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PREFACE 

In recent years, there has been a significant movement away from traditional calculus 
courses and toward courses on discrete mathematics. The impetus for this has undoubt- 
edly been due in part to the increasing importance of the computer, and the consequence 
has been a proliferation of courses and books entitled Discrete Mathematics, Finite 
Mathematics, Mathematics for Computer Science, and other similar titles. 

It is an unfortunate feature of some of these courses that a large number of different 
topics are covered at a superficial level, leaving the student frustrated and confused and 
having little understanding of the underlying reasons for introducing so many seemingly 
unrelated areas. Our experience is that students benefit more from an introductory course 
based in just one area, chosen so as to link in with other subjects whenever the instructor 
considers it appropriate to do so. Graph theory is an ideal topic for such an introductory 
course—tt is fun, students enjoy it, they can ‘get their hands dirty’ drawing pictures, and 
it is an excellent stepping stone towards a wide range of courses in mathematics and 
computer science. 

This book arose out of a British Open University course on Graphs, Networks and 
Design, which first appeared in 1981 and has been presented every year since then. It has 
regularly attracted over 500 students per year, with the result that several thousand 
students have successfully completed the course. In addition, various drafts of this book 
have been used at Colorado College since 1984 in a freshman/sophomore level course. 

The original course was written by a team of Open University mathematicians and 

technologists. Those who contributed most to the material in this book were Joan Aldous, 

Keith Cavanagh, Alan Dolan, Stanley Fiorini, Yin-Seong Ho, Fred Holroyd, Roy Nelson, 

Joe Rooney, Richard Scott, and Robin Wilson. Others who contributed valuable assis- 

tance are Marlow Anderson, Rosemary Bailey, Chris Bissell, Amanda Chetwynd, Chris 

Earl, Lionel March, Michael Martin, Carole Mills, John Stratford, and Michelle Wemple. 

As with other Open University courses, Graphs, Networks and Design consists mainly 

of correspondence material, supported by audio-cassette tapes and BBC television 

programs which are broadcast throughout Britain. Having produced this material, the 

course team felt that parts of it would be ideally suited to the classroom situation, and 

could successfully be converted into book form appropriate for an international audience. 

The first of these books, on Graphs, is presented here. A companion volume, on 

Networks, is currently being prepared by A. K. Dolan and J. Aldous. Each book is 

self-contained, and is suitable for a semester course on discrete mathematics in the first 

or second year of an American college or university. Since the approach, terminology, 

and notation are the same for both books, an instructor wishing to teach both graphs and 

networks will find that the two books can be used concurrently. 

This book is divided into two parts. Part I contains the basic definitions relating to 

graphs and digraphs, together with a large number of examples and applications. Part II 

contains a number of different topics from which an instructor can select depending upon 

the length of the course. The choice of material to be covered will depend on the 



vi PREFACE 

instructor’s particular aims and time constraints. As arough guide, an instructor interested 

in the ‘purer’ aspects of the subject may wish to concentrate mainly on Chapters 1-3, 6 

and 7, and 10-13, whereas an instructor interested in applications may prefer to cover 

Chapters 1-5 and 8-10. In any case, it would be preferable to cover the material in Part 

I fairly quickly, and to proceed to Part II as soon as practicable; it is not necessary to 

cover all of the applications in Chapters 3 and 5. An appendix on methods of proof appears 

at the end of Part I, after Chapter 5. 

An important part of learning graph theory is problem-solving, and for this reason we 

have included a large number of problems at the end of each chapter. Many of these are 

routine exercises, designed to test understanding of the material in the text, but some are 

more challenging and less routine; these latter problems are marked with a dagger (7). 

Several problems are answered in full at the end of the book; these problems are marked 

with an encircled star ©. 

ROBIN J. WILSON 

JOHN J. WATKINS 
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INTRODUCTION 

lee are just a few of the many problems you 

will encounter in this book. 

a. Suppose you are stuck in the middle of a maze. 

Is there a foolproof method for finding your 

way out again? 

b. If you wanted to drive from New York to San 

Francisco, how would you find the shortest 

route? 

c. If you try to color a map of the United States 

in such a way that neighboring states are as- 

signed different colors, you will find that only 

four colors are necessary; is this true for all 

maps, or are there maps that need more colors? 

d. How many chemical molecules are there with 

the formula C,H,,? 

e. What is the best way of bracing a given plane 

framework to make it rigid? 



2 INTRODUCTION 

Although these problems may seem very diverse at first sight, they can all be expressed 

as problems involving the arrangements of certain objects and the relationships between 

these objects. The branch of mathematics that deals with such arrangement problems 1s 

known as graph theory; the development of this subject is one of the two main themes 

of this book. By developing general methods for tackling problems of this kind, we shall 

show not only how to solve such problems, but also how to spot the connections between 

problems which may appear at first sight to have little in common. By understanding the 

underlying reasons for these connections, you will gradually gain further insight into the 

nature of the original problems and their solutions. 

Several of the problems we examine in this book arise from important practical problems 

in technology and the sciences. Indeed, much of the impetus to the subject in the last few 

years has arisen out of the need to solve particular problems in industry. By applying the kind 

of techniques discussed in this book to industrial problems involving network analysis or 

operations research, it has been possible to make substantial savings in time or money. In 

view of this, it is important to be able to represent these problems in graph-theoretical terms, 

and this brings us to the other main theme of the book—mathematical modeling. 

The modeling process involves formulating a problem in such a way that it can be 

attacked by the techniques of graph theory. This is not always easy; the way in which the 

modeling is carried out, and the degree to which the mathematical model accurately 

represents the original problem, varies considerably from problem to problem. Through- 

out the book we emphasize not only the modeling process itself, but also its limitations. 

The two main themes of the book are the development of graph theory as a subject in 

its own right, and the modeling of problems. For the mathematician the primary interest 

may well be the former, whereas for the technologist the problems themselves may well 

provide the main interest. In writing this book we have tried to integrate these two 

approaches, since we believe that, in this subject, theory and practice are too interrelated 

to be separated successfully. The historical development of the subject has arisen out of 

the joint efforts of mathematicians and practitioners, with great benefit to both. The 

mathematical ideas have been used to tackle practical problems, which, in turn, have 

given rise to new mathematical ideas, and so on. These mathematical ideas have often 

proved more interesting than the problems that gave rise to them, and are now studied in 

their own right. 

In view of the above comments, it is our hope that the book will prove to be of interest 

to technologists, scientists, and mathematicians. For the mathematician this book pro- 

vides an opportunity to see real mathematics in action solving worthwhile problems, 

whereas for the technologist and scientist this book shows the importance and usefulness 
of developing a mathematical framework which can be used to interrelate different 
problems and provide means for solving them. The subject you are about to embark on 

is a very exciting one, both in its underlying mathematical structure and in its applications 

in present-day science and technology. Although its roots go back a long time, it is a very 

moder subject in which substantial advances are being made all the time. It is likely to 
play an ever-increasing role in the years to come, and this book is designed to give you 
the necessary background to understand these future developments. 
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D Cc 

We begin Part I with an introduction to graphs and digraphs. Here the word graph 

refers to a diagram of points interconnected by lines, as shown above, rather than to a 

picture representing a funttion. The interconnections between points may refer to bonds 

between atoms in a chemical molecule, wires between terminals in an electrical network, 

roads between towns on a map, and so on. Digraphs (short for “directed graphs”) are like 

graphs, except that each line has a direction indicated by an arrow, and may be used, for 

example, to represent one-way road systems. 

We discuss the properties of graphs and digraphs and describe a number of applica- 

tions, including the use of graph theory in chemistry, genetics, and music, and the use of 

digraphs in linguistics, control theory, and the social sciences. 
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_ WHAT IS A GRAPH? 

1.1 INTRODUCTION 

In this chapter we describe a number of situations which can be represented by graphs. 

These include chemical molecules, architectural floor plans, and electrical networks. In 

order to investigate such situations, we need to study graphs in some detail. We start by 

introducing some basic concepts and terminology which will be needed for this investi- 

gation. 

In order to introduce the idea of a graph, we consider the following examples. 

Route Maps 

The following diagram is a map of the central part of the London Underground. Like all 

maps, it does not represent every feature of the city in question, but only those of rele- 

vance to the people who use it. In the case of the London Underground map, the exact 

geographical locations of the stations are unimportant. What is important, however, is 

the way in which the various stations are interconnected, so that a passenger can plana 

route from one station to another. The map is simply a diagrammatic way of indicating 

how the stations are interconnected. 



6 CHAPTER 1. WHAT IS A GRAPH? 

FINCHLEY ROAD 
es CRESCENT 
ie Ye SWISS COTTAGE : see a 

KIN ES 

EDGWARE = NY ST JOHN'S WOOD ST PANCRAS i” 
ROAD MARYLEBONE OF EUSTON > ANGEL 

pact a =~ = Ol 
(foo SS nat (pose eee Score Eee I 

EDGWARE BAKER | say WARREN Son ¢ Mi GREAT EUSTON Ex ( PADDINGTON ROAD STREEDEN | ooRT AN i mI ST REE caUnAe FARRINGDON : 
= sTReeT ae RUSSELL z 

BAYSWATER meeenng lo: GOODGE STREET SQUARE BARBICAN 
NOTTING MARBLE (} park St | 
HILL GATE ARCH 7 HOLBORN BAN 

ANGAtER BOND AM OXFORD TOTTENHAM Caetano UV 
QUEENSWAY L STREET CIRCUS COURT ROAD = GATE ( Li LANE Z 

PRE a COVENT ; Sy 
Dan GARDEN 4 & 

A & rE HYDE PARK agrrrras( curxsrrazr Serra a . 

HIGH STREET CORNER %?-" Pe PICCADILLY LEICESTER wy z 
| KENSINGTON vase sca CIRCUS SQUARE ie WH 4 

4 Pop. 4 CL Y RAIS SRIRCE 9 i Ss ~ ey MONUMENT , ceca wt ee ae: 
GLOUCESTER ri CHARING .CROSS 2 ALDWYCH + y 

ROAD SLOANE} MANSION = Tow 
x SQUARE em fem une ese canis EMBANKMENT 7 HOUSE % CANNON HIL 

cceete es SS pe ee =e STREET 

PARLS SOUTH Hei TORIA WESTMINSTER mm OTEMPLE BLACKFRIARS © 
OURT KENSINGTON Un — = ry 

it SSS hh SSS ee |S 
SA == = PIMLICO ®N. Vie i 
Se Af e LON 

Ji WATERLOO BRI 
Ay ; i 

POY VAUXHALL S See LAMBETH NORTH 

A chemical molecule consists of a number of atoms linked by chemical bonds. For ex- 

ample, a molecule of water (H,O) consists of an oxygen atom bonded to two hydrogen 

atoms, and may be represented by the diagram 

H=0—H 

More complicated examples are given by the molecules of methane (CHa), ethanol 

(C2HsOH) and ethene (C2Hs), that may be represented by the diagrams 

H H H H H 
| | | \ / 

H—C—H ies Ces Coe Oot] ye . 
| | | 
H H H H H 

methane ethanol ethene 

Pictures of this sort are often called structural diagrams. Note that they do not give 
us any information about how the atoms are aligned in space; for example, the hydrogen 
atoms of methane do not lie in a plane, but are situated at the vertices of a regular 
tetrahedron with the carbon atom at the center. In spite of this, such diagrams are 
extremely useful in telling us how the various atoms are connected, and we can obtain a 
lot of information about the chemical behavior of a molecule by studying its structural 
diagram. 
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Architectural Floor Plans 

The plan of the lower floor of a house is represented by 

living room 

study sitting room 

kitchen playroom dining room 

For small plans like this, such a diagram is very convenient for showing which rooms 

have mutual access, but for large plans a less cumbersome representation is useful. One 

such representation is to draw the rooms as small solid circles 

living 
room 

sitting 
room 

study hall 

playroom _ kitchen dining room 

Such diagrams are known to architects as circulation diagrams, because of their use 

in analyzing the movements of people in large buildings. In particular, they have been 

used in the designing of airports, and in planning the layout of supermarkets. Such 

diagrams are useful in representing the connections between the various rooms, but they 

do not give us any information about the size or shape of the rooms. 

Electrical Networks 

The following diagram represents an electrical network containing two resistors, two 

capacitors, two inductors, and voltage and current generator elements: 
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Diagrams of this kind are very useful for illustrating the way in which parts of the 

network are connected. However, they do not give us any information about the 

geometrical features of the network, such as the length and thickness of each wire and 

its position in space. 

1.2 THE DEFINITION OF A GRAPH 

The common feature in all the preceding examples is that in each case we have a system 

of ‘objects’ which are interrelated in some way. In the first example the objects are sta- 

tions interconnected by rails; in the second example they are atoms linked by chemical 

bonds; in the third example they are rooms with mutual access; and in the fourth exam- 

ple they are interconnected parts of an electrical network. In each case we can draw a di- 

agram in which the objects are represented by points and the interconnections are 

represented by lines. Such a diagram is called a graph. The points representing the ob- 

jects are called vertices, and the lines representing the interconnections are called edges. 

For example, the circulation diagram of the house is a graph with seven vertices (corre- 

sponding to the playroom, kitchen, hall, etc.) and ten edges (corresponding to the inter- 

connections between these rooms). 

We can formalize these ideas as follows: 

TEMPORARY DEFINITION. A graph is a diagram consisting of points, called 

vertices, joined together by lines, called edges; each edge joins exactly two vertices. 

In graph theory the terminology is not completely standard; for example, some authors 

use the term node or point for what we have called a vertex, and arc or line for what we 

have called an edge. Any of these choices of terminology is acceptable as long as it is 

used consistently. 

The trouble with the above definition of a graph is that we can use many different 
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diagrams to represent the same interconnections. An example is provided by the utilities 
problem, which we shall solve in Chapter 11. In this problem, we wish to connect three 
houses, A, B, and C, to three utilities, gas, water, and electricity. For safety reasons it is 
necessary that the various connections should not cross each other. Can the connections 
be made? The following picture shows how eight of the nine connections can be drawn, 
but how about the ninth? 

We can represent the connections by means of the following graphs, where the vertices 

correspond to the three houses and the three utilities. Each of these graphs has six vertices 

and nine edges, and both graphs convey the same information—the threé houses are 

connected to each of the three utilities, but not to each other. Thus, these two graphs are 

the same. The utilities problem is that of finding whether there is yet another graph which 

is the same as these two, but in which no two edges cross. 

gas water _ electricity water B 

A electricity 

gas Cc 

It follows from the above that a graph is determined as soon as we know its vertices, 

and which edges join which pairs of vertices. Once we have this information, we can 

draw the graph and, in principle, any picture we draw is as good as any other. In other 

words, we can describe a graph completely by listing its vertices and edges in any order, 

and the actual way in which the vertices and edges are drawn is irrelevant. For example, 

the utilities graph may be described completely by the lists 

vertices: A, B,C, g, w, e 

edges: Ag, Aw, Ae, Bg, Bw, Be, Cg, Cw, Ce 

We may equally well write these lists in a different order 
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vertices: w, C,B,e, 2,4 

edges: gA, gB, gC, eA, eB, eC, wA, wB, wC 

We can now replace our temporary definition of a graph by one which involves these 

lists. 

DEFINITIONS. A graph G consists of a non-empty set of elements, called vertices, 

and a list of unordered pairs of these elements, called edges. The set of vertices of the 

graph G is called the vertex-set of G, denoted by V(G), and the list of edges is called 

the edge-list of G, denoted by E(G). If v and w are vertices of G, then an edge of the 

form vw or wv is said to join v and w. 

We shall continue to use pictures to depict graphs; any such picture is only one of 

many that can be used to represent the graph. 

The definition of a graph allows for the possibility of several edges joining the same 

pair of vertices, or an edge joining a vertex to itself. The following terminology is useful 

when discussing such graphs: 

DEFINITIONS. Two or more edges joining the same pair of vertices are called 

multiple edges, and an edge joining a vertex to itself is called a loop. A graph with no 

loops or multiple edges is called a simple graph. 

It is also convenient to distinguish between graphs that are ‘in one piece’ and those 

that are not. 

DEFINITIONS. A graph that is in one piece is said to be connected, whereas one 

which splits into several pieces is disconnected. 

These definitions are illustrated by 

A D Ee 

multiple 
edges 

GE B G F 
~~ loop 

connected non-simple graph disconnected simple graph 

We also need the concept of a subgraph of a graph. It is a common feature of both 

mathematics and technology that we study complicated objects by looking at simpler 

objects of the same type contained inside them, and these smaller objects are often 

indicated by the pre1ix “sub.” For example, we study subsets of sets, subsystems of 

systems, subgroups of groups, and so on. In graph theory we make the following 

definition. 
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DEFINITION. LetG be a graph with vertex-set V(G) and edge-list E(G). A subgraph 

of G is a graph all of whose vertices belong to V(G) and all of whose edges belong to 

E(G). 

For example, if G is the connected graph above, where 

V(G) = {u,v,w,z} and E(G) is (uv,uw,vv,vw,wz,wz), 

then the following graphs are all subgraphs of G: 

u Zz u ves u Zi 

o—«_» 
u Ww zi 

s 

y Ww ry w ze v Ww 

vertex-set: {u,v,w,z } { u,v,w } {v,z} {u,w,z } {u,v,w,z } 

edge-list: uw,vv,vw,wz uv,uw, vw vy UW,WZ,WZ UV,UW,VV,VW,WZ,WZ 

Note that a subgraph of G must actually be a graph, and that G is regarded as a subgraph 

of itself. 

1.3 THE DEGREE OF A VERTEX 

It is also useful to have a term for the number of edges meeting at a given vertex. Such a 

concept occurs, for example, in a road map, where a junction has three or more roads 

meeting. It also arises in electrical network theory where we may be interested in the 

number of wires at a given terminal, or in architecture where we may be concerned with 

the number of rooms accessible from a given one. These situations are illustrated as 

5 rooms 
accessible 

3 wires 
| g a d living room 
; 4 4-junction meeting 

playroom | kitchen} dining room 

In chemistry the term valency is used to indicate the number of bonds connecting an 

atom to its neighbors. For example, in the diagram representing the ethanol molecule, 

each carbon atom has valency 4, the oxygen atom has valency 2, and each hydrogen atom 

has valency 1. Although some authors extend this chemical use of the word valency to 

graphs, we shall use the word degree. 
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H H 

Nee ee tt 

How 
ethanol 

DEFINITION. Let G be a graph without loops, and let v be a vertex of G. The degree 

of v is the number of edges meeting at v, and is denoted by deg v. 

For example, graph (a) below has vertex-degrees 

deg u=2, deg v=3, degw=4, degz=1 

(a) (b) 

Although the degree of a vertex has been defined only for graphs without loops, the 

definition can easily be extended to graphs with loops. We do this by requiring that each 

loop contributes 2 to the degree of the corresponding vertex. For example, graph (b) above 

has vertex-degrees 

des ie 2. des viz andes W = 4, dex z=) 

It is often convenient to list the degrees of the vertices in a graph; this is usually done 

by writing them in non-decreasing order (that is, in increasing order, but allowing 

‘repeats’ where necessary). The resulting list is called the degree-sequence of the graph. 

For example, graph (a) has degree-sequence (1,2,3,4) and graph (b) has degree-sequence 
(2,4,5,5). 

We say that a graph is regular if all the vertices of G have the same degree. In 

particular, if the degree of each vertex is r, then G is regular of degree r. In the following 

diagram we illustrate some examples of graphs which are regular of degree r, for various 
values of r: 
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A 
1@ @? a b ued 

5 E B 
dhe @3 c d eo ew D C 

rey ai Pe r=2 

a 1 
w Pp a 7 : 

e b 

6 3 

¥ x Ss r d c 5 4 

r=3 r=3 r=4 r=4 

We observe that the last graph above is regular of degree 4 and has seven vertices, 

and so the sum of the vertex-degrees is 28. We also observe that this graph has 14 edges 

(seven around the outside heptagon and seven for the inside star). In other words, the sum 

of the vertex-degrees is exactly twice the number of edges. A corresponding result holds 

for all graphs, and is sometimes called the handshaking lemma. 

THE HANDSHAKING LEMMA. /n any graph, the sum of all the vertex-degrees is 

equal to twice the number of edges. 

Proof Since each edge has two ends, it must contribute exactly 2 to the sum of the 

degrees. The result follows immediately. 0 

Note that this proof is valid even when the graph contains loops, since each loop 

contributes exactly 2 to the degree of the corresponding vertex. 

The name handshaking lemma arises from the fact that a graph can be used to represent 

a group of people shaking hands at a party. In such a graph, the people are represented 

by the vertices, and an edge is included whenever the corresponding people have shaken 

hands. With this interpretation, the number of edges represents the total number of 

handshakes, the degree of a vertex is the number of hands shaken by the corresponding 

person, and the sum of the degrees is the total number of hands shaken. So the 

handshaking lemma states simply that the total number of hands shaken is equal to twice 

the number of handshakes—the reason being, of course, that exactly two hands are 

involved in each handshake. 

There are some important consequences of the handshaking lemma. We leave the 

proofs to you (see Problem 1.14). 

Consequences of the Handshaking Lemma 

1. In any graph, the sum of all the vertex-degrees is an even number. 

2. In any graph, the number of vertices of odd degree is even. 
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3. If Gis a graph which has n vertices and is regular of degree r, then G has exactly 

+ nr edges. 

Historical note. The handshaking lemma first appeared (in a different form) in a paper of 

Leonhard Euler (1707-1783) entitled Solutio problematis ad geometriam situs pertinentis (The 

solution of a problem relating to the geometry of position). This important paper dates from 1736, 

and is widely regarded as ‘the earliest paper in graph theory’. It contains Euler’s solution of the 

celebrated problem of the Kénigsberg bridges. We shall return to this problem in Chapter 6. 

1.4 ISOMORPHIC GRAPHS 

We have seen that it is possible for two graph diagrams to look very different, but to rep- 

resent the same graph. On the other hand, it is possible for two graphs diagrams to look 

very similar, but to represent different graphs. For example, the diagrams below look 

very similar, but are clearly not the same graph (since gas and water are joined in the 

second graph, but not in the first graph). 

gas water electricity - gas B electricity 

A B G A water G 

We express this similarity by saying that the graphs represented by these two diagrams 

are isomorphic. This means that we can relabel the vertices in the first graph to get the 

second one: simply replace water by B, and conversely. (The word isomorphic derives 

from the Greek for same and form.) 

Similarly, the graphs represented by the diagrams 

u v u yp 

and 

Z w ei Ww 

G H 

are not the same, but are isomorphic, since we can relabel the vertices in the graph G to 

get the graph H: simply interchange u and z, and v and w. This gives us a one-to-one cor- 

respondence between the vertices of G and those of H such that edges in G correspond to 
edges in H—namely, 
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‘ 

G:uvwz 

Tae 
A:zwvu 

Note that 

the two edges uv in G correspond to the two edges zw in H 

the edge uw in G corresponds to the edge zv in H 

the loop at w in G corresponds to the loop at v in H 

and so on. This leads to the following definition. 

DEFINITION. Two graphs G and H are isomorphic if H can be obtained from G by 

relabeling the vertices—that is, if there is a one-to-one correspondence between the 

vertices of G and those of H, such that the number of edges joining any pair of vertices 

in G is equal to the number of edges joining the corresponding pair of vertices in H. 

Note that in checking whether or not two graphs are the same, we must check carefully 

that all the labels on the vertices correspond. However, when checking whether or not 

two graphs are isomorphic, we can ignore the symbols used to label the vertices, since 

the vertices can be relabeled as necessary. In view of this, we often drop the labels 

altogether when they are not relevant to the problem in hand, and say (for example) that 

the “unlabeled graph” 

refers to any of the isomorphic graphs: 

NHMWAA 
It follows that two unlabeled graphs, such as 
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are isomorphic if labels can be attached to their vertices so that they become the same 

graph. 

We can summarize the preceding discussion as follows. 

Labeled Graphs 

u : i 1 2 

£ . ‘ 4 3 
y w w Z 

These labeled graphs are the same. These labeled graphs are not the same, 
but are isomorphic. 

Unlabeled Graphs 

Ab 
These unlabeled graphs are isomorphic. 

In the future, whenever we use the word graph, it will be clear whether we are referring 

to labeled or unlabeled graphs. If there is any possibility of confusion, we shall insert the 

word labeled or unlabeled, as appropriate. 

1.5 COUNTING GRAPHS 

How many chemical molecules are there with formula C,H,,? How many irrigation 
canal systems are there linking five locations with four canals? How many architectural 
floor plans are there satisfying certain given properties? 

As you will see, we can reduce many such problems to that of determining the number 
of graphs with a particular property. Since many standard graph-counting problems have 
been completely solved, we can often use the results to deduce the solution of a problem 
in which we are interested. We briefly survey the progress made on several graph-count- 
ing problems. 

Counting Labeled Graphs 

When counting labeled graphs, we distinguish between labeled graphs which are not 
isomorphic, but not between isomorphic graphs—we sometimes express this by saying 
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4 

that the graphs are counted up to isomorphism. For example, there are just eight non- 

isomorphic labeled simple graphs with three vertices. 

] 1 
© 

colar: if 
2 3 2 

The problem of determining the number of labeled simple graphs with n vertices is 

easy to solve. By consequence 3 of the handshaking lemma, there are 5 n(n — 1) possible 

1 1 1 1 

Groin aero ceaee ® 
3 52 3 2 Sie 2 ST 3 PSH Soe 22 3 

edges, and each may be either present or absent (a choice of two possibilities); thus, the 

required number is 2””"'”” . The following table lists the number of labeled simple graphs 

with n vertices, forn < 8: 

n 1 2 OW 4 = 6 p 8 

labeled graphs 1 2 8 64 1024 32768 2097152 268435456 

Counting Unlabeled Graphs 

When counting unlabeled graphs, we distinguish only between graphs which are not 

isomorphic. For example, there are just four non-isomorphic unlabeled simple graphs 

e e 

One can quickly determine the number of simple graphs with at most six vertices and 

any given number of edges or degree-sequence. For larger numbers of vertices, listing 

all possible graphs soon becomes impracticable, and it is necessary to find some other 

way of counting them. In 1935 George Polya obtained a general formula from which one 

can calculate the number of unlabeled graphs with any given number of vertices and 

edges. Pélya’s methods have since been applied to several other graph-counting prob- 

lems, and formulas have been obtained for the number of connected graphs or regular 

graphs with any given number of vertices. The table lists the number of unlabeled simple 

graphs of various types with n vertices, forn <8. 

n 1 Z 6, + 2 6 i 8 

graphs 1 pi 4 11 34 156 1044 12346 

connected graphs _ 1 1 Z 6 pa (ies Soo LLY 

regular graphs 1 2 Zz 4 3 8 6 20 

In general, counting problems for unlabeled graphs are much harder to solve than their 

analogs for labeled graphs. In fact, there are certain types of graph for which the latter 

problem has been solved while the former problem remains unsolved. 
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1.6 THE GRAPH CARDS 

To conclude this chapter we present the 208 unlabeled simple graphs with at most six 

vertices. Each ‘card’ consists of a number for the graph, a drawing of the graph, the 

number of vertices , the number of edges m, and the degree-sequence of the graph. The 

graphs are presented in increasing order, first by the. number of vertices, then by the 

number of edges (when the number of vertices are the same), and then by the degree- 

sequence (when the numbers of vertices and edges are the same). 
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1 2 3 4 § 

e e 

e e e o-oo 

GRAPH aT nae ae 

CARDS nis n= 2 n=2 n=3 n=3 
m=0 m=0 m=1 m=0 m=1 

| d = (0) d = (0,0) d = (1,1) d = (0,0,0) d = (0,1,1) 
6 7 8 co 10 11 

y®@ e fi e e @ ee 

e e@ eo_e oe ee 

n=3 n=3 n=4 n=4 n= 4 n=4 
m=2 m=3 m=0 m=1 m=2 m=2 
d = (1,1,2) d= (22:2) d = (0,0,0,0) d = (0,0,1,1) d = (0;151,2) d = (1,1,1,1) 

=H + 
12 13 2 | 14 15 16 7 

4 

e 

oe @—_e—e—_e 

w= 4 n=4 n=4 n=4 n=4 n=4 
m=3 m=3 m=3 m=4 m=4 m=5 
d = (0,2,2,2) d= (1151,3) d = (1,1,2.2) d= (3232;3) d = (2,2,2)2) d = (2,2,3,3) 

18 19 20 21 22 23 

e e e e 
t . a e e e e 

e e e——e @e_® @——_#@ 

n=4 n=5 n=5 n=5 n=5 n=5 
m=6 m=0 tnt =~) m=2 m=2 i= 
d = (3,3,3,3) d = (0,0,0,0,0) d = (0,0,0,1,1) d = (0,0,1,1,2) d = (0,1,1,1,1) d = (0,0,2,2,2) 

24 | 25 26 27 28 29 

e e@ 

e@ 

pA. : [J 
oe ee eee 

n=5 n=5 n=5 n=5 nes n=5 
m= 3 m=3 m = 3 m=4 m=4 m=4 
d = (0,1,1,1,3) d = (0,1,1,2,2) d= 102) d = (0,1,2,2,3) d =.(0,2,2,2,2) d = (1,1,1,1,4) 

30 31 32 33 34 35 

oe See 
a 

n=5 n=5 n=5 n=5 n=5 n=5 
m=4 m=4 m=4 m=5 m=5 m=5 
d = (1,1,1,2,3) d = (1,1,2,2,2) d = (1,1,2,2,2) d = (0,2,2,3,3) d = (1,1,2,2,4) d = (1,1,2,3,3) 
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36 38 40 

n=5 5 WS n=5 n=5 

m=5 2 m= 5, m= 6 m= 6 
d = (1,2,2,2,3) (1,2,2,2,3) d = (2,2,2,2,2) d = (1,2,2,3,4) d = (1,2,3,3,3) 

42 44 46 

= 5 =5 5 n=5 as 

ee 6 oy: 7 mat m=7 
d = (2,2,2,2,4) (2,2,2,3,3) d = (2,2,2,3,3) ( d = (2,2,2,4,4) d = (2,2,3,3,4) 

48 50 52 

n=) n=5 n=5 n=5 

m=7 m=8 m=8 m= 10 

d = (2,3,3,3,3) d = (2,3,3,4,4) d = (3,3,3,3,4) d = (4,4,4,4,4) 

53 55 57 

ee e e ee . e 
e e 

e e ® e e e 

@ @ ee ee i A A; 

n=6 n=6 n=6 n= n=6 =6 
m=0 m=1 m=2 m= m = 3 m=3 

d = (0,0,0,0,0,0) d = (0,0,0,0,1,1) d = (0,0,1,1,1,1) d= d = (0,0,0,2,2,2) d = (0,0,1,1,1,3) 

bo) 61 .63 

e e 

° o—e . 

oe @ ee ee 

eo—ee—_® eee ee 

n=6 =6 n=6 n= n=6 n=6 

WN? a ties m = m=4 m=4 
d = (0,0,1,1,2,2) = (0,1,1,1,1,2) d= (1,1,1,1,1,) d= d = (0,0,2,2,2,2) d = (0,1,1,1,1,4) 

65 67 69 

. ° 
e@—-e e e—e @—_e__ 

a ss @—eee—® eee e @_e—_@ 

n=6 n=6 n=6 = n=6 = 
m=4 m=4 m=4 = m=4 in = ; 
d = (0,1,1,1,2,3) d = (0,1,1,2,2,2) d = (0,1,1,2,2,2) = d = (1,1,1,1,2,2) d= (1,1,1,1,2,2) 
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‘ 

71 72 73 74 76 76 

e e e 

e 
e e 

{ 

n=6 n=6 n=6 n=6 n=6 n=6 
m=5 m=5 m=5 m=5 m=5 m=5 
d = (0,0,2,2,3,3) d = (0,1,1,2,2,4) d =(0,1,1,2,3,3) d = (0,1,2,2,2,3) d = (0,1,2,2,2,3) d = (0,2,2,2,2,2) 

77 78 79 80 82 

: a : ; 
n=6 n=6 n=6 n=6 n=6 n=6 
m=5 m=5 m=5 m=5 m=5 m=5 
@ = (1,1,1,1,1,5) d = (1,1,1,1,2,4) d = (1,1,1,1,3,3) d = (1,1,1,2,2,3) d = (1,1,1,2,2,3) d = (1,1,1,2,2,3) 

83 84 = | 85 86 87 88 

e e 

Jf » eee ee 8 

o@—_@__@ 

n=6 n=6 n=6 n=6 n=6 n=6 
m=5 m=5 m=5 m=6 m=6 m=6 
d = (1,1,2,2,2,2) d = (1,1,2,2,2,2) d = (1,1,2,2,2,2) d = (0,0,3,3,3,3) d = (0,1,2,2,3,4) d = (0,1,2,3,3,3) 

89 90 91 92 93 94 

e 
e 

n=6 n=6 n=6 n=6 n=6 n=6 
m=6 m=6 m=6 m=6 m=6 m=6 
d = (0,2,2,2,2,4) | d = (0,2,2,2,3,3) d = (0,2,2,2,3,3) d = (1,1,1,2,2,5) d = (1,1,1,2,3,4) d = (1,1,1,3,3,3) 

95 96 97 98 T99 100 

n=6 n=6 n=6 n=6 n=6 n=6 
m=6 m=6 m=6 m=6 m=6 m=6 
d = (1,1,2,2,3,3) d = (1,1,2,2,2,4) d = (1,1,2,2,2,4) d= (1,1,2,2;3,3) d = (1,1,2,2,3,3) d = (1,1,2,2,3,3) 

101 [102 103 104 105 106 

n=6 n=6 n=6 n=6 n=6 n=6 
m=6 m=6 m=6 m=6 m=6 m=6 
d = (1,1,2,2,3,3) d = (1,2,2,2,2,3) d = (1,2,2,2,2,3) d = (1,2,2,2,2,3) d = (2,2,2,2,2,2) d = (2,2,2,2,2,2) 
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107 108 109 110 nh 112 

@ e 

n=6 n=6 n=6 n=6 n=6 n=6 

m=7 m=7 m=7 m=7 m=7 m=7 

2 = (0,1,3,334) | d= 02,2244) | 4 = (0,2,2,3,3,4) | d= (0,2,3,3,3,3) | d = (11,2239) d = (1,1,2,2,4,4) 

13 114 115 116 stay 118 

n=6 n=6 n=6 n=6 n=6 n=6 

m=7 m=7 m=7 m=7 m=7 m=7 

d = (1,1,2,3,3,4) d = (1,1,2,3,3,4) d = (1,1,3,3,3,3) d = (1,1,3,3,3,3) d = (1,2,2,2,2,5) d = (1,2,2,2,3,4) 

119 120 121 122 123 124 

n=6 n=6 n=6 n=6 n=6 n=6 

m=T7 m=7 m=7 m=7 io m=7 

d = (1,2,2,2,3,4) d = (1,2,2,2,3,4) d = (1,2,2,2,3,4) d = (1,2;2,3,3;3) d = (1,2,2,3,3,3) d = (1,2,2,3,3,3) 

125 126 127 128 129 130 

n=6 n=6 n=6 n=6 n=6 n=6 

m=7 m=7 m=7 m=7 m=7 m=T7 

d = (1,2,2,3,3,3) d = (2,2,2,2,2,4) d= (2,2,2,2,3,3) | d = (2,2,2,2,3,3) d = (2,2,2,2,3,3) d = (2,2,2,2,3,3) 

131 132 133 134 135 136 

A e A e fe AN A. <a 

n=6 n=6 n=6 n=6 n=6 n=6 
m=8 m=8 m=8 m=8 m=8 m=8 
d = (0,2,3,3,4,4) d = (0,3,3,3,3,4) d = (1,1,3,3;3,5) d = (1,1,3,3,4,4) d = (1,2,2,2,4,5) d@ = (1,2,2,3,3,5) 

137 138 139 140 141 ; 142 

n=6 n=6 n=6 n=6 n=6 n=6 
m=8 m=8 m=8 m=8 m=8 m=8 
d = (1,2,2,3,4,4) d = (1,2,2,3,4,4) d = (1,2,3,3,3,4) d = (1,2,3,3,3,4) d = (1,2,3,3,3,4) d = (1,2,3,3,3,4) 
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143 | 144 145 146 147 148 

: & 
| 

n=6 n=6 ln=6 | n=6 n=6 n=6 
m=% m=8 |m=8 | m=8 m=8 m=8 d = (1,3,3,3,3,3) d = (2,2,2,2,3,5) | d = (2,2,2,2,4,4) | _ d = (2,2,2,2,4,4) d = (2,2,2,3,3,4) d = (2,2,2,3,3,4) 
149 | 150 151 152 153 1154 

s ; 

: | 

) | | n=6 n=6 n=6 | n=6 |} n=6 | n=6 m=8 m=3 m=8 m=8 |m=8 |m=8 d = (2,2,2,3,3,4) d =(2,2,2,3,34) d = (2,2,3,3,3,3) d = (2,2,3,3,3,3) d = (2,2,3,3,3,3) | d= (2,2,3,3,3,3) i ee he Be Serer NY 
155 156 * 157 158 1759 160 

7 

n=6 n=6 n=6 | n=6 n=6 n=6 
m=9 m=9 m=9 |m=9 m=9 |m=9 
d = (03,3444) d = (1,2,3,3,4,5) d = (1,2,3,4,4.4) | d= (1,3,3,3,3,5) ie d = (1,3,3,3,4,4) d = (1,3,3,3,4,4) 

161 | 162 163 164 | 165 | 166 

n=6 n=6 n=6 n=6 n=6 | n=6 
m=9 m=9 m=9 m=9 m=9 |m=9 
d@ = (222255) d= (22.2345) d =(2.224,4,4) d = (2,2,3,3,3,5) d = (2,2,3,3,3,5) d = (2,2,3,3,4,4) 

167 1628 

n=6 n=6 n=6 n=6 n=6 n=6 
m=9 m=9 |m=9 m=9 ;m=9 m=9 
d= (223,34) d = (223,344) d = (2,2,3,3,4,4) | d = (2,2,3,3,4,4) d = (2,3,3,3,3,4) | d = (2,3,3,3,3,4) 

172 174 175 } 

’ 

: 

: 

) 

) 
n=6 n=6 n=6 : 
m=9 m=9 m=9 ; 
d = (23,3334) d = (3,3,3,3,3,3) d = (3,3,3,3,3,3) ; 
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176 nae 178 179 

n=6 n=6 ear be A 

m= 10 m= 10 m= m= 

d = (0,4,4,4,4,4) d = (1,3,3,4,4,5) d = (1,3,4,4,4,4) d = (2,2,3,3,5,5) (2,2,4,4,4,4) 

182 183 184 185 

n=6 n=6 n=6 n=6 =6 

m = 10 m = 10 m = 10 m= 10 = 10 

d = (2,3,3,3,4,9) d = (2,3,3,3,4,5) d = (2,3,3,4,4,4) d = (2,3,3,4,4,4) = (3,3,3,3,3,5) 

188 189 190 191 

n=6 n=6 n=6 n=6 n=6 =6 

m = 10 m = 10 m= 10 m= 11 m=11 =11 

d = (3,3,3,3,4,4) d = (3,3,3,3,4,4) d = (3,3,3,3,4,4) d = (1,4,4,4,4,5) d=(2 = (2,3,4,4,4,5) 

194 195 196 197 8 

n=6 n=6 n=6 n=6 =6 

m= 11 m= 11 m= 11 m= 11 =11 

d = (2,4,4,4,4,4) d = (3,3,3,3,5,9) d= \(3,3,3;4,459) d= (G)3\3;4459) = (3,3,4,4,4,4) 

200 201 202 203 205 

n=6 n=6 n=6 n=6 n=6 

m= 12 m = 12 m= 12 m = 12 m= 13 
d = (2,4,4,4,5,5) d = (3,3,3,5,5,5) d = (3,3,4,4,5,5) d = (3,4,4.4,4,5) d = (3,4,4,5,5,5) 

206 207 208 

n=6 n=6 n=6 
m = 13 m= 14 m=15 

d = (4,4,4,4,5,5) d = (4,4,5,5,5,5) d = (5,5,5,5,5,5) 
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PROBLEMS 

Here, and throughout the book, © indicates that a full solution is given at the end of the 
book. 

The Definition of a Graph 

©1.1. | Write down the vertex-set and edge-list of each of the following graphs: 

am l 
London 2 

. i / 
* 

LOsi~ - xe——_ey e 

5 

3 

z 
New York Sydney 6 

(a) (b) (c) 

1.2. Write down the vertex-set and edge-list of each of the following graphs: 

a c d 
CO) 

| ) J i G 

(b) 

©1.3. | Draw the graphs given by the following lists: | 

_ LBS 
PY 

(a) 

(a) vertex-set: {O1,0, ©, A} 
edge-list: [MIO,O00, OA, OA 

(b) vertex-set: {A, B, C, D} 

edge-list: (none) 

(c) vertex-set: {1, 2, 3, 4, 5, 6, 7, 8} 
edge-list: 12, 22, 23, 34, 34, 35, 67, 68, 78 

©1.4. Consider the following graphs: 

B 
e 

a 
> 

n NR 

» 

; ¢ 

SS 

te 

en 

e 

< N = Se 

5 6 

1 2 3) 4 7 8 

() (2) (3) (4) (5) 

Which of these graphs (a) contain multiple edges? (b) contain a loop? 

(c) are simple? (d) are connected? 
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1.3: 

1.6. 

1.7. 

CHAPTER 1. WHAT IS A GRAPH? 

Draw graphs G,, G2, G3, and Gy, each with five vertices and eight edges, satis- 

fying the following conditions: 

G, is a simple graph, 

G, is anon-simple graph containing no loops; 

G; is anon-simple graph containing no multiple edges; 

G, is anon-simple graph containing both loops and multiple edges. 

Let G be the following labeled graph: 

~ 
u 

Which of the following graphs are subgraphs of G? 

u Zz Uu v 

rae j a: aa wae eZ 
u y a u v Ww u z v 

(c) (d) (ce) (a) (b) 

Let G be the following unlabeled graph: 

Which of the following graphs are subgraphs of G? 

(a) (b) (c) (d) 

The Degree of a Vertex 

$1.8. For each of the following graphs, write down 

a. the degrees of all the vertices; 

b. the degree-sequence. 
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1 2 
B 

e e 

erg gt peta A e e 
5 6 d c v Z w D Cc 1 2 3 4 7 8 

(1) (2) (3) (4) (5) 

1.9. a. Let G be a graph with four vertices and degree-sequence (1,2,3,4). Write 
down the number of edges of G, and construct such a graph. 

b. Are there any simple graphs with four vertices and degree-sequence (1,2,3,4)? 

1.10. a. Draw a simple connected graph with eight vertices and degree-sequence 
(1,1,2,3,3,4,4,6). zo 

b. Draw a simple connected graph with eight vertices and degree-sequence 
(3,3053.0,000,5)- 

©1.11. a. Write down the degree-sequence of each of the following graphs: 

He @ le 
b. Verify the handshaking lemma for each of the graphs in (a). 

©1.12. Verify consequence 3 of the handshaking lemma for each of the following reg- 
ular graphs: 

(a) (b) (c) 

1.13. Prove that there is no graph with seven vertices that is regular of degree 3. 

1.14. Prove the three consequences of the handshaking lemma. 

1.15. Prove that, if G is a simple graph with a least two vertices, then G has two or 

more vertices of the same degree. 
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Ilsomorphic Graphs 

©1.16. Ineach of the following parts, two of the graphs are the same, and the third is 

different. Identify the ‘odd one out’ in each case. 

(a) A 

(b) | 

(c) < Zi 

©1.17. By relabeling the vertices, show that the following pairs of labeled graphs are 

isomorphic: 

1 2 a 1 

, & b 7 2 

3 : AX we c 6 3 

5 4 Cc D B e d 3 4 

(a) (b) 

1.18. Of the following four labeled graphs, which two are the same, which one is 

isomorphic to these two, and which one is not isomorphic to any of the others? 

1 2 1 4 3 3 1 2 

Scar? en <> tq 
5 4 2 5 6 2 4 5 4 

(a) (b) (c) (d) 

1.19. By suitably labeling the vertices, show that the following unlabeled graphs are 

isomorphic: 

a 
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1.20. 

61.21. 

4.22. 

1.23. 

1.24. 

Show that the following unlabeled graphs are not isomorphic: 

ae, 
Are the following two graphs isomorphic? 

mw 
Are the following two graphs isomorphic? 

co DMA 
a. Draw two non-isomorphic regular graphs with 8 vertices and 12 edges. 

b. Draw two non-isomorphic regular graphs with 10 vertices and 20 edges. 

Classify each of the following statements as true or false: 

a. IfGandH are isomorphic graphs, then they have the same number of vertices 

and the same number of edges. 

b. IfGandH have the same number of vertices and the same number of edges, 
then they are isomorphic. 

c. IfGand H are isomorphic graphs, then they have the same degree-sequence. 

If G and H have the same degree-sequence, then they are isomorphic. 

The Graph Cards 

©1.25. Locate the graph cards that depict the following graphs: 

(a) (b) 
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1.26. 

T2i. 

1.28. 

1.29. 

1.30. 

1.31. 

CHAPTER 1. WHAT IS A GRAPH? 

Locate the graph cards that depict the following graphs: 

(a) (b) (c) 

Let G be the following graph: 

Which three of the following graph cards depict subgraphs of G? 

a. number 18; c. number 37; e. number 46; 

b. number 34; d. number 44; f. number 50. 

Let G be the following graph: 

Which two of the following graph cards depict subgraphs of G? 

a. number 45; c. number 84; e. number 126; 

b. number 50; d. number 117; f. number 128. 

Use the graph cards to find how many simple graphs there are with 

a. five vertices, six edges, and degree-sequence (2,2,2,3,3); 

b. six vertices, seven edges, and degree-sequence (1,2,2,2,3,4); 

c. six vertices and degree-sequence (2,2,2,2,2,2); 

d. six vertices and degree-sequence (3,3,3,3,3,3). 

a. Without looking at the graph cards, draw all unlabeled simple graphs with 

four vertices (up to isomorphism). Check your answer with the graph cards. 

b. How many of these are regular? 

Using your graph cards, determine the number of connected simple graphs 

with five and six vertices, and check your answers with the table on page 17. 



CHAPTER 2 

DEFINITIONS AND EXAMPLES 

In Chapter | you saw how a graph can be used to depict the relationships between cer- 

tain objects; you simply represent the objects by vertices, and the relationships by edges 

joining the vertices. In order to investigate such relationships more deeply, we need to 

study the theory of graphs in greater detail. To this end, we now introduce some useful 

terminology which will be needed in what follows. 

2.1 ADJACENCY AND INCIDENCE 

Since graph theory is primarily concerned with interconnections between objects, we 

shall need some terminology which tells us when certain vertices and edges occur next 

to each other in a graph. This terminology applies to all graphs, and can be used equally 

well for wires connecting terminals in an electrical network, bonds connecting atoms in 

a chemical molecule, or roads connecting towns on a road map. 

DEFINITIONS. Letv and w be vertices of a graph. If v and w are joined by an edge 

e, then v and ware said to be adjacent. Moreover, v and w are said to be incident with 

e, and e is said to be incident with v and w. 

31 
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y e w 
e——__e 

v and w are adjacent; 

v and w are incident with e; 

e is incident with v and w. 

You have already seen two ways of representing a graph—as a diagram consisting of 

points joined by lines, and as a set of vertices and a list of edges. The pictorial 

representation is useful in many situations, especially when we wish to examine the 

structure of the graph as a whole, but its value diminishes as soon as we need to describe 

large or complicated graphs. For example, if we wish to store a large graph in a computer, 

then a pictorial representation may well be unsuitable, and some other method would 

then be necessary. 

One possibility is to store the set of vertices and the list of edges; this method is often 

used in practice, especially when the graph is ‘sparse’—that is, it has a lot of vertices but 

relatively few edges. Another method is to take each vertex in turn and list those vertices 

that are adjacent to it. By joining each vertex to its ‘neighbors’, we can easily reconstruct 

the graph. Yet another method is to draw up a table indicating the pairs of vertices that 

are adjacent, or a table indicating which vertices are incident with which edges. 

Each of these methods has its advantages, but the last one is particularly useful in a 

number of practical applications. In this method, we represent a graph by a rectangular 

array of numbers, called a matrix; a matrix with k rows and J columns is called a k x I 

matrix. Such matrices lend themselves to mechanical manipulation, and in several 

applications of graph theory they yield the most natural way of formulating a given 

problem. There are various types of matrices that can be used to specify a given graph. 

Here we describe the most important ones—the adjacency matrix and the incidence 

matrix. For simplicity, we restrict our attention to graphs without loops. 

The Adjacency Matrix 

Consider the following example 

col, col, colt cols 
1 2 3 4 

VS Pt St 
; : row low ke Ory 

row 2 | OF Loe 

row a | OT me 

4 3 
rw4—> \1 2 JI OQ 

On the left-hand side we have a graph with four vertices, and on the right-hand side we 

have a 4 x 4 matrix. The numbers appearing in the matrix refer to the number of edges 

joining the corresponding vertices in the graph. For example, 
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vertices | and 2 are joined by 1 edge, so 1 appears in row | column 2 and in 

row 2 column 1 

vertices 2 and 4 are joined by 2 edges, so 2 appears in row 2 column 4 and in 
row 4 column 2 

vertices | and 3 are joined by 0 edges, so 0 appears in row | column 3 and in 

row 3 column | 

Note that every entry on the main (top-left to bottom-right) diagonal is 0, since the graph 

has no loops. Note also that the matrix is symmetrical about this main diagonal. 

We can generalize this idea as follows. 

DEFINITION. Let G be a graph without loops, with n vertices labeled 1,2,3,....n. 

The adjacency matrix M(G) is the n Xn matrix in which the entry in row i and column j 

is the number of edges joinin® the vertices i and j. 

The Incidence Matrix 

Whereas the adjacency matrix of a graph involves the adjacency of vertices, the 

incidence matrix involves the incidence of vertices and edges. To see what is involved, 

consider the following example; we have circled the labels of the vertices to distinguish 

them from the labels of the edges. 

oa ° = Q — ° = — °o 2 col. col. col. col. 
1 p 3 4 5 6 

VOLVER ie yeaa 
Cie & 4 cht) rw(1)>/1 0 0 1 0 0 

:, row (2) > Tie Le 0) oe ee 
2 

row (3) > One Let Ue 80 0 0 

(4) 3 G) row (4) > a0) ates 1 eee Leer). 

On the left-hand side we have a graph with four vertices and six edges, and on the right- 

hand side we have a 4 x 6 matrix. Each of the numbers appearing in the matrix is either 1 

or 0, depending on whether or not the corresponding vertex and edge are incident with 

each other. For example, 

vertex © is incident with edge 4, so 1 appears in row | column 4 

vertex @) is not incident with edge 4, so 0 appears in row 2 column 4 

We can generalize this idea, as follows. 

DEFINITION. Let G be a graph without loops, with n vertices labeled ©,@,®,..., 0 

and m edges labeled 1,2,3,...,m. The incidence matrix I(G) is the n x m matrix in which 

the entry in row i and column j is 1 if vertex i is incident with edge j, and 0 otherwise. 

Note that the incidence matrix depends on the particular way that the vertices and 
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edges are labeled. We obtain one incidence matrix from another by interchanging rows 

(corresponding to relabeling the vertices) and columns (corresponding to relabeling the 

edges). 

2.2 PATHS AND CYCLES 

Many of the applications of graph theory involve ‘getting from one vertex to another’ in 

a graph. For example, how can you find the shortest route between one London Under- 

ground station and another? Other examples include the routing of a telephone call be- 

tween one subscriber and another, the flow of current between two terminals of an 

electrical network, and the tracing of a maze. Our aim in this section is to make this idea 

precise by means of some definitions. We start by defining a walk in a graph. 

DEFINITION. A walk of length k in a graph G is a succession of k edges of G of the 

form 

UV, VW, WX, ..., YZ 

We denote this walk by uvwx...yz, and refer to it as a walk between u and z. 

Note that the ‘second vertex’ of each edge is the same as the ‘first vertex’ of the next. 

Intuitively, we can think of this as a walk from x to v, then to w, then to x, and so on, until 

we eventually end up at vertex z. Alternatively, since the edges have no specified 

direction, we can think of it as a walk from z to y and so on, eventually, to x, w, v, and u. 

Thus we can also denote this walk by zy...xwvu, and refer to it as a walk between z and 

u. 

We do not require all the edges or vertices in a walk to be different. For example, in 

the following graph 

uvwxywvzzy is a walk of length 9 between u and y, which includes the edge vw twice, and 

the vertices v, w, y, and z twice. This leads to the following definitions. 
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‘ 

DEFINITIONS. [/f all the edges (but not necessarily all the vertices) of a walk are 
different, then the walk is called a trail. If, in addition, all the vertices are different, then 
the trail is called a path. 

In the above diagram, the walk vzzywxy is a trail which is not a path (since the vertices 
y and z both occur twice), whereas the walk vwxyz has no repeated vertices, and is 
therefore a path. Note that a walk such as wzvuz is also a trail, as long as the two 
occurrences of uz refer to the two different edges joining wu and z. 

It is also useful to have special terms for those walks or trails which start and finish 
at the same vertex. 

DEFINITIONS. A closed walk in a graph G is a succession of edges of G of the form 

* 

uv, VW, WX, ..., YZ, ZU 

If all of these edges are different, then the walk is called a closed trail. If, in addition, the 
vertices u,V,W,X,...,y,Z are all different, then the trail is called a cycle. 

In the above graph, the closed walk uvwyvzu is a closed trail which is not a cycle (since 
the vertex v occurs twice), whereas the closed trails zz, vwxyv, and ywxyzv are all cycles. 
A cycle of length three, such as vwyv or wxyw, is called a triangle, for obvious reasons. 
In describing closed walks, we can allow any vertex to be the starting vertex. For example, 
the triangle vwyv can equally well be described by the letters wyvw or yvwy or (since the 
direction is immaterial) by ywvy, vywyv, or wvyw. 

We can use the concept of a path to explain exactly what is meant by a connected 

graph. Recall from Chapter | that a graph is connected if it is ‘in one piece’. For example, 

the following graph is not connected, but can be split into four connected pieces. 

u ® y 

The observation that there is a path between x and y (which lie in the same piece), but not 

between u and y (which lie in different pieces), leads to the following definitions. 

DEFINITIONS. A graph G is connected if there is a path in G between any given pair 

of vertices, and disconnected otherwise. Every disconnected graph can be split up into 

a number of connected subgraphs, called components. 

2.3 EXAMPLES OF GRAPHS 

We now introduce some important types of graphs. You should make sure you are famil- 

iar with them since they will appear frequently, both in applications and as examples. 
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Complete Graphs 

A complete graph is a graph in which every two distinct vertices are joined by exactly 

one edge. The complete graph with n vertices is denoted by K,,. Note that, apart from K,, 

we usually draw the vertices of K,, in the form of aregular polygon. 

= A Ax B @ 
K, Ky K; Kg Ks Ke 

The graph K,, is regular of degree n — 1, and therefore has sn(n — 1) edges, by conse- 

quence 3 of the handshaking lemma. 

Null Graphs 

A null graph is a graph containing no edges. The null graph with n vertices is denoted 

by N,. 

Note that N, is regular of degree 0. 

Cycle Graphs 

A cycle graph is a graph consisting of a single cycle. The cycle graph with n vertices is 

denoted by C,,. 

eae lesles ed alge 
Note that C,, is regular of degree 2, and has n edges. 

Path Graphs 

A path graph is a graph consisting of a single path. The path graph with n vertices is de- 

noted by P,,. 
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4 

e e—e eee eee ©e@© e¢—e© © © eee oe 06 8 

Note that P,, has n —1 edges, and can be obtained from the cycle graph C,, by removing 
any edge. 

Bipartite Graphs 

Of particular importance in applications are the bipartite graphs. A bipartite graph is a 

graph whose vertex-set can be split into sets A and B in such a way that each edge of the 

graph joins a vertex in A to a vertex in B. We can distinguish the vertices in A from those 

in B by drawing the former in black and the latter in white, so that each edge is incident 

with a black vertex and a white vertex. Some examples of bipartite graphs are 

Dy Hs 
A complete bipartite graph is a bipartite graph in which each black vertex is joined to 

each white vertex by exactly one edge. The complete bipartite graph with r black verti- 

ces and s white vertices is denoted by K,,. A complete bipartite graph of the form K, , is 

called a star graph. Some examples of complete bipartite graphs are 

Kis Ky Kx4 K33 

Note that K,,, has r + s vertices (r vertices of degree s, and s vertices of degree r), and rs 

edges. Note also that K,, = K,,,; itis usual, but not necessary, to put the smaller of r and s 

first. 

vertices 

vertices 

__ white 
ee 

A 

\ _ black 

B 

Cube Graphs 

Of particular interest among the bipartite graphs are the cube graphs. These graphs have 

important applications in coding theory, and may be constructed by taking as vertices all 

binary words (sequences of Os and 1s) of a given length and joining two of these vertices 

if the corresponding binary words differ in just one place. The graph obtained in this 

way from the binary words of length k is called the k-cube (or k-dimensional cube), and 

is denoted by Q,. 
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1110 1111 

QO, Q) 

Note that Q, has 2 vertices, and is regular of degree k. It follows from consequence 3 of 

the handshaking lemma that Q, has k x 2*-! edges. 

The Platonic Graphs 

The following five regular solids are known as the Platonic solids: 

i @@ 
tetrahedron cube octahedron dodecahedron icosahedron 

We can regard the vertices and edges of each solid as the vertices and edges of a graph. 

The resulting five graphs are known as the Platonic graphs, and are often drawn as 

ATH Ay @ AX 
tetrahedron cube octahedron dodecahedron icosahedron 

A Platonic graph is obtained by projecting the corresponding solid on to a plane. Alter- 

natively, it is the view you get when you look at a wire model of the solid from a point 

near the middle of one of the faces. The name Platonic arises from the fact that these sol- 

ids were mentioned in Plato’s Timaeus. 
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The Petersen Graph 

Our next example is a famous graph which has already appeared in the Problems of 

Chapter 1. It is known as the Petersen graph, and has several interesting properties 

which you will discover as you progress through the book. The Petersen graph may be 

drawn in various ways, two of which are shown here 

Julius Petersen (1839-1910) was a Danish mathematician, who discussed the graph 

named after him in a paper of 1898. 

Trees 

A connected graph which contains no cycles is called a tree. Some examples of trees are 

as follows; the tree on the right is particularly well known for its bark! 

If G is a connected graph, then a spanning tree in G is a subgraph of G which includes 

every vertex of G and is also a tree. For example, a graph and three of its spanning trees are 

t Ww v Ww U Ww vc Ww 

Zen ny eX wie ey VEX Ze VEX ZY 

a graph G spanning tree spanning tree spanning tree 

The number of spanning trees in a graph can be very large. For example, the Petersen 

graph has no fewer than 2000 different spanning trees. 

Unions and Complements 

There are several operations we can perform on graphs in order to form new ones. The 

simplest of these is to form their union, which is the graph whose components are the 



40 CHAPTER 2. DEFINITIONS AND EXAMPLES 

individual graphs. For example, the null graph N, is the union of 1 copies of N,, and the 

DX~ 7 ee 
is the union of two copies of K,, two copies of K;, and one copy of K,». 

Finally, if G is a simple graph, we form its complement G by taking the vertex-set of 

G and joining two vertices by an edge whenever they are not joined in G. For example, 

the complement of K,, is N,,, and the complement of 

tS 
—that is, the path graph P,. Note that if we take the complement of G, then we get back 

to the original graph G. 

PROBLEMS 

Here, and throughout this book, the dagger (7+) indicates challenge problems. 

Adjacency and Incidence 

2.1 Consider the following graph: 

Classify each of the following statements as true or false: 

a. uand zare adjacent; _e. uw is incident with c; 

b. vandzare adjacent; _f. bis incident with d; 

c. dandzare adjacent; _g. e is incident with w; 

d. v is incident with d; h. v is incident with f 
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2.2. Consider the following graph: 

u a ov 

aN 
a d w 

Classify each of the following statements as true or false: 

a. eis incident with u; c. ais incident with e; 

b. c is adjacent to x; d. w is adjacent to v. 

2.3. | Match up each of the following graphs with its adjacency matrix and incidence 

matrix: 

heel eck eid 2 2 

5 4 5 4 

(a) (b) (c) 

Adjacency matrices. 

OI Oe 10 al Odsal st 0 Os Oils 

Ole a len() 100 Oe 1 OO ae 

Oh —-1" 0 tO, yal 000 0 0 

OS eis LOL iL) OF. O a! Leet Oneal 

Prep TO ora ST B70 [tro tO 

Incidence matrices. 

1 eee lan tent) SO Os 0 Oe eS Oamal 

i ie oO 0. 1 Ls KO Bh ON x) LO ale ORO 

0s LO a0 0. 10 8 OP Or al © Oy Ei =e 0) 

Outed HO! Tee D De Shoe Cee el antes a 0) 

Oi Cl i 201 OPO ee O meant OVO OO ia 

2.4. | Write down the adjacency matrices of the graphs 

1 2 l 2 

3 es 

5 4 4 3 

(a) (b) 



42 

2656 

$2.6. 

©2.7. 

2.8. 

2.9, 
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Draw the graphs whose adjacency matrices are 

oh i wy O w 

(ue Ol al ee Or I er 
ani Onesie ih 0, 0) Sea @ 
© ® © @ O Oo ani Oan0 
i i @ @ 2 Onn O MnO me OleOle 
It @ 2.0 OPOMRO Onl nO 

© (a) (b) 

What can you say about the sum of the numbers in any row or column of an 

adjacency matrix? 

The following diagrams illustrate a graph with three different labelings. Find 

the adjacency matrix in each case, and explain the connections between these 

three matrices. 

1 1 2 

(a) (b) — (c) 

Write down the incidence matrices of the following graphs: 

Gr) = I) 
AN 2 s 

| Peo N¢ 5 3 

Cee e@ ® @ 

(a) (b) 

Draw the graph whose incidence matrix is 

FC Oo — © © — (ey a (SS) SS) Ss te) Sead 8 RS SO.) = Es So CO) = = 
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4 

2.10. What can you say about the sum of the numbers in 

a. any row of an incidence matrix? 

b. any column of an incidence matrix? 

