Let H be a graph without isolated vertices. Then H is a line graph if 

and only if H has a Krausz decomposition. Furthermore, H = L(G) for some 

graph G if and only if the nonisolated vertices of G can be put in one-to-one 

correspondence with the subsets in some Krausz decomposition of H in such a 

way that two vertices of G are adjacent if and only if the corresponding subgraphs 

of H have a common vertex. 

If H is the graph of Figure 9.6(a), then {£(({v,, v2, v3, v4})), E(({v2, 

v5}», £«{v3, v6})), £«{v4, v7}», £«{v5, v6, v7}»} is a partition of E(H) 

that satisfies properties (a) and (b) of Theorem 9.10. The corresponding Krausz 
decomposition (as constructed in the proof of Theorem 9.10) is {<{v,}), <{v,, 

v2, v3, v4}), ({v2, v5}), <{v3, v6}>, <{V4, v7}), <{v5, v6, v7}>}. Finally, the 
graph G constructed in the proof of Theorem 9.10 so that H = L{G) is shown 

in Figure 9.6(b). The vertices of G are labeled with the corresponding complete 

subgraphs of H. 
If H is a graph without isolated vertices, then finding a Krausz de¬ 

composition of H (or, equivalently, finding a partition of the edge set of H 

satisfying properties (a) and (b) of Theorem 9.10) can be simplified somewhat 
by observing that if K is any Krausz decomposition of H, then every four 

mutually adjacent vertices of H lie (together) in some member of K. Suppose, 
to the contrary, that there are four mutually adjacent vertices of H that are 
common to no member of K. If some member of K contains three of these 

vertices, then the three edges joining them to the fourth vertex, say v, must be 
in distinct members of K, since each member of K is a complete subgraph of H 

and each edge of H lies in exactly one member of K. However, this contradicts 
the fact that v lies in exactly two members of K. Similarly, if no member of K 

contains more than two of these four vertices, a contradiction arises. Thus 
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(I v, I) 

H: 

v4 

V1 

G: 

Figure 9.6 An illustration of Theorem 9.10 

every four, or more, mutually adjacent vertices of H lie in a common member 

of K. 

It follows from Theorem 9.10 and its corollary that given any graph H, 

one can find all graphs G (without isolated vertices) such that H = L(G) by 
first determining all partitions of the edge set of H satisfying properties (a) and 
(b), and by then determining the corresponding graph constructed in the proof 
of the theorem. We know by Theorem 9.9 that if H is a connected line graph 

and K3, then such a graph G is unique. However, it is not necessarily true 
that in this case there is a unique partition of E(H) satisfying properties (a) and 

(b) of Theorem 9.10. For example, if H is the graph H2 of Figure 9.7, then 
both Px = {{ex, e2, e3}, {<?4}, {e5}} and P2 = {{ex}, {e2}, {e3, e4, e5}} are such 
partitions of E(H). However, it can be shown that if H is a connected line 

graph and H is not one of the graphs Hx, H2, H3, H4 of Figure 9.7, then H 

does indeed have a unique edge-partition satisfying properties (a) and (b). If H 

is one of the aforementioned four graphs, then H has more than one such 

partition, but for H = H2, H3, or H4, these partitions give rise to the same 

Figure 9.7 Line graphs with two or more edge-partitions 
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graph G such that H=L(G). We note, for i = 2, 3, 4, that Ht= L(Gi+x), 

where the graphs G3, G4, G5 are illustrated in Figure 9.2, and that Hx = L(K^) 

= L(K( 1,3)). 
In order to state another characterization of line graphs, due to van Rooij 

and Wilf [VW1], we make the following definition. A triangle T in a graph H is 
even if every vertex of H is adjacent with an even number (that is, zero or two) 

of vertices of T\ otherwise, T is odd. 

Theorem 9.11 A graph H is a line graph if and only if 

(a) K(l, 3) is not an induced subgraph of H, and 

(b) if K(\, 1,2) is an induced subgraph of H, then at least one of its two 

triangles is even. 

With the aid of Theorem 9.11, it is possible to give a “forbidden subgraph” 
characterization of line graphs. These subgraphs were initially found by Beineke 

[B4]. 

Corollary 9.11 A graph H is a line graph if and only if none of the graphs of Figure 

9.8 is an induced subgraph of H. 

Figure 9.8 The induced subgraphs not contained in any line graph 
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We now change our direction and ask, for a given graphical property A, 

what property G must possess in order for L(G) to have property A. We give 
two examples of this—the first of which deals with the property of being 
hamiltonian. Harary and Nash-Williams [HN1] characterized those graphs G 

for which L(G) is hamiltonian. 
Recall that a set E of edges of a graph G is a dominating set of edges if 

every edge of G either belongs to E or is adjacent to an edge of E. If (E) is a 
circuit C, then C is called a dominating circuit of G. Equivalently, a circuit C in 
a graph G is a dominating circuit if every edge of G is incident with a vertex of 

C. 

Theorem 9.12 Let G be a graph without isolated vertices. Then L(G) is hamiltonian 

if and only if G = K{ 1, n), for some n^3, or G contains a dominating circuit. 

Proof If G = /f( 1, n) for some n 2s 3, then L(G) is hamiltonian since L{G) = Kn. 

Suppose, then, that G contains a dominating circuit 

C: v!, v2, . . ., v„ Vj. 

It suffices to show that there exists an ordering S: ex, e2, • • • , eq of the q edges 
of G such that e, and ei+x are adjacent edges of G, for — 1, as are ex 

and eq, since such an ordering S corresponds to a hamiltonian cycle of L(G). 
Begin the ordering S by selecting, in any order, all edges of G incident with v, 
that are not edges of C, followed by the edge vxv2. At each successive v,-, 
2 =£ i sS t — 1, select, in any order, all edges of G incident with v, that are neither 
edges of C nor previously selected edges, followed by the edge v,v;+1. This 

process terminates with the edge The ordering S is completed by adding 
all edges incident with v, that are neither edges of C nor previously selected 
edges, followed by the edge v^. Since C is a dominating circuit of G, every 
edge of G appears exactly once in S. Furthermore, consecutive edges of S as 

well as the first and last edges of S are adjacent in G. 
Conversely, suppose that G is not a star graph but that L(G) is hamilton¬ 

ian. We show that G contains a dominating circuit. Since L(G) is hamiltonian, 
there is an ordering S: ex, e2, . . . , eq of the q edges of G such that et and ei+x 

are adjacent edges of G, for 1 i ^ q — 1, as are ex and eq. For 1 =$ i ^ q — 1, let 
v, be the vertex of G incident with both e, and ei+x. (Note that l ^ k E m^ q — 1 
does not necessarily imply that vk E vm.) Since G is not a star graph, there is a 
smallest integer exceeding 1 such that vyi Evx. The vertex v;i_, is incident 
with ef], the vertex v;| is incident with eJr and vyi_, = v’,. Thus, ejx — vxvjx. 

Next, let j2 (if it exists) be the smallest integer exceeding/, such that vn Evn. 

The vertex vf x is incident with en, the vertex vn is incident with eh, and 

Vy_,_t = Vyj. Thus, ej2 = v,,vn. Continuing in this fashion, we finally arrive at a 
vertex vj( such that ejf = v, , vjf, where vjt =vq_x. Since every edge of G 
appears exactly once in S and since 1 </, <j2 < • • • <j,^q - 1, this construc¬ 

tion yields a trail 
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T: v,, e/r vJr eh, vj2.vl«-iy eir 

in G with the properties that 
(a) every edge of G is incident with a vertex of T, and 

(b) neither ex nor eq is an edge of T. 

Let w be the vertex of G incident with both ex and eq. We consider four 

possible cases. 

Case 1: Suppose w = vx = vq-X. Then T itself is a dominating circuit of G. 

Case 2: Suppose w = vx and w±vq_x. Since eq is incident with both w and 
vq-i, it follows that eq = vq _xw = vq~xvx. Thus C: T, eq, vx is a dominating 

circuit of G. 

Case 3: Suppose w = vq-X and w±vx. Since ex is incident with both w and vx, 

we have that ex = wv, = vq_xvx. Thus C: T, ex, vx is a dominating circuit of G. 

Case 4: Suppose w 4= vq-X and w+vx. Since eq is incident with both w and 
vq_x, it follows that eq = vq-Xw. Since ex is incident with both w and vx, we 

have that ex = wvi. Thus vx4=vq_x, and C: T, eq, w, ex, vx is a dominating 

circuit of G. ■ 

For integers n^2, the nth iterated line graph Ln(G) of a graph G is 

defined to be L(Ln~\G)), where L\G) denotes L(G) and Ln~\G) is assumed 

to be nonempty. 
With the aid of Theorem 9.12, it is possible to present two results 

involving hamiltonian (iterated) line graphs (see [CW1]). 

Theorem 9.13 If G is a connected graph such that 6(G)^ 3, then L(L(G)) is 

hamiltonian. 

Proof For each vertex v of G, the corresponding complete subgraph K(v) of L(G) 

has order at least 3 since 6(G) 3* 3, and so contains a hamiltonian cycle C(v). 

Let H be the (spanning) subgraph of L(G) defined by 

V(H) = V(L(G)) and E(H)= U £(C(v)). 
veV(G) 

Each edge of L(G) belongs to exactly one of the complete subgraphs K(v) and 

each vertex belongs to exactly two; thus each edge of H belongs to exactly one 
of the cycles C(v) and each vertex belongs to exactly two. It follows that H is a 

4-regular graph. 
Let ux and u2 be vertices of H. Then for some vertices and v2 of G (not 

necessarily distinct), ux is a vertex of C(v,) and u2 is a vertex of C(v2). Since G 
is connected, there is a vrv2 path P in G. Then the subgraph H' of H, defined 

by 
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V(H')= U V(C(v)) and £(//')= (J E(C(v)), 
V 6 V'(/>) V £ V(/>) 

is a connected subgraph of H containing a ux-u2 path. Thus, H is connected. 
Since H is a 4-regular connected graph, by Theorem 2.19, the graph H is 

eulerian and contains an eulerian circuit C. Since H is a spanning subgraph of 

L(G), it follows that C is a dominating circuit of L(G). Thus, by Theorem 
9.12, L(L(G)) is hamiltonian. ■ 

Corollary 9.13 If G is a connected graph that is not a path, then some iterated line 

graph of G is hamiltonian. 

For a second example, we state without proof a result by Sedlacek [SI] 
that characterizes those graphs having a planar line graph. 

Theorem 9.14 A nonempty graph G has a planar line graph if and only if 

(a) G is planar, 

(b) A(G) ^ 4, and 

(c) if degGv = 4, then v is a cut-vertex of G. 

Exercises 9.3 

9.15 Determine a formula for the number of triangles in the line graph L(G) in terms 
of quantities in G. 

9.16 Prove that L(G) is connected if and only if G is a graph with exactly one 
nontrivial component. 

9.17 Generalize Theorem 9.9 to arbitrary graphs. 

9.18 Verify that the graph below is a line graph in two ways: 

(a) by showing it satisfies the criteria of Theorem 9.10 for a graph to be a line 
graph, and 

(b) by using the result of (a) to find a graph G such that H=L(G). 
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9.19 Show that if P{ and P2 are partitions of the edge set of a connected graph H that 

both satisfy the hypothesis of Theorem 9.10, and if P, fl P2 =£ 0 (that is, some set 

E of edges is a member of both Px and P2), then P\ = P2. 

9.20 Show that if there exist two distinct partitions of the edge set of a connected 

graph H that satisfy the hypothesis of Theorem 9.10, then H has order less than 

7. 

9.21 For each of the graphs 7/j, //3, H4 of Figure 9.7, find two edge-partitions that 

satisfy properties (a) and (b) of Theorem 9.10. 

9.22 Which of the complete n-partite graphs K(p\, p2, ..., pn) have planar line 

graphs? 

9.23 (a) Find a necessary and sufficient condition for a graph G to have the property 

that G = L(G). 

(b) Find a necessary and sufficient condition for a graph G to have the property 

that L(G) = L(L(G)). 

9.24 Prove that L(G) is eulerian if G is eulerian. 

9.25 Prove that if G is connected and L(L(L(G))) is eulerian, than L(L(G)) is 

eulerian. 

9.26 Show that each of the following conditions is sufficient for a graph G to have a 

hamiltonian line graph: 

(a) G is eulerian; (b) G is hamiltonian. 

9.27 Prove Corollary 9.13. 

9.28 The total graph T(G) of a graph G is that graph whose vertex set can be put in 

one-to-one correspondence with the set F(G)U£(G) such that two vertices of 

T(G) are adjacent if and only if the corresponding elements of G are adjacent or 

incident. Prove the following: 

(a) Not all graphs are total graphs. 

(b) The total graph of every nontrivial connected graph has a spanning eulerian 

subgraph. 

(c) If G contains a spanning eulerian subgraph, then T(G) is hamiltonian. 

(d) If G is a nontrivial connected graph, then T(T(G)) is hamiltonian. 



Chapter Ten 

Graph Colorings 

The graph-theoretic parameter that has probably received the most attention 

over the years is the chromatic number. Its prominence in graph theory is 
undoubtedly due to its involvement with the Four Color Problem, which is 
discussed in this chapter. The main object of this chapter, however, is to 
describe the variety of ways in which a graph can be colored. 

10.1 Vertex Colorings 

An assignment of colors (elements of some set) to the vertices of a graph G, 
one color to each vertex, so that adjacent vertices are assigned different colors 
is called a coloring of G; a coloring in which n colors are used is an n-coloring. 

A graph G is n-colorable if there exists an m-coloring of G for some m^n. It is 
obvious that if G has order p, then G can be p-colored, so that G is p- 

colorable. 

The minimum n for which a graph G is n-colorable is called the vertex 

chromatic number, or simply the chromatic number of G, and is denoted by 

/(G). If G is a graph for which /(G) = n, then G is n-chromatic. In a given 
coloring of a graph G, a set consisting of all those vertices assigned the same 
color is referred to as a color class. 

The chromatic number of G may be defined alternatively as the minimum 
number of independent subsets into which V(G) may be partitioned. Each 
such independent set is then a color class in the /(G)-coloring of G so defined. 

Suppose that a company periodically sets aside a workday for several one- 
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hour meetings for its employees. It is imperative, of course, that two meetings 

not be scheduled at the same time if some employee is to attend both meetings. 
Further, it is more efficient to minimize the number of one-hour periods used 
for meetings. This situation can be represented by a graph G. Let the meetings 

be represented by vertices and join two vertices by an edge if and only if there 
is at least one employee who is to attend both of the corresponding meetings. 

The minimum number of time periods required is then *(G). 
For several special classes of graphs, the chromatic number is quite eas) 

to determine. For example, 

x(C2n) = 2, x(C2n+1) = 3, x(Kp)=P 

and, in general, 

X(K(Pu p2, • • • > Pn)) = "- 

Further, if G is n-partite, then *(G) n. If G is a 2-chromatic graph, then 

necessarily G is bipartite; for in any 2-coloring of G, the color classes so 
determined are the partite sets of a bipartite graph. On the other hand, every 

nonempty bipartite graph is 2-chromatic. By Theorem 2.5, we therefore 
conclude that a nonempty graph G is 2-chromatic if and only if it contains no 
odd cycles. From this observation it follows that x(T) = 2 for every nontrivial 

tree T. The graph G of Figure 10.1 is 3-chromatic; a 3-coloring of G is 
indicated, with the colors denoted by the integers 1, 2, 3. This graph is 

therefore n-colorable for every 3. 

2 12 3 

Figure 10.1 A 3-chromatic graph 

We need only be concerned with determining the chromatic numbers of 

blocks, since the chromatic number of a disconnected graph is the maximum of 

the chromatic numbers of its components, and the chromatic number of a 
connected graph with cut-vertices is the maximum of the chromatic numbers of 

its blocks. 
The chromatic number most properly belongs to the collection of 

graphical parameters discussed in Section 3.3 or the set of parameters 
introduced in Exercise 10.26. Although the quantity of literature dealing with 
the chromatic number far surpasses that of these other specialized parameters. 



Section 10.1 Vertex Colorings 273 

no formula exists for the chromatic number of an arbitrary graph. Thus, for the 

most part, one must be content with supplying bounds for the chromatic 
number of graphs. In order to present such bounds, we now discuss graphs that 
are critical or minimal with respect to chromatic number. 

For an integer 2, we say that a graph G is critically n-chromatic if 

X(G) — n and %(G — v) = n — 1 for all v e F(G); G is minimally n-chromatic if 
X(G) = n and %(G — e) = n — 1 for all eeE(G). There are several results 
dealing with critically n-chromatic graphs and minimally n-chromatic graphs, 

many of which are due to Dirac [D3]. We shall consider here only one of the 
more elementary of these. 

Every critically n-chromatic graph is a block, while every minimally n- 
chromatic graph without isolated vertices is a block. Furthermore, every 

minimally n-chromatic graph (without isolated vertices) is critically n-chromatic. 
The converse is not true in general, however: for example, the graph of Figure 
10.2 is critically 4-chromatic but not minimally 4-chromatic. For n = 2 and 
n = 3, the converse is true. In fact, K2 is the only critically 2-chromatic graph as 
well as the only minimally 2-chromatic graph without isolated vertices, while 

the odd cycles are the only critically 3-chromatic graphs and the only minimally 
3-chromatic graphs having no isolated vertices. For n ^ 4, neither the critically 
n-chromatic graphs nor the minimally n-chromatic graphs have been char¬ 
acterized. Although it is quite difficult, in general, to determine whether a 

given n-chromatic graph G is critical or minimal, G contains both critically n- 

Figure 10.2 A critically 4-chromatic graph that is not minimally 4-chromatic 

chromatic subgraphs and minimally n-chromatic subgraphs. An n-chromatic 
subgraph of G of minimum order is critically n-chromatic while an n-chromatic 
subgraph of G of minimum size is minimally n-chromatic. 

The first theorem of this chapter concerns the structure of critically (and 

minimally) n-chromatic graphs. 

Theorem 10.1 Every critically n-chromatic graph, n>2, is (n — 1 )-edge-connected. 

Proof Let G be critically n-chromatic, n 2? 2. If n = 2 or n = 3, then G = K2 or G is an 
odd cycle, respectively; therefore, G is 1-edge-connected or 2-edge-connected. 

Assume n^4 and that G is not (n — l)-edge-connected. Hence by 
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Theorem 5.3, there exists a partition of V(G) into subsets V, and V2 such that 
the set £' of edges joining Vx and V2 contains fewer than n - 1 elements. Since 

G is critically n-chromatic, the subgraphs GX = (VX) and G2= (V2) are 
(n - l)-colorable. Let each of Gx and G2 be colored with at most n - 1 colors, 

using the same set of n - 1 colors. If each edge in E' is incident with vertices of 
different colors, then G is (n - l)-colorable. This contradicts the fact that 
X(G) = n. Hence we may assume that there are edges of E' incident with 

vertices assigned the same color. We show that the colors assigned to the 
elements of Vx may be permuted so that each edge in E' joins vertices assigned 

different colors. Again this will imply that x(G) *£ n — 1, produce a contradiction, 

and complete the proof. 
In the coloring of Gx, let Ux, U2, , Um be those color classes of Gx 

such that for each i, 1 / =S m n - 2, there is at least one edge joining U, and 

G2. For i - 1, 2, ... , m, assume there are n, edges joining Ut and G2. Hence, 

for each i, 1 s£/s£m, it follows that n, > 0 and E-^/i/SSn - 2. 
If for each ux in Ux, the vertex ux is adjacent only with vertices assigned 

colors different from that assigned to ux, then the assignment of colors to the 

vertices of G is not altered. On the other hand, if some vertex ux of Ux is 
adjacent with a vertex of G2 that is assigned the same color as that of ux, then 
in Gx we may permute the n — 1 colors so that in the new assignment of colors 

to the vertices of G, no vertex of Ux is adjacent to a vertex of G2 having the 
same color. This is possible since the vertices of Ux may be assigned any one of 

at least n-\- nx colors and n— 1 - nx >0. 
If, in this new assignment of colors to the vertices of G, each vertex u2 of 

U2 is adjacent only with vertices assigned colors different from that assigned to 
u2, then no (additional) permutation of colors Gx occurs. However, if some 

vertex u2 of U2 is adjacent with a vertex of G2 that is assigned the same color as 
that of u2, then in Gx we may permute the n — 1 colors, leaving the color 
assigned to Ux fixed, so that no vertex of Ux U U2 is adjacent to a vertex of G2 

having the same color. This can be done since the vertices of U2 can be 

assigned any of (n - 1) - (n2 + 1) colors, and (n - 1) - (n2 + 1) 3* (n - 1)- 
(n\+n2)> 0. Continuing this process, we arrive at an (n - l)-coloring of G, 

producing the desired contradiction. ■ 

Since every connected, minimally n-chromatic graph is critically n- 

chromatic, the preceding result has an immediate consequence. 

