
MACEWAN Lac

AUK AATAALE
1004663918

a
- ee .

tidy veto!

| . ~*~ 5 ty re
i

i. i ie Spiel x n

|)

v ~~ eS f bh? gate 3
a peated ina

¥ Nove eeutiner) ae

1004663918

PEPE
GRAPHS

AN INTRODUCTORY APPROACH

ROBIN J. WILSON studied at Oxford University, University of Pennsylvania, and

Massachusetts Institute of Technology. He is currently Senior Lecturer in Mathe-

matics at the Open University. He has written and edited a number of books on mathe-

matics and music, including Introduction to Graph Theory, Graph Theory 1736-1936

(with N. L. Biggs and E. K. Lloyd), Selected Topics in Graph Theory 1, 2, 3 (with

L. W. Beineke), Let Newton Be! (with J. Fauvel, R. Flood, and M. Shortland), and

Gilbert and Sullivan: The D’Oyly Carte Years (with F. Lloyd). He was awarded a

Lester Ford award in 1975 for outstanding expository writing and is to be featured

in Mathematical People II (edited by D. Albers, G. Alexanderson, and C. Reid).

JOHN J. WATKINS, Associate Professor and Chair of Mathematics at Colorado

College, works in both commutative ring theory and graph theory. He studied at

Oberlin College and taught mathematics in Ghana as a Peace Corps Volunteer

before receiving his doctorate from the University of Kansas. In addition to mountain

climbing and skiing, his interests include music and the history of mathematics. He

is currently working on a book on commutative rings.

GRAPHS
AN INTRODUCTORY APPROACH

A First Course in Discrete Mathematics

ROBIN J. WILSON
The Open University

JOHN J. WATKINS
Colorado College

Based on The Open University course Graphs, Networks and Design

WILEY

John Wiley & Sons, Inc.

era eee mente entra I nee +

Copyright © 1990, by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, electronic, mechanical, photocopying, recording, scanning

or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States

Copyright Act, without either the prior written permission of the Publisher, or

authorization through payment of the appropriate per-copy fee to the Copyright

Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax

(978) 646-8600. Requests to the Publisher for permission should be addressed to the

Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030,

(201) 748-6011, fax (201) 748-6008.

To order books or for customer service please, call 1(800)-CALL-WILEY (225-5945).

Library of Congress Cataloging-in-Publication Data

Wilson, Robin J.

Graphs: an introductory approach : a first course in discrete

mathematics / Robin J. Wilson, John J. Watkins.

p. cm.

“Based on The Open University course Graphs, Networks and
Design.”

Bibliography: p.

Includes index.

ISBN 0-471-61554-4

1. Graph theory. I. Watkins, John J. II. Title.

QA166, W54 1989
511°.5--de20 89-34111

CIP

Printed in the United States of America

10

“This book is based upon The Open University course TM361: Graphs, Networks and Design,
first published in 1981. Material is reproduced by permission of The Open University.”

PREFACE

In recent years, there has been a significant movement away from traditional calculus
courses and toward courses on discrete mathematics. The impetus for this has undoubt-
edly been due in part to the increasing importance of the computer, and the consequence
has been a proliferation of courses and books entitled Discrete Mathematics, Finite
Mathematics, Mathematics for Computer Science, and other similar titles.

It is an unfortunate feature of some of these courses that a large number of different
topics are covered at a superficial level, leaving the student frustrated and confused and
having little understanding of the underlying reasons for introducing so many seemingly
unrelated areas. Our experience is that students benefit more from an introductory course
based in just one area, chosen so as to link in with other subjects whenever the instructor
considers it appropriate to do so. Graph theory is an ideal topic for such an introductory
course—tt is fun, students enjoy it, they can ‘get their hands dirty’ drawing pictures, and
it is an excellent stepping stone towards a wide range of courses in mathematics and
computer science.

This book arose out of a British Open University course on Graphs, Networks and
Design, which first appeared in 1981 and has been presented every year since then. It has
regularly attracted over 500 students per year, with the result that several thousand
students have successfully completed the course. In addition, various drafts of this book
have been used at Colorado College since 1984 in a freshman/sophomore level course.

The original course was written by a team of Open University mathematicians and

technologists. Those who contributed most to the material in this book were Joan Aldous,

Keith Cavanagh, Alan Dolan, Stanley Fiorini, Yin-Seong Ho, Fred Holroyd, Roy Nelson,

Joe Rooney, Richard Scott, and Robin Wilson. Others who contributed valuable assis-

tance are Marlow Anderson, Rosemary Bailey, Chris Bissell, Amanda Chetwynd, Chris

Earl, Lionel March, Michael Martin, Carole Mills, John Stratford, and Michelle Wemple.

As with other Open University courses, Graphs, Networks and Design consists mainly

of correspondence material, supported by audio-cassette tapes and BBC television

programs which are broadcast throughout Britain. Having produced this material, the

course team felt that parts of it would be ideally suited to the classroom situation, and

could successfully be converted into book form appropriate for an international audience.

The first of these books, on Graphs, is presented here. A companion volume, on

Networks, is currently being prepared by A. K. Dolan and J. Aldous. Each book is

self-contained, and is suitable for a semester course on discrete mathematics in the first

or second year of an American college or university. Since the approach, terminology,

and notation are the same for both books, an instructor wishing to teach both graphs and

networks will find that the two books can be used concurrently.

This book is divided into two parts. Part I contains the basic definitions relating to

graphs and digraphs, together with a large number of examples and applications. Part II

contains a number of different topics from which an instructor can select depending upon

the length of the course. The choice of material to be covered will depend on the

vi PREFACE

instructor’s particular aims and time constraints. As arough guide, an instructor interested

in the ‘purer’ aspects of the subject may wish to concentrate mainly on Chapters 1-3, 6

and 7, and 10-13, whereas an instructor interested in applications may prefer to cover

Chapters 1-5 and 8-10. In any case, it would be preferable to cover the material in Part

I fairly quickly, and to proceed to Part II as soon as practicable; it is not necessary to

cover all of the applications in Chapters 3 and 5. An appendix on methods of proof appears

at the end of Part I, after Chapter 5.

An important part of learning graph theory is problem-solving, and for this reason we

have included a large number of problems at the end of each chapter. Many of these are

routine exercises, designed to test understanding of the material in the text, but some are

more challenging and less routine; these latter problems are marked with a dagger (7).

Several problems are answered in full at the end of the book; these problems are marked

with an encircled star ©.

ROBIN J. WILSON

JOHN J. WATKINS

PART | Introduction

1. WHAT IS A GRAPH? -

Lt.

£2.

i BER

1.4.

je

1.6.

Introduction, 5

The Definition of a Graph, 8

The Degree of a Vertex, 11

Isomorphic Graphs, 14

Counting Graphs, 16
The Graph Cards, 18

_ Problems, 25

2. DEFINITIONS AND EXAMPLES

21:

Poe.
206

Adjacency and Incidence, 31

Paths and Cycles, 34

Examples of Graphs, 35

Problems, 40

3. APPLICATIONS OF GRAPHS

34.
a2

Bods
3.4.

Siti
3.6.

Bal

Chemistry, 47

Social Sciences, 51

Trees, 53

Bracing Rectangular Frameworks, 59

Compatibility and Interval Graphs, 61

The Four-Cubes Problem, 70

Music, 72

Problems, 73

4. WHAT IS A DIGRAPH?

4.1.

4.2. The Definition of a Digraph, 81

4.3.

4.4.

Introduction, 80

Adjacency and Incidence, 84

Paths and Cycles, 87

Problems, 89

CONTENTS

31

47

80

vii

viii

5. APPLICATIONS OF DIGRAPHS

5.1. Signed Digraphs, 96

5.2. Finite State Machines, 98

5.3. Signal-Flow Graphs, 104

Problems, 108

Appendix

A.1. Proofs, 112

A.2. Methods of Proof, 113

PART II Introduction

6. EULERIAN GRAPHS AND DIGRAPHS

6.1. Introduction, 121

6.2. Eulerian Graphs, 123

6.3. Eulerian-type Problems, 126

Problems, 135

Appendix to Chapter 6, 140

7. HAMILTONIAN GRAPHS AND DIGRAPHS

7.1. Introduction, 143

7.2. Hamiltonian-type Problems, 148

Problems, 153

8. PATH ALGORITHMS

8.1. Introduction, 157

8.2. The Shortest Path Algorithm, 158

8.3. The Longest Path Algorithm, 162

8.4. Scheduling, 165

Problems, 166

9. CONNECTIVITY

9.1. Edge-connectivity, 169

9.2. Vertex-connectivity, 171

9.3. Menger’s Theorem for Graphs (edge-form), 173

9.4. Some Analogs of Menger’s Theorem, 176

9.5. The Proof of Menger’s Theorem, 178

Problems, 180

CONTENTS

96

112

117

121

143

1o7

169

CONTENTS

10. TREES ; 185

10.1. Mathematical Properties of Trees, 185

10.2. Spanning Trees, 187

10.3. Centers and Bicenters, 188

10.4. Counting Trees, 190

10.5. Searching Trees, 193

10.6. Constructing Trees, 197

10.7. The Knapsack Problem, 204

Problems, 209

11. PLANARITY 215

11.1. Introduction,’ 215

11.2. Planar Graphs, 216

11.3. Euler’s Formula, 218

11.4. Testing for Planarity, 223

11.5. Duality, 227

Problems, 229

12 COLORING GRAPHS 235

12.1. Vertex-Colorings, 235

12.2. Chromatic Polynomials, 237

12.3. Edge-Colorings, 240

Problems, 244

13. COLORING MAPS 250

13.1. Introduction, 250

13.2. The Four-Color Problem, 251

13.3. Equivalent Forms of the Four-Color Theorem, 255

13.4. Graph Embeddings and the Heawood Map-Coloring Theorem, 260

Problems, 263

Appendix to Chapter 13, 267

14. DECOMPOSITION PROBLEMS 269

14.1. Introduction, 269

14.2. Vertex Decomposition Problems, 270

14.3. Edge Decomposition Problems, 276

14.4. Summary, 283

Problems, 284

X CONTENTS

15. CONCLUSION 290

15.1. Primary and Secondary Applications, 290

15.2. Four Types of Problems, 293

15.3. The Future, 299

15.4. Suggestions for Futher Reading, 300

SOLUTIONS TO SELECTED PROBLEMS 302

INDEX 335

Pils Relea

INTRODUCTION

lee are just a few of the many problems you

will encounter in this book.

a. Suppose you are stuck in the middle of a maze.

Is there a foolproof method for finding your

way out again?

b. If you wanted to drive from New York to San

Francisco, how would you find the shortest

route?

c. If you try to color a map of the United States

in such a way that neighboring states are as-

signed different colors, you will find that only

four colors are necessary; is this true for all

maps, or are there maps that need more colors?

d. How many chemical molecules are there with

the formula C,H,,?

e. What is the best way of bracing a given plane

framework to make it rigid?

2 INTRODUCTION

Although these problems may seem very diverse at first sight, they can all be expressed

as problems involving the arrangements of certain objects and the relationships between

these objects. The branch of mathematics that deals with such arrangement problems 1s

known as graph theory; the development of this subject is one of the two main themes

of this book. By developing general methods for tackling problems of this kind, we shall

show not only how to solve such problems, but also how to spot the connections between

problems which may appear at first sight to have little in common. By understanding the

underlying reasons for these connections, you will gradually gain further insight into the

nature of the original problems and their solutions.

Several of the problems we examine in this book arise from important practical problems

in technology and the sciences. Indeed, much of the impetus to the subject in the last few

years has arisen out of the need to solve particular problems in industry. By applying the kind

of techniques discussed in this book to industrial problems involving network analysis or

operations research, it has been possible to make substantial savings in time or money. In

view of this, it is important to be able to represent these problems in graph-theoretical terms,

and this brings us to the other main theme of the book—mathematical modeling.

The modeling process involves formulating a problem in such a way that it can be

attacked by the techniques of graph theory. This is not always easy; the way in which the

modeling is carried out, and the degree to which the mathematical model accurately

represents the original problem, varies considerably from problem to problem. Through-

out the book we emphasize not only the modeling process itself, but also its limitations.

The two main themes of the book are the development of graph theory as a subject in

its own right, and the modeling of problems. For the mathematician the primary interest

may well be the former, whereas for the technologist the problems themselves may well

provide the main interest. In writing this book we have tried to integrate these two

approaches, since we believe that, in this subject, theory and practice are too interrelated

to be separated successfully. The historical development of the subject has arisen out of

the joint efforts of mathematicians and practitioners, with great benefit to both. The

mathematical ideas have been used to tackle practical problems, which, in turn, have

given rise to new mathematical ideas, and so on. These mathematical ideas have often

proved more interesting than the problems that gave rise to them, and are now studied in

their own right.

In view of the above comments, it is our hope that the book will prove to be of interest

to technologists, scientists, and mathematicians. For the mathematician this book pro-

vides an opportunity to see real mathematics in action solving worthwhile problems,

whereas for the technologist and scientist this book shows the importance and usefulness
of developing a mathematical framework which can be used to interrelate different
problems and provide means for solving them. The subject you are about to embark on

is a very exciting one, both in its underlying mathematical structure and in its applications

in present-day science and technology. Although its roots go back a long time, it is a very

moder subject in which substantial advances are being made all the time. It is likely to
play an ever-increasing role in the years to come, and this book is designed to give you
the necessary background to understand these future developments.

INTRODUCTION 3

D Cc

We begin Part I with an introduction to graphs and digraphs. Here the word graph

refers to a diagram of points interconnected by lines, as shown above, rather than to a

picture representing a funttion. The interconnections between points may refer to bonds

between atoms in a chemical molecule, wires between terminals in an electrical network,

roads between towns on a map, and so on. Digraphs (short for “directed graphs”) are like

graphs, except that each line has a direction indicated by an arrow, and may be used, for

example, to represent one-way road systems.

We discuss the properties of graphs and digraphs and describe a number of applica-

tions, including the use of graph theory in chemistry, genetics, and music, and the use of

digraphs in linguistics, control theory, and the social sciences.

rat ea Raat
“* x oo oS oi

: ani © 7 7,

a> 7 = = Tel Sy

; Fé *, n=. ie : he in ‘

7 of Pe

: af ORS Rie 4 sty |
7 7 my ay ~ ca a

eo y d-= eae . e o vie pale : a / ' : re 7

a ee sila pf Mle eerale. ey A wee

en tape eet | Che eyecare oe
ase a Si ROL een, cee le wie, 7H TA a ie een e dean ep
i a ee GS A ee RT

a ee ee et
eek IS PE eeeagon ea ae se AI pail ?

: Ts: ae HPIAERE rou hie, Alans fafpt.’ Ss

aoe lao nr Naess ed ns Paneer
; i apie” Chg ae C2 ory Vinee ,

lpannbsrs “ra wegiresunts ewaesicipinat
= ea oo it aS ‘

ae ne ae ot gee é eee Paes

pr, Taney -Fe* ; vs ONO Kee
e -*

arty pigs) : Tak. - cepa ee pe ey eS

Te he a ppeh ie Vee
Fa nice. * Golia Midteace sei we :

es AS Cee ee: ee te he D4ar) i

= ae Oo Pe ae.

+S: ; el iy ke ae ee 7

2 oe eon ae 4 Hing
a aga ee ba eeren a
ae tee *< Ss

=) vy a Oe ee. a 2 oe

peers fae ey “Ty :

- ee eee
2° Gu) eel.

cee

paises See ONARTER 4

_ WHAT IS A GRAPH?

1.1 INTRODUCTION

In this chapter we describe a number of situations which can be represented by graphs.

These include chemical molecules, architectural floor plans, and electrical networks. In

order to investigate such situations, we need to study graphs in some detail. We start by

introducing some basic concepts and terminology which will be needed for this investi-

gation.

In order to introduce the idea of a graph, we consider the following examples.

Route Maps

The following diagram is a map of the central part of the London Underground. Like all

maps, it does not represent every feature of the city in question, but only those of rele-

vance to the people who use it. In the case of the London Underground map, the exact

geographical locations of the stations are unimportant. What is important, however, is

the way in which the various stations are interconnected, so that a passenger can plana

route from one station to another. The map is simply a diagrammatic way of indicating

how the stations are interconnected.

6 CHAPTER 1. WHAT IS A GRAPH?

FINCHLEY ROAD
es CRESCENT
ie Ye SWISS COTTAGE : see a

KIN ES

EDGWARE = NY ST JOHN'S WOOD ST PANCRAS i”
ROAD MARYLEBONE OF EUSTON > ANGEL

pact a =~ = Ol
(foo SS nat (pose eee Score Eee I

EDGWARE BAKER | say WARREN Son ¢ Mi GREAT EUSTON Ex (PADDINGTON ROAD STREEDEN | ooRT AN i mI ST REE caUnAe FARRINGDON :
= sTReeT ae RUSSELL z

BAYSWATER meeenng lo: GOODGE STREET SQUARE BARBICAN
NOTTING MARBLE (} park St |
HILL GATE ARCH 7 HOLBORN BAN

ANGAtER BOND AM OXFORD TOTTENHAM Caetano UV
QUEENSWAY L STREET CIRCUS COURT ROAD = GATE (Li LANE Z

PRE a COVENT ; Sy
Dan GARDEN 4 &

A & rE HYDE PARK agrrrras(curxsrrazr Serra a .

HIGH STREET CORNER %?-" Pe PICCADILLY LEICESTER wy z
| KENSINGTON vase sca CIRCUS SQUARE ie WH 4

4 Pop. 4 CL Y RAIS SRIRCE 9 i Ss ~ ey MONUMENT , ceca wt ee ae:
GLOUCESTER ri CHARING .CROSS 2 ALDWYCH + y

ROAD SLOANE} MANSION = Tow
x SQUARE em fem une ese canis EMBANKMENT 7 HOUSE % CANNON HIL

cceete es SS pe ee =e STREET

PARLS SOUTH Hei TORIA WESTMINSTER mm OTEMPLE BLACKFRIARS ©
OURT KENSINGTON Un — = ry

it SSS hh SSS ee |S
SA == = PIMLICO ®N. Vie i
Se Af e LON

Ji WATERLOO BRI
Ay ; i

POY VAUXHALL S See LAMBETH NORTH

A chemical molecule consists of a number of atoms linked by chemical bonds. For ex-

ample, a molecule of water (H,O) consists of an oxygen atom bonded to two hydrogen

atoms, and may be represented by the diagram

H=0—H

More complicated examples are given by the molecules of methane (CHa), ethanol

(C2HsOH) and ethene (C2Hs), that may be represented by the diagrams

H H H H H
| | | \ /

H—C—H ies Ces Coe Oot] ye .
| | |
H H H H H

methane ethanol ethene

Pictures of this sort are often called structural diagrams. Note that they do not give
us any information about how the atoms are aligned in space; for example, the hydrogen
atoms of methane do not lie in a plane, but are situated at the vertices of a regular
tetrahedron with the carbon atom at the center. In spite of this, such diagrams are
extremely useful in telling us how the various atoms are connected, and we can obtain a
lot of information about the chemical behavior of a molecule by studying its structural
diagram.

1.1 INTRODUCTION 7

Architectural Floor Plans

The plan of the lower floor of a house is represented by

living room

study sitting room

kitchen playroom dining room

For small plans like this, such a diagram is very convenient for showing which rooms

have mutual access, but for large plans a less cumbersome representation is useful. One

such representation is to draw the rooms as small solid circles

living
room

sitting
room

study hall

playroom _ kitchen dining room

Such diagrams are known to architects as circulation diagrams, because of their use

in analyzing the movements of people in large buildings. In particular, they have been

used in the designing of airports, and in planning the layout of supermarkets. Such

diagrams are useful in representing the connections between the various rooms, but they

do not give us any information about the size or shape of the rooms.

Electrical Networks

The following diagram represents an electrical network containing two resistors, two

capacitors, two inductors, and voltage and current generator elements:

8 CHAPTER 1. WHAT IS A GRAPH?

Diagrams of this kind are very useful for illustrating the way in which parts of the

network are connected. However, they do not give us any information about the

geometrical features of the network, such as the length and thickness of each wire and

its position in space.

1.2 THE DEFINITION OF A GRAPH

The common feature in all the preceding examples is that in each case we have a system

of ‘objects’ which are interrelated in some way. In the first example the objects are sta-

tions interconnected by rails; in the second example they are atoms linked by chemical

bonds; in the third example they are rooms with mutual access; and in the fourth exam-

ple they are interconnected parts of an electrical network. In each case we can draw a di-

agram in which the objects are represented by points and the interconnections are

represented by lines. Such a diagram is called a graph. The points representing the ob-

jects are called vertices, and the lines representing the interconnections are called edges.

For example, the circulation diagram of the house is a graph with seven vertices (corre-

sponding to the playroom, kitchen, hall, etc.) and ten edges (corresponding to the inter-

connections between these rooms).

We can formalize these ideas as follows:

TEMPORARY DEFINITION. A graph is a diagram consisting of points, called

vertices, joined together by lines, called edges; each edge joins exactly two vertices.

In graph theory the terminology is not completely standard; for example, some authors

use the term node or point for what we have called a vertex, and arc or line for what we

have called an edge. Any of these choices of terminology is acceptable as long as it is

used consistently.

The trouble with the above definition of a graph is that we can use many different

1.2 THE DEFINITION OF A GRAPH 9

‘

diagrams to represent the same interconnections. An example is provided by the utilities
problem, which we shall solve in Chapter 11. In this problem, we wish to connect three
houses, A, B, and C, to three utilities, gas, water, and electricity. For safety reasons it is
necessary that the various connections should not cross each other. Can the connections
be made? The following picture shows how eight of the nine connections can be drawn,
but how about the ninth?

We can represent the connections by means of the following graphs, where the vertices

correspond to the three houses and the three utilities. Each of these graphs has six vertices

and nine edges, and both graphs convey the same information—the threé houses are

connected to each of the three utilities, but not to each other. Thus, these two graphs are

the same. The utilities problem is that of finding whether there is yet another graph which

is the same as these two, but in which no two edges cross.

gas water _ electricity water B

A electricity

gas Cc

It follows from the above that a graph is determined as soon as we know its vertices,

and which edges join which pairs of vertices. Once we have this information, we can

draw the graph and, in principle, any picture we draw is as good as any other. In other

words, we can describe a graph completely by listing its vertices and edges in any order,

and the actual way in which the vertices and edges are drawn is irrelevant. For example,

the utilities graph may be described completely by the lists

vertices: A, B,C, g, w, e

edges: Ag, Aw, Ae, Bg, Bw, Be, Cg, Cw, Ce

We may equally well write these lists in a different order

10
CHAPTER 1. WHAT IS A GRAPH?

vertices: w, C,B,e, 2,4

edges: gA, gB, gC, eA, eB, eC, wA, wB, wC

We can now replace our temporary definition of a graph by one which involves these

lists.

DEFINITIONS. A graph G consists of a non-empty set of elements, called vertices,

and a list of unordered pairs of these elements, called edges. The set of vertices of the

graph G is called the vertex-set of G, denoted by V(G), and the list of edges is called

the edge-list of G, denoted by E(G). If v and w are vertices of G, then an edge of the

form vw or wv is said to join v and w.

We shall continue to use pictures to depict graphs; any such picture is only one of

many that can be used to represent the graph.

The definition of a graph allows for the possibility of several edges joining the same

pair of vertices, or an edge joining a vertex to itself. The following terminology is useful

when discussing such graphs:

DEFINITIONS. Two or more edges joining the same pair of vertices are called

multiple edges, and an edge joining a vertex to itself is called a loop. A graph with no

loops or multiple edges is called a simple graph.

It is also convenient to distinguish between graphs that are ‘in one piece’ and those

that are not.

DEFINITIONS. A graph that is in one piece is said to be connected, whereas one

which splits into several pieces is disconnected.

These definitions are illustrated by

A D Ee

multiple
edges

GE B G F
~~ loop

connected non-simple graph disconnected simple graph

We also need the concept of a subgraph of a graph. It is a common feature of both

mathematics and technology that we study complicated objects by looking at simpler

objects of the same type contained inside them, and these smaller objects are often

indicated by the pre1ix “sub.” For example, we study subsets of sets, subsystems of

systems, subgroups of groups, and so on. In graph theory we make the following

definition.

1.3 THE DEGREE OF A VERTEX 11

‘

DEFINITION. LetG be a graph with vertex-set V(G) and edge-list E(G). A subgraph

of G is a graph all of whose vertices belong to V(G) and all of whose edges belong to

E(G).

For example, if G is the connected graph above, where

V(G) = {u,v,w,z} and E(G) is (uv,uw,vv,vw,wz,wz),

then the following graphs are all subgraphs of G:

u Zz u ves u Zi

o—«_»
u Ww zi

s

y Ww ry w ze v Ww

vertex-set: {u,v,w,z } { u,v,w } {v,z} {u,w,z } {u,v,w,z }

edge-list: uw,vv,vw,wz uv,uw, vw vy UW,WZ,WZ UV,UW,VV,VW,WZ,WZ

Note that a subgraph of G must actually be a graph, and that G is regarded as a subgraph

of itself.

1.3 THE DEGREE OF A VERTEX

It is also useful to have a term for the number of edges meeting at a given vertex. Such a

concept occurs, for example, in a road map, where a junction has three or more roads

meeting. It also arises in electrical network theory where we may be interested in the

number of wires at a given terminal, or in architecture where we may be concerned with

the number of rooms accessible from a given one. These situations are illustrated as

5 rooms
accessible

3 wires
| g a d living room
; 4 4-junction meeting

playroom | kitchen} dining room

In chemistry the term valency is used to indicate the number of bonds connecting an

atom to its neighbors. For example, in the diagram representing the ethanol molecule,

each carbon atom has valency 4, the oxygen atom has valency 2, and each hydrogen atom

has valency 1. Although some authors extend this chemical use of the word valency to

graphs, we shall use the word degree.

12 CHAPTER 1. WHAT IS A GRAPH?

H H

Nee ee tt

How
ethanol

DEFINITION. Let G be a graph without loops, and let v be a vertex of G. The degree

of v is the number of edges meeting at v, and is denoted by deg v.

For example, graph (a) below has vertex-degrees

deg u=2, deg v=3, degw=4, degz=1

(a) (b)

Although the degree of a vertex has been defined only for graphs without loops, the

definition can easily be extended to graphs with loops. We do this by requiring that each

loop contributes 2 to the degree of the corresponding vertex. For example, graph (b) above

has vertex-degrees

des ie 2. des viz andes W = 4, dex z=)

It is often convenient to list the degrees of the vertices in a graph; this is usually done

by writing them in non-decreasing order (that is, in increasing order, but allowing

‘repeats’ where necessary). The resulting list is called the degree-sequence of the graph.

For example, graph (a) has degree-sequence (1,2,3,4) and graph (b) has degree-sequence
(2,4,5,5).

We say that a graph is regular if all the vertices of G have the same degree. In

particular, if the degree of each vertex is r, then G is regular of degree r. In the following

diagram we illustrate some examples of graphs which are regular of degree r, for various
values of r:

1.3 THE DEGREE OF A VERTEX 13

A
1@ @? a b ued

5 E B
dhe @3 c d eo ew D C

rey ai Pe r=2

a 1
w Pp a 7 :

e b

6 3

¥ x Ss r d c 5 4

r=3 r=3 r=4 r=4

We observe that the last graph above is regular of degree 4 and has seven vertices,

and so the sum of the vertex-degrees is 28. We also observe that this graph has 14 edges

(seven around the outside heptagon and seven for the inside star). In other words, the sum

of the vertex-degrees is exactly twice the number of edges. A corresponding result holds

for all graphs, and is sometimes called the handshaking lemma.

THE HANDSHAKING LEMMA. /n any graph, the sum of all the vertex-degrees is

equal to twice the number of edges.

Proof Since each edge has two ends, it must contribute exactly 2 to the sum of the

degrees. The result follows immediately. 0

Note that this proof is valid even when the graph contains loops, since each loop

contributes exactly 2 to the degree of the corresponding vertex.

The name handshaking lemma arises from the fact that a graph can be used to represent

a group of people shaking hands at a party. In such a graph, the people are represented

by the vertices, and an edge is included whenever the corresponding people have shaken

hands. With this interpretation, the number of edges represents the total number of

handshakes, the degree of a vertex is the number of hands shaken by the corresponding

person, and the sum of the degrees is the total number of hands shaken. So the

handshaking lemma states simply that the total number of hands shaken is equal to twice

the number of handshakes—the reason being, of course, that exactly two hands are

involved in each handshake.

There are some important consequences of the handshaking lemma. We leave the

proofs to you (see Problem 1.14).

Consequences of the Handshaking Lemma

1. In any graph, the sum of all the vertex-degrees is an even number.

2. In any graph, the number of vertices of odd degree is even.

14 CHAPTER 1. WHAT IS A GRAPH?

3. If Gis a graph which has n vertices and is regular of degree r, then G has exactly

+ nr edges.

Historical note. The handshaking lemma first appeared (in a different form) in a paper of

Leonhard Euler (1707-1783) entitled Solutio problematis ad geometriam situs pertinentis (The

solution of a problem relating to the geometry of position). This important paper dates from 1736,

and is widely regarded as ‘the earliest paper in graph theory’. It contains Euler’s solution of the

celebrated problem of the Kénigsberg bridges. We shall return to this problem in Chapter 6.

1.4 ISOMORPHIC GRAPHS

We have seen that it is possible for two graph diagrams to look very different, but to rep-

resent the same graph. On the other hand, it is possible for two graphs diagrams to look

very similar, but to represent different graphs. For example, the diagrams below look

very similar, but are clearly not the same graph (since gas and water are joined in the

second graph, but not in the first graph).

gas water electricity - gas B electricity

A B G A water G

We express this similarity by saying that the graphs represented by these two diagrams

are isomorphic. This means that we can relabel the vertices in the first graph to get the

second one: simply replace water by B, and conversely. (The word isomorphic derives

from the Greek for same and form.)

Similarly, the graphs represented by the diagrams

u v u yp

and

Z w ei Ww

G H

are not the same, but are isomorphic, since we can relabel the vertices in the graph G to

get the graph H: simply interchange u and z, and v and w. This gives us a one-to-one cor-

respondence between the vertices of G and those of H such that edges in G correspond to
edges in H—namely,

1.4 ISOMORPHIC GRAPHS 15

‘

G:uvwz

Tae
A:zwvu

Note that

the two edges uv in G correspond to the two edges zw in H

the edge uw in G corresponds to the edge zv in H

the loop at w in G corresponds to the loop at v in H

and so on. This leads to the following definition.

DEFINITION. Two graphs G and H are isomorphic if H can be obtained from G by

relabeling the vertices—that is, if there is a one-to-one correspondence between the

vertices of G and those of H, such that the number of edges joining any pair of vertices

in G is equal to the number of edges joining the corresponding pair of vertices in H.

Note that in checking whether or not two graphs are the same, we must check carefully

that all the labels on the vertices correspond. However, when checking whether or not

two graphs are isomorphic, we can ignore the symbols used to label the vertices, since

the vertices can be relabeled as necessary. In view of this, we often drop the labels

altogether when they are not relevant to the problem in hand, and say (for example) that

the “unlabeled graph”

refers to any of the isomorphic graphs:

NHMWAA
It follows that two unlabeled graphs, such as

16 CHAPTER 1. WHAT IS A GRAPH?

are isomorphic if labels can be attached to their vertices so that they become the same

graph.

We can summarize the preceding discussion as follows.

Labeled Graphs

u : i 1 2

£ . ‘ 4 3
y w w Z

These labeled graphs are the same. These labeled graphs are not the same,
but are isomorphic.

Unlabeled Graphs

Ab
These unlabeled graphs are isomorphic.

In the future, whenever we use the word graph, it will be clear whether we are referring

to labeled or unlabeled graphs. If there is any possibility of confusion, we shall insert the

word labeled or unlabeled, as appropriate.

1.5 COUNTING GRAPHS

How many chemical molecules are there with formula C,H,,? How many irrigation
canal systems are there linking five locations with four canals? How many architectural
floor plans are there satisfying certain given properties?

As you will see, we can reduce many such problems to that of determining the number
of graphs with a particular property. Since many standard graph-counting problems have
been completely solved, we can often use the results to deduce the solution of a problem
in which we are interested. We briefly survey the progress made on several graph-count-
ing problems.

Counting Labeled Graphs

When counting labeled graphs, we distinguish between labeled graphs which are not
isomorphic, but not between isomorphic graphs—we sometimes express this by saying

1.5 COUNTING GRAPHS 17

4

that the graphs are counted up to isomorphism. For example, there are just eight non-

isomorphic labeled simple graphs with three vertices.

] 1
©

colar: if
2 3 2

The problem of determining the number of labeled simple graphs with n vertices is

easy to solve. By consequence 3 of the handshaking lemma, there are 5 n(n — 1) possible

1 1 1 1

Groin aero ceaee ®
3 52 3 2 Sie 2 ST 3 PSH Soe 22 3

edges, and each may be either present or absent (a choice of two possibilities); thus, the

required number is 2””"'”” . The following table lists the number of labeled simple graphs

with n vertices, forn < 8:

n 1 2 OW 4 = 6 p 8

labeled graphs 1 2 8 64 1024 32768 2097152 268435456

Counting Unlabeled Graphs

When counting unlabeled graphs, we distinguish only between graphs which are not

isomorphic. For example, there are just four non-isomorphic unlabeled simple graphs

e e

One can quickly determine the number of simple graphs with at most six vertices and

any given number of edges or degree-sequence. For larger numbers of vertices, listing

all possible graphs soon becomes impracticable, and it is necessary to find some other

way of counting them. In 1935 George Polya obtained a general formula from which one

can calculate the number of unlabeled graphs with any given number of vertices and

edges. Pélya’s methods have since been applied to several other graph-counting prob-

lems, and formulas have been obtained for the number of connected graphs or regular

graphs with any given number of vertices. The table lists the number of unlabeled simple

graphs of various types with n vertices, forn <8.

n 1 Z 6, + 2 6 i 8

graphs 1 pi 4 11 34 156 1044 12346

connected graphs _ 1 1 Z 6 pa (ies Soo LLY

regular graphs 1 2 Zz 4 3 8 6 20

In general, counting problems for unlabeled graphs are much harder to solve than their

analogs for labeled graphs. In fact, there are certain types of graph for which the latter

problem has been solved while the former problem remains unsolved.

CHAPTER 1. WHAT IS A GRAPH?

1.6 THE GRAPH CARDS

To conclude this chapter we present the 208 unlabeled simple graphs with at most six

vertices. Each ‘card’ consists of a number for the graph, a drawing of the graph, the

number of vertices , the number of edges m, and the degree-sequence of the graph. The

graphs are presented in increasing order, first by the. number of vertices, then by the

number of edges (when the number of vertices are the same), and then by the degree-

sequence (when the numbers of vertices and edges are the same).

1.6 THE GRAPH CARDS 19

1 2 3 4 §

e e

e e e o-oo

GRAPH aT nae ae

CARDS nis n= 2 n=2 n=3 n=3
m=0 m=0 m=1 m=0 m=1

| d = (0) d = (0,0) d = (1,1) d = (0,0,0) d = (0,1,1)
6 7 8 co 10 11

y®@ e fi e e @ ee

e e@ eo_e oe ee

n=3 n=3 n=4 n=4 n= 4 n=4
m=2 m=3 m=0 m=1 m=2 m=2
d = (1,1,2) d= (22:2) d = (0,0,0,0) d = (0,0,1,1) d = (0;151,2) d = (1,1,1,1)

=H +
12 13 2 | 14 15 16 7

4

e

oe @—_e—e—_e

w= 4 n=4 n=4 n=4 n=4 n=4
m=3 m=3 m=3 m=4 m=4 m=5
d = (0,2,2,2) d= (1151,3) d = (1,1,2.2) d= (3232;3) d = (2,2,2)2) d = (2,2,3,3)

18 19 20 21 22 23

e e e e
t . a e e e e

e e e——e @e_® @——_#@

n=4 n=5 n=5 n=5 n=5 n=5
m=6 m=0 tnt =~) m=2 m=2 i=
d = (3,3,3,3) d = (0,0,0,0,0) d = (0,0,0,1,1) d = (0,0,1,1,2) d = (0,1,1,1,1) d = (0,0,2,2,2)

24 | 25 26 27 28 29

e e@

e@

pA. : [J
oe ee eee

n=5 n=5 n=5 n=5 nes n=5
m= 3 m=3 m = 3 m=4 m=4 m=4
d = (0,1,1,1,3) d = (0,1,1,2,2) d= 102) d = (0,1,2,2,3) d =.(0,2,2,2,2) d = (1,1,1,1,4)

30 31 32 33 34 35

oe See
a

n=5 n=5 n=5 n=5 n=5 n=5
m=4 m=4 m=4 m=5 m=5 m=5
d = (1,1,1,2,3) d = (1,1,2,2,2) d = (1,1,2,2,2) d = (0,2,2,3,3) d = (1,1,2,2,4) d = (1,1,2,3,3)

CHAPTER 1. WHAT IS A GRAPH?

36 38 40

n=5 5 WS n=5 n=5

m=5 2 m= 5, m= 6 m= 6
d = (1,2,2,2,3) (1,2,2,2,3) d = (2,2,2,2,2) d = (1,2,2,3,4) d = (1,2,3,3,3)

42 44 46

= 5 =5 5 n=5 as

ee 6 oy: 7 mat m=7
d = (2,2,2,2,4) (2,2,2,3,3) d = (2,2,2,3,3) (d = (2,2,2,4,4) d = (2,2,3,3,4)

48 50 52

n=) n=5 n=5 n=5

m=7 m=8 m=8 m= 10

d = (2,3,3,3,3) d = (2,3,3,4,4) d = (3,3,3,3,4) d = (4,4,4,4,4)

53 55 57

ee e e ee . e
e e

e e ® e e e

@ @ ee ee i A A;

n=6 n=6 n=6 n= n=6 =6
m=0 m=1 m=2 m= m = 3 m=3

d = (0,0,0,0,0,0) d = (0,0,0,0,1,1) d = (0,0,1,1,1,1) d= d = (0,0,0,2,2,2) d = (0,0,1,1,1,3)

bo) 61 .63

e e

° o—e .

oe @ ee ee

eo—ee—_® eee ee

n=6 =6 n=6 n= n=6 n=6

WN? a ties m = m=4 m=4
d = (0,0,1,1,2,2) = (0,1,1,1,1,2) d= (1,1,1,1,1,) d= d = (0,0,2,2,2,2) d = (0,1,1,1,1,4)

65 67 69

. °
e@—-e e e—e @—_e__

a ss @—eee—® eee e @_e—_@

n=6 n=6 n=6 = n=6 =
m=4 m=4 m=4 = m=4 in = ;
d = (0,1,1,1,2,3) d = (0,1,1,2,2,2) d = (0,1,1,2,2,2) = d = (1,1,1,1,2,2) d= (1,1,1,1,2,2)

1.6 THE GRAPH CARDS 21

‘

71 72 73 74 76 76

e e e

e
e e

{

n=6 n=6 n=6 n=6 n=6 n=6
m=5 m=5 m=5 m=5 m=5 m=5
d = (0,0,2,2,3,3) d = (0,1,1,2,2,4) d =(0,1,1,2,3,3) d = (0,1,2,2,2,3) d = (0,1,2,2,2,3) d = (0,2,2,2,2,2)

77 78 79 80 82

: a : ;
n=6 n=6 n=6 n=6 n=6 n=6
m=5 m=5 m=5 m=5 m=5 m=5
@ = (1,1,1,1,1,5) d = (1,1,1,1,2,4) d = (1,1,1,1,3,3) d = (1,1,1,2,2,3) d = (1,1,1,2,2,3) d = (1,1,1,2,2,3)

83 84 = | 85 86 87 88

e e

Jf » eee ee 8

o@—_@__@

n=6 n=6 n=6 n=6 n=6 n=6
m=5 m=5 m=5 m=6 m=6 m=6
d = (1,1,2,2,2,2) d = (1,1,2,2,2,2) d = (1,1,2,2,2,2) d = (0,0,3,3,3,3) d = (0,1,2,2,3,4) d = (0,1,2,3,3,3)

89 90 91 92 93 94

e
e

n=6 n=6 n=6 n=6 n=6 n=6
m=6 m=6 m=6 m=6 m=6 m=6
d = (0,2,2,2,2,4) | d = (0,2,2,2,3,3) d = (0,2,2,2,3,3) d = (1,1,1,2,2,5) d = (1,1,1,2,3,4) d = (1,1,1,3,3,3)

95 96 97 98 T99 100

n=6 n=6 n=6 n=6 n=6 n=6
m=6 m=6 m=6 m=6 m=6 m=6
d = (1,1,2,2,3,3) d = (1,1,2,2,2,4) d = (1,1,2,2,2,4) d= (1,1,2,2;3,3) d = (1,1,2,2,3,3) d = (1,1,2,2,3,3)

101 [102 103 104 105 106

n=6 n=6 n=6 n=6 n=6 n=6
m=6 m=6 m=6 m=6 m=6 m=6
d = (1,1,2,2,3,3) d = (1,2,2,2,2,3) d = (1,2,2,2,2,3) d = (1,2,2,2,2,3) d = (2,2,2,2,2,2) d = (2,2,2,2,2,2)

CHAPTER 1. WHAT IS A GRAPH?

107 108 109 110 nh 112

@ e

n=6 n=6 n=6 n=6 n=6 n=6

m=7 m=7 m=7 m=7 m=7 m=7

2 = (0,1,3,334) | d= 02,2244) | 4 = (0,2,2,3,3,4) | d= (0,2,3,3,3,3) | d = (11,2239) d = (1,1,2,2,4,4)

13 114 115 116 stay 118

n=6 n=6 n=6 n=6 n=6 n=6

m=7 m=7 m=7 m=7 m=7 m=7

d = (1,1,2,3,3,4) d = (1,1,2,3,3,4) d = (1,1,3,3,3,3) d = (1,1,3,3,3,3) d = (1,2,2,2,2,5) d = (1,2,2,2,3,4)

119 120 121 122 123 124

n=6 n=6 n=6 n=6 n=6 n=6

m=T7 m=7 m=7 m=7 io m=7

d = (1,2,2,2,3,4) d = (1,2,2,2,3,4) d = (1,2,2,2,3,4) d = (1,2;2,3,3;3) d = (1,2,2,3,3,3) d = (1,2,2,3,3,3)

125 126 127 128 129 130

n=6 n=6 n=6 n=6 n=6 n=6

m=7 m=7 m=7 m=7 m=7 m=T7

d = (1,2,2,3,3,3) d = (2,2,2,2,2,4) d= (2,2,2,2,3,3) | d = (2,2,2,2,3,3) d = (2,2,2,2,3,3) d = (2,2,2,2,3,3)

131 132 133 134 135 136

A e A e fe AN A. <a

n=6 n=6 n=6 n=6 n=6 n=6
m=8 m=8 m=8 m=8 m=8 m=8
d = (0,2,3,3,4,4) d = (0,3,3,3,3,4) d = (1,1,3,3;3,5) d = (1,1,3,3,4,4) d = (1,2,2,2,4,5) d@ = (1,2,2,3,3,5)

137 138 139 140 141 ; 142

n=6 n=6 n=6 n=6 n=6 n=6
m=8 m=8 m=8 m=8 m=8 m=8
d = (1,2,2,3,4,4) d = (1,2,2,3,4,4) d = (1,2,3,3,3,4) d = (1,2,3,3,3,4) d = (1,2,3,3,3,4) d = (1,2,3,3,3,4)

1.6 THE GRAPH CARDS 23

143 | 144 145 146 147 148

: &
|

n=6 n=6 ln=6 | n=6 n=6 n=6
m=% m=8 |m=8 | m=8 m=8 m=8 d = (1,3,3,3,3,3) d = (2,2,2,2,3,5) | d = (2,2,2,2,4,4) | _ d = (2,2,2,2,4,4) d = (2,2,2,3,3,4) d = (2,2,2,3,3,4)
149 | 150 151 152 153 1154

s ;

: |

) | | n=6 n=6 n=6 | n=6 |} n=6 | n=6 m=8 m=3 m=8 m=8 |m=8 |m=8 d = (2,2,2,3,3,4) d =(2,2,2,3,34) d = (2,2,3,3,3,3) d = (2,2,3,3,3,3) d = (2,2,3,3,3,3) | d= (2,2,3,3,3,3) i ee he Be Serer NY
155 156 * 157 158 1759 160

7

n=6 n=6 n=6 | n=6 n=6 n=6
m=9 m=9 m=9 |m=9 m=9 |m=9
d = (03,3444) d = (1,2,3,3,4,5) d = (1,2,3,4,4.4) | d= (1,3,3,3,3,5) ie d = (1,3,3,3,4,4) d = (1,3,3,3,4,4)

161 | 162 163 164 | 165 | 166

n=6 n=6 n=6 n=6 n=6 | n=6
m=9 m=9 m=9 m=9 m=9 |m=9
d@ = (222255) d= (22.2345) d =(2.224,4,4) d = (2,2,3,3,3,5) d = (2,2,3,3,3,5) d = (2,2,3,3,4,4)

167 1628

n=6 n=6 n=6 n=6 n=6 n=6
m=9 m=9 |m=9 m=9 ;m=9 m=9
d= (223,34) d = (223,344) d = (2,2,3,3,4,4) | d = (2,2,3,3,4,4) d = (2,3,3,3,3,4) | d = (2,3,3,3,3,4)

172 174 175 }

’

:

:

)

)
n=6 n=6 n=6 :
m=9 m=9 m=9 ;
d = (23,3334) d = (3,3,3,3,3,3) d = (3,3,3,3,3,3) ;

CHAPTER 1. WHAT IS A GRAPH?

176 nae 178 179

n=6 n=6 ear be A

m= 10 m= 10 m= m=

d = (0,4,4,4,4,4) d = (1,3,3,4,4,5) d = (1,3,4,4,4,4) d = (2,2,3,3,5,5) (2,2,4,4,4,4)

182 183 184 185

n=6 n=6 n=6 n=6 =6

m = 10 m = 10 m = 10 m= 10 = 10

d = (2,3,3,3,4,9) d = (2,3,3,3,4,5) d = (2,3,3,4,4,4) d = (2,3,3,4,4,4) = (3,3,3,3,3,5)

188 189 190 191

n=6 n=6 n=6 n=6 n=6 =6

m = 10 m = 10 m= 10 m= 11 m=11 =11

d = (3,3,3,3,4,4) d = (3,3,3,3,4,4) d = (3,3,3,3,4,4) d = (1,4,4,4,4,5) d=(2 = (2,3,4,4,4,5)

194 195 196 197 8

n=6 n=6 n=6 n=6 =6

m= 11 m= 11 m= 11 m= 11 =11

d = (2,4,4,4,4,4) d = (3,3,3,3,5,9) d= \(3,3,3;4,459) d= (G)3\3;4459) = (3,3,4,4,4,4)

200 201 202 203 205

n=6 n=6 n=6 n=6 n=6

m= 12 m = 12 m= 12 m = 12 m= 13
d = (2,4,4,4,5,5) d = (3,3,3,5,5,5) d = (3,3,4,4,5,5) d = (3,4,4.4,4,5) d = (3,4,4,5,5,5)

206 207 208

n=6 n=6 n=6
m = 13 m= 14 m=15

d = (4,4,4,4,5,5) d = (4,4,5,5,5,5) d = (5,5,5,5,5,5)

PROBLEMS 25

PROBLEMS

Here, and throughout the book, © indicates that a full solution is given at the end of the
book.

The Definition of a Graph

©1.1. | Write down the vertex-set and edge-list of each of the following graphs:

am l
London 2

. i /
*

LOsi~ - xe——_ey e

5

3

z
New York Sydney 6

(a) (b) (c)

1.2. Write down the vertex-set and edge-list of each of the following graphs:

a c d
CO)

|) J i G

(b)

©1.3. | Draw the graphs given by the following lists: |

_ LBS
PY

(a)

(a) vertex-set: {O1,0, ©, A}
edge-list: [MIO,O00, OA, OA

(b) vertex-set: {A, B, C, D}

edge-list: (none)

(c) vertex-set: {1, 2, 3, 4, 5, 6, 7, 8}
edge-list: 12, 22, 23, 34, 34, 35, 67, 68, 78

©1.4. Consider the following graphs:

B
e

a
>

n NR

»

; ¢

SS

te

en

e

< N = Se

5 6

1 2 3) 4 7 8

() (2) (3) (4) (5)

Which of these graphs (a) contain multiple edges? (b) contain a loop?

(c) are simple? (d) are connected?

26

1.3:

1.6.

1.7.

CHAPTER 1. WHAT IS A GRAPH?

Draw graphs G,, G2, G3, and Gy, each with five vertices and eight edges, satis-

fying the following conditions:

G, is a simple graph,

G, is anon-simple graph containing no loops;

G; is anon-simple graph containing no multiple edges;

G, is anon-simple graph containing both loops and multiple edges.

Let G be the following labeled graph:

~
u

Which of the following graphs are subgraphs of G?

u Zz Uu v

rae j a: aa wae eZ
u y a u v Ww u z v

(c) (d) (ce) (a) (b)

Let G be the following unlabeled graph:

Which of the following graphs are subgraphs of G?

(a) (b) (c) (d)

The Degree of a Vertex

$1.8. For each of the following graphs, write down

a. the degrees of all the vertices;

b. the degree-sequence.

PROBLEMS 27

1 2
B

e e

erg gt peta A e e
5 6 d c v Z w D Cc 1 2 3 4 7 8

(1) (2) (3) (4) (5)

1.9. a. Let G be a graph with four vertices and degree-sequence (1,2,3,4). Write
down the number of edges of G, and construct such a graph.

b. Are there any simple graphs with four vertices and degree-sequence (1,2,3,4)?

1.10. a. Draw a simple connected graph with eight vertices and degree-sequence
(1,1,2,3,3,4,4,6). zo

b. Draw a simple connected graph with eight vertices and degree-sequence
(3,3053.0,000,5)-

©1.11. a. Write down the degree-sequence of each of the following graphs:

He @ le
b. Verify the handshaking lemma for each of the graphs in (a).

©1.12. Verify consequence 3 of the handshaking lemma for each of the following reg-
ular graphs:

(a) (b) (c)

1.13. Prove that there is no graph with seven vertices that is regular of degree 3.

1.14. Prove the three consequences of the handshaking lemma.

1.15. Prove that, if G is a simple graph with a least two vertices, then G has two or

more vertices of the same degree.

28
CHAPTER 1. WHAT IS A GRAPH?

Ilsomorphic Graphs

©1.16. Ineach of the following parts, two of the graphs are the same, and the third is

different. Identify the ‘odd one out’ in each case.

(a) A

(b) |

(c) < Zi

©1.17. By relabeling the vertices, show that the following pairs of labeled graphs are

isomorphic:

1 2 a 1

, & b 7 2

3 : AX we c 6 3

5 4 Cc D B e d 3 4

(a) (b)

1.18. Of the following four labeled graphs, which two are the same, which one is

isomorphic to these two, and which one is not isomorphic to any of the others?

1 2 1 4 3 3 1 2

Scar? en <> tq
5 4 2 5 6 2 4 5 4

(a) (b) (c) (d)

1.19. By suitably labeling the vertices, show that the following unlabeled graphs are

isomorphic:

a

PROBLEMS 29

1.20.

61.21.

4.22.

1.23.

1.24.

Show that the following unlabeled graphs are not isomorphic:

ae,
Are the following two graphs isomorphic?

mw
Are the following two graphs isomorphic?

co DMA
a. Draw two non-isomorphic regular graphs with 8 vertices and 12 edges.

b. Draw two non-isomorphic regular graphs with 10 vertices and 20 edges.

Classify each of the following statements as true or false:

a. IfGandH are isomorphic graphs, then they have the same number of vertices

and the same number of edges.

b. IfGandH have the same number of vertices and the same number of edges,
then they are isomorphic.

c. IfGand H are isomorphic graphs, then they have the same degree-sequence.

If G and H have the same degree-sequence, then they are isomorphic.

The Graph Cards

©1.25. Locate the graph cards that depict the following graphs:

(a) (b)

30

1.26.

T2i.

1.28.

1.29.

1.30.

1.31.

CHAPTER 1. WHAT IS A GRAPH?

Locate the graph cards that depict the following graphs:

(a) (b) (c)

Let G be the following graph:

Which three of the following graph cards depict subgraphs of G?

a. number 18; c. number 37; e. number 46;

b. number 34; d. number 44; f. number 50.

Let G be the following graph:

Which two of the following graph cards depict subgraphs of G?

a. number 45; c. number 84; e. number 126;

b. number 50; d. number 117; f. number 128.

Use the graph cards to find how many simple graphs there are with

a. five vertices, six edges, and degree-sequence (2,2,2,3,3);

b. six vertices, seven edges, and degree-sequence (1,2,2,2,3,4);

c. six vertices and degree-sequence (2,2,2,2,2,2);

d. six vertices and degree-sequence (3,3,3,3,3,3).

a. Without looking at the graph cards, draw all unlabeled simple graphs with

four vertices (up to isomorphism). Check your answer with the graph cards.

b. How many of these are regular?

Using your graph cards, determine the number of connected simple graphs

with five and six vertices, and check your answers with the table on page 17.

CHAPTER 2

DEFINITIONS AND EXAMPLES

In Chapter | you saw how a graph can be used to depict the relationships between cer-

tain objects; you simply represent the objects by vertices, and the relationships by edges

joining the vertices. In order to investigate such relationships more deeply, we need to

study the theory of graphs in greater detail. To this end, we now introduce some useful

terminology which will be needed in what follows.

2.1 ADJACENCY AND INCIDENCE

Since graph theory is primarily concerned with interconnections between objects, we

shall need some terminology which tells us when certain vertices and edges occur next

to each other in a graph. This terminology applies to all graphs, and can be used equally

well for wires connecting terminals in an electrical network, bonds connecting atoms in

a chemical molecule, or roads connecting towns on a road map.

DEFINITIONS. Letv and w be vertices of a graph. If v and w are joined by an edge

e, then v and ware said to be adjacent. Moreover, v and w are said to be incident with

e, and e is said to be incident with v and w.

31

32
CHAPTER 2. DEFINITIONS AND EXAMPLES

y e w
e——__e

v and w are adjacent;

v and w are incident with e;

e is incident with v and w.

You have already seen two ways of representing a graph—as a diagram consisting of

points joined by lines, and as a set of vertices and a list of edges. The pictorial

representation is useful in many situations, especially when we wish to examine the

structure of the graph as a whole, but its value diminishes as soon as we need to describe

large or complicated graphs. For example, if we wish to store a large graph in a computer,

then a pictorial representation may well be unsuitable, and some other method would

then be necessary.

One possibility is to store the set of vertices and the list of edges; this method is often

used in practice, especially when the graph is ‘sparse’—that is, it has a lot of vertices but

relatively few edges. Another method is to take each vertex in turn and list those vertices

that are adjacent to it. By joining each vertex to its ‘neighbors’, we can easily reconstruct

the graph. Yet another method is to draw up a table indicating the pairs of vertices that

are adjacent, or a table indicating which vertices are incident with which edges.

Each of these methods has its advantages, but the last one is particularly useful in a

number of practical applications. In this method, we represent a graph by a rectangular

array of numbers, called a matrix; a matrix with k rows and J columns is called a k x I

matrix. Such matrices lend themselves to mechanical manipulation, and in several

applications of graph theory they yield the most natural way of formulating a given

problem. There are various types of matrices that can be used to specify a given graph.

Here we describe the most important ones—the adjacency matrix and the incidence

matrix. For simplicity, we restrict our attention to graphs without loops.

The Adjacency Matrix

Consider the following example

col, col, colt cols
1 2 3 4

VS Pt St
; : row low ke Ory

row 2 | OF Loe

row a | OT me

4 3
rw4—> \1 2 JI OQ

On the left-hand side we have a graph with four vertices, and on the right-hand side we

have a 4 x 4 matrix. The numbers appearing in the matrix refer to the number of edges

joining the corresponding vertices in the graph. For example,

2.1 ADJACENCY AND INCIDENCE 33

vertices | and 2 are joined by 1 edge, so 1 appears in row | column 2 and in

row 2 column 1

vertices 2 and 4 are joined by 2 edges, so 2 appears in row 2 column 4 and in
row 4 column 2

vertices | and 3 are joined by 0 edges, so 0 appears in row | column 3 and in

row 3 column |

Note that every entry on the main (top-left to bottom-right) diagonal is 0, since the graph

has no loops. Note also that the matrix is symmetrical about this main diagonal.

We can generalize this idea as follows.

DEFINITION. Let G be a graph without loops, with n vertices labeled 1,2,3,....n.

The adjacency matrix M(G) is the n Xn matrix in which the entry in row i and column j

is the number of edges joinin® the vertices i and j.

The Incidence Matrix

Whereas the adjacency matrix of a graph involves the adjacency of vertices, the

incidence matrix involves the incidence of vertices and edges. To see what is involved,

consider the following example; we have circled the labels of the vertices to distinguish

them from the labels of the edges.

oa ° = Q — ° = — °o 2 col. col. col. col.
1 p 3 4 5 6

VOLVER ie yeaa
Cie & 4 cht) rw(1)>/1 0 0 1 0 0

:, row (2) > Tie Le 0) oe ee
2

row (3) > One Let Ue 80 0 0

(4) 3 G) row (4) > a0) ates 1 eee Leer).

