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Preface to the third edition 

Graph theory is a major area of combinatorics, and during recent decades, 
graph theory has developed into a major area of mathematics. In addition 

to its growing interest and importance as a mathematical subject, it has 
applications to many fields, including computer science and chemistry. 

As in the first edition of Graphs & Digraphs (M. Behzad, G. Chartrand, 
L. Lesniak) and the second edition, our major, indeed our sole, objective 
is to introduce and to treat graph theory in the way we have always found 

it, namely, as the beautiful area of mathematics it is. We have strived 
to write a reader-friendly, carefully written book that emphasizes the 
mathematical theory of graphs and digraphs. 

New to the third edition are expanded treatments of hamiltonian graph 
theory, graph decompositions, and extremal graph theory, a study of 
graph vulnerability and domination in graphs; and introductions to 

voltage graphs, graph labelings, and the probabilistic method in graph 
theory. Numerous original exercises have been added. A comprehensive 
bibliography has been included together with an extensive list of graph 

theory books so that avid graph theory readers have many avenues to 

pursue their interests. 
This text is intended for an introductory sequence in graph theory at 

the advanced undergraduate or beginning graduate level. A one-semester 
course can easily be designed by selecting those topics of major impor¬ 
tance and interest to the instructor and students. Indeed, mathematical 
maturity is the only prerequisite for an understanding and an apprecia¬ 

tion of the material presented. 
It is with great pleasure and sincere appreciation that we thank a 

number of mathematicians who gave of their time to read portions of 
earlier versions of this edition, to offer suggestions for additions and 

improvements, or both. Consequently, we thank 
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CHAPTER 1 

Introduction to graphs 

We begin our study of graphs by introducing many of the basic concepts 
that we shall encounter throughout our investigations. The related topic 

of digraphs is introduced as well. 

1.1 GRAPHS 

A graph G is a finite nonempty set of objects called vertices (the singular is 
vertex) together with a (possibly empty) set of unordered pairs of distinct 

vertices of G called edges. The vertex set of G is denoted by V(G), while the 
edge set is denoted by E(G). 

The edge e — {u,v} is said to join the vertices u and v. If e = {u,n} is 
an edge of a graph G, then u and v are adjacent vertices, while u and e 
are incident, as are v and e. Furthermore, if e-j and e2 are distinct edges 
of G incident with a common vertex, then ex and e2 are adjacent edges. It 
is convenient to henceforth denote an edge by uv or vu rather than by 

{u,v}. 
The cardinality of the vertex set of a graph G is called the order of G 

and is commonly denoted by 77(G), or more simply by n when the 
graph under consideration is clear; while the cardinality of its edge set 

is the size of G and is often denoted by m(G) or m. An (n,m) graph has 

order n and size m. 
It is customary to define or describe a graph by means of a diagram in 

which each vertex is represented by a point (which we draw as a small 
circle) and each edge e — uv is represented by a line segment or curve 

joining the points corresponding to u and v. 
A graph G with vertex set V(G) = {vi,v2,... ,vn} and edge set 

E(G) = {e\,e2, ■ ■ ■ ,em} can also be described by means of matrices. One 
such matrix is the n x n adjacency matrix A[G) = where 

J 1 if V{Vj e E(G) 

11 (0 if VjVj £ E(G). 

Thus, the adjacency matrix of a graph G is a symmetric (0,1) matrix 
having zero entries along the main diagonal. Another matrix is the 
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vi ei v2 

G : 0 110 
10 11 
110 1 

110 0 0 
10 110 
0 110 1 

L 0 1 1 0 L 0 0 0 1 1 

V3 e5 V4 

Figure 1.1 A graph and its adjacency and incidence matrices. 

n x m incidence matrix B(G) = [b,j], where 

1 if Vj and are incident 

0 otherwise. 

For example, a graph G is defined by the sets 

V(G) = {v^v2,v3,v4} and E(G) = {eue2,e3,e4,e5} 

where ex = v^v2, e2 — v^v3, e3 — v2v3, e4 = v2v4 and e5 = v3v4. A diagram 
of this graph and its adjacency and incidence matrices is shown in 
Figure 1.1. 

With the exception of the order and the size, the parameter that one 
encounters most frequently in the study of graphs is the degree of a 
vertex. The degree of a vertex v in a graph G is the number of edges of G 

incident with v, which is denoted by degGv or simply by deg v if G is clear 
from the context. A vertex is called even or odd according to whether its 

degree is even or odd. A vertex of degree 0 in G is called an isolated vertex 
and a vertex of degree 1 is an end-vertex of G. The minimum degree of G is 

the minimum degree among the vertices of G and is denoted by 6(G). The 
maximum degree is defined similarly and is denoted by A(G). In Figure 1.2, 
a graph G is shown together with the degrees of its vertices. In this case, 
6(G) = 1 and A(G) = 5. 

For the graph G of Figure 1.2, n = 9 and m = 11, while the sum of the 
degrees of its nine vertices is 22. That this last number equals 2m 
illustrates a basic relationship involving the size of a graph and the 
degrees of its vertices. Every edge is incident with two vertices; hence, 
when the degrees of the vertices are summed, each edge is counted 

2 3 4 

G: 

A 
1 3 

Figure 1.2 The degree of the vertices of a graph. 

5 2 
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twice. We state this as our first theorem, which, not so coincidentally, is 
sometimes called The First Theorem of Graph Theory. 

Theorem 1.1 

Let G he an (n,m) graph where V(G) = {v-[,v2,... ,v„}. Then 

n 

deg V{ = 2m. 
i=i 

This result has an interesting consequence. 

Corollary 1.2 

In any graph, there is an even number of odd vertices. 

Proof 

Let G be a graph of size m. Also, let W be the set of odd vertices of G and 
let U be the set of even vertices of G. By Theorem 1.1, 

H degu= degu + degu = 2m. 
veV{G) veW veil 

Certainly, J2veu degv is even; hence degz; is even, implying that 
| W | is even and thereby proving the corollary. □ 

Two graphs often have the same structure, differing only in the way 
their vertices and edges are labeled or in the way they are drawn. To 

make this idea more precise, we introduce the concept of isomorphism. 
A graph G] is isomorphic to a graph G2 if there exists a one-to-one mapping 
0, called an isomorphism, from V(G1) onto V(G2) such that 0 preserves 
adjacency; that is, uv e E(Gj) if and only if 0u0u e E(G2). It is easy to 
see that 'is isomorphic to' is an equivalence relation on graphs; hence, 
this relation divides the collection of all graphs into equivalence classes, 
two graphs being nonisomorphic if they belong to different equivalence 

classes. 
If Gt is isomorphic to G2, then we say G] and G2 are isomorphic or equal 

and write G] = G2. If G! = G2, then, by definition, there exists an iso¬ 

morphism 0: V(Gi) —> V(G2). Since 0 is a one-to-one mapping, G} and 
G2 have the same order. Since adjacent vertices in G\ are mapped into 
adjacent vertices in G2 and nonadjacent vertices of G} are mapped into 
nonadjacent vertices in G2, the graphs Gj and G2 have the same size. 
Since each vertex v in Gt and its image vertex 0u in G2 must have the 

same degree in their respective graphs, the degrees of the vertices of Gt 
are exactly the degrees of the vertices of G2 (counting multiplicities). 
Although these conditions are necessary for Gt and G2 to be isomorphic. 



4 Introduction to graphs 

they are not sufficient. For example, consider the graphs G„ i — 1,2,3, of 

Figure 1.3. Each is a (6,9) graph and the degree of every vertex of each 
graph is 3. Here, G\ — G2. For example, the mapping 0: V(Gt) —> V(G2) 
defined by 

<t*0\ = VU (f)V2 = v3, <j)V3 = V5, (f)V4 = v2, (frv5 = V4, (f)Vb = vb 

is an isomorphism, although there are many other isomorphisms. On the 

other hand, G3 contains three pairwise adjacent vertices whereas G] does 
not; so there is no isomorphism from G] to G3 and therefore G] ^ G3. Of 
course, G2 ^ G3. 

If G is an (n,m) graph, then n ^ 1 and 0 ^ m ^ (2) = n(n — l)/2. There 
is only one (1,0) graph (up to isomorphism), and this is referred to as 
the trivial graph. A nontrivial graph then has n ^ 2. The distinct (non¬ 

isomorphic) graphs of order 4 or less are shown in Figure 1.4. 
Frequently, a graph under study is contained within some larger graph 

also being investigated. We consider several instances of this now. A 

graph H is a subgraph of a graph G if V(H) C V(G) and E(H) C E(G); in 
such a case, we also say that G is a supergraph of EE If H is isomorphic to a 

subgraph of G, we also say that H is a subgraph of G. In Figure 1.5, H is a 
subgraph of G but H is not a subgraph of E. If H is a subgraph of G, then 
we write H C G. 

The simplest type of subgraph of a graph G is that obtained by deleting 

a vertex or edge. If v e V(G) and | V(G) | ^2, then G — v denotes the 
subgraph with vertex set V(G) — {n} and whose edges are all those of G 

not incident with v; if e G E(G), then G - e is the subgraph having vertex 
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o o o-o o-o 

o o o o o-o 

o o 

o-o 

o o 

o-o 

Figure 1.4 All graphs of order 4 or less. 

set V(G) and edge set E(G) — {e}. The deletion of a set of vertices or set of 
edges is defined analogously. These concepts are illustrated in Figure 1.6. 

If u and v are nonadjacent vertices of a graph G, then G + /, where 
/ = uv, denotes the graph with vertex set V(G) and edge set E(G) U {/}, 

Clearly, G C G +/. 

We have seen that G — e has the same vertex set as G and that G has the 
same vertex set as G +/. Whenever a subgraph H of a graph G has the 
same order as G, then H is called a spanning subgraph of G. 

Among the most important subgraphs we shall encounter are the 
'induced subgraphs'. If U is a nonempty subset of the vertex set V(G) 
of a graph G, then the subgraph (17) of G induced by 17 is the graph 
having vertex set 17 and whose edge set consists of those edges of G 
incident with two elements of 17. A subgraph H of G is called vertex- 

induced or simply induced if H = (U) for some subset 17 of V(G). Similarly, 

v 

Figure 1.6 The deletion of a vertex or edge of a graph. 
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Figure 1.7 Induced and edge-induced subgraphs. 

if X is a nonempty subset of E(G), then the subgraph (X) induced by X is 
the graph whose vertex set consists of those vertices of G incident with at 

least one edge of X and whose edge set is X. A subgraph H of G is edge- 
induced itH — (X) for some subset X of E(G). It is a simple consequence of 
the definitions that every induced subgraph of a graph G can be obtained 

by removing vertices from G while every subgraph of G can be obtained 
by deleting vertices and edges. These concepts are illustrated in Figure 1.7 

for the graph G, where 

V(G) = {vuv2,v3,v4,v5,v6}, U={vuv2,v5} and X = {vy v4,v2v5}. 

There are certain classes of graphs that occur so often that they deserve 
special mention and in some cases, special notation. We describe the most 
prominent of these now. 

A graph G is regular of degree r if deg v — r for each vertex v of G. Such 
graphs are called r-regular. A graph is complete if every two of its vertices 
are adjacent. A complete (n, m) graph is therefore a regular graph of 

degree n —1 having m = n(n — l)/2; we denote this graph by Kn. In 
Figure 1.8 are shown all (nonisomorphic) regular graphs with n = 4, 
including the complete graph G3 = X4. 

A 3-regular graph is also called a cubic graph. The graphs of Figure 1.3 
are cubic as is the complete graph X4. However, the best known cubic 
graph is probably the Petersen graph, shown in Figure 1.9. We will have 

many occasions to encounter this graph. 
In 1936 Denes Konig [K10] wrote the first book on graph theory. In it he 

proved that if G is a graph with A(G) = d, there exists a d-regular graph H 
containing G as an induced subgraph. Konig's result actually first appeared 

in 1916 (see [K8]). His technique proves a somewhat stronger result. 

Figure 1.8 The regular graphs of order 4. 
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Figure 1.9 The Petersen graph. 

Theorem 1.3 

For every graph G and every integer r ^ A(G), there exists an r-regular graph H 
containing G as an induced subgraph. 

Proof 

If G is r-regular, then we may take H = G. Otherwise, let G' be another 
copy of G and join corresponding vertices whose degrees are less than r, 
calling the resulting graph G^ If G] is r-regular, then let H — Gt. If not, we 
continue this procedure until arriving at an r-regular graph Gk where 

k = r — 6(G). (The proof of Theorem 1.3 is illustrated for the graph G of 
Figure 1.10 where r = A(G) = 3.) □ 

Figure 1.10 A 3-regular graph H containing G as an induced subgraph. 
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Of course, there is no pretense that the graph H constructed in the proof 
of Theorem 1.3 is one of the smallest order with the desired property. 
Indeed, for the graph G of Figure 1.10, the graph H has order 16, while 
the minimum order of a 3-regular graph containing G as an induced 

subgraph is actually 6. In fact, in 1963 Erdos and Kelly [EK1] produced 

a method for determining the minimum order of an r-regular graph H 

containing a given graph G as an induced subgraph. 
The complement G of a graph G is that graph with vertex set V(G) such 

that two vertices are adjacent in G if and only if these vertices are not 

adjacent in G. Hence, if G is an (n,m) graph, then G is an (n,m) graph, 
where m + m — (”). In Figure 1.8, the graphs G0 and G3 are complemen¬ 

tary, as are G\ and G2. The complement Kn of the complete graph K„ has n 
vertices and no edges and is referred to as the empty graph of order n. A 
graph G is self-complementary if G = G. Certainly, if G is a self-complemen¬ 

tary graph of order n, then its size is m = n{n — l)/4. Since only one of n 
and n — 1 is even, either 4 | n or 4 | n — 1; that is, if G is a self-complemen¬ 
tary graph of order n, then either n = 0 (mod 4) or n = 1 (mod 4). 

A graph G is k-partite, k ^ 1, if it is possible to partition V(G) into k 
subsets V-[, V2, ■ ■ ., Vk (called partite sets) such that every element of 
E(G) joins a vertex of V, to a vertex of V,, i ^ j. If G is a 1-partite graph 
of order n, then G = Kn. For k = 2, such graphs are called bipartite graphs; 
this class of graphs is particularly important and will be encountered 

many times. In Figure 1.11(a), a bipartite graph G is given. Then G is 
redrawn in Figure 1.11(b) to emphasize its bipartite character. If G is 
an r-regular bipartite graph, r ^ 1, with partite sets Vi and V2, then 

|Vi| = |V21. This follows since its size m = r\Vi \ — r|V2|. 
A complete k-partite graph G is a fc-partite graph with partite sets 

Vi, V2, ■ ■ ■, Vk having the added property that if u E V, and v E V;, i j, 
then uv E E(G). If |V,-| = n„ then this graph is denoted by K(«1, n2, ■ ■ ■, nk) 
or K„u„2t „k. (The order in which the numbers «j, n2,... ,nk are written is 

not important.) Note that a complete A:-partite graph is complete if and 
only if h, = 1 for all i, in which case it is Kk. If n, = t for all i, then the 

complete fc-partite graph is regular and is also denoted by Kk(t)- Thus, 
K-k(i) — Kk• A complete bipartite graph with partite sets and V2, where 
\Vi \ — r and |V2| = s, is then denoted by K(r,s) or more commonly Krs. 

G : 

(a) 

Figure 1.11 A bipartite graph. 

(b) 
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Figure 1.12 The union of graphs. 

The graph K1>s is called a star. A graph is a complete multipartite graph if it is 
a complete E-partite graph for some k ^ 2. 

There are many ways of combining graphs to produce new graphs. We 
next describe some binary operations defined on graphs. This discussion 
introduces notation that will prove useful in giving examples. In the 
following definitions, we assume that G\ and G2 are two graphs with 
disjoint vertex sets. 

The union G — G^U G2 has V(G) = y(G0 U V{G2) and E(G) = 
E(Gi) UE(G2). If a graph G consists of k(>2) disjoint copies of a graph 
H, then we write G = kH. The graph 2Ki U 3K2 U K13 is shown in 
Figure 1.12. 

The join G = G^ + G2 has V(G) = 1/(G3) U V(G2) and 

E(G) = E(Gj) UE(G2) U {uv\u g V(Gi)ando G W(G2)}. 

Using the join operation, we see that Kr s — Kr + fCs. Another illustration is 
given in Figure 1.13. 

The cartesian product G = G} x G2 has V(G) = V(Gi) x V{G2), and two 

vertices (wi,w2) and (^1,^2) °f G are adjacent if and only if either 

U] = Vj and u2v2 G E(G2) 

or 

u2=v2 and u-[Vi G E(Gi). 

A convenient way of drawing Gt x G2 is first to place a copy of G2 at each 
vertex of G] (Figure 1.14(b)) and then to join corresponding vertices of G2 
in those copies of G2 placed at adjacent vertices of G-! (Figure 1.14(c)). 
Equivalently, G] x G2 can be constructed by placing a copy of Gt at 
each vertex of G2 and adding the appropriate edges. As expected, 

Gt x G2 = G2 x Gt for all graphs Gt and G2. 
An important class of graphs is defined in terms of cartesian products. 

The n-cube Qn is the graph K2 if n — 1, while for n ^ 2, Qn is defined 

Figure 1.13 The join of two graphs. 
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GyO-O-O 

Figure 1.14 The cartesian product of two graphs. 

0 
Q{. O- 

1 
-o 

(0, 0) 

Figure 1.15 Cubes. 

(1,0) 

(0,1,0) (1,1,0) 

recursively as Q„_i x K2. The n-cube Qn can also be considered as that 
graph whose vertices are labeled by the binary n-tuples (aj,a2,.. ■ ,a„) 
(that is, a,- is 0 or 1 for 1 ^ i ^ n) and such that two vertices are adjacent 
if and only if their corresponding n-tuples differ at precisely one coordi¬ 
nate. It is easily observed that Qn is an n-regular graph of order 2n. The n- 

cubes, n — 1,2 and 3, are shown in Figure 1.15 with appropriate labelings. 
The graphs Qn are often called hypercubes. 

EXERCISES 1.1 

1.1 Determine all nonisomorphic graphs of order 5. 

1.2 Let n be a given positive integer, and let r and s be nonnegative 
integers such that r + s = n and s is even. Show that there exists a 
graph G of order n having r even vertices and s odd vertices. 

1.3 Figure 1.3 shows two regular nonisomorphic (6,9) graphs. Give 

another example of two nonisomorphic regular graphs of the same 
order and same size. 
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1.4 For each integer k ^ 2, give an example of k nonisomorphic regular 
graphs, all of the same order and same size. 

1.5 A nontrivial graph G is called irregular if no two vertices of G have 
the same degrees. Prove that no graph is irregular. 

1.6 Let G be a graph of order n containing vertices of degree r, where r is 
a positive integer, and exactly one vertex of each of the degrees 
r — 1, r — 2,..., r — j, where 1 <]<r. By Konig's proof of Theorem 
1.3, there is an r-regular graph of order 2]n containing G as an 
induced subgraph. Show, in fact, that there exists an r-regular 
graph of order 2n containing G as an induced subgraph. 

1.7 If H is an induced subgraph of G, does it follow that H is an induced 
subgraph of G? 

1.8 Prove that there exists a self-complementary graph of order n for 
every positive integer n with n = 0(mod4) or n = 1 (mod 4). 

1.9 Determine all self-complementary graphs of order 5 or less. 

1.10 Let G be a self-complementary graph of order n, where 
n = 1 (mod 4). Prove that G contains at least one vertex of degree 
(n — l)/2. (Hint: Prove the stronger result that G contains an odd 
number of vertices of degree (n — 1 )/2.) 

1.11 Let G be a nonempty graph with the property that whenever 
uv 0 E(G) and vw 0 E(G), then uw 0 E(G). Prove that G has this 
property if and only if G is a complete Upartite graph for some k ^ 2. 

1.2 DEGREE SEQUENCES 

In this section, we investigate the concept of degree in more detail. A 
sequence di,d2,... ,dn of nonnegative integers is called a degree sequence 
of a graph G if the vertices of G can be labeled zq, v2, ■ ■ ., vn so that 
deg Vi — dj for all i. For example, a degree sequence of the graph of 
Figure 1.16 is 4, 3, 2, 2, 1 (or 1, 2, 2, 3, 4, or 2, 1, 4, 2, 3, etc.). 

Figure 1.16 A degree sequence of a graph. 
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Given a graph G, a degree sequence of G can be easily determined, of 

course. On the other hand, if a sequence s:di,d2, ... ,dn of nonnegative 
integers is given, then under what conditions is s a degree sequence of 
some graph? If such a graph exists, then s is called a graphical sequence. 

Certainly the conditions d, ^ n - 1 for all i and Yj=\ d, is even are 
necessary for a sequence to be graphical and should be checked first, 

but these conditions are not sufficient. The sequence 3,3,3,1 is not 
graphical, for example. A necessary and sufficient condition for a 

sequence to be graphical was found by Havel [H8( and later rediscovered 

by Hakimi [H3]. 

Theorem 1.4 

A sequence s:di,d2,... ,dn of nonnegative integers with d\ ^ d2 ^ ^ dn, 

n ^ 2, d-[ ^ 1, is graphical if and only if the sequence sp.d2 — l,d3 — 1,..., 

ddx+\ ~ +2, • • • ,dn is graphical. 

Proof 

Assume that S} is a graphical sequence. Then there exists a graph Gi of 
order n — 1 such that s-[ is a degree sequence of Gj. Thus, the vertices of 

G] can be labeled as v2, v3,..., vn so that 

fdi- 1 2 ^ i ^ d-i + 1 
deg vi = \ , 

{d, d-[ + 2 i ^ n. 

A new graph G can now be constructed by adding a new vertex zq and the 

d] edges zqzq, 2 ^ i < d\ +1. Then in G, degz>, = d, for 1 ^ i ^ n, and so 
s: d], d2)..., dn is graphical. 

Conversely, let s be a graphical sequence. Hence there exist graphs 
of order n with degree sequence s. Among all such graphs let G be 

one such that V(G) = {vi,v2, ■ ■ ■ ,vn}, degy, = d, for i — 1,2,..., n, and 
the sum of the degrees of the vertices adjacent with V\ is maximum. 
We show first that zq is adjacent with vertices having degrees 

d2,d3, ...,dd}+1. 
Suppose, to the contrary, that zq is not adjacent with vertices having 

degrees d2,d3,... ,dd] +1. Then there exist vertices vr and vs with dr > ds 
such that Vi is adjacent to vs but not to vr. Since the degree of vr exceeds 

that of vs, there exists a vertex vt such that vt is adjacent to vr but not to 
Vg. Removing the edges zqzq and vrvt and adding the edges zqzy and vsv, 
results in a graph G' having the same degree sequence as G. However, in 
G' the sum of the degrees of the vertices adjacent with zq is larger than that 
in G, contradicting the choice of G. 

Thus, zq is adjacent with vertices having degrees d2ld3,..., + i, and 
the graph G — zq has degree sequence S], so St is graphical. □ 
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Theorem 1.4 actually provides an algorithm for determining whether a 

given finite sequence of nonnegative integers is graphical. If, upon 
repeated application of Theorem 1.4, we arrive at a sequence every 
term of which is 0, then the original sequence is graphical. On the other 

hand, if we arrive at a sequence containing a negative integer, then the 
given sequence is not graphical. 

We now illustrate Theorem 1.4 with the sequence 

s: 5,3,3,3,3,2,2,2,1,1,1. 

After one application of Theorem 1.4, we get 

s\: 2,2,2,2,1,2,2,1,1,1. 

Reordering this sequence, we obtain 

Sl: 2,2,2,2,2,2,1,1,1,1. 

Continuing, we have 

& 1,1,2,2,2,1,1,1,1 

s2: 2,2,2,1,1,1,1,1,1 

s3 — s3: 1, 1, 1, 1,1, 1,1,1 

si: 0,1,1,1,1,1,1 

s4: 1,1,1,1,1,1,0 

si: 0,1,1,1,1,0 

s5: 1,1,1,1,0,0 

si: 0,1,1,0,0 

s6: 1,1,0,0,0 

Sy — Sy'. 0, 0, 0, 0. 

Therefore, s is graphical. Of course, if we observe that some sequence 
prior to s7 is graphical, then we can conclude by Theorem 1.4 that s is 

graphical. For example, the sequence s3 is easily seen to be graphical 
since it is the degree sequence of the graph G3 of Figure 1.17. By Theorem 
1.4, each of the sequences $2,5!, and s is in turn graphical. To construct 

a graph with degree sequence s2, we proceed in reverse from s3 to s2, 
observing that a vertex should be added to G3 so that it is adjacent to 
two vertices of degree 1. We thus obtain a graph G2 with degree sequence 
s2 (or s2). Proceeding from s2 to Sj, we again add a new vertex joining it to 

two vertices of degree 1 in G2. This gives a graph G] with degree sequence 
St (or s\). Finally, we obtain a graph G with degree sequence s by con¬ 

sidering s\; that is, a new vertex is added to G}, joining it to vertices of 
degrees 2,2,2,2,1. 
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Figure 1.17 Construction of a graph G with given degree sequence. 

It should be pointed out that the graph G in Figure 1.17 is not the only 
graph with degree sequence s. Indeed, there are graphs that cannot be 
produced by the method used to construct graph G of Figure 1.17. For 

example, the graph H of Figure 1.18 is such a graph. 
Another result that determines which sequences are graphical is due to 

Erdos and Gallai [EG3], We give a proof of the necessity only since the 

proof of the sufficiency is lengthy and not useful for our purposes. 

Theorem 1.5 

A sequence d-l,d2,... ,dn (n ^ 2) of nonnegative integers with di ^ 

d2 ^ ^ dn is graphical if and only if Xa=i d, is even and for each integer 
k, 1 < k < n — 1, 

k n 

d, ^ k(k — 1) + min{k,dj}. 
i=1 i=k+1 

Proof (of the necessity) 

Let G be a graph of order n with V(G) = {zq, v2,. ■ ■, v„} such that 
deg v{ = dj for 1 ^ i ^ n. By Theorem 1.1, ]Cf=1 d, is even. For 

1 < k < n — 1, let V-[ — {vi,v2,... ,vk} and V2 = V(G)-V-[. The sum 

= i dj counts every edge in (Vj) twice and every edge joining a 
vertex of Vx and a vertex of V2 once. The number of edges in (V^) is at 

o-o-o 
H: 

O-O-O 

Figure 1.18 A graph that cannot be constructed by the method following Theorem 
l. 4. 
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most (2) = k(k - 1)/2. Every vertex v, of V2 (so k + \ ^ i ^ n) is clearly 

joined to at most d, vertices of Vj. Also, every vertex of V2 is joined 
to at most k vertices of V\. Hence each vertex v, of V2 is adjacent to at 
most min{k,dt} vertices of V^. The desired result now follows. □ 

A proof of the sufficiency of Theorem 1.5 was given in a paper by 

Sierksma and Hoogeveen [SHI], where several other characterizations 
of graphical sequences are also presented. 

When considering degree sequences, we are interested not only in 

degrees but also in their frequencies. We now delete this last requirement. 
Denote the degree set of a graph G (that is, the set of degrees of the vertices 

of G) by T>(G). For example, if G = K124/ then V(G) = {3, 5, 6}. We now 
investigate the question of which sets of positive integers are the degree 
sets of graphs. This question is completely answered by a result of 
Kapoor, Polimeni and Wall [KPW1]. 

Theorem 1.6 

For every set S = {a-[,a2,... ,ak},k ^ 1, of positive integers, with 

a\ < ai < • • ‘ < ak> there exists a graph G such that V(G) = S. Furthermore, 
the minimum order p(S) = p(al,a2, ...,ak) of such a graph G is p(S) = ak + 1. 

Proof 

If G is a graph such that V(G) — S, then G has order at least ak + 1. Thus 
we must show that such a graph G having order ak + 1 exists. We proceed 
by induction on k. For k = 1, we observe that every vertex of the complete 
graph Kfl| +1 has degree a^, so p(a-f) = a^ +1. For k = 2, the vertices of the 
graph F = Ka] + (Xfl2_ai +1) have degrees a1 and a2, and since F has order 

a2 + 1, we conclude that p(a-y,a2) — a2 + 1. 
Let k^2. Assume, for every set S containing i positive integers, where 

1 ^ i < k, that p(S) = fl, + 1, where a, is the largest element of S. Let 
Si — {bi,b2,... ,bk+i} be a set of k+l positive integers such that 

b\ < b2 < ■ ■ • < bk+1- By the inductive hypothesis, 

p(b2 -bub3-bu...,bk-bl) = (bk-bl) + 1. 

Hence, there exists a graph H of order (bk - b^) + 1 such that 

T>(H) = {b2 — bi, b3 — b\,..., bk — b\}. 

The graph 

G = Kb, + (Kbk+,-bkGH) 

has order bM + 1, and V(G) = {b^, b2, ■ ■. A+i}; hence p(bub2,... A+i) = 
bk+i +1, which completes the proof. □ 
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EXERCISES 1.2 

1.12 Determine whether the following sequences are graphical. If so, 

construct a graph with the appropriate degree sequence. 

(a) 4, 4, 3, 2, 1 
(b) 3, 3, 2, 2, 2, 2, 1, 1 
(c) 7, 7, 6, 5, 4, 4, 3, 2 

(d) 7, 6, 6, 5, 4, 3, 2, 1 
(e) 7, 4, 3, 3, 2, 2, 2, 1, 1, 1 

1.13 Show that the sequence dy,d2,... ,dn is graphical if and only if the 

sequence n — dy — I,n — d2 — 1— dn — \ is graphical. 

1.14 (a) Using Theorem 1.4, show that s: 7, 6, 5, 4, 4, 3, 2, 1 is graphical, 

(b) Prove that there exists exactly one graph with degree sequence s. 

1.15 Show that for every finite set S of positive integers, there exists a 

positive integer k such that the sequence obtained by listing each 
element of S a total k times is graphical. Find the minimum such k 

for S = {2, 6, 7}. 

1.16 Two finite sequences Sy and s2 of nonnegative integers are called 
bigraphical if there exists a bipartite graph G with partite sets Vy 

and V2 such that S] and s2 are the degrees in G of the vertices in 
Vy and V2, respectively. Prove that the sequences Sy: ay,a2,... ,ar 
and s2: by,b2,... ,bt of nonnegative integers with r ^ 2, 
ay ^ a2 ^ ^ ar, by ^ b2 ^ bt, 0 < ay ^ t, and 0 < by ^ r are 
bigraphical if and only if the sequences s\: a2,a3,... ,ar and 

s2: by - 1,&2 - - 1, -,bt are bigraphical. 

1.17 Find a graph G of order 8 having T>(G) — {3,4,5,7}. 

1.3 DISTANCE IN GRAPHS 

Let u and v be (not necessarily distinct) vertices of a graph G. A u-v walk 
of G is a finite, alternating sequence 

u = u0,ey,u-y,e2,...,uk_l}ek,uk = v 

of vertices and edges, beginning with vertex u and ending with vertex v, 
such that e, = u,_yUj for i — 1, 2, ...,fc. The number k (the number of 

occurrences of edges) is called the length of the walk. A trivial walk 
contains no edges, that is, k = 0. We note that there may be repetition of 
vertices and edges in a walk. Often only the vertices of a walk are indi¬ 

cated since the edges present are then evident. Two u-v walks u = u0, 

uk = v and u — Vq, Vy,..., v( = v are considered to be equal if and 
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v2 

Figure 1.19 Walks, trails and paths. 

only if k — d and u, = for 0 ^ i ^ k; otherwise, they are different. Observe 
that the edges of two different u-v walks of G may very well induce the 
same subgraph of G. 

A u-v walk is closed or open depending on whether u=voxu^v.A u-v 
trail is a u-v walk in which no edge is repeated, while a u-v path is a u-v 
walk in which no vertex is repeated. A vertex u forms the trivial u-u 

path. Every path is therefore a trail. In the graph G of Figure 1.19, 
Wp v-l,v2,v3,v2,v5,v3,v4 is a V\-v4 walk that is not a trail, W2: Vi,v2,v5, 
v-[,v3, v4 is a V\—v4 trail that is not a path and W3: zq, v3,v4 is a V\-v4 path. 

By definition, every path is a walk. Although the converse of this 

statement is not true in general, we do have the following theorem. A 
walk W is said to contain a walk W7 if W7 is a subsequence of W. 

Theorem 1.7 

Every u-v walk in a graph contains a u-v path. 

Proof 

Let W be a u-v walk in a graph G. If W is closed, the result is trivial. Let 
W: u = u0, Ui, u2,..., uk = v be an open u-v walk of a graph G. (A vertex 
may have received more than one label.) If no vertex of G occurs in W 
more than once, then W is a u-v path. Otherwise, there are vertices of G 

that occur in W twice or more. Let i and j be distinct positive integers, with 
i < j say, such that «,• = Uj. If the terms ui+1,..., Uj_-l are deleted from 
W, a u-v walk W] is obtained having fewer terms than that of W. If there is 
no repetition of vertices in Wj, then lA^ is a u-v path. If this is not the case, 
we continue the above procedure until finally arriving at a u-v walk that is 

a u-v path. □ 

As the next theorem indicates, the Arth power of the adjacency matrix of 

a graph can be used to compute the number of walks of various lengths in 

the graph. 
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Theorem 1.8 

If A is the adjacency matrix of a graph G with V(G) = {v\,v2,... ,v„}, then 
the (/, j) entry of Ak, k^\, is the number of different v—Vj walks of length k 

in G. 

Proof 

The proof is by induction on k. The result is obvious for k = 1 since there 

exists a v-v] walk of length 1 if and only if viv] e E(G). Let Ak ~1 = [a^ 
and assume that a\k~^ is the number of different v—Vj walks of length 

k — 1 in G; furthermore, let Ak = [a\^]. Since Ak = Ak~^ •A, we have 

n 

(i.i) 

Every v—V; walk of length k in G consists of a v -v( walk of length k — 1, 
where v( is adjacent to v,, followed by the edge v(Vj and the vertex Vj. Thus 

by the inductive hypothesis and (1.1), we have the desired result. □ 

A nontrivial closed trail of a graph G is referred to as a circuit of G, and a 

circuit V\,v2,. ■. ,vn,V} (n ^ 3) whose n vertices Vj are distinct is called 
a cycle. An acyclic graph has no cycles. The subgraph of a graph G induced 

by the edges of a trail, path, circuit or cycle is also referred to as a trail, 
path, circuit or cycle of G. A cycle is even if its length is even; otherwise it 
is odd. A cycle of length n is an n-cycle; a 3-cycle is also called a triangle. 
A graph of order n that is a path or a cycle is denoted by Pn or Cn, 

respectively. 
We now consider a very basic concept in graph theory, namely con¬ 

nected and disconnected graphs. A vertex u is said to be connected to a 
vertex v in a graph G if there exists a u-v path in G. A graph G is 
connected if every two of its vertices are connected. A graph that is not 
connected is disconnected. The relation 'is connected to' is an equivalence 

relation on the vertex set of every graph G. Each subgraph induced by the 
vertices in a resulting equivalence class is called a connected component or 
simply a component of G. Equivalently, a component of a graph G is a 

connected subgraph of G not properly contained in any other connected 
subgraph of G; that is, a component of G is a subgraph that is maximal 
with respect to the property of being connected. Hence, a connected sub¬ 

graph F of a graph G is a component of G if for each connected graph H 
with FCHCG where V(F) C V(H) and E(F) C E(H), it follows that 
F = H. The number of components of G is denoted by k(G); of course, 

k(G) — 1 if and only if G is connected. For the graph G of Figure 1.20, 

Jfc(G) = 6. 
We are now prepared to present a useful characterization of bipartite 

graphs. 
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Figure 1.20 A graph with six components. 

Theorem 1.9 

A nontrivial graph is bipartite if and only if it contains no odd cycles. 

Proof 

Let G be a bipartite graph with partite sets Vy and V2. Suppose that 

C: Vy,v2, ■ ■ ■ ,Vk,Vi is a cycle of G. Without loss of generality, we may 
assume that Vy G Vy. However, then v2 G V2,v3 G Vy,V/y G V2, and so on. 
This implies k = 2s for some positive integer s; hence, C has even length. 

For the converse, it suffices to prove that every nontrivial connected 

graph G without odd cycles is bipartite, since a nontrivial graph is 
bipartite if and only if each of its nontrivial components is bipartite. Let 
v G V(G) and denote by Vy the subset of V(G) consisting of v and all 
vertices u of G with the property that any shortest u-v path of G has 
even length. Let V2 — V{G) — Vy. We now prove that the partition 

Vy U V2 of V(G) has the appropriate properties to show that G is bipartite. 
Let u and w be elements of Vy, and suppose that uw G E(G). Necessarily, 

then, neither u nor w is the vertex v. Let v = u0, Uy,..., w2s = u, s ^ 1, and 
v = ie0, Wy,..., w2t = w, t ^ 1, be a shortest v-u path and a shortest v-w of 
G, respectively, and suppose that w is a vertex that the two paths have in 
common such that the w'-u subpath and w'-w subpath have only w in 
common. (Note that w' may be v.) The two v-w' subpaths so determined 
are then shortest v-w' paths. Thus, there exists an i such that w' = u, = wt. 

However, Uy, ui+y,..., U2s,w2t, w2t_y,..., wt = u, is an odd cycle of G, 
which is a contradiction to our hypothesis. Similarly, no two vertices of 

V2 are adjacent. □ 

For a connected graph G, we define the distance d{u, v) between two 
vertices u and v as the minimum of the lengths of the u-v paths of G. 
Under this distance function, the set U(G) is a metric space, that is, the 

following properties hold: 

1. d(u, v) ^ 0 for all pairs u, v of vertices of G, and d{u, v) — 0 if and only 

if u — v; 
2. (symmetric property) 

d(u, v) = d(v, u) for all pairs u, v of vertices of G; 

3. (triangle inequality) 
d(u, v) + d[v, w) ^ d(u, w) for all triples u, v, w of vertices of G. 
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r 

Figure 1.21 The distance levels from the vertex r. 

Each vertex of the graph G of Figure 1.21 is labeled with its distance 
from r. The graph G is then redrawn to illustrate these distances better. 

The vertices of G are thus partitioned into levels, according to their 
distance from r. There are a number of instances when it is useful to 
draw a graph in this manner. 

If G is a disconnected graph, then we can define distance as above 
between vertices in the same component of G. If u and v are vertices in 

distinct components of G, then d(u, v) is undefined (or we could define 

d(u, v) = oo). 
The eccentricity e(v) of a vertex v of a connected graph G is the number 

maxueV(G) d(u, v). That is, e(v) is the distance between v and a vertex 
furthest from v. The radius rad G of G is the minimum eccentricity 
among the vertices of G, while the diameter diam G of G is the maximum 
eccentricity. Consequently, diam G is the greatest distance between any 

two vertices of G. Also, a graph G has radius 1 if and only if G contains 
a vertex adjacent to all other vertices of G. A vertex v is a central vertex if 
e(v) = rad G and the center Cen(G) is the subgraph of G induced by its 

central vertices. 
For the graph G of Figure 1.22, rad G = 3 and diamG = 5. Here, 

Cen(G) = K3. A vertex v is a peripheral vertex if e(v) = diamG, while the 
periphery Per(G) is the subgraph of G induced by its peripheral vertices. 

u 

G: 

v 
Per<G): O O 

y x 

Figure 1.22 A graph with radius 3 and diameter 5. 
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For the graph G of Figure 1.22, the vertices x and y are peripheral vertices 
and Per(G) = 2K}. 

The radius and diameter are related by the following inequalities. 

Theorem 1.10 

For every connected graph G, 

rad G ^ diam G ^ 2 rad G. 

Proof 

The inequality rad G ^ diam G is a direct consequence of the definitions. 
In order to verify the second inequality, select vertices u and v in G such 

that d(u, v) = diam G. Furthermore, let w be a central vertex of G. Since d 
is a metric on V(G), 

d(u,v) ^ d(u, w) + d(w, v) ^ 2e(zv) — 2 rad G. □ 

Theorem 1.10 gives a lower bound (namely, rad G) for the diameter of 
a connected graph G as well as an upper bound (namely, 2 rad G). This 
is the first of many results we shall encounter for which a question of 
'sharpness' is involved. In other words, just how good is this result? 

Ordinarily, there are many interpretations of such a question. We 
shall consider some possible interpretations in the case of the upper 
bound. 

Certainly, the upper bound in Theorem 1.10 would not be considered 
sharp if diam G < 2 rad G for every graph G; however, it would be 
considered sharp indeed if diam G = 2 rad G for every graph G. In the 
latter case, we would have a formula, not just a bound. Actually, there 
are graphs G for which diam G < 2 rad G and graphs H for which 

diam H = 2 rad H. This alone may be a satisfactory definition of 
'sharpness'. A more likely interpretation is the existence of an infinite 

class Ft of graphs H such that diamH = 2radH for each HeK. Such a 
class exists; for example, let Ft consist of the graphs of the type Kt + K2. 
One disadvantage of this example is that for each H € Ft, diamH = 2 
and radH = 1. Perhaps a more satisfactory class (which fills a more 

satisfactory requirement for sharpness) is the class of paths P^+i, k ^ 1. 
In this case, diamP^+T = 2k and radP2;.+1 = k; that is, for each positive 
integer k, there exists a graph G such that diam G = 2 rad G = 2k (Exercise 

1.30). 
In the graph G of Figure 1.22, we saw that Cen(G) = K3. It is not difficult 

to see that Cen(P2*.+1) = fCj and Cen(P2*.) = K2 for all k ^ 1. Also, 

Cen(C„) = C„ for all n ^ 3. Hence there are many graphs that are centers 
of graphs. Hedetniemi (see Buckley, Miller and Slater [BMS1]) showed 

that there is no restriction on which graphs are centers. 
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O 

Figure 1.23 A graph with given center. 

Theorem 1.11 

Every graph is the center of some connected graph. 

Proof 

Let G be a given graph. We construct a graph H from G by adding four 

new vertices iq, iq, u2, v2 and for 1 = 1,2, every vertex of G is joined to u,, 
and Uj is joined to vr (This construction is illustrated in Figure 1.23.) Since 

e(Uj) = 4 and e(Vj) = 3 for i = 1, 2, while eH(x) = 2 for every vertex x of G, 
it follows that Cen(H) = G. □ 

The center of a connected graph G was introduced as one means of 
describing the 'middle' of a graph. Since this concept is vague and is 
open to interpretation, other attempts have been made to identify the 
middle of a graph. We describe another of these. The total distance td(u) 
of a vertex u in a connected graph G is defined by 

veV{G) 

A vertex v in G is called a median vertex if v has the minimum total distance 
among the vertices of G. Equivalently, v is a median vertex if v has the 
minimum average distance to all vertices of G. The median Med(G) of G is 
then the subgraph of G induced by its median vertices. In the graph G of 
Figure 1.24, each vertex is labeled with its total distance. The median of G 
is also shown. 

38 
Q 

37 29 

G: 
28 26 

o 
u 

Med(G): O-O 
u v 

37 29 
6 
38 

Figure 1.24 The median of a graph. 
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There is also no restriction on which graphs can be medians. Slater [S7| 
showed that every graph is the median of some connected graph. Indeed, 

Hendry [HI 1 ] showed that for every two graphs G} and G2, there exists a 
connected graph H such that Cen(H) = G} and Med(H) = G2. 

Not every graph is the periphery of some graph, as Bielak and Syslo 
[BS2] verified. 

Theorem 1.12 

A graph G is the periphery of some connected graph if and only if every vertex of 
G has eccentricity 1 or no vertex of G has eccentricity 1. 

Proof 

Suppose first that every vertex of G has eccentricity 1. Then Per(G) = G 
and G is the periphery of itself. Next, suppose that no vertex of G has 

eccentricity 1. Define H to be the graph obtained from G by adding a 
new vertex v to G and joining v to every vertex of G. Then e{v) — 1. Let 
x e V(G). Since ec(x) ^ 1, there is some vertex y in G such that xy ^ E(G). 
However, dH(x, y) =2 since x, v,y is a path of length 2 in H. Thus 
eH(x) = 2. Indeed, then, every vertex of G has eccentricity 2 in H. There¬ 
fore Per(H) = G. 

For the converse, assume that G is a graph for which some but not 
all vertices have eccentricity 1, and suppose, to the contrary, that G 
is the periphery of a connected graph H. Certainly G is a proper 
subgraph of H. Therefore, for each vertex x of G, it follows that 
eH(x) — diamH ^ 2. Let u be a vertex of G having eccentricity 1 in G. 
Thus, u is adjacent to all other vertices of G. Let v be a vertex of H 
such that dH(u,v) = eH(u) = diamH ^ 2. Therefore eH{v) = diamH and 
v is a peripheral vertex of H. On the other hand, since dH(u, v) 5= 2, 
the vertex v is not adjacent to u and so v is not in G, which produces a 

contradiction. □ 

EXERCISES 1.3 

1.18 Let u and v be arbitrary vertices of a connected graph G. Show that 

there exists a u-v walk containing all vertices of G. 

1.19 Prove that 'is connected to' is an equivalence relation on the vertex 

set of a graph. 

1.20 (a) Let G be a graph of order n such that deg v ^ (n — 1 )/2 for every 

v e V(G). Prove that G is connected. 

(b) Examine the sharpness of the bound in (a). 
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1.21 Let n ^ 2 be an integer. Determine the minimum positive integer m 
such that every graph of order n and size m is connected. 

1.22 Prove that a graph G is connected if and only if for every partition 
V(G) = V, U V2, there exists an edge of G joining a vertex of V] and a 

vertex of V2. 

1.23 Prove that if G is a graph with <5(G) ^ 2, then G contains a cycle. 

1.24 Show that if G is a graph of order n and size n2/4, then either G 

contains an odd cycle or G = Kn/2in/2- 

1.25 (a) Show that there are exactly two 4-regular graphs G of order 7. 

(Hint: Consider G.) 
(b) How many 6-regular graphs of order 9 are there? 

1.26 Characterize those graphs G having the property that every induced 

subgraph of G is a connected subgraph of G. 

1.27 Define a connected graph G to be degree linear if G contains a path P 
with the property that for each d 6 T>(G) (the degree set of G), there 

exists a vertex of degree d on P. 
(a) Let G be a connected graph with V(G) = {di,d2},di < d2. Prove 

that G is degree linear by proving that G contains a path of length 
1 containing vertices of degrees d-[ and d2. 

(b) Determine the maximum value of k such that every connected 
graph having a ^-element degree set is degree linear. 

1.28 Let G be a nontrivial connected subgraph that is not bipartite. Show 
that G contains adjacent vertices u and v such that deg u + degu is 

even. 

1.29 Prove that if G is a disconnected graph, then G is connected and, in 
fact, diam G ^ 2. 

1.30 Let a and b be positive integers with a ^ b ^ 2a. Show that there 

exists a graph G with rad G — a and diam G — b. 

1.31 Define the central appendage number of a graph G to be the minimum 

number of vertices that must be added to G to produce a connected 
graph H with Cen(H) = G. Show that the central appendage number 
of a graph (a) can be 0, (b) can never be 1, and (c) is at most 4. 

1.32 Let G be a connected graph. 
(a) If u and v are adjacent vertices of G, then show that 

|e{u) — e(v)\ ^ 1. 
(b) If k is an integer such that rad G ^ k ^ diam G, then show that 

there is a vertex w such that e(w) — k. 

(c) If k is an integer such that rad G < k ^ diam G, then show that 
there are at least two vertices of G with eccentricity k. (Hint: 
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Let iv be a vertex with e(w) — k, and let u be a vertex with 
d(w, u) — e(w) — k. For a central vertex v of G, let P be a v-u 

path of length d(v, u). Show that e(v) <k^e(u). Then show 
that there is a vertex x (distinct from w) on P such that e(x) = k.) 

1.33 Show that for every pair r,s of positive integers, there exists a 
positive integer n such that for every connected graph G of order 
n, either A(G) ^ r or diam G ^ s. 

1.34 Let f and H be two subgraphs in a connected graph G. Define the 
distance d(F, H) between P and H as 

d{F,H) =min{d(u,v) \ u e V{F),v e V(H)}. 

Show that for every positive integer k, there exists a connected graph 
G such that d(Cen(G), Med(G)) = k. 

1.35 Every complete graph is the periphery of itself. Can a complete 
graph be the periphery of a connected graph G with diam G ^ 2? 

1.4 DIGRAPHS AND MULTIGRAPHS 

There are occasions when the standard definition of graph does not serve 
our purposes. This remark leads us to our next topics. When the 
symmetric nature of graphs does not satisfy our requirements, we are 
led to directed graphs. A directed graph or digraph D is a finite nonempty 
set of objects called vertices together with a (possibly empty) set of ordered 
pairs of distinct vertices of D called arcs or directed edges. As with graphs, 

the vertex set of D is denoted by V(D) and the arc set is denoted by E(D). 
A digraph D with V(D) = {u, v, w} and E(D) = {(u, w), (zv, u), (u, u)} is 
illustrated in Figure 1.25. Observe that when a digraph is described by 
means of a diagram, the 'direction' of each arc is indicated by an arrow¬ 

head. 
The terminology used in discussing digraphs is quite similar to that 

used for graphs. The cardinality of the vertex set of a digraph D is 

w 

D: 0 o 
u V 

Figure 1.25 A digraph. 
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called the order of D and is denoted by n(D), or simply n. The size m(D) (or 

m) of D is the cardinality of its arc set. An (n, m) digraph is a digraph of 

order n and size m. 
If a — (u, v) is an arc of a digraph D, then a is said to join u and v. We 

further say that a is incident from u and incident to v, while u is incident to a 

and v is incident from a. Moreover, u is said to be adjacent to v and v is 
adjacent from u. In the digraph D of Figure 1.25, vertex u is adjacent to 

vertex v, but v is not adjacent to u. Two vertices u and v of a digraph D 
are nonadjacent if u is neither adjacent to nor adjacent from v in D. 

The outdegree od v of a vertex v of a digraph D is the number of vertices 

of D that are adjacent from v. The indegree idy of v is the number of 
vertices of D adjacent to v. The degree deg v of a vertex v of D is defined by 

degv = odu + idn. 

In the digraph D of Figure 1.25, od u = 2, id u = id v = id w = od w — 1, 
while od v = 0. For the same digraph, deg u — 3, deg w — 2 and deg v = 1. 

We now present The First Theorem of Digraph Theory. 

Theorem 1.13 

If D is a digraph of order n and size m with V(D) = {v\,v2,..., vn}, then 

n n 

Proof 

When the outdegrees of the vertices are summed, each arc is counted 
once, since every arc is incident from exactly one vertex. Similarly, when 
the indegrees are summed, an arc is counted just once since every arc is 
incident to a single vertex. □ 

A digraph D] is isomorphic to a digraph D2 if there exists a one-to-one 
mapping 0, called an isomorphism, from V(Dj) onto V(D2) such that 
(u, v) e E(Dt) if and only if (0w, (fv) e E(D2). The relation 'is isomorphic 

to' is an equivalence relation on digraphs. Thus, this relation partitions 
the set of all digraphs into equivalence classes; two digraphs are 

nonisomorphic if they belong to different equivalence classes. If is iso¬ 
morphic to D2, then we say D] and D2 are isomorphic and write D, = D2. 

There is only one (1,0) digraph (up to isomorphism); this is the trivial 
digraph. Also, there is only one (2,0), (2,1) and (2,2) digraph (up to 

isomorphism). There are four (3,3) digraphs, and they are shown in 
Figure 1.26. 

A digraph D, is a subdigraph of a digraph D if V(D1) C V(D) and 

E(Dj) C E(D). If Dt is isomorphic to a subdigraph of D, then we also 
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Figure 1.26 The (3,3) digraphs. 

say that D-i is a subdigraph of D. We write Dj C D to indicate that D4 is a 
subdigraph of D. A subdigraph Dl of D is a spanning subdigraph if Dj 

has the same order as D. Vertex-deleted, arc-deleted, induced and arc- 
induced subdigraphs are defined in the expected manner. These last 
two concepts are illustrated for the digraph D of Figure 1.27, where 

V(D) = {vuv2,v3,v4}, U = {vuv2,v3}, and 

F = {(vlfv2),(v2,v4)}. 

We now consider certain types of digraphs that occur regularly in our 
discussions. A digraph D is called symmetric if, whenever (u, v) is an arc of 
D, then (v, u) is also. There is a natural one-to-one correspondence 
between the set of symmetric digraphs and the set of graphs. A digraph 
D is called an asymmetric digraph or an oriented graph if whenever (u, v) is 

an arc of D, then (v, u) is not an arc of D. Thus, an oriented graph D can be 
obtained from a graph G by assigning a direction to (or by 'orienting') 

D (U) 

Figure 1.27 Induced and arc-induced subdigraphs. 

(F) 



28 Introduction to graphs 

Figure 1.28 Symmetric and asymmetric digraphs. 

each edge of G, thereby transforming each edge of G into an arc and trans¬ 
forming G itself into an asymmetric digraph; D is also called an orientation 

of G. The digraph D] of Figure 1.28 is symmetric while D2 is asymmetric; 
the digraph D3 has neither property. 

A digraph D is called complete if for every two distinct vertices u and v of 
D, at least one of the arcs (u, v) and (u, u) is present in D. The complete 

symmetric digraph of order n has both arcs (u, v) and (u, u) for every two 
distinct vertices u and v and is denoted by K*. Indeed, if G is a graph, then 
G* denotes the symmetric digraph obtained by replacing each edge of G 

by a symmetric pair of arcs. The digraph K* has size n(n — 1) and 
odv — idv = n — 1 for every vertex v of K*n. The digraphs K\, JC2, K3 and 
Kl are shown in Figure 1.29. The underlying graph of a digraph D is that 

graph obtained by replacing each arc (u, v) or symmetric pairs (u, v), 
(v, u) of arcs by the edge of uv. Certainly the underlying graph of G* is G. 

A complete asymmetric digraph is called a tournament and will be 

studied in some detail in Chapter 5. 
A digraph D is called regular of degree r or r-regular if od v — id v — r for 

every vertex v of D. The digraph K*n is {n — l)-regular. A 1-regular digraph 
D] and 2-regular digraph D2 are shown in Figure 1.30. The digraph D2 is a 

tournament. 
Unlike the situation for graphs, there are several types of connectedness 

for digraphs. The terms walk, open and closed walk, trail, path, circuit 

and cycle for graphs have natural counterparts in digraph theory, the 

Figure 1.29 Complete symmetric digraphs. 
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Figure 1.30 Regular digraphs. 

important difference being that the directions of the arcs must be followed 
in each of these walks. In particular, when referring to digraphs, the terms 
directed path and directed cycle are synonymous with path and cycle. More 

formally, for vertices u and v in a digraph D, a u-v walk in D is a finite, 
alternating sequence 

M = W0)fll> ul>fl2) • • • i uk-\,ak, uk~v 

of vertices and arcs, beginning with u and ending with v, such that 

a,- = Uj) for i = 1, 2,...,k. The number k is the length of the walk. 
A term that is unique to digraph theory is that of a semiwalk. A u-v semi¬ 
walk in D is a finite, alternating sequence 

u — uo> a\i ui > a2i ■ ■ ■ > uk-\> uk = v 

of vertices and arcs, beginning with u and ending with v, such that either 
a,- = Uj) or a, = (w,, Uj_i) for i = 1, 2,... ,k. If the vertices 

m0, tq,..., uk are distinct, then the u-v semiwalk is a u-v semipath. If 
uq = uk, where k ^ 3, and the vertices iq, u2,..., uk are distinct, then the 
semiwalk is called a semicycle. 

A digraph D is connected (or weakly connected) if for every pair u, v of 
vertices, D contains a u-v semipath. (Of course, if D contains a u-v semi¬ 
path, then D contains a v-u semipath.) Equivalently, D is connected if the 
underlying graph of D is connected. A digraph D is strong (or strongly 

connected) if for every pair u, v of vertices, D contains both a u-v path 
and a v-u path. 

A digraph D is unilateral if for every pair u, v of vertices, D contains 
either a u-v path or a v-u path; while D is anticonnected if for every pair 

u, v of vertices, D contains a u-v semipath that contains no subpath of 
length 2. Such a semipath is referred to as an antidirected semipath or an 
antipath. Certainly, if D contains a u-v antipath, then D contains a v-u 

antipath. In Figure 1.31, the digraph D-[ is strong, D2 is unilateral, D3 is 
anticonnected and D4 is connected but has none of the other connected¬ 

ness properties. 
Distance can be defined in digraphs as well. For vertices u and v in a 

digraph D containing a u-v path, the (directed) distance d(u, v) from u to v is 

the length of a shortest u-v path in D. Thus the distances d(u, v) and 
d(v, u) are defined for all pairs u, v of vertices in a strong digraph. This 
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distance is not a metric, in general. Although the distance satisfies the 

triangle inequality, it is not symmetric - unless D is symmetric, in 
which case D is, in actuality, a graph. Eccentricity can be defined as 
before, as well as radius and diameter. The eccentricity e(u) of a vertex u 
in D is the distance from u to a vertex furthest from u. The minimum 

eccentricity of the vertices of D is the radius rad D of D, while the 
diameter diam D is the greatest eccentricity. 

The vertices of the strong digraph D of Figure 1.32 are labeled with their 

eccentricities. Observe that rad D = 2 and diam D — 5, so it is not true, in 
general, that diam D ^ 2 rad D, as is the case with graphs. 

In the definition of a graph G, either one edge or no edge joins a pair of 
distinct vertices of G. For a digraph D, two (directed) edges can join dis¬ 

tinct vertices of D - if they are directed oppositely. There are occasions 
when we will want to permit more than one edge to join distinct vertices 
(and in the same direction in the case of digraphs). 

If one allows more than one edge (but yet a finite number) between the 
same pair of vertices in a graph, the resulting structure is a multigraph. 

Such edges are called parallel edges. If more than one arc in the same 
direction is permitted to join two vertices in a digraph, a multidigraph 
results. A loop is an edge (or arc) that joins a vertex to itself. Graphs that 

5 

Figure 1.32 Eccentricities in a strong digraph. 
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Figure 1.33 Multigraphs, multidigraphs, pseudographs and pseudodigraphs. 

allow parallel edges and loops are called pseudographs, while digraphs 
that permit parallel arcs and loops are called pseudodigraphs. Although 
these concepts are useful at times, they will be encountered rarely in 
our study. Figure 1.33 (a)-(d) shows a multigraph, multidigraph, pseudo¬ 
graph and pseudodigraph, respectively. 

EXERCISES 1.4 

1.36 Determine all (pairwise nonisomorphic) digraphs of order 4 and 

size 4. 

1.37 Prove or disprove: For every integer n ^ 2, there exists a digraph D 
of order n such that for every two distinct vertices u and v of D, 

od u 7^ od v and id u / id v. 

1.38 Prove or disprove: No digraph contains an odd number of vertices of 
odd outdegree or an odd number of vertices of odd indegree. 

1.39 Prove or disprove: If Dx and D2 are two digraphs with 

V(Dj) = {«!, u2,...,u„} and V(D2) = {vsuch that 
idDi Uj = idDz Vi and odD) u, = odDz Vj for i — 1, 2,... ,n, then 

Di = D2. 

1.40 Prove that if every proper induced subdigraph of a digraph D of 

order n ^ 4 is regular, then E(D) = 0 or D — X,*. 

1.41 Prove that there exist regular tournaments of every odd order but 

there are no regular tournaments of even order. 
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1.42 The adjacency matrix A(D) of a digraph D with V(D) = {z^, v2,... ,u„} 
is the n x n matrix [al}] defined by = 1 if (u,-, u;-) e E(D) and atj = 0 

otherwise. 
(a) What information do the row sums and column sums of the 

adjacency matrix of a digraph provide? 

(b) Characterize matrices that are adjacency matrices of digraphs. 

1.43 Prove that if D is a digraph with od v 1 and id v 1 for every 
vertex v of D, then D contains a cycle. 

1.44 Prove that for every two positive integers a and b with a ^ b, there 
exists a strong digraph D with rad D = a and diam D = b. 

1.45 The center Cen(D) of a strong digraph D is the subdigraph induced 
by those vertices v with e(v) — rad D. Prove that for every asym¬ 
metric digraph Dlr there exists a strong asymmetric digraph D 
such that Cen(D) = D^. 



CHAPTER 2 

Structure and symmetry 
of graphs 

Although being connected is the most basic structural property that a 
graph may possess, more information about its structure is provided by 

special vertices, edges and subgraphs it contains and the symmetry it 
possesses. This is the theme of the current chapter. 

2.1 CUT-VERTICES, BRIDGES AND BLOCKS 

Some graphs are connected so slightly that they can be disconnected by 

the removal of a single vertex or single edge. Such vertices and edges play 
a special role in graph theory, and we discuss these next. 

A vertex v of a graph G is called a cut-vertex of G if k(G — v) > k(G). 
Thus, a vertex of a connected graph is a cut-vertex if its removal produces 
a disconnected graph. In general, a vertex v of a graph G is a cut-vertex of 
G if its removal disconnects a component of G. The following theorem 

characterizes cut-vertices. 

Theorem 2.1 

A vertex v of a connected graph G is a cut-vertex of G if and only if there exist 
vertices u and w (u, w ^ v) such that v is on every u-w path of G. 

Proof 

Let v be a cut-vertex of G; so the graph G — v is disconnected. If u and w 
are vertices in different components of G — v, then there are no u-w 
paths in G — v. However, since G is connected, there are u-w paths in G. 

Therefore, every u-w path of G contains v. 
Conversely, assume that there exist vertices u and w in G such that the 

vertex v lies on every u-w path of G. Then there are no u-w paths in G — v, 

implying that G — v is disconnected and that v is a cut-vertex of G. □ 

The complete graphs have no cut-vertices while, at the other extreme, 
each nontrivial path contains only two vertices that are not cut-vertices. 
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In order to see that this is the other extreme, we prove the following 

theorem. 

Theorem 2.2 

Every nontrivial connected graph contains at least two vertices that are not cut- 

vertices. 

Proof 

Assume that the theorem is false. Then there exists a nontrivial connected 
graph G containing at most one vertex that is not a cut-vertex; that is, 

every vertex of G, with at most one exception, is a cut-vertex. Let u and 
v be vertices of G such that d(u, v) = diamG. 

At least one of u and v is a cut-vertex, say v. Let w be a vertex belonging 
to a component of G — v not containing u. Since every u-w path in G 
contains v, we conclude that 

d(u,w) > d(u,v) = diamG, 

which is impossible. The desired result now follows. □ 

Analogous to the cut-vertex is the concept of a bridge. A bridge of 

a graph G is an edge e such that k(G — e) > k(G). If e is a bridge of G, 
then it is immediately evident that k(G — e) — k(G) -I- 1. Furthermore, if 
e = uv, then u is a cut-vertex of G if and only if degu > 1. Indeed, the 
complete graph K2 is the only connected graph containing a bridge but 

no cut-vertices. Bridges are characterized in a manner similar to that 
of cut-vertices; the proof too is similar to that of Theorem 2.1 and is 
omitted. 

Theorem 2.3 

An edge e of a connected graph G is a bridge ofG if and only if there exist vertices 
u and w such that e is on every u-w path of G. 

For bridges, there is another useful characterization. 

Theorem 2.4 

An edge e of a graph G is a bridge of G if and only if e lies on no cycle of G. 

Proof 

Assume, without loss of generality, that G is connected. Let e = uv be an 

edge of G, and suppose that e lies on a cycle C of G. Furthermore, let 
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and w2 be arbitrary distinct vertices of G. If e does not lie on a w^-w2 path P 

of G, then P is also a w4-w2 path of G — e. If, however, e lies on a wl-w2 
path Q of G, then replacing e by the u-v path (or v-u path) on C not 
containing e produces a w]-w2 walk in G — e. By Theorem 1.7, there is a 

W\—w2 path in G — e. Thus, w4 and w2 are connected in G — e and so e is not 
a bridge. 

Conversely, suppose that e is not a bridge of G. Thus G — e is connected. 

Hence there exists a u-v path P in G — e; however, P together with e 
produce a cycle in G containing e. □ 

A cycle edge is an edge that lies on a cycle. From Theorem 2.4, a cycle 

edge of a graph G is an edge that is not a bridge of G. A bridge incident 
with an end-vertex is called a pendant edge. 

Many of the graphs we encounter do not contain cut-vertices; we 
discuss these next. A nontrivial connected graph with no cut-vertices is 
called a nonseparable graph. Nontrivial graphs with cut-vertices contain 
special subgraphs in which we are also interested. A block of a graph G 

is a maximal nonseparable subgraph of G. A block is necessarily an 
induced subgraph, and, moreover, the blocks of a graph partition its 
edge set. If a connected graph G contains a single block, then G is non¬ 
separable. For this reason, a nonseparable graph is also referred to as a 
block itself. Every two blocks have at most one vertex in common, namely 
a cut-vertex. The graph of Figure 2.1 has five blocks Bir 1 ^ i ^ 5, as 
indicated. The vertices v3,v5 and i>8 are cut-vertices, while v3v5 and v4v5 
are bridges; moreover, v4v5 is a pendant edge. 

Two useful criteria for a graph to be nonseparable are now presented. 

Figure 2.1 A graph and its five blocks. 
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Theorem 2.5 

A graph G of order at least 3 is nonseparable if and only if every two vertices of 
G lie on a common cycle of G. 

Proof 

Let G be a graph such that each two of its vertices lie on a cycle. Thus G is 
connected. Suppose that G is not nonseparable. Hence G contains a cut- 
vertex v. By Theorem 2.1, there exist vertices u and w such that v is on 
every u-w path in G. Let C be a cycle of G containing u and w. The 
cycle C determines two distinct u-w paths, one of which does not contain 
v, contradicting the fact that every u-w path contains v. Therefore, G is 
nonseparable. 

Conversely, let G be a nonseparable graph with n ^ 3 vertices. We show 
that every two vertices of G lie on a common cycle of G. Let u be an arbi¬ 
trary vertex of G, and denote by U the set of all vertices that lie on a cycle 
containing u. We now show that U — V — V(G). Assume that U ^ V; 
so there exists a vertex v E V — U. Since G is nonseparable, it contains 
no cut-vertices, and furthermore, since n ^ 3, the graph G contains no 
bridge. By Theorem 2.4, every edge of G lies on a cycle of G; hence, 
every vertex adjacent to u is an element of U. Since G is connected, 
there exists a u-v path W: u = u0, , u2,..., uk = v in G. Let i be the 
smallest integer, 2 ^ i ^ k, such that u, U; thus M,_t E U. Let C be a 
cycle containing u and u,_}. Because ut_} is not a cut-vertex of G, there 
exists a u—u path P: u, = u0, vx, u2> ...,V; = u not containing Ui_x. If the 
only vertex common to P and C is u, then a cycle containing u and u, 
exists, which produces a contradiction. Hence P and C have a vertex in 
common different from u. Let j be the smallest integer, 1 ^ j ^ (, such that 
Vj belongs to both P and C. A cycle containing u and u, can now be con¬ 
structed by beginning with the u—vf subpath of P, proceeding along C 
from v} to u and then to u,_x, and finally taking the edge ui_xul back to 
Uj. Thus, a contradiction arises again, implying that the vertex v does not 
exist and that every two vertices lie on a cycle. □ 

An internal vertex of a u-v path P is any vertex of P different from u or v. 
A collection {P]; P2,...,Pjt} of paths is called internally disjoint if each 
internal vertex of P, (z = 1,2,..., k) lies on no path P, {j ^ i). In particular, 
two u-v paths are internally disjoint if they have no vertices in common, 
other than u and v. Edge-disjoint u-v paths have no edges in common. A 
second characterization of nonseparable graphs is now apparent. 

Corollary 2.6 

A graph G of order at least 3 is nonseparable if and only if there exist two 
internally disjoint u-v paths for every two distinct vertices u and v of G. 



Cut-vertices, bridges and blocks 37 

Theorem 2.5 suggests the following definitions: A block of order at least 
3 is called a cyclic block, while the block K2 is called the acyclic block. 

We now state a theorem of which Theorem 2.2 is a corollary. 

Theorem 2.7 

Let G be a connected graph with one or more cut-vertices. Then among the blocks 
of G, there are at least two which contain exactly one cut-vertex of G. 

In view of Theorem 2.7, we define an end-block of a graph G as a block 
containing exactly one cut-vertex of G. Hence every connected graph with 
at least one cut-vertex contains at least two end-blocks. In this context, 
another result that is often useful is presented. Its proof will become 
evident in the next chapter. 

Theorem 2.8 

Let G be a graph with at least one cut-vertex. Then G contains a cut-vertex v 
with the property that, with at most one exception, all blocks of G containing v 
are end-blocks. 

Another interesting property of blocks of graphs was pointed out by 
Harary and Norman [HN2], 

Theorem 2.9 

The center of every connected graph G lies in a single block of G. 

Proof 

Suppose that G is a connected graph whose center Cen(G) does not lie 
within a single block of G. Then G has a cut-vertex v such that G — v con¬ 

tains components G^ and G2/ each of which contains vertices of Cen(G). 
Let u be a vertex such that d(u, v) — e(v), and let P} be a v-u path of G 

having length e(v). At least one of G] and G2, say G2, contains no vertices 
of Pi. Let w be a vertex of Cen(G) belonging to G2, and let P2 be a w-v path 
of minimum length. The paths Pi and P2 together form a u-w path P3, 
which is necessarily a u-w path of length d(u, w). However, then 

e(w) > e(v), which contradicts the fact that w is a central vertex. Thus 
Cen(G) lies in a single block of G. □ 

A graph G is a critical block if G is a block and for every vertex v, the 

graph G — v is not a block. Hence a block G is noncritical if and only if 
there exists a vertex v of G such that G — v is also a block. There is an 
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Figure 2.2 Minimal and critical blocks. 

analogous concept concerning edges. A graph G is a minimal block if G is a 

block and for every edge e, the graph G — e is not a block. 
The block Gt of Figure 2.2 is minimal and noncritical, while the block G2 

is critical but nonminimal. 
In each of the graphs of Figure 2.2, there are vertices of degree 2. All 

minimal and critical blocks have this property, as we shall see. 

Theorem 2.10 

If G is a critical block of order at least 4, then G contains a vertex of degree 2. 

Proof 

For each vertex x of G, there exists a vertex y of G — x such that G — x — y 

is disconnected. Among all such pairs x, y of vertices of G, let u, v be a 
pair such that G — u — v is disconnected and contains a component Gj 
of minimum order k. If k = 1, then the vertex of G\ has degree 2 in G. 

Thus we may assume that k 5= 2. Let G2 denote the union of the com¬ 
ponents of G — u — v that are different from Gj. Further, let H = 

<WGt) U {«. !>}). 

Let WiEV(Gi). There exists a vertex w2 in G — w] such that 

G — Wi — w2 is disconnected. We now consider two cases. 

Case 1. Assume that w2eV(H). Since both (V(G2)U{u}) and 
(V(G2) U {u}) are connected, some component of G — — w2 has order 
less than k, producing a contradiction. 

Case 2. Assume that w2 e V(G2). Since G-w-[—w1 is disconnected, 

H — w-[ must contain exactly two components, namely a component 
Hu containing u and a component Hv containing v. If either Hu or Hv 
is trivial, then G has a vertex (namely u or v) of degree 2; so we may 

assume that Hu and Hv are nontrivial. However, G — W\ — u is then 
disconnected and has a component of order less than k, again producing 
a contradiction. □ 

Corollary 2.11 

IfG is a minimal block of order at least 4, then G contains a vertex of degree 2. 
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Suppose that G is a minimal block of order at least 4, but that G contains 
no vertices of degree 2. By Theorem 2.10, G is not a critical block. Thus, 
G contains a vertex w such that G — w is a block. Let e be an edge of G 
incident with w. Since G is a minimal block, G — e is not a block, and there¬ 

fore G — e contains a cut-vertex u Hence G — e — u (= G — u — e) is 
disconnected, so e is a bridge of G — u. On the other hand, since G — u — vo 
(= G — w — u) is connected, e is a pendant edge of G — u and w is an end- 

vertex of G — u. Therefore, w has degree 1 in G — u and degree 2 in G. This 
is a contradiction. □ 

EXERCISES 2.1 

2.1 Prove that if v is a cut-vertex of a connected graph G, then v is not a 

cut-vertex of G. 

2.2 Prove Theorem 2.3. 

2.3 Prove that every graph containing only even vertices is bridgeless. 

2.4 Prove Corollary 2.6. 

2.5 Let u and v be distinct vertices of a nonseparable graph G of order 
n ^ 3. If P is a given u-v path of G, does there always exist a u-v path 
Q such that P and Q are internally disjoint u-v paths? 

2.6 Let G and H be graphs with V(G) = {uj, v2,...,vn} and V(H) = 

{wi, u2,... ,un}, n ^ 3. 
(a) Vertices u, and Uj are adjacent in H if and only if v, and v] belong 

to a common cycle in G. Characterize those graphs G for which 

H is complete. 
(b) Vertices u, and w;- are adjacent in H if and only if degG Vj + degG Vj 

is odd. Prove that H is bipartite. 

2.7 An element of a graph G is a vertex or an edge of G. Prove that a graph 
G of order at least 3 is nonseparable if and only if every pair of 

elements of G lie on a common cycle of G. 

2.8 Let G be a graph of order n ^ 3 with the property that 
degu + degu n for every pair u, v of nonadjacent vertices of G. 

Show that G is nonseparable. 

2.9 Does there exist a noncritical block G containing an edge e = uv such 

that G — e is a block, but neither G — u nor G — v is a block? 

2.10 Does there exist a graph other than K2 and the n-cycles, n ^ 4, that is 

a critical block as well as a minimal block? 
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2.2 THE AUTOMORPHISM GROUP OF A GRAPH 

We have already described one way of studying the structure of graphs, 

namely, by determining the number and location of special vertices, 
edges and subgraphs. Another natural way of studying the structure of 

graphs is by investigating their symmetries. A common method of doing 

this is by means of groups. 
An automorphism of a graph G is an isomorphism between G and itself. 

Thus an automorphism of G is a permutation of V'(G) that preserves 

adjacency (and nonadjacency). Of course, the identity function on V(G) 
is an automorphism of G. The inverse of an automorphism of G is also an 

automorphism of G, as is the composition of two automorphisms of G. 
These observations lead us to the fact that the set of all automorphisms 
of a graph G form a group (under the operation of composition), called the 

automorphism group or simply the group of G and denoted by Aut(G). 
The automorphism group of the graph Gj of Figure 2.3 is cyclic of order 

2, which we write as Aut^) = Z2. In addition to the identity permuta¬ 

tion e on V(Ga), the group Aut(G]) contains the 'reflection' a = (uy)(vx), 
where a is expressed as 'permutation cycles'. The graph G2 of Figure 2.3 

has only the identity automorphism, so Aut(G2) = Z4. 
Every permutation of the vertex set of Kn is an automorphism and so 

Aut(K„) is the symmetric group Sn of order n\ On the other hand, the 
automorphism group of C„, n ^ 3, is the dihedral group D„ of order 2n, 
consisting of n rotations and n reflections. The 4-cycle C4 and its auto¬ 
morphism group are illustrated in Figure 2.4. 

Next we present a few basic facts concerning automorphism groups of 
graphs. We have already noted that every automorphism of a graph 

preserves both adjacency and nonadjacency. This observation leads to 
the following result. 

w w 

G': _A-o °2: 
u v X y u v X y z 

Figure 2.3 Graphs with cyclic automorphism groups of orders 2 and 1. 

u v 

X 

Q-Q 

6-6 
w 

Automorphisms: e, otj = (u v w x X 

a2= (u w ) (v x ), a3 = (u x w v ), 

<t>! = (u W ), <t>2 = (v x ), 

<t>3= (u V ) (w X ), <t>4= (u x ) (v W ) 

Figure 2.4 The 4-cycle and its automorphism group. 
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Theorem 2.12 

For every graph G, Aut(G) = Aut(G). 

We mentioned previously that Aut(K„) = S„ for every positive integer 
n. Certainly, if G is a graph of order n containing adjacent vertices as well 

as nonadjacent vertices, then Aut(G) is isomorphic to a proper subgroup 
of the symmetric group Sn. Combining this observation with Theorem 

2.12 and Lagrange's Theorem on the order of a subgroup of a finite 
group, we arrive at the following. 

Theorem 2.13 

The order | Aut(G) | of the automorphism group of a graph G of order n is a divisor 
of n\ and equals n\ if and only if G = Kn or G — Kn. 

Two labelings of a graph G of order n from the same set of n labels are 
considered distinct if they do not produce the same edge set. With the aid 
of the automorphism group of a graph G of order n, it is possible to 
determine the number of distinct labelings of G. 

Theorem 2.14 

The number of distinct labelings of a graph G of order n from a set of n labels is 

w!/|Aut(G)|. 

Proof 

Let S be a set of n labels. Certainly, there exist n! labelings of G using the 
elements of S without regard to which labelings are distinct. For a given 
labeling of G, each automorphism of G gives rise to an identical labeling 

of G; that is, each labeling of G from S determines |Aut(G)| identical 
labelings of G. Hence there are n!/|Aut(G)| distinct labelings of G. □ 

As an illustration of Theorem 2.14, consider the graph G = P3 of Figure 

2.5 and the set S = {1, 2, 3}. Since Aut(G) = Z2, the number of distinct 
labelings of G is 3!/2 = 3. The three distinct labelings of Theorem 2.14 

are shown in Figure 2.5. 

Go_q q S ={1,2, 3} 

1 2 3 1 3 2 2 1 3 
o—o—o o—o—o o—o—o 

Figure 2.5 Distinct labelings of graphs. 
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6 7 

G: 5 8 {1},{2,3,4} 

{5 7, 9), (6, 8, 10} 

orbits: 

10 9 

Figure 2.6 The orbit of a graph. 

If a relation R is defined on the vertex set of a graph G by uRv if <f>u = v 
for some automorphism 0 of G, then R is an equivalence relation. The 

equivalence classes of R are referred to as orbits, and two vertices belong¬ 
ing to the same orbit are called similar vertices. Of course, two similar 

vertices have the same degree. The automorphism group of the graph G 
of Figure 2.6 is cyclic of order 3 and G has four orbits. 

In Chapter 1 we defined the total distance td(u) of a vertex u in a con¬ 
nected graph G as the sum of the distances between u and all vertices of G. 
For the graph G of Figure 1.24 we computed the total distance of each 
vertex. This graph is shown again in Figure 2.7. The orbits of this graph 

are{rlf r2},{s},{f1, f2}, M, M, {«h, w2}, {*}, {y} and {z}. Since ^ and r2 
are similar vertices, they necessarily have the same total distances. The 
same can be said of ti and f2, as well as of uq and iv2. Of course, it is possible 

for vertices that are not similar to have the same total distances, as is the 
case with u and v. For the graph G of Figure 2.7, Aut(G) = Z2 x Z2 x Z2. 

A graph that contains a single orbit is called vertex-transitive. Thus a 
graph G is vertex-transitive if and only if for every two vertices u and v 
of G, there exists an automorphism 4> of G such that (pu — v. Necessarily, 
every vertex-transitive graph is regular. The graphs Kn (n ^ 1), C„ (n ^ 3) 
and Kr r(r ^ 1) are vertex-transitive. The Petersen graph (Figure 1.9) is 

vertex-transitive. Also the regular graphs G\ — C5 x K2 and G2 = K2 22 
of Figure 2.8 are vertex-transitive, while the regular graphs G3 and G4 
are not vertex-transitive. 

G: 

r. 

r. 2 

O 
z 

Figure 2.7 Similar vertices in a graph 
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Figure 2.8 Vertex-transitive graphs and regular graphs that are not vertex- 
transitive. 

Two edges ex = upO\ and e2 = u2v2 of a graph G are similar if there exists 
an automorphism 3 of G such that 4>(e\) = e2, that is, either 4>(u\) = u2 and 
4>(vi) = v2, or 4>(ui) — v2 and <p(v-[) = u2. A graph G is edge-transitive if 
every two edges of G are similar. The graph Hi = K3 x K2 of Figure 2.9 

is vertex-transitive but not edge-transitive, while H2 = P3 is edge- 
transitive but not vertex-transitive. 

The following result is due to E. Dauber (see Harary [H7, p. 172]). 

Theorem 2.15 

Every edge-transitive graph without isolated vertices is either vertex-transitive or 

bipartite. 

Proof 

Let G be an edge-transitive graph without isolated vertices such that 
E(G) = {ei, e2,.. .,em}. Suppose that e\ — V\V2. For each integer i 

Figure 2.9 A vertex-transitive graph that is not edge-transitive and an edge- 
transitive graph that is not vertex-transitive. 
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Figure 2.10 Digraphs with cyclic automorphism groups. 

(1 < i ^ m), there exists an automorphism </>, of G such that — e,. 

Let Vi = {0,(i?1)|l ^ i < n} and V2 = {0,(u2)|l ^ i < m}. Since G has no 
isolated vertices, ViUV2 = V(G). We now consider two cases. 

Case 1. Assume that Vi and V2 are disjoint. We show that G is a bipartite 

graph with partite sets Vi and V2. Suppose, to the contrary, that one of 
Vi and V2 contains adjacent vertices; say Vj contains adjacent vertices x 

and y, with xy = e;. Thus 4>j{ei) = By definition, one of x and y is in V2, 
contrary to the hypothesis. 

Case 2. Assume that V} and V2 are not disjoint. We show that G is vertex- 

transitive. Let u and w be any two vertices of G. Suppose, first, that both 
vertices belong to Vi or both belong to V2, say the former. Then there exist 
automorphisms fa and fa such that favi — u and <favi — w. Then is 
an automorphism and fafa^ (u) = iv; so u and w are similar. Suppose, 
next, that u 6 Vi and w € V2. Let DeVjd V2. From what we have just 

shown, u and v are similar, as are v and w. Thus, u and iv are similar. □ 

Every digraph also has an automorphism group. An automorphism of a 

digraph D is an isomorphism of D with itself, that is, an automorphism of 
D is a permutation a on V(D) such that (u, v) is an arc of D if and only if 
(au, av) is an arc of D. The set of all automorphisms under composition 
forms a group, called the automorphism group of D and denoted by Aut(D). 
While we have seen (the graph G of Figure 2.6) that it is not necessarily 

easy to find a graph G with Aut(G) = Z3, this is actually quite easy for 
digraphs. For digraphs Di and D2 of Figure 2.10, Aut(D]) = Z3 and 
Aut(D2) = Z5. 

EXERCISES 2.2 

2.11 For the graphs Gj and G2 below, describe the automorphisms of Gt 

and of G2 in terms of permutation cycles. 

u z 2 7 
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2.12 Describe the elements of Aut(C5). 

2.13 Determine the number of distinct labelings of Kr r. 

2.14 For which pairs k, n of positive integers with k ^ n does there exist a 
graph G of order n having k orbits? 

2.15 For which pairs k, n of positive integers does there exist a graph G 

of order n and a vertex v of G such that there are exactly k vertices 
similar to vl 

2.16 Describe the automorphism groups of the digraphs below. 

2.3 CAYLEY COLOR GRAPHS 

We have seen that we can associate a group with every graph or digraph. 
We now consider the reverse question of associating a graph and a 
digraph with a given group. We consider only finite groups in this con¬ 
text. A nontrivial group T is said to be generated by nonidentity elements 

h^, h2,... ,hk (and these elements are called generators) of T if every 
element of T can be expressed as a (finite) product of generators. Every 
nontrivial finite group has a finite generating set (often several such 
sets) since the set of all nonidentity elements of the group is always a 
generating set for T. 

Let T be a given nontrivial finite group with A = {h-j, h2,..., hk} a 
generating set for T. We associate a digraph with T and A called the 
Cayley color graph of T with respect to A and denoted by DA(T). The 

vertex set of DA(r) is the set of group elements of T; therefore, DA(r) 
has order |E|. Each generator hj is now regarded as a color. For glf 
g2 G T, there exists an arc (g], g2) colored hj in DA(T) if and only if 
g2 = g^hj. If hj is a group element of order 2 (and is therefore self-inverse) 

and g2=g\h,, then necessarily g! — g2hj. When a Cayley color graph 

DA(r) contains each of the arcs (gi, g2) and (g2,gi), both colored hir 
then it is customary to represent this symmetric pair of arcs by the 

single edge g,g2. 
We now illustrate the concepts just introduced. Let T denote the sym¬ 

metric group S3 of all permutations on the set {1, 2, 3}, and let A = {a, b}, 
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b 

Figure 2.11 A Cayley color graph. 

where a = (123) and b = (12). The Cayley color graph DA(T) in this case is 

shown in Figure 2.11. 
If the generating set A of a given nontrivial finite group T with n 

elements is chosen to be the set of all nonidentity group elements, then 

for every two vertices g], g2 of DA(T), both (glt g2) and (g2, gi) are arcs 
(although not necessarily of the same color) and DA(T) is the complete 

symmetric digraph K*n in this case. 
Let T be a nontrivial finite group with generating set A. An element 

a e Aut(DA(T)) is said to be color-preserving if for every arc (glt g2) of 

DA(T), the arcs (gi, g2) and (agl5 ag2) have the same color. For a given 
nontrivial finite group T with generating set A, it is a routine exercise to 
prove that the set of all color-preserving automorphisms of DA(T) forms a 
subgroup of Aut(DA(T)). A useful characterization of color-preserving 

automorphisms is given in the next result. 

Theorem 2.16 

Let r be a nontrivial finite group with generating set A and let a be a permutation 
of V(Da(T)). Then a is a color-preserving automorphism o/DA(T) if and only if 

a(gh) = (ag)h 

for every g e T and he A. 

The major significance of the group of color-preserving automorphisms 

of a Cayley color graph is contained in the following theorem. 

Theorem 2.17 

Let T be a nontrivial group with generating set A. Then the group of color¬ 

preserving automorphisms of DA(T) is isomorphic to F. 
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Proof 

Let r = {g1,g2,...,g„}. For i = define a,: V(DA(T)) -* 
V(Da(T)) by a,gs = g,gs for 1 ^ s < n. Since T is a group, the mapping 

a, is one-to-one and onto. Let he A. Then for each i, 1 ^ i ^ n, and for 
each s, 1 ^ s ^ n, 

<*i(gsh) =gi(gsh) = (gigs)h = (,atigs)h. 

Hence, by Theorem 2.16, a, is a color-preserving automorphism of DA(T). 
Next, we verify that the mapping (p, defined by cpgj = air is an iso¬ 

morphism from T to the group of color-preserving automorphisms of 
Da(T). The mapping p is clearly one-to-one since a, ^ ctj for i / j. 

To show that p is operation-preserving, let g,, gj e T be given, and sup¬ 

pose that gig, = gk. Then </>(g,gy) = (pgk = ak and (pgl)(pgj) = a,aj. Now, 
for each s, 1 ^ s ^ n, akgs = gkgs. Furthermore, gkgs = (g,g;)gs = g,(g;gs) = 

<*i(gjgs) = ai(<*jgs) = (aiaj)gs- Hence, for each s, 1 ^ s n, akgs = (a,a;)gs 
so that ak = a,a,; that is, p{gtg,) = (Pgt){Pgj). 

Finally, we show that the mapping <p is onto. Let a be a color-preserving 
automorphism of DA(T). We show that a = a, for some i (1 ^ i ^ n). 
Suppose that ag} = gr, where g-, is the identity of T. Let gs e T. Then gs 
can be expressed as a product of generators, say 

gs = h1h2...ht, 

where h, 6 Hence, 

<*gs = a(g\gs) = a(g\h}h2 . ..ht). 

By successive applications of Theorem 2.16, it follows that 

= (<*g\)hih2 ■■■h, = (agi)gs = grgs = args- 

Therefore, a — ar and the proof is complete. □ 

For more information on Cayley color graphs, see White [W5]. 
In 1936 the first book on graph theory was published. In this book the 

author Konig [K10, p. 5] proposed the problem of determining all finite 
groups T for which there exists a graph G such that Aut(G) = T. The 
problem was solved in 1938 by Frucht [FI 1] who proved that every 
finite group has this property. We are now in a position to present a 

proof of this result. 
If T is the trivial group, then Aut(G) = T for G = K^. Therefore, let 

T = {gi,g2» • • • ,gn}, 2, be a given finite group, and let A = 
{hi, h2,1 ^ t < n, be a generating set for T. We first construct 
the Cayley color graph DA(T) of T with respect to A; the Cayley color 
graph is actually a digraph, of course. By Theorem 2.17, the group of 
color-preserving automorphisms of DA(T) is isomorphic to T. We now 

transform the digraph DA(T) into a graph G by the following technique. 
Let (gn gj) be an arc of DA(T) colored hk. Delete this arc and replace it by 
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Figure 2.12 Constructing a graph G from a given group I\ 

the 'graphical' path g,, u,j, u[;, gr At the vertex w(/ we construct a new path 
Pjj of length 2k — 1 and at the vertex u't] a path P'tl of length 2k. This 

construction is now performed with every arc of DA(T), and is illustrated 
in Figure 2.12 for k = 1, 2 and 3. 

The addition of the paths P,y and P', in the formation of G is, in a sense, 

equivalent to the direction and the color of the arcs in the construction 
of Da(T). 

It now remains to observe that every color-preserving automorphism of 
Da(T) induces an automorphism of G, and conversely. Thus we have a 
proof of Frucht's theorem. 

Theorem 2.18 

For every finite group T, there exists a graph G such that Aut(G) = T. 

The condition of having a given group prescribed is not a particularly 
stringent one for graphs. For example, Izbicki [12] showed that for every 

finite group T and integer r ^ 3, there exists an r-regular graph G with 
Aut(G) 2 r. 

We have now seen that for every finite group T and generating set A 
there is an associated digraph, namely the Cayley color graph DA(T). The 



49 Cayley color graphs 

underlying graph of a Cayley color graph DA(T) is called a Cayley graph 
and is denoted by GA(r). Thus a graph G is a Cayley graph if and only if 

there exists a finite group T and a generating set A for T such that 
G = Ga(T), that is, the vertices of G are the elements of T and two vertices 

g! and g2 of G are adjacent if and only if either g] = g2h or g2 — g\h for 
some he A. 

As observed earlier, K*, is a Cayley color graph; consequently, every 

complete graph is a Cayley graph. Since K2 x K3 is the underlying graph 
of the Cayley color graph of Figure 2.11, K2 x K3 is a Cayley graph. Every 
Cayley graph is regular. In fact, if A' denotes those elements of A of order 
at least 3 whose inverse also belongs to A, then degu = |A| — ^|A'| for 
every vertex v in GA(r). Indeed every Cayley graph is vertex-transitive. 

The converse is not true, however. For example, the Petersen graph 
(Figure 1.9) is vertex-transitive but it is not a Cayley graph. 

EXERCISES 2.3 

2.17 Construct the Cayley color graph of the cyclic group of order 4 when 

the generating set A has (a) one element and (b) three elements. 

2.18 Prove Theorem 2.16. 

2.19 Determine the group of color-preserving automorphisms for the 
Cayley color graph DA(r) below. 

a 

2.20 Determine the smallest integer n > 1 such that there exists a con¬ 

nected graph G of order n such that |Aut(G)| = 1. 

2.21 Find a nonseparable graph G whose automorphism group is iso¬ 

morphic to the cyclic group of order 4. 

2.22 For a given finite group T, determine an infinite number of mutually 
nonisomorphic graphs whose groups are isomorphic to T. 

2.23 Show that every n-cycle is a Cayley graph. 
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2.24 Show that the cube Q3 is a Cayley graph. 

2.25 Let T be a finite group generated by A. 
(a) Show that the group of color-preserving automorphisms of 

DA(r) is a subgroup of Aut(GA(T)). 
(b) If the group of color-preserving automorphisms of DA(T) is 

isomorphic to Aut(GA(T)) and GA(r) = Kn, then find T. 

(c) Prove or disprove: If the group of color-preserving automorph¬ 

isms of Da^(Ti) is isomorphic to the group of color-preserving 
automorphisms of DA, (T2), then = r2. 

(d) Prove or disprove: If Aut(GA| (rO) = Aut(GA2(r2)), then 

2.4 THE RECONSTRUCTION PROBLEM 

If 0 is an automorphism of a nontrivial graph G and u is a vertex of G, then 

G — u = G — 4>u, that is, if u and v are similar vertices, then G — u = G — v. 
The converse of this statement is not true, however. Indeed, for the 
vertices u and v of the graph G of Figure 2.13, G — u = G — v, but u and 
v are not similar vertices of G. 

These observations suggest the problem of determining how much 

structure of a graph G is discernible from its vertex-deleted subgraphs. 
This, in fact, brings us to a famous problem in graph theory. 

Probably the foremost unsolved problem in graph theory is the Recon¬ 
struction Problem. This problem is due to P. J. Kelly and S. M. Ulam and its 
origin dates back to 1941. We discuss it briefly in this section. 