Corollary 10.1a If G is a connected, minimally n-chromatic graph, n 2* 2, then G is 

(n — 1 )-edge-connected. 

Theorem 10.1 and Corollary 10.1a imply that /c,(G)^n- 1 for every 

critically n-chromatic graph G or connected, minimally n-chromatic graph G. 

The next corollary now follows directly from Theorem 5.1. 
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Corollary 10.1b If G is critically n-chromatic or connected and minimally n- 

chromatic, then d(G)^ n — 1. 

We are now prepared to present bounds for the chromatic number of a 
graph. We give here several upper bounds, beginning with the best known and 

most applicable. The theorem is due to Brooks [B15] but the proof here is due 
to Lovasz [L6]. 

Theorem 10.2 (Brooks) If G is a connected graph that is neither an odd cycle nor a 

complete graph, then 

%{G) A(G). 

Proof Let G be a connected graph that is neither an odd cycle nor a complete graph, 

and suppose x(G) = n, where, necessarily, n^2. Let H be a critically n- 

chromatic subgraph of G. Then H is a block and A(H) A(G). 

Suppose H = Kn or H is an odd cycle. Then G^H\ therefore, since G is 
connected, A(G)> A(H). If H = Kn, then A(H) = n- \ and A (G)^n so 

X(G) = n^A(G). 

If H is an odd cycle, then 

A(G)S=3 = n = *(G). 

Hence, we may assume that H is critically n-chromatic and is neither an odd 
cycle nor a complete graph, which implies that n ^ 4. 

Let H have order p. Since x(H) = n 2= 4 and H is not complete, it follows 
that p^5. We now consider two cases, depending on the connectivity of H. 

Case 1: Suppose that H is 3-connected. Let x and y be vertices of H such that 
dH(x, y) = 2, and suppose x, w, y is a path in H. We arrange the vertices of H 

in a sequence v,, v2, .. . , vp, where =x, v2 — y, and the vertices v,, i 3? 3, are 
arranged in nonincreasing order according to their distance from w. Thus, 
vp = w and for 1 ^ i <p, v, is adjacent to some v; for j > i. That vp_, is adjacent 

to vp — w is guaranteed by the fact that H is 3-connected and hence degww ^ 3. 
This implies that for 1 ^i<p, v, is adjacent to at most A(H) — 1 vertices vy 
with j < i. We now show that the vertices of H can be colored with the colors 1, 
2, . .. , A(H). Assign color 1 to vertices Vj and v2. We successively color each 
of the vertices v3, v4, ... , vp_x with one of the colors 1,2, ... , A(H) that was 

not used in coloring adjacent vertices preceding it in the sequence. Such a color 
is available since, as we have seen, each v,-, 1 ^i<p, is adjacent to at most 
A(H) — 1 vertices preceding v, in the sequence. The vertex vp = w is adjacent 
to vx=x and v2 = y, both colored 1, so a color is available for vp. Therefore, 

X(G)=X(H)^A(H)^A(G). 
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Case 2: Suppose that k(H) = 2. We begin with an observation in this case; 
namely, H does not contain only vertices of degree 2 and p- 1. Since *(//) ^ 4, 

H cannot contain only vertices of degree 2. Since H is not complete, H cannot 

contain only vertices of degree p- 1. If H contains vertices of both degrees 
(and no others), then H must contain two vertices of degree p- 1 and p - 2 

vertices of degree 2; that is, H = K( 1, 1, p- 2). However, then *(//) = 3, 

which is impossible. 
Let u e V(H) such that 2 < degHu <p - 1. If k(H - u) = 2, then let v be 

any vertex such that dH(u, v) = 2. (The vertex v exists since u is not adjacent to 

all vertices of H - u.) Let x = u and y = v, and proceed as in Case 1. 
If k(H —u) = 1, then we consider two end-blocks B, and B2 containing 

cut-vertices W\ and w2, respectively, of H — u. Since H is 2-connected, there 

exist vertices U\ in B\ — W\ and u2 in B2 ~ w2 that are adjacent to u. Let x = U\ 

and y = u2, and proceed as in Case 1. 

This completes the proof. ■ 

We may now state an upper bound on the chromatic number of an 

arbitrary graph. 

Corollary 10.2 For every graph G, 

X(G) 1 + A(G). 

The bound for the chromatic number given in Theorem 10.2 is not 

particularly good for certain classes of graphs. For example, the bound provided 

for star graphs K( 1, n) differs from its chromatic number by n -2. We shall 
see in the next chapter that 4 serves as an upper bound for the chromatic 
number of all planar graphs; however. Theorem 10.2 gives no bound for the 
entire class. Thus, there are several important classes of graphs for which the 
bound x(G)^ A(G) is poor indeed. A better bound in many cases is given by 

an inequality observed by Halin [H4] and by Szekeres and Wilf [SW1 ] The 

reader will notice the similarity of this result and Theorem 3.12. 

Theorem 10.3 For every graph G, 

X(G) ^ 1 + max <5(G'), 

where the maximum is taken over all induced subgraphs G' of G. 

Proof The result follows immediately for empty graphs, so we assume G is a graph 
with x(C?) = n 2s 2. Let H be an induced ^-critical subgraph of G. Since H is an 

induced subgraph of G, 
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6(H) max S(G'). (10.1) 
G' <G 

By Corollary 10.1b, <5(H) ^n — 1, so by (10.1), 

maxd(G')^n - 1 = x(G) - 1, 
G'<G 

giving the result. ■ 

Theorem 10.3 gives an upper bound of 2 for the chromatic numbers of 
the graphs AT(1, n), which is exact. Since every planar graph has minimum 

degree at most 5 (by Corollary 4.2b) and since every subgraph of a planar 
graph is planar, a bound of 6 is provided for the chromatic number of planar 
graphs by Theorem 10.3. In each of these two cases, a marked improvement is 
shown over the result offered by Theorem 10.2. If G is a regular graph of 
degree r, then both Theorems 10.2 and 10.3 give r+1 as an upper bound for 

X(G); however, this bound is poor for many r-regular graphs, such as K(r, r). 

There are other upper bounds that have been obtained for chromatic 
numbers. We consider two of these. The first gives an upper bound in terms 
of the length of a longest path; this result is due to Gallai [G2], 

Theorem 10.4 For any graph G, 

X(G)^ 1 + m(G), 

where m(G) denotes the length of a longest path in G. 

Proof The result is obvious if G is empty, so we assume that x(G) = n 5s 2. Let H be a 
critically /7-chromatic subgraph of G, so that by Corollary 10.1b, d(Fl)^n — 1. 

By Theorem 3.6, H (and therefore G) contains a path of length n — 1. Hence 
m(G) 5= n — 1 = x(G) — 1, producing the desired result. ■ 

There is no known efficient algorithm for determining the chromatic 
number of a graph. The following algorithm, called the sequential coloring 
algorithm, is good and produces a coloring of a labeled graph G. The number 

of colors required by this algorithm is a function of the labeling of G and may, 
in fact, differ markedly from x(G) (see Exercise 10.13). 

Algorithm 10A (Sequential Coloring Algorithm) Given a graph with V(G) = {vq , 

v2, , vp): 

1. Let 7=1. 
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2. Let c = 1. 
3. If no vertex adjacent with v, is assigned color c, then assign color c to v, and 

go to Step 5. 

4. Replace c by c + 1 and return to Step 3. 

5. If i<p, then replace i with i+ 1 and return to Step 2; otherwise, stop. 

If we apply Algorithm 10A to the labeled (4-chromatic) graph G] of 

Figure 10.3(a), we produce the optimal 4-coloring of G, shown in Figure 
10.3(b). Indeed, for any labeling of G,, a 4-coloring of G, is produced by 
Algorithm 10A. Applying this algorithm to the labeled 3-chromatic graph G2 

of Figure 10.3(c), however, yields the 4-coloring shown in Figure 10.3(d). 

(c) 

1 

Figure 10.3 Sequential colorings of graphs 

Algorithm 10A provides another upper bound for the chromatic number 

of a graph, a result first observed by Welsh and Powell [WP1], 

Theorem 10.5 Let G be a graph with V(G) — {vj, v2, . • • , Vp}- Then 

X(G) =£ max {min {/, deg v, + 1}}. 
1 

Proof We verify by induction that for each j, with l^j^p, the number of colors 
produced by Algorithm 10A in coloring ({vj, v2, .. . , v,}) is at most 

max {min {/, degv, + 1}}. 
1 5S / j 
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This is true for ;'= 1. Assume that the number of colors assigned the first k 

vertices, where 1 ^ k<p, is 

max {min{z, degv,+ l}}. 
1 i § k 

In particular, n^k. If not all of the colors 1,2, .. . , n have been assigned to 
vertices adjacent to v*+i, then one of these colors may be assigned to vA+1, 
giving the desired result. Suppose then that all of the colors 1,2, ..., n have 
been assigned to vertices adjacent to vA+1. Then vA+1 is assigned the color 
n + 1. It remains to show that 

n+ 1=S max {min {/, deg v, + 1}}. (10.2) 
1=si =s k + 1 

Since n^k, it follows that n+\^k+\. Further, degvk + ]^n so that 
deg vA+1 + 1 5= n + 1. Therefore, 

n + 1 min {k + 1, deg vA+] + 1}, 

which verifies (10.2). ■ 

We now direct our attention briefly to lower bounds for the chromatic 
number. If H C G, then x(H) x(G). The clique number co(G) of a graph G is 
the maximum order among the complete subgraphs of G. If Kn C G for some 
n, then ;^(G)S=«; so in general. 

X(G) 5: co(G) 

for every graph G. From what we have seen of upper bounds for *(G), one 
might conjecture that this lower bound for x(G) is not particularly good in 
general. There is, however, one (rather unusual) situation under which the 
lower bound is very good indeed [S2]. 

Theorem 10.6 If a graph G does not contain P4 as an induced subgraph, then 

X(G) = co(G). 

As an immediate consequence of this result, we arrive at a characterization 
of ^-colorable graphs, which, unfortunately, is quite difficult to apply. 

Corollary 10.6a A graph is n-colorable if it contains neither P4 nor Kn + X as an induced 

subgraph. 

If a graph G satisfies the hypothesis of Theorem 10.6, then so too does 
each induced subgraph H of G, so that x(H) = a)(H). This suggests the fol¬ 
lowing definition. A graph G is called perfect if x(H) = co(H) for each induced 
subgraph H of G. 
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Corollary 10.6b If a graph G does not contain PA as an induced subgraph, then G is 

perfect. 

Corollary 10.6b gives a sufficient condition for a graph to be perfect. This 

condition is not, in general, necessary. For example, the graph P4 itself is 

perfect. 
If H is a nonempty bipartite graph, then *(//) = 2 = a)(H), while if H is 

any empty graph, then *(//)= 1 = a)(H). It follows readily, then, that every 
bipartite graph is perfect. We now show that the complement G of a bipartite 

graph G is perfect. Each induced subgraph of G is of the form H, where H is 
an induced subgraph of G. If H has no isolated vertices, then by Exercise 8.25, 
we have that al(H) = p(H). Since /3{H) = co(H), injhis case we need only 

show that x(H) = a\(jj) in order to verify that *(//) = co(H). Clearly, the 
chromatic number of H equals the minimum number of elements in a partition 
of V(H) such that each element of the partition induces a complete subgraph in 

H. Since H contains no triangles, each such complete subgraph has_order 1 or 

2. It follows that such a partition contains <xx(H) elements and so x{H) = ax(H). 

A similar argument can be applied if H has isolated vertices. 
The concept of a perfect graph was introduced by Berge [B6], who 

conjectured that a graph G is perfect if and only if G is perfect. This conjecture 
(sometimes referred to as the Perfect Graph Conjecture) was proved by Lovasz 

[L5]. 
Since x(C2k+i) ± <o(C2k+\), k = 2, 3, . . ., if an induced subgraph of a 

graph G is an odd cycle of length at least 5, then G is not perfect. Now 

suppose that an induced subgraph of G is an odd cycle C2k+1, where k 5= 2. 
Then G is not perfect and so, by the Perfect Graph Conjecture, G is not 

perfect. However, this conclusion can be reached independently of the 

conjecture, as we now see. Since C2k+\ is an induced subgraph of G, it_follows 
that G contains C2k+1_ as an induced subgraph. However, (o(C2k+1) = 

P(C2k+i) = k, while x^ik+i)' = k + 1 since x(C2k+l) equals the minimum 
number of elements in a partition of V(C2k+x) such that each element of the 

partition induces a complete subgraph in C2k+1- Thus, G is not perfect if an 

induced subgraph of G is an odd cycle of length at least 5. 
The preceding example is related to a second conjecture of Berge (see 

[B8, p. 361]) known as the Strong Perfect Graph Conjecture. 

Strong Perfect Graph Conjecture A graph G is perfect if and only if no induced 

subgraph of G or G is an odd cycle of length at least 5. 

This conjecture remains unproved, although it has been verified for 

several classes of graphs including planar graphs [T8] and graphs that do not 

contain K(l, 3) as an induced subgraph [PR1]. 
We have mentioned for every graph G that x(G)^ co(G). Hence if G 

contains triangles, then x((j)^3. However there exist graphs G that are 
triangle-free such that por example, the odd cycles C2„+x, with 
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Figure 10.4 The Grotzsch graph: a 4-chromatic triangle-free graph 

2, have chromatic number 3 and are, of course, triangle-free. The graph of 
Figure 10.4, called the Grotzsch graph, is 4-chromatic and triangle-free and is, 
in fact, the smallest such graph (in terms of order). 

It may be surprising that there exist triangle-free graphs with arbitrarily 
large chromatic number. This fact has been established by a number of 
mathematicians, including Descartes [Dl], Kelly and Kelly [KK1], and Zykov 
[Z3], The following construction is due to Mycielski [M10], however. 

Theorem 10.7 For every positive integer n, there exists an n-chromatic triangle-free 

graph. 

Proof The proof is by induction on n. For n = 1, 2, and 3, the graphs Kx, K2, and C5, 

respectively, have the required properties. Assume H is a triangle-free graph 
with x(H) = k, where 3. We show there exists a triangle-free graph with 
chromatic number k+ 1. Let V(H) = {vx, v2, . .. , vp). We construct a graph G 
from H by adding p + 1 new vertices u, ux, u2, ... , up. The vertex u is joined 
to each vertex ut and, in addition, is joined to each vertex to which v, is 
adjacent. 

To see that G is triangle-free, first observe that u belongs to no triangle. 
Since no two vertices u, are adjacent, any triangle would consist of a vertex w, 
and vertices v;- and vk, ifj, k, but by the construction, this would imply that 
({v,, vj, v*.}) is a triangle in //, which is impossible. 

Let a ^-coloring of H be given. Now assign to «, the same color assigned 
to v, and assign a (k+ l)st color to u. This produces a (k + l)-coloring of G. 
Hence ^(G) k + 1. Suppose ^(G) ^ k, and let there be given a ^-coloring of 

G, with colors 1,2, ... , k, say. Necessarily the vertex u is colored differently 
from each Suppose u is assigned the color k. Since x(H) = k, the color k is 
assigned to some vertices of H. Recolor each v, assigned color k with the color 
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assigned to vertex w,. This produces a (k — l)-coloring of H and a contradiction. 

Thus, x(G) = k + 1, and the proof is complete. ■ 

This result has been extended significantly by Erdos [E4] and Lovasz 

[L4]. 

Theorem 10.8 (Erdos-Lovasz) For every two integers m, 2, there exists an n- 

chromatic graph whose girth exceeds m. 

We now turn our attention to a result on chromatic numbers and 

factorization [CPI]. 

Theorem 10.9 If a graph G is factored as G — G\ ©G2© • • • ©©., then 

k 

X(G)^Ux(Gd- 
i = i 

Proof For i= 1, 2, . . . , k, let a *(G,)-coloring be given for G,. Assign the color (cl5 
c2, . .. , Ck) to vertex v of G, where c, is the color assigned to v in G,. Vertices 
adjacent in G are adjacent in some G,, IsS/sS/c, and are assigned different 
colors in that factor. Thus, this is a coloring of G using at most nf=iX(C() 
colors. Hence, x(C) ^ nf=1x(G,). ■ 

In the case where G = Kp and k = 2, we obtain a result on the chromatic 

numbers of complementary graphs. 

Corollary 10.9 If G is a graph of order p, then 

X(G)-x(G)^p. 

The best known result on chromatic numbers and complementary graphs, 
however, is the following theorem of Nordhaus and Gaddum [NG1]. The proof 
is based on one of H. V. Kronk. 

Theorem 10.10 (Nordhaus and Gaddum) If G is a graph of order p, then 

(a) 2\r~p ^x(G) + x(G)^p + 1, and 

(b) p^x(G)-x(G)^((p+ l)/2)2. 

Proof The lower bound in (b) is a restatement of Corollary 10.9. Since the arithmetic 
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mean of two positive numbers is always at least as large as their geometric 
mean, we have 

V7sV?(C)J(C-)^lc).n(C) 

This verifies the lower bound of (a). 

To verify the upper bound in (a), we make use of Theorem 10.3. Let G 

be an arbitrary graph of order p and suppose that /c = max<5(G') where the 
maximum is taken over all induced subgraphs G' of G. Hence every induced 
subgraph of G has minimum degree at most k. Next we show that every 

induced subgraph of G has minimum degree at most p — k— 1. Assume, to the 
contrary, that there exists an induced subgraph H' of G such that d(H') 3=p — k. 

Since H’ < G, we have that FF = H for some H <G. Denote the order of H 

(and, of course, of H) by h. Every vertex of H has degree at most 

h — (p — k) — 1 = h — p + k — 1 in H. Moreover, the vertices in H have degrees 
at most 

(h — p + k — l) + (p - h) = k — 1 

in G. Since maxG'<C(5(G') = k, there exists an induced subgraph F of G such 
that 5(F) = k. However, then, no vertex of H can be a vertex of F; that is, F is 

an induced subgraph of G — V(H). The subgraph F has order at least k+ 1, 
implying that FI has order at most p — k — 1, contradicting the fact that 8(Fl) 3= 

p — k. We may therefore conclude that 

max <5(G') — k— 1. 
G<G 

Hence, 

X(G) ^ 1 + max d(G') = 1 + k 
G<G 

and 

X(G) =5 1 + max S(G') =5l + (p — k — \)= p - k, 
G'<G 

so that 

X(G) + x(G) ^(l + k) + (p-k)=p + \. 

completing the proof of the upper bound in (a). 
Again, since the geometric mean of x(G) and x(G) never exceeds their 

arithmetic mean, we have 

p +1 
2 

This produces the upper bound in (b). ■ 
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The proof of Theorem 10.10 implies, and rightly so, that the upper bound 

%(G) + x(G)^p + 1 is the most complex of the four bounds. Plesm'k [P3] 

extended this result by showing that if Kp = G\©G2©G3, then x(G\) + 

X(G,) + x(G?,)^p + 3. Plesm'k further made the following conjecture. 

Conjecture If Kp — G\© G2® •••© Gn, where 1, then 

Exercises 10.1 

10.1 Prove for every graph G of order p that p//J(G) =£ *(G) *£p + 1 - P(G). 

10.2 Determine and prove a result analogous to Exercise 10.1 for vertex-arboricity. 

10.3 Prove a result analogous to Theorem 10.2 for disconnected graphs. 

10.4 What bound is given for *(G) by Theorems 10.2 and 10.3 in the case that G is 

(a) a tree? (b) an outerplanar graph (see Exercise 4.11)? 

10.5 Let G be a 4-regular graph of order 10. What bound for *(G) is given by 

(a) Theorem 10.2? (b) Theorem 10.3? 

10.6 Show that every /i-chromatic graph is a subgraph of some complete //-partite 

graph. 

10.7 Let G be an /i-chromatic graph, where n 3*2, and let r be a positive integer such 

that r3sA(G). Prove that there exists an /--regular /7-chromatic graph H such 

that G is an induced subgraph of H. 

10.8 Determine (and prove) a necessary and sufficient condition for a graph to have a 

2-colorable line graph. 

10.9 Let G be a connected, cubic graph of order p>4 having girth 3. Determine 

X(G). 