On the left-hand side we have a graph with four vertices and six edges, and on the right-

hand side we have a 4 x 6 matrix. Each of the numbers appearing in the matrix is either 1

or 0, depending on whether or not the corresponding vertex and edge are incident with

each other. For example,

vertex © is incident with edge 4, so 1 appears in row | column 4

vertex @) is not incident with edge 4, so 0 appears in row 2 column 4

We can generalize this idea, as follows.

DEFINITION. Let G be a graph without loops, with n vertices labeled ©,@,®,..., 0

and m edges labeled 1,2,3,...,m. The incidence matrix I(G) is the n x m matrix in which

the entry in row i and column j is 1 if vertex i is incident with edge j, and 0 otherwise.

Note that the incidence matrix depends on the particular way that the vertices and

34
CHAPTER 2. DEFINITIONS AND EXAMPLES

edges are labeled. We obtain one incidence matrix from another by interchanging rows

(corresponding to relabeling the vertices) and columns (corresponding to relabeling the

edges).

2.2 PATHS AND CYCLES

Many of the applications of graph theory involve ‘getting from one vertex to another’ in

a graph. For example, how can you find the shortest route between one London Under-

ground station and another? Other examples include the routing of a telephone call be-

tween one subscriber and another, the flow of current between two terminals of an

electrical network, and the tracing of a maze. Our aim in this section is to make this idea

precise by means of some definitions. We start by defining a walk in a graph.

DEFINITION. A walk of length k in a graph G is a succession of k edges of G of the

form

UV, VW, WX, ..., YZ

We denote this walk by uvwx...yz, and refer to it as a walk between u and z.

Note that the ‘second vertex’ of each edge is the same as the ‘first vertex’ of the next.

Intuitively, we can think of this as a walk from x to v, then to w, then to x, and so on, until

we eventually end up at vertex z. Alternatively, since the edges have no specified

direction, we can think of it as a walk from z to y and so on, eventually, to x, w, v, and u.

Thus we can also denote this walk by zy...xwvu, and refer to it as a walk between z and

u.

We do not require all the edges or vertices in a walk to be different. For example, in

the following graph

uvwxywvzzy is a walk of length 9 between u and y, which includes the edge vw twice, and

the vertices v, w, y, and z twice. This leads to the following definitions.

2.3 EXAMPLES OF GRAPHS 35

‘

DEFINITIONS. [/f all the edges (but not necessarily all the vertices) of a walk are
different, then the walk is called a trail. If, in addition, all the vertices are different, then
the trail is called a path.

In the above diagram, the walk vzzywxy is a trail which is not a path (since the vertices
y and z both occur twice), whereas the walk vwxyz has no repeated vertices, and is
therefore a path. Note that a walk such as wzvuz is also a trail, as long as the two
occurrences of uz refer to the two different edges joining wu and z.

It is also useful to have special terms for those walks or trails which start and finish
at the same vertex.

DEFINITIONS. A closed walk in a graph G is a succession of edges of G of the form

*

uv, VW, WX, ..., YZ, ZU

If all of these edges are different, then the walk is called a closed trail. If, in addition, the
vertices u,V,W,X,...,y,Z are all different, then the trail is called a cycle.

In the above graph, the closed walk uvwyvzu is a closed trail which is not a cycle (since
the vertex v occurs twice), whereas the closed trails zz, vwxyv, and ywxyzv are all cycles.
A cycle of length three, such as vwyv or wxyw, is called a triangle, for obvious reasons.
In describing closed walks, we can allow any vertex to be the starting vertex. For example,
the triangle vwyv can equally well be described by the letters wyvw or yvwy or (since the
direction is immaterial) by ywvy, vywyv, or wvyw.

We can use the concept of a path to explain exactly what is meant by a connected

graph. Recall from Chapter | that a graph is connected if it is ‘in one piece’. For example,

the following graph is not connected, but can be split into four connected pieces.

u ® y

The observation that there is a path between x and y (which lie in the same piece), but not

between u and y (which lie in different pieces), leads to the following definitions.

DEFINITIONS. A graph G is connected if there is a path in G between any given pair

of vertices, and disconnected otherwise. Every disconnected graph can be split up into

a number of connected subgraphs, called components.

2.3 EXAMPLES OF GRAPHS

We now introduce some important types of graphs. You should make sure you are famil-

iar with them since they will appear frequently, both in applications and as examples.

36
CHAPTER 2. DEFINITIONS AND EXAMPLES

Complete Graphs

A complete graph is a graph in which every two distinct vertices are joined by exactly

one edge. The complete graph with n vertices is denoted by K,,. Note that, apart from K,,

we usually draw the vertices of K,, in the form of aregular polygon.

= A Ax B @
K, Ky K; Kg Ks Ke

The graph K,, is regular of degree n — 1, and therefore has sn(n — 1) edges, by conse-

quence 3 of the handshaking lemma.

Null Graphs

A null graph is a graph containing no edges. The null graph with n vertices is denoted

by N,.

Note that N, is regular of degree 0.

Cycle Graphs

A cycle graph is a graph consisting of a single cycle. The cycle graph with n vertices is

denoted by C,,.

eae lesles ed alge
Note that C,, is regular of degree 2, and has n edges.

Path Graphs

A path graph is a graph consisting of a single path. The path graph with n vertices is de-

noted by P,,.

2.3 EXAMPLES OF GRAPHS 37

4

e e—e eee eee ©e@© e¢—e© © © eee oe 06 8

Note that P,, has n —1 edges, and can be obtained from the cycle graph C,, by removing
any edge.

Bipartite Graphs

Of particular importance in applications are the bipartite graphs. A bipartite graph is a

graph whose vertex-set can be split into sets A and B in such a way that each edge of the

graph joins a vertex in A to a vertex in B. We can distinguish the vertices in A from those

in B by drawing the former in black and the latter in white, so that each edge is incident

with a black vertex and a white vertex. Some examples of bipartite graphs are

Dy Hs
A complete bipartite graph is a bipartite graph in which each black vertex is joined to

each white vertex by exactly one edge. The complete bipartite graph with r black verti-

ces and s white vertices is denoted by K,,. A complete bipartite graph of the form K, , is

called a star graph. Some examples of complete bipartite graphs are

Kis Ky Kx4 K33

Note that K,,, has r + s vertices (r vertices of degree s, and s vertices of degree r), and rs

edges. Note also that K,, = K,,,; itis usual, but not necessary, to put the smaller of r and s

first.

vertices

vertices

__ white
ee

A

\ _ black

B

Cube Graphs

Of particular interest among the bipartite graphs are the cube graphs. These graphs have

important applications in coding theory, and may be constructed by taking as vertices all

binary words (sequences of Os and 1s) of a given length and joining two of these vertices

if the corresponding binary words differ in just one place. The graph obtained in this

way from the binary words of length k is called the k-cube (or k-dimensional cube), and

is denoted by Q,.

38
CHAPTER 2. DEFINITIONS AND EXAMPLES

1110 1111

QO, Q)

Note that Q, has 2 vertices, and is regular of degree k. It follows from consequence 3 of

the handshaking lemma that Q, has k x 2*-! edges.

The Platonic Graphs

The following five regular solids are known as the Platonic solids:

i @@
tetrahedron cube octahedron dodecahedron icosahedron

We can regard the vertices and edges of each solid as the vertices and edges of a graph.

The resulting five graphs are known as the Platonic graphs, and are often drawn as

ATH Ay @ AX
tetrahedron cube octahedron dodecahedron icosahedron

A Platonic graph is obtained by projecting the corresponding solid on to a plane. Alter-

natively, it is the view you get when you look at a wire model of the solid from a point

near the middle of one of the faces. The name Platonic arises from the fact that these sol-

ids were mentioned in Plato’s Timaeus.

2.3 EXAMPLES OF GRAPHS 39

The Petersen Graph

Our next example is a famous graph which has already appeared in the Problems of

Chapter 1. It is known as the Petersen graph, and has several interesting properties

which you will discover as you progress through the book. The Petersen graph may be

drawn in various ways, two of which are shown here

Julius Petersen (1839-1910) was a Danish mathematician, who discussed the graph

named after him in a paper of 1898.

Trees

A connected graph which contains no cycles is called a tree. Some examples of trees are

as follows; the tree on the right is particularly well known for its bark!

If G is a connected graph, then a spanning tree in G is a subgraph of G which includes

every vertex of G and is also a tree. For example, a graph and three of its spanning trees are

t Ww v Ww U Ww vc Ww

Zen ny eX wie ey VEX Ze VEX ZY

a graph G spanning tree spanning tree spanning tree

The number of spanning trees in a graph can be very large. For example, the Petersen

graph has no fewer than 2000 different spanning trees.

Unions and Complements

There are several operations we can perform on graphs in order to form new ones. The

simplest of these is to form their union, which is the graph whose components are the

40 CHAPTER 2. DEFINITIONS AND EXAMPLES

individual graphs. For example, the null graph N, is the union of 1 copies of N,, and the

DX~ 7 ee
is the union of two copies of K,, two copies of K;, and one copy of K,».

Finally, if G is a simple graph, we form its complement G by taking the vertex-set of

G and joining two vertices by an edge whenever they are not joined in G. For example,

the complement of K,, is N,,, and the complement of

tS
—that is, the path graph P,. Note that if we take the complement of G, then we get back

to the original graph G.

PROBLEMS

Here, and throughout this book, the dagger (7+) indicates challenge problems.

Adjacency and Incidence

2.1 Consider the following graph:

Classify each of the following statements as true or false:

a. uand zare adjacent; _e. uw is incident with c;

b. vandzare adjacent; _f. bis incident with d;

c. dandzare adjacent; _g. e is incident with w;

d. v is incident with d; h. v is incident with f

PROBLEMS 41

2.2. Consider the following graph:

u a ov

aN
a d w

Classify each of the following statements as true or false:

a. eis incident with u; c. ais incident with e;

b. c is adjacent to x; d. w is adjacent to v.

2.3. | Match up each of the following graphs with its adjacency matrix and incidence

matrix:

heel eck eid 2 2

5 4 5 4

(a) (b) (c)

Adjacency matrices.

OI Oe 10 al Odsal st 0 Os Oils

Ole a len() 100 Oe 1 OO ae

Oh —-1" 0 tO, yal 000 0 0

OS eis LOL iL) OF. O a! Leet Oneal

Prep TO ora ST B70 [tro tO

Incidence matrices.

1 eee lan tent) SO Os 0 Oe eS Oamal

i ie oO 0. 1 Ls KO Bh ON x) LO ale ORO

0s LO a0 0. 10 8 OP Or al © Oy Ei =e 0)

Outed HO! Tee D De Shoe Cee el antes a 0)

Oi Cl i 201 OPO ee O meant OVO OO ia

2.4. | Write down the adjacency matrices of the graphs

1 2 l 2

3 es

5 4 4 3

(a) (b)

42

2656

$2.6.

©2.7.

2.8.

2.9,

CHAPTER 2. DEFINITIONS AND EXAMPLES

Draw the graphs whose adjacency matrices are

oh i wy O w

(ue Ol al ee Or I er
ani Onesie ih 0, 0) Sea @
© ® © @ O Oo ani Oan0
i i @ @ 2 Onn O MnO me OleOle
It @ 2.0 OPOMRO Onl nO

© (a) (b)

What can you say about the sum of the numbers in any row or column of an

adjacency matrix?

The following diagrams illustrate a graph with three different labelings. Find

the adjacency matrix in each case, and explain the connections between these

three matrices.

1 1 2

(a) (b) — (c)

Write down the incidence matrices of the following graphs:

Gr) = I)
AN 2 s

| Peo N¢ 5 3

Cee e@ ® @

(a) (b)

Draw the graph whose incidence matrix is

FC Oo — © © — (ey a (SS) SS) Ss te) Sead 8 RS SO.) = Es So CO) = =

PROBLEMS 43

4

2.10. What can you say about the sum of the numbers in

a. any row of an incidence matrix?

b. any column of an incidence matrix?

2.11.’ Consider the following graph:

3

1s peel 2 a

4

Write down the adjacency matrix M of this graph, and compute the matrices M*

and M°. What does the entry in row i and column j of each of these matrices

represent? Make a guess as to what the entries of M‘ represent, and prove your

result.

2.12." (For those who have studied linear algebra.) The eigenvalues of a simple

graph are defined as the eigenvalues of its adjacency matrix.

a. Use the results of the previous problem to prove that

i. the sum of the eigenvalues of G is zero;

ii. the sum of their squares is 2m, where m is the number of edges of G;

iii. the sum of their cubes is 6, where f is the number of triangles in G.

b. Show that the eigenvalues of K, are —1 (n — 1 times), andn— 1.

c. What are the eigenvalues of K,,?

Paths and Cycles

62.13. Complete the statements concerning the graph shown.

a. xyzzvy is a of length between and :

b. vuvzvisa of length between and :

c. vwisa of length between and :

d. uvwxyzu is a of length between and

44 CHAPTER 2. DEFINITIONS AND EXAMPLES

2.14. In the following graph, find

a. awalk of length 7 between u and w;

b. cycles of lengths 1, 2,3, and 4;

c. apath of maximum length.

2.16. In the following graph, find

a. aclosed walk which is not a closed trail;

b. aclosed trail which is not a cycle;

c. all the cycles of lengths 1, 2, 3, and 4.

y w

u
Zz

Examples of Graphs

2.17. Draw the following graphs:

a. Keg; Cina é. Kya g. he

b. N3; d. Ps; f; K; 3;

PROBLEMS 45

2.18.

2.19.

2.20.

2.21

2.22

62.23.

2.24.

2.29%

Fill in the following table:

Petersen

tetra- dodeca- | icosa-
‘9,9|Qs5| hedron| cube |hedron|hedron |hedron

number of |

number of

vertices

edges

each vertex

aI

degree of |

Complete the following statements:

a. the graph K,, is a regular graph only when :

b. _ the only bipartite Platonic graph is the :

c. the graph K,, is the union of and :

d. if Gis a simple graph with n vertices which is regular of degree r, then Gis

regular of degree :

e. ifGisasimple graph with n vertices and m edges, then G has vertices

and edges.

From the set of graph cards, locate the cards that depict the graphs

a. Ny CK ss 1. Ce

bake f. Ky33 j. P..

e. Ce g. the tetrahedron graph;

Aoi: h. the union of K, and K;;

Which of the following graph cards depict bipartite graphs?

a. number 38; d. number 128; g. number 152;

b. number 78; e. number 129; h. number 154.

c. number 106; f. number 130;

Using your graph cards, determine the number of connected bipartite graphs

with five vertices.

Show that in any bipartite graph all cycles have even length.

The complete tripartite graph K,,,, consists of three sets of vertices of sizes r,

s, and t, with edges joining two vertices if and only if they lie in different sets.

a. Draw the graphs K,,, and K,,3.

b. How many vertices and edges has K,,,,?

c. What is the complement of K,,,,?

The girth of a graph is the length of its shortest cycle. Find the girths of (a) Kg;

(b) Ks; (c) the Petersen graph; (d) the Platonic graphs; (e) the 6-cube Q,.

46

2.26.

2.27.1
2.28.

2.29.

2.30.

2.31.

2.32.

2.33-

2.34.

2.35.

2.36.

62.37.

2.38.

2.39."

CHAPTER 2. DEFINITIONS AND EXAMPLES

The circumference of a graph is the length of its longest cycle. Find the cir-

cumferences of (a) Ky; (b) Ks; (c) the Petersen graph; (d) the dodecahedron

graph; (e) the 4-cube Q,.

How many different cycles of length 5 does the Petersen graph have?

Locate the graph cards depicting the complement of each of the following

graphs:

a. the path graph P,,;

b. the complete bipartite graph Ky 4.

How many components has each of the following graphs?

(a) Ns; (b) K;3; (c) ioe

Prove that a graph and its complement cannot both be disconnected.

A graph is called self-complementary if it is isomorphic to its complement.

a. Show that C; is self-complementary, and find two other self-complementary

graphs.

b. Prove that a self-complementary graph has 4k or 4k + | vertices, for some

integer k.

There are 14 trees with six or fewer vertices. Draw them, and locate the graph

cards depicting them.

There are 11 trees with seven vertices. Draw them.

Show that if a tree has n vertices then it has n — 1 edges.

Use the handshaking lemma to prove that every tree with two or more vertices

has at least two vertices of degree 1.

Show that every tree is a bipartite graph.

Find all the spanning trees in each of the following graphs:

A a A B

| : yy
Ig; D D G

(a) (b)

Draw some (but not all!) of the 2000 spanning trees of the Petersen graph.

The line graph L (G) of a simple graph G is the graph obtained by taking the
edges of G as vertices, and joining two of these vertices whenever the corre-
sponding edges of G have a vertex in common. Find an expression for the num-
ber of edges of L(G) in terms of the degrees of the vertices of G, and show that:

a. if C, is the cycle graph with n vertices, then L(C,,) is isomorphic to C,;

b. L(K,,) has sn(n — 1) vertices, and is regular of degree 2n — 4;

c. L(tetrahedron) = octahedron;

d. the complement of L(K;) is the Petersen graph.

CHAPTER 3

APPLICATIONS OF GRAPHS

In this chapter we give brief descriptions of several areas in which graphs have been

found useful. These range from chemistry and sociology to recreational mathematics

and the bracing of plane frameworks. In particular, we show how the ideas of compati-

bility graph and interval graph can arise in several seemingly unrelated contexts, such as

genetics, ecology, archaeology, and the phasing of traffic lights, and we illustrate the use

of trees in areas ranging from linguistics and computing to game theory.

A full treatment of these topics is clearly impossible here. All we can hope to do is to

illustrate the very wide range of topics in which graphs have been used, and leave it to

you to follow up any topics which appeal to you. A list of suggestions for further reading

is given at the end of the book.

3.1 CHEMISTRY

You have already seen in Chapter | how a chemical molecule can be represented as a

graph whose vertices correspond to the atoms and whose edges correspond to the chem-

ical bonds connecting them. For example, the molecule C,H.;OH (ethanol) can be repre-

sented by the following graph:

47

48 CHAPTER 3. APPLICATIONS OF GRAPHS

(aie!
Bas aaa er page + topes

H H

In such a graph, the degree of each vertex is simply the valency of the corresponding

atom—the carbon vertices have degree 4, the oxygen vertex has degree 2, and the hydro-

gen vertices have degree 1.

Diagrams of the above type were first used in 1864 to represent the arrangement of

atoms in a molecule. They were introduced by Alexander Crum Brown (1838-1922),

who explained, for the first time, the phenomenon of isomerism—the existence of isomers

(molecules with the same chemical formula but different chemical properties). For

example, the molecules n-butane and 2-methyl propane (formerly called butane and

isobutane) both have the chemical formula C4H;o; note the different ways in which the

atoms are arranged inside the molecule:

H

HOH
H H H H H H

pe eee eee Se, ee eee ee

Healey how od
n-butane 2-methyl propane

It is natural to ask whether there are any other molecules with the formula C4Hio, and
this leads us directly to the problem of isomer enumeration—the determination of the
number of different molecules with a given chemical formula. The most celebrated
problem of this kind is that of counting the alkanes (paraffins) C,H2,.2. For small values
of n, we can construct a table. For clarity, we have drawn the carbon vertices as small

circles and the hydrogen vertices as black blobs.

3.1 CHEMISTRY

n chemical name
formula

1 CH, methane

2 C5H¢ ethane

3 C3H. propane

4 C4Hi9 ~=— (a) n-butane

(b) 2-methyl
propane

5 C5Hj> (a) n-pentane

(b) 2-methyl
butane

(c) 2,2-dimethyl
propane

49

molecule

eee

H H H

4
—C—

fe ey
eee ee

H H H

ive fable
Beever et

H H H H H

;
H—C—H

iit olin
Hara rmegmeh TH

H H H H

H—C—H

eae
Se CR

eer eet
lien

H

50 CHAPTER 3. APPLICATIONS OF GRAPHS

It is clear that these diagrams are going to become very complicated as n increases.

We can simplify them considerably by removing the hydrogen atoms:

|
a=G—k c

H H |
| | remove draw

lee camel Creme Casal aE Ce ee See
l hydrogens graph

H H H ;

This leaves the following carbon-graphs:

Pe cee coe che ome aoe of

n=1n=2 n=3 n=4 n=5

Each of these carbon-graphs is a tree in which every vertex has degree 4 or less.

Conversely, given any tree with this property, we can construct an alkane by adding

hydrogen atoms to bring the degree of each carbon vertex up to 4, as follows:

i
nk {61

H | H H
oes | |

H—C——C——C——C—H
pine “molecule. l l

H | H H
HC

|
H

It follows that the problem of counting alkanes is essentially a tree-counting problem.
The following table lists the number of alkanes with at most 15 carbon atoms:

n Te 20344 550 SG, LOR a2 eed Sen

alkanes C,H,,.,» 1411 92735" 0 18ers ison tans ese dads

Graphs have also been used in many other chemical contexts which we cannot discuss
in detail here. Among these are

1. the representation of “polycyclic hydrocarbons” by carbon-graphs containing
cycles;

3.2 SOCIAL SCIENCES 51

2. the use of graph-theoretical ideas to name molecules, and to represent them in a

form suitable for storing in a computer—the adjacency matrix of the carbon-graph,

and various modifications of it, have proved particularly useful in this area;

3. the use of graphs to represent chemical reactions, where the vertices correspond to

molecules and the edges correspond to reactions involving these molecules.

Historical note Although graph-like diagrams had been used as far back as 1789 to represent

chemical molecules, it was not until the 1850s that ideas about atoms and the way they combine

were sufficiently well understood for meaningful diagrams to be drawn. This occurred when various

chemists, among them August Kekulé and Edward Frankland, put forward ideas which led to the

theory of valency. Crum Brown’s diagrams were just what was needed to represent this theory and

explain the nature of isomerism, and were soon accepted universally. Meanwhile, the mathemati-

cian Arthur Cayley had spent some time studying and counting trees, and in 1875 presented a paper

to the British Association describing a method for calculating, in principle at least, the number of

alkanes with a given number of carbon atoms. Although successful, Cayley’s methods were

cumbersome and impractical, and it was over 50 years before any significant new results were

obtained. In the period 1927-1937 there appeared a number of important papers on isomer

enumeration, culminating in the fundamental work of George Pélya (see page 17). Pélya’s papers

included a powerful method which can be applied to counting problems involving a degree of

symmetry. In particular, Pélya’s methods have been used to great effect in problems relating to the

counting of graphs and molecules.

3.2 SOCIAL SCIENCES

Graphs have also been used extensively in the social sciences to represent interpersonal

relationships. The vertices correspond to individuals in a group or society, and the edges

join pairs of individuals who are related in some way—for example, x is joined to y if x

likes, hates, agrees with, avoids, or communicates with y. For the time being, we shall

assume that all relationships are symmetric (x likes y if and only if y likes x). Un-

symmetric relationships will be discussed in Chapter 5.

Such representations have been extended to relationships between groups of individ-

uals, and have proved useful in a number of contexts ranging from the study of kinship

relationships in certain cultures to the relationships between political parties. Graphs have

also been used by political scientists to study international relations, where the vertices

correspond to nations or groups of nations, and the edges join pairs of nations which are

allied, maintain diplomatic relations, agree on a particular strategy, etc.

52 CHAPTER 3. APPLICATIONS OF GRAPHS

We can analyze the possible tensions in such situations by using the concept of a

signed graph. This is a graph with either + or — associated with each edge, indicating a

positive relationship (likes, loves, agrees with, communicates with, etc.) or a negative

one (dislikes, hates, disagrees with, avoids, etc). For example, in the signed graph below,

Jack likes Jill but not John, Jill likes Jack and Mary but not John, Mary likes John and

Jill, and John likes Mary but not Jack or Jill; note that Jack and Mary have no strong

feelings about each other, and are therefore not adjacent in the graph.

+

John @& Mary

- +

Jack a Jill

Now consider the following diagrams, which illustrate some of the situations that can

occur when three people work together. Which of these situations is most likely to cause

tension between John, Jack, and Jill?

John John John

iy s / x i, ‘

Jack Jill Jack Jill Jack Jill
+ + =

In the first case all three get on well, and there is no tension. In the second case Jack and
Jill get on well and both dislike John; the result is that John works on his own, and again
there is no tension. In the third case John likes both Jack and Jill and would like to work
with them, but Jack and Jill dislike each other and do not wish to work together; in this
case (the so-called ‘eternal triangle’), a suitable working arrangement cannot be found,
and there is tension. We express this by saying that the first two situations are balanced,
whereas the third is unbalanced.

Using these examples as motivation, we can give a general definition of balance. We Say
that a signed graph is balanced if we can color its vertices black or white in such a way that
positive edges have ends of the same color, and negative edges have a black end and a white
end. You can easily check that the first two of the above diagrams can be colored in this way,
whereas the third cannot. Note that this definition resembles that of a bipartite graph. You
can see the connection by taking a balanced signed graph and removing all the positive edges;
this leaves a bipartite graph, as indicated by the following diagram:

balanced signed graph bipartite graph

3.3 TREES 53

4

We can exploit this connection between balanced signed graphs and bipartite graphs a

little further. Recall from Problem 2.23 that in any bipartite graph all cycles have an even

number of edges. For balanced signed graphs the corresponding result is that all cycles have

an even number of negative edges, as we shall ask you to show in Problem 3.10.

3.3 TREES

The concept of a tree first arose in connection with G. Kirchhoff’s work on electrical

networks in the 1840s, and with Cayley’s work on the enumeration of chemical mole-

cules in the 1870s. More recently, trees have been proved to be of use in many areas,

ranging from linguistics to computing. We now briefly describe some of these uses; our

treatment is mainly pictorial and intuitive.

a sapling river tributaries tracks of particles in a

bubble-chamber

Many trees are characterized as having a physical structure which may be natural or

man-made. Natural trees clearly include the vegetable variety with trunk, limbs,

branches, and leaves. Another example of a natural tree is the drainage system of

tributaries forming a river basin; this is clearly tree-like in appearance, and is frequently

referred to as “dendritic”. Less obvious examples arise from the tracks of particles in a

bubble chamber and from the chemical structure of certain chemical molecules, such as

the alkanes C,,H>,.2 discussed earlier. An example of the man-made variety of tree is

given by an oil or gas pipeline distribution system, such as that shown

Louisiana

Gulf
of

Mexico

54 CHAPTER 3. APPLICATIONS OF GRAPHS

Other trees do not have a well-defined physical structure, but are conceptual in nature.

A familiar example of a conceptual tree is the tree of life, which represents the evolution-

ary relationship between various animal or vegetable species. This has a pure tree form

only if we disallow interbreeding of species.

vertebrates

echinoderms

brachiopods ‘ phoronids

ectoprocts

mollusks
(aks

” sipunculids

coelenterates

platyhelminths “ctenophores

A family tree, depicting ancestors and descendants, is also of this type. A family tree

has a pure tree form only if we forbid incestuous relationships. The following family tree

shows the Saxon kings of the ninth century in England:

3.3 TREES 55

Egbert

Ethelwulf

Ethelbald Ethelbert Ethelred I Alfred the Great Aethelswith

e

Adhelm Ethelward (name unknown)

. Edward Ethelward Elfleda Ethelswithe Ethelgiva
the Elder

There are also many instances of man-made conceptual trees. As an example of these,

we can consider any tree representing an administrative hierarchy; the following tree

depicts part of the administrative structure of the British Open University:

VICE-CHANCELLOR

SECRETARY

ACADEMIC FINANCE ESTATES PERSONNEL COUNCIL AND DATA
ADMINISTRATION Director of Director Personnel EXTERNAL PROCESSING

Deputy Secretary Finance Manager AFFAIRS Manager
and Registrar Senior Assistant

| Secretary

Assistant Manager
Personnel (Staff
Manager development)

Asst. Chief Asst. Chief Chief Purchasing
Accountant Accountant Internal Manager
(Financial (Financial Auditor
Accounting) Planning

and Budgetary Asst. Data Management Data
Control) Processing Systems Centre

Manager Manager Manager

REGISTRY ACADEMIC SUMMER ACADEMIC EXAMINATIONS Senior
Deputy SECRETARIAT SCHOOLS PLANNING Chief O&M
Registrar Deputy Chief Assistant Examinations Officer
(Students) Registrar Summer Secretary Officer

(Senate) Schools
Officer

Recently, there has been considerable interest in tree structures arising in the computer

sciences and in artificial intelligence. We often meet such structures when organizing

data in a computer memory store or when organizing the flow of information through a

system. Indeed, many computer operating systems are designed to be tree structures, since

it is easier for a user to access information and files by tracing through the different levels

of a tree than by searching any other type of graph. The following tree represents a PASCAL

operating system:

CHAPTER 3. APPLICATIONS OF GRAPHS
56

P-MACHINE USER 1/0

SIMULATOR ROUTINES

PASCAL
SYSTEMASICAR TY WR meme ee OPERATING SYSTEM, MISCINFO

(optional turnkey system) SYSTEM (parameters file)

TEXT EDITING COMPILER FILER LINKER MACHINE-CODE MISC, LIBRARY

Pascal Disk file Joins GENERATION UTILITIES ROUTINES

SCREEN YALOE _ source to Management routines ae
EDITOR LINE- P-code Get 8080 Z80

EDITOR ASSEMBLER ASSEMBLER
[- Save

Insert ,

Delete j- What
Adjust he New
Copy r List

Set
t- Remove

Exchange |, Change
iad ee

Replace Dxe
Jump F Quit

Quit eee

Write t Ext-dir

Update — Krunch

Exit [- Make
+ Prefix

t- Volume-scan

— Examine

— Zero

In a similar way, large computer programs are often organized as tree structures

because this simplifies the complex decision-making strategies usually needed upon

execution of the program. This type of decision tree is encountered in game theory,

particularly in programs which are designed to play various games, such as chess; the

following tree is part of a game tree for tic-tac-toe (noughts-and-crosses):

ao,
io. oS ps ae

Another interesting example of a tree structure is provided by the parsing of a sentence

in a natural language, such as English. The tree represents the interrelationships between

the words and phrases of the sentence, and thereby shows the underlying syntactic

structure:

first move by X:

first move by O.

3.3 TREES 57

sentence
wins —

noun phrase verb phrase

noun verb noun phrase

eee
adjective noun

Robin wears green socks

2

Another important type of decision tree is a sorting tree. These arise when we want

to make a succession of choices, each dependent on the previous one. For example,

consider the Dewey decimal classification system, which is often used for cataloguing

books in libraries. This system starts with a crude classification of subjects into ten areas

0-099 General works 500-599 Pure sciences

100-199 Philosophy 600-699 Applied sciences

200-299 Religion 700-799 Fine arts

300-399 Social sciences 800-899 Literature

400-499 Philology 900-999 History

Each of these areas is classified into ten more specialized areas (for example, in the Pure

Sciences the numbers 510-519 are allocated to Mathematics), and each of these is then

classified into ten more. For example, the Mathematics class is subdivided as

510 General mathematical works 515 Analysis

511 Mathematical foundations 516 Geometry

512 Algebra pak uence
513 Arithmetic 518

514 Topology 519 Probability

Further classification is possible with the introduction of decimal fractions. For exam-

ple, Graph Theory is classified as 511.5 and Combinatorial Analysis is classified as

511.6. To represent this process, we can use a sorting tree, part of which is

58
CHAPTER 3. APPLICATIONS OF GRAPHS

general

pure sciences

mathematics

mathematical
foundations

We can also use sorting trees to find the longest increasing sequence in a given list,

such as 5, 11, 6, 1, 3, 9, 10, 4. In order to represent this problem as a sorting tree, we join

each number to those later numbers in the sequence which exceed it. The complete sorting

tree for the above list is then

Qu OOO OR. OO MO

HKODDO OHOVDOOOD OW

OM WOOOW 20)

(10) 29)

We deduce that the two longest increasing sequences are 5, 6, 9, 10 and 1, 3, 9, 10.

In the above examples of tree structures occurring naturally and in the man-made

world, one particular type of tree occurs repeatedly. This is the hierarchical structure in

which one vertex is singled out as the starting point, and the branches fan out from this

vertex. We call such trees rooted trees, and refer to the starting vertex as the root vertex,

often indicated by a small square. Because rooted trees are important and wide-spread,

we need to be able to recognize them when they occur in different forms. The diagrams

illustrate four equivalent ways of representing the same rooted tree.

3.4 BRACING RECTANGULAR FRAMEWORKS 59

8
8.1

0 6) Oe
| : ee

COMIC CE Ba
£32

a rooted tree subsets of a set nested parentheses sections of a report

The first diagram has the conventional appearance of a tree. The second is a system
of subsets of a set representing, say, the organization of subsystems within a complex
machine system; this has the same tree structure as the first diagram, but in this case the

different levels are defined by the depth of nesting. The third representation is a system

of nested parentheses as used in English text, mathematical equations or the computer

language LISP; again, the level is defined by the depth of nesting. The fourth representa-

tion is provided by the organization of a report such as a legal contract; these are often

arranged in nested sections (subsections, paragraphs, etc.), and the level of each section

is determined by indentation, and by the length of the decimal number in the heading.

Books are often organized in this tree-like way (volumes, chapters, sections, paragraphs),

as are dictionaries (the lexicographical ordering of words). The programming languages

ALGOL and PASCAL similarly take advantage of tree arrangements with their nested

block-structure.

The great advantage of all such tree structures is the ease and cheapness with which

they can be altered or updated. This is particularly important in computer applications,

where one can insert or delete branches (such as subroutines) without having to change

the whole system. On the other hand, a major drawback of tree structures is that they are

very vulnerable to faults or damage. The removal of a single vertex or the breaking of a

single edge can disconnect or destroy the whole system, which can be disastrous for

efficient operation of the system, although it may be useful for potential saboteurs. A

striking example of this vulnerability was given by the collapse of the Inca civilization

which virtually disintegrated overnight when the Spanish conquistador Pizarro captured

the chief Inca, Emperor Atahuallpa, in 1532. The latter occupied the top position in a

rigid hierarchical social pyramid, and his removal destroyed the top of the tree, thereby

breaking the chain of command.

3.4 BRACING RECTANGULAR FRAMEWORKS

We now use the properties of bipartite graphs to solve a problem in structural engineer-

ing. Many buildings are supported by steel frameworks consisting of rectangular ar-

rangements of girder beams and welded or riveted joints. This is particularly the case if

they are designed as high-rise buildings or skyscrapers. For many purposes, however,

these structures can be treated as planar (rather than spatial) structures, with pin-joints

(rather than rigid welds) holding the beams together. The simplest type is a rectangle

consisting of just four beams and four joints:

60 CHAPTER 3. APPLICATIONS OF GRAPHS

load load
pin-joint \ :

[__]

It is clear that such a structure can be deformed under sufficiently high loads into a

lozenge shape, or parallelogram, so that it is inherently unstable. It must therefore be

braced, and this may be done by introducing a single extra diagonal beam which can

resist both tension and compression. (The diagonal beam can join either pair of diagonally

opposite corners.)

In the case of a larger structure containing many rectangular cells, it is not necessary

to brace every cell in order to ensure rigidity. We must therefore derive a method for

determining the minimum number of braces required to prevent collapse, and then obtain

a suitable arrangement of these. The rationale for seeking such a minimum bracing is that

if we use more than the minimum number of braces, then we may improve the safety

factors but we incur an unnecessary cost penalty.

extra beam

beam

Consider the three structures

Ge Ee
(a)

Framework (a) is rigid, but is heavily overbraced. Framework (b) is not rigid, since it

can be deformed as shown. But how about framework (c)? To answer this question, we

describe a simple method for determining whether any given rectangular structure is

rigid, and if it is, whether any of the braces can be removed.

The method we use to determine the rigidity of a braced framework is to draw a

bipartite graph in which one set of vertices corresponds to the rows of the framework,

the other set of vertices corresponds to the columns of the framework, and an edge joins

arow-vertex and a column-vertex whenever the cell in the corresponding row and column

is braced. The bipartite graphs corresponding to frameworks (a), (b), and (c) are

3.5 COMPATIBILITY AND INTERVAL GRAPHS 61

ry Ug rs nm ry ty a oS) a
TOWS:

columns
Cy C2 C3 Cy C4 C3 Cy C4 C3

(a) (b) (c)

If you look at these bipartite graphs, you can easily see that the rigid framework (a) gives
rise to a connected graph, whereas the non-rigid framework (b) gives rise to a discon-
nected graph. These are instances of the following general rule, which shows that frame-
work (c) is also rigid since it corresponds to a connected bipartite graph:

rigid bracings correspond to connected bipartite graphs

non-rigid bracings correspond to disconnected bipartite graphs

' To see why these results hold, note that each brace in a framework forces the
corresponding row and column to remain perpendicular to each other. Thus, in the graph
of framework (a), the path r;c2r2c3r3c; connecting all six vertices shows that row 1 is

perpendicular to column 2, column 2 is perpendicular to row 2, row 2 is perpendicular

to column 3, and so on. Thus every row is perpendicular to every column, and the

framework cannot be distorted. However, in the graph of framework (b), there is no path

connecting either of the vertices r3 and c, to any of the vertices r1, r2, C2, or C3, and so row

3 and column | need not remain perpendicular to rows | and 2 or columns 2 and 3, and

the framework can be distorted as shown above.

We can also use the bipartite graph representation to determine which braces in a

braced framework can be removed so as to yield a minimum bracing. In the graph of

framework (c) there are no cycles, and so the removal of any edge disconnects the graph.

Thus the removal of any brace yields a non-rigid framework, and the given bracing of

framework (c) is therefore a minimum bracing. However, in the graph of framework (a)

there are several cycles, and therefore several braces that we can remove without affecting

the rigidity of the framework. For example, 71¢173c3r1 is a cycle, and so we can remove

the brace in any one of the cells ric1, 13, r3C1, 73C3 Without affecting the rigidity. In fact,

in this example we can remove up to three suitably chosen braces (such as r1¢1, 71¢3, and

r3C3) and still have a rigid framework; at each stage we simply select any cycle in the

bipartite graph and remove any one of its edges.

It follows from the above discussion that a minimum bracing corresponds to a

connected bipartite graph containing no cycles—that is, a spanning tree:

minimum bracings correspond to spanning trees

3.5 COMPATIBILITY AND INTERVAL GRAPHS

Compatibility graphs have been used extensively in problems involving the arrange-

ment of data into a particular (e.g., chronological) order. In such graphs, the vertices

62
CHAPTER 3. APPLICATIONS OF GRAPHS

correspond to the objects being arranged, and the edges correspond
to those pairs of ob-

jects which are compatible in some way. Although compatibility graphs first arose in a

genetic context, they have also been used in such areas as archaeology, psychology, and

the dating of classical manuscripts. Our aim here is to describe these applications, show-

ing in each case how the relevant data can be represented by a compatibility graph.

Phasing Traffic Lights

Our first application of compatibility graphs is to the phasing of traffic lights. To see

what is involved, consider the following road intersection:

Some of the traffic streams at this junction are compatible, in that they can move at

the same time without dangerous consequences. For example, stream a is compatible

with streams b, c, e, and f, but not with stream d, whereas stream fis compatible with

streams a and e, but not with streams b, c, and d. We can represent such compatibilities

by a compatibility graph in which the vertices represent the traffic streams, and the

edges join those pairs of vertices which correspond to compatible streams. The compat-

ibility graph of the above intersection is

Suppose now that a traffic engineer wishes to control the traffic at this intersection by

means of traffic lights. How can the lights be phased in such a way that incompatible

streams of traffic do not occur simultaneously?

If the traffic lights operate on a 60-second cycle (say), then one solution is to let each

stream through the lights for 10 seconds. We can represent this solution diagrammatically

using the clock diagram

3.5 COMPATIBILITY AND INTERVAL GRAPHS 63

Z

where we indicate the moving of each stream by an arc of the circle. This particular ar-

rangement is unsatisfactory, however, since each stream of traffic is stationary for most

of the time. We want a solution which takes account of the fact that compatible streams

of traffic can proceed simultaneously, since this reduces the total amount of ‘waiting

time’. One possible arrangement is given by our next clock diagram in which there are

three compatible streams of traffic proceeding at any time—namely,

0-15 seconds: streams a, b, and c proceed

15-30 seconds: streams a, e, and f proceed

30—45 seconds: streams-a, c, and e proceed

45-60 seconds: streams c, d, and e proceed

This means that, in each period of 60 seconds, streams a, c, and e can proceed for 45

seconds, and streams 5, d, and f can proceed for 15 seconds. This gives a total ‘waiting
time’ of (3 x 15) + (3 x 45) = 180 seconds—a 40 percent reduction on the original waiting

time of (6 x 50) = 300 seconds.

Another solution, giving rise to the same total waiting time of 180 seconds, is given

in the third clock diagram. In this solution there are still three compatible streams of traffic

proceeding at any time—namely,

0-20 seconds: streams a, b, and c proceed

20-40 seconds: streams a, e, and f proceed

40-60 seconds: streams c, d, and e proceed

64 CHAPTER 3. APPLICATIONS OF GRAPHS

In each period of 60 seconds, streams a, c, and e can proceed for 40 seconds, and streams

b, d, and f can proceed for 20 seconds.

Which of the two solutions is preferable will usually depend on other factors, such as

the likely amount of traffic in each stream, or the need to give each stream a minimum

time of (say) 20 seconds. Our concern here is to obtain a number of efficient solutions

which can then be examined to see whether they satisfy these other requirements.

We can find these solutions by looking at the compatibility graph. Since our aim is to

get the maximum number of traffic streams flowing at the same time, we want to find

subgraphs of the compatibility graph which reflect this requirement. In particular, we are

interested in complete subgraphs, since these correspond to streams which are mutually

compatible. Examples of such complete subgraphs are the triangles formed from the

vertices abc, or aef, or ace, or cde. Note that these are precisely the traffic streams

appearing in the above solutions. This idea applies more generally, and leads to the

general guidelines:

(1) draw the compatibility graph,

(2) for each vertex of the compatibility graph, find a largest complete subgraph

containing it;

(3) divide the time available by the number of complete subgraphs in step (2), and

allocate a complete subgraph to each period of time.

In the above examples, step (2) gives the complete subgraphs abc, aef, and cde, which

together contain all six vertices, and give rise to the third solution above. The second

solution arises if we include the complete subgraph ace as well.

Assigning Radio Frequencies

The above ideas have also been applied to problems involving the assignment of radio

frequencies to particular localities. Consider, for example, a mobile radio system such as

that used by the police. Each police car maintains contact by means of a two-way radio

which uses one channel from a preassigned band of frequencies allocated to the locality.

Unless we can ensure that the frequency bands in neighboring localities do not overlap,

we shall get interference. How can the frequencies be allocated?

We can represent this problem by a compatibility graph in which the vertices

correspond to the localities and the edges correspond to pairs of non-neighboring

localities, as illustrated by

The problem is now very similar to that of the phasing of traffic lights. In that problem we

had a certain allocation of time (60 seconds), and we found an arrangement of traffic streams

3.5 COMPATIBILITY AND INTERVAL GRAPHS 65

4

which allows the traffic to move for a good proportion of the time. We expressed this solution
by means of circular arcs on a clock diagram. In the frequency assignment problem we are
allocated a range of allowable frequencies (say, 99-101 MHz), and we want to find an

arrangement of frequencies which gives each locality a reasonably wide frequency band.

We solve this problem by drawing the compatibility graph and looking for a set of

complete subgraphs containing each vertex. We then assign a frequency band to each of

these complete subgraphs, and represent these bands, not by arcs on a circle, but by open

intervals on a line. (An open interval is an-interval without its endpoints.) For example,

the above compatibility graph gives rise to the complete subgraphs ACE and BDF. We

can then assign the subgraph ACE the frequency band 99-100 MHz and the subgraph

BDF the frequency band 100-101 MHz, giving the frequency allocation

ee
6 2
4
ea ear
99 100 101 MHz

Interval Graphs

You have just seen how the solution of the frequency allocation problem can be depicted

in terms of open intervals on a line, with compatible frequency allocations correspond-

ing to overlapping intervals. We can extend this idea by associating a graph with any set

of open intervals. To see what is involved, consider the intervals

(0,3), (2,7), (-1,1), (2,3), (1,4), (6,8),

which may be depicted as

aS _ nn a a | co =i) 0 1 a

We associate a graph with these intervals by taking the intervals as vertices, and joining

two of these vertices by an edge whenever the corresponding intervals have at least one point

in common. For example, the intervals (0,3) and (1,4) have a point in common, as do the

intervals (2,7) and (6,8), and so the corresponding vertices are joined in each case. Since the

intervals (1,1) and (1,4) are open intervals, they do not have a point in common, and so the

corresponding vertices are not joined. The resulting graph is

(0,3) (2,7)

(=1,1) (6,8)

(1,4) (2,3)

66 CHAPTER 3. APPLICATIONS OF GRAPHS

Any graph which can be formed from a set of intervals in this way is called an interval

graph. Note that every interval graph is a compatibility graph, but not every compati-

bility graph is an interval graph. This 1s because non-overlapping intervals can some-

times give rise to adjacent vertices in a compatibility graph, whereas in an interval graph

non-overlapping intervals always give rise to non-adjacent vertices.

Archaeology

At the end of the last century archaeologists were interested in the various types of

pottery and other artifacts that had been found in several graves in predynastic Egypt

(c. 4000-2500 BC). In particular, Sir Flinders Petrie used the data from nine hundred

graves in the cemeteries of Naqada, Ballas, Abadiyeh, and Hu in an attempt to arrange

the graves chronologically and assign a time period to each artifact found in them. This

process is usually known as sequence dating or seriation.

Gao 6 0.29 (J \/

Qa ©
In dating the graves they assumed that if two different artifacts occur together in the

same grave, then their time periods must have overlapped. They also assumed, since the

number of graves was large, that if the time periods of two artifacts overlapped, then the

artifacts should appear together in some of the graves.

One of the most promising approaches to seriation problems in archaeology has been

the representation of such data as a compatibility graph in which the vertices correspond

to the artifacts, and the edges correspond to those pairs of artifacts which have appeared

together in the same grave. The problem is then to represent this compatibility graph as

an interval graph—that is, to find a set of intervals whose interval graph coincides with

the given compatibility graph. These intervals correspond to the time periods during

which each artifact was in use, and overlapping intervals correspond to artifacts which

occur together in the same grave.

Unfortunately, the problem is not as simple as this in practice. For example, we might

find several different arrangements of intervals which lead to the same compatibility

graph, and we may not be able to choose the correct interval graph unless other

information is available. In spite of this drawback, however, the interval graph approach

has had some spectacular successes, and has led to the solution of many seriation

problems, including the chronological ordering of bronze-age material in Central Europe,

arrow-heads in a Paleo—Indian site in Wyoming, and Greek inscriptions at Histria in

Rumania.

Developmental Psychology

Suppose that we wish to study various traits or characteristics present in children as they
grow up. Each of these characteristics may exist for a certain period of time and then dis-

3.5 COMPATIBILITY AND INTERVAL GRAPHS 67

4

appear, and the problem is to construct a time scale in which the various characteristics

appear in chronological order. We can investigate this problem by studying the various

characteristics present in a number of children and observing when two different charac-

teristics are present in the same child. The situation is now the same as in our archaeo-

logical example, except that the word artifact is replaced by characteristic, and the word

grave is replaced by child. By looking at the various ways in which our compatibility

graph can be represented as an interval graph, we may be able to put the various charac-

teristics in chronological order, thereby solving our problem.

Classical Studies

Another example of the use of seriation has arisen in the chronological ordering of vari-

ous Greek and Latin literary works. Among other works, those of Plato have been stud-

ied extensively from this point’of view, and the problem of determining the likely order

of these works has been subjected to much mathematical analysis.

Among the most promising approaches to this problem has been the idea of analyzing

change in an author’s style by studying his use of prose rhythm. In the case of Plato,

attention has concentrated on the clausulae (ends of sentences), since the clausula is

rhythmically the most important part of the sentence. Each clausula was taken to consist

of the last five syllables, each of which can be short or long, and the frequencies of the

.2° (=32) possible combinations of these symbols were calculated for each of Plato’s

works. We can represent these data in the form of a graph by noting the appearance of

each of the clausulae in the works under investigation, and drawing the corresponding

compatibility graph. As before, we may then be able to determine the most likely

chronological order by looking at the various ways in which the resulting graph can be

represented as an interval graph.

Similar techniques have been used to investigate the authorship of a disputed piece of

writing. In particular, the New Testament epistles and Shakespeare’s plays have been

subjected to this form of analysis.

Genetics

For some time, geneticists have regarded the chromosome as a linear arrangement of

genes, and it is natural to ask whether the fine structure inside the gene is also arranged

in a linear manner. (This problem is called Benzer’s problem.) Unfortunately, this fine

structure is too detailed to be observed directly, and so one has to study changes in the

structure of the gene, known as mutations.

In analyzing the genetic structure of a particular bacterial virus called phage T4,

Seymour Benzer considered the mutations which result when part of the gene is missing.

In particular, he studied mutations in which the missing segments overlap, and expressed

his results in the form of an overlap matrix, part of which is shown in figure (a). This

19 x 19 matrix is the adjacency matrix of the compatibility graph in figure (b), in which

the vertices correspond to mutations, and the edges correspond to pairs of mutations

whose missing segments overlap. In these terms, Benzer’s problem is that of determining

whether the matrix in figure (a) represents the overlapping of a suitably chosen collection

of intervals, or (equivalently) of determining whether the compatibility graph in figure

68 CHAPTER 3. APPLICATIONS OF GRAPHS

(b) is an interval graph. In figure (c) we see that this is indeed the case—there are

intervals which give rise to this adjacency matrix and compatibility graph.

structure
number 184 215 22M 250 347 455 459 506 749 761 782 852 882

184
215
221
250
347
455
459
506
749
761
782
852
882

A103
B139
Car4
C 33
Ces
H 23 REP ODCCOrFRCCOOCOrFOF OF © SSooqcoeocoaqococeqoooooo Sor ROR Re SHE He eRe ER Or COCO RRR OODOCCOOCOCcCOCOCOCoCoOoOrF PoocoocoorccqcooocooOFoo Poocooocoocococooooo°or POOP ODORHREY$CO0CCOrOCoO FPOOCOOCcOoOOrFRCcCCOoOCCoOOoOFKooO EPDORODORRROOROCOCOFOCO POOR ODORHOROrRCOOrFrOO RDB HOR RH Or Or OF

—_ pee) wm

os
Se ee ena

POOR COCOCORHRORCOOF CO BODOrPDOOFrPCOCOCCOCSr+ SCO]AI03 POO COHPOCOHOSDOCOSC SO SO | BI39 HOSOSOOCOOCOHCOOC OOF oS |C 33 HOSDCOOCOC COCO SCSCOSOS+H SOO !C $1 RPoOoorcocdoorcocoooooroo

->C 33

H 23
184 p<
[SINS C51
AIS ASS y Se Y AROS i J

sey
= 139 749

— A103 —459 a
= 22h

H23=
215, 435%, 25075

Note that, although the representation of this data as an interval graph does not prove

that the fine structure inside the gene is arranged linearly, it certainly provides support

for such a hypothesis. In fact, Benzer extended his analysis to no fewer than 145 mutations

and showed that, even with this number of rows, the resulting matrix can still be

represented by an interval graph. By this means he was able to show that, for this virus

at least, the evidence for a linear arrangement is overwhelming.

Ecology

Snakes eat frogs, and birds eat spiders; birds and spiders both eat insects; frogs eat

snails, spiders, and insects. Given any such tangle of interrelationships between predator

and prey, how does an ecologist sort out the overall predatory behavior of the various

species under investigation?

When studying relationships between animals and plants and their environment,

ecologists use a graph with ‘directed edges’ known as a food web. The vertices corre-

spond to the species under investigation, and there is a directed edge from a species A to

a species B whenever A preys on B. As an example of a food web, consider the following

diagram which represents the predatory habits of organisms in a Canadian willow forest.

3.5 COMPATIBILITY AND INTERVAL GRAPHS 69

meadow willow leaf beetle pussy willow

sandbat willow

bronze grackle yellow warbler

shige ee

In untangling such food webs, ecologists introduce a graph that tells them which

species compete for food. This graph is known as the niche overlap graph, or competition

graph, and its edges join pairs of species which share a common prey. For example, in

the above food web the bronze grackle and the yellow warbler both eat spiders, and so

must be adjacent in the niche overlap graph

bronze grackle z yellow warbler

, sp

a

7

leaf beetle meadow willow

pussy willow
flea beetle ider

sandbat willow

snail

garter snake

Most niche overlap graphs which arise in practice are interval graphs. For example,

the above niche overlap graph can be represented by the set of intervals

frog

flea beetle spider

leaf beetle yellow warbler
meadow pussy sandbat ; garter —— a al Las eee
willow willow willow snail snake sawfly bronze grackle
a ee

Such a representation has ecological significance in that overlapping intervals tend to

correspond to species which react in the same way to particular environmental factors

70
CHAPTER 3. APPLICATIONS OF GRAPHS

suchas temperature, humidity or altitude. In the above example, the beetles and the sawfly

have similar predatory behavior, as do the birds, the spider, and the frog.

3.6 THE FOUR-CUBES PROBLEM

An intriguing puzzle which has been marketed under the name of Instant Insanity con-

cerns four cubes whose faces are colored red, blue, green and yellow (or sometimes

white), in such a way that each cube has at least one face of each color. These cubes are

depicted in flattened-out form below. The problem is to pile up these cubes on top of

each other in such a way that all four colors appear on each side of the resulting ‘stack’.

As we shall see, there is essentially only one way in which this can be done.

The first thing to note about this problem is that a trial-and-error approach is

inadvisable, since there are many thousands of different ways of stacking the cubes. To

see this, note that each cube can be placed in 24 different ways (since there are six possible

choices for the top face, and the cube can then be rotated so as to bring any of the four

sides to the front), and so the total number of possible stacks is 24* = 331776. This number

can be reduced by a factor of 4 if we regard two stacks as the same when we rotate one

of them to get the other, but this still leaves us with 24*/4 = 82944 essentially different

stacks. So we need a systematic approach which minimizes the amount of guesswork

involved. The second thing to note is that if one face of a cube appears on one side of the

stack, then the opposite face of the cube must appear on the opposite side of the stack. It

follows from this that our concern is with opposite pairs of faces, and that we must decide

for each cube which two of the three opposite pairs are the ones which appear on the sides

of the stack.

In order to solve this problem, we represent each cube by a graph which tells us which

pairs of colors appear on opposite faces. More precisely, we represent each cube by a

graph with four vertices (corresponding to the colors red, blue, green, and yellow) in

which two vertices are adjacent if and only if the cube in question has the corresponding

colors on opposite faces. For example, in cube 1, blue and yellow appear on opposite

3.6 THE FOUR-CUBES PROBLEM nm

4

faces, and so the vertices B and Y are joined in the corresponding graph. The four graphs

we get for the above set of cubes are given below; underneath we have superimposed

them to give a new graph G.

cube 1 cube 2 cube 3 cube 4

the graph G

A solution for the four-cubes problem is obtained by considering the two subgraphs

of G pictured below. The subgraph H; tells us which pair of colors appears on the front

and back faces of each cube, and the subgraph H; tells us which pair of colors appears

on the left-hand and right-hand faces of each cube. The solution can then be read off from

these subgraphs, as illustrated.

R 3" 8 R 7 B

4 1 1 3

St ae Gs) Sea

front & back left & right

A, Hy the solution

Why did we choose these particular subgraphs H, and H,? Could we have obtained any

other solutions by choosing different subgraphs? It is easy to see that H, and H, satisfy

three properties:

a. Each contains exactly one edge from each cube;

b. Each is regular of degree 2;

c. They have no edges in common.

We leave it to you to explain why these three properties are relevant to the four-cubes

problem (see Problem 3.32).

72 CHAPTER 3. APPLICATIONS OF GRAPHS

3.7 MUSIC

In a piece of music, certain changes of key (modulations) tend to sound more natural

than others. For example, modulating from the key of C major to the key of F major

seems very natural, since only one note change is involved (B to Bb):

Two major keys which can be obtained from each other in this way may be said to be

related, and it seems natural to represent this relationship by a graph whose vertices

represent the various keys, and whose edges join pairs of related keys. This gives rise to

a graph with twelve vertices—the cycle graph Ci. Note that each key (such as C major)

is joined to its dominant (G major) and subdominant (F major). We are here assuming

‘equal temperament’ so that ch. D?, Ef = F, and so on.

Cc cf=p?

or

Unfortunately, we run into difficulties when we try to extend this idea to minor keys,

since there are many key changes that sound very natural, but involve several note

changes. In this case it is usual to say that each key has five closely related keys—its

dominant and subdominant, as before, and also their relative minor keys. For example,

the key of C major is closely related to G major and F major, and to their relative minors,

A minor, E minor, and D minor. Joining up those closely related keys leads to the

following attractive graph, which has 24 vertices and is regular of degree 5. For

convenience, we have indicated the minor keys by lower case letters—for example, cf

means C sharp minor.