2.11.’ Consider the following graph: 

3 

1s peel 2 a 

4 

Write down the adjacency matrix M of this graph, and compute the matrices M* 

and M°. What does the entry in row i and column j of each of these matrices 

represent? Make a guess as to what the entries of M‘ represent, and prove your 

result. 

2.12." (For those who have studied linear algebra.) The eigenvalues of a simple 

graph are defined as the eigenvalues of its adjacency matrix. 

a. Use the results of the previous problem to prove that 

i. the sum of the eigenvalues of G is zero; 

ii. the sum of their squares is 2m, where m is the number of edges of G; 

iii. the sum of their cubes is 6, where f is the number of triangles in G. 

b. Show that the eigenvalues of K, are —1 (n — 1 times), andn— 1. 

c. What are the eigenvalues of K,,? 

Paths and Cycles 

62.13. Complete the statements concerning the graph shown. 

a. xyzzvy is a of length between and : 

b. vuvzvisa of length between and : 

c. vwisa of length between and : 

d. uvwxyzu is a of length between and 
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2.14. In the following graph, find 

a. awalk of length 7 between u and w; 

b. cycles of lengths 1, 2,3, and 4; 

c. apath of maximum length. 

2.16. In the following graph, find 

a. aclosed walk which is not a closed trail; 

b. aclosed trail which is not a cycle; 

c. all the cycles of lengths 1, 2, 3, and 4. 

y w 

u 
Zz 

Examples of Graphs 

2.17. Draw the following graphs: 

a. Keg; Cina é. Kya g. he 

b. N3; d. Ps; f; K; 3; 
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2.18. 

2.19. 

2.20. 

2.21 

2.22 

62.23. 

2.24. 

2.29% 

Fill in the following table: 

Petersen 

tetra- dodeca- | icosa- 
‘9,9|Qs5| hedron| cube |hedron|hedron |hedron 

number of | 

number of 

vertices 

edges 

each vertex 

aI 

degree of | 

Complete the following statements: 

a. the graph K,, is a regular graph only when : 

b. _ the only bipartite Platonic graph is the : 

c. the graph K,, is the union of and : 

d. if Gis a simple graph with n vertices which is regular of degree r, then Gis 

regular of degree : 

e. ifGisasimple graph with n vertices and m edges, then G has vertices 

and edges. 

From the set of graph cards, locate the cards that depict the graphs 

a. Ny CK ss 1. Ce 

bake f. Ky33 j. P.. 

e. Ce g. the tetrahedron graph; 

Aoi: h. the union of K, and K;; 

Which of the following graph cards depict bipartite graphs? 

a. number 38; d. number 128; g. number 152; 

b. number 78; e. number 129; h. number 154. 

c. number 106; f. number 130; 

Using your graph cards, determine the number of connected bipartite graphs 

with five vertices. 

Show that in any bipartite graph all cycles have even length. 

The complete tripartite graph K,,,, consists of three sets of vertices of sizes r, 

s, and t, with edges joining two vertices if and only if they lie in different sets. 

a. Draw the graphs K,,, and K,,3. 

b. How many vertices and edges has K,,,,? 

c. What is the complement of K,,,,? 

The girth of a graph is the length of its shortest cycle. Find the girths of (a) Kg; 

(b) Ks; (c) the Petersen graph; (d) the Platonic graphs; (e) the 6-cube Q,. 
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2.26. 

2.27.1 
2.28. 

2.29. 

2.30. 

2.31. 

2.32. 

2.33- 

2.34. 

2.35. 

2.36. 

62.37. 

2.38. 

2.39." 
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The circumference of a graph is the length of its longest cycle. Find the cir- 

cumferences of (a) Ky; (b) Ks; (c) the Petersen graph; (d) the dodecahedron 

graph; (e) the 4-cube Q,. 

How many different cycles of length 5 does the Petersen graph have? 

Locate the graph cards depicting the complement of each of the following 

graphs: 

a. the path graph P,,; 

b. the complete bipartite graph Ky 4. 

How many components has each of the following graphs? 

(a) Ns; (b) K;3; (c) ioe 

Prove that a graph and its complement cannot both be disconnected. 

A graph is called self-complementary if it is isomorphic to its complement. 

a. Show that C; is self-complementary, and find two other self-complementary 

graphs. 

b. Prove that a self-complementary graph has 4k or 4k + | vertices, for some 

integer k. 

There are 14 trees with six or fewer vertices. Draw them, and locate the graph 

cards depicting them. 

There are 11 trees with seven vertices. Draw them. 

Show that if a tree has n vertices then it has n — 1 edges. 

Use the handshaking lemma to prove that every tree with two or more vertices 

has at least two vertices of degree 1. 

Show that every tree is a bipartite graph. 

Find all the spanning trees in each of the following graphs: 

A a A B 

| : yy 
Ig; D D G 

(a) (b) 

Draw some (but not all!) of the 2000 spanning trees of the Petersen graph. 

The line graph L (G) of a simple graph G is the graph obtained by taking the 
edges of G as vertices, and joining two of these vertices whenever the corre- 
sponding edges of G have a vertex in common. Find an expression for the num- 
ber of edges of L(G) in terms of the degrees of the vertices of G, and show that: 

a. if C, is the cycle graph with n vertices, then L(C,,) is isomorphic to C,; 

b. L(K,,) has sn(n — 1) vertices, and is regular of degree 2n — 4; 

c. L(tetrahedron) = octahedron; 

d. the complement of L(K;) is the Petersen graph. 



CHAPTER 3 

APPLICATIONS OF GRAPHS 

In this chapter we give brief descriptions of several areas in which graphs have been 

found useful. These range from chemistry and sociology to recreational mathematics 

and the bracing of plane frameworks. In particular, we show how the ideas of compati- 

bility graph and interval graph can arise in several seemingly unrelated contexts, such as 

genetics, ecology, archaeology, and the phasing of traffic lights, and we illustrate the use 

of trees in areas ranging from linguistics and computing to game theory. 

A full treatment of these topics is clearly impossible here. All we can hope to do is to 

illustrate the very wide range of topics in which graphs have been used, and leave it to 

you to follow up any topics which appeal to you. A list of suggestions for further reading 

is given at the end of the book. 

3.1 CHEMISTRY 

You have already seen in Chapter | how a chemical molecule can be represented as a 

graph whose vertices correspond to the atoms and whose edges correspond to the chem- 

ical bonds connecting them. For example, the molecule C,H.;OH (ethanol) can be repre- 

sented by the following graph: 

47 



48 CHAPTER 3. APPLICATIONS OF GRAPHS 

(aie! 
Bas aaa er page + topes 

H H 

In such a graph, the degree of each vertex is simply the valency of the corresponding 

atom—the carbon vertices have degree 4, the oxygen vertex has degree 2, and the hydro- 

gen vertices have degree 1. 

Diagrams of the above type were first used in 1864 to represent the arrangement of 

atoms in a molecule. They were introduced by Alexander Crum Brown (1838-1922), 

who explained, for the first time, the phenomenon of isomerism—the existence of isomers 

(molecules with the same chemical formula but different chemical properties). For 

example, the molecules n-butane and 2-methyl propane (formerly called butane and 

isobutane) both have the chemical formula C4H;o; note the different ways in which the 

atoms are arranged inside the molecule: 

H 

HOH 
H H H H H H 

pe eee eee Se, ee eee ee 

Healey how od 
n-butane 2-methyl propane 

It is natural to ask whether there are any other molecules with the formula C4Hio, and 
this leads us directly to the problem of isomer enumeration—the determination of the 
number of different molecules with a given chemical formula. The most celebrated 
problem of this kind is that of counting the alkanes (paraffins) C,H2,.2. For small values 
of n, we can construct a table. For clarity, we have drawn the carbon vertices as small 

circles and the hydrogen vertices as black blobs. 
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n chemical name 
formula 

1 CH, methane 

2 C5H¢ ethane 

3 C3H. propane 

4 C4Hi9 ~=— (a) n-butane 

(b) 2-methyl 
propane 

5 C5Hj> (a) n-pentane 

(b) 2-methyl 
butane 

(c) 2,2-dimethyl 
propane 
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It is clear that these diagrams are going to become very complicated as n increases. 

We can simplify them considerably by removing the hydrogen atoms: 

| 
a=G—k c 

H H | 
| | remove draw 

lee camel Creme Casal aE Ce ee See 
l hydrogens graph 

H H H ; 

This leaves the following carbon-graphs: 

Pe cee coe che ome aoe of 

n=1n=2 n=3 n=4 n=5 

Each of these carbon-graphs is a tree in which every vertex has degree 4 or less. 

Conversely, given any tree with this property, we can construct an alkane by adding 

hydrogen atoms to bring the degree of each carbon vertex up to 4, as follows: 

i 
nk {61 

H | H H 
oes | | 

H—C——C——C——C—H 
pine “molecule. l l 

H | H H 
HC 

| 
H 

It follows that the problem of counting alkanes is essentially a tree-counting problem. 
The following table lists the number of alkanes with at most 15 carbon atoms: 

n Te 20344 550 SG, LOR a2 eed Sen 

alkanes C,H,,.,» 1411 92735" 0 18ers ison tans ese dads 

Graphs have also been used in many other chemical contexts which we cannot discuss 
in detail here. Among these are 

1. the representation of “polycyclic hydrocarbons” by carbon-graphs containing 
cycles; 
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2. the use of graph-theoretical ideas to name molecules, and to represent them in a 

form suitable for storing in a computer—the adjacency matrix of the carbon-graph, 

and various modifications of it, have proved particularly useful in this area; 

3. the use of graphs to represent chemical reactions, where the vertices correspond to 

molecules and the edges correspond to reactions involving these molecules. 

Historical note Although graph-like diagrams had been used as far back as 1789 to represent 

chemical molecules, it was not until the 1850s that ideas about atoms and the way they combine 

were sufficiently well understood for meaningful diagrams to be drawn. This occurred when various 

chemists, among them August Kekulé and Edward Frankland, put forward ideas which led to the 

theory of valency. Crum Brown’s diagrams were just what was needed to represent this theory and 

explain the nature of isomerism, and were soon accepted universally. Meanwhile, the mathemati- 

cian Arthur Cayley had spent some time studying and counting trees, and in 1875 presented a paper 

to the British Association describing a method for calculating, in principle at least, the number of 

alkanes with a given number of carbon atoms. Although successful, Cayley’s methods were 

cumbersome and impractical, and it was over 50 years before any significant new results were 

obtained. In the period 1927-1937 there appeared a number of important papers on isomer 

enumeration, culminating in the fundamental work of George Pélya (see page 17). Pélya’s papers 

included a powerful method which can be applied to counting problems involving a degree of 

symmetry. In particular, Pélya’s methods have been used to great effect in problems relating to the 

counting of graphs and molecules. 

3.2 SOCIAL SCIENCES 

Graphs have also been used extensively in the social sciences to represent interpersonal 

relationships. The vertices correspond to individuals in a group or society, and the edges 

join pairs of individuals who are related in some way—for example, x is joined to y if x 

likes, hates, agrees with, avoids, or communicates with y. For the time being, we shall 

assume that all relationships are symmetric (x likes y if and only if y likes x). Un- 

symmetric relationships will be discussed in Chapter 5. 

Such representations have been extended to relationships between groups of individ- 

uals, and have proved useful in a number of contexts ranging from the study of kinship 

relationships in certain cultures to the relationships between political parties. Graphs have 

also been used by political scientists to study international relations, where the vertices 

correspond to nations or groups of nations, and the edges join pairs of nations which are 

allied, maintain diplomatic relations, agree on a particular strategy, etc. 
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We can analyze the possible tensions in such situations by using the concept of a 

signed graph. This is a graph with either + or — associated with each edge, indicating a 

positive relationship (likes, loves, agrees with, communicates with, etc.) or a negative 

one (dislikes, hates, disagrees with, avoids, etc). For example, in the signed graph below, 

Jack likes Jill but not John, Jill likes Jack and Mary but not John, Mary likes John and 

Jill, and John likes Mary but not Jack or Jill; note that Jack and Mary have no strong 

feelings about each other, and are therefore not adjacent in the graph. 

+ 

John @& Mary 

- + 

Jack a Jill 

Now consider the following diagrams, which illustrate some of the situations that can 

occur when three people work together. Which of these situations is most likely to cause 

tension between John, Jack, and Jill? 

John John John 

iy s / x i, ‘ 

Jack Jill Jack Jill Jack Jill 
+ + = 

In the first case all three get on well, and there is no tension. In the second case Jack and 
Jill get on well and both dislike John; the result is that John works on his own, and again 
there is no tension. In the third case John likes both Jack and Jill and would like to work 
with them, but Jack and Jill dislike each other and do not wish to work together; in this 
case (the so-called ‘eternal triangle’), a suitable working arrangement cannot be found, 
and there is tension. We express this by saying that the first two situations are balanced, 
whereas the third is unbalanced. 

Using these examples as motivation, we can give a general definition of balance. We Say 
that a signed graph is balanced if we can color its vertices black or white in such a way that 
positive edges have ends of the same color, and negative edges have a black end and a white 
end. You can easily check that the first two of the above diagrams can be colored in this way, 
whereas the third cannot. Note that this definition resembles that of a bipartite graph. You 
can see the connection by taking a balanced signed graph and removing all the positive edges; 
this leaves a bipartite graph, as indicated by the following diagram: 

balanced signed graph bipartite graph 
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4 

We can exploit this connection between balanced signed graphs and bipartite graphs a 

little further. Recall from Problem 2.23 that in any bipartite graph all cycles have an even 

number of edges. For balanced signed graphs the corresponding result is that all cycles have 

an even number of negative edges, as we shall ask you to show in Problem 3.10. 

3.3 TREES 

The concept of a tree first arose in connection with G. Kirchhoff’s work on electrical 

networks in the 1840s, and with Cayley’s work on the enumeration of chemical mole- 

cules in the 1870s. More recently, trees have been proved to be of use in many areas, 

ranging from linguistics to computing. We now briefly describe some of these uses; our 

treatment is mainly pictorial and intuitive. 

a sapling river tributaries tracks of particles in a 

bubble-chamber 

Many trees are characterized as having a physical structure which may be natural or 

man-made. Natural trees clearly include the vegetable variety with trunk, limbs, 

branches, and leaves. Another example of a natural tree is the drainage system of 

tributaries forming a river basin; this is clearly tree-like in appearance, and is frequently 

referred to as “dendritic”. Less obvious examples arise from the tracks of particles in a 

bubble chamber and from the chemical structure of certain chemical molecules, such as 

the alkanes C,,H>,.2 discussed earlier. An example of the man-made variety of tree is 

given by an oil or gas pipeline distribution system, such as that shown 

Louisiana 

Gulf 
of 

Mexico 
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Other trees do not have a well-defined physical structure, but are conceptual in nature. 

A familiar example of a conceptual tree is the tree of life, which represents the evolution- 

ary relationship between various animal or vegetable species. This has a pure tree form 

only if we disallow interbreeding of species. 

vertebrates 

echinoderms 

brachiopods ‘ phoronids 

ectoprocts 

mollusks 
(aks 

” sipunculids 

coelenterates 

platyhelminths “ctenophores 

A family tree, depicting ancestors and descendants, is also of this type. A family tree 

has a pure tree form only if we forbid incestuous relationships. The following family tree 

shows the Saxon kings of the ninth century in England: 
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Egbert 

Ethelwulf 

Ethelbald Ethelbert Ethelred I Alfred the Great Aethelswith 

e 

Adhelm Ethelward (name unknown) 

. Edward Ethelward Elfleda Ethelswithe Ethelgiva 
the Elder 

There are also many instances of man-made conceptual trees. As an example of these, 

we can consider any tree representing an administrative hierarchy; the following tree 

depicts part of the administrative structure of the British Open University: 

VICE-CHANCELLOR 

SECRETARY 

ACADEMIC FINANCE ESTATES PERSONNEL COUNCIL AND DATA 
ADMINISTRATION Director of Director Personnel EXTERNAL PROCESSING 

Deputy Secretary Finance Manager AFFAIRS Manager 
and Registrar Senior Assistant 

| Secretary 

Assistant Manager 
Personnel (Staff 
Manager development) 

Asst. Chief Asst. Chief Chief Purchasing 
Accountant Accountant Internal Manager 
(Financial (Financial Auditor 
Accounting) Planning 

and Budgetary Asst. Data Management Data 
Control) Processing Systems Centre 

Manager Manager Manager 

REGISTRY ACADEMIC SUMMER ACADEMIC EXAMINATIONS Senior 
Deputy SECRETARIAT SCHOOLS PLANNING Chief O&M 
Registrar Deputy Chief Assistant Examinations Officer 
(Students) Registrar Summer Secretary Officer 

(Senate) Schools 
Officer 

Recently, there has been considerable interest in tree structures arising in the computer 

sciences and in artificial intelligence. We often meet such structures when organizing 

data in a computer memory store or when organizing the flow of information through a 

system. Indeed, many computer operating systems are designed to be tree structures, since 

it is easier for a user to access information and files by tracing through the different levels 

of a tree than by searching any other type of graph. The following tree represents a PASCAL 

operating system: 
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P-MACHINE USER 1/0 

SIMULATOR ROUTINES 

PASCAL 
SYSTEMASICAR TY WR meme ee OPERATING SYSTEM, MISCINFO 

(optional turnkey system) SYSTEM (parameters file) 

TEXT EDITING COMPILER FILER LINKER MACHINE-CODE MISC, LIBRARY 

Pascal Disk file Joins GENERATION UTILITIES ROUTINES 

SCREEN YALOE _ source to Management routines ae 
EDITOR LINE- P-code Get 8080 Z80 

EDITOR ASSEMBLER ASSEMBLER 
[- Save 

Insert , 

Delete j- What 
Adjust he New 
Copy r List 

Set 
t- Remove 

Exchange |, Change 
iad ee 

Replace Dxe 
Jump F Quit 

Quit eee 

Write t Ext-dir 

Update — Krunch 

Exit [- Make 
+ Prefix 

t- Volume-scan 

— Examine 

— Zero 

In a similar way, large computer programs are often organized as tree structures 

because this simplifies the complex decision-making strategies usually needed upon 

execution of the program. This type of decision tree is encountered in game theory, 

particularly in programs which are designed to play various games, such as chess; the 

following tree is part of a game tree for tic-tac-toe (noughts-and-crosses): 

ao, 
io. oS ps ae 

Another interesting example of a tree structure is provided by the parsing of a sentence 

in a natural language, such as English. The tree represents the interrelationships between 

the words and phrases of the sentence, and thereby shows the underlying syntactic 

structure: 

first move by X: 

first move by O. 
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sentence 
wins — 

noun phrase verb phrase 

noun verb noun phrase 

eee 
adjective noun 

Robin wears green socks 

2 

Another important type of decision tree is a sorting tree. These arise when we want 

to make a succession of choices, each dependent on the previous one. For example, 

consider the Dewey decimal classification system, which is often used for cataloguing 

books in libraries. This system starts with a crude classification of subjects into ten areas 

0-099 General works 500-599 Pure sciences 

100-199 Philosophy 600-699 Applied sciences 

200-299 Religion 700-799 Fine arts 

300-399 Social sciences 800-899 Literature 

400-499 Philology 900-999 History 

Each of these areas is classified into ten more specialized areas (for example, in the Pure 

Sciences the numbers 510-519 are allocated to Mathematics), and each of these is then 

classified into ten more. For example, the Mathematics class is subdivided as 

510 General mathematical works 515 Analysis 

511 Mathematical foundations 516 Geometry 

512 Algebra pak uence 
513 Arithmetic 518 

514 Topology 519 Probability 

Further classification is possible with the introduction of decimal fractions. For exam- 

ple, Graph Theory is classified as 511.5 and Combinatorial Analysis is classified as 

511.6. To represent this process, we can use a sorting tree, part of which is 
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general 

pure sciences 

mathematics 

mathematical 
foundations 

We can also use sorting trees to find the longest increasing sequence in a given list, 

such as 5, 11, 6, 1, 3, 9, 10, 4. In order to represent this problem as a sorting tree, we join 

each number to those later numbers in the sequence which exceed it. The complete sorting 

tree for the above list is then 

Qu OOO OR. OO MO 

HKODDO OHOVDOOOD OW 

OM WOOOW 20) 

(10) 29) 

We deduce that the two longest increasing sequences are 5, 6, 9, 10 and 1, 3, 9, 10. 

In the above examples of tree structures occurring naturally and in the man-made 

world, one particular type of tree occurs repeatedly. This is the hierarchical structure in 

which one vertex is singled out as the starting point, and the branches fan out from this 

vertex. We call such trees rooted trees, and refer to the starting vertex as the root vertex, 

often indicated by a small square. Because rooted trees are important and wide-spread, 

we need to be able to recognize them when they occur in different forms. The diagrams 

illustrate four equivalent ways of representing the same rooted tree. 
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a rooted tree subsets of a set nested parentheses sections of a report 
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The first diagram has the conventional appearance of a tree. The second is a system 
of subsets of a set representing, say, the organization of subsystems within a complex 
machine system; this has the same tree structure as the first diagram, but in this case the 

different levels are defined by the depth of nesting. The third representation is a system 

of nested parentheses as used in English text, mathematical equations or the computer 

language LISP; again, the level is defined by the depth of nesting. The fourth representa- 

tion is provided by the organization of a report such as a legal contract; these are often 

arranged in nested sections (subsections, paragraphs, etc.), and the level of each section 

is determined by indentation, and by the length of the decimal number in the heading. 

Books are often organized in this tree-like way (volumes, chapters, sections, paragraphs), 

as are dictionaries (the lexicographical ordering of words). The programming languages 

ALGOL and PASCAL similarly take advantage of tree arrangements with their nested 

block-structure. 

The great advantage of all such tree structures is the ease and cheapness with which 

they can be altered or updated. This is particularly important in computer applications, 

where one can insert or delete branches (such as subroutines) without having to change 

the whole system. On the other hand, a major drawback of tree structures is that they are 

very vulnerable to faults or damage. The removal of a single vertex or the breaking of a 

single edge can disconnect or destroy the whole system, which can be disastrous for 

efficient operation of the system, although it may be useful for potential saboteurs. A 

striking example of this vulnerability was given by the collapse of the Inca civilization 

which virtually disintegrated overnight when the Spanish conquistador Pizarro captured 

the chief Inca, Emperor Atahuallpa, in 1532. The latter occupied the top position in a 

rigid hierarchical social pyramid, and his removal destroyed the top of the tree, thereby 

breaking the chain of command. 

3.4 BRACING RECTANGULAR FRAMEWORKS 

We now use the properties of bipartite graphs to solve a problem in structural engineer- 

ing. Many buildings are supported by steel frameworks consisting of rectangular ar- 

rangements of girder beams and welded or riveted joints. This is particularly the case if 

they are designed as high-rise buildings or skyscrapers. For many purposes, however, 

these structures can be treated as planar (rather than spatial) structures, with pin-joints 

(rather than rigid welds) holding the beams together. The simplest type is a rectangle 

consisting of just four beams and four joints: 
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load load 
pin-joint \ : 

[__] 

It is clear that such a structure can be deformed under sufficiently high loads into a 

lozenge shape, or parallelogram, so that it is inherently unstable. It must therefore be 

braced, and this may be done by introducing a single extra diagonal beam which can 

resist both tension and compression. (The diagonal beam can join either pair of diagonally 

opposite corners.) 

In the case of a larger structure containing many rectangular cells, it is not necessary 

to brace every cell in order to ensure rigidity. We must therefore derive a method for 

determining the minimum number of braces required to prevent collapse, and then obtain 

a suitable arrangement of these. The rationale for seeking such a minimum bracing is that 

if we use more than the minimum number of braces, then we may improve the safety 

factors but we incur an unnecessary cost penalty. 

extra beam 

beam 

Consider the three structures 

Ge Ee 
(a) 

Framework (a) is rigid, but is heavily overbraced. Framework (b) is not rigid, since it 

can be deformed as shown. But how about framework (c)? To answer this question, we 

describe a simple method for determining whether any given rectangular structure is 

rigid, and if it is, whether any of the braces can be removed. 

The method we use to determine the rigidity of a braced framework is to draw a 

bipartite graph in which one set of vertices corresponds to the rows of the framework, 

the other set of vertices corresponds to the columns of the framework, and an edge joins 

arow-vertex and a column-vertex whenever the cell in the corresponding row and column 

is braced. The bipartite graphs corresponding to frameworks (a), (b), and (c) are 
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If you look at these bipartite graphs, you can easily see that the rigid framework (a) gives 
rise to a connected graph, whereas the non-rigid framework (b) gives rise to a discon- 
nected graph. These are instances of the following general rule, which shows that frame- 
work (c) is also rigid since it corresponds to a connected bipartite graph: 

rigid bracings correspond to connected bipartite graphs 

non-rigid bracings correspond to disconnected bipartite graphs 

' To see why these results hold, note that each brace in a framework forces the 
corresponding row and column to remain perpendicular to each other. Thus, in the graph 
of framework (a), the path r;c2r2c3r3c; connecting all six vertices shows that row 1 is 

perpendicular to column 2, column 2 is perpendicular to row 2, row 2 is perpendicular 

to column 3, and so on. Thus every row is perpendicular to every column, and the 

framework cannot be distorted. However, in the graph of framework (b), there is no path 

connecting either of the vertices r3 and c, to any of the vertices r1, r2, C2, or C3, and so row 

3 and column | need not remain perpendicular to rows | and 2 or columns 2 and 3, and 

the framework can be distorted as shown above. 

We can also use the bipartite graph representation to determine which braces in a 

braced framework can be removed so as to yield a minimum bracing. In the graph of 

framework (c) there are no cycles, and so the removal of any edge disconnects the graph. 

Thus the removal of any brace yields a non-rigid framework, and the given bracing of 

framework (c) is therefore a minimum bracing. However, in the graph of framework (a) 

there are several cycles, and therefore several braces that we can remove without affecting 

the rigidity of the framework. For example, 71¢173c3r1 is a cycle, and so we can remove 

the brace in any one of the cells ric1, 13, r3C1, 73C3 Without affecting the rigidity. In fact, 

in this example we can remove up to three suitably chosen braces (such as r1¢1, 71¢3, and 

r3C3) and still have a rigid framework; at each stage we simply select any cycle in the 

bipartite graph and remove any one of its edges. 

It follows from the above discussion that a minimum bracing corresponds to a 

connected bipartite graph containing no cycles—that is, a spanning tree: 

minimum bracings correspond to spanning trees 

3.5 COMPATIBILITY AND INTERVAL GRAPHS 

Compatibility graphs have been used extensively in problems involving the arrange- 

ment of data into a particular (e.g., chronological) order. In such graphs, the vertices 
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correspond to the objects being arranged, and the edges correspond 
to those pairs of ob- 

jects which are compatible in some way. Although compatibility graphs first arose in a 

genetic context, they have also been used in such areas as archaeology, psychology, and 

the dating of classical manuscripts. Our aim here is to describe these applications, show- 

ing in each case how the relevant data can be represented by a compatibility graph. 

Phasing Traffic Lights 

Our first application of compatibility graphs is to the phasing of traffic lights. To see 

what is involved, consider the following road intersection: 

Some of the traffic streams at this junction are compatible, in that they can move at 

the same time without dangerous consequences. For example, stream a is compatible 

with streams b, c, e, and f, but not with stream d, whereas stream fis compatible with 

streams a and e, but not with streams b, c, and d. We can represent such compatibilities 

by a compatibility graph in which the vertices represent the traffic streams, and the 

edges join those pairs of vertices which correspond to compatible streams. The compat- 

ibility graph of the above intersection is 

Suppose now that a traffic engineer wishes to control the traffic at this intersection by 

means of traffic lights. How can the lights be phased in such a way that incompatible 

streams of traffic do not occur simultaneously? 

If the traffic lights operate on a 60-second cycle (say), then one solution is to let each 

stream through the lights for 10 seconds. We can represent this solution diagrammatically 

using the clock diagram 
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Z 

where we indicate the moving of each stream by an arc of the circle. This particular ar- 

rangement is unsatisfactory, however, since each stream of traffic is stationary for most 

of the time. We want a solution which takes account of the fact that compatible streams 

of traffic can proceed simultaneously, since this reduces the total amount of ‘waiting 

time’. One possible arrangement is given by our next clock diagram in which there are 

three compatible streams of traffic proceeding at any time—namely, 

0-15 seconds: streams a, b, and c proceed 

15-30 seconds: streams a, e, and f proceed 

30—45 seconds: streams-a, c, and e proceed 

45-60 seconds: streams c, d, and e proceed 

This means that, in each period of 60 seconds, streams a, c, and e can proceed for 45 

seconds, and streams 5, d, and f can proceed for 15 seconds. This gives a total ‘waiting 
time’ of (3 x 15) + (3 x 45) = 180 seconds—a 40 percent reduction on the original waiting 

time of (6 x 50) = 300 seconds. 

Another solution, giving rise to the same total waiting time of 180 seconds, is given 

in the third clock diagram. In this solution there are still three compatible streams of traffic 

proceeding at any time—namely, 

0-20 seconds: streams a, b, and c proceed 

20-40 seconds: streams a, e, and f proceed 

40-60 seconds: streams c, d, and e proceed 
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In each period of 60 seconds, streams a, c, and e can proceed for 40 seconds, and streams 

b, d, and f can proceed for 20 seconds. 

Which of the two solutions is preferable will usually depend on other factors, such as 

the likely amount of traffic in each stream, or the need to give each stream a minimum 

time of (say) 20 seconds. Our concern here is to obtain a number of efficient solutions 

which can then be examined to see whether they satisfy these other requirements. 

We can find these solutions by looking at the compatibility graph. Since our aim is to 

get the maximum number of traffic streams flowing at the same time, we want to find 

subgraphs of the compatibility graph which reflect this requirement. In particular, we are 

interested in complete subgraphs, since these correspond to streams which are mutually 

compatible. Examples of such complete subgraphs are the triangles formed from the 

vertices abc, or aef, or ace, or cde. Note that these are precisely the traffic streams 

appearing in the above solutions. This idea applies more generally, and leads to the 

general guidelines: 

(1) draw the compatibility graph, 

(2) for each vertex of the compatibility graph, find a largest complete subgraph 

containing it; 

(3) divide the time available by the number of complete subgraphs in step (2), and 

allocate a complete subgraph to each period of time. 

In the above examples, step (2) gives the complete subgraphs abc, aef, and cde, which 

together contain all six vertices, and give rise to the third solution above. The second 

solution arises if we include the complete subgraph ace as well. 

Assigning Radio Frequencies 

The above ideas have also been applied to problems involving the assignment of radio 

frequencies to particular localities. Consider, for example, a mobile radio system such as 

that used by the police. Each police car maintains contact by means of a two-way radio 

which uses one channel from a preassigned band of frequencies allocated to the locality. 

Unless we can ensure that the frequency bands in neighboring localities do not overlap, 

we shall get interference. How can the frequencies be allocated? 

We can represent this problem by a compatibility graph in which the vertices 

correspond to the localities and the edges correspond to pairs of non-neighboring 

localities, as illustrated by 

The problem is now very similar to that of the phasing of traffic lights. In that problem we 

had a certain allocation of time (60 seconds), and we found an arrangement of traffic streams 
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which allows the traffic to move for a good proportion of the time. We expressed this solution 
by means of circular arcs on a clock diagram. In the frequency assignment problem we are 
allocated a range of allowable frequencies (say, 99-101 MHz), and we want to find an 

arrangement of frequencies which gives each locality a reasonably wide frequency band. 

We solve this problem by drawing the compatibility graph and looking for a set of 

complete subgraphs containing each vertex. We then assign a frequency band to each of 

these complete subgraphs, and represent these bands, not by arcs on a circle, but by open 

intervals on a line. (An open interval is an-interval without its endpoints.) For example, 

the above compatibility graph gives rise to the complete subgraphs ACE and BDF. We 

can then assign the subgraph ACE the frequency band 99-100 MHz and the subgraph 

BDF the frequency band 100-101 MHz, giving the frequency allocation 

ee 
6 2 
4 
ea ear 
99 100 101 MHz 

Interval Graphs 

You have just seen how the solution of the frequency allocation problem can be depicted 

in terms of open intervals on a line, with compatible frequency allocations correspond- 

ing to overlapping intervals. We can extend this idea by associating a graph with any set 

of open intervals. To see what is involved, consider the intervals 

(0,3), (2,7), (-1,1), (2,3), (1,4), (6,8), 

which may be depicted as 

aS _ nn a a | co =i) 0 1 a 

We associate a graph with these intervals by taking the intervals as vertices, and joining 

two of these vertices by an edge whenever the corresponding intervals have at least one point 

in common. For example, the intervals (0,3) and (1,4) have a point in common, as do the 

intervals (2,7) and (6,8), and so the corresponding vertices are joined in each case. Since the 

intervals (1,1) and (1,4) are open intervals, they do not have a point in common, and so the 

corresponding vertices are not joined. The resulting graph is 

(0,3) (2,7) 

(=1,1) (6,8) 

(1,4) (2,3) 
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Any graph which can be formed from a set of intervals in this way is called an interval 

graph. Note that every interval graph is a compatibility graph, but not every compati- 

bility graph is an interval graph. This 1s because non-overlapping intervals can some- 

times give rise to adjacent vertices in a compatibility graph, whereas in an interval graph 

non-overlapping intervals always give rise to non-adjacent vertices. 

Archaeology 

At the end of the last century archaeologists were interested in the various types of 

pottery and other artifacts that had been found in several graves in predynastic Egypt 

(c. 4000-2500 BC). In particular, Sir Flinders Petrie used the data from nine hundred 

graves in the cemeteries of Naqada, Ballas, Abadiyeh, and Hu in an attempt to arrange 

the graves chronologically and assign a time period to each artifact found in them. This 

process is usually known as sequence dating or seriation. 

Gao 6 0.29 (J \/ 

Qa © 
In dating the graves they assumed that if two different artifacts occur together in the 

same grave, then their time periods must have overlapped. They also assumed, since the 

number of graves was large, that if the time periods of two artifacts overlapped, then the 

artifacts should appear together in some of the graves. 

One of the most promising approaches to seriation problems in archaeology has been 

the representation of such data as a compatibility graph in which the vertices correspond 

to the artifacts, and the edges correspond to those pairs of artifacts which have appeared 

together in the same grave. The problem is then to represent this compatibility graph as 

an interval graph—that is, to find a set of intervals whose interval graph coincides with 

the given compatibility graph. These intervals correspond to the time periods during 

which each artifact was in use, and overlapping intervals correspond to artifacts which 

occur together in the same grave. 

Unfortunately, the problem is not as simple as this in practice. For example, we might 

find several different arrangements of intervals which lead to the same compatibility 

graph, and we may not be able to choose the correct interval graph unless other 

information is available. In spite of this drawback, however, the interval graph approach 

has had some spectacular successes, and has led to the solution of many seriation 

problems, including the chronological ordering of bronze-age material in Central Europe, 

arrow-heads in a Paleo—Indian site in Wyoming, and Greek inscriptions at Histria in 

Rumania. 

Developmental Psychology 

Suppose that we wish to study various traits or characteristics present in children as they 
grow up. Each of these characteristics may exist for a certain period of time and then dis- 
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appear, and the problem is to construct a time scale in which the various characteristics 

appear in chronological order. We can investigate this problem by studying the various 

characteristics present in a number of children and observing when two different charac- 

teristics are present in the same child. The situation is now the same as in our archaeo- 

logical example, except that the word artifact is replaced by characteristic, and the word 

grave is replaced by child. By looking at the various ways in which our compatibility 

graph can be represented as an interval graph, we may be able to put the various charac- 

teristics in chronological order, thereby solving our problem. 

Classical Studies 

Another example of the use of seriation has arisen in the chronological ordering of vari- 

ous Greek and Latin literary works. Among other works, those of Plato have been stud- 

ied extensively from this point’of view, and the problem of determining the likely order 

of these works has been subjected to much mathematical analysis. 

Among the most promising approaches to this problem has been the idea of analyzing 

change in an author’s style by studying his use of prose rhythm. In the case of Plato, 

attention has concentrated on the clausulae (ends of sentences), since the clausula is 

rhythmically the most important part of the sentence. Each clausula was taken to consist 

of the last five syllables, each of which can be short or long, and the frequencies of the 

.2° (=32) possible combinations of these symbols were calculated for each of Plato’s 

works. We can represent these data in the form of a graph by noting the appearance of 

each of the clausulae in the works under investigation, and drawing the corresponding 

compatibility graph. As before, we may then be able to determine the most likely 

chronological order by looking at the various ways in which the resulting graph can be 

represented as an interval graph. 

Similar techniques have been used to investigate the authorship of a disputed piece of 

writing. In particular, the New Testament epistles and Shakespeare’s plays have been 

subjected to this form of analysis. 

Genetics 

For some time, geneticists have regarded the chromosome as a linear arrangement of 

genes, and it is natural to ask whether the fine structure inside the gene is also arranged 

in a linear manner. (This problem is called Benzer’s problem.) Unfortunately, this fine 

structure is too detailed to be observed directly, and so one has to study changes in the 

structure of the gene, known as mutations. 

In analyzing the genetic structure of a particular bacterial virus called phage T4, 

Seymour Benzer considered the mutations which result when part of the gene is missing. 

In particular, he studied mutations in which the missing segments overlap, and expressed 

his results in the form of an overlap matrix, part of which is shown in figure (a). This 

19 x 19 matrix is the adjacency matrix of the compatibility graph in figure (b), in which 

the vertices correspond to mutations, and the edges correspond to pairs of mutations 

whose missing segments overlap. In these terms, Benzer’s problem is that of determining 

whether the matrix in figure (a) represents the overlapping of a suitably chosen collection 

of intervals, or (equivalently) of determining whether the compatibility graph in figure 
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(b) is an interval graph. In figure (c) we see that this is indeed the case—there are 

intervals which give rise to this adjacency matrix and compatibility graph. 

structure 
number 184 215 22M 250 347 455 459 506 749 761 782 852 882 
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Note that, although the representation of this data as an interval graph does not prove 

that the fine structure inside the gene is arranged linearly, it certainly provides support 

for such a hypothesis. In fact, Benzer extended his analysis to no fewer than 145 mutations 

and showed that, even with this number of rows, the resulting matrix can still be 

represented by an interval graph. By this means he was able to show that, for this virus 

at least, the evidence for a linear arrangement is overwhelming. 

Ecology 

Snakes eat frogs, and birds eat spiders; birds and spiders both eat insects; frogs eat 

snails, spiders, and insects. Given any such tangle of interrelationships between predator 

and prey, how does an ecologist sort out the overall predatory behavior of the various 

species under investigation? 

When studying relationships between animals and plants and their environment, 

ecologists use a graph with ‘directed edges’ known as a food web. The vertices corre- 

spond to the species under investigation, and there is a directed edge from a species A to 

a species B whenever A preys on B. As an example of a food web, consider the following 

diagram which represents the predatory habits of organisms in a Canadian willow forest. 
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meadow willow leaf beetle pussy willow 

sandbat willow 

bronze grackle yellow warbler 

shige ee 

In untangling such food webs, ecologists introduce a graph that tells them which 

species compete for food. This graph is known as the niche overlap graph, or competition 

graph, and its edges join pairs of species which share a common prey. For example, in 

the above food web the bronze grackle and the yellow warbler both eat spiders, and so 

must be adjacent in the niche overlap graph 

bronze grackle z yellow warbler 

, sp 

a 

7 

leaf beetle meadow willow 

pussy willow 
flea beetle ider 

sandbat willow 

snail 

garter snake 

Most niche overlap graphs which arise in practice are interval graphs. For example, 

the above niche overlap graph can be represented by the set of intervals 

frog 

flea beetle spider 

leaf beetle yellow warbler 
meadow pussy sandbat ; garter —— a al Las eee 
willow willow willow snail snake sawfly bronze grackle 
a ee 

Such a representation has ecological significance in that overlapping intervals tend to 

correspond to species which react in the same way to particular environmental factors 
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suchas temperature, humidity or altitude. In the above example, the beetles and the sawfly 

have similar predatory behavior, as do the birds, the spider, and the frog. 

3.6 THE FOUR-CUBES PROBLEM 

An intriguing puzzle which has been marketed under the name of Instant Insanity con- 

cerns four cubes whose faces are colored red, blue, green and yellow (or sometimes 

white), in such a way that each cube has at least one face of each color. These cubes are 

depicted in flattened-out form below. The problem is to pile up these cubes on top of 

each other in such a way that all four colors appear on each side of the resulting ‘stack’. 

As we shall see, there is essentially only one way in which this can be done. 

The first thing to note about this problem is that a trial-and-error approach is 

inadvisable, since there are many thousands of different ways of stacking the cubes. To 

see this, note that each cube can be placed in 24 different ways (since there are six possible 

choices for the top face, and the cube can then be rotated so as to bring any of the four 

sides to the front), and so the total number of possible stacks is 24* = 331776. This number 

can be reduced by a factor of 4 if we regard two stacks as the same when we rotate one 

of them to get the other, but this still leaves us with 24*/4 = 82944 essentially different 

stacks. So we need a systematic approach which minimizes the amount of guesswork 

involved. The second thing to note is that if one face of a cube appears on one side of the 

stack, then the opposite face of the cube must appear on the opposite side of the stack. It 

follows from this that our concern is with opposite pairs of faces, and that we must decide 

for each cube which two of the three opposite pairs are the ones which appear on the sides 

of the stack. 

In order to solve this problem, we represent each cube by a graph which tells us which 

pairs of colors appear on opposite faces. More precisely, we represent each cube by a 

graph with four vertices (corresponding to the colors red, blue, green, and yellow) in 

which two vertices are adjacent if and only if the cube in question has the corresponding 

colors on opposite faces. For example, in cube 1, blue and yellow appear on opposite 
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faces, and so the vertices B and Y are joined in the corresponding graph. The four graphs 

we get for the above set of cubes are given below; underneath we have superimposed 

them to give a new graph G. 

cube 1 cube 2 cube 3 cube 4 

the graph G 

A solution for the four-cubes problem is obtained by considering the two subgraphs 

of G pictured below. The subgraph H; tells us which pair of colors appears on the front 

and back faces of each cube, and the subgraph H; tells us which pair of colors appears 

on the left-hand and right-hand faces of each cube. The solution can then be read off from 

these subgraphs, as illustrated. 

R 3" 8 R 7 B 

4 1 1 3 

St ae Gs) Sea 

front & back left & right 

A, Hy the solution 

Why did we choose these particular subgraphs H, and H,? Could we have obtained any 

other solutions by choosing different subgraphs? It is easy to see that H, and H, satisfy 

three properties: 

a. Each contains exactly one edge from each cube; 

b. Each is regular of degree 2; 

c. They have no edges in common. 

We leave it to you to explain why these three properties are relevant to the four-cubes 

problem (see Problem 3.32). 
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3.7 MUSIC 

In a piece of music, certain changes of key (modulations) tend to sound more natural 

than others. For example, modulating from the key of C major to the key of F major 

seems very natural, since only one note change is involved (B to Bb): 

Two major keys which can be obtained from each other in this way may be said to be 

related, and it seems natural to represent this relationship by a graph whose vertices 

represent the various keys, and whose edges join pairs of related keys. This gives rise to 

a graph with twelve vertices—the cycle graph Ci. Note that each key (such as C major) 

is joined to its dominant (G major) and subdominant (F major). We are here assuming 

‘equal temperament’ so that ch. D?, Ef = F, and so on. 

Cc cf=p? 

or 

Unfortunately, we run into difficulties when we try to extend this idea to minor keys, 

since there are many key changes that sound very natural, but involve several note 

changes. In this case it is usual to say that each key has five closely related keys—its 

dominant and subdominant, as before, and also their relative minor keys. For example, 

the key of C major is closely related to G major and F major, and to their relative minors, 

A minor, E minor, and D minor. Joining up those closely related keys leads to the 

following attractive graph, which has 24 vertices and is regular of degree 5. For 

convenience, we have indicated the minor keys by lower case letters—for example, cf 

means C sharp minor. 
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Although a knowledge of this graph may not add significantly to your enjoyment of 

a piece of music, it is nevertheless useful for representing and analyzing successions of 

key: changes. This is because any modulation can be regarded as a combination of the 

basic key changes indicated in the above graph. For example, the modulation C# minor 

to G major can be split up into three constituent basic key changes (C¥minor to Ft minor, 

F* minor to B minor, and B minor to G major), and is represented in the graph by a path 

of length 3. In fact, any modulation corresponds to a path in the graph, and we can use 

the length of the shortest path between any two given keys as an indication of the 

‘remoteness’ of the two keys involved. For example, the modulation C major to F*major 

(path of length 6) is more remote than De major to AP minor (path of length 4), which in 

turn is more remote than B? major to C minor (path of length 1). As a general rule, the 

longer the path in the graph, the stranger the key change will sound. 

The 24-vertex graph above is only one of several graphs which have arisen in a musical 

context. In fact, graph-like diagrams have been used by several composers, ranging from 

the baroque era (Bach’s ‘harmonic circle’) to the recent pioneering work of Milton 

Babbitt, Andrzej Panufnik, and others whose compositions are based either wholly or in 

part on combinatorial considerations. 

We conclude by noting without comment that when Igor Stravinsky was asked how 

he would describe his music pictorially, he replied 

this is my music: lier 

PROBLEMS 

Chemistry 

3.1. Draw the carbon graph of the molecule 
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H 

H—¢—H 
H H H H 

eee eine [eae 

3.2. Draw the molecule whose carbon graph is 

3.3. Draw all the alkanes with chemical formula C,H,,. 

3.4. a. Calculate the number of vertices and edges in the graph of the molecule 

Crone: 

b. Any connected graph in which 

(the number of vertices) — (the number of edges) = 1 

is necessarily a tree (see Chapter 10). Use this fact to show that the graph of 

any alkane C,H,,,,, is a tree. 

3.5. a. There are two different molecules with chemical formula C,;H;OH. Draw the 
graphs representing these molecules, and verify that each is a tree. 

b. Use the method of Problem 3.4(b) to show that the graph of any alcohol 

C,,H,,,.1OH is necessarily a tree. 

3.6. By calculating the difference between the number of vertices and the number 

of edges in each case, determine whether the graph corresponding to each of 
the molecules is a tree: 

(a) C7H,;0H; = (b) C7H,,0,;  (c) CSH,,OH; (d) C5H,20,. 

Social Sciences 

©3.7. Decide which of the following signed graphs are balanced, and find the corre- 
sponding bipartite graph in each case: 

Aq——oB Aq—_*—oB 7 ea 

D 5 E D ie GCG D = c D ~ Cc 

G, G, G; G, 

3.8. John likes Joan, Jean, and Jane, but dislikes both Joe and Jill; Jill likes Joe who 
dislikes Joan, Jean, and Jane; Joan, Jean, and Jane like each other, but each dis- 
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3.9. 

3.10. 

4 

likes Jill. Draw the signed graph representing these relationships, and deter- 

mine whether or not this signed graph is balanced. 

Determine whether the signed graph representing each of the following sets of re- 

lationships is balanced. (You may assume that all relationships are symmetric— 

that is, x likes y if and only if y likes x.) 

a. Alan likes Chris and Edward, but dislikes Bob and David; Bob likes David 

but dislikes Chris; David dislikes Chris and Edward. 

b. Amy likes Beth and Doreen, but dislikes Edna; Beth dislikes Cathy, Doreen 

and Edna; Doreen dislikes Cathy and Edna. 

c. John likes Len and Mike, but dislikes Keith; Mike dislikes Ian and Keith; Len 

dislikes Ian, Keith, and Mike. 

d. Margaret likes Ida and Liz, but dislikes Jenny and Karen; Karen dislikes Ida 

and Liz; Jenny likes Karen but dislikes Liz. 

a. Show that in any balanced signed graph every cycle has an even number of 

negative edges. (Note that 0 is an even number.) 

b. Verify this result for the balanced signed graphs in Problem 3.7. 

Trees 

63.11. 

3.12. 

akon 

3.14. 

63.15. 

3.16. 

Use a tree structure to parse the sentence Good students read books. 

The ambiguous sentences Help rape victims and Council rents rocket appeared 

as newspaper headlines, and can each be interpreted in two ways. Draw two 

tree structures for each sentence. 

Explain how a sorting tree might be used to represent the sorting of mail 

according to zip code. 

Use a sorting tree to find all the increasing sequences of maximum length in 

the following list: 

21, 23, 9, 20, 17, 6, 26, 14. 

Use a sorting tree to find all the decreasing sequences of maximum length in 

the following list: 

D, 11, Oalwa, 9,-10, 4, 

The diagram on page 59 shows four equivalent ways of representing a rooted 

tree. Illustrate this equivalence by explicitly labeling the vertices, subsets, 

parentheses, and sections. 
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63.17. Write down the corresponding subsets of a set and the corresponding nested 

parentheses for the following rooted tree: 

A 

JOP Ja Ie Nel Wi 

3.18. The following diagram represents a binary tree in which there are exactly two 

edges coming down from each intermediate vertex. Show that the number of 

levels of such a tree is at most 5 (n+ 1), where n is the number of vertices. 

level 1 

level 2 

level 3 

level 4 

3.19.! Suppose that you are given eight coins, seven of which are of equal weight, 

and the eighth is heavier or lighter than the rest. You are provided with:an 

equal-arm balance for comparing coins, but you may use it only three times. 

Construct a suitable binary tree which will help you to identify the odd coin 

and to determine whether it is heavier or lighter than the rest. 

Bracing Rectangular Frameworks 

©3.20. By constructing the corresponding bipartite graphs, determine whether the fol- 
lowing braced frameworks are rigid. Is either of them a minimum bracing? 

(a) (b) 

3.21. a. Check that the following is a minimum bracing: 

b. Construct another minimum bracing of a 3 x 5 rectangular framework. 
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‘ 

3.22. Determine whether each of the following bracings is 

a. arigid bracing; 

b. aminimum bracing. 

SL4le [SIs 
eee 4 
NAAT IN 
VARBNS 
ot 4) 

3.23. Show that ‘. 

a. if we permute the rows (or columns) of any rigid bracing, then we obtain 

another rigid bracing; 

b. if we permute the rows (or columns) of any minimum bracing, then we obtain 

another minimum bracing. 

63.24. How many cells are braced in a minimum bracing of an r x s rectangular 

framework? 

Compatibility and Interval Graphs 

3.25. Consider the following intersection, in which traffic can proceed only in the 

directions indicated (for example, stream g cannot turn left or right): 

In solving the phasing-of-traffic-lights problem, we find a set of complete sub- 

graphs of the compatibility graph G containing (between them) every vertex of 

G. Is each of the following such a set of subgraphs of G? 

(a) {abe, cdg, ef}; (b) {abef, acd, fg}. 
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63.26. Consider the following intersection involving a one-way street: 

a. Draw the compatibility graph G. 

b. Find a set of complete subgraphs containing each vertex of G. 

Use the result of b. to find a suitable traffic light sequence, and calculate the 

total waiting time involved, assuming a 60-second cycle. 

63.27. Suppose that in the radio frequency allocation problem (on page 64) localities 

A and E and localities B and F are also required to have non-overlapping fre- 

quency bands. 

a. Draw the new compatibility graph G. 

b. Find a set of complete subgraphs containing each vertex of G. 

c. Use the result of b. to find a suitable frequency allocation, and illustrate your 

answer by means of intervals on a line. 

3.28. Draw the interval graph associated with the following set of intervals: 

A= (99,99.5), B = (100,100.5), C = (99,100), D = (100,101), E = (99.5,100), 

F = (100.5,101). Compare this interval graph with the compatibility graph in 

Problem 3.27. 

3.29. Draw the interval graph of the following set of open intervals: 

(1,2), (354), (9,6), (7,8), (156); (2,7), (3,8). 

3.30.' Show that the cycle graph C, is not an interval graph. 

The Four-Cubes Problem 

©3.31. Verify that the subgraphs H, and H, used in our solution of the four-cubes 

problem (on page 71) satisfy the following three properties: 

a. each contains exactly one edge from each cube; 

b. each is regular of degree 2; 

c. they have no edges in common. 

Explain why these three properties are relevant to the problem. 
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3.32. Show that our solution to the four-cubes problem is the only one possible by 

showing that H, and H, are the only pair of subgraphs of G which satisfy prop- 

erties a., b., and cc. in Problem 3.31. 

[Hint: first try looking for subgraphs which satisfy a., b., and c., and contain 

the loop at R. Then repeat the process with the loop at G and the edge joining 

R and Y. After you have eliminated these edges, the rest is easy.] 

3.33. Decide whether the four-cubes problem with the following set of cubes has a 

solution: ' 

Oly] @Ir] @IR] @[G] 
efelely]) «= (vieiels) «= (RvJayy] ~— [a [rR 

rR) 

3.34.’ Show that there is no solution of the four-cubes problem with the following 

cubes: 

Off Oly] Opa] Ofc] 
[e[R[ RT] [R[y[c] 8] [fy [al c]R| [y[o[R[s] 

[3 | [R| 

Music 

63.35. Which of the following key changes is the least ‘remote’? 

a. AP minor to G¥ major; Cc. A major to DF minor; 

b. D minor to B’ minor; d. G# minor to pb? major. 

3.36. Which of the following key changes is the least ‘remote’? 

a. D major to E> minor; c.  F*minor to F* major; 

b. A# minor to F major; dt pF major to C? minor. 



CHAPTER 4 

WHAT IS A DIGRAPH? 

4.1 INTRODUCTION 

Up to now our concern has been almost exclusively with graphs, and we have seen how 

graphs can be used to depict a variety of situations in which various objects (represented 

by vertices) are related to each other in some way (these interrelations being represented 

by edges). In particular, we have seen how graphs can be used to represent route maps, 

chemical molecules, architectural floor plans, electrical networks, and so on. All these 

situations have one important common feature—the graphs tell us which pairs of verti- 

ces are joined, but do not imply any dominance of one vertex over another. 

An exception was the ecological food web on page 69, which represented the 

predatory behavior between species, and which can be drawn as 

mw lb pw 

80 
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Such an object is called a directed graph, usually abbreviated to digraph. The points 

are called vertices, and the ‘directed lines’ or ‘arrows’ are called arcs. As with graphs, 

the terminology is not completely standard; for example, some authors allow the word 

graph to mean what we have called a digraph—that is, they allow graphs to have directed 

edges. 

4.2 THE DEFINITION OF A DIGRAPH 

DEFINITIONS. A digraph D consists of a set of elements, called vertices, and a list 

of ordered pairs of these elements, called arcs. The set of vertices is called the vertex-set 

of D, denoted by V(D), and the list of arcs is called the arc-list of D, denoted by A(D). 

If v and w are vertices of D, thén an arc of the form vw is said to be directed from v to 

w, or to join v to w. 

DEFINITION. Let D be a digraph. The underlying graph of D is the graph obtained 

by replacing each arc of D by the corresponding (undirected) edge. 

In forming the underlying graph, we simply ‘remove the arrows’ from the arcs; for 

example, 

vy Ww v Ww 

digraph D the underlying graph of D 

Just as for graphs, it is useful at this stage to introduce some further terminology. In 

particular, we can extend the concepts of multiple edges, loops, and simple graphs to 

digraphs. 

DEFINITIONS. Two or more arcs joining the same pair of vertices in the same 

direction are called multiple ares, and an arc joining a vertex to itself is called a loop. 

A digraph with no loops or multiple arcs is called a simple digraph. 

v multiple arcs 

~~ loop 

We can also define a concept analogous to that of a subgraph of a graph. 
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DEFINITION. Let D be a digraph with vertex-set V(D) and arc-list A(D). A subdi- 

graph of D is adigraphall of whose vertices belong to V(D) and all of whose arcs belong 

to A(D). 

For example, if D is the digraph shown above, where 

V(D) = {u,v,w,z} and A(D) is (UW,VU,VV,VW,WZ,WZ), 

then the following digraphs are all subdigraphs of D: 

u Zz u ve u Zz 

u WwW : iz 

v Ww v Ww zZ®@ vy Ww 

( ( 
vertex-set: {u,v,w,z} {u,v,w } {v,z} {u,w,z } {U,V,W,Z } 

edge-list: uw, vv, vw, wz uw, vu,vw vy UW,WZ,WZ UW, VU,VV,VW,WZ,WZ 

Next, we can extend the concept of isomorphism to digraphs, as follows: 

DEFINITION. Two digraphs C and D are isomorphic if D can be obtained from C 

by relabeling the vertices—that is, if there is a one-to-one correspondence between the 

vertices of C and those of D, such that the number of arcs joining any pair of vertices in 

C is equal to the number of arcs joining the corresponding pair of vertices (in the same 

direction) in D. 

For example, the digraphs 

Cc D 

are isomorphic, as you can see by considering the one-to-one correspondence 

Nos 

{ 
3 Roe mS <>N 

Gs 

D: 

Note that 

the two arcs uv in C correspond to the two arcs 23 in D; 

the arc wz in C corresponds to the arc 41 in D; 

the loop at w in C corresponds to the loop at 4 in D; 

and so on. 
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As with graphs, when checking whether or not two digraphs are isomorphic, we can 

ignore the actual symbols used to label the vertices, since the vertices can be relabeled 

as necessary. In view of this, we often drop the labels altogether when they are not relevant 

to the problem at hand, and say (for example) that the following unlabeled digraphs are 

isomorphic: 

We can summarize the above as follows: 

Labeled Digraphs 

u v Z —# u u y 4 1 

Z w 4 z w 4 

These labeled digraphs are the same. These labeled digraphs are not the same, 
but are isomorphic. 

Unlabeled Digraphs 

NA 
These unlabeled digraphs are isomorphic. 

As you probably noted, the beginning of this chapter is very similar to parts of Chapter 

1, and you will find that the similarity between graph and digraph concepts continues 

throughout the chapter. Most of the terms in this chapter are analogs of those given in 
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Chapters 1 and 2 and, in view of this, you may like to try to define digraph analogs of 

some of the following yourself before they are given: 

v and w are adjacent vertices; 

the edge e is incident with v; 

the degree of v; 

the handshaking lemma; 

the adjacency and incidence matrices of G; 

a path of length k; 

a connected graph, 

sm mo aos s a cycle. 

4.3 ADJACENCY AND INCIDENCE 

We start by defining the digraph analogs of adjacency and incidence. These are similar 

to the corresponding definitions for graphs, except that we need to take account of the 

directions of the arcs. 

DEFINITIONS. Let v and w be vertices of a digraph. If v and w are joined by an arc 

e, then v and ware said to be adjacent. /f the arc e is directed from v to w, then the arc 

e is said to be incident from v and incident to w. 

vand ware adjacent, 
eis incident from v, 

and incident to w. 

Using these terms, we can give the digraph analogs of the degree of a vertex in a graph. 

DEFINITIONS. Let D be a digraph and let v be a vertex of D. The out-degree of v is 

the number of arcs incident from v, and is denoted by outdeg v. Similarly, the in-degree 

of v is the number of arcs incident to v and is denoted by indeg v. The out-degree 

sequence of D is the sequence obtained by listing the out-degrees in non-decreasing 

order, and the in-degree sequence of D is defined analogously. 

(Note that, if the digraph contains loops, then each loop contributes 1 to both the out- 

degree and the in-degree of the corresponding vertex.) 

For example, the digraph below has the following out-degrees and in-degrees: 
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ex 

outdeg u = 1, outdeg v= 3, outdeg w= 2, outdeg x = 0, outdeg y = 2, outdeg z = 2, 

indeg u= 0, indeg v= 1, indeg w= 1, indeg x = 0, indeg y = 6, indeg z= 2, 

and the out-degree and in-degree sequences are (0,1,2,2,2,3) and (0,0,1,1,2,6), respec- 

tively. 

We observe that for the above digraph the sum of the out-degrees is 10 and the sum 

of the in-degrees is 10. We also observe that this digraph has 10 arcs. In other words, the 

sum of the out-degrees and the sum of the in-degrees are each equal to the number of 

arcs. This leads to the following analog of the handshaking lemma, called the hand- 

shaking di-lemma('): 

THE HANDSHAKING DI-LEMMA. In any digraph, the sum of all the out-degrees 

and the sum of all the in-degrees are each equal to the number of arcs. 

Proof Since each arc has two ends, it must contribute exactly 1 to the sum of the 

out-degrees and exactly 1 to the sum of the in-degrees. The result follows immediately. 0 

In Chapter 2 you saw two ways of representing a graph—as an adjacency matrix and 

as an incidence matrix. These representations both have digraph analogs which are 

frequently used when storing large digraphs in a computer. For simplicity, we restrict 

our attention to digraphs without loops. 

The Adjacency Matrix 

When defining the adjacency matrix of a digraph, we have to take into account the fact 

that each arc is directed. The following example shows how we deal with this. 

col. col. col. col. 
1 2 3 4 

ta toy at 
row las afl) di OL 

1 He 

rw2~/0 0 0 2 

row3 ~|0 1 0 0O 

4 3 
row4~ \0 0 1 O 

On the left-hand side we have a digraph with four vertices, and on the right-hand side we 

have a 4 x 4 matrix. The numbers appearing in the matrix refer to the number of arcs 

joining the corresponding vertices in the digraph. For example, 
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vertices 1 and 2 are joined (in that order) by 1 arc, so 1 appears in row 1 column 2 

vertices 2 and 4 are joined (in that order) by 2 arcs, so 2 appears in row 2 column 4 

vertices 4 and | are joined (in that order) by 0 arcs, so 0 appears in row 4 column 1 

We can generalize this idea as follows: 

DEFINITION. Let D be a digraph without loops, with n vertices labeled 1,2,3, ...,N. 

The adjacency matrix M(D) is the n x n matrix in which the entry in row i and column 

j is the number of arcs from vertex i to vertex j. 

Note that the adjacency matrix depends on the particular way in which the vertices 

are labeled, and that we obtain one adjacency matrix from another by interchanging a 

number of rows and the corresponding columns. 