10.10 Discuss the sharpness of Theorem 10.4. 

10.11 Prove for every graph G that there exists a labeling of the vertices of G so that 

the number of colors assigned to G by Algorithm 10A is x(G). 

10.12 Determine the unique graph G of minimum order for which the number of 

colors assigned to G by Algorithm 10A differs from x(G). 

10.13 Prove that for every positive integer // there exists a (labeled) graph G such that 
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the number of colors assigned to G by Algorithm 10A exceeds x(G) by n. 

10.14 (a) Prove that if the vertices v1; v2, . . . , vp of a graph G are labeled so that 

deg V! 3= deg v2 3= • • ■ ^ deg vp, then the upper bound for ^(G) given in 

Theorem 10.5 never exceeds the upper bound given by any other labeling of 

the vertices of G. 

(b) Use Theorem 10.5 to prove Corollary 10.2. 

10.15 Let Gi, G2, ..., Gn be pairwise disjoint graphs, and define G = G\-\- G2Jt 

• • • + Gn. Prove that 

n n 

*(G) =£*(©) and co(G) = £ a>(G,-). 
/=i i=i 

10.16 Prove Corollary 10.6a. 

10.17 The co-chromatic number x(G) of a graph G is the minimum number of subsets 

into which V(G) can be partitioned so that each subset is independent in G or in 

G. Give an example of a graph H such that x(H) = 3. 

10.18 For each integer rc3=7, give an example of a graph Gn of order n such that no 

induced subgraph of G„ is an odd cycle of length at least 5 but G„ is not perfect. 

10.19 Show that if H is a bipartite graph, then x(H) — u>(H). 

10.20 Determine G if, in the proof of Theorem 10.7, 

(a) H = K2, (b) H = C5. 

10.21 Use Theorem 10.5 to prove Theorem 10.10. 

10.22 Prove that for every two integers n^ 3 and k 3^3, with n^k, there exists a 

graph G such that x(G) = n and co(G) = k. 

10.23 Show that if Kp = G!©G2© • • • ©G„, n 3= 1, then 

nVj^x(Gi)+x(G2) + ■■■ + x(Gn). 

10.24 Show that all the bounds given in Theorem 10.10 are sharp. 

10.25 Determine and prove a theorem analogous to Theorem 10.10 for vertex- 

arboricity. 

10.26 Define a graph G to be k-degenerate, k 3= 0, if for every induced subgraph H of 

G, 6(H) Then the 0-degenerate graphs are the empty graphs, and by 

Exercise 3.7(a), the 1-degenerate graphs are precisely the forests. By Corollary 

4.2b, every planar graph is 5-degenerate. A ^-degenerate graph is maximal k- 

degenerate if, for every two nonadjacent vertices u and v of G, the graph G + uv 

is not ^-degenerate. 
For k^ 0, the vertex partition number pk(G) of a graph G is defined as 

the minimum number of subsets into which V(G) can be partitioned so that each 

subset induces a ^-degenerate subgraph of G. Hence, Po(G) = x(G) and 

pt(G) = a(G). A graph G is said to be n-critical with respect to pk, n^ 2, if 

pk(G) = n and pk(G -v) = n- 1 for every v e V(G). 

(a) Prove that if G is a maximal ^-degenerate graph of order p, where p > k + 1, 

then d(G) = k. 
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(b) Determine pk(Kr). 

(c) Prove that if G is a graph that is ^-critical with respect to pk, then 6(G) 2* 

(* + l)(n —1). 

10.2 Edge Colorings 

An assignment of colors to the edges of a nonempty graph G so that adjacent 
edges are colored differently is an edge coloring of G (an n-edge coloring if n 

colors are used). The graph G is n-edge colorable if there exists an ra-edge 
coloring of G for some m n. The minimum n for which a graph G is //-edge 

colorable is its edge chromatic number (or chromatic index) and is denoted by 

Xi(G). 

The edge chromatic number of a graph has other interpretations. For 
example, the edge chromatic number of a nonempty graph G is the minimum 
number of 1-regular subgraphs of G into which G can be decomposed. Also, 
the determination of x,(G) can be transformed into a problem dealing with 
chromatic numbers; namely, from the definitions, it is immediate that 

X,(G) = x(L(G)), 

where L(G) is the line graph of G. This observation appears to be of little 
value in computing edge chromatic numbers, however, since chromatic 
numbers are extremely difficult to evaluate in general. 

It is obvious that A(G) is a lower bound for X\ (G). In what must be 
considered the fundamental result on edge colorings, Vizing [V2] proved that 
Xi(G) equals A(G) or 1 + A(G). 

Theorem 10.11 (Vizing) If G is a nonempty graph, then 

X\(G) *£ 1 + A(G). 

Proof Suppose the theorem is not true. Then among the graphs for which the 

theorem is false, let G be one of minimum size. Hence G is not (1 + A)-edge 
colorable, where A = A(G); however, if e = uv is an edge of G, then G-e is 
(1 + A(G - e))-edge colorable. Since A(G - e) =£ A(G), we have that G-e is 
(1 + A)-edge colorable. 

Let there be given a (1 + A )-edge coloring of G — e; that is, every edge of 
G except e is assigned one of 1 + A colors so that adjacent edges are colored 
differently. For each edge e = uv of G that is incident with u, we define its 
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dual color as any one of the 1 + A colors that is not used to color edges 
incident with v'. Since no vertex of G has degree exceeding A, there is at least 
one color available for the dual color. It may occur that distinct edges have the 
same dual color. 

Let e = e0 have dual color ay. (The color ay is not the color of any edge of 

G incident with v.) There must be some edge <?, incident with u that has been 
assigned the color ay; for if not, then the edge e could be colored ay, thereby 

producing a (1 + A)-edge coloring of G. Let a2 be the dual color of e,. If there 

is an edge incident with u that has been assigned the color a2, then we denote 
it by e2 and call its dual color ay. In this manner, we construct a sequence e0, 

e1, . .. , ek, k^ 1, containing a maximum number of distinct edges. The final 

edge ek of this sequence is therefore colored ak and has dual color ak+x. 

If there is no edge of G incident with u that is assigned the color ak+u 

then we may assign each of the edges e0, eu ..., ek with its dual color and 
obtain a (1 + A)-edge coloring of G. This, of course, is impossible. Hence we 

may assume that there exists an edge ek+l of G incident with u that is colored 
ock+\- Since e0, et, ..., ek is maximum as to the number of distinct edges, we 
must have e* + 1 = ey for some j, l^j^k, or equivalently, ak+l = ar Now 

certainly ak+l + ock since the color assigned to ek cannot be the same as its dual 
color; thus, 1 ^j<k. It is convenient to let j = t+ 1, where then 0 s£ t< k - 1. 
Hence ak+i = ay+1, so that ek and e, have the same dual color. 

We now make some observations that will be important in the remainder 
of the proof. Since the edge e cannot be assigned any of the 1 + A colors 

without producing two adjacent edges having the same color, it follows that for 
each color or among the 1 + A colors, there is an edge of G adjacent with e that 
is colored a. This implies that there must be colors assigned to edges incident 
with v that are not assigned to any edge incident with u. Let (3 be one such 

color. Furthermore, let et = uvt, i = 0, 1, . .. , k, where then v0 = v. The color j3 

must be assigned to some edge incident with v, for each i= 1,2, ..., k; for 
suppose there is a vertex vm, l^m^k, such that no edge incident with vm is 
colored (3. Then we may change the color of em to /3 and color each eh 

0^/<m, with its dual color to obtain a (1 + A)-edge coloring of G. 

We define two paths P and Q as follows. Let P be a path with initial 

vertex vk of maximum length whose edges are alternately colored /3 and ak+l, 

while Q is a path with initial vertex v, having maximum length whose edges are 

alternately colored /i and ar + l = ak+i. Suppose P terminates at w and Q at w'. 

We consider four cases according to certain possibilities for w and w'. 

Case 1: w - vm for some m, k — 1. In this case, the initial and terminal 
edges of P are colored (3. Also, no edge incident with vm is assigned the color 

ak+\. We note also that unless vm — vt, the vertex v, is not on P. Interchange 
the colors (3 and ak+x of the edges of P. Upon doing this, we have no edge 
incident with vm that is assigned the color (3; and, moreover, the dual color of 
each e,-, i<m, is not altered. If m = 0, assign e the color /3. If ra>0, then, as 

described earlier, we may change the color of em to (3 and color each e,, 
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()s£/<m, with its dual color. This implies that G is (l + A)-edge colorable, 
which is contradictory. 

Case 2: w' = vm for some m, 0=£ras£/c, m±t. Here also, the initial and 
terminal edges of Q are assigned the color /3, and no edge incident with vm is 
colored ock+x. Also, Q does not contain vk unless vm = vk. Interchange the 
colors (3 and ak+x of the edges of Q. If m<t, then we proceed as in Case 1. If 
m > /, change the color of e to (3 if t = 0, while if m > t > 0, change the color of 
e, to (3 and color each eh 0s£/<t, with its dual color. Once again this implies 
that G is (1 + A)-edge colorable, which is impossible. 

Case 3: w± v,„, OsS m ^ k - 1, and w 3= u; or w' =£ vmfor any m 3= t and w' ± u. 
We consider w only, the conclusion being identical for w'. Observe that by 
interchanging the colors /3 and ak+l of P, the color (3 is assigned to no edge 
incident with v* and the dual color of each e,-, 0^i<k, remains the same. This 
situation, as we have seen, yields a contradiction. 

Thus, only one other case remains. 

Case 4: w = u and w' = u. Since u is incident with no edge colored /3, the initial 
edge of both paths P and Q is colored /3 while each terminal edge is assigned 
ock+x. If P and Q are edge-disjoint, then u is incident with two distinct edges 
colored ak+x, which cannot occur. Thus P and Q have an edge in common. 
But then there is a vertex incident with three edges belonging to P or Q. At 
least two of these edges are colored either (3 or ak+\. This is a contradiction. ■ 

With the aid of Theorem 10.11 the set of all graphs can be divided very 
naturally into two classes. A graph G is said to be of class one if Xi(G) = A(G) 
and of class two if X\(G) = 1 + A(G). The main problem, then, is to determine 
whether a given graph belongs to class one or class two. 

The set of all edges of a graph G receiving the same color in an edge 
coloring of G is an edge color class. By Vizing’s Theorem, the edge chromatic 
number of an r-regular graph G(r ^ 1) is either rorr+1. If Xi(G) = r for such 
a graph G, then necessarily each edge color class in a ;^(G)-edge coloring of G 
induces a 1-factor of G; and it follows that an r-regular graph has edge 
chromatic number r if and only if it is 1-factorable. Hence, Kp is of class one if 
p is even and of class two if p is odd. It is also immediate that C„{n 5? 3) is of 
class one if n is even and of class two if n is odd. More generally, every regular 
graph of odd order is of class two. Also, since every bipartite graph G is a 
subgraph of a A(G)-regular bipartite graph (Exercise 10.27), it follows by 
Theorem 8.9 that every bipartite graph is of class one. 

Although it is probably not obvious, there are considerably more class 
one graphs than class two graphs, relatively speaking. Indeed, Erdos and 
Wilson [EW1] have proved that the probability that a graph of order p is of 
class one approaches 1 as p approaches infinity. However, the problem of 
determining which graphs belong to which class is unsolved. 
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Despite the fact that class two graphs are rather rare, graphs having 

relatively large sizes in relation to their orders are more likely to be of class 

two, as was discovered by Beineke and Wilson [BW1], 

Theorem 10.12 Let G be a graph of size q. If 

q > A(G) • 

then G is of class two. 

Proof If G is of class one, then X\(G) = A(G). Let a ^(G^edge coloring of G be 
given. Each edge color class of G has at most /3i(G) elements; therefore, 
q A(G) ■ fii(G), which produces a contradiction and the desired result. ■ 

Since fi\(G) ^ [p/2j for every graph G of order p, we have an immediate 

consequence of the preceding result. 

Corollary 10.2 If G is a (p, q) graph for which 

q > A(G) • [p/2\ , 

then G is of class two. 

It should be emphasized that the results of Theorem 10.12 and its corollary 

are strictly sufficient conditions. There exist graphs with relatively few edges 

that are of class two. Of course, the odd cycles are of class two, but, then, they 
are regular of odd order. The Petersen graph is of class two; in fact, Isaacs [II] 

has shown that there exist infinitely many cubic graphs of class two. For 
example, the graph of Figure 10.5, called the “double star”, is a class two 

graph. 
When discussing vertex colorings, we found it useful to consider graphs 

that are critical with respect to chromatic number. Now that we are investigating 

edge colorings, it proves valuable to consider certain minimal graphs. 
A graph G with at least two edges is minimal with respect to edge 

chromatic number (or simply minimal if the parameter is clear from context) if 

Xi(G — e) <X\(G) for every edge e of G. Since isolated vertices have no effect 
on edge colorings, it is natural to rule out isolated vertices when considering 
such minimal graphs. Also, since the edge chromatic number of a disconnected 
graph G having only nontrivial components is the maximum of the edge 

chromatic numbers of the components of G, every minimal graph without 
isolated vertices is connected. Therefore, the added hypothesis that a minimal 
graph G is connected is equivalent to the assumption that G has no isolated 

vertices. 
Two of the most useful results dealing with these minimal graphs are the 
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following so-called “adjacency lemmas” of Vizing [V3], which are presented 

without proof. 

Theorem 10.13 (Vizing's Adjacency Lemma—First Form) Let G be a connected 
graph of class two that is minimal with respect to edge chromatic number. Then 

every vertex of G is adjacent to at least two vertices of degree A(G). In 

particular, G contains at least three vertices of degree A(G). 

Theorem 10.14 (Vizing's Adjacency Lemma—Second Form) Let G be a 
connected graph of class two that is minimal with respect to edge chromatic 
number. If A(G) = n, and u and v are adjacent vertices with deg u = m, then v is 

adjacent to at least n — m + 1 vertices of degree n. 

We next examine to which class a graph belongs if it is minimal with 

respect to edge chromatic number. 

Theorem 10.15 Let G be a connected graph with A(G) = n ^2. Then G is minimal 
with respect to edge chromatic number if and only if either: 

(a) G is of class one and G = K( 1, n), or 

(b) G is of class two and G — e is of class one for every edge e of G. 
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Proof Assume first that G = /C(l, n). Then Xi(G) = A (G) = 2 while x,(G — e) = 
n — 1 for every edge e of G. Next, suppose that G is of class two and G — e is of 
class one for every edge e of G. Then, for an arbitrary edge e of G, we have 

*i(G — e) = A(G - e) < 1 + A(G) = Xl(G). 

Conversely, assume that X\(G — e) <X\(G) for every edge e of G. If G is 
of class one, then 

A(G) A(G - e) + 1 ^(G - e) + 1 = Xl(G) = A(G). 

Therefore, A(G — e) = A(G) — 1 for every edge e of G, which implies that 
G = K( 1, n). 

If G is of class two, then 

^i(G — e) + 1 =Xi(G) = A(G) + 1 

so that X\(G ~ e) = A(G) for every edge e of G. Suppose G contains an edge ex 
such that G — ex is of class two. Then X\(G ~ ei) = A(G — ex) + 1. Hence, 
A(G — ex) < A(G), implying that G has at most two vertices of degree A(G). 
This, however, contradicts Theorem 10.13 and completes the proof. ■ 

A graph G with at least two edges is called class minimal if G is of class 

two and G — e is of class one for every edge e of G. It follows that a class 
minimal graph without isolated vertices is necessarily connected. On the basis 
of Theorem 10.15, we conclude that except for star graphs, connected class 
minimal graphs are connected graphs that are minimal with respect to edge 

chromatic number, and conversely. 
A lower bound on the size of class minimal graphs is given next in 

another result by Vizing [V3]. 

Theorem 10.16 If G is a class minimal graph of size q with A(G) = n, then 

q^\(5n2 + 6 n — 1). 
O 

Proof Without loss of generality, we assume that G is connected. Suppose that 
6(G) = m and that degn = m. By Theorem 10.13, the vertex u is adjacent to at 
least two vertices of degree n; let v be such a vertex. By Theorem 10.14, v 
is adjacent to at least n — m + 2 vertices of degree n. Since the order of G is at 

least n + 1, we arrive at the following lower bound on the sum of the degrees of 

G: 

2q 25 [n(n - m + 2) + m(m - 1)] = [m2 — (n + 1 )m + (n2 + 2n)]. (10.3) 

However, expression (10.3) is minimum when m = (n + l)/2 so that 
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2 
(» + l)2 

2 
+ n2 + 2 n 

or 

q^\(?>n2 + 6n- 1). ■ 
O 

In the next section we shall be discussing various colorings of planar 

graphs, primarily vertex colorings and region colorings. We briefly consider 
edge colorings of planar graphs here. In this context, our chief problem remains 
to determine which planar graphs are of class one and which are of class two. It 

is easy to find planar graphs G of class one for which A (G) = n for each « 3= 2, 
since all star graphs are planar and of class one. There exist planar graphs G of 

class two with A(G) = n for n = 2, 3, 4, and 5. For n = 2, K3 has the desired 
properties. For n = 3, 4, and 5, the graphs of Figure 10.6 satisfy the required 

conditions. 

Figure 10.6 Planar graphs of class two 

It is not known whether there exist planar graphs of class two having 

maximum degree 6 or 7; however, Vizing [V3] proved that if G is planar and 
A(G)3=8, then G is of class one. We prove the following, somewhat weaker 

result. 

Theorem 10.17 If G is a planar graph with A(G) 3= 10, then G is of class one. 

Proof Suppose the theorem is not true. Then among the graphs for which the 
theorem is false, let G be a connected graph of minimum size. Thus, G is 

planar, A(G) = /?^10, and Xi(G) = n+l. Furthermore, G is minimal with 
respect to edge chromatic number. By Corollary 4.2b. G contains vertices of 
degree 5 or less; let S denote the set of all such vertices. Define H = G — S. 

Since H is planar, H contains a vertex w such that deg//W^5. Because 
deg(7W>5, the vertex w is adjacent to vertices of S. Let veS such that 
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wveE(G). Let degGv = m=S5. Then, by Vizing’s Adjacency Lemma (second 
form), w is adjacent to at least n — m + 1 vertices of degree n, but n —m + 1 3= 6 
so that w is adjacent to at least six vertices of degree n. Since n 3= 10, w is 
adjacent to at least six vertices of H, contradicting the fact that degww=s5. ■ 

More on edge colorings can be found in Fiorini and Wilson [FW1], which 
is devoted to that subject. 

Exercises 10.2 

10.27 Show that every bipartite graph G is a subgraph of a A(G)-regular bipartite 
graph. 

10.28 Show that every nonempty regular graph of odd order is of class two. 

10.29 Let H be a nonempty regular graph of odd order, and let G be a graph obtained 
from H by deleting (A(H) — l)/2 or fewer edges. Show that G is of class two. 

10.30 Prove or disprove: If G] and G2 are class one graphs and H is a graph with 
G\G H <Z G2, then H is of class one. 

10.31 Show that the Petersen graph is of class two. 

10.32 Prove that every hamiltonian cubic graph is of class one. 

10.33 (a) Show that each graph in Figure 10.6 is of class two. 

(b) Show that the two graphs of order 5 in Figure 10.6 are class minimal. 

10.34 Determine the class of each of the five regular polyhedra. 

10.35 Show that there are no connected class minimal graphs of order 4 or 6. 

10.36 If G is a class minimal graph and u and v are adjacent vertices of G, then prove 
that degu + degv>2 + A(G). 

10.37 If Ei is an independent set of edges in a class minimal graph, then prove that 
Xi(G-Ex)=Xx{G)-\. 

10.38 Let G be a graph of class two. Prove that G contains a class minimal subgraph El 
such that A(H) = A(G). 

10.39 A total coloring of a graph G is an assignment of colors to the elements (vertices 
and edges) of G so that adjacent elements and incident elements of G are 
colored differently. An n-total coloring is a total coloring that uses n colors. The 
minimum n for which a graph G admits an n-total coloring is called the total 
chromatic number of G and is denoted by Xi(G). The following conjecture is 
known as the Total Coloring Conjecture: For every graph G, 
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X2(G)=£2 + A(G). 

(a) Prove that *2(G)5s 1 + A(G) for every graph G. 

(b) Verify the Total Coloring Conjecture for graphs G with A(G)^2. 

(c) Determine *(G), Xl(G), and *2(G) for the (5, 7) graph G in Figure 10.6. 