PROBLEMS 73

Although a knowledge of this graph may not add significantly to your enjoyment of

a piece of music, it is nevertheless useful for representing and analyzing successions of

key: changes. This is because any modulation can be regarded as a combination of the

basic key changes indicated in the above graph. For example, the modulation C# minor

to G major can be split up into three constituent basic key changes (C¥minor to Ft minor,

F* minor to B minor, and B minor to G major), and is represented in the graph by a path

of length 3. In fact, any modulation corresponds to a path in the graph, and we can use

the length of the shortest path between any two given keys as an indication of the

‘remoteness’ of the two keys involved. For example, the modulation C major to F*major

(path of length 6) is more remote than De major to AP minor (path of length 4), which in

turn is more remote than B? major to C minor (path of length 1). As a general rule, the

longer the path in the graph, the stranger the key change will sound.

The 24-vertex graph above is only one of several graphs which have arisen in a musical

context. In fact, graph-like diagrams have been used by several composers, ranging from

the baroque era (Bach’s ‘harmonic circle’) to the recent pioneering work of Milton

Babbitt, Andrzej Panufnik, and others whose compositions are based either wholly or in

part on combinatorial considerations.

We conclude by noting without comment that when Igor Stravinsky was asked how

he would describe his music pictorially, he replied

this is my music: lier

PROBLEMS

Chemistry

3.1. Draw the carbon graph of the molecule

74 CHAPTER 3. APPLICATIONS OF GRAPHS

H

H—¢—H
H H H H

eee eine [eae

3.2. Draw the molecule whose carbon graph is

3.3. Draw all the alkanes with chemical formula C,H,,.

3.4. a. Calculate the number of vertices and edges in the graph of the molecule

Crone:

b. Any connected graph in which

(the number of vertices) — (the number of edges) = 1

is necessarily a tree (see Chapter 10). Use this fact to show that the graph of

any alkane C,H,,,,, is a tree.

3.5. a. There are two different molecules with chemical formula C,;H;OH. Draw the
graphs representing these molecules, and verify that each is a tree.

b. Use the method of Problem 3.4(b) to show that the graph of any alcohol

C,,H,,,.1OH is necessarily a tree.

3.6. By calculating the difference between the number of vertices and the number

of edges in each case, determine whether the graph corresponding to each of
the molecules is a tree:

(a) C7H,;0H; = (b) C7H,,0,; (c) CSH,,OH; (d) C5H,20,.

Social Sciences

©3.7. Decide which of the following signed graphs are balanced, and find the corre-
sponding bipartite graph in each case:

Aq——oB Aq—_*—oB 7 ea

D 5 E D ie GCG D = c D ~ Cc

G, G, G; G,

3.8. John likes Joan, Jean, and Jane, but dislikes both Joe and Jill; Jill likes Joe who
dislikes Joan, Jean, and Jane; Joan, Jean, and Jane like each other, but each dis-

PROBLEMS 75

3.9.

3.10.

4

likes Jill. Draw the signed graph representing these relationships, and deter-

mine whether or not this signed graph is balanced.

Determine whether the signed graph representing each of the following sets of re-

lationships is balanced. (You may assume that all relationships are symmetric—

that is, x likes y if and only if y likes x.)

a. Alan likes Chris and Edward, but dislikes Bob and David; Bob likes David

but dislikes Chris; David dislikes Chris and Edward.

b. Amy likes Beth and Doreen, but dislikes Edna; Beth dislikes Cathy, Doreen

and Edna; Doreen dislikes Cathy and Edna.

c. John likes Len and Mike, but dislikes Keith; Mike dislikes Ian and Keith; Len

dislikes Ian, Keith, and Mike.

d. Margaret likes Ida and Liz, but dislikes Jenny and Karen; Karen dislikes Ida

and Liz; Jenny likes Karen but dislikes Liz.

a. Show that in any balanced signed graph every cycle has an even number of

negative edges. (Note that 0 is an even number.)

b. Verify this result for the balanced signed graphs in Problem 3.7.

Trees

63.11.

3.12.

akon

3.14.

63.15.

3.16.

Use a tree structure to parse the sentence Good students read books.

The ambiguous sentences Help rape victims and Council rents rocket appeared

as newspaper headlines, and can each be interpreted in two ways. Draw two

tree structures for each sentence.

Explain how a sorting tree might be used to represent the sorting of mail

according to zip code.

Use a sorting tree to find all the increasing sequences of maximum length in

the following list:

21, 23, 9, 20, 17, 6, 26, 14.

Use a sorting tree to find all the decreasing sequences of maximum length in

the following list:

D, 11, Oalwa, 9,-10, 4,

The diagram on page 59 shows four equivalent ways of representing a rooted

tree. Illustrate this equivalence by explicitly labeling the vertices, subsets,

parentheses, and sections.

76 CHAPTER 3. APPLICATIONS OF GRAPHS

63.17. Write down the corresponding subsets of a set and the corresponding nested

parentheses for the following rooted tree:

A

JOP Ja Ie Nel Wi

3.18. The following diagram represents a binary tree in which there are exactly two

edges coming down from each intermediate vertex. Show that the number of

levels of such a tree is at most 5 (n+ 1), where n is the number of vertices.

level 1

level 2

level 3

level 4

3.19.! Suppose that you are given eight coins, seven of which are of equal weight,

and the eighth is heavier or lighter than the rest. You are provided with:an

equal-arm balance for comparing coins, but you may use it only three times.

Construct a suitable binary tree which will help you to identify the odd coin

and to determine whether it is heavier or lighter than the rest.

Bracing Rectangular Frameworks

©3.20. By constructing the corresponding bipartite graphs, determine whether the fol-
lowing braced frameworks are rigid. Is either of them a minimum bracing?

(a) (b)

3.21. a. Check that the following is a minimum bracing:

b. Construct another minimum bracing of a 3 x 5 rectangular framework.

PROBLEMS 77

‘

3.22. Determine whether each of the following bracings is

a. arigid bracing;

b. aminimum bracing.

SL4le [SIs
eee 4
NAAT IN
VARBNS
ot 4)

3.23. Show that ‘.

a. if we permute the rows (or columns) of any rigid bracing, then we obtain

another rigid bracing;

b. if we permute the rows (or columns) of any minimum bracing, then we obtain

another minimum bracing.

63.24. How many cells are braced in a minimum bracing of an r x s rectangular

framework?

Compatibility and Interval Graphs

3.25. Consider the following intersection, in which traffic can proceed only in the

directions indicated (for example, stream g cannot turn left or right):

In solving the phasing-of-traffic-lights problem, we find a set of complete sub-

graphs of the compatibility graph G containing (between them) every vertex of

G. Is each of the following such a set of subgraphs of G?

(a) {abe, cdg, ef}; (b) {abef, acd, fg}.

78 CHAPTER 3. APPLICATIONS OF GRAPHS

63.26. Consider the following intersection involving a one-way street:

a. Draw the compatibility graph G.

b. Find a set of complete subgraphs containing each vertex of G.

Use the result of b. to find a suitable traffic light sequence, and calculate the

total waiting time involved, assuming a 60-second cycle.

63.27. Suppose that in the radio frequency allocation problem (on page 64) localities

A and E and localities B and F are also required to have non-overlapping fre-

quency bands.

a. Draw the new compatibility graph G.

b. Find a set of complete subgraphs containing each vertex of G.

c. Use the result of b. to find a suitable frequency allocation, and illustrate your

answer by means of intervals on a line.

3.28. Draw the interval graph associated with the following set of intervals:

A= (99,99.5), B = (100,100.5), C = (99,100), D = (100,101), E = (99.5,100),

F = (100.5,101). Compare this interval graph with the compatibility graph in

Problem 3.27.

3.29. Draw the interval graph of the following set of open intervals:

(1,2), (354), (9,6), (7,8), (156); (2,7), (3,8).

3.30.' Show that the cycle graph C, is not an interval graph.

The Four-Cubes Problem

©3.31. Verify that the subgraphs H, and H, used in our solution of the four-cubes

problem (on page 71) satisfy the following three properties:

a. each contains exactly one edge from each cube;

b. each is regular of degree 2;

c. they have no edges in common.

Explain why these three properties are relevant to the problem.

PROBLEMS 79

4

3.32. Show that our solution to the four-cubes problem is the only one possible by

showing that H, and H, are the only pair of subgraphs of G which satisfy prop-

erties a., b., and cc. in Problem 3.31.

[Hint: first try looking for subgraphs which satisfy a., b., and c., and contain

the loop at R. Then repeat the process with the loop at G and the edge joining

R and Y. After you have eliminated these edges, the rest is easy.]

3.33. Decide whether the four-cubes problem with the following set of cubes has a

solution: '

Oly] @Ir] @IR] @[G]
efelely]) «= (vieiels) «= (RvJayy] ~— [a [rR

rR)

3.34.’ Show that there is no solution of the four-cubes problem with the following

cubes:

Off Oly] Opa] Ofc]
[e[R[RT] [R[y[c] 8] [fy [al c]R| [y[o[R[s]

[3 | [R|

Music

63.35. Which of the following key changes is the least ‘remote’?

a. AP minor to G¥ major; Cc. A major to DF minor;

b. D minor to B’ minor; d. G# minor to pb? major.

3.36. Which of the following key changes is the least ‘remote’?

a. D major to E> minor; c. F*minor to F* major;

b. A# minor to F major; dt pF major to C? minor.

CHAPTER 4

WHAT IS A DIGRAPH?

4.1 INTRODUCTION

Up to now our concern has been almost exclusively with graphs, and we have seen how

graphs can be used to depict a variety of situations in which various objects (represented

by vertices) are related to each other in some way (these interrelations being represented

by edges). In particular, we have seen how graphs can be used to represent route maps,

chemical molecules, architectural floor plans, electrical networks, and so on. All these

situations have one important common feature—the graphs tell us which pairs of verti-

ces are joined, but do not imply any dominance of one vertex over another.

An exception was the ecological food web on page 69, which represented the

predatory behavior between species, and which can be drawn as

mw lb pw

80

4.2 THE DEFINITION OF A DIGRAPH 81

Such an object is called a directed graph, usually abbreviated to digraph. The points

are called vertices, and the ‘directed lines’ or ‘arrows’ are called arcs. As with graphs,

the terminology is not completely standard; for example, some authors allow the word

graph to mean what we have called a digraph—that is, they allow graphs to have directed

edges.

4.2 THE DEFINITION OF A DIGRAPH

DEFINITIONS. A digraph D consists of a set of elements, called vertices, and a list

of ordered pairs of these elements, called arcs. The set of vertices is called the vertex-set

of D, denoted by V(D), and the list of arcs is called the arc-list of D, denoted by A(D).

If v and w are vertices of D, thén an arc of the form vw is said to be directed from v to

w, or to join v to w.

DEFINITION. Let D be a digraph. The underlying graph of D is the graph obtained

by replacing each arc of D by the corresponding (undirected) edge.

In forming the underlying graph, we simply ‘remove the arrows’ from the arcs; for

example,

vy Ww v Ww

digraph D the underlying graph of D

Just as for graphs, it is useful at this stage to introduce some further terminology. In

particular, we can extend the concepts of multiple edges, loops, and simple graphs to

digraphs.

DEFINITIONS. Two or more arcs joining the same pair of vertices in the same

direction are called multiple ares, and an arc joining a vertex to itself is called a loop.

A digraph with no loops or multiple arcs is called a simple digraph.

v multiple arcs

~~ loop

We can also define a concept analogous to that of a subgraph of a graph.

82
CHAPTER 4. WHAT IS A DIGRAPH?

DEFINITION. Let D be a digraph with vertex-set V(D) and arc-list A(D). A subdi-

graph of D is adigraphall of whose vertices belong to V(D) and all of whose arcs belong

to A(D).

For example, if D is the digraph shown above, where

V(D) = {u,v,w,z} and A(D) is (UW,VU,VV,VW,WZ,WZ),

then the following digraphs are all subdigraphs of D:

u Zz u ve u Zz

u WwW : iz

v Ww v Ww zZ®@ vy Ww

((
vertex-set: {u,v,w,z} {u,v,w } {v,z} {u,w,z } {U,V,W,Z }

edge-list: uw, vv, vw, wz uw, vu,vw vy UW,WZ,WZ UW, VU,VV,VW,WZ,WZ

Next, we can extend the concept of isomorphism to digraphs, as follows:

DEFINITION. Two digraphs C and D are isomorphic if D can be obtained from C

by relabeling the vertices—that is, if there is a one-to-one correspondence between the

vertices of C and those of D, such that the number of arcs joining any pair of vertices in

C is equal to the number of arcs joining the corresponding pair of vertices (in the same

direction) in D.

For example, the digraphs

Cc D

are isomorphic, as you can see by considering the one-to-one correspondence

Nos

{
3 Roe mS <>N

Gs

D:

Note that

the two arcs uv in C correspond to the two arcs 23 in D;

the arc wz in C corresponds to the arc 41 in D;

the loop at w in C corresponds to the loop at 4 in D;

and so on.

4.2 THE DEFINITION OF A DIGRAPH 83

é

As with graphs, when checking whether or not two digraphs are isomorphic, we can

ignore the actual symbols used to label the vertices, since the vertices can be relabeled

as necessary. In view of this, we often drop the labels altogether when they are not relevant

to the problem at hand, and say (for example) that the following unlabeled digraphs are

isomorphic:

We can summarize the above as follows:

Labeled Digraphs

u v Z —# u u y 4 1

Z w 4 z w 4

These labeled digraphs are the same. These labeled digraphs are not the same,
but are isomorphic.

Unlabeled Digraphs

NA
These unlabeled digraphs are isomorphic.

As you probably noted, the beginning of this chapter is very similar to parts of Chapter

1, and you will find that the similarity between graph and digraph concepts continues

throughout the chapter. Most of the terms in this chapter are analogs of those given in

84 CHAPTER 4. WHAT IS A DIGRAPH?

Chapters 1 and 2 and, in view of this, you may like to try to define digraph analogs of

some of the following yourself before they are given:

v and w are adjacent vertices;

the edge e is incident with v;

the degree of v;

the handshaking lemma;

the adjacency and incidence matrices of G;

a path of length k;

a connected graph,

sm mo aos s a cycle.

4.3 ADJACENCY AND INCIDENCE

We start by defining the digraph analogs of adjacency and incidence. These are similar

to the corresponding definitions for graphs, except that we need to take account of the

directions of the arcs.

DEFINITIONS. Let v and w be vertices of a digraph. If v and w are joined by an arc

e, then v and ware said to be adjacent. /f the arc e is directed from v to w, then the arc

e is said to be incident from v and incident to w.

vand ware adjacent,
eis incident from v,

and incident to w.

Using these terms, we can give the digraph analogs of the degree of a vertex in a graph.

DEFINITIONS. Let D be a digraph and let v be a vertex of D. The out-degree of v is

the number of arcs incident from v, and is denoted by outdeg v. Similarly, the in-degree

of v is the number of arcs incident to v and is denoted by indeg v. The out-degree

sequence of D is the sequence obtained by listing the out-degrees in non-decreasing

order, and the in-degree sequence of D is defined analogously.

(Note that, if the digraph contains loops, then each loop contributes 1 to both the out-

degree and the in-degree of the corresponding vertex.)

For example, the digraph below has the following out-degrees and in-degrees:

4.3 ADJACENCY AND INCIDENCE 85

ex

outdeg u = 1, outdeg v= 3, outdeg w= 2, outdeg x = 0, outdeg y = 2, outdeg z = 2,

indeg u= 0, indeg v= 1, indeg w= 1, indeg x = 0, indeg y = 6, indeg z= 2,

and the out-degree and in-degree sequences are (0,1,2,2,2,3) and (0,0,1,1,2,6), respec-

tively.

We observe that for the above digraph the sum of the out-degrees is 10 and the sum

of the in-degrees is 10. We also observe that this digraph has 10 arcs. In other words, the

sum of the out-degrees and the sum of the in-degrees are each equal to the number of

arcs. This leads to the following analog of the handshaking lemma, called the hand-

shaking di-lemma('):

THE HANDSHAKING DI-LEMMA. In any digraph, the sum of all the out-degrees

and the sum of all the in-degrees are each equal to the number of arcs.

Proof Since each arc has two ends, it must contribute exactly 1 to the sum of the

out-degrees and exactly 1 to the sum of the in-degrees. The result follows immediately. 0

In Chapter 2 you saw two ways of representing a graph—as an adjacency matrix and

as an incidence matrix. These representations both have digraph analogs which are

frequently used when storing large digraphs in a computer. For simplicity, we restrict

our attention to digraphs without loops.

The Adjacency Matrix

When defining the adjacency matrix of a digraph, we have to take into account the fact

that each arc is directed. The following example shows how we deal with this.

col. col. col. col.
1 2 3 4

ta toy at
row las afl) di OL

1 He

rw2~/0 0 0 2

row3 ~|0 1 0 0O

4 3
row4~ \0 0 1 O

On the left-hand side we have a digraph with four vertices, and on the right-hand side we

have a 4 x 4 matrix. The numbers appearing in the matrix refer to the number of arcs

joining the corresponding vertices in the digraph. For example,

86 CHAPTER 4. WHAT IS A DIGRAPH?

vertices 1 and 2 are joined (in that order) by 1 arc, so 1 appears in row 1 column 2

vertices 2 and 4 are joined (in that order) by 2 arcs, so 2 appears in row 2 column 4

vertices 4 and | are joined (in that order) by 0 arcs, so 0 appears in row 4 column 1

We can generalize this idea as follows:

DEFINITION. Let D be a digraph without loops, with n vertices labeled 1,2,3, ...,N.

The adjacency matrix M(D) is the n x n matrix in which the entry in row i and column

j is the number of arcs from vertex i to vertex j.

Note that the adjacency matrix depends on the particular way in which the vertices

are labeled, and that we obtain one adjacency matrix from another by interchanging a

number of rows and the corresponding columns.

The Incidence Matrix

Whereas the adjacency matrix of a digraph involves the adjacency of vertices, the inci-

dence matrix involves the incidence of vertices and arcs. Since an arc can be either inci-

dent from a vertex or incident to a vertex, we have to take account of this when defining

the matrix. To see what is involved, consider the following example; we have circled the

labels of the vertices to distinguish them from the labels of the arcs:

col: col. col: col. col: col:
1 2 3 4 5 6

v voy
@ 1 @) row.(1) 11 VO” OF Lea

rw@Q)—~/-1 -1 0 0 1 1
5 : row (3) ssi 0 it =k @ © ©

@) 3 @) row (4) > 0 O ie

On the left we have a digraph with four vertices and six arcs, and on the right we have a
4 x 6 matrix. Each of the numbers appearing in the matrix is either 1,—-1, or 0, depending
on whether or not the corresponding arc is incident from, or to, the corresponding vertex.
For example,

arc 4 is incident from vertex ®, so 1 appears in row | column 4

arc 5 is incident fo vertex @, so —1 appears in row 4 column 5
arc 4 is not incident with vertex @, so 0 appears in row 2 column 4

We can generalize this idea, as follows:

4.4 PATHS AND CYCLES 87

4

DEFINITION. Let D be a digraph without loops, withn vertices labeled D,®,®, ...,@)
and m arcs labeled 1,2,3, ..., m. The incidence matrix I(D) is the n x m matrix in which
the entry in row @)and column j is

1, ifarc j is incident from vertex@)

-1, if arc j is incident to vertex@

0, otherwise

Note that the incidence matrix depends on the particular way in which the vertices and

arcs are labeled, and we obtain one incidence matrix from another by interchanging rows

(corresponding to relabeling the vertices) and columns (corresponding to relabeling the arcs).

4.4 PATHS AND CYCLES

Just as you can ‘get from one vertex of a graph to another’ by tracing the edges of a walk,

trail, or path, so you can ‘get from one vertex of a digraph to another’ by tracing the arcs

of a ‘directed’ walk, trail, or path. This means that you have to follow the directions of

the arcs as you go, just as if you were driving around a one-way system in a town.

We can make this idea precise, as follows.

DEFINITIONS. A walk of length k in a digraph D is a succession of k arcs of D of

the form

UY, VW, WX, i. oy YZ!

We denote this walk by uvwx ... yz, and refer to it as a walk from u to z. [fall the arcs

(but not necessarily all the vertices) of a walk are different, then the walk is called a

trail. [f, in addition, all the vertices are different, then the trail is called a path.

In the following diagram, vwxyvwyzzu is a walk of length 9 from v to u, which includes

the arc vw twice, and the vertices v,w,y, and z twice. The walk uvwyvz is a trail which is

not a path (since the vertex v occurs twice), whereas the walk vwxyz has no repeated

vertices, and is therefore a path.

The terms closed walk, closed trail, and cycle can also be defined for digraphs.

88
CHAPTER 4. WHAT IS A DIGRAPH?

DEFINITIONS. A closed walk in a digraph Dis a succession of arcs of D of the form

UV, VW, WX, «2-5 YZ, ZU.

If all of these arcs are different, then the walk is called a closed trail. [f, in addition, the

vertices U,V,W,X,..-.Y, Z are all different, then the trail is called a cycle.

In the above digraph, the closed walk uvwyvzu is a closed trail which is not a cycle

(since the vertex v occurs twice), whereas the closed trails zz, wxw, vwxyv, and uvwxyzu

are all cycles. Note that in describing closed walks we can allow any vertex to be the

starting vertex. For example, the triangle vwyv can equally well be describ
ed by the letters

wyvw or yvwy.

As with graphs, we can use the concept of a path to tell us whether or not a digraph is

connected. Recall that a graph is connected if it is ‘in one piece’, and this means that there

is a path between any given pair of vertices. For digraphs these two ideas are not the

same, and this leads to two different definitions of the word connected.

DEFINITIONS. A digraph D is connected if its underlying graph is a connected

graph, and disconnected otherwise. It is strongly connected if there is a path in D from

any vertex to any other.

The difference between these types of digraph is illustrated below:

S x

(a) (b)

Digraph (a) is disconnected since its underlying graph is a disconnected graph, whereas

digraph (b) is connected but not strongly connected since there is no path from w to v.

Digraph (c) is strongly connected since there are paths joining all pairs of vertices.

Alternatively, you can think of driving around a one-way system in a town. If the town is

strongly connected then you can drive from any part of the town to any other, following the

directions of the one-way streets as you go, whereas if the town is merely connected then you

can still drive from any part of the town to any other, but you may have to ignore the directions

of the one-way streets! It follows that every strongly connected digraph is connected, but not

every connected digraph is strongly connected.

In the following diagram (a) we see that the edges of the complete graph Ks can be

‘directed’ in such a way that the resulting digraph is strongly connected. On the other hand,

it is impossible to ‘direct’ the edges of the graph in diagram (b) in sucha way that the resulting

graph is strongly connected, since the ‘bridge’ must be directed one way or the other.

(a) (b)

PROBLEMS 89

Now imagine that the graph in diagram (b) represents a system of two-way streets that
we wish to make one-way. We clearly have a problem, since no matter how we do it,
there must be some part of the town that is inaccessible from another part of town. This
leads to the following definition.

DEFINITION. A graph G is orientable if it is the underlying graph of a strongly
connected digraph—tat is, if it is possible to ‘direct’ the edges of G in such a way that
the resulting digraph is strongly connected.

We have seen above that ifa graph contains a ‘bridge’ , then it cannot be orientable.
The following theorem establishes the converse result, but first we define a bridge.

DEFINITION. An edge in q connected graph is a bridge if its removal leaves a
disconnected graph. ‘

THEOREM 4.1. A connected graph G is orientable if and only if it has no bridges.

Proof We have already observed that an orientable graph cannot contain a bridge.

To prove the converse, we suppose that G is a connected graph with no bridges. We must

show that it is possible to direct the edges of G in such a way that the resulting digraph

is strongly connected.

Since there are no bridges, each edge must be contained in some cycle (see Problem

4.24). We begin by taking any cycle C) of G, and direct its edges so as to give a ‘directed

cycle’. We can then get from any vertex of C; to any other vertex of C; by following the

direction of the arcs.

Next we take any edge (not in C;) that is incident to a vertex of C). This edge is

contained in some cycle C2 of G, and we direct the edges of C2 cyclically, except for any

edges of C; that have already been directed. We can now get from any vertex of C; or C2

to any other vertex of C; or C2 by following the direction of the arcs. Since G is connected,

we can continue in this way until all the edges of G have been directed. The result is a

strongly connected digraph. 0

PROBLEMS

The Definition of a Digraph

©4.1. | Write down the vertex-set and arc-list of each of the following digraphs:

1 2 a c

A A
5 4 3 b f e

(a) (b)

90
CHAPTER 4. WHAT IS A DIGRAPH?

64,2. Which of the following digraphs are subdigraphs of digraph (a) in Problem

4.1?

(a) (b) (c)

4.3. Let D be the digraph

1 2

4 5

Which of the following are subdigraphs of D?

eas
64.4. Of the following four digraphs, which two are the same, which one is

isomorphic to these two, and which is not isomorphic to any of the others?

1 2 1 2 1 1

x} px ra LS

(a) (b) (c) (d)

4.5. | Which two of the following digraphs are isomorphic?

(a) (b) (c) (d)

PROBLEMS 91

4.6.

4.7.

4.8.

‘

Which two of the following digraphs are isomorphic?

(a) (b) (c) (d)

Draw two non-isomorphic non-simple digraphs with four vertices and six arcs.

There are 16 simple digraphs (up to isomorphism) with three vertices. Draw

them.

x

Adjacency and Incidence

4.9.

4.10.

Consider the following digraph:

uoua v

ui = e

has d w

Classify each of the following statements as TRUE or FALSE:

a. cis incident to u;

b. dis incident from x;

c. ais incident to e;

d. gis incident from x.

Consider the following digraph D:

Classify each of the following statements as TRUE or FALSE:

a. uandzare adjacent; dd. fis incident from v;

b. vandzare adjacent; e. ais incident to u;

c. bis incident from z; f. e is incident to z.

92
CHAPTER 4. WHAT IS A DIGRAPH?

©4.11. Write down the out-degree and in-degree sequences of each of the following

digraphs:

He It
©4.12. Verify the handshaking di-lemma for each of the digraphs in Problem 4.11.

4.13. Verify the handshaking di-lemma for each of the following digraphs:

Ww

b fQ
u y o x

a hy.

Yh w
a ve y

) (b) (a

4.14. Match up each of the following digraphs with its arc-list, adjacency matrix and

incidence matrix:

1 2 1 2 1 2

4 3 4 3 Le

(a) (b) (c)

Arc-Lists

L,: 12, 14, 43, 24, 34

L,: 12, 14, 43, 24, 23

L,: 12, 14, 43, 41, 23

Adjacency Matrices

(me One Ou te Oba Ome aecO ms

Omni.) ORO. Ome On Ome

000 0 (ae Oy yy) Oe OR OO

LO tO O50, 10: OO ae 30

Incidence Matrices

1 1 0 0 0 1 1 0 0 0 1 1 QO -!1 0

—1 0 0 1 1 —| 0 0 1 0 —1 0 0 0 1

0 0 -i QO -!l 0 | 0 1 0 0 -1 Oo -1

0 -il 1 —-1l 0 0 -1l 1 -1 -1 0 -1l 1 1 0

PROBLEMS 93

4.15. Write down the adjacency matrices of the following digraphs:

5
1 2

3

2 5 2 1 5 4

(a) (b) (c)

©4.16. Draw the digraph whose adjacency matrix is

p

ee Ga Pei a test) i ee So SoS So Soe So Coon ae

©4.17. What can you say about the sum of the numbers in

a. any row of an adjacency matrix?

b. any column of an adjacency matrix?

4.18. Write down the incidence matrix of each of the following digraphs:

Le
[| 2

@ 1 ea \; @aee 3) < © | Hoo
4 3

3 q 4 4 @

(a) o (b) © 2 (c)

64.19. Draw the digraph whose incidence matrix is

oo oe = ooo KF eS - © oOo oo = i) eS ey YY ie} a == Oo So © — = Oo OS ©

4.20. What can you say about the number of 1’s and —1’s in

a. any row of an incidence matrix?

b. any column of an incidence matrix?

94
CHAPTER 4. WHAT IS A DIGRAPH?

Paths and Cycles

4.21. In the following digraph, (if possible)

u a v

a SS e

a d w

a. find a walk of length 7 from u to w;

b. find cycles of length 1, 2, 3, and 4;

c. find a path of maximum length.

©4.22. In the following digraph,

a. find all the paths from s to 2;

b. find all the paths from z to s;

c. finda closed trail of length 8 containing s and z.

Are there any cycles containing both s and z?

©4.23. Classify each of the following digraphs as disconnected, connected but not

strongly connected, or strongly connected:

“iid Wt
4.24. Prove that

a. each edge of a tree is a bridge;

b. ina graph without bridges, each edge is contained in a cycle.

4.25. Show that the Petersen graph is orientable, by directing its edges in such a way

that the resulting digraph is strongly connected.

4.26. Beginning with a triangle, use the method of proof of Theorem 4.1 to direct

the edges of the complete graph K;, so that the resulting digraph is strongly

connected.

PROBLEMS 95

4

4.27." A tournament is a digraph whose underlying graph is a complete graph.

a. Draw the tournaments with 2, 3, and 4 vertices, and write down their

out-degree sequences.

b. Show that no tournament can contain more than one source (vertex of

in-degree 0) or more than one sink (vertex of out-degree 0).

eS

CHAPTER 5

APPLICATIONS OF DIGRAPHS

In Chapter 3 we described several areas in which graphs have been found useful. We

now carry out a similar procedure for digraphs.-Other important applications of digraphs

include the calculation of a maximum flow in a capacitated network, and the calculation

of currents and voltage in an electrical network. These topics are discussed in full in the

companion volume on Networks.

5.1 SIGNED DIGRAPHS

In Chapter 3 we described the use of graphs to represent symmetric relationships (x likes y

if and only if y likes x). If the relationships are not all symmetric (x likes y, but y dislikes x),

we use a signed digraph. This is a digraph with either + or— associated with each arc, in-

dicating a positive relationship (likes, supports, threatens, etc.) or a negative one (dislikes,

is junior to, is afraid of, etc.). For example, in the signed graph below, John and Jack like

each other, Mary likes Jill but Jill dislikes Mary, John dislikes Jill but we have no informa-

tion about Jill’s feelings for John, and so on. Note that a negative arc from x to y (Jill dis-

likes Mary) is not the same as a positive arc from y to x (Mary likes Jill).

John a Mary

Jack Jill

96

5.1 SIGNED DIGRAPHS 97

Many of the problems of modern society involve extremely complex systems made

up of a number of variables which are constantly changing and interacting. In many of

these problems we need to be able to predict the future development of the system when

the amount of available information is minimal. For such situations, signed digraphs have

often proved to be the most convenient form of mathematical model available, and their

use has frequently led to precise and valid conclusions. In particular, they have success-

fully been applied to problems of waste disposal, energy planning, research funding,

environmental contamination, allocation of medical resources, and so on. Although our

discussion here will necessarily be somewhat simplified, the ideas we introduce are

equally valid for more complex examples.

Solid Waste Disposal

The signed digraph below is a-simplified version of one used to describe the relation-

ships among the variables in the solid waste disposal problem of a city. The arc from w

to b is marked positive since an increase in waste leads to an increase in bacteria,

whereas the arc from s to d is marked negative since an improvement in sanitation facil-

ities leads to a decrease in the number of diseases. There is no arc from d to w since an

increase in the number of diseases has little (if any) direct effect on the amount of waste.

b =amount of bacteria per unit area
c =amount of migration into the city

d = number of diseases
m = amount of modernization

p = size of population

s = sanitation facilities

w = amount of waste per unit area.

Of particular interest in this digraph are the cycles. Note that an increase in population

(p) results in an increase in waste (w), that, in turn, produces an increase in bacteria (b)

and disease (d), that then reduces the population (p). A cycle of this kind, in which an

increase in one of the variables (p) ultimately gives rise to a decrease in the same variable,

is called a negative feedback cycle. On the other hand, an increase in population (p)

increases the pressure towards modernization (m), leading to an improvement in sanita-

tion facilities (s), a decrease in the number of diseases (d) and hence a further increase

in population (p). A cycle of this kind, in which an increase in one of the variables (p)

ultimately gives rise to a further increase in the same variable, is called a positive

feedback cycle. Negative and positive feedback cycles are sometimes referred to as

deviation-counteracting and deviation-amplifying cycles, respectively.

It is easy to see whether a given cycle is a positive or negative feedback cycle, since

every positive feedback cycle has an even number of negative arcs, whereas every

negative feedback cycle has an odd number of negative arcs. The reason for this is that

whenever a deviation (increase or decrease) is counteracted in a positive feedback cycle,

98
CHAPTER 5. APPLICATIONS OF DIGRAPHS

then the counteraction is itself counteracted by the next negative arc. In a negative

feedback cycle, the last of these counteractions is never counteracted.

Electrical Energy Demand

The signed digraph below gives a simplified representation of the consequences of

changes in energy use. The arc from p to u is marked positive since an increase in popu-

lation in a given area is likely to increase the amount of energy used, whereas the arc

from u to r is marked negative since the more energy we use, the less we tend to pay per

unit. There is no arc from j to r since an increase in the number of available jobs has little

(if any) direct effect on the cost of electricity.

c =energy capacity

f = number of factories in the area

j = number of jobs

p = size of population

q = quality of environment

r = electrical rate (cost per kilowatt hour)

u = amount of energy used.

By counting the negative arcs in each cycle, and using the criterion stated in the last

example, we see that the cycle ugpu is a negative feedback cycle, whereas the cycles

cruc, cfuc, rur, and cfjpuc are all positive feedback cycles. In fact, the existence of all

these positive feedback cycles containing the vertex c explains why the energy capacity

system is so unstable, in the sense that initial increases in capacity lead eventually to

further increases of the same kind. Although this has been observed empirically by

environmentalists, the signed digraph representation tells us, from a structural point of

view, exactly why it occurs. Note that although some of the variables (such as ‘quality

of environment’) may be difficult or impossible to measure, this makes no difference to

the conclusions we can draw. Even with such a simple model as this, we can make some

remarkably accurate predictions.

5.2 FINITE STATE MACHINES

Digraphs can also be used to represent machines. Our particular concern here is with

finite state machines (sometimes called finite automata, digital systems, or discrete sys-

tems), since their operation can be described completely in terms of digraphs. However,

you should not be misled by the apparent simplicity of the representation, or of the ex-

amples we choose to illustrate it, since everything we do here applies equally well to a

simple on-off switch for an electric light or to the enormous complexity of a modern

digital computer. Moreover, although the machines considered here may not be the most

general type, they can be made to approximate many of the processes that can be done

by other finite physical systems.

5.2 FINITE STATE MACHINES 99

ae

machine

In its simplest form, a machine can be regarded as a ‘black box’ with input and out-

put channels. Whenever we put something into the machine, the machine acts on it in

some way and produces an output. Kor example,

a combine harvester is a machine whose inputs are the corn stalks in the field, and

whose outputs are the resulting bales;

a coding machine is a machine whose inputs are the words to be encoded, and whose

outputs are the encoded words;

the gas pedal of a car may be considered as a machine where the input pressure applied

by the foot results in an increase of speed.

Note that we study the effectiveness of machines like this by comparing their inputs and

outputs, and we do not need to know what goes on inside the black box. Just as we can

drive a car without understanding how the transmission system works, and we can digest

food without understanding how our digestive system works, so we can study machines

simply by looking at what goes in and what comes out.

This applies well when we consider finite state machines. As their name suggests,

finite state machines are machines that can assume any one of a finite number of ‘states’

at each moment of time. Applying an input to such a machine causes the state to change

and produce a resulting output. Note that the word state can be understood in its everyday

usage. For example, we often talk about being in a happy or unhappy state of mind; if

we now apply an input (such as a piece of good or bad news), this can produce a change

of state, as the following diagram shows:

good
news ay Pi @ &

/| a
| Ge

unhappy state happy state

bad
news

| oy |
GH} happy state
unhappy state

100
CHAPTER 5. APPLICATIONS OF DIGRAPHS

Thus a finite state machine consists of a collection of inputs, a collection of outputs,

and a finite collection of states which describe the effect of the various input signals.

Some examples are as follows:

An electric light cord Consider an electric light operated by a cord. If we pull the cord

several times, the light goes on and off repeatedly, and w
e may regard the light switch as

a machine whose inputs are pulls on the cord, whose states are on and off, and whose

outputs are a lit and an unlit bulb.

pull
the cord

An extension of this example is a switching network whose input is an on-off setting of

a number of two-way switches, and whose output is the corresponding pattern of an array of

lights.

An adding machine Consider an adding machine that adds numbers up to a hundred

million (say). We perform additions in the usual way, introducing the numbers one at a

time and observing the results. For example, to add 63360, 8128, and 33550336, we

simply

input 63360, and the output is 63360;

input 8128, and the output is 71488;

input 33550336, and the output is 33621824.

Ateach stage of the calculation, the current state is the result of the calculation up to that

point. Although there are 10° states, the idea behind this machine is identical to that of

the on—off switch above.

These can be extended to much more complex machines (such as a digital computer) in

which a variety of different calculations can be carried out. Although the resulting machines

are extremely complicated, they are still systems in which there are a finite number of states

which change according to different inputs and which produce resulting outputs.

We can represent a finite state machine by a digraph whose vertices represent the

various states and whose arcs represent the transitions from one state to another. For

5.2 FINITE STATE MACHINES 101

4

example, the two-way switch above can be represented by a digraph with two vertices,

on and off, and two arcs representing the pulling of the cord:

pull cord

pull cord

If we have two switches A and B and‘the inputs consist of switching either or both of the

switches, then the resulting digraph is as follows:

Another example is the two-moment delay machine, represented by the following

digraph. It has four states, denoted by 00, 01, 10, and 11, and two possible inputs (0 and

1). If we start in state 00 and apply an input of 0 we stay in the same state; if, on the other

hand, we apply an input of 1, then we move to state 01.

If, now, we start in any state (10, say) and apply inputs of 1 and 1, then we end up in state

11, as you can easily check. Similarly, if we start in any state and apply inputs of 0 and 1,

then we end up in state 01. In every case the state we end in after two inputs tells us what

the two inputs were, and we get the same answer whatever state we started in. Thus a

two-moment delay machine always ‘remembers’ the two previous inputs.

Another type of machine is the parity machine below which can recognize whether the

total number of 1’s which have been input up to a given time is even or odd. You can verify

this by starting at even and trying various sequences of inputs, such as 00, 110, 0101, 011010,

or 011010011. Any sequence containing an even number of 1’s must end up in state even,

whereas any sequence containing an odd number of 1’s must end up in state odd.

102
CHAPTER 5. APPLICATIONS OF DIGRAPHS

If we now insist that every succession of state transitions must start and end at even, then

the only allowable sequences are those with an even number of 1’s and we say that, with

this choice of initial and final states, the machine recognizes only these sequences. Sim-

ilarly, if we insist that every succession of state transitions must start at even and finish at

odd, then the only allowable sequences are those with an odd number of 1’s and we now

say that these are the only recognizable sequences.

This idea of a machine ‘recognizing’ certain sequences is important when we consider

the relationships between machines and languages. Although the word language
 can refer

to a natural language like English or French, it often refers to an artificial one such as a

computer language. For our purposes, a language is any collection of words made up

froma given alphabet suchas (a,b,c,...) or (0,1,...). For example, we can take our alphabet

to be the two letters a and b, and we can consider a language with just five words

b, aba, aabaa, aabbaa, aababaabba,

or we can take our alphabet to consist of the numbers 0 and 1, and we can consider a lan-

guage whose words are sequences with an odd number of 1’s.

For a language like this to be useful, we need to be able to construct machines which

recognize all of their words but no other combination of symbols. We do this by calling

one state the starting state S and another state the finishing state F, and calling a word

recognizable if we can start at S, input the letters of the word one at a time, and end at

F. The recognizable words are simply the sequence of inputs which give the output Fi

Example 1

Alphabet: 0,1.

Here the only words that are recognizable are those with an odd number of 1’s, since it is

only for these words that we can start at S and finish at F’.

Example 2

Alphabet: 0,1

5.3 SIGNAL-FLOW GRAPHS 103

4

Here the only way of getting from S to F is by means of the inputs 1 and 1. It follows that

this machine recognizes the word 11 and no other word.

Example 3

Alphabet: a,b,c.

Here we can get from S to F by means of the sequences ab, abab, ababab, ..., and by no

other sequences. It follows that this machine recognizes these words and no others.

We conclude with a couple of remarks. First, as we stated at the beginning of this

section, you should not be misled by the apparent simplicity of the examples included

here. Although our examples involved only a few states, the underlying ideas remain

essentially the same for machines with many millions of states, such as a computer or the

human brain. Second, the main use of digraphs above is to provide a convenient

diagrammatic way of showing what is happening. However, at a more advanced level,

we can use results about digraphs in general to deduce results about finite state machines,

and it is here that the main advantages of using digraphs are recognized.

5.3 SIGNAL-FLOW GRAPHS

The circuit shown in the following diagram uses an amplifier with a voltage gain of A,.

O

ie Ui, = input voltage
“8 Usut = Output voltage

+ v = voltage at input of
= operational amplifier

v¢ = feedback voltage

R, and R, are resistances

104
CHAPTER 5. APPLICATIONS OF DIGRAPHS

The voltages are related by the following equations:

V=Vin t Vp Ve= kVour Vout = Av:

Here k= R,/(R, + R) is the fraction of the output voltage fed back to the input. By elim-

inating v and v,from these equations, we can express the output voltage v,,, in terms of

the input voltage v;,:

Wien ay Vv:
out 1—RkAy in*

We now give an alternative method for obtaining such an expression. This method

has been of widespread use in control engineering, and involves a digraph called a

signal-flow graph. Although signal-flow digraph might be a better name, the one given

here is the standard terminology; it is sometimes abbreviated to flowgraph. The term

signal-flow derives from the observation that such a diagram resembles a signal trans-

mission network, with ‘signals’ (1, A,, etc.) traveling along the arcs.

In our example the signa!-flow graph has four vertices, corresponding to the variables

Vins Vout, Vf and v, and may be drawn as

A,

: vy: Rises cae v
in y Ve out

Note the connection between the labels on the arcs and the above equations. The vertex

v has two incoming arcs, one from vin with label 1, and one from vy with label 1; this

expresses the equation

v= lv, + ly.

Similarly, the vertex v, has one incoming arc from v,,, with label k; this expresses the

equation

Vp = RVout-

In general, an equation of the form

X=Q,X, ster Ne tomene FAX,

is represented by a vertex x with k incoming arcs, one from x, with label a,, one from x,

with label a,,..., and one from x, with label a,.

In this example, as with many others that arise in practice, we have a number of

variables which are related by a set of linear equations. By solving these equations

directly, we can find the relationship between any given pair of variables. However, it is

5.3 SIGNAL-FLOW GRAPHS 105

4

sometimes easier to solve the equations by constructing a signal-flow graph and reducing

it (using procedures which we describe below) to a digraph consisting of two vertices

joined by an arc. The required relationship can then be read directly from the digraph.

For example, the reduced digraph arising from the above example is

1-kA,
Vin o—_____>—_——"—® Vout

and this gives rise to the relationship’stated above.

The reduction procedures we apply to the digraph correspond to operations on the

original equations. Some of the most useful of these operations are

1. eliminating multiple arcs: we can replace
2

7

a
a+b <7 Se by o “s+,

x x xy X> 1 b 2

since if x, = ax, +.bx,, then x, =(a + b) x,;

2. eliminating vertices in a path: we can replace

a b ab
o—_>—__e—_>——e by e—>—.,
x1 x; x4 xy X5

since if x, = ax, and x, = bx;, then x, = (ab)x,;

3. eliminating the stem of a ‘Y’: we can replace

x3

since if x, = ax), X,= bx,, and x; = cx,4, then x, = (ab)x, and x; = (ac)x,;

4. eliminating a loop: we can replace

a t Yo a/(1-b)
by e—>—e,

since if x, = ax, + bx, then x, = ax,/(1 — 5);

106 CHAPTER 5. APPLICATIONS OF DIGRAPHS

5. eliminating cycles of length 2: we can replace

a : ab/(1-bc)
e—__>———_ > y @q—__ >__®,>

x} x3 b x2 x} X

since if x3 = ax, + Cx, and x, = bx,, then x) = abx,/(1 — bc).

To see how these procedures can be applied in practice, let us consider two examples.

The first of these is the amplifier circuit discussed earlier.

We start with the signal-flow graph

A,

Pee cilep ios
Vin y Vp Vout

out

SO Vour = AyVin /(1 — k Ay), as required.

For our second example we consider the mechanical system shown in the diagram

fs oS spring

support

5.3 SIGNAL-FLOW GRAPHS 107

4

The rod can move horizontally under the influence of an external force F. When the

rod moves, it bends the springy metal support which exerts a force/,,, and also compresses

the spring which exerts a force f;. The spring is attached to the wall which exerts a reaction

R. The forces are related by

Se=R, F=fyt fa X= ayfss fn = Xm Xm = Xs»

where x, is the decrease in the length of the. spring, x,, is the distance moved by the rod,

and a and b are constants. We wish to find the relationship between the force F and the

reaction R. To do this we first draw the signal-flow graph

R =reaction from wall

F =external applied force

f, = force exerted by spring

fm = force exerted by metal support
xX, = decrease in length of spring

X = distance moved by rod

[We wrote the third equation in the form x, = (1/a)f,, rather than f, = ax,, so that we could

apply this reduction. With practice you should be able to write the equations in such a

way that they can easily be reduced.]

Applying reduction 1, we eliminate the multiple arcs

R 1 tf; l1tb/a F
o—_»>___e—__>_—__

108 CHAPTER 5. APPLICATIONS OF DIGRAPHS

Applying reduction 2, we eliminate the vertex f;:

R l+b/a F
o> —_6

The relationship is, therefore, F = (1 + b/a)R.

PROBLEMS

Signed Digraphs

5.1. The following signed digraph is adapted from one used in a study of public

and private transport in a major city. The question was to decide whether a

large increase in funding public transport would make city traveling easier.

a = cost of an automobile

b = amount of automobile use

c = convenience of automobile use

d = freedom of choice in travel time

e = speed

By counting the number of negative arcs, determine whether each of the fol-

lowing cycles is a positive feedback cycle or a negative feedback cycle:

a. abca, b. beacb, Cc. adea.

5.2. The following signed digraph is adapted from one used to study world food
production:

¢ = d c = cost of food
Nees d = demand for food

e = energy input into food
= + production

P = population

y = food yield
J + p

List as many positive and negative feedback cycles as you can.

PROBLEMS 109

‘

65.3. The following signed digraph was prepared for a study by the Organization for

Economic Co-operation and Development into the support that governments

should provide for the funding of research projects in science and technology.

a = number of available research jobs

b = number of poorly-trained researchers

c = number of well-trained researchers

d= amount of ‘bad science’ produced

e =.amount of ‘good science’ produced

f = public opinion in favour of science

g = amount of available budget
h = pressure to increase budget

i = external or internal threats to society
which call for science to alleviate them

List as many positive and negative feedback cycles as you can.

5.4. The following signed digraph shows the effects of contaminating a lake by two

nutrients, nitrate (N) and phosphate (P). The lake contains two forms of

algae—green algae (g) which uses both nitrate and phosphate, and blue-green

algae (b) which uses phosphate but releases more nitrate. In addition, green

algae is sensitive to a toxin which is released by blue-green algae.

ee

Sel

List as many positive and negative feedback cycles as you can.

Finite State Machines

5.5. Give three more examples of finite state machines. In each case describe the in-

puts, the states, and the outputs.

5.6. The following diagram illustrates a three-moment delay machine that

‘remembers’ the three previous inputs. Verify that it works by starting at any

state and applying

a. inputs of 1, 0, and 1 (the result should always be state 101);

b. inputs of 0, 1, and 0 (the result should always be state 010).

110 CHAPTER 5. APPLICATIONS OF DIGRAPHS

85.7. a. Construct the digraph of a one-moment delay machine with two states which

‘remembers’ the previous input.

b. Complete the following table:

in-degree of

each vertex
number of | out-degree of

states each vertex

one-moment
delay machine

two-moment

delay machine

three-moment
delay machine

and guess the corresponding results for an n-moment machine.

5.8.’ Drawa parity machine which can recognize whether the total number of 0’s

which have been input up to a given time is even or odd. Test whether your

machine is correct by applying it to the sequences 00, 110, 0101, 011010,

011010011.

5.9.’ What words are recognized by each of the following machines?

alphabet: 0. 1

alphabet: 0. 1

alphabet: 0. 1

alphabet: a,b

PROBLEMS 111

Signal-Flow Graphs

5.10. A complex control system gives rise to the following signal-flow graph:

e

—— eee
xy x) x3 * x4 x 5

Reduce this signal-flow graph to one consisting of a single arc from x, to xs.

5.11. a. By writing down the equations relating x,, x), x3, and x,, show that in any

signal-flow graph we can replace

Xy Ny

by : «/b

cp EEN bP, xX, ab Xx,

b. The following signal-flow graph arose in the analysis of a control system in

a complex chemical plant. Use the above reduction, together with those in

this chapter, to eliminate the cycles. Hence find x, in terms. of x,.

5.12. a. By writing down the equations relating x,, x2, x;, and x,, show that in any

signal-flow graph we can replace

X4 X4

ec c/b

b
xX; @ XxX, b xy z ab Xx, al

b. The following signal-flow graph also arose in the analysis of a control system

in a complex chemical plant. Use the above reduction, together with those in

this chapter, to eliminate the cycles. Hence find x; in terms of x,.

ie:

“2 Veet e ots

ye

x

APPENDIX

PROOFS

To establish the truth of a mathematical statement, we need to provide a convincing

argument, or proof. Our aim here is to explain what such a proof entails, and to describe

some methods of proof.

Necessary and Sufficient Conditions

We start by explaining the connection between necessary and sufficient conditions and

if and only if statements.

Consider the following statement:

if G is a tree, then G is a bipartite graph. (Problem 2.36)

This is a true statement, and we say that being a tree is a sufficient condition for being a

bipartite graph. However, it is not a necessary condition, since there are many bipartite

graphs (such as K;) which are not trees. On the other hand, having cycles only of even

length is a necessary and sufficient condition for a graph to be bipartite, and we can write

G is a bipartite graph if and only if every cycle of G has even length.

(The only if part of this is Problem 2.23.)

Thus, in order to prove a result of the form

a is true IF AND ONLY IF 5 is true

we must prove two separate statements:

1. a is true IF b is truae—that is, we must Here, b is true is SUFFICIENT

prove that IF b is true, THEN a is true. to ensure that a is true.

28 ais true ONLY IF b is true—that is, we

must prove that IF a is true, THEN b is Here, b is true is NECESSARY
jet for us to have a is true.

The statement

if a is true, then 5 is true

is called the converse of the statement

if b is true, then a is true.

112

METHODS OF PROOF 113

For example:

if G is a bipartite graph, then every cycle of G has even length

is a true statement whose converse is also true, whereas

if G is a tree, then G is a bipartite graph

is a true statement whose converse is false.

METHODS OF PROOF
2

To prove a result false, it is enough to produce a single counter-example—for example,

K;, iS acounter-example to the false statement

if G is a bipartite graph, then G is a tree.

However, to prove a result true, we must produce a general argument which covers all

possibilities. The three types of proof which appear most in this book are direct proofs,

indirect proofs (proofs by contradiction), and proofs by mathematical induction. We

look at each of these in turn.

Direct Proofs

In adirect proof (the most common type of proof), we start with the information we are given

and proceed by a succession of logical steps to the resultrequired. An example of such a proof

is the proof we gave for consequence 3 of the handshaking lemma (Solution 1.14).

CONSEQUENCE 3. /fG is a graph which has n vertices and is regular of degree r,

then G has exactly <nr edges.

Proof Since G has n vertices each of degree r, the sum of all the vertex-degrees is

nr. By the handshaking lemma, the number of edges is half this sum—that is, snr. O

(We use the symbol (1) to denote the end of a proof.)

Indirect Proofs

These proofs are often called proofs by contradiction, or proofs by the method of

‘reductio ad absurdum’ . In order to prove a statement of the form

if a is true, then b is true,

114
CHAPTER 5. APPENDIX

we prove that

if a is true and b is false, then a must also be false,

thereby obtaining a contradiction. An example of such a proof is the proof we gave for

consequence 2 of the handshaking lemma (Solution 1.14):

CONSEQUENCE 2. In any graph, the number of vertices of odd degree is even.

Proof For any graph, the handshaking ‘lemma holds, so that the sum of all the

vertex-degrees is even (consequence 1). If the number of vertices of odd degree were

odd, then the sum of all the vertex-degrees would be an odd number, giving the required

contradiction. So the number of vertices of odd degree must be even. 0

Proofs By Mathematical Induction

Suppose that we wish to prove a result concerning graphs with a given number of

vertices—for example,

the complete graph Ky has exactly san — 1) edges or,

every tree with 7 vertices has exactly n— 1 edges.

One approach to proving results of this kind is to show that

a. the result holds for graphs with one vertex;

b. for each integer n, if the result holds for graphs with less than 7 vertices, then

it must also hold for graphs with exactly n vertices.

We can thus deduce successively that, by b.,

since it holds for graphs with less than two vertices, it must hold for graphs with two

vertices;

since it holds for graphs with less than three vertices, it must hold for graphs with three

vertices;

since it holds for graphs with less than four vertices, it must hold for graphs with four

vertices;

and so on.

We can thus deduce that the result must hold for graphs with any given number of vertices.

This method is sometimes called the method of strong induction. We illustrate it by
proving the two results above.

THEOREM 1. The complete graph Ky has exactly sn(n — 1) edges.

Proof The result holds when n = 1, since K; has 0 edges and x Lx O=0-

Now assume that the result holds for complete graphs with less than n vertices—that is,

that K, has 5 k(k — 1) edges whenever k < n. We must deduce that K,, has san — 1) edges.

METHODS OF PROOF 115

4

To do this, we remove any vertex v of K,,, together with its n — | incident edges. The re-

maining graph is the complete graph K,,_, which, by our assumption, has ; (n—1)(n—-2)

edges. Reinstating v gives, for K,,, a total of

iH 1) (@-2)+(n-1)= {ait 2) + lia- 1) = jn(n— 1)

edges. Thus b. holds, and the result is therefore true for all n.O

THEOREM 2. Every tree withn sce has exactly n — | edges.

Proof The result holds when n = 1, since the only tree with one vertex is K;, which

has no edges. Now assume that the result holds for trees with less than n vertices—that
is, that every tree with k vertices has k — 1 edges whenever k < n. We must deduce that

every tree T with n vertices has n — 1 edges.

To do this, remove any edge e of T. Since T has no cycles, this gives two trees, with

k, and k» vertices, say, where k; + k, =n. By our assumption, these trees have k; — 1 and

k, — i edges, respectively. Reinstating e gives, for T, a total of

(k,-1)+(&-1)+1=k,+kh-l=n-l

edges. Thus b. holds, and the result is therefore true for all n.O

A similar approach can be used when we wish to prove a result concerning graphs

with a given number of edges. For example, we can adapt the proof of Theorem 2 to show

that every tree with m edges has m + 1 vertices; in such proofs, we usually replace a. by:

the result holds for graphs with no edges. Another example of an induction proof

involving edges, rather than vertices, is as follows.

THEOREM 3. /fG is a graph in which every vertex has even degree, then G can be

split into disjoint cycles—that is, no two cycles have any edges in common.

Proof The result clearly holds when the number of edges is zero. Now assume that

the result holds for graphs with less than m edges—that is, that any graph with k edges

in which every vertex has even degree can be split into disjoint cycles whenever k < m.

We must deduce the corresponding result for graphs with m edges.

So let G be a graph with m edges in which every vertex has even degree, and let

Vo, ..-,¥ be the vertices of a path P of greatest length G. Since v, has even degree,

it is joined to some vertex v other than v,1. Since P is a path of greatest length, v

must be one of the vertices vo, ...,Vi2 — Say v = vj. Then v;,Vii, ..., Vivi are the

vertices of a cycle C in G. Removing the edges of C from G yields a graph G, with

fewer than m edges, in which every vertex still has even degree. By our assumption,

the edges of G; can be split into disjoint cycles; together with C, these give the

corresponding cycles for G, as required. 0

In Part II, we shall see both types of induction proofs: those involving induction on

the number of vertices, and those involving induction on the number of edges.

- iia eo -

‘ ee a . ad
4 ne Ta ys er 4 7 : ; i / aan

j A tet zea f ae era aaaere

Sek PAP cone ON 4 align span initia

i beh ave eee venga
6 7 ? . . S 7

¢ ; 3 , al ; fi io

a oN i ree rg Hat 24pe ph sag ava “ie |

’ a - ’ t a o

ee ree wi oy dys ; = We (3 -— en ianelineme ah Ee ¥.

Te , ; ; a oe 33 ‘by Te - “e'

pare a ass So Gk Thi. te Wi all Le ale a pote ses 5 yb. re
+ ; oe. . a <- Ph bal eaters mm inane Wr wey Le oat a

amt BAT al eS be (4: 2 Ses RTS Aan ee 2

ine 74 | a ee eR ihees Sis 0 Aion) «al Tare
4 Tei Re A <1 i fas ie i. ae

a oa ca A ud i 3 ee ‘a> one ae Ff (356 ‘2 p's Vew*s 7»

: ~ a ae >) rf =s ae olay , read vig oes x js w el eM

~~ Be ee I c tesew ¢ fic a® rs we! MAD) @ , wane oe

a =A Se > j tak 5 Ae 1 We OEE +) Je? a o 7

i s ; ; Ei ” rd
Pe ils wt, to “he an ;

a 6 Hes Sante dre be 3 ies ah — ne et -

none avout’ dbase Rae fs 2a Fits 4 . By! Ww es int Ov decree 3) i

RM OTe pre wis ane apa pia a aetiees “pechew

ey meee Hunapes ies. tale oy wi igatde
; be, COS ol ht Ras 2s aa oe xi ‘ cathe a = elk We

“ ete Eat Uh CR eg Vn Dat dee meres ee awit, .