The Incidence Matrix 

Whereas the adjacency matrix of a digraph involves the adjacency of vertices, the inci- 

dence matrix involves the incidence of vertices and arcs. Since an arc can be either inci- 

dent from a vertex or incident to a vertex, we have to take account of this when defining 

the matrix. To see what is involved, consider the following example; we have circled the 

labels of the vertices to distinguish them from the labels of the arcs: 

col: col. col: col. col: col: 
1 2 3 4 5 6 

v voy 
@ 1 @) row.(1) 11 VO” OF Lea 

rw@Q)—~/-1 -1 0 0 1 1 
5 : row (3) ssi 0 it =k @ © © 

@) 3 @) row (4) > 0 O ie 

On the left we have a digraph with four vertices and six arcs, and on the right we have a 
4 x 6 matrix. Each of the numbers appearing in the matrix is either 1,—-1, or 0, depending 
on whether or not the corresponding arc is incident from, or to, the corresponding vertex. 
For example, 

arc 4 is incident from vertex ®, so 1 appears in row | column 4 

arc 5 is incident fo vertex @, so —1 appears in row 4 column 5 
arc 4 is not incident with vertex @, so 0 appears in row 2 column 4 

We can generalize this idea, as follows: 
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DEFINITION. Let D be a digraph without loops, withn vertices labeled D,®,®, ...,@) 
and m arcs labeled 1,2,3, ..., m. The incidence matrix I(D) is the n x m matrix in which 
the entry in row @)and column j is 

1, ifarc j is incident from vertex@) 

-1, if arc j is incident to vertex@ 

0, otherwise 

Note that the incidence matrix depends on the particular way in which the vertices and 

arcs are labeled, and we obtain one incidence matrix from another by interchanging rows 

(corresponding to relabeling the vertices) and columns (corresponding to relabeling the arcs). 

4.4 PATHS AND CYCLES 

Just as you can ‘get from one vertex of a graph to another’ by tracing the edges of a walk, 

trail, or path, so you can ‘get from one vertex of a digraph to another’ by tracing the arcs 

of a ‘directed’ walk, trail, or path. This means that you have to follow the directions of 

the arcs as you go, just as if you were driving around a one-way system in a town. 

We can make this idea precise, as follows. 

DEFINITIONS. A walk of length k in a digraph D is a succession of k arcs of D of 

the form 

UY, VW, WX, i. oy YZ! 

We denote this walk by uvwx ... yz, and refer to it as a walk from u to z. [fall the arcs 

(but not necessarily all the vertices) of a walk are different, then the walk is called a 

trail. [f, in addition, all the vertices are different, then the trail is called a path. 

In the following diagram, vwxyvwyzzu is a walk of length 9 from v to u, which includes 

the arc vw twice, and the vertices v,w,y, and z twice. The walk uvwyvz is a trail which is 

not a path (since the vertex v occurs twice), whereas the walk vwxyz has no repeated 

vertices, and is therefore a path. 

The terms closed walk, closed trail, and cycle can also be defined for digraphs. 
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DEFINITIONS. A closed walk in a digraph Dis a succession of arcs of D of the form 

UV, VW, WX, «2-5 YZ, ZU. 

If all of these arcs are different, then the walk is called a closed trail. [f, in addition, the 

vertices U,V,W,X,..-.Y, Z are all different, then the trail is called a cycle. 

In the above digraph, the closed walk uvwyvzu is a closed trail which is not a cycle 

(since the vertex v occurs twice), whereas the closed trails zz, wxw, vwxyv, and uvwxyzu 

are all cycles. Note that in describing closed walks we can allow any vertex to be the 

starting vertex. For example, the triangle vwyv can equally well be describ
ed by the letters 

wyvw or yvwy. 

As with graphs, we can use the concept of a path to tell us whether or not a digraph is 

connected. Recall that a graph is connected if it is ‘in one piece’, and this means that there 

is a path between any given pair of vertices. For digraphs these two ideas are not the 

same, and this leads to two different definitions of the word connected. 

DEFINITIONS. A digraph D is connected if its underlying graph is a connected 

graph, and disconnected otherwise. It is strongly connected if there is a path in D from 

any vertex to any other. 

The difference between these types of digraph is illustrated below: 

S x 

(a) (b) 

Digraph (a) is disconnected since its underlying graph is a disconnected graph, whereas 

digraph (b) is connected but not strongly connected since there is no path from w to v. 

Digraph (c) is strongly connected since there are paths joining all pairs of vertices. 

Alternatively, you can think of driving around a one-way system in a town. If the town is 

strongly connected then you can drive from any part of the town to any other, following the 

directions of the one-way streets as you go, whereas if the town is merely connected then you 

can still drive from any part of the town to any other, but you may have to ignore the directions 

of the one-way streets! It follows that every strongly connected digraph is connected, but not 

every connected digraph is strongly connected. 

In the following diagram (a) we see that the edges of the complete graph Ks can be 

‘directed’ in such a way that the resulting digraph is strongly connected. On the other hand, 

it is impossible to ‘direct’ the edges of the graph in diagram (b) in sucha way that the resulting 

graph is strongly connected, since the ‘bridge’ must be directed one way or the other. 

(a) (b) 
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Now imagine that the graph in diagram (b) represents a system of two-way streets that 
we wish to make one-way. We clearly have a problem, since no matter how we do it, 
there must be some part of the town that is inaccessible from another part of town. This 
leads to the following definition. 

DEFINITION. A graph G is orientable if it is the underlying graph of a strongly 
connected digraph—tat is, if it is possible to ‘direct’ the edges of G in such a way that 
the resulting digraph is strongly connected. 

We have seen above that ifa graph contains a ‘bridge’ , then it cannot be orientable. 
The following theorem establishes the converse result, but first we define a bridge. 

DEFINITION. An edge in q connected graph is a bridge if its removal leaves a 
disconnected graph. ‘ 

THEOREM 4.1. A connected graph G is orientable if and only if it has no bridges. 

Proof We have already observed that an orientable graph cannot contain a bridge. 

To prove the converse, we suppose that G is a connected graph with no bridges. We must 

show that it is possible to direct the edges of G in such a way that the resulting digraph 

is strongly connected. 

Since there are no bridges, each edge must be contained in some cycle (see Problem 

4.24). We begin by taking any cycle C) of G, and direct its edges so as to give a ‘directed 

cycle’. We can then get from any vertex of C; to any other vertex of C; by following the 

direction of the arcs. 

Next we take any edge (not in C;) that is incident to a vertex of C). This edge is 

contained in some cycle C2 of G, and we direct the edges of C2 cyclically, except for any 

edges of C; that have already been directed. We can now get from any vertex of C; or C2 

to any other vertex of C; or C2 by following the direction of the arcs. Since G is connected, 

we can continue in this way until all the edges of G have been directed. The result is a 

strongly connected digraph. 0 

PROBLEMS 

The Definition of a Digraph 

©4.1. | Write down the vertex-set and arc-list of each of the following digraphs: 

1 2 a c 

A A 
5 4 3 b f e 

(a) (b) 
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64,2. Which of the following digraphs are subdigraphs of digraph (a) in Problem 

4.1? 

(a) (b) (c) 

4.3. Let D be the digraph 

1 2 

4 5 

Which of the following are subdigraphs of D? 

eas 
64.4. Of the following four digraphs, which two are the same, which one is 

isomorphic to these two, and which is not isomorphic to any of the others? 

1 2 1 2 1 1 

x} px ra LS 

(a) (b) (c) (d) 

4.5. | Which two of the following digraphs are isomorphic? 

(a) (b) (c) (d) 
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4.6. 

4.7. 

4.8. 

‘ 

Which two of the following digraphs are isomorphic? 

(a) (b) (c) (d) 

Draw two non-isomorphic non-simple digraphs with four vertices and six arcs. 

There are 16 simple digraphs (up to isomorphism) with three vertices. Draw 

them. 

x 

Adjacency and Incidence 

4.9. 

4.10. 

Consider the following digraph: 

uoua v 

ui = e 

has d w 

Classify each of the following statements as TRUE or FALSE: 

a. cis incident to u; 

b. dis incident from x; 

c. ais incident to e; 

d. gis incident from x. 

Consider the following digraph D: 

Classify each of the following statements as TRUE or FALSE: 

a. uandzare adjacent; dd. fis incident from v; 

b. vandzare adjacent; e. ais incident to u; 

c. bis incident from z; f. e is incident to z. 
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©4.11. Write down the out-degree and in-degree sequences of each of the following 

digraphs: 

He It 
©4.12. Verify the handshaking di-lemma for each of the digraphs in Problem 4.11. 

4.13. Verify the handshaking di-lemma for each of the following digraphs: 

Ww 

b fQ 
u y o x 

a hy. 

Yh w 
a ve y 

) (b) (a 

4.14. Match up each of the following digraphs with its arc-list, adjacency matrix and 

incidence matrix: 

1 2 1 2 1 2 

4 3 4 3 Le 

(a) (b) (c) 

Arc-Lists 

L,: 12, 14, 43, 24, 34 

L,: 12, 14, 43, 24, 23 

L,: 12, 14, 43, 41, 23 

Adjacency Matrices 

(me One Ou te Oba Ome aecO ms 

Omni.) ORO. Ome On Ome 

000 0 (ae Oy yy) Oe OR OO 

LO tO O50, 10: OO ae 30 

Incidence Matrices 

1 1 0 0 0 1 1 0 0 0 1 1 QO -!1 0 

—1 0 0 1 1 —| 0 0 1 0 —1 0 0 0 1 

0 0 -i QO -!l 0 | 0 1 0 0 -1 Oo -1 

0 -il 1 —-1l 0 0 -1l 1 -1 -1 0 -1l 1 1 0 
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4.15. Write down the adjacency matrices of the following digraphs: 

5 
1 2 

3 

2 5 2 1 5 4 

(a) (b) (c) 

©4.16. Draw the digraph whose adjacency matrix is 

p 

ee Ga Pei a test) i ee So SoS So Soe So Coon ae 

©4.17. What can you say about the sum of the numbers in 

a. any row of an adjacency matrix? 

b. any column of an adjacency matrix? 

4.18. Write down the incidence matrix of each of the following digraphs: 

Le 
[| 2 

@ 1 ea \; @aee 3) < © | Hoo 
4 3 

3 q 4 4 @ 

(a) o (b) © 2 (c) 

64.19. Draw the digraph whose incidence matrix is 

oo oe = ooo KF eS - © oOo oo = i) eS ey YY ie} a == Oo So © — = Oo OS © 

4.20. What can you say about the number of 1’s and —1’s in 

a. any row of an incidence matrix? 

b. any column of an incidence matrix? 
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Paths and Cycles 

4.21. In the following digraph, (if possible) 

u a v 

a SS e 

a d w 

a. find a walk of length 7 from u to w; 

b. find cycles of length 1, 2, 3, and 4; 

c. find a path of maximum length. 

©4.22. In the following digraph, 

a. find all the paths from s to 2; 

b. find all the paths from z to s; 

c. finda closed trail of length 8 containing s and z. 

Are there any cycles containing both s and z? 

©4.23. Classify each of the following digraphs as disconnected, connected but not 

strongly connected, or strongly connected: 

“iid Wt 
4.24. Prove that 

a. each edge of a tree is a bridge; 

b. ina graph without bridges, each edge is contained in a cycle. 

4.25. Show that the Petersen graph is orientable, by directing its edges in such a way 

that the resulting digraph is strongly connected. 

4.26. Beginning with a triangle, use the method of proof of Theorem 4.1 to direct 

the edges of the complete graph K;, so that the resulting digraph is strongly 

connected. 
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4 

4.27." A tournament is a digraph whose underlying graph is a complete graph. 

a. Draw the tournaments with 2, 3, and 4 vertices, and write down their 

out-degree sequences. 

b. Show that no tournament can contain more than one source (vertex of 

in-degree 0) or more than one sink (vertex of out-degree 0). 
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CHAPTER 5 

APPLICATIONS OF DIGRAPHS 

In Chapter 3 we described several areas in which graphs have been found useful. We 

now carry out a similar procedure for digraphs.-Other important applications of digraphs 

include the calculation of a maximum flow in a capacitated network, and the calculation 

of currents and voltage in an electrical network. These topics are discussed in full in the 

companion volume on Networks. 

5.1 SIGNED DIGRAPHS 

In Chapter 3 we described the use of graphs to represent symmetric relationships (x likes y 

if and only if y likes x). If the relationships are not all symmetric (x likes y, but y dislikes x), 

we use a signed digraph. This is a digraph with either + or— associated with each arc, in- 

dicating a positive relationship (likes, supports, threatens, etc.) or a negative one (dislikes, 

is junior to, is afraid of, etc.). For example, in the signed graph below, John and Jack like 

each other, Mary likes Jill but Jill dislikes Mary, John dislikes Jill but we have no informa- 

tion about Jill’s feelings for John, and so on. Note that a negative arc from x to y (Jill dis- 

likes Mary) is not the same as a positive arc from y to x (Mary likes Jill). 

John a Mary 

Jack Jill 

96 
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Many of the problems of modern society involve extremely complex systems made 

up of a number of variables which are constantly changing and interacting. In many of 

these problems we need to be able to predict the future development of the system when 

the amount of available information is minimal. For such situations, signed digraphs have 

often proved to be the most convenient form of mathematical model available, and their 

use has frequently led to precise and valid conclusions. In particular, they have success- 

fully been applied to problems of waste disposal, energy planning, research funding, 

environmental contamination, allocation of medical resources, and so on. Although our 

discussion here will necessarily be somewhat simplified, the ideas we introduce are 

equally valid for more complex examples. 

Solid Waste Disposal 

The signed digraph below is a-simplified version of one used to describe the relation- 

ships among the variables in the solid waste disposal problem of a city. The arc from w 

to b is marked positive since an increase in waste leads to an increase in bacteria, 

whereas the arc from s to d is marked negative since an improvement in sanitation facil- 

ities leads to a decrease in the number of diseases. There is no arc from d to w since an 

increase in the number of diseases has little (if any) direct effect on the amount of waste. 

b =amount of bacteria per unit area 
c =amount of migration into the city 

d = number of diseases 
m = amount of modernization 

p = size of population 

s = sanitation facilities 

w = amount of waste per unit area. 

Of particular interest in this digraph are the cycles. Note that an increase in population 

(p) results in an increase in waste (w), that, in turn, produces an increase in bacteria (b) 

and disease (d), that then reduces the population (p). A cycle of this kind, in which an 

increase in one of the variables (p) ultimately gives rise to a decrease in the same variable, 

is called a negative feedback cycle. On the other hand, an increase in population (p) 

increases the pressure towards modernization (m), leading to an improvement in sanita- 

tion facilities (s), a decrease in the number of diseases (d) and hence a further increase 

in population (p). A cycle of this kind, in which an increase in one of the variables (p) 

ultimately gives rise to a further increase in the same variable, is called a positive 

feedback cycle. Negative and positive feedback cycles are sometimes referred to as 

deviation-counteracting and deviation-amplifying cycles, respectively. 

It is easy to see whether a given cycle is a positive or negative feedback cycle, since 

every positive feedback cycle has an even number of negative arcs, whereas every 

negative feedback cycle has an odd number of negative arcs. The reason for this is that 

whenever a deviation (increase or decrease) is counteracted in a positive feedback cycle, 
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then the counteraction is itself counteracted by the next negative arc. In a negative 

feedback cycle, the last of these counteractions is never counteracted. 

Electrical Energy Demand 

The signed digraph below gives a simplified representation of the consequences of 

changes in energy use. The arc from p to u is marked positive since an increase in popu- 

lation in a given area is likely to increase the amount of energy used, whereas the arc 

from u to r is marked negative since the more energy we use, the less we tend to pay per 

unit. There is no arc from j to r since an increase in the number of available jobs has little 

(if any) direct effect on the cost of electricity. 

c =energy capacity 

f = number of factories in the area 

j = number of jobs 

p = size of population 

q = quality of environment 

r = electrical rate (cost per kilowatt hour) 

u = amount of energy used. 

By counting the negative arcs in each cycle, and using the criterion stated in the last 

example, we see that the cycle ugpu is a negative feedback cycle, whereas the cycles 

cruc, cfuc, rur, and cfjpuc are all positive feedback cycles. In fact, the existence of all 

these positive feedback cycles containing the vertex c explains why the energy capacity 

system is so unstable, in the sense that initial increases in capacity lead eventually to 

further increases of the same kind. Although this has been observed empirically by 

environmentalists, the signed digraph representation tells us, from a structural point of 

view, exactly why it occurs. Note that although some of the variables (such as ‘quality 

of environment’) may be difficult or impossible to measure, this makes no difference to 

the conclusions we can draw. Even with such a simple model as this, we can make some 

remarkably accurate predictions. 

5.2 FINITE STATE MACHINES 

Digraphs can also be used to represent machines. Our particular concern here is with 

finite state machines (sometimes called finite automata, digital systems, or discrete sys- 

tems), since their operation can be described completely in terms of digraphs. However, 

you should not be misled by the apparent simplicity of the representation, or of the ex- 

amples we choose to illustrate it, since everything we do here applies equally well to a 

simple on-off switch for an electric light or to the enormous complexity of a modern 

digital computer. Moreover, although the machines considered here may not be the most 

general type, they can be made to approximate many of the processes that can be done 

by other finite physical systems. 
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ae 

machine 

In its simplest form, a machine can be regarded as a ‘black box’ with input and out- 

put channels. Whenever we put something into the machine, the machine acts on it in 

some way and produces an output. Kor example, 

a combine harvester is a machine whose inputs are the corn stalks in the field, and 

whose outputs are the resulting bales; 

a coding machine is a machine whose inputs are the words to be encoded, and whose 

outputs are the encoded words; 

the gas pedal of a car may be considered as a machine where the input pressure applied 

by the foot results in an increase of speed. 

Note that we study the effectiveness of machines like this by comparing their inputs and 

outputs, and we do not need to know what goes on inside the black box. Just as we can 

drive a car without understanding how the transmission system works, and we can digest 

food without understanding how our digestive system works, so we can study machines 

simply by looking at what goes in and what comes out. 

This applies well when we consider finite state machines. As their name suggests, 

finite state machines are machines that can assume any one of a finite number of ‘states’ 

at each moment of time. Applying an input to such a machine causes the state to change 

and produce a resulting output. Note that the word state can be understood in its everyday 

usage. For example, we often talk about being in a happy or unhappy state of mind; if 

we now apply an input (such as a piece of good or bad news), this can produce a change 

of state, as the following diagram shows: 

good 
news ay Pi @ & 

/| a 
| Ge 

unhappy state happy state 

bad 
news 

| oy | 
GH} happy state 
unhappy state 
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Thus a finite state machine consists of a collection of inputs, a collection of outputs, 

and a finite collection of states which describe the effect of the various input signals. 

Some examples are as follows: 

An electric light cord Consider an electric light operated by a cord. If we pull the cord 

several times, the light goes on and off repeatedly, and w
e may regard the light switch as 

a machine whose inputs are pulls on the cord, whose states are on and off, and whose 

outputs are a lit and an unlit bulb. 

pull 
the cord 

An extension of this example is a switching network whose input is an on-off setting of 

a number of two-way switches, and whose output is the corresponding pattern of an array of 

lights. 

An adding machine Consider an adding machine that adds numbers up to a hundred 

million (say). We perform additions in the usual way, introducing the numbers one at a 

time and observing the results. For example, to add 63360, 8128, and 33550336, we 

simply 

input 63360, and the output is 63360; 

input 8128, and the output is 71488; 

input 33550336, and the output is 33621824. 

Ateach stage of the calculation, the current state is the result of the calculation up to that 

point. Although there are 10° states, the idea behind this machine is identical to that of 

the on—off switch above. 

These can be extended to much more complex machines (such as a digital computer) in 

which a variety of different calculations can be carried out. Although the resulting machines 

are extremely complicated, they are still systems in which there are a finite number of states 

which change according to different inputs and which produce resulting outputs. 

We can represent a finite state machine by a digraph whose vertices represent the 

various states and whose arcs represent the transitions from one state to another. For 
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example, the two-way switch above can be represented by a digraph with two vertices, 

on and off, and two arcs representing the pulling of the cord: 

pull cord 

pull cord 

If we have two switches A and B and‘the inputs consist of switching either or both of the 

switches, then the resulting digraph is as follows: 

Another example is the two-moment delay machine, represented by the following 

digraph. It has four states, denoted by 00, 01, 10, and 11, and two possible inputs (0 and 

1). If we start in state 00 and apply an input of 0 we stay in the same state; if, on the other 

hand, we apply an input of 1, then we move to state 01. 

If, now, we start in any state (10, say) and apply inputs of 1 and 1, then we end up in state 

11, as you can easily check. Similarly, if we start in any state and apply inputs of 0 and 1, 

then we end up in state 01. In every case the state we end in after two inputs tells us what 

the two inputs were, and we get the same answer whatever state we started in. Thus a 

two-moment delay machine always ‘remembers’ the two previous inputs. 

Another type of machine is the parity machine below which can recognize whether the 

total number of 1’s which have been input up to a given time is even or odd. You can verify 

this by starting at even and trying various sequences of inputs, such as 00, 110, 0101, 011010, 

or 011010011. Any sequence containing an even number of 1’s must end up in state even, 

whereas any sequence containing an odd number of 1’s must end up in state odd. 
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If we now insist that every succession of state transitions must start and end at even, then 

the only allowable sequences are those with an even number of 1’s and we say that, with 

this choice of initial and final states, the machine recognizes only these sequences. Sim- 

ilarly, if we insist that every succession of state transitions must start at even and finish at 

odd, then the only allowable sequences are those with an odd number of 1’s and we now 

say that these are the only recognizable sequences. 

This idea of a machine ‘recognizing’ certain sequences is important when we consider 

the relationships between machines and languages. Although the word language
 can refer 

to a natural language like English or French, it often refers to an artificial one such as a 

computer language. For our purposes, a language is any collection of words made up 

froma given alphabet suchas (a,b,c,...) or (0,1,...). For example, we can take our alphabet 

to be the two letters a and b, and we can consider a language with just five words 

b, aba, aabaa, aabbaa, aababaabba, 

or we can take our alphabet to consist of the numbers 0 and 1, and we can consider a lan- 

guage whose words are sequences with an odd number of 1’s. 

For a language like this to be useful, we need to be able to construct machines which 

recognize all of their words but no other combination of symbols. We do this by calling 

one state the starting state S and another state the finishing state F, and calling a word 

recognizable if we can start at S, input the letters of the word one at a time, and end at 

F. The recognizable words are simply the sequence of inputs which give the output Fi 

Example 1 

Alphabet: 0,1. 

Here the only words that are recognizable are those with an odd number of 1’s, since it is 

only for these words that we can start at S and finish at F’. 

Example 2 

Alphabet: 0,1 
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Here the only way of getting from S to F is by means of the inputs 1 and 1. It follows that 

this machine recognizes the word 11 and no other word. 

Example 3 

Alphabet: a,b,c. 

Here we can get from S to F by means of the sequences ab, abab, ababab, ..., and by no 

other sequences. It follows that this machine recognizes these words and no others. 

We conclude with a couple of remarks. First, as we stated at the beginning of this 

section, you should not be misled by the apparent simplicity of the examples included 

here. Although our examples involved only a few states, the underlying ideas remain 

essentially the same for machines with many millions of states, such as a computer or the 

human brain. Second, the main use of digraphs above is to provide a convenient 

diagrammatic way of showing what is happening. However, at a more advanced level, 

we can use results about digraphs in general to deduce results about finite state machines, 

and it is here that the main advantages of using digraphs are recognized. 

5.3 SIGNAL-FLOW GRAPHS 

The circuit shown in the following diagram uses an amplifier with a voltage gain of A,. 

O 

ie Ui, = input voltage 
“8 Usut = Output voltage 

+ v = voltage at input of 
= operational amplifier 

v¢ = feedback voltage 

R, and R, are resistances 
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The voltages are related by the following equations: 

V=Vin t Vp Ve= kVour Vout = Av: 

Here k= R,/(R, + R) is the fraction of the output voltage fed back to the input. By elim- 

inating v and v,from these equations, we can express the output voltage v,,, in terms of 

the input voltage v;,: 

Wien ay Vv: 
out 1—RkAy in* 

We now give an alternative method for obtaining such an expression. This method 

has been of widespread use in control engineering, and involves a digraph called a 

signal-flow graph. Although signal-flow digraph might be a better name, the one given 

here is the standard terminology; it is sometimes abbreviated to flowgraph. The term 

signal-flow derives from the observation that such a diagram resembles a signal trans- 

mission network, with ‘signals’ (1, A,, etc.) traveling along the arcs. 

In our example the signa!-flow graph has four vertices, corresponding to the variables 

Vins Vout, Vf and v, and may be drawn as 

A, 

: vy: Rises cae v 
in y Ve out 

Note the connection between the labels on the arcs and the above equations. The vertex 

v has two incoming arcs, one from vin with label 1, and one from vy with label 1; this 

expresses the equation 

v= lv, + ly. 

Similarly, the vertex v, has one incoming arc from v,,, with label k; this expresses the 

equation 

Vp = RVout- 

In general, an equation of the form 

X=Q,X, ster Ne tomene FAX, 

is represented by a vertex x with k incoming arcs, one from x, with label a,, one from x, 

with label a,,..., and one from x, with label a,. 

In this example, as with many others that arise in practice, we have a number of 

variables which are related by a set of linear equations. By solving these equations 

directly, we can find the relationship between any given pair of variables. However, it is 
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sometimes easier to solve the equations by constructing a signal-flow graph and reducing 

it (using procedures which we describe below) to a digraph consisting of two vertices 

joined by an arc. The required relationship can then be read directly from the digraph. 

For example, the reduced digraph arising from the above example is 

1-kA, 
Vin o—_____>—_——"—® Vout 

and this gives rise to the relationship’stated above. 

The reduction procedures we apply to the digraph correspond to operations on the 

original equations. Some of the most useful of these operations are 

1. eliminating multiple arcs: we can replace 
2 

7 

a 
a+b <7 Se by o “s+, 

x x xy X> 1 b 2 

since if x, = ax, +.bx,, then x, =(a + b) x,; 

2. eliminating vertices in a path: we can replace 

a b ab 
o—_>—__e—_>——e by e—>—., 
x1 x; x4 xy X5 

since if x, = ax, and x, = bx;, then x, = (ab)x,; 

3. eliminating the stem of a ‘Y’: we can replace 

x3 

since if x, = ax), X,= bx,, and x; = cx,4, then x, = (ab)x, and x; = (ac)x,; 

4. eliminating a loop: we can replace 

a t Yo a/(1-b) 
by e—>—e, 

since if x, = ax, + bx, then x, = ax,/(1 — 5); 
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5. eliminating cycles of length 2: we can replace 

a : ab/(1-bc) 
e—__>———_ > y @q—__ >__®,> 

x} x3 b x2 x} X 

since if x3 = ax, + Cx, and x, = bx,, then x) = abx,/(1 — bc). 

To see how these procedures can be applied in practice, let us consider two examples. 

The first of these is the amplifier circuit discussed earlier. 

We start with the signal-flow graph 

A, 

Pee cilep ios 
Vin y Vp Vout 

out 

SO Vour = AyVin /(1 — k Ay), as required. 

For our second example we consider the mechanical system shown in the diagram 

fs oS spring 

support 
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The rod can move horizontally under the influence of an external force F. When the 

rod moves, it bends the springy metal support which exerts a force/,,, and also compresses 

the spring which exerts a force f;. The spring is attached to the wall which exerts a reaction 

R. The forces are related by 

Se=R, F=fyt fa X= ayfss fn = Xm Xm = Xs» 

where x, is the decrease in the length of the. spring, x,, is the distance moved by the rod, 

and a and b are constants. We wish to find the relationship between the force F and the 

reaction R. To do this we first draw the signal-flow graph 

R =reaction from wall 

F =external applied force 

f, = force exerted by spring 

fm = force exerted by metal support 
xX, = decrease in length of spring 

X = distance moved by rod 

[We wrote the third equation in the form x, = (1/a)f,, rather than f, = ax,, so that we could 

apply this reduction. With practice you should be able to write the equations in such a 

way that they can easily be reduced. ] 

Applying reduction 1, we eliminate the multiple arcs 

R 1 tf; l1tb/a F 
o—_»>___e—__>_—__ 
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Applying reduction 2, we eliminate the vertex f;: 

R l+b/a F 
o> —_6 

The relationship is, therefore, F = (1 + b/a)R. 

PROBLEMS 

Signed Digraphs 

5.1. The following signed digraph is adapted from one used in a study of public 

and private transport in a major city. The question was to decide whether a 

large increase in funding public transport would make city traveling easier. 

a = cost of an automobile 

b = amount of automobile use 

c = convenience of automobile use 

d = freedom of choice in travel time 

e = speed 

By counting the number of negative arcs, determine whether each of the fol- 

lowing cycles is a positive feedback cycle or a negative feedback cycle: 

a. abca, b. beacb, Cc. adea. 

5.2. The following signed digraph is adapted from one used to study world food 
production: 

¢ = d c = cost of food 
Nees d = demand for food 

e = energy input into food 
= + production 

P = population 

y = food yield 
J + p 

List as many positive and negative feedback cycles as you can. 
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65.3. The following signed digraph was prepared for a study by the Organization for 

Economic Co-operation and Development into the support that governments 

should provide for the funding of research projects in science and technology. 

a = number of available research jobs 

b = number of poorly-trained researchers 

c = number of well-trained researchers 

d= amount of ‘bad science’ produced 

e =.amount of ‘good science’ produced 

f = public opinion in favour of science 

g = amount of available budget 
h = pressure to increase budget 

i = external or internal threats to society 
which call for science to alleviate them 

List as many positive and negative feedback cycles as you can. 

5.4. The following signed digraph shows the effects of contaminating a lake by two 

nutrients, nitrate (N) and phosphate (P). The lake contains two forms of 

algae—green algae (g) which uses both nitrate and phosphate, and blue-green 

algae (b) which uses phosphate but releases more nitrate. In addition, green 

algae is sensitive to a toxin which is released by blue-green algae. 

ee 

Sel 

List as many positive and negative feedback cycles as you can. 

Finite State Machines 

5.5. Give three more examples of finite state machines. In each case describe the in- 

puts, the states, and the outputs. 

5.6. The following diagram illustrates a three-moment delay machine that 

‘remembers’ the three previous inputs. Verify that it works by starting at any 

state and applying 

a. inputs of 1, 0, and 1 (the result should always be state 101); 

b. inputs of 0, 1, and 0 (the result should always be state 010). 
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85.7. a. Construct the digraph of a one-moment delay machine with two states which 

‘remembers’ the previous input. 

b. Complete the following table: 

in-degree of 

each vertex 
number of | out-degree of 

states each vertex 

one-moment 
delay machine 

two-moment 

delay machine 

three-moment 
delay machine 

and guess the corresponding results for an n-moment machine. 

5.8.’ Drawa parity machine which can recognize whether the total number of 0’s 

which have been input up to a given time is even or odd. Test whether your 

machine is correct by applying it to the sequences 00, 110, 0101, 011010, 

011010011. 

5.9.’ What words are recognized by each of the following machines? 

alphabet: 0. 1 

alphabet: 0. 1 

alphabet: 0. 1 

alphabet: a,b 
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Signal-Flow Graphs 

5.10. A complex control system gives rise to the following signal-flow graph: 

e 

—— eee 
xy x) x3 * x4 x 5 

Reduce this signal-flow graph to one consisting of a single arc from x, to xs. 

5.11. a. By writing down the equations relating x,, x), x3, and x,, show that in any 

signal-flow graph we can replace 

Xy Ny 

by : «/b 

cp EEN bP, xX, ab Xx, 

b. The following signal-flow graph arose in the analysis of a control system in 

a complex chemical plant. Use the above reduction, together with those in 

this chapter, to eliminate the cycles. Hence find x, in terms. of x,. 

5.12. a. By writing down the equations relating x,, x2, x;, and x,, show that in any 

signal-flow graph we can replace 

X4 X4 

ec c/b 

b 
xX; @ XxX, b xy z ab Xx, al 

b. The following signal-flow graph also arose in the analysis of a control system 

in a complex chemical plant. Use the above reduction, together with those in 

this chapter, to eliminate the cycles. Hence find x; in terms of x,. 

ie: 

“2 Veet e ots 

ye 

x 



APPENDIX 

PROOFS 

To establish the truth of a mathematical statement, we need to provide a convincing 

argument, or proof. Our aim here is to explain what such a proof entails, and to describe 

some methods of proof. 

Necessary and Sufficient Conditions 

We start by explaining the connection between necessary and sufficient conditions and 

if and only if statements. 

Consider the following statement: 

if G is a tree, then G is a bipartite graph. (Problem 2.36) 

This is a true statement, and we say that being a tree is a sufficient condition for being a 

bipartite graph. However, it is not a necessary condition, since there are many bipartite 

graphs (such as K;) which are not trees. On the other hand, having cycles only of even 

length is a necessary and sufficient condition for a graph to be bipartite, and we can write 

G is a bipartite graph if and only if every cycle of G has even length. 

(The only if part of this is Problem 2.23.) 

Thus, in order to prove a result of the form 

a is true IF AND ONLY IF 5 is true 

we must prove two separate statements: 

1. a is true IF b is truae—that is, we must Here, b is true is SUFFICIENT 

prove that IF b is true, THEN a is true. to ensure that a is true. 

28 ais true ONLY IF b is true—that is, we 

must prove that IF a is true, THEN b is Here, b is true is NECESSARY 
jet for us to have a is true. 

The statement 

if a is true, then 5 is true 

is called the converse of the statement 

if b is true, then a is true. 

112 
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For example: 

if G is a bipartite graph, then every cycle of G has even length 

is a true statement whose converse is also true, whereas 

if G is a tree, then G is a bipartite graph 

is a true statement whose converse is false. 

METHODS OF PROOF 
2 

To prove a result false, it is enough to produce a single counter-example—for example, 

K;, iS acounter-example to the false statement 

if G is a bipartite graph, then G is a tree. 

However, to prove a result true, we must produce a general argument which covers all 

possibilities. The three types of proof which appear most in this book are direct proofs, 

indirect proofs (proofs by contradiction), and proofs by mathematical induction. We 

look at each of these in turn. 

Direct Proofs 

In adirect proof (the most common type of proof), we start with the information we are given 

and proceed by a succession of logical steps to the resultrequired. An example of such a proof 

is the proof we gave for consequence 3 of the handshaking lemma (Solution 1.14). 

CONSEQUENCE 3. /fG is a graph which has n vertices and is regular of degree r, 

then G has exactly <nr edges. 

Proof Since G has n vertices each of degree r, the sum of all the vertex-degrees is 

nr. By the handshaking lemma, the number of edges is half this sum—that is, snr. O 

(We use the symbol (1) to denote the end of a proof.) 

Indirect Proofs 

These proofs are often called proofs by contradiction, or proofs by the method of 

‘reductio ad absurdum’ . In order to prove a statement of the form 

if a is true, then b is true, 
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we prove that 

if a is true and b is false, then a must also be false, 

thereby obtaining a contradiction. An example of such a proof is the proof we gave for 

consequence 2 of the handshaking lemma (Solution 1.14): 

CONSEQUENCE 2. In any graph, the number of vertices of odd degree is even. 

Proof For any graph, the handshaking ‘lemma holds, so that the sum of all the 

vertex-degrees is even (consequence 1). If the number of vertices of odd degree were 

odd, then the sum of all the vertex-degrees would be an odd number, giving the required 

contradiction. So the number of vertices of odd degree must be even. 0 

Proofs By Mathematical Induction 

Suppose that we wish to prove a result concerning graphs with a given number of 

vertices—for example, 

the complete graph Ky has exactly san — 1) edges or, 

every tree with 7 vertices has exactly n— 1 edges. 

One approach to proving results of this kind is to show that 

a. the result holds for graphs with one vertex; 

b. for each integer n, if the result holds for graphs with less than 7 vertices, then 

it must also hold for graphs with exactly n vertices. 

We can thus deduce successively that, by b., 

since it holds for graphs with less than two vertices, it must hold for graphs with two 

vertices; 

since it holds for graphs with less than three vertices, it must hold for graphs with three 

vertices; 

since it holds for graphs with less than four vertices, it must hold for graphs with four 

vertices; 

and so on. 

We can thus deduce that the result must hold for graphs with any given number of vertices. 

This method is sometimes called the method of strong induction. We illustrate it by 
proving the two results above. 

THEOREM 1. The complete graph Ky has exactly sn(n — 1) edges. 

Proof The result holds when n = 1, since K; has 0 edges and x Lx O=0- 

Now assume that the result holds for complete graphs with less than n vertices—that is, 

that K, has 5 k(k — 1) edges whenever k < n. We must deduce that K,, has san — 1) edges. 
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To do this, we remove any vertex v of K,,, together with its n — | incident edges. The re- 

maining graph is the complete graph K,,_, which, by our assumption, has ; (n—1)(n—-2) 

edges. Reinstating v gives, for K,,, a total of 

iH 1) (@-2)+(n-1)= {ait 2) + lia- 1) = jn(n— 1) 

edges. Thus b. holds, and the result is therefore true for all n.O 

THEOREM 2. Every tree withn sce has exactly n — | edges. 

Proof The result holds when n = 1, since the only tree with one vertex is K;, which 

has no edges. Now assume that the result holds for trees with less than n vertices—that 
is, that every tree with k vertices has k — 1 edges whenever k < n. We must deduce that 

every tree T with n vertices has n — 1 edges. 

To do this, remove any edge e of T. Since T has no cycles, this gives two trees, with 

k, and k» vertices, say, where k; + k, =n. By our assumption, these trees have k; — 1 and 

k, — i edges, respectively. Reinstating e gives, for T, a total of 

(k,-1)+(&-1)+1=k,+kh-l=n-l 

edges. Thus b. holds, and the result is therefore true for all n.O 

A similar approach can be used when we wish to prove a result concerning graphs 

with a given number of edges. For example, we can adapt the proof of Theorem 2 to show 

that every tree with m edges has m + 1 vertices; in such proofs, we usually replace a. by: 

the result holds for graphs with no edges. Another example of an induction proof 

involving edges, rather than vertices, is as follows. 

THEOREM 3. /fG is a graph in which every vertex has even degree, then G can be 

split into disjoint cycles—that is, no two cycles have any edges in common. 

Proof The result clearly holds when the number of edges is zero. Now assume that 

the result holds for graphs with less than m edges—that is, that any graph with k edges 

in which every vertex has even degree can be split into disjoint cycles whenever k < m. 

We must deduce the corresponding result for graphs with m edges. 

So let G be a graph with m edges in which every vertex has even degree, and let 

Vo, ..-,¥ be the vertices of a path P of greatest length G. Since v, has even degree, 

it is joined to some vertex v other than v,1. Since P is a path of greatest length, v 

must be one of the vertices vo, ...,Vi2 — Say v = vj. Then v;,Vii, ..., Vivi are the 

vertices of a cycle C in G. Removing the edges of C from G yields a graph G, with 

fewer than m edges, in which every vertex still has even degree. By our assumption, 

the edges of G; can be split into disjoint cycles; together with C, these give the 

corresponding cycles for G, as required. 0 

In Part II, we shall see both types of induction proofs: those involving induction on 

the number of vertices, and those involving induction on the number of edges. 
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INTRODUCTION 

In this part of the book we consider a number of problems, such as the following: 

The Konigsberg Bridges Problem In the eighteenth century, the medieval city of 

K6nigsberg in Eastern Prussia contained a central island called Kneiphof, around which 

the river Pregel flowed before dividing into two. The four parts of the city were 

interconnected by seven bridges, as shown in the following diagram. It is said that the 

citizens of Kénigsberg entertained themselves by trying to find a route crossing each 

bridge exactly once, and returning to the starting point. Can this be done? 

117 
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KONINGS BERGA 

The Shortest Path Problem A traveler wishes to drive from Los Angeles to New 

York in the shortest possible time. The following map gives the time (in hours) taken to 

drive between particular pairs of cities. Given this information, which route should the 

traveler take? 

Buffalo 

Salt Lake 
City Cheyenne 

10 

Jacksonville 

San Houston Orleans 
Antonio 

The Traveling Salesman Problem A salesman wishes to visit a number of cities and 

return to the starting point, in such a way that each city is visited exactly once, and the 



INTRODUCTION 119 

4 

total distance covered is as short as possible. Given the various distances between the 
cities, what route should be chosen? 

The Printed Circuits Problem 

uulltea7- te Mulan 
aoe 

In printed circuits, electronic components are constructed by means of conducting strips 

printed directly onto a flat board of insulating material. Such printed connectors may not 

cross, since this would lead to undesirable electrical contact at crossing points. Circuits in 

which large numbers of crossings are unavoidable may be printed on several boards which 

are then sandwiched together with suitable interconnections. Each board consists of a printed 

circuit without crossings. What is the smallest number of such layers for a given circuit? 

The Map-Coloring Problem Consider the following map of the United States of 

America (excluding Alaska and Hawaii): 

Maine 

New Hampshire 

Massachusetts 

Rhode Island 

Connecticut 

New Jersey 

Washington 

Rea 
Oregon 

Wisconsin 
Minnesota 

North 

Dakota 

South 
Dakota 

Nevada 
ies 

s 2 a 
\ 

Colorado 
Kansas 

North 

Tennessee anole 
Oklahoma 

Seek 
Louisiana 

New York 
Michigan 

Pennsylvania 

Delaware 

Maryland 

; South Carolina 
California 

Georgia 

Piidorasinp Florida 

It is very common for maps of this kind to be colored in such a way that neighboring 
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states are colored differently. This enables us to distinguish easily between the various 

states, and to locate the state boundaries. What is the minimum number of colors needed 

to color the entire map? 

Problems of this kind are partly graph-theoretical in nature, since they all involve 

systems which are interconnected in some way. In fact, as we show in this part of the 

book, the first three can be modeled as problems involving paths or cycles in a graph, 

and the last two involve the decomposition of the set of vertices or edges of a graph into 

disjoint subsets of a particular type. 

For some problems, such as the shortest path problem, our answer will take the form 

of an algorithm—that is, a finite step-by-step procedure for obtaining the solution ina 

routine way. For others, such as the K6nigsberg bridges problem, our answer is in the 

form of a theorem which gives necessary and sufficient conditions for a solution to exist. 

However, even for these problems, there are sometimes algorithms for finding explicit 

solutions when they exist. 

We start Part II with two chapters on Eulerian and Hamiltonian graphs and digraphs. They 

are somewhat recreational in nature, although the material they contain has been used in 

several practical problems. The basic idea is to find a closed trail that passes through every 

edge or vertex of a given graph exactly once. In particular, we consider such problems as the 

KGonigsberg bridges problem, the knight’s tour problem on a chessboard, and the tracing of 

mazes, as well as problems in telecommunications and coding theory. 

In Chapter 8, on path algorithms, we describe an algorithm for solving the shortest 

path problem. We also describe an algorithm for finding the longest path in a given 

digraph, and briefly relate this algorithm to the problem of scheduling a number of 

interdependent activities, such as those involved in a complex building project. In Chapter 

9 a discussion of connectivity is presented, in which we investigate the extent to which 

a given graph or digraph is connected. Such considerations are important when designing 

telecommunication networks or road systems. 

In Chapter 10 we discuss trees and their applications in various areas. In particular, 

we introduce methods for searching trees, and we illustrate the use of a tree algorithm in 

finding a lower bound for the solution of the traveling salesman problem. 

In Chapter 11 we study planar graphs and develop techniques for attacking such 

problems as the printed circuits problem. Chapters 12 and 13 give a detailed discussion 

of the coloring of graphs and maps, with particular reference to the map-coloring problem 

described above. In Chapter 14 we interrelate these topics by formulating them as 

decomposition problems which involve splitting the vertices or edges of a graph into 

subsets with certain specified properties. Finally, in Chapter 15, we point out and discuss 

some common themes running through the book. 

The problems we discuss in Part II vary considerably in terms of how much work has been 

done on them, and how much is known about their solution. Some have elegant theoretical 

solutions but lack efficient algorithms. Others have good algorithms which work in practice, 

but lack complete theoretical solutions. For some problems, such as that of determining 

whether a given graph is planar, there exists a complete theoretical solution together with a 

number of efficient algorithms. Finally, there is the map-coloring problem which has a 

theoretical solution which is so complicated that it originally took 1200 hours of computer 

time to find it! 



CHAPTER 6 

EULERIAN GRAPHS 
AND DIGRAPHS 

6.1 INTRODUCTION 

This chapter and the next are somewhat recreational in nature, although the material 

they contain has been used in several practical problems. In particular, we consider two 

types of problem. 

The Explorer's Problem An explorer wishes to explore all the routes between a 

number of cities. Can a tour be found which traverses each route only once? 

The Traveler's Problem A traveler wishes to visit a number of cities. Can a tour be 

found which visits each city only once? 

cities 

To appreciate the difference between these two problems, consider the above road 

map. The explorer wishes to find a tour which starts at A, goes along each road exactly 
once, and ends back at A. Examples of such a tour are 
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ABCDEFBGCEGFA and AFGCDEGBCEFBA. 

The traveler wishes to find a tour which starts at A, goes to each city exactly once, and 

ends back at A. Examples of such a tour are 

ABCDEGFA and AFEDCGBA. 

Note that the explorer travels along each road just once but may visit a particular city 

several times, whereas the traveler visits each city just once but may omit several of the 

roads on the way. 

Let us now regard this road map as a graph whose vertices correspond to the cities 

and whose edges correspond to the roads. The explorer’s problem is then the problem of 

finding a closed trail which includes every edge of the graph, whereas the traveler’s 

problem is that of finding a cycle which includes every vertex of the graph. 

With this in mind, we make the following definitions—the reason for these names will 

appear later. You can easily remember which of these definitions is which, since Eulerian 

graphs involve Edges. 

DEFINITIONS. A connected graph G is Eulerian if there is a closed trail which 

includes every edge of G; such a trail is called an Eulerian trail. 

A connected graph G is Hamiltonian if there is a cycle which includes every vertex 

of G; such a cycle is called a Hamiltonian cycle. 

For example, consider the four graphs 

B C B GE B G B G 

<x x >< PX 
é E F Pate E F E 

(a) (b) (c) (d) 

Graph (a) is both Eulerian and Hamiltonian, as we saw above; 

Graph (b) is Eulerian, but not Hamiltonian; an Eulerian trail is BCGFEGB; 

Graph (c) is Hamiltonian, but not Eulerian; a Hamiltonian cycle is BCGEFB; 

Graph (d) is neither Eulerian nor Hamiltonian. 

We now consider these two types of graph in turn. In this chapter, we give a necessary 
and sufficient condition for a connected graph to be Eulerian, and we show the connec- 
tions between Eulerian graphs and snow-clearing the roads in a city, escaping from a 
maze, and a problem in telecommunications. In the next chapter, we give sufficient 
conditions for a connected graph to be Hamiltonian, and show the connections between 
Hamiltonian graphs and a chess problem, the theory of codes, and product testing. 
Because of the importance of Eulerian and Hamiltonian graphs in the development of 
graph theory, much of the material in these chapters is presented from a historical point 
of view. 
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6.2 EULERIAN GRAPHS 

The four parts (A, B, C, and D) of the city of Kénigsberg were interconnected by seven 
bridges (a, b, c, d, e, f, and g) as shown in the following diagram: 

se 

Konigsberg 

Try as they might, the citizens of KO6nigsberg could find no route crossing each bridge 

exactly once and returning to the starting point, and they began to believe the task 

impossible. However, it was not until Leonhard Euler (1707-1783) investigated the 

problem that it was proved to be impossible. (Euler was one of the most prolific 

mathematicians of all time, and made substantial contributions to a number of different 

areas.) 

Euler’s proof appeared in his 1736 paper Solutio problematis ad geometriam situs 

pertinentis, which was mentioned in Chapter 2. Although this paper was not written in 

the language of graphs, the ideas in it are essentially graph-theoretical in nature, and it 

can fairly be described as the earliest paper on the subject. The portion of this paper which 

relates directly to the solution of the Konigsberg bridges problem is given in an Appendix 

to this chapter. 

We can express the Konigsberg bridges problem in terms of a graph by taking the four 

land areas as vertices and the seven bridges as edges joining the corresponding pairs of 

vertices. This gives the graph shown below. The problem of finding a route crossing each 

bridge exactly once corresponds exactly to that of finding an Eulerian trail in this graph. 

As we Shall see, no such Eulerian trail exists. It follows that there is no route of the desired 

kind crossing the seven bridges of K6nigsberg. 

Euler also considered the corresponding problem of finding a route crossing all the 

bridges in a more general arrangement of bridges and land areas. This led him to present 

a rule which tells us when such a route is possible, and hence when the corresponding 

graph is Eulerian. 
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Consider the following diagram, adapted from Euler’s paper: 

By drawing the corresponding graph and finding an Eulerian trail in it, we can obtain 

aroute which crosses each of the sixteen bridges exactly once and returns to the starting 

point. For example, we can start at F and cross the bridges in the order 

abcdefghijklmnop. 
It is clear that finding a route which crosses each bridge just once (that is, finding an 

Eulerian trail in the graph) is possible if and only if the following condition is satisfied: 

whenever you cross into a part of the city, you must be able to leave it by 

another bridge. 

This means that whenever you go into any vertex, you must be able to leave it by another 

edge. It follows that each time you pass through a vertex you contribute exactly 2 to the 

degree of that vertex. (This is also true of the first and last edges, which contribute 2 to 

the degree of the starting vertex.) So, in an Eulerian graph, each vertex-degree must be a 

sum of 2’s—that is, an even number. 

degree 6 

The rule that Euler presented (in different terminology) is: 
to test whether a given connected graph is Eulerian, look at the degrees of 
the vertices: if they are all even, then the graph is Eulerian; if not, then the 
graph is not Eulerian. 

In short, check whether or not all the vertex-degrees are even. Thus, the condition all the 
vertex-degrees of G are even is necessary and sufficient to ensure that G is Eulerian. We 
now justify this rule. 

THEOREM 6.1. Let G be a connected graph. Then G is Eulerian if and only if every 
vertex of G has even degree. 
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Proof There are two parts to the proof: 

i. 

Zo 

If G is Eulerian, then every vertex of G has even degree; 

If every vertex of G has even degree, then G is Eulerian. 

Part | shows that the condition is necessary; part 2 shows that it is sufficient. 

h. If G has an Eulerian trail, then we can travel along that trail, using each edge 

once, and return to our starting point. Whenever we pass through a vertex of 

G, there is a contribution of 2 towards the degree of that vertex—including 

the initial vertex, since we end there. Since each edge of G is used just once, 

the degree of each vertex is the sum of a number of 2’s—that is, an even 

number. 

Suppose that every vertex of G has even degree. We must show that we can 

find an Eulerian trail in G. First, we note that G contains a cycle C, by the 

proof of Theorem 3 in the Appendix on Proofs. 

We now use mathematical induction on m, the number of edges in G. For m 

= 0, the only connected graph in which every vertex has even degree is the 

complete graph K,, which is clearly Eulerian. So assume that the statement 

in part 2 is true for any connected graph with fewer than m edges, and consider 

a graph G with m edges. Delete the edges of the cycle C from G. The resulting 

graph H then has fewer than m edges and every vertex in H has even degree. 

Although H may not be connected, each component of H is connected and 

has only vertices of even degree. Therefore, by the induction hypothesis, each 

component of H is Eulerian. 

We can now find an Eulerian trail for G as follows. We start at any vertex v 

on the cycle C and traverse the edges of C until we come to one of the 

components of H. We then take the Eulerian trail for this component, 

eventually returning to the cycle C. We continue along C in this fashion, 

taking Eulerian trails of the components of H as we come to them, and 

eventually return to the starting vertex v having traversed each edge of G 

exactly once—that is, we have obtained an Eulerian trail. 0 

The disadvantage of the above proof is that it is not constructive, in the sense that it 

does not show us how to construct an Eulerian trail in a given graph. One way of 
constructing an Eulerian trail is to use the following algorithm, or step-by-step procedure, 
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which we state without proof. Recall (from Chapter 4) that a bridge in a connected graph 

is an edge whose removal disconnects the graph. 

FLEURY’S ALGORITHM. /fG is an Eulerian graph, then the following steps can 

always be carried out, and produce an Eulerian trail in G: 

STEP 1 Choose a Starting vertex u. 

STEP 2 Ateach stage, traverse any available edge, choosing a bridge only if there 

is no alternative. 

STEP 3 After traversing each edge, erase it (erasing any vertices of degree 0 which 

result), and then choose another available edge. 

STEP 4 STOP when there are no more edges. 

This algorithm is very easy to apply. At each stage, we choose a bridge only as a last 

resort—this qualification is clearly essential, since once we have traversed a bridge, we 

cannot return to the part of the graph we have just left. 

We illustrate the use of Fleury’s algorithm by applying it to the following graph (a): 

d b u if d b u fi u ie 

(a) (b) (c) 

Starting at u, we may choose the edge ua, followed by ab. Erasing these edges (and 
the vertex a) gives us graph (b) above. We cannot use the edge bu since it is a bridge, so 
we choose the edge bc, followed by cd and db. Erasing these edges (and the vertices c 
and d) gives us graph (c) above. Now there is no alternative—we have to traverse the 
bridge bu. Traversing the cycle uefu completes the Eulerian trail. The trail is therefore 
uabcdbuefu. 

6.3 EULERIAN-TYPE PROBLEMS 

There are several simple modifications of the above ideas which are worth mentioning. 
These range from puzzles of a recreational nature to a study of snow-clearing routes in a 
major city. 

Edge-traceable graphs 

Suppose that the citizens of Konigsberg were still interested in crossing each of the 
seven bridges exactly once, but were content to start and finish their walk at different 
places. Would the walk be possible under these less restrictive conditions? 
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K onigsberg 

A little experimentation with the diagram above will convince you that, even with this 

modification to the conditions, such a walk is not possible. This leads us to define an 

open trail to be a trail whose ends do not coincide. 

DEFINITION. A connected graph G is edge-traceable if there is an open trail which 

includes every edge of G. 

Using Theorem 6.1, we can easily give a necessary and sufficient condition for a graph 

to be edge-traceable. 

THEOREM 6.2. Let G be a connected graph. Then G is edge-traceable if and only if 

G has exactly two vertices of odd degree. 

Proof Let G bean edge-traceable graph, and let v and w be the starting and finishing 

vertices of the open trail. If we add an edge e joining the vertices v and w, we get an 

Eulerian graph in which, by Theorem 6.1, every vertex must have even degree. If we now 

recover G by removing the edge e, we see that v and w are the only vertices of odd degree. 

Now suppose that G has exactly two vertices v and w of odd degree. If we add an edge e 

joining the vertices v and w, we get a connected graph in which every vertex has even 

degree. By Theorem 6.1, this graph must be Eulerian, and so must possess an Eulerian 

trail. Removal of the edge e from this trail produces an open trail which includes every 

edge of G, so G is edge-traceable. 0 
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It follows from the above proof that the two vertices of odd degree must be the starting 

and finishing vertices of any open trail which includes every edge of G. 

Diagram-Tracing Puzzles 

A common type of problem in books of recreational puzzles is that of drawing a given 

diagram in as few continuous penstrokes as possible, without covering any part of the di- 

agram twice. For example, it is easy to draw the following diagram with four continuous 

strokes, but can it be done with three? 

In 1809, L. Poinsot showed that diagrams consisting of n interconnected points can 

be drawn in one continuous stroke if n is odd, but not if n is even: 

n=3 n=4 n=5 n=6 

yes no yes no 

In the terminology of graph theory, this amounts to saying that the complete graph K,, 
is Eulerian only for odd values of n, as follows from Theorem 6.1. What is remarkable 
about Poinsot’s account of the subject is that he gave an ingenious construction for finding 
an Eulerian trail when n is odd—no mean feat, as you would see if you tried to describe 
a method for constructing an Eulerian trail in (say) Koo. 

In 1847, J. B. Listing wrote an important treatise entitled Vorstudien zur Topologie 
(Introductory Studies in Topology), which included a discussion of diagram-tracing 
puzzles. In particular, he observed that the diagram in the puzzle posed above has eight 
vertices of odd degree, and so cannot possibly be drawn with fewer than four continuous 
strokes. He also remarked that the following diagram can be drawn in one continuous 
stroke, starting at one end and ending at the other, since these are the only points which 
correspond to vertices of odd degree: 

IISA 
REN RASY 
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Dominoes 

We have already seen that the complete graph K; is Eulerian, since each of its vertices 
has degree 6. If the vertices are labeled 0, 1, 2, 3, 4, 5, and 6, then an Eulerian trail is ob- 

tained by tracing the edges in the following order: 

01,12,23,34,45 ,56,60,02,24,46,61,13,35,50,03,36,62,25,51,14,40. 

We can regard each of these edges as a domino—for example, the edge 24 corresponds 

to the domino 

It follows that the above Eulerian trail corresponds to an arrangement of all the 

dominoes of a normal set (other than the doubles 0-0, 1-1, ..., 6-6) in a continuous 

sequence. Once this basic sequence is found, we can then insert the doubles at appropriate 

places, thereby showing that a complete game of dominoes is possible. The following 

ring of dominoes corresponds to the above Eulerian trail: 

Mazes and Labyrinths 

At the end of the nineteenth century much attention was devoted to the problem of 

escaping from a maze. We can explain what is involved, and show how it relates to 

Eulerian graphs, by choosing a particular maze, such as the one at Hampton Court. 
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Sls | 

E 

If we have access to a map of the maze, we can represent it by a graph which indicates 
the available choices at each junction. For example, in the Hampton Court maze, we have 
two choices at the point B—to go to C or to D—and we obtain 

Gg Ie I K LE 

A B D Is, G H J M 

We can get from the center of the maze (A) to the exit (M) by following the path 
ABDEGHJM, and ignoring all other passages. 

Let us now look for a path which starts at the center and ends at the exit of an arbitrary 
maze. In fact, we shall be less specific and ask simply for a walk which contains every 
edge of the corresponding graph, since such a walk must pass through the center and exit 
at some stage. Provided that the graph is connected, we can always find such a walk. To 
see this, simply replace each edge by a pair of multiple edges; the result is a new graph 
in which every vertex has even degree, and so this graph has an Eulerian trail. It follows 
that in the original graph there is always a walk which contains each edge exactly twice, 
which is sufficient for our purposes. 

Unfortunately, this is an existence argument, and provides no method for actually 
escaping from a maze. If we have a map of the maze, then we can obtain the above-men- 
tioned Eulerian trail by using Fleury’s algorithm, and the problem is solved. But this 
provides no solace for someone caught in the middle of a maze with no map provided. 
Is there a method for escaping in this case? 

The best maze-tracing algorithm was published by Gaston Tarry in 1895. His method 
is based on the following rule: never return along any passage which led to a junction 
for the first time, unless there is no alternative. 

By tracing through the maze, following this rule at each junction, we can escape from 
any connected maze passing at most twice (once in each direction) along each passage. 
The only difficulty is in recognizing which of the passages leading to a junction was the 
one which led there for the first time. Fortunately, Tarry also gave some rules for doing 
this: 

a. When traversing a passage for the first time, leave two markers at the 
entrance, and one or three markers at the exit, depending on whether the 
junction has been visited previously or not. 
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4 

b. When entering a passage with a single marker, leave a second marker in the 

same place. 

ee 
> ~ Z_ visited 

previously 

not visited 
previously 

Using these rules, we can immediately recognize whether or not a given passage has 

been previously traversed, as foHows: 

No marker: the passage has not been traversed in either direction, so may be used; 

One marker: the passage has been traversed into the junction, so may now be used 

out of it; 

Two markers: _ the passage has already been traversed out of that junction, so may not 

be used again in that direction; 

Three markers: this was the first passage traversed into the junction, so may not be 

taken unless there are no passages with 0 or 1 markers. 

By applying Tarry’s rules, we can escape from the center of a maze without traversing 

any passage more than twice (once in each direction). 

The Chinese Postman Problem 

An important problem which has appeared in various guises is the so-called Chinese 

postman problem. (The word Chinese refers to the problem, not the postman! The prob- 

lem was formulated in 1962 by Meigu Guan.) It may be stated as follows: 

The Chinese PostmanProblem A postman wishes to deliver mail along all the streets 

in his area, and then return to the post office. How can the route be planned so as to cover 

the smallest total distance? 

If the map of the postman’s area happens to correspond to an Eulerian graph, then 

there is no difficulty with this problem—the postman simply chooses an Eulerian trail 

(using Fleury’s algorithm, if necessary), and such a trail will involve the smallest total 

distance. What usually happens in practice, of course, is that the postman needs to visit 

some parts of the route more than once, and wants to minimize the amount of retracing. 

We may assume that we know the length of each part of the route. 

Similar problems have arisen in other contexts. For example, there was a major study 

of snow-clearing routes in Zurich some years ago. Since snow-clearing equipment is 

expensive to operate, it was necessary to arrange a route which involved reclearing streets 

as little as possible. Other cities have initiated similar investigations into the sweeping 

or cleaning of streets. 
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We can reformulate the Chinese postman problem in terms of weighted graphs, 

defined as follows: 

DEFINITION. 4A weighted graph is a graph to each edge of which has been assigned 

a positive number, called its weight. 

Using this definition, the Chinese postman problem becomes: find a closed walk of min- 

imum total weight which includes every edge at least once. 

This problem has been solved in general, using a method which combines features of 

Fleury’s algorithm and the shortest path algorithm (discussed in Chapter 8). We can get 

an idea of what is involved, by considering the particular case of a graph with just two 

vertices v and w of odd degree, such as graph (a): 

The path of minimum weight from v to w is easily seen to be vbcw, with total weight 

1+2+3=6. If we ‘double up’ each of the edges in the path, we get the Eulerian graph 

(b) above. The required closed walk of minimum total weight is then obtained by taking 

an Eulerian trail in this graph, such as abvdcvbcbwcwa. Note that the only edges which 

need to be retraced are the edges of the path vbcw. 

For graphs with more than two vertices of odd degree, we can adapt this method, 

linking such vertices with shortest paths. Unfortunately, the details of this procedure are 

too complicated to be included here. 

Eulerian Digraphs 

Up to now our discussion has been concerned with the problem of finding a trail which 

includes every edge of a graph exactly once, and it is natural to consider the correspond- 

ing problem for digraphs. This immediately leads to the following definitions. 