10.3 Map Colorings 

It has been said that the mapmakers of many centuries past were aware of the 
“fact” that any map on the plane (or sphere) could be colored with four or 

fewer colors so that no two adjacent countries were colored alike. Two 
countries are considered to be adjacent if they share a common boundary line 
(not simply a single point). As was pointed out in [M2], however, there has 

been no indication in ancient atlases, books on cartography, or books on the 
history of mapmaking that people were familiar with this so-called fact. Indeed, 

it is probable that the Four Color Problem, that is, the problem of determining 
whether the countries of any map on the plane (or sphere) can be colored with 
four or fewer colors such that adjacent countries are colored differently, 

originated and grew in the minds of mathematicians. 
What, then, is the origin of the Four Color Problem? The first written 

reference to the problem appears to be in a letter, dated October 23, 1852, by 

Augustus De Morgan, mathematics professor at University College, London, 
to Sir William Rowan Hamilton (after whom “hamiltonian graphs” are named) 

of Trinity College, Dublin. The letter by De Morgan reads in part: 

A student of mine asked me today to give him a reason for a fact which I 

did not know was a fact—and do not yet. He says that if a figure be anyhow 

divided and the compartments differently coloured so that figures with any 

portion of common boundary line are differently coloured—four colours 

may be wanted, but no more .... Query cannot a necessity for five or more 

be invented. . . . But it is tricky work . . . what do you say? And has it, if 

true, been noticed? My pupil says he guessed it in colouring a map of 

England. The more I think of it, the more evident it seems. If you retort 

with some very simple case which makes me out a stupid animal, I think I 

must do as the Sphynx did.. . . 

The student referred to by De Morgan was Frederick Guthrie. By 1880 

the problem had become quite well known. During that year, Frederick Guthrie 
published a note in which he stated that the originator of the question asked of 
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De Morgan was his brother, Francis Guthrie. We quote from Frederick 
Guthrie’s note [G7]: 

Some thirty years ago, when I was attending Professor De Morgan’s class, 

my brother, Francis Guthrie, who had recently ceased to attend them (and 

who is now professor of mathematics at the South African University, Cape 

Town), showed me the fact that the greatest necessary number of colours to 

be used in colouring a map so as to avoid identity of colour in lineally 

contiguous districts is four. I should not be justified, after this lapse of time, 
in trying to give his proof .... 

With my brother’s permission I submitted the theorem to Professor 

De Morgan, who expressed himself very pleased with it; accepted it as new; 

and, as I am informed by those who subsequently attended his classes, was 
in the habit of acknowledging whence he got his information. 

If I remember rightly, the proof which my brother gave did not seem 

altogether satisfactory to himself; but I must refer to him those interested in 
the subject. 

On the basis of this note, we seem to be justified in proclaiming that the 
Four Color Problem was the creation of one Francis Guthrie. 

Returning to the letter of De Morgan to Hamilton, we note the very 
prompt reply of disinterest by Hamilton to De Morgan on October 26, 1852: 

I am not likely to attempt your “quaternion of colours” very soon. 

Before proceeding further with this brief historical encounter with the 
Four Color Problem, we pause in order to give a more precise mathematical 
statement of the problem. 

A plane graph G is said to be n-region colorable if the regions of G can be 
colored with n or fewer colors so that adjacent regions are colored differently. 
The Four Color Problem is thus the problem of settling the following 
conjecture. 

The Four Color Conjecture Every map (plane graph) is 4-region colorable. 

In dealing with the Four Color Conjecture, one need not consider all 
plane graphs, as we shall now see. 

The region chromatic number x*(G) of a plane graph G is the minimum 
n for which G is n-region colorable. Since x*(G) is the maximum region 
chromatic number among its blocks, the Four Color Problem can be restated 
as determining whether every plane block is 4-region colorable. 

In graph theory the Four Color Problem is more often stated in terms of 
coloring the vertices of a graph; that is, coloring the graph. In this form, the 

Four Color Conjecture is stated as follows. 
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The Four Color Conjecture Every planar graph is A-colorable. 

It is in terms of this second statement that the Four Color Problem will be 

primarily considered. We now verify that these two formulations of the Four 
Color Conjecture are indeed equivalent. Before doing this, however, we require 

one additional concept. 
For a given connected plane graph G, we construct a pseudograph G* as 

follows. A vertex is placed in each region of G, and these vertices constitute 

the vertex set of G*. Two distinct vertices of G* are then joined by an edge for 
each edge common to the boundaries of the two corresponding regions of G. 

In addition, a loop is added at a vertex v of G* for each bridge of G that 
belongs to the boundary of the corresponding region. Each edge of G* is 

drawn so that it crosses its associated edge of G but no other edge of G or G* 
(which is always possible); hence, G* is planar. The pseudograph G is referred 

to as the dual of G. In addition to being planar, G* has the property that it has 
the same size as G and can be drawn so that each region of G* contains a 
single vertex of G; indeed, (G*)* = G. If each set of multiple edges of G* 

joining the same two vertices is replaced by a single edge and all bops are 
deleted, the result is a graph, referred to as the underlying graph G* of G*. 

These concepts are illustrated in Figure 10.7, with the vertices of G* represented 

by solid circles. 

Figure 10.7 The dual (and its underlying graph) of a plane graph 

Theorem 10.18 Every planar graph is A-colorable if and only if every plane graph is 

A-region colorable. 

Proof Without loss of generality, we may assume that the graphs under consideration 

are connected. 
Suppose every planar graph is 4-colorable. Let G be an arbitrary 

connected plane graph, and consider G*, the underlying graph of its dual G*. 
Two regions of G are adjacent if and only if the corresponding vertices of G* 
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are adjacent. Since G* is planar, it follows, by hypothesis, that G* is 4- 
colorable; thus, G is 4-region colorable. 

For the converse, assume that every plane graph is 4-region colorable, 
and let G be an arbitrary connected plane graph. As we have noted, the dual 
G* of G can be embedded in the plane so that each region of G* contains 
exactly one vertex of G. If G* is not a graph, then it can be converted into a 

graph G' by inserting two vertices into each loop of G* and by placing a vertex 
in all but one edge in each set of multiple edges joining the same two vertices. 
Two vertices of G are adjacent if and only if the corresponding regions of G' 
are adjacent. Since G' is 4-region colorable, G is 4-colorable. ■ 

With these concepts at hand, we now return to our historical account of 
the Four Color Problem. We indicated that this problem was evidently invented 

in 1852 by Francis Guthrie. The growing awareness of the problem was quite 
probably aided by De Morgan, who spoke often of it to other mathematicians. 
The first known published reference to the Four Color Problem is attributed to 

De Morgan in an anonymous article in the April 14, 1860 issue of the journal 
Athenaeum. By the 1860’s the problem was becoming rather widely known. 
The Four Color Problem received added attention when on June 13, 1878, 
Arthur Cayley asked, during a meeting of the London Mathematical Society, 

whether the problem had been solved. Soon afterwards, Cayley [C2] published 
a paper in which he presented his views on why the problem appeared to be so 
difficult. From his discussion, one might very well infer the existence of planar 
graphs with an arbitrarily large chromatic number. 

One of the most important events related to the Four Color Problem 

occurred on July 17, 1879, when the magazine Nature carried an announcement 
that the Four Color Conjecture had been verified by Alfred Bray Kempe. His 
proof of the conjecture appeared in a paper [Kl] published in 1879 and was 
also described in a paper [K2] published in 1880. For approximately ten years, 

the Four Color Conjecture was considered to be settled. Then in 1890, Percy 
John Heawood [H9] discovered an error in Kempe’s proof. However, using 
Kempe’s technique, Heawood was able to prove that every planar graph is 5- 

colorable. This result was referred to, quite naturally, as the Five Color 

Theorem. 

Theorem 10.19 (The Five Color Theorem) Every planar graph is 5-colorable. 

Proof The proof is by induction on the order p of the graph. For p^ 5, the result is 

obvious. 
Assume that all planar graphs with p — 1 vertices, p> 5, are 5-colorable, 

and let G be a plane graph of order p. By Corollary 4.2b, G contains a vertex v 
of degree 5 or less. By deleting v from G, we obtain the plane graph G -v. 
Since G - v has order p — 1, it is 5-colorable by the inductive hypothesis. Let 
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there be given a 5-coloring of G - v, denoting the colors by 1,2, 3, 4, and 5. If 

some color is not used in coloring the vertices adjacent with v, then v may be 
assigned that color, producing a 5-coloring of G itself. Otherwise, deg v = 5 and 

all five colors are used for the vertices adjacent with v. 
Without loss of generality, we assume that v1? v2, v3, v4, v5 are the five 

vertices adjacent with and arranged cyclically about v and that v, is assigned the 
color /, 1 s=z's=5. Now consider any two colors assigned to nonconsecutive 

vertices v,, say 1 and 3, and let H be the subgraph of G - v induced by all 
those vertices colored 1 or 3. If iq and v;3 belong to different components of //, 
then by interchanging the colors assigned to vertices in the component of H 

containing V\, for example, a 5-coloring of G v is produced in which no 
vertex adjacent with v is assigned the color 1. Thus if we color v with 1, a 5- 

coloring of G results. 
Suppose then that v, and v3 belong to the same component of H, so that 

there exists a vrv3 path P, all of whose vertices are colored 1 or 3. The path P, 

together with the path v3, v, vx, produces a cycle C in G that encloses v2, or v4 
and v5. Hence there exists no v2-v4 path in G, all of whose vertices are colored 
2 or 4. Denote by F the subgraph of G induced by all those vertices colored 2 

or 4. Interchanging the colors of the vertices in the component of F containing 
v2, we arrive at a 5-coloring of G - v in which no vertex adjacent with v is 

assigned the color 2. If we color v with 2, a 5-coloring of G results. H 

In the 86 years that followed the appearance of Heawood’s paper, 
numerous attempts were made to unlock the mystery of the Four Color Problem. 
Then on June 21, 1976, Kenneth Appel and Wolfgang Haken announced that 

they, with the aid of John Koch, had verified the Four Color Conjecture. 
Appel and Haken’s proof, described in [AHK1], was logically quite 

simple; in fact, many of the essential ideas were the same as those used 
(unsuccessfully) by Kempe and, then, by Heawood. However, their proof was 
combinatorially complicated by the extremely large number of necessary case 
distinctions, and nearly 1200 hours of computer time were required to perform 
extensive computations. Later refinements in the proof have resulted in a 

significant reduction in the amount of computer time needed. 

Theorem 10.20 (The Four Color Theorem) Every planar graph is 4-colorable. 

One interesting consequence of the Four Color Theorem provides a 

bound on the edge chromatic number of cubic plane blocks. In establishing this 
result, it is convenient to make use of the Klein four-group K from algebra. 

Using © as the binary operation for K and denoting its elements by (0, 0), 

(0, 1), (1, 0), and (1, 1), we define addition by 

(i, j) © (m, n) = (/ + m, j + n). 
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where “+” denotes addition modulo two; hence, (0, 0) is the zero element of K. 

Corollary 10.20 Every cubic plane block is 3-edge colorable. 

Proof Let G be a cubic plane block. By Theorems 10.18 and 10.20, G is 4-region 
colorable. Let the regions of G be colored with the elements of the Klein four- 
group K. Since G is a block, each edge of G belongs to the boundary of two 

(adjacent) regions. Define the color of an edge to be the sum of the colors of 
those two regions bounded, in part, by the edge. Since every element of K is 
self-inverse, no edge of G is assigned the color (0, 0). However, since K is a 
group, it follows that the three edges incident with a vertex are assigned the 

colors (0, 1), (1, 0), and (1, 1). Hence G is 3-edge colorable. ■ 

More information on the history of the Four Color Problem can be found 
in Biggs, Lloyd and Wilson [BLW1], Summaries of the proof of the Four Color 

Theorem are to be found in Appel and Haken [AH1], Haken [HI], and F. 

Bernhart [B9]. 
The chromatic number of a surface (where, as always, a surface is a 

compact orientable 2-manifold) Sn of genus n, denoted x(S„)> is the maximum 
chromatic number among all graphs that can be embedded on S„. The surface 
S0 is the sphere and the Four Color Theorem states that ^(S0) = 4. Heawood 

[H9] showed that /(5i) = 7; that is, the chromatic number of the torus is 7. 
Moreover, Heawood was under the impression that he had proved 

X(Sn)= 
7 + VI +48 n 

2 

for all n> 0. However, Heffter [HI 1] pointed out that Heawood had only 

established the upper bound: 

X(Sn)^ 
7 + VI + 48n 

2 
(10.4) 

The statement that x(S„) = [(7 + Vl + 48/2)/2j for all n >0 eventually became 
known as the Heawood Map Coloring Conjecture. In 1968, Ringel and Youngs 
[RY1] completed a remarkable proof of the conjecture, which has involved a 
number of people. This result is now known as the Heawood Map Coloring 

Theorem. The proof we present assumes inequality (10.4). 

Theorem 10.21 (The Heawood Map Coloring Theorem) For every positive 

integer n, 

7 + VI + 48 n 

2 X(Sn) = 
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Proof Because of inequality (10.4), it remains only to verify that 

X(Sn)^ 
7 + VI + 48/I 

2 

for all n >0. Define 

P = 
7+ VI + 48 n 

2 

so that p s£ (7 + Vl + 48/i )/2. From this, it follows that n^(p-3)(p- 4)/12. 

Therefore, 

n 2= (P~3j^~4) . (10.5) 

Since the right-hand expression of (10.5) equals the genus of Kp (by Theorem 

4.26), y(Kp) =£ n so that 

X(Sy(Kp))^X(S„). 

Clearly Kp is embeddable on Sy(Kp); consequently, x(Sy(Kp)) implying that 

X(Sn)^p. U 

Note that as a consequence of the Four Color Theorem, Theorem 10.21 

also holds for n = 0. A thorough discussion of the Heawood Map Coloring 

Problem can be found in Ringel [R6] and White [W5]. 

Exercises 10.3 

10.40 Use a proof similar to that of Theorem 10.19 to show that a(G)s£3 for every 

planar graph G. 

10.41 Prove that every cubic planar block is 1-factorable. 

10.42 Give an example of a graph G for which y(G) = 2 and y(G) = x(V)- Verify that 

your example has these properties. 

10.43 Use the result given in Theorem 10.3 to establish an upper bound for the 

chromatic number of the class of graphs embeddable on the torus. Discuss the 

sharpness of this upper bound. 



Chapter Eleven 

Extremal Graph Theory 
and Ramsey Theory 

Next we investigate several topics and problems that belong to an area referred 
to as extremal graph theory. A number of problems in this area (although 
certainly not all) involve, for a given property P and a parameter / defined on 
some class % of graphs, determining the least integer n such that every graph 

Ge'C with /(G) 2= n has property P. Those graphs G e <€ not having property P 

and with /(G) = n — 1 are then called the extremal graphs in this case. Much of 
the major activity in extremal graph theory, however, lies in the field known as 
ramsey theory, which will receive the main emphasis in this chapter. 

11.1 Extremal Graph Theory 

Extremal graph theory is considered to have begun in 1941 when Turan [T10] 

proposed and then solved the following problem: For given positive integers p 

and n, determine the minimum positive integer T(p, n) such that every graph 
of order p and size T(p, n) contains Kn as a subgraph. In order to establish 
Turan’s Theorem, we begin with a theorem of Erdos [E6]. The following 
notation will be useful in the proof of Theorem 11.1 and throughout this 
section. 

For a vertex v of a graph G, recall that the neighborhood N(v) of v 
consists of the vertices of G adjacent with v. The closed neighborhood 7V[v] of 
v is defined by jY[v] = N(v) U {v}. 
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Theorem 11.1 Let G be a graph with vertex set F(G) = {v,, v2, ... , vp} that does 
not contain Kn(n 5=2) as a subgraph. Then there exists an t-partite graph H of 

order p, where t = min(p, n — 1), with vertices Wj, vv2, .... wf, such that 

degHWj 5s degGv, for each i, l^i^p. 

Proof We employ induction on n. If n = 2, then G = Kp, so that we take H = Kp. 
Assume the result is true for n — 1 (n^3), and_let G be a graph of ordei^p 
satisfying the hypothesis of the theorem. If G = Kp, then again we take H = Kp. 

Thus, without loss of generality, we may assume that N(vp) = {vx, v2, 
vdj, where d = A(G) = deg vp 3= 1. Let Gx = (N(vp)). Since G does not contain 
Kn as a subgraph, Gx does not contain Kn~x as a subgraph. By the inductive 
hypothesis, there exists a A-partite graph Hx whose vertices can be labeled w,, 

w2, .. . , wd, where A = min(d, n - 2),_such that degW] w, 3= degGl v, for each i, 
1 d. Define the graph H = Hx + Kp_d, where the vertices of the subgraph 
Kp_d are labeled wd+x, wd+2, ... , wp. Then H is a (A + l)-partite graph of 

order p, where A+l = min(d+l, n-l). Since min(d+l, /? - 1) min(p, 

n — l)^p, the graph H is Gpartite, where € = min(p, n— 1). It remains to 
show that deg//W, 5s degGv, for each i, 1 sSi'sSp. For i= 1, 2, ..., d, 

degHw, = deg Wl w, + (p - d) 5s degG, v,■ + {p - d) 5s degGv,. (11.1) 

Also, for i = d + 1, d + 2, ..., p, 

degHWj = d~ A(G) 5s degGv,. ■ 

A corollary to the proof of Theorem 11.1 will prove useful in the proof of 

Theorem 11.2. 

Corollary 11.1 If the degrees of the vertices of the graph H constructed in the proof 
of Theorem 11.1 satisfy deg//H’, = degGv, for each i, ls£/^p, then H = G. 

Proof As in the proof of Theorem 11.1, we employ induction on n. If degww, = 

degGv, for / = 1,2, ...,/;, then from (11.1) we see that deg// w, = degGiv, for 
each i, l^i^d. By the inductive hypothesis, then, HX = GX. Furthermore, it 
must be the case that degGv, = degG]v, + (p — d) so that v,v;e£(G) for 
1 ;S d and d + 1 ^j^p. This, of course, implies that {vrf+1, vd+2, ..., vp} is 
an independent set of vertices of G, and that H=G. ■ 

We are now prepared to present the classical theorem of Turan [T10]. 
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Theorem 11.2 (Turan) For positive integers p and n, with 3 n =Sp, let T(p, n) be 

the least positive integer such that every graph of order p and size T(p, n) 
contains Kn as a subgraph. Then 

7-(p, «)=! + (£) 
t(p — n + 1 + r) 

2 

where p = t{n—\) + r, 0^r<n — 1. Furthermore, there is only one extremal 

graph, namely the complete (n - \)-partite graph K{px, p2, . . • , p„_i), where r 
of the numbers p, equal t + 1 and n — 1 — r of the numbers p, equal t. 

Proof First observe that the graph K(px, p2, . .. , pn-i), where r of the numbers p, 

equal t+ 1 and n — 1 — r of the numbers p, equal t, is a (p, Q — t(p — n + 1 + r)/2) 

graph that fails to contain K„ as a subgraph. Therefore T(p, n) 5= 1 + (' ) — 

t(p — n + 1 + r)/2. In order to show that T(p, n) 1 + Q - t(p — n + 1 + r)/2, 

we show that if G is a graph of order p that does not contain K„ as a subgraph, 

then G has at most Q — t(p — n + 1 + r)l2 edges. Label the vertices of G as vx, 

v2, vp. By Theorem 11.1, there exists an (n — l)-partite graph H with 
vertices vtq, w2, ..., wp so that degHWj ^ degGv; for each i, 1^/^p. In 
particular, q(G) ^ q(H). Add edges between the partite sets of H (if necessary) 

to obtain a complete (n — l)-partite graph, say K(mx, m2, ■ ■ ■ , ,), where 

m! ^ m2 ^ ^ mn~ i • Then 

q(G)^q(H)^q(K(mu m2, .. . , mn_j)). (11.2) 

If K(mx, m2, . .. , m„_,) ^ /C(p,, p2, .. . , p„_i), then for some y > k, we have 
my>mA.+ l. The complete (n — l)-partite graph K(mx, ..., mk+ 1, ..., 

m, —1, ..., w,,-!) has mj — mk — 1 more edges than does K(mx, m2, ..., 

m„_i). This implies that /f(pi, p2, • • • , p„-i) has the maximum size among all 
(n — l)-partite graphs of order p. It follows from (11.2), then, that T(p, n) = 

1 + (j) — r(p — n + 1 + r)/2. 