A graph G with U(G) = {zq, v2,... ,v„}, n^ 2, is said to be reconstruc¬ 
ts if for every graph H having V(H) — {tq, u2,..., un}, G — v, = H — », 
for i — 1, 2,... ,n implies that G — H. Hence, if G is a reconstructive 

graph, then the subgraphs G — v, v G V(G), determine G uniquely. 
We now state a conjecture of Kelly and Ulam, the following formulation 

of which is due to F. Harary. 

The Reconstruction Conjecture 

Every graph of order at least 3 is reconstructible. 

O-O 
u v 

Figure 2.13 A graph with nonsimilar vertices whose vertex-deleted subgraphs are 
isomorphic. 
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The Reconstruction Problem is thus to determine the truth or falsity of 
the Reconstruction Conjecture. 

The condition on the order in the Reconstruction Conjecture is needed 

since if G] = K2, then G-[ is not reconstructible. If G2 = 2Klf then the sub¬ 

graphs G} — v, where v G V(Gj), and the subgraphs G2 — v, for v e V(G2), 
are precisely the same. Thus G} is not uniquely determined by its sub¬ 

graphs Gt — v, v G PIG!). By the same reasoning, G2 = 2K} is also non- 
reconstructible. The Reconstruction Conjecture claims that K2 and IK^ 
are the only nonreconstructible graphs. 

Before proceeding further, we note that there is a related problem that 
we shall not consider. Given graphs G1; G2,...,G„, does there exist a 

graph G with V(G) = {rq, v2,..., vn} such that G, = G — vt for i — 1, 
2,..., n? The answer to this question is not known in general. Although 
there is a similarity between this question and the Reconstruction 
Problem, the question is quite distinct from the problem in which we 
are interested. 

If there is a counterexample to the Reconstruction Conjecture, then it 
must have order at least 10, for, with the aid of computers, McKay [M4] 
and Nijenhuis [N5] have shown that all graphs of order less than 10 (and 
greater than 2) are reconstructible. The graph G of Figure 2.14 is therefore 
reconstructible since its order is less than 10. Hence the graphs G — v, 
(1 < i ^ 6) uniquely determine G. However, there exists a graph H with 

V(H) = {v\, v2, ■ ■ ■, v6} such that G — v{ = H — vt for 1 < i ^ 5, but 
G — v6 ^ H — p6. Therefore, the graphs G — (1 < i ^ 5) do not uniquely 
determine G. On the other hand, the graphs G — Vj (4^1^ 6) do uniquely 
determine G. 

Digraphs are not reconstructible, however. The vertex-deleted sub¬ 
digraphs of the digraphs Dj and D2 of Figure 2.15 are the same; yet 

Figure 2.14 A reconstructible graph. 
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Figure 2.15 Two nonreconstructible digraphs. 

D} ^ D2- Indeed, for digraphs, there are infinite pairs of counterexamples 
(Stockmeyer [S9]). 

There are several properties of a graph G that can be found by consid¬ 

ering the subgraphs G — v, v G V(G). We begin with the most elementary 

of these. 

Theorem 2.19 

If G is an (n, m) graph with n ^ 3, then n and m as well as the degrees of the 
vertices of G are determined from the n subgraphs G — v, v e V(G). 

Proof 

It is trivial to determine the number n, which is necessarily one greater 
than the order of any subgraph G — v. Also, n is equal to the number of 
subgraphs G — v. 

To determine m, label these subgraphs by G„ / = 1,2,..., n, and suppose 

that Gj = G — Vj, where vx € V(G). Let mx denote the size of G,. Consider an 
arbitrary edge e of G, say e = v,vk. Then e belongs to n — 2 of the subgraphs 

Gj, namely all except G, and Gk. Hence, mi counts each edge n — 2 

times; that is, Xw = i mi = (« — 2)m. Therefore, 

n — 2 

The degrees of the vertices of G can be determined by simply noting that 

deg vi = m-mi,i=\,2,...,n. □ 

We illustrate Theorem 2.19 with the six subgraphs G — v shown in 

Figure 2.16 of some unspecified graph G. From these subgraphs we deter¬ 
mine n, m and degu, for i = 1, 2,..., 6. Clearly, n = 6. By calculating the 

integers mir i — 1,2,..., 6, we find that m = 9. Thus, deg V\ = deg v2 = 2, 
degy3 = degi>4 = 3, and degu5 - degu6 = 4. 

We say that a graphical parameter or graphical property is recognizable 

if, for each graph G of order at least 3, it is possible to determine the value 
of the parameter for G or whether G has the property from the subgraphs 
G — v, v e V(G). Theorem 2.19 thus states that for a graph of order at least 

3, the order, the size, and the degrees of its vertices are recognizable 
parameters. From Theorem 2.19, it also follows that the property of 
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Figure 2.16 The subgraphs G — v of a graph G. 

graph regularity is recognizable; indeed, the degree of regularity is a 
recognizable parameter. For regular graphs, much more can be said. 

Theorem 2.20 

Every regular graph of order at least 3 is reconstructible. 

Proof 

As we have already mentioned, regularity and the degree of regularity are 
recognizable. Thus, without loss of generality, we may assume that G is an 

r-regular graph with V(G) = {^i, v2, ... ,vn}, n ^ 3. It remains to show 
that G is uniquely determined by its subgraphs G — vir i = 1, 2,... ,n. 
Consider G — vX/ say. Add vertex iq to G — V\ together with all those 

edges vxv where degG_0l v = r — 1. This produces G. □ 

If G has order n ^ 3, then it is discernible whether G is connected from 

the n subgraphs G — v, v G V(G). 

Theorem 2.21 

For graphs of order at least 3, connectedness is a recognizable property. In parti¬ 

cular, ifG is a graph with V(G) — {vls v2,..., t>„}, « 5= 3, flzen G is connected if 
and only if at least two of the subgraphs G — vt are connected. 
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Proof 

Structure and symmetry of graphs 

Let G be a connected graph. By Theorem 2.2, G contains at least two 
vertices that are not cut-vertices, implying the result. 

Conversely, assume that there exist vertices V\, v2 € V(G) such that both 
G — v-[ and G — v2 are connected. Thus, in G — V\ and also in G, vertex v2 is 

connected to vir i ^ 3. Moreover, in G — v2 (and thus in G), v-[ is connected 
to each v,, i ^ 3. Hence every pair of vertices of G are connected and so G is 

connected. □ 

Since connectedness is a recognizable property, it is possible to deter¬ 
mine from the subgraphs G — v, v e V(G), whether a graph G of order at 
least 3 is disconnected. We now show that disconnected graphs are 

reconstructible. There have been several proofs of this fact. The proof 
given here is due to Manvel [Ml]. 

Theorem 2.22 

Disconnected graphs of order at least 3 are reconstructible. 

Proof 

We have already noted that disconnectedness in graphs of order at least 3 

is a recognizable property. Thus, we assume without loss of generality 
that G is a disconnected graph with V(G) — {i^, v2,..., vn}, n 3. 
Further, let G, = G — Vj for i — 1, 2,..., n. From Theorem 2.19, the degrees 
of the vertices viri — 1,2,..., n, can be determined from the graphs G — Vj. 

Hence, if G contains an isolated vertex, then G is reconstructible. Assume 
then that G has no isolated vertices. 

Since every component of G is nontrivial, it follows that k(Gj) ^ k(G) for 
i = 1, 2,..., n and that k(Gf) — k(G) for some integer; satisfying 1 ^ ^ n. 

Hence the number of components of G is min{fc(G,)|i = 1, 2,... ,n}. 
Suppose that F is a component of G of maximum order. Necessarily, F 
is a component of maximum order among the components of the 

graphs G,; that is, F is recognizable. Delete a vertex that is not a cut- 
vertex from F, obtaining F'. 

Assume that there are r($sl) components of G isomorphic to F. The 
number r is recognizable, as we shall see. Let 

S = {G/|fc(G,-) = fc(G)}, 

and let S' be the subset of S consisting of all those graphs G, having a 
minimum number £ of components isomorphic to F. (Observe that if 

r = 1, then there exist graphs G, in S containing no components iso¬ 

morphic to F; that is, £ = 0.) In general, then, r = £ + 1. Next let S" 
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denote the set of those graphs G, in S' having a maximum number of 

components isomorphic to F'. 
Assume that Gy, G2,..., Gt (t ^ 1) are the elements of S". Each graph G, 

in S" has k(G) components. Since each graph G, (1 < i ^ t) has a minimum 

number of components isomorphic to F, each vertex Vj (1 ^ z < t) belongs 
to a component F, of G isomorphic to F, where the components F, of G 
(1 ^ i ^ t) are not necessarily distinct. Further, since each graph G, 

(1 ^ i ^ t) has a maximum number of components isomorphic to F1, it 
follows that F, — Vj — F' for each i = 1, 2,..., t. Hence, every two of the 

graphs G], G2,...,Gf are isomorphic, and G can be produced from Gy, 
say, by replacing a component of Gi isomorphic to F1 by a component 
isomorphic to F. □ 

It can be shown that (connected) graphs of order at least 3 whose com¬ 

plements are disconnected are reconstructible (Exercise 2.30). However, 
it remains to be shown that all connected graphs of order at least 3 are 

reconstructible. 

EXERCISES 2.4 

2.26 Reconstruct the graph G whose subgraphs G — v, v € I/(G), are given 
in Figure 2.13. 

2.27 Reconstruct the graph G whose subgraphs G — v, v E V{G), are given 
in the accompanying figure. 

2.28 Let G be a graph with V(G) = {vy, v2,..., v7} such that G — Vj = K2,4 
for (=1,2,3 and G — Vj = X33 for ( = 4,5,6,7. Show that G is 

reconstructible. 

2.29 Show that the digraphs of Figure 2.15 are not isomorphic. 

2.30 (a) Prove that if G is reconstructible, then G is reconstructible. 
(b) Prove that every graph of order n 3) whose complement is 

disconnected is reconstructible. 

2.31 Prove that bipartiteness is a recognizable property. 

2.32 Reconstruct the graph G whose subgraphs G — v,v G P(G), are given 
in the accompanying figure. 
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2.33 Show that no graph of order at least 3 can be reconstructed from 

exactly two of the subgraphs G — v, v £ V(G). 



CHAPTER 3 

Trees and connectivity 

Connectedness of graphs is explored more fully in this chapter. Among 
the connected graphs, the simplest yet most important are the trees. 

Several results and concepts involving trees are presented. Connectivity 
and edge-connectivity are described and related theorems by Menger are 
stated. Other measures of connectedness are also given. 

3.1 ELEMENTARY PROPERTIES OF TREES 

A tree is an acyclic connected graph, while a forest is an acyclic graph. Thus 

every component of a forest is a tree. There are several observations that 
can be made regarding trees. First, by Theorem 2.4, it follows that every 

edge of a tree T is a bridge; that is, every block of T is acyclic. Conversely, 
if every edge of a connected graph G is a bridge, then G is a tree. 

There is one tree of each of the orders 1, 2 and 3; while there are two 
trees of order 4, three trees of order 5, and six trees of order 6. Figure 3.1 
shows all trees of order 6. 

If u and v are any two nonadjacent vertices of a tree T, then T + uv 

contains precisely one cycle C. If, in turn, e is any edge of C in T + uv, 
then the graph T + uv — e is once again a tree. 

In a nontrivial tree T, it is immediate that the number of blocks to which 
a vertex v of T belongs equals deg v. So T — v is a forest with deg v com¬ 
ponents. If degu = 1, then T — v is a tree. Thus, every vertex of T that is 
not an end-vertex belongs to at least two blocks and is necessarily a cut- 
vertex. The next result is a basic property of trees and very useful when 
using mathematical induction for proving theorems dealing with trees. 

Theorem 3.1 

Every nontrivial tree has at least two end-vertices. 

Proof 

Let T be a nontrivial tree and let P be a maximal path (a path not properly 
contained in any other path of T). Suppose that P is a u-v path. Since P is a 



Figure 3.1 The trees of order 6. 

maximal path, neither u nor v is adjacent to any vertex not on P. Certainly, 

u is adjacent to the vertex following it on P, and v is adjacent to the vertex 
preceding it on P; however, neither u nor v is adjacent to any other vertex 

of P since T contains no cycles. Therefore, deg u = deg u = 1. □ 

There are a number of ways to characterize trees (for example, see Berge 
[B7, p. 152] and Harary [H7, p. 32]). Three of these are particularly useful. 

Theorem 3.2 

An (n, m) graph G is a tree if and only if G is acyclic and n = m + 1. 

Proof 

If G is a tree, then it is acyclic by definition. To verify the equality 
n = m +1, we employ induction on n. For n = 1, the result (and graph) 

is trivial. Assume, then, that the equality n — m + 1 holds for all («, m) 
trees with n(^l) vertices, and let T be a tree with n + 1 vertices. Let v 

be an end-vertex of T. The graph T' = T — v is a tree of order n, and so 
T' has m = n — 1 edges by the inductive hypothesis. Since T has one 
more edge than T', it follows that T has m + 1 = n edges. Since 

m + 1 = (m + 1) + 1, the desired result follows. 
Conversely, let G be an acyclic (n, m) graph with n — m + 1. To show 

that G is a tree, we need only verify that G is connected. Denote by G\, 
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G2,...,Gfc the components of G, where k^\. Furthermore, let G, be an 
(n,, m,) graph. Since each graph G, is a tree, rc, — mt + 1. Hence, 

k k 
n — 1 = m = ^ m,- = ^ (n, — 1) = n — k 

i = 1 / = 1 

so that k = 1 and G is connected. □ 

The proof of Theorem 3.2 provides us with another result. 

Corollary 3.3 

A forest F of order n has n — k(F) edges. 

A spatming tree of a graph G is a spanning subgraph of G that is a tree. 
Every connected graph G contains a spanning tree. If G is itself a tree, 
then this observation is trivial. If G is not a tree, then a spanning tree T 
of G can be obtained by removing cycle edges from G one at a time until 

only bridges remain. If G has order n and size m, then since T has size 
n — 1, it is necessary to delete a total of m — (n — 1) — m — n + \ edges to 
produce T. This, of course, implies that m ^ n — 1, that is, every connected 
graph of order n has at least n — 1 edges. 

Another characterization of trees is presented next. 

Theorem 3.4 

An (n,m) graph G is a tree if and only if G is connected and n = m + 1. 

Proof 

Let T be an (n, m) tree. By definition, T is connected and by Theorem 3.2, 
n — m + 1. For the converse, we assume that G is a connected (n, m) graph 
with n — m + 1. It suffices to show that G is acyclic. If G contains a cycle C 
and e is an edge of C, then G — e is a connected graph of order n having 
n — 2 edges, which is impossible as we have observed. Therefore, G is 

acyclic and is a tree. □ 

Hence, if G is an (n,m) graph, then any two of the properties (i) G is 

connected, (ii) G is acyclic and (iii) n = m + 1 characterize G as a tree. 
There is yet another interesting characterization of trees that deserves 
mention. 

Theorem 3.5 

A graph G is a tree if and only if every two distinct vertices of G are connected by a 

unique path of G. 
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Proof 

Trees and connectivity 

If G is a tree, then certainly every two vertices u and v are connected by at 
least one path. If u and v are connected by two different paths, then a cycle 

of G is determined, producing a contradiction. 
On the other hand, suppose that G is a graph for which every two 

distinct vertices are connected by a unique path. This implies that G is 

connected. If G has a cycle C containing vertices u and v, then u and v 
are connected by at least two paths. This contradicts our hypothesis. 

Thus, G is acyclic and so G is a tree. □ 

We now discuss some other properties of trees, particularly related to 
the degrees of its vertices. It is very easy to determine whether a sequence 

of positive integers is the degree sequence of a tree. 

Theorem 3.6 

A sequence di, d2, ■ ■ ■, dn ofn ^ 2 positive integers is the degree sequence of a tree 

of order n if and only ifYL"i = i dj = 2n — 2. 

Proof 

First, let T be a tree of order n and size m with degree sequence 

d2,..., dn. Then ^"=1 dj = 2m = 2(n — l) — 2n — 2. We verify the converse 
by induction. For n = 2, the only sequence of two positive integers with 

sum equal to 2 is 1,1, and this is the degree sequence of the tree K2. Assume 
now that whenever a sequence of n — 1 ^2 positive integers has the sum 
2(n — 2) = 2n — 4, then it is the degree sequence of a tree of order n — 1. 

Let di,d2,... ,dn be a sequence of n positive integers with 
]TL=1 dj = 2n — 2. We show that this is the degree sequence of a tree. Sup¬ 
pose that di ^ d2 ^ ^ dn. Since each term d, is a positive integer and 

Xw = i di — 2n — 2, it follows that 2 ^ d\ ^ n — 1 and dn_i = dn = 1. Hence 
d\ — l,d2,d2,... ,dn_i is a sequence of n — 1 positive integers whose sum 

is 2n — 4. By the inductive hypothesis, then, there exists a tree T1 of order 
n —1 with V(T') — {V],v2,... ,vn_-l} such that degiq^c^— 1 and 

deg Vj = dj for 2 ^ i ^ n — 1. Let T be the tree obtained from T' by 
adding a new vertex v„ and joining it to v:. The tree T then has the 
degree sequence dud2,... ,d„. □ 

There is a simple connection between the number of end-vertices in a 

tree and the number of vertices of the various degrees exceeding 2. 

Theorem 3.7 

Let T be a nontrivial tree with A(T) = k, and let n, be the number of vertices of 

degree i for i = 1,2,... ,k. Then 

tt] — ^3 + 2^4 + 3«5 H-(k — 2)nk 4- 2. 
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o 

X 
Figure 3.2 Paths, stars, double stars and caterpillars. 

Proof 
£ 

Suppose that T has order n and size m. Then ]>X=1 n,- = n and 

k k 
Y inj = 2m = In — 2 = 2 ^ n,- — 2 
i=i 

or 

£(i-2)B,. + 2 = 0. (3.1) 
1 = 1 

Solving (3.1) for n\ gives the desired result. □ 

There are some classes of trees with which we should be familiar. Of 
course, the paths Pn and stars fCl s are trees. A tree T is a double star if it 
contains exactly two vertices that are not end-vertices; necessarily, these 
vertices are adjacent. A caterpillar is a tree T with the property that the 
removal of the end-vertices of T results in a path. This path is referred 
to as the spine of the caterpillar. If the spine is trivial, the caterpillar is a 
star; if the spine is K2, then the caterpillar is a double star. Examples of a 
path, star, double star and caterpillar are shown in Figure 3.2. 

Knowledge of the properties of trees is often useful when attempting to 
prove certain results about graphs in general. Because of the simplicity of 
the structure of trees, every graph ordinarily contains a number of trees as 
subgraphs. Of course, every tree of order n or less is a subgraph of Kn. 
A more general result is given next. 

Theorem 3.8 

Let T be a tree of order k, and let G be a graph with 6(G) ^ k — 1. Then T is a 
subgraph of G. 

Proof 

The proof is by induction on k. The result is obvious for k = 1 since fQ is a 
subgraph of every graph and for k = 2 since K2 is a subgraph of every 
nonempty graph. 
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Assume for each tree T' of order k - 1, k ^ 3, and every graph H with 

6(H) ^ k - 2 that T' is a subgraph of H. Let T be a tree of order k and let G 

be a graph with 6(G) k — 1. We show that T C G. 
Let v be an end-vertex of T and let u be the vertex of T adjacent with v. 

The graph T — v is necessarily a tree of order k — 1. The graph G has 

6(G) ^ fc — 1 > k — 2; thus by the inductive hypothesis, T — v is a sub¬ 
graph of G. Let u denote the vertex of G that corresponds to u. Since 

degc u1 ^ k — 1 and T — v has order k — l, the vertex u is adjacent to a 
vertex w that corresponds to no vertex of T — v. Therefore, T C G. □ 

Theorem 3.8 can be restated to read that if G is a graph with 6(G) ^ k, 

then G contains every tree of size k as a subgraph. This was extended to 
forests by Brandt [B14]. 

Theorem 3.9 

Let n and k be positive integers with n > 2k. Then every graph G of order n 
with 6(G) ^ k contains every forest of size k without isolated vertices as a 

subgraph. 

Although no convenient closed formula is known for the number of 

nonisomorphic trees of order n, a formula does exist for the number 

of distinct labeled trees (whose vertices are labeled from a fixed set of 
cardinality n). For n = 3 and n — 4, the answer is sufficiently simple 
that we can actually draw all three distinct trees of order 3 whose vertices 

are labeled with elements of the set {1,2,3} and all 16 distinct trees of 
order 4 whose vertices are labeled with elements of the set {1,2,3,4}. 
These are shown in Figure 3.3. 

In general, the number of distinct trees of order n whose vertices are 

labeled with the same set of n labels is nn~2. This result is due to 
Cayley [C4]. There have been a number of proofs of Cayley's theorem. 

The one that we describe here is due to Prufer [P6]. The proof consists 
of showing the existence of a one-to-one correspondence between the 
trees of order n whose vertices are labeled with elements of the set 

{1,2,..., n} and the sequences (called Prufer sequences) of length n — 2 
whose entries are from the set {1,2,...,«}. Since the number of such 

sequences is nn~2, once the one-to-one correspondence has been estab¬ 
lished, the proof is complete. 

Before stating Cayley's theorem formally, we illustrate the technique 
with an example. Consider the tree T of Figure 3.4 of order n = 8 whose 
vertices are labeled with elements of {1,2,..., 8}. The end-vertex of T0 — T 
having the smallest label is found, its neighbor is the first term of the 

Prufer sequence for T, and this end-vertex is deleted, producing a new 
tree T,. The neighbor of the end-vertex of Ti having the smallest label is 

the second term of the Prufer sequence for T; this end-vertex is deleted. 



Figure 3.3 The labeled trees of orders 3 and 4. 

Priifer sequence for T: (1, 8, 1, 5, 2, 5) 

Figure 3.4 Determining the Prufer sequence of a tree. 
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producing the tree T2. We continue this until we arrive at T„_2 = K2. The 
resulting sequence of length n — 2 is the Priifer sequence for T. 

In the example just described, observe that every vertex v of T appears 

in its Priifer sequence deg v — 1 times. This is true in general. Therefore, 

no end-vertex of T appears in the Prufer sequence for T. So, if T is a tree of 
order n and size m, then the number of terms in its Prufer sequence is 

^ (degu — 1) = 2m — n = 2(n — 1) — n = n — 2. 
veV(T) 

We now consider the converse question, that is, if (a-i,fl2,...,a„_2) is a 

sequence of length n — 2 such that each a{ e {1,2then we construct 
a labeled tree T of order n such that the given sequence is the Prufer 
sequence for T. Suppose that we are given the sequence (1,8,1,5,2,5). 

We determine the smallest element of the set {1,2,..., 8} not appearing 
in this sequence. This element is 3. In T, we join 3 to 1 (the first element 

of the sequence). The first term is deleted and the reduced sequence 
(8,1,5,2,5) is now considered. Also, the element 3 is deleted from the 
set {1,2,... ,8}, and the smallest element of this set not appearing in 

(8,1,5,2,5) is found, which is 4, and is joined to 8. This procedure is 
continued until two elements of the set remain. These two vertices are 
joined and T is constructed. This is illustrated in Figure 3.5. 

Since a step in the second procedure is simply the reverse of a step in 
the first procedure, we have the desired one-to-one correspondence. We 
have now described a proof of Cayley's theorem. 

Theorem 3.10 

There are nn~2 distinct labeled trees of order n. 

Theorem 3.10 might be considered as a formula for determining the 
number of distinct spanning trees in the labeled graph Kn. We now 
consider the same question for graphs in general. 

The next result, namely Theorem 3.11, is due to Kirchhoff [K4] and is 
often referred to as the Matrix-Tree Theorem. The proof given here is based 
on that given in Harary [H6]. 

This proof will employ a useful result of matrix theory. Let M and M' be 

r x s and s x r matrices, respectively, with r ^ s. An r x r submatrix M, of 
M is said to correspond to the r x r submatrix M\ of M' if the column 

numbers of M determining M, are the same as the row numbers of M' 
determining M'. Then 

det(M • M') = ]T (det M,)(det M-), 

where the sum is taken over all r x r submatrices M, of M, and where M' is 
the r x r submatrix of M' corresponding to M,. The numbers detM, and 

detMj are called the major determinants of M and M1, respectively. 
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(1,8,1,5,2, 5) 

1,2, 3,4, 5,6, 7, 8 

6 3 
o 

</ 

o o o o o 
7 2 5 8 4 

(8,1,5,2,5) 

1,2,4,5.6,7,8 

6 3 

o o o o—o 
7 2 5 8 4 

(1,5,2, 5) 

1,2,5,6,7,8 

6 3 

V 
o o o o—o 
7 2 5 8 4 

(5,2,5) 

1,2,5,7,8 

6 3 

O O O 0—0 
7 2 5 8 4 

(2,5) 

2, 5,7, 8 

6 3 

o—o o o—o 
7 2 5 8 4 

(5) 

2, 5,8 

6 3 

o—o 
7 2 5 8 4 

5,8 

7 2 5 8 4 

Figure 3.5 Constructing a tree with a given Priifer sequence. 

As an illustration, we have 

"2 -r 
"1 -2 3' '-4 3' 

3 1 = 
.2 0 4. 4 6. 

_° 2_ 

which has a determinant of —36. Writing |A| = det A, we see that 

1 -2 2 -1 
+ 

1 3 2 -1 
+ 

-2 3 3 1 

2 0 3 1 2 4 0 2 0 4 0 2 

Let G be a graph with V(G) = {v},v2,... The degree matrix 

D(G) = [djj] is the n x n matrix with dH = deg n, and = 0 for i ^ j. We 
now state the Matrix-Tree Theorem. 

Theorem 3.11 

If G is a nontrivial labeled graph with adjacency matrix A and degree matrix D, 

then the number of distinct spanning trees of G is the value of any cofactor of the 

matrix D — A. 
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Proof 

Trees and connectivity 

We note first that the sum of the entries of row i (column i) of A is degu„ 
so every row (column) sum of D — A is 0. It is a result of matrix theory that 

all cofactors of D — A have the same value. 
Assume first that G is a disconnected graph of order n, and that Gt 

is a component of G with V(Ga) = {ult v2, ■ ■ ■, vr}. Let D' be the 

(n — 1) x (n — 1) submatrix obtained by deleting from D — A the last 
row and last column. Since the sum of the first r rows of D' is the zero 

vector with n — 1 entries, the rows of D' are linearly dependent, implying 
that det D' — 0. Hence one cofactor of D — A has value 0. This is, of course, 

the number of spanning trees of G. 
We henceforth assume that G is a connected (n, m) graph; so, m ^ n — 1. 

Let B denote the incidence matrix of G and in each column of B, replace 

one of the two nonzero entries by —1. Denote the resulting matrix by 

C = [cjj]. We now show that the product of C and its transpose C1 is 
D - A. The (/,/) entry of CCl is 

m 

^ ^ CikCjki 

k= 1 

which has the value degu, if i = j, the value —1 if V(V} £ E(G), and 0 other¬ 
wise. Therefore, CC1 = D — A. 

Consider a spanning subgraph H of G containing n — 1 edges. Let C' be 

the (n — 1) x (n — 1) submatrix of C determined by the columns associated 
with the edges of H and by all rows of C with one exception, say row k. 

We now determine IdetC'l- If H is not connected, then H has a compo¬ 
nent H] not containing vk. The sum of the row vectors of C' corresponding 

to the vertices of is the zero vector with n — 1 entries; hence det C' — 0. 
Assume now that H is connected so that H is (by Theorem 3.4) a span¬ 

ning tree of G. Let zq (^vk) be an end-vertex of H, and e} the edge incident 

with it. Next, let u2(^vk) be an end-vertex of the tree H — zq and e2 the 
edge of H - zq incident with u2. We continue this procedure until finally 
only vk remains. A matrix C" — [c"j\ can now be obtained by a permutation 
of the rows and columns of C! such that \c't\ = 1 if and only if u, and are 
incident. From the manner in which C" was defined, any vertex w, is 

incident only with edges e,, where j i. This, however, implies that C" is 
lower triangular, and since \c"j\ = 1 for all i, we conclude that |det C/r| = 1. 
However, the permutation of rows and columns of a matrix affects only 

the sign of its determinant, implying that |detC'| = |det C''| = 1. 
Since every cofactor of D — A has the same value, we evaluate only the 

ith principal cofactor; that is, the determinant of the matrix obtained by 

deleting from D — A both row i and column i. Denote by C, the matrix 
obtained from C by removing row z; so the aforementioned cofactor 

equals det(C,C'), which, by the remark preceding the statement of this 
theorem, implies that this number is the sum of the products of the 
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corresponding major determinants of C, and C'. However, corresponding 
major determinants have the same value and their product is 1 if the 

defining columns correspond to a spanning tree of G and is 0 otherwise. 
This completes the proof. □ 

EXERCISES 3.1 

3.1 Draw all forests of order 6. 

3.2 Prove that a graph G is a forest if and only if every induced subgraph 

of G contains a vertex of degree at most 1. 

3.3 Characterize those graphs with the property that every connected 
subgraph is an induced subgraph. 

3.4 A tree is called central if its center is K^ and bicentral if its center is K2. 
Show that every tree is central or bicentral. 

3.5 Let T be a tree of order 3 or more, and let T' be the tree obtained from 

T by deleting its end-vertices. 
(a) Show that diam T — diam T' + 2, rad T = rad T' + 1, and 

Cen(T) = Cen(T'). 
(b) Show that a tree T is central or bicentral (see Exercise 3.4) accord¬ 

ing to whether diam T = 2 rad T or diam T — 2 rad T — 1. 

3.6 Let G be a nontrivial connected graph. Define the block-cut-vertex 
graph BC(G) of G as that graph whose vertices are the blocks and 
cut-vertices of G and such that two vertices are adjacent if and 

only if one vertex is a block and the other is a cut-vertex belonging 

to the block. 
(a) Show that BC(G) is a tree for every graph G. 

(b) Show that BC(G) is a central tree. 

(c) Prove Theorem 2.7. 

3.7 (a) Show that every tree of order at least 3 contains a cut-vertex v 
such that every vertex adjacent to v, with at most one exception, 

is an end-vertex. 
(b) Prove Theorem 2.8. (Hint: Consider the block-cut-vertex graph 

(Exercise 3.6).) 

3.8 Let T be a tree of order n such that T ^ X1„_1. Prove that TCT. 

3.9 Determine the Prfifer sequences of the trees in Figure 3.3. 

3.10 (a) Which trees have constant Prufer sequences? 
(b) Which trees have Prufer sequences each term of which is one of 

two numbers? 
(c) Which trees have Prufer sequences with distinct terms? 
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3.11 Determine the labeled tree having Priifer sequence (4,5,7,2,1, 

1,6,6, 7). 

3.12 Let G be the labeled graph below. 

G: 

(a) Use the Matrix-Tree Theorem to compute the number of distinct 
labeled spanning trees of G. 

(b) Draw all the distinct labeled spanning trees of G. 

3.13 (a) Let G — K4 with V(G) = {v-[,v2,v3,v4}. Draw all spanning trees 

of G in which v4 is an end-vertex. 
(b) Let d be a fixed vertex of G = Kn. Determine the number of 

spanning trees of G in which v is an end-vertex. 

3.14 Prove Theorem 3.10 as a corollary to Theorem 3.11. 

3.15 A graph G of order n with degree sequence d4,d2, ■.. ,dn, where 
d-[ ^ d2 Js • • • 5= d„, is defined to be degree dominated if d, ^ 
\(n — l)/z] for each integer i (1 ^ i ^ n). Prove that every tree is 

degree dominated. 

3.2 ARBORICITY AND VERTEX-ARBORICITY 

One of the most common problems in graph theory deals with 

decomposition of a graph into various subgraphs possessing some 
prescribed property. There are ordinarily two problems of this type, 
one dealing with a decomposition of the vertex set and the other with 

a decomposition of the edge set. One such property that has been the 
subject of investigation is that of being acyclic, which we now 
consider. 

For a graph G, it is always possible to partition V(G) into subsets V„ 
1 ^ i ^ k, such that each induced subgraph (V-,) is acyclic, that is, is a 
forest. One way to accomplish this is by selecting each subset V, so that 

|V,-| ^ 2; however, the major problem is to partition V(G) so that as few 
subsets as possible are involved. This suggests our next concept. The 

vertex-arboricity a(G) of a graph G is the minimum number of subsets 
into which V(G) can be partitioned so that each subset induces an acyclic 

subgraph. It is obvious that a(G) — 1 if and only if G is acyclic. For a few 
classes of graphs, the vertex-arboricity is easily determined. For example. 



Arboricity and vertex-arboricity 69 

a(C„) = 2. If n is even, a(Kn) — n/2; while if n is odd, a{Kn) = (n + l)/2. So, 
in general, fl(K„) = \n/2]. Also, a(Krs) = 1 if r = 1 or s = 1, and a(Krs) = 2 

otherwise. No formula is known in general, however, for the vertex- 
arboricity of a graph although some bounds for this number exist. First, 
it is clear that for every graph G of order n, 

(3.2) 

The bound (3.2) is not a particularly good one in general. In order to 
present a better bound, a new concept is introduced at this point. 

A graph G is called critical with respect to vertex-arboricity if 

a(G — v) < a(G) for all vertices v of G. This is the first of several occasions 
when a graph will be defined as critical with respect to a certain 
parameter. In order to avoid cumbersome phrases, we will simply use 
the term 'critical' when the parameter involved is clear by context. In 

particular, a graph G that is critical with respect to vertex-arboricity 
will be referred to in this section as a critical graph and, further, as a 
k-critical graph if a(G) — k. A k-critical graph necessarily has k 2. The 

complete graph K2>t_i is k-critical while each cycle is 2-critical. It is 
not difficult to give examples of critical graphs; indeed, every graph G 
with a(G) = k ^ 2 contains an induced k-critical subgraph. In fact, 

every induced subgraph G' of G of minimum order with a(G') = k is 

k-critical. 
Before presenting the aforementioned bound for a(G), we give another 

result. 

Theorem 3.12 

If G is a graph having a(G) = k 2 that is critical with respect to vertex- 

arboricity, then 6(G) ^ 2k - 2. 

Proof 

Let G be a k-critical graph, k ^ 2, and suppose that G contains a vertex v of 

degree 2k — 3 or less. Since G is k-critical, a(G — v) = k — 1 and there is a 
partition V^ V2,..., Vk_i of the vertex set of G - v such that each sub¬ 

graph (Vj) is acyclic. Because degu ^ 2k — 3, at least one of these subsets, 
say Vj, contains at most one vertex adjacent with v in G. The subgraph 
(Vj U {u}) is necessarily acyclic. Hence VUV2,... ,VjU {u},..., Vk_] is a 
partition of the vertex set of G into k - 1 subsets, each of which induces an 

acyclic subgraph. This contradicts the fact that a(G) = k. □ 

We are now in a position to present the desired upper bound [CK1], 
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Theorem 3.13 

For each graph G, 
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a(G) ^ 1 + 
max S(G') 

~2 

where the maximum is taken over all induced subgraphs G’ of G. 

Proof 

The result is obvious for acyclic graphs; thus, let G be a graph with 
a(G) — k^ 2. Now let H be an induced ^-critical subgraph of G. Since H 
itself is an induced subgraph of G, 

6(H) ^ max 6(G'), (3.3) 

where the maximum is taken over all induced subgraphs G' of G. By 
Theorem 3.12, 8(H) 5= 2k — 2, so by (3.3), 

max S(G') ^ 2k - 2 = 2a(G) - 2. 

This inequality now produces the desired result. □ 

Since 8(G') ^ A(G) for each induced subgraph G' of G, we note the 
following consequence of the preceding result. 

Corollary 3.14 

For every graph G, 

a(G) 1 + 
A(G) 

2 

We now turn to the second decomposition problem. The edge-arboricity, 

or simply the arboricity a-[(G) of a nonempty graph G is the minimum 
number of subsets into which E(G) can be partitioned so that each 

subset induces an acyclic subgraph. As with vertex-arboricity, a non¬ 
empty graph has arboricity 1 if and only if it is a forest. The following 

lower bound for the arboricity of a graph was established by Burr [B16], 

Theorem 3.15 

For every graph G, 

fli(G) ^ 
1 + max 8(G') 

2 

where the maximum is taken over all induced subgraphs G' of G. 



Proof 

Arboricity and vertex-arboricity 71 

Let G] be an induced subgraph of G having order n, and size m,. Thus G} 

can be decomposed into flj(G) or fewer acyclic subgraphs, each of which 
has size at most n, — 1. Then 

2("’ -1)a'(G)<2a,(G). 

Hence max S(G') < 2a, (G), where the maximum is taken over all induced 
subgraphs G' of G. Therefore, 2a-, (G) ^ 1 + max S(G') which yields the 
desired result. □ 

We now have a result that relates a(G) and a-, (G), also due to Burr [B16]. 

Corollary 3.16 

For every graph G, a(G) ^ a, (G). 

Proof 

By Theorems 3.13 and 3.15, we have 

2a(G) - 2 ^ max<5(G') < 2flj(G) - 1, 

where the maximum is taken over all induced subgraphs G' of G. So 
fl(G) ^a, (G) + Since a(G) and a, (G) are integers, the result follows. □ 

Unlike vertex-arboricity there is a formula for the arboricity of a graph, 
which was discovered by Nash-Williams [Nl]. The proof we give is due to 

Hakimi, Mitchem and Schmeichel [HMS1]. 

Theorem 3.17 

For every nonempty graph G, 

a-,(G) — max 
!E(H)| 

|V(H)| - 1 

where the maximum is taken over all nontrivial induced subgraphs H of G. 

Proof 

The statement of the theorem is equivalent to the following, and it is in 
this form that we prove the result: The arboricity of a graph G is at most k 

if and only if 

|£(H)|«(c(|V(H)|-1) 



72 Trees and connectivity 

for all induced subgraphs H of G. Assume first that (G) ^ k. Then there 

is a partition of £(G) into subsets E\, E2,..., Ef, where 7 ^ k and such that 

(£,) is acyclic for all i (1 ^ i < 7). 
Let H be an induced subgraph of G, and define X, = £,- fl E(H) for 

/ = 1,2,... Hence E(H) is partitioned into the nonempty subsets 
among X], X2,..., Xe. Since each such subset X, induces an acyclic sub¬ 

graph of H, it follows that |E((X,))| ^ |V((X,-))| — 1. Hence 

We now verify the sufficiency. Suppose, to the contrary, that there exist 

graphs G' for which (a) \E(H')\ ^ k(\V(H')\ — 1) for all induced subgraphs 
H' of G' and (b) a, (G') > k. Let G be such a graph of minimum size. Let 

e0 be an edge of G. Because of the defining property of G, there exists a 
partition E],E2,... ,Ek of E(G — e0) such that £, = (£,) is a forest for 

f = 1,2,...,/:. 
For each edge e of G — e0, we define the index idx(e) of e as the integer i 

(1 ^ i ^ k) such that e e £,. In this context, an edge e of G is said to be 

reachable (from e0) if either (a) e = e0 or (b) there exists a sequence e0, 
e-y,..., er = e of edges of G such that for each i (1 < i ^ r), the two vertices 
incident with e,_i are connected by a path containing e, all of whose edges 

belong to Fidx(f(). An edge e of G is forest-connected (with respect to the 
partition El5 £2,..., E^) if the two vertices incident with e are connected 
by a path in F, for every i (1 ^ i ^ k). Equivalently, e is forest-connected 
if e lies on a cycle in (E, U {e}) for every i (1 ^ i < k) with i ^ idx(e). 

First, we claim that every reachable edge of G is forest-connected. By 
definition, e0 is reachable. The edge e0 is certainly forest-connected; for 
otherwise there is some j (1 ^ k) such that (E.- U {e0}) has no cycle 

containing e0/ which implies that a^ (G) ^ k, contrary to assumption. 
Suppose, to the contrary, that there exists a reachable edge e of G — e0 
that is not forest-connected. Since e is reachable, there exists a sequence 
e0,el)... ,er = e of minimum length r(^l) such that the two vertices 

incident with e,_] are connected by a path P, in fidx(ej that contains e,. 
Since e is not forest-connected, there exists an integer s (1 ^ s ^ k) with 
s / idx(e) such that (Es U {e}) is acyclic. 

From the given partition E1,E2,... ,Ek of E(G — e0), we now recursively 
construct a partition of E(G) into k subsets, which we will also refer to as 

Ei, E2,..., Ek. For an edge/ of G — e0/ the integer idx(/) refers to the index 
(subscript) of the set to which / originally belongs, regardless of what 

subsets / may belong as the sets Ek, E2,..., Ek are redefined. As the first 
of r + 1 sequential steps, we relocate the edge e = er to Es, denoting the 

resulting set by Es. Of course, the set Etdx(e ) no longer contains er, but the 
resulting set is still denoted by Eidx(e). All other sets E, (1 ^ i ^ k) are 
unchanged and are denoted as before. 

For the second step, the edge er_] is relocated to the set Eidx(?f), and the 
sets E1,E2,... ,Ek are redefined. For the third step, we relocate er_2 to 
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£idx(er_,) and so on, until, finally, in the last and (r + l)st step, e0 is 
relocated to Eidx(?1). After the completion of these r + 1 steps, we now 
have a partition , E2,..., Ejt of E(G). 

Initially, each of the subsets E, (1 ^ i ^ /c) induces an acyclic subgraph, 

namely the forest F,-. We show now that after each of the r + 1 steps, each 
of the resulting sets E, induces an acyclic graph. We verify this by finite 
induction. The desired result is certainly true after the first step. Assume, 

after the completion of the ;th step (1 that each of the resulting 
subsets Ei,E2, ... ,Ek induces an acyclic subgraph. In the (/ + l)st step, the 
edge er is added to the set Eidx(er +1). By the minimality of r, the original 

(unique) path Pr~j +1 in fidx(e,_/+1) that connects the two incident vertices 
of er_j and contains the edge er_,+1 does not contain any edge e{ with 
i > r — j + 1. Therefore, this path is not affected by the relocation of the 
edges er,er_i,... ,er_; + 2. However, when er_; + 1 is relocated, there is no 

longer a path in Fidx(e,r _ ) connecting the two incident vertices of er _; and 
after the (;' + l)st step, Eidx(e; j + 1) induces an acyclic subgraph, as does 
each set E, (1 ^ i ^ k). This completes the proof of the inductive step 
and, consequently, after the (r + l)st step, each of the sets El5 E2,..., Ek 
in the partition of E(G) induces an acyclic subgraph. However, then, 

(G) ^ k, contrary to assumption. Thus, as claimed, every reachable 

edge of G is forest-connected. 
Let / be the subgraph of G induced by the set of reachable edges of G. 

Necessarily, J is connected. For i = 1,2,..., k, define F\ as that forest with 
vertex set V(J) and edge set E(F,) n £(/). Next we show that every forest 
F'j (1 ^ i ^ k) is, in fact, a tree. Let; (1 < ; ^ k) be a fixed integer, and let v 
and w be distinct vertices of F'. Since / is connected, there exists a v-w path 
P: v — vQ,Vi,... ,V; — w in /. Let e\ = for i = 1,2,... Thus each 
edge e\ (1 < i ^ /) is reachable and so is forest-connected as well. Since 
each edge e'i (1 ^ i ^ /) is forest-connected, the two incident vertices of 
er, are connected by a path P, in F;. Since each edge e, (1 ^ i ^ () is reach¬ 

able, so is every edge of P,. Thus, P, is a path of F'j. The walk consisting 
of the path P] followed by P2, P3,..., P/ is a v-w walk. Thus, F' contains a 
v-w path and so F' is connected. Therefore, Fj is a spanning tree of /; so 
|E(F')| = |V(/)| - 1 for each ; (1 ^ k). Let H be the subgraph of G 

induced by V(J). Then 

ie(h)|s*|e(/)|=i+i£(f/)i = i+mm\ -1). 
/ = ! 

which produces a contradiction. □ 

As a consequence of Theorem 3.17, it follows that 

and a^(Krs) — 
rs 

r + s - 1 «i (Kn) = 
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It is interesting to note that when n is even, Kn can be decomposed into n/2 
spanning paths, as shown by Beineke [B2], and when n is odd, Kn can be 
decomposed into (n + l)/2 subgraphs, (n — l)/2 of which are isomorphic 

to P„-\ UKi and the other isomorphic to K] n_]. Decomposing a graph 
into pairwise edge-disjoint acyclic subgraphs is a special case of the 
more general subject of decomposition, which will be considered in 

Chapter 9. 

EXERCISES 3.2 

3.16 Are there graphs of order n other than Kn with a(Kn) = [n/2]? 

3.17 For all pairs k, n of positive integers with k ^ [h/2], give an example 

of a graph G of order n with a(G) = k. 

3.18 What upper bounds for are given by Theorem 3.13 and 
Corollary 3.14? 

3.19 Let G be a ^-critical graph with respect to vertex-arboricity (k ^ 3). 
Prove that for each vertex v of G, the graph G — v is not (k — 1 )-critical 
with respect to vertex-arboricity. 

3.20 Show that the formula given for aA (G) for a nonempty graph G in 

Theorem 3.17 is, in fact, equivalent to the statement: The arboricity 
of G is at most k if and only if |E(H)| ^ k(\V(H)\ — 1) for all induced 

subgraphs H of G. 

3.21 Give an example of a graph G that has a nonempty induced sub¬ 

graph H such that 

\E(G)\ \E(H)\ 1 

|V(G)|-1 \V(H)\-1 

thereby proving that, in general, ^(G) ^ [|E(G)|/(|V(G)| — 1)]. 

Determine a\ (G) for this graph. 

3.3 CONNECTIVITY AND EDGE-CONNECTIVITY 

A vertex-cut in a graph G is a set U of vertices of G such that G — U is 
disconnected. Every graph that is not complete has a vertex-cut. 
Indeed, the set of all vertices distinct from two nonadjacent vertices is a 
vertex-cut. Of course, the removal of any proper subset of vertices from a 

complete graph leaves another complete graph. The vertex-connectivity or 
simply the connectivity k(G) of a graph G is the minimum cardinality of a 
vertex-cut of G if G is not complete, and k(G) = n — 1 if G = K„ for some 
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positive integer n. Hence k(G) is the minimum number of vertices whose 
removal results in a disconnected or trivial graph. It is an immediate con¬ 
sequence of the definition that a nontrivial graph has connectivity 0 if and 

only if G is disconnected. Furthermore, a graph G has connectivity 1 if 

and only if G = K2 or G is a connected graph with cut-vertices; k(G) ^ 2 
if and only if G is nonseparable of order 3 or more. 

Connectivity has an edge analogue. An edge-cut in a graph G is a set X of 
edges of G such that G — X is disconnected. If X is a minimal edge-cut of a 
connected graph G, then, necessarily, G — X contains exactly two compo¬ 

nents. Every nontrivial graph has an edge-cut. The edge-connectivity K\ (G) 
of a graph G is the minimum cardinality of an edge-cut of G if G is non¬ 
trivial, and = 0. So /q(G) is the minimum number of edges whose 
removal from G results in a disconnected or trivial graph. Thus K\ (G) = 0 

if and only if G is disconnected or trivial; while /q (G) = 1 if and only if G 
is connected and contains a bridge. 

We now describe a basic relationship between vertex-cuts and edge- 
cuts in graphs. The following result is due to Brualdi and Csima [BC4], 

Theorem 3.18 

Let Gbe a connected graph of order n ^ 3 that is not complete. For each edge-cut 
X of G, there is a vertex-cut U of G such that \U\ ^ |X|. 

Proof 

Assume, without loss of generality, that X is a minimal edge-cut of G. 

Then G — X is a disconnected graph containing exactly two components 

G} and G2. We consider two cases. 

Case 1. Every vertex of Gi is adjacent to every vertex of G2. Then |X| ^ n — 1. 
Since G is not complete, either Gj or G2 contains two nonadjacent vertices. 
Say G-! has nonadjacent vertices u and v. Then U = V(G) — {u,v}, which 

has cardinality n — 2, has the desired property. 

Case 2. There are vertices u in G\ and v in G2 that are not adjacent in G. For 

each edge e in X, we select a vertex for U in the following way. If u is 
incident with e, then choose the other vertex (in G2) incident with e for 

U; otherwise, select for U the vertex that is incident with e and belongs 
to Gi. Now \U\ ^ |X|. Furthermore, u, v € V(G — U), but G — U contains 

no u-v path, so U is a vertex-cut. □ 

We are now in a position to present a result due to Whitney [W6]. 

Theorem 3.19 

For every graph G, 

k(G) ^ kx(G) ^ 6(G). 
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Figure 3.6 A graph G with /t(G) = 2, (G) = 3 and 6(G) — 4. 

Proof 

Let v be a vertex of G such that degu = 6(G). The removal of the <5(G) 
edges of G incident with v results in a graph G' in which v is isolated, 
so G' is either disconnected or trivial. Therefore, «i(G) ^ 6(G). 

We now verify the other inequality. If G = Kn for some positive integer 
n, then k(K„) = — n — 1. Suppose next that G is not complete, and 
let X be an edge-cut such that |X| = /t, (G). By Theorem 3.18, there exists a 

vertex-cut U such that \U\ ^ |X|. Thus 

k(G) ^ |U| < |X| = kj(G). □ 

Figure 3.6 shows a graph G with k(G) — 2, Kj(G) = 3, and 6(G) — 4. It 
can be shown (Exercise 3.31) that if a,b and c are positive integers with 
a b ^ c, then there is a graph G with k(G) — a, «i(G) = b and 6(G) = c. 

A graph G is said to be k-connected, k ^ 1, if k(G) k. Thus G is 
1-connected if and only if G is nontrivial and connected; while G is 2- 

connected if and only if G is nonseparable and has order at least 3. In 
general, G is ^-connected if and only if the removal of fewer than k vertices 
results in neither a disconnected nor trivial graph. 

It is often the case that knowing that a graph is /c-connected for some 

specified positive integer k is as valuable as knowing the actual connec¬ 
tivity of the graph. As would be expected, the higher the degrees of the 
vertices of a graph, the more likely it is that the graph has large connec¬ 
tivity. There are several sufficient conditions of this type. We present one 

of the simplest of these, originally presented in [CHI], 

Theorem 3.20 

Let Gbea graph of order n ^ 2, and let k be an integer such that 1 < k ^ n — 1. If 

degu ^ 
n + k — 2 

for every vertex v of G, then G is k-connected. 

Proof 

Suppose that the theorem is false. Then there is a graph G satisfying the 
hypothesis of the theorem such that G is not ^-connected. Certainly, then. 



77 Connectivity and edge-connectivity 

G is not a complete graph. Hence there exists a vertex-cut U of G such that 
|ll| = / ^ k — 1. The graph G — U is therefore disconnected of order n — d. 

Let G] be a component of G — U of smallest order, say rq. Thus 

n-[ ^ [(n — 7)/2_|. Let v be a vertex of G^ Necessarily, v is adjacent in G 
only to vertices of U or other vertices of Gj. Hence 

degu ^ d + («! - 1) < + [(n - 7)/2j - 1 

= [_(n + 7 — 2)/2j ^ [(n + k — 3)/2j, 

contrary to the hypothesis. □ 

A graph G is k-edge-connected, kyz 1, if Kq(G) ^ k. Equivalently, G is k- 

edge-connected if the removal of fewer than k edges from G results in 
neither a disconnected graph nor a trivial graph. The class of k-edge- 
connected graphs is characterized in the following simple but useful 
theorem. 

Theorem 3.21 

A nontrivial graph G is k-edge-connected if and only if there exists no nonempty 
proper subset W of V(G) such that the number of edges joining W and 

7(G) — W is less than k. 

Proof 

First, assume that there exists no nonempty proper subset W of V(G) for 
which the number of edges joining W and 7(G) — W is less than k but that 
G is not L-edge-connected. Since G is nontrivial, this implies that there 
exist d edges, 0 ^ 7 ^ k, such that their deletion from G results in a dis¬ 
connected graph H. Let be a component of H. Since the number of 

edges joining V(H-[) and V(G) — V(Hi) is at most /, where / < k, this is 

a contradiction. 
Conversely, suppose that G is a A:-edge-connected graph. If there should 

exist a subset W of 7(G) such that j edges, j < k, join W and 7(G) — W, 
then the deletion of these; edges produces a disconnected graph - again a 

contradiction. The characterization now follows. □ 

According to Theorem 3.19, k-i(G)^6(G) for every graph G. The 
following theorem of Plesnfk [P5] gives a sufficient condition for equality 

to hold. 

Theorem 3.22 

If G is a graph of diameter 2, then (G) = 6(G). 
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Proof 
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Let S be a set of Hi (G) edges of G whose removal disconnects G, and let Hi 

and H2 denote the components of G — S, with orders Hi and n2, respec¬ 

tively. Without loss of generality, assume that ^ n2. 
Suppose that some vertex u of Hi is adjacent in G to no vertex of H2. 

Then dG(u, v) — 2 for each vertex v of H2/ and each vertex v of H2 is adja¬ 
cent to some vertex of Hj. Thus, either each vertex of Hi is adjacent to 

some vertex of H2 or each vertex of H2 is adjacent to some vertex of HG 

In either case, 

«i(G) = |S| ^ min-j^,^} - «i- 

For each vertex u E V(H1), let d,-(u) denote the number of vertices of 

Hi (i = 1,2) adjacent to u in G. Then 

6(G) ^ deg u = di(u) -t~ d2(u) ^ ni — 1 d2(u) 

sc ki(G) - 1 + d2(u) ^ 6(G) - 1 +d2(u). (3.4) 

Since 5(G) ^ (G), it follows from (3.4) that d2(u) ^ 1 for each vertex u of 

Hi. Let V(Hi) = {ui, u2, ■ ■., uk}, where k = ni. Then 

k k-1 

/ti(G) = |S| = ^ d2(Ui) = ^2 +^2(w)t) ^ (k — 1) + d2(uk) 
/=i i=i 

= «! - 1 + d2(uk). (3.5) 

Again since 5(G) ^ «i(G), it follows from (3.4) and (3.5) that 

Hi — 1 + d2(uk) ^ 5(G) ^ Ki (G) ^ rii — 1 -(- d2(uk). 

Thus, /ci(G) = 5(G). □ 

Corollary 3.23 

If G is a graph of order n^-2 such that for all distinct nonadjacent vertices u 
and v, 

deg u + deg v ^ n — 1, 

then /«i(G) = 5(G). 

EXERCISES 3.3 

3.22 Determine the connectivity and edge-connectivity of each complete 

^-partite graph. 

3.23 Let Vi, v2,..., vk be k distinct vertices of a ^-connected graph G. Let H 

be the graph formed from G by adding a new vertex of degree k that 
is adjacent to each of Vi,v2,... ,vk. Show that n(H) = k. 



3.24 

3.25 

3.26 

3.27 

3.28 

3.29 

3.30 

3.31 

3.32 

3.33 

3.34 

Menger's theorem 79 

Let H = G + Ka, where G is /c-connected. Prove that H is (fc + 1)- 
connected. 

Let G be a graph with degree sequence di,d2, ■ ■. ,dn/ where 
d\ ^ d2 ^ ^ dn. Define H — + K^. Determine k\(H). 

Show that every /c-connected graph contains every tree of order k + 1 
as a subgraph. 

Let G be a noncomplete graph of order n and connectivity k such that 
degn ^ (n + 2k — 2)/3 for every vertex v of G. Show that if S is a 

vertex-cut of cardinality k(G), then G — S has exactly two components. 

For a graph G of order n ^ 2, define the k-connectivity nk(G) of G, 
2 ^ k ^ n, as the minimum number of vertices whose removal 
from G results in a graph with at least k components or a graph of 
order less than k. (Note that k2(G) = k(G).) A graph G is defined to 
be (/, fc)-connected if nk(G) ^ €. Let G be a graph of order n contain¬ 
ing a set of at least k pairwise nonadjacent vertices. Show that if 

degG v ^ 
h + (k — 1)(/ — 2) 

k 

for every v G V(G), then G is (/,/c)-connected. 

Prove Corollary 3.23. 

Let G be a graph of diameter 2. Show that if S is a set of (G) edges 

whose removal disconnects G, then at least one of the components of 

G — S is isomorphic to K] or K^c)- 

Let a, b and c be positive integers with a ^ b < c. Prove that there 

exists a graph G with re(G) = a, /q(G) = b and 6(G) = c. 

Verify that Theorem 3.20 is best possible by showing that for each 
positive integer k, there exists a graph G of order n (^ k + 1) such that 
6(G) = \(n + k — 3)/2] and k(G) < k. 

Verify that Theorem 3.22 is best possible by finding an infinite class 
of graphs G of diameter 3 for which /^(G) A 6(G). 

The connection number c(G) of a connected graph G of order n ^ 2 is 
the smallest integer k with 2 ^ k ^ n such that every induced sub¬ 

graph of order k in G is connected. State and prove a theorem that 
gives a relation between k(G) and c(G) for a graph G of order n. 

3.4 MENGER'S THEOREM 

A nontrivial graph G is connected (or, equivalently, 1-connected) if 

between every two distinct vertices of G there exists at least one path. 
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G: u v 

w 3 

Figure 3.7 A graph illustrating Menger's theorem. 

This fact can be generalized in many ways, most of which involve, either 
directly or indirectly, a theorem due to Menger [M6]. In this section, we 

discuss the major ones of these, beginning with Dirac's proof [D8] of 

Menger's theorem itself. 
A set S of vertices (or edges) of a graph G is said to separate two vertices 

u and v of G if the removal of the elements of S from G produces a dis¬ 
connected graph in which u and v lie in different components. Certainly, 
then, S is a vertex-cut (edge-cut) of G. 

In the graph G of Figure 3.7, there is a set S = , u>2, ie3} of vertices of 
G that separate the vertices u and v. No set with fewer than three vertices 
separates u and v. As is guaranteed by Menger's theorem [M6], stated 
next, there are three internally disjoint u-v paths in G. 

Theorem 3.24 

Let u and v be nonadjacent vertices in a graph G. Then the minimum number of 

vertices that separate u and v is equal to the maximum number of internally 
disjoint u-v paths in G. 

Proof 

First, if u and v lie in different components of G, then the result is true; so 
we may assume that the graphs under consideration are connected. If the 
minimum number of vertices that separate u and visk(^l), then the max¬ 
imum number of internally disjoint u-v paths in G is at most k. Thus, if 

k — 1, the result is true (since we are assuming that G is connected). 
Denote by S^UyV) the statement that the minimum number of vertices 

that separate u and v is k. 
Suppose that the theorem is false. Then there exists a smallest positive 

integer f(^2) such that St(u,v) is true in some graph G but the maximum 

number of internally disjoint u-v paths is less than t. Among all such 
graphs G of smallest order, let H be one of minimum size. 

We now establish three properties of the graph H. 
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1. For every two adjacent vertices vx and v2 of H, where neither v1 nor v2 is u 
or v, there exists a set U of t - 1 vertices of H such that U U {v,}, i = 1,2, 
separates u and v. 

To see this, let e — vxv2 and observe that St(u, v) is false for H — e. 

However, we claim that S,_x(u,v) is true for H — e. If not, there exists 
a set W of vertices that separates u and i> in H — e, where | W| ^ t — 2. 

Then W separates u and v in both H — vx and H — v2, so W U {n,}, 
i — 1,2, separates u and v in H, which is impossible. Thus, as claimed, 
St_i(u,v) is true in H — e. So there exists a set U that separates u 
and v in H — e, where \U\ = t — 1. However, then U U {u,-}, i = 1,2, 
separates u and v in H. 

2. For each vertex w(^u,v) in H, not both uw and vw are edges of H. 

Suppose that this is not true. Then St_x(u,v) is true for H — w. 
However, then, H — w contains t — 1 internally disjoint u-v 
paths. So H contains t internally disjoint u-v paths, which is a 
contradiction. 

3. If W = {wx,w2, • • •, wt} is a set of vertices that separates u and v in H, 
then either uwt e E(H) for all i (1 ^ i ^ t) or vwt e E(H) for all i 

(1 <*<0- 
Define Hu as the subgraph induced by the edges on all u-w, paths 

in H that contain only one vertex of W. Define Hv similarly. Observe 
that V(HU) fi V(Hv) — W. Suppose that the above statement is not 
true. Then both Hu and Hv have order at least t + 2. Define Hj, to 
consist of Hu, a new vertex v* together with all edges v*wt. Also, 
define to consist of Hv, a new vertex u* together with all edges 
u*Wj. Observe that H* and H* have smaller order than H. So 
St(u,v*) is true in H* and St(u*,v) is true in H*. Therefore, 
there exist t internally disjoint u-v* paths in H* and t internally 
disjoint u*-v paths in H*. These 21 paths produce t internally disjoint 

u-v paths in H, a contradiction. 

Let P be a u-v path of length d(u,v). Then d(u, v) ^ 3 by (2). Thus we 

may write P: u, ux, u2,..., v where ux,u2 ± v. By (1), there exists a set U of 
t - 1 vertices such that both U U {ux} and U U {u2} separate u and v. In 
particular, U U {ux} separates u and v. So every vertex of U is adjacent to 
u. Consider U U {u2}. No vertex of U is adjacent to v, and so u is adjacent 

to u2, which is impossible. □ 

With the aid of Menger's theorem, it is now possible to present 

Whitney's characterization [W6] of k-connected graphs. 

Theorem 3.25 

A nontrivial graph G is k-connected if and only if for each pair u,v of distinct 

vertices there are at least k internally disjoint u-v paths in G. 
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Proof 

Trees and connectivity 

Assume that G is a Re-connected graph. Suppose, to the contrary, that there 

are two vertices u and v such that the maximum number of internally 
disjoint u-v paths in G is £, where £ < k. If uv 0 E(G) then, by Theorem 
3.24, k(G) ^ £ < Re, which is contrary to hypothesis. If uv e E(G), then 
the maximum number of internally disjoint u-v paths in G — uv is 

£ — 1 < Re — 1; hence k(G — uv) < k — 1. Therefore, there exists a set U of 
fewer than Re — 1 vertices such that G — uv — U is a disconnected graph. 

Therefore, at least one of G — (U U {u}) and G — (li U {u}) is discon¬ 
nected, implying that k(G) < k. This also produces a contradiction. 

Conversely, suppose that G is a nontrivial graph that is not Re-connected 

but in which every pair of distinct vertices are connected by at least k 
internally disjoint paths. Certainly, G is not complete. 

Since G is not Rc-connected, k(G) < k. Let W be a set of k(G) vertices of G 
such that G — W is disconnected, and let u and v be in different com¬ 

ponents of G — W. The vertices u and v are necessarily nonadjacent; how¬ 
ever, by hypothesis, there are at least k internally disjoint u-v paths. By 
Theorem 3.24, u and v cannot be separated by fewer than k vertices, so a 

contradiction arises. □ 

With the aid of Theorem 3.25, the following result can now be estab¬ 

lished rather easily. 

Theorem 3.26 

If G is a k-connected graph and v, V\, v2, ■.., vk are k + 1 distinct vertices of G, 
then there exist internally disjoint v-v, paths (1 ^ i ^ k). 

Proof 

Construct a new graph H from G by adding a new vertex u to G together 
with the edges uvi = 1,2,..., k. Since G is Re-connected, H is ^-connected 

(Exercise 3.23). By Theorem 3.25, there exist k internally disjoint u-v paths 
in H. The restriction of these paths to G yields the desired internally dis¬ 
joint v-Vj paths. □ 

One of the interesting properties of 2-connected graphs is that every 
two vertices of such graphs lie on a common cycle. (This is a direct 
consequence of Theorem 2.5.) There is a generalization of this fact to Re¬ 
connected graphs by Dirac [D5]. 

Theorem 3.27 

Let G be a k-connected graph, k ^ 2. Then every k vertices of G lie on a common 
cycle of G. 
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Proof 

For k = 2, the result follows from Theorem 2.5; hence, we assume that 
k ^ 3. Let W be a set of k vertices of G. Among all cycles of G, let C be a 
cycle containing a maximum number, say £, of vertices of W. We observe 
that £ ^ 2. We wish to show that £ — k. Assume, to the contrary, that 

£ < k. Let w be a vertex of W such that w does not lie on C. 
Necessarily, C contains at least £ + 1 vertices; for if this were not the 

case, then the vertices of C could be labeled so that C: w^, w2,..., W\, 
where Wj € W for 1 ^ i ^ A By Theorem 3.26, there exist internally 

disjoint w-iVj paths Q,, 1 ^ i ^ £. Replacing the edge wpw2 on C by the 
W\-vo2 path determined by Q} and Q2, we obtain a cycle containing at 

least £ + 1 vertices of W, which is a contradiction. Therefore, C contains 
at least £ + 1 vertices. 

Thus we may assume that C contains vertices W\, u>2,..., w^, uy + 1, 
Wi e W for 1 < i ^ / and zty+1 0 W. Since k ^ ( + 1, we may apply 
Theorem 3.26 again to conclude that there exist £ + 1 internally disjoint 

w-ze, paths P,- (1 ^ i ^ / + 1). For,each i = 1,2,...,/ + 1, let u, be the first 
vertex on P, that belongs to C (possibly = wt) and let P'j denote the w-Vj 
subpath of Pr Since C contains exactly £ vertices of W, there are distinct 

integers s and t, 1 ^ s, t ^ £ + 1, such that one of the two vs-vt paths, say 
P, determined by C contains no interior vertex belonging to W. Replacing 
P by the vs-vt path determined by P's and P’t, we obtain a cycle of G 

containing at least £ + 1 vertices of W. This contradiction gives the 

desired result that £ — k. □ 

Both Theorems 3.24 and 3.25 have 'edge' analogues; the analogue to 
Theorem 3.24 was proved in Elias, Feinstein and Shannon [EFS1] and 
Ford and Fulkerson [FF1], It is not surprising that the edge analogue of 
Theorem 3.24 can be proved in a manner that bears a striking similarity to 

the proof of Theorem 3.24. 

Theorem 3.28 

If u and v are distinct vertices of a graph G, then the maximum number of edge- 
disjoint u-v paths in G equals the minimum number of edges of G that separate u 

and v. 

Proof 

We actually prove a stronger result here by allowing G to be a multi¬ 

graph. 
If u and v are vertices in different components of a multigraph G, then 

the theorem is true. Thus, without loss of generality, we may assume that 
the multigraphs under consideration are connected. If the minimum 
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number of edges that separate u and v is k, where k ^ 1, then the 

maximum number of edge-disjoint u-v paths is at most k. Thus, the 

result is true if k = 1. 
For vertices u and v of a multigraph G, let Sk(u, v) denote the statement 

that the minimum number of edges that separate u and v is k. 
If the theorem is not true, then there exists a positive integer £(^2) for 

which there are multigraphs G containing vertices u and v such that 
S/(n,v) is true, but there is no set of £ edge-disjoint u-v paths. Among 

all such multigraphs G, let F denote one of minimum size. 
If every u-v path of F has length 1 or 2, then since the minimum 

number of edges of F that separate u and v is £, it follows that there 
are £ edge-disjoint u-v paths in F, producing a contradiction. Thus F 

contains at least one u-v path P of length 3 or more. Let Cj be an 
edge of P incident with neither u nor v. Then for F — ex, the statement 

S({u,v) is false but S^_x(u,v) is true. This implies that e\ belongs to a set 

of £ edges of F that separate u and v, say {ex,eWe now sub¬ 
divide each of the edges e„ 1 ^ i ^ £, that is, let e, = u,u„ replace each e, 
by a new vertex w„ and add the 2/ edges u,wx and WjVj. The vertices 10,- 
are now identified, producing a new vertex w and a new multigraph H. 
The vertex w in H is a cut-vertex, and every u-v path of H contains w. 

Denote by Hu the submultigraph of H determined by all u-w paths of H; 
the submultigraph Hv is defined similarly. Each of the multigraphs Hu 

and Hv has fewer edges than does F (since ex was chosen to be an edge 
of a u-v path in F incident with neither u nor v). Also, the minimum 
number of edges separating u and w in H„ is £, and the minimum 
number of edges separating v and w in Hv is £. Thus, the multigraph Hu 
satisfies Sf(u,w) and the multigraph Hv satisfies S/(w, v). This implies that 

Hu contains a set of £ edge-disjoint u-w paths and Hv contains a set of £ 
edge-disjoint w-v paths. For each i= 1,2, ...,£, a u-w path and w-v 
path can be paired off to produce a u-v path in H containing the two 
edges UjW and wVj. These £ u-v paths of H are edge-disjoint. The process 
of subdividing the edges e, = uxvx of F and identifying the vertices w, to 
obtain w can now be reversed to produce £ edge-disjoint u-v paths in F. 
This, however, produces a contradiction. 

Since the theorem has been proved for multigraphs G, its validity 

follows in the case where G is a graph. □ 

With the aid of Theorem 3.28, it is now possible to present an edge 

analogue of Theorem 3.25. 

Theorem 3.29 

A nontrivial graph G is k-edge-connected if and only if for every two distinct 

vertices u and v of G, there exist at least k edge-disjoint u-v paths in G. 
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EXERCISES 3.4 

3.35 Prove that a graph G of order n ^ k + 1 ^3 is /c-connected if and only 
if for each set S of k distinct vertices of G and for each two-vertex 

subset T of S, there is a cycle of G that contains the vertices of T 
and avoids the vertices of S — T. 

3.36 Prove that a graph G of order n ^ 2k is /c-connected if and only if for 
every two disjoint sets 15 and V2 of k vertices each, there exist k 
disjoint paths connecting Vj and V2. 

3.37 Let G be a /c-connected graph and let v be a vertex of G. For a positive 

integer t, define Gt to be the graph obtained from G by adding t new 
vertices ul5 u2,..., ut and all edges of the form Ujiv, where 1 ^ i ^ t 
and for which vw G E(G). Show that G( is /c-connected. 

3.38 Show that if G is a /c-connected graph with nonempty disjoint subsets 

Si and S2 of V(G), then there exist k internally disjoint paths 

P1,P2,... ,Pk such that P, is a u—Vj path, where «,• G Sj and G S2, 

for i= 1,2,... X and ISj n V{Pt)\ = |S2 n R(P,)| = 1. 

3.39 Let G be a /c-connected graph, k ^ 3, and let u, Z71? p2,..., vk_i be k 
vertices of G. Show that G has a cycle C containing all of 
z;1, v2,..., V]<_i but not v and k — 1 internally disjoint v — v, paths P, 
(1 ^ i ^ k — 1) such that for each i, the vertex is the only vertex of 

P, on C. 

3.40 Prove Theorem 3.29. 

3.41 Prove or disprove: If G is a /c-edge-connected graph and 
v, Vi, v2,..., Vk are k+1 distinct vertices of G, then for 
i = 1,2,..., k, there exist v-Vj paths P, such that each path P, contains 
exactly one vertex of {uj ,v2,..., vk}, namely vir and for i ^ /, P, and P; 

are edge-disjoint. 

3.42 Prove or disprove: If G is a /c-edge-connected graph with nonempty 
disjoint subsets Sj and S2 of V(G), then there exist k edge-disjoint 
paths P1,P2)... ,Pk such that P, is a u—v, path, where u, G S! and 

G S2, for i = 1,2,... ,/c, and |SX n V(P,-)| = |S2 n V'(P/-)| = 1. 

3.43 Show that «(Q„) = k\(Q„) = « for all positive integers n. 

3.44 Assume that G is a graph in the proof of Theorem 3.28. Does the proof 

go through? If not, where does it fail? 

3.45 Let G be a graph of order n with k(G) ^ 1. Prove that 

n ^ «(G)[diam G — 1] + 2. 
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3.5 VULNERABILITY OF GRAPHS 

The connectivity of a graph is one measure of how strongly connected the 
graph is, that is, the smaller the connectivity the more vulnerable a graph 
is. There are other measures of vulnerability. We will discuss some of 
these in the current section. 

If G is a noncomplete graph and t is a nonnegative real number such 
that t |S|/fc(G — S) for every vertex-cut S of G, then G is defined to be 
t-tough. If G is a f-tough graph and s is a nonnegative real number such 
that s < t, then G is also s-tough. The maximum real number t for which a 
graph G is f-tough is called the toughness of G and is denoted by f(G). Since 
complete graphs do not contain vertex-cuts, this definition does not apply 
to such graphs. Consequently, we define t(K„) = +oo for every positive 
integer n. Certainly, the toughness of a noncomplete graph is a rational 
number. Also f(G) = 0 if and only if G is disconnected. Indeed, it follows 
that if G is a noncomplete graph, then 

f(G) = min|S|/Jfc(G - S), (3.6) 

where the minimum is taken over all vertex-cuts S of G. 
For the graph G of Figure 3.8, St = {u, v, w}, S2 = {iv}, and S3 = {u, v} 

are three (of many) vertex-cuts. Observe that |Sx|/fc(G — Si) = g, 
\S2\/k(G — S2) = ^ and |S3|/fc(G — S3) = There is no vertex-cut S of G 
with \S\/k(G — S) < thus f(G) = 

The toughness of a graph G is then a measure of how tightly the sub¬ 
graphs of G are held together. Thus the smaller the toughness the more 
vulnerable the graph is. A 1-tough graph, for example, has the property 
that breaking the graph into k components (if this is possible) requires the 
removal of at least k vertices; while breaking a 2-tough graph into k 
components requires the removal of at least 2k vertices. 

A parameter that plays an important role in the study of toughness is 
the independence number. Two vertices that are not adjacent in a graph G 
are said to be independent. A set S of vertices is independent if every two 
vertices of S are independent. The vertex independence number or simply the 
independence number /3(G) of a graph G is the maximum cardinality among 
the independent sets of vertices of G. For example, 3(K,,) = max jr, si, 
0(C„) = [n/2\ and 0(K„) = 1. 

G: 

Figure 3.8 A graph of toughness |. 
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The independence number is related to toughness in the sense that 
among all the vertex-cuts S of a noncomplete graph G, the maximum 
value of k(G — S) is 0(G), so for every vertex-cut S of G, we have that 

k(G) ^ |S| and k(G — S) ^ 0(G). This leads us to bounds for the toughness 
of a graph, a result due to Chvatal [C7). 

Theorem 3.30 

For every noncomplete graph G, 

"(G) 

/5(G) 
t(G) 

"(G) 
2 

Proof 

According to (3.6), 

t(G) = min 
«(G) 

k(G -S)' 0(G) ’ 

Let S' be a vertex-cut with |S'| = /c(G). Thus k(G — S') ^ 

|S| 
t(G) = min 

|S'| 

k(G -S) k(G - S') 

"(G) 

2, so 

□ 

Let F be a graph. A graph G is F-free if G contains no induced subgraph 
isomorphic to F. Thus a K2-free graph is empty. In this context, a graph of 
particular interest is 3. A fCj 3-free graph is also referred to as a claw-free 

graph. The following result by Matthews and Sumner [MSI] provides a 
class of graphs for which the upper bound given in Theorem 3.30 becomes 

an equality. 

Theorem 3.31 

If G is a noncomplete claw-free graph, then t(G) = |«(G). 

Proof 

If G is disconnected, then t(G) = k(G) = 0 and the result follows. So we 
assume that k(G) = r ^ 1. Let S be a vertex-cut such that t(G) = 
|S|/fc(G-S). Suppose that k(G-S) — k and that GUG2, ■.. ,Gk are the 

components of G — S. 
Let Uj e V(G0 and Uj G V(G;), where i / j. Since G is r-connected, it 

follows by Theorem 3.25 that G contains at least r internally disjoint 
u~Uj paths. Each of these paths contains a vertex of S. Consequently, 

there are at least r edges joining the vertices of S and the vertices of G, 
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for each i (1 ^ i ^ k) such that no two of these edges are incident with the 

same vertex of S. 
Hence there is a set X containing at least kr edges between S and G - S 

such that any two edges incident with a vertex of S are incident with 

vertices in distinct components of G — S. However, since G is claw-free, 
no vertex of S is joined to vertices in three components of G — S. 

Therefore, 

kr — |X| < 2|S| = 2Jtf(G), 

so kr^2kt(G). Thus t(G) ^ r/2— \k(G). By Theorem 3.30, f(G) = 

}«(G). □ 

In defining the toughness of a graph we were in some sense fine-tuning 
the idea of connectivity. For example, if a graph G is 2-connected, then the 

removal of one vertex from G does not result in a disconnected graph. The 
removal of two vertices, however, may not only result in a disconnected 
graph but in fact may result in a graph with many components. If, 

however, we know that G is 1-tough, then not only is G 2-connected but 
also the removal of any two vertices of G can result in a graph with at most 
two components. Another measure of vulnerability that reflects overall 

vulnerability rather than local weaknesses in a graph is the integrity of 
a graph. 

The integrity 1(G) of a nontrivial graph G is defined as 

1(G) = min {|S| + N(G - S)}, 
ScV(G) 

where N(G — S) is the maximum order of a component of G — S. 

Each of Gj = K-l n_] and G2 = UX„_2) has order n and con¬ 
nectivity 1; however, I(G\) = 2 while I(G2) = n — 1. The high integrity 
of G2 reflects the fact that although the removal of a single vertex may 
disconnect G2, in doing so all but one of the remaining vertices lie in 
the same component. 

Figure 3.9 gives the values of k(G), t(G) and 1(G) for three classes of 
graphs. 

G *(G) t(G) 1(G) 

K„ n — 1 oo n 

Kk,n-k k 
k 

n-k 
Jfc + 1 

(k < m/2) 

ki + (fG U 1 1 
2 n-k c\T l V

/ 

Figure 3.9 Connectivity, toughness and integrity. 
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In Theorem 3.30 we saw a relationship between the toughness of a 
graph, the connectivity and the independence number. Theorem 3.32 

and Corollary 3.33 relate integrity to various graphical parameters. The 
following result is due to Goddard and Swart [GS1], 

Theorem 3.32 

Let G be a graph of order n ^ 2 with degree sequence d],d2,,dn, where 
d-[^ d2^z • • • ^ dn. Then 

(a) 1(G) ^ min {max{f, dt + 1}}; 
1 ^ f < n 

(b) /(G) ^ 
n-«(G)] , ^ 

/3(G) +,t(G)' 

(c) 1(G) $5 [2\/nf(G) — t(G)],if G ^ Kn. 

Proof 

(a) Let S be a proper subset of V(G) with | S | — s. Then N(G — S) ^ 1 and 

Therefore, 

N(G-S) > A(G — S) + 1 

^ max degr v — s + 1 
i>€ V(G)-S 

^ ^s + 1 — S + 1. 

]S + N(G - S) ^ max{s + 1, ds+1 + 1}. 

Thus 

1(G) = min {ISI +N(G-S)} 
ScV(C) 

^ min {max{f,dt + 1}}. 
1 ^ f ^ n 

(b) If G is complete, then 1(G) = n = \(n — k(G))//3(G)] + «(G). 
Assume, then, that G is not complete, and let S be a proper subset of 

V(G) for which 1(G) — |S|+N(G —S). Then S is a vertex-cut and so 
|S| ^ «(G) (Exercise 3.56). 

Now, k(G - S) < /3(G - S) < /3(G), so 

Therefore, 

N(C S) - ”~|S| - "~|S| 
(G k(G-S)^ /3(G) ' 

|S| + N(G - S) ^ \(n - «(G))//3(G) 1 + «(G), (3.7) 

and the desired result follows. 
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(c) If t(G) — 0, then clearly 1(G) ^ \2\Jnt(G) - f(G)"|. Assume, then, that 
f(G) > 0, that is, G is connected. Let S be a proper subset of V(G) for which 

s — |S| and 1(G) — |S| + N(G — S). Then S is a vertex-cut of G and so 

*(G)< 
|S| 

k(G - S)' 

Therefore, 

Hence 

N(G - S) > > 
n — s n ~ Is! 

k(G - S) s/t(G) 
— t(G) ( - — 1 )• 

1(G) ^ min <s + f(G)(-1 
1 < s ^ n — 1 

Setting f(s) = s + t(G)(n/s — 1), we observe that / is minimized at s — 

y/nt(G), and the result follows. □ 

Corollary 3.33 

If G is a graph, then 1(G) ^ 1 + 6(G). 

Other measures of graph vulnerability include the binding number and 
the edge integrity of a graph. Excellent sources for more information in 
this area are found in the surveys by Barefoot, Entringer and Swart 
[BES1], Bagga, Beineke, Goddard, Lipman and Pippert [BBGLP], and 
Bagga, Beineke, Lipman and Pippert [BBLP1]. 

EXERCISES 3.5 

3.46 Determine the toughness and the integrity of the complete tripartite 
graph (r ^ 2). 

3.47 Show that if H is a spanning subgraph of a noncomplete graph G, 
then t(H) ^ t(G) and 1(H) < 7(G). 

3.48 Show that if G is a noncomplete graph of order n, then 

t(G) < (n - 0(G))/0{G). 

3.49 Show that the order of every noncomplete connected graph G is at 

least 0(G)(l + f(G)). 

3.50 Show that for positive integers r and s with r + s ^ 3, t(Krs) = 
min{r,s}/max{r,s}. 

3.51 Show that every 1-tough graph is 2-connected. 
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3.52 Show that for every nonnegative rational number r, there exists a 
graph G with f(G) = r. 

3.53 Let G be a noncomplete graph of order n. Show that if S is a vertex- 

cut of cardinality k(G), then G — S contains a component of order at 
least \(n — k(G))//3(G)]. 

3.54 We have seen that the vertex-arboricity a(G) ^ \n/2] for every graph 
G of order n. Show that a{G) ^ \{n — /3(G) + l)/2] for every graph G 
of order n. 

3.55 Characterize the K] 2-free graphs. 

3.56 Show that if G is a noncomplete graph of order n and S is a proper 

subset of V(G) for which 7(G) = |S| + N(G — S), then S is a vertex-cut 
of G. 

3.57 Justify inequality (3.7). 

3.58 Prove Corollary 3.33. 

3.59 Show that for positive integers r and s, I{Krs) = 1 + min{r, s}. 

3.60 (a) Show that if r vertices are removed from the path Pn, one of the 
resulting components contains at least (n — r)/(r + 1) vertices, 

(b) Show that I(Pn) = \2(n + 1)^] — 2. 



CHAPTER 4 

Eulerian and hamiltonian 
graphs and digraphs 

In this chapter we investigate graphs and digraphs with special circuits 
and cycles. In particular, we will be concerned with circuits containing 

every edge of a graph and cycles containing every vertex. 

4.1 EULERIAN GRAPHS AND DIGRAPHS 

In this section we discuss those trails and circuits in graphs and digraphs 

which are historically the most famous. 
It is difficult to say just when and where graphs originated, but there is 

justification to the belief that graphs and graph theory may have begun in 
Switzerland in the early 18th century. In any case, it is evident that the 
great Swiss mathematician Leonhard Euler [E6] was thinking in graphical 
terms when he considered the problem of the seven Konigsberg bridges. 

Figure 4.1 shows a map of Konigsberg as it appeared in the 18th 
century. The river Pregel was crossed by seven bridges, which connected 
two islands in the river with each other and with the opposite banks. We 
denote the land regions by the letters A, B, C and D (as Euler himself did). 

It is said that the townsfolk of Konigsberg amused themselves by trying 
to devise a route that crossed each bridge just once. (For a more detailed 
account of the Konigsberg Bridge Problem, see Biggs, Lloyd and Wilson 
[BLW1, p.l].) 

Euler proved that such a route over the bridges of Konigsberg is impos¬ 

sible - a fact of which many of the people of Konigsberg had already 
convinced themselves. However, it is probable that Euler's approach to 
the problem was considerably more sophisticated. 

Euler observed that if such a route were possible it could be represented 

by a sequence of eight letters, each chosen from A, B, C and D. A term of 
the sequence would indicate the particular land area to which the route 
had progressed while two consecutive terms would denote a bridge 
traversed while proceeding from one land area to another. Since each 

bridge was to be crossed only once, the letters A and B would necessarily 

appear in the sequence as consecutive terms twice, as would A and C. 
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Also, since five bridges lead to region A, Euler saw that the letter A must 

appear in the sequence a total of three times - twice to indicate an 
entrance to and exit from land area A, and once to denote either an 
entrance to A or exit from A. Similarly, each of the letters B, C and D 

must appear in the sequence twice. However, this implies that nine 
terms are needed in the sequence, an impossibility; hence the desired 
route through Konigsberg is also impossible. 

The Konigsberg Bridge Problem has graphical overtones in many ways; 
indeed, even Euler's representation of a route through Konigsberg is 
essentially that of a walk in a graph. If each land region of Konigsberg 
is represented by a vertex and two vertices are joined by a number of 
edges equal to the number of bridges joining corresponding land areas, 
then the resulting structure (Figure 4.2) is a multigraph. 

The Konigsberg Bridge Problem is then equivalent to the problem of 
determining whether the multigraph of Figure 4.2 has a trail containing 
all of its edges. 

The Konigsberg Bridge Problem suggests the following two concepts. 
An eulerian trail of a graph G is an open trail of G containing all of the 
edges and vertices of G, while an eulerian circuit of G is a circuit containing 
all of the edges and vertices of G. A graph possessing an eulerian circuit 
is called an eulerian graph. Necessarily, then, graphs containing eulerian 
trails and eulerian circuits are nontrivial connected graphs. The graph G} 
of Figure 4.3 contains an eulerian trail while G2 is an eulerian graph. 

C 

Figure 4.2 The multigraph of Konigsberg. 



94 Eulerian and hamiltonian graphs and digraphs 

G,: a 7 
Figure 4.3 Graphs with eulerian trails and eulerian circuits. 

Simple but useful characterizations of both eulerian graphs and graphs 
with eulerian trails exist; in fact, in each case the characterization was 
known to Euler [E6]. Complete proofs of these results were not given 

until 1873, however, in a paper by Hierholzer [HI3]. 

Theorem 4.1 

Let G be a nontrivial connected graph. Then G is eulerian if and only if every 

vertex of G is even. 

Proof 

Let G be an eulerian graph with eulerian circuit C, and let v be an arbitrary 
vertex of G. If v is not the initial vertex of C (and therefore not the final 

vertex either), then each time v is encountered on C, it is entered and left 
by means of distinct edges. Thus each occurrence of v in C represents a 
contribution of 2 to the degree of v so that v has even degree. If v is the 
initial vertex of C, then C begins and ends with v, each term representing a 

contribution of 1 to its degree while every other occurrence of v indicates 
an addition of 2 to its degree. This gives an even degree to v. In either case, 

v is even. 
Conversely, let G be a nontrivial connected graph in which every vertex 

is even. We employ induction on the number m of edges of G. For m = 3, 
the smallest possible value, there is only one such graph, namely K3, and 
this graph is eulerian. Assume then that all nontrivial connected graphs 

having only even vertices and with fewer than m edges, m ^ 4, are 
eulerian, and let G be such a graph with m edges. 

Select some vertex u in G, and let W be a u-u circuit of G. Such a circuit 

exists in G since if W' is any u-v trail of G, where u ^ v, then necessarily an 
odd number of edges of G incident with v are present in W', implying that 

W' can be extended to a trail W" containing more edges than that of W\ 
Hence W' can be extended to a u-u circuit W of G. 

If the circuit W contains every edge of G, then W is an eulerian circuit of 
G and G is eulerian. Otherwise, there are edges of G that are not in W. 

Remove from G all those edges that are in W together with any resulting 
isolated vertices, obtaining the graph G'. Since each vertex of W is incident 

with an even number of edges of W, every vertex of G' is even. Every 
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component of G' is a nontrivial graph with fewer than m edges and is 
eulerian by hypothesis. Since G is connected, every component of G' 

has a vertex that also belongs to W. Hence an eulerian circuit of G can 
be constructed by inserting an eulerian circuit of each component H' of 
G' at a vertex of H' also belonging to W. □ 

A graph G is defined to be an even graph (odd graph) if all of its vertices 
have even (odd) degree. Thus, by Theorem 4.1, the nontrivial connected 
even graphs are precisely the eulerian graphs. A characterization of 
graphs containing eulerian trails can now be presented. 

Theorem 4.2 

Let G be a nontrivial connected graph. Then G contains an eiderian trail if and 
only ifG has exactly two odd vertices. Furthermore, the trail begins at one of these 
odd vertices and terminates at the other. 

Proof 

If G contains an eulerian u-v trail, then, as in the proof of Theorem 4.1, 
every vertex of G different from u and v is even. It is likewise immediate 
that each of u and v is odd. 

Conversely, let G be a connected graph having exactly two odd vertices 
u and v. If G does not contain the edge e = uv, then the graph G + e is 
eulerian. If the edge e is deleted from an eulerian circuit of G + e, then 
an eulerian trail of G results. In any case, however, a new vertex w can 
be added to G together with the edges uw and vvo, producing a connected 
graph H in which every vertex is even. Therefore, H is eulerian and 
contains an eulerian circuit C. The circuit C necessarily contains uw and 
vw as consecutive edges so that the deletion of w from C yields an eulerian 

trail of G. Moreover, this trail begins at u or v and terminates at the 
other. □ 

If G is a connected graph with 2k odd vertices (k ^ 1), then the edge set 
of G can be partitioned into k subsets, each of which induces a trail 

connecting odd vertices (Exercise 4.2). However, even more can be said. 
This result was extended in [CPS1]. (See Exercise 4.3 for a special case of 

the next theorem.) 

Theorem 4.3 

If G is a connected graph with 2k odd vertices ^ 1), then E(G) can be parti¬ 

tioned into subsets El5 E2,..., Ek so that for each i, (£,) is a trail connecting odd 
vertices and such that at most one of these trails has odd length. 
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We note that analogues to Theorems 4.1 and 4.2 exist for multigraphs. 
It therefore follows that the multigraph of Figure 4.2 contains neither an 
eulerian trail nor an eulerian circuit. Eulerian graphs have several useful 

characterizations. The following result, due to Veblen [V2], characterizes 

eulerian graphs in terms of their cycle structure. 

Theorem 4.4 

A nontrivial connected graph G is eulerian if and only if E(G) can be partitioned 

into subsets E,, 1 ^ i k, where each subgraph (£,•) is a cycle. 

Proof 

Let G be an eulerian graph. We employ induction on the number m of 

edges of G. If m — 3, then G = X3 and G has the desired property. 
Assume, then, that the edge set of every eulerian graph with fewer than 
m edges, m ^ 4, can be partitioned into subsets each of which induces a 
cycle, and let G be an eulerian graph with m edges. Since G is eulerian, G is 

an even graph and G has at least one cycle C. If E(G) = E(C), then we 
have the desired (trivial) partition of E(G). Otherwise, there are edges 

of G not in C. Remove the edges of C to obtain the graph G'. As in the 
proof of Theorem 4.1, every nontrivial component of G' is a nontrivial 
connected even graph and so, by Theorem 4.1, is an eulerian graph 
with fewer than m edges. Thus, by the inductive hypothesis, the edge 

set of each nontrivial component of G/ can be partitioned into subsets, 
each inducing a cycle. These subsets, together with E(C), give the desired 
partition of E(G). 

For the converse, suppose that the edge set of a nontrivial connected 
graph G can be partitioned into subsets E„ 1 ^ ^ k, where each subgraph 

(E,) is a cycle. This implies that G is a nontrivial connected even graph and 
so, by Theorem 4.1, G is eulerian. □ 

We next present a characterization of eulerian graphs involving parity 
and cycle structure. The necessity is due to Toida [T7] and the sufficiency 

to McKee [M5], 

Theorem 4.5 

A nontrivial connected graph G is eulerian if and only if every edge ofG lies on an 
odd number of cycles. 

Proof 

First, let G be an eulerian graph and let e — uv be an edge of G. Then G — e 
is connected. Consider the set of all u-v trails in G — e for which v appears 
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only once, namely as the terminal vertex. There is an odd number of edges 
possible for the initial edge of such a trail. Once the initial edge has been 
chosen and the trail has then proceeded to the next vertex, say w, then 
again there is an odd number of choices for edges that are incident with 

w but different from uw. We continue this process until we arrive at vertex 
v. At each vertex different from v in such a trail, there is an odd number of 
edges available for a continuation of the trail. Hence there is an odd 
number of these trails. 

Suppose that Ti is a u-v trail that is not a u-v path and Ti contains v only 
once. Then some vertex vk(^v) occurs at least twice on Tj, implying that 
Ti contains a zq-zq circuit, say C: Vi,v2,... ,vk,vi. Hence, there exists a u-v 
trail T2 identical to Tj except that C is replaced by the 'reverse' circuit 

C': Vi,vk,vk_i,... ,v2,v1. This implies that the u-v trails that are not u-v 
paths occur in pairs. Therefore, there is an even number of such u-v trails 
that are not u-v paths and, consequently, there is an odd number of u-v 
paths in G — e. This, in turn, implies that there is an odd number of cycles 
containing e. 

For the converse, suppose that G is a nontrivial connected graph that is 

not eulerian. Then G contains a vertex v of odd degree. For each edge e 
incident with v, denote by c(e) the number of cycles of G containing e. 
Since each such cycle contains two edges incident with v, it follows that 
^2 c(e) equals twice the number of cycles containing v. Because there is an 
odd number of terms in this sum, some c(e) is even. □ 

We now briefly consider the directed analogue of eulerian graphs. An 
eulerian trail of a digraph D is an open trail of D containing all of the arcs 
and vertices of D, and an eiderian circuit is a circuit containing every arc 
and vertex of D. A digraph that contains an eulerian circuit is called an 
eulerian digraph. The digraph D^ of Figure 4.4 is eulerian while D2 has an 

eulerian trail. 
We now present a characterization of eulerian digraphs whose state¬ 

ment and proof are very similar to Theorem 4.1. Recall that a digraph D 
is connected if D contains a u-v semipath for every pair u,v of vertices 

of D. 