DEFINITIONS. A connected digraph D is Eulerian if there is a closed trail which 
includes every arc of D; sucha trail is called an Eulerian trail in D. A connected digraph 
D is arc-traceable if there is an open trail which includes every arc of D. 

For example, consider the digraphs 
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(a) (b) 

Digraph (a) is Eulerian: an Eulerian trail is abcdefbgcegfa; 
digraph (b) is arc-traceable: a suitable open trail is fecdegbcefb. 

Most of the earlier discussion of Eulerian graphs can be adapted very easily to Eulerian 
digraphs. In particular, there are natural analogs of Theorems 6.1 and 6.2: 

THEOREM 6.3. Let D be a connected digraph. Then 

1. Dis Eulerian if and only if the out-degree of each vertex equals the in-degree; 

2. Dis arc-traceable if and only if there are two vertices x and y of D such that 

outdeg x — indeg x = 1, indeg y — outdeg y = 1 

and indeg v = outdeg v for all vertices v other than x or y. 

The proof of this theorem is very similar to the proofs of Theorems 6.1 and 6.2, and 

is left to you to supply if you wish. In the sufficiency parts of the proof, the essential idea 

is to show that D contains a (directed) cycle, and then use induction, as in the proof of 

Theorem 6.1. 

The Rotating Drum Problem 

We conclude our brief discussion of Eulerian digraphs with a problem which arises in 

telecommunications—the so-called rotating drum problem or teleprinter’s problem. 

The surface of a rotating drum is divided into 16 parts, as shown on the left. We can 

represent the position of the drum by means of four binary digits a, b, c, and d, as indicated 

on the right. In this diagram, the shaded areas represent conducting materials and the unshaded 

areas represent non-conducting materials. Depending on the position of the drum, the 

terminals represented by a, b, c, and d will either be grounded or be insulated from the 

earth—for example, in the above diagram, the grounded terminals are a, c, and d. 

In order that the 16 positions of the drum may be represented uniquely by the signals 
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a, b,c, and d, the conducting areas must be placed in such a way that all possible patterns 

of four consecutive conducting and non-conducting positions occur. Can this be done 

and, if so, how can it be arranged? 

A solution is given in the right-hand diagram above. The position shown corresponds 

to the binary number 1011, where 1 corresponds to a shaded (conducting) area, and 0 

corresponds to an unshaded (non-conducting) area. Rotating the drum counterclockwise 

successively gives us the following binary numbers: 

0110, 1100, 1001, 0010, 0100, 1000, 0000, 0001, 

0011, 0111, 1111, 1110, 1101, 1010, 0101, 1011. 

These four-bit numbers are all different, and represent all 16 positions of the drum. 

But how did we obtain this solution, and are there any other solutions? 

In order to answer these questions, we construct a digraph: there are eight vertices, 

corresponding to the three-bit binary words 

000, 001, 010, 011, 100, 101, 110, 111; 

there are arcs from each vertex abc to the vertices bcO and bc1. This gives us the digraph 

This digraph is clearly Eulerian, since the in-degree and out-degree of each vertex are 
equal to 2. Any Eulerian trail can then be used to give a solution of the rotating drum 
problem. For example, if we take the Eulerian trail 

101>011>110+100>001+010>100-000> 
000>001+011>111>111>110>101>010>101, 

we can ‘compress’ consecutive terms cumulatively (for example, 011110 compresses 
to 0110) to give the sequence 

1011001000011110.... 

This gives the circular arrangement shown in the diagram. 
Using a similar argument, we can answer the corresponding question for rotating 

drums with 32, 64, ... divisions. 
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PROBLEMS 

Eulerian Graphs 

66.1. 

6.2. 

6.3. 

6.4. 

6.5. 

Decide which of the following graphs are Eulerian or Hamiltonian, or both, 

and write down an Eulerian trail or Hamiltonian cycle where possible. 

A ; A “2B A 

eo D E 

JEG 
G B D G D € Cia) ae 

(a) (b) (c) (d) 

A a =. A B € C 

/ \ 7 : x t x a 

ee D E D E ii B 

(e) (f) (g) 

Give an example with at most six vertices of each of the following: 

a. a Hamiltonian graph which is not Eulerian; 

b. an Eulerian graph which is not Hamiltonian. 

It was reported in 1875 by L. Saalschiitz that an extra bridge had been built in 

Konigsberg, joining the land areas B and C: 

new 

bridge 

Is the walk now possible? 

Show how the citizens of Konigsberg could have built two new bridges in such 

a way that they could have taken their tour and returned to their starting point. 

Which of the following graphs are Eulerian? 

a. the complete graphs K,,; 

b. the complete bipartite graphs K,,,; 

c. the cycle graphs C,,; 

d. the five Platonic graphs; 

e. the cube graphs Q,; 

f. the Petersen graph. 
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6.6. Using the graph cards in Chapter 1, determine which graphs with six vertices 

are Eulerian. 

6.7. Show how the Eulerian graph below can be split into cycles, no two of which 

have any edges in common. (There are five possible solutions.) How can these 

cycles be recombined to form an Eulerian trail? 

6.8. | Show that the Eulerian graph below can be split into four cycles, no two of 

which have any edges in common. How can these cycles be combined to form 

an Eulerian trail? 

<p> 

Eulerian-type Problems 

©6.9. Use Fleury’s algorithm to find an Eulerian trail starting with uvz in the graph 
of Problem 6.8. 

©6.10. Determine which of the following graphs are edge-traceable, and give a corre- 
sponding open trail in each case. 

L | : . A a 
Cc D E B Cc oie 

(a) (b) (c) 

6.11. Decide whether each of the following graphs is Eulerian, edge-traceable, or 
neither. 

(a) (b) (c) 
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6.12. 

6.13. 

6.14.7 

66.15. 

6.16. 

6.17. 

6.18. 

6.19. 

4 

Theorems 6.1 and 6.2 tell us about the properties of graphs with zero or two 

vertices of odd degree. What can you say about graphs with exactly one vertex 

of odd degree? 

How many continuous penstrokes are required to draw the following diagrams 

without covering any part twice? 

(a) (b) (c) (d) 

Show how Listing’s diagram (on page 128) can be drawn in one continuous 

stroke. 

Show that, if a graph G has 2k vertices of odd degree, then the smallest num- 

ber of continuous penstrokes needed to cover all the edges of G is k. 

(Hint: Add k edges to G in a suitable manner.) 

By finding an Eulerian trail in K;, arrange a set of 15 dominoes-(from 0-0 to 

4-4) in aring. 

Draw the graph corresponding to the following maze, and use it to find a way 

into the center (*) and out again. 

oul <— 

If you were tracing the Hampton Court maze (page 130) using Tarry’s 

algorithm, and you followed the walk 

ABCBDEFDFGHIHJM, 

how many markers would you put down at each stage? 

Solve the Chinese postman problem for the following graph: 
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6.20. Solve the Chinese postman problem for the following graph: 

6.21. 

Eulerian Digraphs 

$6.22. Determine which of the following digraphs are Eulerian or arc-traceable, and 
give a suitable trail in each case. 

A A 
A 

E B E B 

G B D G D G 

(a) (b) (c) 

6.23. Determine whether the following digraph is Eulerian or arc-traceable, and give 
a suitable trail. 
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‘ 

6.24. Consider the rotating drum problem for a drum with eight positions. Choose 

one of the following digraphs to solve this problem, and find two sequences 

which give rise to suitable circular arrangements. 

6.25.+ Solve the rotating drum problem for a drum with 32 divisions. 
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APPENDIX TO CHAPTER 6 

L. Euler 

Solutio Problematis ad Geometriam Situs Pertinentis 
(The Solution of a Problem Relating to the Geometry of Position) 

Commentarii Academiae Scientiarum Imperialis Petropolitanae 8 (1736), 
128-140. 

1. In addition to that branch of geometry which is concerned with magnitudes, 

and which has always received the greatest attention, there is another branch, 

previously almost unknown, which Leibniz first mentioned, calling it the geom- 

etry of position. This branch is concerned only with the determination of posi- 

tion and its properties; it does not involve measurements, nor calculations 

made with them. It has not yet been satisfactorily determined what kind of 

problems are relevant to this geometry of position, or what methods should be 

used in solving them. Hence, when a problem was recently mentioned, which 
seemed geometrical but was so constructed that it did not require the measure- 
ment of distances, nor did calculation help at all, I had no doubt that it was con- 
cerned with the geometry of position—especially as its solution involved only 
position, and no calculation was of any use. I have therefore decided to give 
here the method which I have found for solving this kind of problem, as an ex- 
ample of the geometry of position. 

The problem, which I am told is widely known, is as follows: in KO6nigsberg in 
Prussia, there is an island A, called the Kneiphof ; the river which surrounds it 
is divided into two branches, as can be seen in the figure, and these branches 
are crossed by seven bridges a, b, c, d, e, f, and g. Concerning these bridges, it 
was asked whether anyone could arrange a route in such a way that he would 
cross each bridge once and only once. I was told that some people asserted that 
this was impossible, while others were in doubt; but nobody would actually as- 
sert that it could be done. From this, I have formulated the general problem: 
whatever be the arrangement and division of the river into branches, and how- 
ever many bridges there be, can one find out whether or not it is possible to 
cross each bridge exactly once? 
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‘ 

As far as the problem of the seven bridges of K6nigsberg is concerned, it can 

be solved by making an exhaustive list of all possible routes, and then finding 

whether or not any route satisfies the conditions of the problem. Because of 

the number of possibilities, this method of solution would be too difficult and 

laborious, and in other problems with more bridges it would be impossible. 

Moreover, if this method is followed to its conclusion, many irrelevant routes 

will be found, which is the reason for the difficulty of this method. Hence I re- 

jected it and looked for another method concerned only with the problem of 

whether or not the specified route could be found; I considered that such a 

method would be much simpler. 

My whole method relies on the particularly convenient way in which the cross- 

ing of a bridge can be represented. For this I use the capital letters A,B,C,D 

for each of the land areas separated by the river. If a traveler goes from A to B 

over bridge a or b, I write this as AB—where the first letter refers to the area 

the traveler is leaving, and the second refers to the area he arrives at after cross- 

ing the bridge. Thus if the traveler leaves B and crosses into D over bridge f, 

this crossing is represented by BD, and the two crossings AB and BD combined 

I shall denote by the three letters ABD, where the middle letter B refers both to 

the area which is entered in the first crossing and to the one which is left in the 

second crossing. 

Similarly, if the traveler goes on from D to C over the bridge g, I shall repre- 

sent these three successive crossings by the four letters ABDC, which should 

be taken to mean that the traveler, starting in A, crosses to B, goes on to D, and 

finally arrives in C. Since each land area is separated from every other by a 

branch of the river, the traveler must have crossed three bridges. Similarly, the 

successive crossing of four bridges would be represented by five letters, and in 

general, however many bridges the traveler crosses, his journey is denoted by 

a number of letters one greater than the number of bridges. Thus the crossing 

of seven bridges requires eight letters to represent it. 

In this method of representation, I take no account of the bridges by which the 

crossing is made, but if the crossing from one area to another can be made by 

several bridges, then any bridge can be used, so long as the required area is 

reached. It follows that if a journey across the seven bridges can be arranged in 

such a way that each bridge is crossed once, but none twice, then the route can 

be represented by eight letters which are arranged so that the letters A and B 

are next to each other twice, since there are two bridges, a and b, connecting 

the areas A and B; similarly, A and C must be adjacent twice in the series of 

eight letters, and the pairs A and D, B, and D, and C and D must occur together 

once each. 

The problem is therefore reduced to finding a sequence of eight letters, formed 

from the four letters A; B, C, and D, in which the various pairs of letters occur 

the required number of times. Before I turn to the problem of finding such a 

sequence, it would be useful to find out whether or not it is even possible to 

arrange the letters in this way, for if it were possible to show that there is no 

such arrangement, then any work directed towards finding it would be wasted. 
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I have therefore tried to find a rule which will be useful in this case, and in oth- 

ers, for determining whether or not such an arrangement can exist. 

8. In order to try to find such a rule, I consider a single area A, into which there 

lead any number of bridges a, b, c, d, etc. Let us take first the single bridge a 

which leads into A: if a traveler crosses this bridge, he must either have been in 

A before crossing, or have come into A after crossing, so that in either case the 

letter A will occur once in the representation described above. If three bridges 

(a, b, and c, say) lead to A, and if the traveler crosses all three, then in the rep- 

resentation of his journey the letter A will occur twice, whether he starts his 

journey from A or not. Similarly, if five bridges lead to A, the representation of 

a journey across all of them would have three occurrences of the letter A. And 

in general, if the number of bridges is any odd number, and if it is increased by 

one, then the number of occurrences of A is half of the result. 

9. In the case of the K6nigsberg bridges, therefore, there must be three occur- 

rences of the letter A in the representation of the route, since five bridges (a, b, 

c, d, é) lead to the area A. Next, since three bridges lead to B, the letter B must 

occur twice; similarly, D must occur twice, and C also. So in a series of eight 

letters, representing the crossing of seven bridges, the letter A must occur three 
times, and the letters B, C, and D twice each—but this cannot happen in a se- 
quence of eight letters. It follows that such a journey cannot be undertaken 
across the seven bridges of K6nigsberg. 

(Reprinted, with permission, from N.L. Biggs, E.K. Lloyd, and R.J. Wilson, Graph Theory 1736-1936, 
Oxford University Press, Oxford, England, 1976.) 



CHAPTER 7 

HAMILTONIAN GRAPHS 
~ AND DIGRAPHS 

7.1 INTRODUCTION 

We now turn our attention to Hamiltonian graphs—graphs in which there is a cycle 
passing through every vertex. The name Hamiltonian derives from a game invented by 

Sir William Rowan Hamilton (1805-1865), one of the leading mathematicians of his 

time. He was a child prodigy, became Astronomer Royal of Ireland at 22, and was 

knighted at 30. He did brilliant work in geometrical optics, dynamics, and algebra. 

Hamilton’s Icosian Game and the Knight’s Tour Problem 

One of the most significant of Hamilton’s discoveries was the existence of algebraic sys- 

tems in which the commutative law for multiplication (xy = yx) does not hold. His alge- 

bra of quaternions, or Icosian calculus (as he called it), can be expressed in terms of 

Hamiltonian cycles on the regular dodecahedron 

143 
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He also turned the problem into a game, the /cosian game, in which the player has to find 

Hamiltonian cycles starting with five given initial letters. For example, given the initial letters 

BCPNM, the player can complete a Hamiltonian cycle in exactly two possible ways: 

BCPNMDFKLTSRQZXWVJHGB and BCPNMDFGHXWVJKLTSRQZB. 

The game was marketed in 1859, accompanied by a printed leaflet of instructions. It 

also appeared in a solid dodecahedron form under the title A Voyage Round the World, 

with the vertices representing places—Brussels, Canton, Delhi, ..., Zanzibar. Hamilton 

sold the idea of the Icosian game to a wholesale dealer of games and puzzles for £25, but 

it turned out to be a bad bargain—for the dealer. 

The name Hamiltonian cycle can be regarded as a misnomer, since Hamilton was not 
the first to look for cycles which pass through every vertex of a graph. An earlier example 
of a problem which can be expressed in terms of Hamiltonian cycles is the celebrated 
knight's tour problem. (A knight moves two squares in one direction and one Square in 
a perpendicular direction, as illustrated below.) 
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Knight's Tour Problem Canakhight visit each square of a chessboard by a sequence 

of knight’s moves, and finish on the same square as it began? 

In order to see the connection between this problem and that of finding Hamiltonian 

cycles in a graph, consider the simplified problem of finding a knight’s tour on a 4 x 4 

chessboard. We can represent the board as a graph in which each vertex corresponds to 

a square, and edges correspond to those pairs of squares connected by a knight’s move. 

The following diagram shows a 4 x 4 chessboard and its associated graph. 

In fact, there is no knight’s tour on a4 x 4 chessboard, as you will see if you experiment 

a bit. There is also no knight’s tour on a chessboard with an odd number of squares (such 

as a 5 x 5 chessboard), as you will see in Problem 7.12. However, for some other 

chessboards, a knight’s tour is possible. 

A solution of the knight’s tour problem appeared in a paper in 1759 by Euler. In this 

paper Euler described a systematic approach to solving the problem, and another 

systematic treatment was given 12 years later by A.-T. Vandermonde. The following 

diagram illustrates a knight’s tour on an ordinary 8 x 8 chessboard, thus answering the 

original knight’s tour problem in the affirmative. 
wins ae 

50 | 11 | 24 | 63 | 14] 37/26 | 35 
o2 | 3h 12 25| 34 15 | 38 

10 | 49 | 64 | 21) 40 | 13 | 36} 27 

61 | 22 9 | 52 33 | 28 39| 16 | 

48 | 7 | 60) 1 | 20) 41 | 54 29 | 

This solution is particularly interesting, because if we write the order of the moves, 

as in the right-hand diagram, we get a magic square in which the numbers in each row 

or column have the same total, 260. 



146 CHAPTER 7. HAMILTONIAN GRAPHS AND DIGRAPHS 

Hamiltonian Graphs and Digraphs 

At first sight, the problem of deciding whether or not a given graph is Hamiltonian 

seems very similar to the problem of deciding whether or not it is Eulerian, and we might 

expect there to be a simple necessary and sufficient condition for a graph to be 

Hamiltonian, analogous to that of Theorem 6.1 for Eulerian graphs. However, no such 

condition is known, and the search for necessary or sufficient conditions for a graph to 

be Hamiltonian is a major area of study in graph theory today. 

Faced with this situation, the best we can do is to look for various types of graphs 

which are Hamiltonian. For example, it is clear that the cycle graph C, is Hamiltonian 

for all values of n. Note also that K, is Hamiltonian if n 2 3; if the vertices are denoted 

by 1,2,...,”, then a Hamiltonian cycle is 123...n1. 

Cs Ks 

If we take a Hamiltonian graph and add more edges to it, then the result will still be 

a Hamiltonian graph, since we can take the same Hamiltonian cycle as before. It follows 

that graphs with many edges are more likely to be Hamiltonian than graphs with fewer 

edges. We can make this idea precise in various ways. Two of the most important of these 

are the following sufficient conditions of G. A. Dirac and O. Ore, published in 1952 and 
1960, respectively. 

THEOREM 7.1 (DIRAC’S THEOREM). Let G be a simple graph with n vertices, 
where n 2 3. If deg v= sn for each vertex v, then G is Hamiltonian. 

THEOREM 7.2 (ORE’S THEOREM). LetG be asimple graph withn vertices, where 
We 32/f 

deg v + deg w2n, 

for each pair of non-adjacent vertices v and w, then G is Hamiltonian. 

We illustrate the use of these theorems by considering the graphs 

u 

(a) (b) 
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‘ 

For graph (a), = 6 and deg v = 3 for each vertex v, so this graph is Hamiltonian by 

Dirac’s theorem. 
For graph (b), n = 5 but deg u = 2, so Dirac’s theorem does not apply. However, 

deg v + deg w = S for all pairs of non-adjacent vertices v and w (in fact, for all pairs 

of vertices v and w), so this graph is Hamiltonian by Ore’s theorem. 

Note that if deg v= sn for each vertex v, then deg v + deg w 2 n for each pair of vertices 

v and w. It follows that Dirac’s theorem can be deduced from Ore’s theorem, so we prove 

only Ore’s theorem. : 

Proof of Ore’s Theorem We give a proof by contradiction. Suppose that there exists 

a non-Hamiltonian graph G in which deg v + deg w 2 n for each pair of non-adjacent 

vertices v and w. We may assume, by adding more edges to G if necessary, that G is ‘only 

just’ non-Hamiltonian, in the sense that the addition of any more edges would make it 

Hamiltonian. This means that there must be a path v;v2v3...v, which includes every 

vertex, but for which the vertices v, and v, are not adjacent, as shown in the following 

diagram (note that adding the edge v,v; creates a Hamiltonian cycle): 

Since v, and v, are not adjacent, we must have 

deg v, + deg v, 2n; 

that is, 

deg v, 2n—deg v). 

It follows that if deg v, =r, then there are at most r vertices not adjacent to v,,, including 

the vertex v,, itself. 

Now consider the vertices adjacent to v;, and let S be the set of vertices preceding each 

of these vertices in the path; for example, if v; is joined to y, then v1 is a vertex in S. 

Then S contains r vertices, and Vv, is not one of them. 

It follows from the two italicized statements that S must contain a vertex v; adjacent 

to v,, and so there must be edges joining v; and vj,1, and v; and v,, as shown in the above 

diagram. But we can now write down a Hamiltonian cycle in G—namely, 

V1V2- . ViVi n-1 o* Vin Vi15 

contradicting the assumption that G is non-Hamiltonian. This contradiction establishes 

the theorem. 0 
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Just as for Eulerian graphs, there are several variations of the above ideas and results. 

For example, vertex-traceable graphs are graphs which possess a path, but not a cycle, 

passing through each vertex exactly once; such a path is usually called a Hamiltonian 

path. We can also define Hamiltonian digraphs: 

DEFINITIONS. A connected digraph D is Hamiltonian if there is a (directed) cycle 

which includes every vertex of D. Such a cycle is called a Hamiltonian cycle in D. 

There are digraph analogs of both Dirac’s theorem and Ore’s theorem, but these are 

considerably harder to prove than their counterparts for graphs. We state two of these 

without proof. 

THEOREM 7.3. Let D be a simple digraph with n vertices. If 

outdeg v2>4n and indeg v2>n 

for every vertex v of D, then D is Hamiltonian. 

THEOREM 7.4. Let D be a simple digraph with n vertices. If 

outdeg v + indeg w2n 

for every pair of vertices v and w such that v is not adjacent to w, then Dis Hamiltonian. 

7.2 HAMILTONIAN-TYPE PROBLEMS 

We conclude this chapter by describing some connections between Hamiltonian graphs 

and digraphs and problems in coding theory, optimization, and tournaments. 

Gray Codes 

The communication of information from one person or place to another has a long his- 

tory, and the development of suitable techniques to accomplish it satisfactorily has often 

been colored by intrigues (mainly of a political or military nature). For reasons of pri- 

vacy or security there have arisen, over the years, various codes and ciphers whose main 

purpose was to prevent the information getting into the wrong hands. However, in recent 

times, with the rapid growth of information-processing industries, codes have come to 

be widely used for representing information. This is largely due to the introduction of 

digital techniques, so that even an analog signal (one that varies continuously, such as a 

sound wave) is now usually chopped up into discrete slices and represented in digital 

form. As a result of this trend, the notion of a code has come to have a more specific 

meaning and now refers to a finite system of distinct symbols which is used to process or 
transmit digital information over a communication channel. 
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O05 

13S 45° 

180° 0° 

a 315" 

200? 

Suppose that we wish to represent the angular,position (in multiples of 45°) of a shaft 

which is rotating continuously’ By using three brushes on a commutator, we can convert 

the angle through which the shaft has rotated into a three-bit binary word, as follows: 

0°-45° 45°-90° 90°-135° 135°-180° 180°-225° 225°-270° 270°-315° 315°-360° 
* 

000 001 O11 ~ 010 110 111 101 100 

If we take these binary words as codewords, we obtain a code known as a Gray code. 

. As the shaft rotates, the codeword changes by only one bit at a time. Because of the 

construction of the equipment, multiple-bit changes (such as 110 to 101, or 111 to 000) 

may not be possible simultaneously, and it is partly for this reason that Gray codes have 

found such widespread use. 

Gray codes can be found by tracing Hamiltonian cycles on the graph of the n-cube 

Q,. For example, the above code, and the code 

000 > 100 > 110 > 010 > 011 > 111 > 101 — 001 (— 000), 

both correspond to Hamiltonian cycles in the 3-cube, shown below. 

100 101 

anil 
Pea 

Ai ch 
000 001 

Similarly, we can find a Gray code consisting of four-bit binary words by tracing a 

Hamiltonian cycle in the 4-cube, shown on page 38. An example of such a code is 

0000 — 0001 > 0011 > 0010 > 0110 > 0111 4 0101 > 0100 > 

1100 > 1101 — 1111 3 1110 4 1010 > 1011 — 1001 — 1000 (— 0000). 

The Traveling Salesman Problem 

A traveling salesman wishes to visit a number of cities and return to the starting point, in 



150 CHAPTER 7. HAMILTONIAN GRAPHS AND DIGRAPHS 

such a way that each city is visited exactly once, and the total distance covered is as short 

as possible. Given the various distances between the cities, what route should be chosen? 

In principle, we can solve this problem by looking at all possible routes and choosing 

the one which involves the least total distance. For example, if there are five cities A, B, 

C, D, and E, and if the connections between them are as shown below, then a traveling 

salesman at A should visit the cities in the order ACBDEA (or in reverse order AEDBCA), 

covering a total distance of 14. 

Unfortunately, as soon as we increase the number of cities, we run into difficulties, 

since there is no known algorithm which provides a simple and efficient solution for the 

problem. Although there are several ad hoc procedures which can be used to give 

approximate solutions, a full solution effectively involves looking at all possible routes 

and choosing the shortest. This is feasible if there are ten cities, since the number of 

possible routes is then at most 362880, and a computer sorting through these at the rate 

of one million per second will find the best route in about 0.36 seconds. On the other 

hand, if there are 20 cities, then the number of possible routes is about 1.22 x 10!’, and 

a computer sorting through them at the same rate would take almost 4000 years! 

The traveling salesman problem is an important one in practice, since it can appear in 

a number of different guises. An example is the job-sequencing problem, which can be 

stated as follows. 

The Job-Sequencing Problem A number of independent jobs are to be carried out 

on a single machine. These jobs are complicated, and the machine must be set up for each 

new job after the previous one is completed. The machine is initially set up for one of the 

jobs, and it must be reset for that job when the other jobs are completed. If the set-up 

costs (involving labor and material) depend on the job just completed and the job about 

to be started, how can we order the jobs so that the total set-up cost is minimized? 

The link between the two problems may be seen by considering the problems 

graphically. In the traveling salesman problem we draw a weighted complete graph in 

which the vertices correspond to the cities visited, the edges correspond to the routes 
joining them, and the weights correspond to the distances between pairs of cities. In the 

job-sequencing problem we draw a weighted complete graph in which the vertices 

correspond to the jobs, the edges link these jobs, and the weights correspond to the set-up 

costs associated with pairs of jobs. In each case, our aim is to find a cycle of minimum 

total weight which passes through every vertex—in other words, a minimum-weight 

Hamiltonian cycle. The traveling salesman problem may therefore be restated in graph- 

ical terms as follows. 
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The Traveling Salesman Problem Given a weighted complete graph, find a mini- 
mum-weight Hamiltonian cycle in it. 

Note that the formulation of the traveling salesman problem assumes that the corre- 
sponding graph is Hamiltonian—in fact, the problem can be reformulated as that of 
finding a minimum-length Hamiltonian cycle in the graph. If the weights of the edges 
refer, not to the distances between the cities, but to the time or cost involved in traveling 
between them, then a solution of the traveling salesman problem gives a minimum-time 
or minimum-cost cycle. : 

It is interesting to contrast this problem with the Chinese postman problem, which can 
be thought of as its Eulerian analog. In the case of the Chinese postman problem, there 
is no difficulty if the corresponding graph is Eulerian—we simply find an Eulerian trail 
by Fleury’s algorithm, and any such trail must be a solution to the problem. Even if the 
graph is not Eulerian, there is a standard algorithm which can be used to find a 
minimum-weight closed walk. In the case of the traveling salesman problem, the graph 
is assumed to be Hamiltonian from the start, but there may be several different Hamilto- 
nian cycles with different total weights. In view of this, we need an algorithm for deciding 
which Hamiltonian cycle is the shortest, but no good algorithm is known. Unless the 
“number of cities is small, the best we can do is to obtain approximate solutions. For 
example, it is possible to obtain upper and lower bounds for the shortest total distance. 

A method for doing this is discussed in Chapter 10. 

Ranking in Tournaments 

A tournament is a digraph whose underlying graph is a complete graph—for example, 

the following diagram shows some of the tournaments with three or four vertices: 

A A A A 

€ B CG B G B Ec B 

(a) (b) (c) (d) 
n=3 n=3 n=4 n=4 

Such digraphs can be used to record the winners in around-robin tournament, in which 

each player plays each of the others. For example, in tournament (a), player A beats both 

players B and C, and player B beats player C; whereas in tournament (d), C beats B, D, 

and A; B beats D and A; and A beats D. 

Tournaments also arise in other contexts, such as in the method of paired comparisons, 

where we compare a number of commodities by testing them in pairs. For example, 

consider the following tournament, used for comparing six different types of dog food. 

These delicacies were tested in pairs on a number of dogs, and the preferences were 

recorded: 
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Wooffo Doggo 

Joocy- 
Slurp chunks 

Waggo Bitey-bits 

The problem now arises as to how to rank the various commodities in order of 

preference. For some tournaments (known as transitive tournaments) there is no diffi- 

culty, since we can order them in such a way that each vertex ‘dominates’ the others 

beneath it. For example, in tournaments (a) and (d) above we can rank the participants 

in this way, as shown below. Unfortunately, in many practical examples a direct ranking 

is impossible. For example, in tournaments (b) and (c) above, A beats B, B beats C, and 

C beats A, So it is not possible to rank these three players directly. 

A ( 

E 

D 

(a) (d) 

There is a similar inconsistency in the dog-food example, where Wooffo was preferred 

to Doggo, Doggo was preferred to Joocy-chunks, and Joocy-chunks was preferred to 

Wooffo. For such tournaments we must find alternative methods for ranking the partici- 

pants or commodities. 

In such circumstances, no method is entirely satisfactory, but a method which has 

been much used in practice is to look for paths containing each vertex exactly once. It 

can be proved (by induction, for example) that every tournament contains at least one 

such Hamiltonian path—that is, every tournament is vertex-traceable, and each path of 

this kind leads to a ranking. [Note that, in a transitive tournament, such as tournaments 

(a) and (d) above, there is only one such path, and so only one ranking.] For example, 

in tournament (c), possible rankings are A, B, D, C and B, C, A, D, whereas for the 

dog-food example, possible rankings are 

Wooffo, Doggo, Joocy-chunks, Waggo, Slurp, Bitey-bits 

and 

Bitey-bits, Joocy-chunks, Wooffo, Doggo, Waggo, Slurp. 

Once we have listed all the possible rankings of this kind, we must then take other 

considerations into account in deciding which ranking is best for our purposes. 
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PROBLEMS 

Hamilton’s Icosian Game and the Knight’s Tour Problem 

teks 

87,2. 

om 

Use the picture of the Icosian game on page 144 to determine how many Ham- 

iltonian cycles on the dodecahedron begin with the sequence of letters DCPQZ. 

Use the picture of the Icosian game to answer the following: 

a. how many Hamiltonian cycles on thé dodecahedron begin with JVTSR? 

b. find a path on the dodecahedron starting with BCD, ending with 7, and 

including every vertex just once. 

By drawing the corresponding graph, determine whether a knight can visit 

each square of the following ‘chessboard’ exactly once. 

Show that there is no knight’s tour on a 4 x 4 chessboard, but that there is a 

knight’s tour on a 6 X 6 chessboard. 

Hamiltonian Graphs and Digraphs 

67.5. 

7.6. 

ide 

Which of the following graphs are Hamiltonian? 

a. the complete graphs K,,; 

b. the complete bipartite graphs K,,,; 

c. trees; 

d. the five Platonic graphs. 

Using the graph cards in Chapter 1, determine which graphs with six vertices 

and nine edges are Hamiltonian. 

Decide whether each of the following graphs is Hamiltonian, vertex-traceable, 

or neither. 

(a) (b) (c) 
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7.8.' Let G be the following graph: 

a. Prove that G has no Hamiltonian cycle which includes the edges ab, bf, and 

Jk. 

b. Find a Hamiltonian cycle containing the edges ab and bf. 

7.9.' Let G be the following graph: 

a. Prove that any Hamiltonian cycle of G must contain: 

(i) one of the paths fbacde and icabde (in either direction); 

(ii) one of the paths kmopnf and kmnpol (in either direction). 

b. Deduce from part a that G contains no Hamiltonian cycles. 

7.10.’ Show that the Petersen graph is vertex-traceable, but not Hamiltonian. 

7.11.’ A mouse eats his way through a 3 x 3 x3 cube of cheese, tunneling through all 

27 of the 1 x 1 x 1 cubes. If the mouse starts at a corner, can he finish in the 

center? 

67.12. Prove that any bipartite graph with an odd number of vertices cannot be Hamil- 

tonian. Use this result to show that 

a. the following graph is not Hamiltonian: 

a b 

Tar 

d e 

b. there is no knight’s tour on a5 x5 or 7 X 7 chessboard. 
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‘ 

7.13. Check whether the conditions of Dirac’s theorem and Ore’s theorem hold for 
the following Hamiltonian graphs: 

©7.14. Give an example of each of the following: 

a. a Hamiltonian graph which does not satisfy the conditions of Ore’s theorem; 

De Aa non-Hamiltonian graph with n vertices, in which deg v => 3(n-1) for each 

vertex v. 

7.15. Determine which of the following digraphs are Hamiltonian, and give a suit- 
able cycle in each case: 

A 

B B es 

D & D C B 

& 

(a) (b) (c) 

7.16.’ Prove directly that if a digraph D satisfies the condition of Theorem 7.4, then 
D is strongly connected. 

7.17. Prove that Theorem 7.4 implies Theorem 7.3. 

Hamiltonian-type Problems 

7.18. Solve the traveling salesman problem for the four cities illustrated below for a 

salesman based in London. 

London 116 Birmingham 

184 110 

Manchester 41 Leeds 
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67.19. 

67.20. 

7.21. 

7.22. 

Teas 

7.24. 

CHAPTER.7. HAMILTONIAN GRAPHS AND DIGRAPHS 

The King of Combinatoria decides to visit his subjects who live in the four 

main towns of his kingdom; his palace is at A, and the cities are at B, C, D, and 

E. Find a route for him which involves the least possible total distance. 

Describe (in general terms) how you might attempt to find the shortest route 

connecting the capitals of the 50 states of the United States. 

Draw all tournaments (up to isomorphism) with four vertices. 

How many rankings are possible in the following tournament? 

A tournament D is said to be transitive if, whenever uv and vw are arcs of D, 

then uw is also an arc of D. Determine whether either of the tournaments (a) 

and (b) in Problem 7.15 is transitive. 

Prove that a tournament is transitive if and only if it contains no cycles. 



CHAPTER 8 

PATH ALGORITHMS 

8.1 INTRODUCTION 

Consider the following two problems: 

1. A traveler wishes to drive from Los Angeles to New York in the shortest possible 

time. The following map gives the time (in hours) needed to drive between particular 

pairs of cities. Given this information, which route should the traveler take? 

Buffalo 

Salt Lake A 
City Cheyenne 12 

10 

San 
Francisco 

San Houston Orleans 

Antonio 

In this particular example, it is not difficult to find the solution by intelligent 

157 
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guesswork, but such an approach is less likely to succeed as the road network becomes 

more and more complicated. In this chapter we describe an algorithm which can be used 

to find the shortest path between any two vertices of any network. 

2. The following diagram illustrates the various stages in a die-making process. The 

numbered vertices, called events, represent the various stages reached in the process. The 

arcs represent the various activities (such as refine release and correct tooling) and are 

labeled with numbers to indicate the number of days needed to perform each activity. 

The entire weighted digraph (or die-graph!) is called an activity network and shows 

which activities must be completed before others can begin. What is the minimum 

possible time needed to complete the process? 

financial 

approval 

detailed 

evaluation 

peste G0) management 

study @ approval 

| 

| 
| 

60) project 60) 

60) preparation 

detail design 
& drafting 

initial prototype 

evaluation 

tooling omplete pilot correct 
120) 6) (a) +5 .0.p. 
Creer) tooling build Gi) tooling (60) s y 

| 
| 
| 
| 
| 

G9 

detail design 
_& drafting 
continued 

refine 

release 

initial 

(0) release 

We shall describe an algorithm which can be used to find this minimum possible time 

and to locate which activities are ‘critical’ to the process and which have some ‘slack’. A 

fuller and more comprehensive account of this topic (known as critical path analysis) 

will be found in the companion volume on Networks. 

8.2 THE SHORTEST PATH ALGORITHM 

The idea of this algorithm is to find the shortest path from vertex S to vertex T in a given 

network. To do this, we move across the network from left to right, calculating the short- 

est distance from S to each of the intermediate vertices as we go. At each stage of the al- 

gorithm, we look at all vertices reached by an arc from the current vertex and assign to 

each such vertex a temporary label representing the shortest distance from S to that ver- 

tex by all paths considered until now. Eventually each vertex acquires a permanent label 

(called its potential, and denoted by a square around the label) which represents the 

shortest distance from S to that vertex. Once T has been assigned a potential, then we 

have determined the shortest distance from S to T. 
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We illustrate the use of this algorithm by finding the shortest distance from S to T in 
the following network: 

We start by assigning to S potential 0, since the shortest distance from S to S is 0. We then 
look at those vertices reached by an arc from S (that is, A, B, C, and D) and assign to each 
such vertex a temporary label equal to the potential at S plus the distance from S to that vertex. 
This gives the vertices A, B, C, and D temporary labels of 7, 4, 9, and 7, respectively. 

We now take the smallest label that is not a potential and mark it as a potential. In this 
case the relevant label is 4, at vertex B, so we assign to B potential 4. Note that this is the 
shortest distance from S to B, since any other path from S to B would have to go via A, 
C, or D, and the first stage alone of such a path would exceed 4. 

Since B has just been assigned a potential, we now look at those vertices reached directly 
from B (that is, A and C). We assign to each of these vertices a temporary label equal to the 
potential at B plus the distance from B to that vertex, unless that vertex already has a smaller 
label. In this case, we assign to vertex A the new label 4 + 1 =5, and to vertex C the new label 

4 +3=7, since these are both smaller than their previous labels. 
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The shortest distance that is not already a potential is now 5, at A, so we assign to A 

potential 5; this is the shortest distance from S to A. Continuing in this way, we now look 

at those vertices reached directly from A (that is, just T), and assign to T the temporary 

label 5 + 6 = 11. 

The shortest distances that are not already a potential are now the 7’s at vertices C and 

D, so we assign to C and D potential 7. The only vertex not yet assigned a potential is 

now vertex T. From vertex A the temporary label at T is 11, whereas from C the label at 

T is 7 + 3 = 10, and from D the label at T is 7 + 4 = 11. The smallest of these numbers is 

10, so we assign to T potential 10. Thus, the shortest distance from S to T is 10: 

In order to find the shortest path from S to T, we work backwards from T, as follows. 

Since we have 

(potential of T) — (potential of C) = (distance from Gtowm): 

we include the arc CT. Similarly, we have 

(potential of C) — (potential of B) = (distance from B to C) 

and 

(potential of B) — (potential of S) = (distance from S to B), 
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4 

SO we include the arcs BC and SB. Thus the shortest path from § to T is SBCT. 

We summarize the above procedure as follows. 

Shortest Path Algorithm 

To find the shortest path from S to T in a network: 

STEP | Assign to vertex § potential 0; 

label each vertex V reached directly from S with the distance 
from S to V; 

choose the smallest of these labels, and make it the potential of the 
corresponding vertex or vertices. 

GENERAL STEP Consider the vertex or vertices just assigned a potential; 

for each such vertex V, look at each vertex W reached directly from 
V and assign W the label 

(potential of V) + (distance from V to W), 

unless W already has a smaller label; 

when all such vertices W have been labeled, choose the smallest 
label in the network which is not already a potential and make it a 
potential at each vertex where it occurs; 

repeat the GENERAL STEP with the new potential(s). 

STOP when vertex T has been assigned a potential; this is the shortest 
distance from § to T. 

SHORTEST PATH(S) Work backwards from 7, and include an arc VW whenever 

(potential of W) — (potential of V) = (distance from V to W). 

The Tabular Method 

In applying the above algorithm, one can easily lose track of the labels at the various 
vertices. The following tabular method is a convenient way of recording the above cal- 
culations in the form of a table. 

We label each column with a vertex of the network, and we successively label each row 

with the vertex or vertices that have just been assigned a potential. To complete each row, 
we consider the vertices reached directly from these vertices of known potential, and we 
assign the labels as before, bringing down any other labels not yet made into potentials. We 
then proceed to the next row. The table on page 162 corresponds to the above example. 

Thus, the shortest distance from S to T is 10, and we can then find the shortest path 
(SBCT), as before. 
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vertices | S. A B C.D TF 
eh= $e el eee ee eee 

SO] ayaa eo 7 

B 5 toe 

A eet | 

CD 10 

i ita) 

8.3 THE LONGEST PATH ALGORITHM 

We now wish to find the longest path from S to T in a network. We must assume that the 

network has no cycles, since otherwise we could go around a cycle as often as we please. 

The algorithm we shall describe is similar to the shortest path algorithm, except that 

instead of looking at all vertices reached directly from a vertex of known potential, we 

look at all vertices that can be reached only from vertices of known potential. In other 

words, if we can reach a vertex W from a vertex whose potential we do not yet know, 

then we must not consider W at this stage. When assigning labels, we proceed much as 

before. The distance from S via a vertex V of known potential to a vertex W reached 

directly from V is 

(potential of V) + (distance from V to W), 

so we can easily calculate all the possible distances from S to W, and the Jargest such 

distance will be the potential at W. 

We illustrate the use of this algorithm by finding the longest path from S to T in our 

previous network: 

We start by assigning to S potential 0. We then look at those vertices reached only by 

an arc from S (that is, B and D). Since the only paths from S to B and from S to D are SB 

and SD, they must be the longest such paths. Thus we can assign to B and D potentials 

4 and 7, respectively: 
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We now look at those vertices reached only from S, B, and D (that is, A and C). At 
vertex A, there are two possible routes—the direct route from S with distance 7, and 
the path via B with distance 4 + 1 = 5. The larger of these numbers is 7, so we assign 
to A potential 7. At vertex C, there are three possible routes—the direct route from S 
with distance 9, the path via B with distance 4 + 3 = 7, and the path via D with distance 

. 7+ 1=8. The largest of these numbers is 9, so we assign to C potential 9. 

Now that we have the potentials at S, A, B, C, and D, we can consider the paths to 
T. There are three possible routes—the path via A with distance 7 + 6 = 13, the path 
via C with distance 9 + 3 = 12, and the path via D with distance 7 + 4 = 11. The largest 
of these numbers is 13, so we assign to T potential 13. Thus, the longest distance from 
S to T is 13: 
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In order to find the longest path from S to T, we again work backwards from T, as 

follows. Since we have 

(potential of 7) — (potential of A) = (distance from A to T), 

we include the arc AT. Similarly, we have 

(potential of A) — (potential of S) = (distance from S to A), 

so we include the arc SA. Thus the longest path from S to T is SAT. 

We summarize the above procedure as follows: 

Longest Path Algorithm 

To find the longest path from S to T in a network without cycles: 

STEP 1 Assign to vertex S potential 0; 

label each vertex V reached only from S with the distance from S to V 

and make all these labels potentials. 

GENERAL STEP Consider all vertices which can be reached only from vertices of 

known potential; 

for each such vertex W, consider each arc VW into W, and assign W 

the label 

(potential of V) + (distance from V to W), 

unless W already has a larger label; 

when all such arcs VW have been considered, make the label at W a 

potential; 

repeat the GENERAL STEP with the new potentials. 

STOP when vertex T has been assigned a potential; this is the longest 

distance from S to T. 

LONGEST PATH(S) Work backwards from T and include an arc VW whenever 

(potential of W) — (potential of V) = (distance from V to W). 

The Tabular Method 

Just as with the shortest path algorithm, we can use a table to carry out the above calcu- 

lations. 

We label each column with a vertex of the network, and below each vertex we list 

those vertices from which the given vertex can be reached directly. At each stage we label 

the row in question with all those vertices whose potential is known. To complete each 
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4 

row, we consider the vertices reached only from these vertices of known potential, and 

we assign the labels as before. We then proceed to the next row. The following table 

corresponds to the above example: 

Vertices S A B G D T 

(S,B) (S) (S,B,D) (S) (A,C,D) 

s (0) RA eh 

S,B,D ‘al; 5 [5] 

Sep. © 

Thus, the longest distance from S$ to T is 13, and we can then find the longest path 

(SAT), as before. 
* 

8.4 SCHEDULING 

Suppose that we have a job to carry out (such as the building of a garage), and that this 

job can be divided into a number of smaller separate operations (such as laying the foun- 

dations, doing the wiring, putting on the roof, etc.). Several of these smaller operations 

can be performed simultaneously, whereas some will need to be completed before others 

can be started. It would therefore be useful if we could determine in advance which jobs 

should be performed at which times so that the entire job is completed in minimum time. 

The algorithm which solves this problem is one you have already met—the longest 

path algorithm. To see why it is relevant, let us return to our earlier network, redrawn as 

in the activity network at the beginning of the chapter. 

The vertex S denotes the start of the project, the vertex T denotes its termination, 

and the other vertices A, B, C, D represent intermediate stages, called events. The arcs 

SA, SB, ... represent the various activities to be carried out, and the number next to 

each one represents the time (in days) needed to complete the activity. The activity 

network shows which activities need to precede other ones; thus, the activities SA and 

BA must precede the activity AT. 

We have already seen that the longest path from S to T in this network is SAT, with 

total length 13. Since the activity SA (7 days) must precede the activity AT (6 days), these 
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two activities will take 13 days, quite apart from the rest. It turns out that all the other 

activities can be fitted into a 13-day schedule, and therefore that 13 days is the required 

minimum time to complete the entire project. Note also that if either of the activities SA 

and AT is subject to delay, then the entire project is delayed. Because of this, it is critical 

that the activities on the longest path SAT are completed on time, and the path is therefore 

referred to as a critical path. 

A similar situation holds in general. Any path of maximum length from S to T is a 

critical path which determines the completion time of the entire project. Any delay in an 

activity on a critical path leads to a delay in the project. By using the longest path 

algorithm, as described above, we can find these critical paths and thereby determine 

which activities must be kept on schedule if the project is to be completed on time. 

Is there any slack in the project? Although the activities on a critical path cannot be 

delayed, is there any flexibility in the scheduling of the other activities? In fact there is, 

as we now show. 

Consider the activity BC. The longest path from S to B is SB with length 4, so the earliest 

possible starting time for the activity BC is after 4 days. What is the latest possible time that 

it can start? Since the activity CT takes 3 days, the activity BC must be completed after 10 

days, so that it must start by 7 days. Thus activity BC can be started at any time between 4 

days and 7 days, giving 3 days flexibility; we say that the float time of activity BC is 3 days. 

Similarly, to find the float time of activity DC, we note that the earliest possible starting 

time is 7 days (corresponding to the path SD), and the latest possible starting time is 9 

days (leaving 4 days to reach T by either of the paths DCT or DT). Thus the float time of 

activity DC is 2 days. 

In general, it is not difficult to see that 

the earliest starting time for an activity XY is the length of the longest path 

from S to X; 

the latest starting time for an activity XY is 

(total time for the project) — (length of the longest path from X to T via XY). 

Thus we obtain the following table of float times for all of the activities. Using this table, 

we can easily see which activities must remain on schedule and which activities can be 

delayed if necessary; note that the float time of any activity in the critical path is 0. 

Activity SAP OSB ESC MSD = BAG BC DC *Ar-SC) pr 

Earliest 
starting time 

Latest 
starting time 

Float time 
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PROBLEMS 

The Shortest Path Algorithm 

©8.1. | Using the tabular method, find the shortest path from S to T in the following 

network: 

8.2. Using the tabular method, find the shortest path from S to T in the following 

network: f 

8.3.’ Find the shortest path from S to T in the following network: 

8.4. Find the shortest distance from S to each of the other vertices in the following 

weighted graph: 
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8.5. | A company has branches in five cities A, B, C, D, and E. The fares for direct 

flights between these cities are as follows: 

What is the cost of traveling between each pair of cities by the cheapest route? 

The Longest Path Algorithm 

8.6. Using the tabular method, find the longest path from S to T in the network of 

Problem 8.1. 

8.7. Using the tabular method, find the longest path from S to T in the network of 

Problem 8.2. 

8.8.' Find the longest path from S to T in the network of Problem 8.3. 

Scheduling 

©8.9. Regarding the network of Problem 8.1 as an activity network, construct a table 

giving the earliest and latest start times and float times of each activity. 

8.10. Regarding the network of Problem 8.2 as an activity network, find the float 
time of each activity. 

8.11.' Regarding the network of Problem 8.3 as an activity network, find the float 
time of each activity. 

68.12. Construct an activity network for the project specified by the information 
given in the following table. Determine the critical path and the float time for 
each activity: 

Activity 

Duration 

Predecessors a b b c,d Cal me; 

8.13.! Suppose that an activity network has a unique critical path. Show that this path 
consists of exactly those activities whose earliest and latest starting times coin- 
cide. 



CHAPTER 9 

CONNECTIVITY 

In this chapter we investigate the extent to which a given graph or digraph is connected. 

In particular, we discuss the question: How many edges do we need to remove from a 

given connected graph so that it becomes disconnected? This, and other similar 

questions related to connectivity, are important ones to consider when designing tele- 

communications networks, road systems, and other networks—for example, in a tele- 

communications network it is essential that the network should be operable if some of 

the links between the exchanges become damaged, or are blocked by other calls. 

9.1 EDGE-CONNECTIVITY 

In telecommunications networks, there are usually several different paths between any 

given pair of subscribers (vertices). In such a situation, it is important to know how 

many links (edges) can be broken without preventing a call being made between two 

subscribers. In order to answer this and similar questions, we need to investigate con- 

nected graphs a little further. 

Consider the following graphs: 

v De u y v yy v x 

(a) (b) (c) (d) 

169 
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Graph (a) can be split up into two components by removing one of the edges vw or 

VX} 

Graph (b) can also be disconnected by removing a single edge—edge vw; 

Graph (c) cannot be disconnected by removing a single edge, but the removal of two 

edges (such as uw and vw) disconnects it; 

Graph (d) can similarly be disconnected by removing two edges (uw and wx). 

Recall that a bridge is a single edge whose removal disconnects a graph, such as vw or 

vx in graph (a) or vw in graph (b). 

With these examples in mind, we define the cates connectivity of a graph as follows. 

DEFINITIONS. The edge-connectivity A(G) of a connected graph G is the smallest 

number of edges whose removal disconnects G. When (G) 2 k, the graph G is said to 

be k-edge-connected. 

Thus graphs (a) and (b) have edge-connectivity 1, and graphs (c) and (d) have edge- 

connectivity 2. All four graphs are 1-edge connected, and graphs (c) and (d) are 2-edge 

connected, but not 3-edge-connected. 

If we wish to disconnect a graph by removing edges from it, we usually have a choice 

of edges to delete. In view of this, it seems natural to consider ways of disconnecting a 

graph which do not involve ‘redundant edges’. 

Consider the following graph: 

We can disconnect G by removing the three edges uw, ux, and vx, but we cannot discon- 

nect it by removing just two of these edges. We can also disconnect G by removing the 

edges uw, wx, xz, and yz, but the edge yz is redundant here since we need remove only 

the edges uw, wx, and xz to disconnect G. A cutset is a set of edges in which no edge is 

redundant—such as {uw,ux,vx} or {uw,wx,xz}. 

DEFINITION. A cutset of a connected graph G is a set S of edges with the following 

properties: 

a. the removal of all the edges in S disconnects G; 

b. the removal of some (but not all) of the edges in S does not disconnect G. 

Note that two cutsets of a graph need not have the same number of edges. For example, 

in the above graph, the sets {uw,ux,vx} and {wy, xz} are both cutsets. Note also that the 

edge-connectivity M(G) of a graph G is simply the minimum number of edges in a cutset 

of G. 
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9.2 VERTEX-CONNECTIVITY 

We can also think of connectivity in terms of the minimum number of vertices which 

need to be removed in order to disconnect a graph. When we remove a vertex, we must 

also remove the edges incident to it: 

~ remove 

— 
v 

Consider again graphs (a)—(d): 

u w t x u x yu iy 

v x Uu y v y v x 

(a) (b) (c) (d) 

Graphs (a) and (b) can be disconnected by the removal of a single vertex (either v 

or w); 

Graph (c) can also be disconnected by removing just one vertex (the vertex w); 

Graph (d) cannot be disconnected by removing a single vertex, but the removal of two 

non-adjacent vertices (such as v and w) disconnects it. 

A cut-vertex is a single vertex whose removal disconnects a graph, such as v or w in 

graph (b) or w in graph (c). 

With these examples in mind, we define the connectivity (or vertex-connectivity) of a graph 

as follows. (We use the simpler terms connectivity and k-connected when there is no 

possibility of confusion with edge-connectivity and k-edge-connected.) 

DEFINITIONS. The connectivity (or vertex-connectivity) K(G) of a connected 

graph G (other than a complete graph) is the smallest number of vertices whose removal 

disconnects G. When «(G) = k, the graph is said to be k-connected (or k-vertex- 

connected). 

Thus graphs (a), (b), and (c) have connectivity 1 and graph (d) has connectivity 2. All 

four graphs are 1-connected, and graph (d) is 2-connected, but not 3-connected. 

The above definition breaks down if G is a complete graph, since we cannot then 

disconnect G by removing vertices. We therefore make the following definition: 
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DEFINITION. The connectivity «(K,) of the complete graph Kn is n—1.Whenn-1 2k, 

the graph K, is said to be k-connected. 

There is also a ‘vertex analog’ of the concept of a cutset. This is defined as follows. 

DEFINITION. A vertex-cutset of a connected graph G is a set S of vertices with the 

following properties: 

a. the removal of all the vertices in S disconnects G; 

b. the removal of some (but not all) of the vertices in S does not disconnect G. 

For example, we can disconnect the following graph by removing the two vertices u and 

x, but we cannot disconnect it by removing just one of these vertices. It follows that 

{u, x} is a vertex-cutset. 

Note that two vertex-cutsets of a graph need not necessarily have the same number of 

vertices. For example, in the above graph, the sets {u, x} and {y} are both vertex-cutsets. 

Note also that the connectivity «(G) of a graph G is simply the minimum number of 

vertices in a vertex-cutset of G. 

In the above example, you may have noted that the connectivity k(G) does not exceed 

the edge-connectivity A(G). This inequality holds for all connected graphs. 

THEOREM 9.1. For any connected graph G, 

K(G) < A(G) < &(G), 

where &(G) is the smallest vertex-degree in G. 

Proof If v is a vertex of degree 6(G), then G can be disconnected by removing all 

the 5(G) edges incident with v. It follows that A(G), the minimum number of edges whose 
removal disconnects G, cannot exceed 6(G). So we get A(G) < &(G). 

It remains to be shown that K(G) < A(G). Let G be a graph with edge-connectivity A. 

Then there is at least one set of A edges whose removal disconnects G into two 

components G; and G», as illustrated 



9.3 MENGER’S THEOREM FOR GRAPHS (EDGE-FORM) 173 

However, we can also remove these edges by removing at most A vertices, since we 

have only to remove one suitably chosen end-vertex from each of these A edges. It follows 

that the minimum number of vertices whose removal disconnects G cannot exceed 

A—that is, K(G) < A(G). [in the diagram above, we can disconnect the graph by removing 

the end-vertices a, b, and w; in this case, K(G) < A(G), since two of the A edges are incident 

with the same end-vertex w.)’(0 

Note that it is possible for both inequalities in Theorem 9.1 to be strict inequalities 

{that is, K(G) < A(G) < 6(G)]. For example, in the following graph, «(G) = 1, A(G) = 2, 

and 6(G) = 3: 

9.3 MENGER’S THEOREM FOR GRAPHS (EDGE-FORM) 

Here we discuss an important result which relates the above ideas to the number of ‘dis- 

joint paths’ between two vertices in a graph. This result is known as Menger’ s theorem. 

We start by defining disjoint paths in a graph. 

DEFINITIONS. LetGbe aconnected graph, and lets andt be vertices of G. An st-path 
is a path between s and t. Two or more st-paths are edge-disjoint if they have no edges 

in common, and vertex-disjoint if they have no vertices in common (apart from s and t). 

For example, in the graph 
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the paths sact and sbdt are both edge-disjoint and vertex-disjoint paths; 

the paths sact and sbct are neither edge-disjoint nor vertex-disjoint (since they have 

the edge ct in common); 

the paths sact and sbcdt are edge-disjoint, but not vertex-disjoint (since they have the 

vertex c in common). 

We also need the following definitions. 

DEFINITIONS. Let G be a connected graph, and let s and t be vertices of G. We say 

that certain edges separate s from t¢ if the removal of these edges destroys all paths 

between s and t. Similarly, we say that certain vertices separate s from t if the removal 

of these vertices destroys all paths between s and t. 

For example, in the graph 

the edges ac, bc, and bd separate s from ft, as do the edges sa, ac, bc, bd, and dt; 

the vertices b and c separate s from f¢, as do the vertices a, b, and d. 

Now we show how these ideas are related to those of edge-disjoint and vertex-disjoint 

st-paths. Before doing this in general, we motivate our discussion with three examples. 

Example 1: 

In this graph the single edge wx separates s from t. It follows that there cannot be two 
edge-disjoint st-paths, since all st-paths must include the edge wx. 

Example 2: 
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In this graph the two edges vx and wy separate s from ¢. It follows that there are at most 

two edge-disjoint st-paths, since all st-paths must include one of these edges. 

Example 3: 

In this graph the three edges ce, de, and df separate s from ¢. It follows that there are at 

most three edge-disjoint st-paths, since all st-paths must include one of these edges. 

More generally, consider a set of edges separating s from ¢ in an arbitrary connected 

graph. Since the removal of these edges destroys all paths between s and ¢, every st-path 

must include at least one of them. It follows that the maximum number of edge-disjoint 

st-paths cannot exceed the number of edges in this set. Since this applies to any set of 

edges separating s from ft, we have 

the number of edges in any set 

separating s from t. 

Since this is true for any set of edges separating s from ¢, it must be true for a set with 

the smallest possible number of edges. So 

the maximum number of the minimum number of edges 

edge-disjoint st-paths separating s from t. 

These two numbers are, in fact, always equal. This is the edge-form of Menger’s 

theorem for graphs, which may be stated formally 

the maximum number of 
lA 

edge-disjoint st-paths 

TAS 

MENGER’S THEOREM FOR GRAPHS (EDGE-FORM). Let G be a connected 

graph, and let s and be vertices of G. Then the maximum number of edge-disjoint st-paths 

is equal to the minimum number of edges separating s from t. 

It follows from Menger’s theorem that, if we can find k edge-disjoint st-paths and k 

edges separating s from ¢ (for the same value of k), then k is the maximum number of 
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edge-disjoint st-paths and the minimum number of edges separating s from t. Note that 

these k edges separating s from t necessarily form a cutset. It follows that, when looking 

for them, we need consider only cutsets whose removal disconnects G into two compo- 

nents, one containing s and the other containing ¢. 

We can use Menger’s theorem to obtain a result about edge-connectivity. Recall that 

the edge-connectivity A(G) of aconnected graph G is the smallest number of edges whose 

removal disconnects G. By Menger’s theorem, there are at least A(G) edge-disjoint paths 

between any given pair of vertices. Since G is k-edge-connected if and only if A(G) 2 k, 

we can restate this result. 

COROLLARY OF MENGER’S THEOREM FOR GRAPHS (EDGE-FORM). A 

connected graph G is k edge-connected if and only if any two vertices of G are connected 

by at least k edge-disjoint paths. 

9.4 SOME ANALOGS OF MENGER’S THEOREM 

We now present some analogs of Menger’s theorem, starting with Menger’s theorem for 

digraphs (arc-form), and continuing with the vertex-forms for both graphs and digraphs. 

Menger’s Theorem for Digraphs (Arc-form) 

Many of the concepts introduced earlier for graphs have analogs for digraphs. For exam- 

ple, the definitions that follow are almost identical to those given for graphs. 

DEFINITIONS. Let D be a connected digraph and let s and t be vertices of D. An 

st-path is a path from s to t. Two or more st-paths are arc-disjoint if they have no arcs 

in common, and vertex-disjoint if they have no vertices in common (apart from s and t). 

For example, in the digraph 

the paths sact and sbdt are both arc-disjoint and vertex-disjoint st-paths; 

the paths sact and sbct are neither arc-disjoint nor vertex-disjoint; 

the paths sact and sbcdt are arc-disjoint but not vertex-disjoint. 

We also say that certain arcs separate s from ¢ if the removal of these arcs destroys 
all paths from s to ¢. Similarly, we say that certain vertices separate s from ¢if the removal 
of these vertices destroys all paths from s to ¢. For example, in the above digraph, 
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the arcs ac, bc, and bd separate s from t, as do the arcs sa, ac, bc, bd, and dt; 

the vertices b and c separate s from t, as do the vertices a, b, and d. 

Using this terminology, we can state Menger’s theorem for digraphs: 

MENGER’S THEOREM FOR DIGRAPHS (ARC-FORM). Let D be a connected 

digraph and let s and t be vertices of D. Then the maximum number of arc-disjoint st-paths 

is equal to the minimum number of arcs separating s from t. 

As with Menger’s theorem for graphs, if we can find k arc-disjoint st-paths and k arcs 

separating s from t (for the same value of k), then k is the maximum number of arc-disjoint 

st-paths and the minimum number of arcs separating s from ¢. 

* 

Menger’s Theorem for Graphs (Vertex-form) 

We have seen how Menger’s theorem (edge-form) relates the number of edge-disjoint 

st-paths in a graph to the smallest number of edges separating s from ¢, and how this re- 

sult relates to edge-connectivity. We now state an analogous theorem for vertex-disjoint 

st-paths. This is the version of Menger’s theorem actually proved by K. Menger in 1927. 

The corollary was proved five years later by H. Whitney. The edge-form and arc-form of 

Menger’s theorem were proved in 1955 by L. R. Ford and D. R. Fulkerson. As before, 

we motivate our discussion with examples. 

Example 1: 

This graph has (vertex-)connectivity 1, and the vertex w separates s from t. It follows that 

there cannot be two vertex-disjoint st-paths, since all st-paths must include the vertex w. 