In order to complete the proof, assume that q{G)= T(p, n) — 1. Then 

it follows from (11.2) that q(G) = q{H) = q(K(mx, m2, ... , mn-X)) = q(K(px, 
p2, ..., p„_i)). From Corollary 11.1, we have G = H. By the way in which 
K(mu m2, .. . , m„_!) was constructed, H = K(m,, m2, . . . , mn^x). Finally, it 
was shown above that if q(K(mx, m2, ... , mn-X)) = q(K(px, p2, ... , p„_t)), 

then /C(m,, m2, .. . , m„_!) = K(pu p2, . . . , p„_i). Thus, G = AT(p,, p2, ... , 

The special case of Theorem 11.2 in which n = 3 is of added interest. 

Corollary 11.2 For p 3, the smallest positive integer T(p, 3) such that every (p, 

7\p, 3)) graph contains a triangle is given by 
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T(p, 3) = 1 + 

Moreover, the only extremal graph is the complete bipartite graph K([p/2\, 

[p/21). 

Turan also proposed the following problem: Determine the minimum 

number q so that for a fixed integer p, every (p, q) graph contains a prescribed 

subgraph H. Accordingly, then, there exists at least one (p, q - 1) graph G 
that fails to contain H; such a graph G is then an extremal graph for this 
problem. Turan’s Theorem therefore qualifies as a solution to this type of 

problem. 
While Corollary 11.2 provides a rather simple expression for the minimum 

size necessary for a graph of order p to possess a triangle, it may be somewhat 

unexpected to learn that the problem of finding a corresponding expression for 

4-cycles appears to be hopeless. 
The minimum size required for a graph of order p to contain K4 as a 

subgraph is, of course, the Turan number T(p, 4). A related result, by Dirac 

[D6], is the following. 

Theorem 11.3 For p 3= 4, every (p, 2p - 2) graph contains a subgraph homeomorphic 

to K4. Furthermore, the number 2p — 2 cannot be reduced. 

It has been conjectured by Dirac that for p3= 5, every (p, 3p - 5) graph 
contains a subgraph homeomorphic to K5\ however, it has only been verified, 

by Thomassen [Tl], that every (p, 4p - 10) graph contains such a subgraph. 
Since every (p, q) graph satisfying g 3s p 3s 3 contains a cycle and every 

tree of order p has size p — 1, the minimum size required for a graph of order 
p (3s 3) to contain a cycle is p. The following extremal result, due to Posa (see 
[E5]), gives the minimum size for a graph to contain two disjoint cycles. 

Theorem 11.4 For p3 6, the smallest positive integer s(p) so that every (p, s(p)) 

graph contains two disjoint cycles is 

s(p) = 3p — 5. 

Proof First we use induction on p to show that s(p) =£ 3p - 5. There are only two (6, 
13) graphs—one obtained by removing two nonadjacent edges from Kh and the 

other obtained by removing two adjacent edges from /C6. In both cases, the 

graph has two disjoint triangles. Thus, s(6)s£ 13. 
For n 3s 7, we assume that s{p) 3p - 5 for all p n - 1 and let G be an 

(n, 3n — 5) graph. Since 

deg v = 6/i — 10, 
V e V(G) 
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there exists a vertex v0 of G such that degv0^5. Assume first that degv0 = 5, 

and N(v0) = {v,-1/ = 1, 2, 5}. If (./V[v0]) contains 13 or more edges, then 

we have already noted that (jV[v0]) has two disjoint cycles, implying that G 

has two disjoint cycles. If, on the other hand, (/V[v0j) contains 12 or fewer 

edges, then, since degv0 = 5, some vertex, say vx, is not adjacent with two 

other elements of N(vo), say v2 and V3. Add to G the edges vxv2 and VJV3 and 

delete the vertex v0, obtaining the graph G', that is, G' = G + v,v2 + v,v3 - v0. 

The graph G' is an (n- 1, 3/7 — 8) graph and, by the inductive hypothesis, 

contains two disjoint cycles Cx and C2. At least one of these cycles, say Cx, 

does not contain the vertex vx and thus contains neither the edge vxv2 nor the 

edge Vj v3. Hence Cx is a cycle of G. If C2 contains neither vxv2 nor vxv3, then 

Ci and C2 are disjoint cycles of G. If C2 contains vxv2 but not vxv3, then by 

removing vxv2 and adding v0, v0V!, and v0v2, we produce a cycle of G that is 

disjoint from Cx. The procedure is similar if C2 contains vxv3 but not vxv2. If 

C2 contains both vxv2 and vxv3, then by removing vx from C2 and adding v0, 

v0v2, and v0v3, a cycle of G disjoint from Cx is produced. 

Suppose next that degv0 = 4, where N(v0) = {vx, v2, v3, v4}. If (N[v0]) is 

not complete, then some two vertices of N(vQ) are not adjacent, say vx and v2. 

By adding v,v2 to G and deleting v„, we obtain a (/? - 1, 3n - 8) graph G', 

which by hypothesis contains two disjoint cycles. We may proceed as before to 

show now that G has two disjoint cycles. Assume then that (iV[v0]) is a 

complete graph of order 5. If some vertex of V(G) - N[v0] is adjacent with two 

or more elements of N(v0), then G contains two disjoint cycles. Hence we may 

assume that no element of V(G) - A[v0] is adjacent with more than one 

element of N(v0). Remove the vertices v0, vl5 v2 from G, and note that the 

resulting graph G" has order n - 3 and contains at least (3n - 5) - (n - 5) - 9 = 

2n-9 edges. However, 6 implies that 2n - 92sn - 3, so that G" contains at 

least one cycle C. The cycle C and the cycle v0, vx, v2, v0 are disjoint and 

belong to G. 

Finally, we assume that degv0^3. The graph G —v0 is an (n — 1, q) 
graph, where q^3n — 8. Hence by the inductive hypothesis, G — v0 (and 

therefore G) contains two disjoint cycles. 

This establishes the fact that s(p) ^ 3p — 5. To prove that s(p) = 3p — 5, 

we need only observe that for each p 22 6, the graph K( 1, 1, 1, p — 3) is a (p, 

3p — 6) graph that fails to contain two disjoint cycles. This follows because each 

cycle of /C(l, 1, 1, p — 3) contains at least two of the three vertices having 

degree p — 1. ■ 

For two edge-disjoint cycles only p + 4 edges are required, as another 

theorem of Posa (see [E5]) shows. 

Theorem 11.5 For p^ 6, every (p, p + 4) graph contains two edge-disjoint cycles. 
Furthermore, the number p + 4 cannot be reduced. 

A detailed discussion of extremal graph theory is given in Bollobas [B12]. 
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Exercises 11.1 

H.l Illustrate Theorem 11.1 for the graph G s C5 that does not contain K3 as a 

subgraph. 

11.2 For 3=£n let p = t(n — 1) + r, where 0s£r<n - 1. Show that the size of the 

graph K(p,, p2, ... , pn-i)> where r of the numbers p, equal r+ 1 and n - 1 - r 
of the numbers p, equal t, is (;) — t(p — n + 1 + r)/2. 

11.3 Use Theorem 11.2 to give a proof of Corollary 11.2. 

11.4 Prove Theorem 11.3. 

11.5 For positive integers p 3= 9, define s'(p) as the least positive integer so that every 

(p, s'(p)) graph contains three pairwise disjoint cycles. Determine a formula for 

s'(p). 

11.6 Prove Theorem 11.5. 

11.7 Let 3) be a fixed integer. For p>n, let g(p) denote the least positive 

integer so that every (p, g(p)) graph contains the star graph /C(l, n) as a 

subgraph. Determine a formula for g(p). 

11.8 For positive even integers p, define F(p) as the least positive integer so that 

every (p, F{p)) graph contains a 1-factor. Determine a formula for F(p). 

11.2 Ramsey Numbers 

Probably the best known and most studied area w ithin extremal graph theory is 

ramsey theory. We shall discuss this subject in this section and the next. We 

begin with the classical ramsey numbers. 

For positive integers m and n, the ramsey number r(m, n) is the least 

positive integer p such that for every graph G of order p, either G contains Km 
as a subgraph or G contains Kn as a subgraph; that is, G contains either m 
mutually adjacent vertices or an independent set of n vertices. The ramsey 

number is named for Frank Ramsey [Rl], who studied this concept in a set 

theoretic framework and essentially verified the existence of ramsey numbers. 

Since (C) = G for every graph C, it follows that the ramsey number r(m. n) is 

symmetric in m and n in the sense that r(m, n) = r(n. m). 
It is rather straightforward to show that r(m, n) exists if at least one of m 

and n does not exceed 2, and that 
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r(l, n) — 1 and r(2, n) = n. 

The degree of difficulty in determining the values of other ramsey numbers 

increases sharply as m and n increase, and no general values like the above are 

known. 

It is sometimes convenient to investigate ramsey numbers from an “edge 

coloring” point of view. For every graph G of order p, the edge sets of G and 

G partition the edges of Kp. Thus, r(m, n) can be thought of as the least 

positive integer p such that if every edge of Kp is arbitrarily colored red or blue 

(where, of course, adjacent edges may receive the same color), then there 

exists either a complete subgraph of order m, all of whose edges are colored 

red, or a complete subgraph of order n, all of whose edges are colored blue. In 

the first case, we say that G contains a red Km; in the second case, G contains a 

blue Kn. For example, for n 2, r{2, n) > n - 1 since if all ("2 !) edges of Kn_x 
are colored blue, then Kn_x contains neither a red K2 nor a blue K„. However, 

r(2, n) since if we arbitrarily color the edges of Kn red or blue, then either 

all the edges are blue and we have a blue Kn, or at least one edge is red and we 

have a red K2. Thus, r(2, n) = n. 

The proof of Theorem 11.6 illustrates some common proof techniques in 

ramsey theory. 

Theorem 11.6 The ramsey number r(3, 3) = 6. 

Proof Since neither C5 nor C5 contains K3 as a subgraph, r(3, 3)5=6. 

Let G be any graph of order 6, and let v be a vertex of G. Clearly, v is 

incident with at least three edges of G or at least three edges of G. Without 

loss of generality, we assume that Wj, vv2, and vv3 are edges of G. If any of 

VjV2, VjV3, and v2v3 is an edge of G, then G contains K3 as_a subgraph; 

otherwise, vq, v2, v3 are mutually adjacent vertices of G, so that G contains K3 
as a subgraph. Thus, r(3, 3)^6. Combining the two inequalities, we have 

r(3, 3) = 6. M 

Before proceeding further, we show that the ramsey numbers exist and, 

at the same time, establish an upper bound for r(m, n), which was discovered 

originally by Erdos and Szekeres [ES2]. 

Theorem 11.7 For every two positive integers m and n, the ramsey number r(m, n) 

exists; moreover, 

r(m, n) 
Im + n — 2 \ 

\ m- 1 / 

Proof We proceed by induction on k = m + n. Note that we have equality for m = 1 

or m = 2, and arbitrary n; and for n = 1 or n = 2, and arbitrary m. Hence the 
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result is true for k s£5. Furthermore, we may assume that m 2s 3 and 3. 

Assume that r(m', n') exists for all positive integers m' and ri with 

m' + n'<k, where k^6, and that r(m', n') *£ CnC-f2)- Let m and n be 

positive integers such that m + n = k, m 2= 3, and n^3. By the inductive 

hypothesis, it follows that r(m — 1, n) and r(m, n — 1) exist, and that 

, , \^(m + n- 3\ , + 
r(m—\,n)^\ _ and r(m, n — 1) ^ 

' \ m—2 ) ' \ m—1 

Since 

/m + n- 3\/m + n- 3\/m + n- 2\ 

1 ffl-2 )( ffl-1 j l m-1 r 
we have that 

r(m- 1, n) + r(m, n- l)=s( m_j J. (H-3) 

Let G be a graph of order r(m - 1, n) + r(m, n - 1). We show that either 

G contains Km as a subgraph or G contains Kn as a subgraph. Let v e L(G); we 

consider two cases. 

Case 1: Assume degGv 2; r(m - 1, n). Thus if S is the set of vertices adjacent to 

v in G, either (S)G contains as a subgraph or (S)G = (S^contains Kn 

as a subgraph. If (S)G contains Kn as a subgraph, then so does G. If (S)G 
contains as a subgraph, then G contains Km as a subgraph since in G, the 

vertex v is adjacent to each vertex in S. Hence in this case, Km C G or K„ C G. 

Case 2: Assume degGv<r(ra-l, n). Theji degGv2:r(m, n - 1). Thus if T 
denotes the set of vertices adjacent to v in G, then | T| 2* r(m, n - 1) and either 

(T)g contains K„, as a subgraph or (T)G contains Kn_x as a subgraph. It 

follows, as in Case 1, that either K„,C G or Kn C G. 

Since G was an arbitrary graph of order r(m - 1, n) + r(m, n 

conclude that r(m, n) exists and that 

r(m, n) =£ r(m — 1, n) + r(m, n — 1). 

Combining (11.3) and (11.4), we obtain the desired result. ■ 

Corollary 11.7 For integers m 2= 2 and /i 2= 2, 

r(m, n) ^r(m — n) + r(m, n — (1L5) 

Moreover, if r(m — 1, n) and r(m, n— 1) are both even, then strict inequality 

holds in (11.5). 

— 1), we 

(11.4) 
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Proof The inequality in (11.5) follows from the proof of Theorem 11.7. 

In order to complete the proof of the corollary, assume that r(m — 1, n) 

and r(m, n — 1) are both even, and let G be any graph of order r(m— 1, 

n) + r(m, n — 1) — 1. We show that either G contains Km as a subgraph or G 
contains Kn as a subgraph. 

Since G has odd order, some vertex v of G has even degree. If degGv^ 

r(m — 1, «), then, as in Case 1 of Theorem 11.7, either G contains Km as a 

subgraph or G contains K„ as a subgraph. If, on the other hand, degGv< 

r{m — 1, n), then degGv =£ r(m — 1, n) — 2 since degGv and r(m — 1, n) are both 

even. But then degGv5=/-(m, n — 1), and we may proceed as in Case 2 of 

Theorem 11.7. ■ 

As we have already noted, the bound given in Theorem 11.7 for r(m, n) 

is exact if one of m and n is 1 or 2. The bound is also exact for m = n = 3. By 

Theorem 11.7, 

r(3, n) ^ 
n2 + n 

2 

An improved bound for r(3, n) is now presented. 

Theorem 11.8 For every integer n ^ 3, 

r(3, n) (11.6) 

Proof We proceed by induction on n. For n = 3, r(3, n) = 6 while (n2 + 3)/2 = 6, so 

that (11.6) holds if n = 3. Assume that r(3, n — 1) ((n — l)2 + 3)/2, for some 

4, and consider r(3, n). By Corollary 11.7, 

r(3, n) n + r(3, n — 1). (11-7) 

Moreover, strict inequality holds if n and r(3, n — 1) are both even. 

Combining (11.7) and the inductive hypothesis, we have 

r(3, n) =£ n + 
(n — l)2 + 3 n2 + 4 

(11-8) 

To complete the proof, it suffices to show that the inequality given in (11.8) is 

strict. 
If n is odd, then r(3, «)<(n2 + 4)/2, since n2 + 4 is odd. Thus we may 

assume that n is even. If r(3, n - 1) < ((n - l)2 + 3)/2, then clearly the inequality 

in (11.8) is strict. If, on the other hand, r(3, n - 1) = ((n - l)2 + 3)/2 = 

n2/2 - n + 2, then r(3, n - 1) is even since n is even. Therefore the inequality in 

(11.7) is strict, which implies the desired result. ■ 
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According to Theorem 11.8, r(3, 4) ^ 9 and r(3, 5) ^ 14. Actually equality 

holds in both these cases. The equality r{3, 5) = 14 follows since there exists a 

graph G of order 13 containing neither a triangle nor an independent set of five 

vertices; that is, and K5<j.G. The graph G is shown in Figure 11.1. 

G: 

Figure 11.1 An extremal graph showing r(3, 5) 3= 14 

Theorem 11.7 gives an upper bound for the “diagonal” ramsey number 

r(n, n), namely r(n, n) $ Cn~i)- There are two ways in which lower bounds for 

r(n, n) have been obtained—the constructive method and the probabilistic 

method. In the constructive method, a lower bound for r(n, n) is established 

by explicitly constructing a graph G of an appropriate order such that neither 

G nor G contains Kn as a subgraph. Better lower bounds, however, have been 

obtained using the probabilistic method, which we describe briefly. Suppose we 

wish to prove that there exists a graph G of order p having some given 

property P. If we can estimate the number of graphs of order p that do not 

have property P and we can show that this number is strictly less than the total 

number of graphs of order p, then there must exist a graph G of order p having 

property P. Of course, this procedure offers no method for constructing G. In 

1947, in one of the first applications of the probabilistic method, Erdos [E3] 

established the following bound. 

Theorem 11.9 For every integer 3, 

r(n,n)> |2"/2J. 

Proof Let p = [2"/2J. We demonstrate the existence of a graph G of order p such that 

neither G nor G contains Kn as a subgraph. 

There are 2*-1 nonidentical graphs of order p with the same vertex set V. 

For each subset 5 of V with |S| = n, the number of these graphs in which S 

induces a complete graph is 2(-)-(=). Thus, if M denotes the number of 
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nonidentical graphs with vertex set V that contain a subgraph isomorphic to 

K„, then 

M sS 2(S)~(2) < -2<S>-<2). (11.9) 

By hypothesis, p^2nl2. Thus, //'2"~'2. Since n 3*3, we have 2"~/2 < (j)rt!2'2', 

and so 

//'<())/?! 2(S). (11.10) 

Combining (11.9) and (11.10), we conclude that 

AfC(j) 2&. 

If we list the M nonidentical graphs with vertex set V that contain a subgraph 

isomorphic to Kn, together with their complements, there are at most 2M <2(l) 
nonidentical graphs in the list. Since there are 2(l) nonidentical graphs with 

vertex set V, we conclude that there is a graph G with vertex set V such that^ 

neither G nor G appears in the aforementioned list, i.e., neither G nor G 

contains a subgraph isomorphic to K„. ■ 

By Theorems 11.7 and 11.9, we have 4 < r(4, 4) 20. Actually r(4, 4) = 18 

(see Exercise 11.13); in fact, the only known ramsey numbers r(m, n) for 

3 sS m sS 77 are 

r(3, 3) = 6 r(3, 6) = 18 r(4, 4) = 18 

r(3, 4) = 9 r(3, 7) = 23 

r(3, 5) = 14 r(3, 9) = 36 

Exercises 11.2 

11.9 Show that r(m, n) = r(n, m) for all positive integers m and n. 

11.10 Show that if G is a graph of order r(m, n) - 1, then 

(a) A:m_,CG or Kn C G, 

(b) Km C G or Kn-x C G. 

11.11 If 2^m’ m and 2 ^ n' « n, then prove that r(m', rt') r(m, n). Furthermore, 

prove that equality holds if and only if m' = m and ri = n. 

11.12 Show that r(3, 4) = 9. 



312 Chapter 11 Extremal Graph Theory and Ramsey Theory 

11.13 The accompanying graph has order 17 and contains neither four mutually 

adjacent vertices nor an independent set of four vertices. Thus, r(4, 4) >17. 

Show that r(4, 4) = 18. 

11.14 The value of the ramsey number r(5, 5) is unknown. Establish upper and lower 

bounds (with explanations) for this number. 

11.3 Generalized Ramsey Theory 

For positive integers nx and n2, the classical ramsey number r(nx, n2), discussed 

in Section 11.2, may be defined as the least positive integer p such that for any 

factorization Kp = FX@F2 (therefore, F2 = Fx), either Fni C F, or F„,CF2. 

Defining the ramsey number in this manner suggests a variety of interesting 

generalizations. In this section we consider a sample of the many directions of 

investigation in the rapidly growing field of ramsey theory. 

Let Gi, G2, . . . , Gk (k ^ 2) be graphs. The (generalized) ramsey number 

r(Gx, G2, . .. , Gk) is the least positive integer p such that for any factorization 

Kp = Fl@F2@---@Fk, 

the graph G, is a subgraph of F, for at least one /' = 1, 2, .... k. Hence. r(Kni, 

K„2) = r(nx, n2). Furthermore, we denote r(Kni, K„2, ..., K„k) by r{nx, n2, 

... , nk). The existence of such “ramsey numbers” is guaranteed by the 

existence of the classical ramsey numbers, as we now see. 
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Theorem 11.10 Let the graphs Gx, G2, . .. , Gk (k^ 2) be given. Then the ramsey 

number r(Gx, G2, . .. , Gk) exists. 