Figure 4.4 Digraphs with eulerian circuits and eulerian trails. 
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Theorem 4.6 

Let D be a nontrivial connected digraph. Then D is eulerian if and only if 

od v = id v for every vertex v of D. 

With the aid of Theorem 4.6, it is easy to give a characterization of 

digraphs containing eulerian trails. 

Theorem 4.7 

Let Dbea nontrivial connected digraph. Then D has an eulerian trail if and only if 

D contains vertices u and v such that 

od u = id u + 1 and id v = od v + 1 

and od w = id w for all other vertices w of D. Furthermore, the trail begins at u 

and ends at v. 

We now return to graphs. Neither of the graphs Gt and G2 of Figure 4.5 

is eulerian. However, we can obtain an eulerian graph from G] by adding 
the edges aa', bb' and cc'. On the other hand, as we shall see, there are 
no edges that can be added to G2 to produce an eulerian graph. These 
observations lead to our next topic. 

A graph G is called subeulerian if it is possible to add edges to G to obtain 

an eulerian graph, that is, if G is a spanning subgraph of an eulerian 
graph. Thus the graph Gj of Figure 4.5 is subeulerian while the graph 
G2 of Figure 4.5 is not subeulerian. So graphs of even order may or may 

not be subeulerian. However, every graph of odd order at least 3 is sub¬ 
eulerian since it is a spanning subgraph of a complete graph of odd order, 

which is necessarily eulerian. 
Theorem 4.8 will provide us with a tool to characterize connected sub¬ 

eulerian graphs. Before presenting this result, we introduce some useful 

terminology. 
Let S be a set of 2k vertices of a graph G. We say there is a pairing of S on 

G if the vertices of S can be labeled as U\, u2,..., uk,Vi,v2,... ,vk so that G 
contains a set V = {P^, P2,..., Pk} of k paths, where P, is a w,-u, path for 

b c 

Figure 4.5 Subeulerian graphs. 
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i — 1,2,k. The set V is called a pairing of S in G. A minimum pairing of S 
in G is one for which 

X iE(p<)i 
1 = 1 

is minimum. Certainly if G is connected, then G contains a pairing of S. 
Indeed, G contains a pairing of S if and only if every component of G 
contains an even number of vertices of S. 

Another useful observation is that the paths in a minimum pairing V 
are necessarily pairwise edge-disjoint; for, otherwise, suppose that 
P: x1,x2,.. ■ ,xt and Q: Wi,w2,... ,wr are paths in V with x,xi+1 = WjWj+1 
for some i and j. Then P and Q can be replaced by the paths 

and 

Q ■ xt,Xt_i, . . . ,X; + i 10j _|_ j, 10j -|-2) • ■ • i £or, 

contradicting the minimality of V. 
The next theorem is due to Jaeger [J3]. 

Theorem 4.8 

Let Gbea connected graph with X C E(G). Then G contains an even subgraph H 
with X C E(H) if and only if X contains no minimal edge-cut of G having odd 
cardinality. 

Proof 

Suppose first that H is a subgraph of G containing a minimal edge-cut Y of 
G having odd cardinality. We show that H is not an even graph, which 
will in turn show that every subgraph of G that contains a set X of edges of 
G with Y C X is not even. Since Y is a minimal edge-cut of G, the set Y is 
certainly an edge-cut of H as well (although not necessarily a minimal 

edge-cut). Consequently, there is a partition of V(H) into subsets'^ 
and V2 such that the edges of H between V] and V2 are precisely those 

of Y. Thus, 

X degH» = 2|E((V1))| + |Y|. 

Since |Y| is odd, H contains a vertex of odd degree and so H is not even. 
For the converse, assume that X is a set of edges of G that contains no 

minimal edge-cut of G of odd cardinality. We show that there is an even 
subgraph H of G containing X. If (X) itself is an even graph, then H = (X) 

is the desired subgraph of G. Suppose then that (X) contains odd vertices, 
and let O be the set of odd vertices of‘(X). We show that there is a pairing 
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of the set O in the graph G — X. It suffices to show that every component 
of G — X contains an even number of vertices of O. This is certainly true if 

G — X is connected. 
Suppose, then, that G — X is disconnected and that G0 is a component of 

G — X. We show that G0 contains an even number of vertices of O. Let 

G], G2,..., Gk (k ^ 1) be the components of G —V(G0) and for 
i = 1,2,... ,fc, let X, denote the edges between G0 and G,. Hence each set 
X, (1 < / < k) is a minimal edge-cut of G and X, C X. By hypothesis then, 
|X,| is even for each i (1 ^ i ^ k). Let X' = (J*=1 X,. Thus |X'| is even and X' 

consists of all those edges of X that are incident with exactly one vertex 

of G0. 
We now construct a graph G' consisting of the vertices and edges of (X) 

that belong to G0 plus |X'| new vertices, one for each edge of X' and joined 
to the vertex of G0 that is incident with the corresponding edge of 

X'. Hence each newly added vertex has degree 1 in G', and 

degc' v = deg^x) v for each vertex v in G0. The number of odd vertices of 
G' is |O D V(Go)| + |X,|. Since G' has an even number of odd vertices and 
|X;| is even, the number of elements of O in G0 is even. 

Thus, as claimed, there is a pairing of O in G — X; so there is a minimum 
pairing of V = {Pl5 P2,..., P,} of O in G — X. Therefore, the paths in V are 
pairwise edge-disjoint. Hence the graph H with 

i = i 

and 

contains X and is even. □ 

Corollary 4.9, first discovered by Boesch, Suffel and Tindell [BST1], 
characterizes connected subeulerian graphs. 

Corollary 4.9 

A connected graph G is subeulerian if and only if G contains no spanning odd 
complete bipartite graph. 

Proof 

Let G be a connected graph of order n. Now G is subeulerian if and only if 
there is an even subgraph H of K„ with £(G) C E(H). By Theorem 4.8, 

such a subgraph H exists if and only if E(G) contains no minimal edge- 
cut of K„ of odd cardinality. Since the minimal edge-cuts of K„ of odd 
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Figure 4.6 

cardinality are precisely the sets of edges inducing a spanning odd 
complete bipartite graph, the result follows. □ 

The graph G3 of Figure 4.6 is, of course, not eulerian. It is not sub- 
eulerian either. Since G3 = K3 3, this follows from Corollary 4.9. 

We now turn to a concept that is, in a certain sense, opposite to sub- 
eulerian graphs. We have just observed that we cannot produce an 
eulerian graph by adding edges to G3. However, the removal of the 
edges aa\ bb' and cc' results in an eulerian graph. 

A graph G is supereulerian if it is possible to remove edges from G to 
obtain an eulerian graph, i.e. if G has a spanning eulerian subgraph. 

Therefore, the graph G3 of Figure 4.6 is supereulerian. The graph 

G4 = fC2,3 is n°t supereulerian. 
No characterization is known for supereulerian graphs although there 

are many sufficient conditions for a graph to be supereulerian (see Catlin 
[C2]). Corollary 4.10, due to Jaeger [J3], gives one such condition. 

a b 

A supereulerian graph. 

Corollary 4.10 

If a graph G contains two edge-disjoint spanning trees, then G is supereulerian. 

Proof 

Let Ti and T2 be edge-disjoint spanning trees of G. Since T2 C G — E(Ti), 
the graph G — £(71) is connected and so E(Ti) contains no minimal edge- 
cut (of odd cardinality). Thus there is an even subgraph H of G with 
E(Tj) C E(H). Since Ti C H, it follows that H is a spanning connected 

even subgraph of G; so G is supereulerian. □ 

According to Theorem 4.4, the edge set of an eulerian graph G can be 
partitioned into subsets E-j, E2,..., Ek, where G, = (E,) is a cycle for 

i = l,2, ...,£. Thus the collection C = {G^ G]t G2, G2,... ,Gk,Gk} of 
cycles of G (where multiplicities are allowed) has the property that 

every edge of G is in exactly two cycles of C. Such a collection of cycles 
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is called a cycle double cover of G. Many graphs that are not eulerian also 
have cycle double covers. For example, the Petersen graph has a cycle 

double cover, consisting of five cycles. Szekeres [SI 1 ] in 1973 and 
Seymour [S3] in 1979 independently made the following conjecture. 

The Cycle Double Cover Conjecture 

Every 2-edge-connected graph has a cycle double cover. 

A related conjecture, due to Bondy [B13], bounds the number of cycles 

in a cycle double cover. 

The Small Cycle Double Cover Conjecture 

Every 2-edge-connected graph of order n ^ 3 has a cycle double cover consisting 

of fewer than n cycles. 

We close this section with suggestions for further reading. Survey 
articles on eulerian graphs and related topics can be found in Fleischner 
[F6] and in [LOl], and a book by Fleischner [F7] is another useful resource. 
Readers interested in more information on supereulerian graphs should 

consult the survey by Catlin [C2], which also includes information on the 
cycle double cover conjecture. 

EXERCISES 4.1 

4.1 In present-day Konigsberg (Kaliningrad), there are two additional 

bridges, one between regions B and C, and one between regions 
B and D. Is it now possible to devise a route over all bridges of 
Konigsberg without recrossing any of them? 

4.2 Let G be a connected graph with 2k odd vertices, k ^ 1. Show that 
E(G) can be partitioned into subsets E,, 1 ^ i ^ k, so that (E,) is an 
open trail for each i. Then show that for t < k, E(G) cannot be parti¬ 

tioned into subsets E,, 1 ^ i < t, so that (E;) is an open trail for each i. 

4.3 Show that every nontrivial connected graph G of even size having 

exactly four odd vertices contains two trails Ty and T2 of even length 

such that {E(T]), £(T2)} is a partition of E(G). 

4.4 Prove Theorem 4.6. 

4.5 Prove Theorem 4.7. 

4.6 Prove that a nontrivial connected digraph D is eulerian if and only if 

E(D) can be partitioned into subsets E„ 1 ^ i ^ k, where (E,) is a 
cycle for each i. 
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4.7 Show that if D is a connected digraph such that 

^ZveV(D) |odu — id v\ — It, where t ^ 1, then E(D) can be partitioned 
into subsets Eir 1 < i t, so that (£,•) is an open trail for each i. 

4.8 For each integer k ^ 2, give an example of a connected graph Gk of 
order 2k that is neither subeulerian nor supereulerian. 

4.9 Characterize disconnected subeulerian graphs. 

4.10 Show that the Petersen graph has a cycle double cover consisting of 
five cycles. 

4.2 HAMILTONIAN GRAPHS AND DIGRAPHS 

A graph G is defined to be hamiltonian if it has a cycle containing all the 
vertices of G. The name 'hamiltonian' is derived from Sir William Rowan 
Hamilton, the well-known Irish mathematician. Surprisingly, though, 

Hamilton's relationship with the graphs bearing his name is not strictly 
mathematical (see Biggs, Lloyd and Wilson [BLW1, p. 31]). In 1857, 
Hamilton introduced a game consisting of a solid regular dodecahedron 
made of wood, twenty pegs (one inserted at each corner of the dodeca¬ 
hedron), and a supply of string. Each corner was marked with an 
important city of the time. The aim of the game was to find a route 
along the edges of the dodecahedron that passed through each city 
exactly once and that ended at the city where the route began. In order 
for the player to recall which cities in a route had already been visited, the 

string was used to connect the appropriate pegs in the appropriate order. 
There is no indication that the game was ever successful. 

The object of Hamilton's game may be described in graphical terms, 
namely, to determine whether the graph of the dodecahedron has a 
cycle containing each of its vertices (Figure4.7). It is from this that we 
get the term 'hamiltonian'. 

It is interesting to note that in 1855 (two years before Hamilton intro¬ 
duced his game) the English mathematician Thomas P. Kirkman posed 
the following question in a paper submitted to the Royal Society: Given 

the graph of a polyhedron, can one always find a circuit that passes 
through each vertex once and only once? Thus, Kirkman apparently intro¬ 
duced the general study of 'hamiltonian graphs' although Hamilton's 

game generated interest in the problem. 
A cycle of a graph G containing every vertex of G is called a hamiltonian 

cycle of G; thus, a hamiltonian graph is one that possesses a hamiltonian 
cycle. Because of the similarity in the definitions of eulerian graphs and 

hamiltonian graphs, and because a particularly useful characterization of 
eulerian graphs exists, one might well expect an analogous criterion for 
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Figure 4.7 The graph of the dodecahedron. 

hamiltonian graphs. However, such is not the case; indeed it must be 

considered one of the major unsolved problems of graph theory to 
develop an applicable characterization of hamiltonian graphs. 

If G is a hamiltonian graph, then certainly G is connected, G contains a 

hamiltonian cycle and so G has no cut-vertices, and, of course, G has order 
at least 3; so G is 2-connected. Therefore, a necessary condition for G to be 
hamiltonian is that G be 2-connected; that is, if G is not 2-connected, then 

G is not hamiltonian. A less obvious necessary condition is presented 
next. 

Theorem 4.11 

If G is a hamiltonian graph, then for every proper nonempty set S of vertices ofG, 

k(G — S) ^ |S|. 

Proof 

Let S be a proper nonempty subset of V(G), and suppose that 
k(G — S) = 1, where G], G2,..., G^ are the components of G — S. Let 
C be a hamiltonian cycle of G. When C leaves G; (1 ^ j ^ k), the next 
vertex of C belongs to S. Thus k(G — S) = k ^ |S|. □ 

Consequently, for every vertex-cut S of a hamiltonian graph G, it fol¬ 
lows that \S\/k(G — S) ^ 1. 

Corollary 4.12 

Every hamiltonian graph is \-tough. 

We now turn our attention to sufficient conditions for a graph to be 
hamiltonian. Although every hamiltonian graph is 2-connected, the 

converse is not true. Indeed, no connectivity guarantees that a graph is 
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hamiltonian. For example, let k ^ 2 be a positive integer and consider 

G = K^+i, which is ^-connected. Let S denote the partite set of cardinality 
k. Then k(G — S) = k + 1 > |S|, which implies by Theorem 4.11 that G is 
not hamiltonian. 

We have also seen in Corollary 4.12 that every hamiltonian graph is 

1-tough. Although the converse is not true here either, it has been conjec¬ 
tured by Chvatal [C7] that there is a constant k such that every fc-tough 
graph is hamiltonian. Indeed, Chvatal has conjectured that every 2-tough 
graph is hamiltonian. 

There have been several sufficient conditions established for a graph to 
be hamiltonian. We consider some of these in this section. The following 
result is due to Ore [Ol]. 

Theorem 4.13 

If G is a graph of order n ^ 3 such that for all distinct nonadjacent vertices u 
and v, 

deg u + degu ^ n, 

then G is hamiltonian. 

Proof 

Assume that the theorem is not true. Hence there exists a maximal non- 
hamiltonian graph G of order n ^ 3 that satisfies the hypothesis of the 
theorem; that is, G is nonhamiltonian and for every two nonadjacent 
vertices and w2 of G, the graph G + wxw2 is hamiltonian. Since G is 
nonhamiltonian, G is not complete. 

Let u and v be two nonadjacent vertices of G. Thus, G + uv is hamilto¬ 
nian, and, furthermore, every hamiltonian cycle of G -I- uv contains the 

edge uv. Thus there is a u-v path P: u = ux, w2,..., un = v in G containing 
every vertex of G. 

If u-]Uj e E(G),2 ^ i < rz, then Ui_iUn 0 E(G); for otherwise, 

^1 > Uj, Uji, . . . , Un, Uj_ i, Uj_2, . . . , U\ 

is a hamiltonian cycle of G. Hence for each vertex of {u2, w3,..., u„} adja¬ 

cent to ip there is a vertex of {wj, u2,..., w„-i} not adjacent with u„. Thus, 
degw„ (n - 1) — degW] so that 

deg u + deg v < n — 1. 

This presents a contradiction; so G is hamiltonian. □ 

If a graph G is hamiltonian, then certainly so is the graph G + uv, where 
u and v are distinct nonadjacent vertices of G. Conversely, suppose that G 
is a graph of order n with nonadjacent vertices u and v such that G + uv is 
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C(C) 

Figure 4.8 The closure function. 

hamiltonian; furthermore, suppose that degG u + degG v ^ n. If G is not 
hamiltonian, then, as in the proof of Theorem 4.13, we arrive at the contra¬ 
diction that degG u + degG v ^ n — 1. Hence we have the following result, 
which was first observed by Bondy and Chvatal [BC3]. 

Theorem 4.14 

Let u and v he distinct nonadjacent vertices of a graph G of order n such that 
degu + degv ^ n. Then G + uv is hamiltonian if and only if G is hamiltonian. 

Theorem 4.14 motivates our next definition. The closure of a graph G of 

order n, denoted by C(G), is the graph obtained from G by recursively 
joining pairs of nonadjacent vertices whose degree sum is at least n (in 
the resulting graph at each stage) until no such pair remains. Figure 4.8 
illustrates the closure function. That C(G) is well-defined is established 
next. 

Theorem 4.15 

If G] and G2 are two graphs obtained from a graph G of order n by recursively 
joining pairs of nonadjacent vertices whose degree sum is at least n, then 

Gi = G2. 

Proof 

Let e-[, e2) •••)£/ arid /i,/2,... ,/*. be the sequences of edges added to G to 
obtain G] and G2, respectively. It suffices to show that each c, (1 < i < j) 
is an edge of G2 and that each f (1 k) is an edge of G]. Assume, to the 

contrary, that this is not the case. Thus we may assume, without loss of 
generality, that for some t satisfying 0 ^ t ^ j — 1, the edge cf + ] = uv does 
not belong to G2; furthermore, e, £ E(G2) for i < t. Let G3 be the graph 

obtained from G by adding the edges eue2,... ,et. It follows from the 
definition of Gj that degGs u 4- degGi v ^ n. This is a contradiction, how¬ 

ever, since u and v are nonadjacent vertices of G2. Thus each edge e, 
belongs to G2 and each edge f, belongs to Gy that is, G] = G2. □ 
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Our next theorem is a simple consequence of the definition of closure 
and Theorem 4.14. 

Theorem 4.16 

A graph is Hamiltonian if and only if its closure is Hamiltonian. 

Since each complete graph with at least three vertices is hamiltonian, 
we obtain Bondy and Chvatal's [BC3] sufficient condition for a graph to 
be hamiltonian. 

Theorem 4.17 

Let G be a graph with at least three vertices. If C(G) is complete, then G is 
hamiltonian. 

If a graph G satisfies the conditions of Theorem 4.13, then C(G) is 
complete and so, by Theorem 4.17, G is hamiltonian. Thus, Ore's theorem 
is an immediate corollary of Theorem 4.17 (although chronologically it 

preceded the theorem of Bondy and Chvatal by several years). Perhaps 
surprisingly, many well-known sufficient conditions for a graph to be 
hamiltonian based on vertex degrees can be deduced from Theorem 
4.17. Theorem 4.18, due to Chvatal [C6], is an example of one of the 
strongest of these. 

Theorem 4.18 

Let G be a graph of order n ^ 3, the degrees dt of whose vertices satisfy 

d\ ^ d2 5% • • ■ < dn. If there is no value of k < nj2 for which dk ^k and 
dn_k ^ n — k — 1, then G is hamiltonian. 

Proof 

We show that C(G) is complete which, by Theorem 4.17, implies that G is 
hamiltonian. Assume, to the contrary, that C(G) is not complete. Let u and 

w be nonadjacent vertices of C(G) for which degC(G) u + degC(Gj w is as 
large as possible. Since u and w are nonadjacent vertices of C(G), it follows 

that degC(G) u + degG(G) w ^ n - 1. Assume, without loss of generality, 
that degC(G) u ^ degG(G) w. Thus if k = degC(G) u, we have that k ^ 
(n - l)/2 < n/2 and degG(G) w ^ n — 1 — k. Let W denote the vertices 
other than w that are not adjacent to w in C(G). Then |W| = 

n — 1 — degG(G) w ^ k. Also, by the choice of u and w, every vertex v € W 
satisfies degG v ^ degC(G) v ^ degC(G) u = k. Thus, G has at least k vertices 

of degree at most k and so dk ^ k. Similarly, let U denote the vertices other 
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than u that are not adjacent to u in C(G). Then \U\ — n — 1 - degqq u = 
n — k — 1. Every vertex v e U satisfies degG v ^ degqq v ^ degqG) w ^ 

n — 1 — k, implying that i ^ n — k — 1. However, degc u ^ 

degc(G) " ^ degC(C) w ^ n — l — k, so d„_k ^ n — k — 1. This, however, 
contradicts the hypothesis of the theorem. Thus, C(G) is complete. □ 

Perhaps the simplest sufficient condition for a graph to be hamiltonian 

is due to Dirac [D4]. It is a simple consequence of each of Theorems 4.13, 

4.17 and 4.18. 

Corollary 4.19 

If G is a graph of order n 3 such that deg v ^ n/2for every vertex v ofG, then 

G is hamiltonian. 

Each of the sufficient conditions presented so far requires that the graph 

under consideration contains some vertices of degree at least n/2. In the 
case of regular graphs, however, this situation can be improved. Jackson 
[Jl] has shown that every 2-connected r-regular graph of order at most 3r 
is hamiltonian. The Petersen graph, for example, shows that 3r cannot be 

replaced by 3r + 1. Define the class F to be the set of all 2-connected 
graphs that are spanning subgraphs of one of the graphs G\, G2 and G3 
of Figure 4.9. Since none of these three graphs is hamiltonian, no graph 
in T is hamiltonian. In particular, the regular graphs in F are non- 
hamiltonian. However, in [BJVV1] the following generalization of 

Jackson's result was conjectured. Let G be a 2-connected r-regular 
graph of order at most 4r. Then for r ^ 4, G is hamiltonian or G is a 
member of the class F. It is known that this conjecture is true for 
graphs with at most (7r — 14)/2 vertices. 

Other approaches have been used to determine sufficient conditions for 
hamiltonicity that are satisfied by graphs G with minimum degree less 
than n/2. For these results, as in the case of the previously mentioned 

p,q,sZ 1 
p + q + s = n-2 

p,q,s>2 
p+q+s=n-l 

Figure 4.9 Members of the class T. 

p,q,sZ3 
p + q + s = n 
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results for r-regular graphs, the condition that G be 2-connected is 
included. Certainly, this is a necessary condition for G to be hamiltonian. 
However, unlike the situation in Theorems 4.13, 4.17 and 4.18, 2-connect¬ 

edness is not guaranteed by the degree condition. For example, there are 
(n/3)-regular graphs of order n that are not 2-connected and hence not 
hamiltonian. The neighborhood N(v) of a vertex v in a graph G is the set 

of all vertices of G that are adjacent to v. The following result of Faudree, 
Gould, Jacobson and Schelp [FGJS1] gives a sufficient condition for 
hamiltonicity based on the cardinality of the union of the neighborhoods 
of nonadjacent vertices. The proof given here is due to Fraisse [F10]. 

Theorem 4.20 

If G is a 2-connected graph of order n such that for all distinct nonadjacent 

vertices u and v, 

\N(u) UN(v)\ ^ 2n3 1 , 

then G is hamiltonian. 

Proof 

Since G is 2-connected, G contains at least one cycle. Among all cycles of 
G, let C be one of maximum length. We show that C is a hamiltonian cycle. 

Assume, to the contrary, that there is a vertex w0 of G that is not on C. Thus 
we may apply Theorem 3.26 to obtain two paths Pj and P2 having initial 
vertex zv0 that are pairwise disjoint, except for w0, and that share with C 
only their terminal vertices Xj and x2. For i — 1,2, let w, be the vertex 
following xt in some fixed cyclic orientation of C. 

No vertex w{ (i = 1,2) is adjacent to zv0; for otherwise we could replace 
the edge X(Wt in C by the x—Wj path determined by the path P, and the 
edge zvqW, to obtain a cycle having length at least |V(C)| + 1, which is 

impossible. Similarly, w-[W2 & E(G); otherwise we could replace the 
edges XiWi and x2w2 in C by the paths Pj and P2 together with the edge 
w-[w2 and obtain a cycle longer than C. Thus {ivQ,w},w2} is an 
independent set. Finally, no vertex not on C is adjacent to two of 
w0,u>i,w2 or again a cycle longer that C would be produced. We show 

that \N(wk) U N(z*v)| < (2n —1)/3 for some integers k and 7 with 
0 ^ k ^ t ^ 2, producing a contradiction and completing the proof. 

Let R denote the vertices of G adjacent to none of w0, W\, w2; let S denote 
the vertices of G adjacent to exactly one of w0,wu w2; and let T denote the 

vertices of G adjacent to at least two of w0,w},w2. Furthermore, let 
Rc = RnV(C) and let Rc — R -V(C). Then {w0, ze,, iv2} C R and, in 

particular, w0 6 RC' so that 

\RC\^G (4.1) 
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Also, as observed. 
(V(G)-v(C))nr = 0. (4.2) 

We next show that there are at most two elements of T between con¬ 
secutive elements (with respect to the fixed cyclic ordering of C) of R on C. 

In the remainder of the proof we assume that the discussion is always 
with respect to this ordering of C. Let a\ and a2 be consecutive vertices 

of R on C. Since {w0,Wi,w2} Q R, it follows that a-\ and a2 belong either 
to the W\-w2 subpath or w2-W\ subpath of C. Without loss of generality, 
assume that a\ and a2, in this order, belong to the w-[-w2 subpath. Let P be 

the a-[—a2 subpath of C. Then every internal vertex of P is adjacent to at 

least one of w0,Wi,w2. Suppose that v and v denote a vertex and its 
successor on P with the property that v € N(u>,-) and v 6 N(Wj) for some 
integers ; and j with 0 ^ i ^ j ^ 2. First, i / 0; for otherwise, j — 1 or j — 2, 
and in either case we obtain a cycle longer than C. Thus i = 1 or / = 2. If 
i = 2, then j = 0; otherwise j = 1 and we obtain a cycle longer than C. 

Finally, if i = 1, then j — 0 or j = 2 since i ^ j. It follows that if 
N0 = V(P) nN{w0), Ny = V{P) n N(w}) and N2 - V(P) n N{w2), then 

(i) each N, consists of a (possibly empty) sequence of consecutive 
internal vertices of P; 

(ii) each element of N-[ precedes or equals each element of N2 and each 
element of N2 precedes each element of N0; and 

(iii) |N] flN2| < 1, |N2 fl N0| ^ 1 and |2V1 n N0| is 0 or at most 1 depending 
on whether N2 ^ 0 or N2 = 0. 

Since each element of T between a, and a2 must lie in the intersection of 
two of the sets N, (0 < i ^ 2), it follows that there are at most two 
elements of T between ax and a2. 

To complete the proof, let j (0 ^ ^ 2) be chosen so that W; has the 
maximum number s of neighbors in S. Then s 5s |S|/3. Since, by (4.2), no 
vertex not on C is adjacent to two of ie0, itq, iv2, the number of vertices of S 

not on C is n — |V(C)| — \Rc\- From the preceding discussion we see that 
the number of vertices of S on C is at least |V(C)| — 3|RC|. Thus, 

|S| = |S - V(C)| + IS n V(C)| >(n- |V(C)| - \RC\) + (|V(C)| - 3\Rc\) 

= «-|Rc'|-3|Rc|, 

and so 

However, then, wk and w( (0 < ( ^ k ^ 2; t,k ^ j) are nonadjacent 
vertices of G such that 

\N(wk) uN(Wf)\ = n — \R\ - s 
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From (4.1) we know that \RC>\ ^ 1. Thus \N(wk) U N(uy)| ^ 
(2n — 2)/3 < (2n — l)/3, and the proof is complete. □ 

In [FGJL2], another neighborhood result shows that if G is a 2-con- 
nected graph of sufficiently large order n such that \N(u) UN(d)| ^ n/2 
for all pairs u,v of vertices of G, then G is hamiltonian. Clearly, this 
theorem generalizes Dirac's result for graphs of sufficiently large order. 
Theorem 4.21, presented without proof because of the length and 
difficulty of the proof, has the preceding result, Dirac's theorem. Ore's 
theorem, and Theorem 4.18 as corollaries. This result is due to Broersma, 
van den Heuvel and Veldman [BVV1], Recall that T is the class of all 2- 
connected spanning subgraphs of one of the graphs of Figure 4.9. 

Theorem 4.21 

If G is a 2-connected graph of order n such that for all distinct nonadjacent 
vertices u and v, 

\N(u) U N(v)\ ^ 

then G is hamiltonian, G is the Petersen graph, or G E IF. 

The sufficient conditions for hamiltonicity that we have presented so 
far all involve the number of adjacencies of the vertices of the graph. 
Our next result, however, involves the cardinality of independent sets 
of vertices and the connectivity of the graph. The next result is due to 
Chvatal and Erdos [CE1 ]. The proof technique has become a standard 
tool (see, for example, the proof of Theorem 4.20). 

Theorem 4.22 

Let G be a graph with at least three vertices. If k(G) ^ (3(G), then G is 
hamiltonian. 

Proof 

If (3(G) = 1, then the result follows since G is complete. Hence we assume 
that (3(G) ^ 2. Let k(G) = k. Since k ^ 2, G contains at least one cycle. 
Among all cycles of G, let C be one of maximum length. By Theorem 
3.27, there are at least k vertices on C. We show that C is a hamiltonian 
cycle of G. Assume, to the contrary, that there is a vertex w of G that does 
not lie on C. Since |V(C)| ^ k, we may apply Theorem 3.26 to conclude 
that there are k paths PT, P2,..., Pk having initial vertex w that are pairwise 
disjoint, except for w, and that share with C only their terminal vertices 
Vi,v2, ■ ■ ■, vk, respectively. For each i = 1,2,..., k, let u, be the vertex fol¬ 
lowing v, in some fixed cyclic ordering of C. No vertex w, is adjacent to w 
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in G; for otherwise we could replace the edge VjU, in C by the v—u, path 
determined by the path P, and the edge u,w to obtain a cycle having length 

at least |V(C)| + 1, which is impossible. Let S = {u>, uk). Since 
|S| = k + 1 > /3(G) and zvu, 0 E(G) for i — 1,2,... ,k, there are integers j 
and £ such that u,u( e E(G). Thus by deleting the edges VjUj and vfu( 

from C and adding the edge upl/ together with the paths P; and Pf, we 
obtain a cycle of G that is longer than C. This produces a contradiction, 

so that C is a hamiltonian cycle of G. □ 

Our next result, due to Bondy [Bll], shows, perhaps somewhat sur¬ 
prisingly, that Ore's theorem (Theorem 4.13) follows as a corollary to 

Theorem 4.22. 

Theorem 4.23 

Let G be a graph of order n ^ 3 such that for all distinct nonadjacent vertices u 
and v, 

deg u + degu ^ n. 

Then k(G) ^ (3(G). 

Proof 

If G is complete, then clearly k(G) ^ (3(G). Thus we may assume that G is 
not complete. Let S be a set of vertices of G such that G — S is disconnected 
and |S| = k(G). Let R be the vertex set of one of the components of G — S 
and define T = V(G) — (SuR). Let Li be an independent set of vertices of 
G with | If | = (3(G), and let 

R' = R n Li, S' = Snu, r' = T n Li. 

Finally, set 

r = \R\, s = |S|, t=\T\, r' = |R'|, s' = |S'|, t' = \T'\. 

We proceed by cases. 

Case 1. Assume that R' = T' = 0. Then Li = S' C S; so |Li| ^ |S|, that is, 
0(G) < /c(G). 

Case 2. Assume that R1 — 0 and T' = 0. Let u 6 R' and v £ T. Then 
uv g E(G); so degw + degu ^ n. Furthermore, N(u) C (R — R') u (S — S') 

and N(v) C S U (T — {v})} so deg u ^ (r — r') -I- (s - s') and degu^ 
s + t — 1. Therefore 

n ^ deg u + deg v ^ (r - r') + (s - s') + s + t - 1 

= (r + s + t) - (r' + s') 3- (s - 1) 

— n — 0(G) + k(G) — 1. 

It follows that 0(G) ^ k(G) — 1 < k(G). 
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Case 3. Assume that R' — 0 and T1 — 0. Let u E R and v G T' 
manner similar to Case 2, we have 

n ^ deg u + deg v ^ r + s — 1 + (t — t1) + (s — s') 

= (r + s +1) - (s' + f') + (s - 1) 

= n — 0(G) + n(G) — 1; 

so 0(G) ^ «(G) — 1 < k(G). 

Case 4. Assume that R' ^ 0 and T' ^ 0. Let u E R' and u e T'. Then 

« < deg u + deg u ^ (r - r') + (s — s') + (t — f') + (s — s') 

= (r + s + f) - (r' + s' + t') + (s - s') 

= n - 0(G) + k(G) - s'. 

Thus 0(G) ^ «(G) — s' < k(G). □ 

Theorem 4.13 has been extended in other ways. The next result, due to 
Bondy [B12], illustrates this. 
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. Then, in a 

Theorem 4.24 

If G is a 2-connected graph of order n such that 

, , , 3n 
deg u + deg v + deg w ^ — 

for every set {u, v, w} of three independent vertices of G, then G is hamiltonian. 

As we have already remarked, obtaining an applicable characterization 
of hamiltonian graphs remains an unsolved problem in graph theory. In 
view of the lack of success in developing such a characterization, it is not 

surprising that special subclasses of hamiltonian graphs have been 
singled out for investigation as well as certain classes of nonhamiltonian- 

graphs. We now discuss several types of 'highly hamiltonian' graphs and 
then briefly consider graphs that are 'nearly hamiltonian'. 

A path in a graph G containing every vertex of G is called a hamiltonian 

path. A graph G is hamiltonian-connected if for every pair u,v of distinct 
vertices of G, there exists a hamiltonian u-v path. It is immediate that a 
hamiltonian-connected graph with at least three vertices is hamiltonian. 

We define the (n + 1 )-closure C„ + 1(G) of a graph G of order n to be the 
graph obtained from G by recursively joining pairs of nonadjacent 
vertices whose degree sum is at least n + 1 until no such pair remains. 

We then have the following analogue to Theorem 4.17, also due to 

Bondy and Chvatal [BC3]. 
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Theorem 4.25 

Let G be a graph of order n. If C„ + 1(G) is complete, then G is hamiltonian- 

connected. 

Proof 

If n = then the result is obvious; so we assume that n ^ 2. Let G be a 
graph of order n whose (m + l)-closure is complete, and let u and v be any 

two vertices of G. We show that G contains a hamiltonian u-v path, which 
will then give us the desired result. 

Define the graph H to consist of G together with a new vertex w and the 

edges uw and vw. Then H has order n + 1. Since C,1 + 1(G) is complete, 

(V'(G))c(H) = K,r Thus degC(H)x ^ n- 1 for x G V(G); so 

degC(H) x + degC(H) w^n + 1. 

Therefore, C(H) — Kn + i and by Theorem 4.17, H is hamiltonian. Any 
hamiltonian cycle of H necessarily contains the edges uw and vw, imply¬ 
ing that G has a hamiltonian u-v path. □ 

Two immediate corollaries now follow, the first of which is due to 
Ore [03], 

Corollary 4.26 

If G is a graph of order n such that for all distinct nonadjacent vertices u and v, 

deg u + deg v ^ n + 1, 

then G is hamiltonian-connected. 

Corollary 4.27 

IfG is a graph of order n such that degu ^ (n + 1) / 2 for every vertex v of G, then 
G is hamiltonian-connected. 

A number of other sufficient conditions for a graph to be hamiltonian- 

connected can be deduced from Theorem 4.25. One of these is the 
analogue to Theorem 4.18 (see [B8, p. 218]). 

Corollary 4.28 

Let G be a graph of order n ^ 3, the degrees d, of whose vertices satisfy 

d] ^ d2 ^ ^ d„. If there is no value of k ^ m/2 for which dk < k and 
dn_k ^ n — k, then G is hamiltonian-connected. 
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A connected graph G of order n is said to be panconnected if for each pair 

u,v of distinct vertices of G, there exists a u-v path of length { for each 
i satisfying d(u, v) < d ^ n — 1. If a graph is panconnected, then it is 
hamiltonian-connected; the next example indicates that these concepts 
are not equivalent. 

For k^3, let Gk be that graph such that V(Gk) = {rq, v2,..., v^} and 

E(G) = {ViVi+1\i = 1,2,, 2k} U {v,vi+3\i = 2,4,..., 2/c — 4} 

U {viv3,v2k_2v2k}, 

where all subscripts are expressed modulo 2k. Although for each pair u, v 
of distinct vertices and for each integer d satisfying k ^ d ^ 2k — 1, the 
graph Gk contains a u-v path of length /, there is no path of 
length / if 1 < i < k. Since d(vi,^) = 1, it follows that Gk is not pan- 

connected. 
A sufficient condition for a graph G to be panconnected, due to 

Williamson [W7], can be given in terms of the minimum degree of G. 

Theorem 4.29 

If G is a graph of order n ^ 4 such that deg v ^ (n + 2)/2 for every vertex v of 

G, then G is panconnected. 

Proof 

If n = 4, then G = fC4 and the statement is true. 
Suppose that the theorem is not true. Thus there exists a graph G of 

order n^5 with 6(G) ^ (n + 2)/2 that is not panconnected; that is, 
there are vertices u and v of G that are connected by no path of length 
d for some / satisfying d(u,v) < d < n — 1. Let G* = G — {u,v}. Then 
G* has order n* = n — 2 ^ 3 and <5(G*) ^ (n + 2)/2 — 2 — n*/2. Therefore 
by Corollary 4.19, the graph G* contains a hamiltonian cycle 

C: iq,z;2,...,tv,z;i. 
If uVj e E(G), 1 ^ i ^ n*, then zw1 + lf_2 0 E(G), where the subscripts are 

expressed modulo n*; for otherwise, 

w, Vj, Vj -(-1,...) r}[ _|_ ^ _ 2, ^ 

is a u-u path of length d in G. Thus for each vertex of C that is adjacent 
with u in G, there is a vertex of C that is not adjacent with v in G. Since 
degGu (n + 2)/2, we conclude that w is adjacent with at least n/2 

vertices of C, so 

„ n n 
degcv ^ 1 + h ~2 = 2_1' 

This, however, produces a contradiction. □ 
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The result presented in Theorem 4.29 cannot be improved in general. 
Let n = 2k+ \ ^ 7, and consider the graph Kkk + ] with partite sets V-\ and 

V2, where |V-i| — k on \V2\ =k+l. The graph G is obtained from Kkk+] 
by constructing a path Pkand k — 1 vertices of V2. Join the remaining 

two vertices x and y of V2 by an edge. Then degu ^ (n + l)/2 for every 
vertex v but G is not panconnected since G contains no x-y path of 

length 3. 
A graph G of order 3 is called pancyclic if G contains a cycle of 

length i for each ( satisfying 3 ^ ^ n. We say that G is vertex-pancyclic 
if for each vertex v of G and for every integer £ satisfying 3 ^ n, 

there is a cycle of G of length ( that contains v. Certainly every pancyclic 
graph is hamiltonian, as is every vertex-pancyclic graph, although the 

converse is not true. The next theorem, due to Bondy [BIO], gives a 
sufficient condition for a hamiltonian graph to be pancyclic. In order 

to present a proof due to C. Thomassen, a preliminary definition is 
useful. 

Let G be a hamiltonian graph and C: v2,v2,... ,v„,v i a hamiltonian 
cycle of G. With respect to this cycle, every edge of G either lies on C or 
joins two nonconsecutive vertices of C and is referred to as a chord. Any 
cycle of G containing precisely one chord is an outer cycle of G (with 
respect to the fixed hamiltonian cycle C). 

Theorem 4.30 

If G is a hamiltonian (n, m) graph where m ^ n2/4, then either G is pancyclic or n 

is even and G = Kn/2,n/2- 

Proof 

We first show that if G is a hamiltonian (n,m) graph, where n ^ 4 
and m ^ n1 /4, and G contains no (n — l)-cycle, then n is even and 

G = K„/2,n/2- 

Let C: vx ,v2,..., vn,V] be a hamiltonian cycle of G and let v. and u/ + ] be 
any two consecutive vertices of C (where all subscripts are expressed 
modulo n). If 1 ^ k ^ n but k ^ j — 1 and k ^ j, then at most one of vpvk 
and Vj + -[Vk+2 is an edge of G; otherwise, 

Vj + 1 > ^/' + 2i • • • ) Vk) Vji Vj_ j , 2, . . . > W + 2) ^j + 1 

is an (m — l)-cycle of G. Thus for each of the degu, — 1 vertices in 
V(G) — {Vj_2,Vj} that is adjacent to vy there is a vertex in 
V(G) — {Vj+k,Vj+2} that is not adjacent to u;+1. Thus degi>; + 1 ^ 

(n - 2) — (deg Vj - 1) + 1, so 

degu, +degy, + 1 ^ n. (4.3) 
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Suppose that n is odd. Then by (4.3) there is some vertex, say vn, such 
that degz+ ^ (n — l)/2. But then 

n- 1 

2m = deg vi + deg 
i = i 

n(n — 1) (n — 1) n2 
^ —-- + --- < —, 

2 2 2 

which contradicts the fact that m ^ n2/4. Thus n is even and 2m = 

£"=i deg vt ^ n2/2, so that m ^ n2/4. Since m ^ n1 /4, we have that 
m = n2/4. This implies that equality is attained in (4.3) for each j. Therefore, 

V;Vk € E(G) if and only if vi+ivk+2 & E(G), k^j-l,j. (4.4) 

Suppose that G ^ Kn/2)„/2■ Since m = n2/4, by Exercise 1.24, G has an 
odd cycle. This implies that G contains an outer cycle of odd length. Let 

Vj,Vj+\,...,Vj+t,Vj be a shortest outer cycle of G of odd length 7 + 1 
where, then, 7 is even and 4 < 7 < n — 4 since G contains no (n — 1)- 

cycle. Since zyty + ^ e E(G), by (4.4), Vj_iVj+;_2 0 E(G). Then, again by 

(4.4), Vj_2vj+r-4 £ E(G). Therefore Vj_2,Vj_i,..., Vj+s_4,Vj_2 is an outer 
cycle of (odd) length 7 — 1, which is a contradiction. Thus G = Kn/2 n/2. 

We now show by induction on n that if G is a hamiltonian (n, m) graph, 

where m ^ n2/4, then either G is pancyclic or n is even and G = K„/2,„/2- If 
n = 3, then G = C3 and G is pancyclic. Assume for all hamiltonian graphs 
Ef of order n — 1(^3) with at least (n — l)2/4 edges that either H is pan- 

cyclic or n — 1 is even and H = iC(„ _ i )/2,(n —1)/2- Let G be a hamiltonian 
(n,m) graph with m ^ n2/4. Assume that either (i) n is even and 

G ^ K.n/2fn/2 or (II) n is odd. We show that G is pancyclic. Under these 
assumptions, it follows from the first part of the proof that G contains 

an (n — l)-cycle C*: W\,w2, ■ • • Let w be the single vertex of G 
not on C*. 

If deg w ^ n/2, then for each integer 7 satisfying 3 < 7 ^ n, the vertex w 

lies on an 7-cycle of G; otherwise, whenever wwt 6 E(G), 1 < i < n — 1, it 
follows that zeie, 0 E(G), where t = i + 7 — 2 (mod n — 1). This, however, 
implies that degze ^ (n — l)/2, which is a contradiction. Thus G is 

pancyclic if degie ^ n/2. 
If deg w < n/2, then G — re is a hamiltonian graph of order n — 1 with at 

least n2/4 — (n — l)/2 edges. Since n2/4 — (n — l)/2 > (n — l)2/4, it fol¬ 
lows that G — w / X(„_1)/2 („_1)/2. Applying the inductive hypothesis, 

we conclude that G - to is pancyclic. Thus G is pancyclic and the proof 

is complete. □ 

If the sum of the degrees of each pair of nonadjacent vertices of a 

graph G is at least n, where n = |V(G)| ^ 3, then by Theorem 4.13, G is 
hamiltonian. Our next result shows that the condition of Theorem 4.13 

actually implies much more about the cycle structure of G. 
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Corollary 4.31 

Let G be a graph of order n ^ 3 such that for all distinct nonadjacent vertices u 

and v, 

degu + degu ^ n. 

Then either G is pancyclic or n is even and G — K„/2,n/2- 

Proof 

Let G have size m. We need only show that m ^ n2/4, since G is hamilto- 
nian by Theorem 4.13. Let k be the minimum degree among the vertices of 
G. If k ^ n/2, then clearly m ^ u2/4. Thus we may assume that k < m/2. 

Let £ denote the number of vertices of G of degree k. These £ vertices 
induce a subgraph H that is complete; for if any two vertices of H were 
not adjacent, then there would exist two nonadjacent vertices the sum of 

whose degrees would be less than n. This implies that £ ^ k + 1. How¬ 
ever, £ ^ k + 1; for otherwise, each vertex of H is adjacent only to vertices 

of H, which is impossible since G is connected. 
Let u be a vertex of degree k. Since £ ^ k, one of the k vertices adjacent to 

u has degree at least k + 1, while each of the other k — \ vertices adjacent 
to u has degree at least k. Itw ^ u is one of the n — k — 1 vertices of G that is 
not adjacent to u, then degu; + degu ^ n, so that degu; ^ n — k. Hence, 

m = - ^ degu ^ -[(m -k-1)(m — k) -hk2 +k+ 1] 
2 peV(G) 2 

= i [2k2 + (2 - 2n)k + (n2 - n + 1)] » 2-ii, 

the last inequality holding since for k ^ (n — l)/2, the expression 
| [2k2 + (2 — 2n)k + (n2 — n + 1)] takes on its minimum value when 

k=(n-1)/2. □ 

It is interesting to note that many other conditions that imply that a 

graph is hamiltonian have been shown to imply that either the graph is 
pancyclic or else belongs to a simple family of exceptional graphs. 

We next briefly consider graphs that are, in certain senses, 'nearly 
hamiltonian'. Of course, if G is hamiltonian, then G has a hamiltonian 

path. Sufficient conditions for a graph to possess a hamiltonian path 
can be obtained from the sufficient conditions for a graph to be hamilto¬ 
nian. For example, suppose that G is a graph of order n ^ 2 such that for 
all distinct nonadjacent vertices u and u, we have degu + degu ^ n — 1. 

Then the graph G + k] satisfies the hypothesis of Theorem 4.13 and so is 

hamiltonian. This, of course, implies that G contains a hamiltonian path. 
We close this section with a brief discussion of hamiltonian digraphs. A 

digraph D is called hamiltonian if it contains a spanning cycle; such a 
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cycle is called a hamiltonian cycle. As with hamiltonian graphs, no 
characterization of hamiltonian digraphs exists. Indeed, if anything, the 

situation for hamiltonian digraphs is even more complex than it is for 
hamiltonian graphs. While there are sufficient conditions for a digraph 

to be hamiltonian, they are analogues of the simpler sufficient conditions 
for hamiltonian graphs. 

Recall that a digraph D is strong if for every two distinct vertices u and v 
of D, there is both a u-v (directed) path and a v-u path. Clearly, every 
hamiltonian digraph is strong (though not conversely). 

Because of the difficulty of the proof, we state without proof the 
following theorem of Meyniel [M7] that gives a sufficient condition for 
a digraph to be hamiltonian. It should remind the reader of Ore's theorem 
(Theorem 4.13). 

Theorem 4.32 

If D is a strong nontrivial digraph of order n such that for every pair u, v of 
distinct nonadjacent vertices, 

deg u + deg v ^ In — 1, 

then D is hamiltonian. 

Theorem 4.32 has a large number of consequences. We consider these 
now, beginning with a result originally discovered by Woodall [W10]. 

Corollary 4.33 

If D is a nontrivial digraph of order n such that whenever u and v are distinct 

vertices and (u,v) £ E(D), 

od u + id v ^ n, (4.5) 

then D is hamiltonian. 

Proof 

First we show that condition (4.5) implies that D is strong. Let u and v be 
any two vertices of D. We show that there is a u-v path in D. If 
(u,v) E E(D), then this is obvious. If (u,v) £ E(D), then by (4.5), there 

must exist a vertex w in D, with w ^ u,v, such that (w, w), (w, v) e E(D). 
However, then, u,w,v is the desired u-v path. 

To complete the proof we apply Meyniel's theorem. Let u and v be any 

two nonadjacent vertices of D. Then by (4.5), od u + id v ^ n and 
odu + id u ^ n so that degw + degu ^ 2n. Thus, by Theorem 4.32, D is 

hamiltonian. □ 
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The following well-known theorem is due to Ghouila-Houri [G3]. The 

proof is an immediate consequence of Theorem 4.32. 

Corollary 4.34 

If D is a strong digraph such that deg v ^ n for every vertex v of D, then D is 

hamiltonian. 

This result also has a rather immediate corollary. 

Corollary 4.35 

If D is a digraph such that 

odv^n/2 and idv^n/2 

for every vertex v of D, then D is hamiltonian. 

A spanning path in a digraph D is called a hamiltonian path of D. As in 

the case of graphs, sufficient conditions for hamiltonian cycles in digraphs 
often have easily obtainable analogues for hamiltonian paths (Exercise 
4.33). Readers interested in more information on hamiltonian graphs 

and digraphs should consult the surveys in Faudree [F2], Gould [G7] 
and Lesniak [L2]. 

EXERCISES 4.2 

4.11 Show that the graph of the dodecahedron is hamiltonian. 

4.12 (a) Show that if G is a 2-connected graph containing a vertex that 

is adjacent to at least three vertices of degree 2, then G is not 
hamiltonian. 

(b) The subdivision graph S(G) of a graph G is that graph obtained 

from G by replacing each edge uv of G by a vertex w and 
edges uw and vw. Determine, with proof, all graphs G for 
which S(G) is hamiltonian. 

4.13 Give an example of a 1-tough graph that is not hamiltonian. 

4.14 (a) Prove that Kr<2r3r is hamiltonian for every positive integer r. 

(b) Prove that Kr 2r,3r + i is hamiltonian for no positive integer r. 

4.15 (a) Prove that if G and H are hamiltonian graphs, then G x H is 
hamiltonian. 

(b) Prove that the n-cube Qn,n ^ 2, is hamiltonian. 

4.16 Give a direct proof of Corollary 4.19 (without using Theorems 4.13 
or 4.18). 
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4.17 Show that Theorem 4.13 is sharp, that is, show that for infinitely 

many n ^ 3 there are nonhamiltonian graphs G of order n such 
that deg u + deg v ^ n — 1 for all distinct nonadjacent vertices u 
and v. 

4.18 Show that Theorem 4.20 is sharp, that is, show that for infinitely 
many n ^ 3 there are 2-connected nonhamiltonian graphs G of 

order n such that \N(u) U N(v) | ^ [(2n — 1 )/3] — 1 for all distinct non¬ 
adjacent vertices u and v. 

4.19 Show that Theorem 4.22 is sharp, that is, show that for infinitely 
many n ^ 3 there are nonhamiltonian graphs G of order n such 

that k(G) ^ /3(G) — 1. 

4.20 Let G be an (n, m) graph, where n ^ 3 and m ^ ("j!) + 2. Prove that 
G is hamiltonian. 

4.21 Let G be a bipartite graph with partite sets U and W such that 
|L7| = | W| = k ^ 2. Prove that if degi? > k/2 for every vertex v of G, 
then G is hamiltonian. 

4.22 Let G be a graph of order n ^ 2, the degrees d, of whose vertices 

satisfy d\ < d2 < • • • ^ dn. Show that if there is no value of 
k < (n + l)/2 for which dk ^k — 1 and dn_k +^ ^ n — k — 1, then G 
has a hamiltonian path. 

4.23 Show that if G is a graph with at least two vertices for which 
k(G) ^ /3(G) — 1, then G has a hamiltonian path. 

4.24 Show that if G is a connected graph of order n ^ 2 such that for all 
distinct nonadjacent vertices u and v 

IM»)UN(P)I> (2”3~2). 

then G has a hamiltonian path. 

4.25 Show that if G is a fc-connected graph (k 2) of order n 5= 3 such that 

for every independent set {ttj, u2,..., uk} of k vertices, 

|N(K1)UN(w2)U---UN(Mfc)| > k<^+ ^ , 

then G is hamiltonian. 

4.26 Show that there exists a function / with f(n) < 3n/2 such that the 
following result is true: If G is a connected graph of order n such 

that degu + deg u + deg w >f(n) for every set {u,v,w} of three 
independent vertices of G, then G has a hamiltonian path. 

4.27 Show that if G is an (n, m) graph, where n ^ 4 and ra $5 ("j1) + 3, 

then G is hamiltonian-connected. 
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4.28 Prove that every hamiltonian-connected graph of order 4 or more is 

3-connected. 

4.29 Give an example of a graph G that is pancyclic but not panconnected. 

4.30 Prove or disprove: If G is any graph of order n ^ 4 such that for all 

distinct nonadjacent vertices u and v, 

deg u + degu ^ n + 2, 

then G is panconnected. 

4.31 Let G be a connected graph of order n and let k be an integer such 
that 2 ^ k ^ n — 1. Show that if deg u + degu ^ k for every pair u,v 

of nonadjacent vertices of G, then G contains a path of length k. 

4.32 Prove Corollaries 4.33 and 4.34. 

4.33 State and prove an analogue to Theorem 4.32 which gives a sufficient 
condition for a digraph to have a hamiltonian path. Show that the 
bound in this result is sharp. 

4.3 LINE GRAPHS AND POWERS OF GRAPHS 

The kth power Gk of a graph G, where k ^ 1, is that graph with 

V(Gk) = V(G) for which uv e E(Gk) if and only if 1 ^ dc(u,v) ^ k. The 
graphs G and G are also referred to as the square and cube, respectively, 
of G. A graph with its square and cube are shown in Figure 4.10. 

Since the A:th power Gk (k ^ 2) of a graph G contains G as a subgraph (as 

a proper subgraph if G is not complete), it follows that Gk is hamiltonian if 
G is hamiltonian. Whether or not G is hamiltonian, for a connected graph 

G of order at least 3 and for a sufficiently large integer k, the graph Gk is 
hamiltonian since Gd is complete if G has diameter d. It is therefore natural 
to ask for the minimum k for which Gk is hamiltonian. Certainly, for 
connected graphs in general, k = 2 will not suffice since if G is the 

graph of Figure 4.10, then G2 is not hamiltonian. We see, however, that 

Figure 4.10 A graph whose square is not hamiltonian. 
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G is hamiltonian. It is true, in fact, that the cube of every connected graph 

of order at least 3 is hamiltonian. Indeed, a stronger result exists, discov¬ 
ered independently by Karaganis [Kl] and Sekanina [SI]. 

Theorem 4.36 

If G is a connected graph, then G3 is hamiltonian-connected. 

Proof 

If H is a spanning tree of G and H3 is hamiltonian-connected, then G3 is 

hamiltonian-connected. Hence it is sufficient to prove that the cube of 
every tree is hamiltonian-connected. To show this we proceed by induc¬ 
tion on n, the order of the tree. For small values of n the result is obvious. 

Assume for all trees H of order less than n that H3 is hamiltonian- 
connected, and let T be a tree of order n. Let u and v be any two vertices 
of T. We consider two cases. 

Case 1. Suppose that u and v are adjacent in T. Let e = uv, and consider the 
forest T — e. This forest has two components, one tree Tu containing u and 
the other tree Tv containing v. By hypothesis, T3 and T3 are hamiltonian- 
connected. Let u-i be any vertex of Tu adjacent to u, and let Vy be any vertex 
of Tv adjacent to v. If T„ or Tv is trivial, we define Uy = u or i?! = v, 
respectively. Note that Uy and Vy are adjacent in T3 since dT(uy,vy) < 3. 
Let Pu be a hamiltonian u-uy path (which may be trivial) of T3, and let 

Pv be a hamiltonian vy-v path of T3. The path formed by beginning 
with Pu and then following with the edge UyVy and the path Pv is a 
hamiltonian u-v path of T3. 

Case 2. Suppose that u and v are not adjacent in T. Since T is a tree, there exists 
a unique path between every two of its vertices. Let P be the unique u-v 
path of T, and let / = uw be the edge of P incident with u. The graph 
T — / consists of two trees, one tree Tu containing u and the other tree Tw 
containing w. By hypothesis, there exists a hamiltonian w-v path Pw in T3. 
Let Uy be a vertex of Tu adjacent to u, or let Uy — u if Tu is trivial, and let Pu 
be a hamiltonian u-Uy path in T3. Because dT(uy,w) ^ 2, the edge Uyiv is 
present in T3. Hence the path formed by starting with Pu and then follow¬ 
ing with UyW and Pw is a hamiltonian u-v path of T3. □ 

It is, of course, an immediate corollary that for any connected graph G 
of order at least 3, G3 is hamiltonian. 

Although it is not true that the squares of all connected graphs of order 
at least 3 are hamiltonian, it was conjectured independently by C. Nash- 

Williams and M. D. Plummer that for 2-connected graphs this is the case. 
In 1974, Fleischner [F5] proved the conjecture to be correct. Its lengthy 

proof is not included. 
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Theorem 4.37 

If G is a 2-connected graph, then G2 is Hamiltonian. 

A variety of results strengthening (but employing) Fleischner's work 

have since been obtained; for example, it has been verified [CHJKN1] 
that the square of a 2-connected graph is hamiltonian-connected. 

Theorem 4.38 

If G is a 2-connected graph, then G2 is hamiltonian-connected. 

Proof 

Since G is 2-connected, G has order at least 3. Let u and v be any two 
vertices of G. Let G1,G2,...,G5 be five distinct copies of G and let u, 

and v, (i — 1,2,... ,5) be the vertices in G, corresponding to u and v in 
G. Form a new graph F by adding to G] U G2 U • • • U G5 two new vertices 
w-[ and w2 and ten new edges uqw,- and w2Vj (i — 1,2,... ,5). Clearly, 
neither oq nor w2 is a cut-vertex of F. Furthermore, since each graph G, 

is 2-connected and contains two vertices adjacent to vertices in 
V(F) — V(G,), no vertex of G, is a cut-vertex of F. Hence F is a 2-connected 
graph with at least three vertices and so, by the aforementioned result of 
Fleischner, F2 has a hamiltonian cycle C. 

Since each of W\ and w2 has degree 2 in C, one of the subgraphs G, of F, 
say Gk, contains no vertex adjacent to either W\ or w2 in C. Suppose that 

w G V(Gk) — {uk,vk} and w G V(F) — V(Gk). If vow' G E(F2), then necessa¬ 
rily w = vo\ or w — io2. Therefore, since no vertex of Gk is adjacent to 
either uq or w2 in C, it must be the case that uk and vk are the only vertices 
of Gk that are adjacent in C to vertices in V(F) — V(Gk). This implies that 

one of the uk-vk paths P determined by C contains exactly the vertices of 
Gk. The proof will be complete once we have shown that E(P) C E(G2). 
Let x,y G V(Gk) such that xy G E(P). Hence dF(x,y) ^ 2. From the way 
in which F was constructed, we conclude that dck(x,y) ^ 2. Therefore 
xy G E(G2) and P is a hamiltonian uk — vk path of G2. □ 

Our next result, due to Nebesky [N4], gives another condition under 
which G2 is hamiltonian-connected. Recall that Kn — e denotes the graph 
obtained by deleting an edge from the complete graph of order n. 

Theorem 4.39 

Let G be a graph of order n. If (G)2 ^ K„ and (G)2 ^ Kn - e, then G2 is 
hamiltonian-connected. 
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Since (G)2 / Kn, either G is disconnected or G is connected with 

diam G ^ 3. If G is disconnected, then G is connected and diam G ^ 2 
(Exercise 1.29). Thus G2 is complete and therefore hamiltonian-connected. 
Thus we may assume that G is connected with diam G ^ 3. This implies 
that n 5s 4 and that there are vertices U\, w2 G L(G) such that 

dg(u1; u2) = 3. 
For i = 1,2, define V) = {d£ V(G)\u.jV G E(G)}. Since d^(u-[,u2) — 3, it 

follows that V, / 0 (z = 1,2) and ^ fl V2 = 0- Furthermore, iz2 ^ V2 
and u2^V\. We consider two cases. 

Case 1. Assume that V-[ U V2 — V(G) — {u\,u2}. If every vertex of is 
adjacent in G to every vertex of V2, then (G)2 = K„ — e, which is a contra¬ 
diction. Thus there are vertices Vj G V2 and v2 G V2 such that vpu2 0 E(G). 
Let Et denote the graph with V(F-[) = V(G) and 

E(f]) = {uiU2,ViV2} U {U]io2\u)2 G V2} U {u2Wi\wi G V^}. 

Then E2 C G and (Ej)2 is hamiltonian-connected. Since W(E!) = V(G), it 
follows that G2 is hamiltonian-connected. 

Case 2. Assume that Vi U V2 ^ V(G) — {ul5 u2}. Select an arbitrary vertex 

iz0 G V(G) — {«!, u2} — Vi — V2. 

Let E2 denote the graph with V(E2) = V(G) and 

E(E2) = {v0ui,uiu2,u2v0} U {u2wi\wi G^} 

U{uiW2\w2 G V(G) - {w1,w2} - Vi}. 

Then E2 C G and (E2)2 is hamiltonian-connected. Thus, since V(F2) — 
V(G), we see that G is also hamiltonian-connected. □ 

Corollary 4.40 

Let Gbe a graph with G ^ P4. Then either G2 or (G)2 is hamiltonian-connected. 

Corollary 4.41 

Let G be a graph of order at least 3. Then either G2 or (G)2 is hamiltonian. 

There is an interesting relationship between Fleischner's result 
(Theorem 4.37) and Chvatal's conjecture that every 2-tough graph is 

hamiltonian. It is not difficult to show (Exercise 4.39) that f(G2) ^ k(G) 
for every graph G. Thus a proof of Chvatal's conjecture would imply 

Fleischner's result. 
We have seen that for every graph G and positive integer k we can 

determine a new graph, the kth power Gk of G. There are other associated 
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G : 

Figure 4.11 A graph and its line graph. 

graphs of interest. The line graph L{G) of a graph G is that graph whose 

vertices can be put in one-to-one correspondence with the edges of G 
in such a way that two vertices of L(G) are adjacent if and only if the 
corresponding edges of G are adjacent. A graph and its line graph are 

shown in Figure 4.11. 
It is relatively easy to determine the number of vertices and the number 

of edges of the line graph L(G) of a graph G in terms of easily computed 
quantities in G. Indeed, if G is an (n, in) graph with degree sequence 

di,d2,...,d„ and L(G) is an (n, m) graph, then n = m and 

since each edge of L(G) corresponds to a pair of adjacent edges of G. 
A graph H is called a line graph if there exists a graph G such that 

H = L(G). A natural question to ask is whether a given graph H is a 

line graph. Several characterizations of line graphs have been obtained, 
perhaps the best known of which is a 'forbidden subgraph' characteri¬ 
zation due to Beineke [B4], We present this result without its lengthy 
proof. 

Theorem 4.42 

A graph H is a line graph if and only if none of the graphs of Figure 4.12 is an 
induced subgraph of H. 

We turn to the problem of determining the relationships between a 
graph and hamiltonian properties of its line graph. Theorem 4.43, due 

to Harary and Nash-Williams [HN1], provides a characterization of 
those graphs having hamiltonian line graphs. A set X of edges in a 
graph is called a dominating set if every edge of G either belongs to X or 

is adjacent to an edge of X. If (X) is a circuit C, then C is called a dominating 
circuit of G. Equivalently, a circuit C in a graph G is a dominating circuit if 
every edge of G is incident with a vertex of C. 
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Figure 4.12 The induced subgraphs not contained in any line graph. 

Theorem 4.43 

Let Gbea graph without isolated vertices. Then L(G) is hamiltonian if and only if 
G — Kl lf, for some / ^ 3, or G contains a dominating circuit. 

Proof 

If G = K-[j for some / ^ 3, then L(G) is hamiltonian since L(G) = K(. 
Suppose, then, that G contains a dominating circuit 

C: v1,v2,...,vt,vl. 

It suffices to show that there exists an ordering S: el5 e2, ■ ■ ■, em of the m 
edges of G such that e, and e,-+1 are adjacent edges of G, for 
1 i ^ m — 1, as are e: and em, since such an ordering S corresponds to a 
hamiltonian cycle of L(G). Begin the ordering S by selecting, in any order, 
all edges of G incident with zy that are not edges of C, followed by the edge 

VfV2. At each successive vertex v,, 2 ^ i ^ t — 1, select, in any order, all 
edges of G incident with v, that are neither edges of C nor previously 
selected edges, followed by the edge V{Vi+i. This process terminates 
with the edge vt_\Vt. The ordering S is completed by adding the edge 

vtVi. Since C is a dominating circuit of G, every edge of G appears exactly 
once in S. Furthermore, consecutive edges of S as well as the first and last 

edges of S are adjacent in G. 
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Conversely, suppose that G is not a star but L(G) is hamiltonian. We 
show that G contains a dominating circuit. Since L(G) is hamiltonian, 

there is an ordering S: ex,e2,...,em of the m edges of G such that e, and 
ei+x are adjacent edges of G, for 1 ^ i ^ m — 1, as are ex and em. For 

1 ^ i ^ m — 1, let Vj be the vertex of G incident with both e, and ei+l. 
(Note that 1 ^ k ^ q ^ m — 1 does not necessarily imply that vk ^ vq.) 

Since G is not a star, there is a smallest integer j] exceeding 1 such that 
v. V\. The vertex vu _x is incident with ey, the vertex Vj] is incident with 

, and v]t _ j = vx. Thus, eJ] = vxVj}. Next, let j2 (if it exists) be the smallest 
integer exceeding jx such that Vj2 ^ ry. The vertex Vj2 _ x is incident with e/2, 
the vertex vh is incident with ej2, and Vj2 _x = vh. Thus, en — vh Vj2. Contin¬ 

uing in this fashion, we finally arrive at a vertex Vjt such that eh — Vj{i i)t; , 
where Vjt Since every edge of G appears exactly once in S and 

since 1 < ji < j2 <■■■•< jt ^ m — 1, this construction yields a trail 

T:v^ er > > eh vu =Vm-l 

in G with the properties that (i) every edge of G is incident with a vertex of 
T, and (ii) neither ex nor em is an edge of T. 

Let vo be the vertex of G incident with both e] and em. We consider four 

possible cases. 

Case 1. Suppose that w = = vm_\. Then T itself is a dominating circuit 

of G. 

Case 2. Suppose that w = v-y and w Since em is incident with both 
w and vm_y, it follows that em — vm_pw = vm_1vv Thus C: T,em,n1 is a 
dominating circuit of G. 

Case 3. Suppose that w = vm_y and w ^ v-y. Since ex is incident with both vo 

and V\, we have that ex = wvx = vm_xv-y. Thus C: T,ex,vx is a dominating 
circuit of G. 

Case 4. Suppose that w ^vm_x and w ^ v-y. Since em is incident with both 
w and vm_x, it follows that em = vm_xw. Since ex is incident with both w 

and v-y, we have that ex = wvx. Thus U] ^ vm_x, and C: T,em,w,ex,vx is a 
dominating circuit of G. □ 

It follows from Theorem 4.43 that if G is either eulerian or hamiltonian, 
then L(G) is hamiltonian. More generally, we have the following corollary. 

Corollary 4.44 

If G is supereulerian, then L(G) is hamiltonian. 

The strong interest in supereulerian graphs can, at least in part, be 
attributed to Corollary 4.44. 
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Earlier in this section we saw that for any graph G P4, either G2 or 

(G)“ is hamiltonian-connected (Corollary 4.40). Consequently, for every 
graph G of order at least 5 either G2 or (G)2 is hamiltonian (Corollary 
4.41). It is perhaps surprising that there is a line graph analogue of 

Corollary 4.40 but no such analogue of Corollary 4.41. In particular, 
Nebesky [N2] showed that if G is a graph of order at least 5, then either 
L(G) or L(G) is hamiltonian. Furthermore, Nebesky [N3] showed that for 
every positive integer n there is a graph G of order n such that neither L(G) 

nor L(G) is hamiltonian-connected. 
In [T6] Thomassen conjectured that every 4-connected line graph is 

hamiltonian. This conjecture is related to Chvatal's conjecture that 
every 2-tough graph is hamiltonian as follows. As we saw in Chapter 3, 

for every graph G we have f(G) ^ k{G)/2 and equality holds if G is claw- 
free. Since a line graph does not contain Kli3 as an induced subgraph, it 
follows that every 4-connected line graph is 2-tough. Thus the truth of 

Chvatal's results would also imply the conjecture made independently 
by Matthews and Sumner [MSI] that every 4-connected claw-free graph 
is hamiltonian. 

EXERCISES 4.3 

4.34 Show that the graph G of Figure 4.10 is not hamiltonian. 

4.35 Prove that if v is any vertex of a connected graph G of order at least 4, 
then G3 — v is hamiltonian. 

4.36 Give an infinite family Q of graphs such that for each G e Q, neither G 
nor G is 2-connected. (Thus, Corollaries 4.40 and 4.41 do not follow 
from Theorems 4.37 and 4.38.) 

4.37 Prove Corollary 4.40. 

4.38 Prove that if G is a self-complementary graph of order at least 5, then 
G2 is hamiltonian-connected. 

4.39 (a) Let G be a graph, and let S be a vertex-cut of G2. Further, let 

V-y, V2,..., Vk be the vertex sets of the components of G2 — S. 

For each i — 1,2,..., k, let 

S{ = {u e S\u is adjacent to a vertex of v, in G}. 

Show that |S, | ^ «(G) for each i = 1,2,..., k and that S, fl Sj = 0 

for 1 < / 7^ j ^k. 
(b) Use (a) to show that f(G2) k(G) for every graph G. 

4.40 Determine a formula for the number of triangles in the line graph 

L(G) in terms of quantities in G. 
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4.41 Prove that L(G) is eulerian if G is eulerian. 

4.42 Find a necessary and sufficient condition for a graph G to have the 

property G = L(G). 

4.43 (a) Show that if G is a connected graph with 6(G) 3, then L(G) is 
supereulerian. (Hint: Each vertex v in G corresponds to a com¬ 

plete subgraph K(v) in L(G). Select a hamiltonian cycle from each 
K(v) and use this to build a spanning eulerian subgraph of L(G).) 

(b) Show that if G is a connected graph with 5(G) ^ 3, then 

L2(G) = L(L(G)) is hamiltonian. 
(c) For integers k ^ 2, the kth iterated line graph Lk(G) of a graph G 

is defined as L(L*_1(G)), where 0(G) denotes L(G) and Lk~}(G) 
is assumed to be nonempty. Show that for a connected graph G, 
some iterated line graph of G is hamiltonian if and only if G is not 
a path. 

4.44 For each of the following, prove or disprove. 
(a) If G is hamiltonian, then G2 is hamiltonian-connected. 
(b) If G is supereulerian, then G2 is supereulerian. 

(c) If G is connected and L(G) is eulerian, then G is eulerian. 
(d) If G is hamiltonian, then L(G) is hamiltonian-connected. 
(e) If G has a dominating circuit, then L(G) has a dominating circuit. 



CHAPTER 5 

Directed graphs 

We return to digraphs, first considering graphs for which some or all 
orientations have a certain connectedness type. The main emphasis 
here, however, is the study of tournaments. 

5.1 CONNECTEDNESS OF DIGRAPHS 

In Chapter 1 we described various types of connectedness that a digraph 
may possess. In this section we explore these in more detail. Recall that a 
digraph D is strong if for every pair u, v of vertices of D, there is both a u-v 

path and a v-u path. Strong digraphs are characterized in the following 
theorem. 

Theorem 5.1 

A digraph D is strong if and only if D contains a closed spanning walk. 

Proof 

Assume that W: iq, u2, ■ ■ ■, uk, U\ is a closed spanning walk in D. Let u, 
v € V(D). Then u = w, and v — Uj for some i,j with 1 < i,j < k and i ^ j. 
Without loss of generality, we assume that i < j. Then Wp un w/+1,... ,Uj 

is a u—Uj walk in D and W2: up u; + 1,is a u—Uj walk in D. 
Consequently, D contains both a u—Uj path and a u—u, path in D. 

Conversely, assume that D is a nontrivial strong digraph. We show that 
D contains a closed spanning walk. Suppose that this is not the case, and let 
W be a closed walk containing a maximum number of vertices of D. Let x 
be a vertex of D that is not on W, and let v be a vertex on W. Since D is 
strong, D contains a v-x path Pj and an x-v path P2. When v is encountered 

on W, we insert Px followed by P2. This results in a closed walk W' contain¬ 
ing more vertices of D than W, which produces a contradiction.Thus D is 

strong. □ 

Recall that a digraph D is unilateral if for every pair u, v of vertices of D, 

there is either a u-v path or a v-u path. Unilateral digraphs can be 
characterized in much the same way as strong digraphs. 
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Theorem 5.2 

A digraph D is unilateral if and only if D contains a spanning walk. 

Proof 

Suppose first that D contains a spanning walk W: u1, i>2,..., vk. Let u and v 
be distinct vertices of D. Then u = v, and v = Vj for some integers i and 
j with 1 ^ i,j ^ k. Assume, without loss of generality, that i < j. Then 

Wp u — Vj,vi+i,... ,V; = v is a u-v walk. Thus D contains a u-v path 

and so D is unilateral. 
For the converse, assume that D is a unilateral digraph and suppose, to 

the contrary, that D does not have a spanning walk. Let W: iq, u2,..., 
be a walk containing a maximum number of vertices of D. Let x be a 
vertex of D that is not on W. If D contains an x-iq path P or a u^-x path 

Q, then either P followed by W or W followed by Q is a walk containing 
more vertices than W, which produces a contradiction. Hence we may 

assume that D does not contain these paths. Consequently, D contains a 
tq-x path and an x-uf path. Hence there exists an integer i (1 ^ / < () 
such that D contains a u -x path Pi and an x-w, + 1 path P2. Denote the 

U]—Uj subwalk of W by W5 and the ui+-l-u/> subwalk of W by W2. Then 
W] followed by Pj, P2 and W2 produces a walk containing more vertices 
than W, which is a contradiction. □ 

Recall that an asymmetric digraph D can be obtained from a graph G 

by assigning a direction to each edge of G and that D is also called an 
orientation of G. We are now interested in those graphs having a strong 
orientation. Certainly, if G has a strong orientation, then G must be con¬ 

nected. Also, if G has a bridge, then it is impossible to produce a strong 
orientation of G. On the other hand, if G is a bridgeless connected graph, 
then G always has a strong orientation. This observation was first made by 
Robbins [R9], 

Theorem 5.3 

A nontrivial graph G has a strong orientation if and only ifG is 2-edge-connected. 

Proof 

We have already observed that if a graph G has a strong orientation, then 
G is 2-edge-connected. Suppose that the converse is false. Then there 
exists a 2-edge-connected graph G that has no strong orientation. 

Among the subgraphs of G, let H be one of maximum order that has a 
strong orientation; such a subgraph exists since for each v G V(G), the 

subgraph ({n}) trivially has a strong orientation. Thus |V(H)| < |V(G)|, 
since, by assumption, G has no strong orientation. 
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Assign directions to the edges of H so that the resulting digraph D is 

strong, but assign no directions to the edges of G — E(H). Let u G V(H) 
and let v G V(G) — V(H). Since G is 2-edge-connected, there exist two 
edge-disjoint (graphical) u-v paths in G. Let P be one of these u-v paths 

and let Q be the v-u path that results from the other u-v path. Further, let 
Hi be the last vertex of P that belongs to H, and let Vi be the first vertex of Q 
belonging to H. Next, let Pi be the Uj-v subpath of P and let Q! be the v-v} 

subpath of Q. Direct the edges of Pi from U\ toward v, producing the 
directed path P\, and direct the edges of Qi from v toward vv producing 
the directed path Q\. 

Define the digraph D' by V(D') = V(D) U V{P\) U V(Qi) and E(D') = 
E(D) U E(P\) U£(Q/1). Since D is strong, so is D', which contradicts the 
choice of EE □ 

Not every connected graph has a unilateral orientation. For example, 
the only trees that have unilateral orientations are paths. 

Theorem 5.4 

A tree T has a unilateral orientation if and only if T is a path. 

Proof 

Clearly every path has a unilateral orientation. Next, assume that T is 
a tree that is not a path. Then T has a vertex v with degu ^ 3. Now 

suppose that we assign directions to the edges of T producing a digraph 
D. Then there are at least two edges of T directed toward or away from v 

in D; say e\ = vui and e2 = vu2 are edges of T incident with v such that 
e, = (v, uf) in D for i = 1,2 or e, = (h,, v) in D for i = 1,2. In either case, 
D contains neither a w1-w2 path nor a u2-Ui path. Hence D is not 
unilateral. □ 

Indeed, only those graphs G with the property that all of their 
bridges lie on a single path of G have a unilateral orientation. In the 
following proof, we use graphs that are obtained by identifying sets of 

vertices in a graph G. Let G be a graph and let S1,S2,...,S^ be non¬ 
empty, pairwise disjoint subsets of V(G). The graph G' is obtained by 

identifying the vertices of S,- for each i if V(G/) = V(G — |J?=i S,) U 
{si, s2,... ,s*.} and the edges of G' consist of the edges of G — jjf=1 S, 
together with the edges of the type xs, (1 ^ i ^ k) whenever 

x G V(G- jji = i Sj) is adjacent to some vertex of S, and edges of the 
type SjSj (1^2,/^ k; i / j) whenever some vertex of S, is adjacent to 
some vertex of Sr This is illustrated in Figure 5.1, where the vertices 

of Si — {vi,v2,v4,v5} are identified, as are the vertices of S2 = 

{u6) v7i v%iv<h ylo}- 
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VjO-Ov2 

G 
s 

Figure 5.1 Identification of vertices. 

Theorem 5.5 

A connected graph G has a unilateral orientation if and only if all of the bridges of 

G lie on a common path. 

Proof 

By Theorem 5.4, the result holds if G is a tree. So let G be a connected 

graph that is not a tree. Denote the bridges (if any) of G by ej, e2,..., er 

and the maximal 2-edge-connected subgraphs of G by G\, G2,..., G^. 
Let G' be the graph obtained from G by identifying the vertices of G, for 

each i — 1,2,k. Then E(G/) = {e\, e2, ■ ■ ■, erj, the set of bridges of G. By 
this construction, G' is a tree, and if G has no bridges, then G' = . It 
follows that G' is a path if and only if every bridge e, of G lies on a 
common path P of G. Thus, by Theorem 5.4, it remains to show that G 
has a unilateral orientation if and only if G' does. 

Clearly, a unilateral orientation of G induces a unilateral orientation of 

G'. For the converse, suppose that G' has a unilateral orientation D. By 
Theorem 5.4, G' is a path and D is a directed path. Assign the same 
directions to the edges e^,e2,...,er in G as they have in D. Further, by 
Theorem 5.3, we may orient the edges of each subgraph G, (1 < / ^ k) 

so that a strong subdigraph is obtained. This gives a unilateral orientation 

of G. □ 

Recall that for vertices u and v in a digraph D, a u-v antipath is a u-v 

semipath that contains no subpath of length 2, and that D is anticonnected 
if D contains a u-v antipath for every pair u, v of vertices of D. Every con¬ 
nected graph has an anticonnected orientation. In order to see this, let G 
be a connected graph and let T' be a spanning tree of G and r a vertex of T'. 

Let T be that directed tree obtained by orienting the edges of T' such that 

all arcs of T are directed away from r. Now let T0 be that digraph obtained 
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r r r 

Figure 5.2 An anticonnected orientation of a graph. 

by reversing the directions of all those arcs directed toward a vertex v for 
which the (directed) distance d(r,v) is even (see Figure 5.2 for an illustra¬ 

tion). Then any orientation of G containing T0 is anticonnected. 
Although there exists an anticonnected orientation of every connected 

graph, it is certainly not the case that every orientation of every graph is 
anticonnected. The following result due to L. Eroh (see [CGSW1 ]) provides 
a necessary condition for a graph to have this property. 

Theorem 5.6 

If every orientation of a graph G of order at least 4 is anticonnected, then G is 2- 
connected and 6(G) ^ 3. 

Proof 

Suppose that G contains a cut-vertex w, and let and B2 be distinct blocks 
containing w. Furthermore, let u(y^w) be a vertex of B^ and v{^w) be a 
vertex of B2. An orientation of G in which all edges of B^ incident with 
w are directed toward w and all edges of B2 incident with w are directed 
away from w contains no u-v antipath. Consequently, such an orientation 

is not anticonnected. Thus G is 2-connected. 
Suppose that there is a vertex v of G such that deg v — 2, with v adjacent 

to u and w. Orient the edges vu and vw as (v, u) and (w, v). For each vertex 

x(^ v) that is adjacent to u, orient ux as (u, x). Also, for every vertex y{yf v) 
that is adjacent to w, orient yw as (y, iv). All other edges are oriented arbi¬ 
trarily. Let z be a vertex such that d(v, z) = 2. Then, there is no v-z antipath 

in this orientation of G, contrary to assumption. □ 

Since every orientation of a complete graph is anticonnected, it follows 
that if the degrees of the vertices of a graph G are sufficiently large, then 
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every orientation of G is anticonnected. The precise bound on the degrees 
is described next [CGSW1], 

Theorem 5.7 

If G is a graph of order n ^ 3 such that deg v (3n — 1 )/4 for every vertex v of 
G, then every orientation of G is anticonnected. 

Proof 

Suppose, to the contrary, that there exists a graph G satisfying the hypoth¬ 
esis of the theorem but having an orientation D that is not anticonnected. 
Then D contains two nonadjacent vertices x and y for which there is no x-y 
antipath. Since each of x and y is adjacent to at least (3n — l)/4 vertices, 
they are mutually adjacent to at least (n + 3)/2 vertices. Of these, x is 
directed toward or away from at least {n + 3)/4 vertices, say the former. 
Let S denote this set of vertices. Since D contains no x-y antipath, every 
vertex of S is directed toward y. Let w E S. Since degzu (3n — l)/4, zv is 
adjacent to at least one vertex z of S. Assume, without loss of generality, 
that (w,z) is an arc of D. Then x,z,w,y is an antipath, producing a 
contradiction. □ 

Theorem 5.7 is best possible in the sense that for every integer n ^ 3, 
there exists a graph G of order n such that degu ^ \(3n — l)/4] — 1 for 
every vertex v of G and there exists an orientation of G that is not 
anticonnected. The vertex set of such a graph G consists of mutually 
disjoint sets {x,y}, A, B, C and D, where {x,y}, A and B are independent 
and the subgraphs of G induced by both C and D are complete. The 
vertex x is joined to every vertex of A, B and C; while y is joined to 
each vertex in A, B and D. Furthermore, each vertex of A is adjacent 
to every vertex of B, C and D; while every vertex of B is adjacent to 
every vertex of C and D. The orientation of G is described in Figure 
5.3. For example, x is directed toward every vertex of A and away 
from every vertex of B, while x is adjacent to every vertex of C with 
the directions of the arcs between x and the vertices of C chosen arbitra¬ 
rily. Also, every vertex of C is directed toward every vertex of A and 
away from every vertex of B. Since there is no x-y antipath, this orienta¬ 
tion is not anticonnected. 

Now, for a given integer n ^ 3, the cardinalities of A, B, C and D are 
selected as follows: 

1. n = 0 (mod 4): |A| = |B| = n/4, |C| = \D\ = (n - 4)/4; 
2. n = 1 (mod 4): |A| = (n + 3)/4, |B| = (n - l)/4, |C| - |D| = (« - 5)/4; 
3. n = 2 (mod 4): |A| = |B| = (n + 2)/4, |C| = |D| = (« - 6)/4; 
4. n = 3 (mod 4): |A| = (n +1)/4, |B| = jcj = |D| = (it - 3)/4. 
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Figure 5.3 An orientation of a graph that is not anticonnected. 

In each case, the minimum degree of the graph is [(3n — l)/4] — 1 and 
there exists an orientation that is not anticonnected. 

EXERCISES 5.1 

5.1 Let e — uv be an edge of a graph G. Show that if G has a strong orien¬ 
tation, then G has a strong orientation in which u is adjacent to v and 
a strong orientation in which v is adjacent to u. 

5.2 Determine all graphs for which every orientation is unilateral. 

5.3 Let G be a connected graph with cut-vertices. Show that an orienta¬ 
tion D of G is strong if and only if the subdigraph of D induced by the 

vertices of each block of G is strong. 

5.4 Prove that a graph G has an eulerian orientation if and only if G is 

eulerian. 

5.5 Prove or disprove: If D is an anticonnected digraph and v is a vertex 
that is added to D together with some edges joining v and some 
vertices of D, then these edges may be oriented in such a way that 

the resulting digraph is anticonnected. 

5.6 Prove or disprove: If every orientation of a graph G of order at least 5 

is anticonnected, then 6(G) 5= 4. 

5.7 Show that if G is a graph of order n ^ 3 such that deg u + degn^ 

(3n — l)/2 for every pair u,v of nonadjacent vertices of G, then 

every orientation of G is anticonnected. 
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5.2 TOURNAMENTS 

Directed graphs 

The class of oriented graphs that has received the greatest attention are 

the tournaments; that is, those digraphs obtained by orienting the edges 

of complete graphs. 
The number of nonisomorphic tournaments increases sharply with 

order. For example, there is only one tournament of order 1 and one of 

order 2. There are two tournaments of order 3, namely the tournaments T] 
and T2 shown in Figure 5.4. There are four tournaments of order 4, 12 of 
order 5, 56 of order 6, and over 154 billion of order 12. 

If T is a tournament of order n, then it follows since T is complete that its 

size is (j) and that, consequently. 

A tournament T is transitive if whenever (u,v) and (v, w) are arcs of T, then 

(u,w) is also an arc of T. The tournament T2 of Figure 5.4 is transitive 
while T\ is not. The following result gives an elementary property of 

transitive tournaments. 

Theorem 5.8 

A tournament is transitive if and only if it is acyclic. 

Proof 

Let T be an acyclic tournament and suppose that (u, v) and (v, w) are arcs 
of T. Since T is acyclic, (w,u) 0 E(T). Therefore, (u,zv) € E(T) and T is 
transitive. 

Conversely, suppose that T is a transitive tournament and assume that 
T contains a cycle, say C: Vi,v2,... ,vk,iq (where k ^ 3 since T is 
asymmetric). Since (v-[,v2) and (v2,v3) are arcs of the transitive tourna¬ 

ment T, (V},v3) is an arc of T. Similarly, (ih> u4)> (ui> us)> • ■ • > (?i, vk) are 
arcs of T. However, this contradicts the fact that (vk,v3) is an arc of T. 
Thus, T is acyclic. □ 

Every tournament of order n can be thought of as representing or 
modeling a round robin tournament involving competition among n 

Figure 5.4 The tournaments of order 3 
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teams. In a round robin tournament, each team plays every other team 

exactly once and ties are not permitted. Let Vj, v2,..., vn represent the 
teams as well as the vertices of the corresponding tournament T. If, in 
the competition between v, and v}, i ^ /, team v, defeats team v,, then 

(vj, Vj) is an arc of T. The number of victories by team vt is the outdegree 
of Vj. For this reason, the outdegree of the vertex v, in a tournament is also 
referred to as the score of vr 

A sequence Sj, s2)..., s„ of nonnegative integers is called a score sequence 
(of a tournament) if there exists a tournament T of order n whose vertices 
can be labeled iq, v2, ■.., v„ such that od vt = s, for i = 1,2,..., n. The 

following result describes precisely which sequences are score sequences 
of transitive tournaments. 

Theorem 5.9 

A nondecreasing sequence S of n(^ 1) nonnegative integers is a score sequence 
of a transitive tournament of order n if and only if S is the sequence 

0,1,1. 

Proof 

First we show that S: 0,1,..., n — 1 is a score sequence of a transitive 
tournament. Let T be the transitive tournament defined by V(T) = 

• • • ,vn} and E(T) = {(Vj,Vj)|1 < i n}. Then odu,- — i — 1 for 
i = 1,2,..., n; so S is a score sequence of a transitive tournament. 

Conversely, assume that T is a transitive tournament of order n. We 

show that 5: 0,1,— 1 is a score sequence of T. It suffices to show 
that no two vertices of T have the same score (outdegree). Let 
u,v e V(T) and assume, without loss of generality, that (u, v) e E(T). If 
W denotes the set of vertices of T adjacent from v, then odv — |W|. 

Since (v,w) G E(T) for each w e W and (u,v) G E(T), it follows that 
(u,w) G E(T) for each weW, since T is transitive. Thus, od u 5= 

1 + | W| = 1 + odiz. □ 

The proof of Theorem 5.9 shows that the structure of a transitive tour¬ 

nament is uniquely determined. 

Corollary 5.10 

For every positive integer n, there is exactly one transitive tournament of 

order n. 

Combining this corollary with Theorem 5.8, we arrive at yet another 

corollary. 
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Corollary 5.11 

For every positive integer n, there is exactly one acyclic tournament of order n. 

Although there is only one transitive tournament of each order n, in a 
certain sense that we now explore, every tournament has the structure of a 

transitive tournament. Let T be a tournament. We define a relation on 

V(T) by u is related to v if there is both a u-v path and a v-u path in T. 
This relation is an equivalence relation and, as such, this relation parti¬ 

tions V(T) into equivalence classes V-l,V2 ,...,Vk (k ^ 1). Let S, = (V,-) 
for i = 1,2,...,/:. Then each S, is a strong subdigraph and, indeed, is max¬ 
imal with respect to the property of being strong. The subdigraphs 

Si,S2,... ,Sk are called the strong components of T. So the vertex sets of 
the strong components of T produce a partition of V(T). 

Let T be a tournament with strong components Sl5 S2,..., S*, and let 

T denote that digraph whose vertices iq, u2, • • •, uk are in one-to-one 
correspondence with the strong components (m, corresponds to S„ 
2 = 1,2,...,/:) such that (u,, uf) is an arc of T, i ^ j, if and only if some 

vertex of S, is adjacent to at least one vertex of S;. Since S, and S, are dis¬ 
tinct strong components of T, it follows that every vertex of S, is adjacent to 
every vertex of Sr Hence, T is obtained by identifying the vertices of S, for 
2 = 1,2,...,/:. A tournament T and associated digraph T are shown in 
Figure 5.5. 

Observe that for the tournament T of Figure 5.5, T is necessarily a 
tournament and, in fact, a transitive tournament. That this always 
occurs follows from Theorem 5.12 (Exercise 5.7). 

Theorem 5.12 

IfT is a tournament with (exactly) k strong components, then T is the transitive 
tournament of order k. 

Since for every tournament T, the tournament T is transitive, it follows 
that if T is a tournament that is not strong, then V(T) can be partitioned as 

Vi U V2 U • • • U Vk (k ^ 2) such that (V,) is a strong tournament for each 2, 
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and if v, G V, and G V]r where i > j, then (vhVj) G E(T). This decompo¬ 
sition is often useful when studying the properties of tournaments that 
are not strong. 

We already noted that there are four tournaments of order 4. Of course, 
one of these is transitive, which consists of four trivial strong components 

S], S2, S3, S4, where the vertex of S.- is adjacent to the vertex of S, if and only 
if j > i. There are two tournaments of order 4 containing two strong 
components St and S2, depending on whether St or S2 is the strong com¬ 

ponent of order 3. (No strong component has order 2.) Since there are four 
tournaments of order 4, there is eactly one strong tournament of order 4. 
These tournaments are depicted in Figure 5.6. The arcs not drawn in TlrT2 
and T3 are all directed downward, as indicated by the 'double arrow'. 

We also stated that there are 12 tournaments of order 5. There are six 
tournaments of order 5 that are not strong, shown in Figure 5.7. Again all 

arcs that are not drawn are directed downward. Thus there are six strong 
tournaments of order 5. 

Theorem 5.9 characterizes score sequences of transitive tournaments. 

We next investigate score sequences in more generality. We begin with 
a theorem similar to Theorem 1.4. 

os4 

Figure 5.6 The four tournaments of order 4. 

Theorem 5.13 

A nondecreasing sequence S: Sj,s2,... ,s„ {n ^ 2) of nonnegative integers 
is a score sequence if and only if the sequence S\: s1,s2,... , sSn, 

sSn+1 — 1,... ,s„_1 — 1 is a score sequence. 

Figure 5.7 The six tournaments of order 5 that are not strong. 
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Proof 

Directed graphs 

Assume that <S] is a score sequence. Then there exists a tournament T, of 

order n — 1 such that 5] is a score sequence of Tj. Hence the vertices of Tj 
can be labeled as iq, v2, ■.., v„ _ ] such that 

for 1 < i < s„ 
od Vj — < 

^ s, — 1 for i > sn. 

We construct a tournament T by adding a vertex vn to 7V Furthermore, 
for 1 ^ i ^ n, vn is adjacent to v, if 1 ^ i ^ s„, and v„ is adjacent from Vj 
otherwise. The tournament T then has S as a score sequence. 