Example 2: 

This graph has connectivity 2, and the vertices d and e separate s from ¢. It follows that 

there are at most two vertex-disjoint st-paths, since all st-paths must include one of these 

vertices. 
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More generally, consider a set of vertices separating non-adjacent vertices s and ¢ in 

an arbitrary connected graph. Since the removal of these vertices destroys all paths 

between s and f, every st-path must include at least one of them. It follows that the 

maximum number of vertex-disjoint st-paths cannot exceed the number of vertices in 

this set. 

As with the edge-form of Menger’s theorem, these numbers are, in fact, equal. This 

is the vertex-form of Menger’ s theorem, which we state formally. 

MENGER’S THEOREM FOR GRAPHS (VERTEX-FORM). Let G be a con- 

nected graph and let s and t be non-adjacent vertices of G. Then the maximum number 

of vertex-disjoint st-paths is equal to the minimum number of vertices separating s from t. 

As before, it follows that, if we can find k vertex-disjoint st-paths and k vertices 

separating s from ¢ (for the same value of k), then k is the maximum number of 

vertex-disjoint st-paths and the minimum number of vertices in a vertex-cutset separating 

s from t. Note that these k vertices separating s from ft necessarily form a vertex-cutset. 

It follows that, when looking for them, we need consider only vertex-cutsets whose 

removal disconnects G into two or more components, one containing s and another 

containing f¢. 

We can also use this theorem to obtain a result about vertex-connectivity. 

COROLLARY OF MENGER’S THEOREM FOR GRAPHS (VERTEX-FORM). 
A connected graph G is k-connected if and only if any two vertices of G are connected 
by at least k vertex-disjoint paths. 

Menger’s Theorem for Digraphs (Vertex-form) 

Finally, for completeness, we present the vertex-form of Menger’s theorem for digraphs. 
This is almost identical to the vertex-form for graphs. 

MENGER’S THEOREM FOR DIGRAPHS (VERTEX-FORM). Let D be a 
connected digraph and let s and t be nonadjacent vertices of D. Then the maximum 
number of vertex-disjoint st-paths is equal to the minimum number of vertices separat- 
ing s fromt. 

9.5 THE PROOF OF MENGER’S THEOREM 

We now prove Menger’s theorem. We start by proving the arc-form for digraphs, and 
then show how the corresponding result for graphs follows immediately. Finally, we in- 
dicate how the vertex-forms for graphs and digraphs follow from the other versions. 

MENGER’S THEOREM FOR DIGRAPHS (ARC-FORM). Let D be a connected 
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digraph and let s and t be vertices of D. Then the maximum number of arc-disjoint st-paths 

is equal to the minimum number of arcs separating s from t. 

Proof We have already shown that the maximum number k of arc-disjoint st-paths 

cannot exceed the minimum number of arcs separating s from t. To show that these 

numbers are actually equal, we need to find a set S of k arcs separating s from t. 

Consider any set A of k arc-disjoint st-paths. Let X be the set of all vertices of D which can 

be reached from s by a path disjoint from those in A, and let Y be the remaining set of vertices. 

Then f must lie in Y, since if t were in X, then there would be another st-path, disjoint from 

the rest; this is impossible since A contains the maximum number of arc-disjoint st-paths. 

, : 

= xX@ a 
. < e 

We now let S be the set of arcs of D directed from a vertex v in X to a vertex w in Y. 

Any such arc must be included in a path in A, since otherwise w (as well as v) could be 

reached from s by a path disjoint from those in A, and w would have to be in X, rather 

than Y. By a similar argument, any arc directed from a vertex in Y to a vertex in X cannot 

be included in a path in A. So the number of arcs in S is equal to the number of paths in 

A—that is, S is a set of k arcs separating s from ¢, as required. 0 

We can now deduce Menger’s theorem for graphs (edge-form). 

MENGER’S THEOREM FOR GRAPHS (EDGE-FORM). Let G be a connected 

graph and lets andt be vertices of G. Then the maximum number of edge-disjoint st-paths 

is equal to the minimum number of edges separating s fromt. 

Outline of Proof We transform the graph G into a digraph D(G) by replacing each 

edge by two arcs, one in each direction, as indicated in the diagram 

a a 

Ss t —- Ss t 

b 

the graph G the digraph D(G) 

It can be shown that 

a. The maximum number of edge-disjoint st-paths in G is equal to the maximum 

number of arc-disjoint st-paths in D(G). 
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b. The minimum number of edges of G separating s from ¢ is equal to the 

minimum number of arcs of D(G) separating s from t. 

By Menger’s theorem for digraphs (proved above), the maximum number of arc-disjoint 

st-paths in D(G) is equal to the minimum number of arcs of D(G) separating s from ¢, 

and so the maximum number of edge-disjoint st-paths in G is equal to the minimum 

number of edges of G separating s from ¢, as required. 0) 

We can also deduce the vertex-form of Menger’s theorem for digraphs. 

MENGER’S THEOREM FOR DIGRAPHS (VERTEX-FORM). Let D be a 

connected digraph and let s and t be non-adjacent vertices of D. Then the maximum 

number of vertex-disjoint st-paths is equal to the minimum number of vertices separat- 

ing s from t. 

Outline of Proof We transform the digraph D into another digraph D’ by replacing 

each vertex v of D (other than s and f) by two vertices v, and v2 joined by an arc, as 

indicated by 

a C. a, a, Cy C5 

b 6, b, 

the digraph D the digraph D’ 

All arcs of D directed towards a vertex v become arcs of D’ directed towards the vertex 

v,, and all arcs of D directed away from v become arcs of D’ directed away from y). 

It is not difficult to see that two or more st-paths in D are vertex-disjoint if and only 

if the corresponding st-paths in D’ are arc-disjoint. Applying the arc-form of Menger’s 

theorem to D’, we obtain the vertex-form of Menger’s theorem for D. 0 

Finally, we can deduce the vertex-form of Menger’s theorem for graphs. 

MENGER’S THEOREM FOR GRAPHS (VERTEX-FORM). Let G be a con- 
nected graph and lets and t be non-adjacent vertices of G. Then the maximum number of 
vertex-disjoint st-paths is equal to the minimum number of vertices separating s from t. 

Outline of Proof This form of Menger’s theorem is deduced from the vertex-form 
for digraphs in the same way as the edge-form for graphs is deduced from the arc-form 
for digraphs—namely, by considering the digraph D(G). 0 
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PROBLEMS 

Edge-connectivity and Vertex-connectivity 

69.1. | Write down the values of k(G) and A(G) for each of the following graphs G: 

, t w u v Ww 

AK eR 

% v y x y Zz 
y x 

(a) (b) (c) 

Which of these graphs are 2-connected? Which are 3-connected? Which are 

2-edge-connected? Which are 3-edge-connected? 

9.2. Write down the values of k(G) and A(G) for each of the following graphs G: 

(a) (b) (c) 

Which of these graphs are 2-connected? Which are 3-connected? Which are 

2-edge-connected? Which are 3-edge-connected? 

9.3. Find x(G) and 1(G) for each of the following graphs G: 

(a) (b) (c) 

69.4. Which of the following sets of edges are cutsets of the following graph G? 

a. {su,sv}; { ux,Vx,wXx,yZ}; e. {wx,xz,yz}; c. 

b. {ux,wx,yz}; d. {yt}; f. {uw,wx,wy}. 
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In the Petersen graph, find a cutset with 

a. three edges; 

b. four edges; 

c. five edges; 

d. six edges. 

Which of the following sets of vertices are vertex-cutsets of the graph in Prob- 

lem 9.4? 

ae 1Uview Datywit ec. (uy) dd Wiz). 

Give an example (if it exists) of a graph G for which 

a. K(G) =2, MG) =3, 6G) = 4, 
b. «(G) = 3, MG) = 2, &(G) = 4; 

Cuek(G)= 2; AG) =2, 0G) =—4. 

Find a 4-connected graph with eight vertices and sixteen edges. 

Menger’s Theorem 

59.9, 

9.10. 

Consider the following graph: 

Write down 

a. three edge-disjoint st-paths; 

b. two st-paths that are edge-disjoint, but not vertex-disjoint; 

c. two vertex-disjoint st-paths. 

Does this graph contain three vertex-disjoint st-paths? 

Consider the following graph: 

a. Write down three edge-disjoint st-paths. 

b. Write down a set of three edges separating s from f. 

c. What is the maximum number of edge-disjoint st-paths? 

Give a brief reason for your answer. 
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9.11. 

69.12. 

9.13. 

9.14. 

9:15. 

a. Prove that if two st-paths in a graph are vertex-disjoint, then they must also 
be edge-disjoint. 

b. Give an example of a graph in which no two edge-disjoint st-paths are 
vertex-disjoint. 

By finding k edge-disjoint st-paths, and k edges separating s from ¢ (for the 
same value of k), and using the edge-form of Menger’s theorem, find the maxi- 
mum number of edge-disjoint st-paths for each graph 

a Cc v x u Ww yp 

Yo << Yo 
5 d w y v 8 Zz: 

(a) : (b) (c) s 

By finding & arc-disjoint st-paths, and k arcs separating s from ¢ (for the same 
value of k), and using the arc-form of Menger’s theorem, find the maximum 
number of arc-disjoint st-paths for each digraph 

v x a d 

te (bo) 

By finding k vertex-disjoint st-paths, and k vertices separating s from ¢ (for the 
same value of k), and using Menger’s theorem for digraphs (vertex-form), find 
the maximum number of vertex-disjoint st-paths for the digraph 

a. By finding k arc-disjoint st-paths, and k arcs separating s from ¢ (for the 
same value of k), find the maximum number of arc-disjoint st-paths for the di- 
graph 

b. Using similar reasoning, find the maximum number of vertex-disjoint st- 
paths. 
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9.16. 

9.17. 

9.18. 

9.19." 
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By finding k vertex-disjoint st-paths, and k vertices separating s from ¢ (for the 

same value of 4), and using the vertex-form of Menger’s theorem, find the 

maximum number of vertex-disjoint st-paths for the graph 

Consider the following graph G: 

Find 

a. the maximum number of vertex-disjoint paths between v and w; 

b. the maximum number of edge-disjoint paths between v and w. 

Consider the complete bipartite graph K, 7, and let v be any vertex in the set 

with five vertices and w be any vertex in the set with seven vertices. Find 

a. the maximum number of vertex-disjoint paths between v and w; 

b. the maximum number of edge-disjoint paths between v and w. 

Verify both the edge-form and the vertex-form of Menger’s theorem for the 

Petersen graph, for all possible choices of the vertices s and t. 



CHAPTER 10 

TREES 

In Chapter 3 we showed how tree structures arise in many different contexts, ranging 
from chemistry to linguistics. We now obtain several results on the properties of trees, 

and then turn our attention to some common algorithms associated with trees. We divide 

these into three types: 

1. Algorithms for searching and labeling parts of a given tree; 

2. Algorithms for constructing various types of tree; 

3. Algorithms for counting trees of a particular type. 

10.1 MATHEMATICAL PROPERTIES OF TREES 

For the mathematician, the interest and importance of trees arises from the fact that in 

many ways a tree is the simplest non-trivial type of graph, and has several pleasing prop- 

erties—for example, any two vertices are connected by exactly one path. In trying to 

prove a general result or test a general conjecture in graph theory, it is sometimes conve- 

nient to start by trying to prove the corresponding result for a tree. There are several con- 

jectures which have not been proved for arbitrary graphs, but which are known to be true 

for trees. 

We start by recalling the definition of a tree. 

DEFINITION. A tree is a connected graph which contains no cycles. 

For example, the following diagram depicts all the trees with at most six vertices: 

185 
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n=1e n=2 eo n=3 @<e3@ 

n=4 eee A n=Seeeee eo? oo 

Suppose we now consider the following tree with six vertices: 

see 
By adding an edge joining a new vertex to an existing one, we can obtain a tree with 

seven vertices. This is a general procedure for increasing the size of a tree, since it cre- 

ates no cycles and can be carried out systematically by adjoining the new edge to each 

vertex in turn. For example, we obtain the SE trees with seven vertices from the 

above tree: 

en fe ts 
si maeeuee 

(e) (f) 

We can omit tree (f) from this list, since it is isomorphic to tree (a), and so we get five 

trees with seven vertices from our original tree with six vertices. The difficulty of pro- 

ducing trees in this way is in recognizing duplicates, but at least we know that each tree 

with seven vertices must be obtained at least once from some tree with six vertices. 

Starting with the tree with just one vertex, we can build up any tree we wish by 

successively adding a new edge and a new vertex. At each stage the number of vertices 

exceeds the number of edges by 1, so that 

every tree with n vertices has exactly n—1 edges. 
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At no stage is a cycle created, since each added edge joins an old vertex to a new one. It 
follows that 

any two vertices in a tree are connected by exactly one path. 

There is at least one path, because at each Stage the tree remains connected, and there is 
at most one, because if there were two or more paths joining two given vertices, these 
paths would contain a cycle (and possibly other edges as well). 

In particular, any two adjacent vertices are connected by exactly one path—namely, 
the edge joining them. If this edge is removed, then there is no path between the two 
vertices. Therefore, 

each edge of a tree is a bridge. 

Moreover, 

the addition of an edge between any two vertices of a tree creates exactly one cycle. 

This is because any two vertices v and w are connected by just one path, and the addition 
of the edge vw produces a single cycle—the cycle consisting of the path and the edge vw. 

Several of the properties just obtained can be used as alternative definitions of a tree. 
In the following theorem we state six of these alternative definitions. They are all 
equivalent: any one of them can be taken as the definition of a tree, and the other five 
can then be deduced. We leave you to check this if you wish (see Problem 10.3). 

THEOREM 9.1. Let T be a graph with n vertices. Then the following statements are 
equivalent: 

a. Tis connected and contains no cycles; 

b. Tis connected and has n-| edges; 

c. T has n-—1 edges and contains no cycles; 

d. Tis connected and each edge is a bridge; 

e. any two vertices of T are connected by exactly one path; 

f. T contains no cycles, but the addition of any new edge creates exactly one 
cycle. 

10.2 SPANNING TREES 

Later in this chapter we shall need the concept of a spanning tree. Recall the definition of 
a Spanning tree in a connected graph. 

DEFINITION. Let G be a connected graph. A spanning tree in G is a subgraph of 

G that includes all the vertices of G and is also a tree. The edges of the tree are called 

branches. 
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For example, the following diagram illustrates a graph and three of its spanning trees: 

v w v Ww v Ww v Ww 

rf eS vn anes Zou ty mex Za ae 

a graph G spanning tree spanning tree spanning tree 

For any connected graph G, we can find a spanning tree systematically by using either 

of two methods. 

Cutting-down Method We start by choosing any cycle in G and removing one of its 

edges. (If there are no cycles, the graph G is itself a spanning tree.) Since we cannot 

disconnect a graph by removing just one edge from a cycle, we still have a connected 

graph. We now repeat this procedure until there are no cycles left; this gives our spanning 

tree. For example, from the above graph G, we can remove the edges 

vy (destroying the cycle vwyv), 

yz (destroying the cycle vwyzyv), 

xy (destroying the cycle wxyw). 

We thus obtain the second of the above spanning trees. 

Building-up Method We select edges of G one at a time in such a way that no cycles 

are created, and repeat this procedure until all vertices are included. For example, in the 

above graph G, we can choose the edges vz, wx, xy, and yz; then no cycles are created, 

and we obtain the first of the above spanning trees. 

10.3 CENTERS AND BICENTERS 

When proving results involving trees, we frequently find it convenient to start at the 

middle of a tree and move outwards, building up the tree as we proceed. This was the ap- 

proach used by Arthur Cayley in the 1870s when he counted the number of chemical 

molecules with a given formula by building them up step by step. More recently, the 

concept of a balanced tree has been used in computing, where we build up a tree in such 

a way that the various subtrees emerging from each vertex are “balanced’—that is, they 

involve the same number of vertices. But what do we mean by the ‘middle’ of a tree? For 

some trees this is easy to define. 
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However, how do we define the ‘middle’ of the following trees? 

There are at least two possible an$wers to this question: 

Method I Remove all the vertices of degree 1, together with their incident edges; re- 

peat this as often as you can until you obtain either a single vertex (the center) or two 

vertices joined by an edge (the bicenter). 

A tree with a center is called a central tree, and a tree with a bicenter is called a 

bicentral tree. Every tree is either central or bicentral, but not both. 

Examples: A central tree with center e. 

Method2 For each vertex v of degree 2 or more, count the number of vertices in each 

of the subtrees emanating from v, and let n, be the maximum of these numbers. If the tree 

has n vertices, it can be shown that either there is just one vertex v for which n, 3(n-l) 

(the centroid), or there are two adjacent vertices v and w for which n, = n,, = <n (the 1 

2 

bicentroid). 
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We can think of the centroid or bicentroid as the ‘center of gravity’ of the tree. A tree 

with a centroid is called a centroidal tree, and a tree with a bicentroid is called a 

bicentroidal tree. Every tree is either centroidal or bicentroidal, but not both. 

Examples: n.=4,n,= 4, n=5, and n, = 6, so we have a bicentroidal tree with bicentroid ce. 

10.4 COUNTING TREES 

How many chemical molecules are there with the formula C,H;,? How many irrigation 

canal systems are there linking five locations with four canals? How many architectural 

floor plans are there satisfying certain given properties? 

We can reduce many such problems to that of determining the number of trees with 

a particular property. For example, we saw in Chapter 3 that the first problem reduces to 

that of determining the number of trees with eight vertices, each of which has degree not 

exceeding 4. Since many standard tree-counting problems have been solved, we can 

sometimes use the results to deduce the solution of our original problem. 

In general, counting problems for labeled graphs are much easier to solve than their 

analogs for unlabeled graphs; in fact, there are certain types of graph for which the former 

problem has been solved while the latter problem remains unsolved. However, the 

problems of counting the labeled and unlabeled trees have both been solved, although 

the former problem is easier to solve than the latter one. The following table lists the 

numbers of unlabeled and labeled trees with n vertices, for n < 10. 

n a2 eS 4 5 6 7 8 9 10 

unlabeled trees 1 1 1 D; 3 6 11 2S 47 106 

labeled trees ee 3 16 125 .1296 16807 262144 4782969 10° 

Using this table, it is easy to guess that there are exactly n”* labeled trees with n 
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vertices. This fact is known as Cayley’ s theorem. We outline a proof of this result, which 
is due to H. Priifer and involves the construction of a one-to-one correspondence between 
labeled trees with n vertices and sequences of n—2 numbers (called Priifer sequences). 

We assume that n > 3, since the result is clearly true if n = 1 or 2. 

First we describe Priifer’s construction. 

Priifer’s Construction We construct a one-to-one correspondence between the set of 

labeled trees with n vertices and the set of all sequences of the form (a, a, a3, .. . , An-2), 

where each q; is one of the integers 1, 2, 3,.. . , m (allowing repetition). In order to obtain the 

required one-to-one correspondence, we take a labeled tree with n vertices and apply three 

steps. 

STEP 1 Look at the vertices of degree 1 and choose the one with the smallest label. 

STEP 2 Look at the vertex adjacent to the one just chosen and place its label in the 

first available position in the sequence. 

STEP 3 Remove the vertex chosen in STEP | and its incident edge, leaving a smaller 

tree. 

Repeat STEPS 1-3 for the remaining tree, continuing until there are only two vertices left. 

By the time this happens, the required Priifer sequence will have been constructed. 

Example: Consider the labeled tree 

STEP 1 The vertices of degree | are vertices 3, 2, 4, and 7; the one with the smallest 

label is vertex 2. 

STEP 2 The vertex adjacent to vertex 2 is vertex 6, so the sequence starts with 6. 

STEP 3 Removal of the vertex 2 and the edge 26 leaves. 

STEP 1 The vertices of degree | are vertices 3, 4, and 7; the one with the smallest 

label is vertex 3. 

STEP 2 The vertex adjacent to vertex 3 is vertex 6, so the next term in the sequence 

is 6. 

STEP 3. Removal of the vertex 3 and the edge 36 leaves the tree 
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5 

Continuing in this way, we successively remove the edges 45, 65 and 51, and obtain the 

Priifer sequence (6,6,5,5,1). 

In order to obtain the reverse correspondence, we take a Priifer sequence and apply 

three steps. 

STEP 1 Draw the n vertices, labeling them from 1 to n and make a list of the 

numbers from 1 to n. 

STEP 2. Find the smallest number that is in the list but not in the Priifer sequence, 

and also find the first number in the sequence; then add an edge joining the 

vertices with these labels. 

STEP 3 Remove the first number of STEP 2 from the list and the other number of 

STEP 2 from the sequence, leaving a smaller list and sequence. 

Repeat STEPS 2 and 3 for the remaining list and sequence, continuing until there are only 

two labels left in the list. Finally, join the vertices with these labels. 

Example: Consider the Priifer sequence (6,6,5,5,1). 

STEP 1 Since the sequence contains 7 — 2 = 5 numbers, we 

start with the list (1,2,3,4,5,6,7), and draw the 

vertices 1 to 7 as shown. 7e @3 

e— er 

6e e4 

ne 

STEP 2 The smallest number in the list but not in the 1 2 

sequence is 2, and the first number in the sequence 

is 6, so we add an edge joining the vertices 2 and 7e @3 

6. 

STEP 3 Removal of the number 2 from the list, and the 

number 6 from the sequence, leaves the list 

(1,3,4,5,6,7) and the sequence (6,5,5,1). 

STEP 2 The smallest number in the new list which is not 1 2 

in the new sequence is 3, and the first number in 

the new sequence is 6, so we add an edge joining Je 3 

the vertices 3 and 6. 

ne 
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STEP 3 Removal of the number 3 from the list, and the 

number 6 from the sequence, leaves the list 

(1,4,5,6,7) and the sequence (5,5,1). 

Continuing in this way, we successively add edges joining the ver- 1 2 

tices 4 and 5, 6 and 5, and 5 and 1. The list is now (1,7), and we join 

the vertices with these labels. This gives the labeled tree shown on 7 3 

the right. 

Note that this labeled tree obtained from the Priifer sequence (6,6,5,5,1) is the same 

as the labeled tree which earlier gave rise to this sequence. This happens in general—if 

you start with any labeled trée, find the corresponding Priifer sequence, and then find the 

labeled tree corresponding to this sequence, you should get back to the original tree. This 

gives the required one-to-one correspondence: 

labeled tree Priifer sequence 

CAYLEY’S THEOREM. The number of labeled trees with n vertices is n"”. 

Proof (H. Priifer, 1918) We construct the above one-to-one correspondence 

between the set of labeled trees with n vertices and the set of all sequences of the form 

(a1, a2, a3, ..-., Anz), where each a; is one of the integers 1, 2, 3, ..., n (allowing 

repetition). Since there are exactly n possible values for each number a;, the total number 

of possible sequences is n”’. The result follows immediately. 0 

10.5 SEARCHING TREES 

A problem which frequently arises in practice is that of searching through some given 

tree structure in a systematic way. For example, a computer file is often organized as a 

tree-like data-structure in some form of random-access memory (RAM), and a system- 

atic tree search is necessary whenever a particular piece of information is required. In 

practice, this usually involves examining every part of the tree until the desired vertex or 

edge is found; in order to avoid unnecessary wastage of time and processing resources, 

we need a search technique which is guaranteed to visit all parts of the tree eventually 

without visiting any particular vertex too often. 

There are two well-known search methods, which differ in the pattern of search they 

employ. They are usually known as depth-first search (DFS) and breadth-first search 

(BFS). Each of these methods lists the vertices as they are encountered, and indicates the 

direction in which each edge is first traversed. The methods differ only in the way in 

which the vertex-lists are constructed. No good rule can be given as to which search 
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method should be used for a particular problem. Both are in widespread use, but each 

method has its advantages and disadvantages, depending on the problem in hand. 

Although our discussion here is introduced in the context of trees, both methods can easily 

be applied to more general types of graph. In such applications, they effectively search 

the graph by searching through all the vertices of an appropriate spanning tree. 

Depth-first Search (DFS) 

The basic idea of depth-first search is to penetrate as deeply as possible into a tree before 

fanning out to other vertices. 

Example: Consider the following tree: 

In order to perform a depth-first search starting at the vertex a, we start by choosing any 

vertex adjacent to a (b, say), then any vertex adjacent to b (d, say), and so on. At each 

stage, we choose a vertex not previously used, if it is possible to do so. We number the 

vertices as we go. Thus, we may start by assigning to a, b, d, and i the labels 1, 2, 3, and 

4, respectively. Once we have reached i, since there are no new vertices to go to we are 

stuck. We must therefore backtrack to d, from which we can go to /, assigning it label 5. 

Backtracking to d again takes us to k, to which we assign label 6. We now have to back- 

track via d to b, from which we can go to e, assigning it label 7. Backtracking to a takes 

us to c, f, and /, and (eventually) to g and h. (In choosing which adjacent vertex to take at 

each stage, we have selected the left-hand one in every case, although it is not necessary 

to be so systematic.) This gives us the labeled tree 

labelled tree wall diagram 
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Another way of obtaining this labeling is to regard the tree as a solid wall, and to walk 

around it, always keeping the wall on our left-hand side. Whenever we reach a new vertex, 

we give it the next label, as shown in the above diagram. A similar idea arises in computer 

programming, where we sometimes use a binary tree to represent an arithmetic expres- 

sion. For example, the expression a+{(b—c)xd} can be represented by the following tree; 

we retrieve this expression by walking around the tree, writing each vertex as we walk 

underneath it: 

The above procedures can be extended to any connected graph, as the following 

example shows. 

Example: Consider the graph: 

d h 

We can perform a depth-first search on this graph by starting at a, going to b, c, and d, 

backtracking to c, going to e, f, and g, backtracking to f, going to h, and returning to a. 

This gives us the labeling 

Note that we have marked with an arrow those edges we used when going to each new 

vertex. These edges form a spanning tree, called a DFS spanning tree. 
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A practical example of the use of depth-first search is the search for flow-augmenting 

paths in a capacitated network, as explained in the companion volume on Networks. 

Breadth-first Search (BFS) 

The basic idea of breadth-first search is to fan out to as many vertices as possible before 

penetrating deep into a tree. This means that we visit all the vertices adjacent to the cur- 

rent vertex before going on to another one, as the following example shows. 

Example: Consider the tree 

In order to perform a breadth-first search starting at the vertex a, we start by visiting the 

vertices b and c that are adjacent to a. We then visit the vertices d and e adjacent to b, 

and the vertices f, g, and h adjacent to c. If we label each new vertex as we come to it, we 

eventually obtain the following labeling of the vertices (the DFS labeling is shown for 

comparison): 

w) 10 11 12 

breadth-first search depth-first search 

Note that if the vertices are laid out in horizontal ‘levels’, as in this example, then in a 

breadth-first search we must complete each level before proceeding to the next one. 

The above procedure can be extended to any connected graph, as the following 

example shows. 
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Example: Consider the graph 

We can perform a breadth-first search on this graph by starting at a, visiting the vertices 

b and d adjacent to a, visiting the vertex c adjacent to b, and so on. This gives us the 

labeling 

2 OW Pa 

Note that we have marked with an arrow those edges we used when going to each new 

vertex. These edges form a spanning tree, called a BFS spanning tree. 

A practical example of the use of breadth-first search is the shortest path algorithm 

(discussed in Chapter 8). 

10.6 CONSTRUCTING TREES 

There are two types of situation in which a tree-growing algorithm is useful. One of 

these involves problems in which we wish to construct large trees from smaller ones. As 

we saw earlier in this chapter, we can do this by taking the smaller tree and repeatedly 

adding a vertex and edge to it in all possible ways, removing duplicates as they occur. 

The second type of situation is more complicated, and arises when we need to find a par- 

ticular kind of spanning tree in a given graph. A typical example of this kind is the mini- 

mum connector problem, which we now discuss. 

The Minimum Connector Problem 

Suppose that we wish to build an irrigation canal system connecting a number of given 

locations. The cost of digging and maintaining each canal is known, except that some 

pairs of locations cannot be joined by a canal for geographical or political reasons (for 

example, a gorge or a politically inviolate area). How do we design a canal system 

which connects all the locations at minimum possible total cost? 
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This problem can be interpreted in two different ways, depending on whether or not 

we allow extra ‘locations’ where canals may intersect. For example, in the case of the 

canal system shown below, we may be able to reduce the total cost by creating an extra 

location at the point E£, and linking it to A. 

canal system system with extra location E 

Unfortunately, for many minimum connector-type problems, the cost of inserting an 

extra location (which may be a telephone exchange or power station) can greatly exceed 

the possible saving in cost, and the resulting mathematical analysis becomes rather 

complicated. In view of this, we adopt the second interpretation of the problem and 

assume that each connection joins two existing locations. 

We can represent the minimum connector problem graphically by taking the locations 

as vertices and the canals as edges, giving us a weighted graph. The problem is then to 

find a subgraph of minimum total weight, passing through each vertex. Note that such a 

subgraph must always be a spanning tree, because if there is a cycle then we can lower 

the total cost by removing any one of its edges. 

16 
A B 4 = B 

20 25 20 

D , D ; 
10 c 10 : 

graph minimum spanning tree 

In our example, the graph has total weight 71. Removal of any one of the edges in the 
cycle BCD lowers the total weight, and gives us a spanning tree. Clearly, the spanning 
tree of minimum total weight is obtained by removing the edge BC, and the minimum 
total cost is, therefore, 16 + 20 + 10 = 46. 

DEFINITION. Let T be a spanning tree of minimum total weight in a connected 
weighted graph G. Then T is a minimum spanning tree (or a minimum connector) of 
G, and its weight is denoted by W(T). 
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We can now restate the minimum connector problem in graphical terms. 

The Minimum Connector Problem Given a weighted graph, find a minimum span- 

ning tree in it. 

A construction that works for the minimum connector problem is known as the greedy 

algorithm, or as Kruskal’ s algorithm, it first appeared in a Czech paper by Boruvka in 1928. 

THE GREEDY ALGORITHM: 7o construct a minimum spanning tree in a con- 

nected weighted graph G, successively choose edges of G of minimum weight in sucha 

way that no cycles are created. 

The name ‘greedy algorithm’ arises from the fact that at each stage we make the 

greediest choice available (that is, the edge involving the smallest weight) with no 

concern for what is happening elsewhere in the graph. Algorithms of this kind do not 

usually succeed in practice, but this is one algorithm which does, as we show below. 

We illustrate the use of this algorithm by finding a minimum spanning tree in the 

weighted graph 

ye 

First choice | We choose an edge of minimum weight, this is AE A 

with weight 2. a 

E 

Second choice We choose an edge of next smallest weight, this is A 

either AC or CE with weight 4. Let us choose CE. 2 

iB, 
4 

G 

Third choice We cannot now include AC in the tree, since it A 

would create a cycle (ACEA), so we choose an 2 

edge of next smallest weight; this is BC with E , B 

weight 5. 5 

G 

Fourth choice The edges of next smallest weight are AB and BE 

with weight 6. Since either of these would create a 

cycle (ABCEA or BCEB), we choose instead the 

edge DE with weight 7. 
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This completes the spanning tree, which is a minimum spanning tree of weight 18. 

(Note that if we had chosen the edge AC at the second stage, rather than the edge CE, 

then we should have obtained a different spanning tree, but its weight would still be 18.) 

We now prove that the greedy algorithm works. 

Proof of the Greedy Algorithm Let G be a connected graph with n vertices. Let T be 

a graph that results from applying the algorithm. By the way in which T was constructed, 

it has no cycles. Also, T is connected, since otherwise we could add another edge of G 

without creating a cycle. Also, T contains every vertex of G, since if it did not contain 

the vertex v, then we could add an edge incident with v without creating a cycle. 

Therefore, T is a spanning tree in G. 
We must show that J is a minimum spanning tree of G. We do this by contradiction. 

Suppose that S is a spanning tree in G of smaller total weight than T; that is, W(S) < W(T). 

Let e be the edge of smallest weight lying in T but not in S, and consider the subgraph 

obtained by adding e to S. 

By adding the edge e to S we create a cycle C containing e. Since this cycle must 

contain an edge e’ not contained in T, it follows that the subgraph obtained from S 

on replacing e’ by e¢ is still a spanning tree (S’, say). By the construction of T, the 
weight of e cannot exceed the weight of e’; so W(S’) < W(S), and S’ has one more 

edge in common with T than S. It follows, on repeating this procedure, that we can 

change S into T, one step at a time, with the weight decreasing at each stage. This 

shows that W(T) < W(S), contradicting the definition of S. This contradiction estab- 

lishes the result. 0 

Although the greedy algorithm can easily be applied by hand when the graph is small, 

it is not particularly well suited for efficient computer implementation, owing to the need 

to arrange the edges in order of ascending weight, and the need to recognize cycles as 

they are created. Both of these difficulties can easily be overcome by a slight modification 

of the above algorithm; the result is known as Prim’s algorithm. 

Prim’s Algorithm To construct a minimum spanning tree T in a connected weighted 
graph G, build up T step by step by 

a. putting an arbitrary vertex into T; 

b. successively adding edges of minimum weight joining a vertex already in T 

to a vertex not in T. 

The advantage of Prim’s algorithm is that we can operate directly on the table of 
weights rather than on the graph itself. If the graph is large, this makes the method more 
suitable for computer implementation. All we need to do is to delete a row of the table 
whenever the corresponding vertex is placed in T, and then choose the smallest entry 
in the column corresponding to vertices in 7. The following example illustrates the 
method. 

Example: We use Prim’s method to find a minimum spanning tree in the weighted graph 
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First choice 
We choose any vertex (say, 

B) and put it into T. 

eB 

Second choice 

BC is the edge of minimum 

weight joining B to other 

vertices. Put the edge BC 

and the vertex C into T. 

B 

5 

C 

Third choice 

CA and CE are the edges of 

minimum weight joining B 

and C to other vertices. 

Choose one of these (say 

CA), and put the edge CA 

and the vertex A into T. 

A 

Ww 

Delete row B from the table 
of weights. Look for the 

smallest entry in column B. 

The smallest entry in col- 

umn B occurs in row C, so 

delete row C. Look for the 

smallest entry in columns B 

and C. 

The smallest entry in col- 

umns B and C occurs in 

rows A and E. Choose one of 

these (say, A), and delete 

row A. Look for the smallest 

entry in columns A, B, and 

CG 

201 
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Fourth choice 

AE is the edge of minimum The smallest entry in col- 4 BEG DEE 

weight joining A, B, and C to umns A, B, and C occurs in 

other vertices. Put the edge TOW, sodeleterowE.Look DI! 8 SOs 

AE and the vertex F into T. for the smallest entry in col- 

umns A, B, C, and E. 

Fifth choice 
ED is the edge of minimum The smallest entry in col- 

weight joining A, B, C, and umns A, B, C, and E occurs 

E to D. Put the edge ED and in row D, so delete row D. 

the vertex D into T. 

This completes the spanning tree, which is a minimum spanning tree of weight 18. 

Application to the Traveling Salesman Problem 

In Chapter 7 we described the traveling salesman problem, in which a salesman wishes 

to visit a number of cities and return to the starting-point, covering the minimum possi- 

ble total distance on the way. In view of the simple nature of the greedy algorithm for 

solving the minimum connector problem, we might hope that there is a simple algorithm 

for solving the traveling salesman problem as well. Unfortunately, no such algorithm is 

known. We could, of course, try all possible Hamiltonian cycles and simply choose one 

with the smallest total weight, but this is a hopeless task, even on a computer, unless the 

number of vertices is very small. For a job-sequencing problem involving (say) 100 

jobs, there would be 100! (= 9.3 x 10'°’) sequences to be considered, and no method 
along these lines would be worth attempting. 

In view of this, we are forced to look for approximate solutions to the problem. One 
method, which often works well in practice, is to find a ower bound for the minimum 
weight Hamiltonian cycle by solving the minimum connector problem instead! To justify 
this method, we argue as follows: 
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If we take a minimum-weight Hamiltonian cycle in a weighted complete graph, and 
remove a vertex A and its incident edges, we get a path passing through the remaining vertices. 
Such a path must be a spanning tree for the complete graph formed by these remaining 
vertices, and the weight of the Hamiltonian cycle is obtained by adding the weight of this 
spanning tree to the weights of the two edges incident to A. We can therefore obtain a lower 
bound for the solution of the traveling salesman problem by adding the weight of a minimum 
spanning tree joining those vertices to the two smallest weights of edges incident to A. 

Example: Consider the weighted graph 

Doma 

If we remove the vertex A, then the remaining weighted graph has the four vertices B, C, 

D, and E. 

A 
2 

Eq—_> —_»p E BE ; EY — Py form, 
DF ¢ Dae Cc 

The minimum-weight spanning tree joining these four vertices is the tree whose edges 

are BC, CE, and ED, with total weight 16. The two edges of smallest weight incident to 

A are AE and AC, with total weight 6. The required lower bound for the traveling sales- 

man problem is therefore 16 + 6 = 22. 

A better lower bound is obtained by removing the vertex D. In this case, the remaining 

weighted graph has the four vertices A, B, C, and E, and there are two minimum-weight 
spanning trees joining these vertices, each with total weight 11. 

Lee ee BE 
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The two edges of smallest weight incident to D are DE, and DA or DB, with total weight 

15. The required lower bound for the traveling salesman problem is therefore 11 + 15 = 26. 

A little experimentation will show you how good this second lower bound is: the solution of 

the traveling salesman problem is given by the cycle ACBDEA with total weight 26, so that 

removing the vertex D actually gives the correct answer in this case. 

We can also find an upper bound for the minimum-weight Hamiltonian cycle. One 

method is to choose any cycle, and calculate its total weight. alternatively, we can 

perform a depth-first search on a minimum spanning tree, giving a closed walk which 

visits each vertex at least once, so that the total distance traveled equals or exceeds the 

solution of the traveling salesman problem. But if we perform a depth-first search on a 

minimum spanning tree, we cover each edge of the tree exactly twice and travel a total 

distance equal to twice the weight of the tree. It follows that the solution of the traveling 

salesman problem is at most twice the solution of the minimum connector problem. The 

upper bound for the above example is 2 x 18 = 36. 

We can improve this upper bound considerably by taking ‘short cuts’ wherever 

possible. For example, if in the above example we go directly from D to C, and from B 

and A, then we reduce the upper bound from 36 to 29. 

10.7 THE KNAPSACK PROBLEM 

We conclude this chapter by solving a problem related to scheduling. Suppose that we 

have a container in which to pack a number of items of various sizes, and that each item 

has a value associated with it as well as a size. Which items should we choose to pack in 
the container so that the total value is as large as possible? This problem is called the 

knapsack problem, since it may be formulated in the following terms. 

The Knapsack Problem A hiker is planning a trip, but has a knapsack that can accom- 

modate only a certain total weight. There are a number of items the hiker wishes to take 

along, each of which has a particular value for the trip. Which items should be packed so 

that the total value is a maximum, subject to the weight restriction? 

A more practical interpretation of this problem is the following: 

A company has a certain limited resource which can be used for a number of 

applications. Each application has a certain value, and uses a certain amount of the 
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‘ 

resource. Which applications should be chosen so that the greatest total value is obtained 

from the use of the resource? 

The technique we give for solving the knapsack problem is called the branch-and- 

bound method, and involves a search through a tree of possible solutions. We explain 

how this method works in the context of the following example. 

Example: Suppose that five items are available whose weights and values are 

Item A B CG D E 

Weight 3 8 6 4 yD, 

9 3 5 Value 2 12 

The problem is to find a packing of largest possible total value with a total weight not 

exceeding 9. In this example, we can list all possible packings and choose one with a 

maximum total value, subject to the total weight restriction. However, this would obvi- 

ously not be practical for an example with a large number of items. The branch-and- 

bound method, which we now describe, is a more efficient procedure in general. 

The first step is to list the items in decreasing order of value per unit weight, as follows: 

Order number 7 1 2 3 4 5 
Item E B C D A 
Weight w; a 8 6 4 3 
Value v; 5 12 9 3 2 
Value per unit weight 25 LS 1-5 0.75 0.67 

We denote each possible packing by a solution vector of the form (x,, x2, 3, X4, Xs), 

where each x; takes the value 1 if item i is packed, and the value 0 if that item is not 

packed. For example, the solution vector (0,0,1,1,0) denotes the packing which includes 

only items 3 and 4. The total weight w for this solution vector is w; + w, = 10, and the 

total value v is v; + v, = 12. A solution which satisfies the weight constraint (w < 9) is 

called a feasible solution. The null solution (0,0,0,0,0) is obviously a feasible solution, 

but (0,0,1,1,0) is infeasible. 

Note that the above ordering of items is not essential for this particular type of problem. 

However, it is an important feature of the branch-and-bound method when used to obtain 

approximate solutions. In such cases we do not examine all possible feasible solutions. 

The branch-and-bound method uses a branching procedure to search for an optimum 

solution. For example, if we take the solution vector (0,1,0,0,0), we can branch out to 

other solution vectors: 

(0, 1, 1, 0, 0) 

(0, 1, 0, 0, 0) (0, 1, 0, 1, 0) 

(0, 1, 0, 0, 1) 
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The solutions produced by this branching procedure are those which have one more item 

than the starting solution, but the number of such new solutions is restricted; we may add 

a new item only if it has a higher order number than any item already packed—that is, 

we may change only those positions to the right of the last | in the starting solution. For 

example, if we start with the solution vector (1,0,0,1,0), we can add only one item (item 

5), so only one branch is permitted: 

(1,90, 0, L 0) <taeanatiiaiie ( 0, 0, 1; 1) 

The branch-and-bound method starts with the null solution and uses this branching 

procedure to examine possible solutions in a systematic way. At each stage, we calculate the 

total weight for each solution, and the total value for each feasible solution, and branching is 

then continued from a feasible solution which has not been previously used as a branching 

point, and which has the highest value of any such solution. Solutions which cannot be 

branched out further, either because the weight limit has already been reached, or because 

there is an item at the extreme right position in the solution vector, are marked with a square. 

The procedure is continued until all vertices of degree 1 are marked. A record is kept of the 

best solution obtained so far, and this is updated as necessary. 

We illustrate this procedure by applying it to our example. First, we branch out from 

the null solution, as shown 

(1; 0, 0207 0)onwieto wetenas 

(0, 1,0,0,0) w= 8,» = (12) 
(0, 0, 0, 0, 0) (0,0, 1,0,0) w=6,0=9 

(070; 0 120) We 4 ee 4 

(05.05 001) eriersanereee? 

STORE v = 12, solution = (0,1,0,0,0) 

[The highest value of any of these feasible solutions is 12, so we store this value, to- 

gether with the corresponding solution. The vertex corresponding to the solution 

(0,0,0,0,1) is marked with a square, to indicate that we cannot continue the branching 

process from this vertex. ] 

We delete the marked vertex and continue the branching process from the solution 
with the highest value—that is, (0,1,0,0,0): 
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(1,0,0,0,0) v=5 

(0, 1,1,0,0) w= 14 

(0, 1,0, 1,0) w= 12 
(0, 0, 0, 0, 0) 

™~e) (0,1,0,0,1) w= 11 
(0/0, 1,0,0) v=(@) 

(050) 02150) 20 = 3 

STORE v = 12, solution = (0,1,00,0) 

[All three new solutions are infeasible, so we mark the corresponding vertices with 

squares. | 

The current feasible solution with the highest value is (0,0,1,0,0), so we branch out from 

this vertex: 

(1,0,0,0,0) v=5 

(0,0, 1, 1,0) w= 10 
(0, 0, 1, 0, 0) 

(0, 0, 0, 0, 0) 

(0,0, 1,0,1) w 9,0 =) 

(0, 0,0,1,0) v=3 

STORE v = 12, solution = (0,1,0,0,0) 

[Although the new solution (0,0,1,0,1) is feasible, we cannot branch further from it, be- 

cause it has an item in the fifth place, and also because it has already reached the maxi- 

mum allowable weight. We therefore mark this solution and also the infeasible solution 

(0,0,1,1,0).] 

We continue the branching process from the solution (1,0,0,0,0): 

= | S (1, 1, 0, 0, 0) 

(1, 0, 1, 0, 0) 

(1,0,0,1,0) w=6,0=8 

(1,0,0,0,1) w=5,0=7 

(1, 0, 0, 0, 0) 
S oo e 

| @ 
(0, 0, 0, 0, 0) 

(0,0,0,1,0) v=3 

STORE v = 14, solution = (1,0,1,0,0) 
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[The current feasible solution with the highest value is (1,0,1,0,0), with value 14. This is 

greater than the stored value, so we update the stored value as shown above. ] 

We continue the branching procedure, as illustrated in the following diagrams: 

12 
(1, 0, 1, 0, 0) (1,0, 1,1,0) w 

— — (15:0, 17.0, 1) ow 

(0, 0, 0, 0, 0) (1, 0,0, 1,0) v=@) 

(0, 0, 0, 1, 0) Ui eS 

STORE v = 14, solution = (1,0,1,0,0) 

1,0,0,0,0) (1, 0,0, 1,0 
e dink (1, 0, 0, 1, 1) 

(0, 0, 0, 0; 0) : w =9,v = (10) 

(0,0,0,1,0) v=3 

STORE v = 14, solution = (1,0,1,0,0) 

0, 0, 0, 0, 0 0, 0, 0, 1, 0) 
: \ (O:0900teTy went 9) 

STORE v = 14, solution = (1,0,1,0,0) 

The procedure has now been completed, and the required solution vector is (1,0,1,0,0). 

This corresponds to packing items C and E, with a total value of 14. 

This branch-and-bound method always gives an optimum solution, since it examines 

all solutions which occur in the branching process. It is more efficient than simply listing 

and examining all possible solutions, since the branching process automatically excludes 

many solutions which are infeasible. For example, in the solution to the above problem, 

there are 2° = 32 possible solutions, but only 18 of these are examined in the branch-and- 

bound procedure. 
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PROBLEMS 

Mathematical Properties of Trees 

©10.1. By adding a new edge in all possible ways to each tree with six vertices, find 

all the trees with seven vertices. 

10.2. By adding a new edge in all possible ways to each tree with seven vertices, 
find the 23 trees with eight vertices. 

10.3.’ Prove Theorem 9.1. 

[Hint: One efficient way to proceed is to prove that (a) implies (b), (b) implies 

(c),..., (e) implies (f), and (/) implies (a).] 

cs 

Spanning Trees 

©10.4. A forest is a (not necessarily connected) graph, each of whose components is a 

tree. 

a. LetG bea forest with n vertices and k components. How many edges does G 

have? 

b. Construct a forest with 12 vertices and 9 edges. 

Is it true that every forest with k components has at least 2k vertices of degree 

1 (see Problem 2.35)? 

10.5. A spanning forest in a (not necessarily connected) graph G is obtained by con- 

structing a spanning tree for each component of G. 

a. Find a spanning forest for the following graph: 

Aas 
b. Let Gbea graph, and let F be a subgraph of G. If F is a forest which includes 

all vertices of G, is F necessarily a spanning forest of G? 

Centers and Bicenters 

10.6. Classify each of the following trees as central or bicentral, and as centroidal or 

bicentroidal, and locate the center/bicenter and centroid/bicentroid in each 

aS 
(a) (b) 
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10.7. 

10.8. 

10.9. 

CHAPTER 10. TREES 

Classify each of the following trees as central or bicentral, and as centroidal or 

bicentroidal, and locate the center/bicenter and centroid/bicentroid in each 

Le ee ee 
(a) (b) (c) 

Classify all the trees with five and six vertices as central or bicentral, and as 

centroidal or bicentroidal, and locate the center/bicenter and 

centroid/bicentroid in each case. 

Classify all the trees with seven vertices as central or bicentral, and as 

centroidal or bicentroidal, and locate the center/ 

bicenter and centroid/bicentroid in each case. 

Counting Trees 

10.10. 

10.11. 

10.12. 

10.13. 

Draw the sixteen labeled trees with four vertices. 

a. Verify directly that there are exactly 125 labeled trees with five vertices. 

b. Explain why the complete graph K,, has exactly n”~* spanning trees. 

c. How many spanning trees has the complete bipartite graph K, ,? 

Find the Priifer sequence corresponding to each of the following labeled trees: 

(a) (b) 
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10.14. Find the labeled tree corresponding to each of the following Priifer sequences: 

a (204, 1, 3, 555): 

b. (1,1, 4, 4, 4). 

10.15. Find the labeled tree corresponding to each of the following Priifer sequences: 

a. (1,2, 3, 4); dite: 155); 
b. (3, 3, 3, 3); e. (1, 1,5, 2, 5); 
Gi hioet a2, 1); f. (13392; :3, 5). 

Searching Trees 

©10.16. Perform (a) a depth-first search and (b) a breadth-first search on the following 
rooted tree: 

10.17. Perform (a) a depth-first search and (b) a breadth-first search on each of the fol- 

lowing rooted trees: 

10.18. Find a rooted tree which represents the expression (ab + c) X (d—e) xf. 

10.19. Find a DFS spanning tree and a BFS spanning tree in each of the following 

graphs: 

(a) | (b) 
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Constructing Trees 

©10.20. Use the greedy algorithm to find a minimum spanning tree in the following 

weighted graph: 

10.21. The following table gives the distances (in miles) between six places in Ire- 

land. Use the greedy algorithm to find a minimum spanning tree connecting 

these places. 

Athlone Dublin Galway Limerick Sligo Wexford 

Athlone — 78 56 73 71 114 

Dublin 78 — 132 121 135 96 
Galway 56 132 = 64 85 154 

Limerick 73 121 64 — 144 116 
Sligo 71 135) 85 144 _ 185 
Wexford 114 96 154 116 185 — 

10.22.'a. Describe an alternative algorithm for the minimum connector problem which 

involves the removal from the graph of edges of greatest weight. 

b. Show how to adapt the proof of the greedy algorithm to show that a spanning 

tree of maximum weight can be constructed by successively choosing edges 

of maximum weight in such a way that no cycles are created. 

10.23.'A burglar alarm system has the form of a graph whose edges consist of valu- 

able copper wire, each edge having a different value. The alarm will sound if 

the graph is disconnected. A burglar wishes to steal as many edges as possible 

without sounding the alarm. Which edges should he steal so as to maximize 

the value of his haul? 

10.24. In the example of the traveling salesman problem on page 203, we obtained a 

lower bound of 22 by removing vertex A, and one of 26 by removing vertex D. 

Find the corresponding lower bounds obtained by removing 

(a) vertex B; (b) vertex E. 

10.25. Consider the traveling salesman problem for the six places in Ireland in Prob- 

lem 10.21. Find the lower bound obtained by removing the vertex Athlone. 

10.26. The following table gives the distance (in miles) between five towns: 

Avy BSG. DERE 
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a. Find a minimum spanning tree joining these towns, using (i) the greedy 
algorithm and (ii) Prim’s algorithm. 

b. Find lower bounds for the solution of the traveling salesman problem for these 
towns, obtained by removing (i) the vertex B and (ii) the vertex E. 

Find the correct solution by inspection. 

10.27. The following table gives the distances (in hundreds of miles) between six Eu- 
ropean cities: ; 

Berlin London Madrid Moscow Paris Rome 
EE ee ee aS er oe 

Berlin — i 15 11 a 10 
London 7 11 18 3 12 
Madrid IS = les _ iy 8 13 
Moscow 11 y 18 27 — 18 20 
Paris a 3 8 18 — 9 
Rome 10 12) 13 20 9 “= 

a. Find a minimum spanning tree joining these cities, using (i) the greedy 
algorithm and (ii) Prim’s algorithm. 

b. Find lower bounds for the solution of the traveling salesman problem for these 
cities, obtained by removing (i) the vertex London and (ii) the vertex Moscow. 

10.28. The following table gives the distances (in miles) between six places in 
Scotland: 

Aberdeen Edinburgh Fort William Glasgow Inverness Perth 

Aberdeen — 120 147 142 104 81 
Edinburgh 120 — 132 42 157 45 
Fort William 147 132 ~ 102 66 105 
Glasgow 142 42 102 — 168 61 
Inverness 104 157 66 168 a 112 
Perth 81 45 105 61 112 = 

a. Find a minimum spanning tree joining these places, using (i) the greedy 
algorithm and (ii) Prim’s algorithm. 

b. Find lower bounds for the solution of the traveling salesman problem for these 

places, obtained by removing (i) the vertex Glasgow and (ii) the vertex 

Aberdeen. 

What is the correct solution? 

10.29. Obtain an upper bound for the solution to the traveling salesman problem for 

each of the graphs in Problems 10.24—10.28 by performing a depth-first search 

on a minimum spanning tree for each of these graphs. How can you improve 

these upper bounds? 
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The Knapsack Problem 

10.30. 

10.31. 

10.32. 

10.33." 

A hiker wishes to take some of the following items on a trip: 

ee ee a, ee eee 

Item A 

Weight 5 

Value 
eS 

D 
2 
1 DAwWO 

B 
4 
3) 

Use the branch-and-bound procedure to determine which items should be 

taken if the total value is to be as large as possible and the total weight should 

not exceed nine units. 

A traveler wishes to buy some books to take along on a journey. The estimated 

time to read each of the five books is shown in the following table: 

ee 

Book A CG 

Cost ($) 4 
Reading time (hours) 5 OAK 

Oo 

ANH RU 4 

Use the branch-and-bound method to determine which books should be bought 

so as to provide the maximum amount of reading material without spending 

more than $8. 

A machine in a factory can be used to make any of five items A, B, C, D, and 

E. The time taken to produce each item, and the value of each item, are 

ee 

Item A B 

Production time (in days) 3 7 
Value 14 
Sn 

ee LEEEEEEEE EEE 

G. D eS 
2 + ~ 
3 7 8 

If the machine is available for only 10 days, which of the items should be pro- 

duced so that the total value is as large as possible? 

A hiker wishes to take some of the following items on a journey: 

Item A B C D 

Weight 5) 3 6 1 

Value =) 4 3 

By modifying the branch-and-bound procedure, determine which items should 

be taken if the total value is at least 9 but the total weight is a minimum. 
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PLANARITY 

11.1 INTRODUCTION 

In this chapter we consider the problem of determining whether a given graph can be 

drawn in the plane without edges crossing, and we present important results of Euler and 

Kuratowski. 

We have seen several instances of graphs which are commonly drawn in several 

different ways. For example, the complete graph K, and the complete bipartite graph K33 

can be drawn as 

X-A WX 
The particular drawing we choose often depends on the use to which the graph is to 

be put. For example, in tree-branching problems we often put the root at the top and let 

the branches hang down from it. Another example occurs in architecture, where we use 

a graph to depict the layout of rooms in a building, as follows: 

215 



216 CHAPTER 11. PLANARITY 

living room 

living dining 
room room 

sittin, 
foane hall study hall 

study 

sitting kitchen 
room 

playroom kitchen dining room playroom —_ living room 

(a) (b) 

Although the graph representation in diagram (a) gives us no information about the 

size or shape of each room, it does show clearly how the walls and rooms relate to each 

other geographically, and provides a useful way of describing the floor plan of the 

building. A different drawing of the same graph, such as the one in diagram (b), still tells 

us which pairs of rooms are adjacent, but gives us no idea of the spatial relationships 

between the various rooms. 

11.2 PLANAR GRAPHS 

In many problems, such as the printed circuits problem described on page 119, it is use- 

ful to be able to draw graphs in such a way that no two edges cross each other. For exam- 

ple, the above drawing of the architectural graph in diagram (a) has this property, 

whereas the equivalent drawing in diagram (b) does not. For some graphs, such as K,, it 

is possible to find a drawing which involves no ‘crossings’, whereas for others, such as 

K;,3, there are no such drawings, as we shall see. This leads us to make the following def- 

initions. 

DEFINITIONS. A graph G is planar if it can be drawn in the plane in such a way that 

no two edges meet each other except at a vertex to which they are both incident. Any such 

drawing is called a plane drawing of G. 

For example, the graph K, is planar, since it can be drawn in the plane without edges 

crossing. The following diagram shows three plane drawings of K,: 

plane drawings of K 4 

Similarly, the five Platonic graphs are all planar, since they can be drawn as 
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ATH A ® A 
tetrahedron cube octahedron dodecahedron icosahedron 

On the other hand, the complete bipartite graph K3, is not planar, since every drawing 
of it contains at least one crossing. To see why this is, note that K33 has a cycle of length 
6 (namely, wavbwcu) which must appear in any plane drawing as a hexagon (not 
necessarily regular). 

u v w ue A 

Dk ei < > 
a b ¢ w b 

We must now insert the edges ub, vc, and wa. Only one of them can be drawn inside the 
hexagon, since two or more would cross. Similarly, only one of them can be drawn out- 

side, since two or more would cross. 

u a fae 

8 

w b Ww 

It is therefore impossible to insert all three of these edges without creating a crossing, 

and so K,,, is not a planar graph. A similar proof can be given to show that K, is not plan- 
ar (see Problem 11.4). 

We can use the fact that K3,3 is not planar to settle the utilities problem mentioned in 

Chapter 1. In this problem there are three houses A, B, and C which need to be connected 

to three utilities, gas, water and electricity, using non-crossing connections. If we regard 

the three houses and the three utilities as the vertices of K33, we see immediately that any 

solution of the utilities problem would yield a plane drawing of K33. Since no such 

drawing exists, the utilities problem has no solution. 

Note that in studying planar graphs, we can restrict our attention to simple graphs 

whenever it is convenient to do so. If a planar graph has multiple edges or loops, we 

collapse the multiple edges to a single edge and remove the loops. After drawing the 

resulting simple graph without crossings, we can then insert the loops and multiple edges. 
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A B temove A B A insert 
loops draw loops 

and without and 

multiple crossings multiple 

edges edges 

D G D G G B C 

11.3 EULER’S FORMULA 

Every plane drawing of a planar graph divides the plane into a number of regions. For 

example, any plane drawing of K, divides the plane into four regions—three triangles, 

and one ‘infinite region’. 

4 

; 4 4 

DEFINITIONS. /fGisa planar graph, then any plane drawing of G divides the plane 

into regions, called faces. One of these faces is unbounded, and is called the infinite 

face. If f is any face, then the degree of f (denoted by deg f) is the number of edges 

encountered in a walk around the boundary of the face f. If all faces have the same degree 

(g, say), then G is face-regular of degree g. 

For example, if G is the graph in diagram (a) below, then G has four faces, f, being 

the infinite face. An alternative drawing, in which f) is the infinite face, is given in 

diagram (b). In each drawing we have 

deg f, =3, deg f, =4, deg f,=9, deg f,=8. 

(a) 

Note that the sum of all the degrees of the faces is equal to twice the number of edges in 
the graph, since each edge either borders two different faces (such as the edges bg, cd, and 
cf) or occurs twice when we walk around a single face (such as the edges ab and gh). This 
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result can be regarded as a sort of handshaking lemma for the faces of a planar graph (a 
face-shaking lemma?), and we shall refer to it as the handshaking lemma for planar graphs. 

There is a remarkable formula that relates to the number of vertices, edges, and faces 
of a planar graph. If n, m, and f denote the numbers of vertices, edges, and faces of a 
connected planar graph, then we get n — m + f = 2. This result is true for any plane 
drawing of a connected planar graph, and is known as Euler’s formula. In particular, it 
tells us that all plane drawings of a connected planar graph have the same number of 
faces—namely, 2 + m—n. In our proof of Euler’s formula, we start with a spanning tree 
and build up the graph edge by edge. 

THEOREM 11.1 (EULER’S FORMULA). Let G be a connected planar graph, and 
let n,m, and f denote, respectively, the numbers of vertices, edges, and faces in a plane 
drawing of G. Then 

n—-m+f=2. 

Proof Any connected graph G can be constructed by taking a spanning tree and 
adding edges to it, one at a time, until the graph G is obtained. We prove the result by 
showing that: 

a. fora spanning tree,n—m-+ f =2; 

b. at each stage, the addition of an edge does not change the value of n—m +f. 

First, we prove a. If T is any spanning tree of G, we may draw T in the plane—for exam- 

ple, 

Since T has n vertices and n—1 edges, and there is only | face, we have 

n—-m+f =n-—(n-1)+1=2, 

as required. 

We now prove b. Whenever we add an edge, such an edge must either connect two dif- 

ferent vertices, or connect a vertex to itself (if itis a loop), but in both cases it cuts an ex- 

isting face in two, as shown 
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This leaves n unchanged, increases m by 1, and increases f by 1, thereby leaving 

n—m-+f unchanged. Since n — m + f= 2 throughout the process, the result follows. 0 

Historical note. This result is often called Euler’ s polyhedral formula, since it relates the 

numbers of vertices, edges, and faces of a polyhedron. (For example, a cube has eight vertices, 

twelve edges and six faces, and 8 — 12 + 6 = 2.) It appeared in this form in a letter from Euler to 

the number theorist Christian Goldbach in November 1750. (Goldbach is chiefly remembered for 

Goldbach’ s conjecture, that every even number n 2 4 can be written as the sum of two prime 

numbers.) 

At this time Euler was unable to prove the result, but he presented a proof two years later. 

Unfortunately, Euler’s proof was deficient, but a correct proof for polyhedra was obtained by A. 

M. Legendre in 1794. The corresponding formula for graphs drawn in the plane was first obtained 

by A.-L. Cauchy in 1813. (It is sometimes claimed that René Descartes obtained the formula around 

the year 1640; in fact, Descartes obtained an expression for the sum of the angles of all the faces 

of a polyhedron, from which the required formula can be deduced, but Descartes apparently never 

made this deduction.) 

Using Euler’s formula, we can obtain a number of useful results. In particular, we can 

give alternative proofs of the fact that Ks and K3,3 are non-planar. 

COROLLARY 1. Let G be aconnected planar simple graph with n (2 3) vertices and 

m edges. Thenm $ 3n-6. 

Proof For aplane drawing of G with f faces, it follows from the handshaking lemma 

for planar graphs that 2m > 3f (since the degree of each face of a simple graph is at least 

3), so that f< sm. Combining this with Euler’s formula, f= m—n +2, we getm—n+2 

< am, and hence m < 3n-6.0 

Example: K; is non-planar. 