Proof It suffices to show that if px, p2, .. . , pk are positive integers, then r(p1, p2, 

... , pk) exists; for suppose that Gi, G2, ... , Gk have orders p\, p2, ... , pk, 
respectively, and that r(px, p2, . . . , pk) exists. If Fx©F2© ■ ■ ■ ®Fk is any 
factorization of the complete graph of order r(px, p2, .. . , pk), then Kp.. C F, 

for some i, l^i^k. Since G,CFp., it follows that G, C F,. Thus r(Gx, G2, 
. . . , Gk) exists and r{Gx, G2, .. . , Gk) ^r(px, p2, . . . , pk). 

We proceed by induction on k, where /•(/?[, p2) exists for all positive 

integers px and p2 by Theorem 11.7. Assume that r(nx, n2, .. . , n^-i) exists 
(k ^ 3) for any k — 1 positive integers nx, n2, ... , nk-X, and let px, p2, ... , pk 
be k positive integers. We show that r(px, p2, ... , pk) exists. By the inductive 

hypothesis, r(px,p2, . .. , pk_x) exists; say r(p,, p2, . . . , pk-X)=p0. Let r(p0, 
pk)=p■ We now verify that r(px, p2, ..., pk)^p. thereby establishing the 
required existence. 

Let Kp = Fx ©F2© • • • © Fk be an arbitrary factorization of Kp into k 
factors. We show that Kp C F, for at least one i, l^i^k. Let /7 = F,©F2© 

•••©Fa:-i; hence, Kp-FI®Fk. Since r(p0, pk)=p, it follows that KPitCH 

or KPk C Fk. 
Suppose that Kp< C H. Let V0 be a set of p0 mutually adjacent vertices of FI, 

and define F- = ( L0)/v for i =1,2, .. . ,k — 1. Since//= FX©F2© • • ■ ©F^.^it 
follows that KPi= F;©F2© • • • ©F*_,. However, r(px,pz,-p*_,) =p0, so 
that C F\ for some i, 1 ^ i ^ k — 1. Because F\ C F, for all /, 1 ^ i ^ A: — 1, the 

graph Kp. is a subgraph of F, for at least one i, l^i^k— 1. 

Hence, we may conclude that CF, for some i, 1 sS/=S/c. ■ 

While it is known that r(3, 3, 3) = 17, no other nontrivial numbers of the 

type r(nx, n2, ... , nk), k^ 2, have been evaluated except those mentioned in 
the preceding section. It is perhaps a little surprising that there has been 
considerably more success in evaluating the numbers r(Gx, G2, ... , Gk) when 
not all the graphs G, are complete. One of the most interesting results in this 

direction is due to Chvatal [C5], who determined the ramsey number r(Tm, 
F„), where Tm is an arbitrary tree of order m. This very general result has a 

remarkably simple proof. 

Theorem 11.11 (Chvatal) Let Tm be any tree of order m =2 1 and let n be a positive 

integer. Then 

r( Tm, Kn) = 1 + (m — 1) (m — 1). 

Proof For m= 1 or n = 1, r(Tm, Kn) = 1 = 1 + (m - l)(n - 1). Thus, we may assume 

m^2 and n 3^2. 



314 Chapter 11 Extremal Graph Theory and Ramsey Theory 

The graph F= (n - does not contain Tm as a subgraph since each 

component of F has order m— 1. The complete (n — l)-partite graph 

F=K(m- 1, m — 1, . . . , m - 1) does not contain K„ as a subgraph. Therefore, 

r(Tm, Kn) ^ 1 + (m — 1)(n — 1). 
Let F be any graph of order 1 + (m - 1) (n - 1). We show that Tm C F or 

KnCF, implying that r(Tm, Kn)^\+(m-\)(n-l) and completing the 

proof. If K„ is not a subgraph of F, then (5(F) =£n- 1. Therefore, since F has 
order 1 + (m - 1)(n - 1) and (3(F)<n- 1, it follows that x(F)=sm (see 
Exercise 10.1). Let H be a subgraph of F that is critically m-chromatic. By 
Corollary 10.1b, <5(//)5=m-l. Now applying Theorem 3.6, we have that 

TmC H, so that Tm C F. ■ 

For k 5=3, the determination of ramsey numbers r(Gy, G2, • • • , Gk) has 
proved to be quite intractable, for the most part. For only a very few classes of 
graphs has any real progress been made. One such example, however, is where 

each Gi, 1 i k, is a star graph. The following result is by Burr and Roberts 

[BR2], 

Theorem 11.12 Let n2, ... , nk (k^2) be positive integers, t of which are even. 

Then 
k 

r(K( 1, *0, K( 1, n2), ..., K(\, nk)) = E («/“1) + 0m 
i = i 

where 6, = 1 if t is positive and even and 6r = 2 otherwise. 

Proof Let r(/C(l, «,), AT(1, n2), .... AT(1, n*)) =p, and let Y.f=lni = N. First, we 
show that p sS N - & + 0,. Since each vertex of KN-k+2 has degree N - k + 1 = 

Ef=1(n, — 1) + 1, any factorization 

K-N-k+2 ~ F\ ®F2® ■ ■ ■ ®Fk 

necessarily has /C(l, «,) C F, for at least one i, 1 /' k. Thus, p N- k + 2. 
To complete the proof of the inequality p ^ N — k + 6t, it remains to show that 

p^N - k + 1 if/ is positive and even. Observe that, in this case, N — k + 1 is 
odd. Suppose, to the contrary, that there exists a factorization 

Kn-Ic+i = F\ ®F2® ■ ■ ■ ®Fk 

such that K( 1, n,) is not a subgraph of F, for each / = 1, 2, ... , k. Since each 
vertex of KN^k+\ has degree N- A: = Ef=i(n/- 1), this implies that F, is an 
(m - l)-factor of KN_k+1 for each / = 1, 2.k. However, N- k + 1 is odd 

and n. - 1 is odd for some j (1 s£;'sS k)\ thus, Fy contains an odd number of odd 

vertices, which is impossible. 
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Next we show that p 5= N - k + 6,. If t = 0, then each integer n, is odd as is 
N — k+l. By Theorem 8.12, the complete graph KN_k+i is the edge sum of 
(TV - k)/2 hamiltonian cycles. For each i = 1,2, ... , k, let F, be the edge sum 

of (n, - l)/2 of these cycles, so that F, is an (n, - l)-factor of KN-k+x. Flence 
there exists a factorization KN_k+1 = Fx ©F2© • • • ®Fk such that K( 1, nt) is 
not a subgraph of F,, for each i (lsS/sSF). This implies that N - k + 2 if 
t = 0. 

Assume that t is odd. Then N - k + 1 is even. By Theorem 8.11, KN_k+x 
is 1-factorable and is therefore the edge sum of N — k 1-factors. For z=l, 2, 

... , F, let F, be the edge sum of n, — 1 of these 1-factors, so that each F, is an 

(n, — l)-factor of KN_k+l. Thus, there exists a factorization KN_k+x = Fx © 
F2® ■■■(£)Fk such that K(l, n() is not a subgraph of F, for each i. Thus 
p^N — F + 2 if Ms odd. 

Finally, assume that t is even and positive, and suppose that nx, say, is 
even. Then there is an odd number of even integers among nx — 1, n2, ... , nk, 
which implies by the previous remark that 

p^r(K( 1, nx - 1), F(l, n2).K( 1, nk))^N-k+ 1. 

Hence, in all cases p^ N — k + 0t, so that p = N — k + 6,. ■ 

For k = 2 in Theorem 11.12, we have the following. 

Corollary 11.12 Let m and n be positive integers. Then 

r(K( 1, m), K( 1, n)) = 
m + n — 1, 
m + n. 

if m and n are both even, 
otherwise. 

Given graphs Gx, G2, . . . , Gk, where FS= 2, we know (as a result of 
Ramsey’s Theorem) that if G is a complete graph of sufficiently large order, 

then for every factorization G = Fx® F2© • • • © Fk, the graph G, is a subgraph 
of Fj for at least one i, 1 ^ i sS k. This suggests the following. For graphs G, Gx, 

G2, ... , Gk (k 2s 2), we say G arrows Gx, G2, ... , Gk, written G-^ (Gx, G2, 
. . . , Gk), if it is the case that for every factorization G = F,© F2© • • • © Fk, 
we have G,CF, for at least one i, l^i^k. The natural problem, then, is to 
determine those graphs G for which G-^>(GX, G2, . . . , Gk) for given graphs 

Gx, G2, .. . , Gk. 
In a few special cases of pairs of graphs Gx and G2, the aforementioned 

problem has been solved. In general, however, the problem is extremely 
difficult. Therefore most attention has been centered on the case k — 2, and, 
for given graphs Gx and G2, on the properties a graph G can possess if 
G—>(Gi, G2). For example, if G—*(Km, Kn) where m, n^ 2, then clearly 
w(G) 2s max(m, n). Folkman [F4] has shown that this is a sharp bound on 
(o(G); specifically, given integers m, /jS=2, there is a graph G' with clique 
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number max(m, n) for which G'^(Km, Kn). Nesetril and Rodl [NR1] have 

extended this result by showing that for any graph H and integer kzt 2, there 

exists a graph G with clique number to{H) for which G—> (Hi, H2, ... , Hk), 

where H, = H for i = 1, 2, ..., k. 
If G—K„), then it is easily seen that the order of G is at least 

r(m, n); that is "if G-* (Km, Kn), then p(G) ^p{Kr), where r=r(m, n). Burr, 
Erdos, and Lovasz [BEL1] have shown that a similar result holds in the case of 

chromatic numbers. 

Theorem 11.13 For all positive integers m and n, if G-*(Km, Kn), then x(G)5= 

X(Kr), where r = r(m, n). 

Proof The result holds if m = 1 or if n = 1. Thus we may assume that m =? 2 and n 2* 2, 

so that r(m, n) ^ 2. 
Suppose that *(G) s£ r - 1. Since p(G) 2* r, there is an (r - l)-coloring of 

G with resulting color classes U\, U2, ■ ■ ■ , Ur-\- 
By definition of r = r{m, «), there is a factorization Kr_x = F,©F2 such 

that Km(fFi and Kn<fF2. Label the vertices of Kr_x as vlf v2, . • • , v,-i- 
We construct a factorization of G as follows. Let V(GX) = E(G2) = E(G). 

Each edge e of G is of the form e = u,uk where u, e U, and uke Uk 
r- 1). Since vyv* e E(Kr-i), either VjVk e E{FX) or v;v* e E(F2) in the factoriza¬ 
tion Kr-X = Fx@F2. Let UjUkeE(Gi) if VjVk e E(F,), i= 1, 2. Then G = 

Gi © G2. 
Suppose Km C Gi. Thus G, contains m mutually adjacent vertices, say 

wl7 w2, . . . , wm, and there are distinct color classes Ui{, G,2.t/,m such 

that w. e Ur for /= 1, 2, ... , m. By the way Gx was constructed, this implies 

that ({v;i, v,2, ..., vim))Fx = Km, which is impossible. Therefore, Km(fGx. 
Similarly, Kn(fG2, so that G-/> (Km, Kn). This is a contradiction. Thus, 

X(G)^r, and the proof is complete. ■ 

Corollary 11.13 For all positive integers m and n, if G—►(/©, Kn), then q(G) 2? 

q{Kr), where r=r{m, n). 

For arbitrary graphs Gx and G2, if G—»(Gl5 G2) then p(G)^p{Kr), 

where r = r(Gx, G2). However, it is not true in general that x(G)^x(Kr) or 

that q(G) 2s q(Kr). 
The concept of arrowing can be extended quite naturally in the following 

manner. Given a graph G and classes of graphs %, CS2, ... , %, k^2, we 
write G-» (<Si, %, ..., %) if for every factorization G = F, ©F2© • • • ®Fk, 
it is the case that F, contains a member of'S, for at least one i, 1 s£ i ^ k . For a 
positive integer n, let 3C„ denote the class of graphs with chromatic number n. 

It follows that if nx, n2, ... , nk are positive integers, then G—► (3f„,, 3f„2, ... , 
3C ) if and only if for every factorization G = Fx ©E2© • • • ®Fk, we have 

X(F,) 5=«, for at least one /, 1 s= / sS k. Burr and Erdos [BE 1 ] characterized such 

graphs G. 
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Theorem 11.14 Let nx, n2, .. . , nk {k ^ 2) be positive integers, and let G be a graph. 

Then G—»(3£„., .3£„.) if and only if y(G)^ 1 + n (n,-- 1). 

Proof The result is immediate if n, = 1 for some i; hence, we assume that n,-5s2 for 

each /=1,2, .. . , k. 
Assume first that G-b 3£„2, ... , 3C„fc). Thus, there is a factorization 

G = F{ ®F2® ■ • • ®Fk such that yfF,) sS n, - 1 for each z = 1,2, ... , k. By 

Theorem 10.9, it follows that 

k k 

x(G)«IlxW)sIl(''.-1)' 
1=1 i=1 

k 
For the convers^, we show that if x(G) .^(n, — 1), then G-A(9{„r ^n2, 

... , ). Let TV = n (n, — 1), and let the vertices of G be colored with the ~N 
colors (cjv cj2, ... fc-k), where 1^/,-^n, - 1 for i = 1, 2, ..., k. We construct 
a factorization G = FX®F2® ■ ■ ■ ®Fk with x(F,) =£n, — 1 for z = 1, 2, . .. , k. 

Let V(F,-) = V(G) for i = 1, 2, ... , k. Now, for each edge uv of G, we 
have uv e F(F;) if and only if the z'th coordinate is the first coordinate in which 

the colors assigned to u and v differ. Then the vertices of F, can be colored 

with the nt- 1 colors cu c2, ..., c„._x, and so /(F^sSn,-- 1 for i= 1, 2, ... , 

C ■ 

In [CPI], the chromatic ramsey number x(^i, • • - , «A:) was defined as 
the least integer p such that if Kp = Fx ©F2© • • • ®Fk is any factorization of 
Kp into k factors, then ^(F,)^n, for at least one z, l^i^/c. A formula was 

established for x(«i, n2, ... , nk)\ this result follows immediately from Theorem 

11.14. 

Corollary 11.14 Let nx, n2, . .. , nk {k^2) be positive integers. Then the chromatic 

ramsey number 
k 

X(nx, n2, ... , nk)= 1 + II (n‘~ *)• 
/ = i 

We note in closing that Graham, Rothschild, and Spencer [GRS1] have 

written a book on ramsey theory. 

Exercises 11.3 

11.15 Show that r(3, 3, 3) =£ 17. 

11.16 Show for graphs G\, G2, - • • , G*(A:3s2) that 
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11.17 

11.18 

11.19 

11.20 

11.21 

11.22 

11.23 

11.24 

11.25 

11.26 

11.27 

11.28 

r(G\, G2, .... Gk, K2) — r(G\, G2, ■ ■ ■ , Gk). 

Show for positive integers n{, n2... , nk (A 3= 2) that r(Knv K„2, ..., K„k, 
Tm) = 1 + (r — l)(m - 1), where Tm is any tree of order m 2* 1 and r = r(ri\, n2, 

, nk). 

Let m and n be integers with 3 and n^\. Show that 

r(Cm, K(l, n)) = 
2n + 1, 
m, 

if m is odd and m =£ 2n + 1, 
if m ^ 2«. 

(Note that this does not cover the case where m is even and m<2n.) 

Let Gi be a graph whose largest component has order m. and let G2 be a graph 
with x(G2) = n. Prove that r(G\, G2) > 1 + (m — l)(rt — 1). 

Show for positive integers € and n, that r(K( + Kn, Tm)^((m— l) + n, where 
Tm is any tree of order m 2* 1. 

Let m and n be positive integers, and recall that a(G) denotes the vertex- 
arboricity of a graph G. Determine a formula for a(m, n), where a(m, n) is the 
least positive integer p such that for any factorization Kp = F\©F2, either 
a{F\)^m or a(F2)^n. 

Show that if G, G], and G2 are graphs such that G—>(0], G2), then 
p(G)7zp(Kr), where r = r(Gj, G2). 

Prove Corollary 11.13. 

(a) Let m and n be positive integers. Show that if G—> (/C(l, m), A'(l, n)), then 
q(G) + n — 1. 

(b) Give an example of a graph G for which G—A(l, n)) and 
q(G) = m + n — 1. 

(a) Give an example of graphs G, G\, and G2 such that G—»(G,, G2) but 

X(G) <x(Kr(Gl, g2))■ 

(b) Give an example of graphs G, Glt and G2 such that G—»(Gl7 G2) but 
q(G) < q(Kr(Gl g2))- 

Prove Corollary 11.14. 

(a) Prove that there exists no triangle-free graph G of order 4n + 3 1) for 
which d(G) 3= 2n + 2. 

(b) Let G1, G2, ..., Gn+i be n + 1 (>2) graphs such that G\ = K2 and 
G, = K{\, 3) for 2=£/ ^n + 1. Prove that r(G\, G2) . .. , Gn+i) = An + 3. 

(a) Let nu n2, n2 (^2) be integers. Prove that r{nx, n2, n3)^r(ni, n2, 
n3 — 1) + r(rtj, n2 — 1, n2) + r(nx — 1, n2, n3) — 1. 

(b) Generalize the result in part (a). 



Chapter Twelve 

Enumeration of Graphs 
and Digraphs 

Lastly, we turn to the enumeration of graphs and digraphs. In the first section, 
we prove Polya’s classical enumeration theorem. Applying this theorem in 
Section 12.2, we determine the number of nonisomorphic (p, q) graphs and 

(p, q) digraphs for fixed integers p and q. 

12.1 Polya's Theorem 

In Chapter 1 we saw that the number of nonidentical graphs of order p (with 
the same vertex set) is 2p(j>~l)/2. Moreover, it is not difficult to see, for fixed 

integers p and q with p 5= 1 and that the number of nonidentical 

(p, q) graphs is (p(-p“1)/2). Analogously, the number of nonidentical digraphs 
of order p is 2p(p~1), and the number of nonidentical (p, q) digraphs is {p<'pq 1 ’) 

for integers p and q with p 3= 1 and 0 sS p *£p(p — 1). 
The corresponding problems of counting the number of nonisomorphic 

(p, q) graphs and (p, q) digraphs are considerably more difficult; indeed, in 
order to present solutions we must first develop a substantial amount of 

background material. 
Let us consider the problem of counting the number of nonisomorphic 

graphs of order 3. By inspection we see that there are four such graphs, one 
(3, q) graph for each q = 0, 1, 2, 3. This information can be conveniently 

represented by the “pattern inventory” 
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b3, + b2w + bw2 + w3. 

where the coefficient of the term b<1wi~q is the number of graphs of order 3 
with q edges (that is, the number of graphs of order 3 with q pairs of distinct 

adjacent vertices and 3 -q pairs of distinct nonadjacent vertices). Our goal is 
to develop a method of generating pattern inventories for this and other 

counting problems. 
Returning to our problem of determining the number of nonisomorphic 

graphs of order 3, we recall that there are 23(3_1)/2 = 8 nonidentical graphs with 

vertex set {1, 2, 3}. It will be helpful to represent the collection of these graphs 
by the collection of functions from the set {{1,2}, {1,3}, {2, 3}} to the set {b, 
w}. For convenience, we write ij (or, ji) to mean {/, j}. A graph G will be 

represented by the function / defined by 

It is readily verified that graphs G and G are isomorphic if and only if there is a 

permutation n on the set {12, 13, 23} such that f{ij)=f(n(ij)) for every 

ij e {12, 13, 23}, where/and/are the functions representing G and G, respec¬ 
tively. If such a permutation n exists, we say that / and / are related. Since the 
relation “is isomorphic to” is an equivalence relation on the collection of 
nonidentical graphs with vertex set {1, 2, 3}, the aforementioned relation on 
the corresponding collection of functions is also an equivalence relation. 

Furthermore, the number of distinct equivalence classes of functions determined 

by this relation equals the number of nonisomorphic graphs of order 3. 
The eight functions from {12, 13, 23} to the set {b, w}, which we denote 

/., i = 1, 2, ... , 8, are defined in the table in Figure 12.1. For each i, the graph 

G, that is represented by the function /■ is also illustrated in Figure 12.1. 
We see, for example, that the graphs G2 and G3 of Figure 12.1 are 

isomorphic. If n is the permutation on {12, 13, 23} given by k = (I223 b)> then 

f3(ij) =f2(Jt(ij)) for all ij; that is, f2 and /3 are related. 
In general, let D and R be nonempty finite sets and let R° denote the set 

of all functions from D to R. Let A be a group of permutations on D. For each 

ji 6 A we define a mapping jt*: R°^>Rn by (JT*(f))(d)=f(jr(d)) for deD. 