For the converse, we assume that S is a score sequence. Hence there 

exist tournaments of order n whose score sequence is <S. Among all 
such tournaments, let T be one such that V(T) — {v\,v2, ■. ■ ,vn}, 

od Vj = S{ for i — 1,2,..., n, and the sum of the scores of the vertices adja¬ 
cent from v„ is minimum. We claim that vn is adjacent to vertices having 

scores s],s2,... ,sSn. Suppose to the contrary that vn is not adjacent to 

vertices having scores s1,s2,... ,ss . Necessarily, then, there exist vertices 
v. and vk with j < k and s; < sk such that v„ is adjacent to vkl and v„ is 

adjacent from Vj. Since the score of vk exceeds the score of Vj, there 
exists a vertex vt such that vk is adjacent to vt, and v, is adjacent to V; 
(Figure 5.8(a)). Thus, a 4-cycle C: v„, vk, vh Vj, v„ is produced. If we reverse 
the directions of the arcs of C, a tournament T' is obtained also having S as 

a score sequence (Figure 5.8(b)). However, in T', the vertex vn is adjacent 
to Vj rather than vk. Hence the sum of the scores of the vertices adjacent 

from v„ is smaller in T' than in T, which is impossible. Thus, as claimed, 
vn is adjacent to vertices having scores s1,s2,... ,sSn. Then T — u is a 
tournament having score sequence <S. □ 

As an illustration of Theorem 5.13, we consider the sequence 

1,2,2,3,3,4. 

In this case, s„ (actually s6) has the value 4; thus, we delete the last term, 
repeat the first s„ = 4 terms, and subtract 1 from the remaining terms, 
obtaining 

Si: 1,2,2,3,2. 

v, V, 

v. 
J O 

(a) vn (b) 

Figure 5.8 A step in the proof of Theorem 5.13. 

(b) v. n 
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Figure 5.9 Construction of a tournament with a given score sequence. 

Rearranging, we have 

Si’. 1,2,2,2,3. 

Repeating this process twice more, we have 

S'2: 1,2,2,1 

<S2: 1,1,2,2 

53:1,1,1. 
The sequence <S3 is clearly a score sequence. We can use this information 
to construct a tournament with score sequence S. The sequence S3 is 
the score sequence of the tournament T3 of Figure 5.9. Proceeding 
from S3 to S2, we add a new vertex to T3 and join it to two vertices 
of T3 and from the other, producing a tournament T2 with score 
sequence S2. To proceed from S2 to <S], we add a new vertex to T2 
and join it to vertices having scores 1, 2 and 2, and from the remaining 

vertex of T2, producing a tournament Tj with score sequence Sj. 
Continuing in the same fashion, we finally produce a desired tourna¬ 
ment T with score sequence S by adding a new vertex to Tj and joining 
it to vertices having scores 1, 2, 2 and 3, and joining it from the other 

vertex. 
The following theorem by Landau [LI] gives a nonconstructive criter¬ 

ion for a sequence to be a score sequence. There are many proofs of this 

result; the one we give is due to Thomassen [T4], 
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Theorem 5.14 

Directed graphs 

A nondecreasing sequence S: s1,s2, •.. ,s„ of nonnegative integers is a score 

sequence if and only if for each k (1 ^ k ^ n), 

±,,q. m 

with equality holding when k = n. 

Proof 

Assume that S: S|,s2)... ,s„ is a score sequence. Then there exists a 
tournament T of order n with V(T) = {iq, v2, ..., vn] such that 
odf- Vj = s, for i — 1,2,..., n. Let k be an integer with \ ^k ^ n. Then 

Ti = {{v\,v2, • • • , p*}) is a tournament of order k and size (2). Since 
odTV{ ^ odj^Vj for 1 ^ i ^ k, it follows that 

k k k /£\ 

= od^ v> > H odT,®» = U « 
1=1 1=1 i=i ^ / 

with equality holding when k = n. 

We prove the converse by contradiction. Assume that S: Sj , s2,..., sn is 
a counterexample to the theorem, chosen so that n is as small as possible 

and so that Si is as small as possible among all these counterexamples. 
Suppose first that there exists an integer k with 1 ^k ^ n — 1 such that 

S>- G) « 
Thus the sequence «Si: Sj, s2,..., s*. satisfies (5.1) and so, by the minimality 
of n, there exists a tournament T] of order k having score sequence S^. 

Consider the sequence T: f 1, f2,..., where ti = Si(+j — k for 
i = 1,2,..., n — k. Since 

it follows from (5.2) that 

sk+1 

Hr+1 

-E 
1=1 

= k. 

Thus, since S is a nondecreasing sequence, 

ti = sk+i — k'^ sk+i -k^O 

for / = 1,2,— k, and so T is a nondecreasing sequence of nonnega¬ 
tive integers. We show that T satisfies (5.1). 
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For each r satisfying 1 < r ^ n — k, we have 

XI f' _ XI (Sfc+' 
/=i 1=1 

Since 

and 

it follows that 

r r + k k 

*o = XI Sk+> ~rk=XIS| ~ XISi -rk- 

i=i i=i 1=1 

E'. 
i=i 

5 

with equality holding for r = n — k. Thus, T satisfies (5.1) and so, by the 

minimality of n, there exists a tournament T2 of order n — k having score 
sequence T. 

Let T be a tournament with V(T) = V(Ti) U V(T2) and 

E(T) = E(Ta) U E(T2) U {(u, v)\u e V(T2),ve V(T,)}. 

Then S is a score sequence for T, contrary to assumption. Thus for 

k= 1,2- 1, 

In particular, S! > 0. 

Consider the sequence 5': S! — l,s2,s3,... ,s„ _!,s„ + 1. Clearly S' is a 
nondecreasing sequence of nonnegative integers that satisfy (5.1). By 
the minimality of sa, then, there exists a tournament T1 of order n 
having score sequence S'. Let x and y be vertices of T' such that 
odj-i x = sn + 1 and odr/ y = — 1. Since od^ x ^ odT/ y + 2, there is a 
vertex w ^ x,y such that (x,iu)eE(T') and (y,w) g E(T'). Thus, 
P: x,w,y is a path in T'. 

Let T be the tournament obtained from T' by reversing the directions of 

the arcs of P. Then S is a score sequence for T, again producing a contra¬ 
diction and completing the proof. □ 

With a slight alteration in the hypothesis of the preceding theorem, 

we obtain a necessary and sufficient condition for a score sequence of a 
strong tournament. This result is due to L. Moser (see Harary and Moser 

[HM1]). 
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Theorem 5.15 

A nondecreasing sequence S: s1,s2)... ,s„ of nonnegative integers is a score 

sequence of a strong tournament if and only if 

for 1 ^n — 1 and 

Furthermore, if S is a score sequence of a strong tournament, then every tourna¬ 

ment with S as a score sequence is strong. 

Proof 

Let T be a strong tournament with V(T) = {iq, v2, ■ .., vn} and suppose 

that the nondecreasing sequence S: s1,s2,... ,s„ is a score sequence of T, 
where s, = od v, for i = 1,2,... ,n. Since T is a tournament of order n, 

Let 1 ^ k ^ n — 1 and define T} = ({zq, v2,..., vk}). Since is a tourna¬ 
ment of order k, 

Since T is a strong tournament, some vertex Vj in 7^ (1 ^ ^ k) must be 
adjacent in T to a vertex not in T} so that odTV; > odT}Vj. Since 
odTVj ^ odT]Vj for all i (1 ^ i < k), we obtain 

For the converse, we assume that S: Si,s2, ■ ■ ■ ,s„ is a nondecreasing 
sequence of nonnegative integers such that 

for 1 ^ k ^ n — 1 and 
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By Theorem 5.14, S is the score sequence of a tournament. Let T be a 
tournament with V(T) = {vi,v2,... ,vn} such that s, = ody, (1 ^ i ^ n). 
We show that T is strong. 

If T is not strong, it follows from Theorem 5.12 (and the discussion pre¬ 

ceding it) that V(T) can be partitioned as U U W such that (u,w) e E(T) 
for every ueU and weW. Suppose that \W\ = k. Then W = 

{zq, v2,vk}. Let T] = (W). Then odT vt = odrizy for 1 ^ i ^ k. Since Tj 
is a tournament of order k, we have 

contradicting the hypothesis. □ 

We close this section with a brief discussion involving distance in a 
tournament. Recall that if u and v are vertices of a digraph D, and D con¬ 
tains at least one (directed) u-v path, then the length of a shortest u-v path 
is called the directed distance from u to v and is denoted by d(u,v). 

Theorem 5.16 

Let vbea vertex of maximum score in a nontrivial tournament T. If u is a vertex of 
T different from v, then d(v, u) ^ 2. 

Proof 

Assume that od v = k. Necessarily, k 1. Let zq, v2,..., vk denote the 
vertices of T adjacent from v. Then d(v, vf) = \ for i = 1,2,... ,k. If 
V(T) = {v,V},v2,... ,vk], then the proof is complete. 

Assume, then, that V(T) — {v,Vi,v2,... ,vk} is nonempty, and let 

u G V(T) — {v,Vi,v2, •.. ,vk). If u is adjacent from some vertex vir 
1 < f < then d(v, u) = 2, producing the desired result. Suppose that 

this is not the case. Then u is adjacent to all of the vertices iq, v2, ■ ■ ■, vk, 
as well as to v, so od u ^ 1 + k = 1 + od v. However, this contradicts the 

fact that v is a vertex of maximum score. □ 

Theorem 5.16 was first discovered by the sociologist Landau [LI] 

during a study of pecking orders and domination among chickens. In 
the case of chickens, the theorem says that if chicken c pecks the largest 
number of chickens, then for every other chicken d, either c pecks d, or c 
pecks some chicken that pecks d. Thus c dominates every other chicken 

either directly or indirectly in two steps. 
Let D be a strong digraph. Recall that the eccentricity e(v) of a vertex v of 

D is defined as e(v) = max^g^fD) d(v,w). The radius of D is radD = 

miiW(D) e(v) and the center Cen(D) of D is defined as ({v\e(v) = rad D}). 
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Theorem 5.16 provides an immediate result dealing with the radius of a 

strong tournament. 

Corollary 5.17 

Every nontrivial strong tournament has radius 2. 

We conclude this section with a result on the center of a strong tourna¬ 

ment. 

Theorem 5.18 

The center of every nontrivial strong tournament contains at least three vertices. 

Proof 

Let T be a nontrivial strong tournament. By Corollary 5.17, rad T = 2. Let 

w be a vertex having eccentricity 2. Since T is strong, there are vertices 
adjacent to w; let v be one of these having maximum score. Among the 
vertices adjacent to v, let u be one of maximum score. We show that both u 

and v have eccentricity 2, which will complete the proof. 
Assume, to the contrary, that one of the vertices u and v does not have 

eccentricity 2. Suppose, then, that x € {u,v} and e{x) ^ 3. Hence, there 
exists a vertex y in T such that d(x,y) ^ 3. Thus, y is adjacent to x. More¬ 
over, y is adjacent to every vertex adjacent from x. These observations 

imply that od y > od x. 
Suppose that x — v. Since x is adjacent to w, it follows that y is adjacent 

to w. However, od y > od v, which contradicts the defining property of v. 
Therefore, x — u. Here x is adjacent to v so that y is adjacent to v, but 
od y > od u. Hence, x/w and the proof is complete. □ 

EXERCISES 5.2 

5.8 Draw all four (nonisomorphic) tournaments of order 4. 

5.9 Give an example of two nonisomorphic regular tournaments of the 
same order. 

5.10 Prove Theorem 5.12. 

5.11 Determine those positive integers n for which there exist regular 

tournaments of order n. 

5.12 Show that if two vertices u and v have the same score in a tourna¬ 

ment T, then u and v belong to the same strong component of T. 
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5.13 Which of the following sequences are score sequences? Which are 

score sequences of strong tournaments? For each sequence that is 
a score sequence, construct a tournament having the given sequence 
as a score sequence. 

(a) 0, 1, 1, 4, 4 
(b) 1, 1, 1, 4, 4, 4 

(c) 1, 3, 3, 3, 3, 3, 5 
(d) 2, 3, 3, 4, 4, 4, 4, 4 

5.14 What can be said about a tournament T with score sequence 

Si,s2,... ,s„ such that equality holds in (5.1) for every k, 1 ^ k ^ n? 

5.15 Show that if S: S}, s2,..., s„ is a score sequence of a tournament, then 
.Sp n - 1 - Si, n — 1 — s2,..., n — 1 — s„ is a score sequence of a 
tournament. 

5.16 Give two different proofs that every regular tournament is strong. 

5.17 Prove that every two vertices in a nontrivial regular tournament lie 
on a 3-cycle. 

5.18 Prove that if T is a nontrivial regular tournament, then diam T = 2. 

5.19 Prove that every vertex of a nontrivial strong tournament lies on a 
3-cycle. 

5.20 Prove Corollary 5.17. 

5.21 (a) A vertex v of a tournament T is called a winner if d(v, u) ^ 2 for 
every u 6 V(T). Show that no tournament has exactly two 

winners. 
(b) Show that if n is a positive integer, n 7^ 2,4, then there is a 

tournament of order n in which every vertex is a winner. 

5.3 HAMILTONIAN TOURNAMENTS 

The large number of arcs that a tournament has often produces a 

variety of paths and cycles. In this section we investigate these types 
of subdigraphs in tournaments. We begin with perhaps the most basic 
result of this type, a property of tournaments first observed by Redei 

[R2]. 

Theorem 5.19 

Every tournament contains a hamiltonian path. 



150 

Proof 
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Let T be a tournament of order n, and let P: iq, v2,..., vk be a longest path 
in T. If P is not a hamiltonian path of T, then 1 ^ k < n and there is a vertex 

v of T not on P. Since P is a longest path, (u,tq), (vk,v) ^ E(T), and so 
(vi,v),(v,vk) G E(T). This implies that there is an integer i (1 ^ i < k) 
such that (Vj, v) G E(T) and (v, ui+1) G E(T). But then 

Vl,V2,...,Vj,V,Vi+u...,Vk 

is a path whose length exceeds that of P, producing a contradiction. □ 

A simple but useful consequence of Theorem 5.19 concerns transitive 

tournaments. 

Corollary 5.20 

Every transitive tournament contains exactly one hamiltonian path. 

The preceding corollary is a special case of a result by Szele [S13], who 
showed that every tournament contains an odd number of hamiltonian 

paths. 
While not every tournament is hamiltonian, such is the case for strong 

tournaments, a fact discovered by Camion [Cl]. It is perhaps surprising 
that if a tournament is hamiltonian, then it must possess significantly 
stronger properties. A digraph D of order n ^ 3 is pancyclic if it contains 
a cycle of length / for each / = 3,4,..., n and is vertex-pancyclic if each 
vertex v of D lies on a cycle of length / for each / = 3,4Harary 
and Moser [HM1] showed that every nontrivial strong tournament is 

pancyclic. The following result was discovered by Moon [M9], The 
proof here is due to C. Thomassen. 

Theorem 5.21 

Every nontrivial strong tournament is vertex-pancyclic. 

Proof 

Let T be a strong tournament of order n ^ 3, and let iq be a vertex of T. 

We show that v] lies on an /-cycle for each / = 3,4We proceed by 
induction on /. 

Since T is strong, it follows from Exercise 5.19 that zq lies on a 3-cycle. 

Assume that iq lies on an /-cycle iq, v2, ■ ■ ■, *Y> v\> where 3 ^ / ^ n — 1. We 
prove that v^ lies on an (/ + l)-cycle. 

Case 1. Suppose that there is a vertex v not on C that is adjacent to at least 
one vertex of C and is adjacent from at least one vertex of C. This implies 
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that for some / (1 ^ i < /), both (Vj, v) and (v, u, + 1) are arcs of T (where all 
subscripts are expressed modulo /). Thus, v4 lies on the (if + l)-cycle 

Vi,v2,-.-,vhv,vi+u...,v,,vv 

Case 2. Suppose that no vertex v exists as in Case 1. Let A denote the set of 

all vertices in V(T) — V(C) that are adjacent to every vertex of C, and let B 
be the set of all vertices in V(T) — V(C) that are adjacent from every vertex 

of C. Then AUB = V(T) — V(C). Since T is strong, neither A nor B is 
empty. Furthermore, there is a vertex b in B and a vertex a in A such 

that (b,a) G E(T). Thus, V] lies on the (/ + l)-cycle 

a,vuv2,...,vs_i ,b,a. □ 

Corollary 5.22 

Every nontrivial strong tournament is pancyclic. 

We consider next a class of oriented graphs that properly includes 

tournaments, and see an extension of Theorem 5.21 within this class. 
For k ^ 2, a k-partite tournament is a digraph obtained by orienting 

the edges of a complete k-partite graph. Thus a tournament of order n 
is an n-partite tournament with exactly n vertices. The partite sets of the 
underlying k-partite graphs are also referred to as the partite sets of the k- 
partite tournament. 

Bondy [B9] proved that every strong k-partite tournament (k ^ 3) con¬ 
tains an /-cycle for / = 3,4,..., k. This is a generalization of Corollary 
5.22. Our next result, due to Guo and Volkmann [GV2], is the analogous 
generalization of Theorem 5.21. 

Theorem 5.23 

Let Dbea strong k-partite (k ^ 3) tournament. Then every partite set ofD has at 
least one vertex that lies on an /-cycle for / = 3,4,..., k. 

Proof 

Let Vi,V2, ...,Vk be the partite sets of D. We show, without loss of 
generality, that Vi has a vertex contained in an /-cycle for / = 3,4,..., k. 
We proceed by induction on /, first showing that Vi has a vertex that 

belongs to a 3-cycle. Let v € Vi. Since D is strong, v is contained in at 
least one cycle. Let C: v — v4,v2, ■. ■ ,vhVi be a shortest cycle containing 

v = Vi. If v3 & Vi, then, because of the minimality of C, it follows that 
(u3,n-i) G E(D) and so Vi is on a 3-cycle. Assume then that v3 G Vp, so 
t ^ 4 and v4 Vi. Since C is a smallest cycle containing vu it follows 

that (v4,Vi) G E(D) and t = 4. If v2 and v4 belong to distinct partite sets, 
then either (a) (v2,v4) G E(D) and Vi,v2,v4,Vi is a 3-cycle containing v} 
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or (b) (u4,i>2) G E(D) and v2, v3, v4, v2 is a 3-cycle containing v3. Thus we 

may assume that v2, v4 G V2. If there is a vertex x G V, for i ^ 3 such that x is 
adjacent to at least one vertex of C and also adjacent from at least one 

vertex of C, then at least one of Vi and v3 is on a 3-cycle. 

Therefore, we can assume that V{D) — V\ — V2 can be partitioned into 
two sets S] and S2 such that every vertex of St is adjacent from every 

vertex of C and every vertex of S2 is adjacent to every vertex of C. Since 

A: 3, at least one of Si and S2 is nonempty; say S, ^ 0. Since D is strong, 
there is a path from every vertex in Si to every vertex of C. Let 
P: xu x2,... ,xq be a shortest such path, where necessarily q ^ 3. If 

V(P) IT S2 = 0, then one of x2 and x3 belongs to V/ and the other belongs 
to V2. But then x3,x2,x3,x3 is a 3-cycle. Therefore, suppose that 

V(P) H S2 0. Since P is a shortest path from the vertices in Si to those 
in C and since every vertex of S2 is adjacent to every vertex of C, it follows 

that Xq_i e S2. If q = 3, then , x^, x2, Vi is a 3-cycle. So, assume that q ^ 4. 
Then xq_2 G Vi or xq_2 G V2. In the first case, xq_2,xq_i,v2,xq_2 is a 3- 
cycle; in the second case, v-[,xq_2,xq_-l,v-l is a 3-cycle. Thus Vi has at 
least one vertex that lies on a 3-cycle. 

Suppose now that u is a vertex of V3 that lies on an /-cycle for 
/ = 3,4,..., t, where t < k. We show that either u is on a (f + l)-cycle or 
Vi contains another vertex that lies on an /-cycle for / = 3,4,..., t, t + 1. 
Let C: Ui,u2,... ,ut,Ui be a f-cycle with u = and let S be the set of 

vertices that belong to partite sets not represented on C. If there is a 
vertex x of S adjacent to and from vertices of C, then x can be inserted 
in C to form a (t + l)-cycle containing u. Otherwise, S can be decomposed 
into two sets Si and S2 such that every vertex of Si is adjacent from every 
vertex of C and every vertex of S2 is adjacent to every vertex of C. Without 

loss of generality, assume that Si ^ 0. Since D is strong, there is a path 
from Si to C. Let P: yi, y2,..., be a shortest such path, where necessarily 

q > 3. 
Suppose first that V(P) D S2 = 0. Then (y„yi) G E(D) for i ^ 3 since P 

is a shortest path from Si to C. If P includes at least one vertex of Vi, then 
choose the minimum value of / for which y( G V(P) D V]. We claim that y( 
lies on a /-cycle for / = 3,4,..., t + q — 1 ^ f + 2. If / = 2 or / = 3, then it is 
straightforward to verify this claim. If / ^ 4, then by the choice of y(, we 

see that (y^,y,) G E(D) for i / — 2. But then clearly y{ is contained in 
cycles of lengths 3,4,..., t -(- q — 1. If, on the other hand, V(P) D V/ = 0, 

then (wi,y,) G E(D) for i ^ q — 1. Since yq G V(C) and yq ± «i, we have 
that yq = ur for some r ^ 2. Then for every z with 1 ^ i ^ q — 1, the cycle 

W1 > y<7 —i> y^ —i' + l 1 • • ■ ,y,, + I) + 2i • ■ • i ^1 

is of length i + t — r + 2. Furthermore, for every / with 1 ^ < r — 1, the 
cycle 

ui,u2,...,uj,yi,y2,...,yq_uur,ur+i,...,ut,ui 
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is of length j + q +1 — r. Thus, lies on an /-cycle for / = 3, 

4, • • •, t + y — 1. 
It remains to consider the case that V(P) H S2 ^ 0- Since every vertex of 

S2 is adjacent to every vertex of C, the vertex yCf_-[ e S2. If and yt;_2 are 

in distinct partite sets, then (ui,yq_2) G E(D) and so w1,yi?_2,yi?_1, 
is a (f + l)-cycle. If y,_2 is in Vv then (u2,yq_2) e £(D) 

and then wl7 M2,y,_2,y,-i, «4, «5> • • • > “m, «i or (if f = 3) «i>M2,y,_2, 
yo_i, ui is a (f + l)-cycle and the proof is complete. □ 

EXERCISES 5.3 

5.22 Prove that if T is a tournament that is not transitive, then T has at 
least three hamiltonian paths. 

5.23 Use Corollary 5.20 to give an alternative proof of Theorem 5.9. 

5.24 Prove or disprove: Every arc of a nontrivial strong tournament T lies 
on a hamiltonian cycle of T. 

5.25 Prove or disprove: Every vertex-pancyclic tournament is hamiltonian- 
connected. 

5.26 Show that if a tournament T has an /-cycle, then T has an s-cycle for 

s = 3,4,...,/. 

5.27 A digraph D has a hamiltonian antipath if D has an antipath contain¬ 

ing all vertices of D. There are only three tournaments that do not 
contain hamiltonian antipaths, one of order 3, one of order 5, and one 
of order 7. Find the two smallest of these. 

5.28 A hamiltonian anticycle in a digraph D is a spanning semicycle of 
D containing no subpath of length 2. A digraph D is antihamiltonian 
if D contains a hamiltonian anticycle. Show that a graph G has an 
antihamiltonian orientation if and only if G is a hamiltonian graph 

of even order. 

5.29 A digraph D is antihamiltonian-connected if for every pair u, v of 

vertices, D contains a hamiltonian u-v antipath. Prove that no 
cubic graph has an antihamiltonian-connected orientation. 



CHAPTER 6 

Planar graphs 

We now consider graphs that can be drawn in the plane without their 

edges crossing. A formula developed by Euler plays a central role in 
the study of these 'planar' graphs. We describe two characterizations of 
planar graphs. A necessary condition for a planar graph to be hamiltonian 

is discussed. Two parameters associated with nonplanar graphs are then 
considered. 

6.1 EULER'S FORMULA 

An (n, m) graph G is said to be realizable or embeddable on a surface S if it is 

possible to distinguish a collection of n distinct points of S that correspond 
to the vertices of G and a collection of m curves, pairwise disjoint except 
possibly for endpoints, on S that correspond to the edges of G such that if 

a curve A corresponds to the edge e = uv, then only the endpoints of A 
correspond to vertices of G, namely u and v. Intuitively, G is embeddable 
on S if G can be drawn on S so that edges (more precisely, the curves 
corresponding to edges) intersect only at a vertex (that is, a point corre¬ 
sponding to a vertex) mutually incident with them. In this chapter we are 
concerned exclusively with the case in which S is a plane or sphere. 

A graph is planar if it can be embedded in the plane. Embedding a graph 
in the plane is equivalent to embedding it on the sphere. In order to see 
this, we perform a stereographic projection. Let S be a sphere tangent to a 

plane tx, where P is the point of S diametrically opposite to the point of 
tangency. If a graph G is embedded on S in such a way that no vertex of G 

is P and no edge of G passes through P, then G may be projected onto n to 

produce an embedding of G on tx. The inverse of this projection shows that 
any graph that can be embedded in the plane can also be embedded on 
the sphere. 

If a planar graph is embedded in the plane, then it is called a plane graph. 

The graph Gt = fC2,3 °f Figure 6.1 is planar, although, as drawn, it is not 
plane; however, G2 = K2<3 is both planar and plane. The graph G3 = K33 is 
nonplanar. This last statement will be proved presently. 

Given a plane graph G, a region of G is a maximal portion of the plane 
for which any two points may be joined by a curve A such that each point 
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Figure 6.1 Planar, plane and nonplanar graphs. 

of A neither corresponds to a vertex of G nor lies on any curve correspond¬ 
ing to an edge of G. Intuitively, the regions of G are connected portions of 
the plane remaining after all curves and points corresponding, respec¬ 
tively, to edges and vertices of G have been deleted. For a plane graph 
G, the boundary of a region R consists of all those points x corresponding 

to vertices and edges of G having the property that x can be joined to a 
point of R by a curve, all of whose points different from x belong to R. 
Every plane graph G contains an unbounded region called the exterior 
region of G. If G is embedded on the sphere, then no region of G can be 
regarded as being exterior. On the other hand, it is equally clear that a 
plane graph G can always be embedded in the plane so that a given 
region of G becomes the exterior region. Hence a plane graph G can 

always be realized in the plane so that any vertex or edge lies on the 
boundary of its exterior region. The plane graph G2 of Figure 6.1 has 
three regions, and the boundary of each is a 4-cycle. 

The order, size and number of regions of any connected plane graph are 
related by a well-known formula discovered by Euler [E7]. 

Theorem 6.1 (Euler's Formula) 

If G is a connected plane graph with n vertices, m edges and r regions, then 

n — m + r — 2. 

Proof 

We employ induction on m, the result being obvious for m — 0 since in this 

case n — 1 and r — 1. Assume that the result is true for all connected plane 
graphs with fewer than m edges, where m ^ 1, and suppose that G has m 
edges. If G is a tree, then n = m +1 and r = 1 so the desired formula 

follows. On the other hand, if G is not a tree, let e be a cycle edge of G 
and consider G — e. The connected plane graph G — e has n vertices, 
m — 1 edges, and r — 1 regions so that by the inductive hypothesis, 
n — (m — 1) + (r — 1) = 2, which implies that n — m + r = 2. □ 

From the preceding theorem, it follows that every two embeddings of a 
connected planar graph in the plane result in plane graphs having the 
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same number of regions; thus one can speak of the number of regions of 
a connected planar graph. For planar graphs in general, we have the 

following result. 

Corollary 6.2 

If G is a plane graph with n vertices, m edges and r regions, then 

n-m + r = \+ fc(G). 

A planar graph G is called maximal planar if, for every pair u, v of non- 

adjacent vertices of G, the graph G + uv is nonplanar. Thus in any embed¬ 
ding of a maximal planar graph G having order n ^ 3, the boundary of 

every region of G is a triangle. For this reason, maximal planar graphs are 
also referred to as triangulated planar graphs; triangulated plane graphs are 

often called simply triangulations. 
On a given number n of vertices, a planar graph is quite limited as to 

how large its size m can be. A bound on m follows from our next result. 

Theorem 6.3 

If G is a maximal planar (n, m) graph with n ^ 3, then 

m = 3n — 6. 

Proof 

Denote by r the number of regions of G. In G the boundary of every region 
is a triangle, and each edge is on the boundary of two regions. Therefore, 
if the number of edges on the boundary of a region is summed over all 
regions, the result is 3r. On the other hand, such a sum counts each edge 
twice, so 3r = 2m. Applying Theorem 6.1, we obtain m = 3n — 6. □ 

Corollary 6.4 

If G is a planar (n, m) graph with n ^ 3, then 

m ^ 3n — 6. 

Proof 

Add to G sufficiently many edges so that the resulting (n', m) graph G' is 
maximal planar. Clearly, n — n and m ^ m . By Theorem 6.3, m = 3n — 6 
and so m < 3n — 6. □ 

An immediate but important consequence of Corollary 6.4 is given 
next. 
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Corollary 6.5 

Every planar graph contains a vertex of degree at most 5. 

Proof 

Let G be a planar (n,m) graph with V(G) — {v},v2,... ,vn}. If n =$ 6, then 
the result is obvious. Otherwise, m ^ 3n — 6 implies that 

n 

y degVj — 2m^6n — 12. 
;' = 1 

Not all vertices of G have degree 6 or more, for then 2m ^ 6n. Thus G 
contains a vertex of degree 5 or less. □ 

We next consider another corollary involving degrees. In it we make 
use of the fact that the minimum degree is at least 3 in a maximal 
planar graph of order at least 4. 

Corollary 6.6 

Let G be a maximal planar graph of order n ^ 4, and let n, denote the number of 
vertices of degree i in G, for i = 3,4,..., k — A(G). Then 

3n3 + 2nA + n$ = n2 + 2-T • • • T {k — 6)h^ + 12. 

Proof 

Let G have size m. Then, by Theorem 6.3, m = 3n — 6. Since 

k k 

n = ni ar*d 2m = ^ inh 
i=3 1 = 3 

it follows that 

y int = 6 y n{ - 12 
i=3 i=3 

and, consequently, 

3n3 T 2H4 -\- n$ — n2 T 2+ (/c — 6T 12. Gl 

An interesting feature of planar graphs is that they can be embedded in 
the plane so that every edge is a straight line segment. This result was 
proved independently by Fary [FI] and Wagner [Wl]. 

The theory of planar graphs is very closely allied with the study of poly- 
hedra; in fact, with every polyhedron P is associated a connected planar 

graph G(P) whose vertices and edges are the vertices and edges of P. 
Necessarily, then, every vertex of G(P) has degree at least 3. Moreover, 
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Figure 6.2 A polyhedron and its associated graph. 

if G(P) is a plane graph, then the faces of P are the regions of G(P) and 

every edge of G(P) is on the boundary of two regions. A polyhedron and 
its associated plane graph are shown in Figure 6.2. 

It is customary to denote the number of vertices, edges and faces of a 
polyhedron P by V, E and P, respectively. However, these are the number 
of vertices, number of edges, and number of regions of a connected planar 

graph, namely G(P). According to Theorem 6.1, V, E and F are related. In 
this form, the statement of this result is known as the Euler Polyhedron 

Formula. 

Theorem 6.7 (Euler Polyhedron Formula) 

If V, E and F are the number of vertices, edges and faces of a polyhedron, then 

V -E + F = 2. 

When dealing with a polyhedron P (as well as the graph G(P)), it is 
customary to represent the number of vertices of degree k by Vk and 
number of faces (regions) bounded by a /c-cycle by Fk. It follows then that 

(6.1) 
k> 3 Jt> 3 

By Corollary 6.5, every polyhedron has at least one vertex of degree 3, 4 
or 5. As an analogue to this result, we have the following. 

Theorem 6.8 

At least one face of every polyhedron is bounded by a k-cycle for some k — 3,4,5. 

Proof 

Assume that P3 = f4 = P5 = 0, so by equation (6.1), 

2E=J2kpk> E6f*=6Ef* = 6F- 



Euler's Formula 159 

Hence E ^ 3F. Also, 

2E=J2 kVk > E 3Vk = 3 = 3V- 
k> 3 k^ 3 * » 3 

By Theorem 6.3, V — E + F — 2; therefore, E ^ ^E + ^E — 2 = E — 2. This 
is a contradiction. □ 

A regular polyhedron is a polyhedron whose faces are bounded by 
congruent regular polygons and whose polyhedral angles are congruent. 
In particular, for a regular polyhedron, E = Fs for some s and V — Vt 

for some t. For example, a cube is a regular polyhedron with V = V3 
and E = P4. There are only four other regular polyhedra. These five 

regular polyhedra are also called platonic solids. The Greeks were 
aware, over two thousand years ago, that there are only five such 
polyhedra. 

Theorem 6.9 

There are exactly five regular polyhedra. 

Proof 

Let P be a regular polyhedron and let G(P) be an associated planar graph. 

Then V — E + F = 2, where V, E and E denote the number of vertices, 
edges and faces of P and G(P). Therefore, 

-8 = 4E - 4V - 4E 

= 2E + 2E - W - 4E 

= Etf> + E*:V'‘-4El/‘ 
k^z 3 fc 3* 3 fc 3= 3 

= 2>-4)pt + I>-4>v* 

Since P is regular, there exist integers s(^3) and f(^3) such that E = Fs 
and V = Vt. Hence — 8 = (s — 4)ES + (f — 4)Vf. Moreover, we note that 
3^s^5, 3 ^ f 5, and sFs = 2E = fVf. This gives us nine cases to 

consider. 

Case 1. Assume that s — 3 and t = 3. Here we have 

—8 = — P3 — V3 and 3E3 = 3V3, 

so P3 = V3 = 4. Thus P is the tetrahedron. (That the tetrahedron is the 

only regular polyhedron with V3 = P3 = 4 follows from geometric con¬ 

siderations.) 

-4I> 
it >3 
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Case 2. Assume that s — 3 and t = 4. Therefore 

—8 = —Ft, and 3F3 - 4V4. 

Hence F3 = 8 and V4 = 6, implying that P is the octahedron. 

Case 3. Assume that s = 3 and t = 5. In this case, 

—8 = —Ft, + V5 and 3F3 = 5V5, 

so F3 = 20, V5 = 12 and P is the icosahedron. 

Case 4. Assume that s = 4 and t = 3. We find here that 

—8 = — V3 and 4F4 = 3V3. 

Thus V3 = 8, F4 = 6 and P is the cube. 

Case 5. Assume that s = 4 uud t = 4. This is impossible since -8 ^ 0. 

Case 6. Assume that s = 4 and t = 5. This case, too, cannot occur, for 

otherwise —8 = V5. 

Case 7. Assume that s — 5 and t = 3. For these values, 

-8 = F5- V3 and 5F5 = 3V3. 

Solving for F5 and V3/ we find that F5 = 12 and V3 = 20, so P is the 
dodecahedron. 

dodecahedron icosahedron 

Figure 6.3 The graphs of the regular polyhedra. 
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Case 8. Assume that s = 5 and t = 4. Here —8 = F5, which is impossible. 

Case 9. Assume that s = 5 and t — 5. This, too, is impossible since 
—8 ^ F5 + Vs. This completes the proof. □ 

The graphs of the five regular polyhedra are shown in Figure 6.3. 

EXERCISES 6.1 

6.1 Give an example of a planar graph that contains no vertex of degree 
less than 5. 

6.2 Show that every planar graph of order n ^ 4 has at least four vertices 
of degree less than or equal to 5. 

6.3 Prove Corollary 6.2. 

6.4 Prove that a planar («, m) graph with n ^ 3 is maximal planar if and 
only if m = 3n — 6. 

6.5 Prove that there exists only one 4-regular maximal planar graph. 

6.6 Let k ^ 3 be an integer, and let G be an (n, m) plane graph of order 
n(^k). 
(a) If the length of every cycle is at least k, then determine an upper 

bound B for m in terms of n and k. 
(b) Show that the bound B obtained in (a) is sharp by determining, 

for arbitrary k ^ 3, an (n, B) plane graph G, every cycle of which 
has length at least k. 

6.7 Show that every 2-edge-connected planar graph has a cycle double 
cover. 

6.2 CHARACTERIZATIONS OF PLANAR GRAPHS 

There are two graphs, namely K5 and K33 (Figure 6.4), that play an 
important role in the study of planar graphs. 
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Theorem 6.10 

The graphs K5 and K33 are nonplanar. 

Proof 

Suppose, to the contrary, that K5 is a planar graph. Since K5 has n = 5 

vertices and m = 10 edges, 

10 = m > 3n — 6 = 9, 

which contradicts Corollary 6.4. Thus K5 is nonplanar. 
Suppose next that K3 3 is a planar graph, and consider any plane embed¬ 

ding of it. Since K3 3 is bipartite, it has no triangles; thus each of its regions 
is bounded by at least four edges. Let the number of edges bounding a 
region be summed over all r regions of K33, denoting the result by N. 

Thus, N ^ 4r. Since the sum N counts each edge twice and K33 contains 
m = 9 edges, N = 18 so that r ^ However, by Theorem 6.1, r — 5, and 
this is a contradiction. Hence K3 3 is nonplanar. □ 

For the purpose of presenting two useful, interesting criteria for graphs 

to be planar, we describe two relations on graphs in this section. 
An elementary subdivision of a nonempty graph G is a graph obtained 

from G by removing some edge e — uv and adding a new vertex w and 
edges uw and vw. A subdivision of G is a graph obtained from G by a 
succession of elementary subdivisions (including the possibility of 

none). In Figure 6.5 the graphs G] and G2 are subdivisions of G3. 
It should be clear that any subdivision of a graph G is planar or 

nonplanar according to whether G is planar or nonplanar. Also it is an 
elementary observation that if a graph G contains a nonplanar subgraph, 

then G is nonplanar. Combining these facts with our preceding results, we 
obtain the following. 

Theorem 6.11 

If a graph G contains a subgraph that is a subdivision of either K5 or K33, then G is 
nonplanar. 

The remarkable property of Theorem 6.11 is that its converse is also 

true. These two results provide a characterization of planar graphs that 

Figure 6.5 Subdivision. 
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is undoubtedly one of the best known theorems in the theory of graphs. 
Before presenting a proof of this result, first discovered by Kuratowski 
[Kll], we need one additional fact about planar graphs. 

Theorem 6.12 

A graph is planar if and only if each of its blocks is planar. 

Proof 

Certainly, a graph G is planar if and only if each of its components is 
planar, so we may assume G to be connected. It is equally clear that if 
G is planar, then each block of G is planar. For the converse, we employ 
induction on the number of blocks of G. If G has only one block and this 

block is planar, then, of course, G is planar. Assume that every graph with 
fewer than k ^ 2 blocks, each of which is planar, is a planar graph, and 
suppose that G has k blocks, all of which are planar. Let B be an end-block 
of G, and denote by v the cut-vertex of G common to B. Delete from G all 
vertices of B different from v, calling the resulting graph G'. By the 

inductive hypothesis, G' is a planar graph. Since the block B is planar, it 
may be embedded in the plane so that v lies on the exterior region. In any 
region of a plane embedding of G' containing v, the plane block B may 
now be suitably placed so that the two vertices of G' and B labeled v 
are 'identified'. The result is a plane graph of G; hence G is planar. □ 

We can now give a characterization of planar graphs. The proof of the 
following result, known as Kuratowski's theorem [Kll], is based on a 
proof by Dirac and Schuster [DS1 ]. 

Theorem 6.13 

A graph is planar if and only if it contains no subgraph that is a subdivision of 
either K5 or K33. 

Proof 

The necessity is precisely the statement of Theorem 6.11; thus we need 
only consider the sufficiency. In view of Theorem 6.12, it is sufficient to 
show that if a block contains no subgraph that is a subdivision of K5 or 

K3 3, then it is planar. Assume, to the contrary, that such is not the case. 
Hence among all nonplanar blocks containing no subgraphs that are 

subdivisions of either K5 or K3 3, let G be one of minimum size. 
First we verify that 6(G) ^ 3. Since G is a block, it contains no end- 

vertices. Assume, then, that G contains a vertex v with degu = 2, such 
that v is adjacent with u and w. We Consider two possibilities. Suppose 
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that uzv e E(G). Then G — i> is also a block. Since G — v is a subgraph of G, 
it follows that G — v also contains no subgraph that is a subdivision of K5 

or K33; however, G is a nonplanar block of minimum size having this 
property, so G — v is planar. However, in any plane embedding of 

G — v, the vertex v and edges uv and vw may be inserted so that the 
resulting graph G is plane, which contradicts the fact that G is nonplanar. 

Next, suppose that uw 0 E(G). The graph G' — G — v + uw is a block 
having smaller size than G. Furthermore, G' contains no subgraph that 

is a subdivision of either K5 or F3 3; for suppose it contained such a sub¬ 
graph F. If F failed to contain the edge uw, then G would also contain F, 

which is impossible; thus F contains uw. If to F — uw we add the vertex v 
and edges uv and wv, the resulting graph F' is a subdivision of F. 

However, F' is a subgraph of G, which is impossible. Thus G' is a block 
having size less than G that contains no subgraph that is a subdivision of 
either K5 or fC3 3, so G' is planar. However, since G is a subdivision of G', 

this implies that G too is planar, which is a contradiction. Thus, G cannot 
contain a vertex of degree 2; so 6(G) ^ 3, as claimed. 

By Corollary 2.11, G is not a minimal block, so there exists an edge 

e = uv such that H = G — e is also a block. Since H has no subgraph 
that is a subdivision of either K5 or X3 3 and H has fewer edges than 
does G, the graph H is planar. Since H is a cyclic block, it follows by 
Theorem 2.5 that H possesses cycles containing both u and v. We hence¬ 

forth assume H to be a plane graph having a cycle, say C, containing u and 
v such that the number of regions interior to C is maximum. Assume that 
C is given by 

u = v0,vl,...tvi = v,...,vk = u, 

where 1 < i < k — 1. 
Several observations regarding the plane graph H can now be made. In 

order to do this, it is convenient to define two special subgraphs of H. By 

the exterior subgraph (interior subgraph) of H, we mean the subgraph of G 
induced by those edges lying exterior (interior) to the cycle C. First, since 
the graph G is nonplanar, both the exterior and interior subgraphs exist, 

for otherwise, the edge e could be added to H (either exterior to C or 
interior to C) so that the resulting graph, namely G, is planar. 

We note further that no two distinct vertices of the set {n0, ,..., n,} are 
connected by a path in the exterior subgraph of H, for otherwise this would 

contradict the choice of C as being a cycle containing u and v having the 
maximum number of regions interior to it. A similar statement can be 

made regarding the set + ... ,UjJ. These remarks in connection 
with the fact that FI + e is nonplanar imply the existence of a vs-v, path 
P, 0 < s < i < t < k, in the exterior subgraph of Ff such that no vertex of 

P different from ly and vt belongs to C. This structure is illustrated in 
Figure 6.6. We further note that no vertex of P different from vs and v, 

is adjacent to a vertex of C other than vs or vt, and, moreover, any path 
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Figure 6.6 Structure of the graph H of Theorem 6.13. 

connecting a vertex of P with a vertex of C must contain at least one of 
vs and vt. 

Let H] be the component of H — {vr | 0 ^ r < k, r ^ s, t} containing P. 
By the choice of C, the subgraph H] cannot be inserted in the interior of 
C in a plane manner. This, together with the assumption that G is non- 
planar, implies that the interior subgraph of H must contain one of the 
following: 

1. A va-vb path Q, 0 < a < s, i <b < t (or, equivalently, s < a < i and 
t < b < k), none of whose vertices different from va and vb belong 
to C. 

2. A vertex w not on C that is connected to C by three internally disjoint 

paths such that the end-vertex of one such path P' is one of v0, vs, and 
vt. If P' ends at v0, the end-vertices of the other paths are va and vb, 
where s a < i and i < b ^ t but not both a = s and b — t hold. If P' 
ends at any of vsr v, or vt, there are three analogous cases. 

3. A vertex w not on C that is connected to C by three internally disjoint 

paths P-[, P2, P3 such that the end-vertices of the path (different from w) 
are three of the four vertices vQ, vs, vir vt, say vQ, vir v5, respectively, 
together with a vc-vt path P4 (vc ^ v0,Vi,w) where vc is on P] or P2, 
and P4 is disjoint from Pj, P2 and C except for vc and vt. The remaining 
choices for Pj, P2 and P3 produce three analogous cases. 

4. A vertex w not on C that is connected to the vertices v0r vs, vir vt by four 

internally disjoint paths. 

These four cases exhaust the possibilities. In each of the first three cases, 
the graph G has a subgraph that is a subdivision of K3 3 while in the fourth 
case, G has a subgraph that is a subdivision of K5. However, in any case, 

this is contrary to assumption. Thus no such graph G exists, and the proof 

is complete. □ 

Thus the Petersen graph (Figure 6.7(a)) is nonplanar since it contains 
the subgraph of Figure 6.7(b) that is a subdivision of K33. Despite its 
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resemblance to the complete graph K5/ the Petersen graph does not 
contain a subgraph that is a subdivision of K5. 

For graphs G! and G2/ a mapping </> from onto V(G2) is called an 

elementary contraction if there exist adjacent vertices u and v of G-\ such that 

(i) (j>u = (pv, and {u\,Vi} ^ {u,y} implies that <pui ^ <pvp, 

(ii) {u-i,v}} H {u,v} = 0 implies that G E(G]) if and only if 
(pu^cpv-i E E(G2); and 

(iii) for w E V’(G1)/ w u,v, then uzv e E(G1) or viv E E(Gj) if and only if 

(pmpiv E E(G2). 

We say here that G2 is obtained from G} by the identification of the adjacent 

vertices u and v. A contraction is then a mapping from P(G]) onto V(G2) 
that is either an isomorphism or a composition of finitely many elemen¬ 

tary contractions. 
If there exists a contraction from V^Gt) onto V(G2), then G2 is a contrac¬ 

tion of G\, and G] contracts to or is contractible to G2. A subcontraction of a 

graph G is a contraction of a subgraph of G. 
There is an alternative and more intuitive manner in which to define 

'contraction'. A graph G2 may be defined as a contraction of a graph G] if 

there exists a one-to-one correspondence between V(G2) and the elements 
of a partition of V^G}) such that each element of the partition induces a 
connected subgraph of G\, and two vertices of G2 are adjacent if and only 

if the subgraph induced by the union of the corresponding subsets is 
connected. 

In Figure 6.8, the graph G is a contraction of H, obtained by the 
identification of v2 and v5. It might also be considered as the contraction 
resulting from the partition 

V{H) = {^i} U {v2, n5} U {n3} U {i*4}- 

A relationship between contraction and subdivision is given in the 
following theorem. 
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Theorem 6.14 

If a graph H is a subdivision of a graph G, then G is a contraction of H. 

Proof 

If G = H, then clearly G is a contraction of H. Hence we may assume 

that H is obtained from G by a sequence of elementary subdivisions. 
Suppose that G' is an elementary subdivision of G; then G' is obtained 
from G by removing some edge uv and adding a vertex w together with 
the edges uw and vw. However, then, G' is contractible to G by an 
elementary contraction 4t>, which fixes every element of V(G) and 
cj)W = <pu. Hence G can be obtained from H by a mapping that is a com¬ 
position of finitely many elementary contractions so that G is a contraction 
of H. □ 

Corollary 6.15 will actually prove to be of more use than the theorem 
itself. 

Corollary 6.15 

If a graph H contains a subgraph that is a subdivision of a connected nontrivial 
graph G, then G is a subcontraction of H. 

We can now present our second characterization of planar graphs 
(Halin [H4], Wagner [W2] and Harary and Tutte [HT1 ]), which is often 

referred to as Wagner's theorem. 

Theorem 6.16 

A graph G is planar if and only if neither K5 nor K33 is a subcontraction 

of G. 
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Proof 

Planar graphs 

Let G be a nonplanar graph. By Theorem 6.14, G contains a subgraph that 

is a subdivision of K5 or JC33. Thus by Corollary 6.15, K5 or K33 is a 

subcontraction of G. 
In order to verify the converse, we first suppose that G is a graph such 

that H = K33 is a subcontraction of G. We show, in this case, that G 

contains a subgraph that is a subdivision of K33, implying that G is non¬ 
planar. Denote the vertices of H by u, and u\, 1 ^ i ^ 3, such that every 

edge of H is of the type Uju'j. Taking the alternate definition of contraction, 
we let Gj, 1 ^ i ^ 3, be the connected subgraph of G corresponding to u, 

and let Gj correspond to u\. Since w,wj e E(H) for 1 ^ i =$ 3,1 ^ ^ 3, in the 
graph G there exists a vertex v,; of G, adjacent with a vertex v\j of Gj. 
Among the vertices vn, vi2, vi3 of G„ two or possibly all three may actually 

represent the same vertex. If u(1 = vi2 = vi3, we set each v,j = vt; otherwise, 
we define v, to be a vertex of G, connected to the distinct elements of 

{vn, vj2,vi3} with internally disjoint paths in G,. (It is possible that 
Vj = Vjj for some /.) We now proceed as above with the subgraphs Gj, 
thereby obtaining vertices v\. The subgraph of G induced by the nine 

edges Vjjv'ij together with the edge sets of any necessary aforementioned 
paths from a vertex v, or v\ is a subdivision of K33. 

Assume now that H — K5 is a subcontraction of G. Let V(H) = 

{Uj | ^ i ^ 5}, and suppose that G, is the connected subgraph of G that 
corresponds to w,-. As before, there exists a vertex v,j of G, adjacent with 
a vertex Vj, of G;, i ^ j, 1 ^ i, j ^ 5. For a fixed i, 1 ^ i < 5, we consider the 

vertices Vjj, j ^ i. If the vertices Vj; represent the same vertex, we denote 
this vertex by vt. If the vertices vV] are distinct and there exists a vertex 
(possibly some Vjj) from which there are internally disjoint paths (one of 
which may be trivial) to the u,;, then denote this vertex by v,. If three of the 

vertices vif are the same vertex, call this vertex vt. If two vertices vl} are the 
same while the other two are distinct, then denote the two coinciding ver¬ 
tices by Vj if there exist internally disjoint paths to the other two vertices. 

Hence in several instances we have defined a vertex vx, for 1 O' ^ 5. 
Should Vj exist for each i — 1,2,..., 5, then G contains a subgraph that is 
a subdivision of K5. 

Otherwise, for some i, there exist distinct vertices w, and w\ of G„ each of 
which is connected to two of the ly by internally disjoint (possibly trivial) 
paths of Gj while Wj and w\ are connected by a path of G„ none of whose 

internal vertices are the vertices vir If two vertices Vjj coincide, then this 
vertex is w,. If the other two vertices vq should also coincide, then this 
vertex is w\. Without loss of generality, we assume that i — 1 and that 

wx is connected to vu and u13, while w\ is connected to n14 and i>15 as 
described above. 

Denote the edge set of these five paths of Gt by Ej. We now turn to G2. If 

vi\ — y24 = vi5> we set E2 = 0; otherwise, there is a vertex w2 of G2 (which 
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may coincide with v2\, v24 or v25) connected by internally disjoint 
(possibly trivial) paths in G2 to the distinct elements of {v2i,v24,v25}. We 
then let E2 denote the edge sets of these paths. In an analogous manner, 

we define accordingly the sets E3, E4 and E5 with the aid of the sets 

{^3i,034,035}/ {041,042,043} and {051,052.053}/ respectively. The subgraph 
induced by the union of the sets E, and the edges vljVjl contains a subgraph 

E that is a subdivision of K3 3 such that the vertices of degree 3 of E are w4, 
w\ and the vertices wir i = 2,3,4,5. In either case, G is nonplanar. □ 

As an application of this theorem, we again note the nonplanarity of 

the Petersen graph of Figure 6.7(a). The Petersen graph contains K5 as a 
subcontraction, which follows by considering the partition V], V2, V3, V 4, 
V5 of its vertex set, where V, — {Vj,vi+5}. 

EXERCISES 6.2 

6.8 Show that the converse of Theorem 6.14 is not, in general, true. 

6.9 Show that the Petersen graph of Figure 6.7(a) is nonplanar by 
(a) showing that it has K33 as a subcontraction, and 

(b) using Exercise 6.6(a). 

6.10 Let T be a tree of order at least 4, and let e4, e2, e3 E E(T). Prove that 

T + e4 + e2 + e3 is planar. 

6.11 A graph G is outerplanar if it can be embedded in the plane so that 
every vertex of G lies on the boundary of the exterior region. Prove 

the following: 
(a) A graph G is outerplanar if and only if G + K] is planar. 
(b) A graph is outerplanar if and only if it contains no subgraph that 

is a subdivision of either K4 or K2 3. 
(c) If G is an (n, m) outerplanar graph with n ^ 2, then m ^ 2n — 3. 

6.3 HAMILTONIAN PLANAR GRAPHS 

We have encountered many sufficient conditions for a graph to be 

hamiltonian but only two necessary conditions. In this section we reverse 
our point of view and consider a necessary condition for a planar graph to 

be hamiltonian. 
Let G be a hamiltonian plane graph of order n and let C be a fixed 

hamiltonian cycle in G. With respect to this cycle, a chord is, as before, 

an edge of G that does not lie on C. Let r, (z = 3,4,..., n) denote the 
number of regions of G in the interior of C whose boundary contains 
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Figure 6.9 A hamiltonian plane graph. 

exactly i edges. Similarly, let r\ denote the number of regions of G in 
the exterior of C whose boundary contains i edges. To illustrate these 
definitions, let G be the plane graph of Figure 6.9 with hamiltonian 

cycle C:vuv6,v7,v8,v9,vw,v5,v4,v3,v2,v1. Then r,- = 0 if i / 4 and 
r4 — 4. Also, r'j = 0 if i / 4, 5 while r\ = 1 and r'5 = 2. 

Using the notation of the previous paragraph, we have the following 
necessary condition, due to Grinberg [G8], for a plane graph to be 
hamiltonian. 

Theorem 6.17 

Let G be a plane graph of order n with hamiltonian cycle C. Then with respect to 

this cycle C, 

E (i - 2)(r, - rj) = 0. 
1 = 3 

Proof 

We first consider the interior of C. If d denotes the number of chords of G 
in the interior of C, then exactly d + 1 regions of G lie inside C. Therefore, 

n 

^2ri = d + 1, 
i=3 

implying that 

(6-2> 

Let the number of edges bounding a region interior to C be summed 

over all d + 1 such regions, denoting the results by N. Hence N = XT=3 ?r>- 
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However, N counts each interior chord twice and each edge of C once, 
so that N — 2d + n. Thus, 

n 

Y ^i = 2d + n. (6.3) 
i' = 3 

Substituting (6.2) into (6.3), we obtain 

n n 

Y ir‘ = 2Yr‘~2+n' 
i' = 3 i = 3 

SO 

n 

Y (i ~ 2)h = n-2. (6.4) 
i' = 3 

By considering the exterior of C, we conclude in a similar fashion that 

£(»-2)r| = «-2. (6.5) 
i = 3 

It follows from (6.4) and (6.5) that 

^(/-2)(r,-r') = 0. □ 
i = 3 

The following observations often prove quite useful in applying 
Theorem 6.17. Let G be a plane graph with hamiltonian cycle C. Further¬ 
more, suppose that the edge e of G is on the boundary of two regions 
and R2 of G. If e is an edge of C, then one of R^ and R2 is in the interior of C 
and the other is in the exterior of C. If, on the other hand, e is not an edge of 
C, then Ri and R2 are either both in the interior of C or both in the exterior 
of C. 

In 1880, the English mathematician P. G. Tait conjectured that every 
3-connected cubic planar graph is hamiltonian. This conjecture was dis¬ 
proved in 1946 by Tutte [Til], who produced the graph G in Figure 6.10 as 
a counterexample. In addition to disproving Tait's conjecture, Tutte [T14] 
proved that every 4-connected planar graph is hamiltonian. This result 

was later extended by Thomassen [T5]. 

Theorem 6.18 

Every 4-connected planar graph is hamiltonian-connected. 

As an illustration of Grinberg's theorem, we now verify that the Tutte 
graph (Figure 6.10) is not hamiltonian. Assume, to the contrary, that the 

Tutte graph G, which has order 46, contains a hamiltonian cycle C. 
Observe that C must contain exactly two of the edges e, f\ and f2. 
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v2 

Figure 6.10 The Tutte graph. 

Consider the regions R4, R2 and R3 of G. Suppose that two of them, say 
R] and R2, lie in the exterior of C. Then the edges/j and f2 do not belong to 
C since the unbounded region of G also lies in the exterior of C. This, 

however, is impossible; thus at most one of the regions Rlx R2 and R3 
lies in the exterior of C. We conclude that at least two of these regions, 
say Ri and R2, lie in the interior of C. This, of course, implies that their 
common boundary edge e does not belong to C. Therefore, fa and f2 are 

edges of C. Now let G] denote the component of G — {e, f\, f2} containing 
w. Then the cycle C contains a v^-v2 subpath P that is a hamiltonian path 
of G]. Consider the graph G2 = Gj + vpv2. Then G2 has a hamiltonian cycle 

C2 consisting of P together with the edge V\V2- 
An application of Theorem 6.17 to G2 and C2 yields 

l(r3 — *3) + 2(r4 — r4) 4- 3(r5 — r'5) + 6(r8 — r8) = 0. (6.6) 

Since 14 v2 is an edge of C2 and since the unbounded region of G2 lies in the 
exterior of C2, we have that 

r3 — r3 = 1—0 = 1 and r8 — r8 = 0 — 1 = —1. 

Therefore, from (6.6) we obtain 

2(r4 — r4) + 3(r5 — r'5) = 5. 

Since degG2 w = 2, both wwA and zvw2 are edges of C2. This implies that 
r4 ^ 1, so 

r4 — r4 = 1-1=0 or r4 - r4 = 2 - 0 = 2. 

If r4 — r4 = 0, then 3(r5 — r’5) = 5, which is impossible. If, on the other 
hand, r4 — r4 = 2, then 3(r5 — r'5) — 1, again impossible. We conclude 
that Tutte's graph is not hamiltonian. 
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For many years, Tutte's graph was the only known example of a 3- 
connected cubic planar graph that was not hamiltonian. Much later, how¬ 
ever, other such graphs have been found; for example, Grinberg himself 

provided the graph in Exercise 6.12 as another counterexample to Tait's 

conjecture. 

EXERCISES 6.3 

6.12 Show, by applying Theorem 6.17, that the Grinberg graph (below) is 

non-hamiltonian. 

The Grinberg graph. 

6.13 Show, by applying Theorem 6.17, that the Herschel graph (below) is 

non-hamiltonian. 

The Herschel graph. 
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6.14 Show, by applying Theorem 6.17, that no hamiltonian cycle in the 
graph of Figure 6.9 contains both the edges e and /. 

6.4 CROSSING NUMBER AND THICKNESS 

There are several ways of measuring how nonplanar a graph is. In this 

section, we discuss two of these measures. 
Nonplanar graphs cannot, of course, be embedded in the plane. Hence, 

whenever a nonplanar graph is 'drawn' in the plane, some of its edges 

must cross. This rather simple observation suggests our next concept. 
The crossing number i/(G) of a graph G is the minimum number of 

crossings (of its edges) among the drawings of G in the plane. Before 

proceeding further, we comment on the assumptions we are making 
regarding the idea of 'drawings'. In all drawings under consideration, 
we assume that 

• adjacent edges never cross 
• two nonadjacent edges cross at most once 

• no edge crosses itself 
• no more than two edges cross at a point of the plane and 
• the (open) arc in the plane corresponding to an edge of the graph 

contains no vertex of the graph. 

A few observations will prove useful. Clearly a graph G is planar if 

and only if u(G) = 0. Further, if G C H, then i/(G) ^ i/(H), while if H is 
a subdivision of G, then i/(G) = u(H). For very few classes of graphs is 
the crossing number known. It has been shown by Blazek and Koman 

[BK1] and Guy [G10], among others, that for complete graphs, 

u(Kn) ^ ^ 

and Guy has conjectured that equality holds in (6.7) for all n. As far 
as exact results are concerned, the best obtained is the following (Guy 
[Gil]). 

n n — 1 n — 2 n — 3 

2 2 2 2 
(6.7) 

Theorem 6.19 

For 1 ^ n ^ 10, 

1 n n — 1 n — 2 n — 3 

4 2 2 2 2 
(6.8) 

Since K„ is planar for 1 ^ n ^ 4, Theorem 6.19 is obvious for 1 ^ n ^ 4. 

Further, K5 is nonplanar; thus, u(K5) ^ 1. On the other hand, there exists 
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Figure 6.11 A drawing of K5 with one crossing. 

a drawing (Figure 6.11) of K5 in the plane with one crossing so that 
u(K5) = 1. 

The inequality u(Kb) ^ 3 follows from Figure 6.12, where a drawing of 
Kb with three crossings is shown. We now verify that a(Kb) ^ 3, complet¬ 
ing the proof that v(Kb) = 3. Let there be given a drawing of Kb in the 

plane with c = v(Kb) crossings, where, of course, c ^ 1. At each crossing 
we introduce a new vertex, producing a connected plane graph G of order 
6 + c and size 15 + 2c. By Corollary 6.4, 

15 + 2c ^ 3(6 + c) - 6, 

so that c ^ 3 and, consequently, a(Kb) 3. 

Considerably more specialized techniques are required to verify 
Theorem 6.19 for 7 ^ n < 10. 

It was mentioned in section 6.1 that every planar graph can be 
embedded in the plane so that each edge is a straight line segment. 
Thus, if a graph G has crossing number 0, this fact can be realized by 

Figure 6.12 A drawing of Kb with three crossings. 
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considering only drawings in the plane in which the edges are straight 
line segments. One may very well ask if, in general, it is sufficient to con¬ 

sider only drawings of graphs in which edges are straight line segments in 
determining crossing numbers. With this question in mind, we introduce 

a variation of the crossing number. 
The rectilinear crossing number P(G) of a graph G is the minimum 

number of crossings among all those drawings of G in the plane in 
which each edge is a straight line segment. Since the crossing number 

u(G) considers all drawings of G in the plane (not just those for which 
edges are straight line segments), we have the obvious inequality 

u(G) ^ P(G). (6.9) 

As previously stated, v{G) = P(G) for every planar graph G. It has also 
been verified that u(K„) = P(Kn) for 1 ^ n ^ 7 and n — 9; however, 

v(K8) = 18 and P(K8) = 19 

(Guy [Gil]), so strict inequality in (6.9) is indeed a possibility. 

We return to our chief interest, namely the crossing number, and 
consider the complete bipartite graphs. The problem of determining 
v(Ks t) has a rather curious history. It is sometimes referred to as Turan's 
Brick-Factory Problem (named for Paul Turan). We quote from Turan [T10]: 

We worked near Budapest, in a brick factory. There were some kilns 
where the bricks were made and some open storage yards where the 

bricks were stored. All the kilns were connected by rail with all 
the storage yards. The bricks were carried on small wheeled trucks 
to the storage yards. All we had to do was to put the bricks on the 
trucks at the kilns, push the trucks to the storage yards, and unload 

them there. We had a reasonable piece rate for the trucks, and the 
work itself was not difficult; the trouble was only at the crossings. 
The trucks generally jumped the rails there, and the bricks fell out 
of them; in short this caused a lot of trouble and loss of time which 

was precious to all of us. We were all sweating and cursing at such 
occasions, I too; but nolens volens the idea occurred to me that this loss 
of time could have been minimized if the number of crossings of the 

rails had been minimized. But what is the minimum number of cross¬ 
ings? I realized after several days that the actual situation could have 
been improved, but the exact solution of the general problem with s 

kilns and t storage yards seemed to be very difficult ... the problem 
occurred to me again ... at my first visit to Poland where I met 

Zarankiewicz. I mentioned to him my 'brick-factory'-problem... 
and Zarankiewicz thought to have solved (it). But Ringel found a 
gap in his published proof, which nobody has been able to fill so 

far - in spite of much effort. This problem has also become a 
notoriously difficult unsolved problem.... 
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Zarankiewicz [Z2] thus thought that he had proved 

"(Ksjt) 
s s — 1 t t - 1 

2_ 2 2 _ 2 
(6.10) 

but, in actuality, he only verified that the right hand expression of (6.10) 
is an upper bound for u(Ks t). As it turned out, both P. C. Kainen and 

G. Ringel found flaws in Zarankiewicz's proof. Hence, (6.10) remains 
only a conjecture. It is further conjectured that u(Ks t) — P(Ks t). The best 
general result on crossing number of complete bipartite graphs is the 
following, due to the combined work of Kleitman [K7] and Woodall 

[Will. 

Theorem 6.20 

If s and t are integers (s ^ t) and either s ^ 6 or s = 7 and t ^ 10, then 

s s - 1 t t- 1 

_2_ 2 2 _ 2 

It follows, therefore, from Theorem 6.20 that 

= 4 

for all t. For example, u(K33) = 1, u(K44) = 4, u(K5<5) = 16, u(Kbb) = 36 
and u(K77) = 81. A drawing of K44 with four crossings is shown in 

Figure 6.13. 
As would be expected, the situation regarding crossing numbers of 

complete Gpartite graphs, k ^ 3, is even more complicated. For the 
most part, only bounds and highly specific results have been obtained 

in these cases. On the other hand, some of the proof techniques employed 

t - 1 t t - 1 

l 

<N 

(N II 

2 2 

t -1 t t - 1 

i 

<N 
_
_
i 

and u(K6t) — 6 
2 2 

Figure 6.13 A drawing of K4 4 with four crossings. 



178 Planar graphs 

have been enlightening. As an example, we establish the crossing number 

of K223 (see White [W5], p. 77). 

Theorem 6.21 

The crossing number of K223 is u(K223) — 2. 

Proof 

Let u(K22,3) = c. Since #C33 is nonplanar and K3 3 C fC223, it follows that 
fC2,2,3 is nonplanar so that c ^ 1. Let there be given a drawing of fC223 in 
the plane with c crossings. At each crossing we introduce a new vertex, 

producing a connected plane graph G of order n = 7 + c and size 
m = 16 + 2c. By Corollary 6.4, m < 3n — 6. 

Let u4u2 and V\V2 be two (nonadjacent) edges of K223 that cross in the 
given drawing, giving rise to a new vertex. If G is a triangulation, then 

C: Mi,z>i,m2,i>2,M], is a cycle of G, implying that the induced subgraph 
({ui,u2,Vi, v2}) in K2 23 is isomorphic to K4. However, K2 23 contains no 
such subgraph; thus, G is not a triangulation so that m < 3n — 6. We have 

16 +2c < 3(7+ c) -6, 

from which it follows that c ^ 2. The inequality c ^ 2 follows from the fact 

that there exists a drawing of K223 with two crossings (Figure 6.14). □ 

Other graphs whose crossing numbers have been investigated with 
little success are the rc-cubes Q„. Since Q„ is planar for n = 1,2,3, of 
course, v(Q„) = 0 for such n. Eggleton and Guy [EG1] have shown that 
u(Q4) = 8 but u(Qn) is unknown for n ^ 5. One might observe that 

Q4 = K2xK2xK2xK2 = C4x C4) 

so that iy(C4 x C4) = 8. This raises the problem of determining u(Cs x Cf) 

for s,t>3. For the case s = t = 3, Harary, Kainen and Schwenk [HKS1] 

Figure 6.14 A drawing of K2 2 3 with two crossings. 
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showed that u(C3 x C3) = 3. Their proof consisted of the following three 
steps: 

Step 1. Exhibiting a drawing of C3 x C3 with three crossings so that 
u(Cy X C3) ^ 3. 

Step 2. Showing that C3 x C3 — e is nonplanar for every edge e of C3 x C3 
so that v{C3 x C3) ^ 2. 

Step 3. Showing, by case exhaustion, that it is impossible to have a draw¬ 
ing of C3 x C3 with exactly two crossings so that u(C3 xC3) ^ 3 
(Exercise 6.19). 

Ringeisen and Beineke [RBI] then extended this result significantly by 
determining v(C3 x Cf) for all integers t ^ 3. 

Theorem 6.22 

For all t ^ 3, 

u(C3 x Q) = f. 

Proof 

We label the vertices of C3 x Ct by the 31 ordered pairs (0,/), (1,/) and 
(2,;), where j = 0,1,..., t — 1, and, for convenience, we let 

Uj = (0 ,j),Vj = (1and w, = (2,;). 

First, we note that i/(C3 x Ct) ^ t. This observation follows from the fact 
that there exists a drawing of C3 x Cf with t crossings. A drawing of 
C3 x C4 with four crossings is shown in Figure 6.15. Drawings of 
C3 x C( with t crossings for other values of t can be given similarly. 

To complete the proof, we show that u(C3 x Cf) ^ t. We verify this by 
induction on t ^ 3. For t = 3, we recall the previously mentioned result 

i/(C3 x C3) = 3. 
Assume that z/(C3 x Q) ^ k, where k^ 3, and consider the graph 

C3 x Q+1. We show that i/(C3 x Q+1) ^ k + 1. Let there be given a 
drawing of C3 x Q+1 with i/(C3 x Cfc+1) crossings. We consider two 

cases. 

Case 1. Suppose that no edge of any triangle Tj = ({uj, Vj, Wj}), /' = 0,1,..., k, 

is crossed. For j = 0,1,..., k, define 

Hj = ({u],Vj,wj,uj+uvj+uwj+A}), 

where the subscripts are expressed modulo k + 1. We show that for each 
; = 0,1,... ,k, the number of times edges of Hj are crossed totals at least 
two. Since, by assumption, no triangle Tj has an edge crossed and since 
every edge not in any Tj belongs to exactly one subgraph Hj, it will follow 

that there are at least k + 1 crossings in the drawing because then every 
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Figure 6.15 A drawing of C3 x C4 with four crossings. 

crossing of an edge in H; involves either two edges of H; or an edge of H, 

and an edge of H, for some i ^ j. 
If two of the edges u;u; + 1/ v]v] +j and ic;ze/ + 1 cross each other, then two 

edges of H, are crossed. Assume then that no two edges of H; cross each 
other. Thus, H; is a plane subgraph in the drawing of C3 x Q + 1 (Figure 

6.16). The triangle T; + 2 must lie within some region of H,. If T/ + 2 lies in 
a region of H, bounded by a triangle, say Tjr then at least one edge of the 

cycle M0l wi>•••> ukl u0, for example, must cross an edge of T,, contradicting 
our assumption. Thus, T; + 2 must lie in a region of H; bounded by a 4-cycle, 

say ur Uj+^,iVj+i,zVjf ur without loss of generality. However, then edges of 
the cycle v0,Vi,... ,vkr v0 must cross edges of the cycle u;, u; + 1, ie; + 1, w}, u} 
at least twice and hence edges of at least twice, as asserted. 

Case 2. Assume that some triangle, say T0, has at least one of its edges crossed. 

Suppose that v(C3 x Q + 1) < k + 1. Then the graph C3 x Q + i — E(T0), 
which is a subdivision of C3 x Ck, is drawn with fewer than k crossings, 
contradicting the inductive hypothesis. □ 

Figure 6.16 The subgraph H, in the proof of Theorem 4.15. 
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The only other result giving the crossing number of graphs Cs x C, is 

the following formula by Beineke and Ringeisen [BR1]. This theorem and 
the succeeding theorems in this chapter are stated only to illustrate the 
types of results obtained in this area. 

Theorem 6.23 

For all t ^ 4, 

u(C4 x Cf) = 21. 

Beineke and Ringeisen [BR1] have also found a formula for v(K4 x Cf). 

Theorem 6.24 

For all t ^ 3, 

v{K4 x Cf) = 31. 

In addition to the crossing number, another parameter that is interesting 
for nonplanar graphs only is the thickness. The edge-thickness or simply the 

thickness 6} (G) of a nonempty graph G is the minimum number of pairwise 
edge-disjoint planar spanning subgraphs of G whose edge sets is a 
partition of E(G). This provides another measure of the nonplanarity of 
a graph. Once again, it is the complete graphs, complete bipartite graphs 
and n-cubes that have received the most attention. 

A formula for the thickness of the complete graphs was established 
primarily due to the efforts of Beineke [B3], Beineke and Harary [BH2], 

Vasak [VI] and Alekseev and Gonchakov [AG1]. 

Theorem 6.25 

The thickness of Kn is given by 

Ox (Kn) = 
n^ 9,10 

n = 9,10. 

Although only partial results exist for the thickness of complete bipar¬ 

tite graphs (Beineke, Harary and Moon [BHM1]), a formula is known for 

the thickness of the n-cubes, due to Kleinert [K6]. 

Theorem 6.26 

The thickness of Q„ is given by 

n + 1 
0i(Q») = 4 
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EXERCISES 6.4 

6.15 Draw K7 in the plane with nine crossings. 

6.16 Determine ^(iC3 3) without using Theorem 6.20. 

6.17 Show that u{K77) ^ 81. 

6.18 Determine a(K2i2,2)- 

6.19 Determine ^(^1,2,3)- 

6.20 Show that 2 ^ ^(C3 x C3) ^ 3. 

6.21 Prove that P(C3 x Q) = t for t ^ 3. 

6.22 (a) It is known that u( W4 x K2) = 2, where W4 is the wheel C4 + X] 
of order 5. Draw W4 x X2 in the plane with two crossings. 

(b) Prove or disprove: If G is a nonplanar graph containing an edge e 

such that G — e is planar, then 1/(G) — 1. 

6.23 Prove that 9l (K„) ^ |_(n + 7)/6j for all positive integers n. 

6.24 Verify that 9^ (K„) — [(n + 7)/6j for n — 4,5,6, 7,8. 



CHAPTER 7 

Graph embeddings 

In Chapter 6 the emphasis was on embeddings of graphs in the plane. 

Here this notion is extended to embeddings of graphs on other surfaces. 

7.1 THE GENUS OF A GRAPH 

We now introduce the best known parameter involving nonplanar 
graphs. A compact orientable 2-manifold is a surface that may be thought 
of as a sphere on which has been placed a number of 'handles' or, 

equivalently, a sphere in which has been inserted a number of 'holes'. 
The number of handles (or holes) is referred to as the genus of the 
surface. By the genus gen(G) of a graph G is meant the smallest genus of 
all surfaces (compact orientable 2-manifolds) on which G can be 
embedded. Every graph has a genus; in fact, it is a relatively simple 
observation that a graph of size m can be embedded on a surface of 
genus m. 

Since the embedding of graphs on spheres and planes is equivalent, the 
graphs of genus 0 are precisely the planar graphs. The graphs with genus 
1 are therefore the nonplanar graphs that are embeddable on the torus. 
The (nonplanar) graphs K5 and K33 have genus 1. Embeddings of K33 on 
the torus and on the surface of genus 2 are shown in Figure 7.1(a) and (b). 

Not only is K5 embeddable on the torus, but so are K6 and K7. (The 
graph K8 is not embeddable on the torus.) Figure 7.2 gives an embedding 
of K7 on the torus. The torus is obtained by identifying opposite sides of 
the square. The vertices of K7 are labeled v0, zq,..., v6. Thus note that the 
'vertices' located at the corners of the square actually represent the same 

vertex of K7, namely the one labeled v5. 
For graphs embedded on surfaces of positive genus, the regions and the 

boundaries of the regions are defined in entirely the same manner as for 
embeddings in the plane. Thus, if G is embedded on a surface S, then the 

components of S - G are the regions of the embedding. In Figure 7.1(a) 
there are three regions, in Figure 7.1(b) there are two regions and in Figure 

7.2 there are 14 regions. 
A region is called a 2-cell if any simple closed curve in that region can 

be continuously deformed or contracted in that region to a single point. 
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Figure 7.1 Embeddings of k33 on surfaces of genus 1 and 2. 

Equivalently, a region is a 2-cell if it is topologically homeomorphic to 2- 
dimensional Euclidean space. Although every region of a connected 
graph embedded on the sphere is necessarily a 2-cell, this need not be 

the case for connected graphs embedded on surfaces of positive genus. 
Of the two regions determined by the embedding of £3 3 on the 'double 

torus' in Figure 7.1(b), one is a 2-cell and the other is not. The boundary of 
the 2-cell is a 4-cycle while the boundary of the other region consists of all 
vertices and edges of K3 3. Indeed, in the closed walk bounding the second 
region, five of the edges are encountered twice. 

Figure 7.2 An embedding of K7 on the torus. 
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An embedding of a graph G on a surface S is called a 2-cell embedding 
of G on S if all the regions so determined are 2-cells. The embeddings in 
Figure 7.1(a) and Figure 7.2 are both 2-cell embeddings. 

Theorem 7.1 

Let Gbe a connected (n, m) pseudograph with a 2-cell embedding on the surface of 
genus g and having r regions. Then 

n-m + r —2-2g. (7.1) 

Proof 

The proof is by induction on g. For g = 0, the formula holds for connected 
graphs by Theorem 6.1. If G is a connected (n, m) pseudograph (which is 
not a graph) embedded in the plane and having r regions, then a plane 
graph H is obtained by deleting from G all loops and all but one edge in 
any set of multiple edges joining the same two vertices. If H has order nu 

size m-f and rx regions, then n\ — = 2 by Theorem 6.1. We now add 
back the deleted edges to form the originally embedded pseudograph G. 
Note that the addition of each such edge increases the number of regions 
by 1. If G has k more edges than does H, then n = «lr m — m^ + k and 
r = r-y + k so that 

n — m + r = n-[ - (ra-, + k) + (fy + k) = — m^ + r-j = 2, 

producing the desired result for g = 0. 
Assume the theorem to be true for all connected pseudographs that are 

2-cell embedded on the surface of genus g — 1, where g > 0, and let G be a 
connected (n, m) pseudograph that is 2-cell embedded on the surface S of 
genus g and having r regions. We verify that (7.1) holds. 

Since the surface S has genus g and g > 0, S has handles. Draw a 
curve C around a handle of S such that C contains no vertices of G. 

Necessarily, C will cross edges of G; for otherwise C lies in a region of 
G and cannot be contracted in that region to a single point, contradicting 

the fact that the embedding on S is a 2-cell embedding. By re-embedding 
G on S, if necessary, we may assume that the total number of intersections 
of C with edges of G is finite, say k, where k > 0. If e-[,e2) ■ ■ ■ ,et are 

the edges of G that are crossed by C, then 1 ^ t < k (Figure 7.3). 
Moreover, if edge e„ 1 ^ i ^ t, is crossed by C a total of times, then 

Xa=i *5' = ^ 
At each of the k intersections of C with the edges of G we add a new 

vertex; further, each subset of C lying between consecutive new vertices 
is specified as a new edge. Moreover, each edge of G that is crossed by C, 

say a total of t times, is subdivided into t + 1 new edges. 
Let the new pseudograph so formed be denoted by G'; further, suppose 

G' has order n , size m and r' regions. Since k new vertices have been 
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Figure 7.3 A curve C drawn on a handle of the surface S. 

introduced in forming G', it follows that n — n + k. The curve C has 
resulted in an increase of k in the number of edges. Also, each edge eir 
1 < i ^ f, has given rise to an increase of /, edges and since £T=1 = k, 
the total increase in size from G to G' is 2k; that is, vn! = m + 2k. 

Each portion of C that became an edge of G' is in a region of G. Thus, the 
addition of such an edge divides that region into two regions. Since there 
exist k such edges, r' = r + k. Because every region of G is a 2-cell, it 
follows that every region of G' is a 2-cell. 

We now make a 'cut' in the handle along C, separating the handle into 
two pieces (as shown in Figure 7.4). The two resulting holes are 'patched' 
or 'capped', producing a new (2-cell) region in each case. (This is called a 
'capping' operation.) 

In the process of performing this capping operation, several changes 
have occurred. First, the surface S has been transformed into a new sur¬ 
face S". The two capped pieces of the handle of S are now part of the 
sphere of S". Hence S" has one less handle than S so that S" has genus 
g — 1. Furthermore, the pseudograph G' itself has been altered. The 
vertices and edges resulting from the curve C have been divided into 
two copies, one copy on each of the two pieces of the capped handle. If 
G" denotes this new pseudograph, then G" has order n" = n +k = n + 2k 
and size m" = m' + k — m + 3k. Also, the number r" of regions satisfies 
r" = / + 2 = r + k + 2. Since each of these r" regions in the connected 
pseudograph G" is a 2-cell, the inductive hypothesis applies so that 

Figure 7.4 Capping a cut handle. 
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n" — m" + r" = 2 — 2(g — 1) or 

(n + 2k) - (m + 3k) + (r + k + 2) = 2 - 2(g - 1); 

thus, 

n — m + r = 2-2g, 

giving the desired result. □ 

Restating Theorem 7.1 for graphs, we have the following. 

Corollary 7.2 

Let Gbea connected (n, m) graph with a 2-cell embedding on the surface of genus 
g and having r regions. Then 

n — m + r = 2 — 2g. 

In connection with Corollary 7.2 is the following result. Proofs of this 
theorem (e.g. Youngs [Y1 ]) are strictly topological in nature; we present 
no proof. 

Theorem 7.3 

If G is a connected graph embedded on the surface of genus gen(G), then every 
region of G is a 2-cell. 

Corollary 7.2 and Theorem 7.3 now immediately imply the following. 

Theorem 7.4 

If G is a connected (n,m) graph embedded on the surface of genus gen(G) and 
having r regions, then 

n — m + r = 2 — 2 gen(G). 

An important conclusion, which can be reached with the aid of 
Theorem 7.4, is that every two embeddings of a connected graph G on 
the surface of genus gen(G) result in the same number of regions. With 

the theorems obtained thus far, we can now provide a lower bound for the 
genus of a connected graph in terms of its order and size. 

Theorem 7.5 

If G is a connected (n, m) graph (n ^ 3), then 

gen(G) ^ - 
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The result is immediate for n — 3, so we assume that n ^ 4. Let G be 
embedded on the surface of genus gen(G). By Theorem 7.4, n - m + r = 

2 — 2gen(G), where r is the number of regions of G. (Necessarily, each of 

these regions is a 2-cell by Theorem 7.3.) Since the boundary of every 
region contains at least three edges and every edge is on the boundary 

of at most two regions, 3r ^ 2m. Thus, 

2-2 gen(G) = n- m + r^n — m + —, 

and the desired result follows. □ 

The lower bound for gen(G) presented in Theorem 7.5 can be improved 

when more information on cycle lengths in G is available. The proof of the 
next theorem is entirely analogous to that of the preceding one. 

Theorem 7.6 

If G is a connected (n, m) graph with smallest cycle of length k, then 

A special case of Theorem 7.6 that includes bipartite graphs is of special 
interest. Recall that a graph is called triangle-free if it contains no triangles. 

Corollary 7.7 

If G is a connected, triangle-free (n, m) graph [n ^ 3), then 

As one might have deduced by now, no general formula for the genus 
of an arbitrary graph is known. Indeed, it is unlikely that such a formula 
will ever be developed in terms of quantities that are easily calculable. On 

the other hand, the following result by Battle, Harary, Kodama and 
Youngs [BHKY1] implies that, as far as genus formulas are concerned, 
one need only investigate blocks. We omit the proof. 

Theorem 7.8 

If G is a graph having blocks , B2,..., Bk, then 

k 

gen(G) = Y gen(B,-). 
i=i 



The genus of a graph 189 

The following corollary is a consequence of the preceding result. 

Corollary 7.9 

If G is a graph with components Gj, G2,..., Gk, then 

k 

gen(G) = J2 Sen(Gi). 
i = 1 

As is often the case, when no general formula exists for the value of a 
parameter for an arbitrary graph, formulas (or partial formulas) are 
established for certain families of graphs. Ordinarily the first classes to 

be considered are the complete graphs, the complete bipartite graphs, 
and the n-cubes. The genus offers no exception to this rule. 

In 1968, Ringel and Youngs [RY1] completed a proof of a result that has 
a remarkable history. They solved a problem that became known as the 
Heawood Map Coloring Problem; this problem will be discussed in Chapter 
8. The solution involved the verification of a conjectured formula for the 

genus of a complete graph; the proof can be found in (and, in fact, is) the 

book by Ringel [R8]. 

Theorem 7.10 

The genus of the complete graph is given by 

"(n — 3)(n — 4) 
gen (K„) 

12 
n ^ 3. 

A formula for the genus of the complete bipartite graph was discovered 
by Ringel [R7]. We shall also omit the proof of this result. 

Theorem 7.11 

The genus of the complete bipartite graph is given by 

gen(Kr,s) 
f(r — 2) (s — 2) 

r,s ^ 2. 

A formula for the genus of the n-cube was found by Ringel [R5] and by 
Beineke and Harary [BH1], We prove this result to illustrate some of the 

techniques involved. We omit the obvious equality ge^Qj) = 0. 

Theorem 7.12 

For n 2, the genus of the n-cube is given by 

gen(Q„) = (n-4)-2"'3 + l. 
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The n-cube is a triangle-free (2",n -2" ’) graph; thus, by Corollary 7.7, 

gen(Q„) $5 (h — 4) • 2"-3 + 1. 

To verify the inequality in the other direction, we employ induction on 
n. For n ^ 2, define the statement A{n) as follows: The graph Qn can be 

embedded on the surface of genus (n — 4) • 2”~3 + 1 such that the 
boundary of every region is a 4-cycle and such that there exist 2" ~2 

regions with pairwise disjoint boundaries. That the statements A(2) and 
71(3) are true is trivial. Assume A(k — 1) to be true, k ^ 4, and, accordingly, 

let S be the surface of genus (k — 5) • 2k~4 + 1 on which Qk_\ is embedded 
such that the boundary of each region is a 4-cycle and such that there exist 
2k~3 regions with pairwise disjoint boundaries. We note that since Qk~\ 
has order 2*_1, each vertex of Qk_-[ belongs to the boundary of precisely 

one of the aforementioned 2k~3 regions. Now let Qk_ \ be embedded on 
another copy S' of the surface of genus (k - 5) • 2fc-4 + 1 such that the 

embedding of Qk-\ on S' is a 'mirror image' of the embedding of ()*._] 
on S (that is, if v-[,v2, v3,v4 are the vertices of the boundary of a region of 
Qk_ ] on S, where the vertices are listed clockwise about the 4-cycle, then 

there is a region on S', with the vertices iq, v2, v3, v4 on its boundary listed 
counterclockwise). We now consider the 2A~3 distinguished regions of S 
together with the corresponding regions of S', and join each pair of 
associated regions by a handle. The addition of the first handle produces 

the surface of genus 2[(k — 5) • 2k~4 + 1] while the addition of each of the 
other 2k~3 — 1 handles results in an increase of one to the genus. Thus, the 
surface just constructed has genus (k — 4) • 2k “3 + 1. Now each set of four 
vertices on the boundary of a distinguished region can be joined to the 

corresponding four vertices on the boundary of the associated region so 
that the four edges are embedded on the handle joining the regions. It is 
now immediate that the resulting graph is isomorphic to Qk and that 
every region is bounded by a 4-cycle. Furthermore, each added handle 

gives rise to four regions, 'opposite' ones of which have disjoint bound¬ 
aries, so there exist 2k~2 regions of Qk that are pairwise disjoint. 

Thus, A(n) is true for all n ^ 2, proving the result. □ 

EXERCISES 7.1 

7.1 Determine g = gen(K4 4) without using Theorem 7.11 and label the 
regions in a 2-cell embedding of K4 4 on the surface of genus g. 

7.2 (a) Show that gen(G) < u(G) for every graph G. 
(b) Prove that for every positive integer k, there exists a graph G 

such that gen(G) = 1 and i/(G) — k. 
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7.3 

7.4 

7.5 

2-cell embeddings of graphs 

Prove Theorem 7.6. 

Use Theorem 7.8 to prove Corollary 7.9. 

Show that 

gen(K„) > 
(» ~3)(n 

12 
for n ^ 3. 

7.6 Show that 

gen(Krs) ^ 
(r ~ 2)(s — 2) ~ 

4 
for r,s ^ 2. 

7.7 (a) Find a lower bound for gen(fC3 3 + K,,)- 
(b) Determine gen(i<C3 3 + K„) exactly for n = 1,2 and 3. 

7.8 Determine gen (K2 x C4 x C6). 

7.9 Prove, for every positive integer g, that there exists a connected 
graph G of genus g. 

7.10 Prove, for each positive integer k, that there exists a planar graph G 
such that gen(G x K2) ^ k. 

7.2 2-CELL EMBEDDINGS OF GRAPHS 

In the preceding section we saw that every graph G has a genus; that is, 
there exists a surface (a compact orientable 2-manifold) of minimum 
genus on which G can be embedded. Indeed, by Theorem 7.3 if G is a 
connected graph that is embedded on the surface of genus gen(G), then 
the embedding is necessarily a 2-cell embedding. On the other hand, if G 
is disconnected, then no embedding of G is a 2-cell embedding. 

Our primary interest lies with embeddings of (connected) graphs that 
are 2-cell embeddings. In this section, we investigate graphs and the 
surfaces on which they can be 2-cell embedded. It is convenient to 
denote the surface of genus k by Sk. Thus, S0 represents the sphere (or 

plane), Sj represents the torus, and S2 represents the double torus (or 
sphere with two handles). 

We have already mentioned that the torus can be represented as a 

square with opposite sides identified. More generally, the surface 
Sk (k > 0) can be represented as a regular 4/c-gon whose 4k sides can be 

listed in clockwise order as 

• • • flj(7.2) 

where, for example, is a side directed clockwise and af1 is a side also 
labeled but directed counterclockwise. These two sides are then 
identified in a manner consistent with their directions. Thus, the double 
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Figure 7.5 A representation of the double torus. 

torus can be represented as shown in Figure 7.5. The 'two' points labeled 

X are actually the same point on S2 while the 'eight' points labeled Y are, 
in fact, a single point. 

Although it is probably obvious that there exist a variety of graphs that 
can be embedded on the surface Sk for a given nonnegative integer k, 

it may not be entirely obvious that there always exist graphs for which 

a 2-cell embedding on Sk exists. 

Theorem 7.13 

For every nonnegative integer k, there exists a connected graph that has a 2-cell 
embedding on Sk. 

Proof 

For k = 0, every connected planar graph has the desired property; thus, 
we assume that k > 0. 

We represent Sk as a regular 4/c-gon whose 4/c sides are described and 
identified as in (7.2). First, we define a pseudograph H as follows. At each 

vertex of the 4/c-gon, let there be a vertex of H. Actually, the identification 

process associated with the 4/c-gon implies that there is only one vertex of 
H. Let each side of the 4/c-gon represent an edge of H. The identification 
produces 2k distinct edges, each of which is a loop. This completes the 

construction of H. Hence, the pseudograph H has order 1 and size 2k. 
Furthermore, there is only one region, namely the interior of the polygon; 

this region is clearly a 2-cell. Therefore, there exists a 2-cell embedding of 
H on Sk. 

To convert the pseudograph H into a graph, we subdivide each loop 

twice, producing a graph G having order 4/c + 1, size 6k, and again a 
single 2-cell region. □ 
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Figure 7.6 illustrates the construction given in the proof of Theorem 
7.13 in the case of the torus Sj. The graph G so constructed is shown in 
Figure 7.6(a). In Figures 7.6(b)—(e) we see a variety of ways of visualizing 
the embedding. In Figure 7.6(b), a 3-dimensional embedding is 

described. In Figures 7.6(c) and (d), the torus is represented as a 
rectangle with opposite sides identified. (Figure 7.6(c) is the actual 
drawing described in the proof of the theorem.) In Figure 7.6(e), a 
portion of G is drawn in the plane, then two circular holes are made 

in the plane and a tube (or handle) is placed over the plane joining 

the two holes. The edge uv is then drawn over the handle, completing 
the 2-cell embedding. 
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Figure 7.7 A 2-cell embedding of K5 on the torus. 

The graphs G constructed in the proof of Theorem 7.13 are planar. 
Hence, for every nonnegative integer k, there exist planar graphs that 
can be 2-cell embedded on Sk. It is also true that for every planar graph 

G and positive integer k, there exists an embedding of G on Sk that is not a 
2-cell embedding. In general, for a given graph G and positive integer k 
with k > gen(G), there always exists an embedding of G on Sk that is not a 
2-cell embedding, which can be obtained from an embedding of G on 

Sgen(G) by adding k — gen(G) handles to the interior of some region of G. 
If k = gen(G) and G is connected, then by Theorem 7.3 every embedding 

of G on Sk is a 2-cell embedding while, of course, if k < gen(G), there is no 
embedding whatsoever of G on Sk. 