Proof Suppose that Ks is a planar graph. Since Ks has five vertices and ten edges, it 

follows from Corollary | that 10 < (3 x 5) —6 = 9. This contradiction shows that Ks; is 

non-planar. 0 

Since K3,3 has six vertices and nine edges, and it is true that 9 < (3 x 6) -6 = 12, we 

cannot use Corollary | to prove that K33 is non-planar. However, we can use the following 

corollary. 

COROLLARY 2. Let G be a connected planar simple graph with n vertices and m 

edges, and no triangles. Then m < 2n—-4. 

Proof For aplane drawing of G with f faces, it follows from the handshaking lemma 

for planar graphs that 2m 2 4f (since the degree of each face of a simple graph without 
triangles is at least 4), so that f< sn. Combining this with Euler’s formula f= m—n + 2, 

we getm—n+2<-m, and hence m < 2n —4.0 

Example: K,., is non-planar. 
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Proof Suppose that K3, is a planar graph. Since K3,3 has six vertices and nine edges 

and no triangles, it follows from Corollary 2 that 9 < (2 x 6) —4 = 8. This contradiction 

shows that K33 is non-planar. 0 

We can also prove the following result which is obtained in a similar way. 

COROLLARY 3. Let G be aconnected planar simple graph. ThenG contains at least 

one vertex of degree 5 or less. 

Proof By Corollary 1, we getm<3n-—6. Suppose that every vertex inG has degree 6 

or more. Then we have 2m 2 6n (since 2m is the sum of the vertex-degrees), and som = 3n. 

This contradiction shows that at least one vertex has degree 5 or less. 0 

We now use Euler’s formula to show why there are only five regular convex 

polyhedra—namely, the tetrahedron, cube, octahedron, dodecahedron, and icosahedron 

(see page 38); a polyhedron is convex if the straight line segment joining any two of its 

vertices lies entirely within it. We use the fact that we can represent any polyhedron as 

a planar graph by projecting it down onto a plane: 

This method of projection is called stereographic projection, and was used by A.-L. 

Cauchy in 1813 in his paper Recherches sur les polyédres (Researches on polyhedra). In 

this paper he derived the planar graph formulation of Euler’s formula, and used it to prove 

that there are only five regular convex polyhedra. 

THEOREM 11.2. There are only five regular convex polyhedra. 

Proof We prove this theorem by showing that there are only five connected planar 

graphs G with the following properties: 

a. Gis regular of degree d (where d 2 3); 
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b. any plane drawing of G is face-regular of degree g (where g 2 3). 

Let n, m, and f be the numbers of vertices, edges, and faces of such a planar graph G. 

Then, by properties a and b, we get 

m = idn=3ief, giving n = 2m/d -and f= 2m/g. 

Since G is a planar graph, Euler’s formula holds—that is, n —m + f= 2. Thus 

2m/d —m + ane rad) 

which can be written 

Vd—1 + I/g = 1m. 

Since 1/m> 0, it follows that 

I/d+l/g> 3. 

Each of d and g is at least 3, so each of 1/d and 1/g is at most ~ So, 

and we conclude that d < 6 and g < 6. This means that the only possible values of d and 

g are 3, 4, and 5. However, if both d and g are greater than 3, then 

I/d+1/gs ; +7=55 

which is a contradiction. This leaves us with just five cases: 

—7+4=4,som=6,; Casel: d=3,g=3.We get Ilm=3-5+5 

it follows that n = 8 and f = 4— this gives the tetrahedron. 

Case2: d=3,g=4. We get I/m=5-5+7=7,80m= 12; 

it follows that n = 8 and f= 6—this gives the cube. 

Case 3: “d= 3) = 5 >We get Ijm=l-ftiss , 80.m= 30; 

it follows that n = 20 and f= 12—this gives the dodecahedron. 

Case4: d=4,g=3. We get I/m=5-5+7=7,S0m= 12 

it follows that n = 6 and f= 8—this gives the octahedron. 

Case5: d=5,g=3. We get I/m = 2- 5ty=y Som=30; 

it follows that n = 12 and f= 20—this gives the icosahedron. 0 
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11.4 TESTING FOR PLANARITY 

The restrictions on the number of edges in a planar graph given in Corollaries 1 and 2, 

and their generalizations in Problems 11.12 and 11.13, are often useful for showing that 

a graph is not planar. For example, we used them to show that K; and K,, are not planar. 

Unfortunately, this method does not work the other way round—there are many graphs 

which satisfy these inequalities but which are not planar. Because of this, we now turn 

our attention to other ways of determining-whether or not a given graph is planar. 

We begin with some simple, but important, observations: 

a. not all graphs are planar: in particular, we have already seen that the graphs 

K, and K;, are not planar; 

b. ifGisa planar graph, then every subgraph of G is planar, this is often stated 

in the following form: 

c. if G contains a non-planar graph as a subgraph, then G is non-planar: for 

example, the following graphs are non-planar, since the first contains K; and 

the second contains K; 3. 

“ES ® 
The next two observations involve the insertion of vertices of degree 2 into the edges 

of a graph G, as shown in the diagram 

u U 

inser went vertices 

ai dense: degree 2 

is w 

G a subdivision of G 

Any graph formed from G in this way is called a subdivision of G. Since the insertion 

of a vertex of degree 2 cannot affect the planarity or non- planarity of a graph, we deduce 

the following result: 

d. if Gis a planar graph, then every subdivision of G is planar; this is often 

stated in the following alternative form: 

e. if G is a subdivision of a non- planar graph, then G is non-planar: for 

example, the following graphs are non- planar, since the first is a subdivision 

of K, and the second is a subdivision of K;,;: 
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BY DEX 
It follows from observations c ande that if G is any graph which contains a subdivision 

of Ks or K33 as a subgraph, then G must be non-planar. For example, the following graph 

is non-planar, since it contains a subdivision of Ks as a subgraph: 

By now you may be wondering why we are so concerned with Ks and K33 and their 

subdivisions. The reason is that a// non-planar graphs can be obtained in the way we have 

just described—namely, by adding vertices and edges to a subdivision of Ks or K33. In 

other words, every non-planar graph contains as a subgraph a subdivision of Ks or K33. 

This remarkable result appeared in 1930, and is due to the Polish mathematician 

K. Kuratowski. We state it formally here, but omit the proof which is rather long and 

complicated. 

THEOREM 11.3 (KURATOWSKI’S THEOREM). _ A graph is planar if and only if 

it does not contain a subdivision of Ks or K33 as a subgraph. 

A similar characterization of planar graphs involves the notion of ‘contracting’ an 

edge vw. This is done by bringing the vertex w closer and closer to v until they coincide, 

and then coalescing multiple edges into a single edge, as follows: 

u 

Bring w conlescs: coalesce 
v Ww > vw 

closer tov v menu w multiple 
edges 

a 

A contraction of a graph is the result of a sequence of edge-contractions. For example, 

K, is a contraction of the Petersen graph, since it is the result of contracting each of the 

five ‘spokes’. 

eeneen! 

spokes? 

= 

* 
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THEOREM 11.4. A graph is planar if and only if it does not contain a subgraph which 

has Ks or K33 as a contraction. 

The importance of Theorems 11.3 and 11.4 is that they give us necessary and sufficient 

conditions for a graph to be planar in purely graph-theoretic terms (subgraph, subdivision, 

K33, etc.) rather than geometrical terms (crossing, drawing in the plane, etc.). They also 

provide a convincing demonstration that a given graph is non-planar, if we happen to 

spot a subgraph which is a subdivision of Ks or K33, or a subgraph which contracts to Ks 

or K33. What they do not do is to provide an easy way of showing that a given graph is 

planar, since this would involve looking at a large number of subgraphs and verifying 

that none of them is a subdivision of, or contracts to, Ks or K33. For this reason, no 

currently used algorithm for testing the planarity of a graph uses these two theorems. 

We next consider a concept which will be needed in Chapter 14. The thickness of a 

graph G is defined to be the minimum number of planar graphs which can be superim- 

posed to form the given graph G, and is denoted by ¢#(G). For example, the thickness of 

any planar graph is 1, whereas the thickness of Ks or K33 is 2, since Ks can be formed by 

superimposing 

and > 

and K, can be formed by superimposing 

and 

In general, there is no known formula which gives the thickness of any given graph. 

However, we can easily obtain a lower bound for t(G) which very often gives the correct 

value. We restrict our attention to simple graphs, since loops and multiple edges can be 

dealt with as shown earlier. We adopt the following notation. 

NOTATION. /fx is any positive number, then 

|x| is the ‘next integer down’ from x 

(for example, |] = 3, [6.2)=6,14)=4), 

and |x |is the ‘next integer up’ from x 

(for example, 21=4,[6.2]1=7,[41=4). 
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Note that if x is an integer, then Lx | = [x] ee 

The connection between these functions is given by the equation 

[a/b |=L(atb-1)/b 1. 

for example, | 7/5|=2 = Lq4s-1y/5I =L11/51. 

We can now prove the following result. 

THEOREM 11.5. Let G be a connected simple graph with n vertices and m edges. 

Then 

(a) (G) =| m/3n-6)1; 
(b) ifG has no triangles, t (G) = [m/(2n-4) |. 

Proof (a) It follows from Corollary 1 that the number of edges in each planar 

subgraph of G is at most 3n — 6. Since there are m edges altogether, the number of planar 

graphs must be at least m/(3n — 6). However, the number of planar graphs is an integer, 

and sot(G) = [m / (3n- 6) |. 

(b) This part of the proof is identical to that in (a), except that we use Corollary 2.0 

Example 1: If G=K,, then m= 5n(n-1). It follows from part(a) of Theorem 11.5 that 

n(n—1)/2 K,)> 
AE) = eaicG 

We can simplify this by writing 

[ n(n-1)/2 (3n-6) 1 =L{n(n-1) + 2(3n-6)-1}/2 (3n-6) | 
=| (n°+5n-14)/2 (3n-6)] =L(n+7)(n-2)/6 (n-2J =L(n+7)/6 |. 

Thus, (K,) 2L\(n+7). 
It can be shown that t(K,,) = Li~n+7) J for all n, except for n = 9 and n= 10, in which case 

HK) =3: 

Example 2: If G = K,,, then m = rs and G has no triangles. It follows from part (b) of 
Theorem 11.5 that 

(K,,) =I rs / (2r + 2s—4) |. 

It is not known whether this inequality is always an equality, but it is certainly so for 
complete bipartite graphs with less than 48 vertices. 
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11.5 DUALITY 

We conclude this chapter by introducing the idea of duality. This concept will be of im- 
portance when we discuss the coloring of maps in Chapter 13. 

Given a connected planar graph G, we shall define a corresponding dual graph G*. 
its construction is in three stages: 

1. first take a plane drawing of G; 

2. choose one point inside each face of the plane drawing—these points are the 

vertices of G*; 

3. for each edge e of the plane drawing, draw a line connecting the vertices of 

G* on each side of e. 

This procedure is illustrated as follows: the vertices of G* are represented by small cir- 

cles, and the edges of G* are indicated by dashed lines: 

Note that each plane drawing of G gives rise to just one dual graph G*. However, 

different plane drawings of G can give rise to different dual graphs G*; an example which 

illustrates this is given in Problem 11.34. We shall always assume that we have already 

been presented with a particular plane drawing of G. There is a simple relationship 

between the number of vertices, faces and edges of a graph and its dual. In the above 

example, G has five vertices, four faces (including the infinite face), and seven edges, 

and G* has four vertices, five faces, and seven edges. In general, we have the following 

simple result, which we ask you to prove in Problem 11.36. 

THEOREM 11.6. /fGisaconnected planar graphwithn vertices, f faces and m edges, 

then G* has f vertices, n faces and m edges. 

Note also that if G is aconnected planar graph, then so is G*, and we can thus construct 

(G*)*, the dual of G*. However, a glance at the above figure shows that the construction 

which gives rise to G* from G can be reversed to give G from G*. It follows that (G*)* 

is isomorphic to G, and that there really is a duality between G and G*. 

Using this duality, we can draw up a list of dual concepts; for example, 

an edge of G corresponds to an edge of G* 
a vertex of degree kinG correspondsto a face of degree k in G* 
afaceofdegreekinG — correspondsto a vertex of degree k in G* 
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We can continue this list as follows: 

a cycle of G corresponds to a cutset of G* 

a cutset of G corresponds to acycle of G* 

These last correspondences are most easily seen from the following figure. To obtain the 

first correspondence, we take a cycle in G (with solid edges); the corresponding edges of 

G* (the dashed edges) from a cutset whose removal separates the set of vertices inside 

the cycle from those outside. To obtain the second correspondence, we simply inter- 

change the roles of G and G*. 

We can use these correspondences to obtain new results from old ones. For example, 

it follows from Corollary 1 to Euler’s formula that 

if G is a connected planar graph with n vertices and m edges, and with no loops or 

multiple edges, then m < 3n—6. 

Since loops (cycles of degree 1) and pairs of multiple edges (cycles of degree 2) corre- 

spond to vertices of degree | and 2 in the dual graph, we deduce from the above corre- 

spondence that 

if G is a connected planar graph with f faces and m edges, and with no vertices of 

degree 1 or 2, then m < 3f — 6; 

conversely, we can dualize this last result to obtain the previous one. Similarly, we know 

from Corollary 3 to Euler’s formula that 

if G is a simple connected planar graph, then G has a vertex of degree 5 or less. 

Dualizing this result, we deduce that 

if G is a connected planar graph with no vertices of degree 1 or 2, then G has a face 

of degree 5 or less. 

Our final example was mentioned at the beginning of this section; although it uses con- 

cepts from the next two chapters, all you need to know here is that a map is a connected 

planar graph with no bridges. The celebrated four-color theorem can then be stated as 

follows. 

THE FOUR-COLOR THEOREM FOR MAPS. The countries (faces) of any map 

can be colored with four colors in such a way that neighboring countries are differently 

colored. 



PROBLEMS 229 

4 

Dualizing this result, we get the following result on vertex-colorings, a topic to be dis- 

cussed in Chapter 12: 

THE FOUR-COLOR THEOREM FOR PLANAR GRAPHS. The vertices of any 

connected planar graph can be colored with four colors in such a way that adjacent 

vertices are differently colored. 

PROBLEMS 

Planar Graphs 

11.1 There was once a king with five sons. In his will he stated that after his death 

each son should build a castle, and that the five castles should be connected in 

pairs by non-intersecting roads. Can the terms of the will be satisfied? (This is 

a form of the ‘Mébius problem’, first stated around 1840.) 

611.2 By finding a plane drawing, show that each of the following graphs is planar: 

y x y x y ¥ 

(a) (b) (c) 

11.3. By finding a plane drawing, show that the following graph is planar: 

©11.4 Give an argument, similar to that used for K,, on page 217, to show that the 

complete graph K; is not planar. 

©11.5 Classify the following statements as TRUE or FALSE, giving your reasons in 

each case: 

a. every subgraph of a planar graph is planar; 

b. every subgraph of a non-planar graph is non-planar, 

c. every graph which contains a planar graph (as a subgraph) is planar; 

d. every graph which contains a non-planar graph is non-planar. 

11.6 a. For which values of n is the complete graph K,, planar? 

b. For which values of r and s (with r < s) is the complete bipartite graph K,,, 

planar? 
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11.7. Find plane drawings of the graph in diagrams (a) and (b) on page 218 in which 

a. fis the infinite face; 

b. f, is the infinite face. 

©11.8. Verify the ‘handshaking lemma for planar graphs’ (given on pages 218-219) 

for each of the following graphs: 

(c) 

Euler’s Formula 

©11.9. Verify Euler’s formula for each of the graphs in Problem 11.8. 

11.10. Verify Euler’s formula for each of the five Platonic graphs: 

ATI A ® A 
tetrahedron cube octahedron dodecahedron icosahedron 

11.11. Verify Euler’s formula for: 

a. the ‘wheel’ with k spokes (the following diagram illustrates the case k = 5); 

b. the complete bipartite graph K,, ; 

c. the graph formed by the vertices, edges and faces of a k x k chessboard. 

11.12. (a) Let G be a connected planar simple graph with n (2 3) vertices and m edges 

whose shortest cycle length is 5. Use the method of proof of Corollaries 1 and 

2 to prove that 

ms 2 (n—2). 

(b) Use this result to show that the Petersen graph is non-planar. 
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11.13. If G is a graph whose shortest cycle length is g, then we say that the girth of G 

is g. Use the method of proof of Corollaries 1 and 2 to prove that, if G is a sim- 

ple connected planar graph with n (< 3) vertices, m edges, and girth g, then 

mS g(n-2)/(g—2). 

Prove that this inequality is an equality if each face of G has degree g. 

©11.14. Give examples of: 

a. asimple planar graph in which every vertex has degree 5; 

b. a planar graph with minimum vertex-degree 3, in which every face has degree 5; 

c. aplanar graph in which every vertex has degree 6; 

d. a planar graph in which every face has degree 6. 

$11.15. Let G be a connected planar graph with n vertices and f faces in a plane 

drawing of G. Show that 

a. if m< 12, and if G is a simple graph, then G contains at least one vertex of 

degree 4 or less; 

b. if f< 12, and if G has no vertices of degree 1 or 2, then G contains at least 

one face of degree 4 or less. 

11.16. a. Give an example of a polyhedron all of whose faces are pentagons and 

hexagons. 

b. Use Euler’s formula to prove that any such polyhedron must have at least 12 

pentagonal faces. 

c. Prove that if, in addition, there are exactly three faces meeting at each vertex, 

then the polyhedron must have exactly 12 pentagonal faces. 

d. What does this have to do with the game of soccer? 

11.17. a. Give anexample ofa polyhedron all of whose faces are squares and hexagons. 

b. Use Euler’s formula to prove that any such polyhedron must have at least six 

square faces. 

c. Prove that if, in addition, there are exactly three faces meeting at each vertex, 

then the polyhedron must have exactly six square faces. 

11.18." Let G be a connected simple planar graph which is regular of degree 3, and let 

g, denote the number of faces with face-degree k in a plane drawing of G. 

Show that 

12 =3g, + 29, + 85-87 - 283 — 389--.- 
Use this result to deduce part c of Problems 11.16 and 11.17. 

11.19.'a. Prove that there exists no graph G with 11 vertices for which both G and its 

complement G are planar. 

b. Give an example of a graph G with eight vertices for which both G and G are 

planar. 
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Testing for Planarity 

©11.20. Use Kuratowski’s theorem to prove that the following graph is non-planar: 

11.21. Prove that the Petersen graph is non-planar 

a. by using Theorem 11.4; 

b. by using Kuratowski’s theorem. 

(Hint for part b.: Delete the two ‘horizontal’ edges.) 

©11.22. Which of the following graphs on the graph cards (see Chapter 1) are planar? 

(a) card 181; (b) card 195; (c) card 203; (d) card 207. 

For any that are planar; give a plane drawing and verify Euler’s formula; 

for any that are non-planar, verify Theorem 11.3 by finding appropriate 

subgraphs. 

11.23. Repeat Problem 11.22 for the following graph cards: 

(a) card 186; (c) card 201; (e) card 205; 

(b) card 197; (d) card 202; (f) card 206. 

11.24. We say that two graphs are homeomorphic if each is a subdivision of a third 

graph. Let n, and m, denote the numbers of vertices and edges in a graph G,, 

and let n, and m, denote the numbers of vertices and edges in a graph G). 

Prove that if G, and G, are homeomorphic, then m, — m, = n, — no. 

©11.25. By showing how three planar graphs can be superimposed to form Ky, show 

that ¢(K,) < 3. [In fact, t(K,) = 3.] 

11.26. a. By using Theorem 11.5, show that the 4-cube Q, is non-planar. 

b. Find two planar graphs which can be superimposed to form Q,, and hence 

show that the thickness of Q, is 2. 

11.27. By splitting K,,,, into a number of copies of K,,, show that if r is even, then 

(K,.) S sr. Using this result, together with Theorem 11.5, prove that, if r is 

even and s > +(r-2)’, then ¢ (K,,) =r. 
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11.28.' The crossing number cr(G) of a graph G is the smallest number of crossings 

that are possible in a plane drawing of G (where the word ‘crossing’ refers to 

the crossing of exactly two edges). 

a. Show that cr(K;) = cr(K3,) = 1. 

b. Draw the complete graph K, with as few crossings as you can. 

c. Find the crossing numbers of the Petersen graph and the four-cube Q,. 

d. Ifrands are both even, show that 

cr(K,,) $ 3 rs(r—2)(s—2). 

(Hint for part d: Place the r vertices along the x-axis, with an equal number on 

each side of the origin, and place the s vertices along the y-axis in a similar 

way—now count the crossings.) 

11.29.'a. Draw each of the following graphs on a torus (that is, a doughnut) in such a 

way that there are no crossings: 

1. the complete graph K;; 

2. the complete bipartite graph K, 3; 

3. the Petersen graph. 

b. Make a conjecture for the value of n — m + f for any non-planar connected 

graph with n vertices, m edges, and f faces that can be drawn without crossings 

on a torus, and check your conjecture for Ks, K33, and the Petersen graph. 

11.30." Draw the complete graph K, on a torus with as few crossings as you can. 

Duality 

11.31. Draw the dual of each of the following graphs: 

(a) (b) (c) 

©11.32. Find the duals of each of the following graphs of your graph cards (see Chap- 

ter 1), and give the corresponding graph card number in each case: 

(a) card 50; (b) card 174; (c) card 189. 

11.33. Show that the graph on graph card 188 can be drawn in the plane in two differ- 

ent ways, but that the corresponding dual graphs are isomorphic. 
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11.34. 

11.35. 

611.36. 

11.37. 

11.38. 

11.39." 
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The following diagrams show two different plane drawings of the same planar 

graph. Show that their duals are not isomorphic. 

Show that the dual of the cube graph is the octahedron graph, and that the dual 

of the dodecahedron graph is the icosahedron graph. 

Prove Theorem 11.6. 

Let G be a connected plane graph. Prove that G is bipartite if and only if its 

dual G* is Eulerian. 

Dualize the statements of the following problems above: 

(a) Problem 11.16; (b) Problem 11.17; (c) Problem 11.18. 

How would you define the dual of a graph (such as K; or K;) drawn on the 

surface of a torus? 
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COLORING GRAPHS 

In this chapter we consider a number of problems involving the coloring of the vertices 

or edges of a graph. This leads, in the next chapter, to a discussion of map-coloring prob- 

lems, including the famous four-color problem mentioned in the Introduction to Part I.* 

12.1 VERTEX-COLORINGS 

We start with some definitions. 

DEFINITIONS. Let G be a graph without loops. A k-coloring of G is an assignment 

of k colors to the vertices of G in such a way that adjacent vertices are assigned different 

colors. If G has a k-coloring, then G is said to be k-colorable. The chromatic number 

of G, denoted by x(G), is the smallest number k for which G is k-colorable. 

3 1 1 2 

wwywwe 
2 1 3 4 3 4 3 2 

(a) (b) (c) (d) 

*Materials in this chapter are reprinted, with permission, from The Proof of the Four-Color Theorem by 

Kenneth Appel, in New Scentist, Vol. 72, No. 1023, 21 October 1976, p. 155. 

235 
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We usually display a k-coloring by writing the numbers 1, 2, 3,..., & next to the 

appropriate vertices. For example, diagrams (a), (b), and (c) above illustrate a 3-coloring, a 

4-coloring and a 5-coloring of a graph G with five vertices; diagram (d) is not a permissible 

coloring, since one of the edges has color 2 at both ends. It follows that ¥(G) < 3, since G has 

a 3-coloring [diagram (a)]. On the other hand, ¥(G) 2 3, since G contains three mutually 

adjacent vertices (forming a triangle), which must be assigned different colors. So x(G) = 3. 

Note that the above definitions are given,only for graphs without loops, since in any 

k-coloring the vertices at the ends of each edge must be assigned different colors, and so 

the vertex at the ends of a loop would have to be assigned a different color from itself! 

We may also assume that there are no multiple edges, since the presence of one edge 

between two vertices forces these vertices to be colored differently, and the addition of 

further edges between these vertices is then irrelevant to the coloring. We can therefore 

restrict our attention to simple graphs. 

There is a simple method for obtaining a lower bound for ¥(G)—namely, look for the 

largest complete subgraph in G. For example, the following graph contains the complete 

graph K4, and so ¥(G) 2 4: 

To obtain an upper bound for ¥(G), we note that if G has n vertices, then ¥(G) < n. 

However, this upper bound is generally very poor, and we can improve it considerably 

if we know the largest vertex-degree in G, as the following theorem shows. 

THEOREM 12.1. /fGis a simple graph whose maximum vertex-degree is d, then 

x(G)sd+1. 

Proof We prove this result by mathematical induction on n, the number of vertices 

of G. When n = 1, the graph is Ki, for which x¥(G) = 1 and d= 0, and the result is true. 

Now we show that if the result is true for all graphs with less than n vertices, then it must 

also be true for all graphs with n vertices. So suppose that the result is true for all graphs with 

less than n vertices. Let G be a graph with n vertices and maximum vertex degree d, and let 

H be the graph obtained from G by removing any vertex v and the edges incident to v: 

remove u 
—> 
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Since H has less than n vertices and maximum vertex-degree d (or less), it follows from 

the induction assumption that y(H) < d + 1—that is, H is (d+1)-colorable. We can now 

obtain a (d+1)-coloring of G by coloring v with any color not assigned to the (at most d) 

vertices adjacent to v. (Note that these vertices involve at most d colors.) It follows that 

x(G) < d+ 1, and so the result is true for graphs with n vertices. This completes the 

proof. 0 

With a lot more effort, we can prove the following slightly stronger theorem, which 

was proved by L. Brooks in 1941; we omit the proof. 

THEOREM 12.2 (BROOKS’ THEOREM). Let G be a connected simple graph 

whose maximum vertex-degree is d. If G is neither a cycle graph with an odd number of 

vertices, nor a complete graph, then x(G) < d. 

To illustrate the use of Brooks’ theorem, we consider the graph G on page 236. Since 

G contains the complete graph K,, we observed that x¥(G) 2 4. On the other hand, G 

satisfies the conditions of Brooks’ theorem (with d = 4), and so x(G) < 4. It follows that 

4(G) = 4. 
Unfortunately, the situation is not always as satisfactory as this. In particular, if G 

contains a few vertices of high degree, then the bound given by Brooks’ theorem may be 

very poor. For example, if G is the bipartite graph K1,100, then x(G) = 2, whereas Brooks’ 

theorem gives us the upper bound x(G) < 100. 

12.2 CHROMATIC POLYNOMIALS 

It follows from the above discussion that the lower and upper bounds do not always give 

a good estimate for the chromatic number. In such cases we must look for other ways of 

finding ¥(G). One method is to look at all possible ways of coloring the vertices, increas- 

ing the number of available colors until a valid coloring is obtained. Unfortunately, this 

is a hopelessly time-consuming way of proceeding. In fact, all known algorithms for 

finding the chromatic number of a graph are somewhat inefficient, and may take a long 

time to implement. This is in contrast to, say, the greedy algorithm for solving the mini- 

mum connector problem. However, there are algorithms which are substantially better 

than trying all possibilities, and we consider one of these now. It involves the idea of a 

chromatic polynomial, which is of some interest and importance in its own right. 

DEFINITION. Let G be a simple graph, and let Pc(k) be the number of ways of 

coloring the vertices of G with k colors in such a way that no two adjacent vertices are 

assigned the same color. The function Po(k) is called the chromatic polynomial of G. 

Note that, although we have called P¢(k) the chromatic polynomial of G, it is not at 

all clear from the above definition why the number of k-colorings of G must necessarily 

by a polynomial in k. Before explaining this, we look at a few examples. 

Example 1: If G is the complete graph K;, then the top vertex can be assigned any of the 
k 
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colors, the left-hand vertex can be assigned any of the k—1 colors not assigned to the top 

vertex, and the right-hand vertex can then be assigned any of the k—2 colors not assigned to 

the other two vertices. The chromatic polynomial of K; is therefore k(k—1) (k—-2). We can 

extend this immediately to give the following result: 

if G is the complete graph K,, then P,(k) = k(k—-1) (k-2) ++ + (k-n+1). 

k 

k k-1 k-l 
@—___2—___-® 

P 

k-1 Kae : 

K; 

Example 2: If G is the path graph P, , then the left-hand vertex can be assigned any of 

the k colors, the middle vertex can be assigned any of the k—1 colors not assigned to the 

left-hand vertex, and the right-hand vertex can then be assigned any of the k—1 colors not 

assigned to the middle vertex. The chromatic polynomial of P; is therefore k(k—1)’. We 

can extend this to give the following result: 

if G is any tree withn vertices, then P,(k) = k(k-1)"". 

It follows from this result that non-isomorphic graphs can have the same chromatic 

polynomial. 

We can easily calculate the chromatic number of a graph if we know its chromatic 

polynomial, since the chromatic number of a graph G is the smallest positive integer k 

for which Pg (k) > 0. So if we can find a routine method for determining the chromatic 

polynomial, then we can derive an algorithm for determining the chromatic number. 

In order to motivate such a method we observe that 

k(k-1) (k-2) = k(k-1)° — k(K-1) 

—that is, 

Fe (k) = Pg: (k) — Fe» (k), 

where G, G’, and G” are the following graphs: 

G Gi Gu 

Note that G’ is obtained from G by deleting the edge e. Also, G” is obtained from G by 
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contracting the edge e (see Chapter 11). This idea suggests the following result, known 

as the deletion-contraction theorem. 

THEOREM 12.3 (THE DELETION-CONTRACTION THEOREM). Let G be a 
simple graph, and let G’ and G” be the graphs obtained from G by deleting and 

contracting an edge e. Then 

Po (K) = Park) Pe (W). 
Proof Let e = vw be the edge in question, and consider the possible k-colorings of 

G’. The number of k-colorings of G’ in which v and ware assigned different colors remains 

unchanged if the edge e is drawn joining v and w, and is therefore equal to the number 

of k-colorings of G. The number of k-colorings of G’ in which v and w are assigned the 

same color remains unchanged if the vertices v and w are made to coalesce, and is 

therefore equal to the number of k-colorings of G’”’. The total number of k-colorings of 

G’ is therefore 

Po (k) + Pe (k), 

as required. 0 

The importance of the deletion-contraction theorem lies in the fact that it expresses 

the chromatic polynomial of a graph G in terms of the chromatic polynomials of two 

graphs with fewer edges. By continuing this process as often as necessary, we can 

eventually express the chromatic polynomial of G in terms of chromatic polynomials we 

can calculate. We illustrate this process in the following example. 

Notation For convenience, we draw the graph itself, rather than its chromatic 

polynomial; thus the above example can be expressed in the form: 

Example: We use this deletion-contraction process to calculate the chromatic polyno- 

mial of the following graph G, and hence find x(G): 
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We have 

K(K=Wtk 2k =3) 

and 

ey ey, 
k(k-1)(k - 2) k(k-1)?(k-2) 

It follows that 

Pek) = [k(K-1)°(K-2) — k(K-1)?(K-2)] — k(K-1)(K-2)(K-3) 

= k(k-1)(k-2)(K?-4k45) 

= 1 —7k + 19% — 23% + 10k. 

Since P,(1) = 0, P,(2) = 0, and P,(3) = 12, we have x(G) = 3. 

It is now clear why the number of k-colorings of a graph G is always a polynomial. 

By continuing the above deletion-contraction process until there are no edges left, we 

eventually obtain the chromatic polynomial of G by adding and subtracting the chromatic 
polynomials of null graphs. However, the chromatic polynomial of the null graph N,, is 
simply k”, and so the chromatic polynomial of G is obtained by adding and subtracting 
terms of this form, and is therefore a polynomial. 

12.3 EDGE-COLORINGS 

Again, we start with some definitions. 

DEFINITIONS. Let G be a graph without loops. A k-edge-coloring of G is an 
assignment of k colors to the edges of G in such a way that any two edges meeting at a 
common vertex are assigned different colors. If G has a k-edge-coloring, then G is said 
to be k-edge colorable. The chromatic index of G, denoted by ¥/(G), is the smallest 
number k for which G is k-edge-colorable. 
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We usually display a k-edge-coloring by writing the numbers 1, 2, 3,..., k next to 

the appropriate edges. For example, diagrams (a), (b), and (c) above illustrate a 4-edge- 

coloring, a5-edge-coloring, and a 6-edge-coloring of a graph G with eight edges; diagram 

(d) is not a permissible coloring, since two of the edges colored 2 meet at a common 

vertex. It follows that y’(G) <4, since G has a 4-edge-coloring [diagram (a)]. On the other 

hand, x’(G) >4, since G contains four edges meeting at acommon vertex (that is, a vertex 

of degree 4), which must be assigned different colors. So ¥’(G) = 4. 

Note that the above definitions are given only for graphs without loops, since in any 

k-edge-coloring the edges meeting at a vertex must be assigned different colors. On the 

other hand, we often wish to consider graphs with multiple edges, since the introduction 

of multiple edges can significantly alter the chromatic index. 

There is an obvious lower bound for y’(G)—namely, if d is the largest vertex-degree 

in G, then y’(G) = d. To obtain an upper bound for x’(G), we note that if G has m edges, 

then x’(G) < m. However, this upper bound is very poor, and has been improved 

considerably by V. G. Vizing and by C. E. Shannon. For simple graphs, Vizing proved 

the following very strong result in 1963, which we state without proof: 

THEOREM 12.4 (VIZING’S THEOREM). /fG is a simple graph whose maximum 

vertex-degree is d, then 

d<x(G)<d+l. 

This remarkable result tells us that if G is any simple graph, then the chromatic index 

of G is either d or d+1. This gives us a way of classifying simple graphs into two 

classes—those for which x’(G) = d, and those for which x’(G) = d+1. Both possibilities 

can occur, but it is not known in general which graphs belong to which class. 

Before investigating this problem of classifying simple graphs into those with ¥’/(G) =d 

and those with y’(G) = d+1, we state (without proof) two results which give upper bounds 

for the chromatic index of a graph with multiple edges. The first of these is an extension of 

Vizing’s theorem. 

THEOREM 12.5 (VIZING’S THEOREM—EXTENDED VERSION). /f G is a 

graph whose maximum vertex-degree is d, and if h is the maximum number of edges 

joining a pair of vertices, then 

d<y(G)<dth. 

For example, if G is the following graph, then d= 6 and h = 3, and so these bounds are 
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6<x(G) <9; in fact, x’(G) = 8 for this particular graph. Note that Theorem 12.5 reduc- 

es to the earlier version of Vizing’s theorem when G is a simple graph. 

The second upper bound for the chromatic index of a graph was obtained by Shannon 

in a paper on electrical networks. 

THEOREM 12.6 (SHANNON’S THEOREM). /fG is a graph whose maximum ver- 

tex-degree is d, then 

d<y(G) <3. 

For example, if G is the above graph, then d= 6, and so these bounds are 6 < y¥’(G) < 9. If 

d is odd, then sd is not an integer. In this case we can strengthen the bound to sd - z 

We now return to the problem of classifying simple graphs into two classes—those with 

x/(G) = d and those with y’/(G) = d+1. For some types of graph, this question is very 

straightforward—for example, it can easily be checked that for the cycle graphs C,, (n 2 3), 

we have : 

/(C,,) = 2 ifn is even, and x'(C,,) = 3 ifn is odd. 

A similar result holds for complete graphs K,,. 

THEOREM 12.7. For the complete graph Ku, 

x’ (K,) =n-1 ifn is even, and y’ (K,) =n ifn is odd. 

Proof Since each vertex has degree n-1, it follows from Vizing’s theorem that x’ 

(K,) is either n—1 or n. 

If n is odd, then the maximum number of edges that can be assigned the same color is 
s(n-1 ), Since otherwise two of these edges meet at acommon vertex. However, K,, has exactly 

5n(n—1) edges, so the number of colors must be at least n. Hence ¥’(K,,) = n. In fact, we can 

obtain an explicit n-edge-coloring of K, by drawing the vertices in the form of a regular n-gon, 
and coloring the edges around the boundary using a different color for each edge. The 
remaining edges are then assigned the same colors as the boundary edges parallel to them. 
The first diagram below illustrates this procedure in the case n = 5. 
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If n is even, we can prove that y’(K,) = n—1 by explicitly constructing an (n—1)-edge- 

coloring of the edges of K,,. If n = 2, this is trivial. If n > 2, we choose any vertex v and 

remove it (together with its incident edges). This leaves a complete graph K,-; with an 

odd number of vertices, whose edges can be colored with n—1 colors, using the above 

construction. At each vertex there is exactly one color missing, and these missing colors 

are all different. The edges of K,, incident to v can therefore be colored using these missing 

colors. The second diagram above illustrates this procedure in the case n= 6. 0 

We conclude this chapter with ah important theorem of Dénes Konig (1884-1944), a 

Hungarian mathematician who wrote the first comprehensive treatise on graph theory. 

K6nig’s theorem tells us that every bipartite graph (not necessarily simple) with maxi- 

mum vertex-degree d can be edge-colored with just d colors. 

THEOREM 12.8 (KONIG’S THEOREM). /fG is a bipartite graph whose maximum 

vertex degree is d, then y'(G) = d. 

Proof We prove this result by mathematical induction on m, the number of edges of 

G. When m= 1, we have x’(G) = 1 and d= 1. The result is therefore true when m = 1. 

Suppose that the result is true for all bipartite graphs with less than m edges. Let G be 

a bipartite graph with m edges and maximum vertex-degree d, and let H be the graph 

obtained from G by removing an edge e adjacent to the vertices v and w- 

vp remove e 
———> 

G H 

Since H has less than m edges and maximum vertex-degree d (or less), it follows from 

our induction assumption that y’(H) < d—that is, H is d-edge-colorable. We now color 

the edges of H with d colors, and replace the edge e. If we can color e with one of the d 

colors, then we obtain a d-edge-coloring of G, as required. 

To show that the edge e can always be colored in this way, we argue as follows. Since 

H is obtained from G by removing the edge e, there must be at least one color missing at 

y, and at least one color missing at w. If there is some color missing at both v and w, then 

we can assign this color to the edge e, thereby completing the d-edge-coloring of G. If 

this is not the case, suppose that the color blue (say) is missing at v, and the color red 

(say) is missing at w, and consider all the vertices of H which can be reached from v by 

a path consisting entirely of red and blue edges. 



244 PROBLEMS 

Since the edges in such a path must alternate in color, and since the color red is missing 

at w, it follows that w cannot be reached from v by a red—blue path. (This is where we 

use the fact that G, and hence H, is bipartite.) 
If we now interchange the colors on this path, so that the blue edges become red, and 

the red edges become blue, then the colors appearing at w are unchanged, and the color 

red is now missing at both v and w. We can therefore assign the edge e the color red, 

thereby completing the coloring of G. This completes the proof. 0 

PROBLEMS 

Vertex-Colorings 

©12.1. We have seen that the following graph G has chromatic number 4. Write down 

a 4-coloring of G. 

12.2. Find ¥(G) for the following graphs: 

Pocus 
(a) (b) 

12.3. Find x(G) for each of the following graphs G on the graph cards (see Chapter 
1): 

a. card 51; c. card 130; e. card 146; @ card 78: 

b. card 128 d. card 143; te’ Catto: h. card 194. 
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©12.4. Find the chromatic numbers of: 

a. the complete graph K,; 

b. the complete bipartite graph K; ;; 

c. the cycle graph Cy; 

d. the 4-cube Q,; 

e. the Petersen graph. 

12.5. What can you say about graphs G for which — 

(a) x(G) = 1; (b) x(G)=2? 

©12.6. Classify each of the following statements as TRUE or FALSE, giving your rea- 

sons: 

a. if G contains the complete graph K, as a subgraph, then ¥(G) 2 r; 

b. if x¥(G)2r, thenG contains the complete graph K, as a subgraph. 

12.7. Let G be the graph obtained by removing an edge from the complete graph K,,. 

By Brooks’ theorem, we know that ¥(G) < n—1. Give a method for (n—1)-color- 

ing G. Test your method for the case n = 7. 

12.8. Consider the following graph G; 

a. Obtain upper and lower bounds for x(G). 

b. What is the correct value of ¥(G)? 

12.9." Let G be a connected planar graph of girth g. By finding an inequality for the 

average vertex-degree in G, prove that 

a. if g=5,theny(G) <4; 

b. if g=6, then x(G) <3. 

12.10. If G is a graph with n vertices which is regular of degree d, prove that 

¥(G)2 ni(n—d). 

12.11." Let x and x denote the chromatic numbers of a simple graph G with n vertices, 

and its complement G. Prove that 

2Vn<xtHSnel and n<yxZSi(n+ 1). 

Give examples to show that these bounds can all be achieved. 
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Chromatic Polynomials 

12.12. Write down the chromatic polynomials of 

a. the complete graph K;; 

b. the complete bipartite graph K, ,. 

12.13. For each of the following graphs G depicted on the graph cards (see Chapter 

1), find the chromatic polynomial P,(k): 

a. card 42; 

b. card 46. 

12.14. All but one of the following polynomials are chromatic polynomials of graphs 

with four vertices. Find the polynomial which is not the chromatic polynomial 

of any graph. 

a. k(k-1)(k-2); d. k(k-1)(k’-2k+2); 

b. k(k-1)?(k-2); e. k(k-1)(k?-3k+3); 

GA kD 2) f.  k(k-1)(k-2)(k-3). 

12.15. Find the chromatic polynomial of each of the following graphs directly—that 

is, without using the deletion-contraction theorem: 

| | - . : x 

(a) (b) (c) (d) (e) 

©12.16. Multiply out the polynomials in parts (a) and (b) of Problem 12.15, and verify 

in each case that: 

a. the polynomial has the form k"— mk"! +... , where n and m are the numbers 

of vertices and edges in G; 

b. the signs of the terms are alternately + and — ; 

c. there is no constant term. 

(These observations, which are true in general, are a useful check on whether 

you have obtained the correct polynomial.) 

12.17." Let G be a simple graph with n vertices and m edges, and let P,(k) be its 

chromatic polynomial. Use mathematical induction on m and the deletion- 

contraction theorem to prove that 

a. the terms of P(A) are alternately + and — ; 

b. the coefficient of k*' is —m. 



CHAPTER 12. COLORING GRAPHS 247 

©12.18. Use the deletion-contraction theorem to find the chromatic polynomials of 
each of the following graphs: 

(a) ; (b) 

12.19. Use the deletion-contraction theorem to find the chromatic polynomials of 

each of the following graphs. In how many ways can these graphs be colored 

with five colors? 

(a) (b) 

Edge-Colorings 

©12.20. Find y’(G) for each of the following graphs G: 

(a) (b) 

12.21. Find y’(G) for the graphs G in Problem 12.2. 

12.22. Find y’(G) for each of the following graphs G on the graph cards (see 

Chapter 1): 

a. card 128; Geacard (43: emcandel a2: g. card 182; 

b: .card 130; d. card 146; i ecard 17s: h. card 194. 

©12.23. What can you say about graphs G for which 

(a) x(G) = 1; (b) x’(G) = 2? 

©12.24. Classify each of the following statements as TRUE or FALSE, giving your 

reasons: 

a. if Gcontains a vertex of degree r, then ¥’(G) 2 r: 

b. if x/(G) 2 r, then G contains a vertex of degree r. 
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©12.25. For each of the following simple graphs, write down: 

a. the lower and upper bounds for x’(G) given by Vizing’s theorem; 

b. the correct value of x’(G): 

(1) the cycle graph C;; 

(2) the complete graph K,; 

(3) the complete bipartite graph K; ,. 

Justify your answers to (2) and (3) by producing an explicit coloring of the 

edges of the graph. 

12.26. For the graph G in Problem 12.8: 

a. Use Vizing’s theorem to obtain lower and upper bounds for x’(G). 

b. What is the correct value of ¥’(G)? 

12.27. For each of the following graphs G, write down: 

a. the lower and upper bounds for y’(G) given by Vizing’s theorem (extended 

version); 

b. the lower and upper bounds for x¥’(G) given by Shannon’s theorem; 

c. the exact value of x’(G): 

(1) (2) (3) 

12.28. Consider the following graph G: 

a. Use the theorems of Vizing and Shannon to obtain lower and upper bounds 
for x’(G). 

b. What is the correct value of ¥’(G)? 

12.29." Obtain bounds corresponding to those in Problem 12.10 for x’ and x’, the 
chromatic indices of a simple graph G and its complement G. 

©12.30. Use the graph cards in Chapter | to locate all of the connected simple graphs G 
with at most five vertices that satisfy y’(G) = d + 1, where d is the maximum 
vertex-degree in G. 

12.31." Of the 112 connected simple graphs G with six vertices, only three satisfy 

x'(G) =d + 1, where d is the maximum vertex-degree in G. Use the graph 

cards in Chapter | to locate these three graphs. 
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12.32. 

12.33." 

12.34. 

©12:35. 

612.36. 

12.37. 

249 

4 

Prove that if G is a Hamiltonian graph which is regular of degree 3, then 

X(G) = 3. 

a. Show that the Petersen graph has chromatic index 4. 

(Hint: Assume that the chromatic index is 3; then there is essentially only one 

way to 3-edge-color the outside pentagon.) 

b. What is the chromatic index of the graph obtained from the Petersen graph 

by deleting any vertex (and its incident edges)? 

c. What is the chromatic index of the graph obtained from the Petersen graph 

by deleting any edge? 

Use K6nig’s theorem to write down the chromatic index of 

a. the complete bipartite graph K,, (r < s); 

b. the graph of the cube; 

c. the k-cube Q,. 

Give an explicit edge-coloring for the graph in part a. 

Suppose that 7 teams take part in a competition in which each team is required 

to play exactly one match against each of the other n—1 teams. Assuming that 

any matches which involve different pairs of teams may be played simul- 

taneously, how many rounds of matches are necessary? 

At the end of an academic year, each student has to take an examination with 

each of his tutors. If (a) there are 8 tutors and 50 students; (b) each student can 

be examined by up to 3 tutors; (c) the tutors are available for 6, 6, 7, 8, 9, 12, 

15, and 15 periods, how many examination periods are required? 

The line graph L(G) of a graph G was defined in Problem 2.39. If G is nota 

null graph, show that ¥’(G) = x(L(G)). 



CHAPTER 13 

COLORING MAPS 

13.1 INTRODUCTION 

Consider the following map of the United States of America (excluding Alaska and 

Hawaii): 

Maine 

New Hampshire 
Washington 

Minnesota 

North 

Dakota 
Oregon 

Idaho South 
Dakota 

Nevada pee 

Colorado Co 4 
Kansas Fan 

— North 

Tennessee Carolina 
Oklahoma =e 

Louisiana 

Wisconsin Vermont 

New York 
Michigan 

Pennsylvania 

Rhode Island 

Connecticut 

New Jersey 

Delaware 

Maryland 

California South Carolina 

Georgia 

Mississippi 
Florida 
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It is very common for maps of this kind to be colored in such a way that neighboring 
regions (states or countries) are colored differently. This enables us to distinguish easily 
between the various regions, and to locate the state boundaries. The question arises as to 

how many colors are needed to color the entire map, since the larger and more 

complicated the map, the more colors we might expect to need. 

In fact, it is not difficult to show that five colors are sufficient to color any map, 

however complicated, and it is also possible, but very difficult, to show that four colors 

are always sufficient. However, we cannot-reduce this number any further, since there 

are some maps, such as the above map of the USA, which cannot be colored with three 

colors. To see this, look at the ring of five states surrounding Nevada—namely, Califor- 

nia, Oregon, Idaho, Utah, and Arizona. This ring of states needs at least three colors, and 

Nevada will then need yet another color, making four colors in all. 

A 4-coloring of the above map is as follows: 
, 

13.2 THE FOUR-COLOR PROBLEM 

About a hundred years ago, some schoolchildren were challenged by their headmaster to 

solve the following problem: 

Show that all maps can be colored with just four colors so that neighboring countries 

are differently colored. 

The headmaster said that he would accept no proof that exceeded 30 lines of manuscript 

and one page of diagrams. It seemed to him that the problem was too simple to merit a 

longer solution. How disappointed he must have been at the unsuccessful attempts of his 

pupils, for it was not until 1976 that a solution to the problem was found! Two mathema- 

ticians from the University of Illinois, Kenneth Appel and Wolfgang Haken, used over 
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1000 hours of computer time to produce a proof running to several hundred pages and 

some 10,000 diagrams. But why should such a simple problem be so difficult to solve? 

In 1852, the Professor of Mathematics at University College, London, was Augustus 

De Morgan. An ex-student of his, Francis Guthrie, had noticed that the counties of 

England can be colored with four colors in such a way that neighboring counties have 

different colors. Through his brother, he asked De Morgan whether or not four colors 

would suffice for all maps. The professor considered it fairly obvious that four colors 

must be enough, but he could not prove it. Nor could anyone else, for more than a century. 

On June 13, 1878, at a meeting of the London Mathematical Society, Arthur Cayley 

asked if anyone could solve the problem. From that moment on, what was known as the 

four-color problem became one of the most famous unsolved problems in the whole of 

mathematics. 

To appreciate the nature of the problem, notice that in the above map the country A is 

a neighbor of both B and D, because they each have a common boundary with A, but that 

A is not regarded as a neighbor of C, because they meet only at a point and so have no 

common boundary. We could color both A and C red and, similarly, we could color both 

B and D blue, so that only two colors are needed to color this map. On the other hand, a 

map such as 

shows that four colors are sometimes necessary, because every country has a common 

boundary with every other country. 

The four-color conjecture is that four colors are always sufficient. Note that it is 

immaterial whether or not we include the outside region in our coloring, since the outside 

region can be regarded (from a coloring point of view) as an extra ring-shaped country, 

as shown below. We shall not usually bother to include this outside region. 

blue 
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In 1879, the four-color conjecture was ‘proved’ by Alfred Kempe, a London barrister 

and keen amateur mathematician. Kempe produced what purported to be a proof of the 

fact that every map can be 4-colored. Although this attempted proof contains a fatal flaw, 

it also contains a number of ideas which appeared, in much more complicated form, in 

the eventual solution. In view of this, we spend some time analyzing Kempe’s proof and 

extracting the main ideas. 

The first idea is to use mathematical induction on the number of countries. It is clear 

that all maps with at most four countries can be 4+colored. The question is, if we can 

4-color all maps with less then k countries, can we extend these colorings so as to 4-color 

all maps with k countries—and if so, how? 

To answer this question, we need to look more closely at the maps that we are 

considering. We consider a map to be a connected planar graph whose faces (apart from 

the infinite face) correspond to the countries. We also assume that the graph contains no 

bridges (since the colors on each side of an edge have to be different), and contains no 

vertices of degree 1 or 2 (since these do not affect the coloring of the faces). 

: not allowed 

(6) 

no bridges no vertices of degree 2 

It follows from Corollary 3 of Euler’s formula (see page 221) and the section on dual 

graphs that every map contains at least one country (face) bounded by five edges or 

fewer—that is, one of the following: 

As 
digon triangle square pentagon 

Since every map contains at least one of these configurations, we call such a set of con- 

figurations an unavoidable set. Another unavoidable set is 

digon triangle square two pentagons pentagon and hexagon 

Returning to our first unavoidable set, we look at the four types of country in turn, and 

try to show by induction that any map containing any of them can be 4-colored—that is, 
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we assume that any map with less than k countries can be 4-colored and we try to extend 

these colorings so as to color all maps with k countries. 

Digon If there is a digon in the map, we can shrink it down to a point. The resulting 

map has one fewer country, and our induction hypothesis is that this map can be 4-colored. 

We now reinstate the digon, and color it with one of the two available colors. This gives 

a 4-coloring of the original map. 

Triangle If there is a triangle in the map, we can shrink it down to a point. The 

resulting map has one fewer country, and our induction hypothesis is that this map can 

be 4-colored. We now reinstate the triangle, and color it with the single available color. 

This gives a 4-coloring of the original map. 

Square If there is a square we shrink it down to a point, and 4-color the resulting 

map. The difficulty arises when we try to reinstate the square, since it may be surrounded 

by four different colors, so that there is no spare color with which to color the square. 

red 

yellow blue 

green 

To get out of this difficulty, we use a Kempe-chain argument. We consider the red and 

green countries adjacent to the square, and investigate whether or not there is a chain of 

red and green countries in the map leading from the given red country to the given green 

country. 

(a) (b) 

If there is no such chain of countries [as in diagram (a)], then we can interchange the col- 

ors in the red—green part at the top, thereby enabling the square to be colored red. If there 
is such a chain [as in diagram (b)], then interchanging the colors does not help. But in 
this case there can be no chain of blue and yellow countries leading from the given blue 
country to the given yellow country. We interchange the colors in the blue—yellow part 
on the right-hand side of the map, thereby enabling the square to be colored blue as re- 
quired. So in either case we get a 4-coloring of the original map. 
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In each of the above cases, we shrank the configuration to a point, 4-colored the 

remaining map, and reinstated the configuration. In each case we can extend the coloring 

to the configuration, either directly or after a number of color-interchanges. We express 

this by saying that these configurations are reducible. 

Where Kempe went wrong was in trying to extend the same idea to the case in which 

there is a pentagon. In doing this, he had to consider the case where two simultaneous 

color-interchanges are necessary. Although either of these color-interchanges is permis- 

sible on its own, to do them both is not, as was shown in 1890 by a mathematician named 

Percy Heawood. 

Heawood gave the above counter-example to refute Kempe’s proof. The error is a 

fundamental one, and it soon became clear that the problem is extremely difficult, so that 

Appel and Haken’s achievement in solving it is a major one. What Appel and Haken had 

to do was to replace the pentagon by other configurations, until they had found an 

unavoidable set of reducible configurations—unavoidable means that every map con- 

tains at least one of them, and reducible means that whichever one it is then the proof 

can be completed by the methods outlined above. The question is, how is this set 

constructed? 

Professors Appel and Haken did this by constructing a set of almost 2000 reducible 

configurations. An account of how they did this is given in an article from the New 

Scientist of 21 October 1976, part of which is reproduced in the Appendix at the end of 

this chapter. 

13.3 EQUIVALENT FORMS OF THE FOUR-COLOR THEOREM 

It was recognized early on that it is useful to state the four-color problem in terms of 

graphs. Let M be a map drawn in the plane. Place a vertex in each region, and join two 

vertices with an edge if the regions they represent share a common border. The result is 
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the dual graph of the map (see Chapter 11). For example, the dual graph of the map of 

the United States on page 250 is as follows: 

It is clear that the dual graph of any map is a planar graph. Further, any two neighboring 

states in the original map are colored differently, and thus, any two adjacent vertices in 

the dual graph must also be assigned different colors—for example, the bottom right-hand 

vertex F (Florida) must be colored differently from its neighbors A (Alabama) and G 

(Georgia). Thus, coloring the regions of a map so that regions with a common border 

have different colors is equivalent to coloring the vertices of its dual graph so that no two 

adjacent vertices have the same color. Finally, any plane drawing of a graph can be 

thought of as the dual graph of some map—namely, the map formed by its own dual. 

Recall that a graph is k-colorable if its vertices can be colored with k colors so that 

adjacent vertices have different colors. The four-color theorem can thus be restated as 
follows: 

THEOREM 13.1 (THE FOUR-COLOR THEOREM). Every planar graph is 4-col- 
orable. 

The next theorem is a much weaker result, but its proof is a nice illustration of a proof 
by induction. 

THEOREM 13.2. Every planar graph is 6-colorable. 

Proof We use mathematical induction on the number of vertices. It is clear that all 
planar graphs with at most six vertices can be 6-colored. We must now show that if all 
planar graphs with less than k vertices can be 6-colored, then so can all planar graphs 
with k vertices. 

So let G be a planar graph with k vertices. It follows from Corollary 3 of Theorem 
11.1 that G contains a vertex v of degree at most S. If we delete y (and its incident edges), 
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then the resulting planar graph has less than k vertices, and by our induction hypothesis 

we assume that this planar graph can be 6-colored. 

We now reinstate the missing vertex v. Since v has at most five neighbors, there is a 

spare color which can be used for coloring v. This gives a 6-coloring of our original planar 

graph. The result is therefore true for planar graphs with any number of vertices. 0 

The next theorem was proved by Heawood, in trying to salvage what he could from 

Kempe’s incorrect proof of the four-color theorem: — 

THEOREM 13.3. Every planar graph is 5-colorable. 

Proof As before, we prove this result by induction on the number of vertices. 

Proceeding as in the proof of Theorem 13.2, we find a vertex v of degree at most 5, delete 

it, and 5-color the resulting planar graph. The difficulty arises when we try to reinstate 

v, Since it may be surrounded by five different colors, so that there is no spare color with 

which to color v. 

red 

; blue 
white 

yellow een 

To get around this difficulty, we use a Kempe-chain argument. We consider the red 

and green vertices adjacent to v, and investigate whether or not there is a path of red and 

green vertices between the given red vertex and the given green one. 

red 

yellow 

green 

(a) (b) 

If there is no such path [figure (a)], we can interchange the colors in the red—green 

part at the top, thereby enabling v to be colored red. If there is such a path [figure (b)], 

then there can be no path of yellow and blue vertices between the yellow and blue vertices 

adjacent to v. We interchange the colors in the blue—yellow part of the right-hand side of 

the graph, thereby enabling v to be colored blue, as required. So in each case we get a 
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5-coloring of the original graph. The result is therefore true for planar graphs with any 

number of vertices. 0 

We now present the essence of Kempe’s proof of the four-color theorem. We leave it 

to you to discover the flaw in it (see Problem 13.5). 

KEMPE’S ‘PROOF’ OF THE FOUR-COLOR THEOREM. 

The inductive argument is as before. The difficulty arises when v is surrounded by four 

different colors, as follows: 

If there is no red-green path from vertex 1 to vertex 3, then we can interchange the 

colors in the red—green part at the top, thereby enabling v to be colored red, and we are 

done. We therefore assume that there is a red—green path from vertex | to vertex 3. 

Similarly, if there is no red—yellow path from vertex 1 to vertex 4, then we can 

interchange the colors in the red—yellow part at the top, thereby enabling v to be colored 

red, and we are done. We therefore assume that there is a red—yellow path from vertex 1 

to vertex 4. 

/ red-green 

path 

Since there cannot be a blue—yellow path from vertex 2 to vertex 4, we can begin a 

blue—yellow color switch at vertex 2, and this does not change the color of vertex 4. 

Similarly, we can begin a blue-green color switch at vertex 5, and this does not change 

the color of vertex 3. The vertices around v are now all colored red, green, and yellow, 

so that v can be colored blue. This completes the ‘proof’. 0 
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We now turn to a form of the four-color theorem involving chromatic polynomials. 

Since the chromatic polynomial Pc(k) counts the number of ways of coloring a graph with 

k colors, we can restate the four-color theorem in terms of chromatic polynomials. 

THE FOUR-COLOR THEOREM. /fG is a planar graph, then P¢(4) > 0. 

Another form of the four-color theorem was found by P. G. Tait, who thought that he 

had proved it in 1880. Since we are concerned with vertex-colorings of dual graphs of 

planar maps, we need consider only planar graphs with no bridges. Tait realized that it 

is sufficient to look at edge-colorings of cubic graphs of that form. 

THEOREM 13.4 (TAIT’S THEOREM). The four-color theorem is equivalent to the 

statement that any connected bridgeless planar cubic graph is 3-edge-colorable. 

Proof We first assume the four-color theorem—that is, that the regions of any map 

can be 4-colored so that regions with a common border have different colors. Let G be a 

connected bridgeless planar cubic graph. If we draw G in the plane without crossings, 

then the faces of G can be colored with four colors A, B, C, and D, so that no two adjacent 

faces have the same color. We can then use the following table to color the edges of G: 

A B Cc D 

d 
c 
b 

To color an edge bordering two faces colored B and C (say), we look up the entry in row 

B and column C, and then use color d to color the edge. Since the table has distinct en- 

tries in each row and column, we can never color two adjacent edges the same color. 

Thus, G is 3-edge-colorable. 

To prove the converse result, we assume that any connected bridgeless planar cubic 

graph is 3-edge-colorable. Let M be a map that we wish to color with four colors. This 

map is already a bridgeless planar graph, and we must turn it into a cubic graph. At each 

vertex whose degree is greater than 3 we perform the following replacement: 

It is clear that if we can color the faces in the right-hand figure so that no two faces 

which share a common border have the same color, then we can similarly color the faces 

in the left-hand figure as well. By our assumption, we can 3-edge-color the right-hand 

graph, and we can then use the above table in reverse to color the faces of this graph with 
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the colors A, B, C, and D, beginning with an arbitrary color and face. This gives us a 

4-coloring of the faces of the original map, as required. Oo 

Yet another variation of the four-color theorem was given by Heawood who cast it in 

an algebraic setting. 

THEOREM 13.5 (HEAWOOD’S THEOREM). _ A bridgeless planar cubic graph is 

3-edge-colorable if and only if its vertices can be labeled +1 or —I so that the sum for 

the vertices around the boundary of any face is divisible by 3. 

Proof Let G be such a graph that has been 3-edge-colored with colors a, b, and c. 

We label a vertex +1 if the three edges incident to it are colored a, b, and c in clockwise 

order, and label the vertex —1 if the coloring is counter-clockwise. We now begin at an 

edge of a face and move counter-clockwise along the boundary of the face. When we 

come to a vertex labeled +1, we go from an edge colored a to one colored 5, or from b 

toc, orc toa. When we come to a vertex labeled —1, then we change colors in the opposite 

order. After a full circuit around the face, we return to the original edge, and so the total 

of the +1’s and —1’s must be divisible by 3. 

Conversely, if the graph has been labeled +1 and —1 in the prescribed fashion, then 

we can reverse the foregoing procedure to find a 3-edge-coloring for the graph. 0 

13.4 GRAPH EMBEDDINGS AND THE HEAWOOD 
MAP-COLORING THEOREM 

The four-color theorem states that four colors are sufficient to color any map drawn in 

the plane. Since any map drawn on the surface of a sphere can be stereographically pro- 

jected to a map in the equatorial plane of the sphere (see page 221), it follows that four 

colors are sufficient to color any map drawn on the surface of a sphere. This is not true, 

as we shall see, for maps drawn on other surfaces. This leads to the notion of graph 
‘embeddings’. 

DEFINITION. A graph is said to be embedded on a surface if it has been drawn on 

that surface without crossings. 

For example, a planar graph can be embedded on the plane. 