Then jr* is a permutation on R°. For /1, f2 € R°, the function is said to be 
related to f2 if there exists a permutation jt e A such that JT*{f\) —f2- It is not 
difficult to verify that this relation is an equivalence relation on Rn; this 

relation is said to be the equivalence relation induced by the action of A on R°. 
Under this equivalence relation, the functions from D to R are divided into 
equivalence classes called patterns. The problem in general, then, is to deter¬ 

mine the number of distinct patterns. 
For example, let D = {12, 13, 23} and R = {b, w}. Then Rn consists of 

the functions/,, 1 ^/^8, defined in the table in Figure 12.1. If A is taken to be 

the symmetric group S3, then A = {jt( , jt2, jt3, jt4, jt5, ;t<s}, where the permuta- 
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Figure 12.1 Nonidentical graphs of order 3 

tions jt, on D and the corresponding permutations it* on R° are given in Figure 
12.2. The equivalence classes of functions in the equivalence relation on R° 

induced by the action of A on R° are {/j}, {f2, h,U), {fs, U, fi), and {/8}. 
These four equivalence classes correspond to the four nonisomorphic graphs of 

order 3. 
Our first theorem, a modified form of a result due to Burnside [B16] 

known as Burnside’s Lemma, gives a solution to the problem of determining 

the number of equivalence classes of functions. 
Two observations will be useful in the proof of Theorem 12.1. First, if itx 

and it2 are permutations in the group A, then their composition itx°it2 is in A 
and (itx°it2)* = it2°it*. Second, if it e A and fx,f2eRD such that it*(fx)=f2, 

then it~leA and (jt-i)*(/2) —f\. 

Theorem 12.1 (Burnside) Let D and R be finite nonempty sets and let A be a 

permutation group on D. Then the number N of equivalence classes in the 
equivalence relation on R° induced by the action of A on R° is given by the 

formula 

O
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12 13 23 \ /12 13 23 \ (\2 13 

13 23 12) 772 \23 12 13/ 
773 = 

\12 23 

12 13 23 \ (\2 13 23 \ (\2 13 

23 13 12/ 775 = \ 13 12 23 ) 
^6 = V12 13 

23 

13 

23 

23 

) 

* 

”i 

7TS 

//■ h fl k fs fb fl h \ * (h 
fl fl k fs fb fl 

Vi fl k h fl fs fb fj 
7T2 ~ 

' V, k fl fl fb fl fs 

(f h h k fs h fl h\ * (A 
fl fl k fs fb fl 

Vi fl h k fs fl fb fj 
- 

V, k fl fl fl fb fs 

(f fl fi k fs fb fl k) 
77* = .(f> fl fl k fs fb fl 

V, fl k fi fb fs fl fj 
^6 

V, fl fl k fs fb fl 

Figure 12.2 Permutations on D and Rp 

N = -rrr XI VK^*). C12-1) 
I ™ Iff eA 

where ip(x*) is the number of elements f e Rn for which x*(f) = /. 

Proof For h 6 R°, let [h] be the equivalence class containing h in the equivalence 
relation on R° induced by the action of A on Rn. For ge[h], let T(h, g) 
denote the set of permutations jz e A such that jt*(h) = g. We first show that 

\T(h, g)\ = \T(g, g)|. 
Let neT(h, g) and suppose T(g, g) = {xx, n2, trck). Then for 

jto^eT(h, g) since (jz°Xi)*(h) = (x? °x*)(h) = xf(g) = g; further¬ 

more, if i */, then tc° x,± jt° jt,. Thus, x°xx, x°x2, ..., x°xk are distinct 

elements of T(h, g). Let x0eT(h, g). Then (^l ° jr0)*(g) = (jr?,«>(jr_1)*)(g) = 
(jr0)*(h) = g. Thus, JT~l°Jtoe T(g, g), say x~1°x0 = xj; therefore, x0 = x°Xj. 

Hence, T(h, g) = {x°xx, x°x2, ..., x°xk} and \T(h, g)| = !T(g, g)|. 

If gi» g2 are distinct elements of [/?j, then T(h, gx)C\T(h, g2) = 0- 
Furthermore, Ugep,] T(/z, g)=A. Therefore, |/l| = Sg€[/i] I T{h, g)| = Ege[/,] 

I T(g, g)| and 

E \T(f,f)\= E E |r(g,g)| = N-|^|. 
f e Rd distinct 

equivalence 

classes |/i] 

It remains to show that E/e/?" | T(f, f) \ = E„e/1 Define a function 

y: A x R°-+ {0, 1} by 

( m-/1’ if x*(h) = h, 
y{tt, |o, otherwise. 
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Then E/e/?»| T(/, /)| = E/<e/?d (E*.^ y(jr, /)) = Ejre/4(E/e«»y(jr, /)) = 

E^ ■ 

In a manner completely analogous to that used in establishing Theorem 
12.1, one can verify the following result, which will prove useful in subsequent 

material. 

Theorem 12.2 Let D and R be finite nonempty sets and let A be a permutation group 

on D. If S is a subset of Rn that is the union of Ns equivalence classes in the 

equivalence relation on R° induced by the action of A on R°, then 

Ns = r~Xp(jT*\S), (12.2) 
I ^ I neA 

where is the number of elements fe S for which jt* (/) = /. 

We have seen that if £> = {12, 13, 23}, R={b, w}, and A is the 

symmetric group S3, then there are four equivalence classes of functions in the 
equivalence relation on R° induced by the action of A on R°. If we apply the 

formula in (12.1), we have 
6 

N = \ £ ^«)> O , = j 

where according to Figure 12.2, 

= 2, ip(ji|) = 2, ^(jrf) = 4, 

= 4, \p(ji5) = 4, xp(n5) = 8. 

Thus, yv = g(24) = 4. 
In general, applying the formula given in Theorem 12.1 is quite difficult if 

we must first determine the permutations jt* and then explicitly compute 

y(n*). However, this work can be simplified by calculating from the 

cycle structure of Jt. Consider, for example, the permutation jt3 = (12230) on 
the set D = {12, 13, 23}. Then n:3 can be expressed uniquely (except for order) 
as a product of disjoint (permutation) cycles jt3 = (12)(13 23). We wish to 
determine which functions f e R°, where R = {b, w}, satisfy Jtj(f) =/; that is, 

which functions fe R° satisfy f(a3(ij))=f(ij) for all ijeD. Since jt3 inter¬ 
changes 13 and 23, it must be the case that/(13) =/(23) if/(/;) =f(n3(ij)) for 
all ij. Conversely, if/(13) =/(23), then since jr3 fixes 12 and interchanges 13 

and 23, we have that f(ij) = f(jr3(ij)) for all ij. Thus n%(f)=f if and only if 
/(13) =/(23). The number of such functions from {12, 13, 23} to {b, w} is 
2-2 = 4, since there are two possible images for 12 and two possible images for 

13 and 23. This, of course, agrees with our earlier statement that ^(^3) = 4- 
We note that =/for the functions /=/), /4, fs, fs (see Figure 12.2) and 
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that each of these functions satisfies /(13)=/(23) (see Figure 12.1). 
The discussion in the preceding paragraph is easily generalized. Suppose 

x is a permutation on a finite nonempty set D and x* is the corresponding 
permutation on the set of all functions from D to some finite nonempty set R. 

Then, by definition, if and only if f(d) =f(x(d)) for all deD. 
However, f(d) =/(jr(r/)) for all d e D if and only if f(dx) = /(</>) whenever dx 
and d2 are in the same cycle in the disjoint cycle decomposition of x. Thus 

xp(x*) equals the number of functions fe Rn such that the elements in D that 
are in the same cycle in the disjoint cycle decomposition of x have the same 

image under/. We conclude that = \R\m, where m equals the number of 

cycles in the disjoint cycle decomposition of x. 
It is evident that the cycle structures of the elements of a permutation 

group A on a finite set D play an important role in the problem at hand. Let 

xeA, and for each integer k, where l^k^n = \D\, let jk(jt) denote the 
number of cycles of length k in the disjoint cycle decomposition of x. Then the 
cycle structure representation of x is the polynomial xj'{n)xf{jl) ■ ■ ■ x\fn) in the 

variables xu x2, ..., x„. The cycle index PA of A is defined to be the sum of 
the cycle structure representations of the permutations in A divided by the 

number of permutations in A; that is, 

Pa(xi, x2. *«) = (x 
Mrt)xh(*b ■xJ -jn(n) 

)• 
I IT f= A 

We have, then, the following result. 

Theorem 12.3 Let D and R be finite sets and let A be a permutation group on D. 
Then the number of equivalence classes in the equivalence relation on Rn 

induced by the action of A on R° is Pa(\R\, |/?|, ... , \R\), where PA{x\, x2, 

x\D\) is the cycle index of A. 

Proof By Theorem 12.1, the number N of equivalence classes is given by the formula 

N = tjt £ Vi**), 

where is the number of elements fe Rn such that n*(f) =/. Let x be a 
permutation in A with cycle structure representation x{'(7T)x!y(,T) • • -x^('T), 

where n = \D\. We have seen that ip(x*) = \R\m, where m is the number of 
disjoint cycles in the disjoint cycle decomposition of x. Since m=j](x) + 
j2(x) + • • • + jn(n), we conclude that ip(n*) = j R\,,(JT)\ /?|y:!('T) • • • |Rf^^. 

Therefore, 
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Let A = (jti, Jt2, Ji3, jr4, Jt5, jt6}, where the permutations jt, are as given 
in Figure 12.2. Then the cycle structure representation of is x3, if i = 1, 2, the 
cycle structure representation of tt, is x\x2, if i = 3, 4, 5, and the cycle structure 

representation of jt( is x3 if i = 6. Thus the cycle index PA of A is PA(xx, x2, 

x3) = 5(2jc] + 3x\x2 + x3). By Theorem 12.3, the number of equivalence classes 
in the equivalence relation on R°, where D = {12, 13, 23} and R = {b, w}, 

induced by the action of A on R°, is Pa(\R\, |/?|, |fi|) = g(2 • 2 +3 • 2 • 2 4- 
23) = 4. This agrees with previous results. 

Theorem 12.3 gives us an applicable formula for counting, for example, 

the number of nonisomorphic graphs of order 3. We now turn to the more 
difficult problem of determining the number of nonisomorphic (3, q) graphs for 
each possible q. In general, we will be interested in dividing the set of 
equivalence classes of functions into subsets according to certain properties the 

functions in these classes possess and obtaining a count of the number of 
classes in each subset. In order to do so, we introduce some new notation and 

definitions. 
Let D and R be finite nonempty sets, where R = {rx, r2, .. . , rk). With 

each function/in R°, we associate an element of the polynomial ring in rx, r2, 

. . . , rk over the integers. Specifically, for i= 1,2, . . . , k, let c,- be the number 
of elements d of D such that f(d) = rh Then the weight of the function /, 

denoted by «(/), is defined to be rf'rf • ■ -rckk. Equivalently, cu(/) = UdeDf(d), 
where the product is in the aforementioned ring. The inventory of a set of 

functions from D to R is defined to be the sum of the weights of the functions 

in the set. 
For example, let D = {12, 13, 23} and R = {b, w}. Then the weight of the 

function/i of Figure 12.1 is co(fi) = b3. The inventory of the set of all functions 

from D to R is 

8 

^ (0(f) = b3 + b2w + b2w + b2w + bw2 + bw2 + bw2 + w3 

t = i 

= b3 + 3 b2w + 3 bw2 + w3. 

We observe that since the image of each of the three elements of D can be 
(independently) b or w, the inventory of the set of all functions from R to D is 
given by (b + w)3 = b3 + 3b2w + 3bw2 + w3. Similarly, let Dx = {12, 13} and 

D2 = {23}, and let S be the set of all functions/from D to R such that elements 

in the same subset D,-, i = 1, 2, have the same image under/. Then S= {/i,/*, 
/7, /8}, so that the inventory of the functions in 5 is w(/i) + w(/2) + w(f7) + 
(u(/8) = b3 + b2w + bw2 + w3. We once again observe that the inventory of the 

functions in S can be obtained without specifically determining the functions in 
S and the sum of their weights. Since the images of the two elements of Dx 
must be the same and can be either b or w, and since the image of the single 
element of D2 can be b or w, the inventory of the functions in S is given by 

(b2 + w2) (b + w) = b3 + b2w + bw2 + w3. 
The two previous examples of inventories of sets of functions illustrate a 
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more general result. Let {Dx, D2, . .. , Dm) be a partition of a set D. Then the 
inventory of the set of all functions / from D to a set R such that the elements 

in the same subset of the partition have the same image under / is 

since the images of the | D,| elements of D, must be the same and can be any 

element of R. 
Let D and R be finite nonempty sets and let A be a permutation group on 

D. If fx and f2 are functions in the same equivalence class in the equivalence 
relation on R° induced by the action of A on R‘\ then, by definition, there is a 

permutation Jt e A such that f2{d) = fx(n(d)) for every de D. Therefore, 

t»(/2) = Ylk<,d)= Ylfi(x(d)) = II AW. 

the last equality holding because ji is a permutation on D. Since UdeDf{(d) = 
co(fi), we see that functions in the same equivalence class have the same 
weight (although two functions with the same weight might not be in the same 
equivalence class). This common weight is called the weight of the equivalence 

class (pattern). The inventory of a set of equivalence classes (patterns) is then 
defined to be the sum of the weights of the equivalence classes in the set. Our 
problem, which will be solved by a theorem of Polya [P4], is to find the 

inventory of the set of all equivalence classes of functions; that is, the pattern 

inventory. 
Let VT], W2, . .. , W, denote the distinct weights of the functions in R°, 

and for IsSfsSf, let F, = {/e R°\(o(f) = VT,}. By definition, then, the pattern 

inventory is 

/= i 

where m, is the number of equivalence classes that have weight W,. As we shall 
see, the problem of finding a formula for the pattern inventory consists of 

several counting subproblems whose solutions employ formula (12.2). 
The following theorem is a somewhat restricted form of Polya’s Theorem. 

For the complete result and generalizations of Polya’s Theorem, see [L3, 

Chapter 5]. 

Theorem 12.4 (Polya) Let D and R be finite nonempty sets and let A be a permuta¬ 

tion group on D that acts to induce an equivalence relation on R°. Then the 
inventory of the set of all equivalence classes of functions is 
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that is, the pattern inventory is obtained by substituting T,reR r' for xh 1 ^ ; =s /) 

in the cycle index PA(xx, x2, . .. , x\d\) of A. 

Proof Employing the notation of the preceding paragraph, we see that the pattern 
inventory is 

t 

S m‘w" 
i= 1 

where m, is the number of equivalence classes that have weight VP,. However, 
for each i, the union of these m, equivalence classes is precisely the set Ft. 
Thus, according to (12.2), 

mi = T7\ £ 

where xp(jT*|F,) is the number of elements/eF, for which ji*(f)=f\ that is, 

the number of functions feRl) having weight W, such that jt*(/) =/. Therefore, 
t l , , 

tttS ^1^) Wf 
/ = 1 i = 1 ' I I ji e /I ' 

= utS (s 'Kn*\Fi)Wl). 
I ^ I Jie A \ / = 1 / 

For each neA, the term E'=1 ip(jr* \ Fj) Wt is the inventory of the set of all 
functions fe R° such that Jt*(f) =/. We have seen that JT*(f) =f if and only if 
the elements in D that are in the same cycle in the disjoint cycle decomposition 
of jt have the same image under /. Thus, the term E-=] \ F,) VP,- is the 

inventory of the set of all functions / from D to R such that the elements of D 
that are in the same cycle in the disjoint cycle decomposition of jt have the 

same image under/. Let n = \D\. Therefore, if the cycle structure representa¬ 

tion of jt is x{then it follows that 

X>(*1 Fi)Wi = 
1=1 

that is, E,f=1 xp(jr* |F,) W) can be obtained by substituting Y.reRr‘ for jq, 

1 in the cycle structure representation of jt. Thus, 

E m’W< 
/ = i A 

= Pa 
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If D = {12, 13, 23}, R = {b, w}, and A = {;r,, jt2, jt3, ji4, ji5, jt6}, where 
the permutations jtt are those defined in Figure 12.2, then in the resulting 
equivalence relation on R°, there are four equivalence classes of functions, 

namely [/,], [f2], [/5], and [/„] (see Figure 12.1). The weights of these 
equivalence classes, or patterns, are £>\ b2w, bw2, and w3, respectively. Hence 

the pattern inventory is 

b3 + b2w + bw2 + w3. 

If we apply Polya’s Theorem to this situation, we have that the pattern 

inventory is 

PA(b + tv, b2 + tv2, b2 + tv3) 

where PA(xu x2, x3) = l(2x3 + 3x\x2 + x3l). Thus the pattern inventory is 

1(2 (b2 + w3) + 3 (b + w)(b2 + tv2) + (b + tv)3) = b3 + b2w + bw2 + tv3. 

Recall that the four equivalence classes of functions in this example 
correspond to the four nonisomorphic graphs of order 3. Furthermore, an 
equivalence class has weight bqw3’~q, 0^^^3, if and only if the corresponding 

graph has q edges. Thus we have obtained the desired result that there is one 

(3, q) graph for each q = 0, 1, 2, 3. 

Exercises 12.1 

12.1 (a) Show that the number of nonidentical (p, q) graphs with vertex set V = {v,. 

v2, . . - , vp} is (r{pq')/2)~ where p and q are integers satisfying p 3= 1 and 

()s=<75= ('). 

(b) Show that the number of nonidentical (p, q) digraphs with vertex set 

V= {v], v2, . . . , vp} is (,,(^~u), where p and q are integers satisfying p 2* 1 

and 0 =£ q^p(p — 1). 

12.2 Let R={a, b}, D-{ 1, 2, 3, 4}, and let A = {a, ft, y, 6} be the permutation 

group on D where 

«=(1) (2) (3) (4), ft = (12) (34), 

y— (13) (24), 6 = (14) (23). 

(a) Determine the elements of R°. 

(b) Find a*. /3*. y*. <5*; find xp(a*), y(p*), \p(y*), y>(6*). 

(c) Use Theorem 12.1 to determine the number of equivalence classes in the 

equivalence relation on Rn induced by the action of A on Rn. 
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(d) Determine the equivalence classes in the equivalence relation on R°. 

(e) Find the cycle index of A. 

(f) Use Theorem 12.3 to answer part (c). 

(g) Find the pattern inventory without using Polya’s Theorem. 

(h) Apply Polya’s Theorem to find the pattern inventory. 

12.3 Prove Theorem 12.2. 

12.4 Let D be a finite nonempty set and let A be a permutation group on D. 
(a) Show that every term of the cycle index of A is of the form Cx\'xs22 ■ ■ -x?,\ 

where C is a constant, n = \D\, and 

n 

X! iSi = n. 

i= 1 

(b) Using only the definition of cycle index, show that if PA{xx, x2, . . . , x„) is 
the cycle index of A, then every term of 

is of the form Kr\'r22- ■ -r£k, where K is a constant, €.3=0 for 1=S/=£A: and 
k 1 ’ 

12.2 Graphical and Digraphical Enumeration 

For a finite set D, with |D| 2s 2, we define D(1) to be the set of all 2-element 
subsets of D; that is, 

D{2)={{i, j}|i, jeD, /¥=;}. 

If A is a group of permutations on D, then by the pair group A(2) we mean the 

permutation group on Z)(2) that is defined according to the following rule. For 

each aeA, there exists a'eA(2) such that ;}) = {o(0» «(;)}• It is 
routinely verified that if A is not the symmetric group S2, then the groups A 
and A(2) are isomorphic. 

We are now in a position to employ Polya’s Theorem to establish a 
formula for the number of nonisomorphic (p, q) graphs for any fixed integers p 
and q, where p 3= 2 and 0 ^ s£ ). 
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Theorem 12.5 For fixed integers p and q, where p^2 and 0 q ^ (*), the number of 
nonisomorphic (p, q) graphs is given by the coefficient of rq in PA{ \ + r, 1 + r2, 

..1 +r(-)), where A is the group S},2’ and PA(jcj, x2, . . *(/')) is the cycle 
index of Sp2). 

Proof We first note that by Exercise 12.4(b), every term of PA(l + r, 1 + r2. 
1 +r(Pl)) is of the form Krq, where K is some constant and 0 ^q^ (>’,). 

Let D = {V), v2, ... , vp) and R = {1, r}. For each function / from D(2) to 
R, let Gf be that graph with vertex set D such that v,v, e E{G}), 1 sSi =£/=£/?, 

if and only if /({v,-^ vy}) = r. This, then, gives a one-to-one correspondence 
between the set Rn " and the set of nonidentical graphs with vertex set D. 