* eaneee h ema whee Pele ove pales | toenwee var

Meare - angen: | . 7 FM. * AS ro 4 su" wn * io Arh y

os ip >) oJ 93 Shi, pveree 14 ay Sit cw = rs, oe i gat bg Oa

ee age beak & eae Ws satin Satie: wits a Eee Hiei BE

igonain te He rig Maa), pM a to to 7
AeErae ae Wb P's ine at: 1y ery mh as

athe oF Spe eS PiaRL TA hay at Ere
rei Mg ths; sept inn aes Tae ibis nc, mmr ae

- " = out ai a aid ae 4 bebeebiy a

= eas anne ea uele mas ane ar
_ i ae oh iy “ao we. Gee ‘ Me a

: ee beeches a si edioss catia ne

LTS TI ie pe hie Be be ia ed coer Saas LG
nf ever Neaeeiah a

=

“eis, ey es said a —

beats
pay ” ve

~ mies: ee at

=a

eA tle el. |

INTRODUCTION

In this part of the book we consider a number of problems, such as the following:

The Konigsberg Bridges Problem In the eighteenth century, the medieval city of

K6nigsberg in Eastern Prussia contained a central island called Kneiphof, around which

the river Pregel flowed before dividing into two. The four parts of the city were

interconnected by seven bridges, as shown in the following diagram. It is said that the

citizens of Kénigsberg entertained themselves by trying to find a route crossing each

bridge exactly once, and returning to the starting point. Can this be done?

117

118 INTRODUCTION

KONINGS BERGA

The Shortest Path Problem A traveler wishes to drive from Los Angeles to New

York in the shortest possible time. The following map gives the time (in hours) taken to

drive between particular pairs of cities. Given this information, which route should the

traveler take?

Buffalo

Salt Lake
City Cheyenne

10

Jacksonville

San Houston Orleans
Antonio

The Traveling Salesman Problem A salesman wishes to visit a number of cities and

return to the starting point, in such a way that each city is visited exactly once, and the

INTRODUCTION 119

4

total distance covered is as short as possible. Given the various distances between the
cities, what route should be chosen?

The Printed Circuits Problem

uulltea7- te Mulan
aoe

In printed circuits, electronic components are constructed by means of conducting strips

printed directly onto a flat board of insulating material. Such printed connectors may not

cross, since this would lead to undesirable electrical contact at crossing points. Circuits in

which large numbers of crossings are unavoidable may be printed on several boards which

are then sandwiched together with suitable interconnections. Each board consists of a printed

circuit without crossings. What is the smallest number of such layers for a given circuit?

The Map-Coloring Problem Consider the following map of the United States of

America (excluding Alaska and Hawaii):

Maine

New Hampshire

Massachusetts

Rhode Island

Connecticut

New Jersey

Washington

Rea
Oregon

Wisconsin
Minnesota

North

Dakota

South
Dakota

Nevada
ies

s 2 a
\

Colorado
Kansas

North

Tennessee anole
Oklahoma

Seek
Louisiana

New York
Michigan

Pennsylvania

Delaware

Maryland

; South Carolina
California

Georgia

Piidorasinp Florida

It is very common for maps of this kind to be colored in such a way that neighboring

120
INTRODUCTION

states are colored differently. This enables us to distinguish easily between the various

states, and to locate the state boundaries. What is the minimum number of colors needed

to color the entire map?

Problems of this kind are partly graph-theoretical in nature, since they all involve

systems which are interconnected in some way. In fact, as we show in this part of the

book, the first three can be modeled as problems involving paths or cycles in a graph,

and the last two involve the decomposition of the set of vertices or edges of a graph into

disjoint subsets of a particular type.

For some problems, such as the shortest path problem, our answer will take the form

of an algorithm—that is, a finite step-by-step procedure for obtaining the solution ina

routine way. For others, such as the K6nigsberg bridges problem, our answer is in the

form of a theorem which gives necessary and sufficient conditions for a solution to exist.

However, even for these problems, there are sometimes algorithms for finding explicit

solutions when they exist.

We start Part II with two chapters on Eulerian and Hamiltonian graphs and digraphs. They

are somewhat recreational in nature, although the material they contain has been used in

several practical problems. The basic idea is to find a closed trail that passes through every

edge or vertex of a given graph exactly once. In particular, we consider such problems as the

KGonigsberg bridges problem, the knight’s tour problem on a chessboard, and the tracing of

mazes, as well as problems in telecommunications and coding theory.

In Chapter 8, on path algorithms, we describe an algorithm for solving the shortest

path problem. We also describe an algorithm for finding the longest path in a given

digraph, and briefly relate this algorithm to the problem of scheduling a number of

interdependent activities, such as those involved in a complex building project. In Chapter

9 a discussion of connectivity is presented, in which we investigate the extent to which

a given graph or digraph is connected. Such considerations are important when designing

telecommunication networks or road systems.

In Chapter 10 we discuss trees and their applications in various areas. In particular,

we introduce methods for searching trees, and we illustrate the use of a tree algorithm in

finding a lower bound for the solution of the traveling salesman problem.

In Chapter 11 we study planar graphs and develop techniques for attacking such

problems as the printed circuits problem. Chapters 12 and 13 give a detailed discussion

of the coloring of graphs and maps, with particular reference to the map-coloring problem

described above. In Chapter 14 we interrelate these topics by formulating them as

decomposition problems which involve splitting the vertices or edges of a graph into

subsets with certain specified properties. Finally, in Chapter 15, we point out and discuss

some common themes running through the book.

The problems we discuss in Part II vary considerably in terms of how much work has been

done on them, and how much is known about their solution. Some have elegant theoretical

solutions but lack efficient algorithms. Others have good algorithms which work in practice,

but lack complete theoretical solutions. For some problems, such as that of determining

whether a given graph is planar, there exists a complete theoretical solution together with a

number of efficient algorithms. Finally, there is the map-coloring problem which has a

theoretical solution which is so complicated that it originally took 1200 hours of computer

time to find it!

CHAPTER 6

EULERIAN GRAPHS
AND DIGRAPHS

6.1 INTRODUCTION

This chapter and the next are somewhat recreational in nature, although the material

they contain has been used in several practical problems. In particular, we consider two

types of problem.

The Explorer's Problem An explorer wishes to explore all the routes between a

number of cities. Can a tour be found which traverses each route only once?

The Traveler's Problem A traveler wishes to visit a number of cities. Can a tour be

found which visits each city only once?

cities

To appreciate the difference between these two problems, consider the above road

map. The explorer wishes to find a tour which starts at A, goes along each road exactly
once, and ends back at A. Examples of such a tour are

121

122 CHAPTER 6. EULERIAN GRAPHS AND DIGRAPHS

ABCDEFBGCEGFA and AFGCDEGBCEFBA.

The traveler wishes to find a tour which starts at A, goes to each city exactly once, and

ends back at A. Examples of such a tour are

ABCDEGFA and AFEDCGBA.

Note that the explorer travels along each road just once but may visit a particular city

several times, whereas the traveler visits each city just once but may omit several of the

roads on the way.

Let us now regard this road map as a graph whose vertices correspond to the cities

and whose edges correspond to the roads. The explorer’s problem is then the problem of

finding a closed trail which includes every edge of the graph, whereas the traveler’s

problem is that of finding a cycle which includes every vertex of the graph.

With this in mind, we make the following definitions—the reason for these names will

appear later. You can easily remember which of these definitions is which, since Eulerian

graphs involve Edges.

DEFINITIONS. A connected graph G is Eulerian if there is a closed trail which

includes every edge of G; such a trail is called an Eulerian trail.

A connected graph G is Hamiltonian if there is a cycle which includes every vertex

of G; such a cycle is called a Hamiltonian cycle.

For example, consider the four graphs

B C B GE B G B G

<x x >< PX
é E F Pate E F E

(a) (b) (c) (d)

Graph (a) is both Eulerian and Hamiltonian, as we saw above;

Graph (b) is Eulerian, but not Hamiltonian; an Eulerian trail is BCGFEGB;

Graph (c) is Hamiltonian, but not Eulerian; a Hamiltonian cycle is BCGEFB;

Graph (d) is neither Eulerian nor Hamiltonian.

We now consider these two types of graph in turn. In this chapter, we give a necessary
and sufficient condition for a connected graph to be Eulerian, and we show the connec-
tions between Eulerian graphs and snow-clearing the roads in a city, escaping from a
maze, and a problem in telecommunications. In the next chapter, we give sufficient
conditions for a connected graph to be Hamiltonian, and show the connections between
Hamiltonian graphs and a chess problem, the theory of codes, and product testing.
Because of the importance of Eulerian and Hamiltonian graphs in the development of
graph theory, much of the material in these chapters is presented from a historical point
of view.

6.2 EULERIAN GRAPHS 123

6.2 EULERIAN GRAPHS

The four parts (A, B, C, and D) of the city of Kénigsberg were interconnected by seven
bridges (a, b, c, d, e, f, and g) as shown in the following diagram:

se

Konigsberg

Try as they might, the citizens of KO6nigsberg could find no route crossing each bridge

exactly once and returning to the starting point, and they began to believe the task

impossible. However, it was not until Leonhard Euler (1707-1783) investigated the

problem that it was proved to be impossible. (Euler was one of the most prolific

mathematicians of all time, and made substantial contributions to a number of different

areas.)

Euler’s proof appeared in his 1736 paper Solutio problematis ad geometriam situs

pertinentis, which was mentioned in Chapter 2. Although this paper was not written in

the language of graphs, the ideas in it are essentially graph-theoretical in nature, and it

can fairly be described as the earliest paper on the subject. The portion of this paper which

relates directly to the solution of the Konigsberg bridges problem is given in an Appendix

to this chapter.

We can express the Konigsberg bridges problem in terms of a graph by taking the four

land areas as vertices and the seven bridges as edges joining the corresponding pairs of

vertices. This gives the graph shown below. The problem of finding a route crossing each

bridge exactly once corresponds exactly to that of finding an Eulerian trail in this graph.

As we Shall see, no such Eulerian trail exists. It follows that there is no route of the desired

kind crossing the seven bridges of K6nigsberg.

Euler also considered the corresponding problem of finding a route crossing all the

bridges in a more general arrangement of bridges and land areas. This led him to present

a rule which tells us when such a route is possible, and hence when the corresponding

graph is Eulerian.

124 CHAPTER 6. EULERIAN GRAPHS AND DIGRAPHS

Consider the following diagram, adapted from Euler’s paper:

By drawing the corresponding graph and finding an Eulerian trail in it, we can obtain

aroute which crosses each of the sixteen bridges exactly once and returns to the starting

point. For example, we can start at F and cross the bridges in the order

abcdefghijklmnop.
It is clear that finding a route which crosses each bridge just once (that is, finding an

Eulerian trail in the graph) is possible if and only if the following condition is satisfied:

whenever you cross into a part of the city, you must be able to leave it by

another bridge.

This means that whenever you go into any vertex, you must be able to leave it by another

edge. It follows that each time you pass through a vertex you contribute exactly 2 to the

degree of that vertex. (This is also true of the first and last edges, which contribute 2 to

the degree of the starting vertex.) So, in an Eulerian graph, each vertex-degree must be a

sum of 2’s—that is, an even number.

degree 6

The rule that Euler presented (in different terminology) is:
to test whether a given connected graph is Eulerian, look at the degrees of
the vertices: if they are all even, then the graph is Eulerian; if not, then the
graph is not Eulerian.

In short, check whether or not all the vertex-degrees are even. Thus, the condition all the
vertex-degrees of G are even is necessary and sufficient to ensure that G is Eulerian. We
now justify this rule.

THEOREM 6.1. Let G be a connected graph. Then G is Eulerian if and only if every
vertex of G has even degree.

6.2 EULERIAN GRAPHS 125

Proof There are two parts to the proof:

i.

Zo

If G is Eulerian, then every vertex of G has even degree;

If every vertex of G has even degree, then G is Eulerian.

Part | shows that the condition is necessary; part 2 shows that it is sufficient.

h. If G has an Eulerian trail, then we can travel along that trail, using each edge

once, and return to our starting point. Whenever we pass through a vertex of

G, there is a contribution of 2 towards the degree of that vertex—including

the initial vertex, since we end there. Since each edge of G is used just once,

the degree of each vertex is the sum of a number of 2’s—that is, an even

number.

Suppose that every vertex of G has even degree. We must show that we can

find an Eulerian trail in G. First, we note that G contains a cycle C, by the

proof of Theorem 3 in the Appendix on Proofs.

We now use mathematical induction on m, the number of edges in G. For m

= 0, the only connected graph in which every vertex has even degree is the

complete graph K,, which is clearly Eulerian. So assume that the statement

in part 2 is true for any connected graph with fewer than m edges, and consider

a graph G with m edges. Delete the edges of the cycle C from G. The resulting

graph H then has fewer than m edges and every vertex in H has even degree.

Although H may not be connected, each component of H is connected and

has only vertices of even degree. Therefore, by the induction hypothesis, each

component of H is Eulerian.

We can now find an Eulerian trail for G as follows. We start at any vertex v

on the cycle C and traverse the edges of C until we come to one of the

components of H. We then take the Eulerian trail for this component,

eventually returning to the cycle C. We continue along C in this fashion,

taking Eulerian trails of the components of H as we come to them, and

eventually return to the starting vertex v having traversed each edge of G

exactly once—that is, we have obtained an Eulerian trail. 0

The disadvantage of the above proof is that it is not constructive, in the sense that it

does not show us how to construct an Eulerian trail in a given graph. One way of
constructing an Eulerian trail is to use the following algorithm, or step-by-step procedure,

126 CHAPTER 6. EULERIAN GRAPHS AND DIGRAPHS

which we state without proof. Recall (from Chapter 4) that a bridge in a connected graph

is an edge whose removal disconnects the graph.

FLEURY’S ALGORITHM. /fG is an Eulerian graph, then the following steps can

always be carried out, and produce an Eulerian trail in G:

STEP 1 Choose a Starting vertex u.

STEP 2 Ateach stage, traverse any available edge, choosing a bridge only if there

is no alternative.

STEP 3 After traversing each edge, erase it (erasing any vertices of degree 0 which

result), and then choose another available edge.

STEP 4 STOP when there are no more edges.

This algorithm is very easy to apply. At each stage, we choose a bridge only as a last

resort—this qualification is clearly essential, since once we have traversed a bridge, we

cannot return to the part of the graph we have just left.

We illustrate the use of Fleury’s algorithm by applying it to the following graph (a):

d b u if d b u fi u ie

(a) (b) (c)

Starting at u, we may choose the edge ua, followed by ab. Erasing these edges (and
the vertex a) gives us graph (b) above. We cannot use the edge bu since it is a bridge, so
we choose the edge bc, followed by cd and db. Erasing these edges (and the vertices c
and d) gives us graph (c) above. Now there is no alternative—we have to traverse the
bridge bu. Traversing the cycle uefu completes the Eulerian trail. The trail is therefore
uabcdbuefu.

6.3 EULERIAN-TYPE PROBLEMS

There are several simple modifications of the above ideas which are worth mentioning.
These range from puzzles of a recreational nature to a study of snow-clearing routes in a
major city.

Edge-traceable graphs

Suppose that the citizens of Konigsberg were still interested in crossing each of the
seven bridges exactly once, but were content to start and finish their walk at different
places. Would the walk be possible under these less restrictive conditions?

6.3 EULERIAN-TYPE PROBLEMS 127

K onigsberg

A little experimentation with the diagram above will convince you that, even with this

modification to the conditions, such a walk is not possible. This leads us to define an

open trail to be a trail whose ends do not coincide.

DEFINITION. A connected graph G is edge-traceable if there is an open trail which

includes every edge of G.

Using Theorem 6.1, we can easily give a necessary and sufficient condition for a graph

to be edge-traceable.

THEOREM 6.2. Let G be a connected graph. Then G is edge-traceable if and only if

G has exactly two vertices of odd degree.

Proof Let G bean edge-traceable graph, and let v and w be the starting and finishing

vertices of the open trail. If we add an edge e joining the vertices v and w, we get an

Eulerian graph in which, by Theorem 6.1, every vertex must have even degree. If we now

recover G by removing the edge e, we see that v and w are the only vertices of odd degree.

Now suppose that G has exactly two vertices v and w of odd degree. If we add an edge e

joining the vertices v and w, we get a connected graph in which every vertex has even

degree. By Theorem 6.1, this graph must be Eulerian, and so must possess an Eulerian

trail. Removal of the edge e from this trail produces an open trail which includes every

edge of G, so G is edge-traceable. 0

128 CHAPTER 6. EULERIAN GRAPHS AND DIGRAPHS

It follows from the above proof that the two vertices of odd degree must be the starting

and finishing vertices of any open trail which includes every edge of G.

Diagram-Tracing Puzzles

A common type of problem in books of recreational puzzles is that of drawing a given

diagram in as few continuous penstrokes as possible, without covering any part of the di-

agram twice. For example, it is easy to draw the following diagram with four continuous

strokes, but can it be done with three?

In 1809, L. Poinsot showed that diagrams consisting of n interconnected points can

be drawn in one continuous stroke if n is odd, but not if n is even:

n=3 n=4 n=5 n=6

yes no yes no

In the terminology of graph theory, this amounts to saying that the complete graph K,,
is Eulerian only for odd values of n, as follows from Theorem 6.1. What is remarkable
about Poinsot’s account of the subject is that he gave an ingenious construction for finding
an Eulerian trail when n is odd—no mean feat, as you would see if you tried to describe
a method for constructing an Eulerian trail in (say) Koo.

In 1847, J. B. Listing wrote an important treatise entitled Vorstudien zur Topologie
(Introductory Studies in Topology), which included a discussion of diagram-tracing
puzzles. In particular, he observed that the diagram in the puzzle posed above has eight
vertices of odd degree, and so cannot possibly be drawn with fewer than four continuous
strokes. He also remarked that the following diagram can be drawn in one continuous
stroke, starting at one end and ending at the other, since these are the only points which
correspond to vertices of odd degree:

IISA
REN RASY

6.3 EULERIAN-TYPE PROBLEMS 129

Dominoes

We have already seen that the complete graph K; is Eulerian, since each of its vertices
has degree 6. If the vertices are labeled 0, 1, 2, 3, 4, 5, and 6, then an Eulerian trail is ob-

tained by tracing the edges in the following order:

01,12,23,34,45 ,56,60,02,24,46,61,13,35,50,03,36,62,25,51,14,40.

We can regard each of these edges as a domino—for example, the edge 24 corresponds

to the domino

It follows that the above Eulerian trail corresponds to an arrangement of all the

dominoes of a normal set (other than the doubles 0-0, 1-1, ..., 6-6) in a continuous

sequence. Once this basic sequence is found, we can then insert the doubles at appropriate

places, thereby showing that a complete game of dominoes is possible. The following

ring of dominoes corresponds to the above Eulerian trail:

Mazes and Labyrinths

At the end of the nineteenth century much attention was devoted to the problem of

escaping from a maze. We can explain what is involved, and show how it relates to

Eulerian graphs, by choosing a particular maze, such as the one at Hampton Court.

130 CHAPTER 6. EULERIAN GRAPHS AND DIGRAPHS

Sls |

E

If we have access to a map of the maze, we can represent it by a graph which indicates
the available choices at each junction. For example, in the Hampton Court maze, we have
two choices at the point B—to go to C or to D—and we obtain

Gg Ie I K LE

A B D Is, G H J M

We can get from the center of the maze (A) to the exit (M) by following the path
ABDEGHJM, and ignoring all other passages.

Let us now look for a path which starts at the center and ends at the exit of an arbitrary
maze. In fact, we shall be less specific and ask simply for a walk which contains every
edge of the corresponding graph, since such a walk must pass through the center and exit
at some stage. Provided that the graph is connected, we can always find such a walk. To
see this, simply replace each edge by a pair of multiple edges; the result is a new graph
in which every vertex has even degree, and so this graph has an Eulerian trail. It follows
that in the original graph there is always a walk which contains each edge exactly twice,
which is sufficient for our purposes.

Unfortunately, this is an existence argument, and provides no method for actually
escaping from a maze. If we have a map of the maze, then we can obtain the above-men-
tioned Eulerian trail by using Fleury’s algorithm, and the problem is solved. But this
provides no solace for someone caught in the middle of a maze with no map provided.
Is there a method for escaping in this case?

The best maze-tracing algorithm was published by Gaston Tarry in 1895. His method
is based on the following rule: never return along any passage which led to a junction
for the first time, unless there is no alternative.

By tracing through the maze, following this rule at each junction, we can escape from
any connected maze passing at most twice (once in each direction) along each passage.
The only difficulty is in recognizing which of the passages leading to a junction was the
one which led there for the first time. Fortunately, Tarry also gave some rules for doing
this:

a. When traversing a passage for the first time, leave two markers at the
entrance, and one or three markers at the exit, depending on whether the
junction has been visited previously or not.

6.3 EULERIAN-TYPE PROBLEMS 131

4

b. When entering a passage with a single marker, leave a second marker in the

same place.

ee
> ~ Z_ visited

previously

not visited
previously

Using these rules, we can immediately recognize whether or not a given passage has

been previously traversed, as foHows:

No marker: the passage has not been traversed in either direction, so may be used;

One marker: the passage has been traversed into the junction, so may now be used

out of it;

Two markers: _ the passage has already been traversed out of that junction, so may not

be used again in that direction;

Three markers: this was the first passage traversed into the junction, so may not be

taken unless there are no passages with 0 or 1 markers.

By applying Tarry’s rules, we can escape from the center of a maze without traversing

any passage more than twice (once in each direction).

The Chinese Postman Problem

An important problem which has appeared in various guises is the so-called Chinese

postman problem. (The word Chinese refers to the problem, not the postman! The prob-

lem was formulated in 1962 by Meigu Guan.) It may be stated as follows:

The Chinese PostmanProblem A postman wishes to deliver mail along all the streets

in his area, and then return to the post office. How can the route be planned so as to cover

the smallest total distance?

If the map of the postman’s area happens to correspond to an Eulerian graph, then

there is no difficulty with this problem—the postman simply chooses an Eulerian trail

(using Fleury’s algorithm, if necessary), and such a trail will involve the smallest total

distance. What usually happens in practice, of course, is that the postman needs to visit

some parts of the route more than once, and wants to minimize the amount of retracing.

We may assume that we know the length of each part of the route.

Similar problems have arisen in other contexts. For example, there was a major study

of snow-clearing routes in Zurich some years ago. Since snow-clearing equipment is

expensive to operate, it was necessary to arrange a route which involved reclearing streets

as little as possible. Other cities have initiated similar investigations into the sweeping

or cleaning of streets.

132 CHAPTER 6. EULERIAN GRAPHS AND DIGRAPHS

We can reformulate the Chinese postman problem in terms of weighted graphs,

defined as follows:

DEFINITION. 4A weighted graph is a graph to each edge of which has been assigned

a positive number, called its weight.

Using this definition, the Chinese postman problem becomes: find a closed walk of min-

imum total weight which includes every edge at least once.

This problem has been solved in general, using a method which combines features of

Fleury’s algorithm and the shortest path algorithm (discussed in Chapter 8). We can get

an idea of what is involved, by considering the particular case of a graph with just two

vertices v and w of odd degree, such as graph (a):

The path of minimum weight from v to w is easily seen to be vbcw, with total weight

1+2+3=6. If we ‘double up’ each of the edges in the path, we get the Eulerian graph

(b) above. The required closed walk of minimum total weight is then obtained by taking

an Eulerian trail in this graph, such as abvdcvbcbwcwa. Note that the only edges which

need to be retraced are the edges of the path vbcw.

For graphs with more than two vertices of odd degree, we can adapt this method,

linking such vertices with shortest paths. Unfortunately, the details of this procedure are

too complicated to be included here.

Eulerian Digraphs

Up to now our discussion has been concerned with the problem of finding a trail which

includes every edge of a graph exactly once, and it is natural to consider the correspond-

ing problem for digraphs. This immediately leads to the following definitions.

DEFINITIONS. A connected digraph D is Eulerian if there is a closed trail which
includes every arc of D; sucha trail is called an Eulerian trail in D. A connected digraph
D is arc-traceable if there is an open trail which includes every arc of D.

For example, consider the digraphs

6.3 EULERIAN-TYPE PROBLEMS
133

(a) (b)

Digraph (a) is Eulerian: an Eulerian trail is abcdefbgcegfa;
digraph (b) is arc-traceable: a suitable open trail is fecdegbcefb.

Most of the earlier discussion of Eulerian graphs can be adapted very easily to Eulerian
digraphs. In particular, there are natural analogs of Theorems 6.1 and 6.2:

THEOREM 6.3. Let D be a connected digraph. Then

1. Dis Eulerian if and only if the out-degree of each vertex equals the in-degree;

2. Dis arc-traceable if and only if there are two vertices x and y of D such that

outdeg x — indeg x = 1, indeg y — outdeg y = 1

and indeg v = outdeg v for all vertices v other than x or y.

The proof of this theorem is very similar to the proofs of Theorems 6.1 and 6.2, and

is left to you to supply if you wish. In the sufficiency parts of the proof, the essential idea

is to show that D contains a (directed) cycle, and then use induction, as in the proof of

Theorem 6.1.

The Rotating Drum Problem

We conclude our brief discussion of Eulerian digraphs with a problem which arises in

telecommunications—the so-called rotating drum problem or teleprinter’s problem.

The surface of a rotating drum is divided into 16 parts, as shown on the left. We can

represent the position of the drum by means of four binary digits a, b, c, and d, as indicated

on the right. In this diagram, the shaded areas represent conducting materials and the unshaded

areas represent non-conducting materials. Depending on the position of the drum, the

terminals represented by a, b, c, and d will either be grounded or be insulated from the

earth—for example, in the above diagram, the grounded terminals are a, c, and d.

In order that the 16 positions of the drum may be represented uniquely by the signals

134 CHAPTER 6. EULERIAN GRAPHS AND DIGRAPHS

a, b,c, and d, the conducting areas must be placed in such a way that all possible patterns

of four consecutive conducting and non-conducting positions occur. Can this be done

and, if so, how can it be arranged?

A solution is given in the right-hand diagram above. The position shown corresponds

to the binary number 1011, where 1 corresponds to a shaded (conducting) area, and 0

corresponds to an unshaded (non-conducting) area. Rotating the drum counterclockwise

successively gives us the following binary numbers:

0110, 1100, 1001, 0010, 0100, 1000, 0000, 0001,

0011, 0111, 1111, 1110, 1101, 1010, 0101, 1011.

These four-bit numbers are all different, and represent all 16 positions of the drum.

But how did we obtain this solution, and are there any other solutions?

In order to answer these questions, we construct a digraph: there are eight vertices,

corresponding to the three-bit binary words

000, 001, 010, 011, 100, 101, 110, 111;

there are arcs from each vertex abc to the vertices bcO and bc1. This gives us the digraph

This digraph is clearly Eulerian, since the in-degree and out-degree of each vertex are
equal to 2. Any Eulerian trail can then be used to give a solution of the rotating drum
problem. For example, if we take the Eulerian trail

101>011>110+100>001+010>100-000>
000>001+011>111>111>110>101>010>101,

we can ‘compress’ consecutive terms cumulatively (for example, 011110 compresses
to 0110) to give the sequence

1011001000011110....

This gives the circular arrangement shown in the diagram.
Using a similar argument, we can answer the corresponding question for rotating

drums with 32, 64, ... divisions.

PROBLEMS 135

PROBLEMS

Eulerian Graphs

66.1.

6.2.

6.3.

6.4.

6.5.

Decide which of the following graphs are Eulerian or Hamiltonian, or both,

and write down an Eulerian trail or Hamiltonian cycle where possible.

A ; A “2B A

eo D E

JEG
G B D G D € Cia) ae

(a) (b) (c) (d)

A a =. A B € C

/ \ 7 : x t x a

ee D E D E ii B

(e) (f) (g)

Give an example with at most six vertices of each of the following:

a. a Hamiltonian graph which is not Eulerian;

b. an Eulerian graph which is not Hamiltonian.

It was reported in 1875 by L. Saalschiitz that an extra bridge had been built in

Konigsberg, joining the land areas B and C:

new

bridge

Is the walk now possible?

Show how the citizens of Konigsberg could have built two new bridges in such

a way that they could have taken their tour and returned to their starting point.

Which of the following graphs are Eulerian?

a. the complete graphs K,,;

b. the complete bipartite graphs K,,,;

c. the cycle graphs C,,;

d. the five Platonic graphs;

e. the cube graphs Q,;

f. the Petersen graph.

136 CHAPTER 6. EULERIAN GRAPHS AND DIGRAPHS

6.6. Using the graph cards in Chapter 1, determine which graphs with six vertices

are Eulerian.

6.7. Show how the Eulerian graph below can be split into cycles, no two of which

have any edges in common. (There are five possible solutions.) How can these

cycles be recombined to form an Eulerian trail?

6.8. | Show that the Eulerian graph below can be split into four cycles, no two of

which have any edges in common. How can these cycles be combined to form

an Eulerian trail?

<p>

Eulerian-type Problems

©6.9. Use Fleury’s algorithm to find an Eulerian trail starting with uvz in the graph
of Problem 6.8.

©6.10. Determine which of the following graphs are edge-traceable, and give a corre-
sponding open trail in each case.

L | : . A a
Cc D E B Cc oie

(a) (b) (c)

6.11. Decide whether each of the following graphs is Eulerian, edge-traceable, or
neither.

(a) (b) (c)

PROBLEMS 137

6.12.

6.13.

6.14.7

66.15.

6.16.

6.17.

6.18.

6.19.

4

Theorems 6.1 and 6.2 tell us about the properties of graphs with zero or two

vertices of odd degree. What can you say about graphs with exactly one vertex

of odd degree?

How many continuous penstrokes are required to draw the following diagrams

without covering any part twice?

(a) (b) (c) (d)

Show how Listing’s diagram (on page 128) can be drawn in one continuous

stroke.

Show that, if a graph G has 2k vertices of odd degree, then the smallest num-

ber of continuous penstrokes needed to cover all the edges of G is k.

(Hint: Add k edges to G in a suitable manner.)

By finding an Eulerian trail in K;, arrange a set of 15 dominoes-(from 0-0 to

4-4) in aring.

Draw the graph corresponding to the following maze, and use it to find a way

into the center (*) and out again.

oul <—

If you were tracing the Hampton Court maze (page 130) using Tarry’s

algorithm, and you followed the walk

ABCBDEFDFGHIHJM,

how many markers would you put down at each stage?

Solve the Chinese postman problem for the following graph:

138 CHAPTER 6. EULERIAN GRAPHS AND DIGRAPHS

6.20. Solve the Chinese postman problem for the following graph:

6.21.

Eulerian Digraphs

$6.22. Determine which of the following digraphs are Eulerian or arc-traceable, and
give a suitable trail in each case.

A A
A

E B E B

G B D G D G

(a) (b) (c)

6.23. Determine whether the following digraph is Eulerian or arc-traceable, and give
a suitable trail.

PROBLEMS 139

‘

6.24. Consider the rotating drum problem for a drum with eight positions. Choose

one of the following digraphs to solve this problem, and find two sequences

which give rise to suitable circular arrangements.

6.25.+ Solve the rotating drum problem for a drum with 32 divisions.

140 CHAPTER 6. EULERIAN GRAPHS AND DIGRAPHS

APPENDIX TO CHAPTER 6

L. Euler

Solutio Problematis ad Geometriam Situs Pertinentis
(The Solution of a Problem Relating to the Geometry of Position)

Commentarii Academiae Scientiarum Imperialis Petropolitanae 8 (1736),
128-140.

1. In addition to that branch of geometry which is concerned with magnitudes,

and which has always received the greatest attention, there is another branch,

previously almost unknown, which Leibniz first mentioned, calling it the geom-

etry of position. This branch is concerned only with the determination of posi-

tion and its properties; it does not involve measurements, nor calculations

made with them. It has not yet been satisfactorily determined what kind of

problems are relevant to this geometry of position, or what methods should be

used in solving them. Hence, when a problem was recently mentioned, which
seemed geometrical but was so constructed that it did not require the measure-
ment of distances, nor did calculation help at all, I had no doubt that it was con-
cerned with the geometry of position—especially as its solution involved only
position, and no calculation was of any use. I have therefore decided to give
here the method which I have found for solving this kind of problem, as an ex-
ample of the geometry of position.

The problem, which I am told is widely known, is as follows: in KO6nigsberg in
Prussia, there is an island A, called the Kneiphof ; the river which surrounds it
is divided into two branches, as can be seen in the figure, and these branches
are crossed by seven bridges a, b, c, d, e, f, and g. Concerning these bridges, it
was asked whether anyone could arrange a route in such a way that he would
cross each bridge once and only once. I was told that some people asserted that
this was impossible, while others were in doubt; but nobody would actually as-
sert that it could be done. From this, I have formulated the general problem:
whatever be the arrangement and division of the river into branches, and how-
ever many bridges there be, can one find out whether or not it is possible to
cross each bridge exactly once?

APPENDIX TO CHAPTER 6 141

‘

As far as the problem of the seven bridges of K6nigsberg is concerned, it can

be solved by making an exhaustive list of all possible routes, and then finding

whether or not any route satisfies the conditions of the problem. Because of

the number of possibilities, this method of solution would be too difficult and

laborious, and in other problems with more bridges it would be impossible.

Moreover, if this method is followed to its conclusion, many irrelevant routes

will be found, which is the reason for the difficulty of this method. Hence I re-

jected it and looked for another method concerned only with the problem of

whether or not the specified route could be found; I considered that such a

method would be much simpler.

My whole method relies on the particularly convenient way in which the cross-

ing of a bridge can be represented. For this I use the capital letters A,B,C,D

for each of the land areas separated by the river. If a traveler goes from A to B

over bridge a or b, I write this as AB—where the first letter refers to the area

the traveler is leaving, and the second refers to the area he arrives at after cross-

ing the bridge. Thus if the traveler leaves B and crosses into D over bridge f,

this crossing is represented by BD, and the two crossings AB and BD combined

I shall denote by the three letters ABD, where the middle letter B refers both to

the area which is entered in the first crossing and to the one which is left in the

second crossing.

Similarly, if the traveler goes on from D to C over the bridge g, I shall repre-

sent these three successive crossings by the four letters ABDC, which should

be taken to mean that the traveler, starting in A, crosses to B, goes on to D, and

finally arrives in C. Since each land area is separated from every other by a

branch of the river, the traveler must have crossed three bridges. Similarly, the

successive crossing of four bridges would be represented by five letters, and in

general, however many bridges the traveler crosses, his journey is denoted by

a number of letters one greater than the number of bridges. Thus the crossing

of seven bridges requires eight letters to represent it.

In this method of representation, I take no account of the bridges by which the

crossing is made, but if the crossing from one area to another can be made by

several bridges, then any bridge can be used, so long as the required area is

reached. It follows that if a journey across the seven bridges can be arranged in

such a way that each bridge is crossed once, but none twice, then the route can

be represented by eight letters which are arranged so that the letters A and B

are next to each other twice, since there are two bridges, a and b, connecting

the areas A and B; similarly, A and C must be adjacent twice in the series of

eight letters, and the pairs A and D, B, and D, and C and D must occur together

once each.

The problem is therefore reduced to finding a sequence of eight letters, formed

from the four letters A; B, C, and D, in which the various pairs of letters occur

the required number of times. Before I turn to the problem of finding such a

sequence, it would be useful to find out whether or not it is even possible to

arrange the letters in this way, for if it were possible to show that there is no

such arrangement, then any work directed towards finding it would be wasted.

142 CHAPTER 6. EULERIAN GRAPHS AND DIGRAPHS

I have therefore tried to find a rule which will be useful in this case, and in oth-

ers, for determining whether or not such an arrangement can exist.

8. In order to try to find such a rule, I consider a single area A, into which there

lead any number of bridges a, b, c, d, etc. Let us take first the single bridge a

which leads into A: if a traveler crosses this bridge, he must either have been in

A before crossing, or have come into A after crossing, so that in either case the

letter A will occur once in the representation described above. If three bridges

(a, b, and c, say) lead to A, and if the traveler crosses all three, then in the rep-

resentation of his journey the letter A will occur twice, whether he starts his

journey from A or not. Similarly, if five bridges lead to A, the representation of

a journey across all of them would have three occurrences of the letter A. And

in general, if the number of bridges is any odd number, and if it is increased by

one, then the number of occurrences of A is half of the result.

9. In the case of the K6nigsberg bridges, therefore, there must be three occur-

rences of the letter A in the representation of the route, since five bridges (a, b,

c, d, é) lead to the area A. Next, since three bridges lead to B, the letter B must

occur twice; similarly, D must occur twice, and C also. So in a series of eight

letters, representing the crossing of seven bridges, the letter A must occur three
times, and the letters B, C, and D twice each—but this cannot happen in a se-
quence of eight letters. It follows that such a journey cannot be undertaken
across the seven bridges of K6nigsberg.

(Reprinted, with permission, from N.L. Biggs, E.K. Lloyd, and R.J. Wilson, Graph Theory 1736-1936,
Oxford University Press, Oxford, England, 1976.)

CHAPTER 7

HAMILTONIAN GRAPHS
~ AND DIGRAPHS

7.1 INTRODUCTION

We now turn our attention to Hamiltonian graphs—graphs in which there is a cycle
passing through every vertex. The name Hamiltonian derives from a game invented by

Sir William Rowan Hamilton (1805-1865), one of the leading mathematicians of his

time. He was a child prodigy, became Astronomer Royal of Ireland at 22, and was

knighted at 30. He did brilliant work in geometrical optics, dynamics, and algebra.

Hamilton’s Icosian Game and the Knight’s Tour Problem

One of the most significant of Hamilton’s discoveries was the existence of algebraic sys-

tems in which the commutative law for multiplication (xy = yx) does not hold. His alge-

bra of quaternions, or Icosian calculus (as he called it), can be expressed in terms of

Hamiltonian cycles on the regular dodecahedron

143

144 CHAPTER 7. HAMILTONIAN GRAPHS AND DIGRAPHS

He also turned the problem into a game, the /cosian game, in which the player has to find

Hamiltonian cycles starting with five given initial letters. For example, given the initial letters

BCPNM, the player can complete a Hamiltonian cycle in exactly two possible ways:

BCPNMDFKLTSRQZXWVJHGB and BCPNMDFGHXWVJKLTSRQZB.

The game was marketed in 1859, accompanied by a printed leaflet of instructions. It

also appeared in a solid dodecahedron form under the title A Voyage Round the World,

with the vertices representing places—Brussels, Canton, Delhi, ..., Zanzibar. Hamilton

sold the idea of the Icosian game to a wholesale dealer of games and puzzles for £25, but

it turned out to be a bad bargain—for the dealer.

The name Hamiltonian cycle can be regarded as a misnomer, since Hamilton was not
the first to look for cycles which pass through every vertex of a graph. An earlier example
of a problem which can be expressed in terms of Hamiltonian cycles is the celebrated
knight's tour problem. (A knight moves two squares in one direction and one Square in
a perpendicular direction, as illustrated below.)

7.1 INTRODUCTION 145

Knight's Tour Problem Canakhight visit each square of a chessboard by a sequence

of knight’s moves, and finish on the same square as it began?

In order to see the connection between this problem and that of finding Hamiltonian

cycles in a graph, consider the simplified problem of finding a knight’s tour on a 4 x 4

chessboard. We can represent the board as a graph in which each vertex corresponds to

a square, and edges correspond to those pairs of squares connected by a knight’s move.

The following diagram shows a 4 x 4 chessboard and its associated graph.

In fact, there is no knight’s tour on a4 x 4 chessboard, as you will see if you experiment

a bit. There is also no knight’s tour on a chessboard with an odd number of squares (such

as a 5 x 5 chessboard), as you will see in Problem 7.12. However, for some other

chessboards, a knight’s tour is possible.

A solution of the knight’s tour problem appeared in a paper in 1759 by Euler. In this

paper Euler described a systematic approach to solving the problem, and another

systematic treatment was given 12 years later by A.-T. Vandermonde. The following

diagram illustrates a knight’s tour on an ordinary 8 x 8 chessboard, thus answering the

original knight’s tour problem in the affirmative.
wins ae

50 | 11 | 24 | 63 | 14] 37/26 | 35
o2 | 3h 12 25| 34 15 | 38

10 | 49 | 64 | 21) 40 | 13 | 36} 27

61 | 22 9 | 52 33 | 28 39| 16 |

48 | 7 | 60) 1 | 20) 41 | 54 29 |

This solution is particularly interesting, because if we write the order of the moves,

as in the right-hand diagram, we get a magic square in which the numbers in each row

or column have the same total, 260.

146 CHAPTER 7. HAMILTONIAN GRAPHS AND DIGRAPHS

Hamiltonian Graphs and Digraphs

At first sight, the problem of deciding whether or not a given graph is Hamiltonian

seems very similar to the problem of deciding whether or not it is Eulerian, and we might

expect there to be a simple necessary and sufficient condition for a graph to be

Hamiltonian, analogous to that of Theorem 6.1 for Eulerian graphs. However, no such

condition is known, and the search for necessary or sufficient conditions for a graph to

be Hamiltonian is a major area of study in graph theory today.

Faced with this situation, the best we can do is to look for various types of graphs

which are Hamiltonian. For example, it is clear that the cycle graph C, is Hamiltonian

for all values of n. Note also that K, is Hamiltonian if n 2 3; if the vertices are denoted

by 1,2,...,”, then a Hamiltonian cycle is 123...n1.

Cs Ks

If we take a Hamiltonian graph and add more edges to it, then the result will still be

a Hamiltonian graph, since we can take the same Hamiltonian cycle as before. It follows

that graphs with many edges are more likely to be Hamiltonian than graphs with fewer

edges. We can make this idea precise in various ways. Two of the most important of these

are the following sufficient conditions of G. A. Dirac and O. Ore, published in 1952 and
1960, respectively.

THEOREM 7.1 (DIRAC’S THEOREM). Let G be a simple graph with n vertices,
where n 2 3. If deg v= sn for each vertex v, then G is Hamiltonian.

THEOREM 7.2 (ORE’S THEOREM). LetG be asimple graph withn vertices, where
We 32/f

deg v + deg w2n,

for each pair of non-adjacent vertices v and w, then G is Hamiltonian.

We illustrate the use of these theorems by considering the graphs

u

(a) (b)

7.1 INTRODUCTION 147

‘

For graph (a), = 6 and deg v = 3 for each vertex v, so this graph is Hamiltonian by

Dirac’s theorem.
For graph (b), n = 5 but deg u = 2, so Dirac’s theorem does not apply. However,

deg v + deg w = S for all pairs of non-adjacent vertices v and w (in fact, for all pairs

of vertices v and w), so this graph is Hamiltonian by Ore’s theorem.

Note that if deg v= sn for each vertex v, then deg v + deg w 2 n for each pair of vertices

v and w. It follows that Dirac’s theorem can be deduced from Ore’s theorem, so we prove

only Ore’s theorem. :

Proof of Ore’s Theorem We give a proof by contradiction. Suppose that there exists

a non-Hamiltonian graph G in which deg v + deg w 2 n for each pair of non-adjacent

vertices v and w. We may assume, by adding more edges to G if necessary, that G is ‘only

just’ non-Hamiltonian, in the sense that the addition of any more edges would make it

Hamiltonian. This means that there must be a path v;v2v3...v, which includes every

vertex, but for which the vertices v, and v, are not adjacent, as shown in the following

diagram (note that adding the edge v,v; creates a Hamiltonian cycle):

Since v, and v, are not adjacent, we must have

deg v, + deg v, 2n;

that is,

deg v, 2n—deg v).

It follows that if deg v, =r, then there are at most r vertices not adjacent to v,,, including

the vertex v,, itself.

Now consider the vertices adjacent to v;, and let S be the set of vertices preceding each

of these vertices in the path; for example, if v; is joined to y, then v1 is a vertex in S.

Then S contains r vertices, and Vv, is not one of them.

It follows from the two italicized statements that S must contain a vertex v; adjacent

to v,, and so there must be edges joining v; and vj,1, and v; and v,, as shown in the above

diagram. But we can now write down a Hamiltonian cycle in G—namely,

V1V2- . ViVi n-1 o* Vin Vi15

contradicting the assumption that G is non-Hamiltonian. This contradiction establishes

the theorem. 0

148 CHAPTER 7. HAMILTONIAN GRAPHS AND DIGRAPHS

Just as for Eulerian graphs, there are several variations of the above ideas and results.

For example, vertex-traceable graphs are graphs which possess a path, but not a cycle,

passing through each vertex exactly once; such a path is usually called a Hamiltonian

path. We can also define Hamiltonian digraphs:

DEFINITIONS. A connected digraph D is Hamiltonian if there is a (directed) cycle

which includes every vertex of D. Such a cycle is called a Hamiltonian cycle in D.

There are digraph analogs of both Dirac’s theorem and Ore’s theorem, but these are

considerably harder to prove than their counterparts for graphs. We state two of these

without proof.

THEOREM 7.3. Let D be a simple digraph with n vertices. If

outdeg v2>4n and indeg v2>n

for every vertex v of D, then D is Hamiltonian.

THEOREM 7.4. Let D be a simple digraph with n vertices. If

outdeg v + indeg w2n

for every pair of vertices v and w such that v is not adjacent to w, then Dis Hamiltonian.

7.2 HAMILTONIAN-TYPE PROBLEMS

We conclude this chapter by describing some connections between Hamiltonian graphs

and digraphs and problems in coding theory, optimization, and tournaments.

Gray Codes

The communication of information from one person or place to another has a long his-

tory, and the development of suitable techniques to accomplish it satisfactorily has often

been colored by intrigues (mainly of a political or military nature). For reasons of pri-

vacy or security there have arisen, over the years, various codes and ciphers whose main

purpose was to prevent the information getting into the wrong hands. However, in recent

times, with the rapid growth of information-processing industries, codes have come to

be widely used for representing information. This is largely due to the introduction of

digital techniques, so that even an analog signal (one that varies continuously, such as a

sound wave) is now usually chopped up into discrete slices and represented in digital

form. As a result of this trend, the notion of a code has come to have a more specific

meaning and now refers to a finite system of distinct symbols which is used to process or
transmit digital information over a communication channel.

7.2 HAMILTONIAN-TYPE PROBLEMS 149

O05

13S 45°

180° 0°

a 315"

200?

Suppose that we wish to represent the angular,position (in multiples of 45°) of a shaft

which is rotating continuously’ By using three brushes on a commutator, we can convert

the angle through which the shaft has rotated into a three-bit binary word, as follows:

0°-45° 45°-90° 90°-135° 135°-180° 180°-225° 225°-270° 270°-315° 315°-360°
*

000 001 O11 ~ 010 110 111 101 100

If we take these binary words as codewords, we obtain a code known as a Gray code.

. As the shaft rotates, the codeword changes by only one bit at a time. Because of the

construction of the equipment, multiple-bit changes (such as 110 to 101, or 111 to 000)

may not be possible simultaneously, and it is partly for this reason that Gray codes have

found such widespread use.

Gray codes can be found by tracing Hamiltonian cycles on the graph of the n-cube

Q,. For example, the above code, and the code

000 > 100 > 110 > 010 > 011 > 111 > 101 — 001 (— 000),

both correspond to Hamiltonian cycles in the 3-cube, shown below.

100 101

anil
Pea

Ai ch
000 001

Similarly, we can find a Gray code consisting of four-bit binary words by tracing a

Hamiltonian cycle in the 4-cube, shown on page 38. An example of such a code is

0000 — 0001 > 0011 > 0010 > 0110 > 0111 4 0101 > 0100 >

1100 > 1101 — 1111 3 1110 4 1010 > 1011 — 1001 — 1000 (— 0000).

The Traveling Salesman Problem

A traveling salesman wishes to visit a number of cities and return to the starting point, in

150 CHAPTER 7. HAMILTONIAN GRAPHS AND DIGRAPHS

such a way that each city is visited exactly once, and the total distance covered is as short

as possible. Given the various distances between the cities, what route should be chosen?

In principle, we can solve this problem by looking at all possible routes and choosing

the one which involves the least total distance. For example, if there are five cities A, B,

C, D, and E, and if the connections between them are as shown below, then a traveling

salesman at A should visit the cities in the order ACBDEA (or in reverse order AEDBCA),

covering a total distance of 14.

Unfortunately, as soon as we increase the number of cities, we run into difficulties,

since there is no known algorithm which provides a simple and efficient solution for the

problem. Although there are several ad hoc procedures which can be used to give

approximate solutions, a full solution effectively involves looking at all possible routes

and choosing the shortest. This is feasible if there are ten cities, since the number of

possible routes is then at most 362880, and a computer sorting through these at the rate

of one million per second will find the best route in about 0.36 seconds. On the other

hand, if there are 20 cities, then the number of possible routes is about 1.22 x 10!’, and

a computer sorting through them at the same rate would take almost 4000 years!

The traveling salesman problem is an important one in practice, since it can appear in

a number of different guises. An example is the job-sequencing problem, which can be

stated as follows.

The Job-Sequencing Problem A number of independent jobs are to be carried out

on a single machine. These jobs are complicated, and the machine must be set up for each

new job after the previous one is completed. The machine is initially set up for one of the

jobs, and it must be reset for that job when the other jobs are completed. If the set-up

costs (involving labor and material) depend on the job just completed and the job about

to be started, how can we order the jobs so that the total set-up cost is minimized?

The link between the two problems may be seen by considering the problems

graphically. In the traveling salesman problem we draw a weighted complete graph in

which the vertices correspond to the cities visited, the edges correspond to the routes
joining them, and the weights correspond to the distances between pairs of cities. In the

job-sequencing problem we draw a weighted complete graph in which the vertices

correspond to the jobs, the edges link these jobs, and the weights correspond to the set-up

costs associated with pairs of jobs. In each case, our aim is to find a cycle of minimum

total weight which passes through every vertex—in other words, a minimum-weight

Hamiltonian cycle. The traveling salesman problem may therefore be restated in graph-

ical terms as follows.

7.2 HAMILTONIAN-TYPE PROBLEMS 151

The Traveling Salesman Problem Given a weighted complete graph, find a mini-
mum-weight Hamiltonian cycle in it.

Note that the formulation of the traveling salesman problem assumes that the corre-
sponding graph is Hamiltonian—in fact, the problem can be reformulated as that of
finding a minimum-length Hamiltonian cycle in the graph. If the weights of the edges
refer, not to the distances between the cities, but to the time or cost involved in traveling
between them, then a solution of the traveling salesman problem gives a minimum-time
or minimum-cost cycle. :

It is interesting to contrast this problem with the Chinese postman problem, which can
be thought of as its Eulerian analog. In the case of the Chinese postman problem, there
is no difficulty if the corresponding graph is Eulerian—we simply find an Eulerian trail
by Fleury’s algorithm, and any such trail must be a solution to the problem. Even if the
graph is not Eulerian, there is a standard algorithm which can be used to find a
minimum-weight closed walk. In the case of the traveling salesman problem, the graph
is assumed to be Hamiltonian from the start, but there may be several different Hamilto-
nian cycles with different total weights. In view of this, we need an algorithm for deciding
which Hamiltonian cycle is the shortest, but no good algorithm is known. Unless the
“number of cities is small, the best we can do is to obtain approximate solutions. For
example, it is possible to obtain upper and lower bounds for the shortest total distance.

A method for doing this is discussed in Chapter 10.

Ranking in Tournaments

A tournament is a digraph whose underlying graph is a complete graph—for example,

the following diagram shows some of the tournaments with three or four vertices:

A A A A

€ B CG B G B Ec B

(a) (b) (c) (d)
n=3 n=3 n=4 n=4

Such digraphs can be used to record the winners in around-robin tournament, in which

each player plays each of the others. For example, in tournament (a), player A beats both

players B and C, and player B beats player C; whereas in tournament (d), C beats B, D,

and A; B beats D and A; and A beats D.

Tournaments also arise in other contexts, such as in the method of paired comparisons,

where we compare a number of commodities by testing them in pairs. For example,

consider the following tournament, used for comparing six different types of dog food.

These delicacies were tested in pairs on a number of dogs, and the preferences were

recorded:

152 CHAPTER 7. HAMILTONIAN GRAPHS AND DIGRAPHS

Wooffo Doggo

Joocy-
Slurp chunks

Waggo Bitey-bits

The problem now arises as to how to rank the various commodities in order of

preference. For some tournaments (known as transitive tournaments) there is no diffi-

culty, since we can order them in such a way that each vertex ‘dominates’ the others

beneath it. For example, in tournaments (a) and (d) above we can rank the participants

in this way, as shown below. Unfortunately, in many practical examples a direct ranking

is impossible. For example, in tournaments (b) and (c) above, A beats B, B beats C, and

C beats A, So it is not possible to rank these three players directly.

A (

E

D

(a) (d)

There is a similar inconsistency in the dog-food example, where Wooffo was preferred

to Doggo, Doggo was preferred to Joocy-chunks, and Joocy-chunks was preferred to

Wooffo. For such tournaments we must find alternative methods for ranking the partici-

pants or commodities.

In such circumstances, no method is entirely satisfactory, but a method which has

been much used in practice is to look for paths containing each vertex exactly once. It

can be proved (by induction, for example) that every tournament contains at least one

such Hamiltonian path—that is, every tournament is vertex-traceable, and each path of

this kind leads to a ranking. [Note that, in a transitive tournament, such as tournaments

(a) and (d) above, there is only one such path, and so only one ranking.] For example,

in tournament (c), possible rankings are A, B, D, C and B, C, A, D, whereas for the

dog-food example, possible rankings are

Wooffo, Doggo, Joocy-chunks, Waggo, Slurp, Bitey-bits

and

Bitey-bits, Joocy-chunks, Wooffo, Doggo, Waggo, Slurp.

Once we have listed all the possible rankings of this kind, we must then take other

considerations into account in deciding which ranking is best for our purposes.

PROBLEMS 153

PROBLEMS

Hamilton’s Icosian Game and the Knight’s Tour Problem

teks

87,2.

om

Use the picture of the Icosian game on page 144 to determine how many Ham-

iltonian cycles on the dodecahedron begin with the sequence of letters DCPQZ.

Use the picture of the Icosian game to answer the following:

a. how many Hamiltonian cycles on thé dodecahedron begin with JVTSR?

b. find a path on the dodecahedron starting with BCD, ending with 7, and

including every vertex just once.

By drawing the corresponding graph, determine whether a knight can visit

each square of the following ‘chessboard’ exactly once.

Show that there is no knight’s tour on a 4 x 4 chessboard, but that there is a

knight’s tour on a 6 X 6 chessboard.

Hamiltonian Graphs and Digraphs

67.5.

7.6.

ide

Which of the following graphs are Hamiltonian?

a. the complete graphs K,,;

b. the complete bipartite graphs K,,,;

c. trees;

d. the five Platonic graphs.

Using the graph cards in Chapter 1, determine which graphs with six vertices

and nine edges are Hamiltonian.

Decide whether each of the following graphs is Hamiltonian, vertex-traceable,

or neither.

(a) (b) (c)

154 CHAPTER 7. HAMILTONIAN GRAPHS AND DIGRAPHS

7.8.' Let G be the following graph:

a. Prove that G has no Hamiltonian cycle which includes the edges ab, bf, and

Jk.

b. Find a Hamiltonian cycle containing the edges ab and bf.

7.9.' Let G be the following graph:

a. Prove that any Hamiltonian cycle of G must contain:

(i) one of the paths fbacde and icabde (in either direction);

(ii) one of the paths kmopnf and kmnpol (in either direction).

b. Deduce from part a that G contains no Hamiltonian cycles.

7.10.’ Show that the Petersen graph is vertex-traceable, but not Hamiltonian.

7.11.’ A mouse eats his way through a 3 x 3 x3 cube of cheese, tunneling through all

27 of the 1 x 1 x 1 cubes. If the mouse starts at a corner, can he finish in the

center?

67.12. Prove that any bipartite graph with an odd number of vertices cannot be Hamil-

tonian. Use this result to show that

a. the following graph is not Hamiltonian:

a b

Tar

d e

b. there is no knight’s tour on a5 x5 or 7 X 7 chessboard.

PROBLEMS 155

‘

7.13. Check whether the conditions of Dirac’s theorem and Ore’s theorem hold for
the following Hamiltonian graphs:

©7.14. Give an example of each of the following:

a. a Hamiltonian graph which does not satisfy the conditions of Ore’s theorem;

De Aa non-Hamiltonian graph with n vertices, in which deg v => 3(n-1) for each

vertex v.

7.15. Determine which of the following digraphs are Hamiltonian, and give a suit-
able cycle in each case:

A

B B es

D & D C B

&

(a) (b) (c)

7.16.’ Prove directly that if a digraph D satisfies the condition of Theorem 7.4, then
D is strongly connected.

7.17. Prove that Theorem 7.4 implies Theorem 7.3.

Hamiltonian-type Problems

7.18. Solve the traveling salesman problem for the four cities illustrated below for a

salesman based in London.

London 116 Birmingham

184 110

Manchester 41 Leeds

156

67.19.