Since Ks and K33 cannot be drawn in the plane without crossings, it is natural to ask 

whether there are any other surfaces on which they can be drawn without crossings. That 

Ks can be embedded on a torus is shown in figure (a): 
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4 

(a) 7 (b) 

We can also think of a torus as a sphere with one handle [see figure (b)], since we can 

gradually deform the torus into a sphere with one handle without tearing it. (An old joke 

defines a topologist as a mathematician who cannot tell the difference between a dough- 

nut and a coffee cup!) s 
A third representation of a torus is as a rectangle in which the top and bottom edges 

have been identified, and the right and left edges have been identified. You can think of 

glueing the top and bottom of the rectangle to form a tube, and then glueing the two ends 

of the tube together to form a torus. This representation is shown in figure (a) below, and 

in figure (b) we use this representation to embed Ks; on a torus. 

eR 
The above representation of the torus is used in many video games. In these games 

the screen is a rectangle. If a moving figure goes off the top of the screen it reappears at 

the bottom, and if it goes off the right edge of the screen it reappears on the left. In other 

words, Pac Man lives on a torus! 

By an (orientable) surface of genus g we mean a sphere with g handles or, equiva- 

lently, a torus with g holes. For example, a sphere has genus 0, and a torus has genus 1. 

WY 

gar 
g=0 g=1 

It is clear that any graph can be embedded on some such surface, because by adding 

enough handles you can easily eliminate all crossings. The genus of a graph is the 

smallest genus of a surface on which the graph can be embedded. For example, the 
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genus of the cube graph Q; is 0, and the genus of K; is 1. Planar graphs are precisely the 

graphs with genus 0. Euler’s formula can be extended to graphs of genus g, as follows: 

we omit the proof. 

THEOREM 13.6 (EULER’S FORMULA, GENERALIZED). Let G be a connected 

graph with genus g, and let n, m, and f denote, respectively, the numbers of vertices, 

edges, and faces in an embedding of G on a surface of genus g. Then 

n—-m+f=2—-2g. 

Note that g = O for planar graphs, and that the above theorem then reduces to the 

original Euler’s formula. This theorem gives us a lower bound for the genus of a graph. 

COROLLARY. LetG be a simple graph with n vertices and m edges. Then the genus 

g(G) of the graphG satisfies 

g(G) =I m-3n) +11, 

where | x | denotes the smallest integer greater than or equal to x. 

Proof This result follows from Theorem 13.6 since each face is bounded by at least 

three edges. The details are left to you as an exercise (see Problem 13.16). 

We can conclude from this corollary that the genus 9(K,,) of the complete graph K,, 

satisfies the inequality 

IV g(K,) 2 [ 2 Gn(n-1)-3n) +11 
[= (n(n-1) - 6n + 12)] 
[1 (n -7n + 12)| 

= [1 (n3y(n)l. 

For example, g¢(K,) = [22] = 2, and hence, K, cannot be embedded on a torus. 

We have just proved the easy half of a remarkable theorem that was proved in 1968: 

THEOREM 13.7 (RINGEL AND YOUNGS). 9(K,) = L(n-3)(n-4) 1. 

We now return to the subject of coloring maps on other surfaces. Consider the 
following map drawn on a torus. How many colors are needed to color the regions of this 
map so that any two regions having a common border are colored differently? 
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The rather surprising answer, as you can see, is that seven colors are required, since each 

of the seven regions has a border in common with all the other regions. The dual graph 

of this map is the complete graph K,. Heawood proved that no graph embedded on the 

torus could need more than seven colors—that 1s, he proved the seven-color theorem for 

the torus. . 

We define the chromatic number of a surface S to be the largest chromatic number 

among the graphs that can be embedded on the surface S. We denote this number by x(S). 

For example, the chromatic number of the plane or the sphere is 4, and the chromatic 

number of the torus is 7. Heawood believed he had proved a formula for the chromatic 

number of a surface with an arbitrary number of handles, but he had in fact only 

established an upper bound. Ringel and Youngs finally finished the proof in 1968, and 

the result is sometimes known as the Heawood Map-Coloring Theorem. 

THEOREM 13.8 (THE HEAWOOD MAP-COLORING THEOREM). /f S, 

(g> 1) denotes the sphere with g handles, then the chromatic number of S, is given by 

1(S,) =L {7 + (1448g)7} 1, 

where | x | denotes the greatest integer less than or equal to x. 

For example, for the torus (g = 1), the theorem gives (Si) = 7. If we also put g = 0, 

then the above formula yields x(So) = 4, which is nothing more nor less than the four-color 

theorem for the sphere! 

PROBLEMS 

The Four-Color Problem 

©13.1. Find a 4-coloring of the following map (excluding the outside region): 
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13.2. The following map is to be colored with the colors red, blue, yellow, and green 

in such a way that neighboring countries are differently colored. If three coun- 

tries are colored blue, green and yellow as indicated, show that country A must 

be colored red. What can you say about the color of country B? 

=a 
13.3." Finda 4-coloring of the following map: 

(This map is a re-drawing of the map used by Heawood to point out the flaw in 

Kempe’s ‘proof’ of the four-color theorem.) 

©13.4. The map on page 252 requires four colors because each region is adjacent to 
all the other regions. Without using the four-color theorem, prove that no map 

in the plane can have five mutually adjacent regions. This does not prove the 

four-color theorem. Why? 

Equivalent Forms of the Four-Color Theorem 

13.5.’ The following graph is the dual of the map used by Heawood to illustrate the 
mistake in Kempe’s ‘proof’ of the four-color theorem. Show exactly where 
Kempe’s argument fails. 
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©13.6. Let G be a map. Prove that 

a. if the faces of G can be 2-colored, then G is an Eulerian graph; 

b. if the faces of G can be 3-colored, and if G is regular of degree 3, then every 

face of G has even degree. 

13.7. Verify Heawood’s Theorem (Theorem 13.5) for each of the following graphs: 

a. the graph of the cube; 

b. the graph of the dodecahedron. 

Graph Embeddings and the Heawood Map-Coloring Theorem 

13.8. Find an embedding of K3, on 

a. a torus; ‘ 

b. asphere with one handle; 

c. arectangle with opposite sides identified. 

13.9. Embed K, on a torus. How do you know this is possible? 

13.10. Show that the Petersen graph has genus 1 by 

a. proving that it is not planar; and 

b. embedding it on a surface of genus 1. 

©13.11. Calculate g(K,) and g(/K;,,). 

13.12." Give an example of a graph of genus 2, and show how it can be embedded on 

a sphere with two handles. 

13.13. a. Using Theorem 13.7, prove that there is no value of n for which 9(K,,) = 7. 

b. What is the next integer which is not the genus of any complete graph? 

13.14.’ A Mobius strip is formed by taking a rectangle and glueing together one pair 

of opposite ends after giving ita half-twist. Embed K, and K,, on a Mobius 

strip 

a. by actually making two Mobius strips and drawing the two graphs on them; 

b. by using the following representation of a Mébius strip in which the arrows 

indicate the half-twist. 

©13.15. Verify that the generalized Euler’s formula (Theorem 13.6) holds for the 

graphs K, and K;,, embedded on a torus. 

©13.16. Prove the corollary to Euler’s formula. 

13.17. Show that there is no graph G of genus g (2 1) such that 

a. Gisregular of degree 4, and 

b. ona surface of genus g, every face of Gis a triangle. 
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13.18. Prove that 

8(K,.) 2[4¢-2)(s-2) 1. 
(Ringel has shown that this inequality is actually an equality.) 

13.19. Calculate x(S,) and (S40). 
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APPENDIX TO CHAPTER 13 

Shown here is part of the computer output used in the proof of the four-colour theorem. The sketch of the corresponding ‘dual 
map" was made by Wolfgang Haken who with Kenneth Appel arrived at the proof 
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Dr. Kenneth Appel 

The Proof of the Four-Colour Theorem 

New Scientist, 21 October 1976 

Enter the Fast Digital Computer Even though a great deal of progress was made in 

the study of reducibility, the goal of proving the four colour theorem by demonstrating 

the existence of an unavoidable set of reducible configurations seemed extremely far off. 

The critical problem was this: No one had any reasonable intuition of a set of configura- 

tions which was unavoidable and seemed to contain configurations which were likely to 

be reducible. In particular, if there were such a set it was not clear that it was small enough 

so that its members could be tested for reducibility. 

With the advent of large, fast digital computers, a new tool was made available to 

workers in the field. Heesch formalised the ideas of Kempe and he and his students used 

computers to show a great many configurations reducible. Heesch strongly believed that 

an unavoidable set of configurations could be found and used a method which has since 

come to be known as the principle of discharging (by analogy with the idea of moving 

charges in an electrical network) to find an unavoidable set of reducible configurations 

for maps with certain restrictions. 

Wolfgang Haken, in the late 1960s, noticed that Heesch’s discharging arguments 

could be greatly improved and simplified. He argued that since the study of reducibility 

had proceeded much farther than that of unavoidable sets, one should spend a great deal 

more effort on the study of unavoidable sets. From the work on reducibility, especially 

the many configurations studied by Heesch, it became evident that configurations with 

certain easily checkable properties were rather likely to be reducible while those without 

these properties were unlikely to be reducible. 

In 1972, Haken and I began to search for unavoidable sets of configurations which 

were likely to be reducible. We did this by examining various discharging procedures to 

see what sort of sets of configurations would be generated. A drawback to this approach 

had been that the study of a single discharging procedure would take several months and 

would not help greatly in simplifying the study of a second procedure. We overcame this 

difficulty by creating a very large sophisticated computer progra
m which could, by minor 
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variations in input and certain parameters, be used to study a great many discharging 

procedures. This had the advantage that while the program took a long while to perfect, 

once it was available it was possible to study the results of a procedure in a few hours. 

By late 1974, we became convinced that unavoidable sets of likely-to-be-reducible 

configurations consisting of a few thousand configurations each could be found. It also 

appeared that the amount of computer time required to check the reducibility of the 

configurations in such sets would be large but not prohibitive. Unfortunately, the problem 

remained that if a single configuration in such a set were irreducible the set would not 

serve the intended purpose of proving the four colour theorem. 

It appeared, however, that a method could be developed to modify such sets to replace 

unwanted configurations, Haken, and John Koch, and I then combined efforts on 

developing a collection of computer programs to test configurations for reducibility. 

Although such programs had been written before (by Heesch, S. Gill, Allaire, and Swart, 

and others), because of technical differences in purpose it was thought advisable to have 

a new set. 
By January 1976 it appeared that the study of discharging procedures had reached a 

point in which a serious attempt on the four colour theorem could be made. The final 

attempt used a rather flexible technique in which one configuration at a time was 

generated for the potential unavoidable set. When it was generated an immediate attempt 

was made to show it reducible. If this could not be done with reasonable effort (up to 30 

minutes on an IBM 370-168 computer) it was discarded and the procedure was modified 

to avoid its use. Previous work had given us confidence that this method would converge 

to an unavoidable set of reducible configurations. In June 1976, after analysis of 10,000 

configurations, over 2000 of which were tested for reducibility, and after using over 1000 

hours of computer time on various computers owned by the University of Illinois, an 

unavoidable set of under 2000 reducible configurations was produced. 

(Reprinted, with permission, from New Scientist, 21 October 1976.) 



CHAPTER 14 

DECOMPOSITION PROBLEMS 

14.1 INTRODUCTION 

In Chapter 6 we introduced the idea of an Eulerian graph, and we investigated condi- 

tions under which a given connected graph is Eulerian. In particular, we saw that every 

Eulerian graph can be split into disjoint cycles—this means that we can divide up the set 

of edges in such a way that each edge of the graph belongs to one, and only one, of the 

subsets. In this chapter we adopt a similar approach for several other problems. Each of 

these problems can be formulated in graph-theoretical terms, and involves splitting 

either the set of vertices or the set of edges into disjoint subsets with particular graph- 

theoretical properties. 

Some of the most interesting problems in graph theory involve the decomposition of 

a graph G into subgraphs of a particular type. In many of these problems, we split the set 

of vertices of G into a number of disjoint subsets, and this is called a vertex decompo- 

sition of G. In other problems, we split the set of edges of G into a number of disjoint 

subsets, and this is called an edge decomposition of G. For example, if our graph G is 

disconnected, as illustrated below, then a natural vertex decomposition is to split the 

vertex-set into the disjoint subsets 

{1,2,3},44,5,6,7}, 181 

corresponding to the components of G. A corresponding edge decomposition of G is 

269 
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{a,b 6}; td; ef, 272): 

1 4 d 5 

3 c 2 oe igater 6 

Another example of an edge decomposition, as mentioned above, is to take an Eulerian 

graph and split the edges into disjoint cycles. For example, if G is the Eulerian graph 

shown below, then there are five possible edge decompositions of G into disjoint cycles: 

{a,b cyd, €,f}, 1g, i}; {a f, 1); (8, c, ghia, eh); 

{@,J; Kes}; {b, Cc, d, é, i}; {b, Cc, h, ae 1a, 7, é, d, g}; 

{d, e, 1) 2}, (a, b, c,h, fy. 

In this chapter we consider a few of the most important graph decomposition problems. 
Some of these have arisen out of practical considerations, such as the New York sanitation 
problem and the printed circuits problem, whereas others are of a recreational nature, 
such as the map-coloring problem and the queens-on-a-chessboard problem. 

14.2 VERTEX DECOMPOSITION PROBLEMS 

We consider three types of problem—map-coloring problems, a sanitation problem 
(which can also be reformulated as a coloring problem), and some domination problems, 
including a recreational problem involving queens on a chessboard. 

Map-Coloring Problems 

Our first decomposition problem involves the coloring of maps. Recall that the map of 
the United States (excluding Alaska and Hawaii) can be colored with just four colors, as 
follows: 
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We can represent this as a vertex decomposition problem by considering the dual 

graph, in which each state is represented by a vertex, and two vertices are joined whenever 

the corresponding states share a common boundary line. This gives the following graph, 

in which each vertex has been assigned a symbol to represent the color of the correspond- 

ing state. Since any two neighboring states in the original map were colored differently, 

any two adjacent vertices in this dual graph are assigned different colors. 

Such a coloring of the vertices of the graph splits the vertex-set into four subsets, 

corresponding to the four colors, as following. 



272 CHAPTER 14. DECOMPOSITION PROBLEMS 

O: Washington, Nevada, Wyoming, New Mexico, Minnesota, Missouri, Vermont, 

Indiana, Georgia, Virginia, Pennsylvania, Connecticut, Mississippi; 

©: Oregon, Montana, Arizona, Nebraska, Oklahoma, Louisiana, Wisconsin, 

Tennessee, Ohio, Florida, South Carolina, Delaware, New York, Rhode Island, 

New Hampshire; 

@: California, Idaho, Colorado, North Dakota, Texas, Iowa, Michigan, Alabama, 

Kentucky, North Carolina, Maryland, New Jersey, Massachusetts, Maine; 

a: Utah, South Dakota, Kansas, Arkansas, Illinois, West Virginia. 

This vertex decomposition has the property that no two vertices in the same set are 

adjacent. They are simply the vertex-colorings discussed in Chapter 12. 

A Sanitation Problem 

In 1973 the New York Sanitation Department was concerned with the problem of maxi- 

mizing the efficiency of its garbage collection service. In particular, it had a number of 

garbage trucks and wished to organize a route schedule for the various trucks to follow. 

Given that the routes are different for the six working days (Monday to Saturday) and 

that some sites may need to be visited several times per week, how do we design a suit- 

able schedule? 

In its full complexity, this problem is far too difficult to be considered here, so we 

look at just one aspect of it. Suppose that a weekly schedule of routes has been 

constructed, in which no route is too short or long, every truck is used on every working 

day, and every site is visited the required number of times. Is the problem now solved? 

The answer to this question is likely to be No, unless we can arrange a schedule in 

such a way that two different garbage trucks do not visit the same site on the same day! 

To see whether this is possible, we construct a tour graph in which each vertex represents 

a route, and two vertices are joined by an edge whenever the corresponding routes have 

a site in common. If the vertices of this graph can be colored with 6 colors (corresponding 

to the days Monday to Saturday) so that adjacent vertices are colored differently, then 

any such vertex-coloring corresponds to a suitable schedule. So the problem reduces to 

that of coloring the vertices of the tour graph so that adjacent vertices are colored 
differently. It is therefore a vertex decomposition problem in which no two vertices in 
the same subset are adjacent; the minimum number of subsets needed is simply the 
chromatic number of the tour graph. 

Unlike the map-coloring problem, the graph under consideration is not usually planar, 
and so its chromatic number can be quite large. The best that we can say in general is 
that the number of days needed to schedule the tours does not exceed the bounds given 
by Theorem 12.1 and Brooks’ theorem, in terms of d, the maximum vertex-degree of 
G—namely, 

d, if G is not a complete graph or a cycle graph with an odd number of vertices; 

d+1, otherwise. 

An exact determination of the number of days needed to schedule the tours requires a 
method for finding the chromatic number of the tour graph G. We presented such a 



14.2 VERTEX DECOMPOSITION PROBLEMS 273 

4 

method in Chapter 12, involving the calculation of the chromatic polynomial P,(k). The 

smallest value of k for which the chromatic polynomial of G is non-zero is the chromatic 

number of G, and the value of P,(k) for this number k gives the number of different ways 

of coloring the vertices of G with k colors. Thus a knowledge of the chromatic polyno- 

mial of the tour graph tells us the number of days needed to schedule the tours, and the 

number of different ways of scheduling the tours in this number of days. 

Domination and Independence Problems 

Communication links are to be set up between a number of cities, and transmitting sta- 

tions are to be built in some of these cities so that every city can receive messages from 

at least one transmitting station. For reasons of economy, we require the number of 

transmitting stations to be as small as possible. How can this be done? 

We can represent this situation by a graph whose vertices correspond to the cities, and 

whose edges correspond to pairs of cities which can communicate with each other. Since 

every city must either contain a transmitting station or communicate with a city contain- 

ing a transmitting station, we wish to find a set of vertices which (between them) are ad- 

jacent to all other vertices of the graph. For example, if the graph 

represents the communication links between six cities, then we can locate the transmitting 

stations at A, C, and E, since each of the other vertices (B, D, and F’) is adjacent to at least one 

of these vertices. However, a more economical solution is to take just two transmitting 

stations and locate them at A and D; as before, each of the other vertices (B, C, E, and F) is 

adjacent to at least one of these vertices. 

A set S of vertices with the property that every vertex of the graph either is in S or is 

adjacent to a vertex of S is called a dominating set of vertices, and a dominating set of 

smallest possible size is called a minimum dominating set. The number of vertices in 

a minimum dominating set in a graph G is called the dominating number of G. For 

example, the sets S = {A, C, E} and S = {A, D} are both dominating sets in the above 

graph, but of these only {A, D} is a minimum dominating set. Other minimum dominating 

sets in the above graph are /B, F}, {C, F}, and {D, F}. Therefore, the dominating number 

is 2. It follows that the above communications problem reduces to that of finding a 

minimum dominating set in the corresponding graph. 

Such problems occur in many different guises. For example, suppose that a number 

of locations in a nuclear power plant are fitted with warning lights, and the security guards 

are to be stationed in various places to watch for these lights. Wecan minimize the number 

of guards needed, by finding a minimum dominating set in the corresponding graph and 

positioning the guards accordingly. Any light which comes on can then be seen by at 

least one of the guards, who can then take appropriate action. 
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A recreational problem of this kind is to find the smallest number of queens that can 

be placed on a chessboard in such a way that every unoccupied square is attacked. In 

chess, a queen attacks all squares in the same row or column and all squares in either 

diagonal through the square on which she is placed. For example, if we place the first 

queen as shown in diagram (a), then 25 unoccupied squares are attacked. How many more 

queens are needed? 

(a) 

In fact, only four more queens are needed; an arrangement of five queens which attack 

all unoccupied squares is shown in diagram (b). Furthermore, it can be shown (although 

we Shall not do so) that no arrangement of four queens will do, but that five queens are 

also sufficient for chessboards of size 9 x 9, 10 x 10, and 11 x 11. 

We can represent this problem graphically by taking the squares as vertices, and 

Joining two vertices by an edge whenever a queen can move from one of the squares to 

the other. A solution of the problem then corresponds to finding a dominating set with 5 

vertices, and showing that it is a minimum dominating set. Since the graph corresponding 
to an 8 x 8 chessboard has 64 vertices and 728 edges, we shall not attempt to draw it, but 
look instead at the analogous problem of a bishop on a 4 x 4 chessboard. (A bishop can 
move only diagonally.) 

In this case, the graph splits into two parts, corresponding to the black squares and the 
white squares. There are several minimum dominating sets—for example, {6,11,7,10}, 
which corresponds to placing a bishop on each of the central four squares. Other minimum 
dominating sets are {5,6,7,8} and {9,10,11,12}. 

By now you are probably wondering what this has to do with vertex decomposition 
problems. To answer this, we take a dominating set, one vertex at a time, and write down 
each of its neighbors (omitting vertices in the dominating set, or those which have already 
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been recorded). For example, the dominating set {6, 11, 7, 10} in the above graph gives 

us the following subsets: 

for vertex 6, we take the vertices 1, 3, 9, and 16, giving the subset {6, 1, 3,9, 16} (we 

have omitted vertex 11, since it lies in the dominating set); 

for vertex 11, we take the vertices 8 and 14, giving the subset {11, 8, 14} (we have 

omitted vertices 1 and 16, since they have already been recorded); 

for vertex 7, we take the vertices 2, 4, 12, and 13, giving the subset {7, 2, 4, 12, 13}; 

for vertex 10, we take the vertices 5 and 15, giving the subset {10, 5, 15}. 

This gives us the vertex decomposition 
fOa7 2G hs tiie, Tay 25 4y 12, 13} 1 0rs; 1S}: 

Note that this type of decomposition is very different from that produced in our discussion 

of coloring problems. For those problems, the subsets have the property that no two vertices 

in the same subset are adjacent. For domination problems, the subsets have the property that 

each subset contains a vertex adjacent to all the other vertices in the subset. 

A related problem, known as the independence problem, is that of finding the largest 

set of queens that can be placed on a chessboard so that none of them is attacked by any 

other. Clearly, the number of queens cannot exceed 8, since at least two queens would 

then appear in the same row. On the other hand, it is certainly possible to place 8 queens 

in the required manner, as shown in the following diagram. 

(This problem was studied by C. F. Gauss, who believed that there were 76 solutions. In 

1854, the Schachzeitung, a Berlin chess journal, published 40 solutions. The correct 

number of solutions is 92.) 

As with the domination problem, we can represent this situation by a graph whose 

vertices correspond to the squares, and whose edges join those pairs of squares which are 

connected by a queen’s move. More generally, the independence problem for a graphG 

is that of finding the largest possible set of vertices of G, no two of which are adjacent. 

A set of vertices no two of which are adjacent is called an independent set of vertices, 

and an independent set of largest possible size is called a maximum independent set. 

For example, the sets {A, D} {A, E}, and {A, C, E} are all independent sets in the graph 

below, but of these only {A, C, E} is a maximum independent set. 
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In order to solve the domination and independence problems for a graph G, we need 

to find the size of a minimum dominating set and the size of a maximum independent set 

in G. We denote these numbers by dom G and ind G, respectively. For example, if G is 

the graph above, then dom G = 2 and ind G = 3, whereas if G is the chessboard graph 

referred to above, then dom G = 5 and ind G = 8. 

Unfortunately, there is no general formula which gives the values of dom G and 

ind G for a general graph. However, the following theorem gives two inequalities 

involving dom G and ind G. 

THEOREM 14.1. For any graph G with n vertices, 

a. domG<indG; 

b. ¥(G)xindG2n. 

Proof a. LetS be amaximum independent set in G. Then S must be a dominating 

set, since otherwise there would be a vertex v in G which is not adjacent 

to any of the vertices in S; this vertex v could then be added to S to produce 

a larger independent set, which is impossible. The result follows. 

b. By the definition of y(G), we can color the vertices of G with x(G) 

colors in such a way that no two adjacent vertices are assigned the same 

color. It follows that the set of vertices of any given color must form an 

independent set, and hence that there are at most ind G vertices of any 

given color. Since there are ¥(G) colors, the total number of vertices must 

be at most ¥(G) x ind G. 0 

14.3 EDGE DECOMPOSITION PROBLEMS 

We consider three types of problem—the printed circuits problem (which leads to the 

idea of a planar graph), matching problems (such as a problem on electrical networks 

and a scheduling problem), and various edge decomposition problems arising from a 

problem involving the bus routes between a number of towns. 

The Printed Circuits Problem 
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In printed circuits, electronic components are constructed by means of conducting strips 

printed directly onto a flat board of insulating material. Such printed connectors may not 

cross, since this would lead to undesirable electrical contact at crossing points. When 

necessary, insulated wires may be used to cross over conducting strips, but printed cir- 

cuits are designed to avoid this as far as possible. Circuits in which large numbers of 

crossings are unavoidable may be printed on several boards which are then sandwiched 

together. Each board consists of a printed circuit without crossings. What is the smallest 

number of such layers for a given circuit? - 

We illustrate the printed circuits problem with a particular example. Suppose that the 

circuit has 36 interconnections and is represented by the complete graph Ko. Then it is 

impossible to arrange all these interconnections in one layer, or even two. Three layers 

are needed, and a solution is given below. Note that every edge of Ko is included in exactly 

one of the layers—for example, the edge 28 appears on layer 2, and the edge 69 appears 

on layer 3. *, 

NR 

layer 2 layer 3 

Recall that a graph which can be drawn in the plane without crossings is called a 

planar graph. For example, each of the graphs appearing on one of the layers in the 

above diagram is a planar graph. The printed circuits problem therefore reduces to the 

problem of decomposing the graph into smaller graphs, all of which are planar. In other 

words, it is an edge decomposition problem in which the edges in each subset form a 

planar graph. In the case of Ko, we get the following edge decomposition corresponding 

to the three layers shown above: 

{ 12,13,16,18,19,23,29,34,38,39,45,46,47,48,56,57,67,68,78,89}, 

{14,15,17,24,28,35,36,37,79}, {25,26,27,49,58,59,69}. 

The minimum number of planar graphs which can be superimposed to form a given 

graph G is the thickness of G, discussed in Chapter 11. Although we cannot solve the 

printed circuits problem in general, we obtained a lower bound for the solution in 

Theorem 11.5 and this bound happens to give the correct answer surprisingly often. 

Matching Problems 

A matching in a graph G is a set of edges of G, no two of which have a vertex in com- 

mon. For example, the following diagram shows a bipartite graph and one of its match- 

ings: 



278 CHAPTER 14. DECOMPOSITION PROBLEMS 

1 A 

2 B 

3 é 

4 D 

In the above graph, we have ‘matched’ the vertices 1, 2, and 3 from the left-hand set 

of vertices with the vertices A, B, and D from the right-hand set of vertices. In fact, the 

idea of a matching applies equally well to graphs in general. For example, the graph of 

the octahedron has several matchings, four of which are 

1 1 1 l 

3 a 3 2) aa 3 2 3 2 
4 4 4 4 

These four matchings have the property that every edge of the graph appears in just 

one of them, and this leads to an edge decomposition in which each subset consists of 

the edges in a matching—namely, 

{16,23,45}, {12,35,46}, {13,24,56}, {15,26,34}. 

It is clear that every graph can be decomposed into matchings, since if G has m edges 

then we can simply take m matchings, each consisting of a single edge. However, the 

problem of determining the minimum number of matchings needed to decompose a given 

graph may be much more difficult, and is unsolved in general. This question is of more 

than academic interest, and has arisen in a number of contexts, two of which we now 

consider. 

A Wire-Coloring Problem 

Suppose that we have an electrical unit, such as a relay panel, and that there are a num- 
ber of relays, switches, and other devices A, B, ... , to be interconnected. The connecting 
wires are first formed into a cable, with the wires to be connected to A emerging at one 
point, those connected to B emerging at another, and so on. In order to distinguish them, 
it is necessary that all those wires which emerge from the same point be colored differ- 
ently. What is the minimum number of colors necessary for the whole network? (This 
problem was posed by C. E. Shannon in 1949, in a paper on electrical networks.) 

In order to see the connection between this problem and the matching problem 
described above, we represent the connection points by the vertices of a graph and the 
wires by edges. For example, the graph below represents a relay panel with six relays, 
A,B tens 
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Since the point C has five wires emerging: from it, and since these wires must all be 
colored differently, we certainly need at least five colors to color the wires in the network. 
In fact, five colors are enough, as the following diagrams show—the numbers on the 
edges correspond to the five colors: 

B Cc B Cc 

OO. <— 
ia E Fi E 

color 1 color 2 

B G B G B ‘& 

<. —. <— 
ie E i E ia ie 

color 3 color 4 color 5 

Since the edges of each color form a matching, the problem of finding the smallest 

number of colors needed to color the wires of the network is the same as the problem of 

determining the minimum number of matchings needed to decompose the graph. It 

follows that the wire-coloring problem is also an edge decomposition problem, and that 

the subsets consist of all the edges with the same color. The edge decomposition 

corresponding to the above wire-coloring is 

{AB,CD}, {AF, BC, DE}, {BC, EF}, {AD, BC, EF}, {CD, EF}. 

In these problems the graphs under consideration usually have multiple edges, and so 

the best we can say is that the number of matchings is limited by the bounds for the 

chromatic index given by the extended version of Vizing’s theorem (Theorem 12.5) and 

by Shannon’s theorem (Theorem 12.6)—namely, 

d<y(G)<d+h and d<x(G)<3d, 

where d is the maximum vertex-degree in G, and h is the maximum number of edges 

joining a pair of vertices. Since it is possible to find graphs attaining any of these 

bounds, we cannot obtain better results than this in general. 
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A Scheduling Problem 

At the end of an academic year, each student has to take an examination with each of his 

or her teachers. How many examination periods are required? 

We can see what is involved if we consider a simple example with four students and 

three teachers. We represent the students and teachers by the vertices of a bipartite graph, 

and join a student-vertex to a teacher-vertex whenever the student needs to be examined 

by the teacher. An example of such a graph is 

students tutors 

1 

A 

2 
B 

3 

Ge 
4 

If two edges meet at a common vertex, then the corresponding examinations cannot 

take place simultaneously. So the problem reduces to that of splitting the graph into 

subgraphs in which no two edges meet in a common vertex—that is, into matchings. In 

this particular case, the minimum number of matchings which decompose the graph is 3, 

and a suitable timetable is as follows: 

ca eerie 1 le 
A A A 

eee 2 2 

B B B 

3@ 3 3 

4 4@ 4 

9am 10 am 1l am 

The corresponding edge decomposition is 

{1A, 2B, 4C}, {1C, 2A, 3B}, {2C, 3A, 4B}. 

Note that this can also be thought of as an edge-coloring problem. If we color the 9 am 

edges red, the 10 am edges yellow, and the 11 am edges blue, then the colors appearing 

at each vertex (student or teacher) are different. 

In these scheduling problems the graphs under consideration are all bipartite graphs. 

The problem therefore reduces to that of finding the chromatic index of a bipartite graph, 

and this problem is answered completely by K6nig’s theorem (Theorem 12.8)—the 

smallest number of matchings needed is equal to the largest vertex-degree in the bipartite 

graph. Thus the matching problem is solved in this case. 

Bus Route Problems 

In a certain county there are a number of rival bus companies. Each company wishes to 
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run a service that includes every town in the county, in such a way that passengers using 
that company can get from any town to any other town. However, the County Council 
will not allow different companies to operate along the same stretch of highway. How 
many different bus companies can be accommodated? 

We can solve this problem by drawing a graph whose vertices correspond to the towns 
and whose edges correspond to the roads joining them. For example, the following graph 

represents a county containing 11 towns joined by 22 roads: 

* 

Each bus company needs a network which connects all the 11 towns, and so each 

company must be assigned at least 10 of the interconnecting roads. Since there are only 

22 roads, the maximum number of companies that can be accommodated is 2. The 

following diagram shows an appropriate allocation of roads to the two companies: 

Such an allocation of roads to companies produces an edge decomposition of the 

original graph. Each of the subgraphs in this decomposition must include edges incident 

to all the vertices, and must be connected, so that a passenger can travel from any town 

to any other by the buses of each company. So the problem reduces to that of decomposing 

the graph into the maximum possible number of subgraphs, each of which is connected 

and includes every vertex of the graph. 

To solve this problem, we denote the required number of subgraphs by s(G). An 

expression for the number s(G) was obtained by W. T. Tutte, who proved the following 

result in 1961. 

THEOREM 14.2. Let G be aconnected graph with n vertices. Then s(G) is the largest 

integer for which the following statement is true: 

for each integer k = 1,2, ... ,n- 1, at least k x s(G) edges must be removed in order 

to disconnect G into k + 1 components. 

To illustrate this theorem, we consider the following graph G for which s(G) = 2: 
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In order to disconnect G into 

two components, we must remove at least 3 edges, so s(G) < 3; 

three components, we must remove at least 5 edges, so 5(G) S a 

four components, we must remove at least 7 edges, so s(G) < a 

11 components, we must remove all 22 edges, so s(G) S$ = 

The largest integer s(G) which satisfies all these inequalities is 2, as required. 

The formal proof of Theorem 14.2 is too complicated to be included here, but the 

following remarks indicate why the result is a reasonable one. 

Outline of Proof Note first that there must be at least s(G) edge-disjoint paths 

between any two vertices in G (one path for each of the subgraphs), so at least s(G) edges 

must be removed in order to disconnect G into two components. We now repeat this 

argument for one of the two subgraphs. In order to disconnect this subgraph into two 

components, and hence to disconnect G into three components, we must remove s(G) 

more edges; so at least 2s(G) edges must be removed in order to disconnect G into three 

components. Carrying on in this way, we eventually obtain the result for every value of 

k.0 

There are several variations of the above problem which lead to interesting mathemat- 

ical results. We consider one of these. Suppose that each bus company operates from a 

depot in one of the towns and chooses each of its routes to be a path out to another vertex, 

returning the same way. This means that each of the connected subgraphs must be a 

tree—in other words, the graph can be decomposed into spanning trees. Note that such 

a decomposition is possible only if the number of edges in the graph is a multiple of the 

number of edges in a spanning tree; if the graph has n vertices and m edges, this means 

that m is a multiple of n—1. In the above example, where n = 11 and m = 22, this can be 

accomplished only if two roads are not used by either company. For example, if the roads 

3-8 and 5—6 are removed from the graph, then the resulting graph can be decomposed 

into the following spanning trees: 
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A necessary and sufficient condition for the existence of a solution of this problem is 

as follows: 

THEOREM 14.3. Let G be a connected graph with n vertices and s(n — 1) edges. Then 

Gcan be decomposed into s spanning trees if and only if, for each integer k = 1,2, ... ,n—1, 

at least ks edges must be removed in order to disconnect G into k + 1 components. 

Proof By Theorem 14.2, this theorem amounts to saying that G can be decomposed 

into s spanning trees if and only if s(G) = s. However, if G can be decomposed into s 

connected subgraphs, then they must all have n— 1 edges, and must therefore be spanning 

trees since there are no edges left over to form any cycles. 0 

14.4 SUMMARY 

We conclude this chapter with a table showing the different types of decomposition 

problems described in this chapter. 

problem type of decomposition typical graph decomposition 
ghee IE go ha a a a Pn ea en eS a a 

b b 

Eulerian edge decomposition g ¢ a ¢ 

graph into disjoint cycles ° , , , ‘ 

e 

coloring vertex decomposition 
s 

problems (no two vertices in (1,3,8, 

(map-coloring, the same subset are {2,10} 

sanitation adjacent) 
er 

problem). 
17, 

domination vertex decomposition 

problems (each subset contains 
rer 

(communication a vertex adjacent to E {D,C,£)} 
links, queens on the other vertices in A.C, 

a chessboard). the subset) 
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problem type of decomposition typical graph decomposition 

printed circuits edge decomposition NN we 

problem into planar subgraphs ‘ 

matching edge decomposition A A 

problems into matchings 
(wire-coloring, (no two edges have 

scheduling) a vertex in common) 

bus-route edge decomposition 

problem into connected subgraphs 

which include every 
vertex 

bus-route edge decomposition 
problem into spanning 
(variation) trees 

PROBLEMS 

14.1. Consider the octahedron graph: 

fh b 

e iC 

d 

Find (if they exist): 

a. a vertex decomposition for which no two vertices in the same subset are 

adjacent; 

b. avertex decomposition for which each subset contains a vertex adjacent to 

the other vertices in the subset; 

an edge decomposition into disjoint cycles; 

an edge decomposition into planar subgraphs; 

an edge decomposition into matchings; 

an edge decomposition into connected subgraphs which include every vertex; 

an edge decomposition into spanning trees. 

To which of the problems discussed in this chapter does each of these decom- 

positions correspond? 

mmo ao 
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Vertex Decomposition Problems 

14.2. 

14.3. 

14.4. 

614.5. 

Consider the following map: 

a. Find a 4-coloring of this map. 

b. Draw the corresponding graph, and show how the 4-coloring in part a leads 

to a vertex decomposition of this graph in which no two vertices in the same 

subset are adjacent. 

A youth club organizer wishes to organize some outings to the Zoo for nine 

children: Andrew, Bill, Catherine, Deirdre, Edward, Fiona, Gina, Harry, and 

Iris. Catherine refuses to go on an outing with any of the boys, Andrew will 

not go if there are any girls (except Deirdre), Edward and Harry must not be 

allowed to go together since they will cause havoc, Fiona cannot stand Bill or 

Gina, and Bill and Edward both dislike Iris. Express this information in terms 

of a suitable graph, and use this graph to find the minimum number of outings 

needed. 

A chemical manufacturer wishes to store some chemicals in a warehouse. 

Some chemicals react violently when in contact with each other, and the 

manufacturer decides to divide the warehouse into a number of rooms so as to 

separate dangerous pairs of chemicals. In the following table, an asterisk (*) 

indicates those pairs of chemicals which must be kept separate: 

A 
B 
Cc 
D 
5: 
Ee 
G 

By drawing an appropriate graph and regarding this as a vertex decomposition 

problem, find the smallest number of rooms needed to store these chemicals 

safely. 

Draw the tour graph for the following tourist bus routes in New York City, and 

use it to find the minimum number of days needed to ensure that no place is 

visited more than once in the same day. What is the corresponding vertex 

decomposition? 
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14.6. 

614.7. 
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route I visits the Empire State Building, Rockefeller Center, Greenwich Village, 

and Pier 42; 

route 2 visits Rockefeller Center, Lincoln Center, Central Park, and Columbia 

University; 

route 3 visits Madison Square Garden, Rockefeller Center, and the United 

Nations; 

route 4 visits the Metropolitan Museum of Art, Central Park, and Rockefeller 

Center; 

route 5 visits the Metropolitan Museum of Art, Columbia University, and Lincoln 

Center; 

route 6 visits Columbia University, the Bronx Zoo, and Yankee Stadium; 

route 7 visits Shea Stadium, Yankee Stadium, and the Brooklyn Botanical 

Gardens; 

route 8 visits the Bronx Zoo and the Brooklyn Botanical Gardens; 

route 9 visits the Empire State Building, Madison Square Garden, Pier 42, and 

the United Nations; 

route 10 visits Pier 42 and the Statue of Liberty; 

route 1] visits the Statue of Liberty, Wall Street, and Greenwich village; 

route 12 visits Wall Street, Greenwich Village, and City College. 

Find a minimum dominating set in each of the following graphs, and use it to 

write down a vertex decomposition with the property that each subset contains 

a vertex adjacent to all the other vertices in the subset. 

A 

ANE E B 

pag JAN D G D 

(a) (b) 

B 

G 

Draw the graph corresponding to a knight’s move on a 3 x 3 chessboard, and 

find a minimum dominating set and the corresponding vertex decomposition. 

Hence find the smallest number of knights that can be placed on such a chess- 

board in such a way that every unoccupied square is attacked. 

14.8.' a. Show thatitis possible to place five queens on an 11 x 11 chessboard in such 
a way that every unoccupied square is attacked. 

b. Is it possible to place eleven queens on an 11 x 11 chessboard in such a way 

that no queen attacks any other? 
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14.9. Let G be the Grétzsch graph depicted below. 

Find (a) dom G; (b) ind G. 

14.10. Let G be the 4-cube Q,. Find (a) dom G; (b) ind G. 

14.11. Verify the results dom G < ind G, and y(G) x ind G =n of Theorem 14.1 when 

Gis 

a. the cube graph Q,; __b. the octahedron graph. 

Edge Decomposition Problems 

14.12. Show that K, and K, can be printed in two layers, and write down a correspond- 

ing edge decomposition in each case. 

614.13. Let G be a graph whose largest vertex-degree is k. What can you say about the 

number of matchings needed to decompose G? 

614.14. How many matchings are needed to decompose each of the following graphs? 

D e D c 

(a) (b) 

Write down a corresponding edge decomposition in each case. 

14.15. How many colors are needed to color the wires of the following network so 

that any two wires emerging from the same point are colored differently? 

©14.16. Five students have arranged separate tutorials on the same morning with three 

tutors A, B, and C. Tutor A wishes to teach students 1, 2, and 4; tutor B will be 

teaching students 1, 3, 4, and 5; and tutor C is to teach students 2, 3, and 5. By 

finding an edge decomposition of the corresponding bipartite graph into match- 

ings, devise a suitable schedule for the tutorials. 
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14.17. Five students are to be examined by five tutors: 

tutor 1 must examine students B and D; 

tutor 2 must examine students A, B, and E; 

tutor 3 must examine students B, C, and E; 

tutor 4 must examine students A and C; 

tutor 5 must examine students B, D, and E. 

If each examination takes the same amount of time, find the minimum number 

of examination periods needed. 

14.18. Five students are to be examined by four tutors: 

tutor A must examine students 1, 2, and 5; 

tutor B must examine students 1, 3, and 4; 

tutor C must examine students 2, 3, and 5; 

tutor D must examine students 2, 3, and 4. 

If each examination takes the same amount of time, how many examination pe- 

riods are needed, and how may the examinations be scheduled? 

©14.19. Consider the original bus route problem for a road network containing n towns 

and m interconnecting roads. 

a. Letkbe the maximum number of bus companies that can be accommodated 

in such a network. Show that k < m/(n-1). 

b. Find the value of k for the following road network: 

©14.20. Decompose the following graph into disjoint spanning trees: 
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14.21. Decompose the following graph into disjoint spanning trees: 

14.22." Verify the statement of Theorem 14.3 for the wheel with five spokes: 



CHAPTER 15 

CONCLUSION 

15.1 PRIMARY AND SECONDARY APPLICATIONS 

Throughout this book we have presented both the theory and the applications of graphs 

and digraphs. As an academic discipline, graph theory has become a rich and varied area 

of study, and we have endeavored to reflect this in the more theoretical parts of the book. 

But we have also tried to illustrate the very widespread use of graphs in different fields, 

ranging from chemistry and linguistics to operations research and the social sciences. 

This dichotomy between theory and applications is an important feature of graph theory, 
which we have tried to present in this book. 

The reason for the widespread use of graphs and digraphs is undoubtedly due to their ex- 
treme simplicity. A graph or digraph is a very convenient and natural way of represent- 
ing information involving the relationships between objects—all we need to do is to 
represent the objects by vertices and the relationships between them by undirected or di- 
rected lines. Examples of such representations are many and varied, as illustrated by the 
diagrams on the next page. 

290 
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example diagram graph or digraph 

H H 

chemical molecule H— t — eek -+t.. 
| | 
eects 

phasing traffic lights ; Vif 

bracing a framework 

signal-flow graphs 

2 

peaee™ ro? 
K6nigsberg bridges Rae, Ae eer aerate D 

je hae 
iff 

B KOnigsberg Hf 

i kK L 

J 
H J M 

tracing a maze 

coloring a map eee J 

For many applications, such a pictorial representation may be all that is needed. By 

representing a situation in such a simple diagrammatic form, we may be able to derive 

all the information we require. The use of such a representation helps us to highlight the 

relevant features of the problem in hand and to play down the others. Such applications 

may be termed secondary applications—they are widespread and useful, but involve 

only the diagrammatic form of the graph or digraph. 

Contrasted with these are the primary applications. These often go much deeper tha
n 

the secondary applications, since they use the properties of the graph or digraph, or results 

concerning them, to solve the problem in hand. In these primary applications, we take 

the graph or digraph as our mathematical model, solve the appropriate graph-theoretic 

problem, and then interpret the solution in terms of the original problem. If the graph or 
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digraph has been a good model, then the graph-theoretic solution will yield a good 

solution of the original problem. We can illustrate this modeling procedure as follows: 

real-life solution 

interpret 
the solution 

real-life problem 
(unable to solve directly) 

model the 
problem 

solve graph’ 

graph/digraph problem mathematical solution 

problem 

A good example of this modeling process was provided by the bracing of rectangular 

frameworks in Chapter 3. The problem was to determine whether or not a given braced 

framework is rigid and, if so, whether the bracing is a minimum bracing. In order to 

answer these questions, we modeled the braced framework by a bipartite graph whose 

vertices correspond to the rows and columns of the original framework, and whose edges 

correspond to the braced cells. By answering the graph-theoretic questions 

Is this bipartite graph connected? 

Does it contain any cycles? 

we were able to answer our original questions, as follows: 

rigid (Cia tracing) 

de 

Ae a 

~ graph 
eae 

t Bos 

Graph theory abounds with such startling and elegant solutions to seemingly difficult 
problems. 

Another example of a primary application was the solution of the Kénigsberg bridges 
problem in Chapter 6. In order to determine whether there exists a closed trail crossing 
each bridge exactly once, we constructed a graph whose vertices correspond to the parts 
of the city and whose edges represent the bridges. This graph is then the appropriate 
mathematical model, and we solved the original problem by determining whether it is an 
Eulerian graph. This was done very easily by checking whether all of the vertex-degrees 
in the graph are even, and the solution then followed immediately. 

Cc 

aan A & c 
ie D construct aN D all vertex- closed trail 

alld} graph a()b_ degrees even? possible 

Konigsberg B f i B 
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On the other hand, there are circumstances where a graph model may be too simplistic 

for the problem in hand. For example, if we wish to model the flow of traffic through the 

streets of a small town, then we may have to take so many factors into account (speed of 

traffic, bottlenecks, accidents, etc.) that any conclusions we may draw from our model 

may be inappropriate for the problems we are dealing with. 

It is also important to realize that the usefulness of a mathematical model may change 

with time. For example, signal-flow graphs, such as those discussed in Chapter 5, were 

used extensively in the 1950s and 1960s to solve systerns of simultaneous linear equations 

arising in practice. However, since the advent of high-speed electronic computers which 

can solve simultaneous equations extremely quickly, the use of signal-flow graphs has 

declined considerably. It remains to be seen how much impact the use of high-speed 

computation will have on the design and analysis of large-scale networks. 

* 

15.2 FOUR TYPES OF PROBLEMS 

Most problems in graph theory can be described under one or more of the following 

interrelated headings: 

existence problems does there exist...? is it possible to...? 

construction problems if...exists, how can you construct it? 

enumeration problems how many...are there, and can you list them all? 

optimization problems if there are several..., which one is the best? 

For example, in investigating the bracing of frameworks, we considered the following 

questions: 

existence problem: is it possible to brace the framework so as to make it rigid? 

construction problem: if such a bracing exists, how can you construct one? 

enumeration problem: how many rigid bracings are there, and can you list them? 

optimization problem: which rigid bracings involve fewest braces? 

Let us look at each type of problem in turn. 

Existence Problems 

From a historical point of view, many of the existence problems which we now regard as 

part of graph theory arose as recreational puzzles. For example: 

the Kénigsberg bridges problem (Chapter 6): does there exist a closed trail crossing 

each of the seven bridges exactly once? 

the knight’ s-tour problem (Chapter 7): does there exist a sequence of knight’s moves 

visiting each square of an 8 x 8 chessboard exactly once and returning to the starting 

point? 

the four-color problem (Chapter 13): does there exist a map which requires five colors 

to color it, so that neighboring countries are differently colored? 
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the utilities problem (Chapters 1 and 11): does there exist a way of connecting the 

three neighbors to the three utilities in such a way that no two connections cross? 

the queens-on-a-chessboard problem (Chapter 14): does there exist an arrangement 

of five queens on an 8 x 8 chessboard so that every non-occupied square is attacked? 

The methods used to answer such questions vary considerably from problem to 

problem. For example, if the answer is yes, as in the knight's tour problem and the 

queens-on-a-chessboard problem, then it is sufficient to produce a single example to 

substantiate the answer. This may not be easy to do in practice—for example, it may take 

a lot of trial-and-error to find a knight’s tour—but once a single solution is found, the 

question has been completely answered. 

If the answer is no, then a completely different approach is needed so as to ensure that a 

solution cannot possibly exist. In the case of the Kénigsberg bridges problem, it is enough to 

notice that when we enter part of the city we must be able to leave it again, so that every 

vertex of the corresponding graph must have even degree; but the corresponding graph has 

four vertices of odd degree (see page 123), so a solution cannot possibly exist. For the utilities 

problem, we need to show that the complete bipartite graph K33 is non-planar, and this can 

be done either directly (see page 217) or by using Euler’s polyhedral formula (see page 220). 

Finally, in the case of the four-color problem, it was a major task lasting many years to show 

that no map needing five colors can be constructed. 

It is instructive to generalize such problems. For example, instead of solving the 

KG6nigsberg problem for the given layout of islands and bridges, we can ask whether any 

given graph has an Eulerian trail. We answered this question completely in Theorem 6.1, 

in the form of a simple test which can be used to determine very quickly whether a given 

connected graph is Eulerian: 

a connected graph is Eulerian if and only if every vertex has even degree. 

In contrast, we may generalize the knight’s-tour problem and ask whether any given 

graph has a Hamiltonian cycle. Unlike the Eulerian problem, no useful test is known for 

determining whether a given graph is Hamiltonian, although there are some sufficient 

conditions, such as those given in Dirac’s theorem and Ore’s theorem (Theorems 7.1 

and 7.2), which work well in particular cases. 

Lying between these extremes are the problems of determining the chromatic number 

of a given graph and deciding whether it is planar; these generalize the four-color problem 

and the utilities problem. In the case of the chromatic number, there is no simple method 

for determining the chromatic number of a given graph in general. We usually have to 

resort to other means, such as a trial-and-error approach or using the deletion-contraction 

theorem (Theorem 12.3) to find the chromatic polynomial and deducing the chromatic 

number from this. In the case of planarity, we have a test which (in principle, at least) 

gives us a complete answer to the question of whether a given graph is planar—namely, 
Kuratowski’s theorem (Theorem 11.3): 

a graph is planar if and only if it contains no subdivision of Ks or K33. 

Unfortunately, it is usually very difficult to recognize subdivisions of K; and K;, in a 
given graph, and so this test is almost useless in practice. We therefore have to resort to 
other means, such as using Euler’s formula to show that a particular graph is non-planar. 
Alternatively, there are a number of ‘planarity algorithms’ which can be used and are 
generally quick and easy to apply. 
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We note, finally, that for every property that a graph G may have (planar, Eulerian, 

2-connected, 3-colorable, etc.), there is a corresponding existence problem; for example: 

planar: does there exist a plane drawing of G? 

Eulerian: does there exist an Eulerian trail in G? 

2-connected: does there exist a vertex whose removal disconnects G? 

3-colorable: does there exist a 3-coloring of the vertices of G? 

Construction Problems 

The construction problems occurring in this book are of three types: 

type I: problems for which solutions are known to exist, and we wish to find 

one; : 

type 2: problems for which solutions may or may not exist, and we find out by 

trying to construct them; 

type 3: problems for which solutions are known to exist, and we wish to find 

the ‘best’ one. 

For each type of problem, we may be able to construct the required solutions by trial- 

and-error methods; and if the graphs involved are small, this may be the best way. For 

example, if we are given a graph with just six vertices, it is probably as easy to determine 

by inspection whether it is Eulerian, or planar, or 3-chromatic, than to apply any system- 

atic procedure. On the other hand, many graphs which arise in practical situations may 

have hundreds or thousands of vertices; and for such large graphs, we need to use an al- 

gorithm. We have met several graphical algorithms in this course, some of which are ex- 

tremely efficient. Those relating to problems of type 3 we consider below, under the 

heading of Optimization problems; those relating to problems of type J and type 2 we 

consider here. But first we need to introduce some terminology which will be useful 

when we discuss the efficiency of a given algorithm. 

When we say that a graph algorithm involves O(m) operations, it means that the number 

of operations a computer uses in applying the algorithm to a given graph is at most Cm, where 

C is a fixed constant (which changes from algorithm to algorithm) and m is the number of 

edges in the graph. Similarly, if a graph algorithm involves O( n’) operations, then the number 

of operations a computer uses in applying it is at most Cn’, where x is the number of vertices 

in the graph. An algorithm which can always be completed in O( n’) or O(m') operations, for 

some fixed number k, is called a polynomial algorithm; such algorithms are usually
 regarded 

as being efficient algorithms, even if k is large—for example, an algorithm involving O( ne) 

is, in this sense, an efficient algorithm. If no polynomial algorithm exists for a given problem, 

then the problem is called NP-hard; all algorithms used to solve such a problem will be 

inefficient algorithms. Finally, there is a large class of important problems for which no 

polynomial algorithm has ever been discovered, but nor has it ever been proved that such a 

polynomial algorithm does not exist. Such problems are known as NP-complete problems 

and have the property that if a polynomial algorithm can be found for any one of these 

problems, then polynomial algorithms will be known to exist for all of them. 

We now return to our three types of problem, starting with those of type 1. 
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Type 1 Problems 

We discuss three type / problems—finding an Eulerian trail in a given graph, getting out 

of a maze, and constructing a spanning tree in a graph. 

Fleury’s algorithm We saw above that there is a simple test for determining whether 

a given graph is Eulerian—namely, look at the vertex-degrees and see whether they are 

all even. If they are, then the graph is Eulerian, and the problem becomes that of finding 

an Eulerian trail in the graph. In Chapter 6 we described an algorithm (Fleury’s algorithm) 

for finding such a trail. This algorithm can easily be applied by hand or by machine and 

is an efficient algorithm involving O(m) operations, where m is the number of edges in 

the graph. 

Tarry’s algorithm Also discussed in Chapter 6 was the problem of getting out of a 

maze. This is also an Eulerian-type problem, and we know that a solution must exist 

(since otherwise we could not have become stuck in the maze to begin with!). As with 

the Eulerian problem, an algorithm (Tarry’s algorithm) exists for solving it; like Fleury’s 

algorithm, it is an efficient algorithm involving O(m) operations, where m is the number 

of edges in the corresponding graph. 

The spanning tree algorithm In Chapter 10, we described two algorithms for 

constructing a spanning tree in a given connected graph. In one of these algorithms, we 

start with no edges and add edges one at a time in such a way that no cycles are created; 

in the other algorithm, we start with the graph and remove edges one at a time in such a 

way that the resulting graphs are never disconnected. These algorithms are easy to apply 

by hand, or to adapt for computer use, and are efficient algorithms involving O(n’) steps, 

where n is the number of vertices in the graph. 

Type 2 Problems 

We discuss two type 2 problems—determining whether a given graph is planar and find- 

ing its chromatic number. 

A planarity algorithm As mentioned above, the best way of determining whether a 

given graph is planar is often simply to try to construct a plane drawing of it. Another 

method is essentially to choose a cycle in the graph and to construct a bipartite graph 

whose two sets of vertices correspond to those edges of the graph which can occur 

together inside the chosen cycle and those parts which must then lie outside the cycle. If 

we can construct such a bipartite graph, then the original graph is planar; if we cannot, 

then it is non-planar. 
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This algorithm is very efficient—if the graph in question has n vertices, then the corre- 

sponding algorithm is a polynomial algorithm involving O( n°) operations. However, 

even more efficient planarity Algorithms exist; in 1974, J.E. Hopcroft and R.E. Tarjan 

constructed one which involves only O(n) operations. 

Chromatic polynomials In Chapter 12 we discussed the problem of finding the 

chromatic number of a given graph G. One way of doing this is to start by finding the 

chromatic polynomial Pc(k), and then determining the smallest value of k for which Pe¢(k) 

is non-zero. In order to obtain the chromatic polynomial of G, we apply the deletion-con- 

traction algorithm, successively replacing G by a number of smaller and smaller graphs 

whose chromatic polynomials we can eventually find by inspection. This algorithm is 

not, however, an efficient algorithm—indeed, most problems involving chromatic num- 

bers or chromatic polynomials come under the heading of NP-complete problems. 

Further graph algorithms are discussed later in the chapter, where we consider type 3 

problems. 

Enumeration Problems 

The subject of graphical enumeration is a major one, although it has not featured promi- 

nently in this book. However, we have looked at a few important problems, which we 

now summarize. 

Labeled graphs The simplest graphical enumeration problem is that of determining 

the number of labeled graphs with n vertices. Since each of the snl n—1) possible edges 

is either present or absent, there are 2n(n-1)2 such graphs altogether. The number of labeled 

graphs with n vertices and m edges is then 

fe ) 
vey 

since each choice of m of the 5n(n-1) possible edges determines a different labeled 

graph with exactly m edges. 
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Labeled digraphs Using ideas similar to those for labeled graphs, we can show that 

there are 2””-) labeled digraphs with n vertices, and that 

n(n-1) 

m 

Labeled trees Using the method of Priifer sequences, introduced in Chapter 10, we 

proved Cayley’s theorem, that the number of labeled trees with n vertices is n**. The 

proof involved constructing a one-to-one correspondence between labeled trees and 

sequences of n—2 integers, each of which is one of the numbers 1,2, ... , n. In contrast, 

the corresponding problems for unlabeled graphs are far more difficult and are usually 

solved using Pélya’s theorem, which lies outside the scope of this book. The numbers of 

simple graphs of various types are: 

of these have exactly m arcs. 

number of vertices 1 2 5 s a 6 } 8 

labeled graphs ee: 3 64 1024 32768 2097152 268435456 

unlabeled graphs dL. 2 4 PES 156 1044 12346 

unlabeled 
connected graphs 1 1 2 6 21 112 853 Tish 

unlabeled regular 
graphs are Z 4 3 8 6 20 

unlabeled Eulerian 
graphs i= 0 ] 1 4 8 37 184 

unlabeled 

hamiltonian graphs 1 0 1 A 8 48 383 6020 

labeled trees ee al 3 LOver 125 1296 16807 262144 

unlabeled trees rel 1 2 5 6 11 23 

labeled digraphs 1 4 6400 4006 2 34 2 a a= 

unlabeled digraphs 1 3 16 218 9608 1540944 ~9x10? ~2x10” 

Optimization Problems 

We now turn our attention to those problems for which solutions clearly exist, and we 
want to find the best one—such problems were called type 3 problems above. We dis- 
cuss algorithms for four of these problems—the shortest path problem, the scheduling 
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problem, the minimum connector problem, and the traveling salesman problem; many 

further type 3 problems will be found in the companion book on Networks. 

The shortest path algorithm In Chapter 8, we discussed the problem of finding the 

shortest path between two vertices in a weighted digraph. The algorithm we used involved 

a breadth-first search of the graph or digraph, and proceeded step by step from the initial 

vertex to the final vertex. The shortest distance from the initial vertex to each of the 

intermediate vertices also emerged from these calculations. This algorithm can easily be 

applied by hand or by machine and is an efficient algorithm involving O(n”) operations, 

where n is the number of vertices of the graph or digraph. 

The scheduling algorithm In Chapter 8 we also showed how to obtain the /ongest 

path between two vertices in,a weighted digraph. If the digraph is an activity network, 

then this longest path is a critical path, involving the activities which must be completed 

on time if the entire job is not to be delayed. As with the shortest path algorithm, the 

finding of a critical path involves O(n’) operations, where n is the number of vertices in 

the digraph. — 

The minimumconnector problem The problem of finding a minimum connector (that 

is, a minimum-weight spanning tree) in a given connected graph is one which we 

discussed in Chapter 10. We gave an easy-to-apply algorithm for solving this problem— 

the so-called greedy algorithm—and presented a variation of it (Prim’s algorithm) which 

is more suitable for computer implementation. In each case, the algorithm is an efficient 

one, involving O(n’) operations, where n is the number of vertices in the graph. 

The traveling salesman problem In contrast to the minimum connector problem, 

there is no efficient algorithm known for solving the traveling salesman problem. As we 

saw in Chapter 10, lower and upper bounds for the solution of the traveling salesman 

problem can easily be derived from the solution of the minimum connector problem. 

However, no algorithm for determining the exact solution of the traveling salesman 

problem is known—the problem is in fact an NP-complete problem. 

15.3 THE FUTURE 

Current research in graph theory is extremely active. In the 1970s and 1980s, several ad- 

vances were made, including the development of an O(n) algorithm for planarity, the in- 

troduction of the term NP-complete, the determination of the thickness of the complete 

graph K,, the discovery of Kuratowski-type theorems for graphs of any given genus, 

and, of course, the proof of the four-color theorem. What important results will emerge 

from the 1990s remains to be seen. 

Of some interest are various generalizations of the notion of a graph. One such 

generalization starts with the idea of a graph as a one-dimensional complex, consisting 

of points and lines in space. By adding triangles and tetrahedra, we can construct 

two-dimensional and three-dimensional complexes, and we can extend these ideas to yet 

higher dimensions. Such simplicial complexes, as they are called, are of importance in 
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an area of mathematics known as combinatorial topology, and occur in the modeling of 

certain physical theories—in particular, those concerning electromagnetic phenomena 

and elastic bodies. 

Q-dimensional 1-dimensional 2-dimensional 3-dimensional 

Another generalization of the concept of a graph is that of a hypergraph. Instead of tak- 

ing pairs of vertices as the edges of a graph, we take arbitrary subsets. For example, we 

can take the vertices of a hypergraph to be a, b, c, and d, and the edges to be the subsets 

abc, bd, cd, and c. The resulting hypergaph would then look something like this 

Hypergraphs have already proved to be of great interest, both theoretically and in their 

practical applications to a number of different areas. It will be interesting to see what 
role they play in the coming years. 
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SOLUTIONS TO SELECTED 
PROBLEMS 

CHAPTER 1 

Lt. 

1.3. 

1.4. 

1.6. 

1.8. 