Thus far, whenever we have described a 2-cell embedding (or, in fact, 
any embedding) of a graph G on a surface Sk/ we have resorted to a 
geometric description, such as the ones shown in Figure 7.6. There is a 

far more useful method, algebraic in nature, which we shall now discuss. 
Consider the 2-cell embedding of K5 on Sj shown in Figure 7.7, with the 

vertices of fC5 labeled as indicated. Observe that in this embedding the 
edges incident with V\ are arranged cyclically counterclockwise about 

v-i in the order vpv2, VjV3/ V\V±, vpo5 (or, equivalently, vpo3, v-[vi, zqu5, 
vpo2, and so on). This induces a cyclic permutation of the subscripts 
of the vertices adjacent with V\, namely 7^ = (2 3 4 5), expressed as a 

permutation cycle. Similarly, this embedding induces a cyclic permuta¬ 
tion 7t2 of the subscripts of the vertices adjacent with z>2; in particular, 
7r2 = (1 5 4 3). In fact, for each vertex v, (1 ^ i ^ 5), one can associate a 
cyclic permutation 7r, with Vj. In this case, we have 

*1 = (2 3 4 5), 

7T2 = (1 5 4 3), 

7t3 — (1 2 5 4), 

7t4 = (1 3 2 5), 

7T5 = (1 4 3 2). 
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v5 

Figure 7.8 Tracing out a region. 

In the 2-cell embedding of K5 on Sj shown in Figure 7.7, there are 
five regions, labeled Rl5R2, ... , R5. Each region R, (1 ^ i < 5) is, of 
course, a 2-cell. The boundary of the region Rconsists of the vertices 
Vi,v2 and v5 and the edges vpo2, v2v5 and v5v-[. If we trace out the edges 
of the boundary in a clockwise direction, that is, keeping the boundary at 

our left and the region to our right (Figure 7.8), beginning with the edge 
V\V2, we have vpv2, followed by v2v5, and finally v5Vi. This information can 
also be obtained from the cyclic permutations 7T], 7r2,..., 7r5; indeed, the 

edge following vpo2 = v2V\ as we trace the boundary edges of R1 in a 
clockwise direction is precisely the edge incident with v2 that follows 
v2V\ if one proceeds counterclockwise about v2; that is, the edge following 
vpu2 in the boundary of Rj is v2vV2^ = v2v5. Similarly, the edge following 
v2v5 = v5v2 as we trace out the edges of the boundary of R1 in a clockwise 

direction is v5v^2) = v5V\. Hence with the aid of the cyclic permutations 
7r1, n2,..., 7t5, we can trace out the edges of the boundary of Ri. In a like 
manner, the boundary of every region of the embedding can be so 

described. 
Since the direction (namely, clockwise) in which the edges of the 

boundary of a region are traced in the above description is of utmost 
importance, it is convenient to regard each edge of K5 as a symmetric 
pair of arcs and, thus, to interpret fC5 itself as a digraph D. With this 
interpretation, the boundary of the region R^ and thus Rj itself can be 

described, starting at vu as 

(^1,^2), (^2, ^7T2(l)), (^5,^7T5(2)) 

or 

fa,v2h (v2,v5), (v5,vi)- (7-3) 

We now define a mapping n: E(D) —> E(D) as follows. Let a E E(D), 

where a = (vhvf). Then 

7r(fl) - ir((Vj,Vj)) = ir(vhVj) = (vhvv.(i)). 
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The mapping n is one-to-one and so is a permutation of E(D). Thus, n can 
be expressed as a product of disjoint permutation cycles. In this context, 

each permutation cycle of 7r is referred to as an 'orbit' of ir. Hence (7.3) 

corresponds to an orbit of n and is often denoted more compactly as 

v\ ~ vi ~ v5 ~ v\- (Although this orbit corresponds to a cycle in the 
graph, this is not always the case for an arbitrary orbit in a graph that is 

2-cell embedded.) For the embedding of K5 on St shown in Figure 7.7, the 
list of all five orbits (one for each region) is given below: 

Ryu! -v2-v5-vu 

R2: 0i -03-»2-0i. 

R3: v: -v4-v3-v3, 

R4= 0i -05 - 04 - 01, 

R5: v2-v3-v5-v2-v4-v5-v3-v4- v2. 

The orbits of it form a partition of E(D) and, as such, each arc of D 

appears in exactly one orbit of it. Since D is the digraph obtained by 
replacing each edge of K5 by a symmetric pair of arcs, each edge of Ks 
appears twice among the orbits of n, once for each of the two possible 

directions that are assigned to the edge. 
The 2-cell embedding of K5 on St shown in Figure 7.7 uniquely deter¬ 

mines the collection {tt^ , 7r2,... ,7t5} of permutations of the subscripts of 
the vertices adjacent to the vertices of K5. This set of permutations, in turn, 
completely describes the embedding of K5 on St shown in Figure 7.7. 

This method of describing an embedding is referred to as the Rotational 
Embedding Scheme. Such a scheme was observed and used by Dyck [DIO] 

in 1888 and by Heffter [H10] in 1891. It was formalized by Edmonds [El] 
in 1960 and discussed in more detail by Youngs [Yl] in 1963. 

We now describe the Rotational Embedding Scheme in a more general 

setting. Let G be a nontrivial connected graph with 17(G) = {v-[,v2,..., vn}. 
Let 

V(i) = {j\Vj e N(Vj)}. 

For each i (1 ^ i ^ n), let 7r,: V’(i) —> V(i) be a cyclic permutation (or 

rotation) of V(i). Thus, each permutation it, can be represented by a 
(permutation) cycle of length \V(i)\ = |N(0,)| = deg0,-. The Rotational 

Embedding Scheme states that there is a one-to-one correspondence 
between the 2-cell embeddings of G (on all possible surfaces) and the n- 

tuples (7Tt , 7t2, ..., 7r„) of cyclic permutations. 

Theorem 7.14 (The Rotational Embedding Scheme) 

Let G be a nontrivial connected graph with V(G) = {v-[,v2,..., t>„}. For each 2- 

cell embedding of G on a surface, there exists a unique n-tuple (zti ,7r2,..., 7r„), 
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where for i — 1,2,..., n, 7r;: V(i) —> V(i) is a cyclic permutation that describes 
the subscripts of the vertices adjacent to Vj in counterclockwise order about vr 

Conversely, for each such n-tuple (7^, 7t2, ..., 7r„), there exists a 2-cell embedding 
of G on some surface such that for i = 1,2,..., n, the subscripts of the vertices 
adjacent to vx and in counterclockwise order about vx are given by 7r,-. 

Proof 

Let there be given a 2-cell embedding of G on some surface. For each 
vertex v, of G, define np V(i) —> V(i) as follows: If v,Vj e E(G) and VjVt 
(possibly t — j) is the next edge encountered after vpv. as we proceed 

counterclockwise about v,, then we define 7r,-(/) = t. Each 7r, so defined 
is a cyclic permutation. 

Conversely, assume that we are given an 77-tuple (7^ ,7r2, - - -, 7r„) such 
that for each i (1 < z ^ n), 7r,: V(z) —> V(i) is a cyclic permutation. We 
show that this determines a 2-cell embedding of G on some surface. (By 
necessity, this proof requires the use of properties of compact orientable 
2-manifolds.) 

Let D denote the digraph obtained from G by replacing each edge of G 

by a symmetric pair of arcs. We define a mapping 7r: E(D) —> E(D) by 

*((PhVj)) = *(Vi,Vj) = (uy, %.(,•)). 

The mapping 7r is one-to-one and, thus, is a permutation of E(D). Hence, 7r 
can be expressed as a product of disjoint permutation cycles. Each of these 

permutation cycles is called an orbit of 7r. Thus, the orbits partition the set 
E(D). Assume that 

R: {{vnVj)(Vj,vt) ... (vhVj)) 

is an orbit of n, which we also write as 

R: vt — Vj — vt —-Vi — Vj. 

Hence, this implies that in the desired embedding, if we begin at v, and 
proceed along (vn vf) to v,, then the next arc we must encounter after 

(vj,Vj) in a counterclockwise direction about Vj is (Vj,vn.^) = (Vj,vt). 
Continuing in this manner, we must finally arrive at the arc (vi,Vj) and 
return to vir in the process describing the boundary of a (2-cell) region 

(considered as a subset of the plane) corresponding to the orbit R. 
Therefore, each orbit of 7r gives rise to a 2-cell region in the desired 

embedding. 
To obtain the surface S on which G is 2-cell embedded, pairs of regions, 

with their boundaries, are 'pasted' along certain arcs; in particular, if 

(v,-, Vj) is an arc on the boundary of Rj and (vj, vf) is an arc on the boundary 
of R2r then (vix vA is identified with (vj,vf) as shown in Figure 7.9. The 
properties of compact orientable 2-manifolds imply that S is indeed an 

appropriate surface. 
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Figure 7.9 A step in the proof of Theorem 7.14. 

In order to determine the genus of S, one needs only to observe that the 

number r of regions equals the number of orbits. Thus, if G has order n 
and size m, then by Corollary 7.2, S = Sk where k is the nonnegative 
integer satisfying the equation n — m + r = 2 — 2k. □ 

As an illustration of the Rotational Embedding Scheme, we once again 
consider the complete graph K5, with V(K5) = {v4,v2,v3,v4,vs}. Let there 

be given the 5-tuple {irx, 7r2,7r3, n4,7r5), where 

tti = (2345), 

tt2 = (1 3 4 5), 

7T3 = (1 2 4 5), 

7r4 = (1 2 3 5), 

tt5 = (1 2 3 4). 

Thus, by Theorem 7.14, this 5-tuple describes a 2-cell embedding of K5 on 

some surface Sk. To evaluate k, we consider the digraph D obtained by 
replacing each edge of K5 by a symmetric pair of arcs and determine 

the orbits of the permutation 7r: E(D) —> E(D) defined in the proof of 
Theorem 7.14. The orbits are 

R,:iq -v2-v3-v4 

R2: vx - v3 - v2 - v4 - v3 - v5 - v4 - zq - v5 - v2 - u4, 

R3:v1 -v4-v2-v5-v3-vj; 

and each orbit corresponds to a 2-cell region. Thus, the number of regions 
in the embedding is r = 3. Since K5 has order n — 5 and size m = 10, 

and since n — m + r = — 2 = 2 — 2k, it follows that k — 2, so that the 
given 5-tuple describes an embedding of K5 on S2. 

Given an n-tuple of cyclic permutations as we have described, it is not 
necessarily an easy problem to present a geometric description of the 
embedding, particularly on surfaces of high genus. For the example just 

presented, however, we give two geometric descriptions in Figure 7.10. In 
Figure 7.10(a), a portion of K5 is drawn in the plane. Two handles are then 

inserted over the plane, as indicated, and the remainder of K5 is drawn 
along these handles. The edge e^ = v2v5 is drawn along the handle H,, the 
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edge e2 = v3v5 is drawn along H2 while e3 = V\V3 is drawn along both 
and H2. The three 2-cell regions produced are denoted by Rlr R2 and R3. 

In Figure 7.10(b), this 2-cell embedding of K5 on S2 is shown on the 
regular octagon. The labeling of the eight sides (as in (7.2)) indicates the 

identification used in producing S2. 
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As a more general illustration of Theorem 7.14 we determine the genus 

of the complete bipartite graph Kln<2h. According to Theorem 7.11, 

gen(K2fli2b) = (fl — l)(b - 1)- That (fl-l)(b — 1) is a lower bound for 
gen(K2fli2()) follows from Exercise 7.6. We use Theorem 7.14 to show 
that K2n2b is 2-cell embeddable on thereby proving that 

gen(K2j,t2b) ^ (a — l)(b — 1) and completing the argument. 
Denote the partite sets of by U and W, where |L7| =2a and 

| W | = 2b. Further, label the vertices so that 

U = {v-l,v3,v5,...,vAa-i} and W = {v2,v4,ve,... ,v4b}. 

Let there be given the (2a + 2b)-tuple (assuming that a ^ b) 

(7Ti, TT2, • • • j 7T4n — 11 7^4a > ^4a + 2? ^4a + 4 > • • • > ^4b ) i 

where 

7Ti = 7T5 = - • ■ = 7T4n_3 = (2 4 6 ... 4b), 

7T3 = 7T7 = • • • = 7T4n_1 = (4b ... 6 4 2), 

7r2 = 7T6 = • • • = 7r4b_2 = (1 3 5 ... 4fl - 1), 

7T4 — 7Tg — • • • = 7T4b = (4fl — 1 ... 5 3 1). 

By Theorem 7.14, then, this (2a + 2b)-tuple describes a 2-cell embedding 

of K.2at2b on some surface Sh. In order to evaluate h, we let D denote the 
digraph obtained by replacing each edge of K2„2b by a symmetric pair of 
arcs and determine the orbits of the permutation n: E(D) —► E(D) defined 
in the proof of Theorem 7.14. 

Every orbit of 7r contains an arc of the type (i>s,uf), where vs e U and 
vt E W. If s = 1 (mod 4) and t = 2 (mod 4), then the resulting orbit R 

containing (vs,vt) is 

R:vs- vt -vs + 2-vt_2-vs, 

with s + 2 expressed modulo4fl and t — 2 expressed modulo 4b. Note that 

R also contains the arc (vs+2,vt_2), where, then, s + 2 = 3 (mod 4) and 
t — 2 = 0 (mod 4). If s = 1 (mod 4) and t = 0 (mod 4), then the orbit R' 
containing (vs,vt) is 

R':vs-vt-vs_ 2-vt_2-vs, 

where, again, s —2 is expressed modulo 4a and t — 2 is expressed 

modulo 4b. The orbit R' also contains the arc {vs_2,vt-2), where 
s — 2 = 3 (mod 4) and t — 2 = 2 (mod 4). Thus every orbit of 7r is either 

of the type R (where s = 1 (mod 4) and t = 2 (mod 4)) or the type R' 
(where s = 1 (mod 4) and t = 0 (mod 4)). Since there are a choices for s 

and b choices for t in each case, the total number of orbits is 2ab; therefore, 
the number of regions in this embedding is r = 2ab. 

Since has order n = 2a + 2b and size m — 4ab and because 
n — m + r — 2 - 2b, we have 

(2a + 2b) — 4ab -I- 2ab = 2 — 2b, 
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so that h = (a — l)(b — 1). Hence there is a 2-cell embedding of K2n2b on 

S(n_i)(b_i)y as we wished to show. 
As a theoretical application of Theorem 7.14, we present a result that is 

referred to as the Ringeisen-White Edge-Adding Lemma (see Ringeisen 

[R4]). 

Theorem 7.15 

Let G be a connected graph with V (G) = {ip,v2,... ,vn} such that and v> are 
distinct nonadjacent vertices. Suppose that there exists a 2-cell embedding ofG on 
some surface S/, with r regions such that v, is on the boundary of region Rj and V; 

is on the boundary of region Rj. Let H = G + v(o.. Then 

(i) if R, ^ Rj, there exists a 2-cell embedding of H on S/, + 1 with r — 1 regions in 
which Vj and Vj are on the boundary of the same region; 

(ii) if R, = Rj, there exists a 2-cell embedding of H on Sh with r + 1 regions in 
which each of Vj and Vj belongs to the boundaries of (the same) two distinct 

regions. 

Proof 

By hypothesis, there exists a 2-cell embedding of the (n, m) graph G on Sh 
with r regions such that is on the boundary of region R, and u, is on the 

boundary of region Rj. By Theorem 7.14, an n-tuple (7^,7^,..., 7r„) of 
cyclic permutations corresponds to this embedding, namely for 
t — 1,2,..., n, 7rf: 17(f) —>• 17(f) is a cyclic permutation of the subscripts of 
the vertices of N(vt) in counterclockwise order about vt. 

Let D denote the symmetric digraph obtained from G by replacing each 
edge by a symmetric pair of arcs and let 7r: E(D) —► E(D) be defined by 

Tr(va>vp) = (vp,vn (a)). Since the given embedding has r regions, 7r has r 
orbits. Denote each region and its corresponding orbit by the same 

symbol; in particular, R,■ and R, are orbits of re. 
Suppose that R, ^ Rr We can therefore represent orbits R, and Rj as 

R,: Vt - vk-vv- vi 

and 

Rj-.Vj-v,-ve - Vj. 

It therefore follows that 

7Tj(k') = k and 7r;(/') = f. 

We now consider the graph H — G + v(0j and define 

V'(t) = {r | vrvt E E(H)} 

for f = 1,2,Thus V'(t) = V(t) for t^i,j, and V'(i) — V(i) U {/} 

while V'(j) — V(j) U {i}. Lor the graph H, we define an n-tuple 
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(ir\,ir2, ..., iTn) of cyclic' permutations, where n y. V'(t) —* V'(t) for 
t = 1,2,..., n such that nt = n, for t ^ i,j. Furthermore, 

( 7r, (fl) if a ^k! 

n'i(a) = < j if a = k' 

\ k if a = j 

and 

( 7Xj(a) if a 7^ / 

7rfj(a) = < i if a = / 

[ / if a = i. 

Let D' be the digraph obtained from H by replacing each edge of H by 
a symmetric pair of arcs. Define the permutation ix: E(D') —► E(D') by 

n(va,Vp) = {vp,vv (a)). The orbits of n then consist of all orbits of n 
different from R, and Rj together with the orbit 

R: Vi-Vj-vt-vr - Vj - Vi - vk-vv- v{. 

Thus, id has r — 1 orbits and the corresponding 2-cell embedding of H has 

r — 1 regions. Moreover, Vj and Vj lie on the boundary of R. Since 
n — m + r = 2 — 2h, it follows that n — (m + 1) + (r — 1) = 2 — 2(h + 1) 
and H is 2-cell embedded on S/, + 1. This completes the proof of (i). 

Suppose that Rj — Rj. We can represent the orbit R,(=R,) as 

Rf Vj-Vk-Vf-Vj-V,-VV- Vj. 

(Note that and Vj cannot be consecutive in R, since v{v} g E(G).) It 
follows that 

7Tj(kf) = k and 7ry(^/) = 

We again consider the graph H — G + V(Oj and once more define 

V'(t) = {r | vrv, E E(H)} 

for t = 1,2,..., n. We define an n-tuple (yn\, ir2, ..., nn) of cyclic permuta¬ 
tions, where ir\: V'(t) —> V'(t) for f = l,2, ...,n such that n't — it, for 
t ^ 2, j. Also, 

( 7Tj(a) if a ^ k! 

7T;(fl) = < j if a — V 

( k if a — j 

( 7Tj(a) if a ^ if' 

TT/(«)=</ if fl = /' 
[ £ if a = i. 

and 
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Again we denote by D' the digraph obtained from H by replacing each 
edge of H by a symmetric pair of arcs and define the permutation 

7r: E(D') —> E(D') by n(vQ, Vp) — (v0, v^^af). The orbits of n consist of 
all orbits of 7r different from R, together with the orbits 

R': Vj — Vj — v,, — ■■■ — Vis — Vj 

and 

R": Vj- v{- vk-ve, - Vj. 

Therefore, 7r has r + 1 orbits and the resulting 2-cell embedding of H 

has r + 1 regions. Furthermore, each of i\ and Vj belongs to the boundaries 
of both R' and R". Here n — m -\- r — 2 — 2h implies that n — (m + l)+ 
(r + 1) = 2 — 2h, and H is 2-cell embedded on Sh/ which verifies (ii). □ 

A consequence of Theorem 7.15 will prove to be useful. 

Corollary 7.16 

Let e and f be adjacent edges of a connected graph G. If there exists a 2-cell embed¬ 
ding of G' — G — e — f with one region, then there exists a 2-cell embedding of G 
with one region. 

Proof 

Let e — uv and f — vw, where then uj^w. Let there be given a 2-cell 

embedding of G' with one region R. Thus all vertices of G' belong to the 
boundary of R, including u and v. By Theorem 7.15(ii), there exists a 2-cell 
embedding of G' + e with two regions where u and v lie on the boundary 

of both regions. Therefore, v is on the boundary of one region and w is on 
the boundary of the other region in the 2-cell embedding of G' + e. Apply¬ 
ing Theorem 7.15(i), we conclude that there exists a 2-cell embedding of 

G' + e + / = G with one region. □ 

We now turn our attention for the remainder of the section to the 
following question: Given a (connected) graph G, on which surfaces Sk 

do there exist 2-cell embeddings of G? As a major step towards answer¬ 
ing this question, we present the following 'interpolation theorem' of 

Duke [D9]. 

Theorem 7.17 

If there exist 2-cell embeddings of a connected graph G on the surfaces Sp and Sq, 
where p ^ q, and k is any integer such that p ^ q, then there exists a 2-cell 

embedding of G on the surface Sk. 
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Proof 

Graph embeddings 

Observe that there exist 2-cell embeddings of K^ only on the sphere; thus, 

we assume that G is nontrivial. 
Assume that there exists a 2-cell embedding of G on some surface Sf. Let 

V(G) = {v-i,v2, ■ ■ ■ ,vn}, n ^ 2. By Theorem 7.14, there exists an 77-tuple 
(7Ti, 7t2, ..., tt„) of cyclic permutations associated with this embedding 

such that for i = 1,2,... ,n, 7r,-: V(i) —> V(i) is a cyclic permutation of the 
subscripts of the vertices of N(i>,) in counterclockwise order about vr 

Let D be the symmetric digraph obtained from G by replacing each 

edge by a symmetric pair of arcs. Let n: E(D) —► E(D) be the permutation 
defined by n(Vj,Vj) = (Vj,vn^). Denote the number of orbits in n by r; 

that is, assume that there are r 2-cell regions in the given embedding of 

G on Sf. 
Assume there exists some vertex of G, say V\, such that deg Vi ^ 3. Then 

7T] = (a b c ...), where a, b and c are distinct. Let vx be any vertex adjacent 
with v-[ other than va and vb, and suppose that 7^ (*) = y. Thus 

7T] — (a b c ... x y ...) 

where, possibly, x — c or y = a. Let Ej be the subset of E(D) consisting of 

the three pairs of arcs 

(va,vi),(vuvb)-, {vb,vA),(vuvc)] (vx,vj,{vuvy). (7.4) 

Note that the six arcs listed in (7.4) are all distinct. By the definition of the 

permutation 7r, we have 

ir(va,v j) = (»!,»{,), n(vb,Vi) = {vi,vc) and n{vx,v^) = (vuvy). 

This implies that the arc {va,V\) is followed by the arc (i^, vb) in some orbit 
of 7r, and that the edge vav-y of G is followed by the edge vb as we proceed 
clockwise around the boundary of the corresponding region in the given 

embedding of G in Sf. Also, (vb, ) is followed by (7^, vc) in some orbit of 
7r and (vx,v-l) is followed by {vx,vy) in some orbit. 

We now define a new permutation n1: E(D) —» E(D) with the aid of the 

n-tuple (7t\ , 7T2,..., 7r'„), where for i = 1,2,..., 77,7p: V(i) —> V(i) is a cyclic 
permutation defined by 

' c ... xby ...) if i = 1 

if 2 ^ i ^ 77. 

We then define 7r'(u,, Vj) = (Vj, v^^). By Theorem 7.14, the 77-tuple 
(tt'i , 7T2,..., 7r'„) determines a 2-cell embedding of G on some surface, 
where for i = 1,2,..., 77, tx\ is a cyclic permutation of the subscripts of the 

vertices adjacent to v, in counterclockwise order about Vj. 
Three cases are now considered, depending on the possible distribution 

of the pairs (7.4) of arcs in £, among the orbits of n. 
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Case 1. Assume that all arcs of belong to a single orbit R of tt. Suppose, first, 
that the orbit R has the form 

R-Vi-Vy-Vh - - Vc-Va-Vy-Vb-Vx-Vi. 

Here the orbits of tt are the orbits of tt except that the orbit R is replaced by 
the three orbits 

R[: Vj -vy-vb-vu 

R'2-. Vi - vc-va-vu 

R'3:Vi -vb-vx-vv 

Hence, tt describes a 2-cell embedding of G with r + 2 regions on a surface 
S'. Necessarily, then. S' = S^_1. 

The other possible form that the orbit R may take is 

R- V} — vy-va - v-i - vb-vb - v1 - vc-vx-v3. 

In this situation, the orbits of tt are the orbits of tt, except for R, which is 
replaced by the orbit 

B!\vi-vy-va - vx - vc-vx - vi - vb-vb-vv 

Hence, tt has r orbits. 

Case 2. Assume that tt has two orbits, say Ri and R2, with R} containing two 
of the pairs of arcs in £lr and R2 containing the remaining pair of arcs. In this 

case, the orbits of tt are those of tt, except for Rx and R2, which are 
replaced by two orbits R\ and R2, where one of R\ and R2 contains two 
arcs of E-[ and the other contains the remaining four arcs of . In this case, 

tt has r orbits. 

Case 3. Assume that tt has three orbits R^, R2 and R3 such that (va,Vi) is 

followed by (vi,vb) in Rlr (vb,Vi) is followed by (v-i,vc) in R2, and {vx,v3) is 
followed by (■Vi,vy) in R3. In this case, the orbits of tt are the orbits of tt, 
except for R^, R2 and R3, which are replaced by a single orbit R' of the form 

R'-v i - I7y-vx-vx-vb-va-vx- vc-vb-vv 

In this case, tt has r — 2 orbits so that tt describes a 2-cell embedding of G 

on S,+1. 
Thus, we can now conclude that the shifting of a single term in tt\ 

(producing tt\) changes the genus of the resulting surface on which G is 
2-cell embedded by at most 1. Having made this observation, we can now 

complete the proof. 
Let (pi, p,2,..., n„) be the n-tuple of cyclic permutations associated with 

a 2-cell embedding of G on Sp and let , v2,..., un) be the n-tuple of cyclic 

permutations associated with a 2-cell embedding of G on Sq. If degzy is 1 
or 2 for each i, 1 ^ i ^ n, then p, = u, so that p — q and the desired result 
follows. Hence, we may assume that for some i, 1 ^ i ^ n, deg u, ^ 3. For 
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each such i, p, can be transformed into u, by a finite number of single 

term shifts, as described above. Each such single term shift describes an 
embedding of G on a surface whose genus differs by at most 1 from 

the genus of the surface on which G is embedded prior to the shift. 

Therefore, by performing sequences of single term shifts on those 

for which deg ^ 3, the n-tuple (pi, p2, • • •, pn) can be transformed into 
(zq, i/2,..., zy,). Since p^k^q, there must be at least one term 

, 7t2, ..., 7rn) in the aforementioned sequence beginning with 

(/q, p2,..., pn) and ending with , z/2,..., vn) that describes a 2-cell 
embedding of G on Sk. □ 

EXERCISES 7.2 

7.11 (a) For the 2-cell embedding of K33 shown in Figure 7.1(a), deter¬ 

mine the 6-tuple of cyclic permutations n, associated with 
this embedding. Determine the orbits of the resulting permu¬ 
tation 7T. 

(b) For the 2-cell embedding of K7 on S} shown in Figure 7.2, 

determine the 7-tuple of cyclic permutations 7r, associated with 
this embedding. Determine the orbits of the resulting permu¬ 
tation 7r. 

7.12 Let G = K4xK2. 
(a) Show that G is nonplanar. 
(b) Show, in fact, that gen(G) = 1 by finding an 8-tuple of cyclic 

permutations that describes a 2-cell embedding of G on Sj. 
Determine the orbits of the resulting permutation 7r. 

7.13 Let G be a graph with V(G) = {v^,v2,v3,vi,v5,v(,} and let 
, 7t2, 7t3,7t4, 7t5, 7t6) describe a 2-cell embedding of G on the surface 

Sk, where 

^ = (2563), 7r2 = (3 6 1 4), tt3 = (4 1 2 5), 

7t4 = (5 2 3 6), 7t5 = (6 3 4 1), 7r6 = (1 4 5 2). 

(a) What is this familiar graph G? 
(b) What is k? 

(c) Is k = gen(G)? 

7.14 How many of the 2-cell embeddings of fC4 are embeddings in the 
plane? On the torus? On the double torus? 

7.15 (a) Describe an embedding of K33 on S2 by means of a 6-tuple of 
cyclic permutations. 

(b) Show that there exists no 2-cell embedding of fC3 3 on S3. 
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7.3 THE MAXIMUM GENUS OF A GRAPH 

If G is a connected graph with gen(G) = p, and q is the largest positive 
integer such that G is 2-cell embeddable on Sq, then it follows from 
Theorem 7.17 that G can be 2-cell embedded on Sk if and only if 

p ^k ^ q: This suggests the following concept. 
Let G be a connected graph. The maximum genus genM(G) of G is the 

maximum among the genera of all surfaces on which G can be 2-cell 
embedded. At the outset, it may not even be clear that every graph has 

a maximum genus since, perhaps, some graphs may be 2-cell embeddable 
on infinitely many surfaces. However, there are no graphs that can be 2- 
cell embedded on infinitely many surfaces, for suppose that G is a non¬ 

trivial connected graph with V(G) = {zq, v2,..., vn}. By Theorem 7.14, 
there exists a one-to-one correspondence between the set of all 2-cell 

embeddings of G and the n-tuples , tt2, ..., nn), where for 
i — 1,2,... ,n, 7r,: V(i) —> V(i) is a cyclic permutation. Since the number 
of such n-tuples is finite, and in fact is equal to 

n(degu,-l)!, 
i=i 

it follows that there are only finitely many 2-cell embeddings of G and 
therefore that there exists a surface of maximum genus on which G can 
be 2-cell embedded. We can now state an immediate consequence of 
Theorem 7.17. 

Corollary 7.18 

A connected graph G has a 2-cell embedding on the surface Sk if and only if 

gen(G) ^ k < genM(G). 

We now present an upper bound for the maximum genus of any con¬ 

nected graph. This bound employs a new but very useful concept. 
The Betti number B(G) of an (n,m) graph G having k components is 

defined as 

B(G) = m — n + k. 

Thus, if G is connected, then 

B(G) = m — n + \. 

The following result is due to Nordhaus, Stewart and White [NSW1]. 

Theorem 7.19 

If G is a connected graph, then 

genm(G)^ 
B(G) 

2 
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Furthermore, equality holds if and only if there exists a 2-cell embedding of G 
on the surface of genus genM(G) with exactly one or two regions according to 

whether 13(G) is even or odd, respectively. 

Proof 

Let G be a connected (n, m) graph that is 2-cell embedded on the surface of 

genus genM(G), producing r (2-cell) regions. By Theorem 7.1, 

n-m + r — 2- 2genM(G). 

Thus, 

so that 

13(G) — m - n + 1 = 2genM(G) + r - 1, 

B(G) +1 — r 13(G) 
genm(G) =--- ^ 

2 ’ 

producing the desired bound. 
Moreover, we have 

genM(G)= 
13(G) + 1 - r 13(G) 

if and only if r — 1 (which can only occur when 13(G) is even) or r — 2 

(which is only possible when 13(G) is odd). □ 

A (connected) graph G is called upper embeddable if the maximum genus 
of G attains the upper bound given in Theorem 7.19; that is, if 
genM(G) = \J3(G)/2\. The graph G is said to be upper embeddable on a 

surface S if S = SgenM(G). We can now state an immediate consequence of 
Theorem 7.19. 

Corollary 7.20 

Let Gbe a graph with even (odd) Betti number. Then G is upper embeddable on a 
surface S if and only if there exists a 2-cell embedding of G on S with one (two) 

region(s). 

In order to present a characterization of upper embeddable graphs, it is 

necessary to introduce a new concept. 
A spanning tree T of a connected graph G is a splitting tree of G if at most 

one component of G — E(T) has odd size. It follows therefore that if 
G — E(T) is connected, then T is a splitting tree. For the graph G of 

Figure 7.11, the tree Ti is a splitting tree. On the other hand, T2 is not a 
splitting tree of G. 

The following observation that relates splitting trees and Betti numbers 

is elementary, but useful. 
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Theorem 7.21 

Let The a splitting tree of an (n, m) graph G. Then every component ofG — E(T) 
has even size if and only if 13(G) is even. 

Proof 

Suppose that every component of G — E(T) has even size. Then G — E(T) 
has even size. Since every tree of order n has size n — 1, the graph 
G — E(T) has size m — (n — \) — m — n + 1. Therefore, B(G) — m — n + 1 
is even. 

Conversely, suppose that 13(G) is even. The graph G — E(E) has size 
m — n + 1 = B(G). Since T is a splitting tree of G, at most one component 

of G — E(T) has odd size. Since the sum of the sizes of the components of 
G - E(T) is even, it is impossible for exactly one such component to have 
odd size, producing the desired result. □ 

We now state a characterization of upper embeddable graphs, which 
was discovered independently by Jungerman [J4] and Xuong [XI], 

Theorem 7.22 

A graph G is upper embeddable if and only if G has a splitting tree. 

Returning to the graph G of Figure 7.11, we now see that G is 
upper embeddable since G contains T] as a splitting tree. On the other 

hand, neither the graph G] nor the graph G2 of Figure 7.12 has a single 
splitting tree, so, by Theorem 7.22, neither of these graphs is upper 

embeddable. 
We mentioned earlier that no formula is known for the genus of an 

arbitrary graph. However, such is not the case with maximum genus. 
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Figure 7.12 Graphs that are not upper embeddable. 

With the aid of Theorem 7.22, Xuong [XI] developed a formula for the 

maximum genus of any connected graph. 
For a graph H we denote by £o(H) the number of components of H 

of odd size. For a connected graph G, we define the number 4(G) as 

follows: 

£(G) = min£0(G — E(T)), 

where the minimum is taken over all spanning trees T of G. 

Theorem 7.23 

The maximum genus of a connected graph G is given by 

genM(G)=| (B(G)-((G)). 

Proof 

Assume that G has order n and size m. Let G be 2-cell embedded on the 
surface of genus genM(G) such that r regions are produced. First we show 
that r — 1 + 4(G). Note that if 4 (G) = 0, then G contains a splitting tree and 

B(G) is even. Thus, G is upper embeddable on Sgenw(G) with one region; 
that is, r = 1 + 4(G) if 4(G) = 0. Similarly, if r = 1, then B(G) is even and G 
is upper embeddable. Thus G has a splitting tree and 4(G) = 0, so 
r = 1 -F ^(G) if r = 1. Therefore, we assume that 4(G) > 0 and r ^ 2. 

Let T] be a spanning tree of G such that 

4o(G-e(t1)) = 4(G). 

Let G„ f = 1,2,... ,4(G), be the components of odd size in G — E(Ti). For 
1 = 1,2,..., 4(G), let e, be a pendant edge of G, if G, is a tree and let e, be a 

cycle edge of G, if G, is not a tree. Define H = G — {e^,e2,. ■.,^(C)}- Since 
Tt is a spanning tree of H, the graph H is connected. Since every compo¬ 
nent of H — E(T]) has even size, T] is a splitting tree of H. Therefore, by 

Theorem 7.22, H is upper embeddable. Also, by Theorem 7.21, B(H) is 
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even. Hence, by Corollary 7.20, H can be 2-cell embedded on Sger,M(H) with 
one region. Adding the edges eue2, ■ ■ ■ ,%(G) to H produces the graph G. 
By Theorem 7.15, there exists a 2-cell embedding of H + e\ on some 
surface (namely on SgeriM(H) in this case) with two regions. By f(G) appli¬ 
cations of Theorem 7.15, it follows that there exists a 2-cell embedding of 
G = H-fe1-|-e2 + " + %G) on some surface S with at most 1 + £(G) 
regions. Therefore, if G is 2-cell embedded on S with s regions, then 
necessarily s ^ 1 +£(G). Since the minimum number of regions of any 
2-cell embedding of G occurs when G is 2-cell embedded on Sger,M(G) 
and since such an embedding produces r regions, by assumption, we 
conclude that r < s so that r < 1 + £(G). 

To verify that r ^ 1 + £(G), we again assume that G is 2-cell embedded 
on the surface of genus genM(G) with r($s 2) regions. Let be an edge 
belonging to the boundary of two regions of G. (Necessarily, /j is not a 
bridge of G.) Then G — f\ is 2-cell embeddable on the surface of genus 
genM(G) with r — 1 regions. Furthermore, if r > 2, then for 
k = 2,3,..., r — 1, let fk be an edge belonging to the boundary of two 
regions of G — {/i,/2,... Then for k — 1,2,..., r — 1, the graph 
G — {/i,/2, • • • ,fk} is 2-cell embeddable on the surface of genus genM(G) 
with r — k regions; in particular, the graph G' = G — {/i,/2, • • ■ ,/r-i} is 
2-cell embeddable on the surface on genus genM(G) with one region. 
Therefore, B(G') is even and, by Corollary 7.18, the graph G' is upper 
embeddable on the surface of genus genM(G). By Theorem 7.22, G' con¬ 
tains a splitting tree T', and all components of G' — E(Tr) have even size. 
Thus, £0(G — E(T')) ^ r — 1. Consequently, £(G) ^ £0(G — E(T')) < r — 1 
so that r ^ 1 + £(G). Therefore, r — 1 + £(G). 

By Theorem 7.1, 

n-m + r — 2 - 2genM(G). 

Since r = 1 + £(G), it follows that 

2genM(G) = m -n + 1 - £(G) 

or 

genM(G)=i(£(G)-£(G)). □ 

Returning to the graph G] of Figure 7.12, we see that ^(G]) = 6 and 
that £0(Gi — E(T)) = 6 for every spanning tree T. Therefore, ^(G^ = 6 
so that 

genM(G,) = l(B(G,)-f(G1)) = 0 

and G] is 2-cell embeddable only on the sphere. 
With the aid of Theorem 7.23 (or Theorem 7.22), it is possible to show 

that a wide variety of graphs are upper embeddable. The following result 
is due to Kronk, Ringeisen and White [KRW1]. 
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Corollary 7.24 

Every complete k-partite graph, k ^ 2, is upper embeddable. 

From Corollary 7.24, it follows at once that every complete graph is 

upper embeddable, a result due to Nordhaus, Stewart and White 
[NSW1], We present a proof using Theorem 7.22. 

Corollary 7.25 

The maximum genus of Kn is given by 

gen m(K„) 
(n - l)(n — 2) 

4 

Proof 

If T is a spanning path of Kn, then Kn — E(T) contains at most one nontri¬ 

vial component. Therefore, T is a splitting tree of Kn and, by Theorem 7.22, 
Kn is upper embeddable. Since B(Kn) — (n — 1 )(n — 2)/2, the result fol¬ 

lows. □ 

A formula for the maximum genus of complete bipartite graphs was 
discovered by Ringeisen [R4], 

Corollary 7.26 

The maximum genus of Ks , is given by 

genM(Ksl) = 
(s- 1)0- 1) 

Zaks [Zl] discovered a formula for the maximum genus of the n-cube. 

Corollary 7.27 

The maximum genus of Qn, n ^ 2, is given by 

genm(Q») = (« - 2)2"-2. 

Finally, we also note that it is possible to speak of embedding graphs on 
nonorientable surfaces such as the Mobius strip, projective plane and 
Klein bottle. As might be expected, every planar graph (as well as some 

nonplanar graphs) can be embedded on such surfaces. Figure 7.13 shows 

K5 embedded on the Mobius strip. These topics shall not be the subject of 
further discussion, however. 
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Figure 7.13 An embedding of K5 on the Mobius strip. 

EXERCISES 7.3 

7.16 Describe an embedding of K5 on SgenM(j<5) by means of a 5-tuple of 
cyclic permutations. 

7.17 Determine the maximum genus of the graph G2 of Figure 7.12. 

7.18 Determine the maximum genus of the Petersen graph. 

7.19 (a) Let G be a connected graph with blocks , B2, ■ ■ •, Bk. Prove that 

k 

genm(G) ^ SenM(Bi)- 
i = i 

(b) Show that the inequality in (a) may be strict. 

7.20 Prove Theorem 7.22 as a corollary to Theorem 7.23. 

7.21 Prove Corollary 7.24. 

7.22 Prove Corollary 7.26. 

7.22 Prove Corollary 7.27. 

7.24 Prove or disprove: For every positive integer k, there exists a con¬ 

nected graph Gk such that \J3{G)/2J — genM(G^) = k. 

7.25 Prove or disprove: If H is a connected spanning subgraph of an 
upper embeddable graph G, then H is upper embeddable. 
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7.26 For G = Cs x Cf (s, t ^ 3), determine gen(G) and genM(G). 

7.27 Prove that if each vertex of a connected graph G lies on at most one 

cycle, then G is only 2-cell embeddable on the sphere. 

7.28 Prove, for positive integers p and q with p ^ q, that there exists a 
graph G of genus p that can be 2-cell embedded on S^. 

7.29 Prove that if G is upper embeddable, then G x K2 is upper embed¬ 
dable. 

7.4 VOLTAGE GRAPHS 

We have already seen that describing an embedding of a given graph on a 
given surface is potentially complicated. However, if the graph is suffi¬ 

ciently symmetric, then there may be another approach available to us. 
In Figure 7.2 we described an embedding of K7 on the torus Sj. Since 

gen(fCy) = 1, this embedding is, of course, a 2-cell embedding. By 
Theorem 7.1, it follows that n — m + r — 0 for this embedding. Indeed, 
in this case, n = 7, m = 21 and r = 14, that is, 7 — 21 -F 14 = 0. Notice 

that 7 is a factor of each of these numbers; so we can write this expression 
as 7(1 — 3 + 2) = 0, which might suggest considering a 2-cell embedding 

of a 'graph' of order 1 and size 3 on Sj that results in two regions. Of 
course, there is no graph of order 1 and size 3, but there is a pseudograph 
with these properties, namely the pseudograph G shown in Figure 7.14(a), 
where the single vertex of G is labeled 0. A 2-cell embedding of G on Sj 

that has two regions (one of which is shaded) is shown in Figure 7.14(b). 
We now return to K7. The graph K7 is a Cayley graph. Indeed, 

K7 = GA(Z7), where Z7 denotes the group of integers modulo 7 (under 
addition) and A consists of the three generators 1,2,3 of Z7. We now 
assign a direction to each edge (loop) of the pseudograph G of Figure 
7.14(a) and label each arc so produced with an element of A. The resulting 

pseudodigraph H is referred to as a voltage graph (the formal definition of 
which will be given shortly) and is shown in Figure 7.15(a). The particular 

G: 

(a) 

Figure 7.14 A 2-cell embedding of a pseudograph on S]. 

(b) 
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Figure 7.15 A voltage graph (with an embedding of it on S]). 

embedding of H on St in which we are interested is shown in Figure 
7.15(b). Notice that when we embed a pseudodigraph on S-, we do not 
show the usual identification arrows for the torus; it is understood that 
this embedding is on S-[. We will show that this embedding of H contains 
the necessary information to reproduce the original embedding of K7 on 

St shown in Figure 7.2. To see how this is accomplished, we begin by 
finding the cyclic permutation associated with the arcs incident with 
vertex 0 in the embedding of H given in Figure 7.15(b). 

Starting with the arc labeled 1, where it is directed away from vertex 0, 
we proceed counterclockwise about the vertex 0 and record either the 
element of Z7 on each arc encountered or its inverse depending on 
whether the arc is directed away from or toward 0, respectively. Thus 
7r0 begins with the element 1 and is followed by 5 (the inverse of 2 since 
the arc labeled 2 is encountered next and is directed toward 0). Continu¬ 
ing in this manner, we obtain 7r0 = (1 5 4 6 2 3). 

The cyclic permutation 7r0 just calculated now determines all seven 

cyclic permutations that comprise the rotational embedding scheme 
that produces the embedding of K7 on S} shown in Figure 7.2. Here we 
use the fact that K7 is the Cayley graph GA(Z7), where A = {1,2,3}. Hence 

the vertex set of K7 is Z7 = {0,1,2,..., 6}. The rotational embedding 
scheme contains 7r0 = (1 5 4 6 2 3). The remaining six cyclic permutations 

■Kj (1 ^ i < 6) are obtained from 7T0 by adding i (addition modulo 7) to 
every entry of 7r0. Thus, the rotational embedding scheme for K7 is the 
7-tuple (tt0, 7T!,..., tt6), where 

7T0 = (1 5 4 62 3), 

tt, = (265 034), 

7t2 = (3 0 6 1 4 5), 

tt3 = (4 1 0 2 5 6), 

tt4 = (5 2 1 3 6 0), 

tt5 = (632 40 1), 

tt6 = (0 4 3 5 1 2). 
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This is precisely the rotational embedding scheme for the embedding of 
K7 shown in Figure 7.2. If we had not recognized this as the embedding of 

Figure 7.2, then, of course, we could use the methods described in section 
7.2 to compute the number of regions of this embedding and show that it 

does, in fact, describe an embedding of K7 on Si with 14 triangular 
regions. Doing so, however, would not be using the power of the voltage 

graph H. 
More generally, let T be a finite group with identity element e, and let A 

be a generating set for T, where e^A, such that if h e A, then hT 0 A, 
unless, of course, h2 = e. Then a pseudodigraph H of order 1 is called a 
voltage graph of index 1 corresponding to T and A if H has size |A| and the 

arcs of H are labeled with the distinct elements of A. The general theory of 

voltage graphs allows for voltage graphs of order greater than 1; however, 
it is advantageous here to consider only those of order 1. 

Let H be a voltage graph of index 1 corresponding to a finite group T 
and a generating set A for T, and suppose that H is 2-cell embedded on 

some surface. Then this embedding of H determines a 2-cell embedding of 
the Cayley graph GA(T) on some surface. We say that H lifts to the covering 
graph GA(T). Also, the voltage graph is referred to as being below the 
covering graph and the covering graph as being above the voltage 

graph. Let R be a region of the embedding of H, and let hi,h2,... ,h* 
denote the sequence of arcs (elements of A) encountered as the boundary 
of R is traversed in the clockwise direction. Then we say that R is bounded 

by an orbit of length k, and the boundary element of R is defined as the 
product (or sum, if the group operation is addition) 

k 

i = l 

where m, = 1 if h, is oriented in the same direction as the boundary of R is 
traversed and m, = — 1 if h, is oriented in the opposite direction. For exam¬ 
ple, the boundary element of each region of the voltage graph embedding 

shown in Figure 7.15(b) is 0 since 1 + 2 + 4 = 0 and 3 + 64-5 = 0 in Zy. 
Since a voltage graph is a pseudodigraph, a region of an embedding of a 
voltage graph may be founded by an orbit of length 1 or 2. 

The next result, which is a special case of a theorem of Gross and Alpert 
[GA1], describes the relationship between regions of a voltage graph 

embedding and regions of its covering graph embedding. 

Theorem 7.28 

For a finite group T with generating set A, let H be a voltage graph of index 1 
corresponding to T and A that is 2-cell embedded on some surface. Furthermore, 
let R be a region of the embedding of H that is bounded by an orbit of length 

k (k ^ 1), and let s denote the order of the boundary element of R in T. Then R 
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lifts (or corresponds) to |T|/s regions in the covering graph embedding, where 
each such region is bounded by an orbit of length ks. Moreover, two distinct 
regions of H correspond to distinct sets of regions in the covering graph. 

Theorem 7.28 gives us a method of computing the number of regions in 
a covering graph embedding directly from the voltage graph. To illustrate 

this, consider once again the voltage graph H and its embedding in Figure 
7.15(b). Since the order of the boundary element of each of the two regions 

is s = 1, it follows that each region lifts to|T|/s = 7/l=7 regions in the 
embedding of GA(T) = K7. Hence the voltage graph H lifts to an embed¬ 
ding of K7 that has 14 regions. Also, since each region of H is bounded by 
an orbit of length 3, all 14 regions of the embedding of K7 are triangular 

regions. Thus, we have shown that the embedding of H in Figure 7.15(b) 
lifts to the embedding of K7 on Sj shown in Figure 7.2. 

In the previous example, the boundary element of every region of the 
voltage graph embedding is the identity element of the group. When this 
occurs, we say that the embedding satisfies the Kirchhoff Voltage Law (or, 

more simply, the KVL). It is also possible to have a voltage graph embed¬ 
ding in which some but not all regions have the identity for its boundary 
element. In this case, we say that the particular region satisfies the KVL; 
that is, if R is a region whose boundary element is the identity, then R 
satisfies the KVL. For example, an embedding of the voltage graph H of 

Figure 7.15(a) corresponding to Z7 and A = {1,2,3} on S0 is shown in 
Figure 7.16. Here, only the exterior region R satisfies the KVL. 

Next, we state an important special case of Theorem 7.28. 

2 

Figure 7.16 A region of an embedding of a voltage graph that satisfies the KVL. 

Corollary 7.29 

For a finite group T with generating set A, let H be a voltage graph of index 1 

corresponding to T and A that is 2-cell embedded on a surface. If R is a region of 
this embedding that is bounded by an orbit of length k(^ 1) and has the identity of 
T as its boundary element, then R lifts to |T| regions, each of which is bounded by 

an orbit of length k. 

Let T = Z5 and A = {1,2}. A voltage graph, denoted by H', correspond¬ 

ing to T and A is shown in Figure 7.17(a) embedded on S^and resulting in 
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Figure 7.17 A voltage graph and its covering graph. 

one region R. Since l+3 + 4 + 2 = 0in Z5, it follows that R satisfies the 
KVL and is bounded by an orbit of length 4. This embedding of H lifts to a 

2-cell embedding of GA(T) = K5 that has five regions, each of which is 
bounded by an orbit of length 4. Thus K5 is embedded on S5 (Figure 

7.17(b)). 
Next, consider the voltage graph H" corresponding to Z5 and A = {1,2} 

shown in Figure 7.18. Here, H" is embedded on S0. The boundary element 

of each of the regions R] and R3 is 4 and the boundary element of R2 is 2. 
All of these elements have order 5 in Z5 so that each of the regions R] and 
R2 lifts to a region bounded by an orbit of length 5, and R3 (being bounded 
by an orbit of length 2) lifts to a region bounded by an orbit of length 10. 

Thus the embedding above has three regions; so H" lifts to an embedding 
of K5 on S2. 

As a final example, consider the voltage graph of Figure 7.19(a) corre¬ 
sponding to T = Z3 x Z3 and A = {(1,0), (0,1)}. Then GA(T) = C3 x C3 
and, by Corollary 7.29, the embedding of C3 x C3 has nine regions, each 

of which is bounded by a 4-cycle. Figure 7.19(b) shows the covering graph 
embedding. 

This section provides only a brief introduction to voltage graphs. 

Indeed, we have restricted the discussion to voltage graphs of index 1. 
For such voltage graphs, the covering graphs are always Cayley graphs. 

However, the theory of voltage graphs is often used to describe embed¬ 
dings of graphs that are not Cayley graphs. We refer the reader to Gross 
and Tucker [GT1] and to White [W5]. 

H , (TXjT) 
*3 

Figure 7.18 Another voltage graph embedded on S0. 
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Figure 7.19 A voltage graph and its covering graph. 

EXERCISES 7.4 

7.30 Consider the embedding of the voltage graph shown below for the 

given group r, where A = , ^2}• Determine the covering graph 
embedding; that is, find the covering graph, the surface on which 
it is embedded, and describe the regions. 

(a) r = Z3; h\ = 1, /?2 — 2, 
(b) r = Z3 x Z3; hx = (1,0), h2 = (0,1). 

7.31 Find a voltage graph embedding that lifts to an embedding of 
C3 x C3 x C3 x C3 that contains 81 regions, each of which is bounded 
by an 8-cycle. On what surface does this embedding take place? 
(Hint: Recall the representation of the double torus shown in 

Figure 7.5.) 



CHAPTER 8 

Graph colorings 

The graph-theoretic parameter that has received the most attention over 

the years is the chromatic number. Its prominence in graph theory is 
undoubtedly due to its involvement with the Four Color Problem, 
which is discussed in this chapter. The main goal of this chapter, however, 

is to describe the many ways in which a graph can be colored and to 

present results on these topics. 

8.1 VERTEX COLORINGS 

A coloring of a graph G is an assignment of colors (which are actually con¬ 
sidered as elements of some set) to the vertices of G, one color to each 

vertex, so that adjacent vertices are assigned different colors. A coloring 
in which k colors are used is a k-coloring. A graph G is k-colorable if there 
exists an s-coloring of G for some s ^ k. It is obvious that if G has order n, 
then G can be n-colored, so that G is ^-colorable. 

The minimum integer k for which a graph G is Gcolorable is called the 
vertex chromatic number, or simply the chromatic number of G, and is 
denoted by x(G). If G is a graph for which x(G) = k, then G is k-chromatic. 
Certainly, if H C G, then x(H) ^ x(G). 

In a given coloring of a graph G, a set consisting of all those vertices 
assigned the same color is referred to as a color class. The chromatic 
number of G may be defined alternatively as the minimum number of 
independent subsets into which V(G) can be partitioned. Each such 
independent set is then a color class in the x(G)-coloring of G so defined. 

For some graphs, the chromatic number is quite easy to determine. For 
example, 

x(Cat)=2, x(C2*+i)=3, x(K„) = n, 

and, in general, 

x(K(nun2,...,nk)) = k. 

The graph G of Figure 8.1 is 3-colorable; a 3-coloring of G is indicated with 

the colors denoted by the integers 1, 2, 3. Therefore, G is fc-colorable for 

k ^ 3 and x(G) < 3. Since C5 is a subgraph of G and x(Cs) = 3/ it follows 
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1 2 3 2 3 

Figure 8.1 A 3-chromatic graph. 

that x(G) ^ 3. These two inequalities imply that x(G) = 3, that is, G is 
3- chromatic. 

If G is a k-partite graph, then x(G) ^ k since the partite sets of G 
determine the color classes in a ^-coloring of G. Conversely, every 
graph G with x(G) ^ k is necessarily k-partite. Similarly, x(G) =k if and 

only if G is k-partite but G is not /-partite for / < k. Consequently, the 1- 
chromatic graphs are precisely the empty graphs and the 2-chromatic 
graphs are the nonempty bipartite graphs. However, for no value of k 
greater than 2 is such an applicable characterization known. 

We need only be concerned with determining the chromatic numbers of 

nonseparable graphs since the chromatic number of a disconnected graph 
is the maximum of the chromatic numbers of its components and the 
chromatic number of a connected graph with cut-vertices is the maximum 
of the chromatic numbers of its blocks. 

Although the chromatic number is one of the most studied parameters 

in graph theory, no formula exists for the chromatic number of an arbi¬ 
trary graph. Thus, for the most part, one must be content with supplying 

bounds for the chromatic number of graphs. In order to present such 
bounds, we now discuss graphs that are critical or minimal with respect 
to chromatic number. 

For an integer k ^ 2, we say that a graph G is critically k-chromatic if 
x(G) = k and x(G — v) = k — 1 for all v e V(G); G is minimally k-chromatic 

if x(G) = k and x(G — e) = k — 1 for all e e E(G). There are several results 
dealing with critically k-chromatic graphs and minimally k-chromatic 

graphs, many of which are due to Dirac [D3]. We shall consider here 
only one of the more elementary, yet very useful, of these. 

Every critically k-chromatic graph is nonseparable, while every mini¬ 
mally k-chromatic graph without isolated vertices is nonseparable. Further¬ 
more, every minimally k-chromatic graph (without isolated vertices) is 

critically k-chromatic. The converse is not true in general, however; for 
example, the graph of Figure 8.2 is critically 4-chromatic but not minimally 
4- chromatic. For k = 2 and k = 3, the converse is true. In fact, K2 is the only 
critically 2-chromatic graph as well as the only minimally 2-chromatic 
graph without isolated vertices; while the odd cycles are the only critically 

3-chromatic graphs and the only minimally 3-chromatic graphs having no 
isolated vertices. For k ^ 4, neither the critically k-chromatic graphs nor 
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Figure 8.2 A critically 4-chromatic graph that is not minimally 4-chromatic. 

the minimally Achromatic graphs have been characterized. Although it is 
quite difficult, in general, to determine whether a given Achromatic graph 
G is critical or minimal, G contains both critically Achromatic subgraphs 

and minimally Achromatic subgraphs. A Achromatic subgraph of G of 
minimum order is critically Achromatic, while a Achromatic subgraph of 

G of minimum size is minimally Achromatic. 
The first theorem of this chapter concerns the structure of critically (and 

minimally) Achromatic graphs. 

Theorem 8.1 

Every critically k-chromatic graph, k ^ 2, is (k — 1 )-edge-connected. 

Proof 

Let G be critically Achromatic, k ^ 2. If k = 2 or k — 3, then G = K2 or G is 
an odd cycle, respectively; therefore, G is 1-edge-connected or 2-edge- 

connected. 
Assume that k ^ 4 and suppose, to the contrary, that G is not (k — 1)- 

edge-connected. Hence by Theorem 3.20, there exists a partition of A(G) 
into subsets A] and A2 such that the set E' of edges A] and V2 contains 
fewer than k — 1 elements. Since G is critically Achromatic, the subgraphs 

Gi = (A^ and G2 = (A2) are (k— l)-colorable. Let each of G] and G2 be 
colored with at most k - 1 colors, using the same set of k — 1 colors. If each 
edge in E' is incident with vertices of different colors, then G is (k — 1)- 

colorable. This contradicts the fact that y(G) = k. Hence we may assume 
that there are edges of E' incident with vertices assigned the same color. 
We show that the colors assigned to the elements of Aj may be permuted 

so that each edge in E' joins vertices assigned different colors. Again this 
will imply that y(G) ^ k — 1, produce a contradiction, and complete the 
proof. 

In the coloring of G], let Lij, U2,..., Ut be those color classes of G] such 
that for each i, 1 ^ i ^ t < k — 2, there is at least one edge joining U, and 

G2. For i = 1,2,..., f, assume that there are kt edges joining U, and G2. 

Hence, for each i, 1 < / < f, it follows that k,> 0 and £,=i k, ^k-2. 
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If for each tq in Uv the vertex iq is adjacent only with vertices assigned 

colors different from that assigned to zq, then the assignment of colors to 
the vertices of G is not altered. On the other hand, if some vertex iq of Lfj is 
adjacent with a vertex of G2 that is assigned the same color as that of iq, 

then in G] we may permute the k — 1 colors so that in the new assignment 
of colors to the vertices of G, no vertex of U} is adjacent to a vertex of G2 

having the same color. This is possible since the vertices of Ui may be 
assigned any one of at least k — 1 — k\ colors and k — 1 — Aq > 0. 

If, in this new assignment of colors to the vertices of G, each vertex u2 of 
U2 is adjacent only with vertices assigned colors different from that 
assigned to u2, then no (additional) permutation of colors of G-, occurs. 
However, if some vertex u2 of U2 is adjacent with a vertex of G2 that is 

assigned the same color as that of u2, then in G] we may permute the k — 1 
colors, leaving the color assigned to Uj fixed, so that no vertex of LT1 U U2 
is adjacent to a vertex of G2 having the same color. This can be done since 

the vertices of U2 can be assigned any of (k — 1) — (Ac2 + 1) colors, and 
(k — 1) — (Ac2 + 1) ^ (Ac — 1) — (Aq + k2) >0. Continuing this process, we 
arrive at a (Ac — l)-coloring of G, producing the desired contradiction. □ 

Since every connected, minimally Ac-chromatic graph is critically Ac- 
chromatic, the preceding result has an immediate consequence. 

Corollary 8.2 

If G is a connected, minimally k-chromatic graph, k 2, then G is (k — 1)-edge- 

connected. 

Theorem 8.1 and Corollary 8.2 imply that /q(G)^Ac — 1 for every 
critically Ac-chromatic graph G or connected, minimally Ac-chromatic 
graph G. The next corollary now follows directly from Theorem 3.18. 

Corollary 8.3 

If G is critically k-chromatic or connected and minimally k-chromatic, then 

6(G) Ac - 1. 

We are now prepared to present bounds for the chromatic number of a 
graph. We give here several upper bounds, beginning with the best 

known and most applicable. The theorem is due to Brooks [B15] but the 

proof here is due to Lovasz [L5]. 

Theorem 8.4 

If G is a connected graph that is neither an odd cycle nor a complete graph, then 

X(G)<*A(G). 
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Let G be a connected graph that is neither an odd cycle nor a complete 

graph, and suppose that x(G) = k, where, necessarily, k ^ 2. Let H be a 
critically fc-chromatic subgraph of G. Then H is nonseparable and 

A(H) < A(G). 
Suppose that H = Kk or that H is an odd cycle. Then G 7^ H. Since G is 

connected, A(G) > A(H). If H = K*, then A(H) = k — 1 and A(G) ^ L; so 

x(G)=fc< A(G). 

If H is an odd cycle, then 

A(G) ^ 3 = L = x(G). 

Hence, we may assume that H is critically L-chromatic and is neither an 

odd cycle nor a complete graph; this implies that k ^ 4. 
Let H have order n. Since x(H) = /c ^ 4 and H is not complete, it follows 

that n 5. We now consider two cases, depending on the connectivity 

of H. 

Case 1. Suppose that H is 3-connected. Let x and y be vertices of H such 
that dH(x,y) — 2, and suppose that x,w,y is a path in H. The graph 

H-x — y is connected. Let xA = u>,x2,... ,x„_2 be the vertices of 
H — x — y, listed so that each vertex x, (2 ^ i ^ n — 2) is adjacent to at 
least one vertex preceding it. By letting x„_1 = x and xn = y, we have 

the sequence 

x\ =w,x2,...,xn_2,xn_l =x,xn — y. 

Assign the color 1 to the vertices xM_i and xn. We successively color 

xn-2i xn-3i • ■ • > x2 with one of the colors 1,2, ...,A(H) that was not 
used in coloring adjacent vertices following it in the sequence. Such a 
color is available since each x, (2 ^ i < n — 2) is adjacent to at most 

A (H) — 1 vertices following it in the sequence. Since x, = w is adjacent 
to two vertices colored 1 (namely, x„_1 and x„), a color is available for 
x-[. Therefore, 

X(G) = x(H) ^ A(H) ^ A(G). 

Case 2. Suppose that n{H) = 2. We begin with an observation in this case; 

namely, H does not contain only vertices of degrees 2 and n — 1. Since 
x(H) ^ 4, H cannot contain only vertices of degree 2. Since H is not com¬ 
plete, H cannot contain only vertices of degree n — 1. If H contains vertices 

of both degrees (and no others), then H must contain two vertices of 
degree n — 1 and n — 2 vertices of degree 2; that is, H = ^ „_2. However, 

then, x(W) = 3, which is impossible. 
Let u € V(H) such that 2 < degH u < n — 1. If H — u is 2-connected, 

then let u be a vertex with dH(u,v) — 2. We may let x = u and y — v, 
and proceed as in Case 1. 
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If k(H — u) = 1, then we consider two end-blocks By and B2 containing 
cut-vertices Wy and w2, respectively, of H — u. Since H is 2-connected, 
there exist vertices Uy in By — Wy and u2 in B2 — w2 that are adjacent to 

u. Let x = Uy and y — u2/ and proceed as in Case 1. 
This completes the proof. □ 

The bound for the chromatic number given in Theorem 8.4 is not 
particularly good for certain classes of graphs. For example, the bound 
provided for the star graph Ky n_y of order n differs from its chromatic 
number by n — 3. We shall see in section 8.3 that 4 serves as an upper 

bound for the chromatic number of all planar graphs; however. Theorem 
8.4 gives no bound for the entire class. Thus, there are several important 
classes of graphs for which the bound A(G) for x(G) is poor indeed. From 
the next result, due to Szekeres and Wilf [SW1], a number of other bounds 

for x(G) follow as corollaries. 

Theorem 8.5 

Let f be a real-valued function defined on the class of all graphs that satisfies the 
following two properties: 

(i) If H is an induced subgraph of G, then f(H) < /(G). 

(ii) /(G) ^ 6(G) for every graph G. 

Then x(G) ^ 1 + /(G). 

Proof 

Let G be a /c-chromatic graph, where k ^ 2, and let H be an induced k- 
critical subgraph of G. By Corollary 8.3, 6(H) ^ k — 1. Therefore, 

f(G)>f(H)>6{H)>k- 1, 

so that 

X(G) = fc < 1 +/(G). □ 

As corollaries of Theorem 8.5 we have the results of Brooks [B15], 
Welsh and Powell [WP1], Gallai [G2], and Szekeres and Wilf [SW1], 

which are stated in chronological order. 

Corollary 8.6 

For every graph G, 

X(G)<1 + A(G). 
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Corollary 8.7 

Let G be a graph with V(G) = {vi,v2,... ,vn}. Then 

x(G) max {min{z, deg vt + 1}}. 
1 ^ i ^ n 

Corollary 8.8 

For every graph G, 

X(G)<1+^(G), 

where tf(G) denotes the length of a longest path in G. 

Corollary 8.9 

For every graph G, 

x(G) ^ 1 + max 6(H), 

where the maximum is taken over all induced subgraphs H of G. 

The proof of each of Corollaries 8.6, 8.7, 8.8 and 8.9 consists of deter¬ 
mining an appropriate function / and then applying Theorem 8.5. For 

example, in Corollary 8.9 we define the function / by /(G) = max 5(H), 
where the maximum is taken over all induced subgraphs H of G. Then 
clearly / satisfies the properties required to apply Theorem 8.5. For 

proofs of the other corollaries, see Exercise 8.8. 
It is not difficult to show that among the corollaries stated above. 

Corollary 8.9 is the strongest application of Theorem 8.5. 

Theorem 8.10 

If a real-valued function f defined on the class of all graphs satisfies properties (i) 
and (ii) of Theorem 8.5, then for each graph G, 

/(G) ^ max5(H), 

where the maximum is taken over all induced subgraphs H of G. 

Proof 

Let G be a graph, and let k = max 5(H), where the maximum is taken over 

all induced subgraphs H of G. If /(G) < k, then G contains an induced 
subgraph H] with/(G) < k — By (i), then,/(H^ ^/(G) < 5(Hj). 
This, however, contradicts (ii). □ 

Corollary 8.9 gives an upper bound of 2 for the chromatic number of 

which, of course, is exact. Since every planar graph has minimum 
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5j = {1,2,3} 

52={1,2,3) 
53={2, 3, 4,5,6} 

54={4,5} 

Figure 8.3 An intersection graph. 

degree at most 5 (by Corollary 6.5) and since every subgraph of a planar 
graph is planar, a bound of 6 is provided for the chromatic number of 

planar graphs by Corollary 8.9. In each of these cases a marked improve¬ 
ment is shown over the result offered by Theorem 8.4. If G is a regular 
graph of degree r, then both Theorem 8.4 and Corollary 8.9 give r + 1 
as an upper bound for y(G); however, this bound is poor for. many r- 
regular graphs, such as Kr r. 

We now direct our attention briefly to lower bounds for the chromatic 
number. The clique number uj(G) of a graph G is the maximum order 
among the complete subgraphs of G. Clearly, ce(G) = /3(G) for every 

graph G. If C G for some k, then x(G) ^ x(Kk) = If follows that 
y(G) ^ cu(G). Although this lower bound for x(G) is not particularly 

good in general, x(G) actually equals ca(G) for some special but important 
classes of graphs. For example, if G is bipartite, then either G is empty and 
x(G) = 1 = ca(G), or else x(G) = 2 = u>(G). In order to give another 
example where equality holds, we introduce the notions of intersection 
graphs and interval graphs. 

Let T be a finite family of not necessarily distinct nonempty sets. The 
intersection graph of T is obtained by representing each set in T by a vertex 
and then adding an edge between two vertices whose corresponding sets 
have a nonempty intersection. A graph G is called an intersection graph if 

it is the intersection graph of some family T. A family T — {Sl5 S2, S3, S4} 
and its intersection graph is shown in Figure 8.3. Here, vertex v,- 

corresponds to set S,. 
When T is allowed to be an arbitrary family of sets, the class of graphs 

obtained as intersection graphs is simply all graphs (see Marczewski 
[M2]). By restricting the sets in T, many interesting classes of graphs 

are obtained. For example, the intersection graph of a family of closed 
intervals of real numbers is called an interval graph. The graph G of 
Figure 8.3 is seen to be an interval graph by considering the intervals 

7] = [1,3], I2 — [1,3], 73 = [2,6] and f4 = [4,5]. However, not all graphs 
are interval graphs. For example, C4 is not an interval graph. 

If G is an interval graph, then the vertices of G correspond to closed 
intervals; say u, corresponds to 7, = [/;, r,]. We show that G has an ui(G)- 

coloring. Assume that the vertices of'G have been labeled so that ^ } 
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1 2 

Figure 8.4 A greedy 3-coloring. 

if i ^ j. Color Vi,v2, ■ ■ ■ ,vn in order, assigning to v, the smallest color 
(positive integer) j that has not been assigned to a neighbor of vt. (Such 

a coloring is called a greedy coloring.) For example, using this procedure 
on the graph G of Figure 8.3, we obtain the 3-coloring of G given in 

Figure 8.4. Note that ca(G) = 3. 
In general, suppose that we have given a greedy coloring to an interval 

graph G and that vertex v, has been assigned color k. This implies that v, is 

adjacent to v^,vl2,.. .,vik_y (i\ <i2 < ••• < 4-i < 0 colored 1,2,... ,k— 1, 
respectively. We show that these vertices, together with vu induce 

a complete graph. The left endpoints of the corresponding intervals satisfy 

4 <4 < <4_, <4 
If 4 = 4 = ‘ • • = 4-i = 4 then certainly <{^i,»w«2, • • •, vik_, j»/}) is com¬ 
plete. Otherwise there is an integer t with 1 ^ t ^ k — 1 for which G < 

for 1 ^ ^ t and 4 = *4' f°r eac^ j with f + 1 < / ^ fc — 1. Clearly, 
vii + ],Vji 2,...,Vik !,v, induce a complete graph. Now, since 4 < G for 

1 and Vj. and Vj are adjacent, it follows that r,- ^ Thus 
Vj , u,2,..., vik , Vj induce a complete graph. We conclude that the 
greedy coloring so produced is an ta(G)-coloring. 

As we have seen, if G is a bipartite graph or an interval graph, then 
y(G) = w(G). Furthermore, since every induced subgraph of a bipartite 

(interval) graph is also a bipartite (interval) graph, we see that 
x(H) = cj(H) for every induced subgraph H of a bipartite or interval 
graph. A graph G is called perfect if x(H) = lu(H) for each induced sub¬ 

graph H of G. Thus bipartite graphs and interval graphs are examples of 
perfect graphs. 

Interval graphs form a subset of a larger class of perfect graphs called 
chordal graphs. A graph G is called chordal if every cycle of G of length 

greater than 3 has a chord, that is, an edge joining two nonconsecutive 

vertices of the cycle. In the literature, chordal graphs have also been 
called triangulated, rigid circuit and perfect elimination graphs. 

Since every induced subgraph of a chordal graph is also chordal, to 

show that chordal graphs are perfect we need only show that 
y(G) = w(G) for every chordal graph G. This follows from the following 
characterization of chordal graphs due to Hajnal and Suranyi [HS1] and 
Dirac [D6], 
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A graph G is a chordal graph if and only if either G is complete or G can be 

obtained from two chordal graphs Gj and G2 (having orders less than that of 
G) by identifying two complete subgraphs of the same order in Gt and G2. 

Proof 

If G can be obtained as described, then clearly G is chordal. Conversely, 
since every complete graph is chordal, let G be a noncomplete chordal 
graph and let S be any minimal vertex-cut of G. Let A be the vertex set 

of one component of G — S and let B = V(G) — S — A. Define the (chordal) 
subgraphs Gj and G2 of G by G-, = (A U S) and G2 - (BUS). Then G can be 
obtained from G\ and G2 by identifying the vertices of S. We show that (S) 

is complete. This is certainly true if |S| = 1, so we may assume that |S| 5= 2. 
Since S is minimal, each x G S is adjacent to some vertex of each com¬ 

ponent of G — S. Therefore, for each pair x,y 6 S, there exist paths x, 

a-[, a2,..., flr, y and x, b}, b2,..., bt, y, where each a{ e A and bt e B, such 
that these paths are chosen to be of minimum length. Thus, 
C\ x,a-[,a2,... ,ar,y,bhbt_i,... ,bi,x is a cycle of G of length at least 4, 

implying that C has a chord. However, a,bj £ E(G) since S is a vertex- 
cut and a,a, ^ E(G) and blbj £ E(G) by the minimality of r and t. Thus 
xy e E(G). □ 

Corollary 8.12 

If G is a chordal graph, then y(G) = to(G). 

Proof 

We proceed by induction on the order n of G. If n = 1, then G = and 

x(G) = w(G) = 1. Assume that the clique and chromatic numbers are 
equal for chordal graphs of order less than n and let G be a chordal 
graph of order n ^ 2. 

If G is complete, then x(G) = ca(G). If G is not complete, then G can be 
obtained from two chordal graphs G^ and G2 of order less than that of G 

by identifying two complete subgraphs of the same order in G] and G2. 
Since there are no edges between W(G2) — S and V(G2) — S, it follows that 

u>(G) = max{ca(G1),u;(G2)}. 

Clearly, x(G) ^ maxlx^), x(G2)}- However, since a x(G,)-coloring of 

G, assigns distinct colors to the vertices of S (i — 1,2), it follows that we 
can make the colorings agree on S to obtain a maxlx^), x(G2)}-coloring 

of G. Thus, 

x(G) = max{x(-G1),x(G2)}. 
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By the inductive hypothesis, x(Gi)=u;(G1) and x(G2) = w(G2). Thus, 

x(G) = u>(G). □ 

Corollary 8.13 

Every chordal graph is perfect. 

Perfect graphs were introduced by Berge [B6], who conjectured that a 
graph G is perfect if and only if G is perfect. This conjecture (sometimes 

referred to as the Perfect Graph Conjecture) was verified by Lovasz [L4]. Its 

rather lengthy proof is omitted. 

Theorem 8.14 

A graph G is perfect if and only if G is perfect. 

Since ^(C^+i) = 3 ^ ^(C^+i), 2, it follows that if an induced sub¬ 
graph of a graph G is an odd cycle of length at least 5, then G is not perfect. 
Similarly, if G contains an induced odd cycle of length at least 5, then G 

and, by Theorem 8.14, G are not perfect. Berge conjectured ([B8, p. 361]) 
that every graph that is not perfect contains either an induced odd cycle of 
length at least 5 or its complement contains such a cycle. 

Strong Perfect Graph Conjecture 

A graph G is perfect if and only if no induced subgraph of G or G is an odd cycle 
of length at least 5. 

This conjecture remains open, although it has been verified for several 
classes of graphs including planar graphs (Tucker [T8]) and claw-free 
graphs (Parthasarathy and Ravindra [PR1 ]). 

As we have noted, x(G) ^ o»(G) for every graph G. Hence if G contains 
triangles, then x(G) ^ 3. However, there exist graphs G that are triangle- 

free such that x(G) 5s 3. For example, the odd cycles C^+i, with k ^ 2, 
have chromatic number 3 and are, of course, triangle-free. The graph of 
Figure 8.5, called the Grotzsch graph, is 4-chromatic and triangle-free and 
is, in fact, the smallest such graph (in terms of order). 

It may be surprising that there exist triangle-free graphs with arbitrarily 
large chromatic number. This fact has been established by a number 

of mathematicians, including Descartes [D2], Kelly and Kelly [KK1] and 
Zykov [Z3]. The following construction is due to Mycielski [Ml 1 ], however. 

Theorem 8.15 

For every positive integer k, there exists a k-chromatic triangle-free graph. 
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Figure 8.5 The Grotzsch graph: a 4-chromatic triangle-free graph. 

Proof 

The proof is by induction on ft. If ft is 1, 2 or 3, then the graphs K2 and 

C5, respectively, have the required properties. Assume that H is a triangle- 
free graph with x(H) = ft, where k ^ 3. We show that there exists a 
triangle-free graph with chromatic number k +1. Let V (H) — 
{v-[,v2, ■ ■ ■ ,vn}. We construct a graph G from H by adding n + 1 new 
vertices u, iq, u2,.. ■, un. The vertex u is joined to each vertex and, in 
addition, u, is joined to each neighbor of Vj. 

To see that G is triangle-free, first observe that u belongs to no triangle. 
Since no two vertices w, are adjacent, any triangle would consist of a 

vertex u, and vertices v, and ve, i V /, G but by the construction, this 
would imply that ({n,, Vj, vf}) is a triangle in H, which is impossible. 

Let a ^-coloring of H be given. Now assign to w, the same color assigned 

to and assign a (ft: + l)st color to u. This produces a (ft: + l)-coloring of 
G. Hence x(G) ^ k+ 1. Suppose that x(G) ^ k, and let there be given a 
ft-coloring of G, with colors 1,2,...,ft, say. Necessarily the vertex u is 
colored differently from each ur Suppose that u is assigned color ft. 
Since x(H) = ft, the color ft is assigned to some vertices of H. Recolor 
each Vj that is colored ft with the color assigned to iq. This produces a 

(ft — l)-coloring of H and a contradiction. Thus, x(G) = ft + l, and the 
proof is complete. □ 

This result has been extended significantly by Erdos [E3] and Lovasz 
[L3]. We postpone the proof of Theorem 8.16 until Chapter 13 (Theorem 

13.5). The girth of a graph is the length of its shortest cycle. 

Theorem 8.16 

For every two integers ft ^ 2 and i ^ 3 there exists a k-chromatic graph whose 

girth exceeds V 
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According to Theorem 8.15, a /c-chromatic graph may contain no 

triangles and, therefore, no large complete subgraphs. In particular, a 
/c-chromatic graph need not contain Kk. There are two well-known 

conjectures related to this observation. 
For k ^ 3, it is trivial to see that every /c-chromatic graph contains a 

subdivision of Kk. Dirac [D3] showed that this is also true for k = 4 and 
Hajos [H2] conjectured that for each positive integer k, every /c-chromatic 

graph contains a subdivision of Kk. This conjecture, however, was shown 
to be false for k ^ 7. A weaker conjecture was proposed by Hadwiger 

[HI], 

Hadwiger's Conjecture 

If G is a k-chromatic graph, where k is a positive integer, then Kk is a subcon¬ 
traction of G. 

This conjecture was verified for k — 4 by Dirac [D3]. The proofs for k = 5 

and k — 6 depend on results of Wagner [W2] and of Robertson, Seymour 
and Thomas [RST1] and on the proof of the famous Four Color Theorem 
which we will encounter in section 8.3. For k ^ 7, this conjecture remains 
open. 

Our next result, due to Nordhaus and Gaddum [NG1], is the best 

known result on chromatic numbers and complementary graphs. The 
proof is based on one by H. V. Kronk. 

Theorem 8.17 

If G is a graph of order n, then 

(i) 2n1/2^x(G)±x(G) <$n + l, 
(ii) n ^ y(G) • x(G) ((« + l)/2)2. 

Proof 

Let a y(G)-coloring for G and a x(G)-coloring for G be given. Using these 
colorings, we obtain a coloring of Kn. Assign a vertex v of K„ the color 

(C], c2), where Cj is the color assigned to v in G and c2 is the color assigned 
to v in G. Since every two vertices of Kn are adjacent either in G or in G, 

they are assigned different colors in that subgraph of K„. Thus, this is a 
coloring of Kn using at most x(G) • x(G) colors, so 

« = X(K„) < x(G) • x(G). 

This establishes the lower bound in (ii). Since the arithmetic mean of two 

positive numbers is always at least as large as their geometric mean. 
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we have 

Vn < ]/x(G)’X(G) < 
X(G) + X(G) 

2 

This verifies the lower bound of (i). 

To verify the upper bound in (ii), we make use of Corollary 8.9. Suppose 
that k = max 6(H), where the maximum is taken over all induced sub¬ 
graphs H of G. Hence every induced subgraph of G has minimum 

degree at most k and, by Corollary 8.9, it follows that x(G) ^ 1 + k. 
Next we show that every induced subgraph of G has minimum degree 

at most n — k— 1. Assume, to the contrary, that there is an induced sub¬ 
graph H of G so that 8(H) ^ n — k. Thus the vertices of H have degree at 
most k — 1 in G. 

Let F be an induced subgraph of G with 8(F) = k. Thus no vertex of F 
belongs to H. Since the order of F is at least k + 1, the order of H is at most 
n — k—\, contradicting the fact that 8(H) ^ n — k. We may therefore 

conclude that every induced subgraph of G has minimum degree at 
most n — k— 1 and, by Corollary 8.9, that y(G) ^ l + (n — k — \ ) = n — k. 
Thus, 

X(G) + x(G) ^ (1 + k) + (n - k) = n + 1, 

completing the proof of the upper bound in (i). The upper bound in (ii) 
now follows by consideration of geometric and arithmetic means. □ 

We close this section with some examples of variations of graph color¬ 
ing. We observed that the chromatic number of a graph G can be defined 
as the minimum number of independent sets into which V(G) can be 
partitioned. More generally, let V denote a family of graphs. The V 

chromatic number Xv(G) is the minimum number of sets into which V(G) 
can be partitioned so that each set induces a graph that belongs to V. 
This parameter is well-defined whenever € V. If V is the family of 

empty graphs, then y-p(G) = x(G). If V is the family of forests, then 
Xp(G) = a(G), the vertex-arboricity of G. If V is the family of empty 
graphs and complete graphs, then y-p(G) is the cochromatic number of G, 
first introduced in [LSI]. Alternatively, the cochromatic number of G is 
the minimum number of subsets in a partition of V(G) so that each 
subset is independent in G or in G. Certainly for each family V described 

above, xn(G) ^ x(G) for every graph G in V. 
We now describe another coloring number. Suppose that for each vertex 

v of a graph G there is associated a list L(v) of allowable colors for v. The 
list chromatic number x^(G) is the smallest positive integer k such that for 
each assignment of a list L(v) of cardinality at least k to every vertex v of 
G, it is possible to color G so that every vertex is assigned a color from its 

list. Thus x(G) ^ XiKG) for every graph G. That this inequality may be 
strict is illustrated by the bipartite graph G of Figure 8.6 for which 
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{1,3} 

G: 

{2,3} 

{1,3} 

Figure 8.6 A 2-chromatic graph with list-chromatic number 3. 

Xr(G) = 3. A 2-coloring of G cannot be given from the indicated lists. 

A graph G is k-choosable if Xr(G) ^ k. 
The book by Jensen and Toft [JT1] on graph coloring problems is an 

excellent source of additional information. More information on perfect 
graphs can be found in the book by Golumbic [G6]. 

EXERCISES 8.1 

8.1 Prove, for every graph G of order n, that n/fi(G) ^y(G) ^ 

n + l -0(G). 

8.2 Determine and prove a result analogous to Exercise 8.1 for vertex- 
arboricity. 

8.3 Prove a result analogous to Theorem 8.4 for disconnected graphs. 

8.4 What bound is given for y(G) by Corollary 8.9 in the case that G is 
(a) a tree? (b) an outerplanar graph (Exercise 6.11)? 

8.5 Let G be a Achromatic graph, where k ^ 2, and let r be a positive 
integer such that r ^ A(G). Prove that there exists an r-regular k- 

chromatic graph H such that G is an induced subgraph of H. 

8.6 Determine (and prove) a necessary and sufficient condition for a 

graph to have a 2-colorable line graph. 

8.7 Let G be a connected, cubic graph of order n > 4 having girth 3. 
Determine x(G). 

8.8 (a) Prove Corollary 8.6 without using Theorem 8.4. 

(b) Prove Corollary 8.7. 
(c) Prove Corollary 8.8. 
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8.9 Let G],G2,...,Gk be pairwise disjoint graphs, and define G = 
G] + G2 T- • • • T Gk. Prove that 

k k 

x(C) = j>(G,-) and w(G) = j>(Gi). 
1=1 1=1 

8.10 (a) Show that every graph is an intersection graph. 

(b) Let G be a nonempty graph. Show that a set T can be associated 

with G so that the intersection graph of T is the line graph of G. 

8.11 Show that every induced subgraph of an interval graph is an interval 
graph. 

8.12 Show that every interval graph is a chordal graph. 

8.13 (a) Show that if G is a chordal graph, then for every proper complete 
subgraph H of G there is a vertex v 6 V(G) — V(H) for which the 
neighbors of v in G induce a complete subgraph in G. 

(b) Show, without using Theorem 8.14, that the complement of a 
chordal graph is perfect. 

8.14 For each integer n ^ 7, give an example of a graph G„ of order n such 
that no induced subgraph of Gn is an odd cycle of length at least 5 but 
Gn is not perfect. 

8.15 Determine G if, in the proof of Theorem 8.15, 
(a) H = K2; (b) H = C5. 

8.16 Prove that for every two integers k ^ 3 and / ^ 3, with k ^ /, there 
exists a graph G such that y(G) = k and ca(G) = /. 

8.17 Show that the conjectures of Hajos and Hadwiger are true for k ^ 3. 

8.18 Show that all the bounds given in Theorem 8.17 are sharp. 

8.19 Determine and prove a theorem analogous to Theorem 8.17 for 

vertex-arboricity. 

8.20 Define a graph G to be k-degenerate, k ^ 0, if for every induced sub¬ 
graph H of G, 8(H) < k. Then the 0-degenerate graphs are the empty 
graphs, and by Exercise 3.2, the 1-degenerate graphs are precisely 
the forests. By Corollary 6.5, every planar graph is 5-degenerate. A 
^-degenerate graph is maximal k-degenerate if, for every two non- 
adjacent vertices u and v of G, the graph G + uv is not ^-degenerate. 

For k ^ 0, let Vk denote the family of L-degenerate graphs. Then 

Xvk(G) is the minimum number of subsets into which V(G) can be 
partitioned so that each subset induces a /c-degenerate subgraph of 

G. A graph is said to be /-critical with respect to xiv ^ ^ 2, if 

Xvk(G) = / and Xpk(G - v) — / — 1 for every v e V(G). 
(a) Prove that if G is a maximal ^-degenerate graph of order n, where 

n ^ k + 1, then 8(G) = k. 
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(b) Determine Xvk(^n)- 
(c) Prove that if G is a graph that is /-critical with respect to x?k> then 

6(G) ^ (k + 1)(/- 1). 

8.21 (a) Give an example of a graph H for which the cochromatic number 

is 3. 
(b) Give an example of a graph H that is not the union of (disjoint) 

complete graphs for which the cochromatic number equals x(H). 
(c) Give an example of a graph H that is not a union of complete 

graphs for which the cochromatic number is less than x(H). 

8.22 Show that K3 3 has list-chromatic number 3. 

8.2 EDGE COLORINGS 

We now switch our attention from coloring the vertices of a graph to 
coloring its edges. An assignment of colors to the edges of a nonempty 
graph G so that adjacent edges are colored differently is an edge coloring of 

G (a k-edge coloring if k colors are used). The graph G is k-edge colorable if 
there exists an /-edge coloring of G for some / ^ k. The minimum k for 
which a graph G is fc-edge colorable is its edge chromatic number (or 
chromatic index) and is denoted by Xi(G). 

The determination of Xi (G) can be transformed into a problem dealing 
with chromatic numbers; namely, from the definitions it is immediate that 

X!(G) = x(L(G)), 

where L(G) is the line graph of G. This observation appears to be of little 
value in computing edge chromatic numbers, however, since chromatic 
numbers are extremely difficult to evaluate in general. 

It is obvious that A(G) is lower bound for xi(G). In what must be 
considered the fundamental result on edge colorings, Vizing [V3] 

proved that xi(G) equals A(G) or 1 + A(G). We prove a more general 
result due to Berge and Fournier [BF1 ]. 

Theorem 8.18 

Let G be a nonempty graph and let d be a positive integer such that d A(G). 

If the set of vertices of G of degree d is empty or independent, then xi (G) ^ d. 

Proof 

We proceed by induction on the size m of G. When m = 1, the result is 
obvious. Assume, then, that the result holds for graphs of size m — 1, 
where m 2. Let G be a graph of size m for which d ^ A(G) and the 
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set of vertices of degree d in G is empty or independent. We show that G is 

d-edge colorable. 
Let u be a vertex of G such that deg u = A(G). Furthermore, let y0 be a 

vertex adjacent to u and let e0 = uy0. Since d ^ A(G) ^ A(G — e0) and the 

set of vertices of G — e0 of degree d is empty or independent, it follows by 
the inductive hypothesis that G - e0 is d-edge colorable. 

Let there be given a d-edge coloring of G — e0; that is, every edge of G 
except e0 is assigned one of d colors so that adjacent edges are colored 
differently. For each edge e = uy of G incident with u, we define its dual 
color as any one of the d colors that is not used to color edges incident with 
y. Since y is adjacent to u, it follows that degy < d regardless of whether 
d — A(G) or d > A(G), and so there is at least one color available for a dual 
color. Let e0 have dual color cq. (The color cp is not the color of any edge of 

G incident with y0.) We may assume that some edge ek = uy\ incident 
with u has been assigned the color cp; for otherwise the edge e0 could 
be colored cp, thereby producing a d-edge coloring of G and completing 
the proof. 

Let a2 be the dual color of eA. If a2 ^ cq and there is an edge e2 = uy2 
incident with u that has been assigned the color a2, then let a3 be the dual 

color of e2. If a3 / cq, a2 and there is an edge e3 — uy3 incident with u that 
has been assigned the color cq, then let q4 be the dual color of e3. We 
continue in this manner until we have constructed a sequence e0 = uy0r 

ei —UV\> e2 — uV2i ■ ■ • >ek-\ — uVk-1 °f distinct edges with dual colors 
a-!, a2) • • •, otk such that a, ^ a. for i<j<k and either (i) a*. = a, for 
some j < k or (ii) there is no edge incident with u that has been assigned 
the color ak. If (ii) holds then we may assign each of the edges 
e0,e-i,... its dual color and obtain a d-edge coloring of G. Hence 

we may assume that cq. = cq for some j < k. 
Let a be a color that has not been assigned to any edge incident with u. 

Such a color exists since degG_fo u < A(G) ^ d. If no edge incident with 

yk_i is colored a, then we redefine the dual color of ek_x to be a. Then (ii) 
holds and we can obtain a d-e dge coloring of G as before. Hence we may 
assume that some edge incident with yk_i is colored a. 

Define G' to be that spanning subgraph of G whose edge set consists of 
those edges of G - e0 colored a or ak. Since some edge incident with yk-\ 
is colored a but no edge incident with yk _ \ is colored ak, the component of 
G' containing yk _ ^ is a yk _ i — z path P for some vertex z. If u lies on P, then 
z = u since no edge incident with u is colored a. Furthermore, since 

ak = a;, it follows that if z = u, then the final edge of P is = uyj. Also, 

if u is on P, then y. _ j is not on P since no edge incident with y^~ \ is colored 
a, = otk. Therefore, at most one of u and y;_ t is on P, and so at most one of 

these vertices is z. 
We now obtain a new d-e dge coloring of G - e0 by interchanging the 

colors a and ak for the edges of P. We consider three cases according to 

the possibilities for the vertex z. 
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Case 1. Suppose that z = u. Then y,-i is not on P and no edge incident 
with u or y,_] has been assigned the color ak = a;. Thus we may assign 
each of the edges e0, ,..., e, _ j its dual color and obtain a d-edge coloring 

of G. 

Case 2. Suppose that z — y, ,. Then i/ is not on P and no edge incident 
with u or y._-! has been assigned the color a. Thus we may assign the 

edge c,_, the color a and each of the edges e0,el5...,e._2 its dual color 
and obtain a d-edge coloring of G. 

Case 3. Suppose that z ^ u and z^y^j. Then neither u nor y,_] is on P. 
Thus, in particular, no edge incident with u or yk_i is assigned the 
color a. Thus we may assign the edge ek_-l the color a and each of the 

edges e0,e-[,... ,ek_2 its dual color to obtain a d-edge coloring of G. □ 

If we take d = A(G) + 1 in Theorem 8.18, then we obtain the afore¬ 

mentioned result of Vizing [V3]. 

Corollary 8.19 

If G is a nonempty graph, then xi(G) ^ 1 + A(G). 

By setting d = A(G) in Theorem 8.18, we obtain a result due to Fournier 

[F9], 

Corollary 8.20 

If G is a nonempty graph in which the vertices of maximum degree are indepen¬ 

dent, then Xi(G) = A(G). 

With the aid of Corollary 8.19, the set of all nonempty graphs can be 
divided naturally into two classes. A nonempty graph G is said to be of 

class one if Xi(G) = A(G) and of class two if xi(G) = 1 + A(G). The main 
problem, then, is to determine whether a given graph is of class one or of 

class two. 
The set of all edges of a graph G receiving the same color in an 

edge coloring of G is called an edge color class. By Vizing's theorem, the 

edge chromatic number of an r-regular graph G is either r or r + 1. For 
example, C„ (n 3) is of class one if n is even and of class two if n is 

odd. If xi (G) = r for an r-regular graph, then necessarily each color 
class in a Xi(G)-edge coloring of G induces a spanning, 1-regular sub¬ 
graph of G. Thus, as we shall see in Chapter 9, K„ is of class one if n is 
even and of class two if n is odd. More generally, every regular graph 

of odd order is of class two. It is not true, however, that every regular 
graph of even order is of class one; the Petersen graph, for example, is 
of class two. 
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Although it is probably not obvious, there are considerably more class 
one graphs than class two graphs, relatively speaking. Indeed, Erdos and 
Wilson [EW1] have proved that the probability that a graph of order n is 

of class one approaches 1 as n approaches infinity. However, the problem 
of determining which graphs belong to which class is unsolved. 

Corollary 8.20 gives a sufficient condition for a graph to be of class one. 
The following result, due to Beineke and Wilson [BW1], gives a sufficient 
condition for a graph to be of class two. An independent set of edges in a 
graph G is a set of edges, each two of which are independent (non- 
adjacent). The edge independence number Pi(G) of G is the maximum 
cardinality among the independent sets of edges of G. 