67.20.

7.21.

7.22.

Teas

7.24.

CHAPTER.7. HAMILTONIAN GRAPHS AND DIGRAPHS

The King of Combinatoria decides to visit his subjects who live in the four

main towns of his kingdom; his palace is at A, and the cities are at B, C, D, and

E. Find a route for him which involves the least possible total distance.

Describe (in general terms) how you might attempt to find the shortest route

connecting the capitals of the 50 states of the United States.

Draw all tournaments (up to isomorphism) with four vertices.

How many rankings are possible in the following tournament?

A tournament D is said to be transitive if, whenever uv and vw are arcs of D,

then uw is also an arc of D. Determine whether either of the tournaments (a)

and (b) in Problem 7.15 is transitive.

Prove that a tournament is transitive if and only if it contains no cycles.

CHAPTER 8

PATH ALGORITHMS

8.1 INTRODUCTION

Consider the following two problems:

1. A traveler wishes to drive from Los Angeles to New York in the shortest possible

time. The following map gives the time (in hours) needed to drive between particular

pairs of cities. Given this information, which route should the traveler take?

Buffalo

Salt Lake A
City Cheyenne 12

10

San
Francisco

San Houston Orleans

Antonio

In this particular example, it is not difficult to find the solution by intelligent

157

158 CHAPTER 8. PATH ALGORITHMS

guesswork, but such an approach is less likely to succeed as the road network becomes

more and more complicated. In this chapter we describe an algorithm which can be used

to find the shortest path between any two vertices of any network.

2. The following diagram illustrates the various stages in a die-making process. The

numbered vertices, called events, represent the various stages reached in the process. The

arcs represent the various activities (such as refine release and correct tooling) and are

labeled with numbers to indicate the number of days needed to perform each activity.

The entire weighted digraph (or die-graph!) is called an activity network and shows

which activities must be completed before others can begin. What is the minimum

possible time needed to complete the process?

financial

approval

detailed

evaluation

peste G0) management

study @ approval

|

|
|

60) project 60)

60) preparation

detail design
& drafting

initial prototype

evaluation

tooling omplete pilot correct
120) 6) (a) +5 .0.p.
Creer) tooling build Gi) tooling (60) s y

|
|
|
|
|

G9

detail design
_& drafting
continued

refine

release

initial

(0) release

We shall describe an algorithm which can be used to find this minimum possible time

and to locate which activities are ‘critical’ to the process and which have some ‘slack’. A

fuller and more comprehensive account of this topic (known as critical path analysis)

will be found in the companion volume on Networks.

8.2 THE SHORTEST PATH ALGORITHM

The idea of this algorithm is to find the shortest path from vertex S to vertex T in a given

network. To do this, we move across the network from left to right, calculating the short-

est distance from S to each of the intermediate vertices as we go. At each stage of the al-

gorithm, we look at all vertices reached by an arc from the current vertex and assign to

each such vertex a temporary label representing the shortest distance from S to that ver-

tex by all paths considered until now. Eventually each vertex acquires a permanent label

(called its potential, and denoted by a square around the label) which represents the

shortest distance from S to that vertex. Once T has been assigned a potential, then we

have determined the shortest distance from S to T.

8.2 THE SHORTEST PATH ALGORITHM 159

We illustrate the use of this algorithm by finding the shortest distance from S to T in
the following network:

We start by assigning to S potential 0, since the shortest distance from S to S is 0. We then
look at those vertices reached by an arc from S (that is, A, B, C, and D) and assign to each
such vertex a temporary label equal to the potential at S plus the distance from S to that vertex.
This gives the vertices A, B, C, and D temporary labels of 7, 4, 9, and 7, respectively.

We now take the smallest label that is not a potential and mark it as a potential. In this
case the relevant label is 4, at vertex B, so we assign to B potential 4. Note that this is the
shortest distance from S to B, since any other path from S to B would have to go via A,
C, or D, and the first stage alone of such a path would exceed 4.

Since B has just been assigned a potential, we now look at those vertices reached directly
from B (that is, A and C). We assign to each of these vertices a temporary label equal to the
potential at B plus the distance from B to that vertex, unless that vertex already has a smaller
label. In this case, we assign to vertex A the new label 4 + 1 =5, and to vertex C the new label

4 +3=7, since these are both smaller than their previous labels.

160
CHAPTER 8. PATH ALGORITHMS

The shortest distance that is not already a potential is now 5, at A, so we assign to A

potential 5; this is the shortest distance from S to A. Continuing in this way, we now look

at those vertices reached directly from A (that is, just T), and assign to T the temporary

label 5 + 6 = 11.

The shortest distances that are not already a potential are now the 7’s at vertices C and

D, so we assign to C and D potential 7. The only vertex not yet assigned a potential is

now vertex T. From vertex A the temporary label at T is 11, whereas from C the label at

T is 7 + 3 = 10, and from D the label at T is 7 + 4 = 11. The smallest of these numbers is

10, so we assign to T potential 10. Thus, the shortest distance from S to T is 10:

In order to find the shortest path from S to T, we work backwards from T, as follows.

Since we have

(potential of T) — (potential of C) = (distance from Gtowm):

we include the arc CT. Similarly, we have

(potential of C) — (potential of B) = (distance from B to C)

and

(potential of B) — (potential of S) = (distance from S to B),

8.2 THE SHORTEST PATH ALGORITHM 161

4

SO we include the arcs BC and SB. Thus the shortest path from § to T is SBCT.

We summarize the above procedure as follows.

Shortest Path Algorithm

To find the shortest path from S to T in a network:

STEP | Assign to vertex § potential 0;

label each vertex V reached directly from S with the distance
from S to V;

choose the smallest of these labels, and make it the potential of the
corresponding vertex or vertices.

GENERAL STEP Consider the vertex or vertices just assigned a potential;

for each such vertex V, look at each vertex W reached directly from
V and assign W the label

(potential of V) + (distance from V to W),

unless W already has a smaller label;

when all such vertices W have been labeled, choose the smallest
label in the network which is not already a potential and make it a
potential at each vertex where it occurs;

repeat the GENERAL STEP with the new potential(s).

STOP when vertex T has been assigned a potential; this is the shortest
distance from § to T.

SHORTEST PATH(S) Work backwards from 7, and include an arc VW whenever

(potential of W) — (potential of V) = (distance from V to W).

The Tabular Method

In applying the above algorithm, one can easily lose track of the labels at the various
vertices. The following tabular method is a convenient way of recording the above cal-
culations in the form of a table.

We label each column with a vertex of the network, and we successively label each row

with the vertex or vertices that have just been assigned a potential. To complete each row,
we consider the vertices reached directly from these vertices of known potential, and we
assign the labels as before, bringing down any other labels not yet made into potentials. We
then proceed to the next row. The table on page 162 corresponds to the above example.

Thus, the shortest distance from S to T is 10, and we can then find the shortest path
(SBCT), as before.

162 CHAPTER 8. PATH ALGORITHMS

vertices | S. A B C.D TF
eh= $e el eee ee eee

SO] ayaa eo 7

B 5 toe

A eet |

CD 10

i ita)

8.3 THE LONGEST PATH ALGORITHM

We now wish to find the longest path from S to T in a network. We must assume that the

network has no cycles, since otherwise we could go around a cycle as often as we please.

The algorithm we shall describe is similar to the shortest path algorithm, except that

instead of looking at all vertices reached directly from a vertex of known potential, we

look at all vertices that can be reached only from vertices of known potential. In other

words, if we can reach a vertex W from a vertex whose potential we do not yet know,

then we must not consider W at this stage. When assigning labels, we proceed much as

before. The distance from S via a vertex V of known potential to a vertex W reached

directly from V is

(potential of V) + (distance from V to W),

so we can easily calculate all the possible distances from S to W, and the Jargest such

distance will be the potential at W.

We illustrate the use of this algorithm by finding the longest path from S to T in our

previous network:

We start by assigning to S potential 0. We then look at those vertices reached only by

an arc from S (that is, B and D). Since the only paths from S to B and from S to D are SB

and SD, they must be the longest such paths. Thus we can assign to B and D potentials

4 and 7, respectively:

8.3 THE LONGEST PATH ALGORITHM 163

We now look at those vertices reached only from S, B, and D (that is, A and C). At
vertex A, there are two possible routes—the direct route from S with distance 7, and
the path via B with distance 4 + 1 = 5. The larger of these numbers is 7, so we assign
to A potential 7. At vertex C, there are three possible routes—the direct route from S
with distance 9, the path via B with distance 4 + 3 = 7, and the path via D with distance

. 7+ 1=8. The largest of these numbers is 9, so we assign to C potential 9.

Now that we have the potentials at S, A, B, C, and D, we can consider the paths to
T. There are three possible routes—the path via A with distance 7 + 6 = 13, the path
via C with distance 9 + 3 = 12, and the path via D with distance 7 + 4 = 11. The largest
of these numbers is 13, so we assign to T potential 13. Thus, the longest distance from
S to T is 13:

164
CHAPTER 8. PATH ALGORITHMS

In order to find the longest path from S to T, we again work backwards from T, as

follows. Since we have

(potential of 7) — (potential of A) = (distance from A to T),

we include the arc AT. Similarly, we have

(potential of A) — (potential of S) = (distance from S to A),

so we include the arc SA. Thus the longest path from S to T is SAT.

We summarize the above procedure as follows:

Longest Path Algorithm

To find the longest path from S to T in a network without cycles:

STEP 1 Assign to vertex S potential 0;

label each vertex V reached only from S with the distance from S to V

and make all these labels potentials.

GENERAL STEP Consider all vertices which can be reached only from vertices of

known potential;

for each such vertex W, consider each arc VW into W, and assign W

the label

(potential of V) + (distance from V to W),

unless W already has a larger label;

when all such arcs VW have been considered, make the label at W a

potential;

repeat the GENERAL STEP with the new potentials.

STOP when vertex T has been assigned a potential; this is the longest

distance from S to T.

LONGEST PATH(S) Work backwards from T and include an arc VW whenever

(potential of W) — (potential of V) = (distance from V to W).

The Tabular Method

Just as with the shortest path algorithm, we can use a table to carry out the above calcu-

lations.

We label each column with a vertex of the network, and below each vertex we list

those vertices from which the given vertex can be reached directly. At each stage we label

the row in question with all those vertices whose potential is known. To complete each

8.4 SCHEDULING 165

4

row, we consider the vertices reached only from these vertices of known potential, and

we assign the labels as before. We then proceed to the next row. The following table

corresponds to the above example:

Vertices S A B G D T

(S,B) (S) (S,B,D) (S) (A,C,D)

s (0) RA eh

S,B,D ‘al; 5 [5]

Sep. ©

Thus, the longest distance from S$ to T is 13, and we can then find the longest path

(SAT), as before.
*

8.4 SCHEDULING

Suppose that we have a job to carry out (such as the building of a garage), and that this

job can be divided into a number of smaller separate operations (such as laying the foun-

dations, doing the wiring, putting on the roof, etc.). Several of these smaller operations

can be performed simultaneously, whereas some will need to be completed before others

can be started. It would therefore be useful if we could determine in advance which jobs

should be performed at which times so that the entire job is completed in minimum time.

The algorithm which solves this problem is one you have already met—the longest

path algorithm. To see why it is relevant, let us return to our earlier network, redrawn as

in the activity network at the beginning of the chapter.

The vertex S denotes the start of the project, the vertex T denotes its termination,

and the other vertices A, B, C, D represent intermediate stages, called events. The arcs

SA, SB, ... represent the various activities to be carried out, and the number next to

each one represents the time (in days) needed to complete the activity. The activity

network shows which activities need to precede other ones; thus, the activities SA and

BA must precede the activity AT.

We have already seen that the longest path from S to T in this network is SAT, with

total length 13. Since the activity SA (7 days) must precede the activity AT (6 days), these

166
CHAPTER 8. PATH ALGORITHMS

two activities will take 13 days, quite apart from the rest. It turns out that all the other

activities can be fitted into a 13-day schedule, and therefore that 13 days is the required

minimum time to complete the entire project. Note also that if either of the activities SA

and AT is subject to delay, then the entire project is delayed. Because of this, it is critical

that the activities on the longest path SAT are completed on time, and the path is therefore

referred to as a critical path.

A similar situation holds in general. Any path of maximum length from S to T is a

critical path which determines the completion time of the entire project. Any delay in an

activity on a critical path leads to a delay in the project. By using the longest path

algorithm, as described above, we can find these critical paths and thereby determine

which activities must be kept on schedule if the project is to be completed on time.

Is there any slack in the project? Although the activities on a critical path cannot be

delayed, is there any flexibility in the scheduling of the other activities? In fact there is,

as we now show.

Consider the activity BC. The longest path from S to B is SB with length 4, so the earliest

possible starting time for the activity BC is after 4 days. What is the latest possible time that

it can start? Since the activity CT takes 3 days, the activity BC must be completed after 10

days, so that it must start by 7 days. Thus activity BC can be started at any time between 4

days and 7 days, giving 3 days flexibility; we say that the float time of activity BC is 3 days.

Similarly, to find the float time of activity DC, we note that the earliest possible starting

time is 7 days (corresponding to the path SD), and the latest possible starting time is 9

days (leaving 4 days to reach T by either of the paths DCT or DT). Thus the float time of

activity DC is 2 days.

In general, it is not difficult to see that

the earliest starting time for an activity XY is the length of the longest path

from S to X;

the latest starting time for an activity XY is

(total time for the project) — (length of the longest path from X to T via XY).

Thus we obtain the following table of float times for all of the activities. Using this table,

we can easily see which activities must remain on schedule and which activities can be

delayed if necessary; note that the float time of any activity in the critical path is 0.

Activity SAP OSB ESC MSD = BAG BC DC *Ar-SC) pr

Earliest
starting time

Latest
starting time

Float time

PROBLEMS 167

PROBLEMS

The Shortest Path Algorithm

©8.1. | Using the tabular method, find the shortest path from S to T in the following

network:

8.2. Using the tabular method, find the shortest path from S to T in the following

network: f

8.3.’ Find the shortest path from S to T in the following network:

8.4. Find the shortest distance from S to each of the other vertices in the following

weighted graph:

168 CHAPTER 8 PATH ALGORITHMS

8.5. | A company has branches in five cities A, B, C, D, and E. The fares for direct

flights between these cities are as follows:

What is the cost of traveling between each pair of cities by the cheapest route?

The Longest Path Algorithm

8.6. Using the tabular method, find the longest path from S to T in the network of

Problem 8.1.

8.7. Using the tabular method, find the longest path from S to T in the network of

Problem 8.2.

8.8.' Find the longest path from S to T in the network of Problem 8.3.

Scheduling

©8.9. Regarding the network of Problem 8.1 as an activity network, construct a table

giving the earliest and latest start times and float times of each activity.

8.10. Regarding the network of Problem 8.2 as an activity network, find the float
time of each activity.

8.11.' Regarding the network of Problem 8.3 as an activity network, find the float
time of each activity.

68.12. Construct an activity network for the project specified by the information
given in the following table. Determine the critical path and the float time for
each activity:

Activity

Duration

Predecessors a b b c,d Cal me;

8.13.! Suppose that an activity network has a unique critical path. Show that this path
consists of exactly those activities whose earliest and latest starting times coin-
cide.

CHAPTER 9

CONNECTIVITY

In this chapter we investigate the extent to which a given graph or digraph is connected.

In particular, we discuss the question: How many edges do we need to remove from a

given connected graph so that it becomes disconnected? This, and other similar

questions related to connectivity, are important ones to consider when designing tele-

communications networks, road systems, and other networks—for example, in a tele-

communications network it is essential that the network should be operable if some of

the links between the exchanges become damaged, or are blocked by other calls.

9.1 EDGE-CONNECTIVITY

In telecommunications networks, there are usually several different paths between any

given pair of subscribers (vertices). In such a situation, it is important to know how

many links (edges) can be broken without preventing a call being made between two

subscribers. In order to answer this and similar questions, we need to investigate con-

nected graphs a little further.

Consider the following graphs:

v De u y v yy v x

(a) (b) (c) (d)

169

170 CHAPTER 9. CONNECTIVITY

Graph (a) can be split up into two components by removing one of the edges vw or

VX}

Graph (b) can also be disconnected by removing a single edge—edge vw;

Graph (c) cannot be disconnected by removing a single edge, but the removal of two

edges (such as uw and vw) disconnects it;

Graph (d) can similarly be disconnected by removing two edges (uw and wx).

Recall that a bridge is a single edge whose removal disconnects a graph, such as vw or

vx in graph (a) or vw in graph (b).

With these examples in mind, we define the cates connectivity of a graph as follows.

DEFINITIONS. The edge-connectivity A(G) of a connected graph G is the smallest

number of edges whose removal disconnects G. When (G) 2 k, the graph G is said to

be k-edge-connected.

Thus graphs (a) and (b) have edge-connectivity 1, and graphs (c) and (d) have edge-

connectivity 2. All four graphs are 1-edge connected, and graphs (c) and (d) are 2-edge

connected, but not 3-edge-connected.

If we wish to disconnect a graph by removing edges from it, we usually have a choice

of edges to delete. In view of this, it seems natural to consider ways of disconnecting a

graph which do not involve ‘redundant edges’.

Consider the following graph:

We can disconnect G by removing the three edges uw, ux, and vx, but we cannot discon-

nect it by removing just two of these edges. We can also disconnect G by removing the

edges uw, wx, xz, and yz, but the edge yz is redundant here since we need remove only

the edges uw, wx, and xz to disconnect G. A cutset is a set of edges in which no edge is

redundant—such as {uw,ux,vx} or {uw,wx,xz}.

DEFINITION. A cutset of a connected graph G is a set S of edges with the following

properties:

a. the removal of all the edges in S disconnects G;

b. the removal of some (but not all) of the edges in S does not disconnect G.

Note that two cutsets of a graph need not have the same number of edges. For example,

in the above graph, the sets {uw,ux,vx} and {wy, xz} are both cutsets. Note also that the

edge-connectivity M(G) of a graph G is simply the minimum number of edges in a cutset

of G.

9.2 VERTEX-CONNECTIVITY 171

9.2 VERTEX-CONNECTIVITY

We can also think of connectivity in terms of the minimum number of vertices which

need to be removed in order to disconnect a graph. When we remove a vertex, we must

also remove the edges incident to it:

~ remove

—
v

Consider again graphs (a)—(d):

u w t x u x yu iy

v x Uu y v y v x

(a) (b) (c) (d)

Graphs (a) and (b) can be disconnected by the removal of a single vertex (either v

or w);

Graph (c) can also be disconnected by removing just one vertex (the vertex w);

Graph (d) cannot be disconnected by removing a single vertex, but the removal of two

non-adjacent vertices (such as v and w) disconnects it.

A cut-vertex is a single vertex whose removal disconnects a graph, such as v or w in

graph (b) or w in graph (c).

With these examples in mind, we define the connectivity (or vertex-connectivity) of a graph

as follows. (We use the simpler terms connectivity and k-connected when there is no

possibility of confusion with edge-connectivity and k-edge-connected.)

DEFINITIONS. The connectivity (or vertex-connectivity) K(G) of a connected

graph G (other than a complete graph) is the smallest number of vertices whose removal

disconnects G. When «(G) = k, the graph is said to be k-connected (or k-vertex-

connected).

Thus graphs (a), (b), and (c) have connectivity 1 and graph (d) has connectivity 2. All

four graphs are 1-connected, and graph (d) is 2-connected, but not 3-connected.

The above definition breaks down if G is a complete graph, since we cannot then

disconnect G by removing vertices. We therefore make the following definition:

172 CHAPTER 9. CONNECTIVITY

DEFINITION. The connectivity «(K,) of the complete graph Kn is n—1.Whenn-1 2k,

the graph K, is said to be k-connected.

There is also a ‘vertex analog’ of the concept of a cutset. This is defined as follows.

DEFINITION. A vertex-cutset of a connected graph G is a set S of vertices with the

following properties:

a. the removal of all the vertices in S disconnects G;

b. the removal of some (but not all) of the vertices in S does not disconnect G.

For example, we can disconnect the following graph by removing the two vertices u and

x, but we cannot disconnect it by removing just one of these vertices. It follows that

{u, x} is a vertex-cutset.

Note that two vertex-cutsets of a graph need not necessarily have the same number of

vertices. For example, in the above graph, the sets {u, x} and {y} are both vertex-cutsets.

Note also that the connectivity «(G) of a graph G is simply the minimum number of

vertices in a vertex-cutset of G.

In the above example, you may have noted that the connectivity k(G) does not exceed

the edge-connectivity A(G). This inequality holds for all connected graphs.

THEOREM 9.1. For any connected graph G,

K(G) < A(G) < &(G),

where &(G) is the smallest vertex-degree in G.

Proof If v is a vertex of degree 6(G), then G can be disconnected by removing all

the 5(G) edges incident with v. It follows that A(G), the minimum number of edges whose
removal disconnects G, cannot exceed 6(G). So we get A(G) < &(G).

It remains to be shown that K(G) < A(G). Let G be a graph with edge-connectivity A.

Then there is at least one set of A edges whose removal disconnects G into two

components G; and G», as illustrated

9.3 MENGER’S THEOREM FOR GRAPHS (EDGE-FORM) 173

However, we can also remove these edges by removing at most A vertices, since we

have only to remove one suitably chosen end-vertex from each of these A edges. It follows

that the minimum number of vertices whose removal disconnects G cannot exceed

A—that is, K(G) < A(G). [in the diagram above, we can disconnect the graph by removing

the end-vertices a, b, and w; in this case, K(G) < A(G), since two of the A edges are incident

with the same end-vertex w.)’(0

Note that it is possible for both inequalities in Theorem 9.1 to be strict inequalities

{that is, K(G) < A(G) < 6(G)]. For example, in the following graph, «(G) = 1, A(G) = 2,

and 6(G) = 3:

9.3 MENGER’S THEOREM FOR GRAPHS (EDGE-FORM)

Here we discuss an important result which relates the above ideas to the number of ‘dis-

joint paths’ between two vertices in a graph. This result is known as Menger’ s theorem.

We start by defining disjoint paths in a graph.

DEFINITIONS. LetGbe aconnected graph, and lets andt be vertices of G. An st-path
is a path between s and t. Two or more st-paths are edge-disjoint if they have no edges

in common, and vertex-disjoint if they have no vertices in common (apart from s and t).

For example, in the graph

174 CHAPTER 9. CONNECTIVITY

the paths sact and sbdt are both edge-disjoint and vertex-disjoint paths;

the paths sact and sbct are neither edge-disjoint nor vertex-disjoint (since they have

the edge ct in common);

the paths sact and sbcdt are edge-disjoint, but not vertex-disjoint (since they have the

vertex c in common).

We also need the following definitions.

DEFINITIONS. Let G be a connected graph, and let s and t be vertices of G. We say

that certain edges separate s from t¢ if the removal of these edges destroys all paths

between s and t. Similarly, we say that certain vertices separate s from t if the removal

of these vertices destroys all paths between s and t.

For example, in the graph

the edges ac, bc, and bd separate s from ft, as do the edges sa, ac, bc, bd, and dt;

the vertices b and c separate s from f¢, as do the vertices a, b, and d.

Now we show how these ideas are related to those of edge-disjoint and vertex-disjoint

st-paths. Before doing this in general, we motivate our discussion with three examples.

Example 1:

In this graph the single edge wx separates s from t. It follows that there cannot be two
edge-disjoint st-paths, since all st-paths must include the edge wx.

Example 2:

9.3 MENGER’S THEOREM FOR GRAPHS (EDGE-FORM) 175

In this graph the two edges vx and wy separate s from ¢. It follows that there are at most

two edge-disjoint st-paths, since all st-paths must include one of these edges.

Example 3:

In this graph the three edges ce, de, and df separate s from ¢. It follows that there are at

most three edge-disjoint st-paths, since all st-paths must include one of these edges.

More generally, consider a set of edges separating s from ¢ in an arbitrary connected

graph. Since the removal of these edges destroys all paths between s and ¢, every st-path

must include at least one of them. It follows that the maximum number of edge-disjoint

st-paths cannot exceed the number of edges in this set. Since this applies to any set of

edges separating s from ft, we have

the number of edges in any set

separating s from t.

Since this is true for any set of edges separating s from ¢, it must be true for a set with

the smallest possible number of edges. So

the maximum number of the minimum number of edges

edge-disjoint st-paths separating s from t.

These two numbers are, in fact, always equal. This is the edge-form of Menger’s

theorem for graphs, which may be stated formally

the maximum number of
lA

edge-disjoint st-paths

TAS

MENGER’S THEOREM FOR GRAPHS (EDGE-FORM). Let G be a connected

graph, and let s and be vertices of G. Then the maximum number of edge-disjoint st-paths

is equal to the minimum number of edges separating s from t.

It follows from Menger’s theorem that, if we can find k edge-disjoint st-paths and k

edges separating s from ¢ (for the same value of k), then k is the maximum number of

176 CHAPTER 9. CONNECTIVITY

edge-disjoint st-paths and the minimum number of edges separating s from t. Note that

these k edges separating s from t necessarily form a cutset. It follows that, when looking

for them, we need consider only cutsets whose removal disconnects G into two compo-

nents, one containing s and the other containing ¢.

We can use Menger’s theorem to obtain a result about edge-connectivity. Recall that

the edge-connectivity A(G) of aconnected graph G is the smallest number of edges whose

removal disconnects G. By Menger’s theorem, there are at least A(G) edge-disjoint paths

between any given pair of vertices. Since G is k-edge-connected if and only if A(G) 2 k,

we can restate this result.

COROLLARY OF MENGER’S THEOREM FOR GRAPHS (EDGE-FORM). A

connected graph G is k edge-connected if and only if any two vertices of G are connected

by at least k edge-disjoint paths.

9.4 SOME ANALOGS OF MENGER’S THEOREM

We now present some analogs of Menger’s theorem, starting with Menger’s theorem for

digraphs (arc-form), and continuing with the vertex-forms for both graphs and digraphs.

Menger’s Theorem for Digraphs (Arc-form)

Many of the concepts introduced earlier for graphs have analogs for digraphs. For exam-

ple, the definitions that follow are almost identical to those given for graphs.

DEFINITIONS. Let D be a connected digraph and let s and t be vertices of D. An

st-path is a path from s to t. Two or more st-paths are arc-disjoint if they have no arcs

in common, and vertex-disjoint if they have no vertices in common (apart from s and t).

For example, in the digraph

the paths sact and sbdt are both arc-disjoint and vertex-disjoint st-paths;

the paths sact and sbct are neither arc-disjoint nor vertex-disjoint;

the paths sact and sbcdt are arc-disjoint but not vertex-disjoint.

We also say that certain arcs separate s from ¢ if the removal of these arcs destroys
all paths from s to ¢. Similarly, we say that certain vertices separate s from ¢if the removal
of these vertices destroys all paths from s to ¢. For example, in the above digraph,

9.4 SOME ANALOGS OF MENGER’S THEOREM 177

‘

the arcs ac, bc, and bd separate s from t, as do the arcs sa, ac, bc, bd, and dt;

the vertices b and c separate s from t, as do the vertices a, b, and d.

Using this terminology, we can state Menger’s theorem for digraphs:

MENGER’S THEOREM FOR DIGRAPHS (ARC-FORM). Let D be a connected

digraph and let s and t be vertices of D. Then the maximum number of arc-disjoint st-paths

is equal to the minimum number of arcs separating s from t.

As with Menger’s theorem for graphs, if we can find k arc-disjoint st-paths and k arcs

separating s from t (for the same value of k), then k is the maximum number of arc-disjoint

st-paths and the minimum number of arcs separating s from ¢.

*

Menger’s Theorem for Graphs (Vertex-form)

We have seen how Menger’s theorem (edge-form) relates the number of edge-disjoint

st-paths in a graph to the smallest number of edges separating s from ¢, and how this re-

sult relates to edge-connectivity. We now state an analogous theorem for vertex-disjoint

st-paths. This is the version of Menger’s theorem actually proved by K. Menger in 1927.

The corollary was proved five years later by H. Whitney. The edge-form and arc-form of

Menger’s theorem were proved in 1955 by L. R. Ford and D. R. Fulkerson. As before,

we motivate our discussion with examples.

Example 1:

This graph has (vertex-)connectivity 1, and the vertex w separates s from t. It follows that

there cannot be two vertex-disjoint st-paths, since all st-paths must include the vertex w.

Example 2:

This graph has connectivity 2, and the vertices d and e separate s from ¢. It follows that

there are at most two vertex-disjoint st-paths, since all st-paths must include one of these

vertices.

178 CHAPTER 9. CONNECTIVITY

More generally, consider a set of vertices separating non-adjacent vertices s and ¢ in

an arbitrary connected graph. Since the removal of these vertices destroys all paths

between s and f, every st-path must include at least one of them. It follows that the

maximum number of vertex-disjoint st-paths cannot exceed the number of vertices in

this set.

As with the edge-form of Menger’s theorem, these numbers are, in fact, equal. This

is the vertex-form of Menger’ s theorem, which we state formally.

MENGER’S THEOREM FOR GRAPHS (VERTEX-FORM). Let G be a con-

nected graph and let s and t be non-adjacent vertices of G. Then the maximum number

of vertex-disjoint st-paths is equal to the minimum number of vertices separating s from t.

As before, it follows that, if we can find k vertex-disjoint st-paths and k vertices

separating s from ¢ (for the same value of k), then k is the maximum number of

vertex-disjoint st-paths and the minimum number of vertices in a vertex-cutset separating

s from t. Note that these k vertices separating s from ft necessarily form a vertex-cutset.

It follows that, when looking for them, we need consider only vertex-cutsets whose

removal disconnects G into two or more components, one containing s and another

containing f¢.

We can also use this theorem to obtain a result about vertex-connectivity.

COROLLARY OF MENGER’S THEOREM FOR GRAPHS (VERTEX-FORM).
A connected graph G is k-connected if and only if any two vertices of G are connected
by at least k vertex-disjoint paths.

Menger’s Theorem for Digraphs (Vertex-form)

Finally, for completeness, we present the vertex-form of Menger’s theorem for digraphs.
This is almost identical to the vertex-form for graphs.

MENGER’S THEOREM FOR DIGRAPHS (VERTEX-FORM). Let D be a
connected digraph and let s and t be nonadjacent vertices of D. Then the maximum
number of vertex-disjoint st-paths is equal to the minimum number of vertices separat-
ing s fromt.

9.5 THE PROOF OF MENGER’S THEOREM

We now prove Menger’s theorem. We start by proving the arc-form for digraphs, and
then show how the corresponding result for graphs follows immediately. Finally, we in-
dicate how the vertex-forms for graphs and digraphs follow from the other versions.

MENGER’S THEOREM FOR DIGRAPHS (ARC-FORM). Let D be a connected

9.5 THE PROOF OF MENGER’S THEOREM 179

4

digraph and let s and t be vertices of D. Then the maximum number of arc-disjoint st-paths

is equal to the minimum number of arcs separating s from t.

Proof We have already shown that the maximum number k of arc-disjoint st-paths

cannot exceed the minimum number of arcs separating s from t. To show that these

numbers are actually equal, we need to find a set S of k arcs separating s from t.

Consider any set A of k arc-disjoint st-paths. Let X be the set of all vertices of D which can

be reached from s by a path disjoint from those in A, and let Y be the remaining set of vertices.

Then f must lie in Y, since if t were in X, then there would be another st-path, disjoint from

the rest; this is impossible since A contains the maximum number of arc-disjoint st-paths.

, :

= xX@ a
. < e

We now let S be the set of arcs of D directed from a vertex v in X to a vertex w in Y.

Any such arc must be included in a path in A, since otherwise w (as well as v) could be

reached from s by a path disjoint from those in A, and w would have to be in X, rather

than Y. By a similar argument, any arc directed from a vertex in Y to a vertex in X cannot

be included in a path in A. So the number of arcs in S is equal to the number of paths in

A—that is, S is a set of k arcs separating s from ¢, as required. 0

We can now deduce Menger’s theorem for graphs (edge-form).

MENGER’S THEOREM FOR GRAPHS (EDGE-FORM). Let G be a connected

graph and lets andt be vertices of G. Then the maximum number of edge-disjoint st-paths

is equal to the minimum number of edges separating s fromt.

Outline of Proof We transform the graph G into a digraph D(G) by replacing each

edge by two arcs, one in each direction, as indicated in the diagram

a a

Ss t —- Ss t

b

the graph G the digraph D(G)

It can be shown that

a. The maximum number of edge-disjoint st-paths in G is equal to the maximum

number of arc-disjoint st-paths in D(G).

180 CHAPTER 9. CONNECTIVITY

b. The minimum number of edges of G separating s from ¢ is equal to the

minimum number of arcs of D(G) separating s from t.

By Menger’s theorem for digraphs (proved above), the maximum number of arc-disjoint

st-paths in D(G) is equal to the minimum number of arcs of D(G) separating s from ¢,

and so the maximum number of edge-disjoint st-paths in G is equal to the minimum

number of edges of G separating s from ¢, as required. 0)

We can also deduce the vertex-form of Menger’s theorem for digraphs.

MENGER’S THEOREM FOR DIGRAPHS (VERTEX-FORM). Let D be a

connected digraph and let s and t be non-adjacent vertices of D. Then the maximum

number of vertex-disjoint st-paths is equal to the minimum number of vertices separat-

ing s from t.

Outline of Proof We transform the digraph D into another digraph D’ by replacing

each vertex v of D (other than s and f) by two vertices v, and v2 joined by an arc, as

indicated by

a C. a, a, Cy C5

b 6, b,

the digraph D the digraph D’

All arcs of D directed towards a vertex v become arcs of D’ directed towards the vertex

v,, and all arcs of D directed away from v become arcs of D’ directed away from y).

It is not difficult to see that two or more st-paths in D are vertex-disjoint if and only

if the corresponding st-paths in D’ are arc-disjoint. Applying the arc-form of Menger’s

theorem to D’, we obtain the vertex-form of Menger’s theorem for D. 0

Finally, we can deduce the vertex-form of Menger’s theorem for graphs.

MENGER’S THEOREM FOR GRAPHS (VERTEX-FORM). Let G be a con-
nected graph and lets and t be non-adjacent vertices of G. Then the maximum number of
vertex-disjoint st-paths is equal to the minimum number of vertices separating s from t.

Outline of Proof This form of Menger’s theorem is deduced from the vertex-form
for digraphs in the same way as the edge-form for graphs is deduced from the arc-form
for digraphs—namely, by considering the digraph D(G). 0

PROBLEMS 181

PROBLEMS

Edge-connectivity and Vertex-connectivity

69.1. | Write down the values of k(G) and A(G) for each of the following graphs G:

, t w u v Ww

AK eR

% v y x y Zz
y x

(a) (b) (c)

Which of these graphs are 2-connected? Which are 3-connected? Which are

2-edge-connected? Which are 3-edge-connected?

9.2. Write down the values of k(G) and A(G) for each of the following graphs G:

(a) (b) (c)

Which of these graphs are 2-connected? Which are 3-connected? Which are

2-edge-connected? Which are 3-edge-connected?

9.3. Find x(G) and 1(G) for each of the following graphs G:

(a) (b) (c)

69.4. Which of the following sets of edges are cutsets of the following graph G?

a. {su,sv}; { ux,Vx,wXx,yZ}; e. {wx,xz,yz}; c.

b. {ux,wx,yz}; d. {yt}; f. {uw,wx,wy}.

182

Die

9.8.'

CHAPTER 9. CONNECTIVITY

In the Petersen graph, find a cutset with

a. three edges;

b. four edges;

c. five edges;

d. six edges.

Which of the following sets of vertices are vertex-cutsets of the graph in Prob-

lem 9.4?

ae 1Uview Datywit ec. (uy) dd Wiz).

Give an example (if it exists) of a graph G for which

a. K(G) =2, MG) =3, 6G) = 4,
b. «(G) = 3, MG) = 2, &(G) = 4;

Cuek(G)= 2; AG) =2, 0G) =—4.

Find a 4-connected graph with eight vertices and sixteen edges.

Menger’s Theorem

59.9,

9.10.

Consider the following graph:

Write down

a. three edge-disjoint st-paths;

b. two st-paths that are edge-disjoint, but not vertex-disjoint;

c. two vertex-disjoint st-paths.

Does this graph contain three vertex-disjoint st-paths?

Consider the following graph:

a. Write down three edge-disjoint st-paths.

b. Write down a set of three edges separating s from f.

c. What is the maximum number of edge-disjoint st-paths?

Give a brief reason for your answer.

PROBLEMS
183

9.11.

69.12.

9.13.

9.14.

9:15.

a. Prove that if two st-paths in a graph are vertex-disjoint, then they must also
be edge-disjoint.

b. Give an example of a graph in which no two edge-disjoint st-paths are
vertex-disjoint.

By finding k edge-disjoint st-paths, and k edges separating s from ¢ (for the
same value of k), and using the edge-form of Menger’s theorem, find the maxi-
mum number of edge-disjoint st-paths for each graph

a Cc v x u Ww yp

Yo << Yo
5 d w y v 8 Zz:

(a) : (b) (c) s

By finding & arc-disjoint st-paths, and k arcs separating s from ¢ (for the same
value of k), and using the arc-form of Menger’s theorem, find the maximum
number of arc-disjoint st-paths for each digraph

v x a d

te (bo)

By finding k vertex-disjoint st-paths, and k vertices separating s from ¢ (for the
same value of k), and using Menger’s theorem for digraphs (vertex-form), find
the maximum number of vertex-disjoint st-paths for the digraph

a. By finding k arc-disjoint st-paths, and k arcs separating s from ¢ (for the
same value of k), find the maximum number of arc-disjoint st-paths for the di-
graph

b. Using similar reasoning, find the maximum number of vertex-disjoint st-
paths.

184

9.16.

9.17.

9.18.

9.19."

CHAPTER 9. CONNECTIVITY

By finding k vertex-disjoint st-paths, and k vertices separating s from ¢ (for the

same value of 4), and using the vertex-form of Menger’s theorem, find the

maximum number of vertex-disjoint st-paths for the graph

Consider the following graph G:

Find

a. the maximum number of vertex-disjoint paths between v and w;

b. the maximum number of edge-disjoint paths between v and w.

Consider the complete bipartite graph K, 7, and let v be any vertex in the set

with five vertices and w be any vertex in the set with seven vertices. Find

a. the maximum number of vertex-disjoint paths between v and w;

b. the maximum number of edge-disjoint paths between v and w.

Verify both the edge-form and the vertex-form of Menger’s theorem for the

Petersen graph, for all possible choices of the vertices s and t.

CHAPTER 10

TREES

In Chapter 3 we showed how tree structures arise in many different contexts, ranging
from chemistry to linguistics. We now obtain several results on the properties of trees,

and then turn our attention to some common algorithms associated with trees. We divide

these into three types:

1. Algorithms for searching and labeling parts of a given tree;

2. Algorithms for constructing various types of tree;

3. Algorithms for counting trees of a particular type.

10.1 MATHEMATICAL PROPERTIES OF TREES

For the mathematician, the interest and importance of trees arises from the fact that in

many ways a tree is the simplest non-trivial type of graph, and has several pleasing prop-

erties—for example, any two vertices are connected by exactly one path. In trying to

prove a general result or test a general conjecture in graph theory, it is sometimes conve-

nient to start by trying to prove the corresponding result for a tree. There are several con-

jectures which have not been proved for arbitrary graphs, but which are known to be true

for trees.

We start by recalling the definition of a tree.

DEFINITION. A tree is a connected graph which contains no cycles.

For example, the following diagram depicts all the trees with at most six vertices:

185

186 CHAPTER 10. TREES

n=1e n=2 eo n=3 @<e3@

n=4 eee A n=Seeeee eo? oo

Suppose we now consider the following tree with six vertices:

see
By adding an edge joining a new vertex to an existing one, we can obtain a tree with

seven vertices. This is a general procedure for increasing the size of a tree, since it cre-

ates no cycles and can be carried out systematically by adjoining the new edge to each

vertex in turn. For example, we obtain the SE trees with seven vertices from the

above tree:

en fe ts
si maeeuee

(e) (f)

We can omit tree (f) from this list, since it is isomorphic to tree (a), and so we get five

trees with seven vertices from our original tree with six vertices. The difficulty of pro-

ducing trees in this way is in recognizing duplicates, but at least we know that each tree

with seven vertices must be obtained at least once from some tree with six vertices.

Starting with the tree with just one vertex, we can build up any tree we wish by

successively adding a new edge and a new vertex. At each stage the number of vertices

exceeds the number of edges by 1, so that

every tree with n vertices has exactly n—1 edges.

10.2 SPANNING TREES 187

4

At no stage is a cycle created, since each added edge joins an old vertex to a new one. It
follows that

any two vertices in a tree are connected by exactly one path.

There is at least one path, because at each Stage the tree remains connected, and there is
at most one, because if there were two or more paths joining two given vertices, these
paths would contain a cycle (and possibly other edges as well).

In particular, any two adjacent vertices are connected by exactly one path—namely,
the edge joining them. If this edge is removed, then there is no path between the two
vertices. Therefore,

each edge of a tree is a bridge.

Moreover,

the addition of an edge between any two vertices of a tree creates exactly one cycle.

This is because any two vertices v and w are connected by just one path, and the addition
of the edge vw produces a single cycle—the cycle consisting of the path and the edge vw.

Several of the properties just obtained can be used as alternative definitions of a tree.
In the following theorem we state six of these alternative definitions. They are all
equivalent: any one of them can be taken as the definition of a tree, and the other five
can then be deduced. We leave you to check this if you wish (see Problem 10.3).

THEOREM 9.1. Let T be a graph with n vertices. Then the following statements are
equivalent:

a. Tis connected and contains no cycles;

b. Tis connected and has n-| edges;

c. T has n-—1 edges and contains no cycles;

d. Tis connected and each edge is a bridge;

e. any two vertices of T are connected by exactly one path;

f. T contains no cycles, but the addition of any new edge creates exactly one
cycle.

10.2 SPANNING TREES

Later in this chapter we shall need the concept of a spanning tree. Recall the definition of
a Spanning tree in a connected graph.

DEFINITION. Let G be a connected graph. A spanning tree in G is a subgraph of

G that includes all the vertices of G and is also a tree. The edges of the tree are called

branches.

188
CHAPTER 10. TREES

For example, the following diagram illustrates a graph and three of its spanning trees:

v w v Ww v Ww v Ww

rf eS vn anes Zou ty mex Za ae

a graph G spanning tree spanning tree spanning tree

For any connected graph G, we can find a spanning tree systematically by using either

of two methods.

Cutting-down Method We start by choosing any cycle in G and removing one of its

edges. (If there are no cycles, the graph G is itself a spanning tree.) Since we cannot

disconnect a graph by removing just one edge from a cycle, we still have a connected

graph. We now repeat this procedure until there are no cycles left; this gives our spanning

tree. For example, from the above graph G, we can remove the edges

vy (destroying the cycle vwyv),

yz (destroying the cycle vwyzyv),

xy (destroying the cycle wxyw).

We thus obtain the second of the above spanning trees.

Building-up Method We select edges of G one at a time in such a way that no cycles

are created, and repeat this procedure until all vertices are included. For example, in the

above graph G, we can choose the edges vz, wx, xy, and yz; then no cycles are created,

and we obtain the first of the above spanning trees.

10.3 CENTERS AND BICENTERS

When proving results involving trees, we frequently find it convenient to start at the

middle of a tree and move outwards, building up the tree as we proceed. This was the ap-

proach used by Arthur Cayley in the 1870s when he counted the number of chemical

molecules with a given formula by building them up step by step. More recently, the

concept of a balanced tree has been used in computing, where we build up a tree in such

a way that the various subtrees emerging from each vertex are “balanced’—that is, they

involve the same number of vertices. But what do we mean by the ‘middle’ of a tree? For

some trees this is easy to define.

10.3 CENTERS AND BICENTERS 189

4

However, how do we define the ‘middle’ of the following trees?

There are at least two possible an$wers to this question:

Method I Remove all the vertices of degree 1, together with their incident edges; re-

peat this as often as you can until you obtain either a single vertex (the center) or two

vertices joined by an edge (the bicenter).

A tree with a center is called a central tree, and a tree with a bicenter is called a

bicentral tree. Every tree is either central or bicentral, but not both.

Examples: A central tree with center e.

Method2 For each vertex v of degree 2 or more, count the number of vertices in each

of the subtrees emanating from v, and let n, be the maximum of these numbers. If the tree

has n vertices, it can be shown that either there is just one vertex v for which n, 3(n-l)

(the centroid), or there are two adjacent vertices v and w for which n, = n,, = <n (the 1

2

bicentroid).

190
CHAPTER 10. TREES

We can think of the centroid or bicentroid as the ‘center of gravity’ of the tree. A tree

with a centroid is called a centroidal tree, and a tree with a bicentroid is called a

bicentroidal tree. Every tree is either centroidal or bicentroidal, but not both.

Examples: n.=4,n,= 4, n=5, and n, = 6, so we have a bicentroidal tree with bicentroid ce.

10.4 COUNTING TREES

How many chemical molecules are there with the formula C,H;,? How many irrigation

canal systems are there linking five locations with four canals? How many architectural

floor plans are there satisfying certain given properties?

We can reduce many such problems to that of determining the number of trees with

a particular property. For example, we saw in Chapter 3 that the first problem reduces to

that of determining the number of trees with eight vertices, each of which has degree not

exceeding 4. Since many standard tree-counting problems have been solved, we can

sometimes use the results to deduce the solution of our original problem.

In general, counting problems for labeled graphs are much easier to solve than their

analogs for unlabeled graphs; in fact, there are certain types of graph for which the former

problem has been solved while the latter problem remains unsolved. However, the

problems of counting the labeled and unlabeled trees have both been solved, although

the former problem is easier to solve than the latter one. The following table lists the

numbers of unlabeled and labeled trees with n vertices, for n < 10.

n a2 eS 4 5 6 7 8 9 10

unlabeled trees 1 1 1 D; 3 6 11 2S 47 106

labeled trees ee 3 16 125 .1296 16807 262144 4782969 10°

Using this table, it is easy to guess that there are exactly n”* labeled trees with n

10.4 COUNTING TREES 191

4

vertices. This fact is known as Cayley’ s theorem. We outline a proof of this result, which
is due to H. Priifer and involves the construction of a one-to-one correspondence between
labeled trees with n vertices and sequences of n—2 numbers (called Priifer sequences).

We assume that n > 3, since the result is clearly true if n = 1 or 2.

First we describe Priifer’s construction.

Priifer’s Construction We construct a one-to-one correspondence between the set of

labeled trees with n vertices and the set of all sequences of the form (a, a, a3, .. . , An-2),

where each q; is one of the integers 1, 2, 3,.. . , m (allowing repetition). In order to obtain the

required one-to-one correspondence, we take a labeled tree with n vertices and apply three

steps.

STEP 1 Look at the vertices of degree 1 and choose the one with the smallest label.

STEP 2 Look at the vertex adjacent to the one just chosen and place its label in the

first available position in the sequence.

STEP 3 Remove the vertex chosen in STEP | and its incident edge, leaving a smaller

tree.

Repeat STEPS 1-3 for the remaining tree, continuing until there are only two vertices left.

By the time this happens, the required Priifer sequence will have been constructed.

Example: Consider the labeled tree

STEP 1 The vertices of degree | are vertices 3, 2, 4, and 7; the one with the smallest

label is vertex 2.

STEP 2 The vertex adjacent to vertex 2 is vertex 6, so the sequence starts with 6.

STEP 3 Removal of the vertex 2 and the edge 26 leaves.

STEP 1 The vertices of degree | are vertices 3, 4, and 7; the one with the smallest

label is vertex 3.

STEP 2 The vertex adjacent to vertex 3 is vertex 6, so the next term in the sequence

is 6.

STEP 3. Removal of the vertex 3 and the edge 36 leaves the tree

192
CHAPTER 10. TREES

5

Continuing in this way, we successively remove the edges 45, 65 and 51, and obtain the

Priifer sequence (6,6,5,5,1).

In order to obtain the reverse correspondence, we take a Priifer sequence and apply

three steps.

STEP 1 Draw the n vertices, labeling them from 1 to n and make a list of the

numbers from 1 to n.

STEP 2. Find the smallest number that is in the list but not in the Priifer sequence,

and also find the first number in the sequence; then add an edge joining the

vertices with these labels.

STEP 3 Remove the first number of STEP 2 from the list and the other number of

STEP 2 from the sequence, leaving a smaller list and sequence.

Repeat STEPS 2 and 3 for the remaining list and sequence, continuing until there are only

two labels left in the list. Finally, join the vertices with these labels.

Example: Consider the Priifer sequence (6,6,5,5,1).

STEP 1 Since the sequence contains 7 — 2 = 5 numbers, we

start with the list (1,2,3,4,5,6,7), and draw the

vertices 1 to 7 as shown. 7e @3

e— er

6e e4

ne

STEP 2 The smallest number in the list but not in the 1 2

sequence is 2, and the first number in the sequence

is 6, so we add an edge joining the vertices 2 and 7e @3

6.

STEP 3 Removal of the number 2 from the list, and the

number 6 from the sequence, leaves the list

(1,3,4,5,6,7) and the sequence (6,5,5,1).

STEP 2 The smallest number in the new list which is not 1 2

in the new sequence is 3, and the first number in

the new sequence is 6, so we add an edge joining Je 3

the vertices 3 and 6.

ne

10.5 SEARCHING TREES 193

STEP 3 Removal of the number 3 from the list, and the

number 6 from the sequence, leaves the list

(1,4,5,6,7) and the sequence (5,5,1).

Continuing in this way, we successively add edges joining the ver- 1 2

tices 4 and 5, 6 and 5, and 5 and 1. The list is now (1,7), and we join

the vertices with these labels. This gives the labeled tree shown on 7 3

the right.

Note that this labeled tree obtained from the Priifer sequence (6,6,5,5,1) is the same

as the labeled tree which earlier gave rise to this sequence. This happens in general—if

you start with any labeled trée, find the corresponding Priifer sequence, and then find the

labeled tree corresponding to this sequence, you should get back to the original tree. This

gives the required one-to-one correspondence:

labeled tree Priifer sequence

CAYLEY’S THEOREM. The number of labeled trees with n vertices is n"”.

Proof (H. Priifer, 1918) We construct the above one-to-one correspondence

between the set of labeled trees with n vertices and the set of all sequences of the form

(a1, a2, a3, ..-., Anz), where each a; is one of the integers 1, 2, 3, ..., n (allowing

repetition). Since there are exactly n possible values for each number a;, the total number

of possible sequences is n”’. The result follows immediately. 0

10.5 SEARCHING TREES

A problem which frequently arises in practice is that of searching through some given

tree structure in a systematic way. For example, a computer file is often organized as a

tree-like data-structure in some form of random-access memory (RAM), and a system-

atic tree search is necessary whenever a particular piece of information is required. In

practice, this usually involves examining every part of the tree until the desired vertex or

edge is found; in order to avoid unnecessary wastage of time and processing resources,

we need a search technique which is guaranteed to visit all parts of the tree eventually

without visiting any particular vertex too often.

There are two well-known search methods, which differ in the pattern of search they

employ. They are usually known as depth-first search (DFS) and breadth-first search

(BFS). Each of these methods lists the vertices as they are encountered, and indicates the

direction in which each edge is first traversed. The methods differ only in the way in

which the vertex-lists are constructed. No good rule can be given as to which search

194 CHAPTER 10. TREES

method should be used for a particular problem. Both are in widespread use, but each

method has its advantages and disadvantages, depending on the problem in hand.

Although our discussion here is introduced in the context of trees, both methods can easily

be applied to more general types of graph. In such applications, they effectively search

the graph by searching through all the vertices of an appropriate spanning tree.

Depth-first Search (DFS)

The basic idea of depth-first search is to penetrate as deeply as possible into a tree before

fanning out to other vertices.

Example: Consider the following tree:

In order to perform a depth-first search starting at the vertex a, we start by choosing any

vertex adjacent to a (b, say), then any vertex adjacent to b (d, say), and so on. At each

stage, we choose a vertex not previously used, if it is possible to do so. We number the

vertices as we go. Thus, we may start by assigning to a, b, d, and i the labels 1, 2, 3, and

4, respectively. Once we have reached i, since there are no new vertices to go to we are

stuck. We must therefore backtrack to d, from which we can go to /, assigning it label 5.

Backtracking to d again takes us to k, to which we assign label 6. We now have to back-

track via d to b, from which we can go to e, assigning it label 7. Backtracking to a takes

us to c, f, and /, and (eventually) to g and h. (In choosing which adjacent vertex to take at

each stage, we have selected the left-hand one in every case, although it is not necessary

to be so systematic.) This gives us the labeled tree

labelled tree wall diagram

10.5 SEARCHING TREES 195

Another way of obtaining this labeling is to regard the tree as a solid wall, and to walk

around it, always keeping the wall on our left-hand side. Whenever we reach a new vertex,

we give it the next label, as shown in the above diagram. A similar idea arises in computer

programming, where we sometimes use a binary tree to represent an arithmetic expres-

sion. For example, the expression a+{(b—c)xd} can be represented by the following tree;

we retrieve this expression by walking around the tree, writing each vertex as we walk

underneath it:

The above procedures can be extended to any connected graph, as the following

example shows.

Example: Consider the graph:

d h

We can perform a depth-first search on this graph by starting at a, going to b, c, and d,

backtracking to c, going to e, f, and g, backtracking to f, going to h, and returning to a.

This gives us the labeling

Note that we have marked with an arrow those edges we used when going to each new

vertex. These edges form a spanning tree, called a DFS spanning tree.

196
CHAPTER 10. TREES

A practical example of the use of depth-first search is the search for flow-augmenting

paths in a capacitated network, as explained in the companion volume on Networks.

Breadth-first Search (BFS)

The basic idea of breadth-first search is to fan out to as many vertices as possible before

penetrating deep into a tree. This means that we visit all the vertices adjacent to the cur-

rent vertex before going on to another one, as the following example shows.

Example: Consider the tree

In order to perform a breadth-first search starting at the vertex a, we start by visiting the

vertices b and c that are adjacent to a. We then visit the vertices d and e adjacent to b,

and the vertices f, g, and h adjacent to c. If we label each new vertex as we come to it, we

eventually obtain the following labeling of the vertices (the DFS labeling is shown for

comparison):

w) 10 11 12

breadth-first search depth-first search

Note that if the vertices are laid out in horizontal ‘levels’, as in this example, then in a

breadth-first search we must complete each level before proceeding to the next one.

The above procedure can be extended to any connected graph, as the following

example shows.

10.6 CONSTRUCTING TREES 197

Example: Consider the graph

We can perform a breadth-first search on this graph by starting at a, visiting the vertices

b and d adjacent to a, visiting the vertex c adjacent to b, and so on. This gives us the

labeling

2 OW Pa

Note that we have marked with an arrow those edges we used when going to each new

vertex. These edges form a spanning tree, called a BFS spanning tree.

A practical example of the use of breadth-first search is the shortest path algorithm

(discussed in Chapter 8).

10.6 CONSTRUCTING TREES

There are two types of situation in which a tree-growing algorithm is useful. One of

these involves problems in which we wish to construct large trees from smaller ones. As

we saw earlier in this chapter, we can do this by taking the smaller tree and repeatedly

adding a vertex and edge to it in all possible ways, removing duplicates as they occur.

The second type of situation is more complicated, and arises when we need to find a par-

ticular kind of spanning tree in a given graph. A typical example of this kind is the mini-

mum connector problem, which we now discuss.

The Minimum Connector Problem

Suppose that we wish to build an irrigation canal system connecting a number of given

locations. The cost of digging and maintaining each canal is known, except that some

pairs of locations cannot be joined by a canal for geographical or political reasons (for

example, a gorge or a politically inviolate area). How do we design a canal system

which connects all the locations at minimum possible total cost?

198 CHAPTER 10. TREES

This problem can be interpreted in two different ways, depending on whether or not

we allow extra ‘locations’ where canals may intersect. For example, in the case of the

canal system shown below, we may be able to reduce the total cost by creating an extra

location at the point E£, and linking it to A.

canal system system with extra location E

Unfortunately, for many minimum connector-type problems, the cost of inserting an

extra location (which may be a telephone exchange or power station) can greatly exceed

the possible saving in cost, and the resulting mathematical analysis becomes rather

complicated. In view of this, we adopt the second interpretation of the problem and

assume that each connection joins two existing locations.

We can represent the minimum connector problem graphically by taking the locations

as vertices and the canals as edges, giving us a weighted graph. The problem is then to

find a subgraph of minimum total weight, passing through each vertex. Note that such a

subgraph must always be a spanning tree, because if there is a cycle then we can lower

the total cost by removing any one of its edges.

16
A B 4 = B

20 25 20

D , D ;
10 c 10 :

graph minimum spanning tree

In our example, the graph has total weight 71. Removal of any one of the edges in the
cycle BCD lowers the total weight, and gives us a spanning tree. Clearly, the spanning
tree of minimum total weight is obtained by removing the edge BC, and the minimum
total cost is, therefore, 16 + 20 + 10 = 46.

DEFINITION. Let T be a spanning tree of minimum total weight in a connected
weighted graph G. Then T is a minimum spanning tree (or a minimum connector) of
G, and its weight is denoted by W(T).

10.6 CONSTRUCTING TREES 199

We can now restate the minimum connector problem in graphical terms.