Since S^ is a permutation group on D{2\ we can consider the equivalence 
relation on Rd(2) induced by the action of S(2) on Rd(2); that is, fj, f2 e RI>U) 

are in the same equivalence class of functions if and only if for some jt' e Sp2> 

we have that /2({v,-, Vjj) = /i(tt'({v,, vy})) for each {v,, vy} 6 D{2). Thus /, and 

f2 are in the same equivalence class if and only if for some ne Sp and for each 

{V/, Vy} 6 D<2), 

v,vye E(Gf2)e>jt(Vj)ji(Vj) e E(Gh). 

We conclude that f\ and f2 are in the same equivalence class if and only if Gfx 

and Gf2 are isomorphic. Thus there is a one-to-one correspondence between 

the set of equivalence classes of functions and the set of nonisomorphic graphs 
of order p. Furthermore, the weight of an equivalence class is l^A~qrq = rq if 

and only if the corresponding graph has size q. 

It follows from Polya’s Theorem that the number of equivalence classes 
of functions from D<2) to R that have weight P7 is given by the coefficient of r'7 

in PA{ 1 + r, 1 + r2, . . . , 1 + r(^), where A is the group Sj,2) and PA(xt, x2, 
.. . , X(P)) is the cycle index of S}2>. This completes the proof. ■ 

The problem of determining a formula for the number of nonisomorphic 
(p, q) digraphs for fixed integers p and q, where g? 2 and 0 ^q^p(p — 1), 
can be solved in a similar fashion. For a finite set D, with \D \ 3=2, define Z)'2' 
as the set of all ordered pairs of distinct elements of D; that is, 

DW = {(i,j)\iJeD, iFj). 

If A is a group of permutations on D, then the ordered pair group /f'2' is the 

permutation group on defined as follows. For each ae A, there exists 

a' 6 A^ such that a'((i, j)) = (a(i), We then have the following. 

Theorem 12.6 For fixed integers p and q, where p^ 2 and 0^q^p(p— 1), the 

number of nonisomorphic (p, q) digraphs is given by the coefficient of rq in 



Section 12.2 Graphical and Digraphical Enumeration 331 

PA( 1 + r, 1 + r2, . .. , 1 + rp(p 1)), where A is the group Sj2] and PA(x\, x2, 
..., xp(p-\)) is the cycle index of .S'j2'. 

Theorems 12.5 and 12.6 consequently provide formulas for the number of 
nonisomorphic graphs of order p and the number of nonisomorphic digraphs of 
order p in terms of the cycle indexes of S(p2> and Sj2), respectively. Because the 
determination of these cycle indexes entails calculations of quantities not easily 

calculated, there may be some question as to whether Theorems 12.5 and 12.6 
constitute solutions to the problems of enumerating graphs and digraphs. 
However, in a certain sense they do, for it is possible to express the cycle 
indexes of S(2) and Sj,21 in an alternative manner. In order to do this, we 

introduce some additional notation. 
By a partition of a positive integer p, we mean a summation 'Lpi = p, 

where /?, is a positive integer (the order of the summands is of no consequence). 

For example, the 11 partitions of 6 are: 

l + l + l + l + l + l, 
1 + 1 + 1 + 1+2, 
1 + 1 + 2 + 2, 
1 + 1 + 1 + 3, 

1 + 2 + 3, 
2 + 2 + 2, 
3 + 3, 
1 + 1 + 4, 
2 + 4, 

1+5, 

6. 

In a given partition of /?, we denote by /, (1 s£/s£/?) the number of summands 

of the partition having value i. Obviously, E (/', =/? for any partition of p. 
Finally, let d(s, t) and m(s, t) denote the greatest common divisor and least 
common multiple, respectively, of integers s and t. We state the following, 

verifications of which appear in [HP1, pp. 84, 121]. 

Theorem 12.7 If A is the group S(p2), then the cycle index PA{x\, x2, 

, , 1+2) 1+2] 

—n (*++>'" ■n+!’ 
, X(P)) is 

P'- 
I /c = 1 k= 1 

* = 1 

l(p-l)/2j 

n 
k= 1 

k‘j2k+1 
l2k+\ n d(s,t)jsj, 

\*£:S<t^p - I 

where the sum is taken over all partitions of p. 
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Theorem 12.8 If A is the group Sl2J, then the cycle index PA( xx, x2, . . . , x/)( is 

ri 43sr. 
n h ■ ** * = i 1 s ,v < f s p - 1 

k = 1 

where the sum is taken over all partitions of p. 

We conclude this chapter by determining the number of nonisomorphic 

(4, q) graphs for <7 = 0, 1, 2, 3, 4, 5, 6. By Theorem 12.5, the number of 
nonisomorphic (4, q) graphs, 0=S<7=S6, is given by the coefficient of P1 in 

PA{ 1 + r, 1 + r2, .. . , 1 + r6), where A is the group S^2) and PA(xt, x2, .. . , x6) 
is the cycle index of S42f According to Theorem 12.7, the cycle index of S(42) is 

(x t + 9xjx2 + 8x2 + 6x2x$ ). 

Thus, 

PA(l + r, 1 + r2, ..., 1 + r6) 

= i((l + rf + 9(1 + r)2(l + r2)2 + 8(1 + r3)2 + 6(1 + r2)(l + r4)) 

= ^(24r6 + 24r5 + 48r4 + 72r3 + 48r2 + 24r + 24) 

= r6 + r5 + 2r4 + Zr3 + 2T2 + r + 1. 

We see that there is one (4, q) graph for each <7 = 0, 1, 5, 6, that there are two 
(4, q) graphs for <7 = 2 or 4, and that there are three (4, 3) graphs. Thus the 
total number of nonisomorphic graphs of order 4 is 11. We note that according 
to Theorem 12.3, the total number of graphs of order 4 can be obtained by 
evaluating PA(2, 2, 2, 2, 2, 2). 

Exercises 12.2 

12.5 Show that if A is a permutation group (not the symmetric group S2) on a set D, 
|D|2=2, then A=A(2) = A|2]. 

12.6 Use Theorem 12.5 to determine the number of nonisomorphic (5, q) graphs. 

Os; <75= 10. 

12.7 Prove Theorem 12.6. 

12.8 Use Theorem 12.6 to determine the number of nonisomorphic (4, q) digraphs, 
0sS</s: 12. 
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Crossing number, 107 

rectilinear, 109 
Cube, 12, 93 
M-Cube, 12 
Cube of a graph, 196 
Cubic graph, 9 
Cut in a network, 166 

capacity of, 166 
minimum, 167 

Cut-vertex, 45 
Cycle of a digraph, 28 

hamiltonian, 201 
Cycle of a graph, 28 

n-, 28 
even, 28 
hamiltonian, 183 
odd, 28 
outer, 192 

Cycle edge, 47 
Cycle index, 324 
Cycle multiplicity, 115 
Cycle structure representation, 

324 
Cyclic block, 48 

//-Decomposable, 239 
Decomposition, 239 

Krausz, 264 
^-Degenerate graph, 285 

maximal, 285 
Degree 

of a regular digraph, 18 
of a regular graph, 9 
of a vertex in a digraph, 15 
of a vertex in a graph, 7 

Degree linear graph, 45 
Degree matrix, 74 
Degree sequence 

of a digraph, 24 
of a graph, 20 

Degree set, 23 
Diagonal edge, 192 
Diameter, 29 
Digraph, 14 
Digraphical sequence, 24 
Dijkstra’s algorithm, 31 
Directed edge, 14 

Directed graph, 14 
Directed tree, 77 
Disconnected graph, 28 
Distance 

in a digraph, 211 
in a graph, 29 
in a weighted graph, 30 

Distance-preserving subgraph 
(from a vertex), 69 

Dodecahedron, 93 
Dominating circuit, 267 
Dominating number 

edge, 248 
vertex, 248 

Dominating set 
edge, 248 
vertex, 248 

Dual color, 287 
Dual graph, 296 

Eccentricity of a vertex 
in a digraph, 212 
in a graph, 29 

Edge, 4 
addition of, 8 
deletion of, 8 
directed, 14 

Edge-arboricity, 85 
Edge-automorphism, 252 

induced, 252 
Edge chromatic number, 286 
Edge color class, 288 
n-Edge colorable graph, 286 
Edge coloring, 286 

n-, 286 
n-Edge-connected graph, 155 
Edge-connectivity, 152 
Edge cover, 243 
Edge covering number, 244 
Edge covering number with 

respect to a property, 114 
Edge-disjoint paths, 48 
Edge dominating number, 248 
Edge dominating set, 248 
Edge-group, 252 

induced, 252 
Edge independence number, 243 
Edge-induced subgraph, 8 
Edge-isomorphic graphs, 251 
Edge-isomorphism, 251 

induced, 252 
Edge packing number with 

respect to a property, 114 
Edge set, 4 
Edge sum of two graphs, 229 
Edge-thickness, 115 
Eigenvalues of a graph, 13 
Element of a graph, 51 
Elementary contraction, 99 
Elementary subdivision, 95 
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Embeddable on a surface, 87 
upper, 142 

Empty graph, 9 
End-block, 49 
End-vertex, 7 
Eulerian circuit 

of a digraph, 58 
of a graph, 53 
of a multigraph, 53 

Eulerian digraph, 58 
randomly (from a vertex), 

61 
Eulerian graph, 53 

randomly (from a vertex), 
61 

Eulerian multigraph, 53 
Eulerian trail 

of a digraph, 58 
of a graph, 53 
of a multigraph, 53 

Even cycle, 28 
Even triangle, 266 
Even vertex, 7 
G-Extendable graph, 102 
Exterior region, 88 
Exterior subgraph, 97 
Extremal graph, 301 

Factor, 229 
r-, 229 

//-Factorable graph, 229 
r-Factorable graph, 229 
Factorization, 229 

isomorphic, 229 
Father of a vertex, 78 
Fleury’s algorithm, 57 
Floor function, 84 
Flow in an arc, 165 
Flow in a generalized network, 

176 
value of, 176 

Flow in a network, 164 
maximum, 166 
value of, 166 

Forest, 68 
linear, 241 

Four Color Conjecture, 295 
Four Color Problem, 294 
Fragment, 102 
R-Fragment, 102 

Generalized network, 176 
Genus 

of a graph, 117 
maximum, 141 
of a surface, 11 7 

Generators of a group, 256 
Geodetic graph, 77 
Girth, 35 

Good algorithm, 22 
Graceful graph, 76 
Graph, 4 
Graphical sequence, 20 
Grinberg graph, 200 
Grotzsch graph, 281 
Group of a graph, 250 

automorphism, 250 
edge-, 252 
induced edge-, 252 
vertex-, 250 

Hamiltonian-connected digraph, 
203 

Hamiltonian-connected graph, 
190 

Hamiltonian cycle 
of a digraph, 201 
of a graph, 183 

Hamiltonian digraph, 201 
Hamiltonian graph, 182 
Hamiltonian path 

of a digraph, 202 
of a graph, 189 

Heawood graph, 42 
Heawood Map Coloring Problem, 

123 
Height, 78 
Herschel graph, 200 
Homeomorphic from a graph, 95 
Homeomorphic graphs, 95 
Homeomorphic with a graph, 95 
Hypohamiltonian graph, 195 

Icosahedron, 93 
Identical digraphs, 16 
Identical graphs, 6 
Identification of adjacent vertices, 

99 
Incidence (to or from), 15 
Incident vertex and edge, 4 
Indegree, 15 
Independence number, 188 

edge, 243 
Independent edges, 225 
Independent set 

of edges, 243 
maximal, 249 
of vertices, 188 

Independent vertices, 225 
Induced edge-automorphism, 252 
Induced subdigraph, 17 

arc-, 17 
Induced subgraph, 8 

edge-, 8 
vertex-, 8 

Interior subgraph, 97 
Intermediate vertex, 165 
Internal vertices 

of a path of a graph, 48 

of a rooted tree, 78 
Internally disjoint paths 

of a digraph, 179 
of a graph, 48 

Inventory 
of a set of functions, 325 
of a set of patterns, 326 

Isofactor, 229 
proper, 238 

Isolated vertex, 7 
Isomorphic digraphs, 15 
Isomorphic factorization, 229 
Isomorphic graphs, 5 

edge-, 251 
Isomorphism 

of digraphs, 15 
edge-, 251 
of graphs, 5 
induced edge-, 252 

Iterated line graph, 268 

Join of two graphs, 11 
Joining of two vertices 

by an arc of a digraph, 15 
by an edge of a graph, 4 

Konigsberg Bridge Problem, 52 
Krausz decomposition, 264 
Kruskal’s algorithm, 71 

Length 
of a path in a weighted graph, 

30 
of a walk in a digraph, 28 
of a walk in a graph, 26 

Leaves of a rooted tree, 78 
Level number, 78 
Line graph, 261,262 

iterated, 268 
Linear forest, 241 
Loop,119 
Loop-graph, 118 

Major determinants, 74 
Marriage Problem, 228 
Matched subsets, 227 
Matching, 225 

maximum, 225 
perfect, 225 

Matrix (associated with a digraph) 
adjacency, 19 

Matrix (associated with a graph) 
adjacency, 4 
degree, 74 

Max-flow min-cut algorithm, 173 
Max-flow min-cut theorem, 172 
Maximal A'-degenerate graph, 285 
Maximal independent set, 249 
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Maximal planar graph, 89 
Maximum degree, 61, 85 
Maximum flow, 166 
Maximum genus, 141 
Maximum matching, 225 
McGee graph, 42 
Minimal block, 49 
Minimal with respect to edge 

chromatic number, 289 
Minimally n-chromatic graph, 273 
Minimum cut, 167 
Minimum degree, 72 
Minimum spanning tree, 70 
Modifying edges, 185 
Multigraph, 53 
Multiple graph, 53 

Neighborhood, 130 
closed, 301 

Net flow 
into a vertex, 165 
out of a vertex, 165 

Network, 164 
generalized, 176 

Nonadjacent vertices of a digraph, 
15 

Nondeficient set, 227 

Octahedron, 92 
Odd component, 229 
Odd cycle, 28 
Odd triangle, 266 
Odd vertex, 7 
Open walk 

of a digraph, 28 
of a graph, 26 

Orbit, 129 
Order 

of a digraph, 15 
of a graph, 4 

Ordered pair group, 330 
Ordered rooted tree, 78 
Orientation of a graph, 17 
Oriented graph, 17 
Outdegree, 15 
Outer cycle, 192 
Outerplanar graph, 107 

(p,q) digraph, 15 
(p,q) graph, 4 
Packing number 

edge (with respect to a 
property), 114 

vertex (with respect to a 
property), 114 

Pair group, 329 
ordered, 330 

Panconnected graph, 191 

Pancyclic digraph, 205 
vertex-, 214 

Pancyclic graph, 191 
vertex-, 191 

«-Partite graph, 9 
complete, 10 

Partite set, 9 
Path(s) of a digraph, 28 

hamiltonian, 202 
internally disjoint, 179 

Path(s) of a graph, 26 
alternating, 226 
edge-disjoint, 48 
hamiltonian, 189 
internally disjoint, 48 
trivial, 26 

Pattern, 320 
Pattern inventory, 319, 326 
Perfect graph, 279 
Perfect Graph Conjecture, 280 

Strong, 280 
Perfect matching, 225 
Petersen graph, 40 
Planar graph, 87 

maximal, 89 
triangulated, 89 

Plane graph, 88 
Polyhedron (regular), 92 
Power, nth, 196 
Proper isofactor, 238 
Prime graph, 238 
Probabilistic method, 386 
Pseudograph, 119 

Radius 
of a digraph, 212 
of a graph, 29 

Ramsey number, 306 
generalized, 312 
chromatic, 317 

Randomly eulerian digraph (from 
a vertex), 61 

Randomly eulerian graph (from 
a vertex), 61 

Reachable vertices, 201 
Realizable graph on a surface, 87 
Recognizable property, 64 
Reconstructible graph, 62 
Reconstruction Conjecture, 62 
Reconstruction Problem, 62 
Rectilinear crossing number, 109 
Region of a graph embedded on 

a surface of positive genus, 
117 

boundary of, 117 
Region of a plane graph, 88 

boundary of, 88 
exterior, 88 

Region chromatic number, 295 
n-Region colorable graph, 295 

Regular digraph, 18 
r-, 18 

Regular graph, 9 
r-, 9 

Regular polyhedron, 92 
Related functions, 320 
Root of a tree, 77 
Rooted tree, 77 

ordered, 78 
Rotational Embedding Scheme, 

130 

Saturated arc, 165 
Score of a vertex, 210 
Score sequence of a tournament, 

210 
simple, 224 

Score sequences of a bipartite 
tournament, 222 

Self-complementary graph, 9 
Semipath, 170 

/-augmenting, 170 
/-unsaturated, 170 

Separate (two vertices), 157 
Separating set 

of arcs, 177 
of edges, 177 
of vertices, 177 

Sequential Coloring Algorithm, 
277 

Similar vertices, 256 
Simple score sequence, 224 
Sink of a network, 164 
Sinks of a generalized network, 

176 
Size 

of a digraph, 15 
of a graph, 4 

Son of a vertex, 78 
Source of a network, 164 
Sources of a generalized network, 

176 
Spanning subdigraph, 16 
Spanning subgraph, 8 
Splitting tree, 143 
Square of a graph, 196 
Star graph, 10 
Steiner triple system, 239 
Stereographic projection, 87 
Strong component, 211 
Strong digraph, 201 
Strong orientation, 207 
Strong Perfect Graph Conjecture, 

280 
Strongly connected digraph, 201 
Subcontraction, 99 
Subdigraph, 16 
Subdivision, 95 

elementary, 95 
Subgraph, 8 
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Supergraph, 8 
Symmetric digraph, 17 

complete, 17 
System of distinct representatives, 

228 

Terminal edge, 47 
Tetrahedron, 92 
Thickness, 115 

edge-, 115 
vertex-, 115 

Total chromatic number, 293 
Total coloring, 293 

n-, 293 
Total Coloring Conjecture, 293 
Total graph, 270 
Tournament, 18, 209 

bipartite, 221 
transitive, 209 

Trail of a digraph, 28 
eulerian, 58 

Trail of a graph, 26 
eulerian, 53 

Transitive tournament, 209 
Transversal, 228 
Traveling Salesman Problem, 188 
Tree, 67 

n-ary, 78 
balanced rooted, 80 
bicentral, 76 
binary, 81 
central, 76 
complete n-ary, 78 
directed, 77 
minimum spanning, 70 
ordered rooted, 78 
rooted, 77 
splitting, 143 

Triangle of a graph, 28 
even, 266 
odd,266 

Triangle-free graph, 122 
Triangulated planar graph, 89 
Triangulation, 89 
Trivial digraph, 15 
Trivial graph, 6 
Trivial path, 26 
Tutte graph, 199 
Tutte-Coxeter graph, 42 

Underlying digraph of a 
network, 164 

Underlying graph 
of a digraph, 58 
of a pseudograph, 296 

Unicyclic graph, 77 
Unilateral digraph, 208 
Union of two graphs, 11 
Unsaturated arc, 165 
/-Unsaturated semipath, 170 
Upper embeddable graph, 142 

Value of a flow 
in a generalized network, 

176 
in a network, 166 

Vertex of a digraph, 14 
deletion of, 16 

Vertex of a graph, 4 
deletion of, 8 

Vertex-arboricity, 83 
Vertex chromatic number, 271 
Vertex-connectivity, 152 
Vertex cover, 243 
Vertex covering number, 243 

Vertex covering number with 
respect to a property, 114 

Vertex dominating number, 248 
Vertex dominating set, 248 
Vertex-group, 250 
Vertex-induced subgraph, 8 
Vertex packing number with 

respect to a property, 114 
Vertex-pancyclic digraph, 214 
Vertex-pancyclic graph, 191 
Vertex partition number p^, 285 
Vertex set 

of a digraph, 14 
of a graph, 4 

Vertex-thickness, 115 

Walk(s) of a digraph, 28 
closed, 28 
equal, 28 
length of, 28 
open, 28 
trivial, 28 

Walk(s) of a graph, 26 
closed, 26 
different, 26 
equal, 26 
length of, 26 
open, 26 
trivial, 26 

Weak edge, 226 
Weak vertex, 226 
Weight 

of an edge, 30 
of a function, 325 
of a pattern, 326 
of a spanning tree, 70 

Weighted graph, 30 
Winner of a tournament, 213 
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