Theorem 8.21 

Let G be a graph of size m. If 

m> A(G)-A(G), 

then G is of class two. 

Proof 

Assume that G is of class one. Then Xi(G) = A(G). Let a y-^Gj-edge 
coloring of G be given. Each edge color class of G has at most fa (G) 
edges. Therefore, m ^ A(G) • fd\{G). □ 

Since /3](G) ^ [|nj for every graph G of order n, we have an immediate 
consequence of the preceding result. An (n, m) graph G is called overfull if 
m > A(G) • [\n\. 

Corollary 8.22 

Every overfull graph is of class two. 

It should be emphasized that Theorem 8.21 and its corollary provide 

strictly sufficient conditions for a graph to be of class two. There exist 
graphs with relatively few edges that are of class two. Of course, the 
odd cycles are of class two, but, then, they are regular of odd order. 
The Petersen graph is of class two. A cubic graph of class two whose 

girth is at least 5 is called a snark. Thus the Petersen graph is a snark. 
Isaacs [II] has shown that there exist infinitely many snarks. For example, 
the graph of Figure 8.7 is called the double-star snark. 

Hilton [H14] and Chetwynd and Hilton [CH3] conjectured that a graph 

G of order n with A(G) >\n is of class two if and only if G contains an 
overfull subgraph H with A(G) = A(H). Certainly if G contains an over¬ 
full subgraph H with A(G) = A(H), then G is of class two. The converse 
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Figure 8.7 The double-star snark. 

has been established for several classes of graphs. For example, if G is 
a complete s-partite graph for some s, then G is of class two only if G 
contains an overfull subgraph H with A(G) = A(H). 

When discussing vertex colorings, we found it useful to consider 

graphs that are critical with respect to chromatic number. Now that we 
are investigating edge colorings, it proves valuable to consider certain 
minimal graphs. 

A graph G with at least two edges is minimal with respect to edge 
chromatic number (or simply minimal if the parameter is clear from 

context) if x\ (G — e) = Xi (G) — 1 for every edge e of G. Since isolated 
vertices have no effect on edge colorings, it is natural to rule out isolated 

vertices when considering such minimal graphs. Also, since the edge 
chromatic number of a disconnected graph G having only nontrivial 

components is the maximum of the edge chromatic numbers of the 
components of G, every minimal graph without isolated vertices is 
connected. Therefore, the added hypothesis that a minimal graph G 
is connected is equivalent to the assumption that G has no isolated 
vertices. 

Two of the most useful results dealing with these minimal graphs are 

also results of Vizing [V4], which are presented without proof. 



Theorem 8.23 

Edge colorings 241 

Let G be a connected graph of class two that is minimal with respect to edge 
chromatic number. Then every vertex of G is adjacent to at least two vertices of 

degree A(G). In particular, G contains at least three vertices of degree A(G). 

Theorem 8.24 

Let G be a connected graph of class two that is minimal with respect to edge 

chromatic number. If u and v are adjacent vertices with deg u — k, then v is 
adjacent to at least A(G) — k + 1 vertices of degree A(G). 

We next examine to which class a graph belongs if it is minimal with 
respect to edge chromatic number. 

Theorem 8.25 

Let G be a connected graph with A(G) = d ^ 2. Then G is minimal with respect 
to edge chromatic number if and only if either: 

(i) G is of class one and G — Kl d or 

(ii) G is of class two and G — e is of class one for every edge e of G. 

Proof 

Assume first that G = Then Xi(G) = A(G) ^ 2 while xi(G — e) = 
A(G) — 1 for every edge e of G. Next, suppose that G is of class two and 
that G — e is of class one for every edge e of G. Then, for an arbitrary edge 

e of G, we have 

Xi(G~e) = A(G — e) < 1 + A(G) = Xi(G). 

Conversely, assume that x\ (G — e) < Xi (G) for every edge e of G. If G is 
of class one, then 

A(G) ^ A(G - e) + 1 < xt (G — e) + 1 = Xi (G) = A(G). 

Therefore, A(G — e) = A(G) — 1 for every edge e of G, which implies that 

G = K-\d. 

If G is of class two, then 

Xi (G — e) + 1 s= x\ (G) = A(G) + 1 

so that x\ (G — e) = A(G) for every edge e of G. Suppose that G contains an 
edge e-i such that G — e1 is of class two. Then %i(G — e-f) = A(G — e{) + 1. 
Hence, A(G — e{) < A(G), implying that G has at most two vertices of 
degree A(G). This, however, contradicts Theorem 8.23 and completes 

the proof. □ 
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A graph G with at least two edges is called class minimal if G is of class 

two and G - e is of class one for every edge e of G. It follows that a class 
minimal graph without isolated vertices is necessarily connected. On the 
basis of Theorem 8.25, we conclude that except for star graphs, class 

minimal graphs are connected graphs that are minimal with respect to 

edge chromatic number, and conversely. 
A lower bound on the size of class minimal graphs is given next in yet 

another result by Vizing [V4], 

Theorem 8.26 

If G is a class minimal graph of size m with A (G) = d, then 

m ^ |(3d2 + 6d — 1). 

Proof 

Without loss of generality, we assume that G is connected. Suppose that 
6(G) = k and that deg u — k. By Theorem 8.23, the vertex u is adjacent to at 
least two vertices of degree d. Let v be such a vertex. By Theorem 8.24, v is 
adjacent to at least d — k + 1 vertices of degree d. Since the order of G is at 
least d + 1, we arrive at the following lower bound on the sum of the 

degrees of G: 

2m ^ [d(d - k + 2) + k(k - 1)] = [k1 - {d + \)k + (d2 + 2d)]. (8.1) 

However, expression (8.1) is minimized when k — (d + l)/2 so that 

or 

m ^ l(3d2 + 6d - 1). □ 

In the next section we shall be discussing various colorings of planar 
graphs, primarily vertex colorings and region colorings. We briefly con¬ 

sider edge colorings of planar graphs here. In this context, our chief 
problem remains to determine which planar graphs are of class one and 
which are of class two. It is easy to find planar graphs G of class one for 
which A(G) = d for each d ^ 2 since all star graphs are planar and of class 

one. There exist planar graphs G of class two with A(G) = d for d = 2, 3,4, 
5. For d — 2, the graph fC3 has the desired properties. For d — 3, 4, 5, the 
graphs of Figure 8.8 satisfy the required conditions. 

It is not known whether there exist planar graphs of class two having 
maximum degree 6 or 7; however, Vizing [V4] proved that if G is planar 
and A(G) ^ 8, then G must be of class one. We prove the following, 
somewhat weaker, result. 
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& 
Figure 8.8 Planar graphs of class two. 

Theorem 8.27 

If G is a planar graph with A(G) 10, then G is of class one. 

Proof 

Suppose that the theorem is not true. Then among the graphs for which the 
theorem is false, let G be a connected graph of minimum size. Thus, G is 

planar, A(G) = d ^ 10, and xi (G) = d + 1. Furthermore, G is minimal with 
respect to edge chromatic number. By Corollary 6.5, G contains vertices of 
degree 5 or less. Let S denote the set of all such vertices. Define H — G — S. 
Since H is planar, H contains a vertex w such that degH w ^ 5. Because 

degG w > 5, the vertex w is adjacent to vertices of S. Let v € S such that 
wv 6 E(G), and let degG v — k < 5. Then, by Theorem 8.24, w is adjacent 
to at least d — k + 1 vertices of degree d, but d — k + 1 ^6 so that w is 
adjacent to at least six vertices of degree d. Since d ^ 10, w is adjacent to 
at least six vertices of H, contradicting the fact that degH w ^ 5. □ 

Seymour [S2] conjectured that a planar graph is of class two if and only 
if G contains an overfull subgraph H with A(G) = A(H). If true, this 
conjecture would imply that every planar graph G with A(G) ^ 6 is of 

class one. 
More on edge colorings can be found in Fiorini and Wilson [FW1], 

which is devoted to that subject. 
There is a coloring that assigns colors to both the vertices and the edges 

of a graph. A total coloring of a graph G is an assignment of colors to the 
elements (vertices and edges) of G so that adjacent elements and incident 
elements of G are colored differently. A k-total coloring is a total coloring 

that uses k colors. The minimum k for which a graph G admits a fc-total 
coloring is called the total chromatic number of G and is denoted by X2(G). 

Certainly, Xz{G) ^ 1 + A(G). The total chromatic number was introduced 
by Behzad [Bl] who made the following conjecture. 

Total Coloring Conjecture 

For every graph G, 

X2(G) ^ 2 + A(G). 
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Strong evidence for the truth of the Total Coloring Conjecture was pro¬ 
vided by McDiarmid and Reed [MR1]. They showed that the probability 

that a graph G of order n satisfies X2(G) ^2 + A(G) approaches 1 as « 
approaches infinity. Our next result, and its proof, indicate the types of 

known bounds on the total chromatic number. A slightly stronger version 
of this result was obtained independently by Chetwynd and Haggkvist 

[CH2] and McDiarmid and Reed [MR1], 

Theorem 8.28 

If G is a nonempty graph of order n and t is an integer for which t\ > n, then 

X2 (G) Xi(G) + t + 2. 

Proof 

Let A(G) = d. By Corollary 8.6, x(G) ^ d + 1. Since d + 1 ^ Xi (G) + L it 
follows that G is (xi (G) + l)-colorable and (xi (G) + l)-edge colorable. Let 
a (xi(G) + l)-coloring of G and a (xi(G) + l)-edge coloring of G be given 
using the same set of colors. We now consider permutations of the colors 
assigned to the edges of G. Such a permutation is good if at each vertex v of 
G, there are at most t — 1 edges vu for which vu and u are colored the 
same. We first show that there is a good permutation of colors assigned 

to the edges of G (with the vertex colors remaining unchanged). For a 
fixed vertex v and a set T of t incident edges, a permutation of the 
colors assigned to the edges of G is called bad for T if every edge in T is 
assigned the color of its incident vertex « /u. Clearly, there are at most 

(Xi(G) + 1 — f)! such permutations. Since at each vertex v there are at 
most (‘f) sets of t edges incident with v, the total number of permutations 
of the colors assigned to the edges of G that are bad for some f-element set 
T is at most 

If n(^)((xi(G) +1 — f)! is less than (xi(G) + 1)!, the total number of 
permutations of the colors assigned to the edges of G, then the desired 
good permutation exists. Since n < tl, it follows that 

Thus, since Xi (G) + 1 > d, we conclude that 
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and so there is a good permutation of the colors assigned to the edges of 
G. Now permute the edge colors according to this good permutation. Let 

G' be the subgraph of G induced by the edges of G that have the same 
color as one of their incident vertices. Then A(G') ^ t and so, by Corollary 
8.19, the edges of G' can be colored with t + 1 new colors. This gives a 

(Xi (G) + t + 2)-total coloring of G. □ 

Since Xi(G) ^ 1 + A(G), Theorem 8.28 has an immediate corollary. 

Corollary 8.29 

If G is a nonempty graph of order n and t is an integer satisfying t\ > n, then 

X2(G) ^ A(G) + t + 3. 

EXERCISES 8.2 

8.23 Show that every nonempty regular graph of odd order is of class 

two. 

8.24 Let H be a nonempty regular graph of odd order, and let G be a 
graph obtained from H by deleting j(A(H) — 1) or fewer edges. 

Show that G is of class two. 

8.25 Prove or disprove: If G] and G2 are class one graphs and H is a graph 
with Gi C H C G2, then H is of class one. 

8.26 Show that the Petersen graph is of class two. 

8.27 Prove that every hamiltonian cubic graph is of class one. 

8.28 (a) Show that each graph in Figure 8.8 is of class two. 
(b) Show that the two graphs of order 5 in Figure 8.8 are class 

minimal. 

8.29 Determine the class of each of the five regular polyhedra. 

8.30 Determine the class of Kr r. 

8.31 Show that a cubic graph with a bridge has edge chromatic number 4. 

8.32 Show that there are no connected class minimal graphs of order 4 

or 6. 

8.33 Let G be a graph of class two. Prove that G contains a class minimal 

subgraph H such that A(H) = A(G). 

8.34 (a) Prove that y2(G) 1 + A(G) for every graph G. 
(b) Verify the Total Coloring Conjecture for graphs G with A(G) ^ 2. 
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(c) Determine x(G), Xi(G) and X2(G) for the (5,7) graph G in 
Figure 8.8. 

8.3 MAP COLORINGS AND FLOWS 

It has been said that the mapmakers of many centuries past were aware of 
the 'fact' that any map on the plane (or sphere) could be colored with four 

or fewer colors so that no two adjacent countries were colored alike. Two 
countries are considered to be adjacent if they share a common boundary 

line (not simply a single point). As was pointed out by May [M3], 
however, there has been no indication in ancient atlases, books on cartog¬ 
raphy, or books on the history of mapmaking that people were familiar 

with this so-called fact. Indeed, it is probable that the Four Color Problem, 
that is, the problem of determining whether the countries of any map on 
the plane (or sphere) can be colored with four or fewer colors such that 

adjacent countries are colored differently, originated and grew in the 
minds of mathematicians. 

What, then, is the origin of the Four Color Problem? The first written 
reference to the problem appears to be in a letter, dated October 23, 1852, 
by Augustus De Morgan, mathematics professor at University College, 

London, to Sir William Rowan Flamilton (after whom 'hamiltonian 
graphs' are named) of Trinity College, Dublin. The letter by De Morgan 
reads in part: 

A student of mine asked me today to give him a reason for a fact 
which I did not know was a fact - and do not yet. He says that if 

a figure be anyhow divided and the compartments differently 
coloured so that figures with any portion of common boundary 
line are differently coloured - four colours may be wanted, but no 

more-Query cannot a necessity for five or more be invented_ 
But it is tricky work... what do you say? And has it, if true, been 
noticed? My pupil says he guessed it in colouring a map of England. 
The more I think of it, the more evident it seems. If you retort with 
some very simple case which makes me out a stupid animal, I think I 
must do as the Sphynx did.... 

The student referred to by De Morgan was Frederick Guthrie. By 1880 
the problem had become quite well-known. During that year, Frederick 

Guthrie published a note in which he stated that the originator of the 

question asked of De Morgan was his brother, Francis Guthrie. We 
quote from Frederick Guthrie's note [G9]: 

Some thirty years ago, when I was attending Professor De Morgan's 
class, my brother, Francis Guthrie, who had recently ceased to attend 
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them (and who is now professor of mathematics at the South African 
University, Cape Town), showed me the fact that the greatest 

necessary number of colours to be used in colouring a map so as to 
avoid identity of colour in lineally contiguous districts is four. I 

should not be justified, after this lapse of time, in trying to give his 
proof.... 

With my brother's permission I submitted the theorem to Professor 
De Morgan, who expressed himself very pleased with it; accepted it 

as new; and, as I am informed by those who subsequently attended 
his classes, was in the habit of acknowledging whence he got his 
information. 

If I remember rightly, the proof which my brother gave did not 
seem altogether satisfactory to himself; but I must refer to him 

those interested in the subject. 

On the basis of this note, we seem to be justified in proclaiming that the 

Four Color Problem was the creation of one Francis Guthrie. 
Returning to the letter of De Morgan to Hamilton, we note the very 

prompt reply of disinterest by Hamilton to De Morgan on October 26, 
1852: 

I am not likely to attempt your 'quaternion of colours' very soon. 

Before proceeding further with this brief historical encounter with the 
Four Color Problem, we pause in order to give a more precise mathema¬ 
tical statement of the problem. 

A plane graph G is said to be n-region colorable if the regions of G can be 
colored with n or fewer colors so that adjacent regions are colored differ¬ 
ently. The Four Color Problem is thus the problem of settling the following 

conjecture. 

The Four Color Conjecture 

Every map (plane graph) is 4-region colorable. 

In dealing with the Four Color Conjecture, one need not consider all 

plane graphs, as we shall now see. 
The region chromatic number y*(G) of a plane graph G is the minimum n 

for which G is n-region colorable. Since y*(G) is the maximum region 
chromatic number among its blocks, the Four Color Problem can be 
restated as determining whether every plane nonseparable graph is 4- 

region colorable. 
In graph theory the Four Color Problem is more often stated in terms of 

coloring the vertices of a graph; that is, coloring the graph. In this form, 

the Four Color Conjecture is stated as follows. 
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The Four Color Conjecture 

Every planar graph is 4-colorable. 

It is in terms of this second statement that the Four Color Problem will 
be primarily considered. We now verify that these two formulations of the 
Four Color Conjecture are indeed equivalent. Before doing this, however, 

we require the concept of the dual of a plane graph. 
Recall that a pseudograph G is a multigraph in which loops are per¬ 

mitted. For a given connected plane graph G we construct a pseudograph 
Gd as follows. A vertex is placed in each region of G, and these vertices 

constitute the vertex set of Gd. Two distinct vertices of Gd are then joined 
by an edge for each edge common to the boundaries of the two corre¬ 
sponding regions of G. In addition, a loop is added at a vertex v of Gd 
for each bridge of G that belongs to the boundary of the corresponding 

region. Each edge of Gd is drawn so that it crosses its associated edge of 
G but no other edge of G or Gd (which is always possible); hence, Gd is 

planar. The pseudograph Gd is referred to as the dual of G. In addition to 
being planar, Gd has the property that it has the same size as G and can be 
drawn so that each region of Gd contains a single vertex of G; indeed, 

(Gd)d — G. If each set of parallel edges of Gd joining the same two vertices 
is replaced by a single edge and all loops are deleted, the result is a graph, 
referred to as the underlying graph Gd of Gd. These concepts are illustrated in 

Figure 8.9, with the vertices of Gd represented by solid circles. 

Figure 8.9 The dual (and its underlying graph) of a plane graph. 

Theorem 8.30 

Every planar graph is 4-colorable if and only if every plane graph is 4-region 
colorable. 
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Proof 

Without loss of generality, we may assume that the graphs under consid¬ 
eration are connected. 

Suppose that every planar graph is 4-colorable. Let G be an arbitrary 
connected plane graph, and consider Gd, the underlying graph of its 

dual Gd. Two regions of G are adjacent if and only if the corresponding 
vertices of Gd are adjacent. Since Gd is planar, it follows, by hypothesis, 
that Gd is 4-colorable; thus, G is 4-region colorable. 

For the converse, assume that every plane graph is 4-region colorable, 
and let G be an arbitrary connected plane graph. As we have noted, the 
dual Gd of G can be embedded in the plane so that each region of Gd con¬ 

tains exactly one vertex of G. If Gd is not a graph, then it can be converted 
into a graph G' by inserting two vertices into each loop of Gd and by 
placing a vertex in all but one edge in each set of parallel edges joining 
the same two vertices. Two vertices of G are adjacent if and only if the 
corresponding regions of G' are adjacent. Since G1 is 4-region colorable, 

G is 4-colorable. □ 

With these concepts at hand, we now return to our historical account 

of the Four Color Problem. We indicated that this problem was 
evidently invented in 1852 by Francis Guthrie. The growing awareness 
of the problem was quite probably aided by De Morgan, who often spoke 

of it to other mathematicians. The first known published reference to the 
Four Color Problem is attributed to De Morgan in an anonymous article 

in the April 14, 1860 issue of the journal Athenaeum. By the 1860s 
the problem was becoming rather widely known. The Four Color 

Problem received added attention when on June 13, 1878, Arthur 
Cayley asked, during a meeting of the London Mathematical Society, 
whether the problem had been solved. Soon afterwards, Cayley [C3] 
published a paper in which he presented his views on why the problem 
appeared to be so difficult. From his discussion, one might very well infer 
the existence of planar graphs with an arbitrarily large chromatic 

number. 
One of the most important events related to the Four Color Problem 

occurred on July 17, 1879, when the magazine Nature carried an 
announcement that the Four Color Conjecture had been verified by 
Alfred Bray Kempe. His proof of the conjecture appeared in a paper 

[K2] published in 1879 and was also described in a paper [K3] published 
in 1880. For approximately ten years, the Four Color Conjecture was 
considered to be settled. Then in 1890, Percy John Heawood [H9] 
discovered an error in Kempe's proof. However, using Kempe's tech¬ 

nique, Heawood was able to prove that every planar graph is 5- 
colorable. This result was referred to, quite naturally, as the Five Color 

Theorem. 
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Theorem 8.31 

Every planar graph is 5-colorable. 

Proof 

The proof is by induction on the order n of the graph. For n ^ 5, the result 

is obvious. 
Assume that all planar graphs with n — 1 vertices, n > 5, are 5-color¬ 

able, and let G be a plane graph of order n. By Corollary 6.5, G contains 

a vertex v of degree 5 or less. By deleting v from G, we obtain the plane 
graph G — v. Since G — v has order n — 1, it is 5-colorable by the inductive 
hypothesis. Let there be given a 5-coloring of G — v, denoting the colors by 
1, 2, 3, 4 and 5. If some color is not used in coloring the vertices adjacent 

with v, then v may be assigned that color, producing a 5-coloring of G 
itself. Otherwise, deg v = 5 and all five colors are used for the vertices 
adjacent with v. 

Without loss of generality, we assume that zq, n2) t;3,, u5 are the five 
vertices adjacent with and arranged cyclically about v and that Vj is 
assigned the color i, 1 ^ i ^ 5. Now consider any two colors assigned to 

nonconsecutive vertices zy, say 1 and 3, and let H be the subgraph of G — v 
induced by all those vertices colored 1 or 3. If v^ and v3 belong to different 
components of H, then by interchanging the colors assigned to vertices in 
the component of H containing zq, for example, a 5-coloring of G — v is 
produced in which no vertex adjacent with v is assigned the color 1. Thus 

if we color v with 1, a 5-coloring of G results. 
Suppose then that zq and v3 belong to the same component of H. 

Consequently, there exists a zq-n3 path P, all of whose vertices are colored 
I or 3. The path P, together with the path v3, v, zq, produces a cycle C in G 

that encloses v2, or v4 and v5. Hence there exists no v2-v4 path in G, all of 
whose vertices are colored 2 or 4. Denote by F the subgraph of G induced 
by all those vertices colored 2 or 4. Interchanging the colors of the vertices 
in the component of F containing v2, we arrive at a 5-coloring of G — v in 

which no vertex adjacent with v is assigned the color 2. If we color v with 
2, a 5-coloring of G results. □ 

In the 86 years that followed the appearance of Heawood's paper, 
numerous attempts were made to unlock the mystery of the Four Color 

Problem. Then on June 21, 1976, Kenneth Appel and Wolfgang Haken 
announced that they, with the aid of John Koch, had verified the Four 
Color Conjecture. 

Appel and Haken's proof [AHK1] was logically quite simple; in fact, 

many of the essential ideas were the same as those used (unsuccessfully) 
by Kempe and, then, by Heawood. However, their proof was combinato- 

rially complicated by the extremely large number of necessary case 
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distinctions, and nearly 1200 hours of computer time were required to 
perform extensive computations. A simpler, and more easily checked, 
proof of the Four Color Theorem was obtained much later by Robertson, 

Sanders, Seymour and Thomas [RSST1]. Even their proof, however, 
required extensive computer calculations. 

Theorem 8.32 

Every planar graph is 4-colorable. 

Although the Four Color Theorem has been established, other 
approaches have been suggested that might eliminate the heavy depen¬ 
dence on the computer. Here, the idea is to solve an equivalent problem. 

In section 8.1, for example, we saw the conjecture of Hadwiger that Kk is a 
subcontraction of every fc-chromatic graph. For k = 5, this conjecture is 
equivalent to the Four Color Theorem. We sketch the proof below. The 
details can be found in Wagner [W2]. 

Theorem 8.33 

Every planar graph is 4-colorable if and only if K5 is a subcontraction of every 5- 
chromatic graph. 

Proof 

Suppose that K5 is a subcontraction of every 5-chromatic graph. Let G 
be a planar graph. Then, by Theorem 6.16, neither K5 nor fC3 3 is a sub¬ 

contraction of G. It follows that x(G) ^ 4. 
For the converse, assume that every planar graph is 4-colorable, but that 

there are 5-chromatic graphs for which K5 is not a subcontraction. Let G 
be a counterexample of minimum order. It is straightforward to show that 
G is 4-connected. But then G is a 4-connected graph for which K5 is not a 

subcontraction, implying that G is planar (Wagner [W2]). Since x(G) = 5, 
this produces a contradiction to the Four Color Theorem. □ 

Another approach, due to Tait [Tl], involves coloring the edges of 
bridgeless cubic planar graphs. In establishing this result it is convenient 

to make use of the group Z2 x Z2, denoting its elements by (0,0), (0,1), 

(1,0) and (1,1). 

Theorem 8.34 

Every planar graph is 4-colorable if and only if every bridgeless cubic planar graph 

is 3-edge colorable. 
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Proof 

Graph colorings 

By Theorem 8.30, it suffices to show that every plane graph is 4-region 

colorable if and only if every bridgeless cubic planar graph is 3-edge 

colorable. 
Assume that every plane graph is 4-region colorable and let G be a 

bridgeless cubic plane graph. Let the regions of G be colored with the 

elements of Z2 x Z2. Since G contains no bridges, each edge of G belongs 
to the boundary of two (adjacent) regions. Define the color of an edge to be 

the sum of the colors of those two regions bounded, in part, by the edge. 
Since every element of Z2 x Z2 is self-inverse, no edge of G is assigned the 
color (0,0). However, since Z2 x Z2 is a group, it follows that the three 

edges incident with a vertex are assigned the colors (0,1), (1,0) and 
(1,1). Hence G is 3-edge colorable. 

Conversely, assume that every bridgeless cubic planar graph is 3-edge 
colorable. We show that every plane graph is 4-region colorable. 
Certainly, every plane graph is 4-region colorable if and only if every 

bridgeless plane graph is 4-region colorable. Furthermore, suppose that 
every cubic bridgeless plane graph is 4-region colorable. Let H be a 
bridgeless plane graph. We now construct a cubic plane block H' from 

H as follows. If H contains a vertex v of degree 2 that is incident with 
edges e and /, we subdivide e and / by introducing vertices and v2 
into e and /, respectively, remove v, and then identify U] and v2, respec¬ 

tively, with the vertices of degree 2 in a copy of the graph 2 2 (Figure 
8.10(a)). If H contains a vertex u of degree t ^ 4, incident with the con¬ 
secutive edges e1,e2,... ,et, then we subdivide each e, by inserting a 
vertex u, in each e,-, z = 1,2,, f, removing the vertex u, and identifying 
each u, with the corresponding vertex of the f-cycle wls u2,..., ut, U\ 

(Figure 8.10(b)). By hypothesis, x*(H/) ^ 4, for the resulting cubic plane 
block H'; hence there exists a ^-region coloring, k ^ 4, of H'. However, by 

identifying all vertices of the graph K] ] 2 for each vertex of degree 2 and 
by identifying the vertices of the f-cycle for each vertex of degree f ^ 4, the 
graph H is reproduced and a k-region coloring of H is induced. Hence H is 

4-region colorable. 
Thus the proof will be complete once we have shown that if every 

bridgeless cubic planar graph is 3-edge colorable, then every bridgeless 

cubic plane graph is 4-region colorable. 
Let G be a bridgeless cubic plane graph. Then G is 3-edge colorable. Let 

the edges of G be colored with the nonzero elements of Z2 x Z2. Let R be 

some region of G and assign the color (0,0) to it. Let S be some other 
region of G. We now assign a color (an element of Z2 x Z2) according 

to the following rule. Let A be a continuous curve joining a point of 
region R with a point of region S such that A passes through no vertex 

of G. We now define the color of S to be the sum of the colors of those 
edges crossed by A, where the color of an edge e is counted as many times 
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H: -Z-o-L H: 

I * 

(a) 

Figure 8.10 Constructing a cubic graph H' from a graph H. 

as e is crossed. In order to show that the color of S is well-defined, we 
verify that the color assigned to S is independent of the curve A; 
however, this will be accomplished once it has been shown that if C is 
any simple closed curve not passing through vertices of G, then the 
sum of the colors of the edges crossed by C is (0,0). Let C be such a 
curve. If no vertex of G lies interior to C, then each edge crossed by C 
is crossed an even number of times; and since each element of Z2 x Z2 
is self-inverse, it follows that the sum of the colors of the edges crossed 

by C is (0,0). If C encloses vertices, then, without loss of generality, we 
may assume that any edge crossed by C is crossed exactly once. We 
proceed as follows. Let e1,e2,...,es be those edges crossed by or lying 
interior to C, and suppose that the first r of these edges are crossed by 
C. Observe that the sum of the colors of the three edges incident with any 

vertex is (0,0); hence, if we were to total these sums for all vertices lying 
interior to C we, of course, arrive at (0,0) also. However, this sum also 
equals 

c{e\) + c(e2) d-L c(er) + 2[c(er+1) + c(er+2) H-1- c(es)], 

where c(et) indicates the color of the edge et. Therefore, c(e1) + 
c(e2) -I-b c(er) = (0,0), that is, the sum of the color of the edges crossed 

by C is (0,0). 
It now remains to show that this procedure yields a 4-region coloring 

of G. However, if Ri and R2 are two adjacent regions, sharing the edge e 
in their boundaries, then the colors assigned to Rj and R2 differ by 

c(e) ^ (0,0). This completes the proof. □ 
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It follows from Theorems 8.32 and 8.34 that every bridgeless cubic 

planar graph is 3-edge colorable. 

Corollary 8.35 

Every bridgeless cubic planar graph is 3-edge colorable. 

Several conjectured extensions of the Four Color Theorem remain open. 

For example, Hadwiger's Conjecture, equivalent to the Four Color 
Theorem for k = 5, is unsettled for k ^ 7. In another direction, Corollary 

8.35 states that every bridgeless cubic planar graph is 3-edge colorable. 
The condition that the cubic graph is bridgeless is certainly necessary 

here since no cubic graph with a bridge is 3-edge colorable (Exercise 
8.31). Furthermore, since the Petersen graph is bridgeless and has edge- 
chromatic number 4, we cannot drop the requirement of planarity in 
Corollary 8.35. Tutte [T15], however, made the following conjecture. 

Tutte's First Conjecture 

If G is a bridgeless cubic graph with (G) = 4, then the Petersen graph is a 
subcontraction of G. 

Since the Petersen graph is a subcontraction of no planar graph, Tutte's 

First Conjecture, if true, together with Theorem 8.34, implies the Four 
Color Theorem. 

Tutte's First Conjecture about the edge-chromatic number of bridgeless 
cubic graphs is a special case of yet another conjecture of Tutte concerning 
nowhere-zero flows. 

Let D be an oriented graph and let k ^ 2 be an integer. A nowhere-zero 
k-flow in D is a function 4> defined on E(D) so that 

(i) (f(e) e {±1, ±2,..., ±(k — 1)} for each arc e of D, and 

(ii) for each vertex v of D, 

4(v>u) = J2 ^u'v)- 
(»,«)€ E(D) (u,v) e E(D) 

If an orientation Do fa graph G has a nowhere-zero E-flow (j> and D1 
is the orientation of G obtained by replacing some arc (u,v) with the 

arc (v, u), then D' has the nowhere-zero E-flow (fjy defined by 

Thus if some orientation of G has a nowhere-zero E-flow, then so does 
every orientation of G. Consequently, when we say that a graph G has a 

nowhere-zero E-flow, then we mean, in fact, that every orientation of G 
has a nowhere-zero E-flow. 
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Figure 8.11 Flow construction. 

e 4>(«) 

(v2> 2 

<V6’ vl> -2 

(V2’ v3> -1 

(V6> v2> 1 

(V3’ v6> 1 

(V5’ v3> 1 

(v3- v4> -1 

(v5* v4) 1 

(V5- Vg) -2 

Nowhere-zero flows in planar graphs are of particular interest because 

of their relationship to region colorings. Let G be a bridgeless plane graph, 
with the edges of G oriented arbitrarily, and let c be a k-region coloring 
of G. Thus for each region R of G, the region R is colored c(R), where 
c(R) G {1,2,... ,k}. For each oriented edge e = (u,v) of G, define to 

be c(Rj) — c(R2), where Ri is the region to the right of e = (u,v) as we 
travel along e from u to v and R2 is the region to the left of e. An example 

of this construction is given in Figure 8.11. 
It is straightforward to verify that the integer-valued function 4> defined 

above on the bridgeless plane graph G is a nowhere-zero Mow. Thus if a 

bridgeless plane graph G is k-region colorable, then G has a nowhere-zero 
fc-flow. Conversely, Tutte [T12] showed that if a bridgeless plane graph G 
has a nowhere-zero Mow, then G is Cregion colorable. Consequently, 
another equivalent form of the Four Color Theorem can be given. 

Theorem 8.36 

Every planar graph is 4-colorable if and only if every bridgeless planar graph has a 

nowhere-zero 4-flow. 

Applying Theorems 8.32 and 8.36, we obtain Corollary 8.37, the 'flow 

analogue' of Corollary 8.35. 

Corollary 8.37 

Every bridgeless planar graph has a nowhere-zero 4-flow. 

As with Corollary 8.35, the condition 'bridgeless' is necessary in 

Corollary 8.37 since no graph with a bridge has a nowhere-zero Mow 
for any k ^ 2 (Exercise 8.37). Perhaps not surprisingly, the Petersen 
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graph has no nowhere-zero 4-flow and so the planarity condition in 

Corollary 8.37 cannot be deleted. 

Theorem 8.38 

The Petersen graph has no nowhere-zero 4-flow. 

Proof 

Suppose, to the contrary, that the Petersen graph P has a nowhere-zero 4- 

flow 6 corresponding to some orientation P' of P. If 0(w, v) < 0 for some 
arc (u, v), then we can reverse the direction of the arc(u,v) to produce 

(v,u) and assign the value <p(v, u) — — cp(u, v), obtaining another 
nowhere-zero 4-flow in P'. By repeating this procedure, we obtain a 
nowhere-zero 4-flow 0 in P' with 0 < 4>{e) < 4 for every arc e of P1. 

Since P is cubic, it follows that for each vertex v of P' the three arcs incident 
with v have flow values 1, 1, 2 or 1, 2, 3. 

Now, those arcs e with 0(e) = 2 produce a 1-regular spanning subgraph 
of P. Thus, the corresponding edges can be assigned a single color in an 

edge coloring of P. Therefore, those arcs e for which 0(e) = 1 or 6(e) = 3 
produces a 2-regular spanning subgraph H of P. 

A vertex v of H is said to be of type I if there is an arc e of P' with 0(e) = 1 

that is incident to v, while v is of type II if there is an arc e of P' with 0(e) = 1 
that is incident from v. Consequently, every vertex of H is of type I or of 
type II, but not both. Moreover, in any cycle of H the vertices alternate 
between type I and type II. Thus every component of H is an even 

cycle. It follows that H is 2-edge colorable, so P is 3-edge colorable, 
which produces a contradiction. □ 

The technique used in the proof of Theorem 8.38 can be used to show 
that if a bridgeless cubic graph G has a nowhere-zero 4-flow, then G is 3- 

edge colorable. In fact, the converse is also true. 

Theorem 8.39 

Let G be a bridgeless cubic graph. Then G has a nowhere-zero 4-flow if and only if 
G is 3-edge colorable. 

In view of Corollary 8.37 and Theorem 8.38, Tutte [T15] proposed a 
second conjecture. 

Tutte's Second Conjecture 

If G is a bridgeless graph with no nowhere-zero 4-flow, then the Petersen graph 
is a subcontraction of G. 
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For cubic graphs, the two Tutte conjectures are equivalent. Tutte also 
conjectured that every bridgeless graph has a nowhere-zero 5-flow. 
Although this conjecture was made in 1954, it was not even known 
until 1975 whether 5 could be replaced by some larger number k. Jaeger 

[J2] showed that every bridgeless graph has a nowhere-zero 8-flow; this 
was improved by Seymour [S4] who showed that every bridgeless graph 

has a nowhere-zero 6-flow. Tutte's 5-flow conjecture remains open. 
More information on the history of the Four Color Problem can be 

found in Biggs, Lloyd and Wilson [BLW1] and in Jensen and Toft [ JT1 ]. 
Additional material on flows and their relationship to graph colorings can 
be found in Seymour [S5, S6]. 

The Four Color Theorem deals with the maximum chromatic number 

among all graphs that can be embedded in the plane. The chromatic number 
of a surface (where, as always, a surface is a compact orientable 2-manifold) 

Sjt of genus k, denoted y(S^), is the maximum chromatic number among 
all graphs that can be embedded on Sk. The surface S0 is the sphere and 
the Four Color Theorem states that y(S0) = 4. Heawood [H9] showed that 
x(S]) = 7; that is, the chromatic number of the torus is 7. Moreover, 
Fleawood was under the impression that he had proved 

x 7 +V1 + 48k 

for all k > 0. However, Heffter [H10] pointed out that Heawood had only 

established the upper bound: 

x(Sjt) < 
7 + V1 + 48Jt 

2 
(8.2) 

The statement that x(^k) — \S7 + \/l + 487c/2)J for all k > 0 eventually 
became known as the Heawood Map Coloring Conjecture. In 1968, Ringel 
and Youngs [RY1] completed a remarkable proof of the conjecture, 
which has involved a number of people over a period of many decades. 
This result is now known as the Heawood Map Coloring Theorem. The proof 
we present assumes inequality (8.2). 

Theorem 8.40 

For every positive integer k, 

x(sk) = 
7 + vT + m 

2 

Proof 

Because of inequality (8.2), it remains only to verify that 

7 + Vl + 48 k 
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for all k > 0. Define 

Graph colorings 

7 + vT+~48^ 

so that n ^ (7 + \/l + 48fc/2). From this, 
(n — 3)(« — 4)/12. Therefore, 

(n — 3)(« — 4) 

12 

it follows that A: ^ 

(8.3) 

Since the right-hand expression of (8.3) equals the genus of K„ (by 
Theorem 7.10), gen(K„) ^ k so that 

X(Sgen(K„)) < X(S*). 

Clearly K„ is embeddable on Sgen-(«j; consequently, x(Sgen(K„)) ^n/ 

implying that x(Sjt) ^ n. □ 

As a consequence of the Four Color Theorem, Theorem 8.40 also holds 
for k = 0. A thorough discussion of the Heawood Map Coloring Problem 
can be found in Ringel [R8] and White [W4]. 

EXERCISES 8.3 

8.35 Use a proof similar to that of Theorem 8.31 to show that a(G) ^ 3 for 
every planar graph G. 

8.36 Show that if a bridgeless plane graph is fc-region colorable, then G 
has a nowhere-zero Uflow. 

8.37 Show that if G has a nowhere-zero C-flow, k ^ 2, then G is bridgeless. 

8.38 Give an example of a graph G for which gen(G) = 2 and x(G) — 
x(S2). Verify that your example has these properties. 

8.39 Use the result given in Corollary 8.9 to establish an upper bound for 

the chromatic numbers of graphs embeddable on the torus. Discuss 

the sharpness of your bound. 



CHAPTER 9 

Matchings, factors and 
decompositions 

We now consider special subgraphs that a graph may contain or into 
which a graph may be decomposed. In particular, we emphasize iso¬ 
morphic decompositions. This leads us to a consideration of graph 

labelings. 

9.1 MATCHINGS AND INDEPENDENCE IN GRAPHS 

Recall that two edges in a graph G are independent if they are not adjacent 
in G. A set of pairwise independent edges of G is called a matching in G, 
while a matching of maximum cardinality is a maximum matching in G. 
Thus the number of edges in a maximum matching of G is the edge 
independence number P\(G) of G. In the graph G of Figure 9.1, the set 

= {ei,e4} is a matching that is not a maximum matching, while 
M2 = {e-i,e3,e5} and M3 = {ei,e3,e6} are maximum matchings in G. 

If M is a matching in a graph G with the property that every vertex of G 
is incident with an edge of M, then M is a perfect matching in G. Clearly, if G 
has a perfect matching M, then G has even order and (M) is a 1-regular 
spanning subgraph of G. Thus, the graph G of Figure 9.1 cannot have a 
perfect matching. 

If M is a specified matching in a graph G, then every vertex of G is 

incident with at most one edge of M. A vertex that is incident with no 
edges of M is called an M-vertex. The following theorem will prove to 

be useful. 

Theorem 9.1 

Let Mi and M2 be matchings in a graph G. Then each component of the spanning 

subgraph H of G with E(H) — (M} - M2) U (M2 - Mi) is one of the following 

types: 

(i) an isolated vertex, 
(ii) an even cycle whose edges are alternately in Mi and in M2, 
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(iii) a nontrivial path whose edges are alternately in M] and in M2 and such that 
each end-vertex of the path is either an M^-vertex or an M2-vertex but not 

both. 

Proof 

First we note that A(H) ^ 2, for if H contains a vertex v such that 

degH v ^ 3, then v is incident with at least two edges in the same match¬ 
ing. Since A(H) ^ 2, every component of H is a path (possibly trivial) or a 

cycle. Since no two edges in a matching are adjacent, the edges of each 
cycle and path in H are alternately in Mand in M2. Thus each cycle in H is 

even. 
Suppose that e — uv is an edge of H and u is the end-vertex of a path P 

that is a component of H. The proof will be complete once we have shown 
that it is an M]-vertex or an M2-vertex but not both. Since e 6 E(H), it 

follows that c e M] — M2 or e e M2 — Mx. If e G — M2/ then u is not 
an Mj-vertex. We show that u is an M2-vertex. If this is not the case, 

then there is an edge / in M2 (thus f ^ e) such that / is incident to u. 
Since e and / are adjacent, / ^ Mj. Thus, / e M2 — C E(H). This, 
however, is impossible since u is the end-vertex of P. Therefore, u is an 
M2-vertex; similarly, if e € M2 — Ml7 then u is an Mrvertex. □ 

Figure 9.1 Matchings and maximum matchings. 

In order to present a characterization of maximum matchings, we intro¬ 
duce two new terms. Let M be a matching in a graph G. An M-alternating 

path of G is a path whose edges are alternately in M and not in M. An M- 
augmenting path is an M-alternating path both of whose end-vertices are 
M-vertices. The following characterization of maximum matchings is due 

to Berge [B5]. 

Theorem 9.2 

A matching M in a graph G is a maximum matching if and only if there exists no 

M-augmenting path in G. 

Proof 

Assume that M is a maximum matching in G and that there exists an M- 
augmenting path P of G. Necessarily, P has odd length. Let M' denote the 
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edges of P belonging to M, and let M" = E(P) — M'. Since \M"\ = |Mr| + 1, 
the set (M — M') U M" is a matching having cardinality exceeding that of 

M, producing a contradiction. 
Conversely, let be a matching in a graph G, and suppose that there 

exists no Mi -augmenting path in G. We verify that M, is a maximum 

matching. Let M2 be a maximum matching in G. By the first part of the 

proof, there exists no M2-augmenting path in G. Let H be the spanning 
subgraph of G with E(H) = (M] — M2) U (M2 — Mi). Suppose that Hi is a 
component of H that is neither an isolated vertex nor an even cycle. Then 
it follows from Theorem 9.1 that is a path of even length whose edges 
are alternately in M} and in M2, for otherwise, there would exist a path in 
G that is either -augmenting or M2-augmenting, which is impossible. It 

now follows by Theorem 9.1 that |M1 — M21 = |M2 — Mi |, which, in turn, 
implies that jM-, | = |M2|. Hence, M] is a maximum matching. □ 

According to Theorem 9.2, if a matching M is given, it is possible to 
decide whether M is a maximum matching by determining whether G 
has an M-augmenting path. 

In applications, maximum matchings in bipartite graphs have proved 
to be most useful. The next result, namely Theorem 9.3, attributed to 
Konig [K9] and Hall [H5], is of interest in its own right. 

In a graph G, a nonempty subset 16 of V(G) is said to be matched to a 
subset U2 of V(G) disjoint from 16 if there exists a matching M in G such 
that each edge of M is incident with a vertex of 16 and a vertex of U2, and 
every vertex of 16 is incident with an edge of M, as is every vertex of U2. If 
M C M*, where M* is also a matching in G, we also say that L6 is matched 

under M* to U2. 
Let U be a nonempty set of vertices of a graph G and let its neighborhood 

N(U) denote the set of all vertices of G adjacent with at least one element 
of U. Then the set U is said to be nondeficient if |N(S)| ^ \S\ for every non¬ 

empty subset S of U. 

Theorem 9.3 

Let Gbe a bipartite graph with partite sets Vi and V2 ■ The set Vi can be matched 

to a subset of V2 if and only if Vi is nondeficient. 

Proof 

Suppose that V\ can be matched to a subset of V2 under a matching M*. 
Then every nonempty subset S of Vi can be matched under M* to some 

subset of V2, implying that |N(S)| ^ |S|; so Vi is nondeficient. 
To verify the converse, let G be a bipartite graph for which V\ is non¬ 

deficient and suppose that V\ cannot be matched to a subset of V2. Let M 
be a maximum matching in G. By assumption, there is a vertex v in Vi that 
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is an M-vertex. Let S be the set of all vertices of G that are connected to v 

by an M-alternating path. Since M is a maximum matching, an application 

of Theorem 9.2 yields v as the only M-vertex in S. 
Let W2 = Sfl V, and let W2 = S (T V2. Using the definition of the set S, 

together with the fact that no vertex of S — {i>} is an M-vertex, we 

conclude that W] — {y} is matched under M to W2. Therefore, 
|VV2| = |W1| — 1 and W2CN(W1). Furthermore, for every e N(W,), 
the graph G contains an M-alternating v-w path so that N(W-[) C W2. 

Thus, N(Wt) = W2 and 

\N(Wi)\ = |W2| = |Wi| - 1 < |Wj|. 

This, however, contradicts the fact that Vx is nondeficient. □ 

We are now in a position to present a well-known theorem due to Hall 

[H5]. A collection Sj, S2,..., S*, k ^ 1, of finite nonempty sets is said to 
have a system of distinct representatives or a transversal if there exists a set 

{si, s2,..., sk} of distinct elements such that s, e S, for 1 ^ i ^ k. (For a 
thorough treatment of transversals, see Mirsky [M8].) 

Theorem 9.4 

A collection Sl5 S2,..., Sk, k 5= 1, of finite nonempty sets has a system of distinct 
representatives if and only if the union of any j of these sets contains at least j 
elements, for each j such that 1 ^ j ^ k. 

Proof 

From the collection Sl5 S2,..., Sk, k ^ 1, of finite, nonempty sets we con¬ 
struct a bipartite graph G with partite sets V\ and V2 in the following 
manner. Let Vj be the set {i^, v2,..., vk} of distinct vertices, where v,• 

corresponds to the set S„ and let V2 be a set of vertices disjoint from 

such that jV2| = |U/=i S,-|, where there is a one-to-one correspondence 
between the elements of V2 and those of (Ji=1 S,-. The construction of G 
is completed by joining a vertex v of with a vertex w of V2 if and 

only if v corresponds to a set S, and w corresponds to an element of S,. 
From the manner in which G is defined, it follows that V! is nondeficient if 
and only if the union of any j of the sets S, contains at least j elements. 

Now obviously, the sets S, have a system of distinct representatives if and 
only if can be matched to a subset of V2. Theorem 9.3 now produces the 
desired result. □ 

The preceding discussion is directly related to a well-known combina¬ 
torial problem called the Marriage Problem: Given a set of boys and a set of 

girls where each girl knows some of the boys, under what conditions can 
all girls get married, each to a boy she knows? In this context. Theorem 9.4 
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may be reformulated to produce what is often referred to as Hall's 

Marriage Theorem: If there are k girls, then the Marriage Problem has a 
solution if and only if every subset of j girls (1 ^ j ^ k) collectively 
know at least j boys. 

We have already noted that if M is a perfect matching in a graph G, then 

(M) is a 1-regular spanning subgraph of G. Any spanning subgraph of a 
graph G is referred to as a factor of G. A k-regular factor is called a k-factor. 
Thus F is a 1-factor of a graph G if and only if E(F) is a perfect matching in 

G. The determination of whether a given graph contains a 1-factor is a 
problem that has received much attention in the literature. Of course, if 
a graph G has a 1-factor, then G has even order. A characterization of 
graphs that contain 1-factors has been obtained by Tutte [T13]. The 

following proof of Tutte's theorem is due to Anderson [A1 ]. An odd 
component of a graph is a component of odd order. 

Theorem 9.5 

A nontrivial graph G has a 1-factor if and only if for every proper subset S of 
V(G), the number of odd components of G — S does not exceed |S|. 

Proof 

Let F be a 1-factor of G. Assume, to the contrary, that there exists a proper 
subset W of V'(G) such that the number of odd components of G — W 
exceeds |W|. For each odd component H of G — W, there is necessarily 

an edge of F joining a vertex of H with a vertex of W. This implies, 
however, that at least one vertex of W is incident with at least two 

edges of F, which is impossible. This establishes the necessity. 
Next we consider the sufficiency. For a subset S of V(G), denote the 

number of odd components of G — S by k0(G — S). Hence, the hypothesis 

of G may now be restated as k0(G — S) ^ |S| for every proper subset S of 
V(G). In particular, k0(G — 0) ^ \0\ = 0, implying that G has only even 
components and therefore has even order n. Furthermore, we note that for 

each proper subset S of V(G), the numbers k0(G — S) and |S| are of the 
same parity, since n is even. 

We proceed by induction on even positive integers n. If G is a graph of 
order n = 2 such that fc0(G — S) ^ |S| for every proper subset S of V(G), 

then G = K2 and G has a 1-factor. 
Assume for all graphs H of even order less than n (where n ^ 4 is an 

even integer) that if k0(H — W) < | W| for every proper subset W of V(H), 
then H has a 1-factor. Let G be a graph of order n and assume that 

k0(G — S) ^ |S| for each proper subset S of V(G). We consider two cases. 

Case 1. Suppose that k0(G — S) < |S| for all subsets S of V(G) with 
2 < |S| < n. Since k0(G — S) and |S| are of the same parity, k0(G — S) < 

|S| — 2 for all subsets S of VfG) with 2 ^ |S| < n. Let e = uv be an edge 
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of G and consider G — u — v. Let T be a proper subset of V(G — u — v). It 

follows that k0(G — u — v — T) ^ \T\, for suppose, to the contrary, that 

k0(G — u — v — T) > |T|. Then 

ko(G-u-v-T)>\T\ = \TU {u, v}\-2, 

so that k0(G — (Tu{u,i>})) ^ |TU{w,u}|, contradicting our supposition. 
Thus, by the inductive hypothesis, G — u — v has a 1-factor and, hence, 

so does G. 

Case 2. Suppose that there exists a subset R ofV(G) such that k0(G — R) = |R|, 
where 2 ^ |R| < n. Among all such sets R, let S be one of maximum 

cardinality, where k0(G — S) = |S| = k. Further, let G], G2,..., Gk denote 
the odd components of G — S. These are the only components of 

G — S, for if G0 were an even component of G — S and u0 G U(G0), 
then k0(G - (S U {u0})) ^ k + 1 = |S U {m0}|, implying necessarily that 

k0(G — (S U {u0})) = |S U {«0}|/ which contradicts the maximum property 
of S. 

For i — 1,2,..., k, let S, denote the set of those vertices of S adjacent to 
one or more vertices of G,. Each set S, is nonempty; otherwise some G, 

would be an odd component of G. The union of any j of the sets 
Si, S2,. - •, Sjt contains at least j vertices for each ; with 1 ^ j ^ k; for other¬ 
wise, there exists; (1 ^ ^ k) such that the union T of some j sets contains 
less than ; vertices. This would imply, however, that k0(G — T) > |T|, 

which is impossible. Thus, we may employ Theorem 9.4 to produce a 
system of distinct representatives for S], S2,..., Sk. This implies that S 
contains vertices vx,v2,. ■ ■ ,vk/ and each G, contains a vertex u, 
(1 ^ ik) such that UjVj e E(G) for i = 1,2,... ,k. 

Let W be a proper subset of V(G; — uf), 1 < i ^ k. We show that 

fc0(G, — Uj — W) ^ |W|, for suppose that fc0(G,- — u, — W) > |W|. Since 
Gj — Uj has even order, k0(G, - w,- — W) and | W| are of the same parity 

and so fc0(G; — ui — VV) ^ | W| + 2. Thus, 

k0(G - (S U W U {w,})) - k0(G, - ^ - W) + k0(G - S) - 1 

^ |S| + |W| + 1 

- |SUWU{W,}|. 

This, however, contradicts the maximum property of S. Therefore, 
k0(G, — Uj — W) ^ |W| as claimed, implying by the inductive hypothesis 

that, for i = 1,2,... ,k, the subgraph G, - u, has a 1-factor. This 1-factor, 
together with the existence of the edges u,v, (1 ^ ^ k), produces a 1- 
factor in G. □ 

By Tutte's theorem, it follows, of course, that if G is a graph of order 

n ^ 2 such that for each proper subset S of V(G), the number of odd 
components of G — S does not exceed |S|, then di(G) = n/2. Using a 
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similar proof technique to that used in the proof of Theorem 9.5, Berge 
[B5] obtained the following extension of Tutte's theorem. 

Theorem 9.6 

Let G be a graph of order n. If k is the smallest nonnegative integer such that for 
each proper subset S of V(G), the number of odd components of G - S does not 
exceed |S| + 2k, then 

A(G) = 
n — Ik 

2 

Again, by Tutte's theorem, if G is a graph such that for every proper 
subset S of P(G), the number of odd components of G — S does not exceed 
|S|, then G has a 1-factor. Of course, if G is a graph of even order such that 
for every vertex-cut S of V(G), the number of components (odd or even) of 
G — S does not exceed |S|, then G has a 1-factor. Hence every 1-tough 

graph of even order contains a 1-factor. Enomoto, Jackson, Katernis and 
Saito [EJKS1] extended this result. 

Theorem 9.7 

If G is a k-tough graph of order n ^ k + 1, where kn is even, then G has a k-factor. 

By definition, every 1-regular graph contains a 1-factor. A 2-regular 
graph G contains a 1-factor if and only if every component of G is an 
even cycle. This brings us to the 3-regular or cubic graphs. Petersen 
[P3] provided a sufficient condition for a cubic graph to contain a 1-factor. 

Theorem 9.8 

Every bridgeless cubic graph contains a 1-factor. 

Proof 

Let G be a bridgeless cubic graph and assume that V(G) has a proper 
subset S such that the number of odd components of G — S exceeds |S|. 

Let j = |S| and let Gl5 G2,..., G^ (k > j) be the odd components of G — S. 
There must be at least one edge joining a vertex of G, to a vertex of S, for 
each i — 1,2,..., k; for otherwise, G, is a cubic graph of odd order. On the 
other hand, since G contains no bridges, there cannot be exactly one such 

edge; that is, there are at least two edges joining G, and S, for each 

i — 1,2,... ,k. 
Suppose that for some i — 1,2,..., k, there are exactly two edges joining 

G, and S. Then there are an odd number of odd vertices in the component 
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Figure 9.2 A cubic graph containing no 1-factors. 

G, of G - S, which cannot happen. Hence, for each i = 1,2,..., k, there are 
at least three edges joining G, and S. Therefore, the total number of edges 
joining jj1 = 1 V(G,-) and S is at least 3k. However, since each of the; vertices 

of S has degree 3, the number of edges joining U/ = 1 V”(G,-) and S is at most 
3;. Therefore, 3; ^ 3k, which is a contradiction since 3k > 3/. Hence, no 
such set S exists. By Theorem 9.5, then, we conclude that G has a 1- 

factor. □ 

Indeed, Petersen [P3] showed that if a cubic graph G contains at most 
two bridges, then G has a 1-factor (Exercise 9.5). On the other hand, this 
result cannot be extended further since the cubic graph of Figure 9.2 has 
three bridges but contains no 1-factor. In fact, it is the unique cubic graph 
of minimum order with this property. 

From Petersen's work, we know that if G is a cubic graph of order n 
containing at most two bridges, then (3\(G) = n/2. The following result 

[CKLS1] provides a sharp bound on the edge independence number of 
a cubic graph in terms of the number of bridges it possesses. 

Theorem 9.9 

If G is a connected cubic graph of order n containing fewer than 3 (k + 1) bridges, 
then 

Errera [E5] showed, however, that if all the bridges of a cubic graph, 
regardless of how many there might be, lie on a single path, then G has a 
1-factor. 
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Theorem 9.10 

If all the bridges of a connected cubic graph G lie on a single path ofG, then G has a 
l-factor. 

The three bridges of the cubic graph G of Figure 9.2 do not lie on a single 
path of G, of course, and G does not have a 1-factor. It is a direct con¬ 

sequence of Errera's theorem that if the bridges of a cubic graph G of 
order n lie on a single path, then (3\(G) = n/2. If the bridges of a cubic 
graph G do not lie on a single path, then it may very well occur that 

(3\{G) < n/2. But more (see [CKOR1]) can be said about this. 

Theorem 9.11 

If G is a connected cubic graph of order n all of whose bridges lie on r edge-disjoint 
paths of G, then 

Recall that an independent set of vertices in a graph G is one whose 

elements are pairwise independent (nonadjacent) and that the vertex 
independence number /3(G) of G is the maximum cardinality among the 
independent sets of vertices in G. For example, if s ^ t, then f3(Kst) = t and 

h(Ks,t)=s. 
A vertex and an edge are said to cover each other in a graph G if they are 

incident in G. A vertex cover in G is a set of vertices that covers all the edges 
of G. An edge cover in a graph G without isolated vertices is a set of edges 
that covers all vertices of G. 

The minimum cardinality of a vertex cover in a graph G is called the 
vertex covering number of G and is denoted by a(G). As expected, the edge 

covering number cq(G) of a graph G (without isolated vertices) is the mini¬ 
mum cardinality of an edge cover in G. For s f, we have a(Ks t) — s and 

ai (-Ks.f) = t. As another illustration of these four parameters, we note that 
for ft ^ 2, /3(Kn) = 1, Pi(Kn) = |ft/2j, a(Kn) = n - 1 and = [ft/2]. 
Observe that for the two graphs G of order n considered above, namely 
Ks t, with ft = s + t, and Kn, we have 

a(G) + f3(G) = cq (G) + (3\ (G) = ft. 

These two examples serve to illustrate the next theorem, due to Gallai 
[Gl], 

Theorem 9.12 

If G is a graph of order n having no isolated vertices, then 

q(G) + (3(G) = ft (9.1) 
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qi(G) + 0\(G) — n. (9.2) 

Proof 

We begin with (9.1). Let U be an independent set of vertices of G with 

\U\ = 0(G). Clearly, the set V(G) - U is a vertex cover in G. Therefore, 
a(G) ^ n — 0(G). If, however, W is a set of a(G) vertices that covers all 

edges of G, then I/(G) — W is independent; thus 0(G) ^ n — a(G). This 

proves (9.1). 
To verify (9.2), let be an independent set of edges of G with 

|E0 = 0i(G). Obviously, E] covers 20i(G) vertices of G. For each vertex 
of G not covered by E]; select an incident edge and define E2 to be the 
union of this set of edges and Ej. Necessarily, E2 is an edge cover in 

G so that |E2| ^ a](G). Also we note that |Ei| + |E2| = n; hence 
q1(G) + /31(G) < n. Now suppose that E' is an edge cover in G with 

|E'| = cq(G). The minimality of E' implies that each component of (E1) is 
a tree. Select from each component of (E1) one edge, denoting the resulting 
set of edges by E". We observe that |E"| ^ 0\(G) and that |E'| + |EW| = n. 

These two facts imply that (G) + /?i (G) ^ n, completing the proof of 
(9.2) and the theorem. □ 

If C is a vertex cover in a graph G and E is an independent set of edges, 
then for each edge e of E there is a vertex ve in C that is incident with e. 
Furthermore, if e, f 6 E, then ve ^ v<. Thus for any independent set E of 
edges and any vertex cover C in G, we have |C| ^ |E|. This, of course, 

implies that a(G) ^ 0\(G). In general, equality does not hold here. If, 
however, G is bipartite, then we do have a(G) = 0-y (G), as was shown 
by Konig [K9], 

Theorem 9.13 

If G is a bipartite graph, then 

a(G) = 0\(G). 

Proof 

Since a(G) ^ 0\(G), it suffices to show that a(G) ^ 0\(G). Let V) and V2 
be the partite sets of G and let M be a maximum matching in G. 
Then /?1(G) = |M|. Denote by U the set of all M-vertices in V). (If 
U = 0, then the proof is, of course, complete.) Observe that 

|M| = |V]| — |L7|. Let S be the set of all vertices of G that are connected 
to some vertex in U by an M-alternating path. Define W, = S n V] and 
w2 = s n v2. 
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As in the proof of Theorem 9.3, we have that Wj — U is matched to W2 

and that N(W]) = W2. Since Wj — U is matched to W2, it follows that 

| W-i | — | W2| = |li|. 
Observe that C = (V} — Wj) U W2 is a vertex cover in G; for otherwise, 

there is an edge vw in G such that v G Wj and w 0 W2. Furthermore, 

|C| = |Vi| -|Wi| + \w2\ = \v,\-\u\ = \m\. 

Therefore, a(G) ^ |C| — |M| = A(G) and the proof is complete. □ 

Next we present upper and lower bounds for the edge independence 
number, due to Weinstein [W3]. 

Theorem 9.14 

Let G be a graph of order n without isolated vertices. Then 

n 

1 + A(G) 
G A (G) G 

Furthermore, these bounds are sharp. 

Proof 

It suffices to prove the theorem for connected graphs. The upper bound 

for A(G) is immediate and clearly sharp. 
In order to verify the lower bound, we employ induction on the size m 

of a connected graph. If m = 1 or m = 2, then the lower bound follows. 
Assume that the lower bound holds for all connected graphs of positive 
size not exceeding k, where k ^ 2, and let G be a connected graph of order 
n having size k + 1. If G has a cycle edge e, then 

A(G)^A(G-e)^ 
n 

1 + A(G 

n 

7) ^ 1 + A(G)' 

Otherwise, G is a tree. If G = iC1„_1, then A(G) = n/{\ + A(G)) = 1 
(which also shows the sharpness of the lower bound). If G^X1„_1, 

then G contains an edge e such that G — e has two nontrivial components 
G] and G2. Let n, denote the order of G„ i = 1,2. Applying the inductive 

hypothesis to G] and G2, we obtain 

A (G) ^ A (Gi) + A (G2) 5= 
n2 

1 + A(G-i) 1 + A(G2) 

+ 
n2 

1 + A(G) 1 + A(G) 1 + A(G) 
□ 

Combining Theorems 9.12 and 9.14, we have our next result. 
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Corollary 9.15 

Let G be a graph of order n without isolated vertices. Then 

n n ■ A(G) 

2 
a^G) ^ 

l + A(G) _ 

Furthermore, these bounds are sharp. 

It is easy to see for a graph G of order n without isolated vertices that 

1 ^ /3(G) ^ n — 1 and that these bounds are sharp. This implies that 
1 ^ a/G) ^ n — 1 are sharp bounds for a(G). 

A set S of vertices or edges in a graph G is said to be maximal with respect 

to a property P if S has property P but no proper superset of S has property 
P; while S is minimal with respect to P if S has property P but no proper 
subset of S has property P. Although isolated instances of these concepts 
have been discussed earlier, we will be encountering such ideas in a more 

systematic manner in this chapter and the next. In particular, for certain 
properties P, we will be interested in the maximum and/or minimum 
cardinality of a maximal or minimal set with property P. 

For example, a maximal independent set of vertices of maximum 

cardinality in a graph G is called a maximum independent set of vertices. 
The number of vertices in a maximum independent set has been called 
the independence number of G, which we have denoted by /3(G). We 
define the lower independence number i(G) of G as the minimum cardinality 

of a maximal independent set of vertices of G. Thus, for Ks t, where s < t, 
there are only two maximal independent sets of vertices, namely, the 
partite sets of Ks l. Hence, /3(Ks t) — t, while i(Ks,) = s. 

Likewise, a maximal matching or a maximal independent set of edges 
of maximum cardinality in a graph G is a maximum matching. The 
number of edges in a maximum matching is the edge independence 

number f3\ (G) of G. The minimum cardinality of a maximal matching is 
the lower edge independence number of G and is denoted by z\(G). For 
example, for the path P6/ /31(P6) = 3 and z1(P6)= 2. Two results of 
[JRS1] dealing with maximal independent sets of edges are stated next 
(Exercises 9.10 and 9.11). 

Theorem 9.16 

For every nonempty graph G, 

h(G) ^ A(G) < H](G). 

Theorem 9.17 

Let G be a nonempty graph. If k is an integer such that i^(G) ^ k ^ (d\(G), then G 
contains a maximal matching with k edges. 
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EXERCISES 9.1 

9.1 Show that every tree has at most one perfect matching. 

9.2 Determine the maximum size of a graph of order n having a 

maximum matching of k edges if (a) n = 2k, (b) n — 2k + 2. 

9.3 Use Menger's theorem to prove Theorem 9.3. 

9.4 Let G be a bipartite graph with partite sets Uj and V2, where 
|Vi| ^ |V21- The deficiency def(ii) of a set U C Vj is defined as 
max{|S| — |N(S)|}, where the maximum is taken over all nonempty 
subsets S of U. Show that /3T(G) = min{|V1|, |V'1| — def(V1)}. 

9.5 Prove that every cubic graph with at most two bridges contains a 1- 
factor. 

9.6 (a) Let G be an odd graph and let Vl U V2 be a partition of V(G), 

where E' is the set of edges joining Vj and V2. Prove that IVjI 
and | E71 are of the same parity. 

(b) Prove that every (2k + l)-regular, 2Uedge-connected graph, 
k>\, contains a 1-factor. 

9.7 Prove that if G is an r-regular, (r — 2)-edge-connected graph (r ^ 3) 

of even order containing at most r — 1 distinct edge-cuts of cardin¬ 
ality r — 2, then G has a 1-factor. 

9.8 Show that a graph G is bipartite if and only if /3(H) ^ j\V(H)\ for 
every subgraph H of G. 

9.9 Let G be a graph and let U C V(G). Use Tutte's theorem to prove that 
G has a matching that covers U if and only if for every proper subset 
S of V(G), the number of odd components of G — S containing only 
vertices of U does not exceed |S|. 

9.10 Prove Theorem 9.16. 

9.11 Prove Theorem 9.17. 

9.12 Show that Theorems 9.16 and 9.17 have no analogues to maximal 
independent sets of vertices. 

9.13 Characterize those nonempty graphs with the property that every 
pair of distinct maximal independent sets of vertices is disjoint. 

9.14 The matching graph M(G) of a nonempty graph G has the maximum 

matchings of G as its vertices, and two vertices M] and M2 of M(G) 
are adjacent if and M2 differ in only one edge. Show that each 

cycle C,„ n — 3,4,5,6, is the matching graph of some graph. 
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9.15 Prove or disprove: A graph G without isolated vertices has a perfect 
matching if and only if c*i (G) = fa(G). 

9.16 Show that if G is a bipartite graph without isolated vertices, then 

a1(G) = /3(G). 

9.2 FACTORIZATIONS AND DECOMPOSITIONS 

A graph G is said to be factorable into the factors G], G2,..., G, if these 

factors are pairwise edge-disjoint and (J-=1 E(G,) = E(G). If G is factored 
into G1( G2,..., G(, then we represent this by G = G} © G2 © • • • © G(, 
which is called a factorization of G. 

If there exists a factorization of a graph G such that each factor is a k- 
factor (for a fixed k), then G is k-factorable. If G is a ^-factorable graph, then 

necessarily G is r-regular for some integer r that is a multiple of k. 
If a graph G is factorable into Gl5 G2,..., Gf, where G, = H for some 

graph H and each integer i (1 < i ^ f), then we say that G is H-factorable 

and that G has an isomorphic factorization into the factor H. Certainly, if a 
graph G is H-factorable, then the size of H divides the size of G. A graph G 
of order n = 2k is 1-factorable if and only if G is CfC2-factorable. 

The problem in this area that has received the most attention is the 

determination of which graphs are 1-factorable. Of course, only regular 
graphs of even order can be 1-factorable. Trivially, every 1-regular graph 
is 1-factorable. Since a 2-regular graph contains a 1-factor if and only if 
every component is an even cycle, it is precisely these 2-regular graphs 
that are 1-factorable. The situation for r-regular graphs, r ^ 3, in general, 
or even only 3-regular graphs in particular, is considerably more com¬ 
plicated. By Petersen's theorem, every bridgeless cubic graph contains a 

1-factor. Consequently, every bridgeless cubic graph can be factored into 
a 1-factor and a 2-factor. Not every bridgeless cubic graph is 1-factorable, 
however. Indeed, as Petersen himself observed [P4], the Petersen graph 

(Figure 9.3) is not 1-factorable; for otherwise, it would have edge 
chromatic number 3, which is not the case (Exercise 8.26). 

We now describe two classes of 1-factorable graphs. The first of these is 
due to Konig [K8]. 

Theorem 9.18 

Every regular bipartite graph of degree r ^ 1 is \-factorable. 

Proof 

We proceed by induction on r, the result being obvious for r = 1. 
Assume, then, that every regular bipartite graph of degree r — 1, r 2, 
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Figure 9.3 The Petersen graph: a bridgeless cubic graph that is not 1-factorable. 

is 1-factorable, and let G be a regular bipartite graph of degree r, where Vi 
and V2 are the partite sets of G. 

We now show that V\ is nondeficient. Let S be a nonempty subset of V^. 
The number of edges of G incident with the vertices of S is r|S|. These 
edges are, of course, also incident with the vertices of N(S). Since G is 
r-regular, the number of edges joining S and N(S) cannot exceed 

r|N(S)|. Hence, r|N(S)| ^ r|S| so that |N(S)| ^ |S|. Therefore, Vi is non¬ 
deficient, implying by Theorem 9.3 that Vi can be matched to a subset 

of V2. Since G is regular of positive degree, |Vj| = \V2\; thus, G has a 
1-factor F. The removal of the edges of F from G results in a bipartite 
graph G' that is regular of degree r — 1. By the inductive hypothesis, G' 
is 1-factorable, implying that G is 1-factorable as well. □ 

The following result is part of mathematical folklore. 

Theorem 9.19 

The complete graph K2k is \-factor able. 

Proof 

The result is obvious for k = 1, so we assume that k ^ 2. Denote the vertex 

set of Ku by {v0,vi,... ,v2k_i} and arrange the vertices , v2,..., v2k_ x in 
a regular (2k — l)-gon, placing v0 in the center. Now join every two ver¬ 
tices by a straight line segment, producing K^. For i = 1,2,... ,2k — 1, 
define the 1-factor F, to consist of the edge v0vt together with all those 

edges perpendicular to v0Vj. Then K2k = Fi © F2 © • ■ • © F2k_i, so K^ is 

1-factorable. □ 

The construction described in the proof of Theorem 9.19 is illustrated in 

Figure 9.4 for the graph fC6. 
We return briefly to the 1-factorization of K2k described in the proof of 

Theorem 9.19. Recall that the 1-factor Fi consists of the edge v0Vi and all 
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edges perpendicular to v0v-[, namely, v2v2k _1, U3U2* - 2 > • • • > vkvk+1 • If the k 
edges of are rotated clockwise through an angle of 2n/ (2k — 1) radians, 

then the 1-factor F2 is obtained. In general, if the edges of F\ are rotated 
clockwise through an angle of 2irj/(2k — 1) radians, where 0 ^ ^ 2k — 2, 
then the 1-factor F/ + 1 is produced. A factorization of a graph obtained in 
this manner is referred to as a cyclic factorization. 

Such a factorization can be viewed in another way. Let Kbe drawn as 

described in the proof of Theorem 9.19. We now label each edge of K2ii 
with one of the integers 0,1,..., k — 1. Indeed, we will assign 2k — 1 
edges of K2* the label i for i — 0,1,..., k — 1. Every edge of the type v0v, 
(\^i^2k—l) is labeled 0. Now let C denote the cycle 
v-i, v2,..., v2k_ -j, Vi. For \ ^s<t^2k-l, the edge vsv, is assigned the 

distance label dc(vs,vt). Observe that 1 ^ dc(vs, vt) ^ k — 1. Thus, the 
2k — 1 edges of C are labeled 1; in general, then, 2A: — 1 edges of K^ are 
labeled the integer i for 0 ^ i < k — 1. Observe, further, that F} contains k 
edges, one of which is labeled i for 0 ^ i ^ k — 1. Moreover, when an edge 
of F! labeled i (0 ^ i ^ k — 1) is rotated clockwise through an angle of 

2iri/(2k— 1) radians, 0 < / ^ 2k — 2, and edge of F; + 1 also labeled i is 
obtained. Hence a 1-factorization of K^ is produced. 

We now turn to 2-factorable graphs. Of course, for a graph to be 2- 
factorable, it is necessary that it be 2F-regular for some integer k^ 1. 

Petersen [P3] showed that this obvious necessary condition is sufficient 
as well. 

Theorem 9.20 

A graph G is 2-factorable if and only if G is 2k-regular for some integer k ^ 1. 
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Proof 

We have already noted that if G is a 2-factorable graph, then G is regular 
of positive even degree. Conversely, suppose that G is 2fc-regular for some 

integer k ^ 1. Assume, without loss of generality, that G is connected. 
Hence, G is eulerian and so contains an eulerian circuit C. 

Let V(G) = {i>i, v2, ■ ■ ■, vn). We define a bipartite graph H with partite 

sets U — {ul,u2,..., un} and W = {zvi,w2, ■.. ,w„}, where 

E(H) — {UjWj | Vj immediately follows n, on C}. 

The graph H is k-regular and so, by Theorem 9.18, is 1-factorable. Hence, 

H — F] © F2 © • • • © Fk is a 1-factorization of H. 
Corresponding to each 1-factor Ff (1 ^ ^ k) of H is a permutation a( on 

the set {1,2,..., n}, defined by oy(z') = j if UjWj G E(F^). Let a( be expressed 
as a product of disjoint permutation cycles. There is no permutation cycle 
of length 1 in this product; for if (z) were a permutation cycle, then 
this would imply that ay(z') = i. However, this further implies that 
UjWj G E(F^) and that v,Vj e E(C); which is impossible. Also there is no 

permutation cycle of length 2 in this product; for if (z j) were a permutation 
cycle, then ay(z) — j and a^(j) = i. This would indicate that utWj, 
UjWj G E(F{) and that v. both immediately follows and precedes iz,- on C, 
contradicting the fact that no edge is repeated on a circuit. Thus, the 
length of every permutation cycle in a( is at least 3. 

Each permutation cycle in a( therefore gives rise to a cycle in G, and 
the product of disjoint permutation cycles in a( produces a collection of 
mutually disjoint cycles in G containing all vertices of G; that is, a 2- 
factor in G. Since the 1-factors F( in H are mutually edge-disjoint, 
the resulting 2-factors in G are mutually edge-disjoint. Hence, G is 2- 
factorable. □ 

By Theorem 9.20, then, there exists a factorization of every regular 
graph G of positive even degree in which every factor is a union of 
cycles. We next consider the problem of whether there exists a 
factorization of G such that every factor is a single cycle. A hamiltonian 
factorization of a graph G is a factorization of G such that every factor is 
a hamiltonian cycle of G. Certainly, if a graph G has a hamiltonian factor¬ 
ization, then G is a 2-connected regular graph of positive even degree. The 

converse of this statement is not true, however, as the graph of Figure 9.5 

shows. 
For complete graphs, 2-factorable and hamiltonian factorable are 

equivalent concepts. 

Theorem 9.21 

For every positive integer k, the graph K2k + ^ is hamiltonian factorable. 
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Figure 9.5 A 2-factorable graph that is not hamiltonian factorable. 

Proof 

Since the result is clear for k = we may assume that k ^ 2. Let 

V(K2k + \) = {v0,Vi,... ,v2k}- Arrange the vertices v-[,v2,... ,v2k in a regular 
2/c-gon and place v0 in some convenient position. Join every two vertices 
by a straight line segment, thereby producing K2k+li. We define the edge 

set of F] to consist of v0v-[r u0^jc+i/ all edges parallel to V\V2 and all edges 
parallel to v2kv2 (see F^ in Figure 9.6 for the case k — 3). In general, for 
i = 1,2,..., k, we define the edge set of the factor F, to consist of v0Vj, 

vovk + if all edges parallel to u,u, + ] and all edges parallel to Vj_iVi+l, 
where the subscripts are expressed modulo 2k. Then K^ + i = 
F] ® F2 © • • • © Fk, where F, is the hamiltonian cycle 

^01 +11 — 11 +2 > _ 2 > • • • > / _ i) /+1 j i) ^ 

This result is illustrated in Figure 9.6 for K7. 

Figure 9.6 A hamiltonian factorization of K7. 
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The factorization described in the proof of Theorem 9.21 is again a 
cyclic factorization. If we place the vertex vQ in the center of the regular 

2/c-gon and rotate the edges of the hamiltonian cycle F] clockwise through 
an angle of 2n/2k = n/k radians, then the hamiltonian cycle f2 is pro¬ 

duced. Indeed, if we rotate the edges of F] clockwise through an angle 
of 7rj/k radians for any integer j with — 1, then the hamiltonian 
cycle F/ + 1 is produced and the desired hamiltonian factorization of K2fc+1 

is obtained (Exercise 9.21). 

Another factorization result now follows readily from Theorem 9.21. 

Corollary 9.22 

The complete graph K2k can be factored into k hamiltonian paths. 

Theorems 9.19 and 9.21 have an interesting consequence of a different 
nature. If G is an r-regular graph of order n, then, of course, 0 ^ r ^ n — 1. 
On the other hand, if r and n are odd positive integers (with 
0 ^ r ^ n — 1), then there can be no r-regular graph of order n. With 
this lone exception, every other type of regular graph is possible. 

Corollary 9.23 

Let r and n be integers with 0 ^ r ^ n — 1. Then there exists an r-regular graph 
of order n if and only if r and n are not both odd. 

Proof 

It suffices to show that there exists an r-regular graph of order n if at least 

one of r and n is even (and 0 ^ r < n — 1). Suppose first that n is even. 
Then n = 2k for some positive integer k. By Theorem 9.19, Klk can be 

factored into 1-factors Fj >^2. • • -^2k- 1- The union of r of these 1-factors 
produces an r-regular graph of order n. 

Next, suppose that n is odd. Then r is necessarily even. The graph Kx is 
O-regular of order 1, so we may assume that n = 2k + 1 ^ 3. By Theorem 
9.21, K2k + \ can be factored into hamiltonian cycles F1,F2,... ,Fk. The 

union of r/2 of these hamiltonian cycles gives an r-regular graph of 
order n. □ 

Using the construction employed in the proof of Theorem 9.21, we can 

obtain another factorization result. 

Theorem 9.24 

The graph can be factored into k - 1 hamiltonian cycles and a \-factor. 



278 Matchings, factors and decompositions 

Very similar to the concept of factorization is decomposition. A decom¬ 

position of a graph G is a collection {H,} of nonempty subgraphs such that 
Hj = (£,•) for some (nonempty) subset E, of E(G), where {£,} is a partition 

of E(G). Thus no subgraph H, in a decomposition of G contains isolated 

vertices. If {H,} is a decomposition of G, then we write G = 
Hj © H2 © ■ • • 0 Ht, as we do with factorizations, and say G is decom¬ 

posed into the subgraphs , H2,..., Ht, where then |{H,}| = t. Indeed, 
if G = Ht © H2 © • • • © H, is a decomposition of a graph G of order 
n and we define f, = H, U [n — |V(H,)|].K1 for 1 < i < f, then 

f i © f2 © • • • © Ft is a factorization of G. On the other hand, every factor¬ 
ization of a nonempty graph G also gives rise to a decomposition of G. 
Suppose that G = Fx © F2 © • • • © Fs is a factorization of a nonempty 

graph G, so written that are nonempty (t ^ s). Let 

H, = (£(£,)) for i = 1,2,..., t. Then H] © H2 © • • • © Ht is a decomposition 
of G. 

If {Hj} is a decomposition of a graph G such that H, = H for some graph 

H for each ;, then G is said to be H-decomposable. If G is an H-decomposable 
graph, then we also write H \ G and say that H divides G. Also H is said 
to be a divisor of G, and G is a multiple of H. For G = fC2 2 2 (the graph of 
the octahedron) and for the graph H shown in Figure 9.7, we have that 

G is H-decomposable. An H-decomposition of G is also shown in 
Figure 9.7. 

Figure 9.7 An H-decomposable graph. 
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The decomposition shown in Figure 9.7 is a cyclic decomposition. In 
general, a cyclic decomposition of a graph G into k copies of a subgraph H 
is obtained by (a) drawing G in an appropriate manner, (b) selecting a 
suitable subgraph of G that is isomorphic to H, and (c) rotating the 

vertices and edges of H-j through an appropriate angle k — 1 times to 
produce the k copies of H in the decomposition. 

If G is an H-decomposable graph for some graph H, then certainly H is a 
subgraph of G and the size of H divides the size of G. Although this last 
condition is necessary, it is not sufficient. For example, the graph K\ 4 is a 

subgraph of the graph G of Figure 9.7 and the size 4 of K14 divides the size 
12 of G, but G is not fC, ^-decomposable (Exercise 9.26). 

The basic problem in this context is whether, for a graph G and a 
subgraph H of G whose size divides that of G, the graph G is FI- 

decomposable. First, we consider H-decomposable graphs for graphs H 
of small size. Of course, every (nonempty) graph is ^-decomposable. 
Every component of a P3-decomposable graph must have even size. In 
fact, this condition is sufficient for a graph to be P3-decomposable (see 

[CPS1]). 

Theorem 9.25 

A nontrivial connected graph G is P3-decomposable if and only if G has even size. 

Proof 

We have already noted that if G is P3-decomposable, then G has even size. 
For the converse, assume that G has even size. Suppose, first, that G is 

eulerian, where the edges of G are encountered in the order 

e-i,e2,... ,em. Then each of the sets {e-i,e2}, {e3,e4},..., {em_i,emj induce 
a copy of P3, so G is P3-decomposable. Otherwise, G has 2k odd vertices 
for some k ^ 1. By Theorem 4.3, E(G) can be partitioned into subsets 
Ei, E2, ■ . ■, Ek, where for each i, (E;) is an open trail T, of even length 
connecting odd vertices of G. Then, as with the eulerian circuit above, 
the edges of each trail T, can be paired off so that each pair of edges 

induces a copy of P3. Thus G is P3-decomposable. □ 

The only other graph of size 2 without isolated vertices is 2K2. The class 

of 2f<2-decomposable graphs was discovered by Y. Caro (unpublished) 
and Ruiz [R12]. Since the proof of the next result is quite lengthy, we 

omit it. 

Theorem 9.26 

A nontrivial connected graph is 2K2-decomposable if and only if G has even size 

m, A(G) ^ jm, and G/K3U K2. 
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Most of the interest in ^-decompositions has involved complete 
graphs. A ^-decomposable complete graph is called a Steiner triple 

system. Kirkman [K5] characterized Steiner triple systems. 

Theorem 9.27 

The complete graph Kn is ^-decomposable if and only if n is odd and 3 | ("). 

For Kn to be Kp + 1-decomposable, the conditions p \ (n — 1) and 

(f) 21) | (2) are certainly necessary. These conditions are not sufficient in 
general, however. For n = p2 + p + 1, Ryser [R13] showed that K„ is 
Kp +1 -decomposable if and only if there exists a projective plane of 

order p; and in order for a projective plane of order p to exist, p must 
satisfy the Bruck-Ryser conditions [BR2] that p = 0 (mod 4) or 
p = 1 (mod 4), and p = x2 + y2 for some integers x and y. The smallest 

value of p for which the existence of a projective plane of order p is 
unknown is p — 10. 

Whenever Kn is X;, + 1 -decomposable, we have an example of a combi¬ 
natorial structure referred to as a balanced incomplete block design. Thus 
graph decompositions may be viewed as generalized block designs. 

There is another important interpretation of a special type of decompo¬ 
sition. In particular, the minimum number of 1-regular subgraphs into 
which a nonempty graph G can be decomposed is the edge chromatic 

number xi(G) of G. By Corollary 8.19, the edge chromatic number of 
an r-regular graph G (r ^ 1) is r or r + 1. If xi(G) = r, then each edge 
color class in a xi(G)-edge coloring of G induces a 1-factor of G. Thus, 
an r-regular graph has edge chromatic number r if and only if it is 1- 

factorable. 
The vast majority of factorization and decomposition results deal with 

factoring or decomposing complete graphs into a specific graph or 
graphs. R. M. Wilson [W8] proved that for every graph H without isolated 

vertices, there exist infinitely many positive integers n such that Kn is in¬ 
decomposable. 

Theorem 9.28 

For every graph H without isolated vertices and having size m, there exists 
a positive integer N such that if (i) n ^ N, (ii) m | 0 and (iii) d | (n — 1), 
where 

d = gcd{degu \v e V(H)}, 

then K„ is H-decomposable. 

As an immediate consequence of Theorem 9.28, there exist regular in¬ 
decomposable graphs for every graph H without isolated vertices. This 
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Figure 9.8 Graceful graphs. 

result also appears in Fink [F4], where specific H-decomposable (not 
necessarily complete) graphs are described. We give a proof of this 
result, but prior to doing this, it is convenient to introduce some addi¬ 

tional terminology, which will be explored further in section 9.3. 
A graph G of size m is called graceful if it is possible to label the vertices 

of G with distinct elements from the set {0,1,..., m) in such a way that the 

induced edge labeling, which prescribes the integer \i — j\ to the edge 
joining vertices labeled i and /, assigns the labels 1,2,... ,m to the edges 
of G. Such a labeling is called a graceful labeling. Thus, a graceful graph is a 
graph that admits a graceful labeling. 

The graphs K3, K4, K4 — e and C4 are graceful as is illustrated in Figure 
9.8. Here the vertex labels are placed within the vertices and the induced 
edge labels are placed near the relevant edges. 

Not every graph is graceful, however. For example, the graphs K5, C5 
and K] + 2K3 are not graceful. 

The gracefulness grac(G) of a graph G with V(G) = {v4,v2, ■. ■ ,vn} and 
without isolated vertices is the smallest positive integer k for which it is 
possible to label the vertices of G with distinct elements from the set 
{0,1,..., k} in such a way that distinct edges receive distinct labels. Such 
vertex labelings always exist, one of which is to label v, by 2' “1. Hence for 
every (n,m) graph G without isolated vertices, m ^ grac(G) 2'!_1. If G 
is a graph of size m with grac(G) = m, then G is graceful. Thus the 
gracefulness of a graph G is a measure of how close G is to being 
graceful. By definition, it is possible to label the vertices of a graph G 

with distinct elements of the set {0,1,..., grac(G)} so that the edges of 
G receive distinct labels. Of course, some vertex of G must be labeled 
grac(G), but it is not known whether an edge of G must then be labeled 

grac(G). 
All graphs of order at most 4 are graceful. There are exactly three non¬ 

graceful graphs of order 5. In each case the gracefulness is one more than 
the size. These three graphs with an appropriate labeling are shown in 

Figure 9.9. 
We now return to our discussion of decompositions and give a con¬ 

structive proof that for every graph H without isolated vertices, there 

exists a regular H-decomposable graph. The proof is due to Fink and 

Ruiz [FR1] and was inspired by a proof technique of Rosa [RIO]. 
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Figure 9.9 The three graphs of order 5 that are not graceful. 

Theorem 9.29 

For every graph H without isolated vertices, there exists a regular H-decomposable 

graph. 

Proof 

Let H be an (n,m) graph without isolated vertices and suppose that 

grac(H) = k. Hence there exists a labeling 0:V(H)^{0,1,...,*} of 
vertices of H so that distinct edges of H are labeled differently and 

max{0(x) | x £ V(H)} — k. 
We now construct a regular H-decomposable graph G of order 

p = 2k + 1. Let y(G) = {uq,^, ... ,vp_-i} and arrange these vertices cycli¬ 
cally in clockwise order about a regular p-gon. Next we define a graph H^ 

by 

V(H,) = {vm | * £ V(H)} 

and 

E(H,) = {vHx)vHy) | xy £ E(H)}. 

For i — 2,3,..., p, define H, by cyclically rotating H] through a clockwise 
angle of 2n(i — 1 )/p radians. Therefore, for 1 < i ^ p, 

m> = !•*)*,-, u € v(H» 
and 

E(W,) = {^w+/_i^(y)+/_i | xy e E(H)}. 

The definition of G is completed by defining E(G) = (Jf=1 E(H,). (See 

Figure 9.10 for a given graph H, a possible labeling of the vertices of H, 
the induced edge labels of H, the vertices of G, and the subgraphs H, and 
H2 of G, where the edges of H2 are drawn with dashed lines.) 

The graph G is therefore decomposable into the graphs H], H2,..., Hp, 
each of which is isomorphic to H, and G is 2m-regular. □ 

If, in the proof of Theorem 9.29, the graph H is graceful, then 

grac(H) = m and G is a 2m-regular graph of order 2m + 1, that is. 
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vo 

Figure 9.10 Construction of a regular H-decomposable graph. 

G — Klm + \ and, consequently, Klm +1 is H-decomposable. Indeed, then, 
for any graceful graph H of size m, the complete graph K2m + 1 is Id- 
decomposable; in fact, there is a cyclic decomposition of K2m + \ into H. 
This observation is due to Rosa [RIO], Because of its importance, we 
give a direct proof due to Rosa of this result. 

Theorem 9.30 

If H is a graceful graph of size m, then K2m +1 is H-decomposable. Indeed, K2m +1 

can be cyclically decomposed into copies of H. 

Proof 

Since H is graceful, there is a graceful labeling of H, that is, the vertices of 
H can be labeled from a subset of {0,1,..., m} so that the induced edge 
labels are 1,2,... ,m. Let V(K2m +1) = {t>0, v-[,... ,v2m} where the vertices 

of f^2m + i are arranged cyclically in a regular (2m + l)-gon, denoting the 
resulting (2m + l)-cycle by C. A vertex labeled i (0 ^ i ^ m) in H is placed 
at Vj in K2m + -[ and this is done for each vertex of H. Every edge of H is 
drawn as a straight line segment in K2m + -l/ denoting the resulting copy of 

H in K2m+\ as Hv Hence V(HX) C {v0,vx,... ,vm}. 
Each edge vsv, of K2m + i (0 ^ s, t ^ 2m) is labeled dc(vs,vt), where then 

1 ^ dc(vs,vt) ^ m. Consequently, K2m + i contains exactly 2m + 1 edges 
labeled i for each i (1 ^ i ^ m) and H) contains exactly one edge labeled 

i (1 ^ i < m). Whenever an edge of H^ is rotated through an angle (clock¬ 
wise, say) of 27iL/ (2m + 1) radians, where 1 ^ k ^ m, an edge of the same 
label is obtained. Denote the subgraph obtained by rotating Hj through a 
clockwise angle of Ink/(2m + 1) radians by H*. + 1. Then H^+1 = H and a 
cyclic decomposition of K2m + i into 2m + 1 copies of H results. □ 

As an illustration of Theorem 9.30, we consider the graceful graph 
H — P3. A graceful labeling of H is shown in Figure 9.11 as well as the 

resulting cyclic H-decomposition of K5. 
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Figure 9.11 A cyclic decomposition of K5 into the graceful graph P3. 

Although K2m + -[ has a cyclic decomposition into every graceful graph H 
of size m, it is not necessary for H to be graceful in order for K2m + ] to have 
a cyclic H-decomposition. For example, we have seen that C5 is not 

graceful; yet Ku has cyclic C5-decomposition. Such a decomposition is 
depicted in Figure 9.12. 

It has been conjectured by Kotzig (see Rosa [RIO]) that every nontrivial 
tree is graceful. 

Kotzig's Conjecture 

Every nontrivial tree is graceful. 

vo 

Figure 9.12 A cyclic decomposition of Kn into the nongraceful graph C5. 
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Furthermore, the following conjecture concerning decompositions of 
complete graphs into trees has been made by Ringel [R6]. 

Ringel's Conjecture 

For every tree T of size m, the complete graph K2m+\ is T-decomposable. 

Of course, if Kotzig's conjecture is true, so is Ringel's. Indeed, the truth 
of Kotzig's conjecture implies the truth of the following conjecture, due 
jointly to G. Ringel and A. Kotzig. 

The Ringel-Kotzig Conjecture 

For every tree T of size m, K2m + \ can be cyclically decomposed into T. 

We close this section by presenting another result involving cyclic 
decompositions. A linear forest is a forest of which each component is a 
path. Since every 1-factor is a linear forest, the following result, due to 
Ruiz [Rll], is a generalization of Theorem 9.19. 

Theorem 9.31 

If F is a linear forest of size k having no isolated vertices, then K2k is F- 
decomposable. 