The Minimum Connector Problem Given a weighted graph, find a minimum span-

ning tree in it.

A construction that works for the minimum connector problem is known as the greedy

algorithm, or as Kruskal’ s algorithm, it first appeared in a Czech paper by Boruvka in 1928.

THE GREEDY ALGORITHM: 7o construct a minimum spanning tree in a con-

nected weighted graph G, successively choose edges of G of minimum weight in sucha

way that no cycles are created.

The name ‘greedy algorithm’ arises from the fact that at each stage we make the

greediest choice available (that is, the edge involving the smallest weight) with no

concern for what is happening elsewhere in the graph. Algorithms of this kind do not

usually succeed in practice, but this is one algorithm which does, as we show below.

We illustrate the use of this algorithm by finding a minimum spanning tree in the

weighted graph

ye

First choice | We choose an edge of minimum weight, this is AE A

with weight 2. a

E

Second choice We choose an edge of next smallest weight, this is A

either AC or CE with weight 4. Let us choose CE. 2

iB,
4

G

Third choice We cannot now include AC in the tree, since it A

would create a cycle (ACEA), so we choose an 2

edge of next smallest weight; this is BC with E , B

weight 5. 5

G

Fourth choice The edges of next smallest weight are AB and BE

with weight 6. Since either of these would create a

cycle (ABCEA or BCEB), we choose instead the

edge DE with weight 7.

200 CHAPTER 10. TREES

This completes the spanning tree, which is a minimum spanning tree of weight 18.

(Note that if we had chosen the edge AC at the second stage, rather than the edge CE,

then we should have obtained a different spanning tree, but its weight would still be 18.)

We now prove that the greedy algorithm works.

Proof of the Greedy Algorithm Let G be a connected graph with n vertices. Let T be

a graph that results from applying the algorithm. By the way in which T was constructed,

it has no cycles. Also, T is connected, since otherwise we could add another edge of G

without creating a cycle. Also, T contains every vertex of G, since if it did not contain

the vertex v, then we could add an edge incident with v without creating a cycle.

Therefore, T is a spanning tree in G.
We must show that J is a minimum spanning tree of G. We do this by contradiction.

Suppose that S is a spanning tree in G of smaller total weight than T; that is, W(S) < W(T).

Let e be the edge of smallest weight lying in T but not in S, and consider the subgraph

obtained by adding e to S.

By adding the edge e to S we create a cycle C containing e. Since this cycle must

contain an edge e’ not contained in T, it follows that the subgraph obtained from S

on replacing e’ by e¢ is still a spanning tree (S’, say). By the construction of T, the
weight of e cannot exceed the weight of e’; so W(S’) < W(S), and S’ has one more

edge in common with T than S. It follows, on repeating this procedure, that we can

change S into T, one step at a time, with the weight decreasing at each stage. This

shows that W(T) < W(S), contradicting the definition of S. This contradiction estab-

lishes the result. 0

Although the greedy algorithm can easily be applied by hand when the graph is small,

it is not particularly well suited for efficient computer implementation, owing to the need

to arrange the edges in order of ascending weight, and the need to recognize cycles as

they are created. Both of these difficulties can easily be overcome by a slight modification

of the above algorithm; the result is known as Prim’s algorithm.

Prim’s Algorithm To construct a minimum spanning tree T in a connected weighted
graph G, build up T step by step by

a. putting an arbitrary vertex into T;

b. successively adding edges of minimum weight joining a vertex already in T

to a vertex not in T.

The advantage of Prim’s algorithm is that we can operate directly on the table of
weights rather than on the graph itself. If the graph is large, this makes the method more
suitable for computer implementation. All we need to do is to delete a row of the table
whenever the corresponding vertex is placed in T, and then choose the smallest entry
in the column corresponding to vertices in 7. The following example illustrates the
method.

Example: We use Prim’s method to find a minimum spanning tree in the weighted graph

10.6 CONSTRUCTING TREES

First choice
We choose any vertex (say,

B) and put it into T.

eB

Second choice

BC is the edge of minimum

weight joining B to other

vertices. Put the edge BC

and the vertex C into T.

B

5

C

Third choice

CA and CE are the edges of

minimum weight joining B

and C to other vertices.

Choose one of these (say

CA), and put the edge CA

and the vertex A into T.

A

Ww

Delete row B from the table
of weights. Look for the

smallest entry in column B.

The smallest entry in col-

umn B occurs in row C, so

delete row C. Look for the

smallest entry in columns B

and C.

The smallest entry in col-

umns B and C occurs in

rows A and E. Choose one of

these (say, A), and delete

row A. Look for the smallest

entry in columns A, B, and

CG

201

202 CHAPTER 10. TREES

Fourth choice

AE is the edge of minimum The smallest entry in col- 4 BEG DEE

weight joining A, B, and C to umns A, B, and C occurs in

other vertices. Put the edge TOW, sodeleterowE.Look DI! 8 SOs

AE and the vertex F into T. for the smallest entry in col-

umns A, B, C, and E.

Fifth choice
ED is the edge of minimum The smallest entry in col-

weight joining A, B, C, and umns A, B, C, and E occurs

E to D. Put the edge ED and in row D, so delete row D.

the vertex D into T.

This completes the spanning tree, which is a minimum spanning tree of weight 18.

Application to the Traveling Salesman Problem

In Chapter 7 we described the traveling salesman problem, in which a salesman wishes

to visit a number of cities and return to the starting-point, covering the minimum possi-

ble total distance on the way. In view of the simple nature of the greedy algorithm for

solving the minimum connector problem, we might hope that there is a simple algorithm

for solving the traveling salesman problem as well. Unfortunately, no such algorithm is

known. We could, of course, try all possible Hamiltonian cycles and simply choose one

with the smallest total weight, but this is a hopeless task, even on a computer, unless the

number of vertices is very small. For a job-sequencing problem involving (say) 100

jobs, there would be 100! (= 9.3 x 10'°’) sequences to be considered, and no method
along these lines would be worth attempting.

In view of this, we are forced to look for approximate solutions to the problem. One
method, which often works well in practice, is to find a ower bound for the minimum
weight Hamiltonian cycle by solving the minimum connector problem instead! To justify
this method, we argue as follows:

10.6 CONSTRUCTING TREES 203

If we take a minimum-weight Hamiltonian cycle in a weighted complete graph, and
remove a vertex A and its incident edges, we get a path passing through the remaining vertices.
Such a path must be a spanning tree for the complete graph formed by these remaining
vertices, and the weight of the Hamiltonian cycle is obtained by adding the weight of this
spanning tree to the weights of the two edges incident to A. We can therefore obtain a lower
bound for the solution of the traveling salesman problem by adding the weight of a minimum
spanning tree joining those vertices to the two smallest weights of edges incident to A.

Example: Consider the weighted graph

Doma

If we remove the vertex A, then the remaining weighted graph has the four vertices B, C,

D, and E.

A
2

Eq—_> —_»p E BE ; EY — Py form,
DF ¢ Dae Cc

The minimum-weight spanning tree joining these four vertices is the tree whose edges

are BC, CE, and ED, with total weight 16. The two edges of smallest weight incident to

A are AE and AC, with total weight 6. The required lower bound for the traveling sales-

man problem is therefore 16 + 6 = 22.

A better lower bound is obtained by removing the vertex D. In this case, the remaining

weighted graph has the four vertices A, B, C, and E, and there are two minimum-weight
spanning trees joining these vertices, each with total weight 11.

Lee ee BE

204
CHAPTER 10. TREES

The two edges of smallest weight incident to D are DE, and DA or DB, with total weight

15. The required lower bound for the traveling salesman problem is therefore 11 + 15 = 26.

A little experimentation will show you how good this second lower bound is: the solution of

the traveling salesman problem is given by the cycle ACBDEA with total weight 26, so that

removing the vertex D actually gives the correct answer in this case.

We can also find an upper bound for the minimum-weight Hamiltonian cycle. One

method is to choose any cycle, and calculate its total weight. alternatively, we can

perform a depth-first search on a minimum spanning tree, giving a closed walk which

visits each vertex at least once, so that the total distance traveled equals or exceeds the

solution of the traveling salesman problem. But if we perform a depth-first search on a

minimum spanning tree, we cover each edge of the tree exactly twice and travel a total

distance equal to twice the weight of the tree. It follows that the solution of the traveling

salesman problem is at most twice the solution of the minimum connector problem. The

upper bound for the above example is 2 x 18 = 36.

We can improve this upper bound considerably by taking ‘short cuts’ wherever

possible. For example, if in the above example we go directly from D to C, and from B

and A, then we reduce the upper bound from 36 to 29.

10.7 THE KNAPSACK PROBLEM

We conclude this chapter by solving a problem related to scheduling. Suppose that we

have a container in which to pack a number of items of various sizes, and that each item

has a value associated with it as well as a size. Which items should we choose to pack in
the container so that the total value is as large as possible? This problem is called the

knapsack problem, since it may be formulated in the following terms.

The Knapsack Problem A hiker is planning a trip, but has a knapsack that can accom-

modate only a certain total weight. There are a number of items the hiker wishes to take

along, each of which has a particular value for the trip. Which items should be packed so

that the total value is a maximum, subject to the weight restriction?

A more practical interpretation of this problem is the following:

A company has a certain limited resource which can be used for a number of

applications. Each application has a certain value, and uses a certain amount of the

10.7 THE KNAPSACK PROBLEM 205

‘

resource. Which applications should be chosen so that the greatest total value is obtained

from the use of the resource?

The technique we give for solving the knapsack problem is called the branch-and-

bound method, and involves a search through a tree of possible solutions. We explain

how this method works in the context of the following example.

Example: Suppose that five items are available whose weights and values are

Item A B CG D E

Weight 3 8 6 4 yD,

9 3 5 Value 2 12

The problem is to find a packing of largest possible total value with a total weight not

exceeding 9. In this example, we can list all possible packings and choose one with a

maximum total value, subject to the total weight restriction. However, this would obvi-

ously not be practical for an example with a large number of items. The branch-and-

bound method, which we now describe, is a more efficient procedure in general.

The first step is to list the items in decreasing order of value per unit weight, as follows:

Order number 7 1 2 3 4 5
Item E B C D A
Weight w; a 8 6 4 3
Value v; 5 12 9 3 2
Value per unit weight 25 LS 1-5 0.75 0.67

We denote each possible packing by a solution vector of the form (x,, x2, 3, X4, Xs),

where each x; takes the value 1 if item i is packed, and the value 0 if that item is not

packed. For example, the solution vector (0,0,1,1,0) denotes the packing which includes

only items 3 and 4. The total weight w for this solution vector is w; + w, = 10, and the

total value v is v; + v, = 12. A solution which satisfies the weight constraint (w < 9) is

called a feasible solution. The null solution (0,0,0,0,0) is obviously a feasible solution,

but (0,0,1,1,0) is infeasible.

Note that the above ordering of items is not essential for this particular type of problem.

However, it is an important feature of the branch-and-bound method when used to obtain

approximate solutions. In such cases we do not examine all possible feasible solutions.

The branch-and-bound method uses a branching procedure to search for an optimum

solution. For example, if we take the solution vector (0,1,0,0,0), we can branch out to

other solution vectors:

(0, 1, 1, 0, 0)

(0, 1, 0, 0, 0) (0, 1, 0, 1, 0)

(0, 1, 0, 0, 1)

206 CHAPTER 10. TREES

The solutions produced by this branching procedure are those which have one more item

than the starting solution, but the number of such new solutions is restricted; we may add

a new item only if it has a higher order number than any item already packed—that is,

we may change only those positions to the right of the last | in the starting solution. For

example, if we start with the solution vector (1,0,0,1,0), we can add only one item (item

5), so only one branch is permitted:

(1,90, 0, L 0) <taeanatiiaiie (0, 0, 1; 1)

The branch-and-bound method starts with the null solution and uses this branching

procedure to examine possible solutions in a systematic way. At each stage, we calculate the

total weight for each solution, and the total value for each feasible solution, and branching is

then continued from a feasible solution which has not been previously used as a branching

point, and which has the highest value of any such solution. Solutions which cannot be

branched out further, either because the weight limit has already been reached, or because

there is an item at the extreme right position in the solution vector, are marked with a square.

The procedure is continued until all vertices of degree 1 are marked. A record is kept of the

best solution obtained so far, and this is updated as necessary.

We illustrate this procedure by applying it to our example. First, we branch out from

the null solution, as shown

(1; 0, 0207 0)onwieto wetenas

(0, 1,0,0,0) w= 8,» = (12)
(0, 0, 0, 0, 0) (0,0, 1,0,0) w=6,0=9

(070; 0 120) We 4 ee 4

(05.05 001) eriersanereee?

STORE v = 12, solution = (0,1,0,0,0)

[The highest value of any of these feasible solutions is 12, so we store this value, to-

gether with the corresponding solution. The vertex corresponding to the solution

(0,0,0,0,1) is marked with a square, to indicate that we cannot continue the branching

process from this vertex.]

We delete the marked vertex and continue the branching process from the solution
with the highest value—that is, (0,1,0,0,0):

10.7 THE KNAPSACK PROBLEM 207

‘

(1,0,0,0,0) v=5

(0, 1,1,0,0) w= 14

(0, 1,0, 1,0) w= 12
(0, 0, 0, 0, 0)

™~e) (0,1,0,0,1) w= 11
(0/0, 1,0,0) v=(@)

(050) 02150) 20 = 3

STORE v = 12, solution = (0,1,00,0)

[All three new solutions are infeasible, so we mark the corresponding vertices with

squares. |

The current feasible solution with the highest value is (0,0,1,0,0), so we branch out from

this vertex:

(1,0,0,0,0) v=5

(0,0, 1, 1,0) w= 10
(0, 0, 1, 0, 0)

(0, 0, 0, 0, 0)

(0,0, 1,0,1) w 9,0 =)

(0, 0,0,1,0) v=3

STORE v = 12, solution = (0,1,0,0,0)

[Although the new solution (0,0,1,0,1) is feasible, we cannot branch further from it, be-

cause it has an item in the fifth place, and also because it has already reached the maxi-

mum allowable weight. We therefore mark this solution and also the infeasible solution

(0,0,1,1,0).]

We continue the branching process from the solution (1,0,0,0,0):

= | S (1, 1, 0, 0, 0)

(1, 0, 1, 0, 0)

(1,0,0,1,0) w=6,0=8

(1,0,0,0,1) w=5,0=7

(1, 0, 0, 0, 0)
S oo e

| @
(0, 0, 0, 0, 0)

(0,0,0,1,0) v=3

STORE v = 14, solution = (1,0,1,0,0)

208 CHAPTER 10. TREES

[The current feasible solution with the highest value is (1,0,1,0,0), with value 14. This is

greater than the stored value, so we update the stored value as shown above.]

We continue the branching procedure, as illustrated in the following diagrams:

12
(1, 0, 1, 0, 0) (1,0, 1,1,0) w

— — (15:0, 17.0, 1) ow

(0, 0, 0, 0, 0) (1, 0,0, 1,0) v=@)

(0, 0, 0, 1, 0) Ui eS

STORE v = 14, solution = (1,0,1,0,0)

1,0,0,0,0) (1, 0,0, 1,0
e dink (1, 0, 0, 1, 1)

(0, 0, 0, 0; 0) : w =9,v = (10)

(0,0,0,1,0) v=3

STORE v = 14, solution = (1,0,1,0,0)

0, 0, 0, 0, 0 0, 0, 0, 1, 0)
: \ (O:0900teTy went 9)

STORE v = 14, solution = (1,0,1,0,0)

The procedure has now been completed, and the required solution vector is (1,0,1,0,0).

This corresponds to packing items C and E, with a total value of 14.

This branch-and-bound method always gives an optimum solution, since it examines

all solutions which occur in the branching process. It is more efficient than simply listing

and examining all possible solutions, since the branching process automatically excludes

many solutions which are infeasible. For example, in the solution to the above problem,

there are 2° = 32 possible solutions, but only 18 of these are examined in the branch-and-

bound procedure.

PROBLEMS 209

PROBLEMS

Mathematical Properties of Trees

©10.1. By adding a new edge in all possible ways to each tree with six vertices, find

all the trees with seven vertices.

10.2. By adding a new edge in all possible ways to each tree with seven vertices,
find the 23 trees with eight vertices.

10.3.’ Prove Theorem 9.1.

[Hint: One efficient way to proceed is to prove that (a) implies (b), (b) implies

(c),..., (e) implies (f), and (/) implies (a).]

cs

Spanning Trees

©10.4. A forest is a (not necessarily connected) graph, each of whose components is a

tree.

a. LetG bea forest with n vertices and k components. How many edges does G

have?

b. Construct a forest with 12 vertices and 9 edges.

Is it true that every forest with k components has at least 2k vertices of degree

1 (see Problem 2.35)?

10.5. A spanning forest in a (not necessarily connected) graph G is obtained by con-

structing a spanning tree for each component of G.

a. Find a spanning forest for the following graph:

Aas
b. Let Gbea graph, and let F be a subgraph of G. If F is a forest which includes

all vertices of G, is F necessarily a spanning forest of G?

Centers and Bicenters

10.6. Classify each of the following trees as central or bicentral, and as centroidal or

bicentroidal, and locate the center/bicenter and centroid/bicentroid in each

aS
(a) (b)

210

10.7.

10.8.

10.9.

CHAPTER 10. TREES

Classify each of the following trees as central or bicentral, and as centroidal or

bicentroidal, and locate the center/bicenter and centroid/bicentroid in each

Le ee ee
(a) (b) (c)

Classify all the trees with five and six vertices as central or bicentral, and as

centroidal or bicentroidal, and locate the center/bicenter and

centroid/bicentroid in each case.

Classify all the trees with seven vertices as central or bicentral, and as

centroidal or bicentroidal, and locate the center/

bicenter and centroid/bicentroid in each case.

Counting Trees

10.10.

10.11.

10.12.

10.13.

Draw the sixteen labeled trees with four vertices.

a. Verify directly that there are exactly 125 labeled trees with five vertices.

b. Explain why the complete graph K,, has exactly n”~* spanning trees.

c. How many spanning trees has the complete bipartite graph K, ,?

Find the Priifer sequence corresponding to each of the following labeled trees:

(a) (b)

PROBLEMS 211

10.14. Find the labeled tree corresponding to each of the following Priifer sequences:

a (204, 1, 3, 555):

b. (1,1, 4, 4, 4).

10.15. Find the labeled tree corresponding to each of the following Priifer sequences:

a. (1,2, 3, 4); dite: 155);
b. (3, 3, 3, 3); e. (1, 1,5, 2, 5);
Gi hioet a2, 1); f. (13392; :3, 5).

Searching Trees

©10.16. Perform (a) a depth-first search and (b) a breadth-first search on the following
rooted tree:

10.17. Perform (a) a depth-first search and (b) a breadth-first search on each of the fol-

lowing rooted trees:

10.18. Find a rooted tree which represents the expression (ab + c) X (d—e) xf.

10.19. Find a DFS spanning tree and a BFS spanning tree in each of the following

graphs:

(a) | (b)

212 CHAPTER 10. TREES

Constructing Trees

©10.20. Use the greedy algorithm to find a minimum spanning tree in the following

weighted graph:

10.21. The following table gives the distances (in miles) between six places in Ire-

land. Use the greedy algorithm to find a minimum spanning tree connecting

these places.

Athlone Dublin Galway Limerick Sligo Wexford

Athlone — 78 56 73 71 114

Dublin 78 — 132 121 135 96
Galway 56 132 = 64 85 154

Limerick 73 121 64 — 144 116
Sligo 71 135) 85 144 _ 185
Wexford 114 96 154 116 185 —

10.22.'a. Describe an alternative algorithm for the minimum connector problem which

involves the removal from the graph of edges of greatest weight.

b. Show how to adapt the proof of the greedy algorithm to show that a spanning

tree of maximum weight can be constructed by successively choosing edges

of maximum weight in such a way that no cycles are created.

10.23.'A burglar alarm system has the form of a graph whose edges consist of valu-

able copper wire, each edge having a different value. The alarm will sound if

the graph is disconnected. A burglar wishes to steal as many edges as possible

without sounding the alarm. Which edges should he steal so as to maximize

the value of his haul?

10.24. In the example of the traveling salesman problem on page 203, we obtained a

lower bound of 22 by removing vertex A, and one of 26 by removing vertex D.

Find the corresponding lower bounds obtained by removing

(a) vertex B; (b) vertex E.

10.25. Consider the traveling salesman problem for the six places in Ireland in Prob-

lem 10.21. Find the lower bound obtained by removing the vertex Athlone.

10.26. The following table gives the distance (in miles) between five towns:

Avy BSG. DERE

PROBLEMS
213

4

a. Find a minimum spanning tree joining these towns, using (i) the greedy
algorithm and (ii) Prim’s algorithm.

b. Find lower bounds for the solution of the traveling salesman problem for these
towns, obtained by removing (i) the vertex B and (ii) the vertex E.

Find the correct solution by inspection.

10.27. The following table gives the distances (in hundreds of miles) between six Eu-
ropean cities: ;

Berlin London Madrid Moscow Paris Rome
EE ee ee aS er oe

Berlin — i 15 11 a 10
London 7 11 18 3 12
Madrid IS = les _ iy 8 13
Moscow 11 y 18 27 — 18 20
Paris a 3 8 18 — 9
Rome 10 12) 13 20 9 “=

a. Find a minimum spanning tree joining these cities, using (i) the greedy
algorithm and (ii) Prim’s algorithm.

b. Find lower bounds for the solution of the traveling salesman problem for these
cities, obtained by removing (i) the vertex London and (ii) the vertex Moscow.

10.28. The following table gives the distances (in miles) between six places in
Scotland:

Aberdeen Edinburgh Fort William Glasgow Inverness Perth

Aberdeen — 120 147 142 104 81
Edinburgh 120 — 132 42 157 45
Fort William 147 132 ~ 102 66 105
Glasgow 142 42 102 — 168 61
Inverness 104 157 66 168 a 112
Perth 81 45 105 61 112 =

a. Find a minimum spanning tree joining these places, using (i) the greedy
algorithm and (ii) Prim’s algorithm.

b. Find lower bounds for the solution of the traveling salesman problem for these

places, obtained by removing (i) the vertex Glasgow and (ii) the vertex

Aberdeen.

What is the correct solution?

10.29. Obtain an upper bound for the solution to the traveling salesman problem for

each of the graphs in Problems 10.24—10.28 by performing a depth-first search

on a minimum spanning tree for each of these graphs. How can you improve

these upper bounds?

214
CHAPTER 10. TREES

The Knapsack Problem

10.30.

10.31.

10.32.

10.33."

A hiker wishes to take some of the following items on a trip:

ee ee a, ee eee

Item A

Weight 5

Value
eS

D
2
1 DAwWO

B
4
3)

Use the branch-and-bound procedure to determine which items should be

taken if the total value is to be as large as possible and the total weight should

not exceed nine units.

A traveler wishes to buy some books to take along on a journey. The estimated

time to read each of the five books is shown in the following table:

ee

Book A CG

Cost ($) 4
Reading time (hours) 5 OAK

Oo

ANH RU 4

Use the branch-and-bound method to determine which books should be bought

so as to provide the maximum amount of reading material without spending

more than $8.

A machine in a factory can be used to make any of five items A, B, C, D, and

E. The time taken to produce each item, and the value of each item, are

ee

Item A B

Production time (in days) 3 7
Value 14
Sn

ee LEEEEEEEE EEE

G. D eS
2 + ~
3 7 8

If the machine is available for only 10 days, which of the items should be pro-

duced so that the total value is as large as possible?

A hiker wishes to take some of the following items on a journey:

Item A B C D

Weight 5) 3 6 1

Value =) 4 3

By modifying the branch-and-bound procedure, determine which items should

be taken if the total value is at least 9 but the total weight is a minimum.

CHAPTER 11

PLANARITY

11.1 INTRODUCTION

In this chapter we consider the problem of determining whether a given graph can be

drawn in the plane without edges crossing, and we present important results of Euler and

Kuratowski.

We have seen several instances of graphs which are commonly drawn in several

different ways. For example, the complete graph K, and the complete bipartite graph K33

can be drawn as

X-A WX
The particular drawing we choose often depends on the use to which the graph is to

be put. For example, in tree-branching problems we often put the root at the top and let

the branches hang down from it. Another example occurs in architecture, where we use

a graph to depict the layout of rooms in a building, as follows:

215

216 CHAPTER 11. PLANARITY

living room

living dining
room room

sittin,
foane hall study hall

study

sitting kitchen
room

playroom kitchen dining room playroom —_ living room

(a) (b)

Although the graph representation in diagram (a) gives us no information about the

size or shape of each room, it does show clearly how the walls and rooms relate to each

other geographically, and provides a useful way of describing the floor plan of the

building. A different drawing of the same graph, such as the one in diagram (b), still tells

us which pairs of rooms are adjacent, but gives us no idea of the spatial relationships

between the various rooms.

11.2 PLANAR GRAPHS

In many problems, such as the printed circuits problem described on page 119, it is use-

ful to be able to draw graphs in such a way that no two edges cross each other. For exam-

ple, the above drawing of the architectural graph in diagram (a) has this property,

whereas the equivalent drawing in diagram (b) does not. For some graphs, such as K,, it

is possible to find a drawing which involves no ‘crossings’, whereas for others, such as

K;,3, there are no such drawings, as we shall see. This leads us to make the following def-

initions.

DEFINITIONS. A graph G is planar if it can be drawn in the plane in such a way that

no two edges meet each other except at a vertex to which they are both incident. Any such

drawing is called a plane drawing of G.

For example, the graph K, is planar, since it can be drawn in the plane without edges

crossing. The following diagram shows three plane drawings of K,:

plane drawings of K 4

Similarly, the five Platonic graphs are all planar, since they can be drawn as

11.2 PLANAR GRAPHS 217

‘

ATH A ® A
tetrahedron cube octahedron dodecahedron icosahedron

On the other hand, the complete bipartite graph K3, is not planar, since every drawing
of it contains at least one crossing. To see why this is, note that K33 has a cycle of length
6 (namely, wavbwcu) which must appear in any plane drawing as a hexagon (not
necessarily regular).

u v w ue A

Dk ei < >
a b ¢ w b

We must now insert the edges ub, vc, and wa. Only one of them can be drawn inside the
hexagon, since two or more would cross. Similarly, only one of them can be drawn out-

side, since two or more would cross.

u a fae

8

w b Ww

It is therefore impossible to insert all three of these edges without creating a crossing,

and so K,,, is not a planar graph. A similar proof can be given to show that K, is not plan-
ar (see Problem 11.4).

We can use the fact that K3,3 is not planar to settle the utilities problem mentioned in

Chapter 1. In this problem there are three houses A, B, and C which need to be connected

to three utilities, gas, water and electricity, using non-crossing connections. If we regard

the three houses and the three utilities as the vertices of K33, we see immediately that any

solution of the utilities problem would yield a plane drawing of K33. Since no such

drawing exists, the utilities problem has no solution.

Note that in studying planar graphs, we can restrict our attention to simple graphs

whenever it is convenient to do so. If a planar graph has multiple edges or loops, we

collapse the multiple edges to a single edge and remove the loops. After drawing the

resulting simple graph without crossings, we can then insert the loops and multiple edges.

CHAPTER 11. PLANARI? 218

A B temove A B A insert
loops draw loops

and without and

multiple crossings multiple

edges edges

D G D G G B C

11.3 EULER’S FORMULA

Every plane drawing of a planar graph divides the plane into a number of regions. For

example, any plane drawing of K, divides the plane into four regions—three triangles,

and one ‘infinite region’.

4

; 4 4

DEFINITIONS. /fGisa planar graph, then any plane drawing of G divides the plane

into regions, called faces. One of these faces is unbounded, and is called the infinite

face. If f is any face, then the degree of f (denoted by deg f) is the number of edges

encountered in a walk around the boundary of the face f. If all faces have the same degree

(g, say), then G is face-regular of degree g.

For example, if G is the graph in diagram (a) below, then G has four faces, f, being

the infinite face. An alternative drawing, in which f) is the infinite face, is given in

diagram (b). In each drawing we have

deg f, =3, deg f, =4, deg f,=9, deg f,=8.

(a)

Note that the sum of all the degrees of the faces is equal to twice the number of edges in
the graph, since each edge either borders two different faces (such as the edges bg, cd, and
cf) or occurs twice when we walk around a single face (such as the edges ab and gh). This

11.3 EULER’S FORMULA 219

‘

result can be regarded as a sort of handshaking lemma for the faces of a planar graph (a
face-shaking lemma?), and we shall refer to it as the handshaking lemma for planar graphs.

There is a remarkable formula that relates to the number of vertices, edges, and faces
of a planar graph. If n, m, and f denote the numbers of vertices, edges, and faces of a
connected planar graph, then we get n — m + f = 2. This result is true for any plane
drawing of a connected planar graph, and is known as Euler’s formula. In particular, it
tells us that all plane drawings of a connected planar graph have the same number of
faces—namely, 2 + m—n. In our proof of Euler’s formula, we start with a spanning tree
and build up the graph edge by edge.

THEOREM 11.1 (EULER’S FORMULA). Let G be a connected planar graph, and
let n,m, and f denote, respectively, the numbers of vertices, edges, and faces in a plane
drawing of G. Then

n—-m+f=2.

Proof Any connected graph G can be constructed by taking a spanning tree and
adding edges to it, one at a time, until the graph G is obtained. We prove the result by
showing that:

a. fora spanning tree,n—m-+ f =2;

b. at each stage, the addition of an edge does not change the value of n—m +f.

First, we prove a. If T is any spanning tree of G, we may draw T in the plane—for exam-

ple,

Since T has n vertices and n—1 edges, and there is only | face, we have

n—-m+f =n-—(n-1)+1=2,

as required.

We now prove b. Whenever we add an edge, such an edge must either connect two dif-

ferent vertices, or connect a vertex to itself (if itis a loop), but in both cases it cuts an ex-

isting face in two, as shown

220 CHAPTER 11. PLANARITY

This leaves n unchanged, increases m by 1, and increases f by 1, thereby leaving

n—m-+f unchanged. Since n — m + f= 2 throughout the process, the result follows. 0

Historical note. This result is often called Euler’ s polyhedral formula, since it relates the

numbers of vertices, edges, and faces of a polyhedron. (For example, a cube has eight vertices,

twelve edges and six faces, and 8 — 12 + 6 = 2.) It appeared in this form in a letter from Euler to

the number theorist Christian Goldbach in November 1750. (Goldbach is chiefly remembered for

Goldbach’ s conjecture, that every even number n 2 4 can be written as the sum of two prime

numbers.)

At this time Euler was unable to prove the result, but he presented a proof two years later.

Unfortunately, Euler’s proof was deficient, but a correct proof for polyhedra was obtained by A.

M. Legendre in 1794. The corresponding formula for graphs drawn in the plane was first obtained

by A.-L. Cauchy in 1813. (It is sometimes claimed that René Descartes obtained the formula around

the year 1640; in fact, Descartes obtained an expression for the sum of the angles of all the faces

of a polyhedron, from which the required formula can be deduced, but Descartes apparently never

made this deduction.)

Using Euler’s formula, we can obtain a number of useful results. In particular, we can

give alternative proofs of the fact that Ks and K3,3 are non-planar.

COROLLARY 1. Let G be aconnected planar simple graph with n (2 3) vertices and

m edges. Thenm $ 3n-6.

Proof For aplane drawing of G with f faces, it follows from the handshaking lemma

for planar graphs that 2m > 3f (since the degree of each face of a simple graph is at least

3), so that f< sm. Combining this with Euler’s formula, f= m—n +2, we getm—n+2

< am, and hence m < 3n-6.0

Example: K; is non-planar.

Proof Suppose that Ks is a planar graph. Since Ks has five vertices and ten edges, it

follows from Corollary | that 10 < (3 x 5) —6 = 9. This contradiction shows that Ks; is

non-planar. 0

Since K3,3 has six vertices and nine edges, and it is true that 9 < (3 x 6) -6 = 12, we

cannot use Corollary | to prove that K33 is non-planar. However, we can use the following

corollary.

COROLLARY 2. Let G be a connected planar simple graph with n vertices and m

edges, and no triangles. Then m < 2n—-4.

Proof For aplane drawing of G with f faces, it follows from the handshaking lemma

for planar graphs that 2m 2 4f (since the degree of each face of a simple graph without
triangles is at least 4), so that f< sn. Combining this with Euler’s formula f= m—n + 2,

we getm—n+2<-m, and hence m < 2n —4.0

Example: K,., is non-planar.

11.3 EULER'S FORMULA 221

‘

Proof Suppose that K3, is a planar graph. Since K3,3 has six vertices and nine edges

and no triangles, it follows from Corollary 2 that 9 < (2 x 6) —4 = 8. This contradiction

shows that K33 is non-planar. 0

We can also prove the following result which is obtained in a similar way.

COROLLARY 3. Let G be aconnected planar simple graph. ThenG contains at least

one vertex of degree 5 or less.

Proof By Corollary 1, we getm<3n-—6. Suppose that every vertex inG has degree 6

or more. Then we have 2m 2 6n (since 2m is the sum of the vertex-degrees), and som = 3n.

This contradiction shows that at least one vertex has degree 5 or less. 0

We now use Euler’s formula to show why there are only five regular convex

polyhedra—namely, the tetrahedron, cube, octahedron, dodecahedron, and icosahedron

(see page 38); a polyhedron is convex if the straight line segment joining any two of its

vertices lies entirely within it. We use the fact that we can represent any polyhedron as

a planar graph by projecting it down onto a plane:

This method of projection is called stereographic projection, and was used by A.-L.

Cauchy in 1813 in his paper Recherches sur les polyédres (Researches on polyhedra). In

this paper he derived the planar graph formulation of Euler’s formula, and used it to prove

that there are only five regular convex polyhedra.

THEOREM 11.2. There are only five regular convex polyhedra.

Proof We prove this theorem by showing that there are only five connected planar

graphs G with the following properties:

a. Gis regular of degree d (where d 2 3);

222 CHAPTER 11. PLANARITY

b. any plane drawing of G is face-regular of degree g (where g 2 3).

Let n, m, and f be the numbers of vertices, edges, and faces of such a planar graph G.

Then, by properties a and b, we get

m = idn=3ief, giving n = 2m/d -and f= 2m/g.

Since G is a planar graph, Euler’s formula holds—that is, n —m + f= 2. Thus

2m/d —m + ane rad)

which can be written

Vd—1 + I/g = 1m.

Since 1/m> 0, it follows that

I/d+l/g> 3.

Each of d and g is at least 3, so each of 1/d and 1/g is at most ~ So,

and we conclude that d < 6 and g < 6. This means that the only possible values of d and

g are 3, 4, and 5. However, if both d and g are greater than 3, then

I/d+1/gs ; +7=55

which is a contradiction. This leaves us with just five cases:

—7+4=4,som=6,; Casel: d=3,g=3.We get Ilm=3-5+5

it follows that n = 8 and f = 4— this gives the tetrahedron.

Case2: d=3,g=4. We get I/m=5-5+7=7,80m= 12;

it follows that n = 8 and f= 6—this gives the cube.

Case 3: “d= 3) = 5 >We get Ijm=l-ftiss , 80.m= 30;

it follows that n = 20 and f= 12—this gives the dodecahedron.

Case4: d=4,g=3. We get I/m=5-5+7=7,S0m= 12

it follows that n = 6 and f= 8—this gives the octahedron.

Case5: d=5,g=3. We get I/m = 2- 5ty=y Som=30;

it follows that n = 12 and f= 20—this gives the icosahedron. 0

11.4 TESTING FOR PLANARITY 223

11.4 TESTING FOR PLANARITY

The restrictions on the number of edges in a planar graph given in Corollaries 1 and 2,

and their generalizations in Problems 11.12 and 11.13, are often useful for showing that

a graph is not planar. For example, we used them to show that K; and K,, are not planar.

Unfortunately, this method does not work the other way round—there are many graphs

which satisfy these inequalities but which are not planar. Because of this, we now turn

our attention to other ways of determining-whether or not a given graph is planar.

We begin with some simple, but important, observations:

a. not all graphs are planar: in particular, we have already seen that the graphs

K, and K;, are not planar;

b. ifGisa planar graph, then every subgraph of G is planar, this is often stated

in the following form:

c. if G contains a non-planar graph as a subgraph, then G is non-planar: for

example, the following graphs are non-planar, since the first contains K; and

the second contains K; 3.

“ES ®
The next two observations involve the insertion of vertices of degree 2 into the edges

of a graph G, as shown in the diagram

u U

inser went vertices

ai dense: degree 2

is w

G a subdivision of G

Any graph formed from G in this way is called a subdivision of G. Since the insertion

of a vertex of degree 2 cannot affect the planarity or non- planarity of a graph, we deduce

the following result:

d. if Gis a planar graph, then every subdivision of G is planar; this is often

stated in the following alternative form:

e. if G is a subdivision of a non- planar graph, then G is non-planar: for

example, the following graphs are non- planar, since the first is a subdivision

of K, and the second is a subdivision of K;,;:

224
CHAPTER 11. PLANARITY

BY DEX
It follows from observations c ande that if G is any graph which contains a subdivision

of Ks or K33 as a subgraph, then G must be non-planar. For example, the following graph

is non-planar, since it contains a subdivision of Ks as a subgraph:

By now you may be wondering why we are so concerned with Ks and K33 and their

subdivisions. The reason is that a// non-planar graphs can be obtained in the way we have

just described—namely, by adding vertices and edges to a subdivision of Ks or K33. In

other words, every non-planar graph contains as a subgraph a subdivision of Ks or K33.

This remarkable result appeared in 1930, and is due to the Polish mathematician

K. Kuratowski. We state it formally here, but omit the proof which is rather long and

complicated.

THEOREM 11.3 (KURATOWSKI’S THEOREM). _ A graph is planar if and only if

it does not contain a subdivision of Ks or K33 as a subgraph.

A similar characterization of planar graphs involves the notion of ‘contracting’ an

edge vw. This is done by bringing the vertex w closer and closer to v until they coincide,

and then coalescing multiple edges into a single edge, as follows:

u

Bring w conlescs: coalesce
v Ww > vw

closer tov v menu w multiple
edges

a

A contraction of a graph is the result of a sequence of edge-contractions. For example,

K, is a contraction of the Petersen graph, since it is the result of contracting each of the

five ‘spokes’.

eeneen!

spokes?

=

*

11.4 TESTING FOR PLANARITY 225

THEOREM 11.4. A graph is planar if and only if it does not contain a subgraph which

has Ks or K33 as a contraction.

The importance of Theorems 11.3 and 11.4 is that they give us necessary and sufficient

conditions for a graph to be planar in purely graph-theoretic terms (subgraph, subdivision,

K33, etc.) rather than geometrical terms (crossing, drawing in the plane, etc.). They also

provide a convincing demonstration that a given graph is non-planar, if we happen to

spot a subgraph which is a subdivision of Ks or K33, or a subgraph which contracts to Ks

or K33. What they do not do is to provide an easy way of showing that a given graph is

planar, since this would involve looking at a large number of subgraphs and verifying

that none of them is a subdivision of, or contracts to, Ks or K33. For this reason, no

currently used algorithm for testing the planarity of a graph uses these two theorems.

We next consider a concept which will be needed in Chapter 14. The thickness of a

graph G is defined to be the minimum number of planar graphs which can be superim-

posed to form the given graph G, and is denoted by ¢#(G). For example, the thickness of

any planar graph is 1, whereas the thickness of Ks or K33 is 2, since Ks can be formed by

superimposing

and >

and K, can be formed by superimposing

and

In general, there is no known formula which gives the thickness of any given graph.

However, we can easily obtain a lower bound for t(G) which very often gives the correct

value. We restrict our attention to simple graphs, since loops and multiple edges can be

dealt with as shown earlier. We adopt the following notation.

NOTATION. /fx is any positive number, then

|x| is the ‘next integer down’ from x

(for example, |] = 3, [6.2)=6,14)=4),

and |x |is the ‘next integer up’ from x

(for example, 21=4,[6.2]1=7,[41=4).

226 CHAPTER 11. PLANARITY

Note that if x is an integer, then Lx | = [x] ee

The connection between these functions is given by the equation

[a/b |=L(atb-1)/b 1.

for example, | 7/5|=2 = Lq4s-1y/5I =L11/51.

We can now prove the following result.

THEOREM 11.5. Let G be a connected simple graph with n vertices and m edges.

Then

(a) (G) =| m/3n-6)1;
(b) ifG has no triangles, t (G) = [m/(2n-4) |.

Proof (a) It follows from Corollary 1 that the number of edges in each planar

subgraph of G is at most 3n — 6. Since there are m edges altogether, the number of planar

graphs must be at least m/(3n — 6). However, the number of planar graphs is an integer,

and sot(G) = [m / (3n- 6) |.

(b) This part of the proof is identical to that in (a), except that we use Corollary 2.0

Example 1: If G=K,, then m= 5n(n-1). It follows from part(a) of Theorem 11.5 that

n(n—1)/2 K,)>
AE) = eaicG

We can simplify this by writing

[n(n-1)/2 (3n-6) 1 =L{n(n-1) + 2(3n-6)-1}/2 (3n-6) |
=| (n°+5n-14)/2 (3n-6)] =L(n+7)(n-2)/6 (n-2J =L(n+7)/6 |.

Thus, (K,) 2L\(n+7).
It can be shown that t(K,,) = Li~n+7) J for all n, except for n = 9 and n= 10, in which case

HK) =3:

Example 2: If G = K,,, then m = rs and G has no triangles. It follows from part (b) of
Theorem 11.5 that

(K,,) =I rs / (2r + 2s—4) |.

It is not known whether this inequality is always an equality, but it is certainly so for
complete bipartite graphs with less than 48 vertices.

11.5 DUALITY 227

11.5 DUALITY

We conclude this chapter by introducing the idea of duality. This concept will be of im-
portance when we discuss the coloring of maps in Chapter 13.

Given a connected planar graph G, we shall define a corresponding dual graph G*.
its construction is in three stages:

1. first take a plane drawing of G;

2. choose one point inside each face of the plane drawing—these points are the

vertices of G*;

3. for each edge e of the plane drawing, draw a line connecting the vertices of

G* on each side of e.

This procedure is illustrated as follows: the vertices of G* are represented by small cir-

cles, and the edges of G* are indicated by dashed lines:

Note that each plane drawing of G gives rise to just one dual graph G*. However,

different plane drawings of G can give rise to different dual graphs G*; an example which

illustrates this is given in Problem 11.34. We shall always assume that we have already

been presented with a particular plane drawing of G. There is a simple relationship

between the number of vertices, faces and edges of a graph and its dual. In the above

example, G has five vertices, four faces (including the infinite face), and seven edges,

and G* has four vertices, five faces, and seven edges. In general, we have the following

simple result, which we ask you to prove in Problem 11.36.

THEOREM 11.6. /fGisaconnected planar graphwithn vertices, f faces and m edges,

then G* has f vertices, n faces and m edges.

Note also that if G is aconnected planar graph, then so is G*, and we can thus construct

(G*)*, the dual of G*. However, a glance at the above figure shows that the construction

which gives rise to G* from G can be reversed to give G from G*. It follows that (G*)*

is isomorphic to G, and that there really is a duality between G and G*.

Using this duality, we can draw up a list of dual concepts; for example,

an edge of G corresponds to an edge of G*
a vertex of degree kinG correspondsto a face of degree k in G*
afaceofdegreekinG — correspondsto a vertex of degree k in G*

CHAPTER 11. PLANARITY

We can continue this list as follows:

a cycle of G corresponds to a cutset of G*

a cutset of G corresponds to acycle of G*

These last correspondences are most easily seen from the following figure. To obtain the

first correspondence, we take a cycle in G (with solid edges); the corresponding edges of

G* (the dashed edges) from a cutset whose removal separates the set of vertices inside

the cycle from those outside. To obtain the second correspondence, we simply inter-

change the roles of G and G*.

We can use these correspondences to obtain new results from old ones. For example,

it follows from Corollary 1 to Euler’s formula that

if G is a connected planar graph with n vertices and m edges, and with no loops or

multiple edges, then m < 3n—6.

Since loops (cycles of degree 1) and pairs of multiple edges (cycles of degree 2) corre-

spond to vertices of degree | and 2 in the dual graph, we deduce from the above corre-

spondence that

if G is a connected planar graph with f faces and m edges, and with no vertices of

degree 1 or 2, then m < 3f — 6;

conversely, we can dualize this last result to obtain the previous one. Similarly, we know

from Corollary 3 to Euler’s formula that

if G is a simple connected planar graph, then G has a vertex of degree 5 or less.

Dualizing this result, we deduce that

if G is a connected planar graph with no vertices of degree 1 or 2, then G has a face

of degree 5 or less.

Our final example was mentioned at the beginning of this section; although it uses con-

cepts from the next two chapters, all you need to know here is that a map is a connected

planar graph with no bridges. The celebrated four-color theorem can then be stated as

follows.

THE FOUR-COLOR THEOREM FOR MAPS. The countries (faces) of any map

can be colored with four colors in such a way that neighboring countries are differently

colored.

PROBLEMS 229

4

Dualizing this result, we get the following result on vertex-colorings, a topic to be dis-

cussed in Chapter 12:

THE FOUR-COLOR THEOREM FOR PLANAR GRAPHS. The vertices of any

connected planar graph can be colored with four colors in such a way that adjacent

vertices are differently colored.

PROBLEMS

Planar Graphs

11.1 There was once a king with five sons. In his will he stated that after his death

each son should build a castle, and that the five castles should be connected in

pairs by non-intersecting roads. Can the terms of the will be satisfied? (This is

a form of the ‘Mébius problem’, first stated around 1840.)

611.2 By finding a plane drawing, show that each of the following graphs is planar:

y x y x y ¥

(a) (b) (c)

11.3. By finding a plane drawing, show that the following graph is planar:

©11.4 Give an argument, similar to that used for K,, on page 217, to show that the

complete graph K; is not planar.

©11.5 Classify the following statements as TRUE or FALSE, giving your reasons in

each case:

a. every subgraph of a planar graph is planar;

b. every subgraph of a non-planar graph is non-planar,

c. every graph which contains a planar graph (as a subgraph) is planar;

d. every graph which contains a non-planar graph is non-planar.

11.6 a. For which values of n is the complete graph K,, planar?

b. For which values of r and s (with r < s) is the complete bipartite graph K,,,

planar?

230 CHAPTER 11. PLANARITY

11.7. Find plane drawings of the graph in diagrams (a) and (b) on page 218 in which

a. fis the infinite face;

b. f, is the infinite face.

©11.8. Verify the ‘handshaking lemma for planar graphs’ (given on pages 218-219)

for each of the following graphs:

(c)

Euler’s Formula

©11.9. Verify Euler’s formula for each of the graphs in Problem 11.8.

11.10. Verify Euler’s formula for each of the five Platonic graphs:

ATI A ® A
tetrahedron cube octahedron dodecahedron icosahedron

11.11. Verify Euler’s formula for:

a. the ‘wheel’ with k spokes (the following diagram illustrates the case k = 5);

b. the complete bipartite graph K,, ;

c. the graph formed by the vertices, edges and faces of a k x k chessboard.

11.12. (a) Let G be a connected planar simple graph with n (2 3) vertices and m edges

whose shortest cycle length is 5. Use the method of proof of Corollaries 1 and

2 to prove that

ms 2 (n—2).

(b) Use this result to show that the Petersen graph is non-planar.

PROBLEMS 231

4

11.13. If G is a graph whose shortest cycle length is g, then we say that the girth of G

is g. Use the method of proof of Corollaries 1 and 2 to prove that, if G is a sim-

ple connected planar graph with n (< 3) vertices, m edges, and girth g, then

mS g(n-2)/(g—2).

Prove that this inequality is an equality if each face of G has degree g.

©11.14. Give examples of:

a. asimple planar graph in which every vertex has degree 5;

b. a planar graph with minimum vertex-degree 3, in which every face has degree 5;

c. aplanar graph in which every vertex has degree 6;

d. a planar graph in which every face has degree 6.

$11.15. Let G be a connected planar graph with n vertices and f faces in a plane

drawing of G. Show that

a. if m< 12, and if G is a simple graph, then G contains at least one vertex of

degree 4 or less;

b. if f< 12, and if G has no vertices of degree 1 or 2, then G contains at least

one face of degree 4 or less.

11.16. a. Give an example of a polyhedron all of whose faces are pentagons and

hexagons.

b. Use Euler’s formula to prove that any such polyhedron must have at least 12

pentagonal faces.

c. Prove that if, in addition, there are exactly three faces meeting at each vertex,

then the polyhedron must have exactly 12 pentagonal faces.

d. What does this have to do with the game of soccer?

11.17. a. Give anexample ofa polyhedron all of whose faces are squares and hexagons.

b. Use Euler’s formula to prove that any such polyhedron must have at least six

square faces.

c. Prove that if, in addition, there are exactly three faces meeting at each vertex,

then the polyhedron must have exactly six square faces.

11.18." Let G be a connected simple planar graph which is regular of degree 3, and let

g, denote the number of faces with face-degree k in a plane drawing of G.

Show that

12 =3g, + 29, + 85-87 - 283 — 389--.-
Use this result to deduce part c of Problems 11.16 and 11.17.

11.19.'a. Prove that there exists no graph G with 11 vertices for which both G and its

complement G are planar.

b. Give an example of a graph G with eight vertices for which both G and G are

planar.

232 CHAPTER 11. PLANARITY

Testing for Planarity

©11.20. Use Kuratowski’s theorem to prove that the following graph is non-planar:

11.21. Prove that the Petersen graph is non-planar

a. by using Theorem 11.4;

b. by using Kuratowski’s theorem.

(Hint for part b.: Delete the two ‘horizontal’ edges.)

©11.22. Which of the following graphs on the graph cards (see Chapter 1) are planar?

(a) card 181; (b) card 195; (c) card 203; (d) card 207.

For any that are planar; give a plane drawing and verify Euler’s formula;

for any that are non-planar, verify Theorem 11.3 by finding appropriate

subgraphs.

11.23. Repeat Problem 11.22 for the following graph cards:

(a) card 186; (c) card 201; (e) card 205;

(b) card 197; (d) card 202; (f) card 206.

11.24. We say that two graphs are homeomorphic if each is a subdivision of a third

graph. Let n, and m, denote the numbers of vertices and edges in a graph G,,

and let n, and m, denote the numbers of vertices and edges in a graph G).

Prove that if G, and G, are homeomorphic, then m, — m, = n, — no.

©11.25. By showing how three planar graphs can be superimposed to form Ky, show

that ¢(K,) < 3. [In fact, t(K,) = 3.]

11.26. a. By using Theorem 11.5, show that the 4-cube Q, is non-planar.

b. Find two planar graphs which can be superimposed to form Q,, and hence

show that the thickness of Q, is 2.

11.27. By splitting K,,,, into a number of copies of K,,, show that if r is even, then

(K,.) S sr. Using this result, together with Theorem 11.5, prove that, if r is

even and s > +(r-2)’, then ¢ (K,,) =r.

PROBLEMS 233

4

11.28.' The crossing number cr(G) of a graph G is the smallest number of crossings

that are possible in a plane drawing of G (where the word ‘crossing’ refers to

the crossing of exactly two edges).

a. Show that cr(K;) = cr(K3,) = 1.

b. Draw the complete graph K, with as few crossings as you can.

c. Find the crossing numbers of the Petersen graph and the four-cube Q,.

d. Ifrands are both even, show that

cr(K,,) $ 3 rs(r—2)(s—2).

(Hint for part d: Place the r vertices along the x-axis, with an equal number on

each side of the origin, and place the s vertices along the y-axis in a similar

way—now count the crossings.)

11.29.'a. Draw each of the following graphs on a torus (that is, a doughnut) in such a

way that there are no crossings:

1. the complete graph K;;

2. the complete bipartite graph K, 3;

3. the Petersen graph.

b. Make a conjecture for the value of n — m + f for any non-planar connected

graph with n vertices, m edges, and f faces that can be drawn without crossings

on a torus, and check your conjecture for Ks, K33, and the Petersen graph.

11.30." Draw the complete graph K, on a torus with as few crossings as you can.

Duality

11.31. Draw the dual of each of the following graphs:

(a) (b) (c)

©11.32. Find the duals of each of the following graphs of your graph cards (see Chap-

ter 1), and give the corresponding graph card number in each case:

(a) card 50; (b) card 174; (c) card 189.

11.33. Show that the graph on graph card 188 can be drawn in the plane in two differ-

ent ways, but that the corresponding dual graphs are isomorphic.

234

11.34.

11.35.

611.36.

11.37.

11.38.

11.39."

CHAPTER 11. PLANARITY

The following diagrams show two different plane drawings of the same planar

graph. Show that their duals are not isomorphic.

Show that the dual of the cube graph is the octahedron graph, and that the dual

of the dodecahedron graph is the icosahedron graph.

Prove Theorem 11.6.

Let G be a connected plane graph. Prove that G is bipartite if and only if its

dual G* is Eulerian.

Dualize the statements of the following problems above:

(a) Problem 11.16; (b) Problem 11.17; (c) Problem 11.18.

How would you define the dual of a graph (such as K; or K;) drawn on the

surface of a torus?

CHAPTER 12

COLORING GRAPHS

In this chapter we consider a number of problems involving the coloring of the vertices

or edges of a graph. This leads, in the next chapter, to a discussion of map-coloring prob-

lems, including the famous four-color problem mentioned in the Introduction to Part I.*

12.1 VERTEX-COLORINGS

We start with some definitions.

DEFINITIONS. Let G be a graph without loops. A k-coloring of G is an assignment

of k colors to the vertices of G in such a way that adjacent vertices are assigned different

colors. If G has a k-coloring, then G is said to be k-colorable. The chromatic number

of G, denoted by x(G), is the smallest number k for which G is k-colorable.

3 1 1 2

wwywwe
2 1 3 4 3 4 3 2

(a) (b) (c) (d)

*Materials in this chapter are reprinted, with permission, from The Proof of the Four-Color Theorem by

Kenneth Appel, in New Scentist, Vol. 72, No. 1023, 21 October 1976, p. 155.

235

236 12.1 VERTEX-COLORINGS

We usually display a k-coloring by writing the numbers 1, 2, 3,..., & next to the

appropriate vertices. For example, diagrams (a), (b), and (c) above illustrate a 3-coloring, a

4-coloring and a 5-coloring of a graph G with five vertices; diagram (d) is not a permissible

coloring, since one of the edges has color 2 at both ends. It follows that ¥(G) < 3, since G has

a 3-coloring [diagram (a)]. On the other hand, ¥(G) 2 3, since G contains three mutually

adjacent vertices (forming a triangle), which must be assigned different colors. So x(G) = 3.

Note that the above definitions are given,only for graphs without loops, since in any

k-coloring the vertices at the ends of each edge must be assigned different colors, and so

the vertex at the ends of a loop would have to be assigned a different color from itself!

We may also assume that there are no multiple edges, since the presence of one edge

between two vertices forces these vertices to be colored differently, and the addition of

further edges between these vertices is then irrelevant to the coloring. We can therefore

restrict our attention to simple graphs.

There is a simple method for obtaining a lower bound for ¥(G)—namely, look for the

largest complete subgraph in G. For example, the following graph contains the complete

graph K4, and so ¥(G) 2 4:

To obtain an upper bound for ¥(G), we note that if G has n vertices, then ¥(G) < n.

However, this upper bound is generally very poor, and we can improve it considerably

if we know the largest vertex-degree in G, as the following theorem shows.

THEOREM 12.1. /fGis a simple graph whose maximum vertex-degree is d, then

x(G)sd+1.

Proof We prove this result by mathematical induction on n, the number of vertices

of G. When n = 1, the graph is Ki, for which x¥(G) = 1 and d= 0, and the result is true.

Now we show that if the result is true for all graphs with less than n vertices, then it must

also be true for all graphs with n vertices. So suppose that the result is true for all graphs with

less than n vertices. Let G be a graph with n vertices and maximum vertex degree d, and let

H be the graph obtained from G by removing any vertex v and the edges incident to v:

remove u
—>

CHAPTER 12. COLORING GRAPHS 237

‘

Since H has less than n vertices and maximum vertex-degree d (or less), it follows from

the induction assumption that y(H) < d + 1—that is, H is (d+1)-colorable. We can now

obtain a (d+1)-coloring of G by coloring v with any color not assigned to the (at most d)

vertices adjacent to v. (Note that these vertices involve at most d colors.) It follows that

x(G) < d+ 1, and so the result is true for graphs with n vertices. This completes the

proof. 0

With a lot more effort, we can prove the following slightly stronger theorem, which

was proved by L. Brooks in 1941; we omit the proof.

THEOREM 12.2 (BROOKS’ THEOREM). Let G be a connected simple graph

whose maximum vertex-degree is d. If G is neither a cycle graph with an odd number of

vertices, nor a complete graph, then x(G) < d.

To illustrate the use of Brooks’ theorem, we consider the graph G on page 236. Since

G contains the complete graph K,, we observed that x¥(G) 2 4. On the other hand, G

satisfies the conditions of Brooks’ theorem (with d = 4), and so x(G) < 4. It follows that

4(G) = 4.
Unfortunately, the situation is not always as satisfactory as this. In particular, if G

contains a few vertices of high degree, then the bound given by Brooks’ theorem may be

very poor. For example, if G is the bipartite graph K1,100, then x(G) = 2, whereas Brooks’

theorem gives us the upper bound x(G) < 100.