1.12. 

1.14. 

(a) vertex-set: {London, Oslo, New York, Sydney} 

edge-list: (London—Oslo, London—New York, London—Sydney, Oslo—New York, 

Oslo—Sydney, New York—Sydney) 

(b) vertex-set: {u,v,w,x,y,z} 

edge list: (uv,uw,vw,vw, yx) 

(c) vertex-set. {1,2,3,4,5,6} ; 

edge-list: (12,22,23,24524,24,45,46). 

There are many possible drawings of these graphs—for example: 

(a) (1) and (5); (b) (3); (c) (2) and (4); (d) (1), (2), and (3). 

Graphs (a), (b), and (d) are subgraphs of G. [Note that graph (d) is G itself.] Graphs (c) 

and (e) are not subgraphs of G since they contain the edge vz which is not contained in 

iG 

graph (1): deg 1 = 1, deg 2 = 1, deg 3 = 4, deg 4= 4, deg 5 = 1, deg 6 = 1; the degree- 

sequence is (1,1,1,1,4,4); 

graph (2): deg a= 4, deg b= 4, deg c =4, deg d=4, deg e = 4; the degree sequence is 

(4,4,4,4,4); 
graph (3): deg u = 3, deg v= 1, deg z = 3, deg w= 1; the degree-sequence is (1,1,3,3); 

graph (4): deg A = 0, deg B = 0, deg C = 0, deg D = 0; the degree-sequence is (0,0,0,0); 

graph (5): deg 1 = 1, deg 2 = 2, deg 3 = 4, deg 4 = 2, deg 5 = 1, deg 6 = 2, deg 7 = 2, 

deg 8 = 2; the degree-sequence IS Lele DardeDee 4): 

(a) (i) (1,1,1,1,1,1,2,4,4); (i) (4,4,4,.4,4); Gi) (0,1,3,4,4,5,5). 

(b) In graph (i), the sum of the degrees is 16 and the number of edges is 8; in graph (ii), 

the sum of the degrees is 20 and the number of edges is 10; in graph (iii), the sum of the 

degrees is 22 and the number of edges is 11. In each case the sum of the degrees is ex- 

actly twice the number of edges. 

(a) n = 5, r= 2, so the number of edges is (5)(2) anos 

(b) n= 10, r= 3, so the number of edges is 5(10)(3) = 1/5; 

(c)n = 12, r=5, so the number of edges is +(12)(5) = 30. 

Consequence 1: Since the sum of all the vertex-degrees is twice the number of edges, it 

must be an even number. 

Consequence 2: If the number of vertices of odd degree were odd, then the sum of all 

303 
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the vertex-degrees would be an odd number, contradicting Consequence 1. So the num- 

ber of vertices of odd degree must be even. 
Consequence 3: Since G has n vertices each of degree r, the sum of all the vertex-de- 

grees is nr. By the handshaking lemma, the number of edges is half this sum—that is, 

snr. 

1.16. (a) the last one; (b) the middle one; (c) the last one. 

1.17. There are several possible relabelings—for example, 

(a) 106A, 206B, 30C, 40D, 5GE, 60F; 

(b) acl, bO4, cO7, dOo3, e6, feo2, 205. 

1.18. | Graphs (a) and (c) are the same; graph (d) is isomorphic to (a) and (c), as can be seen by 

interchanging the labels 3 and 6; graph (b) is not isomorphic to any of the other three, 

since it contains no ‘triangles’. 

1.21. No. To see this, look at the four vertices of degree 2. In the first graph they are joined in 

pairs, whereas in the second graph none of them is joined to any other. 

1.25. (a) For this graph, n = 6, m = 8, and the degree sequence is (2,2,2,3,3,4). There are four 

graphs satisfying these conditions and they are on cards 147, 148, 149, and 150. In the 

given graph, the vertices of degree 3 are joined and no vertices of degree 2 are joined. 

The answer is therefore card 148. 

(b) For this graph, n = 6, m= 10, and the degree sequence is (2,3,3,4,4,4). There are 

three graphs satisfying these conditions and they are on cards 184, 185, and 186. In the 

given graph, the vertex of degree 2 is joined to one vertex of degree 3 and one vertex of 

degree 4. The answer is therefore card 186. 

CHAPTER 2 

2.1. (a), (d), (g), and (h) are TRUE; (b), (c), (e), and (f) are FALSE. 

2.4 
(a) Oy i Gy oy 
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2.6. The sum of the numbers is the degree of the vertex corresponding to the particular row 
or column. 

Qels 
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(a) (b) (©) 

Since graph (b) is obtained from graph (a) by interchanging the labels 3 and 4, it fol- 
lows that matrix (b) is obtained from matrix (a) by interchanging the third and fourth 
rows, and the third and fourth columns. Similarly, matrix (c) is obtained from matrix (b) 
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by interchanging the first and second rows, and the first and second columns. The fact 

that matrix (b) and matrix (c) are identical follows from the symmetry of this graph—in- 

terchanging the labels | and 2 leaves it unaltered. 

2.8 (a) 16001000 
fae GUO. oct tal 
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2.13. (a) trail,.5, x, y; (b) walk, 4, v, v; (c) path, 1, v, w; (d) trail, 6, u, u. 

[Note that alternative answers are possible in parts (a), (c), and (d); for example, we 

could have given the answer walk in each case, since every trail is a walk. In each case 

we have chosen the most restrictive term.] 

2.15. length3: svwz 

length 4: stvwz and svwyz 

length 5: stuvwz, stvwyz, and svwxyz 

length 6: stuvwyz and stvwxyz 

length 7: stuvwxyz. 

217 

(a) (b) (c) 

(e) 

> S y 
(f) (g) 
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2.18 

2.23. 

2.30. 

2.32. 

2.34. 

MAM 

CHAPTER 2 

si os i Sen Kg|No|Cog|Ko,9|Qs| hedron| cube} hedron| hedron |hedron|Petersen 

olelelmbal «fel «| | afm | 
afolol fn) fol oe] | a] | 
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If we color the vertices of the bipartite graph black and white, then the vertices in each 

cycle must alternate between these two colors. This implies that the number of edges in 

each cycle must be even. 

Assume that G is disconnected, and that v and w are vertices of G. If v and w lie in differ- 

ent components of G, they are joined by an edge in G. If v and w lie in the same compo- 

nent of G, and zis any vertex in another component of G, then vzw is a path in G. It fol- 

lows that any two vertices can be connected by a path in G, and hence that G is connected. 

They are depicted on graph cards 1, 3, 6, 13, 14, 29, 30, 32, 77, 78, 79, 81, 82, and 85. 

Every tree can be built up from a single vertex by successively adding an edge and a 

new vertex, as many times as necessary. At each stage we increase the number of verti- 

ces by | and the number of edges by 1. Since we start with 1 vertex and 0 edges, we 

must end up with n vertices and n—1 edges. 

number of 

vertices 

number of 

edges 

degree of 

each vertex 

(a) There are nine spanning trees: 

LATIN 
PS Pa 
shel 2d 

(b) There are eight spanning trees: 

PA | Lela 
Li 
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CHAPTER 3 

3.1. 

a3. There are six trees with six vertices—namely, 

3.4. 

Sle 

3.10. 

oe ee geet Lee 
* 

The first five of these are the carbon-graphs of alkanes with the chemical formula 

C,H,,. (They are, respectively, n-hexane, 2-methyl pentane, 3-methyl pentane, 

2,3-dimethyl butane, and 2,2-dimethy] butane.) The last one must be excluded since it 

contains a vertex of degree 5. 

(a) The number of vertices is 

n+ (2n+2)=3n+2; 

the number of edges is half the sum of the vertex-degrees (by the handshaking lemma), 

and is therefore +{4n + 1(2n + 2)} =3n+ 1. 

(b) By part (a), the number of vertices of an alkane exceeds the number of edges by 1, 

and so the graph must be a tree. 

G, and G, are balanced. The corresponding bipartite graphs are 

G, G, 

Note that in G, and G, the cycle ABCA has just one negative edge. These graphs are 

therefore not balanced. 

(a) Since the signed graph is balanced, we can color its vertices black and white so that 

every negative edge has a biack end and a white end. If we now proceed around any 

cycle, there is a change of color whenever we use a negative edge. Since the final color 

must be the same as the first one, there must be an even number of color-changes, and 

hence an even number of negative edges. 

(b) There are three cycles—ABCA, ACDA, and ABCDA. The number of negative edges 

in each is as follows: 

G,: ABCA:2, ACDA:2, ABCDA:2, 

G,: ABCA:2, ACDA:2, ABCDA.2. 
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3.11. <sentence> 

<subject>) predicate) 

«noun <verb <object 

phrase» phrase» phrase» 

<adjective> <noun <verb> <direct 
phrase) object) 

<noun <noun 

phrase» 

Good students read <noun) 

books 

3.15. The branching tree is 

There are therefore five decreasing sequences of maximum length: 11,6,1; 11,6,3; 

11,6,4; 11,9,4; 11,10,4. 

3.17. Subsets of a set: 

“UZ 

nested parentheses: 

(CCC CCD) 

3.20. (a) The corresponding bipartite graph is 

Cy 

ry C2 

ry C3 

r5 C4 

cs 

which is not connected. The bracing is therefore a non-rigid bracing, and can be dis- 
torted as shown: 
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(b) The bracing is a rigid bracing since its bipartite graph is connected: 

It is not a minimum bracing, since the bipartite graph contains a cycle. 

3.24. Since a minimum bracing corresponds to a tree with r+s vertices and r+s—1 edges, the 

number of braced cells is r+s—1. 

- a 

g ¢ d 

(b) There are several possibilities—for example, 

S26. 1G) 

{abf, abc, ace, cde, cg} and {abf, abc, cde, cg}. 

(c) Again, there are several possibilities. The solutions arising from the complete graphs 

in part (b) are 

0-12 seconds: a, b, and f 

12-24 seconds: a, b, and c 

24-36 seconds: a, c, and e 

36-48 seconds: c, d, and e 

48-60 seconds: c and g 

Total waiting time: 252 seconds 

0-15 seconds: a, b, and f 

15-30 seconds: a, b, and c 

30-45 seconds: c, d, and e 

45-60 seconds: c and g 

Total waiting time: 255 seconds 
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3.27. 

3.28. 

3.31. 

3.32. 

CHAPTER 3 

(b) There are several possibilities—for example, 

{AC, DE, BD, DF} and {AD, BD, CE, CF}. 

(c) Again, there are several possibilities. The solutions arising from the complete graphs 

in part (b) are: 

99-99.5 MHz: A and C and 99-99.5 MHz: A and D 

99.5—100 MHz: C and E 99.5—100 MHz: Band D 

100—100.5 MHz: Band D 100—100.5 MHz: CandE 

100.5-101 MHz: DandF 100.5—101 MHz: C and F 

A E B F | ad Cae F 

(a D—_———__—_—_—_—_C 

99 995 100 1005  101MHz 99 99.5 100 1005 101MHz 

Note that this interval graph is not the same as the compatibility graph in Problem 

3.27, although they both arise from the same set of intervals [the first set of intervals in 

the solution of Problem 3.27(c)]. The reason for this difference is that in a compatibility 

graph non-overlapping intervals (such as A and D, or C and F) can sometimes give rise 

to adjacent vertices, whereas in an interval graph non-overlapping intervals must 

always give rise to non-adjacent vertices. 

Checking properties (a), (b), and (c) for the subgraphs H, and H, should cause you no 

difficulty. 

Property (a) tells us that each cube has a front and a back, and a left side and a right 

side, and the subgraphs H, and H, teil us which pairs of colors appear on these faces. 

Property (b) tells us that each color appears exactly twice on the sides of the stack, and 

exactly twice on the front and back (that is, once on the front and once on the back). 

Property (c) tells.us that the faces appearing on the front and back of a cube cannot be 

the same as those appearing on the sides. 

If one of the subgraphs, H, say, contains the loop at R, then it cannot contain any other 

edge incident with R, by property (b). It follows from property (a) that H, must contain 

the 2-edge joining G and Y, the 3-edge joining B and Y, and one of the 4-edges incident 

with Y. But this means that Y has degree 3, contradicting property (b). It follows that nei- 

ther subgraph can contain the loop at R, and a similar argument shows that neither sub- 

graph can contain the loop at G. If one of the subgraphs contains the 2-edge joining R 

and Y, then R cannot be incident with both edges joining R and G, by property (b), and 

so the two edges incident with G must be the 4-edge joining G and Y and the 1-edge 

joining G and R. But this means that neither R nor Y can be incident with a 3-edge, 
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4 

contradicting property (a). It follows that neither subgraph can contain the 2-edge join- 

ing R and Y, and so both H, and H, must be subgraphs of the following graph: 

The result now follows easily by considering the possible cases that can arise. 

3.35. The lengths of the corresponding paths are (a) 3; (b) 4; (c) 3; (d) 2. Thus, key change 

(d) is the least ‘remote.’ 

CHAPTER 4 

4.1. (a) vertex-set: {1, 2, 3,4, 5} 

arc-list: (21, 25, 42, 43, 51, 52, 54) 

(b)- vertex set: {a, b,c, d, e,f, g} 

arc-list: (ab, bb, bb, cd, cf, dd, ed, ef, ef, fc, fc). 

4.2. (a) is a subdigraph—for example, the subdigraph whose arcs are 42, 43, 52, and 54; 

(b) is a subdigraph—for example, the subdigraph whose arcs are 21, 51, 52, and 54; 

(c) is not a subdigraph. 

4.4, Digraphs (b) and (d) are the same; 

digraph (c) is isomorphic to (b) and (d), as can be seen by interchanging the labels 1 

and 4; 

digraph (a) is not isomorphic to any of the other three, since it contains a vertex (2) with 

out-degree 3. 

4.10. (a) and (d) are TRUE; (b), (c), (e) and (f) are FALSE. 

4.11. (a) out-degree sequence: (0,1,1,1,1,1,1,1,1), 

in-degree sequence: (0,0,0,0,0,0,1,3,4); 

(b) out-degree sequence: (1,2,2,2,3), 

in-degree sequence: (1,2,2,2,3); 

(c) out-degree sequence: (1,1,2,2,2,3), 

in-degree sequence: (0,0,2,3,3,3). 

digraph digraph digraph 

(a) (b) (c) 

4.12. 

number of arcs 

era ey sum of in-degrees 

In each case, the sum of the out-degrees and the sum of the in-degrees are both equal to 

the number of arcs. 
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4.16. 
1 2 

e3 

5 4 

4.17. (a) The sum of the numbers in any row is the out-degree of the vertex corresponding to 

that row. 

(b) The sum of the numbers in any column is the in-degree of the vertex corresponding 

to that column. ' 

4.19. 1 
© Cae @ 

1K 6 eA) 

eS 
Qs @ 

4.22. (a) length 5: stvwyz 

length 6: stuvwyz and stvwxyz 

length 7: stuvwxyz; 

(b) length 3: zuvs and zwxs 

length 5: zuvwxs; 

(c) stvwyzuys and stvwyzwxs. 

Any cycle containing both s and z must consist of a path from s to z followed by a path 

from z to s. However, all paths from s to z contain both v and w [by part (a)], and all 

paths from z to s contain v or w [by part (b)], so either v or w must occur twice. Since 

this is not allowed, there can be no cycle containing both s and z. 

4.23. (a) connected, but not strongly connected (since there are no paths from the center vertex 

to any other); 

(b) strongly connected; 

(c) disconnected; 

(d) connected, but not strongly connected (since there are no paths from the top right-hand 

vertex to any other). 

CHAPTER 5 

Sk, (a) and (b) negative feedback cycles; (c) positive feedback cycle. 

5.3. Positive feedback cycle: cefhgc; negative feedback cycles; ghg, ahga, abdfhga, ceifhgc. 

Be) (a) ; 
0 1 

cee pea an ae 
0 
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(b) 
number of | out-degree of] in-degree of 

states each vertex | each vertex 
one-moment 

two-moment 

three-moment 

For an n-moment machine, there are 2” states, each with out-degree and in-degree 2. 

2 

2 

2 

5.10. | Applying reduction (v), we eliminate the cycle of length 2: 

Xe a, OX bes pXqn id Xs 

-of 

Applying reduction (ii), we eliminate the vertex x,: 

e 

xy xX, bed Xs 
1-ef 

Applying reduction (i), we eliminate the multiple arcs: 

on bed 
a l=¢f 

x4 *) x5 

Applying reduction (ii), we eliminate the vertex x,: 

bed a(e+ -?) 

@—_>—_® 

* x5 

It follows that 

Xs = (ae — acef + abcd) x,/(\-cf ). 

CHAPTER 6 

6.1. Eulerian Eulerian trail 

(a) no bs 
(b) yes ABCDEACEBDA 

(c) no = 
(d) yes ABCADCFBEFDEA 

(e) no es 

(f) no 

(g) no 
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6.3. 

6.5. 

6.8. 

6.9. 

CHAPTER 6 

Hamiltonian Hamiltonian cycle 

(a) yes ABCDA 

(b) yes ABCDEA 

(c) yes ABCDHGFEA 

(d) yes ABCDFEA 

(e) no x 
(f) yes ADBECFA 

(g) yes ACDBA 

Strictly speaking, the answer is no, since (according to Saalschiitz) the new bridge was 

a railway bridge! If we ignore that fact, the answer is yes, since A and D are now the 

only vertices of odd degree. A suitable open trail is ABACADBCD, crossing the bridges 

in the order abcdefhg. 

(a) Ky is Eulerian when n is odd (since K;, is regular of degree n — 1); 

(b) K;.5is Eulerian when r and s are both even (since each of the vertex-degrees is either 

rors); 

(c) C, is Eulerian for all values of n (since C,, is regular of degree 2); 

(d) the octahedron graph is Eulerian (since it is regular of degree 4); the other Platonic 

graphs are not Eulerian (since they are regular of degree 3 or 5); 

(e) Q, is Eulerian when n is even (since Q, is regular of degree n); 

(f) the Petersen graph is not Eulerian (since it is regular of degree 3). 

There is only one possibility—the cycles C,, C,, C3, and C, shown below: 

xp 

If we trace around C,, ‘picking up’ C, and C, as we go, we get the closed trail 

u(vwtv)(ztyz)u. 

This trail misses C,, which can be inserted at the vertex w to give the Eulerian trail 

uv(wxyw)tvztyzu. 

Removing the edges uv and vz, we obtain the following graph: 

We cannot use the edge uz (which is a bridge), so we must use either zt or zy. There are 
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now several possibilities. For example, we can traverse the edges zt, tv, vw, and wy, 

giving the following graph: 

At this stage, we cannot use the edge yz (which is a bridge), so we traverse the cycle 

ytwxy, returning (since there is no alternative) by the bridges yz and zu. Thus we obtain 

the Eulerian trail uvztvwytwxyzu. 

6.10. (a) is edge-traceable, since A and B are the only vertices of odd degree; a suitable open 

trail is ACBDAEB, starting at-A and ending at B. 

(b) is not edge-traceable, since it has four vertices of odd degree. 
(c) is edge-traceable, since the only vertices of odd degree are u and x; a suitable open 

trail is uwvwxyzuwyUuxvzx. 

6.12. Such graphs do not exist, since the number of vertices of odd degree is always even, by 

the handshaking lemma. 

6.15. If we add k edges to G, joining the k vertices of odd degree in pairs, we get a new graph 

G’ in which every vertex has even degree. It follows that G’ has an Eulerian trail. If we 

now write out this trail, and then omit the added edges, we get the required k pen- 

strokes. 

6.18. 

Edge AB a BGC eB Deeg) Ene ee) 

Markers at beginning 2 2 0 2 2 2 2 

Markers at end 3 3 0 3 3 3 1 
ie ae Eee 

Edge DF FG GH “Hil” IH” +H” “IM 

Markers at beginning 1 2 2 D 0 2 2 

Markers at end 0 3 3 3 0 3 3 

6.19. There are exactly two vertices of odd degree, b and c, and the shortest path between 

them is bedc, of length 6. Doubling up the edges in this path, we obtain the following 

Eulerian graph: 
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6.22. 

CHAPTER 7 

An Eulerian trail is abcdedcebea, of total length 27. 

(a) Since there is no vertex whose in-degree and out-degree are equal, this digraph is 

neither Eulerian nor arc-traceable. 

(b) In this digraph, the in-degree and out-degree of each vertex are equal, and the digraph 

is therefore Eulerian: an Eulerian trail is ABDECDACBEA. 

(c) In this digraph, 

indeg B = outdeg B, indeg C = outdeg C, 
indeg D = outdeg D, outdeg A — indeg A = 1, 
indeg E — outdeg E = 1; 

the digraph is therefore arc-traceable: a suitable trail is ABDECDACBE. Note that any 

such trail must start at A and finish at E. 

CHAPTER 7 

7.2. 

lads 

7.12. 

(a) There are two Hamiltonian cycles: 

JVTSRWXZOPNMLKFDCBGHJ and JVTSRWXHGFDCBZQPNMLKJ. 

(Note that the letter after R must be W, since otherwise W would have to be omitted.) 

(b) There is only one such path—BCDFGHXZOPNMLKJVWRST. 

(a) K, is Hamiltonian if n > 3; if the vertices are denoted by 1,2....,, then a Hamiltonian 

cycle is 123---nl. 

(b) K;,;is Hamiltonian whenever r =s and r 22. 

(c) Since a tree contains no cycles, no tree can be Hamiltonian. 

(d) All five Platonic graphs are Hamiltonian. 

(Hamiltonian cycles for the tetrahedron, cube and octahedron were given in parts (a), 

(c), and (d) of Problem 6.1. Several Hamiltonian cycles for the dodecahedron were 

given in our discussion of the Icosian game, and a Hamiltonian cycle for the 

icosahedron is as follows: 

wa 

The vertices of any bipartite graph can be split into two sets A and B in such a way that 

each edge has one end in A and one end in B. Any Hamiltonian cycle must alternate be- 

tween these two sets, ending in the same set as it started. It follows that if a bipartite 

graph is Hamiltonian then the sets A and B must have the same number of vertices. This 

is impossible if the total number of vertices is odd. 

(a) This graph is a bipartite graph with an odd number of vertices, and so cannot be 



SOLUTIONS TO SELECTED PROBLEMS 317 

7.14. 

7:15. 

7.19. 

7.20. 

4 

Hamiltonian. (You can check that the graph is bipartite by writing down the sets A 
and B. They are 

{a,c,e,h,j,l,m} and {b,d,f,2,i,k}, 

containing seven and six vertices, respectively.) 

(b) The graph associated with any chessboard is bipartite, since a knight’s move always 

takes a knight to a square of a different color. So 

A = {black squares} and B = {white squares}. 

The result now follows immediately from the above. (All we are saying is that, since 

a knight always moves from a black square to a white square, or vice versa, the number 

of black squares must equal the number of white squares. However, this is impossible 

for any board with an odd number of squares.) 

(a) Any of the cycle graphs C,,, where n > 5. 

(b) The complete bipartite graph K,, where r = 3(n-1), = 3(n+1 ), and n is odd. 

[Note that, if n is even, then deg v 2 5n for each vertex v, and so the graph is Hamilto- 

nian, by Dirac’s theorem.] 

(a) A Hamiltonian cycle is ABDA; 

(b) a Hamiltonian cycle is ABECDA: 

(c) a Hamiltonian cycle is ABECDA. 

Since the number of cities is small, we can solve this problem by trial and error. The 

two shortest routes are AECBDA and AEDBCA (and their reverses). The total distance 

traveled in each case is 20+30+50+80+80 = 260. The reverses of these routes are 

equally short, so the king has a choice of four routes. 

Since the number of possible routes is enormous (about 6.08 x 10”), there is no possibility 

of sorting through all of them, even on the fastest computer. We are therefore forced to make 

certain simplifications based on the particular layout of the map in question. For example, 

since Florida and Georgia are neighboring states in the Southeast, whereas Oregon is a long 

way away on the West Coast, it is unlikely that our route will take us from Florida to Geor- 

gia via Oregon. We can therefore simplify the problem considerably by leaving out connec- 

tions between pairs of cities which are more than (say) 1000 miles apart, since it is unlikely 

that any such connection will appear on the shortest route. We might go even further and ig- 

nore all connections between pairs of states which do not meet. This would simplify the 

problem considerably, and although the solution of the new problem may not be exactly the 

same as that of the original problem, it will probably be a good approximation to it. Finally, 

we might try a regional approach to the problem in which we break the original problem into 

much smaller ones involving the various regions of the United States (such as the Northeast, 

the Midwest, the Southwest, and so on). If we can solve the shortest route problem for the 

different regions, we may be able to combine these solutions so as to give a solution (possi- 

bly approximate) for the original shortest route problem. 
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CHAPTER 8 

8.1 We obtain the following table: 

Vertices |S 

Thus, the shortest distance from S to T is 22. Tracing back through the network, we ob- 

tain the shortest path SABDT. 

8.5. The graph representing the problem is 

8.6. We obtain the following table: 

Vertices Si A B G D E Te 

= (S) (S,A) (S,B) (A,B) (A,C) (D,E) 

s [oJ 
S,A 

S,A, B 

SAB CD 

S A BCeD ae 

Thus, the longest distance from S to T is 43. Tracing back through the network, we 

obtain the longest path SCET. 
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8.9. 

Activity SAD SBS CamAD ML ADL SAL em DCm BD INCH. SDT rT: 

Earliest 
starting time 0 ORO 7 7 eS ee a2 oor 2 31 

Latest 
Starting time 6 TOO OS eee oe) a One 31 

Float time 6 1070 12 (So eS gy 0 6 0 

8.12. The activity network is 

; [3] A ® cy] : 

R © @ 
6) sf@ L 0 20 

: 
[4] p(i3 

The critical path is SACDT, with length 20. We obtain the following table: 

SAm SB ACs BC BD «CDS CTS (Di Activity 

Earliest 
starting time 0 0 3 4 4 11 11 i 

Latest 

starting time 0 1 3 5 6 11 13 13 

Poarame 0) Ot, 0. he 2 

CHAPTER 9 

9.1. (a) «(G) = 2, G is 2-connected, but not 3-connected. 

MG) = 2; G is 2-edge connected, but not 3-edge connected. 

(b) «(G) = 1; Gis neither 2-connected nor 3-connected. 

MG) = 1; Gis neither 2-edge connected nor 3-edge connected. 

(c) «(G) = 2; G is 2-connected, but not 3-connected. 

MG) = 3; G is both 2-edge connected and 3-edge connected. 

9.4. (a), (c), (d), and (f) are cutsets; (b) is not a cutset, since its removal does not disconnect 

the graph; (e) is not a cutset, since we can disconnect the graph by removing just xz and 

yz. 

9.6. (a) and (d) are vertex-cutsets; (b) is not a vertex-cutset, since its removal does not dis- 

connect the graph; (c) is not a vertex-cutset, since we can disconnect the graph by re- 

moving just wu and x, or just y. 

a2: In each case there are several possibilities—for example: 

(a) saet, sbdt, sceft; 

(b) sbet, sabdt; 

(c) saet, sbft. 

This graph does not contain three vertex-disjoint st-paths, since every st-path must pass 

through at least one of the two vertices bande. 
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9.11. (a) Ifthe two st-paths were not edge-disjoint, then they would have an edge in common. 

But this would mean that they had at least one vertex (other than s and t) in common, 

contradicting the fact that they are vertex-disjoint. 

(b) There are many possibilities—for example, 

In the above graph the only pairs of edge-disjoint st-paths are savct and sbvdt, and 

savdt and sbvct. In neither case are the paths vertex-disjoint, since they all pass through 

the vertex v. 

9.12. (a) In this case, k = 2; two edge-disjoint st-paths are sact and sbdt, and two edges 

separating s from tare sa and sb. Thus the maximum number of edge-disjoint s¢-paths 

and the minimum number of edges separating s from ¢ are both equal to 2. 
(b) Again, k = 2; two edge-disjoint st-paths are svxt and swyt, and two edges separating s 

from t are vx and wy. Thus the maximum number of edge-disjoint st-paths and the 

minimum number of edges separating s from ¢ are both equal to 2. 

(c) Inthis case, k = 3; three edge-disjoint st-paths are suwzt, syt, and svxt, and three edges 

separating s from ¢ are su, sv, and sy. Thus the maximum number of edge-disjoint 

st-paths and the minimum number of edges separating s from ¢ are both equal to 3. 

9.18. (a) 5; (b) 5. 

CHAPTER 10 

10.1. There are eleven non-isomorphic trees with seven vertices: 

[2a Ae Yara (eee ter ee 

foto 

a laanees 
10.4. (a) For each component of G, the number of vertices exceeds the number of edges by 1. 

Since there are k components, the total number of edges is n — k. 

(b) By the result of part (a), any forest with 12 vertices and 9 edges has exactly three 

components. An example of such a forest is 
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av gee eee) 
(c) If each component has at least two vertices, then the result is true, since each 

component would then have at least two vertices of degree 2. (This can be seen by 

applying the handshaking lemma to each component.) However, the result is not true, 

in general—for example, the following forest has eight components, but only two 
vertices of degree 1: 

10.8. 3 

Central with center v 

Centroidal with centroid v 

Bicentral with bicenter vw 

Centroidal with centroid w 

@—_@__e__#__e 
v 

v w a 

ss Central with center v 

eee __e_® 

Centroidal with centroid v 

Bicentral with bicenter vw 

vOUwW Bicentroidal with bicentroid vw 

Central with center w 

raat Bicentroidal with bicentroid vw 

Central with center v 

Centroidal with centroid v ° 

Bicentral with center vw 

: Y Centroidal with centroid w 

v w 

7a 

Bicentral with bicenter vw 

Bicentral with bicentroid vw 

Central with center v 

Centroidal with centroid v 
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10.10. The 16 labeled trees are as follows. Note that the first four are obtained by labeling the 

star graph K, ;, whereas the other 12 arise from labeling the path graph P,. 

1 2 1 2 Ki 1 D i NJ 1 2 1 

“A 4 4 3) ee 3 64 ay 4 3 4 

10.12. (a) Successively removing the edges 42, 21, 61, 13, 35, and 75, we obtain the Priifer 

sequence (2,1,1,3,5,5). 

(b) Successively removing the edges 21, 31, 14, 54, and 64, we obtain the Priifer sequence 

(1,1,4,4,4). 

10.14. (a) We start with the list (/,2,3,4,5,6,7,8) and the sequence (2,1,1,3,5,5). Successively 

adding the edges 42, 21, 61, 13, 35, and 75, leaves us with the list (5,8). Joining the 

vertices with these labels, we obtain the labeled tree in Problem 10.12(a). 

(b) Westart with the list (1,2,3,4,5,6,7) and the sequence (1,1,4,4,4). Successively adding 

the edges 21, 31, 14, 54, and 64, leaves us with the list (4,7). Joining the vertices with 

these labels, we obtain the labeled tree in Problem 10.12(b). 

10.16. (a) There are several DFS orderings, depending on how we choose the vertices at each 

stage. If we choose the left-hand vertex whenever there is a choice, we select the 

vertices in the order abefcgdhijk. 

(b) There are several BFS orderings, depending on how we choose the vertices at each 

stage. If we move from left to right on each level, we select the vertices in the order 

abcdefghijk. 

10.20. We start by choosing the edges AB and AC. We can then choose either of the edges AD 

and CD, and then either of the edges DE and BE. These choices give us four minimum 

spanning trees, all of weight 49: 

ah Sethe ee 
DmoRG D3 C 

10.24. (a) 

The minimum-weight spanning tree joining the vertices A, C, D, and E is the tree with 

edges AE, DE, and AC or CE, with total weight 13. The two edges of smallest weight 

incident to B are BC and BA or, BE with total weight 11. The lower bound is therefore 

13+11=24. 
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BF 
The minimum-weight spanning tfee joining the vertices A, B, C, and D is the tree with 

edges AC, BC, and AD or BD with total weight 17. The two edges of smallest weight 

incident to E are EA and EC, with total weight 6. The lower bound is therefore 17 + 

6 = 23. 

10.32. First, we order the items in decreasing order of value per unit weight, as shown below. 

(In this case, the weight of an item is the time needed to produce that item.) 
7 

(b) 

Order number 7 1 ps 3 4 5 

Item B ie D é A 

Weight wi di 4 4 Z 3 

Value v; 14 8 oT 3 3) 

Value per unit weight 2 2 WIS ile 1 

We begin by branching out from the null solution: 

(050900) We 7h =(14) 

(0, 1,0,0,0) w=4,v= 

(0, 0,0, 0,0) € (0,0, 1,0,0) w=4,r 

(0,0,0,1,0) w=2,v= 

ll 

Ga) G3 =) 160) (0,0,0,0,1) w=3,v= 

STORE v = 14, solution = (1,0,0,0,0) 

Next we branch out from the solution (1,0,0,0,0): 

(1, 1,0,0,0) w= 11 

ON 10:10) eal 

(10; 105,1,0), swe 9,0 = (17) 

(1,0,0,0,1) w= 10,v = 17 

(0, 1,0,0,0) v=8 

(0, 0, 0, 0, 0) 
(0,0,1,0,0) v=7 

(0, 0,0, 1,0) v=3 

STORE v = 17, solution = (1,0,0,1,0) 

We delete the marked vertices and continue the branching process from vertex (1,0,0,1,0). 
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(1,0,0,0,0) (1,0, 0, 1, 0) 
(1, 0,0, 1,1) w= 12 

(0, 1,0,0,0) r=@) 

(0,0, 1,0,0) »=7 

(0, 0,0, 1,0) v=3 

(0, 0, 0, 0, 0) 

STORE v = 17, solution = (0,1,0,0,0) 

The new solution is infeasible, so we continue the branching process from the current 

feasible solution with the highest value—namely, (0,1,0,0,0). 

(0, 1, 1, 0, 0) w = 8,v = (15) 

(0,1,0,1,0) w=6,r=11 

(0,1,0,0,1) w=7,v=11 
(0, 0, 0, 0, 0) 

(0,0, 1,0,0) v=7 

(07050) 1510)» mi =93 

STORE v = 17, solution = (1,0,0,1,0) 

We continue the branching process from vertex (0,1,1,0,0). 

(0, 1,1,1,0) w= 10,v= 

(0, 1, 0, 0, 0) 
(0,1,1,0,1) w= 11 

(O81) OF, 0) ae = 1 

(0, 0, 0, 0, 0) 
(CO; 01 O10) ea 7 

(0,0,0,1,0) v=3 

STORE v = 18, solution = (0,1,1,1,0) 

The solution (0,1,1,1,0) is a feasible solution with a value greater than the previous 

stored value, so we update the stored value, as shown above. 

We continue the branching process as shown in the following diagrams. 

(0, 1,0,0,0) (0, 1, 0, 1, 0) 
(0, 1,0,1,1) w= 9,0 =(14) 

6, 0,1,0,0) ve? 
(0, 0, 0, 0, 0) ( Ys 

(0,0,0,1,0) v=3 

STORE v = 18, solution = (0,1,1,1,0) 
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(0, 0, 1, 1, 0) w = 6,0 = (10) 

(0, 0, 0, 0, 0) 

(0,0,1,0,1) w=7,v = 10 
(0,0,0,1,0) v=3 

STORE v = 18, solution = (0,1,1,1,0) 

0,0,1,0,0) (0,0, 1, 1,0 
(0, 0, 0, 0, 0) : used (0,0,1,1,1) w=9,0 = (13) 

(0050212 0) a3 

STORE v = 18, solution = (0,1,1,1,0) 

(0, 0, 0, 1, 0) 
(0, 0,0, 0,0) #———+ + 0,0,0,1,1) w=5,0=© 

STORE v = 18, solution = (0,1,1,1,0) 

The branch-and-bound procedure has now been completed, so the optimum solution 

vector is (0,1,1,1,0), corresponding to items E, D, and C, with a total value of 18. 

CHAPTER 11 

LEZ: K 7 

¥ x: Q Ky 

(a) (b) (c) 

11.4. In any plane drawing of K,, the cycle wwwxyu must appear as a pentagon. The edge vy 

must lie either inside or outside this pentagon. Since the argument is similar in each 

case, we shall assume that vy lies inside the pentagon, as in diagram (b). 

u u u 

Gy | ei | < 

¥. w x w x w 

(a) (b) (c) 

Since the edges ux and uw cannot cross vy, they must lie outside the pentagon, as in dia- 

gram (c). But the edge vx cannot cross uw, and the edge wy cannot cross ux, so both vx 

and wy must lie inside the pentagon, and must therefore cross. Since this is not allowed, 

we deduce that K, has no plane drawing—that is, K; is non-planar. 
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11.5. 

11.8. 

11.9. 

11.12. 

11.14. 

11.15. 

CHAPTER 10 

(a) TRUE, since if G is planar, we can draw G without crossings. If we now omit the vertices 

and edges not contained in the subgraph, we get a plane drawing of the subgraph. 

(b) FALSE—for example, K3, is not planar, whereas the cycle graph C¢ (a subgraph of K33) 

is planar. 

(c) FALSE—for example, Ce is planar, whereas K3,3 (which contains C6) is not. 

(d) TRUE, since if G is planar, then G cannot have a non-planar subgraph (by the result of 

part (a). 

For graph (a), there are 9 edges, the face-degrees are 3, 3, 4, 4, and 4, and 

34+34+44+44+4=2x9; 

for graph (b), there are 11 edges, the face-degrees are 3, 3, 3, 3, 3, 3, and 4, and 

34+3434+3434+34+4=2x11; 

for graph (c), there are 11 edges, the face-degrees are 3, 3, 3, 3, 3, 3, and 4, and 

3434+3434+34+34+4=2x11; 

The handshaking lemma is therefore verified in each case. 

For graph (a),n=6,m= 9,f=5,son—m+f=2, 

For graph (b), n= 6, m= 11,f=7,son—m+f=2,; 

For graph (c),n =6,m=11,f=7,son—m+f= 2. 

Euler’s formula is therefore verified in each case. 

(a) Since the shortest cycle length in G is 5, the degree of each face in a plane drawing is 

at least 5, so that 2m > Sf and we have f < 2 m. Combining this with Euler’s formula, 

f=m-—n+2, we getm—n+2<2m, and hence mS 3 (n-2). 

(b) Suppose that the Petersen graph is planar. Since it contains no triangles or cycles of 

length 4, we can substitute n = 10 and m= 15 into the result of part (a) to give 

15 <2. This contradiction shows that the Petersen graph is not planar. 

A #00 
icosahedron dodecahedron 

(a) (b) (c) és) 

(a) Since G is simple, we can apply Corollary 1 to deduce that m < 3n—6, where m is the 

number of edges of G. If every vertex has degree 5 or more, we have (on counting the 

edges around each vertex) 2m = 5n. Thus Sn < m § 3n-6, giving n = 12. This 

contradiction establishes the result. 

¥/(b) Since G has no vertices of degree 1 or 2, we have (on counting the edges around each 

vertex) 2m 2 3n. If every face has degree 5 or more, we have (on counting the edges 

around each face) 2m = 5f. Combining these two inequalities with Euler’s formula 

yields f = 12. This contradiction establishes the result. 

[Note that either of these results can be deduced from the other by duality. ] 
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‘ 

11.20. Deletion of the edge vw gives the following subgraph, which is a subdivision of K; ,: 

It follows from Kuratowski’s theorem that the given graph is non-planar. 

11.22. (a) Planar: a plane drawing is as follows: 

For this graph, n = 6, m = 10, and f= 6, son—m+f=2. 

(b) Planar: a plane drawing is as follows: 

For this graph, n = 6, m= 11, andf=7,son—m+f=2. 

(c) Non-planar: this graph clearly contains K3,3 as a subgraph, as can be seen by comparing 

it with card 175; it also contains a subdivision of Ks, as can be seen by removing the 

vertical edge in the center. 

(d) Non-planar: this graph contains K3;3 as a subgraph (the two vertices of degree 4 and 

any vertex of degree 5 form one set, the remaining three vertices of degree 5 form the 

other); it also contains Ks as a subgraph, as can be seen by removing one of the vertices 

of degree 4 and its incident edges. 

[Note that in parts (c) and (d), K; and K, , are regarded as subdivisions of themselves. ] 

11.25. Three planar subgraphs which can be superimposed to form K, are shown on page 227. 

It follows that t(K,) < 3. 

11.27. Since the graph K, , is planar for any given value of s, we can split K, , into sr planar 

subgraphs, each of which is isomorphic to K,,. Thus ¢(K,,, S47. Combining this with 

the lower bound for ¢(K,,) given on page 226, we get 

[rs / (2r + 2s—4) 1S W(K,,,) $57. 

These two bounds are equal if 

peel 
2 2r+2s—4 

Rearranging this inequality gives 

s Mr yt 

Thus, if s > L(r - 2)”, then #(K,,,) = 57. 
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11.32. (a) card 50; (b) card 51; (c) card 189. 

11.34. The dual graphs are as follows. Since their degree-sequences are (3,3,3,3,3,5) and 

(3,3,3,3,4,4), they are clearly not isomorphic. 

11.36. It follows directly from the construction of G*, that G* has f vertices and m edges. If 

G* has f* faces, then, by applying Euler’s formula to both G and G*, we obtain 

forG:n-e+f=2; forG*: f—e+ f*=2. 

Comparing these gives f* =n, as required. 

11.37. If Gis bipartite, then every cycle of G has even length, by the result of Problem 2.23. 

By duality, every cutset of G* has an even number of edges. In particular, every vertex 

of G* has even degree. Thus, G* is Eulerian, by Theorem 6.1. Conversely, if G* is 

Eulerian, then every vertex of G* has even degree. By duality, every face of G has even 

degree. In particular, every cycle of G has even length. Thus, G is bipartite. 

CHAPTER 12 

12.1. 4 

Zn 
“43S 
(3 pen aN 

Z 3 

12.4. (a) 7; (b) 2; (c) 3: (d) 2: (e) 4. 

12.5. (a) The only graphs with x(G) = 1 are the graphs with no edges—that is, the null graphs 
Nn. 

(b) The graphs with x(G) = 2 are the bipartite graphs (other than N,), since we can color 
their vertices black and white so that each edge has a black end and a white end. 

12.6. a. TRUE, because if G contains K, as a subgraph, then G contains r mutually adjacent ver- 
tices which require r colors. So ¥(G) > r. 

b. FALSE—for example, the cycle graph C, has chromatic number 3, but contains no tri- 
angle. 

12.12. (a) k(k-1)(K-2)(k-3)(k-4); (b) k(K-1)*. 

12.15. (a) k(k-1)°(k-2), since we can assign k colors to v, kK-1 colors to u and x, and k-2 colors 
to w; 

(b) k(k-1)°(k-2), since we can assign k colors to v, k-1 colors to u and x, k-2 colors to w, 
and k—1 colors to y; 
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12.16. 

12.18. 

12.20. 

12.23. 

‘ 

(c) k(k-1)(k-2)°, since we can assign k colors to v, kK-1 colors to w, and k-2 colors to u 

and x; 

(d) R(kel Y(k-2), since we can color K3 with k(k—1)(k—2) colors and K2 with k(k—1) colors; 

(e) the number of colorings in which v and w are colored the same is k( nt)’. since we 

can assign k colors to v, 1 color (that used for v) to w, kK-1 colors to u, and k-1 colors 

to x; the number of colorings in which v and w are colored differently is k(k-1)(k-2)’, 

since we can assign k colors to v, kK-1 colors to w, k-2 colors to u, and k—2 colors to 

x. The total number of colorings is therefore 

k(k-1)° +/k(k-1)(K-2) = k(k-1)(k°-3k+3). 

The polynomials in parts (a) and (b) of Problem 12.15 are, respectively, 

kA — 4k? + 5k? — 2k 

and 

*, -5k' +98 — 7K + 2k. 

These polynomials clearly satisfy the given properties. 

alee 
Po(k) = {k(k-1)(K-2)}? — (RV) (K-2)° = k(K-1)°(K-2). 

Jeon 
P,(k) = k(k-1)* — k(k-1)(k°-3k+3) [by Problem 12.15(e)] 

= k(k-1)(K-4k+6k-4) 

= k(k-1)(k-2)(k°-2k+2). 

(a) Since the graph G contains vertices of degree 3, we have x’(G) = 3. The following 

diagram illustrates a 3-edge-coloring of G. So x’(G) = 3. 

(b) 

(b) Since the graph G contains vertices of degree 4, we have x'(G) 2 4. The following 

diagram illustrates a 5-edge-coloring of G. So x'(G) = 4 or 5S. A little trial and error 

will convince you that no 4-edge-coloring is possible, so X/(G) = 5. 

(a) The only graphs with ’(G) = 1 are the graphs whose components are either single 

edges or isolated vertices. (At least one edge must be included.) 

(b) The only graphs with x’(G) = 2 are the graphs whose components are either path 

graphs, cycles of even length, or isolated vertices. (At least one path of length 2 or 

more, or cycle of even length, must be included.) 
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12.24. (a) TRUE, because if G contains a vertex of degree r, then G contains r edges all of which 

must be differently colored. So y’(G) 2 r. . 

(b) FALSE—for example, the cycle graph Cs has chromatic index 3, but contains no vertex 

of degree 3. 

12-252 12 (a) 254 (Cy S35; (by (C7) = 3; 

2. (a) 5Sx'(Ke)S6; (b) x (Ko) =5; 
3. (a) 4S y/(K34) $5; (b) x’ (K34) = 4. 
A 5-edge-coloring of K,, and a 4-edge-coloring of K, ,, are 

12.30. The graphs on cards 7, 38, 48, 51, and 52. 

12.35. We can represent this situation by a complete graph K,,, and the solution is given by 

x’ (K,,). Thus the number of matches necessary is n — 1 if n is even, and n if n is odd. 

12.36. Most of the information is irrelevant! The maximum degree of a student-vertex is 3, and 

that of a tutor-vertex is 15; thus the maximum vertex-degree in the bipartite graph is 15. 

It follows from KGnig’s theorem that the number of periods needed is 15. 

CHAPTER 13 

13.1. i> 

(Sosy 
13.4. If there were a map in the plane with five mutually adjacent regions, it would then fol- 

low by duality that the complete graph K, could be drawn in the plane without cross- 
ings. Since K, is non-planar, no such map can exist. Note that if such a map were to 
exist, then the four-color theorem would be false. However, the converse is not true: the 
fact that no such map exists does not imply the four-color theorem. 

13.6. (a) For any vertex v, the faces surrounding v must be even in number since they can be 
colored with two colors. It follows that every vertex of G has even degree, and so G 
is Eulerian. 

(b) For any face F, the faces surrounding F must alternate in color, and so there must be 
an even number of them. It follows that every face of G has even degree. 

13.11. From Theorem 13.7, we obtain g(K,) = 1 and 9(K,,)=5. 

13.15. For graphs of genus 1 embedded on the torus, we have g=1, and hence 

n—-m+f=0. 

For K;,n =5, m= 10, f=5, and thus 

n—m+f=0; 
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13.16. 

for K,3,n = 6, m= 9, f=3, and thus 

n—-m+f=0. 

Drawings of K, and K, , with the requisite number of faces are 

Ps LAs Hasg par 
Ks K3,3 

By Theorem 13.6, n—m+f=2-2g. However, each face is bounded by at least three 

edges, and thus 3f < 2m. It follows that 

2—-2g<n—m+=m, 

and thus 

g2im—n+2)=Xm-3n)+ 1. 

Since g is an integer, the result follows. 

CHAPTER 14 

14.2. (a) There are many possibilities—for example: 

The coloring in part (a) leads to a vertex decomposition of the required type—namely, 

{1,3,8,11}, {2,10}, {4,6,9,12}, (5,7,13}. 
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14.5. 

14.6. 

14.7. 

14.13. 

14.14, 

CHAPTER 14 

The tour graph is 

Since vertices 1, 2, 3, and 4 are mutually adjacent, at least four colors are needed to 

color the vertices of this graph so that neighboring vertices are colored differently. This 

means that at least four days are needed to schedule the various tours. In fact, four days 

are sufficient, as the following vertex decomposition shows: 

Monday: tours 1, 5, and 7; 

Tuesday: tours 2, 9, and 12; 

Wednesday: tours 3, 6, and 11; 

Thursday: tours 4, 8, and 10. 

(Several other vertex decompositions are possible.) 

There are many possibilities—for example, 

(a) {A, C} and {B, E} are minimum dominating sets, giving rise to the vertex decompo- 

sitions {A, B, E}, {C, D} and {B, A, C}, {E, D}, respectively. 

(b) {A, G} is aminimum dominating set, giving rise to the vertex decomposition 

{A, B, D, E}, {G, F, H, C}. 

There are no minimum dominating sets with three vertices. A minimum dominating set 

with four vertices is {1,2,3,5}, giving rise to the vertex decomposition 

LEGS} 2a- Ole (S44 tote 

(Several other solutions are possible.) Hence the smallest number of knights is 4. 

Since the edges incident to the vertex of degree k must all appear in different matchings, 
the number of matchings is at least k. 

By Problem 14.13, at least three matchings are needed for each graph, since each graph 
has maximum vertex-degree 3. For graph (1), three matchings are sufficient; a corre- 
sponding edge decomposition is 

{AB, DE}, {AE, BC}, {BE, CD}. 

However, for graph (2), four matchings are needed; a corresponding edge decomposi- 
tion is 

{AB, CE}, {AE, BD}, {BC, DE}, {CD}. 
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14.16. The corresponding bipartite graph is 

2 A 

3 B 

4 G 

We can decompose this graph into four matchings, giving the following schedule: 

9 am—10am: 1-A, 2-C, 3-B 

10 am—11 am: 13. 4-A, 5—C 

llam-—12noon: 2A, 3-C, 48 

12 noon —1 pm: 5-B 

Several other schedules are possible. 

14:19. (a) Each bus company needs a network which connects all the n towns, and so must have 

at least n — 1 interconnected roads. It follows that if there are k companies, then the 

total number of roads is at least k(n—1); that is m > k (n—1). It follows that k $ m{(n-1). 

(b) This network has 13 towns and 28 roads, and sok < > it follows that k = 1 or 2. 

The following diagram shows that k = 2: 

14.20. There are several possibilities—for example: 

Note that in this example, n = 9 and m= 24, so mis a multiple of n—1. 
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A 

Activity network, 165 

Adding machine, 100 

Adjacency matrix, 33, 86 

Adjacent vertices, 31, 84 

Algorithm, 295 

greedy, 199 

Kruskal’s, 199 

longest path, 162 

Prim’s, 200 
shortest path, 158 

Tarry’s, 130 

Alkane, 48 

Appel, K., 251, 267 

Arc, 81 

Arc-disjoint, 176 

Arc-list, 81 
Arc-traceable digraph, 132 

Archaeology, 66 

Architectural floor plan, 7 

Assigning radio frequencies, 64 

Balanced signed graph, 52 

Benzer’s problem, 67 

INDEX 

BFS spanning tree, 197 

Bicentral tree, 189 

Bicenter, 189 

Bicentroid, 189 

Bicentroidal tree, 190 

Bipartite graph, 37 

Bracing, 59 

minimum, 60 

rigid, 60 

Branch, 187 

Branch-and-bound method, 205 

Breadth-first search (BFS), 196 

Bridge, 89, 170 

Brooks’ theorem, 237 

Bus route problems, 280 

C 

Carbon-graph, 50 

Cayley, A., 51 

Cayley’s theorem, 193 

Central tree, 189 

Center, 189 

Centroid, 189 

Centroidal tree, 190 

Chemistry, 6, 47 

Chinese postman problem, 131 

335 
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Chromatic index, 240 

Chromatic number of graph, 235 

Chromatic number of surface, 263 

Chromatic polynomial, 237 

Circulation diagram, 7 

Circumference of graph, 46 

Classical studies, 67 

Clock diagram, 62 

Closed trail, 35, 88 

Closed walk, 35 

Coloring, 235, 240, 250 

Compatibility graph, 61 

Competition graph, 69 

Complement of a graph, 39 

Complete bipartite graph, 37 

Complete graph, 36 

Complete tripartite graph, 45 

Component, 35 

Connected digraph, 88 

Connected graph, 10, 35 

Connectivity, 171 

Construction problem, 293, 295 

Contraction, 224 

Counting graphs, 16 

Counting trees, 190 

Critical path, 166 

Crossing number, 232 

Crum Brown, A., 48 

Cube, 37, 38 

Cutset, 170 

Cut-vertex, 171 

Cycle, 35, 88 

Hamiltonian, 122, 144, 148 

Cycle graph, 36 

D 

Decision tree, 56 

Decomposition of graph, 269 
Degree of face, 218 

Degree of vertex, 12 

Degree-sequence, 12 

Delay machine, 100 

Deletion—contraction theorem, 239 

Depth-first search (DFS), 194 

INDEX 

Developmental psychology, 66 

DFS spanning tree, 195 

Deagram-tracing puzzles, 128 

Digraph, 81 

arc-traceable, 132 

connected, 88 

disconnected, 88 

Eulerian, 132 

Hamiltonian, 148 

’ signed, 96 

simple, 81 

strongly connected, 88 

Dirac’s theorem, 146 

Direct proof, 113 

Directed arc, 81 

Disconnected digraph, 88 

Disconnected graph, 10, 35 

Dodecahedron, 38 

Dominating number, 273 

Dominating set, 273 

Domination problem, 273 

Dominoes, 129 

Dual graph, 227 

E 

Ecology, 68 

Edge, 8, 10 

Edge-coloring, 240 

Edge-connectivity, 170 

Edge decomposition, 269 

Edge decomposition problems, 276 

Edge-disjoint paths, 173 

Edge-list, 10 

Edge-traceable graph, 127 

Efficient algorithm, 295 

Eigenvalues of a graph, 43 

Electrical energy demand, 98 

Electrical network, 7 

Embedded, 260 

Enumeration problem, 293, 297 

Euler, L., 14, 123, 140 

Euler’s formula, 219, 262 

Eulerian digraph, 132 

Eulerian graph, 122 
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Eulerian trail, 122, 132 

Event, 165 

Existence problem, 293 

Explorer’s problem, 121 

F 

Face, 218 

Face-coloring, 250 

Face-regular, 218 

Family tree, 54 

Feasible solution, 205 

Feedback cycle, 97 ms 

Finite state machine, 98 

Fleury’s algorithm, 126 

Float time, 166 

Food web, 68 

Forest, 209 

Four-color problem, 251 

Four-color theorem, 228, 229, 256, 

259 

Four-cubes problem, 70 

Framework, 59 

G 

Gas, water, and electricity problem, 9 

Genetics, 67 

Genus of graph, 261 

Girth of graph, 45 

Graph, 8, 10 

balanced signed, 52 

bipartite, 37 

carbon, 50 

compatibility, 61 

competition, 69 

complement of, 39 

complete, 36 

complete bipartite, 37 

complete tripartite, 45 

connected, 10, 35 

counting, 16 

cube, 37 

cycle, 36 

decomposition of, 269 
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‘ 

disconnected, 10, 35 

dual, 227 

edge-traceable, 127 

Eulerian, 122 

Hamiltonian, 122, 146 

interval, 66 

ismorphic, 15 

labeled, 15 

line, 46 

niche overlap, 69 

null, 36 

orientable, 89 

path, 36 

Petersen, 39 

Platonic, 38 

regular, 12 

self-complementary, 46 

signal-flow, 104 

signed, 52 

simple, 10 

star, 37 

tour, 272 

underlying, 81 

unlabeled, 15 

vertex-traceable, 148 

Graph cards, 18 

Graph decomposition, 269 

Gray code, 148 

Greedy algorithm, 199 

H 

Haken, W., 251 

Hamilton, W.R., 143 

Hamiltonian cycle, 122, 144, 148 

Hamiltonian digraph, 148 

Hamiltonian graph, 122, 146 

Handshaking di-lemma, 85 

Handshaking lemma, 13 

Handshaking lemma, for planar graphs, 

219 

Heawood map-coloring theorem, 263 

Heawood, P. J., 255 

Heawood’s theorems, 260, 263 

Hypergraph, 300 
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Icoshedron, 38 

Icosian game, 144 

Incidence matrix, 33, 87 

Incident, 31, 84 

In-degree, 84 

In-degree sequence, 84 

Independence problem, 275 

Independent set, 275 

Indirect proof, 113 

Induction, 114 

Inefficient algorithm, 295 

Infinite face, 218 

Input, 100 

Instant insanity, 70 

Interpersonal relationships, 51 

Interval, 65 

Interval graph, 66 

Isomer enumeration, 48 

Isomorphic digraphs, 82 

Isomorphic graphs, 14, 15 

J 

Job-sequencing problem, 150 

Join, 10, 81 

K 

k-colorable, 235 

k-coloring, 235 

k-connected, 171 

k-cube, 37 

k-edge-colorable, 240 

k-edge-coloring, 240 

k-edge-connected, 170 

k-vertex-connected, 171 

Kempe-chain argument, 254 

Key change, 72 

Knapsack problem, 204 

Knight’s tour problem, 145 

KO6nig’s theorm, 243 

Konigsberg bridges problem, 117, 

123 

INDEX 

Kruskal’s algorithm, 199 

Kuratowski’s theorm, 224 

L 

Labeled digraph, 83 

Labeled graph, 15 

Language, 102 

Length of walk, 34 
Line graph, 46 

Linguistic tree, 56 

Listing, J. B., 128 

Longest path algorithm, 162 

Loop, 10, 81 

Map-coloring problems, 119, 250, 

210 

Matching, 277 

Mathematical induction, 114 

Matrix, 32 

adjacency, 33 

incidence, 33 

Maximum dominating set, 273 

Maximum independent set, 275 

Mazes and labyrinths, 129 

Menger’s theorem, 175 

for digraphs (arc-form), 117, 178 

for digraphs (vertex-form), 178, 

180 

for graphs (edge-form), 175, 179 

for graphs (vertex-form), 178, 
180 

Method of paired comparisons, 151 
Minimum bracing, 60 

Minimum connector problem, 197 

Minimum dominating set, 273 

Minimum spanning tree, 198 
Mobius strip, 265 

Multiple arcs, 81 

Multiple edges, 10 

Music, 72 

Mutations, 67 
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N 

Necessary condition, 112 

Negative feedback cycle, 97 

Niche overlap graph, 69 

Node, 8 

NP-complete problems, 295 

NP-hard, 295 
Null graph, 36 

Null solution, 205 

O 

Octahedron, 38 

Open trail, 127 

Optimization problem, 293, 298 

Ore’s theorem, 146 

Orientable graph, 89 

Out-degree, 84 

Out-degree sequence, 84 

Output, 100 

Overlap matrix, 67 

P 

Parity machine, 100 

Path, 35, 87 

Path graph, 36 

Paths, 35, 87 

edge-disjoint, 173 

vertex-disjoint, 173, 176 

Petersen, J., 39 

Petersen graph, 39 

Phasing traffic lights, 62 

Planar graph, 216, 277 

Plane drawing, 216 

Platonic graph, 38, 217 

Platonic solid, 38 

Point, 8 
Potya, G., 17,31 

Polyhedral formula, 220 

Polynomial algorithm, 295 

Positive feedback cycle, 97 

Potential, 158 

Prim’s algorithm, 200 
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4 

Primary applications, 291 

Printed circuits problem, 119, 276 

Proofs, 112 

Priifer’s construction, 191 

Priifer sequence, 191 

Psychology, 66 

Q 

Queens-on-a-chessboard problems, 274 

R 

Radio frequencies, 64 

Ranking in tournaments, 151 

Recognizable word, 102 

Rectangular framework, 60 

Reducible configuration, 255 

Regular graph, 12 

Rigid bracing, 60 

Ringel and Youngs’ theorem, 262 

Root vertex, 58 

Rooted tree, 58 

Rotating drum problem, 133 

Route map, 5 

S 

Sanitation problem, 272 

Scheduling, 165, 280 

Search, 193 

breadth-first, 196 

depth-first, 194 

Searching trees, 193 

Secondary applications, 291 

Self-complementary graph, 46 

Separate, 174, 176 

Sequence dating, 66 

Shannon’s theorem, 242 

Shortest path algorithm, 158 

Shortest path problem, 118, 157 

Signal-flow graph, 104 

Signed digraph, 96 

Signed graph, 52 
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Simple digraph, 81 

Simple graph, 10 

Simplicial complex, 299 

Social sciences, 51 

Solid waste disposal, 97 

Solution vector, 205 

Sorting tree, 57 

Spanning forest, 209 

Spanning tree, 39, 187 

st-path, 173, 176 
Star graph, 37 

State, 99 

Stereographic projection, 221 

Strong induction, 114 

Strongly connected digraph, 88 

Structural diagram, 6 

Subdigraph, 82 

Subdivision, 223 

Subgraph, 11 

Sufficient condition, 112 

Surface of genus g, 261 

+ 

Tabular method, 161, 164 

Tait’s theorem, 259 

Tarry’s algorithm, 130 

Tetrahedron, 38 

Thickness, 225, 277 

Tour graph, 272 

Tournament, 95, 151 

Traffic lights, 62 

Trail, 35 

closed, 35 

Eulerian, 122, 132 

open, 127 

Traveler’s problem, 121 

Traveling salesman problem, 149, 151, 202 

Tree, 39,53, 185 

bicentral, 189 

bicentroidal, 190 

BFS spanning, 197 

central, 189 

centroidal, 190 

decision, 56 

INDEX 

DFS spanning, 195 

family, 54 

linguistic, 56 

minimum spanning, 198 

of life, 54 

rooted, 58 

sorting, 57 

spanning, 39, 187 

Triangle, 35 

U 

Unavoidable set, 253 

Underlying graph, 81 

Unlabeled digraph, 83 

Unlabeled graph, 15 

Union of graphs, 39 

Utilities problem, 9 

V 

Valency, 11 

Vertex, 8, 10, 81 

root, 58 

Vertex-coloring, 235 

Vertex-connectivity, 171 

Vertex-cutset, 172 

Vertex decomposition, 269 

Vertex decomposition problems, 270 

Vertex-disjoint paths, 173, 176 

Vertex-set, 10, 81 

Vertex-traceable graph, 148 

Vizing’s theorem, 241 

W 

Walk, 34, 87 

Closed, 35, 87 

Weight of edge, 35, 132 

Weight of spanning treee, 198 

Weighted graph, 132 

Wire-coloring problem, 278 
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