Proof 

Since the result is obvious for k = 1, we assume that k ^ 2. Let the vertex 
set of Ku be denoted by {v0,Vi,v2,..., Arrange the vertices 
Vi,v2,... ,v2*_i cyclically in clockwise order about a regular (2k — 1)- 
gon, calling the resulting cycle C, and place v0 in the center of the 
(2k — l)-gon. Join every two vertices by a straight line segment to obtain 
the edges of K^. We label each edge that joins v0 to a vertex of C by 0. 
There are 2k — 1 such edges. Every other edge of K2k joins two vertices 
of C. If uv is an edge joining two vertices of C, then label uv by i if 
dc(u, v) = i. Note that 1 ^ i ^k — 1 and that for each i = 1,2,..., k — 1, 

the graph K^ contains 2k — 1 edges labeled i. 
We now describe two paths P and Q of length k in K2k. If k is even, then 

P- ^0 J v\ 1 v2k -1) v2 > v2k - 2 > u3> • • • > vk/2) vSk/2 

and 

Q: v0,vk,vk+i,vk_i,vk+2,vk_2,... ,V(k+2)/2,v3k/2; 

while if k is odd, then 

P: V0,Vl,V2k_i,V2,V2k_2,V3, . . . ,U(3Jt + l)/2>u(A:+l)/2 
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and 

Q- V0ivk>vk + \ivk-Uvk + 2,vk-2> • • • > V(3k - l)/2> V(k + \)/2- 

Observe that, in either case, for i — 1,2,... ,k, the ith edge of P and the /th 
edge of Q are labeled i. 

Assume that the linear forest 

f = p*1+1up*2+1u---up*(+1, 

where then k, = k. We define a subgraph H of as follows. The 
edge set E of H consists of the first kx edges of P, edges ki + 1 through 
k] + k2 of Q, edges ki + k2 + 1 through Ej + k2 + /c3 of P, and so on until 
finally the last kt edges of Q if t is even or the last k, edges of P if t is 
odd. Define H — (E). Note that H = F and that H contains exactly one 
edge labeled i for each i — 0,1,..., k — 1. 

Now for j — 1,2,..., 2k — 1, define Hj to be the subgraph of K^ obtained 
by revolving H about the (2E —l)-gon in a clockwise angle of 
2n(j — l)/(2 k — 1) radians. Observe that for each i = 0,1,... ,k — 1 and 
each; = 1,2,..., 2k — 1, the subgraph H; contains exactly one edge labeled 
i. Since H, = E for each j — 1,2,..., 2k — 1 and K^ is decomposed into the 
subgraphs Hl,H2,... it follows that K^ is E-decomposable. □ 

vl 

Figure 9.13 A step in the construction of an E-decomposition of Ku for 
F = P2 U P3UP4. 

The preceding theorem and its proof are illustrated in Figure 9.13 for 
2k = 12 and F = P2 U P3 U P4. The labeling of the vertices of Ku is shown 
along with the subgraph H (or H3). 

EXERCISES 9.2 

9.17 (a) Show that every bipartite graph G is a subgraph of a A(G)- 
regular bipartite graph. 
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(b) Show that every bipartite graph G is of class one, that is, 

Xl(G) = A(G). 

9.18 Give an example of a connected graph G of composite size having 
the property that whenever F is a factor of G and the size of F divides 
the size of G, then G is F-factorable. 

9.19 (a) Prove that Q„ is 1-factorable for all n ^ 1. 
(b) Prove that Qn is F-factorable if and only if k \ n. 

9.20 Use the proof of Theorem 9.20 to give a 2-factorization of the graph 

of the octahedron (namely ^2,2,2)- 

9.21 Use the proof of Theorem 9.21 to produce a hamiltonian factoriza¬ 
tion of Kg. 

9.22 Let F be a nonnegative even integer and n ^ 5 an odd integer with 
k ^ n — 3. Prove that there exists a graph G of order n with degree 
set {F, F + 2}. 

9.23 Prove Corollary 9.22. 

9.24 Prove that F^ + i cannot be factored into hamiltonian paths. 

9.25 Give a constructive proof of Theorem 9.24. 

9.26 Show that the graph of the octahedron is not ^-decomposable. 

9.27 (a) Use the fact that K3 is graceful to find a ^-decomposition of K7. 
(b) Find a noncomplete regular ^-decomposable graph. 

9.28 Find an F-decomposition of Ku where F = 2P2 U 2P3. 

9.29 Find a P6-decomposition of Kw. 

9.30 For each integer F > 1, show that 

(a) K2k + } is K-[ ^-decomposable. 
(b) Ku is Ki ^.-decomposable. 

9.31 Use the drawing of the Petersen graph shown below to find cyclic 

decompositions into Fl7 F2 and F3. 
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9.32 Find all graphs F of size 3 that are subgraphs of the Petersen graph 
P for which P is F-decomposable. (Hint: Use the drawing of the 

Petersen graph shown in Exercise 9.31.) 

9.3 LABELINGS OF GRAPHS 

In the previous section we discussed graceful labelings of graphs for the 

purpose of describing cyclic H-decompositions of certain complete 
graphs. In this section we discuss graceful labelings in more detail as 
well as describe two other well-known labelings of graphs. 

Recall that a graceful labeling of a graph G of size m is an assignment of 
distinct elements of the set {0,1,..., m} to the vertices of G so that the 

edge labeling, which prescribes |j — j\ to the edge joining vertices labeled 
i and /, assigns the labels 1,2,..., m to the edges of G. A graph possessing a 
graceful labeling is a graceful graph. 

The topic of graceful labelings of graphs has a distinctive number 
theoretic flavor to it. Indeed, in number theory, a restricted difference 
basis (with respect to a positive integer m) is a set Q 
{0,1,..., m} such that every integer k with 1 ^ k ^ m can be represented 
in the form k = at — ar Hence a graph G of size m has a graceful labeling if 

the vertices of G can be labeled with the elements of a restricted difference 
basis in such a way that for each integer k with 1 ^ k ^ m, there is a unique 
pair of adjacent vertices, labeled a, and a; say, so that k — a; - a,. A related 
problem is the Ruler Problem: For a given positive integer m, construct a 

ruler m units in length so that all integral distances from 1 to m can be 
measured and the ruler is marked at a minimum number of places. 
Rulers for m = 6 and m = 9 are shown in Figure 9.14. 

Although there are no general sufficient conditions for a graph to be 
graceful, there are necessary conditions. 

Theorem 9.32 

If G is a graceful graph of size m, then there exists a partition of V(G) into 

two subsets Ve and V0 such that the number of edges joining Ve and V0 is 
\m/2]. 

Proof 

Let a graceful labeling of G be given. Denote the set of vertices labeled 
with an even integer by Ve and the set of vertices labeled with an odd 

integer by V0. All edges labeled with an odd integer must then join a 
vertex of Vc and a vertex of V0. Since there are \m/2] such edges, the 
result follows. □ 
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6 

m = 6 

Figure 9.14 The Ruler Problem for 6 and 9 unit rulers. 

m = 9 

A necessary condition for an eulerian graph to be graceful was discov¬ 
ered by Rosa [RIO]. 

Theorem 9.33 

If G is a graceful eulerian graph of size m, then m = 0 (mod 4) orm = 3 (mod 4). 

Proof 

Let C: v0, v-y,..., vm _!, vm = 0 be an eulerian circuit of G, and let a graceful 
labeling of G be given that assigns the integer (0 ^ a, ^ m) to u, for 

0 ^ i ^ m, where, of course, a, = aj if Vj = V;. Thus the label of the edge 
Vi_\Vi is |a{ — a,_i\. Observe that 

|fl, — a,- _ 11 = (aj — fl,- _ i) (mod 2) 

for 1 ^ i ^m. Thus the sum of the labels of the edges of G is 

m m 

-fl/-il = = 0(mod2), 
i=i i=i 

that is, the sum of the edge labels of G is even. However, the sum of the 

edge labels is Yj = i 1 — m(m + l)/2; so m(m + l)/2 is even. Consequently, 
4 | m(m + 1), which implies that 4 | m or 4 | m + 1 so that m = 0 (mod 4) or 

m = 3 (mod 4). □ 

We now determine which graphs in some well-known classes of graphs 

are graceful. Rosa [RIO] determined the graceful cycles. 

Theorem 9.34 

The cycle Cn is graceful if and only if n = 0 (mod 4) or n = 3 (mod 4). 

Proof 

Since Cn is an eulerian graph, it follows by Theorem 9.33 that if 
n = 1 (mod 4) or n = 2 (mod 4), then C„ is not graceful; so it remains 
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V 

5 

v 4 

Figure 9.15 A graceful labeling of C12. 

only to show that if n = 0 (mod 4) or n = 3 (mod 4), then Cn is graceful. Let 

C„: • • • >vmv\- Assume first that n = 0 (mod 4). We assign v, the label 
where 

(i — l)/2 if i is odd 

a, = < n + 1 — i/2 if i is even and i ^ n/2 

[ n — i/2 if i is even and i > n/2. 

It remains to observe that this labeling is graceful. This labeling is 
illustrated in Figure 9.15 for n = 12. 

Next, assume that n = 3 (mod 4). In this case we assign v, the label b„ 
where 

n + 1 — i/2 if i is even 

bj = < (i — l)/2 if i is odd and i ^ [n — l)/2 

[ (/ + l)/2 if i is odd and i > (n — l)/2. 

This is a graceful labeling of Cn. An illustration is given in Figure 9.16 for 

n = 11. □ 

If G is a graceful graph of order n and size m, then, of course, the 

vertices of G can be labeled with the elements of a set {a^,a2,... ,a„} C 

{0,1,...,m} so that the induced edge labels are precisely 1,2,...,m. 
This means one vertex in some pairs of adjacent vertices is labeled 0 

and the other vertex in the pair is labeled m. Also, if we were to replace 
each vertex label a, by m — au then we have a new graceful labeling, called 
the complementary labeling. 

We saw in Figure 9.8 that the complete graphs Kj and X4 are graceful. It 

is very easy to show that K2 is graceful. The following result of Golomb 

[G5] shows that there are no other graceful complete graphs. 
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Figure 9.16 A graceful labeling of Cn. 

Theorem 9.35 

The complete graph Kn (n ^ 2) is graceful if and only ifn^ 4. 

Proof 

We have already observed that Kn is graceful if 2 < n ^ 4. Assume then 
that n ^ 5 and suppose, to the contrary, that Kn is graceful. Hence there 
exists a graceful labeling of the vertices of Kn from an n-element subset of 
{0,1,..., m}, where m = Q). 

We have already seen that every graceful labeling of a graph of size m 
requires 0 and m to be vertex labels. Since some edge of K„ must be labeled 
m — 1, some vertex of Kn must be labeled 1 orm-1. We may assume, 
without loss of generality, that a vertex of Kn is labeled 1; otherwise, we 
may use the complementary labeling. 

To produce an edge labeled m — 2, we must have adjacent vertices 
labeled 0, m — 2 or 1, m — 1 or 2, m. If a vertex is labeled 2 or m — 1, then 

we have two edges labeled 1, which is impossible. Thus, some vertex of Kn 
must be labeled m — 2. 

Since we now have vertices labeled 0, 1, m — 2 and m, we have edges 
labeled 1, 2, m — 3, m — 2, m — 1 and m. To have an edge labeled m — 4, we 
must have a vertex labeled 4 for all other choices result in two edges with 

the same label. 
Now we have vertices labeled 0, 1, 4, m — 2 and m, which results in 

edges labeled 1, 2, 3, 4, m — 6, m — 4, m — 3, m — 2, m — 1 and m. However, 

it is quickly seen that there is no vertex label that will produce the edge 
label m — 5 without also producing a duplicate edge label. Hence no 

graceful labeling of Kn exists. □ 

Theorem 9.35 adds credence to the'following conjecture [CHOI]. 
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Figure 9.17 A graceful labeling of Kst. 

Conjecture 

Graceful graphs with arbitrarily large chromatic numbers do not exist. 

Unlike the classes of graphs we have considered, every complete 
bipartite graph is graceful. 

Theorem 9.36 

Every complete bipartite graph is graceful. 

Proof 

Let Ks t have partite sets Vj and V2, where | V} | = s and \ V2\ = t. Label the 

vertices of Vy with 0,1,...,s —1 and label the vertices of V2 by 
s, 2s,..., (f — l)s, ts (see Figure 9.17). This is a graceful labeling. □ 

There is no result on graceful graphs as well-known as Kotzig's conjec¬ 
ture, which we recall. 

Kotzig's Conjecture 

Every nontrivial tree is graceful. 

Many classes of trees have been shown to be graceful. One of the most 
familiar of these is the class of paths. 

Theorem 9.37 

Every nontrivial path is graceful. 

Proof 

Let P: v0, v-[,..., vm be a path of size m. For i even, assign v, the label i/2. 
If i is odd, then v, is labeled m - (i — 1 )/2. It remains only to observe that 

this labeling is graceful (see Figure 9.18 for m = 5 and m = 8). □ 
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Figure 9.18 Graceful labelings of paths. 

Other familiar classes of graceful trees include stars, double stars and 
caterpillars (Exercise 9.35). Recall that a caterpillar is a tree the removal 
of whose end-vertices produces a path. A lobster is a tree the removal of 
whose end-vertices produces a caterpillar. It is not known whether every 
lobster is graceful but, of course, it is conjectured that this is the case. 

We now consider a graph labeling that is similar in nature to graceful 
labeling. A connected (n, m) graph G with m ^ n is harmonious if there 
exists a labeling 4>: V(G) —► Zm of the vertices of G with distinct elements 
0,1,..., m — 1 of Zm such that each edge uv of G is labeled (j>{u) -f cj)(v) 
(addition in Zm) and the resulting edge labels are distinct. Such a labeling 
is called a harmonious labeling. If G is a tree (so that m — n — 1) exactly two 

vertices are labeled the same; otherwise, the definition is the same. Four 
harmonious graphs of order 5 (with harmonious labelings) are shown in 

Figure 9.19. 
Some examples of graphs that are not harmonious are shown in Figure 

9.20. 
We have now seen that C5 is harmonious but C4 is not. This serves as an 

illustration of a theorem of Graham and Sloane [GS2], 

Theorem 9.38 

The cycle Cn is harmonious if and only if n is odd. 

Figure 9.19 Harmonious graphs. 
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6- 

Q- o 

o 

Figure 9.20 Three graphs that are not harmonious. 

Proof 

Assume first that n is odd and let C: v0, ,..., vn _ i, v0 be a cycle of length 
n. The labeling that assigns vx (0 < i ^ n — 1) the label i is harmonious and 
hence Cn is harmonious if n is odd. (This labeling is illustrated for C5 in 

Figure 9.19.) 
Assume now that n = 2k ^ 4 is even and suppose, to the contrary, that 

Cn is harmonious. Let Cn: v0, zq,... v0. Suppose that the labeling that 
assigns v-x the label a, is harmonious. Consequently, the integers a0, 

are distinct and, in fact, {a0,a^,... = {0,1,— 1}. 

Therefore, the edge labels are a0 + au flj + a2,... ,a„_i + a0 and, further¬ 

more, {a0+aua ] + a2,...,an_ % +fl0} = {0,1,..., n - 1}. Let S = £"=0 ah 
The sum of the edge labels of C„ is 

(a0 + a\) + (a-y + a2) + • • • + + flo) 

Thus, 2S = n(n — l)/2 = S (mod n); so S = 0 (mod n) and S = k(n — 1) = 

k (mod n). Hence k = 0 (mod 2k), which is impossible. □ 

Although there is some similarity between the results for graceful 
cycles and harmonious cycles, there is no such similarity for complete 
bipartite graphs. The following result is due to Graham and Sloane [GS2], 

Theorem 9.39 

The complete bipartite graph Ks t is harmonious if and only if s = 1 or t = 1. 

Proof 

The labeling that assigns the central vertex of , the label 0 and assigns 
the end-vertices the labels 0,1,...,f —1 is harmonious. Consequently, 
every star is harmonious. 

It remains to show that no other complete bipartite graph is harmo¬ 

nious. Suppose, to the contrary, that some complete bipartite graph Ks,, 
where s, t ^ 2, is harmonious. Let the partite sets of Kf l be V) and V2, 

where |Vj| = s and \V2\ = t. By assumption, there is a harmonious 
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labeling of Ks t. Suppose that this labeling assigns the integers ax, a2y ■.., as 

to the vertices of and bx, b2,..., bt to the vertices of V2. Thus, 
A = {aua2,... ,asj and B — {bu b2,..., bt} are disjoint subsets of 
{0,1,..., st — 1} and 

{a, + bj 11 ^ i < s and 1 t} = {0,1,... ,st — 1}. 

Since for (i,j) ^ (fc,/), we have a, + bj ^ ak + b(, it follows that 
ai ~ ^ ak — bj or, equivalently. 

\{uj — bj 11 ^ i ^ s and 1 ^ f}| = st. 

Hence, for some i (1 ^ i ^ s) and ; (1 ^ j ^ f), it follows that a{ — bj — 0; so 
a, = bj, which contradicts the fact that A and B are disjoint. □ 

We saw in Theorem 9.35 that the complete graph K„ (n ^ 2) is graceful 
if and only if n ^ 4. Harmonious complete graphs are characterized in 
exactly the same way. Since the proof of this result, also due to Graham 

and Sloane [GS2], requires considerable reliance on number theoretic 
results, we omit its proof. 

Theorem 9.40 

The complete graph Kn (n 2) is harmonious if and only if n ^ 4. 

We now turn our attention to trees. First, we show that every nontrivial 
path is harmonious. In the proof it is convenient to label some vertices by 
—n + a rather than a, where 0 ^ a ^ n — 1, which, of course, are equivalent 
in Z„. 

Theorem 9.41 

Every nontrivial path is harmonious. 

Proof 

Let Pn: iq, v2,..., vn, where n ^ 2. If n is even, write n = 2k + 2; while if n 
is odd, write n = 2k + 3. For an integer t, label the vertex u, with a„ where 

—t+(i — l)/2 if i is odd 

t + (i — 2)/2 if i is even. 

Regardless of the value of f, the edges of Pn are labeled 0,1,..., n — 1. 
Now, if k is even, then let t = k/2; while if k is odd, then let 

t — (k + l)/2. In either case, this is a harmonious labeling of Pn, where if 
k is even, then t is the repeated label of P„; while if k is odd, then —t is the 

repeated label. Thus P„ is harmonious. (Harmonious labelings of Pn, 
5 < n ^ 8, are shown in Figure 9.21.) □ 
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Figure 9.21 Harmonious labelings of P„, 5 ^ n < 8. 

As with graceful labelings, many classes of trees have been shown to be 
harmonious, but whether all trees are harmonious is not known. 

Graham-Sloane Conjecture 

Every nontrivial tree is harmonious. 

We have seen that the only graceful and harmonious complete graphs 

have order at most 4. Thus, the maximum size of a graceful or harmonious 
graph of order n ^ 5 is less than Q). For 5 ^ n ^ 10, the maximum sizes of 
a graceful graph of order n and a harmonious graph of order n are shown 

in Figure 9.22. The similarities are obvious. 
Another problem concerns labeling the vertices of a graph in terms of 

its order rather than its size. A numbering f of a graph G of order n is a 
labeling that assigns distinct elements of the set {1,2,to the vertices 
of G, where each edge uv of G is labeled | f(u) —f(v)|. The bandwidth 
banf(G) of a numbering f: V(G) —> {1,2of G is defined by 

ban^(G) = max{|/(w) — f(v)\ \ uv E E(G)}, 

that is, ban^(G) is the maximum edge label of G, and the bandwidth ban(G) 
of a graph G itself is 

ban(G) = min{bam(G) | / is a numbering of G}. 

n Maximum size of a graceful 
graph of order n 

Maximum size of a 
harmonious graph of order n 

5 9 9 
6 13 13 
7 17 17 
8 24 23 
9 30 29 

10 36 36 

Figure 9.22 The maximum size of a graceful or harmonious graph of 
order n (5 ^ n < 10). 
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ban(P3) = 1 ban(AT3) = 2 
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ban(C4) = 2 

Figure 9.23 The bandwidths of P3, K3 and C4. 

Therefore, for every graph G of order n, it follows that 1 ^ ban(G) < 

n — 1. A numbering / of a graph G for which ban^(G) = ban(G) is called 
a bandwidth labeling of G. All numberings of the graphs P3, K3 and C4 are 
shown in Figure 9.23 together with their bandwidths. Consequently, 
ban(P3) = 1, ban(fC3) = 2 and ban(C4) = 2. 

These examples serve to illustrate parts of the following result. 

Theorem 9.42 

(i) For n ^ 2, ban(P„) = 1. 
(ii) For n ^ 2, ban(JC„) = n — 1. 

(iii) For n ^ 3, ban(C„) = 2. 
(iv) For 1 < s ^ f, ban(Ks () = [f/2] + s — 1. 

Proof 

(i) Let P„: tq, v2, ■ ■., vn. If the labeling / assigns i to for / = 1,2,..., n, 
then bam(P„) = 1. Consequently, ban(P„) = 1. 

(ii) There is only one numbering / of Kn and the label of the edge 

joining the vertices labeled 1 and n is n — 1. Thus, banf(Kn) = 
ban(fC„) = n — 1. 

(iii) First, we show that ban(C„) ^ 2. If ban(C„) = 1, then there exists a 
numbering of Cn in which every edge label is 1. However, for this to occur, 

every edge must join vertices labeled i and z + 1 for 1 < z < n — 1. But this 
would imply that C„ has at most n — 1 edges, which is not the case. Hence, 

ban(C„) ^ 2, as claimed. 



298 Matchings, factors and decompositions 

To show that ban(C„) = 2, it suffices to show the existence of a 
numbering / of C„ for which banTC,,) = 2. Suppose first that n = 2k is 
even. Then the labeling / such that 

I 2i - 1 if 1 ^ i ^ k 

\ 2n + 2 — 2i if k + 1 ^ i ^ 2k — n 

has the property that ban^C,,) = 2 (see Figure 9.24 for n = 6). Next 

suppose that n = 2k + 1 is odd. Then the labeling / for which 

f 2i - 1 if 1 ^ i ^ k + 1 

\ 2rc + 2 — 2/ iffc + 2^i<2fc+l = n 

has ban^(C„) = 2 (see Figure 9.24 for n = 7). Thus ban(C„) = 2. 

(iv) Let V\ and V2 be the partite sets of Ks t, where |Vi| = s ^ t = |V^2|; 
and let / be a bandwidth labeling of Ks t. Certainly, the vertices labeled 1 

and s + t must be in the same partite set since / minimizes the greatest 
edge label. Also, vertices labeled 1 and s + t — 1, as well as vertices labeled 
2 and s + f, must be in the same partite set. Continuing in this manner, we 

see that the vertices of V2 must be labeled with the [t/2J smallest (or 
largest) integers of the set S = {1,2,... ,s + t} and the \t/2] largest (or 
smallest, respectively) integers of S. Thus, we may assume that V2 consists 
of vertices labeled 1,2,..., |_f/2J and s + [f/2J + 1, s + [t/2\ + 2,..., s + f. 

Consequently, ban(fCs,) = bam(Xs () = [f/2] + s — 1. (A bandwidth label¬ 
ing of K5 9 is given in Figure 9.25. Only Vj and V2 are shown.) □ 

*5.9: 

© © © © ® V\ 

® © © © © 
Figure 9.25 A bandwidth labeling of 9. 
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There is a possibly surprising connection between the bandwidth of a 
graph G of order n and powers of the path Pn. 

Theorem 9.43 

A graph G of order n has bandwidth k (1 ^ k ^ n — l) if and only if k is the 

smallest positive integer for which G is a subgraph of Pk. 

Proof 

Suppose, first, that ban(G) = k. Let V(G) = {vi,v2, ■ ■ ■ ,vn}. We may 
assume, without loss of generality, that there exists a bandwidth labeling 
of G that assigns the label i to V\ (1 ^ i ^ n). Since ban(G) = k, every two 
vertices v{ and v, for which |i — j\ > k are not adjacent. Let Pn denote the 

path Vi,v2, ■ ■. ,vn. Hence every edge of G joins vertices v, and Vj, with 
| i — j\ ^ k, that is, G is a subgraph of Pkn. 

If G were a subgraph of P„~l, then every edge of G joins vertices vt and 
Vj with |i —j\^k—l. However, then, the labeling / that assigns i to v, for 

1 ^ i ^ n has bam(G) ^ k — 1, which produces a contradiction. 
The converse is now immediate. □ 

Several bounds for the bandwidth of a graph have been found in terms 
of other parameters defined on graphs. We present some of these now. 

The first three of these and Theorem 9.48 are due to Dewdney (see 
Chvatalova, Dewdney, Gibbs and Korfhage [CDGK1]). 

Theorem 9.44 

For every graph G, 

ban(G) ^ 
~A(G)~ 

2 

Proof 

Let a bandwidth labeling of G be given and let v be a vertex of G for which 

degu = A(G) = k. Furthermore, let N(v) — {v-i,v2,... ,vk}. Suppose that 
the bandwidth labeling assigns a{ to vt for 1 ^ i ^ k and a0 to v. We may 

assume that a-y < a2 < • • • < ak. Thus max{\ay — a0\,\ak — a0\} ^ k/2. So 

ban(G) ^ [A(G)/2], □ 

The next two lower bounds for the bandwidth of a graph follow from 

Theorem 9.43. 

Theorem 9.45 

For every graph G, 

ban(G) ^ y(G) - 1. 
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Proof 

Let G be a graph of order n with I/(G) = {v\,v2, • ■ • and x(G) = k and 
suppose, to the contrary, that ban(G) ^ k — 2. Let P denote the path 

vpv 2, Hence G is a subgraph of Pk~2. Assign the color i 
(1 ^ i ^ k — 1) to Vj if j = i (mod k — 1). Hence for each i (1 ^ i ^ k— 1), 
the set Vi of all vertices colored i is independent in G, and thus this is 

a proper coloring of G. Therefore, x(G) ^k—l, which is a contradic¬ 

tion. □ 

Theorem 9.46 

For every graph G, 

ban(G) ^ ac(G). 

Proof 

Let G be a graph of order n with ban(G) = k (1^/c^n — 1), and let 
P„: vuv2, ■ ■. ,v„ denote a path of order n. By Theorem 9.43, G is a 
subgraph of Pfj. If k = n — 1, then certainly /c(G) ^ n — 1. Otherwise, 

{v2,v3, 'Pk + i} is a vertex-cut of cardinality k in Pf,. Thus, k(G) ^ 

K(Pf,) ^k. □ 

The next result provides lower and upper bounds in terms of the 
independence number. The lower bound is due to Chvatal [C5] and the 

upper bound to Chvatalova (see Chvatalova, Dewdney, Gibbs and 

Korfhage [CDGK1]). 

Theorem 9.47 

For every graph G of order n, 

\n/(3(G) 1 - 1 C ban(G) ^ n - [fl(G)/2\ - 1. 

We conclude with an upper bound for the bandwidth of a graph in 

terms of its diameter. 

Theorem 9.48 

For every connected graph G of order n, 

ban(G) ^ n — diam G. 

EXERCISES 9.3 

9.33 Determine graceful labelings of C15 and C16. 
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9.34 Determine graceful labelings of P6, P7, P9 and P10. 

9.35 Show that the following classes of trees are graceful: 

(a) stars, (b) double stars, (c) caterpillars. 

9.36 Determine harmonious labelings of C7 and C9. 

9.37 Use the proof of Theorem 9.37 to give harmonious labelings of P9 

and P10. 

9.38 Show that every double star is harmonious. 

9.39 Use the proof of Theorem 9.38 to give bandwidth labelings of C8 
and C9. 

9.40 Give a bandwidth labeling of K411. 

9.41 Show that if G is an (n,m) graph for which m > (”) — ("J*), then 

ban(G) > k. 

9.42 Show that if G is a nonplanar graph, then ban(G) ^ 4. 

9.43 Prove Theorem 9.47. 

9.44 Prove Theorem 9.48. 



CHAPTER 10 

Domination in graphs 

Next we turn our attention to sets of vertices in a graph G that are close to 
all vertices of G, in a variety of ways, and study minimum such sets and 

their cardinality. 

10.1 THE DOMINATION NUMBER OF A GRAPH 

A vertex v in a graph G is said to dominate itself and each of its neighbors, 
that is, v dominates the vertices in its closed neighborhood N[t?]. A set S 
of vertices of G is a dominating set of G if every vertex of G is dominated 
by at least one vertex of S. Equivalently, a set S of vertices of G is a 
dominating set if every vertex in V(G) — S is adjacent to at least one 

vertex in S. The minimum cardinality among the dominating sets of G 
is called the domination number of G and is denoted by 7(G). 
A dominating set of cardinality 7(G) is then referred to as a minimum 
dominating set. 

The sets Sj = {t?-j,u2,3/1,1/2} ar,d S2 = {wi,io2,x} are both dominating 
sets in the graph G of Figure 10.1, indicated by solid circles. Since S2 is 
a dominating set of minimum cardinality, 7(G) = 3. 

Dominating sets appear to have their origins in the game of chess, 

where the goal is to cover or dominate various squares of a chessboard 
by certain chess pieces. In 1862 de Jaenisch [Dl] considered the problem 

of determining the minimum number of queens (which can move either 
horizontally, vertically or diagonally over any number of unoccupied 
squares) that can be placed on a chessboard such that every square is 

either occupied by a queen or can be occupied by one of the queens in 
a single move. The minimum number of such queens is 5 and one possible 
placement of five such queens is shown in Figure 10.2. 

Two queens on a chessboard are attacking if the square occupied by one 
of the queens can be reached by the other queen in a single move; other¬ 
wise, they are nonattacking queens. Clearly, every pair of queens on the 
chessboard of Figure 10.2 are attacking. The minimum number of non¬ 

attacking queens such that every square of the chessboard can be reached 

by one of the queens is seven. A possible placement of seven nonattacking 
queens is shown in Figure 10.3. 



The domination number of a graph 303 

Q 

Q 

Q 
Q 

Q 

Figure 10.2 The minimum number of queens that dominate the squares of a 
chessboard. 

Q 
Q 

Q 
Q 

Q 

Q 
Q 

Figure 10.3 The minimum number of nonattacking queens that dominate the 
squares of a chessboard. 
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The connection between the chessboard problem described above and 
dominating sets in graphs is immediate. The 64 squares of a chessboard 

are the vertices of a graph G and two vertices (squares) are adjacent in G if 
each square can be reached by a queen on the other square by a single 

move. The graph G is referred to as the queen's graph. Then the minimum 
number of queens that dominate all the squares of a chessboard is 7(G). 

The minimum number of nonattacking queens that dominate all the 
squares of a chessboard is the minimum cardinality of an independent 

dominating set in G. 
Domination as a theoretical area in graph theory was formalized by 

Berge in 1958 [see B7, p. 40] and Ore [02, Chap. 13] in 1962. Since 1977, 
when Cockayne and Hedetniemi [CH4] presented a survey of domination 

results, domination theory has received considerable attention. 
A minimal dominating set in a graph G is a dominating set that contains 

no dominating set as a proper subset. A minimal dominating set of 

minimum cardinality is, of course, a minimum dominating set and con¬ 
sists of 7(G) vertices. For the graph G of Figure 10.1, the set St = 

{1^,172,1/1,1/2} *s a minimal dominating set that is not a minimum 
dominating set. Minimal dominating sets were characterized by Ore 
[02, p. 206], 

Theorem 10.1 

A dominating set S of a graph G is a minimal dominating set of G if and only if 
every vertex v in S satisfies at least one of the following two properties: 

(i) there exists a vertex w in V(G) — S such that N(w) n S = {v}; (10.1) 
(ii) v is adjacent to no vertex of S. (10.2) 

Proof 

First, observe that if each vertex v in S has at least one of the properties 
(10.1) and (10.2), then S — {y} is not a dominating set of G. Consequently, 
S is a minimal dominating set of G. 

Conversely, assume that S is a minimal dominating set of G. Then cer¬ 
tainly for each v E S, the set S — {y} is not a dominating set of G. Hence 
there is a vertex w in V(G) — (S - {y}) that is adjacent to no vertex of 

S — {y}. If w — v, then v is adjacent to no vertex of S. Suppose then that 
w ^ v. Since S is a dominating set of G and w £ S, the vertex w is adjacent 
to at least one vertex of S. However, w is adjacent to no vertex of S — {y}. 
Consequently, N(w) n S = {y}. □ 

The following result of Ore [02, p. 207] gives a property of the comple¬ 

mentary set of a minimal dominating set in a graph without isolated 
vertices. 
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Theorem 10.2 

If G is a graph without isolated vertices and S is a minimal dominating set of G, 

then V(G) — S is a dominating set of G. 

Proof 

Let v € S. Then v has at least one of the two properties (10.1) and (10.2) 
described in the statement of Theorem 10.1. Suppose first that there exists 

a vertex w in V(G) — S such that N(w) n S = {u}. Hence v is adjacent to 
some vertex in V(G) — S. Suppose next that v is adjacent to no vertex in S. 
Then v is an isolated vertex of the subgraph (S). Since v is not isolated in 

G, the vertex v is adjacent to some vertex of V(G) — S. Thus V(G) — S is a 
dominating set of G. □ 

For graphs G without isolated vertices, we now have an upper bound 
for 7(G) in terms of the order of G. 

Corollary 10.3 

If G is a graph of order n without isolated vertices, then 7(G) < n/2. 

Proof 

Let S be a minimal dominating set of G. By Theorem 10.2, V(G) — S is a 
dominating set of G. Thus 

7(G) < min{|S|, |V(G) — S|} ^ n/2. □ 

Many graphs attaining the bound in Corollary 10.3 can be produced by 
the following operation. The corona cor(H) of a graph H is that graph 
obtained from H by adding a pendant edge to each vertex of H. Let 
G = cor(H), where G has order n. Then G has no isolated vertices and 
7(G) = n/2. Indeed, Payan and Xuong [PX1] showed that every compo¬ 

nent of a graph G of order n without isolated vertices having 7(G) = n/2 is 
either C4 or the corona of some (connected) graph. 

Hence, if G is a graph of order n, then 7(G) ^ n; while, by Corollary 
10.3, if (5(G) ^ 1, then 7(G) ^ n/2. McCuaig and Shepherd [MS2] showed 
that if <5(G) ^ 2, and G is not one of seven exceptional graphs, then 

<5(G) ^ 2n/5. Reed [R3] showed that if 6(G) ^ 3, then 6(G) ^ 3n/8. A 
more general result is due to Payan [P2]. We delay its proof until Chapter 
13 (Theorem 13.4) when the probabilistic method of proof is described. 

Theorem 10.4 

Let G be a graph of order n with 6 = 6(G) ^ 2. Then 

^ n( 1 + ln(<5 + 1)) 
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Bollobas and Cockayne [BC2] showed that every graph without iso¬ 

lated vertices contains a minimum dominating set in which every 

vertex satisfies (10.1). 

Theorem 10.5 

Every graph G without isolated vertices contains a minimum dominating set S 
such that for every vertex v of S, there exists a vertex w of G — S such that 

N(w) n S — {u}. 

Proof 

Among all minimum dominating sets of G, let S be one such that (S) has 

maximum size. Suppose, to the contrary, that S contains a vertex v that 
does not have the desired property. Then by Theorem 10.1, v is an isolated 
vertex in (S). Moreover, every vertex of V{G) — S that is adjacent to v is 

adjacent to some other vertex of S as well. Since G contains no isolated 
vertices, v is adjacent to a vertex w in V(G) — S. Consequently, 
(S — {u}) U {re} is a minimum dominating set of G whose induced sub¬ 
graph contains at least one edge incident with w and hence has a greater 
size than (S). This produces a contradiction. □ 

Bounds for the domination number of a graph can be given in terms of 
the order and the maximum degree of the graph. The lower bound in the 
following theorem is due to Walikar, Acharya and Sampathkumar 
[WAS1], while the upper bound is due to Berge [B8], 

Theorem 10.6 

If G is a graph of order n, then 

n 

1 + A(G) 
^ 7(G) ^ n - A(G). 

Proof 

We begin with the lower bound. Let S be a minimum dominating set of G. 
Then 

V(G) - S C |J N(v), 
veS 

implying that |V(G) — S| ^ |S| • A(G). Therefore, n — 7(G) ^ 7(G) • A(G) 
and so 7(G) ^ \n/( 1 + A(G))]. 

Next we establish the upper bound. Let v be a vertex of G with 

degy = A(G). Then V(G) — N(v) is a dominating set of cardinality 
n - A(G); so 7(G) </i - A(G). □ 
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Since k(G) ^ A(G) for every graph G, we have the following conse¬ 
quence of Theorem 10.6, due to Walikar, Acharya and Sampathkumar 

[WAS1]. 

Corollary 10.7 

If G is a graph of order n, then 

7(G) < n - k(G). 

The domination number of a graph without isolated vertices is also 
bounded above by all of the covering and independence numbers. 

Theorem 10.8 

If G is a graph without isolated vertices, then 

7(G) ^ min{a(G),ai(G),/3(G),A(G)}. 

Proof 

Since every vertex cover of a graph without isolated vertices is a dominat¬ 
ing set, as is every maximal independent set of vertices, 7(G) ^ a(G) and 
7(G) ^ /3(G). Let X be an edge cover of cardinality aj(G). Then every 
vertex of G is incident with at least one edge in X. 

Let S be a set of vertices, obtained by selecting an incident vertex with 

each edge in X. Then S is a dominating set of vertices and 7(G) ^ |S| < 

|X|=ai(G). 
Next, let M be a maximum matching in G. We construct a set S of vertices 

consisting of one vertex incident with an edge of M for each edge of M. 
Let uv e M. The vertices u and v cannot be adjacent to distinct M-vertices 
x and y, respectively; for otherwise, x,u,v,y is an M-augmenting path 
in G, contradicting Theorem 9.2. If u is adjacent to an M-vertex, place u 

in S; otherwise, place v in S. This is done for each edge of M. Thus, S is a 
dominating set of G, and 7(G) ^ |S| = |M| = (3\(G). □ 

Vizing [V5] obtained an upper bound for the size of a graph in terms of 
its order and domination number. We omit the proof of this result. 

Theorem 10.9 

If G is an (n, m) graph for which 7 = 7(G) ^ 2, then 

_ ^ (« ~i)(n -7 + 2) 

2 
(10.3) 
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With the aid of Theorem 10.9, we can now supply bounds for the domi¬ 

nation number of a graph in terms of its order and size. The lower bound 

is due to Berge [B8]. 

Theorem 10.10 

If G is an (n, m) graph, then 

n — m ^ 7(G) ^ n + 1 — \/l + 2m. 

Furthermore, 7(G) = n — m if and only if each component of G is a star or an 
isolated vertex. 

Proof 

Rewriting the inequality (10.3) given in Theorem 10.9, we have 

(n- 7(G))2 + 2(n- 7(G))- 2m 2*0. (10.4) 

Solving the inequality (10.4) for n — 7(G) and using the fact that 
n — 7(G) ^ 0, we have that 

n — 7(G) ^ — 1 + v/l + 2m, 

which establishes the desired upper bound. 
Since 7(G) ^ 1, the lower bound is established when m ^ n — 1, which 

includes all connected graphs. Assume then that m < m — 1. Then G is a 
graph with at least n — m components. The domination number of each 

component of G is at least 1; so 7(G) ^ n — m, with equality if and only if G 
has exactly n — m components, each with domination number 1. This can 
occur only, however, if G is a forest with n — m components, each of which 
is a star or an isolated vertex. □ 

The Nordhaus-Gaddum theorem (Theorem 8.17) provided sharp 
bounds on the sum and product of the chromatic numbers of a graph 
and its complement. We now present the corresponding result for the 

domination number. The following result is due to Jaeger and Payan 
[JP1], the proof of which is based on a proof by E. J. Cockayne. 

Theorem 10.11 

If G is a graph of order n 2, then 

(i) 3 ^ 7(G) + 7(G) ^ n + 1, 
(ii) 2 ^ 7(G) • 7(G) ^ n. 

Proof 

The lower bounds in (i) and (ii) follow immediately from the observation 
that if 7(G) = 1 or 7(G) = 1, then 7(G) ^ 2 or 7(G) ^ 2, respectively. 
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Next we verify the upper bound in (i). If G has an isolated vertex, then 

7(G) ^ n and 7(G) = 1; while if G has an isolated vertex, then 7(G) ^ n 
and 7(G) = 1. So, in these cases, 7(G) + 7(G) < n + 1. If neither G nor G 

has isolated vertices, then 7(G) ^ n/2 and 7(G) ^ n/2 by Corollary 10.3 
and so 7(G) + 7(G) ^ n. 

It remains then only to verify the upper bound in (ii). The upper bound 

is immediate if 7(G) = 1, so we assume that 7(G) — k ^ 2. Let 

S = {vi,v2,... ,vk} be a minimum dominating set of G and partition 
V(G) into 7(G) = k subsets V^, V2,..., Vk subject to the conditions that 
(a) Vj E V, for 1 ^ i ^ k and all vertices in V, are dominated by v, and 
(b) the sum over all integers i (1 ^ i ^ k) of the number of vertices in Vj- 
adjacent to all other vertices in V, is a maximum. 

We now show that each set V, (1 < i < k) is a dominating set of 
G. Suppose that this is not the case. Then there exists a vertex x E V, 
that is adjacent in G to no vertex of Vs for distinct integers s and t 

with 1 < s, t < k. Then x is adjacent in G to every vertex of Vs. If x = vt, 
then S — {us} is a dominating set of G having cardinality less than 
7(G), which is impossible. Consequently, x G Vt — {u,}. If x is adjacent 

in G to every other vertex of Vf, then (S — {ys>yf}) U {x} is a dominating 
set of G having cardinality less than 7(G), which is again impossible. 

Therefore, x is adjacent in G to every vertex of Vs but not to every 
vertex of Vt. 

Define Vj — Vt — {x} and V's = Vs U {x}. For r ^ s,t, define V'r = Vr. 

Thus, we now have a partition of V(G) into subsets Vj, V2,..., V[ such 
that Vi G V{ for 1 ^ i ^ k and all vertices in V[ are dominated by Vj. 
However, the sum over all subsets Vj (1 ^ i ^ k) of the number of vertices 
in Vj adjacent to all other vertices of Vj exceeds the corresponding sum for 
the partition Vlt V2,..., Vk/ which is a contradiction. 

Thus, as claimed, each subset V, (1 ^ i ^ k) is a dominating set in G; 
so 7(G) ^ |V,| for each i. Hence 

k 

" = 7(G)-7(G). □ 
1=1 

The upper bound in (i) in Theorem 10.11 can be restated as: If Kn (n ^ 2) 

is factored into G1 and G2, then 7(G!) + 7(G2) < n + 1. Goddard, Henning 
and Swart [GHS1] obtained the corresponding upper bound for three 

factors. 

Corollary 10.12 

If Kn is factored into G^ G2 and G3, then 

7(Gi) +7(G2) + 7(G3) ^ 2n + 1. 
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Proof 

Domination in graphs 

Since G2©G3 = G1; it follows from Theorem 10.11 that 7(Gj)+ 

7(G2 © G3) ^ n + 1. Now let S be a dominating set for G2 © G3. Thus 
every vertex of G2 © G3 is dominated by a vertex of S. Consequently, 
for each vertex v of G2 © G3, the vertex v is not dominated by a vertex 
of S in at most one of G2 and G3. Thus, in extending S to dominating 

sets S2 and S3 for G2 and G3, respectively, each vertex of G2 © G3 need 
be added at most once. So 7(G2) + 7(G3) ^ 7(G2 © G3) + n. Therefore, 

7(Gi) + 7(G2) + 7(G3) < 7(Gi ) + 7(G2 © G3) + n ^ 2n + 1. □ 

All of the bounds presented in Theorem 10.11 are sharp (Exercise 10.8); 

however, if neither G nor G has isolated vertices, then an improved upper 
bound for 7(G) + 7(G), due to Joseph and Arumugam [JA1], can be given. 

Theorem 10.13 

If G is a graph of order n ^ 2 such that neither G nor G has isolated vertices, then 

— n -T 4 
7(G) + 7(G) 

Proof 

Since neither G nor G has isolated vertices, it follows from Corollary 10.3 

that 7(G) ^ n/2 and 7(G) ^ m/2. Hence if either 7(G) = 2 or 7(G) = 2, 
then the proof is complete. If 7(G) ^ 4 and 7(G) ^ 4, then by the upper 

bound in (ii) in Theorem 10.11, we have that 7(G) ^ n/^{G) ^ m/4 and 
7(G) ^ m/7(G) ^ m/4; so 7(G) + 7(G) ^ m/2. Hence we may assume that 
7(G) = 3 or 7(G) = 3, say the former. Thus 3 = 7(G) ^ m/2, so m ^ 6. By 

Theorem 10.11, 7(G) ^ m/3. Therefore 

7(G)+7(G)<3 + ! ^2 + ^. □ 

For the bound stated in Theorem 10.13 to be attained, either G or G must 
have domination number m/2. In the discussion following Corollary 10.3, 

graphs G of order n without isolated vertices and having 6(G) = m/2 were 
described. 

If G is a graph containing nonadjacent vertices u and v, then either 
7(G + uv) — 7(G) or 7(G + uv) = 7(G) — 1. A graph G is called domination 
maximal if y(G + uv) = 7(G) — 1 for every two nonadjacent vertices u and v 
of G. If G is a domination maximal graph with 7(G) = k, then G is k- 

domination maximal. The 1-domination maximal graphs are (vacuously) 
the complete graphs. The 2-domination maximal graphs were character¬ 

ized by Sumner and Blitch [SB1], A galaxy is a forest, every component of 
which is a (nontrivial) star. 
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Theorem 10.14 

A graph G is 2-domination maximal if and only if G is a galaxy. 

Proof 

Assume first that G is a graph of order n ^ 2 such that G is a galaxy. Then 
A(G) = n — 2; so 7(G) ^ 2. Let u and v be nonadjacent vertices of G. By 
hypothesis, uv is an edge of a star in G, where, say, u is an end-vertex of 
the star. Then in G + uv, the vertex u has degree n — 1. Thus, 
7(G + uv) = 1. Hence 7(G) = 2, and G is 2-domination maximal. 

For the converse, assume that G is a 2-domination maximal graph. 
Then, for every two nonadjacent vertices u and v of G, it follows that 
7(G + uv) — 1. Hence either u or v, say u, has degree n — 1 in G + uv, 
which implies that u has degree 1 in G. This implies that uv and, in fact, 
every edge of G is a pendant edge. Thus G is a galaxy. □ 

Although 3-domination maximal graphs have not been characterized, 
some properties of these graphs have been found. The following result is 
due to Sumner and Blitch [SB1 ]. 

Theorem 10.15 

Every connected 3-domination maximal graph of even order has a l-factor. 

Wojcicka [W9] showed that 3-domination maximal graphs possess 
some hamiltonian properties. 

Theorem 10.16 

Every connected 3-domination maximal graph of order at least 7 contains a 
hamiltonian path. 

It is not known whether every connected 3-domination maximal graph 
of order at least 7 is hamiltonian. We close this section with another 
unsolved problem, namely, a conjecture due to V. G. Vizing. 

Vizing's Conjecture 

For every two graphs G and H, 

7(GxH)>7(G)-7(H). 

EXERCISES 10.1 

10.1 Determine the domination numbers of the 3-cube Q3 and the 4- 
cube Q4. 
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10.2 (a) Determine (with proof) a formula for 7(C„). 
(b) Determine (with proof) a formula for 7(P„). 

10.3 Obtain a sharp lower bound for the domination number of a con¬ 

nected graph G of order n and diameter k. 

10.4 State and prove a characterization of those graphs G with 7(G) = 1. 

10.5 Investigate the sharpness of the bounds given in Theorem 10.6. 

10.6 (a) Does there exist a graph G such that 7(G) = a(G) but 7(G) is 
strictly less than each of the numbers cq(G), /3(G) and /^(G)? 

(b) The question in (a) suggests three other questions. State and 
answer these questions. 

10.7 Show that equality is possible for the upper bound given in 
Theorem 10.10. 

10.8 Show that all bounds given in Theorem 10.11 are sharp. 

10.2 THE INDEPENDENT DOMINATION NUMBER OF A GRAPH 

It is not difficult to see that every maximal independent set of vertices in 
a graph G is a dominating set of G. Thus, 7(G) ^ i(G), where, recall, i(G) 
is the lower independence number of G. Not every dominating set is 
independent, however. Indeed, not every minimum dominating set is 

independent. For example in the graph G of Figure 10.4, the set St = 
{ui,u2,V],v2,w-[,w2}is a maximal independent set (and consequently a 
dominating set) of G; while S2 = {x,y,z} is a minimum dominating set 
of G and certainly S2 is not independent. (These sets are indicated in 
Figure 10.4 by solid circles.) However, G does contain a minimum 

dominating set of G that is independent, namely, S3 = {u,v,wj. 
Our attention now shifts in this section to dominating sets that are also 

maximal independent sets. A set S of vertices in a graph G is called an 
independent dominating set of G if S is both an independent and a dominat¬ 

ing set of G. Thus the sets St and S3 in Figure 10.4 are independent domi¬ 
nating sets while S2 and S4 = {iq.iq,w^) are not. The independent 
domination number i(G) of G is the minimum cardinality among all 
independent dominating sets of G. That this is precisely the notation 

used for the lower independence number of a graph is justified by the 
following observation of Berge [B8]. 

Theorem 10.17 

A set S of vertices in a graph is an independent dominating set if and only if S is 
maximal independent. 
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u U2 vi v 

Figure 10.4 Dominating sets and maximal independent sets. 

Proof 

We have already noted that every maximal independent set of vertices is a 
dominating set. Conversely, suppose that S is an independent dominating 
set. Then S is independent and every vertex not in S is adjacent to a vertex 
of S, that is, S is maximal independent. □ 

Another observation now follows. 

Corollary 10.18 

Every maximal independent set of vertices in a graph is a minimal dominating set. 

Proof 

Let S be a maximal independent set of vertices in a graph G. By Theorem 
10.17, S is a dominating set. Since S is independent, certainly every vertex 

of S is adjacent to no vertex of S. Thus, every vertex of S satisfies property 
(ii) of Theorem 10.1. So, by Theorem 10.1, S is a minimal dominating 
set. □ 

We have noted that 7(G) ^ /(G) for every graph G. That this inequality 
can be strict is illustrated by the queen's graph G for which 7(G) = 5 and 

i(G) — 7. Also, equality can hold since 7(X1 f) = i(Kif) = 1 for every 
positive integer t. For 1 ^ s < t, let H be the graph obtained from Ks t by 
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adding a pendant edge to each vertex of the partite set of cardinality s. 

Then 7(H) = i(H) = s. That the difference between z(G) and 7(G) can be 
arbitrarily large can be seen in the double star T containing two vertices of 

degree k ^ 2, where z(T) = k and 7(T) = 2. 
For some special classes of graphs, Bollobas and Cockayne [BC1] 

determined an upper bound for i(G) in terms of 7(G). 

Theorem 10.19 

If G is a k+i-free graph, where k ^ 2, then 

i(G)<(k-l)7(G)-(k-2). 

Proof 

Let S be a minimum dominating set of vertices of G and let S; be a maxi¬ 
mal independent set of vertices of S in G. Thus, |S| = 7(G) and |S'| ^ 1. 

Now, let T denote the set of all vertices in V(G) — S that are adjacent in G 
to no vertex of S', and let T' be a maximal independent set of vertices in T. 
Certainly, then. S' U T' is an independent set of vertices of G. Since every 
vertex of V(G) — (S/ U T) is adjacent to some vertex of S' and every vertex 
of T — T' is adjacent to some vertex of T', it follows that S' U T' is a max¬ 

imal independent set of vertices. Thus, by Theorem 10.17, S' U T' is an 
independent dominating set. 

Observe that every vertex of S — S' is adjacent to at most k — 1 vertices 

of T'; for if this were not the case, then some vertex v of S — S' is adjacent to 
at least k vertices of T' and also at least one vertex of S', which contradicts 
the hypothesis that G contains no induced subgraph isomorphic to K-[ k+1. 

Also, observe that every vertex of T1 is adjacent to some vertex of S — S'. 
Therefore, 

IT'I < (k - 1)1 S - S'l = (k- 1)(|S| - |S'|) = (k - 1)(7(G) - |S'|). 

Consequently, 

i(G) ^ is'ur'i = |S'| + \T'\ 

^|S'| + (k-l)(7(G)-|S'|) 

= (fc—l)7(G)-(k-2)|S'| 

< (k — 1)7(G) - (k - 2). □ 

The special case of Theorem 10.19 where k = 2 is of particular interest. 

Corollary 10.20 

If G is a claw-free graph, then 7(G) = /(G). 
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The converse of Corollary 10.20 is certainly not true, though, since 

j(Kh3) = i(Kh3) = l. 
Since every line graph is claw-free (by Theorem 4.42), we have a 

consequence of Corollary 10.20. 

Corollary 10.21 

For every graph G, 

7 (L(G)) = i(L(G)). 

No forbidden subgraph characterization of graphs G for which 

7(G) = z(G) is possible; for suppose that H is a given graph and we 
define G = + H. Then 7(G) = z(G) = 1. 

In Chapter 8, a graph G is defined to be perfect if x(H) = u;(H) for every 

induced subgraph H of G. A graph G is domination perfect if 7(H) = z(H) 
for every induced subgraph H of G. A class of domination perfect graphs 
is provided by Corollary 10.20. 

Corollary 10.22 

Every claw-free graph is domination perfect. 

Sumner and Moore [SMI] stated that it is not necessary to consider 
every induced subgraph of a graph G in order to show that G is domina¬ 
tion perfect. 

Theorem 10.23 

A graph G is domination perfect if and only if 7(H) = z(H) for every induced 

subgraph H of G with 7(H) = 2. 

Fulman [FI2] obtained a characterization of domination perfect 

graphs in terms of eight forbidden subgraphs; while Zverovich and 
Zverovich [ZZ1] discovered such a characterization in terms of seventeen 
forbidden induced subgraphs. A survey of domination perfect graphs 

is given in Sumner [S10]. Allan, Laskar and Hedetniemi [ALH1] 
presented an upper bound for 7(G) + z'(G) for a graph G without isolated 

vertices. 

Theorem 10.24 

If G is a graph of order n without isolated vertices, then 

7(G) + z'(G) ^ n. 
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Proof 

Domination in graphs 

By Theorem 10.8, 7(G) ^ a(G) and by definition, i(G) ^ /3(G). By Gallai's 

theorem (Theorem 9.12), /3(G) + a(G) = n; so 7(G) 4- z(G) ^ n. □ 

The bound presented in Theorem 10.24 is sharp in the sense that there are 
infinitely many graphs G for which 7(G) + z(G) = |V(G)| (Exercise 10.12). 

Gimbel and Vestergaard [GV1] discovered an upper bound for the 

independent domination number of an arbitrary graph. 

Theorem 10.25 

If G is a connected graph of order n ^ 2, then 

i(G) ^ n + 2 — 2\fn. 

The bound presented in Theorem 10.25 is sharp as well (Exercise 10.13). 
For bipartite graphs, however, a simple improved upper bound for the 
domination number exists. 

Theorem 10.26 

If G is a connected bipartite graph of order n, then i(G) ^ n/2. 

Proof 

Denote the partite sets of G by V] and V2, where |V-j| ^ \V2\- Since V, 
is an independent dominating set and IVjI^m/2, it follows that 

((G) ^ m/2. □ 

EXERCISES 10.2 

10.9 Show that a graph need not have any minimum dominating set that 
is independent. 

10.10 Prove or disprove: If a graph G contains an independent minimum 
dominating set of vertices, then 7(G) = i(G). 

10.11 For each integer k 3, show that there exists a graph G such that 

i(G) = k and 7(G) - 3. 

10.12 Show that there are infinitely many graphs G for which 

7(G) + z(G) = |V(G)|. 

10.13 Show that the bound stated in Theorem 10.25 is sharp. 

10.14 Show that the bound given in Theorem 10.26 is sharp. 
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10.3 OTHER DOMINATION PARAMETERS 

In the previous section we introduced a variant of the classical domina¬ 

tion number, namely, the independent domination number. In this 
section, we describe several other domination parameters that have 
been the object of study. 

For a set A of vertices in a graph G, the closed neighborhood N[A] of A is 

defined by N[A] = Uuca N[v]. Equivalently, N[A] = N(A) U A. A set S of 
vertices in G is called an irredundant set of G if for every vertex u e S, there 
exists a vertex w 6 N[v] such that zv 0 N[S — {u}]. Equivalently, S is an 
irredundant set of vertices of G if N[S — {u}] N[S] for every vertex 
v £ S. Every vertex v with this property is an irredundant vertex. Therefore, 

every vertex in an irredundant set is an irredundant vertex. A set S of 
vertices that is not irredundant is called redundant. Consequently, a set 

S of vertices in a graph G is redundant if and only if there exists a 
vertex v in S for which N[S — {y}] = N[S], Such a vertex v is called a 
redundant vertex (with respect to S). 

For the graph G of Figure 10.5, let S — {w, y, s}. Then S is an irredundant 

set of G. For example, u e N[S] but u£N[S — {w}]. Similarly 

x & N[S — {y}] and s ^ N[S — {s}]. 
A characterization of irredundant sets is presented next. 

Theorem 10.27 

A set S of vertices in a graph G is irredundant if and only if every vertex v in S 
satisfies at least one of the following two properties: 

(i) there exists a vertex w in V(G) — S such that N(w) flS = {n}. (10.5) 
(ii) v is adjacent to no vertex of S. (10.6) 

Proof 

First, let S be a set of vertices of G such that for every vertex v G S, at least 
one of the properties (10.5) and (10.6) is satisfied. If (10.5) is satisfied, then 

Figure 10.5 Irredundant sets of vertices. 

S = {w.y.j} 
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there exists a vertex w G N[v] such that vo £ N[S — {n}]. If (10.6) is satisfied, 

then v 0 N[S - {y}]. In either case, S is irredundant. 
Conversely, let S be an irredundant set of vertices in G, and let v € S. 

Since S is irredundant, there exists w G N[v] such that w £ N[S — {n}]. If 

w / v, then (10.5) is satisfied; while if w = v, then (10.6) is satisfied. □ 

By Theorem 10.1, then, a minimal dominating set of vertices in a graph 
is an irredundant set. Hence, every graph has an irredundant dominating 

set of vertices. 
If S is an irredundant set of vertices in a graph G, then for each v G S, the 

set N[v] — N[S — {u}] is nonempty. Each vertex in N[v] — N[S — {i?}] is 
referred to as a private neighbor of v. The vertex v may, in fact, be a private 

neighbor of itself. Consequently, a nonempty set S of vertices in a graph G 
is irredundant if and only if every vertex of S has a private neighbor. 
Certainly every nonempty subset of an irredundant set of vertices in a 

graph G is irredundant. Also, every independent set of vertices is an 
irredundant set. 

The irredundance number ir(G) of a graph G is the minimum cardinality 
among the maximal irredundant sets of vertices of G. Since the set 
S = {r, z} is a maximal irredundant set of vertices of minimum cardinality 

for the graph G of Figure 10.5, it follows that for this graph, ir(G) = 2. To 
see that S is irredundant, observe that y is a private neighbor of r, and w is 

a private neighbor of z. To see that S is a maximal irredundant set, note that 
(1) {s, r, f} is not irredundant since s would have no private neighbor, (2) 
{x, r, f} and {y, r, t} are not irredundant since r would have no private 
neighbor, and (3) {u,r,z}, {v,r,t} and {w, r,z} are not irredundant since 
z would have no private neighbor. Hence a maximal irredundant set need 
not be a dominating set and, strictly speaking, the irredundance number 
is not a domination parameter. 

The next result summarizes how the parameters discussed thus far in 
this chapter are related. 

Theorem 10.28 

For every graph G, 

ir(G) sc 7(G) ^ /(G). 

Proof 

We have already observed that 7(G) ^ z(G). The inequality ir(G) ^ 7(G) is 
a consequence of the fact that every minimal dominating set of vertices of 
G is an irredundant set. □ 

That the inequality ir(G) ^ 7(G) may be strict is illustrated in the graph 
G of Figure 10.5, where 7(G) = 3 and ir(G) = 2. Also, for the graph H of 



Other domination parameters 319 

Figure 10.6 Graphs whose domination numbers exceed their irredundance 
numbers. 

Figure 10.6, we have 7(H) = 3 and ir(H) = 2. The set is a maximal 
irredundant set of minimum cardinality in H. In order to see that {u1, 17 } is 
a maximal irredundant set in H, observe that (1) t has no private neighbor 

in {t, iq, zq}, (2) u-i has no private neighbor in {iq, zq, u2} and {iq, zq, u3}, 
and (3) zq has no private neighbor in {zq, zq, zq} and {iq, zq, v3}. Moreover, 
for the tree T of Figure 10.6, 7(T) = 5 and ir(T) = 4. The set {w, x, y, z} is a 
maximal irredundant set of minimum cardinality in T. 

Cockayne and Mynhardt [CM1] provided a lower bound for the 
irredundance number of a graph in terms of its order and maximum 

degree. 

Theorem 10.29 

If G is a graph of order n and maximum degree A(G) ^ 2, then 

ir(G) > 
2n 

3A(G) ’ 

An inequality relating the irredundance number of a graph and its 
domination number was discovered by both Allan and Laskar [AL1] 
and Bollobas and Cockayne [BC1]. 

Theorem 10.30 

For every graph G, 

7(G) <2ir(G) -1. 

A forbidden subgraph characterization of graphs G for which 

ir(G) = 7(G) cannot exist. To see this, let G be a graph and define 
H = X] + G. Then H contains G as an induced subgraph and 
ir(H) = 7(G) = 1. A sufficient condition in terms of forbidden subgraphs 
for a graph to have equal irredundance number and domination number 
was found by Laskar and Pfaff [LP1]. Recall that a graph G is chordal if 

every cycle of order 4 or more contains a chord. 
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Theorem 10.31 

Domination in graphs 

If G is a chordal graph that contains neither of the graphs H and T of Figure 10.6 

as an induced subgraph, then ir(G) = 7(G). 

A graph G is then defined to be irredundance perfect if ir{H) = 7(H) 

for every induced subgraph H of G. We now have two immediate 

corollaries. 

Corollary 10.32 

A chordal graph G is irredundance perfect if and only if G contains neither of the 

graphs H and T of Figure 10.6 as an induced subgraph. 

Corollary 10.33 

A tree G is irredundance perfect if and only if G does not contain the tree T of 

Figure 10.6 as a subgraph. 

Favaron [F3] established a forbidden subgraph sufficient condition for a 

graph G to have ir(G) = 7(G) — /(G). 

Theorem 10.34 

If a graph G is both claw-free and H-free, for the graph H of Figure 10.6, then 

ir(G) = 7(G) = i(G). 

Favaron [F3] also established a sufficient condition for a (not necessarily 
chordal) graph to be irredundance perfect in terms of six forbidden 

subgraphs. 

Theorem 10.35 

If a graph G has no induced subgraph isomorphic to any of the six graphs G, 
(1 ^ i 6) shown in Figure 10.7, then G is irredundance perfect. 

O-O 

T Y 

O O 

?-? 

I-T 

O 0 

O-O 

T-T 

O-0 

?-? 

? T 

0-O 

0-00 

T-T 

6 0 
G\ Gi Gi C4 Gs 

Figure 10.7 Forbidden subgraphs for irredundance perfect graphs. 
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O. Favaron conjectured, however, that not all six graphs of Figure 10.7 

are needed as forbidden subgraphs for an irredundance perfect graph. 

Favaron's Conjecture 

If a graph G has no induced subgraph isomorphic to any of the graphs G!, G2 and 
G3 of Figure 10.7, then G is irredundance perfect. 

In this connection, Henning [H12] obtained the following result. 

Theorem 10.36 

If a graph G has no induced subgraph isomorphic to any of the graphs Gj, G2 and 
G3 of Figure 10.7, then 7(H) = ir(H) for every induced subgraph H of G with 

ir(H) ^ 4. 

From Theorem 10.23, a graph G is domination perfect if and only if 
7(H) = i(H) for every induced subgraph H of G with 7(H) = 2. Henning 
[HI2] conjectured that such a result exists for irredundance perfect graphs 

as well. 

Henning's Conjecture 

A graph G is irredundance perfect if and only ify(H) = ir(H) for every induced 
subgraph H of G with ir(H) ^ 4. 

It follows that if Henning's Conjecture is true, then so too is Favaron's. 
We now introduce two other domination parameters - the so-called 
upper domination parameters. The upper domination number T(G) of a 
graph G is the maximum cardinality of a minimal dominating set of G; 

while the upper irredundance number IR(G) of G is the maximum cardinal¬ 
ity of an irredundant set of G. We now summarize in Figure 10.8 the para¬ 
meters we have introduced thus far in this chapter together with the 

vertex independence parameters we introduced earlier. 
The six parameters described in Figure 10.8 make up a string of inequal¬ 

ities, which was first observed by Cockayne and Hedetniemi [CH4]. 

minimum cardinality maximum cardinality 

maximal independent 
set of vertices in G 

minimal dominating 
set of vertices of G 

maximal irredundant 
set of vertices of G 

lower independence 
number z(G) 

domination number 

7(G) 

irredundance number 
ir(G) 

independence number 
m 

upper domination 
number T(G) 

upper irredundance 
number IR(G) 

Figure 10.8 Summary of definitions of parameters. 
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Theorem 10.37 

For every graph G, 

ir(G) ^ 7(G) ^ i(G) < 0(G) ^ T(G) ^ IR(G). 

Proof 

Since every minimal dominating set is an irredundant set, it follows 

that T(G) < IR(G). Moreover, every maximum independent set is a 
dominating set; so 0(G) ^ T(G). Also, since an independent dominating 
set is independent, i(G) ^ 0(G). The result now follows from Theorem 

10.28. □ 

Cockayne, Favaron, Payan and Thomason [CFPT1] have shown that 
graphs exist having distinct values for all six parameters mentioned in 

Theorem 10.37. For bipartite graphs, however, three of these parameters 
must have the same value. 

Theorem 10.38 

For every bipartite graph G, 

0(G) = r(G) = 1R(G). 

Proof 

Let G be a bipartite graph with partite sets U and W. Let S be a maximum 
irredundant set of vertices of G, and let T be the set of isolated vertices of 

(S). Furthermore, let 

Uj = T n u, u2 = (s n u) — T, Wt =rnw, w2 = (Snw)-r, 

where one or more of these sets may be empty. Each vertex w E W2 is 

irredundant in S. Since w is not isolated in (S), the vertex w is not its 
own private neighbor. However, since S is an irredundant set, w is a pri¬ 
vate neighbor of some vertex of V(G) — S. Hence for w E VV2, there exists a 

vertex w E V(G) — S such that N(iv') fl S = {zn}. Moreover, since w E VV, 
it follows that vJ E U. 

Let A = {w | w E W2}. Then |A| ^ |W2| and A C Li. Furthermore, no 
vertex of A is adjacent to a vertex of VV]. Consequently, Li, U l/2 U 
W] U A is independent in G. Hence 

0(G) > \UX\ + \U2\ + 1^1 + \A\ > |S| = IR(G). 

The result now follows from Theorem 10.37. □ 

While a vertex v in a graph G dominates the vertices in its closed neigh¬ 
borhood N[v], the vertex v is said to openly dominate the vertices in its 

neighborhood N(v). Thus ordinary domination can be considered as 
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u 1 U2 M3 M4 

Figure 10.9 A graph with 2-domination number 3. 

extended adjacency, while open domination is ordinary adjacency. These 
two types of domination can be described in terms of distance. The vertex 

v dominates all vertices w with d(v,w) ^ 1 and openly dominates all 
vertices w with d(v,w) = 1. For a positive integer k, the k-neighborhood 
Nk(v) is defined by 

Nk(V) = {w G V(G) | d(v, w) =k}. 

The vertex v k-dominates all vertices w with d(v, w) ^ k and k-step dominates 
all vertices w with d(v,w) — k, that is, v /c-step dominates all vertices in 
its /c-neighborhood. Consequently, 1-domination and domination are 
equivalent, as are 1-step domination and open domination. 

For a graph G and a positive integer k, a set S is a k-dominating set if every 

vertex of G is at distance at most k from some vertex of S. The k-domination 
number 7k(G) of G is the minimum cardinality among the /c-dominating 
sets of G. Thus, 71(G) =7(G) and 7, + 1(G) ^7,(G) for every positive 

integer i. For the graph G of Figure 10.9, the set {v2, v5,v8} is a minimum 
2-dominating set; so 72(G) = 3. 

Minimal /c-dominating sets were characterized by Henning, Oeller- 
mann and Swart [HOS1] in a theorem that generalizes Theorem 10.1 
(Exercise 10.20). 

Theorem 10.39 

A k-dominating set S (k ^ 1) of a graph G is a minimal k-dominating set of G if 

and only if every vertex v in S satisfies at least one of the following two properties: 

(i) there exists a vertex w in V(G) - S such that v is the unique vertex of S 
whose distance from w is at most k; (10.7) 

(ii) for all x e S, x ^ v, d(v, x) ^ k + 1. (10.8) 

The following result relates /c-dominating sets with the kth power of a 

graph (Exercise 10.21). 

Theorem 10.40 

For every connected graph G and positive integer k, 

7k(G) = 7 (Gk). 
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The following result is due to Henning, Oellermann and Swart [HOS2]. 

Theorem 10.41 

If G is a connected graph of order at least k 4-1 ^2, then G has a minimum k- 

dominating set S with the property that for each v & S, there exists a vertex 

w 6 V(G) — S with d(v,w) — k such that v is the unique vertex of S whose 
distance from w is at most k. 

As a consequence of Theorem 10.41, we have an upper bound for the k- 

domination number of a graph in terms of its order. This result is also due 
to Henning, Oellermann and Swart [HOS1]. 

Corollary 10.42 

If G is a connected graph of order n ^ k + 1 ^ 2, then 

Proof 

By Theorem 10.41, G contains a ^-dominating set S of cardinality 7jt(G) 

with the property that for each v 6 S, there exists a vertex w G V(G) — S 
with d(v, w) — k such that v is the unique vertex of S whose distance from 
w is at most k. Let %(G) — d and S = {vi,v2,..., v,}. For 1^2^/, let 

Wj e V(G) — S such that d(Vj,Wj) = k such that v, is the unique vertex of 
S whose distance from w, is at most k. Hence G contains pairwise disjoint 

Vj-Wj paths Pj (1^2^ () of length k. Consequently, n t(k +1), which 
produces the desired bound. □ 

For a graph G and a positive integer k, a set S is a k-step dominating set if 
every vertex of G is at distance exactly k from some vertex of S. The k-step 
domination number pk(G) is the minimum cardinality of a L-step dominat¬ 
ing set of G. For the graph G of Figure 10.9 (shown again in Figure 10.10), 

p2(G) = 7. A minimum 2-step dominating set of G is indicated in Figure 
10.10 by solid circles. 

Hayes, Schultz and Yates [HSY1] determined those graphs G for which 
the k-step domination number of G is well-defined (Exercise 10.22). 

G: 

vo vi v2 V3 V4 V5 V6 V7 vs V9 vio 

Figure 10.10 A graph with 2-step domination number 7. 
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Theorem 10.43 

Let G be a connected graph. The k-step domination number ofG is well-defined if 
and only if rad G ^ k. 

Let G be a connected graph with radius r and diameter d. While the 

sequence 7(G) = 71(G), 72(G),... ,7d(G) = 1 is nonincreasing, such need 
not be the case for pi(G), p2{G),..., pr(G). For positive integers i and j 

with i < j, there exist graphs G and H such that p,(G) — p,(G) and 
Pj(G) - pj(G) are arbitrarily large ([CHS1]). Indeed, it may be more effi¬ 
cient to step dominate the vertices of G using distinct distances. 

Let G be an (n,m) graph with V(G) = {zq, v2, ■.., v„}. A sequence 
2, - ■ •,/„ of positive integers is called a universal dominating sequence 

for G if every vertex of G is /,-step dominated by v, for some i 

(1 i ^ n). The integer /,• is referred to as the step of v, (1 < i ^ n). 
Every nontrivial connected graph has a universal dominating sequence; 
indeed, the constant sequence 1,1,..., 1 of length n is such a sequence. 

The value val(s) of a universal dominating sequence s: 0, /2,..., /„ is the 
number of vertices of G that are /,-step dominated for some i (1 < i ^ n) 
counting multiplicities, that is, 

val(s) = ^T\Nti(v,)\. 
1 = 1 

For the constant sequence s — {1} of length n, val(s) = 2m. Thus the First 
Theorem of Graph Theory is a special instance of the value of a universal 

dominating sequence. 
A graph G is a constant universal graph if there exists a positive integer N 

such that val(s) = N for every universal dominating sequence s of G. Every 
complete graph and every odd cycle is a constant universal graph. Hayes, 
Schultz and Yates [HSY1] characterized constant universal graphs. 

Theorem 10.44 

A nontrivial connected graph G is a constant universal graph if and only if 
|Ny(u)| = |Njt(i7)| for every vertex v of G and every pair j, k of integers with 

1 ^ j,k < e(v). 

Proof 

If |N;(u)| = |Njt(y)l f°r every vertex v of G and every pair j, k of integers 
with 1 ^ j, k ^ e(v), then certainly G is a constant universal graph. 

For the converse, assume that G is a constant universal graph with 

V(G) = {v-i,v2,... ,v„}, and suppose, to the contrary, that some vertex, 
say iq, has the property that |Ny(zq)| 7^ |N*.(zq)| for some integers j and k 

with 1 < j < k ^ e(V]). 
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Suppose first that zq is not adjacent to an end-vertex of G. Then the 

sequences {;j}"=1 and {/c,}”=1 defined by 

a if. = i 

\ 1 if 2 ^ i ^ « 

and 

f k if i = 1 

\ 1 if 2 ^ i ^ n 

are universal dominating sequences for G. However, 

E KMi * E kwi. 
i=i i=i 

which is a contradiction. 
Next, suppose that vA is adjacent to an end-vertex v2 and / / 1. Then 

|N,+,(B2)I = |N/(»i)l # |N»(»i)l = M,+1(i>2)|. 

Thus the sequences 

h = 

”=i and {kj}1=i defined by 

f/+l iff = 2 

\ 1 if z 2 (1 ^ i ^ n) 

and 

_ f fc + 1 if i = 2 

1 \ 1 if i 2 (1 ^ i < n) 

are universal sequences for which ^"=1 |Nj (u,)| ^ i |Njt,(z,i)l/ Pro_ 
ducing a contradiction. 

Finally, suppose that zq is adjacent to an end-vertex v2 and j = 1. Let u3 
be a vertex of G such that d(zq,u3) = e(zq) = ( ^ 2. Thus, u3 is not adjacent 
to an end-vertex of G. Moreover, d(v3, v2) = / + 1. Consider the sequences 

{/;}”= l and {fc,}”=1 defined by 

f 2 iff = 2 

ji — < £ 4- 1 if i = 3 

[l if i^2,3 (1 ^i^n) 

and 

r k if i = 1 

2 if i = 2 
kj = 

S + l if i = 3 

.1 if 4 ^ i ^ n. 

The sequence {/,} is certainly a universal sequence for G. We show that 

{It,} is also a universal sequence for G. The vertex v2 2-step dominates all 
neighbors of iq (except v2 itself, of course); while v3 (/ + 1 )-step dominates 
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v2. Since all other vertices of G are 1-step dominated by some vertex of G, it 
follows that {kj} is a universal sequence for G. However, then, 

= i \Njl () | / i \Nk, 4,) I, which is a contradiction. □ 

(a) pl(G) = 3 (b) pj(G) = 4 (c) p2(G) = 4 

Figure 10.11 A graph with planetary domination number 3. 

Corresponding to the notion of universal dominating sequences is 

another domination parameter. Let G be a graph of order n. A sequence 

s: 4> /2> • • • 14 (fc ^ n) of positive integers is called a planetary domination 
sequence for G if G contains distinct vertices tq, t>2,...vk such that every 
vertex of G is /,-step dominated by for some i (1 ^ z ^ k). A planetary 
dominating sequence s for G is minimal if no proper subsequence of s is a 

planetary dominating sequence for G. The length of a minimum planetary 
dominating sequence for G is called the planetary domination number pl(G) 
of G. It is a direct consequence of the definitions that pl(G) ^ p,(G) 
for every nontrivial connected graph G and every integer i with 

l^z^radG. For the graph G of radius 2 shown in Figure 10.11, 
pl(G) = 3 and pi(G) — p2(G) — A. A minimum planetary domination 

sequence and minimum 1-step and 2-step dominating sets are indicated 

in Figure 10.11(a), (b) and (c) respectively. 
Thus for the graph G of Figure 10.11, pl(G) < p,(G) for 1 ^ i ^ rad G. 

Indeed, it was shown in [CHS1] that for every integer k ^ 2, there exists 
a graph G with rad G ^ k such that pl(G) < p,(G) for every integer i 

(1^2^ rad G). 
We note, in closing, that the domination number may be defined for 

digraphs as well. In a digraph D, a vertex v dominates itself and all vertices 
adjacent from v. The domination number 7(D) of D is the minimum cardin¬ 

ality of a set S of vertices of D such that every vertex of D is dominated by 

some vertex of S. 
For a thorough study of domination in graphs, see Haynes, Hedetniemi 

and Slater [HHS1]. 

EXERCISES 10.3 

10.15 (a) Prove that a set S of two or more vertices of G is irredundant if 

and only if it contains no redundant vertex. 
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(b) Characterize those graphs G of order n ^ 2 such that every set S 
of vertices of G with |S| ^ 2 contains a redundant vertex. 

10.16 Verify that y(T) — 5 and ir(T) = 4 for the tree T of Figure 10.6. 

10.17 Let G be a graph for which zr(G) = 7(G). Prove that if S is a minimal 
dominating set of G, then S is a maximal irredundant set. 

10.18 Let G be a graph for which zr(G) = 7(G). If S is a maximal irredun¬ 
dant set of vertices of G of minimum cardinality, is S a dominating 

set of G? 

10.19 Give an example of an infinite class of graphs G for which 
ir(G) < 7(G). 

10.20 Prove Theorem 10.39. 

10.21 Prove Theorem 10.40. 

10.22 Prove Theorem 10.43. 

10.23 Prove that if G is a constant universal graph with rad G = 1, then 
G = pK^ U H for some regular graph H and positive integer p. 

10.24 For the tree T shown below, determine pl(T) and p,(T) for every 
integer i with 1 ^ i ^ rad T. 

domG = min{7(D) | D is an orientation of G} 

and 

DOM G = max{7(D) | D is an orientation of G}. 

(a) Determine domX3 and DOM X3. 
(b) Show that dom G = 7(G) for every graph G. 
(c) Show that if k is an integer such that dom G ^ k ^ DOM G, then 

there exists an orientation D' of G such that 7(D1) — k. 



CHAPTER 11 

Extremal graph theory 

We have seen results which state that if a graph G of a fixed order n has at 

least f(n) edges, then G contains a particular subgraph or G has some 
specified property. If the bound f(n) on the number of edges is sharp, 
then there exists a graph of order n and size/(n) — 1 that doesn't contain 

the subgraph or doesn't possess the property involved. Such a graph is 
called an extremal graph. The problems of determining such sharp 
bounds /(n) and resulting extremal graphs constitute a major part of an 
area of graph theory called extremal graph theory. Several problems of 
this type are considered in this chapter. There are also extremal problems 
that deal with determining the minimum order of a graph possessing 

some specified properties. Here this problem is discussed when a 
degree of regularity and girth are prescribed. 

11.1 TURAN'S THEOREM 

We have seen that if a graph G of order n ^ 3 has at least n edges, then G 

has a cycle. Indeed, if G has order n > 3 and at least (" “!) + 2 edges, then 
G has a hamiltonian cycle (Exercise 4.20). Both bounds are sharp since 

every tree of order n has size n — 1 and certainly contains no cycles; 
while the graph of order n obtained by adding a pendant edge to K„_1 
has ("21) + 1 edges but is not hamiltonian. Furthermore, if a graph G of 
order n ^ 2 has at least (" ~!) + 1 edges, then G is connected; indeed, G has 
a hamiltonian path. Moreover, if n is even, then G contains a 1-factor. The 
graph Kn_i U shows that all of these bounds are sharp. These observa¬ 

tions lead us to the main topic of this section and the next. 
For a graph F of order k and an integer n with n ^ k, the extremal number 

ex(n; F) of F is the maximum number of edges in a graph of order n that 
does not contain F as a subgraph. Consequently, every graph of order n 

and size ex(n; F) + 1 contains F as a subgraph. The graphs of order n and 
size ex(n; F) not containing F as a subgraph are the extremal graphs. 

From the discussion above, ex(n; C„) = (”j ^ + 1 for n 5= 3. We now deter¬ 
mine ex(n; F) for some 'small' graphs F. If F = K2, then ex(n; F) = 0 for 

n ^ 2; while if F = P3, then ex(n; F) = [n/2j for n ^ 3. Furthermore, if 

F = 2K2, then ex(n\ F) = n - 1 for n ^ 4 (Exercises 11.1 and 11.2). 
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Of all the extremal numbers ex(n\ F) that have been investigated, the 

best known ones have been when F is complete. We begin with the case 
F = K3. The following result is due to Turan [T9], 

Theorem 11.1 

Every graph of order n ^ 3 and size at least [r72/4j + 1 contains a triangle. 

Proof 

We proceed by induction on n. For n = 3, the only graph of order n and 

size at least [n2/4J + 1 is fC3, which, of course, is a triangle. For n = 4, 
the only graphs with the given conditions are K4 — e and K4, both of 
which contain triangles. Thus the result is true for n — 3 and n = 4. 

Assume that every graph of order k and size at least L^/4J +1 contains 
a triangle for every integer k with 3 ^ k < n, where n ^ 5. Now let G be a 
graph of order n containing at least [n2/4J +1 edges. Let u and v be 

adjacent vertices of G and define H = G — u — v. If u and v are mutually 
adjacent to a vertex of H, then G contains a triangle. Otherwise, each 
vertex of H is adjacent to at most one of u and v, and the size of H is at 
least 

+ 1 - (n - 1) 
n2 — 4n + 4 

4 
+ 1 

(n - 2)2 

4 
+ 1. 

By the inductive hypothesis, H contains a triangle and, consequently, so 
does G. □ 

That the bound presented in Theorem 11.1 is best possible follows from 

the fact that for n ^ 3, the graph fC^/2\,\n/Y\ has order n, has size [n2/4J 
and, of course, is triangle-free. This verifies that ex(n; K3) — [n2/4J for 

n ^ 3. We shall soon see that K^n/2\,\n/l\ is# in fact, the unique extremal 
graph. 

By Theorem 11.1, it follows, of course, that if G is a graph of order n ^ 3 
and size at least [n2/4) + 1, then G contains X3 as a subgraph. This result is 
now extended to complete graphs of any order r ^ 2. 

Theorem 11.2 

Let r and n he positive integers, where n r 2s 2. Then every graph of order n and 
size at least 

2r — 2 
n2 + 1 

contains Kr as a subgraph. 
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Proof 

First observe that the result is true if r — 2. Hence it suffices to assume that 

n ^ r ^ 3. We now proceed by induction on r. The result follows for r = 3 
and all integers n ^ 3 by Theorem 11.1. Assume, for an integer r — 1^3 
and all integers n^r — l, that every graph of order n and size at least 

(— \2r — 4 
n2 + 1 

contains Kr_1 as a subgraph. 

It remains to show that every graph G of order n and size m, where 
n ^ r and 

m>(^2 )"2 + 1 

contains Kr as a subgraph. We verify this by induction on n. For n — r, we 
have 

m ^ 
n — 2 

2n -2 
n2 + 1 ^ 

Thus, G = Kn — Kr and the result follows. 

Assume now that every graph H of order k, where r < n, and size at 
least 

2 

~2 
** + 1 

contains Kr as a subgraph. Let G be an (n,m) graph, where 

m G 
r — 2 

2r -2 
+ 1. 

We show that G contains Kr as a subgraph. Since 

2r — 2 
n2 ^ 

r — 3 \ 2 

27^4 S””’ 

it follows from the inductive hypothesis that G contains Kr_i as a sub¬ 
graph. Let U be the vertex set of a subgraph of G that is isomorphic to 

Kr_i, and define H = G — U. If some vertex of H is adjacent to all vertices 
of U, then G contains Kr as a subgraph. Otherwise, every vertex of H is 
adjacent to at most r — 2 vertices of U. Thus, the size of G is at most 

+{n - r + l)(r - 2) + 
1 

If n — r +1 < r, then n^2(r-l). However, the inequalities 
r < n ^ 2(r — 1) are equivalent to the inequality 

+(n — r + l)(r — 2) + < 
r-2 

2r — 2 



332 Extremal graph theory 

which contradicts the fact that the size of G is at least 

Thus n — r + 1 ^ r. Since H has order n — r + 1 ^ r and size at least 

it follows by the inductive hypothesis that H contains Kr as a subgraph. 

Therefore, G contains Kr as a subgraph. □ 

By Theorem 11.2, it follows that for n ^ r, 

Also, by Theorem 11.2, for r = 4 and n — 10, every graph of order 10 and 
size at least 35 contains K4 as a subgraph. However, every graph of order 

10 and size 34 also contains fC4 as a subgraph. Hence the bound presented 
in Theorem 11.2 is not sharp for r ^ 4. The exact value of ex(n; Kr) for all 
integers n and r with n ^ r ^ 2 is due to Turan [T9], 

Prior to presenting this more general result, we introduce some 
terminology and notation that will be useful in its proof. A near regular 
complete multipartite graph is a complete multipartite graph, the 
cardinalities of whose partite sets differ by at most 1. Thus the degree 
set of a near regular complete multipartite graph has at most two 
elements. A near regular complete /:-partite graph of order n is unique 

and we denote this graph by R(n,k). If q — [n/k\ is the quotient 
obtained when n is divided by k, then, by the division algorithm, 
n = qk + r, where 0 ^ r < k. Necessarily, then, r of the partite sets in 
R(n,k) contain q + 1 vertices, while the remaining k - r partite sets contain 

q vertices. Thus the size of R(n,k) is r(q^]) 4- (k — r)(q) and the size of 
R{n,k) is 

We denote the size of R(n,k) by m(n,k). Consequently, 

The following proof of Turan's theorem is based on one due to A. J. 
Schwenk. 



Turart's theorem 333 

Theorem 11.3 

Let n and p be integers with 2 ^ n ^ p. Every graph of order p and size at least 

m(p, n — 1) + 1 contains Kn as a subgraph. Furthermore, the only Kn-free graph 
of order p and size m(p, n — 1) is R(p, n — 1). 

Proof 

We proceed by induction on n(^2). For n — 2 and p ^ 2, the graph 
R(p,n - 1) — R(p, 1) = Kp; so m(p, 1) = 0. Consequently, every graph of 

order p and size at least m(p, 1) + 1 contains K2 as a subgraph. Certainly, 
Kp is the unique graph of order p containing no edges. Therefore, the 
result is true for n = 2. 

Assume, for n ^ 3, that every graph of order s( ^ n — 1) and size at least 

m(s, n — 2) + 1 contains Kn_i as a subgraph and that R(s, n — 2) is the only 
graph of order s and size m(s, n—2) that does not contain Kn_i as a 
subgraph. For p 5s n, let G be a Kn-free graph of maximum size having 

order p. 
Let v be a vertex of G such that degc v — A(G) = A. Since G does not 

contain Kn as a subgraph, the subgraph (N(v)) induced by the neighbors 

of v does not contain Kn_ j. 
Next we show that A ^ n — 1; for suppose, to the contrary, that 

A ^ n — 2. Since G has order p and p ^ n, it follows that there is a 
vertex u(/ v) in G such that u is not adjacent to v. Since G is a Kn-free 
graph of maximum size having order p, the graph G + uv contains a 

subgraph F isomorphic to Kn. With the possible exception of u and v, 
all of the vertices of G + uv have degree at most n — 2. However, F is 
(n — l)-regular and has order at least 3. This produces a contradiction; 

so A ^ n — 1, as claimed. 
Since (N(v)) does not contain JC„_] as a subgraph, the size of (N(v)) does 

not exceed the size m{A, n — 2) of the graph R(A, n — 2). 
Let U = {ui,u2,-..,ut} denote the vertex set of the graph G — N[v], 

Since each vertex w, (1 < i < f) has degree at most A in G, it follows 

that 

|E(G)| ^ (f + 1)A + m(A,n — 2). 

If, in fact, |E(G)| = (t + 1)A + m(A, n — 2), then {N(v)) = R(A, n - 2). 

Define 

G' = R(A,« —2)+Kt+1. 

Thus, G' is a complete (n — l)-partite graph of order p and size 
(f + 1)A + m(A, n - 2). Since G' is (n - l)-partite, it does not contain Kn 

as a subgraph. Therefore, 

(t + 1)A + m(A, n — 2) = |E(G')| ^ |E(G)| ^ (t + 1)A + m{A, n - 2). 

Consequently, G has size (f + 1)A + m(A, n — 2). 
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Next we show that G = G', that is, G' is the unique K„-free graph of 

order p and size (f + 1)A + ra(A, n - 2). The degree in G of every vertex 
of U is A; for otherwise |E(G)| < |E(G')|. Moreover, U is independent; 

otherwise, |E(G)| < |E(G')|. Therefore, U U {n} is independent and 

G = G', as claimed. 

Since G = R(A, n - 2) + Kf + 1/ it follows that G = ^< + i,p1,p2,...,p„_2/ where 
we may assume that p^ ^ p2 =5 • • • ^ p„_2- ^ remains only to show that G 
is near regular. By the induction hypothesis, R(A, n — 2) = KpiiP2.p„_2 is 
near regular, so pn_2 ^ P\ +1- Since v is a vertex of maximum degree in G, 

it follows that t 4-1 ^ p}. 
Hence, it remains to show that pn_2 ^ t + 2. Suppose, to the contrary, 

thatp„_2 Js f+ 3. Let H = Ki+2.,h p,.r.-s--l- Thus 

|E(H)|-|E(G)| = (p„_2-l)-(f + l)>l, 

which contradicts the defining property of G. Therefore, pn_2 ^ t + 2 and 
G = R(p,n - l). □ 

EXERCISES 11.1 

11.1 Show that every graph of order n ^ 3 and size [n/2\ + 1 contains P3 
as a subgraph. Describe the extremal graphs. 

11.2 Show that every graph of order n ^ 4 and size n contains 2K2 as a 
subgraph. Describe the extremal graphs. 

11.3 For n ^ 4, determine e;c(rc; Xii3) and all extremal graphs. 

11.2 EXTREMAL RESULTS ON GRAPHS 

In this section, we consider a variety of other extremal results in graph 
theory. By Turan's theorem, ex[n\ fC4) = m(n, 3). Dirac [D7] obtained a 
related result. 

Theorem 11.4 

Every graph of order n ^ 4 and size at least 2 n - 2 contains a subdivision ofK4 as 
a subgraph. 

It has been conjectured by G. A. Dirac that every graph of order n ^ 5 
and size at least 3n — 5 contains a subdivision of K5 as a subgraph; 
however, it has only been verified, by Thomassen [T3], that every graph 

of order n ^ 5 and size at least 4n — 10 contains such a subgraph. 
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We have already seen that the minimum size which guarantees that 
every graph of order n contains a cycle is n. Although barely a teenager 
at the time, Posa (see Erdos [E4]) determined the minimum size of a graph 
G of order n ^ 6 which guarantees that G contains two disjoint cycles. 

Theorem 11.5 

Every graph of order n ^ 6 and size at least 3n — 5 contains two disjoint cycles. 

Proof 

It suffices to show that every (n, 3n — 5) graph contains two disjoint cycles 

for n ^ 6. We employ induction on n. There are only two (6,13) graphs, 
one obtained by removing two nonadjacent edges from Ke and the other 
obtained by removing two adjacent edges from K6. In both cases, the 

graph has two disjoint triangles. Thus, the result is true for n — 6. 
Assume for all k with 6 ^ k < n that every graph of order k and size 

3k — 5 contains two disjoint cycles. Let G be an (n, 3n — 5) graph. Since 

degp = 6 n — 10, 
ueV(G) 

there exists a vertex v0 of G such that degu0 ^5. Assume first that 
degu0 = 5, and N(v0) — {z^, v2,... , i>s}. If (N[u0]) contains 13 or more 
edges, then we have already noted that (N[m0]) has two disjoint cycles, 
implying that G has two disjoint cycles. If, on the other hand, (N[u0]) con¬ 
tains 12 or fewer edges, then, since deg v0 — 5, some neighbor of v0, say V\, 

is not adjacent with two other neighbors of v0, say v2 and v3. Add to G the 
edges V\V2 and vxv3 and delete the vertex v0, obtaining the graph G'; that 
is, G’ = G + V\V2 + vxv3 — v0. The graph G' is an (n - 1,3m — 8) graph and, 
by the inductive hypothesis, contains two disjoint cycles Cx and C2. At 
least one of these cycles, say C\, does not contain the vertex v-i and thus 
contains neither the edge vpv2 nor the edge vxv3. Hence Cx is a cycle of G. If 
C2 contains neither vpu2 nor vxv3, then Cj and C2 are disjoint cycles of G. 
If C2 contains vpv2 but not V\V3, then by removing vpv2 and adding v0/ v0v} 

and vQv2, we produce a cycle of G that is disjoint from C]. The procedure is 

similar if C2 contains v^v3 but not vpo2. If C2 contains both V\V2 and V\V3, 
then by removing from C2 and adding v0, v0v2 and VqV3, a cycle of G 

disjoint from C] is produced. 
Suppose next that deg v0 = 4, where N(v0) = {^i, v2, v3, m4}. If (N[u0]) is 

not complete, then some two vertices of N(v0) are not adjacent, say and 
v2. By adding vxv2 to G and deleting vQ, we obtain an (n — 1,3n — 8) graph 
G', which by the inductive hypothesis contains two disjoint cycles. We 
may proceed as before to show now that G has two disjoint cycles. 