12.2 CHROMATIC POLYNOMIALS

It follows from the above discussion that the lower and upper bounds do not always give

a good estimate for the chromatic number. In such cases we must look for other ways of

finding ¥(G). One method is to look at all possible ways of coloring the vertices, increas-

ing the number of available colors until a valid coloring is obtained. Unfortunately, this

is a hopelessly time-consuming way of proceeding. In fact, all known algorithms for

finding the chromatic number of a graph are somewhat inefficient, and may take a long

time to implement. This is in contrast to, say, the greedy algorithm for solving the mini-

mum connector problem. However, there are algorithms which are substantially better

than trying all possibilities, and we consider one of these now. It involves the idea of a

chromatic polynomial, which is of some interest and importance in its own right.

DEFINITION. Let G be a simple graph, and let Pc(k) be the number of ways of

coloring the vertices of G with k colors in such a way that no two adjacent vertices are

assigned the same color. The function Po(k) is called the chromatic polynomial of G.

Note that, although we have called P¢(k) the chromatic polynomial of G, it is not at

all clear from the above definition why the number of k-colorings of G must necessarily

by a polynomial in k. Before explaining this, we look at a few examples.

Example 1: If G is the complete graph K;, then the top vertex can be assigned any of the
k

238 12.2 CHROMATIC POLYNOMIALS

colors, the left-hand vertex can be assigned any of the k—1 colors not assigned to the top

vertex, and the right-hand vertex can then be assigned any of the k—2 colors not assigned to

the other two vertices. The chromatic polynomial of K; is therefore k(k—1) (k—-2). We can

extend this immediately to give the following result:

if G is the complete graph K,, then P,(k) = k(k—-1) (k-2) ++ + (k-n+1).

k

k k-1 k-l
@—___2—___-®

P

k-1 Kae :

K;

Example 2: If G is the path graph P, , then the left-hand vertex can be assigned any of

the k colors, the middle vertex can be assigned any of the k—1 colors not assigned to the

left-hand vertex, and the right-hand vertex can then be assigned any of the k—1 colors not

assigned to the middle vertex. The chromatic polynomial of P; is therefore k(k—1)’. We

can extend this to give the following result:

if G is any tree withn vertices, then P,(k) = k(k-1)"".

It follows from this result that non-isomorphic graphs can have the same chromatic

polynomial.

We can easily calculate the chromatic number of a graph if we know its chromatic

polynomial, since the chromatic number of a graph G is the smallest positive integer k

for which Pg (k) > 0. So if we can find a routine method for determining the chromatic

polynomial, then we can derive an algorithm for determining the chromatic number.

In order to motivate such a method we observe that

k(k-1) (k-2) = k(k-1)° — k(K-1)

—that is,

Fe (k) = Pg: (k) — Fe» (k),

where G, G’, and G” are the following graphs:

G Gi Gu

Note that G’ is obtained from G by deleting the edge e. Also, G” is obtained from G by

CHAPTER 12. COLORING GRAPHS 239

4

contracting the edge e (see Chapter 11). This idea suggests the following result, known

as the deletion-contraction theorem.

THEOREM 12.3 (THE DELETION-CONTRACTION THEOREM). Let G be a
simple graph, and let G’ and G” be the graphs obtained from G by deleting and

contracting an edge e. Then

Po (K) = Park) Pe (W).
Proof Let e = vw be the edge in question, and consider the possible k-colorings of

G’. The number of k-colorings of G’ in which v and ware assigned different colors remains

unchanged if the edge e is drawn joining v and w, and is therefore equal to the number

of k-colorings of G. The number of k-colorings of G’ in which v and w are assigned the

same color remains unchanged if the vertices v and w are made to coalesce, and is

therefore equal to the number of k-colorings of G’”’. The total number of k-colorings of

G’ is therefore

Po (k) + Pe (k),

as required. 0

The importance of the deletion-contraction theorem lies in the fact that it expresses

the chromatic polynomial of a graph G in terms of the chromatic polynomials of two

graphs with fewer edges. By continuing this process as often as necessary, we can

eventually express the chromatic polynomial of G in terms of chromatic polynomials we

can calculate. We illustrate this process in the following example.

Notation For convenience, we draw the graph itself, rather than its chromatic

polynomial; thus the above example can be expressed in the form:

Example: We use this deletion-contraction process to calculate the chromatic polyno-

mial of the following graph G, and hence find x(G):

240 12.3 EDGE-COLORINGS

We have

K(K=Wtk 2k =3)

and

ey ey,
k(k-1)(k - 2) k(k-1)?(k-2)

It follows that

Pek) = [k(K-1)°(K-2) — k(K-1)?(K-2)] — k(K-1)(K-2)(K-3)

= k(k-1)(k-2)(K?-4k45)

= 1 —7k + 19% — 23% + 10k.

Since P,(1) = 0, P,(2) = 0, and P,(3) = 12, we have x(G) = 3.

It is now clear why the number of k-colorings of a graph G is always a polynomial.

By continuing the above deletion-contraction process until there are no edges left, we

eventually obtain the chromatic polynomial of G by adding and subtracting the chromatic
polynomials of null graphs. However, the chromatic polynomial of the null graph N,, is
simply k”, and so the chromatic polynomial of G is obtained by adding and subtracting
terms of this form, and is therefore a polynomial.

12.3 EDGE-COLORINGS

Again, we start with some definitions.

DEFINITIONS. Let G be a graph without loops. A k-edge-coloring of G is an
assignment of k colors to the edges of G in such a way that any two edges meeting at a
common vertex are assigned different colors. If G has a k-edge-coloring, then G is said
to be k-edge colorable. The chromatic index of G, denoted by ¥/(G), is the smallest
number k for which G is k-edge-colorable.

CHAPTER 12. COLORING GRAPHS 241

We usually display a k-edge-coloring by writing the numbers 1, 2, 3,..., k next to

the appropriate edges. For example, diagrams (a), (b), and (c) above illustrate a 4-edge-

coloring, a5-edge-coloring, and a 6-edge-coloring of a graph G with eight edges; diagram

(d) is not a permissible coloring, since two of the edges colored 2 meet at a common

vertex. It follows that y’(G) <4, since G has a 4-edge-coloring [diagram (a)]. On the other

hand, x’(G) >4, since G contains four edges meeting at acommon vertex (that is, a vertex

of degree 4), which must be assigned different colors. So ¥’(G) = 4.

Note that the above definitions are given only for graphs without loops, since in any

k-edge-coloring the edges meeting at a vertex must be assigned different colors. On the

other hand, we often wish to consider graphs with multiple edges, since the introduction

of multiple edges can significantly alter the chromatic index.

There is an obvious lower bound for y’(G)—namely, if d is the largest vertex-degree

in G, then y’(G) = d. To obtain an upper bound for x’(G), we note that if G has m edges,

then x’(G) < m. However, this upper bound is very poor, and has been improved

considerably by V. G. Vizing and by C. E. Shannon. For simple graphs, Vizing proved

the following very strong result in 1963, which we state without proof:

THEOREM 12.4 (VIZING’S THEOREM). /fG is a simple graph whose maximum

vertex-degree is d, then

d<x(G)<d+l.

This remarkable result tells us that if G is any simple graph, then the chromatic index

of G is either d or d+1. This gives us a way of classifying simple graphs into two

classes—those for which x’(G) = d, and those for which x’(G) = d+1. Both possibilities

can occur, but it is not known in general which graphs belong to which class.

Before investigating this problem of classifying simple graphs into those with ¥’/(G) =d

and those with y’(G) = d+1, we state (without proof) two results which give upper bounds

for the chromatic index of a graph with multiple edges. The first of these is an extension of

Vizing’s theorem.

THEOREM 12.5 (VIZING’S THEOREM—EXTENDED VERSION). /f G is a

graph whose maximum vertex-degree is d, and if h is the maximum number of edges

joining a pair of vertices, then

d<y(G)<dth.

For example, if G is the following graph, then d= 6 and h = 3, and so these bounds are

242 12.3 EDGE-COLORINGS

6<x(G) <9; in fact, x’(G) = 8 for this particular graph. Note that Theorem 12.5 reduc-

es to the earlier version of Vizing’s theorem when G is a simple graph.

The second upper bound for the chromatic index of a graph was obtained by Shannon

in a paper on electrical networks.

THEOREM 12.6 (SHANNON’S THEOREM). /fG is a graph whose maximum ver-

tex-degree is d, then

d<y(G) <3.

For example, if G is the above graph, then d= 6, and so these bounds are 6 < y¥’(G) < 9. If

d is odd, then sd is not an integer. In this case we can strengthen the bound to sd - z

We now return to the problem of classifying simple graphs into two classes—those with

x/(G) = d and those with y’/(G) = d+1. For some types of graph, this question is very

straightforward—for example, it can easily be checked that for the cycle graphs C,, (n 2 3),

we have :

/(C,,) = 2 ifn is even, and x'(C,,) = 3 ifn is odd.

A similar result holds for complete graphs K,,.

THEOREM 12.7. For the complete graph Ku,

x’ (K,) =n-1 ifn is even, and y’ (K,) =n ifn is odd.

Proof Since each vertex has degree n-1, it follows from Vizing’s theorem that x’

(K,) is either n—1 or n.

If n is odd, then the maximum number of edges that can be assigned the same color is
s(n-1), Since otherwise two of these edges meet at acommon vertex. However, K,, has exactly

5n(n—1) edges, so the number of colors must be at least n. Hence ¥’(K,,) = n. In fact, we can

obtain an explicit n-edge-coloring of K, by drawing the vertices in the form of a regular n-gon,
and coloring the edges around the boundary using a different color for each edge. The
remaining edges are then assigned the same colors as the boundary edges parallel to them.
The first diagram below illustrates this procedure in the case n = 5.

CHAPTER 12. COLORING GRAPHS 243

q

If n is even, we can prove that y’(K,) = n—1 by explicitly constructing an (n—1)-edge-

coloring of the edges of K,,. If n = 2, this is trivial. If n > 2, we choose any vertex v and

remove it (together with its incident edges). This leaves a complete graph K,-; with an

odd number of vertices, whose edges can be colored with n—1 colors, using the above

construction. At each vertex there is exactly one color missing, and these missing colors

are all different. The edges of K,, incident to v can therefore be colored using these missing

colors. The second diagram above illustrates this procedure in the case n= 6. 0

We conclude this chapter with ah important theorem of Dénes Konig (1884-1944), a

Hungarian mathematician who wrote the first comprehensive treatise on graph theory.

K6nig’s theorem tells us that every bipartite graph (not necessarily simple) with maxi-

mum vertex-degree d can be edge-colored with just d colors.

THEOREM 12.8 (KONIG’S THEOREM). /fG is a bipartite graph whose maximum

vertex degree is d, then y'(G) = d.

Proof We prove this result by mathematical induction on m, the number of edges of

G. When m= 1, we have x’(G) = 1 and d= 1. The result is therefore true when m = 1.

Suppose that the result is true for all bipartite graphs with less than m edges. Let G be

a bipartite graph with m edges and maximum vertex-degree d, and let H be the graph

obtained from G by removing an edge e adjacent to the vertices v and w-

vp remove e
———>

G H

Since H has less than m edges and maximum vertex-degree d (or less), it follows from

our induction assumption that y’(H) < d—that is, H is d-edge-colorable. We now color

the edges of H with d colors, and replace the edge e. If we can color e with one of the d

colors, then we obtain a d-edge-coloring of G, as required.

To show that the edge e can always be colored in this way, we argue as follows. Since

H is obtained from G by removing the edge e, there must be at least one color missing at

y, and at least one color missing at w. If there is some color missing at both v and w, then

we can assign this color to the edge e, thereby completing the d-edge-coloring of G. If

this is not the case, suppose that the color blue (say) is missing at v, and the color red

(say) is missing at w, and consider all the vertices of H which can be reached from v by

a path consisting entirely of red and blue edges.

244 PROBLEMS

Since the edges in such a path must alternate in color, and since the color red is missing

at w, it follows that w cannot be reached from v by a red—blue path. (This is where we

use the fact that G, and hence H, is bipartite.)
If we now interchange the colors on this path, so that the blue edges become red, and

the red edges become blue, then the colors appearing at w are unchanged, and the color

red is now missing at both v and w. We can therefore assign the edge e the color red,

thereby completing the coloring of G. This completes the proof. 0

PROBLEMS

Vertex-Colorings

©12.1. We have seen that the following graph G has chromatic number 4. Write down

a 4-coloring of G.

12.2. Find ¥(G) for the following graphs:

Pocus
(a) (b)

12.3. Find x(G) for each of the following graphs G on the graph cards (see Chapter
1):

a. card 51; c. card 130; e. card 146; @ card 78:

b. card 128 d. card 143; te’ Catto: h. card 194.

CHAPTER 12. COLORING GRAPHS ; 245

©12.4. Find the chromatic numbers of:

a. the complete graph K,;

b. the complete bipartite graph K; ;;

c. the cycle graph Cy;

d. the 4-cube Q,;

e. the Petersen graph.

12.5. What can you say about graphs G for which —

(a) x(G) = 1; (b) x(G)=2?

©12.6. Classify each of the following statements as TRUE or FALSE, giving your rea-

sons:

a. if G contains the complete graph K, as a subgraph, then ¥(G) 2 r;

b. if x¥(G)2r, thenG contains the complete graph K, as a subgraph.

12.7. Let G be the graph obtained by removing an edge from the complete graph K,,.

By Brooks’ theorem, we know that ¥(G) < n—1. Give a method for (n—1)-color-

ing G. Test your method for the case n = 7.

12.8. Consider the following graph G;

a. Obtain upper and lower bounds for x(G).

b. What is the correct value of ¥(G)?

12.9." Let G be a connected planar graph of girth g. By finding an inequality for the

average vertex-degree in G, prove that

a. if g=5,theny(G) <4;

b. if g=6, then x(G) <3.

12.10. If G is a graph with n vertices which is regular of degree d, prove that

¥(G)2 ni(n—d).

12.11." Let x and x denote the chromatic numbers of a simple graph G with n vertices,

and its complement G. Prove that

2Vn<xtHSnel and n<yxZSi(n+ 1).

Give examples to show that these bounds can all be achieved.

246 PROBLEMS

Chromatic Polynomials

12.12. Write down the chromatic polynomials of

a. the complete graph K;;

b. the complete bipartite graph K, ,.

12.13. For each of the following graphs G depicted on the graph cards (see Chapter

1), find the chromatic polynomial P,(k):

a. card 42;

b. card 46.

12.14. All but one of the following polynomials are chromatic polynomials of graphs

with four vertices. Find the polynomial which is not the chromatic polynomial

of any graph.

a. k(k-1)(k-2); d. k(k-1)(k’-2k+2);

b. k(k-1)?(k-2); e. k(k-1)(k?-3k+3);

GA kD 2) f. k(k-1)(k-2)(k-3).

12.15. Find the chromatic polynomial of each of the following graphs directly—that

is, without using the deletion-contraction theorem:

| | - . : x

(a) (b) (c) (d) (e)

©12.16. Multiply out the polynomials in parts (a) and (b) of Problem 12.15, and verify

in each case that:

a. the polynomial has the form k"— mk"! +... , where n and m are the numbers

of vertices and edges in G;

b. the signs of the terms are alternately + and — ;

c. there is no constant term.

(These observations, which are true in general, are a useful check on whether

you have obtained the correct polynomial.)

12.17." Let G be a simple graph with n vertices and m edges, and let P,(k) be its

chromatic polynomial. Use mathematical induction on m and the deletion-

contraction theorem to prove that

a. the terms of P(A) are alternately + and — ;

b. the coefficient of k*' is —m.

CHAPTER 12. COLORING GRAPHS 247

©12.18. Use the deletion-contraction theorem to find the chromatic polynomials of
each of the following graphs:

(a) ; (b)

12.19. Use the deletion-contraction theorem to find the chromatic polynomials of

each of the following graphs. In how many ways can these graphs be colored

with five colors?

(a) (b)

Edge-Colorings

©12.20. Find y’(G) for each of the following graphs G:

(a) (b)

12.21. Find y’(G) for the graphs G in Problem 12.2.

12.22. Find y’(G) for each of the following graphs G on the graph cards (see

Chapter 1):

a. card 128; Geacard (43: emcandel a2: g. card 182;

b: .card 130; d. card 146; i ecard 17s: h. card 194.

©12.23. What can you say about graphs G for which

(a) x(G) = 1; (b) x’(G) = 2?

©12.24. Classify each of the following statements as TRUE or FALSE, giving your

reasons:

a. if Gcontains a vertex of degree r, then ¥’(G) 2 r:

b. if x/(G) 2 r, then G contains a vertex of degree r.

248 PROBLEMS

©12.25. For each of the following simple graphs, write down:

a. the lower and upper bounds for x’(G) given by Vizing’s theorem;

b. the correct value of x’(G):

(1) the cycle graph C;;

(2) the complete graph K,;

(3) the complete bipartite graph K; ,.

Justify your answers to (2) and (3) by producing an explicit coloring of the

edges of the graph.

12.26. For the graph G in Problem 12.8:

a. Use Vizing’s theorem to obtain lower and upper bounds for x’(G).

b. What is the correct value of ¥’(G)?

12.27. For each of the following graphs G, write down:

a. the lower and upper bounds for y’(G) given by Vizing’s theorem (extended

version);

b. the lower and upper bounds for x¥’(G) given by Shannon’s theorem;

c. the exact value of x’(G):

(1) (2) (3)

12.28. Consider the following graph G:

a. Use the theorems of Vizing and Shannon to obtain lower and upper bounds
for x’(G).

b. What is the correct value of ¥’(G)?

12.29." Obtain bounds corresponding to those in Problem 12.10 for x’ and x’, the
chromatic indices of a simple graph G and its complement G.

©12.30. Use the graph cards in Chapter | to locate all of the connected simple graphs G
with at most five vertices that satisfy y’(G) = d + 1, where d is the maximum
vertex-degree in G.

12.31." Of the 112 connected simple graphs G with six vertices, only three satisfy

x'(G) =d + 1, where d is the maximum vertex-degree in G. Use the graph

cards in Chapter | to locate these three graphs.

CHAPTER 12. COLORING GRAPHS

12.32.

12.33."

12.34.

©12:35.

612.36.

12.37.

249

4

Prove that if G is a Hamiltonian graph which is regular of degree 3, then

X(G) = 3.

a. Show that the Petersen graph has chromatic index 4.

(Hint: Assume that the chromatic index is 3; then there is essentially only one

way to 3-edge-color the outside pentagon.)

b. What is the chromatic index of the graph obtained from the Petersen graph

by deleting any vertex (and its incident edges)?

c. What is the chromatic index of the graph obtained from the Petersen graph

by deleting any edge?

Use K6nig’s theorem to write down the chromatic index of

a. the complete bipartite graph K,, (r < s);

b. the graph of the cube;

c. the k-cube Q,.

Give an explicit edge-coloring for the graph in part a.

Suppose that 7 teams take part in a competition in which each team is required

to play exactly one match against each of the other n—1 teams. Assuming that

any matches which involve different pairs of teams may be played simul-

taneously, how many rounds of matches are necessary?

At the end of an academic year, each student has to take an examination with

each of his tutors. If (a) there are 8 tutors and 50 students; (b) each student can

be examined by up to 3 tutors; (c) the tutors are available for 6, 6, 7, 8, 9, 12,

15, and 15 periods, how many examination periods are required?

The line graph L(G) of a graph G was defined in Problem 2.39. If G is nota

null graph, show that ¥’(G) = x(L(G)).

CHAPTER 13

COLORING MAPS

13.1 INTRODUCTION

Consider the following map of the United States of America (excluding Alaska and

Hawaii):

Maine

New Hampshire
Washington

Minnesota

North

Dakota
Oregon

Idaho South
Dakota

Nevada pee

Colorado Co 4
Kansas Fan

— North

Tennessee Carolina
Oklahoma =e

Louisiana

Wisconsin Vermont

New York
Michigan

Pennsylvania

Rhode Island

Connecticut

New Jersey

Delaware

Maryland

California South Carolina

Georgia

Mississippi
Florida

250

CHAPTER 13. COLORING MAPS 251

‘

It is very common for maps of this kind to be colored in such a way that neighboring
regions (states or countries) are colored differently. This enables us to distinguish easily
between the various regions, and to locate the state boundaries. The question arises as to

how many colors are needed to color the entire map, since the larger and more

complicated the map, the more colors we might expect to need.

In fact, it is not difficult to show that five colors are sufficient to color any map,

however complicated, and it is also possible, but very difficult, to show that four colors

are always sufficient. However, we cannot-reduce this number any further, since there

are some maps, such as the above map of the USA, which cannot be colored with three

colors. To see this, look at the ring of five states surrounding Nevada—namely, Califor-

nia, Oregon, Idaho, Utah, and Arizona. This ring of states needs at least three colors, and

Nevada will then need yet another color, making four colors in all.

A 4-coloring of the above map is as follows:
,

13.2 THE FOUR-COLOR PROBLEM

About a hundred years ago, some schoolchildren were challenged by their headmaster to

solve the following problem:

Show that all maps can be colored with just four colors so that neighboring countries

are differently colored.

The headmaster said that he would accept no proof that exceeded 30 lines of manuscript

and one page of diagrams. It seemed to him that the problem was too simple to merit a

longer solution. How disappointed he must have been at the unsuccessful attempts of his

pupils, for it was not until 1976 that a solution to the problem was found! Two mathema-

ticians from the University of Illinois, Kenneth Appel and Wolfgang Haken, used over

252 13.2 THE FOUR-COLOR PROBLEM

1000 hours of computer time to produce a proof running to several hundred pages and

some 10,000 diagrams. But why should such a simple problem be so difficult to solve?

In 1852, the Professor of Mathematics at University College, London, was Augustus

De Morgan. An ex-student of his, Francis Guthrie, had noticed that the counties of

England can be colored with four colors in such a way that neighboring counties have

different colors. Through his brother, he asked De Morgan whether or not four colors

would suffice for all maps. The professor considered it fairly obvious that four colors

must be enough, but he could not prove it. Nor could anyone else, for more than a century.

On June 13, 1878, at a meeting of the London Mathematical Society, Arthur Cayley

asked if anyone could solve the problem. From that moment on, what was known as the

four-color problem became one of the most famous unsolved problems in the whole of

mathematics.

To appreciate the nature of the problem, notice that in the above map the country A is

a neighbor of both B and D, because they each have a common boundary with A, but that

A is not regarded as a neighbor of C, because they meet only at a point and so have no

common boundary. We could color both A and C red and, similarly, we could color both

B and D blue, so that only two colors are needed to color this map. On the other hand, a

map such as

shows that four colors are sometimes necessary, because every country has a common

boundary with every other country.

The four-color conjecture is that four colors are always sufficient. Note that it is

immaterial whether or not we include the outside region in our coloring, since the outside

region can be regarded (from a coloring point of view) as an extra ring-shaped country,

as shown below. We shall not usually bother to include this outside region.

blue

CHAPTER 13. COLORING MAPS 253

‘

In 1879, the four-color conjecture was ‘proved’ by Alfred Kempe, a London barrister

and keen amateur mathematician. Kempe produced what purported to be a proof of the

fact that every map can be 4-colored. Although this attempted proof contains a fatal flaw,

it also contains a number of ideas which appeared, in much more complicated form, in

the eventual solution. In view of this, we spend some time analyzing Kempe’s proof and

extracting the main ideas.

The first idea is to use mathematical induction on the number of countries. It is clear

that all maps with at most four countries can be 4+colored. The question is, if we can

4-color all maps with less then k countries, can we extend these colorings so as to 4-color

all maps with k countries—and if so, how?

To answer this question, we need to look more closely at the maps that we are

considering. We consider a map to be a connected planar graph whose faces (apart from

the infinite face) correspond to the countries. We also assume that the graph contains no

bridges (since the colors on each side of an edge have to be different), and contains no

vertices of degree 1 or 2 (since these do not affect the coloring of the faces).

: not allowed

(6)

no bridges no vertices of degree 2

It follows from Corollary 3 of Euler’s formula (see page 221) and the section on dual

graphs that every map contains at least one country (face) bounded by five edges or

fewer—that is, one of the following:

As
digon triangle square pentagon

Since every map contains at least one of these configurations, we call such a set of con-

figurations an unavoidable set. Another unavoidable set is

digon triangle square two pentagons pentagon and hexagon

Returning to our first unavoidable set, we look at the four types of country in turn, and

try to show by induction that any map containing any of them can be 4-colored—that is,

254 13.2 THE FOUR-COLOR PROBLEM

we assume that any map with less than k countries can be 4-colored and we try to extend

these colorings so as to color all maps with k countries.

Digon If there is a digon in the map, we can shrink it down to a point. The resulting

map has one fewer country, and our induction hypothesis is that this map can be 4-colored.

We now reinstate the digon, and color it with one of the two available colors. This gives

a 4-coloring of the original map.

Triangle If there is a triangle in the map, we can shrink it down to a point. The

resulting map has one fewer country, and our induction hypothesis is that this map can

be 4-colored. We now reinstate the triangle, and color it with the single available color.

This gives a 4-coloring of the original map.

Square If there is a square we shrink it down to a point, and 4-color the resulting

map. The difficulty arises when we try to reinstate the square, since it may be surrounded

by four different colors, so that there is no spare color with which to color the square.

red

yellow blue

green

To get out of this difficulty, we use a Kempe-chain argument. We consider the red and

green countries adjacent to the square, and investigate whether or not there is a chain of

red and green countries in the map leading from the given red country to the given green

country.

(a) (b)

If there is no such chain of countries [as in diagram (a)], then we can interchange the col-

ors in the red—green part at the top, thereby enabling the square to be colored red. If there
is such a chain [as in diagram (b)], then interchanging the colors does not help. But in
this case there can be no chain of blue and yellow countries leading from the given blue
country to the given yellow country. We interchange the colors in the blue—yellow part
on the right-hand side of the map, thereby enabling the square to be colored blue as re-
quired. So in either case we get a 4-coloring of the original map.

CHAPTER 13. COLORING MAPS 255

4

In each of the above cases, we shrank the configuration to a point, 4-colored the

remaining map, and reinstated the configuration. In each case we can extend the coloring

to the configuration, either directly or after a number of color-interchanges. We express

this by saying that these configurations are reducible.

Where Kempe went wrong was in trying to extend the same idea to the case in which

there is a pentagon. In doing this, he had to consider the case where two simultaneous

color-interchanges are necessary. Although either of these color-interchanges is permis-

sible on its own, to do them both is not, as was shown in 1890 by a mathematician named

Percy Heawood.

Heawood gave the above counter-example to refute Kempe’s proof. The error is a

fundamental one, and it soon became clear that the problem is extremely difficult, so that

Appel and Haken’s achievement in solving it is a major one. What Appel and Haken had

to do was to replace the pentagon by other configurations, until they had found an

unavoidable set of reducible configurations—unavoidable means that every map con-

tains at least one of them, and reducible means that whichever one it is then the proof

can be completed by the methods outlined above. The question is, how is this set

constructed?

Professors Appel and Haken did this by constructing a set of almost 2000 reducible

configurations. An account of how they did this is given in an article from the New

Scientist of 21 October 1976, part of which is reproduced in the Appendix at the end of

this chapter.

13.3 EQUIVALENT FORMS OF THE FOUR-COLOR THEOREM

It was recognized early on that it is useful to state the four-color problem in terms of

graphs. Let M be a map drawn in the plane. Place a vertex in each region, and join two

vertices with an edge if the regions they represent share a common border. The result is

256 13.3 EQUIVALENT FORMS OF THE FOUR-COLOR THEOREM

the dual graph of the map (see Chapter 11). For example, the dual graph of the map of

the United States on page 250 is as follows:

It is clear that the dual graph of any map is a planar graph. Further, any two neighboring

states in the original map are colored differently, and thus, any two adjacent vertices in

the dual graph must also be assigned different colors—for example, the bottom right-hand

vertex F (Florida) must be colored differently from its neighbors A (Alabama) and G

(Georgia). Thus, coloring the regions of a map so that regions with a common border

have different colors is equivalent to coloring the vertices of its dual graph so that no two

adjacent vertices have the same color. Finally, any plane drawing of a graph can be

thought of as the dual graph of some map—namely, the map formed by its own dual.

Recall that a graph is k-colorable if its vertices can be colored with k colors so that

adjacent vertices have different colors. The four-color theorem can thus be restated as
follows:

THEOREM 13.1 (THE FOUR-COLOR THEOREM). Every planar graph is 4-col-
orable.

The next theorem is a much weaker result, but its proof is a nice illustration of a proof
by induction.

THEOREM 13.2. Every planar graph is 6-colorable.

Proof We use mathematical induction on the number of vertices. It is clear that all
planar graphs with at most six vertices can be 6-colored. We must now show that if all
planar graphs with less than k vertices can be 6-colored, then so can all planar graphs
with k vertices.

So let G be a planar graph with k vertices. It follows from Corollary 3 of Theorem
11.1 that G contains a vertex v of degree at most S. If we delete y (and its incident edges),

CHAPTER 13. COLORING MAPS 257

é

then the resulting planar graph has less than k vertices, and by our induction hypothesis

we assume that this planar graph can be 6-colored.

We now reinstate the missing vertex v. Since v has at most five neighbors, there is a

spare color which can be used for coloring v. This gives a 6-coloring of our original planar

graph. The result is therefore true for planar graphs with any number of vertices. 0

The next theorem was proved by Heawood, in trying to salvage what he could from

Kempe’s incorrect proof of the four-color theorem: —

THEOREM 13.3. Every planar graph is 5-colorable.

Proof As before, we prove this result by induction on the number of vertices.

Proceeding as in the proof of Theorem 13.2, we find a vertex v of degree at most 5, delete

it, and 5-color the resulting planar graph. The difficulty arises when we try to reinstate

v, Since it may be surrounded by five different colors, so that there is no spare color with

which to color v.

red

; blue
white

yellow een

To get around this difficulty, we use a Kempe-chain argument. We consider the red

and green vertices adjacent to v, and investigate whether or not there is a path of red and

green vertices between the given red vertex and the given green one.

red

yellow

green

(a) (b)

If there is no such path [figure (a)], we can interchange the colors in the red—green

part at the top, thereby enabling v to be colored red. If there is such a path [figure (b)],

then there can be no path of yellow and blue vertices between the yellow and blue vertices

adjacent to v. We interchange the colors in the blue—yellow part of the right-hand side of

the graph, thereby enabling v to be colored blue, as required. So in each case we get a

258 13.3 EQUIVALENT FORMS OF THE FOUR-COLOR THEOREM

5-coloring of the original graph. The result is therefore true for planar graphs with any

number of vertices. 0

We now present the essence of Kempe’s proof of the four-color theorem. We leave it

to you to discover the flaw in it (see Problem 13.5).

KEMPE’S ‘PROOF’ OF THE FOUR-COLOR THEOREM.

The inductive argument is as before. The difficulty arises when v is surrounded by four

different colors, as follows:

If there is no red-green path from vertex 1 to vertex 3, then we can interchange the

colors in the red—green part at the top, thereby enabling v to be colored red, and we are

done. We therefore assume that there is a red—green path from vertex | to vertex 3.

Similarly, if there is no red—yellow path from vertex 1 to vertex 4, then we can

interchange the colors in the red—yellow part at the top, thereby enabling v to be colored

red, and we are done. We therefore assume that there is a red—yellow path from vertex 1

to vertex 4.

/ red-green

path

Since there cannot be a blue—yellow path from vertex 2 to vertex 4, we can begin a

blue—yellow color switch at vertex 2, and this does not change the color of vertex 4.

Similarly, we can begin a blue-green color switch at vertex 5, and this does not change

the color of vertex 3. The vertices around v are now all colored red, green, and yellow,

so that v can be colored blue. This completes the ‘proof’. 0

CHAPTER 13. COLORING MAPS 259

We now turn to a form of the four-color theorem involving chromatic polynomials.

Since the chromatic polynomial Pc(k) counts the number of ways of coloring a graph with

k colors, we can restate the four-color theorem in terms of chromatic polynomials.

THE FOUR-COLOR THEOREM. /fG is a planar graph, then P¢(4) > 0.

Another form of the four-color theorem was found by P. G. Tait, who thought that he

had proved it in 1880. Since we are concerned with vertex-colorings of dual graphs of

planar maps, we need consider only planar graphs with no bridges. Tait realized that it

is sufficient to look at edge-colorings of cubic graphs of that form.

THEOREM 13.4 (TAIT’S THEOREM). The four-color theorem is equivalent to the

statement that any connected bridgeless planar cubic graph is 3-edge-colorable.

Proof We first assume the four-color theorem—that is, that the regions of any map

can be 4-colored so that regions with a common border have different colors. Let G be a

connected bridgeless planar cubic graph. If we draw G in the plane without crossings,

then the faces of G can be colored with four colors A, B, C, and D, so that no two adjacent

faces have the same color. We can then use the following table to color the edges of G:

A B Cc D

d
c
b

To color an edge bordering two faces colored B and C (say), we look up the entry in row

B and column C, and then use color d to color the edge. Since the table has distinct en-

tries in each row and column, we can never color two adjacent edges the same color.

Thus, G is 3-edge-colorable.

To prove the converse result, we assume that any connected bridgeless planar cubic

graph is 3-edge-colorable. Let M be a map that we wish to color with four colors. This

map is already a bridgeless planar graph, and we must turn it into a cubic graph. At each

vertex whose degree is greater than 3 we perform the following replacement:

It is clear that if we can color the faces in the right-hand figure so that no two faces

which share a common border have the same color, then we can similarly color the faces

in the left-hand figure as well. By our assumption, we can 3-edge-color the right-hand

graph, and we can then use the above table in reverse to color the faces of this graph with

260 13.4 GRAPH EMBEDDINGS AND THE HEAWOOD MAP-COLORING THEOREM

the colors A, B, C, and D, beginning with an arbitrary color and face. This gives us a

4-coloring of the faces of the original map, as required. Oo

Yet another variation of the four-color theorem was given by Heawood who cast it in

an algebraic setting.

THEOREM 13.5 (HEAWOOD’S THEOREM). _ A bridgeless planar cubic graph is

3-edge-colorable if and only if its vertices can be labeled +1 or —I so that the sum for

the vertices around the boundary of any face is divisible by 3.

Proof Let G be such a graph that has been 3-edge-colored with colors a, b, and c.

We label a vertex +1 if the three edges incident to it are colored a, b, and c in clockwise

order, and label the vertex —1 if the coloring is counter-clockwise. We now begin at an

edge of a face and move counter-clockwise along the boundary of the face. When we

come to a vertex labeled +1, we go from an edge colored a to one colored 5, or from b

toc, orc toa. When we come to a vertex labeled —1, then we change colors in the opposite

order. After a full circuit around the face, we return to the original edge, and so the total

of the +1’s and —1’s must be divisible by 3.

Conversely, if the graph has been labeled +1 and —1 in the prescribed fashion, then

we can reverse the foregoing procedure to find a 3-edge-coloring for the graph. 0

13.4 GRAPH EMBEDDINGS AND THE HEAWOOD
MAP-COLORING THEOREM

The four-color theorem states that four colors are sufficient to color any map drawn in

the plane. Since any map drawn on the surface of a sphere can be stereographically pro-

jected to a map in the equatorial plane of the sphere (see page 221), it follows that four

colors are sufficient to color any map drawn on the surface of a sphere. This is not true,

as we shall see, for maps drawn on other surfaces. This leads to the notion of graph
‘embeddings’.

DEFINITION. A graph is said to be embedded on a surface if it has been drawn on

that surface without crossings.

For example, a planar graph can be embedded on the plane.

Since Ks and K33 cannot be drawn in the plane without crossings, it is natural to ask

whether there are any other surfaces on which they can be drawn without crossings. That

Ks can be embedded on a torus is shown in figure (a):

CHAPTER 13. COLORING MAPS 261

4

(a) 7 (b)

We can also think of a torus as a sphere with one handle [see figure (b)], since we can

gradually deform the torus into a sphere with one handle without tearing it. (An old joke

defines a topologist as a mathematician who cannot tell the difference between a dough-

nut and a coffee cup!) s
A third representation of a torus is as a rectangle in which the top and bottom edges

have been identified, and the right and left edges have been identified. You can think of

glueing the top and bottom of the rectangle to form a tube, and then glueing the two ends

of the tube together to form a torus. This representation is shown in figure (a) below, and

in figure (b) we use this representation to embed Ks; on a torus.

eR
The above representation of the torus is used in many video games. In these games

the screen is a rectangle. If a moving figure goes off the top of the screen it reappears at

the bottom, and if it goes off the right edge of the screen it reappears on the left. In other

words, Pac Man lives on a torus!

By an (orientable) surface of genus g we mean a sphere with g handles or, equiva-

lently, a torus with g holes. For example, a sphere has genus 0, and a torus has genus 1.

WY

gar
g=0 g=1

It is clear that any graph can be embedded on some such surface, because by adding

enough handles you can easily eliminate all crossings. The genus of a graph is the

smallest genus of a surface on which the graph can be embedded. For example, the

262 13.4 GRAPH EMBEDDINGS AND THE HEAWOOD MAP-COLORING THEOREM

genus of the cube graph Q; is 0, and the genus of K; is 1. Planar graphs are precisely the

graphs with genus 0. Euler’s formula can be extended to graphs of genus g, as follows:

we omit the proof.

THEOREM 13.6 (EULER’S FORMULA, GENERALIZED). Let G be a connected

graph with genus g, and let n, m, and f denote, respectively, the numbers of vertices,

edges, and faces in an embedding of G on a surface of genus g. Then

n—-m+f=2—-2g.

Note that g = O for planar graphs, and that the above theorem then reduces to the

original Euler’s formula. This theorem gives us a lower bound for the genus of a graph.

COROLLARY. LetG be a simple graph with n vertices and m edges. Then the genus

g(G) of the graphG satisfies

g(G) =I m-3n) +11,

where | x | denotes the smallest integer greater than or equal to x.

Proof This result follows from Theorem 13.6 since each face is bounded by at least

three edges. The details are left to you as an exercise (see Problem 13.16).

We can conclude from this corollary that the genus 9(K,,) of the complete graph K,,

satisfies the inequality

IV g(K,) 2 [2 Gn(n-1)-3n) +11
[= (n(n-1) - 6n + 12)]
[1 (n -7n + 12)|

= [1 (n3y(n)l.

For example, g¢(K,) = [22] = 2, and hence, K, cannot be embedded on a torus.

We have just proved the easy half of a remarkable theorem that was proved in 1968:

THEOREM 13.7 (RINGEL AND YOUNGS). 9(K,) = L(n-3)(n-4) 1.

We now return to the subject of coloring maps on other surfaces. Consider the
following map drawn on a torus. How many colors are needed to color the regions of this
map so that any two regions having a common border are colored differently?

CHAPTER 13. COLORING MAPS 263

The rather surprising answer, as you can see, is that seven colors are required, since each

of the seven regions has a border in common with all the other regions. The dual graph

of this map is the complete graph K,. Heawood proved that no graph embedded on the

torus could need more than seven colors—that 1s, he proved the seven-color theorem for

the torus. .

We define the chromatic number of a surface S to be the largest chromatic number

among the graphs that can be embedded on the surface S. We denote this number by x(S).

For example, the chromatic number of the plane or the sphere is 4, and the chromatic

number of the torus is 7. Heawood believed he had proved a formula for the chromatic

number of a surface with an arbitrary number of handles, but he had in fact only

established an upper bound. Ringel and Youngs finally finished the proof in 1968, and

the result is sometimes known as the Heawood Map-Coloring Theorem.

THEOREM 13.8 (THE HEAWOOD MAP-COLORING THEOREM). /f S,

(g> 1) denotes the sphere with g handles, then the chromatic number of S, is given by

1(S,) =L {7 + (1448g)7} 1,

where | x | denotes the greatest integer less than or equal to x.

For example, for the torus (g = 1), the theorem gives (Si) = 7. If we also put g = 0,

then the above formula yields x(So) = 4, which is nothing more nor less than the four-color

theorem for the sphere!

PROBLEMS

The Four-Color Problem

©13.1. Find a 4-coloring of the following map (excluding the outside region):

264 PROBLEMS

13.2. The following map is to be colored with the colors red, blue, yellow, and green

in such a way that neighboring countries are differently colored. If three coun-

tries are colored blue, green and yellow as indicated, show that country A must

be colored red. What can you say about the color of country B?

=a
13.3." Finda 4-coloring of the following map:

(This map is a re-drawing of the map used by Heawood to point out the flaw in

Kempe’s ‘proof’ of the four-color theorem.)

©13.4. The map on page 252 requires four colors because each region is adjacent to
all the other regions. Without using the four-color theorem, prove that no map

in the plane can have five mutually adjacent regions. This does not prove the

four-color theorem. Why?

Equivalent Forms of the Four-Color Theorem

13.5.’ The following graph is the dual of the map used by Heawood to illustrate the
mistake in Kempe’s ‘proof’ of the four-color theorem. Show exactly where
Kempe’s argument fails.

CHAPTER 13. COLORING MAPS 265

©13.6. Let G be a map. Prove that

a. if the faces of G can be 2-colored, then G is an Eulerian graph;

b. if the faces of G can be 3-colored, and if G is regular of degree 3, then every

face of G has even degree.

13.7. Verify Heawood’s Theorem (Theorem 13.5) for each of the following graphs:

a. the graph of the cube;

b. the graph of the dodecahedron.

Graph Embeddings and the Heawood Map-Coloring Theorem

13.8. Find an embedding of K3, on

a. a torus; ‘

b. asphere with one handle;

c. arectangle with opposite sides identified.

13.9. Embed K, on a torus. How do you know this is possible?

13.10. Show that the Petersen graph has genus 1 by

a. proving that it is not planar; and

b. embedding it on a surface of genus 1.

©13.11. Calculate g(K,) and g(/K;,,).

13.12." Give an example of a graph of genus 2, and show how it can be embedded on

a sphere with two handles.

13.13. a. Using Theorem 13.7, prove that there is no value of n for which 9(K,,) = 7.

b. What is the next integer which is not the genus of any complete graph?

13.14.’ A Mobius strip is formed by taking a rectangle and glueing together one pair

of opposite ends after giving ita half-twist. Embed K, and K,, on a Mobius

strip

a. by actually making two Mobius strips and drawing the two graphs on them;

b. by using the following representation of a Mébius strip in which the arrows

indicate the half-twist.

©13.15. Verify that the generalized Euler’s formula (Theorem 13.6) holds for the

graphs K, and K;,, embedded on a torus.

©13.16. Prove the corollary to Euler’s formula.

13.17. Show that there is no graph G of genus g (2 1) such that

a. Gisregular of degree 4, and

b. ona surface of genus g, every face of Gis a triangle.

266 PROBLEMS

13.18. Prove that

8(K,.) 2[4¢-2)(s-2) 1.
(Ringel has shown that this inequality is actually an equality.)

13.19. Calculate x(S,) and (S40).

CHAPTER 13. COLORING MAPS 267

APPENDIX TO CHAPTER 13

Shown here is part of the computer output used in the proof of the four-colour theorem. The sketch of the corresponding ‘dual
map" was made by Wolfgang Haken who with Kenneth Appel arrived at the proof

ial 4)

=

deh dd

to

lated Fo oo Dire evEn bien

w

td. wie oy
O60 40s OsOn O80 040 an 200030090300 00a+00000 S0se000S0%00000URI000—

PE Ce se

asikatas’ abianeiSaeee I

P2003 2S I@ BHAI WY

nw

NU B [ORIG IS SCO

»
v
v
¥
v
Y
v
Y
¥
v
v
¥
¥
v
v
¥
¥
Y
¥
v
¥
¥ eeReee Peres mire fo bo bob Bo BoB wo b> Bo

role tele lalelelateletalelebebe! boeteee coer teh © ereren ier weveer seer weerberener Tinnuaaauacnunnauinacniatn cir OSTA ON oomereUWENN as Hips Tess tna to aps ind LB L831 58 Le LaASnoouse 202 c0ene 02070402 0° 200000000080002000000¢ c0S0000- 0 20000ca00000 > c0cm00000c00ec0nc00n00
PO a tt dt ad nt

PRI at mont wt ae at

bUABER seITIALLY GooD 8059

be ecen

Good

Dr. Kenneth Appel

The Proof of the Four-Colour Theorem

New Scientist, 21 October 1976

Enter the Fast Digital Computer Even though a great deal of progress was made in

the study of reducibility, the goal of proving the four colour theorem by demonstrating

the existence of an unavoidable set of reducible configurations seemed extremely far off.

The critical problem was this: No one had any reasonable intuition of a set of configura-

tions which was unavoidable and seemed to contain configurations which were likely to

be reducible. In particular, if there were such a set it was not clear that it was small enough

so that its members could be tested for reducibility.

With the advent of large, fast digital computers, a new tool was made available to

workers in the field. Heesch formalised the ideas of Kempe and he and his students used

computers to show a great many configurations reducible. Heesch strongly believed that

an unavoidable set of configurations could be found and used a method which has since

come to be known as the principle of discharging (by analogy with the idea of moving

charges in an electrical network) to find an unavoidable set of reducible configurations

for maps with certain restrictions.

Wolfgang Haken, in the late 1960s, noticed that Heesch’s discharging arguments

could be greatly improved and simplified. He argued that since the study of reducibility

had proceeded much farther than that of unavoidable sets, one should spend a great deal

more effort on the study of unavoidable sets. From the work on reducibility, especially

the many configurations studied by Heesch, it became evident that configurations with

certain easily checkable properties were rather likely to be reducible while those without

these properties were unlikely to be reducible.

In 1972, Haken and I began to search for unavoidable sets of configurations which

were likely to be reducible. We did this by examining various discharging procedures to

see what sort of sets of configurations would be generated. A drawback to this approach

had been that the study of a single discharging procedure would take several months and

would not help greatly in simplifying the study of a second procedure. We overcame this

difficulty by creating a very large sophisticated computer progra
m which could, by minor

268 APPENDIX TO CHAPTER 13

variations in input and certain parameters, be used to study a great many discharging

procedures. This had the advantage that while the program took a long while to perfect,

once it was available it was possible to study the results of a procedure in a few hours.

By late 1974, we became convinced that unavoidable sets of likely-to-be-reducible

configurations consisting of a few thousand configurations each could be found. It also

appeared that the amount of computer time required to check the reducibility of the

configurations in such sets would be large but not prohibitive. Unfortunately, the problem

remained that if a single configuration in such a set were irreducible the set would not

serve the intended purpose of proving the four colour theorem.

It appeared, however, that a method could be developed to modify such sets to replace

unwanted configurations, Haken, and John Koch, and I then combined efforts on

developing a collection of computer programs to test configurations for reducibility.

Although such programs had been written before (by Heesch, S. Gill, Allaire, and Swart,

and others), because of technical differences in purpose it was thought advisable to have

a new set.
By January 1976 it appeared that the study of discharging procedures had reached a

point in which a serious attempt on the four colour theorem could be made. The final

attempt used a rather flexible technique in which one configuration at a time was

generated for the potential unavoidable set. When it was generated an immediate attempt

was made to show it reducible. If this could not be done with reasonable effort (up to 30

minutes on an IBM 370-168 computer) it was discarded and the procedure was modified

to avoid its use. Previous work had given us confidence that this method would converge

to an unavoidable set of reducible configurations. In June 1976, after analysis of 10,000

configurations, over 2000 of which were tested for reducibility, and after using over 1000

hours of computer time on various computers owned by the University of Illinois, an

unavoidable set of under 2000 reducible configurations was produced.

(Reprinted, with permission, from New Scientist, 21 October 1976.)

CHAPTER 14

DECOMPOSITION PROBLEMS

14.1 INTRODUCTION

In Chapter 6 we introduced the idea of an Eulerian graph, and we investigated condi-

tions under which a given connected graph is Eulerian. In particular, we saw that every

Eulerian graph can be split into disjoint cycles—this means that we can divide up the set

of edges in such a way that each edge of the graph belongs to one, and only one, of the

subsets. In this chapter we adopt a similar approach for several other problems. Each of

these problems can be formulated in graph-theoretical terms, and involves splitting

either the set of vertices or the set of edges into disjoint subsets with particular graph-

theoretical properties.

Some of the most interesting problems in graph theory involve the decomposition of

a graph G into subgraphs of a particular type. In many of these problems, we split the set

of vertices of G into a number of disjoint subsets, and this is called a vertex decompo-

sition of G. In other problems, we split the set of edges of G into a number of disjoint

subsets, and this is called an edge decomposition of G. For example, if our graph G is

disconnected, as illustrated below, then a natural vertex decomposition is to split the

vertex-set into the disjoint subsets

{1,2,3},44,5,6,7}, 181

corresponding to the components of G. A corresponding edge decomposition of G is

269

270 CHAPTER 14. DECOMPOSITION PROBLEMS

{a,b 6}; td; ef, 272):

1 4 d 5

3 c 2 oe igater 6

Another example of an edge decomposition, as mentioned above, is to take an Eulerian

graph and split the edges into disjoint cycles. For example, if G is the Eulerian graph

shown below, then there are five possible edge decompositions of G into disjoint cycles:

{a,b cyd, €,f}, 1g, i}; {a f, 1); (8, c, ghia, eh);

{@,J; Kes}; {b, Cc, d, é, i}; {b, Cc, h, ae 1a, 7, é, d, g};

{d, e, 1) 2}, (a, b, c,h, fy.

In this chapter we consider a few of the most important graph decomposition problems.
Some of these have arisen out of practical considerations, such as the New York sanitation
problem and the printed circuits problem, whereas others are of a recreational nature,
such as the map-coloring problem and the queens-on-a-chessboard problem.

14.2 VERTEX DECOMPOSITION PROBLEMS

We consider three types of problem—map-coloring problems, a sanitation problem
(which can also be reformulated as a coloring problem), and some domination problems,
including a recreational problem involving queens on a chessboard.

Map-Coloring Problems

Our first decomposition problem involves the coloring of maps. Recall that the map of
the United States (excluding Alaska and Hawaii) can be colored with just four colors, as
follows:

14.2 VERTEX DECOMPOSITION PROBLEMS 271

We can represent this as a vertex decomposition problem by considering the dual

graph, in which each state is represented by a vertex, and two vertices are joined whenever

the corresponding states share a common boundary line. This gives the following graph,

in which each vertex has been assigned a symbol to represent the color of the correspond-

ing state. Since any two neighboring states in the original map were colored differently,

any two adjacent vertices in this dual graph are assigned different colors.

Such a coloring of the vertices of the graph splits the vertex-set into four subsets,

corresponding to the four colors, as following.

272 CHAPTER 14. DECOMPOSITION PROBLEMS

O: Washington, Nevada, Wyoming, New Mexico, Minnesota, Missouri, Vermont,

Indiana, Georgia, Virginia, Pennsylvania, Connecticut, Mississippi;

©: Oregon, Montana, Arizona, Nebraska, Oklahoma, Louisiana, Wisconsin,

Tennessee, Ohio, Florida, South Carolina, Delaware, New York, Rhode Island,

New Hampshire;

@: California, Idaho, Colorado, North Dakota, Texas, Iowa, Michigan, Alabama,

Kentucky, North Carolina, Maryland, New Jersey, Massachusetts, Maine;

a: Utah, South Dakota, Kansas, Arkansas, Illinois, West Virginia.

This vertex decomposition has the property that no two vertices in the same set are

adjacent. They are simply the vertex-colorings discussed in Chapter 12.

A Sanitation Problem

In 1973 the New York Sanitation Department was concerned with the problem of maxi-

mizing the efficiency of its garbage collection service. In particular, it had a number of

garbage trucks and wished to organize a route schedule for the various trucks to follow.

Given that the routes are different for the six working days (Monday to Saturday) and

that some sites may need to be visited several times per week, how do we design a suit-

able schedule?

In its full complexity, this problem is far too difficult to be considered here, so we

look at just one aspect of it. Suppose that a weekly schedule of routes has been

constructed, in which no route is too short or long, every truck is used on every working

day, and every site is visited the required number of times. Is the problem now solved?

The answer to this question is likely to be No, unless we can arrange a schedule in

such a way that two different garbage trucks do not visit the same site on the same day!

To see whether this is possible, we construct a tour graph in which each vertex represents

a route, and two vertices are joined by an edge whenever the corresponding routes have

a site in common. If the vertices of this graph can be colored with 6 colors (corresponding

to the days Monday to Saturday) so that adjacent vertices are colored differently, then

any such vertex-coloring corresponds to a suitable schedule. So the problem reduces to

that of coloring the vertices of the tour graph so that adjacent vertices are colored
differently. It is therefore a vertex decomposition problem in which no two vertices in
the same subset are adjacent; the minimum number of subsets needed is simply the
chromatic number of the tour graph.

Unlike the map-coloring problem, the graph under consideration is not usually planar,
and so its chromatic number can be quite large. The best that we can say in general is
that the number of days needed to schedule the tours does not exceed the bounds given
by Theorem 12.1 and Brooks’ theorem, in terms of d, the maximum vertex-degree of
G—namely,

d, if G is not a complete graph or a cycle graph with an odd number of vertices;

d+1, otherwise.

An exact determination of the number of days needed to schedule the tours requires a
method for finding the chromatic number of the tour graph G. We presented such a

14.2 VERTEX DECOMPOSITION PROBLEMS 273

4

method in Chapter 12, involving the calculation of the chromatic polynomial P,(k). The

smallest value of k for which the chromatic polynomial of G is non-zero is the chromatic

number of G, and the value of P,(k) for this number k gives the number of different ways

of coloring the vertices of G with k colors. Thus a knowledge of the chromatic polyno-

mial of the tour graph tells us the number of days needed to schedule the tours, and the

number of different ways of scheduling the tours in this number of days.

Domination and Independence Problems

Communication links are to be set up between a number of cities, and transmitting sta-

tions are to be built in some of these cities so that every city can receive messages from

at least one transmitting station. For reasons of economy, we require the number of

transmitting stations to be as small as possible. How can this be done?

We can represent this situation by a graph whose vertices correspond to the cities, and

whose edges correspond to pairs of cities which can communicate with each other. Since

every city must either contain a transmitting station or communicate with a city contain-

ing a transmitting station, we wish to find a set of vertices which (between them) are ad-

jacent to all other vertices of the graph. For example, if the graph

represents the communication links between six cities, then we can locate the transmitting

stations at A, C, and E, since each of the other vertices (B, D, and F’) is adjacent to at least one

of these vertices. However, a more economical solution is to take just two transmitting

stations and locate them at A and D; as before, each of the other vertices (B, C, E, and F) is

adjacent to at least one of these vertices.

A set S of vertices with the property that every vertex of the graph either is in S or is

adjacent to a vertex of S is called a dominating set of vertices, and a dominating set of

smallest possible size is called a minimum dominating set. The number of vertices in

a minimum dominating set in a graph G is called the dominating number of G. For

example, the sets S = {A, C, E} and S = {A, D} are both dominating sets in the above

graph, but of these only {A, D} is a minimum dominating set. Other minimum dominating

sets in the above graph are /B, F}, {C, F}, and {D, F}. Therefore, the dominating number

is 2. It follows that the above communications problem reduces to that of finding a

minimum dominating set in the corresponding graph.

Such problems occur in many different guises. For example, suppose that a number

of locations in a nuclear power plant are fitted with warning lights, and the security guards

are to be stationed in various places to watch for these lights. Wecan minimize the number

of guards needed, by finding a minimum dominating set in the corresponding graph and

positioning the guards accordingly. Any light which comes on can then be seen by at

least one of the guards, who can then take appropriate action.

274 CHAPTER 14. DECOMPOSITION PROBLEMS

A recreational problem of this kind is to find the smallest number of queens that can

be placed on a chessboard in such a way that every unoccupied square is attacked. In

chess, a queen attacks all squares in the same row or column and all squares in either

diagonal through the square on which she is placed. For example, if we place the first

queen as shown in diagram (a), then 25 unoccupied squares are attacked. How many more

queens are needed?

(a)

In fact, only four more queens are needed; an arrangement of five queens which attack

all unoccupied squares is shown in diagram (b). Furthermore, it can be shown (although

we Shall not do so) that no arrangement of four queens will do, but that five queens are

also sufficient for chessboards of size 9 x 9, 10 x 10, and 11 x 11.

We can represent this problem graphically by taking the squares as vertices, and

Joining two vertices by an edge whenever a queen can move from one of the squares to

the other. A solution of the problem then corresponds to finding a dominating set with 5

vertices, and showing that it is a minimum dominating set. Since the graph corresponding
to an 8 x 8 chessboard has 64 vertices and 728 edges, we shall not attempt to draw it, but
look instead at the analogous problem of a bishop on a 4 x 4 chessboard. (A bishop can
move only diagonally.)

In this case, the graph splits into two parts, corresponding to the black squares and the
white squares. There are several minimum dominating sets—for example, {6,11,7,10},
which corresponds to placing a bishop on each of the central four squares. Other minimum
dominating sets are {5,6,7,8} and {9,10,11,12}.