Assume then that (N[u0j) is a complete graph of order 5. If some vertex 
of V(G) — N[vq] is adjacent with two or more neighbors of v0, then G 
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contains two disjoint cycles. Hence we may assume that no vertex of 
V(G) - N[v0] is adjacent to more than one vertex of N(v0). Remove the 
vertices v0, zq, v2 from G, and note that the resulting graph G" has order 
n — 3 and contains at least (3n — 5) — (n — 5) — 9 = In — 9 edges. How¬ 
ever, n ^ 6 implies that 2n — 9 n — 3; so G" contains at least one cycle 
C. The cycles C and the cycle v0,Vi,v2,v0 are disjoint and belong to G. 

Finally, we assume that degn0 ^ 3. The graph G — v0 is an (n — l,m) 
graph, where m 5= 3n — 8. Hence by the inductive hypothesis, G — v0 
(and therefore G) contains two disjoint cycles. □ 

To see that the bound 3n — 5 presented in Theorem 11.5 is sharp, 
observe that the complete 4-partite graph i has order n and size 
3n - 6, and that every cycle contains at least two of the three vertices 
having degree n — 1. Thus no two cycles of R] 11 „_3 are disjoint. 

For a graph of order n to contain two edge-disjoint cycles, only n + 4 
edges are required. This result is also due to Posa (see Erdos [E4]). 

Theorem 11.6 

Every graph of order n ^ 5 and size at least n + 4 contains two edge-disjoint 
cycles. 

Theorem 11.1 could very well be interpreted as a result concerning 
cycles rather than a result concerning complete graphs. From this point 
of view, we know that if G is a graph of order n ^ 3 and size m, where 
m ^ («2/4) + 1, then G contains a 3-cycle. We now turn to 4-cycles. 

In order to present a proof of the next result, it is convenient to be 
acquainted with an inequality involving nonincreasing sequences of 
integers. Let a^, a2, ■. ■, an and bi,b2,...,b„ be nonincreasing sequences 
of integers. Then 

Y (a{ - aj)(bi - bj) ^ 0. (11.1) 
1 < i < j ^ n 

By rearranging the terms in (11.1), we arrive at 
n 

(n~l-)Ya‘b' ^ Y a‘br 
1 = 1 1 ^ i yt j ^ n 

Adding Y= \ aibi to both sides of (11.2), we obtain 

nYa&> Y a<bi= (Ya)(Yb) 
i = l i < i,/ < n Xi = l / = i / 

or, equivalently, 

'1 ^ '1 " 

(11.2) 
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That is, the inequality (11.3) states that the sum of the integers albl 
(1 ^ i ^ n) is at least n times the product of the averages of a-l,a2,... ,an 

and of bi, b2,..., bn. 
Suppose then that G is an (n,m) graph with vertex set V(G) — 

{v-i,v2,... ,vn} such that degn, = d, (1 ^ i ^ n) and dl,d2,... ,dn is a non¬ 

increasing sequence. Then, of course, — ^m- From inequality 
(11.3), it follows that 

We are now prepared to present the aforementioned result dealing with 

4-cycles (see Lovasz [L6, p. 69]). 

Theorem 11.7 

If G is an (n, m) graph with n ^ 4 and 

n + n\/4n — 3 
m ^ -—- +1> 

then G contains a A-cycle. 

Proof 

Suppose that G is an (n, m) graph with n ^ 4 that contains no 4-cycle. For a 
vertex v of G, the number of distinct pairs of vertices that are mutually 
adjacent to v is (de|1’). Flowever, since G contains no 4-cycles, each pair of 
vertices that are mutually adjacent to another vertex is counted exactly 

once in the sum Ylve v(G)(d<281’)- Hence 

(11.5) 

Denote the degrees of the vertices of G by d\, d2, ■ ■ ■, dn. Then 

d,\ n (2m\ 

2 Hu) 
where the inequality follows from (11.4). Combining (11.4) and (11.5), we 

have 

m - n) n(n -1) ( , 

4 " 2 { } 

Solving inequality (11.6) for m gives us 

n + n\/4n — 3 

which completes the proof. □ 

4 
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Somewhat fewer edges guarantee that a graph contains either a 3-cycle 

or a 4-cycle. 

Theorem 11.8 

If G is an (n, m) graph with n ^ 4 and 

m ^ 
n\/n — 1 

2 
+ 1, 

f/ien G contains a 3-cycle or a 4-cycle. 

Proof 

Suppose that G is an (n, m) graph with n ^ 4 that contains no 3-cycle or 
4-cycle. We proceed as in the proof of Theorem 11.7. Since G contains no 
4-cycles, each pair of vertices that are mutually adjacent to another 
vertex is counted exactly once in the sum J2veV(G) (degi’) gince q contains 

no 3-cycles, each pair of vertices that are mutually adjacent to another 
vertex are themselves not adjacent. Hence 

(11.7) 

Denote the degrees of the vertices of G by d^,d2,...,dn. Applying the 
inequality (11.4), we obtain 

Combining (11.7) and (11.8), we have 

m2 ^ 
n2(n — 1) 

4 

which yields the desired result. □ 

Letting n = 5 in Theorem 11.8, we find that if the size of a graph G of 
order 5 is at least 6, then G contains a 3-cycle or a 4-cycle. This cannot be 
improved because of the 5-cycle. For n = 10 it follows that if a graph G of 

order 10 has at least 16 edges, then G has a 3-cycle or a 4-cycle. This too 
cannot be improved since the Petersen graph has order 10, size 15, and 
contains no 3-cycles or 4-cycles. 

We now turn to the problem of determining the number of edges that a 
graph G of order n must have to guarantee that G contains a subgraph 
with a specified minimum degree. 
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Let k and n be integers with 1 < n. Every graph of order n and size at 
least 

contains a subgraph with minimum degree k. 

Proof 

We proceed by induction on n ^ k + 1. First, assume that n = k + 1. Let G 
be a graph of order n and size at least 

Then G = K„ = Kk+l and so G itself is a graph with minimum degree k. 
Assume that every graph of order n — 1 ^ k + 1 and size at least 

contains a subgraph with minimum degree k. Let G be a graph of order n 
and size m, where 

We show that G contains a subgraph with minimum degree k. If G itself is 
not such a graph, then G contains a vertex v with deg v ^ k — 1. Then the 
order of G — v is n - 1 and its size is at least 

(2)-*-1 ——')= —1)(w !) (2) m — degf ^ (k — 1 )n + 1. 

By the induction hypothesis, G — v, and therefore G as well, contains a 
subgraph with minimum degree k. □ 

The bound given in Theorem 11.7 cannot be improved. If k = 1, then 
the graph Kn contains no subgraph with minimum degree 1. More 
generally, for 2 < k < n, the graph + Kk_ j has order n and size 

(k — l)n — (2) but contains no subgraph with minimum degree k. For 
n — 9 and k = 4, the graph Kn_Jt+] + is shown in Figure 11.1. 

By Theorem 3.8, if G is a graph such that 6(G) ^ k for some positive 
integer k, then G contains every tree of size A: as a subgraph. Combining 

this result with Theorem 11.9 gives us the following corollary. 



340 Extremal graph theory 

Figure 11.1 A (9,21) graph containing no subgraph with minimum degree 4. 

Corollary 11.10 

Let k and n be integers with 1 ^ k < n. If G is a graph of order n and size at 

least 

{k-l)n - Q'j + l, 

then G contains every tree of size k as a subgraph. 

In 1959 Erdos and Gallai [EG2] determined the maximum number of 
edges in a graph of order n ^ 2k that contains no matching of size k; that 
is, for n ^ 2k, they determined ex{n\kK2). In 1968 Moon [M10] obtained a 

more general result. It is Moon's proof of the formula for ex(n;kK2) that 
we present here. 

Theorem 11.11 

For positive integers n and k with n ^ 2k, 

ex(n;kK2) = max j(fc - l)n - ^ ^ j. 

Proof 

Let G be a graph of order n and size tn containing a maximum matching 

M of size k — 1, and let U denote the set of vertices of G that are incident 
with no edge of M. Since M is a maximum matching, U is an independent 
set of vertices. Moreover, U does not contain two vertices that are adjacent 

to distinct vertices of V(G) - U that are joined by an edge of M; otherwise, 
G contains an M-augmenting path, which is impossible since M is a 
maximum matching (Theorem 9.2). 

We now partition the edges of M into two subsets A and B. The set A 
consists of those edges xy of M such that one of x and y, say y, is adjacent 

to at least two vertices of U. The vertex x of each such edge xy of A is 
therefore not adjacent to any vertex of U. The set B then consists of the 
remaining edges of M. Hence if uv is an edge of B, then there is at most one 
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vertex of U that is adjacent to u or v (or both). Let a = |A| and b — |B|; so 

a + b = k — 1. 
Now observe that if xpy^ and x2y2 are edges of A, where each of y^ and 

y2 is adjacent to at least two vertices of 17, then x:x2 £ E(G); for otherwise 
G contains an M-augmenting path. Note that for every two edges e\ and e2 
of A, at least one vertex incident with ex is not adjacent to a vertex incident 

with e2, so the size of (A) is at most (^) — Q. For each edge e of A, there is 
a vertex incident with e that is adjacent to no vertex of U. Thus the number 
of edges joining a vertex of (A) and a vertex of 17 is at most a(n — 2k + 2). 

Therefore, the number of edges that are incident with two vertices of A or 
with a vertex of A and a vertex of 17 is at most 

+ a(n — 2k + 2). 

Next observe that if x\\f\ and x2y2 are edges of A, where y-[ and y2 are 
adjacent to two or more vertices of 77, then x: and x2 are not adjacent to 

distinct incident vertices of an edge uv of B; for otherwise G contains an 
M-augmenting path. Moreover, if u is adjacent to Xj, say, then v is not 
adjacent to any vertex of 17, for once again an M-augmenting path results. 
This implies that the number of edges of G incident with at least one 

vertex of B is at most 

^ 4- (2b)a T ba T 2b. 

Since every edge of G is one of the types described above, it follows that 

m ^ (y2^~(^) + (^2^) + a(<n ~2k + 2') +3ab + 2b 

a(2n — 5k + 2) ab 

= V 2 )+ 2 ~2 

^ /2fc— 1\ a(2n — 5k + 2) 

" V 2 )+ 2~ 

= »-i )*-Q)-K2n-f+-^-. 

(11.9) 

(11.10) 

If 2n — 5k2 = 0, then, of course, — (k — 1) — (j). If 2n — 5k + 2 > 0, 
then (11.9) and (11.10) attain their maximum value when b — 0; while if 
2n - 5k + 2 < 0, then (11.9) and (11.10) attain their maximum values when 

a = 0. Thus 

m y max (k — 1 )n 
2k - 1 

2 

ex[n\kK2) ^ max|(/c— \)n 
2k- 1 

2 

and so 

k 
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The graph K2k_iU Kn_2k+} has order n, size (2kf^), and a maximum 
matching of size k— 1. Moreover, the graph Kk_i + Kn_k + -[ has order n, 

size (k — \)n — (*), and a maximum matching of size k — 1. Therefore, 

ex(n;kK2) ^ max|(fc-l)w- QY ^ J, 

which yields the desired result. □ 

An equivalent statement of Theorem 11.11 is that for a positive integer 

k, every graph of order n ^ 2k and size at least 

maxjl + (fc-l)n - Q),1 + ^ 

contains a matching of size k. From Corollary 11.10, we know that if G is 

a graph of order n > k ^ 1 and size at least (k — l)n — (ij) + 1, then G 
contains every tree of size C Brandt [B14] obtained a generalization of 

both Corollary 11.10 and Theorem 11.11. 

Theorem 11.12 

Let n and k be positive integers with n ^ 2k. Every graph of order n and size at 

least 

maxjl+ (fc-l)n- Q^,l + 2 

contains every forest of size k without isolated vertices as a subgraph. 

EXERCISES 11.2 

11.4 Prove Theorem 11.4. 

11.5 For n ^ 9 determine the smallest positive integer m such that 
every graph of order n and size m contains three pairwise disjoint 

cycles. 

11.6 Let n and k be positive integers such that n ^ (5k — 2)/2. Prove that 

if G is a graph of order n and size at least (k — \)n — (£) + 1, then G 
contains every forest of size k and without isolated vertices as a 
subgraph. 

11.7 Let G be a graph containing a subgraph H of order at least 2k 
such that 6(H) ^ k. Prove that G contains every forest of size k 
and without isolated vertices as a subgraph. 
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We close this chapter with a different type of extremal topic. Recall that the 
length of a smallest cycle in a graph G that contains cycles is called the girth 

of G which we denote by g(G). Therefore, g(K„) = 3 for n 3, g(Ks t) = 4 
for s,t Tz 2, and g(C„) — n for n ^ 3. We are interested in the smallest order 
of an r-regular graph of girth g for given integers r and g. Thus, for 

positive integers r 72 2 and g ^ 3, we define f(r,g) as the smallest positive 
integer n for which there exists an r-regular graph of girth g having order n. 
The r-regular graphs of order f(r,g) with girth g have been the object of 

many investigations; such graphs are called (r,g)-cages. The (3,g)-cages 
are commonly referred to simply as g-cages. We introduce the notation 
[r,g]-graph to indicate an r-regular graph having girth g. Thus, an (r,g)- 
cage is an [r,g]-graph; indeed, it is one of minimum order. 

It is clear that f(r,g) 2 max{r + l,g}. Thus, f(2,g) = g since Cg is a 
2-regular graph with girth g. Likewise, / (r, 3) = r + 1 since fCr+1 is an r- 
regular graph having girth 3. In fact, the complete graph K4 is the 
unique 3-cage. A lower bound for the order of any [r,g]-graph is 
presented next (see Holton and Sheehan [HS3, p. 184]). For r,g 72 3, we 

define 

fo(r,g) 

1 , r[(r-l)te-^2-1] 

r — 2 

2[(r - 1)«/2 - 1] 

r — 2 

if g is odd 

if g is even. 

Theorem 11.13 

If G is an [r,g]-graph of order n, then n ^ fo(r,g). 

Proof 

First, suppose that g is odd. Then g = 2k + l for some positive integer k. 
Let v G V(G). For 1 ^ i < k, the number of vertices at distance i from v is 

r(r — 1)'_1. Hence 

n ^ 1 + r + r(r - 1) + r(r — l)2 -I-b r(r - l)*-1 

1 , r[(r - lg - 1] 

r - 2 

Next, suppose that g is even. Then g = 2d, where d $= 2. Let e — uu G E(G). 
For 1 ^ i ^ d — 1, the number of vertices at distance i from u or v is 

2(r - I)1'. Thus 

n 7z 2 + 2(r - 1) + 2(r - l)z + • ■ • + 2(r - l)''-1 = 2 
r •— 2 

□ 
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Consequently, if for integers r, g ^ 3, there exists an (r,g)-cage, then 

f{r,g) ^/o(r>&)- We now show that for every pair r, g ^ 3 of integers, 
there is at least one (r,g)-cage. The proof of the following result is due 

to Erdos and Sachs [ESI]. 

Theorem 11.14 

For every pair r, g of integers at least 3, the number f(r,g) exists and, in fact, 

f(r,g) ^ (j—Kr - + (r “ VP~2 + (r - hi¬ 

proof 

Since 

E(r-l)'=(^)l(r-l)g-'-l] 

and 

E(’--i)i=(^)[('--ir2-11, 

it follows that 

(r^)l(r ~ 1)*~, + (r~1)8-2+ (r_ 4)1 

is an integer. Denote this integer by n, and let S be the set of all graphs H 
of order n such that g(H) = g and A(H) ^ r. Note that n ^ g. The set S 

is nonempty since the graph consisting of a g-cycle and n — g isolated 

vertices belongs to S. For each H £ S, define 

M(H) — [v £ V(H) | degu < r}. 

If for some H £ S, M(H) = 0, then we have the desired result; thus we 
assume for all H £ S, M(H) / 0. For H £ S, we define d(H) to be the 

maximum distance between two vertices of M(H). (We define 

d[uu2) = +oo if iq and u2 are not connected.) 
Let 5] be those graphs in S containing the maximum number of edges, 

and denote by <S2 the set of all those graphs H of S\ for which |M(H)| is 
maximum. Now among the graphs of <S2, let G be chosen so that d(G) is 
maximum. 

Let u, v £ M(G) such that d(u, v) = d(G). Suppose that d(G) ^ g - 1 ^2. 
By adding the edge uv to G, we obtain a graph G' of order n having 

g(G') = g and A(G') ^ r. Hence G' £ S; however, G' has more edges 
than G, and this produces a contradiction. Therefore, d(G) ^ g — 2 and 

d(u, v) ^ g — 2. (The vertices u and v may not be distinct.) 
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Denote by W the set of all those vertices w of G such that d(u,zv) < g — 2 
or d(v, tv) ^ g — 1. From our earlier remark, it follows that u, v g W. The 
number of vertices different from u at a distance at most g — 2 from u 
cannot exceed 

J2(r - V = (j—|) t(f — l)y_2 — !]; 

while the number of vertices different from v and at a distance at most 
g — 1 from v cannot exceed 

Hence the number of elements in W is at most 

(f^)[(r - Ds~2 -1] + (~l)Kr -1)1-' - ’!• 

however, 

^ [(r — l)g_1 + (r — \)8~2 — 2] = n — r + 1 < n. 

Therefore, there is a vertex w-[ G V(G) — W, so d(u, w{) ^ g — 1 and 

d(v,wx) ^g. 
Since d(u,w-i) > d(G) and u G M(G), it follows that ^ M(G) and 

degi^ = r ^ 3. Therefore, there exists an edge e incident with W\ whose 
removal from G results in a graph having girth g. Suppose that e = w^w2. 

Clearly, d(v,w2) g — 1, so w2 & M(G) and degu?2 = r. 
We now add the edge uw^ to G and delete the edge w-lw2, producing 

the graph Gj. The graph G} also belongs to S and, in fact, belongs to S1. 
The set M(G-,) contains all the members of M(G) except possibly u and, 
in addition, contains zv2. From the manner in which G was chosen, 

|A1(G1)| < |M(G)|; so w^M(G,) and |M(GT)| =s*= |M(G)|. Therefore, 
degu = r in Glx implying that, in G, degw = r-l. Furthermore, G} 

belongs to S2. 
We now show that u is not the only vertex of M(G), for suppose that it 

is. Since there is an even number of odd vertices, we must have r and n 

odd; however, this cannot occur since n is even when r is odd. We con¬ 
clude that u and v are distinct vertices of M(G). 

The vertices v and w2 are distinct vertices of M(G1). If there exists no 
v-w2 path in G^ then d(Gi) — +00, and this is contrary to the fact that 
d(Gi) ^ d{G). Thus v and w2 are connected in G-[. Let P be a shortest v-vo2 

path in G\. If P is also in G, then P has length at least dG(v, w2) in G, but 

dG{v,w2) >g- 1 > 4(G), 

r — 1 

r — 2 
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vi 

Figure 11.2 The Petersen graph: the unique 5-cage. 

which is impossible. If P is not in G, then P contains the edge uztq and a 

u-v path of length dG(u,v) as a subpath. Hence P has length exceeding 
dc(u,v) = d{G), again a contradiction. 

It follows for some H in S that M(H) = 0, that is, H is an r-regular 
graph of order n having girth g. □ 

We now determine the value of the number f(r, 4). 

Theorem 11.15 

For r ^ 2, f(r, 4) = 2r. Furthermore, there is only one (r,4)-cage; namely, Kr r. 

Proof 

By Theorem 11.13, /(r, 4) ^ 2r. Obviously, the graph Kr r is r-regular, has 
girth 4, and has order 2r, thus implying that/(r, 4) = 2r. 

To show that Kr r is the only (r, 4)-cage, let G be an [r,4]-graph of order 

2r, and let U\ G V(G). Denote by z>i,p2> • • • ,vr the vertices of G adjacent 
with U]. Since g(G) — 4, zq is adjacent to none of the vertices vir 2 ^ i ^ r; 
hence G contains r — 1 additional vertices u2,u3,... ,ur. Since every vertex 
has degree r and G contains no triangle, each vertex u, (1 ^ i ^ r) is 
adjacent to every vertex v. (1 < < r); therefore, G = Kr r. □ 

An [r,g]-graph of order n is called a Moore graph if n — f(r,g) =/o(Gg)- 
Hence, a Moore graph is an (r,g)-cage of order fo(r,g). Consequently, 
the graphs Kr r for r ^ 3 are Moore graphs. The best known Moore 
graph is the Petersen graph (Figure 11.2). It is not difficult to verify 
that the Petersen graph is a 5-cage. That it is the only 5-cage is verified next. 

Theorem 11.16 

The Petersen graph is the unique 5-cage. 
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As mentioned earlier, it is not difficult to show that the Petersen graph is a 
5-cage. In order to see that it is unique, assume that G is a [3,5]-graph of 
order 10. We show that G is isomorphic to the Petersen graph. 

Let Vi E V(G), and suppose v2, v3 and v4 are the vertices adjacent to zq. 
Since g(G) = 5, each vertex vir i = 2,3,4, is adjacent to two new vertices of 
G. Let v5 and v6 be adjacent with v2; v7 and u8 with v3; and v9 and z»10 with 
v4. Hence V(G) = {v, | i — 1,2,..., 10}. The fact that the girth of G is 5 and 

that every vertex of G has degree 3 implies that v5 is adjacent with one of 
v7 and v8 and one of v9 and u10. Without loss of generality, we assume v5 to 
be adjacent to v7 and v9. We must now have v6 adjacent to v8 and z;10. 
Therefore, the edges v7vw and v8v9 are also present and no others. 

Thus, G is isomorphic to the Petersen graph. □ 

Since /0(r, 5) — r +1, a Moore graph of girth 5 has order r + 1. We 
have seen that the Petersen graph is the only cubic Moore graph of 
girth 5. However, the Petersen graph is one of only two (or possibly 
three) Moore graphs of girth 5. This fact was established by Hoffman 

and Singleton [HS2]. We omit this proof. 

Theorem 11.17 

IfG is an r-regular Moore graph (r ^ 3) of girth 5, then r — 3,r — 7 or, possibly, 

r = 57. 

A graph referred to as the Hoffman-Singleton graph is the 7-regular 

Moore graph of girth 5 (and of order 50). Its construction is described 

in Holton and Sheehan [HS3, p. 202]. 

Figure 11.3 The 4-regular Moore graph of girth 6. 
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Figure 11.4 The (4/5)-cage and (5,5)-cage. 

Moore graphs can be considered from a different point of view. 
Consider integers r, g ^ 3, where g = 2k + 1 is odd. If G is an r-regular 
graph of order n and diameter k, then by the proof of Theorem 11.13, it 

follows that fo(r,g) ^ n. Hence a Moore graph of odd girth has the max¬ 
imum order consistent with its degree and diameter constraints and the 
minimum order consistent with its degree and girth constraints. Such a 

statement also applies to Moore graphs with even girth. 
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We now summarize the information concerning Moore graphs; namely, 
r-regular Moore graphs of odd girth g exist when 

• g — 3, r ^ 3, and Kr+1 is the unique Moore graph; 

• 8 — 5, r — 3, and the Petersen graph is the unique Moore graph; 
• g = 5, r — 7, and the Hoffman-Singleton graph is the unique Moore 

graph; and 
• g = 5 and r = 57 is undecided. 

Furthermore, r-regular Moore graphs of even girth g exist when 

• g = 4, r ^ 4, and Kr r is the unique Moore graph; 
• g = 6 and for all r for which there exists a projective plane of order r — 1; 

• g — 8 and for all r for which there exists a certain projective geometry; 
and 

• g = 12 and for all r for which there exists a certain projective geometry. 

As an additional example of a Moore graph referred to above, there is a 
unique 4-regular Moore graph of girth 6 and order /0 (4,6) =26. This 
graph is shown in Figure 11.3. 

Additional information on Moore graphs can be found in Holton and 
Sheehan [HS3, Chap. 6]. We now return to cages that are not necessarily 
Moore graphs. The (4,5)-cage and (5,5)-cage are shown in Figure 11.4. 

The (6,5)-cage has order 40 while the (7,5)-cage, as mentioned earlier, 

is known to have order 50. 
There is only one 6-cage, referred to as the Heawood graph, and this is 

shown in Figure 11.5. 
There are only a few known g-cages, g ^ 7. The 7-cage (known as the 

McGee graph) and the 8-cage (the so-called Tutte-Coxeter graph) are shown 

in Figure 11.6. The 12-cage has order 126. 
Some other known values of f(r,g) are shown in Figure 11.7. 

Figure 11.5 The Heawood graph: the unique 6-cage. 
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Figure 11.6 The 7-cage and 8-cage. 

8 = 3 8 = 4 5 = 5 

vO II tK) OQ
 II •V
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8 = 3 5-9 

o
 II 

r = 3 4 6 10 14 24 30 58 70 
r = 4 5 8 19 26 ? 80 ? 7 

r — 5 6 10 30 42 7 170 ? 7 

r = 6 7 12 40 62 ? 312 ? 7 

r = 7 8 14 50 90 ? ? 7 ? 

Figure 11.7 Some known values of f(r,g). 

For those values of r and g for which f{r,g) is unknown, the known 
bounds are not especially close. The closest known bounds for an 

unknown value of f{r,g) is 53 ^/(4,7) ^ 728. At the opposite extreme, 
3110 ^ /(7,10) ^68. 

EXERCISES 11.3 

11.8 Let G be a connected graph with cycles. Show that 

g(G) ^ 2diam (G) + 1. 

11.9 (a) Prove that / (3,6) = 14. 
(b) Prove that the Heawood graph is the only 6-cage. 

11.10 Let G be an [r,g]-graph (r ^ 2, g ^ 3) of order f(r,g); that is, let G be 
an (r,g)-cage. Prove that if H — G x K2 is an [s,g]-graph, then H 

cannot be an (s,g)-cage. 



CHAPTER 12 

Ramsey theory 

Probably the best known and most studied area within extremal graph 

theory is Ramsey theory. We begin this study with the classical Ramsey 
numbers. 

12.1 CLASSICAL RAMSEY NUMBERS 

For positive integers s and t, the Ramsey number r(s, t) is the least 
positive integer n such that for every graph G of order n, either G 
contains Ks as a subgraph or G contains K, as a subgraph; that is, G 

contains either s mutually adjacent vertices or an independent set of t 
vertices. The Ramsey number is named for Frank Ramsey [Rl], who 
studied this concept in a set theoretic framework and essentially verified 
the existence of Ramsey numbers. Since (G) = G for every graph G, it 
follows that the Ramsey number r(s, t) is symmetric in s and t and 

r(s,f) = r{t,s). 
It is rather straightforward to show that r(s, t) exists if at least one of s 

and t does not exceed 2 and that 

r(l,f) = l and r(2,t) = t. 

The degree of difficulty in determining the values of other Ramsey num¬ 

bers increases sharply as s and t increase, and no general values like the 

above are known. 
It is sometimes convenient to investigate Ramsey numbers from an 

'edge coloring' point of view. For every graph G of order n, the edge 
sets of G and G partition the edges of Kn. Thus, r(s, t) can be thought of 
as the least positive integer n such that if every edge of Kn is arbitrarily 
colored red or blue (where, of course, adjacent edges may receive the 

same color), then there exists either a complete subgraph of order s, all 
of whose edges are colored red, or a complete subgraph of order t, all 
of whose edges are colored blue. In the first case, we say that there is a 
red Ks; in the second case, a blue Kt. We call the coloring a red-blue coloring 

of Kn. For example, for t ^ 2, r(2, t) > t — 1 since if all (f 21) edges of Kt_-[ 
are colored blue, then Kt_-l contains neither a red K2 nor a blue Kt. How¬ 

ever, r(2, t) ^ t since in an arbitrary red-blue coloring of Kt, either all the 
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edges are blue and we have a blue K,, or at least one edge is red and we 

have a red K2. Thus, r(2, t) = t. 
Theorem 12.1 gives the value of the first nontrivial Ramsey number 

r(3,3). 

Theorem 12.1 

The Ramsey number r(3,3) = 6. 

Proof 

Since neither C5 nor C5 contains fC3 as a subgraph, r(3,3) ^ 6. Consider 
any red-blue coloring of Kb and let v be a vertex of X6. Clearly, v is 

incident with at least three edges of the same color. Without loss of 

generality, we assume that xro\, vv2 and vv3 are red edges. If any of vpv2, 
V}V3 and v2v3 is a red edge, then there is a red fC3; otherwise, these three 
edges are blue and we have a blue K3. Thus, r(3,3) ^ 6. Combining the 

two inequalities, we have r(3,3) =6. □ 

Before proceeding further, we show that all Ramsey numbers exist and, 

at the same time, establish an upper bound for r(s, t), which was discov¬ 
ered originally by Erdos and Szekeres [ES2]. In the proof of Theorem 12.2 
we use the definition of the Ramsey number directly, rather than the 
equivalent edge coloring point of view. 

Theorem 12.2 

For every two positive integers s and t, the Ramsey number r(s, t) exists; 
moreover, 

Proof 

We proceed by induction onk = s + t. Note that we have equality for s = 1 
or s = 2, and arbitrary t; and for t = 1 or f = 2, and arbitrary s. Hence the 

result is true for k ^ 5. Furthermore, we may assume that s ^ 3 and t ^ 3. 

Assume that r(s', tr) exists for all positive integers s' and t' with 
s' + t1 < k, where k ^ 6, and that 

Let s and t be positive integers such that s + t = k, s ^ 3 and t ^ 3. By 
the inductive hypothesis, it follows that r(s — l,f) and r(s,t - 1) exist. 
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and that 

j / (s + t — 3 
and r(s,f - 1) ^ 

Since 

s + t — 2 

s - 1 

we have that 

r(s - 1, f) + r(s, t - 1) < (S + 1 2 (12.1) 

Let G be a graph of order r(s — 1, t) + r(s, t — 1). We show that either G 
contains Ks as a subgraph or G contains K, as a subgraph. Let v e V(G). 
We consider two cases. 

Case 1. Assume that degG v ^ r{s - 1, f). Thus if S is the set of vertices adja¬ 
cent to v in G, then either (S)G contains Ks_i as a subgraph or (S)G = (S)G 

contains Kt as a subgraph. If {S)G contains K, as a subgraph, then so does 
G. If (S)G contains Ks_1 as a subgraph, then G contains Ks as a subgraph 
since in G, the vertex v is adjacent to each vertex in S. Hence in this case. 
Kg C G or Kt C G. 

Case 2. Assume that degGv < r(s — l,f). Then deg^n ^ r(s,t — 1). Thus if 

T denotes the set of vertices adjacent to v in G, then \T\ ^ r(s, t — 1) and 
either (T)c contains Ks as a subgraph or (T)g contains Ks_} as a subgraph. 
It follows, as in Case 1, that either Ks C G or Kt C G. 

Since G was an arbitrary graph of order r(s — 1, f) + r(s, f - 1), we 
conclude that r(s, t) exists and that 

r(s, f) ^ r(s - 1, f) + r(s, t - 1). (12.2) 

Combining (12.1) and (12.2), we obtain the desired result. □ 

The proof of Theorem 12.2 gives a potentially improved upper bound 
for r(s, f). This is stated next, together with another interesting fact. 

Corollary 12.3 

For integers s ^ 2 and t 2, 

r(s, f) ^ r(s - 1, t) + r(s, t - 1). (12.3) 

Moreover, ifr{s — 1, f) and r(s, t — 1) are both even, then strict inequality holds 

in (12.3). 

Proof 

The inequality in (12.3) follows from the proof of Theorem 12.2. 
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In order to complete the proof of the corollary, assume that r(s — l,f) 
and r(s,t — 1) are both even, and let G be any graph of order 

r(s — 1, f) + r(s, t — 1) — 1. We show that either G contains Ks as a sub¬ 

graph or G contains K, as a subgraph. 
Since G has odd order, some vertex v of G has even degree. If 

degG v ^ r(s — 1, f), then, as in Case 1 of Theorem 12.2, either G contains 

Ks as a subgraph or G contains Kt as a subgraph. If, on the other hand, 
degG < r(s — 1, f), then degG v ^ r(s — 1, t) — 2 since degG v and r(s — 1, t) 
are both even. But then deg^u ^ r(s, t — 1), and we may proceed as in 

Case 2 of Theorem 12.2. □ 

As we have already noted, the bound given in Theorem 12.2 for r(s, f) 

is exact if one of s and t is 1 or 2. The bound is also exact for s = t = 3. 
By Theorem 12.2, 

r( 3,f)< 
t2 + t 

An improved bound for r(3, t) is now presented. 

Theorem 12.4 

For every integer t ^ 3, 

t2 + 3 
r(3,f)^—• (12.4) 

Proof 

We proceed by induction on t. For t — 3, r(3, f) = 6 while (f2 + 3)/2 = 6, so 

that (12.4) holds if t = 3. Assume that r(3, t — 1) < ((f — l)2 + 3)/2, for 
some t ^ 4, and consider r(3, f). By Corollary 12.3, 

r(3,f) ^ f + r(3,f — 1). (12.5) 

Moreover, strict inequality holds if t and r(3,f — 1) are both even. 
Combining (12.5) and the inductive hypothesis, we have 

r(3, f) ^ t + 
(f — l)2 + 3 

2 

t2 + 4 

2 
(12.6) 

To complete the proof, it suffices to show that the inequality given in 
(12.6) is strict. 

If t is odd, then r(3, t) < (t2 + 4)/2 since t2 + 4 is odd. Thus we may 
assume that t is even. If r(3,f-l) < ((f — l)2 + 3)/2, then clearly the 

inequality in (12.6) is strict. If, on the other hand, r(3, t — 1) = 
((f — 1)" + 3)/2 = f2/2 — t + 2, then r(3, f — 1) is even since t is even. 
Therefore the inequality in (12.5) is strict, which implies the desired 
result. □ 
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Figure 12.1 An extremal graph showing r(3,5) ^ 14. 

According to Theorem 12.4, r(3,4)^9 and r(3,5) < 14. Actually, 

equality holds in both of these cases. The equality r(3,5) = 14 follows 
since there exists a graph G of order 13 containing neither a triangle nor 
an independent set of five vertices; that is, K3 % G and K5 % G. The graph 

G is shown in Figure 12.1. 
Theorem 12.2 gives an upper bound for the 'diagonal' Ramsey number 

r(s,s), namely r(s,s) ^ (^5:2)- There are three ways in which lower 
bounds for r(s, s) have been obtained: the constructive method, a counting 
method and the probabilistic method. In the constructive method, a lower 
bound for r(s, s) is established by explicitly constructing a graph G of an 
appropriate order such that neither G nor G contains Ks as a subgraph. 
Better lower bounds, however, have been obtained using a counting 
method, which we describe here briefly. (The probabilistic method will 
be discussed in Chapter 13.) Suppose that we wish to prove the 

existence of a graph G of order n having some given property P. If we 
can estimate the number of graphs of order n that do not have property 
P and we can show that this number is strictly less than the total number 

of graphs of order n, then there must exist a graph G of order n having 
property P. Of course, this procedure offers no method for constructing G. 
In 1947, in one of the first applications of a counting method, Erdos [E2] 

established the following bound. 

Theorem 12.5 

For every integer t ^ 3, 

r(t,t)>{ 2,/2J. 

Proof 

Let n = [2f/2J. We demonstrate the existence of a graph G of order n such 
that neither G nor G contains Kt as a subgraph. 
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There are 2$ distinct labeled graphs of order n with the same vertex set 
V. For each subset S of V with ISI = t, the number of these graphs in which 
S induces a complete graph is 2V2' Thus, if M denotes the number of 

graphs with vertex set V that contain a subgraph isomorphic to Kt, then 

M ^ (12.7) 

By hypothesis, n ^ 2^2. Thus, n' ^ 2' ^2. Since t ^ 3, we have 2f 7 2 < 

(^)f!2(z), and so 

n‘< Q)f!2$. (12.8) 

Combining (12.7) and (12.8), we conclude that 

M < 02$. 

If we list the M graphs with vertex set V that contain a subgraph iso¬ 
morphic to Kt, together with their complements, then there are at most 

2M < 2© graphs in the list. Since there are 2$ graphs with vertex set 
V, we conclude that there is a graph G with vertex set V such that neither 

G nor G appears in the aforementioned list, that is, neither G nor G 

contains a subgraph isomorphic to Kt. □ 

By Theorems 12.2 and 12.5, we have 4<r(4,4)^20. Actually 
r(4,4) = 18 (Exercise 12.5); in fact, the only known Ramsey numbers 
r(s, f) for 3 ^ s ^ t are 

r(3,3) = 6 r(3,6) = 18 r(3,9) = 36 

r(3,4) = 9 r(3,7) = 23 r(4,4) = 18 

r(3,5) = 14 r(3,8) - 28 r(4,5) = 25. 

EXERCISES 12.1 

12.1 Show that r(s, t) — r(t,s) for all positive integers s and t. 

12.2 Show that if G is a graph of order r(s, t) — 1, then 
(a) Ks_i C G or K, C G, 

(b) Ks CGorK,., C G. 

12.3 If 2 ^ s' ^ s and 2 ^ t’ < f, then prove that r(s', t') ^ r(s, t). Further¬ 
more, prove that equality holds if and only if s' — s and t' = t. 

12.4 Show that r(3,4) = 9. 

12.5 The accompanying graph has order 17 and contains neither four 
mutually adjacent vertices nor an independent set of four vertices. 
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Thus, r(4,4) > 17. Show that r(4,4) = 18. 

12.6 The value of the Ramsey number r(5,5) is unknown. Establish 
upper and lower bounds (with explanations) for this number. 

12.2 GENERALIZED RAMSEY THEORY 

For positive integers S} and s2/ the classical Ramsey number r(sj,s2)/ dis¬ 
cussed in section 12.1, may be defined as the least positive integer n such 
that for any factorization Kn — F^ © F2 (therefore, F2 = T]), either KS] C F1 
or K$2 C F2. Defining the Ramsey number in this manner suggests a variety 

of interesting generalizations. In this section we consider a sample of the 
many directions of investigation in the field of Ramsey theory. 

Let G1( G2,..., Gk {k^2) be graphs. The (generalized) Ramsey number 
r(Gj, G2,is the least positive integer n such that for any factoriza¬ 
tion 

Kn = Fa © F2 ® • • • © Fk, 

the graph G, is a subgraph of F, for at least one i — 1,2,... ,k. Hence, 

r(KS],KSl) = r(s1,s2). Furthermore, we denote r(JCs,,K$2,...,KSk) by 
r(s-[,s2,... ,Sk). The existence of such Ramsey numbers is guaranteed by 
the existence of the classical Ramsey numbers, as we now see. 

Theorem 12.6 

Let the graphs G1; G2,..., Gk (k^ 2) be given. Then the Ramsey number 

r(G-[,G2,..., Gk) exists. 

Proof 

It suffices to show that if s],s2,...,sk are positive integers, then 

r(si,s2,... ,sk) exists; for suppose that G},G2,... ,Gk have orders s^. 
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s2, ■ ■ ■ ,sk/ respectively, and that r(s1,s2,... ,sk) exists. If Ft © F2 © • • • © Fk is 
any factorization of the complete graph of order r(s1,s2,... ,sk), then 
Ks C Fj for some i, \ ^ i ^ k. Since G, C KSi, it follows that G, C F,. Thus 

r{G\, G2,..., Gk) exists and r(Gj, G2,..., Gk) ^ rfo, s2,..., sk). 
We proceed by induction on k, where r(s1,s2) exists for all positive 

integers St and s2 by Theorem 12.2. Assume that r(s1,s2,... ,s*_i) exists 
(.k ^ 3) for any k — 1 positive integers Sj, s2,..., and let S!, s2,..., sk 
be k positive integers. We show that , s2,..., sk) exists. By the inductive 

hypothesis, r(sl5s2,... ,sk_i) exists; say r(si,s2,... ,sk_k) = n0. Let 
r(n0,sk) = n. We now verify that r(s1,s2,... ,sk) ^ n, thereby establishing 

the required existence. 
Let Kn = F] © F2 © • • • © Fk be an arbitrary factorization of Kn into k 

factors. We show that Ks C F, for at least one i, 1 ^ i ^ k. Let 
H = F-[ © F2 © • • • © Fjt_i; hence Kn = H © Fk. Since r(n0, sk) = n, it follows 

that K„0 CH or KSk C Fk. 
Suppose that K„Q C H. Let V0 be a set of n0 mutually adjacent vertices 

of H, and define Fj = (V0)f, for i — 1,2,... ,k— 1. Since H = 
F-j © F2 © • • • © Fk_i, it follows that K„o = F\ © F2 © • • • © F'k_j. However, 
r(s1,s2,... ,Sjt_-i) = n0; so Ks C F'j for some i, l<i</t —1. Because 
Fj C Fj for all i, 1 ^ i ^ k — l, the graph Ks is a subgraph of F, for at 
least one i, 1 ^ i ^ k — 1. 

Hence, we may conclude that fCs C F, for some i, 1 ^ i ^ k. □ 

While it is known that r(3,3,3) = 17, no other nontrivial numbers of the 
type r(s-j, s2,..., sk), k ^ 2, have been evaluated except those mentioned in 
the preceding section. It may be surprising that there has been consider¬ 
ably more success in evaluating the numbers /"(Gt , G2,..., Gk) when not 

all the graphs G, are complete. One of the most interesting results in this 
direction is due to Chvatal [C8], who determined the Ramsey number 
r(Ts,Kt), where Ts is an arbitrary tree of order s. This very general 
result has a remarkably simple proof. 

Theorem 12.7 

Let Ts be any tree of order s ^ 1 and let t be a positive integer. Then 

r(Ts,Kt) = 1 + (s — l)(f — 1). 

Proof 

For s = 1 or t = 1, r(Ts, K,) = 1 = 1 + (s — l)(f — 1). Thus, we may assume 
that s ^ 2 and t ^ 2. 

The graph F = (t — l)K;_i does not contain Ts as a subgraph since each 
component of F has order s —1. The complete (t — l)-partite graph 

F = K(s — 1, s — 1,..., s — 1) does not contain K, as a subgraph. Therefore, 

r(Ts,K,)^l + (s —l)(f—1). 
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Let F be any graph of order 1 + (s — l)(f — 1). We show that Ts C F or 

Kt C F, implying that r(Ts,Kt) ^ 1 + (s — l)(f — 1) and completing the 
proof. If Kt is not a subgraph of F, then /3(F) ^ t — 1. Therefore, since F 

has order 1 + (s — l)(f - 1) and /3(F) < f — 1, it follows that y(F) 5= s 
(Exercise 8.1). Let Ft be a subgraph of F that is critically s-chromatic. By 
Corollary 8.3, 6(H) ^ s — 1. Now applying Theorem 3.8, we have that 
Ts C H, so that Ts C F. □ 

For k iZ 3, the determination of Ramsey numbers r(G^, G2,..., Gk) has 
proved to be quite difficult, for the most part. For only a very few classes 
of graphs has any real progress been made. One such example, however, 

is where each G„ 1 ^ i ^ k, is a star graph. The following result is by Burr 
and Roberts [BR3]. 

Theorem 12.8 

Let Si,s2,...,sk (k^ 2) be positive integers, t of which are even. Then 

k 

> Kl,s2, • ■ • ) ,sk) = 5^(S1 — 1) + 

1=1 

where 6t — 1 if t is positive and even and 9, = 2 otherwise. 

Proof 

Let r(fC1>s ,XliS ,... ,KiiS ) = n, and let J2i=\si = N. First, we show that 
n^N — k + 9,. Since each vertex of KN_k+2 has degree N — k +1 = 

£T=1(s, — 1) + 1, any factorization 

R-n—k+2 = © F2 © • • • © Fj. 

necessarily has Kls C F, for at least one i, 1 ^ i < k. Thus, n ^ N — k + 2. 
To complete the proof of the inequality n ^ N — k + 9t, it remains to show 
that n ^ N — fc + 1 if f is positive and even. Observe that, in this case, 
N — k + 1 is odd. Suppose, to the contrary, that there exists a factorization 

K-N-k+1 = fi ® F2 (B ■ • • (B Fk 

such that K-[ S. is not a subgraph of F, for each i = 1,2,... ,k. Since each 

vertex of KN_k + i has degree N — k = £T = 1 (s,- — 1), this implies that F, is 
an (s, — l)-factor of KN_k + l for each i = 1,2,..., k. However, N — k + 1 is 
odd and n. — 1 is odd for some j (1 ^ ^ k); thus, F; contains an odd 

number of odd vertices, which is impossible. 
Next we show that n ^ N — k + 6t. If t = 0, then each integer s, is odd as 

is N — k + 1. By Theorem 9.21, the complete graph KN_k+i can be factored 
into (N — k)/2 hamiltonian cycles. For each i = 1,2,..., k, let F, be the 

union of (s, — l)/2 of these cycles, so F, is an (s, — l)-factor of KN_k+-[. 

Hence there exists a factorization KN_k+i = F-[ © F2 © • • ■ © Fk such that 
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K]s is not a subgraph of F„ for each i (1 ^ i ^k). This implies that 

n ^ N — k + 2 it t = 0. 
Assume that t is odd. Then N - k + 1 is even. By Theorem 9.19, KN_k+] 

is 1-factorable and therefore factors into N — k 1-factors. For i = 1,2,k, 
let Fj be the union of s, - 1 of these 1-factors, so each F, is an (s, - l)-factor 

of KN_k+ ]. Thus, there exists a factorization KN_k + -[ = Fj © F2 © • • • © Fk 
such that Kls is not a subgraph of F, for each i. Thus n ^ N — k + 2 if t is 

odd. 
Finally, assume that t is even and positive, and suppose that S], say, is 

even. Then there is an odd number of even integers among Sj — 1, 

s2,... ,sk, which implies by the previous remark that 

n ^ r(KltSl _i, ^i,s2j • • • > Kia) ^ N — k + 1. 

Hence, in all cases n ^ N — k + 6t/ so that n = N — k + 9t. □ 

For k = 2 in Theorem 12.8, we have the following. 

Corollary 12.9 

Let s and t be positive integers. Then 

s + t — 1 if s and t are both even 

s + t otherwise. 
r 

For graphs Gj, G2,..., Gk, where k ^ 2, we know (as a result of 
Ramsey's theorem) that if G is a complete graph of sufficiently large 
order, then for every factorization G = F} © F2 © • • • © Fk, the graph G, is 
a subgraph of F, for at least one i, 1 ^ ^ k. This suggests the following. 

For graphs G, Gt , G2,..., Gk (k ^ 2), we say G arrows G1; G2,..., Gk/ 
written G —> (Gl5 G2,..., Gk), if it is the case that for every factorization 
G = F] © F2 © • • • © Fk, we have G, C F,- for at least one i, \ ^i ^k. The 
natural problem, then, is to determine those graphs G for which 

G —> (G1,G2,...,Gk) for given graphs GuG2,...,Gk. 
In a few special cases of pairs of graphs G] and G2, the aforementioned 

problem has been solved. In general, however, the problem is extremely 
difficult. Therefore most attention has been centered on the case k = 2, 

and, for given graphs G] and G2, on the properties a graph G can possess 
if G —> (G1,G2). For example, if G —>■ (Ks,Kf) where s, f ^ 2, then clearly 
w(G) ^ max(s, t). Folkman [F8] has shown that this is a sharp bound on 

w(G); specifically, given integers s, t ^ 2, there is a graph G' with clique 
number max(s,f) for which G' —> (Ks,Kt). Nesetril and Rodl [NR1] have 
extended this result by showing that for any graph H and integer k ^ 2, 

there exists a graph G with clique number w(H) for which 
G —> (H], H2,..., Hk), where Ff, = H for i = 1,2,..., k. 

If G —» (Xs, Kt), then it is easily seen that the order of G is at least r(s, t); 

that is, if G —* (K5, Kt), then the n(G) ^ ri(Kr), where r — r(s, t). Burr, Erdos 
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and Lovasz [BEL1] have shown that a similar result holds in the case of 
chromatic numbers. 

Theorem 12.10 

For all positive integers s and t, if G —> (Ks,Kt), then y(G) ^ x(Kr), where 
r = r{s,t). 

Proof 

The result holds if s = 1 or if t — 1. Thus we may assume that s ^ 2 and 
t ^ 2, so that r(s, t) ^ 2. 

Suppose that x(G) ^ r — 1. Since the order of G is at least r, there is an 
(r — l)-coloring of G with resulting color classes U-[,U2,.. ■ ,Ur_i- 

By definition of r = r(s,f), there is a factorization Kr_i = F-[ ©F2 such 
that Ks % Fj and Kt %F2. Label the vertices of as Vi,v2,... 

We construct a factorization of Gas follows. Let V^G}) = V(G2) = V(G). 
Each edge e of G is of the form e = UjUk where Uj G LZ; and uk E Uk 
(1 ^ j < k ^ r — 1). Since vpvk is an edge of Kr_i, either VjVk E E(Fi) or 
v,vk E E(F2) in the factorization Fr_1=F]©F2. Let UjUk e E(Gj) if 
VjVk E E(F,), z = 1,2. Then G — Gi © G2. 

Suppose that Ks C G\. Thus G] contains s mutually adjacent vertices, 
say w-l,w2,..., ws, and there are distinct color classes , lf,2,..., U, 
such that Wj E If, for j — 1,2,..., s. From the way in which G] was con¬ 
structed, it follows that ({zz,^, u,2,..., = Ksr which is impossible. 
Therefore, Ks % G-j. Similarly, K, % G2, so G /> (Ks,Kt). This is a contra¬ 
diction. Thus, x(G) ^ r, and the proof is complete. □ 

Corollary 12.11 

For all positive integers s and t,if G —> (Ks, Kt), then the size of G is at least Q, 
where r = r(s, f). 

For arbitrary graphs G-[ and G2/ if G —» (G-[, G2), then the order of G is at 
least r, where r = r(G1,G2). However, it is not true in general that 
x(G) ^ x(Rr) or that the size of G is at least Q, the size of Kr. 

We note in closing that Graham, Rothschild and Spencer [GRS1] have 
written a book on Ramsey theory. 

EXERCISES 12.2 

12.7 Show that r(3,3,3) ^ 17. 
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12.8 Show for graphs Gt , G2,..., G^ (k ^ 2) that 

r(Gi, G2,..., G^, X2) = r(Gi, G2,..., G^). 

12.9 Show for positive integers 6, f2,..., f* (k ^ 2) that 

r(Kf, ,Kt2,... ,Ktk,Ts) — 1 + (r — l)(s — 1), 

where Ts is any tree of order s ^ 1 and r = r(6, f2,..., tk). 

12.10 Let s and t be integers with s ^ 3 and t ^ 1. Show that 

2f + 1 if s is odd and s ^ 2f + 1 

s if s ^ 21. 

(Note that this does not cover the case where s is even and s < 2f.) 

12.11 Let G] be a graph whose largest component has order s, and let G2 
be a graph with x(G2) = t. Prove that r(G1, G2) ^ 1 + (s — 1 )(f - 1). 

12.12 Show for positive integers i and t, that r(Kf + Kt, Ts) ^ /(s — 1) + t, 

where Ts is any tree of order s ^ 1. 

12.13 Let s and t be positive integers, and recall that a(G) denotes the 
vertex-arboricity of a graph G. Determine a formula for a(s,t), 

where a(s, t) is the least positive integer n such that for any factor¬ 
ization K„ — Fi ©F2, either fl(F]) or a(F2) ^ t. 

12.14 Show that if G, Gt and G2 are graphs such that G —> (Gl5 G2), then 

the order of G is at least r, where r = r(Gl5 G2). 

12.15 Prove Corollary 12.11. 

12.16 (a) Let s and t be positive integers. Show that if G —> 
then the size of G is at least s + t — 1. 

(b) Give an example of a graph G for which G —► (fCl s, ,) and the 
size of G is s + t — 1. 

12.17 (a) Give an example of graphs G, Glr G2 such that G —> (Glf G2) but 

X(G) < X(^r(G,,G2))- 
(b) Give an example of graphs G, Gt , G2 such that G —► (G!, G2) but 

the size of G is less than the size of Kr(Gi,G2)- 

12.18 (a) Prove that there exists no triangle-free graph G of order 4k + 3 
(k ^ 1) for which <5(G) ^ 2k + 2. 

(b) Let G\, G2,..., Gk+\ be k + 1( 2) graphs such that Gt = fC3 and 
Gi = K-[3 for 2<i^fc+l. Prove that r(G1? G2,..., Gk + 1) = 
4k + 3. ’ 

12.19 (a) Let s1,s2,s3(^2) be integers. Prove that r(s},s2)s3) ^ 

r(s],s2,s3 — 1) + r(s3, s2 — l,s3) + r(S} — l,s2,s3) — 1. 
(b) Generalize the result in part (a). 
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12.3 OTHER RAMSEY NUMBERS 

In this section we consider three examples of Ramsey-like numbers. 
For positive integers s and f the classical Ramsey number r(s, f) can be 

defined as the least positive integer n such that for every graph G of order 

n, either /3(G) > sor (3(G) ^ t, that is, either G contains Ks as a subgraph or 
G contains Kt as a subgraph. Since every independent set is also an irre- 

dundant set, this alternative formulation suggests a concept analogous to 
Ramsey numbers for irredundance. 

The irredundant Ramsey number ir(s, t) is the least positive integer n such 
that for any graph G of order n, either IR(G) ^ s or IR(G) t. 

Since IR(G) ^ (3(G) for every graph G, it follows that ir(s, t) exists for all 

positive integers s and t and, in fact, ir(s,t) ^ r(s,t)- The irredundant 
Ramsey number is symmetric in s and t, as is the classical Ramsey 
number, and, as noted by Brewster, Cockayne and Mynhardt [BCM1], 

recurrence relations analogous to (12.2) hold for irredundant Ramsey 
numbers. The proof of this last fact is left as an exercise. 

Theorem 12.12 

For every two positive integers s 2 and t ^ 2, the irredundant Ramsey number 

ir(s, t) exists; moreover, 

ir(s, t) ^ ir(s — 1, t) + ir(s, t — 1). 

Certainly, zr(l,f) = 1 and ir(2,t) — t (Exercise 12.21). Our next result 
establishes the value of ir(3,3). 

Theorem 12.13 

The irredundant Ramsey number ir(3,3) = 6. 

Proof 

Since ir(3,3) ^ r(3,3) = 6, it suffices to exhibit a graph G of order 5 for 

which IR(G) < 3 and IR(G) < 3. Consider G = G = C5. Assume, to the 
contrary, that IR(C5) ^ 3. Since (3(C5) — 2, it follows that C5 contains an 
irredundant set S of cardinality 3 that is not independent. Thus, (S) = P3 
or (S) = P1 U P2. In either case, however, this implies that S is redundant, 

and produces a contradiction. Thus IR(C5) = 2 and, consequently, 

ir( 3,3)25 6. □ 

Recall that for a graph G, the independent domination number i(G) is 
the minimum cardinality among all independent dominating sets of G. 

Equivalently, i(G) is the minimum cardinality among all maximal inde¬ 
pendent sets of G. So i(G) and (3(G) represent the smallest and largest 
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cardinalities of maximal independent sets in G. The clique number w(G) 
of a graph G is the largest cardinality among the complete subgraphs 
(equivalently, among maximal complete subgraphs) of G and we let 

w(G) denote the corresponding smallest cardinality among the maximal 
complete subgraphs of G. The parameter u(G) is called the lower clique 

number. We have already referred to i(G) as the lower independence 
number. The classical Ramsey number r(s, t) can be defined as the least 

positive integer n such that for every graph G of order n, either uj(G) ^ s or 
/3(G) t. Analogously, we define the lower Ramsey number /r(s,f) as the 
greatest positive integer n such that for every graph G of order n, either 

u(G) ^ s or z(G) ^ t. 
Clearly, lower Ramsey numbers are symmetric in s and t. Mynhardt 

[M12] showed that if every graph G of order n has u(G) or z(G) ^ f, 
then so has every graph of order less than n. Moreover, it was shown that 

the lower Ramsey number fr(s,t) exists, and bounds on /r(s,f) were 
obtained. . 

Theorem 12.14 

For every two positive integers s and t, the lower Ramsey number fr(s, t) exists; 
moreover, 

s + t T 1 ^ /r(s, f) sS- 2(s T f) — 1. 

Proof 

Let M be the set of all positive integers n for which every graph G of order 

n has u(G) ^ s or i(G) ^ t. Certainly 1 £ M and so M ^ 0. To show that 
/r(s, f) ^ 2(s + t) — 1, we exhibit a graph H of order 2(s + t) in which 
u(G) ^ s + 1 and f(G)^f + l. Let H have vertex set V, U V2, where 

V1nV2 = 0 and IVjI = |V2| =s + t. Furthermore, let (Vi) = Ks + t and 
('V2) = Ks + t. Finally, add s(s + f) edges between the vertices of Vi and 
the vertices of V2 so that every vertex of Vx U V2 is adjacent to s of these 
edges. Let T be a maximal independent set. If T fl V) = 0, then T — V2 
and so \T\ = s + f. Suppose, then, that T Pi V\ ^ 0. Then \T D V) | = 1, say 

Vi £ T n Vi- Then, since iq is adjacent to precisely s vertices of V2, it 
follows that |T fl V2\ — t and so |T| = t + 1. Thus i(H) = t + 1. Similarly, 
u(H) = s + 1, and so /r(s, t) ^ 2(s + t) — 1. 

To show that /r(s, t) ^ s + t + 1, suppose, to the contrary, that there is a 
graph G of order s + t + 1 for which u(G) ^ s + 1 and z(G) ^ t + 1. Then, 
in particular, G contains sets S and T such that (S) = Ks + i and (T) = K/ + 1. 

Since | V(G) | = s + t + 1, it follows that u(G) — s + 1 and z(G) = t + 1; also, 
|S fl T\ — 1, say S fl T = {y}. Let u eT — {y}. If deg u = 0, then ({u}) is a 

maximal complete subgraph, so that u(G) — 1 < s + 1. Thus u is adjacent 
to some vertex w where, necessarily, w £ S. But then T - {u,y} U {ie} 
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contains a maximal independent set of cardinality at most t, contradicting 
i(G) f + 1. We conclude that no such G exists and *fr(s, t) ^ s + t + 1. n 

Very few exact values of lower Ramsey numbers are known. However, 

Mynhardt [M13] obtained an improved upper bound for Fr(s, f), and this 
bound was shown to be exact for s — 1 and all t in [FGJL1], We establish 

the case when t is a perfect square. 

Theorem 12.15 

For every positive integer k, the lower Ramsey number lr( 1, A2) = k2 + 2k. 

Proof 

To show that fr(l,k?) < k2 + 2k + 1, let G be the graph of order (k + l)2 
obtained from k + 1 disjoint copies of the star Kik of order k + 1 by 
adding all possible edges between the vertices of degree k in the stars. 

Then the maximal independent sets of G have order k2 + 1 or ** + *, 
and so i(G) — k2 + 1. Furthermore, the maximal complete subgraphs 
have order 2 or k+ \ so that u(G) = 2. Thus tfr(l, k2) ^ k2 + 2k since 
there is a graph of order (k + l)2 with u(G) = 2 and z(G) = k2 + 1. 

To show that tfr(l, k2) ^ k2 + 2k, assume, to the contrary, that there is a 

graph G of order /c2 + 2k for which u(G) ^ 2 and z(G) ^ k2 + 1. Since 
i(G) ^ k2 +1, G has an independent set of cardinality at least k2 + 1. 
Partition V(G) into sets A and B, where A is an independent set of 
k2 +1 vertices. The following observations will be useful. Since 
/(G) ^ fc2 +1, any independent set of fewer than k2 + 1 vertices lies 

within an independent set of k2 + 1 vertices. In particular, if x £ B is 
adjacent to t vertices of A, then B contains an independent set of / 

vertices. Also since u(G) ^ 2, there are no isolated vertices in G. 
Let B' C B be a maximum independent set in (B) of cardinality k — a, 

where 1— k ^ a ^ k - 1. We show that for every such a, a contradiction 

arises, which completes the proof. 
As observed, we must be able to extend B' to an independent set 

ot k2 + \ vertices. By our choice of B', then, there is a set A1 of 
J^ + l -k + a vertices in A such that A1 U B1 is an independent set in G. 
Each vertex of A' has degree at least 1, and consequently there are at least 

*2 + 1 -k + a edges between the vertices in A' and the k + a — 1 vertices 
in B — B'. Thus some vertex x in B — B' is adjacent to at least 

(** + 1 -* + ot)/(k + a — 1) vertices of A. But this implies that B contains 
an independent set of at least (fc2 + 1 — k + a)/(k + a — 1) vertices and, by 

the choice of B', that 

k — a ^ 
{k2 + 1 - k + a) 

(fc + a -1) 
(12.9) 
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However, the inequality in (12.9) implies that a +1^0, which is 

impossible. □ 

As a final example of another Ramsey-like number we turn our 
attention to bipartite graphs. The classical Ramsey number r(s, t) can be 

defined as the least positive integer n such that any factorization of K„ into 

Gj and G2 has the property that either G} contains Ks as a subgraph or G2 
contains K, as a subgraph. By replacing the complete graphs involved in 
this definition with complete bipartite graphs, we obtain bipartite Ramsey 
numbers. Specifically, for positive integers s and t the bipartite Ramsey 

number br(s, t) is the least positive integer n such that each factorization 
of Kn n into Gt and G2 has the property that either Gj contains Kss as a 

subgraph or G2 contains Ktt. Equivalently, the bipartite Ramsey 
number br(s, t) is the least positive integer n such that if every edge of 

Kn „ is colored either red or blue, then there is a red Ks s (that is, a copy 
of Ks s in Kn n, all of whose edges are red) or a blue Kt t. 

Given a red-blue coloring of the edges of Kn n and a vertex v in Knn, let 

Rv denote the set of vertices in K„ „ that are joined to v by red edges and let 
Bv be the set of vertices joined to v by blue edges. The red degree of v (with 
respect to the given red-blue coloring) is degR v = \RV\ and the blue degree 

ofv is degB v = \BV\. Finally, 6R(Kn n) denotes the minimum red degree of a 
vertex in Kn n and 6B(K,hn) denotes the minimum blue degree. 

Obviously, the bipartite Ramsey numbers are symmetric in s and t, and 
for every positive integer f, br( 1, t) = t (Exercise 12.23). The existence of 

the bipartite Ramsey number br(s, t) follows from the work of Erdos and 
Rado [ER1 ]; while Hattingh and Henning [HH1] presented an upper 
bound for br(s, t). 

Theorem 12.16 

For every two positive integers s and t the bipartite Ramsey number br(s, t) exists; 
moreover, 

br(s, t) < 

Proof 

We proceed by induction on k, where k = s + t. Note that we have equality 

for s = 1 and arbitrary t, and for t — 1 and arbitrary s. Hence the result is 
true for k = 2 and k = 3. Furthermore, we may assume that s ^ 2 and t ^ 2. 

Assume that br(s', t') exists for all positive integers s' and f' with 
s' + t' < k, where k ^ 4, and that 

br{s',t’) ^ y ^-1. 
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Let s and t be positive integers such that s + t = k, s ^ 2 and t ^ 2. By the 
inductive hypothesis, it follows that br(s — 1, t) and br(s, t — 1) exist, and 
that 

br(s — 1, t) 

Since 

it follows that 

and br(s,f - 1) « 6 + ' 

s-l + f\ fs + t - \ 

S-1 + 5 

S + t 

br(s - 1, f) + br(s, t — 1) + 1 ^ ( S t 1 —1. 

-1. 

(12.10) 

Let n = br(s — 1, f) + br(s, t — 1) — 1 and consider any red-blue coloring 

of Kn/ir where Vj and V2 denote the partite sets of Kn n. 
The following observation will be useful. Suppose that v is a vertex 

of Kn n with degR v ^ br(s — 1, t) + 1 and that w e Rv with degR w ^ 
br(s — 1, t) + 1. Thus the subgraph F = (Rv U Rw — {n, ze}) contains Kh b, 
where b — br{s — l,f), so that F contains either a red Ks_ls_i or a blue 
Ktt. If F contains a blue Kt t, then so does Kn n. If F contains a red 

Ks_l s_1, then (Rv U Rw) contains a red Kss, as does Knn. Thus if v is a 
vertex of Kn n with degR v ^ br(s — 1, t) + 1, and w G Rv with 
degR w ^ br(s — 1, f) + 1, then Kn n contains a red Ks s or a blue Kt t. Simi¬ 
larly, if degB v ^ br(s, t — 1) + 1, and w 6 Bv with degB w hr(s, t — 1) +1, 
then Knn contains a red Kss or a blue ,. In particular, if <5R = 

6R(Kn,n) > br(s - l,t) + 1 or 6B = 6B(Knt„) ^ br(s,t- 1) + 1, then con¬ 
tains a red Kss or a blue Ktt. Assume, then, that SR ^ br(s — l,f) and 
<5b hr(s, t - lj. 

If degR v ^ br (s — 1, t) + 1 for all vertices v in V\, then the number of red 

edges between Vi and V2 is at least 

[br(s - 1, t) + br(s, t - 1) + 1] • [br(s - 1, t) + 1]. 

This implies that degR w ^ br(s — 1, t) + 1 for some w € V2. Therefore for 
some v in we have degR v ^ br(s — 1, f) + 1, and w e Rv with 
degR ze ^ br(s — 1, f) + 1, implying that G contains a red Xss or a blue 
X, f. Thus we may assume that at least one vertex vx of Vi (and, similarly, 
one vertex v2 of V2) has red degree at most br(s — 1, t). Let y be a vertex of 
minimum blue degree in Kn n. Without loss of generality, assume y £ Vi. 

Then z^ and y are vertices of Vi for which degR y — n — degB y = 

n - 6b ^ br(s - 1, t) + 1 and degB vx — n - degR Vi ^ br(s, t — 1) + 1. 
Since \V2\ = br(s — 1, f) + br(s, t — 1) + 1, it follows that \Ry n BVl | / 0. 

Let x e Ry n BV]. If degR x ^ br(s - 1, f) + 1, then Kn n contains a red Kss 
or a blue K,If, on the other hand, degR x ^ br(s — 1, f), then degB x ^ 

br(s, t — 1) + 1 and again Kn n contains a red Ks s or a blue Kt t. 
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Thus 

br(s, t) ^ br(s — 1, t) + br(s, t — 1) + 1 (12.11) 

and the desired result follows from (12.10). □ 

Inequality (12.11) gives a potentially improved bound for br(s,t). We 

state this as a corollary. 

Corollary 12.17 

For integers s ^ 2 and t ^ 2, 

frr(s, f) ^ frr(s — 1, t) + br(s, t — 1) + 1. 

The bound given in Theorem 12.16 for br(s, t) is exact if s — 1 or t — 1. 
The bound is also exact for s = 2 and t = 2, 3 or 4. Figures 12.2 and 
12.3 indicate the extremal colorings showing that br{2,3) ^9 and 

br(2,4) ^ 14. Here the edges shown are the 'red' edges of K88 and K13 13. 

Figure 12.3 An extremal graph showing that br(2,4) ^ 14. 
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The values br(2,2) = 5 and br(3,3) = 17 had earlier been determined by 

Beineke and Schwenk [BS1]. Also, an improved upper bound for br(s, t) 
when s = t was discovered by Thomason [T2]. 

Theorem 12.18 

For every positive integer t, 

br(t, t) <2f(f-l) + l. 

EXERCISES 12.3 

12.20 Prove Theorem 12.12. 

12.21 Show that ir(2, t) = t, for all t ^ 2. 

12.22 Show that /r( 1,5) = 10. 

12.23 Show that f?r(l, f) = t, for all t ^ 1. 

12.24 Show that br{2,2) = 5. 



CHAPTER 13 

The probabilistic method in 
graph theory 

In this chapter we investigate a powerful, nonconstructive proof tech¬ 
nique known as the probabilistic method and then study properties of 

random graphs. 

13.1 THE PROBABILISTIC METHOD 

In Chapter 12 we showed that for every integer t ^ 3, the Ramsey number 

r(t, t) > [2,/2J. We did so by proving the existence of a graph G of order 

n = l_2,/2J such that neither G nor G contains Kt as a subgraph. More 
specifically, we counted the number of different labeled graphs of order 
n that contain a subgraph isomorphic to Kt/ together with their comple¬ 

ments, and showed that there were fewer than 2^ of these graphs. Here 
we revisit this proof from a probabilistic point of view. Recall that the 
assignment of the colors red or blue to the edges of a graph G is called 
a red-blue coloring of G. 

Theorem 13.1 

For every integer t ^ 3, 

r(f,f)> L2,/2J. 

Proof 

Let n — \2^2\. We show that there exists a red-blue coloring of K„ that 
contains no monochromatic Kt, that is, neither a red K, nor a blue Kt. 

Consider the probability space whose elements are red-blue colorings 
of Kn, where V(Kn) = {tq, v2,..., vn}. The probabilities are defined by 
setting 

P[VjVj is red] = P[u,n; is blue] = ^ 

for each pair vir Vj of distinct vertices of Kn (where P[E] denotes the prob¬ 

ability of event E), and letting these events be mutually independent. 
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Thus each of the 2(?) red-blue colorings is equally likely with probability 
2"(S). 

For a fixed f-element set S C {zq, v2, ■ ■ ■, vn}, let As denote the event that 
the subgraph induced by S in Kn is a red K, or a blue Kt. Then 

P[^s] = 0(i) + 0O=21-(^ 

since the 0 edges joining the vertices of S must be all red or all blue. 

Consider the event \MS, the disjunction over all f-element subsets S of 
{zq, v2, ■ ■., vn}. Since there are (") such subsets, 

P[VAs]«y:P[As]=0(2'-©)<(^)(2'-®). 

Since n ^ 2t/2, we have n‘ 2f ^. Furthermore, since f ^ 3, it follows that 
2f2/2 < 0f! 2(2). Thus 

j2 ^2 

P[vAsH ^-(2'-©) 

< 02® (21-®) 

= 1. 

Since P[VAS] < 1, it follows that P[vAs] > 0, that is, P[aAs] > 0. Thus 
AAS is not the null event and so there is a point in the probability space 
for which AAs holds. Such a point, however, is a red-blue coloring of Kn 
with no monochromatic Kt and the proof is complete. □ 

The proof of Theorem 13.1 illustrates the basic technique of the 
probabilistic method. An appropriate probability space is defined on a 
set of objects (in our case, red-blue colorings of Ktl). An event A is 
then defined representing the desired structure. In the proof of Theorem 

13.1, this event A = AAs. We then show that A has positive probability 
so that an object with the desired characteristics or structure must 
exist. 

Before presenting another example of the probabilistic method we 
introduce some standard terminology. In the proof of Theorem 13.1 we 
defined a probability space whose objects consisted of all red-blue color¬ 

ings of Kn in which each such coloring was equally likely. In such a case 
we refer to a random red-blue coloring of Kn. 

Our second example of the probabilistic method involves tournaments. 
A tournament T of order n ^ 2 has property S* (1 ^ k ^ n — 1) if for every 
set S of k vertices of T there is a vertex S such that (w,v) € E(T) for 
every v in S, that is, there is a vertex S that is adjacent to every vertex of 

S. Using the probabilistic method, we show that for every such integer k 
there is a tournament T of order n having property Sk for all sufficiently 

large n. 
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Theorem 13.2 

For every positive integer k and sufficiently large integer n, there is a tournament 

T of order n with property Sk. 

Proof 

For a fixed integer n, consider a random tournament T on n vertices. More 

specifically, consider the probability space whose elements are the 2[2> 

different labeled tournaments T with vertex set {V\,v2,..., v„). The 

probabilities are defined by setting 

?[(vhvj)eE(T)] = P[(vpVi)eE(T)]=l 

and then letting these events be mutually independent. Thus each of these 
2^ different labeled tournaments is equally likely. 

For a fixed /c-element set S C {iq, v2, ■ ■ ■, v,f\, let As denote the event that 
there is no w £ V(T) — S that is adjacent to every vertex of S. Each vertex 
w £ V(T) - S has probability (i)*1 of being adjacent to every vertex of S, 

and there are n — k such vertices w, all of whose chances are mutually 
independent. Thus, 

F[As] = (\-2-k)n-\ 

and so 

P[VAS]« £P[A;1= (^)(l-2-‘)”-i. 

Thus, if we choose n so that (£)(1 — 2~k)n~k < 1, then P[\MS] < 1. For 

such an integer n, it follows that P[VAS] > 0 = P[AAS] > 0. Thus there is 
a point in the probability space for which AAs is true, that is, there exists 
a tournament T with property S*. □ 

Observe that again we have defined an appropriate probability space 

and event A. This is done so that A has positive probability and, conse¬ 
quently, the desired object (in this case, a tournament of order n with 
property Sk) exists. 

For a probability space S, a random variable X on S is a real-valued 
function on S. The expected value E [X] of X is the weighted average 

E[X] = y>P[X = *:], 

where the sum is taken over all possible values k of X. It is easy to see that 
expectation is linear, that is, if Xlr X2 and X are random variables on a 

probability space S and X = X, -I- X2, then E[X] = E[X-j] -I- E[X2). Further¬ 
more, if E[X] = t, then X(S}) ^ t and X(s2) ^ t for some elements Si and s2 
of S. This second observation will prove to be very powerful, as indicated 

in the proof of Theorem 13.3. This result of Szele [S12] is often considered 

the first use of the probabilistic method. 
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Theorem 13.3 

For each positive integer n there is a tournament of order n with at least n\ 2',_1 

hamiltonian paths. 

Proof 

Consider a random tournament T of order n, and let X be the number of 

hamiltonian paths in T. For each of the n\ permutations a of V(T), let Xa be 
the indicator random variable for a giving a hamiltonian path, that is, Xa is 1 
or 0 depending on whether o does or does not describe a hamiltonian path 

in T. Then PpC^ = 1] = 0"-1 (since each of the n — 1 arcs in the potential 
hamiltonian path must be correct) and so E[XCT] = 0"_1. Let X = J2 Xa, 

where the summation is taken over all permutations o of V(T). Then X 
gives the number of hamiltonian paths in T and 

E[X] = EEXCT] = n!2-("-b 

Hence there is a point in the probability space, namely a specific tourna¬ 

ment T, for which X exceeds or equals its expectation. This T has at least 
n\hamiltonian paths. □ 

In our fourth example of the probabilistic method in graph theory, the 
objects in the sample space under consideration are the vertex subsets of a 

fixed graph G. Here we obtain an upper bound on the domination 
number 7(G) of G, due to Payan [P2], in terms of the minimum degree 
of G (Theorem 10.4). 

Theorem 13.4 

Let G be a graph of order n with 8 = 8(G) ^ 2. Then 

7(G) < 
n( 1 + ln(5 + 1)) 

5 + 1 

Proof 

Set p = (ln(5 + l))/(5 + 1) and consider a random set S C V(G) whose 
vertices are chosen independently with probability p. That is, consider 
the probability space whose elements are the 2n subsets of V(G) — 
{v-i,v2,... ,vn}. The probabilities are assigned by setting F[vt G S] = p, 

and letting these events be mutually independent. Thus a subset 
S C P(G) occurs with probability p^( 1 — p)n~\sf For a random set S, let 
Y = Ys be the set of vertices not in S having no neighbors in S. Then S U Y$ 

is a dominating set of G. We show that 

E[|S| + |Y|]«S 
n( 1 + ln(5 + 1)) 

5 + 1 
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Certainly, the expected value of |S| is np. Now, for each v G V(G), 

P[v G Ys] = P[i> and its neighbors are not in S] 

<(1 -P)6 + 1 

since v has degree at least 6 = 6(G). Furthermore, since 1 — p ^ e~p, we 

have that P[dG Ys] Since the expected value of a sum of 
random variables is the sum of their expectations, and since |Y| can be 
written as a sum of n indicator variables Xv, where veV(G), and 

Xj, = 1 if v G Y and Xv = 0 otherwise, we conclude that the expected 
value of |S| + |Y| is at most 

np + ne-rtw) = «(1+ ■”(*+O). 
r 6 +1 

Thus, for some set S, we have 

|s| + |y|<dl±M£±i)), 
o + 1 

that is, we have a dominating set S U Ys of G whose cardinality is at most 

(n(l+ln(<5 + l)))/(<5 + l). □ 

One important new idea is involved in the previous proof. The random 
choice did not give the required dominating set immediately; it gave us 
the set S which then needed to be altered (in this case, by adding Ys) to 
obtain the desired dominating set. The proof of Theorem 13.5 employs the 

same technique of alteration. This proof also uses Markov's inequality, 
which states that for a random variable X and positive number t, 

Theorem 13.5 was first stated as Theorem 8.16 without proof. 

Theorem 13.5 

For every two integers k ^ 2 and t ^ 3 there exists a k-chromatic graph whose 
girth exceeds C 

Proof 

For k = 2, any even cycle of length greater than has the desired proper¬ 

ties. Assume, then, that k ^ 3. Let 0 < 9 < 1 and, for a fixed positive 
integer n, let p = ne~:. Consider a random graph G of order n whose 
edges are chosen independently with probability p; that is, consider the 

probability space whose elements are the 2(^ different labeled graphs G 
with vertex set {v-[,v2, ■ ■ ■ ,vn). The probabilities are defined by setting 

P[VjVj is an edge of G] = p, and then letting these events be mutually 
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independent. Thus each of the different labeled graphs of size m occurs 
with probability pm( 1 — p)^~m. 

Let X be the random variable that gives the number of cycles of length 
at most t. For a fixed i, 3 ^ i ^ /, there are (") /-element subsets of 

{v\,v2,... ,vn}. For each such set S there are i!/(2z) = (z — l)!/2 different 
cyclic orderings of the vertices in S. Thus there are 

/n\(z — 1)! n(n — 1)... (n — i +1) 

W 2 21 

potential cycles of length i, and so X is the sum of 

Yj=3 (n(n — 1)... (n — i -f l))/2z indicator variables. Furthermore, since a 
cycle of length i occurs with probability p‘, the linearity of expectation 
gives 

E[X] = £ it tip.. (13.1) 
1 = 3 Al 

Since p — n6-1, it follows from (13.1) that 

jL J' 
ER<EjT. (13.2) 

2 = 3 

By the choice of 9, it follows that 9( — 1 — e for some real number e with 
0 < e < 1. Thus 

E[X] nei n6* K 
Ay < V — ^ V — = —, 
n 2 m m n£ 

' i=3 i=3 

where K = Y?i=3 V*/ and so lim,,^^ E[X]/(n/2) = 0. 
By Markov's inequality, 

P(X > n/2] s; . 
n/Z 

Thus, for n sufficiently large, P[X ^ n/2] < 0.5. 
Let t= [3(ln n)/p]. The probability that a given f-element subset of 

{V],v2,... ,vn} is independent is (1 — pp2\ Since there are (") such sets, 
it follows that 

P[/)(G)M«("Vl-p)®. 

However, 1 — p < e~p, and so 

P[/3(G) >t\< < (ne_p(,_1)/2)f. 

Since ne~p(‘t~'1^2 < 1 for n sufficiently large, it follows that we can 
choose n so that P[/3(G) ^ t\ < 0.5 and p[X ^ n/2] < 0.5. For such an n. 
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then, P[/3(G) < t and X < n/2] > 0. Thus there is a specific graph G of 
order n with fewer than n/2 cycles of length at most 7 with /3(G) < t. 
Since t = [3(ln n)/p] = [3(ln n)n] ~e~\, we may assume that n is sufficiently 

large to ensure that t < n/2k. 
Remove one vertex from each cycle of G of length at most 7, denoting 

the resulting graph by G*. Then G* has girth greater than £ and 0(G*) ^ 

0(G) < n/2k. Furthermore, 

X(G* 
\V(G*)\ ^ n/2 

3s 
0(G*) ' n/2k 

= k. 

Finally, we remove vertices from G*, if necessary, to produce a graph G” 
with girth greater than £ and x(G**) =k. □ 

EXERCISES 13.1 

13.1 (a) 
(b) 

Show that if < 1, then r(t, t) > n. 
Stirling's formula states that lim^^ f!/(f/e)f = \j2-nt. Use this 
fact to prove that 

r(t, t) > 
t2^_ 
eV2' 

13.2 (a) Show, without probabilistic techniques, that every (n,m) graph 
contains a bipartite subgraph with at least m/2 edges. 

(b) Give a probabilistic proof that every (n, m) graph G contains a 
bipartite subgraph with at least m/2 edges. (Hint: Consider the 
probability space whose elements are the 2n subsets of V(G) = 
{V],v2,... ,vn}. For a random set S C V(G), the probabilities are 

assigned by setting P[u, e S] = 0.5 and letting these events be 
mutually independent. Let X be the random variable defined 

so that X(S) is the number of edges incident with exactly one 
vertex of S, and consider the expected value of X.) 

13.3 Give a probabilistic proof that there is a red-blue coloring of Kn with 
at most (”) • 21-^ monochromatic copies of Ka. 

13.4 Show that if (") •2'+ (”) • 2~^ < 1, then r(s, t) > n. 

13.2 RANDOM GRAPHS 

In section 13.1 we found it useful to define appropriate probability spaces 

in order to prove the existence of graphs with desired properties. In this 
section we give a formal model for a random graph and answer questions 
about the probability that a random graph has certain properties such as 
nonplanarity or ^connectedness. 
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For a positive integer n and positive real number p less than 1, the 
random graph G(n,p) denotes the probability space whose elements are 

the different labeled graphs with vertex set {v^, v2, ■ ■ ■, vn}. The prob¬ 
abilities are determined by setting P[VjV, 6 E(G)] = p, with these events 
mutually independent, so that the probability of any specific graph 
with 777 edges is pm( 1 - p)^~m. Although we refer to the 'random graph 

G(n,p)', it is important to remember that we are, in fact, referring to an 
element selected from the probability space G(n,p). 

In this section we discuss properties shared by almost all graphs. 
Specifically, given a graph theoretic property Q, we say that almost all 
graphs (in G(n,p)) have property Q if lim,P[G e G(n,p) has property 
Q] = 1. A useful technique to establish that almost all graphs have prop¬ 

erty Q is to define a nonnegative integer-valued random variable X on 
G(n,p) so that G has property Q if X = 0. Then P[X = 0] ^ P[G & G(n,p) 

has property Q]; so that if lim,^^ P[X = 0] = 1, then we also know 
that lim^oo P[G e G(n,p)] = 1. Since X is an integer-valued function, 
lim^oo P[X = 0] = 1 if and only if lim^^ P[X ^ 1] = 0. Using Markov's 
inequality, we see that since P[X ^ 1] < E[X] it follows that if 
lim,,^,^ E[X] = 0, then lim^^ P[X ^ 1] = 0 and so almost all graphs 
have property Q. 

Our first result shows that for constant real number p (0 < p < 1), 

almost all graphs are connected with diameter 2. This strengthens the 
original result of Gilbert [G4] that almost all graphs are connected. 

Theorem 13.6 

For any fixed positive real number p < 1, almost all graphs are connected with 

diameter 2. 

Proof 

For each graph G in G(n,p), let the random variable X(G) be the number 
of (unordered) pairs of distinct vertices of G with no common adjacency. 
Certainly, if X(G) = 0 then G is connected with diameter 2 (or G is the 
single exception Kn). Thus (by Markov's inequality), it suffices to show 

that lim„_00 E[X] - 0. 
List the (j) pairs of vertices of G. Then X can be written as the sum of (£) 

indicator variables X„ 1 ^ i ^ (f), where X,- = 1 if the ith pair has no 

common adjacency and 0, otherwise. Then X = Xj + X2 + • • ■ + X(") and, 
by the linearity of expectation, E[X] = X^=i E[X,-]. If the ith pair is u,v, 
then P[X, = 1] is the probability that no other vertex is adjacent to u and 

v. For a fixed vertex z (/ u, v), the probability that z is not adjacent to both 
u and 17 is 1 - p2. This probability is independent of the probability that 
any other vertex is not adjacent to u and v. Thus the probability that none 

of the n — 2 vertices z u, v) is adjacent to both u and v is (1 - p2)" and 
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so E[X, = 1] = (1 — p2)"-2. It follows that 

E[X]= (^(l-p2)”-2 

and, clearly, lim,,^^ E[X] =0. □ 

The basic idea used to define the random variable X in the proof of 
Theorem 13.6 was generalized by Blass and Harary [BH3] in order to 

study other properties of almost all graphs. 

Theorem 13.7 

For fixed nonnegative integers k and / and a positive real number p < 1, almost 
all graphs have the property that if S and T are disjoint k-element and (-element 

subsets of vertices, then there is a vertex z^S U T that is adjacent to every vertex 
of S and to no vertex of T. 

Proof 

Define a pair S, T of disjoint /c-element and /-element subsets of V(G) to be 
bad if no vertex z ^ S U T is adjacent to every vertex of S and to no vertex of 
T. For each G in G(n, p), let X(G) be the number of such bad pairs S, T. We 

wish to show that almost all graphs have no bad pairs of sets and, as in 
the proof of Theorem 13.6, we need only show that lim^^^ E[X] = 0. 
The variable X can be written as the sum of indicator variables X„ 
where X, = 1 if the ith pair S, T is bad, and X, = 0, otherwise. Then 
P[X, = 1] = (1 — pk(l — pY)ln~k~{'. Since the number of pairs S, T is 

N = (^)("7*) = n\/(k\(n — k)\(n — k — /)!), it follows that 

As n tends to infinity, the first factor in the expression for E[X] tends to 

infinity (as a polynomial in n) and the second factor tends to 0 exponen¬ 
tially. Thus, lim^oo E [X] = 0, and the proof is complete. □ 

In the case k = 2 and / = 0, Theorem 13.7 reduces to Theorem 13.6. 
For fixed nonnegative integers k and /, let Qky denote the property that 

if S and T are disjoint sets of vertices of a graph with |S| ^ k and |T| ^ /, 
then there is a vertex z^SuT that is adjacent to every vertex of S and to 
no vertex of T. 

Corollary 13.8 

For fixed nonnegative integers k and / and a positive real number pel, almost 
all graphs have property Qk (. 
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If Qi and Q2 are graphical properties such that almost all graphs (in 
G(n,p)) have property Qi and almost all graphs have property Q2, then 
almost all graphs have both properties Qt and Q2 (Exercise 13.5). 

Corollary 13.9 

For fixed nonnegative integers k and £ and a positive real number p < 1, let Q be a 

graphical property deducible from finitely many applications of Corollary 13.8. 
Then almost all graphs have property Q. 

As an example of the use of Corollary 13.9 to show that almost all 
graphs have property Q, we prove that for each graph H and fixed real 

number p (0 < p < 1), almost all graphs (in G(n,p)) contain H as an 
induced subgraph. 

Theorem 13.10 

For each graph H and fixed positive real number p < 1, almost all graphs contain 
H as an induced subgraph. 

Proof 

Let k = |V(H)|. We proceed by induction on k. For all k= 1, all graphs 
contain H as an induced subgraph since H = Kv Assume that for every 
graph H' of order k — 1 > 1, almost all graphs contain H' as an induced 
subgraph, and consider a graph H of order k. Select a vertex v of H and let 

H1 = H - v. Then, by the inductive hypothesis, almost all graphs contain 
H' as an induced subgraph. Furthermore, if v is adjacent to exactly s 
vertices of H' in H, then since almost all graphs have property Qkk/ it 
follows from Corollary 13.9 that almost all graphs contain H as an 

induced subgraph. □ 

If Q is a property like planarity that implies certain graphs (such as K5 
and K3 3) do not exist as induced subgraphs, then Theorem 13.10 imme¬ 
diately implies that for p fixed, almost no graph in G(n,p) has property Q. 

Here, of course, we mean that lim,^^ P[G G G(n, p) has property Q] = 0. 

Corollary 13.11 

For any fixed positive real number p < 1, almost no graphs are planar. 

Corollary 13.12 

For any positive integer k and fixed positive real number p < 1, almost no graphs 

are k-colorable. 
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Corollary 13.13 

For any positive integer k and fixed positive real number p < 1, almost no graphs 

have genus k. 

Other results can be obtained in a manner similar to that used in the 

proof of Theorem 13.10. 

Theorem 13.14 

For any fixed positive integer k and positive real number p < 1, almost all graphs 

are k-connected. 

It should be noted that for a fixed real number p (0 < p < 1), there are 
interesting properties of almost all graphs that cannot be proved by apply¬ 

ing Corollary 13.9. For example, Blass and Harary [BH3] showed that 
almost all graphs are hamiltonian; however. Corollary 13.9 cannot be 
used to establish this result. 

If p is fixed and X is the random variable defined on G(n,p) by 
X(G) = |E(G)|, then the expected value of X is p(2>, and consequently we 
are dealing with dense graphs. So, in some sense, the preceding results of 
this section are not surprising. We next briefly consider G(n, p(n)), that is, 

G(n, p) where p is not fixed and p = p(n) is a function of n. We begin with 
an example involving complete subgraphs. 

Let Q be the property that a graph G has clique number u(G) < 4, and 
let p(n) be a function of n. For each graph G in G(n,p(n)), let the random 

variable X(G) denote the number of copies of X4 in G. If X(G) = 0, then 
G has property Q. Thus, by Markov's inequality, if lim„_0O E[X] = 0, 
then almost every graph in G(n,p) has clique number less than 4. For 
each 4-element subset S of V(G), let Xs be the indicator variable with 
Xs = 1 if (S) is complete and Xs = 0, otherwise. Then X = Xs, where 
the sum is taken over all 4-element subsets of V(G). Furthermore, 

E[XS] = P[XS] = (p(n))6. By the linearity of expectation, then, 

E[X] = £ E[XS] = (” 1 (p(n))6 < n,(p(r,))t. 

If lim,,-,,^ E[X] = 0, then almost all graphs in G(n,p(n)) have clique 
number less than 4. Consequently, if lim,,.,^ p(n)/n~2^ = 0, then 
almost all graphs have clique number less than 4. We can think of this 

result as saying that if p(n) is 'significantly smaller' than n~2^, then 
almost all graphs in G(n,p) have clique number less than 4. The surprising 
fact is that, using the second moment method of probability theory, it can 

be shown that if lim,,^^ p[n)/n~2//3 = oo, then almost no graph has clique 
number less than 4. Thus n~ '3 can be thought of as a threshold for clique 

number less than 4. Equivalently, if lim,,^^ p(n)/n~2'3 = 0, then almost 



Random graphs 381 

Property Threshold 

Contains a path of length k 
Is not planar 
Contains a hamiltonian path 
Is connected 
Contains a copy of Ky 

r(«) = «-(t+1^ 
r(n) = 1 /n 
r(n) — (In n)/n 
r(n) = (In n)/n 
r(n) = n-2/^-1) 

Figure 13.1 Threshold functions. 

no graph G has clique number o>(G) ^ 4 while iflim,,^^ p(n)/n~2^3 — oo, 

then almost every graph G has u>(G) ^ 4. 
Generally, let Q be a graph theoretic property that is not destroyed by 

the addition of edges to a graph. A function r(n) is called a threshold 
function for Q if lim,,..^ p(n)/r(n) = 0 implies that almost no graph 

has property Q, that is, lim,,^^ P[G £ G(n, pin)) has Q] = 0 and 
lim,,^^ p(n)/r{n) = oo implies that almost every graph has property Q, 

that is, lim,,^^ P[G e G(n,p(n)) has Q] = 1. 
Figure 13.1 indicates some of the properties Q for which a threshold 

function r{n) exists and is known (see [S8, p. 17]). 
The books by Palmer [PI], Alon and Spencer [AS1] and Spencer [S8] 

are excellent sources of additional material on random graphs and the 

probabilistic method. 

EXERCISES 13.2 

13.5 (a) Show that P[A and B] ^ 1 — (P[A] + P[B]). 
(b) Show that if almost all graphs (in G(n,p)) have property Qt and 

almost all graphs have property Q2, then almost all graphs have 

both properties Q] and Q2. 

13.6 Prove Corollary 13.13. 

13.7 Prove Theorem 13.14. 

13.8 Without using the results given in Figure 13.1, show that if 

limu-»oo p(n)/n~2^k~^ = 0, then almost no graph in G(n,p(n)) con¬ 
tains a copy of Kk. 

13.9 For p fixed, let T(n,^) denote the probability space consisting of the 
2^'different labeled tournaments T of order n with vertex set 
{v-i,v2,... ,v„}, where the probabilities are defined by setting 
P[(n,-, Vj) £ E(T)] = P[(Vj,Vj) £ E(T)] = Show that for a fixed posi¬ 

tive integer k, almost all tournaments have property (Theorem 

13.2). 
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