By now you are probably wondering what this has to do with vertex decomposition
problems. To answer this, we take a dominating set, one vertex at a time, and write down
each of its neighbors (omitting vertices in the dominating set, or those which have already

14.2 VERTEX DECOMPOSITION PROBLEMS 275

4

been recorded). For example, the dominating set {6, 11, 7, 10} in the above graph gives

us the following subsets:

for vertex 6, we take the vertices 1, 3, 9, and 16, giving the subset {6, 1, 3,9, 16} (we

have omitted vertex 11, since it lies in the dominating set);

for vertex 11, we take the vertices 8 and 14, giving the subset {11, 8, 14} (we have

omitted vertices 1 and 16, since they have already been recorded);

for vertex 7, we take the vertices 2, 4, 12, and 13, giving the subset {7, 2, 4, 12, 13};

for vertex 10, we take the vertices 5 and 15, giving the subset {10, 5, 15}.

This gives us the vertex decomposition
fOa7 2G hs tiie, Tay 25 4y 12, 13} 1 0rs; 1S}:

Note that this type of decomposition is very different from that produced in our discussion

of coloring problems. For those problems, the subsets have the property that no two vertices

in the same subset are adjacent. For domination problems, the subsets have the property that

each subset contains a vertex adjacent to all the other vertices in the subset.

A related problem, known as the independence problem, is that of finding the largest

set of queens that can be placed on a chessboard so that none of them is attacked by any

other. Clearly, the number of queens cannot exceed 8, since at least two queens would

then appear in the same row. On the other hand, it is certainly possible to place 8 queens

in the required manner, as shown in the following diagram.

(This problem was studied by C. F. Gauss, who believed that there were 76 solutions. In

1854, the Schachzeitung, a Berlin chess journal, published 40 solutions. The correct

number of solutions is 92.)

As with the domination problem, we can represent this situation by a graph whose

vertices correspond to the squares, and whose edges join those pairs of squares which are

connected by a queen’s move. More generally, the independence problem for a graphG

is that of finding the largest possible set of vertices of G, no two of which are adjacent.

A set of vertices no two of which are adjacent is called an independent set of vertices,

and an independent set of largest possible size is called a maximum independent set.

For example, the sets {A, D} {A, E}, and {A, C, E} are all independent sets in the graph

below, but of these only {A, C, E} is a maximum independent set.

276 CHAPTER 14. DECOMPOSITION PROBLEMS

In order to solve the domination and independence problems for a graph G, we need

to find the size of a minimum dominating set and the size of a maximum independent set

in G. We denote these numbers by dom G and ind G, respectively. For example, if G is

the graph above, then dom G = 2 and ind G = 3, whereas if G is the chessboard graph

referred to above, then dom G = 5 and ind G = 8.

Unfortunately, there is no general formula which gives the values of dom G and

ind G for a general graph. However, the following theorem gives two inequalities

involving dom G and ind G.

THEOREM 14.1. For any graph G with n vertices,

a. domG<indG;

b. ¥(G)xindG2n.

Proof a. LetS be amaximum independent set in G. Then S must be a dominating

set, since otherwise there would be a vertex v in G which is not adjacent

to any of the vertices in S; this vertex v could then be added to S to produce

a larger independent set, which is impossible. The result follows.

b. By the definition of y(G), we can color the vertices of G with x(G)

colors in such a way that no two adjacent vertices are assigned the same

color. It follows that the set of vertices of any given color must form an

independent set, and hence that there are at most ind G vertices of any

given color. Since there are ¥(G) colors, the total number of vertices must

be at most ¥(G) x ind G. 0

14.3 EDGE DECOMPOSITION PROBLEMS

We consider three types of problem—the printed circuits problem (which leads to the

idea of a planar graph), matching problems (such as a problem on electrical networks

and a scheduling problem), and various edge decomposition problems arising from a

problem involving the bus routes between a number of towns.

The Printed Circuits Problem

14.3 EDGE DECOMPOSITION PROBLEMS 277

4

In printed circuits, electronic components are constructed by means of conducting strips

printed directly onto a flat board of insulating material. Such printed connectors may not

cross, since this would lead to undesirable electrical contact at crossing points. When

necessary, insulated wires may be used to cross over conducting strips, but printed cir-

cuits are designed to avoid this as far as possible. Circuits in which large numbers of

crossings are unavoidable may be printed on several boards which are then sandwiched

together. Each board consists of a printed circuit without crossings. What is the smallest

number of such layers for a given circuit? -

We illustrate the printed circuits problem with a particular example. Suppose that the

circuit has 36 interconnections and is represented by the complete graph Ko. Then it is

impossible to arrange all these interconnections in one layer, or even two. Three layers

are needed, and a solution is given below. Note that every edge of Ko is included in exactly

one of the layers—for example, the edge 28 appears on layer 2, and the edge 69 appears

on layer 3. *,

NR

layer 2 layer 3

Recall that a graph which can be drawn in the plane without crossings is called a

planar graph. For example, each of the graphs appearing on one of the layers in the

above diagram is a planar graph. The printed circuits problem therefore reduces to the

problem of decomposing the graph into smaller graphs, all of which are planar. In other

words, it is an edge decomposition problem in which the edges in each subset form a

planar graph. In the case of Ko, we get the following edge decomposition corresponding

to the three layers shown above:

{ 12,13,16,18,19,23,29,34,38,39,45,46,47,48,56,57,67,68,78,89},

{14,15,17,24,28,35,36,37,79}, {25,26,27,49,58,59,69}.

The minimum number of planar graphs which can be superimposed to form a given

graph G is the thickness of G, discussed in Chapter 11. Although we cannot solve the

printed circuits problem in general, we obtained a lower bound for the solution in

Theorem 11.5 and this bound happens to give the correct answer surprisingly often.

Matching Problems

A matching in a graph G is a set of edges of G, no two of which have a vertex in com-

mon. For example, the following diagram shows a bipartite graph and one of its match-

ings:

278 CHAPTER 14. DECOMPOSITION PROBLEMS

1 A

2 B

3 é

4 D

In the above graph, we have ‘matched’ the vertices 1, 2, and 3 from the left-hand set

of vertices with the vertices A, B, and D from the right-hand set of vertices. In fact, the

idea of a matching applies equally well to graphs in general. For example, the graph of

the octahedron has several matchings, four of which are

1 1 1 l

3 a 3 2) aa 3 2 3 2
4 4 4 4

These four matchings have the property that every edge of the graph appears in just

one of them, and this leads to an edge decomposition in which each subset consists of

the edges in a matching—namely,

{16,23,45}, {12,35,46}, {13,24,56}, {15,26,34}.

It is clear that every graph can be decomposed into matchings, since if G has m edges

then we can simply take m matchings, each consisting of a single edge. However, the

problem of determining the minimum number of matchings needed to decompose a given

graph may be much more difficult, and is unsolved in general. This question is of more

than academic interest, and has arisen in a number of contexts, two of which we now

consider.

A Wire-Coloring Problem

Suppose that we have an electrical unit, such as a relay panel, and that there are a num-
ber of relays, switches, and other devices A, B, ... , to be interconnected. The connecting
wires are first formed into a cable, with the wires to be connected to A emerging at one
point, those connected to B emerging at another, and so on. In order to distinguish them,
it is necessary that all those wires which emerge from the same point be colored differ-
ently. What is the minimum number of colors necessary for the whole network? (This
problem was posed by C. E. Shannon in 1949, in a paper on electrical networks.)

In order to see the connection between this problem and the matching problem
described above, we represent the connection points by the vertices of a graph and the
wires by edges. For example, the graph below represents a relay panel with six relays,
A,B tens

14.3 EDGE DECOMPOSITION PROBLEMS 279

Since the point C has five wires emerging: from it, and since these wires must all be
colored differently, we certainly need at least five colors to color the wires in the network.
In fact, five colors are enough, as the following diagrams show—the numbers on the
edges correspond to the five colors:

B Cc B Cc

OO. <—
ia E Fi E

color 1 color 2

B G B G B ‘&

<. —. <—
ie E i E ia ie

color 3 color 4 color 5

Since the edges of each color form a matching, the problem of finding the smallest

number of colors needed to color the wires of the network is the same as the problem of

determining the minimum number of matchings needed to decompose the graph. It

follows that the wire-coloring problem is also an edge decomposition problem, and that

the subsets consist of all the edges with the same color. The edge decomposition

corresponding to the above wire-coloring is

{AB,CD}, {AF, BC, DE}, {BC, EF}, {AD, BC, EF}, {CD, EF}.

In these problems the graphs under consideration usually have multiple edges, and so

the best we can say is that the number of matchings is limited by the bounds for the

chromatic index given by the extended version of Vizing’s theorem (Theorem 12.5) and

by Shannon’s theorem (Theorem 12.6)—namely,

d<y(G)<d+h and d<x(G)<3d,

where d is the maximum vertex-degree in G, and h is the maximum number of edges

joining a pair of vertices. Since it is possible to find graphs attaining any of these

bounds, we cannot obtain better results than this in general.

280 CHAPTER 14. DECOMPOSITION PROBLEMS

A Scheduling Problem

At the end of an academic year, each student has to take an examination with each of his

or her teachers. How many examination periods are required?

We can see what is involved if we consider a simple example with four students and

three teachers. We represent the students and teachers by the vertices of a bipartite graph,

and join a student-vertex to a teacher-vertex whenever the student needs to be examined

by the teacher. An example of such a graph is

students tutors

1

A

2
B

3

Ge
4

If two edges meet at a common vertex, then the corresponding examinations cannot

take place simultaneously. So the problem reduces to that of splitting the graph into

subgraphs in which no two edges meet in a common vertex—that is, into matchings. In

this particular case, the minimum number of matchings which decompose the graph is 3,

and a suitable timetable is as follows:

ca eerie 1 le
A A A

eee 2 2

B B B

3@ 3 3

4 4@ 4

9am 10 am 1l am

The corresponding edge decomposition is

{1A, 2B, 4C}, {1C, 2A, 3B}, {2C, 3A, 4B}.

Note that this can also be thought of as an edge-coloring problem. If we color the 9 am

edges red, the 10 am edges yellow, and the 11 am edges blue, then the colors appearing

at each vertex (student or teacher) are different.

In these scheduling problems the graphs under consideration are all bipartite graphs.

The problem therefore reduces to that of finding the chromatic index of a bipartite graph,

and this problem is answered completely by K6nig’s theorem (Theorem 12.8)—the

smallest number of matchings needed is equal to the largest vertex-degree in the bipartite

graph. Thus the matching problem is solved in this case.

Bus Route Problems

In a certain county there are a number of rival bus companies. Each company wishes to

14.3 EDGE DECOMPOSITION PROBLEMS 281

4

run a service that includes every town in the county, in such a way that passengers using
that company can get from any town to any other town. However, the County Council
will not allow different companies to operate along the same stretch of highway. How
many different bus companies can be accommodated?

We can solve this problem by drawing a graph whose vertices correspond to the towns
and whose edges correspond to the roads joining them. For example, the following graph

represents a county containing 11 towns joined by 22 roads:

*

Each bus company needs a network which connects all the 11 towns, and so each

company must be assigned at least 10 of the interconnecting roads. Since there are only

22 roads, the maximum number of companies that can be accommodated is 2. The

following diagram shows an appropriate allocation of roads to the two companies:

Such an allocation of roads to companies produces an edge decomposition of the

original graph. Each of the subgraphs in this decomposition must include edges incident

to all the vertices, and must be connected, so that a passenger can travel from any town

to any other by the buses of each company. So the problem reduces to that of decomposing

the graph into the maximum possible number of subgraphs, each of which is connected

and includes every vertex of the graph.

To solve this problem, we denote the required number of subgraphs by s(G). An

expression for the number s(G) was obtained by W. T. Tutte, who proved the following

result in 1961.

THEOREM 14.2. Let G be aconnected graph with n vertices. Then s(G) is the largest

integer for which the following statement is true:

for each integer k = 1,2, ... ,n- 1, at least k x s(G) edges must be removed in order

to disconnect G into k + 1 components.

To illustrate this theorem, we consider the following graph G for which s(G) = 2:

282 CHAPTER 14. DECOMPOSITION PROBLEMS

In order to disconnect G into

two components, we must remove at least 3 edges, so s(G) < 3;

three components, we must remove at least 5 edges, so 5(G) S a

four components, we must remove at least 7 edges, so s(G) < a

11 components, we must remove all 22 edges, so s(G) S$ =

The largest integer s(G) which satisfies all these inequalities is 2, as required.

The formal proof of Theorem 14.2 is too complicated to be included here, but the

following remarks indicate why the result is a reasonable one.

Outline of Proof Note first that there must be at least s(G) edge-disjoint paths

between any two vertices in G (one path for each of the subgraphs), so at least s(G) edges

must be removed in order to disconnect G into two components. We now repeat this

argument for one of the two subgraphs. In order to disconnect this subgraph into two

components, and hence to disconnect G into three components, we must remove s(G)

more edges; so at least 2s(G) edges must be removed in order to disconnect G into three

components. Carrying on in this way, we eventually obtain the result for every value of

k.0

There are several variations of the above problem which lead to interesting mathemat-

ical results. We consider one of these. Suppose that each bus company operates from a

depot in one of the towns and chooses each of its routes to be a path out to another vertex,

returning the same way. This means that each of the connected subgraphs must be a

tree—in other words, the graph can be decomposed into spanning trees. Note that such

a decomposition is possible only if the number of edges in the graph is a multiple of the

number of edges in a spanning tree; if the graph has n vertices and m edges, this means

that m is a multiple of n—1. In the above example, where n = 11 and m = 22, this can be

accomplished only if two roads are not used by either company. For example, if the roads

3-8 and 5—6 are removed from the graph, then the resulting graph can be decomposed

into the following spanning trees:

14.4 SUMMARY 283

A necessary and sufficient condition for the existence of a solution of this problem is

as follows:

THEOREM 14.3. Let G be a connected graph with n vertices and s(n — 1) edges. Then

Gcan be decomposed into s spanning trees if and only if, for each integer k = 1,2, ... ,n—1,

at least ks edges must be removed in order to disconnect G into k + 1 components.

Proof By Theorem 14.2, this theorem amounts to saying that G can be decomposed

into s spanning trees if and only if s(G) = s. However, if G can be decomposed into s

connected subgraphs, then they must all have n— 1 edges, and must therefore be spanning

trees since there are no edges left over to form any cycles. 0

14.4 SUMMARY

We conclude this chapter with a table showing the different types of decomposition

problems described in this chapter.

problem type of decomposition typical graph decomposition
ghee IE go ha a a a Pn ea en eS a a

b b

Eulerian edge decomposition g ¢ a ¢

graph into disjoint cycles ° , , , ‘

e

coloring vertex decomposition
s

problems (no two vertices in (1,3,8,

(map-coloring, the same subset are {2,10}

sanitation adjacent)
er

problem).
17,

domination vertex decomposition

problems (each subset contains
rer

(communication a vertex adjacent to E {D,C,£)}
links, queens on the other vertices in A.C,

a chessboard). the subset)

284 CHAPTER 14. DECOMPOSITION PROBLEMS

problem type of decomposition typical graph decomposition

printed circuits edge decomposition NN we

problem into planar subgraphs ‘

matching edge decomposition A A

problems into matchings
(wire-coloring, (no two edges have

scheduling) a vertex in common)

bus-route edge decomposition

problem into connected subgraphs

which include every
vertex

bus-route edge decomposition
problem into spanning
(variation) trees

PROBLEMS

14.1. Consider the octahedron graph:

fh b

e iC

d

Find (if they exist):

a. a vertex decomposition for which no two vertices in the same subset are

adjacent;

b. avertex decomposition for which each subset contains a vertex adjacent to

the other vertices in the subset;

an edge decomposition into disjoint cycles;

an edge decomposition into planar subgraphs;

an edge decomposition into matchings;

an edge decomposition into connected subgraphs which include every vertex;

an edge decomposition into spanning trees.

To which of the problems discussed in this chapter does each of these decom-

positions correspond?

mmo ao

PROBLEMS 285

Vertex Decomposition Problems

14.2.

14.3.

14.4.

614.5.

Consider the following map:

a. Find a 4-coloring of this map.

b. Draw the corresponding graph, and show how the 4-coloring in part a leads

to a vertex decomposition of this graph in which no two vertices in the same

subset are adjacent.

A youth club organizer wishes to organize some outings to the Zoo for nine

children: Andrew, Bill, Catherine, Deirdre, Edward, Fiona, Gina, Harry, and

Iris. Catherine refuses to go on an outing with any of the boys, Andrew will

not go if there are any girls (except Deirdre), Edward and Harry must not be

allowed to go together since they will cause havoc, Fiona cannot stand Bill or

Gina, and Bill and Edward both dislike Iris. Express this information in terms

of a suitable graph, and use this graph to find the minimum number of outings

needed.

A chemical manufacturer wishes to store some chemicals in a warehouse.

Some chemicals react violently when in contact with each other, and the

manufacturer decides to divide the warehouse into a number of rooms so as to

separate dangerous pairs of chemicals. In the following table, an asterisk (*)

indicates those pairs of chemicals which must be kept separate:

A
B
Cc
D
5:
Ee
G

By drawing an appropriate graph and regarding this as a vertex decomposition

problem, find the smallest number of rooms needed to store these chemicals

safely.

Draw the tour graph for the following tourist bus routes in New York City, and

use it to find the minimum number of days needed to ensure that no place is

visited more than once in the same day. What is the corresponding vertex

decomposition?

286

14.6.

614.7.

CHAPTER 14. DECOMPOSITION PROBLEMS

route I visits the Empire State Building, Rockefeller Center, Greenwich Village,

and Pier 42;

route 2 visits Rockefeller Center, Lincoln Center, Central Park, and Columbia

University;

route 3 visits Madison Square Garden, Rockefeller Center, and the United

Nations;

route 4 visits the Metropolitan Museum of Art, Central Park, and Rockefeller

Center;

route 5 visits the Metropolitan Museum of Art, Columbia University, and Lincoln

Center;

route 6 visits Columbia University, the Bronx Zoo, and Yankee Stadium;

route 7 visits Shea Stadium, Yankee Stadium, and the Brooklyn Botanical

Gardens;

route 8 visits the Bronx Zoo and the Brooklyn Botanical Gardens;

route 9 visits the Empire State Building, Madison Square Garden, Pier 42, and

the United Nations;

route 10 visits Pier 42 and the Statue of Liberty;

route 1] visits the Statue of Liberty, Wall Street, and Greenwich village;

route 12 visits Wall Street, Greenwich Village, and City College.

Find a minimum dominating set in each of the following graphs, and use it to

write down a vertex decomposition with the property that each subset contains

a vertex adjacent to all the other vertices in the subset.

A

ANE E B

pag JAN D G D

(a) (b)

B

G

Draw the graph corresponding to a knight’s move on a 3 x 3 chessboard, and

find a minimum dominating set and the corresponding vertex decomposition.

Hence find the smallest number of knights that can be placed on such a chess-

board in such a way that every unoccupied square is attacked.

14.8.' a. Show thatitis possible to place five queens on an 11 x 11 chessboard in such
a way that every unoccupied square is attacked.

b. Is it possible to place eleven queens on an 11 x 11 chessboard in such a way

that no queen attacks any other?

PROBLEMS 287

4

14.9. Let G be the Grétzsch graph depicted below.

Find (a) dom G; (b) ind G.

14.10. Let G be the 4-cube Q,. Find (a) dom G; (b) ind G.

14.11. Verify the results dom G < ind G, and y(G) x ind G =n of Theorem 14.1 when

Gis

a. the cube graph Q,; __b. the octahedron graph.

Edge Decomposition Problems

14.12. Show that K, and K, can be printed in two layers, and write down a correspond-

ing edge decomposition in each case.

614.13. Let G be a graph whose largest vertex-degree is k. What can you say about the

number of matchings needed to decompose G?

614.14. How many matchings are needed to decompose each of the following graphs?

D e D c

(a) (b)

Write down a corresponding edge decomposition in each case.

14.15. How many colors are needed to color the wires of the following network so

that any two wires emerging from the same point are colored differently?

©14.16. Five students have arranged separate tutorials on the same morning with three

tutors A, B, and C. Tutor A wishes to teach students 1, 2, and 4; tutor B will be

teaching students 1, 3, 4, and 5; and tutor C is to teach students 2, 3, and 5. By

finding an edge decomposition of the corresponding bipartite graph into match-

ings, devise a suitable schedule for the tutorials.

288 GHAPTER 14. DECOMPOSITION PROBLEMS

14.17. Five students are to be examined by five tutors:

tutor 1 must examine students B and D;

tutor 2 must examine students A, B, and E;

tutor 3 must examine students B, C, and E;

tutor 4 must examine students A and C;

tutor 5 must examine students B, D, and E.

If each examination takes the same amount of time, find the minimum number

of examination periods needed.

14.18. Five students are to be examined by four tutors:

tutor A must examine students 1, 2, and 5;

tutor B must examine students 1, 3, and 4;

tutor C must examine students 2, 3, and 5;

tutor D must examine students 2, 3, and 4.

If each examination takes the same amount of time, how many examination pe-

riods are needed, and how may the examinations be scheduled?

©14.19. Consider the original bus route problem for a road network containing n towns

and m interconnecting roads.

a. Letkbe the maximum number of bus companies that can be accommodated

in such a network. Show that k < m/(n-1).

b. Find the value of k for the following road network:

©14.20. Decompose the following graph into disjoint spanning trees:

PROBLEMS 289

4

14.21. Decompose the following graph into disjoint spanning trees:

14.22." Verify the statement of Theorem 14.3 for the wheel with five spokes:

CHAPTER 15

CONCLUSION

15.1 PRIMARY AND SECONDARY APPLICATIONS

Throughout this book we have presented both the theory and the applications of graphs

and digraphs. As an academic discipline, graph theory has become a rich and varied area

of study, and we have endeavored to reflect this in the more theoretical parts of the book.

But we have also tried to illustrate the very widespread use of graphs in different fields,

ranging from chemistry and linguistics to operations research and the social sciences.

This dichotomy between theory and applications is an important feature of graph theory,
which we have tried to present in this book.

The reason for the widespread use of graphs and digraphs is undoubtedly due to their ex-
treme simplicity. A graph or digraph is a very convenient and natural way of represent-
ing information involving the relationships between objects—all we need to do is to
represent the objects by vertices and the relationships between them by undirected or di-
rected lines. Examples of such representations are many and varied, as illustrated by the
diagrams on the next page.

290

CHAPTER 15. CONCLUSION 291

example diagram graph or digraph

H H

chemical molecule H— t — eek -+t..
| |
eects

phasing traffic lights ; Vif

bracing a framework

signal-flow graphs

2

peaee™ ro?
K6nigsberg bridges Rae, Ae eer aerate D

je hae
iff

B KOnigsberg Hf

i kK L

J
H J M

tracing a maze

coloring a map eee J

For many applications, such a pictorial representation may be all that is needed. By

representing a situation in such a simple diagrammatic form, we may be able to derive

all the information we require. The use of such a representation helps us to highlight the

relevant features of the problem in hand and to play down the others. Such applications

may be termed secondary applications—they are widespread and useful, but involve

only the diagrammatic form of the graph or digraph.

Contrasted with these are the primary applications. These often go much deeper tha
n

the secondary applications, since they use the properties of the graph or digraph, or results

concerning them, to solve the problem in hand. In these primary applications, we take

the graph or digraph as our mathematical model, solve the appropriate graph-theoretic

problem, and then interpret the solution in terms of the original problem. If the graph or

292 15.1sPRIMARY AND SECONDARY APPLICATIONS

digraph has been a good model, then the graph-theoretic solution will yield a good

solution of the original problem. We can illustrate this modeling procedure as follows:

real-life solution

interpret
the solution

real-life problem
(unable to solve directly)

model the
problem

solve graph’

graph/digraph problem mathematical solution

problem

A good example of this modeling process was provided by the bracing of rectangular

frameworks in Chapter 3. The problem was to determine whether or not a given braced

framework is rigid and, if so, whether the bracing is a minimum bracing. In order to

answer these questions, we modeled the braced framework by a bipartite graph whose

vertices correspond to the rows and columns of the original framework, and whose edges

correspond to the braced cells. By answering the graph-theoretic questions

Is this bipartite graph connected?

Does it contain any cycles?

we were able to answer our original questions, as follows:

rigid (Cia tracing)

de

Ae a

~ graph
eae

t Bos

Graph theory abounds with such startling and elegant solutions to seemingly difficult
problems.

Another example of a primary application was the solution of the Kénigsberg bridges
problem in Chapter 6. In order to determine whether there exists a closed trail crossing
each bridge exactly once, we constructed a graph whose vertices correspond to the parts
of the city and whose edges represent the bridges. This graph is then the appropriate
mathematical model, and we solved the original problem by determining whether it is an
Eulerian graph. This was done very easily by checking whether all of the vertex-degrees
in the graph are even, and the solution then followed immediately.

Cc

aan A & c
ie D construct aN D all vertex- closed trail

alld} graph a()b_ degrees even? possible

Konigsberg B f i B

CHAPTER 15. CONCLUSION 293

On the other hand, there are circumstances where a graph model may be too simplistic

for the problem in hand. For example, if we wish to model the flow of traffic through the

streets of a small town, then we may have to take so many factors into account (speed of

traffic, bottlenecks, accidents, etc.) that any conclusions we may draw from our model

may be inappropriate for the problems we are dealing with.

It is also important to realize that the usefulness of a mathematical model may change

with time. For example, signal-flow graphs, such as those discussed in Chapter 5, were

used extensively in the 1950s and 1960s to solve systerns of simultaneous linear equations

arising in practice. However, since the advent of high-speed electronic computers which

can solve simultaneous equations extremely quickly, the use of signal-flow graphs has

declined considerably. It remains to be seen how much impact the use of high-speed

computation will have on the design and analysis of large-scale networks.

*

15.2 FOUR TYPES OF PROBLEMS

Most problems in graph theory can be described under one or more of the following

interrelated headings:

existence problems does there exist...? is it possible to...?

construction problems if...exists, how can you construct it?

enumeration problems how many...are there, and can you list them all?

optimization problems if there are several..., which one is the best?

For example, in investigating the bracing of frameworks, we considered the following

questions:

existence problem: is it possible to brace the framework so as to make it rigid?

construction problem: if such a bracing exists, how can you construct one?

enumeration problem: how many rigid bracings are there, and can you list them?

optimization problem: which rigid bracings involve fewest braces?

Let us look at each type of problem in turn.

Existence Problems

From a historical point of view, many of the existence problems which we now regard as

part of graph theory arose as recreational puzzles. For example:

the Kénigsberg bridges problem (Chapter 6): does there exist a closed trail crossing

each of the seven bridges exactly once?

the knight’ s-tour problem (Chapter 7): does there exist a sequence of knight’s moves

visiting each square of an 8 x 8 chessboard exactly once and returning to the starting

point?

the four-color problem (Chapter 13): does there exist a map which requires five colors

to color it, so that neighboring countries are differently colored?

294 15.2 FOUR TYPES OF PROBLEMS

the utilities problem (Chapters 1 and 11): does there exist a way of connecting the

three neighbors to the three utilities in such a way that no two connections cross?

the queens-on-a-chessboard problem (Chapter 14): does there exist an arrangement

of five queens on an 8 x 8 chessboard so that every non-occupied square is attacked?

The methods used to answer such questions vary considerably from problem to

problem. For example, if the answer is yes, as in the knight's tour problem and the

queens-on-a-chessboard problem, then it is sufficient to produce a single example to

substantiate the answer. This may not be easy to do in practice—for example, it may take

a lot of trial-and-error to find a knight’s tour—but once a single solution is found, the

question has been completely answered.

If the answer is no, then a completely different approach is needed so as to ensure that a

solution cannot possibly exist. In the case of the Kénigsberg bridges problem, it is enough to

notice that when we enter part of the city we must be able to leave it again, so that every

vertex of the corresponding graph must have even degree; but the corresponding graph has

four vertices of odd degree (see page 123), so a solution cannot possibly exist. For the utilities

problem, we need to show that the complete bipartite graph K33 is non-planar, and this can

be done either directly (see page 217) or by using Euler’s polyhedral formula (see page 220).

Finally, in the case of the four-color problem, it was a major task lasting many years to show

that no map needing five colors can be constructed.

It is instructive to generalize such problems. For example, instead of solving the

KG6nigsberg problem for the given layout of islands and bridges, we can ask whether any

given graph has an Eulerian trail. We answered this question completely in Theorem 6.1,

in the form of a simple test which can be used to determine very quickly whether a given

connected graph is Eulerian:

a connected graph is Eulerian if and only if every vertex has even degree.

In contrast, we may generalize the knight’s-tour problem and ask whether any given

graph has a Hamiltonian cycle. Unlike the Eulerian problem, no useful test is known for

determining whether a given graph is Hamiltonian, although there are some sufficient

conditions, such as those given in Dirac’s theorem and Ore’s theorem (Theorems 7.1

and 7.2), which work well in particular cases.

Lying between these extremes are the problems of determining the chromatic number

of a given graph and deciding whether it is planar; these generalize the four-color problem

and the utilities problem. In the case of the chromatic number, there is no simple method

for determining the chromatic number of a given graph in general. We usually have to

resort to other means, such as a trial-and-error approach or using the deletion-contraction

theorem (Theorem 12.3) to find the chromatic polynomial and deducing the chromatic

number from this. In the case of planarity, we have a test which (in principle, at least)

gives us a complete answer to the question of whether a given graph is planar—namely,
Kuratowski’s theorem (Theorem 11.3):

a graph is planar if and only if it contains no subdivision of Ks or K33.

Unfortunately, it is usually very difficult to recognize subdivisions of K; and K;, in a
given graph, and so this test is almost useless in practice. We therefore have to resort to
other means, such as using Euler’s formula to show that a particular graph is non-planar.
Alternatively, there are a number of ‘planarity algorithms’ which can be used and are
generally quick and easy to apply.

CONCLUSION 295

We note, finally, that for every property that a graph G may have (planar, Eulerian,

2-connected, 3-colorable, etc.), there is a corresponding existence problem; for example:

planar: does there exist a plane drawing of G?

Eulerian: does there exist an Eulerian trail in G?

2-connected: does there exist a vertex whose removal disconnects G?

3-colorable: does there exist a 3-coloring of the vertices of G?

Construction Problems

The construction problems occurring in this book are of three types:

type I: problems for which solutions are known to exist, and we wish to find

one; :

type 2: problems for which solutions may or may not exist, and we find out by

trying to construct them;

type 3: problems for which solutions are known to exist, and we wish to find

the ‘best’ one.

For each type of problem, we may be able to construct the required solutions by trial-

and-error methods; and if the graphs involved are small, this may be the best way. For

example, if we are given a graph with just six vertices, it is probably as easy to determine

by inspection whether it is Eulerian, or planar, or 3-chromatic, than to apply any system-

atic procedure. On the other hand, many graphs which arise in practical situations may

have hundreds or thousands of vertices; and for such large graphs, we need to use an al-

gorithm. We have met several graphical algorithms in this course, some of which are ex-

tremely efficient. Those relating to problems of type 3 we consider below, under the

heading of Optimization problems; those relating to problems of type J and type 2 we

consider here. But first we need to introduce some terminology which will be useful

when we discuss the efficiency of a given algorithm.

When we say that a graph algorithm involves O(m) operations, it means that the number

of operations a computer uses in applying the algorithm to a given graph is at most Cm, where

C is a fixed constant (which changes from algorithm to algorithm) and m is the number of

edges in the graph. Similarly, if a graph algorithm involves O(n’) operations, then the number

of operations a computer uses in applying it is at most Cn’, where x is the number of vertices

in the graph. An algorithm which can always be completed in O(n’) or O(m') operations, for

some fixed number k, is called a polynomial algorithm; such algorithms are usually
 regarded

as being efficient algorithms, even if k is large—for example, an algorithm involving O(ne)

is, in this sense, an efficient algorithm. If no polynomial algorithm exists for a given problem,

then the problem is called NP-hard; all algorithms used to solve such a problem will be

inefficient algorithms. Finally, there is a large class of important problems for which no

polynomial algorithm has ever been discovered, but nor has it ever been proved that such a

polynomial algorithm does not exist. Such problems are known as NP-complete problems

and have the property that if a polynomial algorithm can be found for any one of these

problems, then polynomial algorithms will be known to exist for all of them.

We now return to our three types of problem, starting with those of type 1.

296 15.2 FOUR TYPES OF PROBLEMS

Type 1 Problems

We discuss three type / problems—finding an Eulerian trail in a given graph, getting out

of a maze, and constructing a spanning tree in a graph.

Fleury’s algorithm We saw above that there is a simple test for determining whether

a given graph is Eulerian—namely, look at the vertex-degrees and see whether they are

all even. If they are, then the graph is Eulerian, and the problem becomes that of finding

an Eulerian trail in the graph. In Chapter 6 we described an algorithm (Fleury’s algorithm)

for finding such a trail. This algorithm can easily be applied by hand or by machine and

is an efficient algorithm involving O(m) operations, where m is the number of edges in

the graph.

Tarry’s algorithm Also discussed in Chapter 6 was the problem of getting out of a

maze. This is also an Eulerian-type problem, and we know that a solution must exist

(since otherwise we could not have become stuck in the maze to begin with!). As with

the Eulerian problem, an algorithm (Tarry’s algorithm) exists for solving it; like Fleury’s

algorithm, it is an efficient algorithm involving O(m) operations, where m is the number

of edges in the corresponding graph.

The spanning tree algorithm In Chapter 10, we described two algorithms for

constructing a spanning tree in a given connected graph. In one of these algorithms, we

start with no edges and add edges one at a time in such a way that no cycles are created;

in the other algorithm, we start with the graph and remove edges one at a time in such a

way that the resulting graphs are never disconnected. These algorithms are easy to apply

by hand, or to adapt for computer use, and are efficient algorithms involving O(n’) steps,

where n is the number of vertices in the graph.

Type 2 Problems

We discuss two type 2 problems—determining whether a given graph is planar and find-

ing its chromatic number.

A planarity algorithm As mentioned above, the best way of determining whether a

given graph is planar is often simply to try to construct a plane drawing of it. Another

method is essentially to choose a cycle in the graph and to construct a bipartite graph

whose two sets of vertices correspond to those edges of the graph which can occur

together inside the chosen cycle and those parts which must then lie outside the cycle. If

we can construct such a bipartite graph, then the original graph is planar; if we cannot,

then it is non-planar.

CHAPTER 15. CONCLUSION 297

4

1 inside C outside C

13 26 ,
take C= 37 25
—=

6 3 12345671 47 16

46 35
5 4

graph ‘ bipartite graph plane drawing

This algorithm is very efficient—if the graph in question has n vertices, then the corre-

sponding algorithm is a polynomial algorithm involving O(n°) operations. However,

even more efficient planarity Algorithms exist; in 1974, J.E. Hopcroft and R.E. Tarjan

constructed one which involves only O(n) operations.

Chromatic polynomials In Chapter 12 we discussed the problem of finding the

chromatic number of a given graph G. One way of doing this is to start by finding the

chromatic polynomial Pc(k), and then determining the smallest value of k for which Pe¢(k)

is non-zero. In order to obtain the chromatic polynomial of G, we apply the deletion-con-

traction algorithm, successively replacing G by a number of smaller and smaller graphs

whose chromatic polynomials we can eventually find by inspection. This algorithm is

not, however, an efficient algorithm—indeed, most problems involving chromatic num-

bers or chromatic polynomials come under the heading of NP-complete problems.

Further graph algorithms are discussed later in the chapter, where we consider type 3

problems.

Enumeration Problems

The subject of graphical enumeration is a major one, although it has not featured promi-

nently in this book. However, we have looked at a few important problems, which we

now summarize.

Labeled graphs The simplest graphical enumeration problem is that of determining

the number of labeled graphs with n vertices. Since each of the snl n—1) possible edges

is either present or absent, there are 2n(n-1)2 such graphs altogether. The number of labeled

graphs with n vertices and m edges is then

fe)
vey

since each choice of m of the 5n(n-1) possible edges determines a different labeled

graph with exactly m edges.

298 15.2 FOUR TYPES OF PROBLEMS

Labeled digraphs Using ideas similar to those for labeled graphs, we can show that

there are 2””-) labeled digraphs with n vertices, and that

n(n-1)

m

Labeled trees Using the method of Priifer sequences, introduced in Chapter 10, we

proved Cayley’s theorem, that the number of labeled trees with n vertices is n**. The

proof involved constructing a one-to-one correspondence between labeled trees and

sequences of n—2 integers, each of which is one of the numbers 1,2, ... , n. In contrast,

the corresponding problems for unlabeled graphs are far more difficult and are usually

solved using Pélya’s theorem, which lies outside the scope of this book. The numbers of

simple graphs of various types are:

of these have exactly m arcs.

number of vertices 1 2 5 s a 6 } 8

labeled graphs ee: 3 64 1024 32768 2097152 268435456

unlabeled graphs dL. 2 4 PES 156 1044 12346

unlabeled
connected graphs 1 1 2 6 21 112 853 Tish

unlabeled regular
graphs are Z 4 3 8 6 20

unlabeled Eulerian
graphs i= 0] 1 4 8 37 184

unlabeled

hamiltonian graphs 1 0 1 A 8 48 383 6020

labeled trees ee al 3 LOver 125 1296 16807 262144

unlabeled trees rel 1 2 5 6 11 23

labeled digraphs 1 4 6400 4006 2 34 2 a a=

unlabeled digraphs 1 3 16 218 9608 1540944 ~9x10? ~2x10”

Optimization Problems

We now turn our attention to those problems for which solutions clearly exist, and we
want to find the best one—such problems were called type 3 problems above. We dis-
cuss algorithms for four of these problems—the shortest path problem, the scheduling

CHAPTER 15. CONCLUSION 299

problem, the minimum connector problem, and the traveling salesman problem; many

further type 3 problems will be found in the companion book on Networks.

The shortest path algorithm In Chapter 8, we discussed the problem of finding the

shortest path between two vertices in a weighted digraph. The algorithm we used involved

a breadth-first search of the graph or digraph, and proceeded step by step from the initial

vertex to the final vertex. The shortest distance from the initial vertex to each of the

intermediate vertices also emerged from these calculations. This algorithm can easily be

applied by hand or by machine and is an efficient algorithm involving O(n”) operations,

where n is the number of vertices of the graph or digraph.

The scheduling algorithm In Chapter 8 we also showed how to obtain the /ongest

path between two vertices in,a weighted digraph. If the digraph is an activity network,

then this longest path is a critical path, involving the activities which must be completed

on time if the entire job is not to be delayed. As with the shortest path algorithm, the

finding of a critical path involves O(n’) operations, where n is the number of vertices in

the digraph. —

The minimumconnector problem The problem of finding a minimum connector (that

is, a minimum-weight spanning tree) in a given connected graph is one which we

discussed in Chapter 10. We gave an easy-to-apply algorithm for solving this problem—

the so-called greedy algorithm—and presented a variation of it (Prim’s algorithm) which

is more suitable for computer implementation. In each case, the algorithm is an efficient

one, involving O(n’) operations, where n is the number of vertices in the graph.

The traveling salesman problem In contrast to the minimum connector problem,

there is no efficient algorithm known for solving the traveling salesman problem. As we

saw in Chapter 10, lower and upper bounds for the solution of the traveling salesman

problem can easily be derived from the solution of the minimum connector problem.

However, no algorithm for determining the exact solution of the traveling salesman

problem is known—the problem is in fact an NP-complete problem.

15.3 THE FUTURE

Current research in graph theory is extremely active. In the 1970s and 1980s, several ad-

vances were made, including the development of an O(n) algorithm for planarity, the in-

troduction of the term NP-complete, the determination of the thickness of the complete

graph K,, the discovery of Kuratowski-type theorems for graphs of any given genus,

and, of course, the proof of the four-color theorem. What important results will emerge

from the 1990s remains to be seen.

Of some interest are various generalizations of the notion of a graph. One such

generalization starts with the idea of a graph as a one-dimensional complex, consisting

of points and lines in space. By adding triangles and tetrahedra, we can construct

two-dimensional and three-dimensional complexes, and we can extend these ideas to yet

higher dimensions. Such simplicial complexes, as they are called, are of importance in

300 18.4 SUGGESTIONS FOR FURTHER READING

an area of mathematics known as combinatorial topology, and occur in the modeling of

certain physical theories—in particular, those concerning electromagnetic phenomena

and elastic bodies.

Q-dimensional 1-dimensional 2-dimensional 3-dimensional

Another generalization of the concept of a graph is that of a hypergraph. Instead of tak-

ing pairs of vertices as the edges of a graph, we take arbitrary subsets. For example, we

can take the vertices of a hypergraph to be a, b, c, and d, and the edges to be the subsets

abc, bd, cd, and c. The resulting hypergaph would then look something like this

Hypergraphs have already proved to be of great interest, both theoretically and in their

practical applications to a number of different areas. It will be interesting to see what
role they play in the coming years.

15.4 SUGGESTIONS FOR FURTHER READING

There are many books on graphs and digraphs and their applications. Two books at an
elementary level are

G. Chartrand, Introductory Graph Theory, Dover, New York, 1985.

O. Ore, Graphs and their Uses, 2nd ed., New Mathematical Library 10, Mathematical
Association of America, Washington, D.C., to be published in 1990.

Standard texts in graph theory include

C. Berge, Graphs, North-Holland, Amsterdam—New York, 1985.
B. Bollobas, Graph Theory: An Introductory Course, Graduate Texts in Mathematics

63, Springer-Verlag, New York, 1979.

J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier,
New York, 1979.

G. Chartrand and L. Lesniak, Graphs & Digraphs, 2nd ed., Wadsworth &
Brooks/Cole, Monterey, California, 1986.

F. Harary, Graph Theory, Addison—Wesley, Reading, Massachusetts, 1969.

CHAPTER 15. CONCLUSION 301

4

W. T. Tutte, Graph Theory, Encyclopedia of Mathematics 21, Addison-Wesley,

Reading, Massachusetts, 1984.

R. J. Wilson, /ntroduction to Graph Theory, 3rd ed., Longman, Harlow, Essex, 1985.

A historical approach to graph theory can be found in

N. L. Biggs, E. K. Lloyd, and R. J. Wilson, Graph Theory 1736-1936, paperback ed.,

Clarendon Press, Oxford, 1986.

Applications of graph theory, and the use of algorithms, are discussed in

A. K. Dolan and J. Aldous, Networks—An Introductory Approach, John Wiley &

Sons, New York, 1990.

T. B. Boffey, Graph Theory in Operations Research, Macmillan, London, 1982.

S. Even, Graph Algorithms, Computer Science Press, Potomac, Maryland, 1979.

M. R. Garey and D. S. Johnson, Computers and Intractability. A Guide to the Theory

of NP-Completeness, W. H. Freeman, San Francisco, 1979.

A. Gibbons, Algorithmic Graph Theory, Cambridge University Press, Cambridge,

1985.

M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press,

New York, 1980.

E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, eds., The

Traveling Salesman Problem, John Wiley & Sons, New York, 1985.

K. Lockyer, Critical Path Analysis and Other Project Network Techniques, Pitman,

London, 1984.

F. Roberts, Discrete Mathematical Models, with Applications to Social, Biological

and Environmental Problems, Prentice-Hall, Englewood Cliffs, New Jersey, 1976.

M. N. Swamy and K. Thulasiraman, Graphs, Networks and Algorithms, John Wiley

& Sons, New York, 1981.

H. N. V. Temperley, Graph Theory and Applications, Halsted Press, John Wiley &

Sons, New York, 1981.

H. Walther, Ten Applications of Graph Theory, D. Reidel, Dordrecht, 1984.

R. J. Wilson and L. W. Beineke, eds., Applications of Graph Theory, Academic Press,

London, 1979.

Specialist texts on some of the topics in this book include

D. Barnette, Map Coloring, Polyhedra and the F our-color Problem, Dolciani Math-

ematical Expositions 8, Mathematical Association of America, Washington, D.C.,

1983.

L. W. Beineke and R. J. Wilson, eds., Selected Topics in Graph Theory, Academic

Press, London, Vol. 1, 1978, Vol. 2, 1983, Vol. 3, 1988.

M. Capobianco and J.C. Molluzzo, Examples and Counterexamples inGraphTheory,

American Elsevier, New York, 1978.

302 15.4 SUGGESTIONS FOR FURTHER READING

J. L. Gross and T. W. Tucker, Topological Graph Theory, John Wiley & Sons, New

York, 1987.

E. M. Palmer, Graphical Evolution, John Wiley & Sons, New York, 1985.

G. Ringel, Map Color Theorem, Springer-Verlag, New York, 1974.

T. L. Saaty and P. C. Kainen, The Four-color Problem, 2nd ed., Dover, New York,

1986.

A. T. White, Graphs, Groups and Surfaces, 2nd ed., Mathema_.cal Studies 8, North-

Holland, Amsterdam, 1984.

SOLUTIONS TO SELECTED
PROBLEMS

CHAPTER 1

Lt.

1.3.

1.4.

1.6.

1.8.

1.12.

1.14.

(a) vertex-set: {London, Oslo, New York, Sydney}

edge-list: (London—Oslo, London—New York, London—Sydney, Oslo—New York,

Oslo—Sydney, New York—Sydney)

(b) vertex-set: {u,v,w,x,y,z}

edge list: (uv,uw,vw,vw, yx)

(c) vertex-set. {1,2,3,4,5,6} ;

edge-list: (12,22,23,24524,24,45,46).

There are many possible drawings of these graphs—for example:

(a) (1) and (5); (b) (3); (c) (2) and (4); (d) (1), (2), and (3).

Graphs (a), (b), and (d) are subgraphs of G. [Note that graph (d) is G itself.] Graphs (c)

and (e) are not subgraphs of G since they contain the edge vz which is not contained in

iG

graph (1): deg 1 = 1, deg 2 = 1, deg 3 = 4, deg 4= 4, deg 5 = 1, deg 6 = 1; the degree-

sequence is (1,1,1,1,4,4);

graph (2): deg a= 4, deg b= 4, deg c =4, deg d=4, deg e = 4; the degree sequence is

(4,4,4,4,4);
graph (3): deg u = 3, deg v= 1, deg z = 3, deg w= 1; the degree-sequence is (1,1,3,3);

graph (4): deg A = 0, deg B = 0, deg C = 0, deg D = 0; the degree-sequence is (0,0,0,0);

graph (5): deg 1 = 1, deg 2 = 2, deg 3 = 4, deg 4 = 2, deg 5 = 1, deg 6 = 2, deg 7 = 2,

deg 8 = 2; the degree-sequence IS Lele DardeDee 4):

(a) (i) (1,1,1,1,1,1,2,4,4); (i) (4,4,4,.4,4); Gi) (0,1,3,4,4,5,5).

(b) In graph (i), the sum of the degrees is 16 and the number of edges is 8; in graph (ii),

the sum of the degrees is 20 and the number of edges is 10; in graph (iii), the sum of the

degrees is 22 and the number of edges is 11. In each case the sum of the degrees is ex-

actly twice the number of edges.

(a) n = 5, r= 2, so the number of edges is (5)(2) anos

(b) n= 10, r= 3, so the number of edges is 5(10)(3) = 1/5;

(c)n = 12, r=5, so the number of edges is +(12)(5) = 30.

Consequence 1: Since the sum of all the vertex-degrees is twice the number of edges, it

must be an even number.

Consequence 2: If the number of vertices of odd degree were odd, then the sum of all

303

CHAPTER 2 304

the vertex-degrees would be an odd number, contradicting Consequence 1. So the num-

ber of vertices of odd degree must be even.
Consequence 3: Since G has n vertices each of degree r, the sum of all the vertex-de-

grees is nr. By the handshaking lemma, the number of edges is half this sum—that is,

snr.

1.16. (a) the last one; (b) the middle one; (c) the last one.

1.17. There are several possible relabelings—for example,

(a) 106A, 206B, 30C, 40D, 5GE, 60F;

(b) acl, bO4, cO7, dOo3, e6, feo2, 205.

1.18. | Graphs (a) and (c) are the same; graph (d) is isomorphic to (a) and (c), as can be seen by

interchanging the labels 3 and 6; graph (b) is not isomorphic to any of the other three,

since it contains no ‘triangles’.

1.21. No. To see this, look at the four vertices of degree 2. In the first graph they are joined in

pairs, whereas in the second graph none of them is joined to any other.

1.25. (a) For this graph, n = 6, m = 8, and the degree sequence is (2,2,2,3,3,4). There are four

graphs satisfying these conditions and they are on cards 147, 148, 149, and 150. In the

given graph, the vertices of degree 3 are joined and no vertices of degree 2 are joined.

The answer is therefore card 148.

(b) For this graph, n = 6, m= 10, and the degree sequence is (2,3,3,4,4,4). There are

three graphs satisfying these conditions and they are on cards 184, 185, and 186. In the

given graph, the vertex of degree 2 is joined to one vertex of degree 3 and one vertex of

degree 4. The answer is therefore card 186.

CHAPTER 2

2.1. (a), (d), (g), and (h) are TRUE; (b), (c), (e), and (f) are FALSE.

2.4
(a) Oy i Gy oy

1 © t 9 e
O: EW se)
Ose Ot
it OO wv

aS (a) cap

xe @3

5 4

2.6. The sum of the numbers is the degree of the vertex corresponding to the particular row
or column.

Qels
ON 2 le0 O D2 Ont Oe Oe
oe Oman) 230 20s 22 Oe O01

ele uel 0 0° G4 OTOm Ot

yO HE Xe) Joel! a lie'O Mea Mel ail)

(a) (b) (©)

Since graph (b) is obtained from graph (a) by interchanging the labels 3 and 4, it fol-
lows that matrix (b) is obtained from matrix (a) by interchanging the third and fourth
rows, and the third and fourth columns. Similarly, matrix (c) is obtained from matrix (b)

SOLUTIONS TO SELECTED PROBLEMS 305

4

by interchanging the first and second rows, and the first and second columns. The fact

that matrix (b) and matrix (c) are identical follows from the symmetry of this graph—in-

terchanging the labels | and 2 leaves it unaltered.

2.8 (a) 16001000
fae GUO. oct tal
o4 1 0804 0 0
0 Oil “bE Oo had
000116000

2.9.

O1_®
>< e@Q)

= =

Qe tia @®

2.13. (a) trail,.5, x, y; (b) walk, 4, v, v; (c) path, 1, v, w; (d) trail, 6, u, u.

[Note that alternative answers are possible in parts (a), (c), and (d); for example, we

could have given the answer walk in each case, since every trail is a walk. In each case

we have chosen the most restrictive term.]

2.15. length3: svwz

length 4: stvwz and svwyz

length 5: stuvwz, stvwyz, and svwxyz

length 6: stuvwyz and stvwxyz

length 7: stuvwxyz.

217

(a) (b) (c)

(e)

> S y
(f) (g)

306

2.18

2.23.

2.30.

2.32.

2.34.

MAM

CHAPTER 2

si os i Sen Kg|No|Cog|Ko,9|Qs| hedron| cube} hedron| hedron |hedron|Petersen

olelelmbal «fel «| | afm |
afolol fn) fol oe] | a] |
lela} of ol) ot od |

If we color the vertices of the bipartite graph black and white, then the vertices in each

cycle must alternate between these two colors. This implies that the number of edges in

each cycle must be even.

Assume that G is disconnected, and that v and w are vertices of G. If v and w lie in differ-

ent components of G, they are joined by an edge in G. If v and w lie in the same compo-

nent of G, and zis any vertex in another component of G, then vzw is a path in G. It fol-

lows that any two vertices can be connected by a path in G, and hence that G is connected.

They are depicted on graph cards 1, 3, 6, 13, 14, 29, 30, 32, 77, 78, 79, 81, 82, and 85.

Every tree can be built up from a single vertex by successively adding an edge and a

new vertex, as many times as necessary. At each stage we increase the number of verti-

ces by | and the number of edges by 1. Since we start with 1 vertex and 0 edges, we

must end up with n vertices and n—1 edges.

number of

vertices

number of

edges

degree of

each vertex

(a) There are nine spanning trees:

LATIN
PS Pa
shel 2d

(b) There are eight spanning trees:

PA | Lela
Li

SOLUTIONS TO SELECTED PROBLEMS 307

\

CHAPTER 3

3.1.

a3. There are six trees with six vertices—namely,

3.4.

Sle

3.10.

oe ee geet Lee
*

The first five of these are the carbon-graphs of alkanes with the chemical formula

C,H,,. (They are, respectively, n-hexane, 2-methyl pentane, 3-methyl pentane,

2,3-dimethyl butane, and 2,2-dimethy] butane.) The last one must be excluded since it

contains a vertex of degree 5.

(a) The number of vertices is

n+ (2n+2)=3n+2;

the number of edges is half the sum of the vertex-degrees (by the handshaking lemma),

and is therefore +{4n + 1(2n + 2)} =3n+ 1.

(b) By part (a), the number of vertices of an alkane exceeds the number of edges by 1,

and so the graph must be a tree.

G, and G, are balanced. The corresponding bipartite graphs are

G, G,

Note that in G, and G, the cycle ABCA has just one negative edge. These graphs are

therefore not balanced.

(a) Since the signed graph is balanced, we can color its vertices black and white so that

every negative edge has a biack end and a white end. If we now proceed around any

cycle, there is a change of color whenever we use a negative edge. Since the final color

must be the same as the first one, there must be an even number of color-changes, and

hence an even number of negative edges.

(b) There are three cycles—ABCA, ACDA, and ABCDA. The number of negative edges

in each is as follows:

G,: ABCA:2, ACDA:2, ABCDA:2,

G,: ABCA:2, ACDA:2, ABCDA.2.

308 CHAPTER 3

3.11. <sentence>

<subject>) predicate)

«noun <verb <object

phrase» phrase» phrase»

<adjective> <noun <verb> <direct
phrase) object)

<noun <noun

phrase»

Good students read <noun)

books

3.15. The branching tree is

There are therefore five decreasing sequences of maximum length: 11,6,1; 11,6,3;

11,6,4; 11,9,4; 11,10,4.

3.17. Subsets of a set:

“UZ

nested parentheses:

(CCC CCD)

3.20. (a) The corresponding bipartite graph is

Cy

ry C2

ry C3

r5 C4

cs

which is not connected. The bracing is therefore a non-rigid bracing, and can be dis-
torted as shown:

SOLUTIONS TO SELECTED PROBLEMS 309

(b) The bracing is a rigid bracing since its bipartite graph is connected:

It is not a minimum bracing, since the bipartite graph contains a cycle.

3.24. Since a minimum bracing corresponds to a tree with r+s vertices and r+s—1 edges, the

number of braced cells is r+s—1.

- a

g ¢ d

(b) There are several possibilities—for example,

S26. 1G)

{abf, abc, ace, cde, cg} and {abf, abc, cde, cg}.

(c) Again, there are several possibilities. The solutions arising from the complete graphs

in part (b) are

0-12 seconds: a, b, and f

12-24 seconds: a, b, and c

24-36 seconds: a, c, and e

36-48 seconds: c, d, and e

48-60 seconds: c and g

Total waiting time: 252 seconds

0-15 seconds: a, b, and f

15-30 seconds: a, b, and c

30-45 seconds: c, d, and e

45-60 seconds: c and g

Total waiting time: 255 seconds

310

3.27.

3.28.

3.31.

3.32.

CHAPTER 3

(b) There are several possibilities—for example,

{AC, DE, BD, DF} and {AD, BD, CE, CF}.

(c) Again, there are several possibilities. The solutions arising from the complete graphs

in part (b) are:

99-99.5 MHz: A and C and 99-99.5 MHz: A and D

99.5—100 MHz: C and E 99.5—100 MHz: Band D

100—100.5 MHz: Band D 100—100.5 MHz: CandE

100.5-101 MHz: DandF 100.5—101 MHz: C and F

A E B F | ad Cae F

(a D—_———__—_—_—_—_C

99 995 100 1005 101MHz 99 99.5 100 1005 101MHz

Note that this interval graph is not the same as the compatibility graph in Problem

3.27, although they both arise from the same set of intervals [the first set of intervals in

the solution of Problem 3.27(c)]. The reason for this difference is that in a compatibility

graph non-overlapping intervals (such as A and D, or C and F) can sometimes give rise

to adjacent vertices, whereas in an interval graph non-overlapping intervals must

always give rise to non-adjacent vertices.

Checking properties (a), (b), and (c) for the subgraphs H, and H, should cause you no

difficulty.

Property (a) tells us that each cube has a front and a back, and a left side and a right

side, and the subgraphs H, and H, teil us which pairs of colors appear on these faces.

Property (b) tells us that each color appears exactly twice on the sides of the stack, and

exactly twice on the front and back (that is, once on the front and once on the back).

Property (c) tells.us that the faces appearing on the front and back of a cube cannot be

the same as those appearing on the sides.

If one of the subgraphs, H, say, contains the loop at R, then it cannot contain any other

edge incident with R, by property (b). It follows from property (a) that H, must contain

the 2-edge joining G and Y, the 3-edge joining B and Y, and one of the 4-edges incident

with Y. But this means that Y has degree 3, contradicting property (b). It follows that nei-

ther subgraph can contain the loop at R, and a similar argument shows that neither sub-

graph can contain the loop at G. If one of the subgraphs contains the 2-edge joining R

and Y, then R cannot be incident with both edges joining R and G, by property (b), and

so the two edges incident with G must be the 4-edge joining G and Y and the 1-edge

joining G and R. But this means that neither R nor Y can be incident with a 3-edge,

SOLUTIONS TO SELECTED PROBLEMS 311

4

contradicting property (a). It follows that neither subgraph can contain the 2-edge join-

ing R and Y, and so both H, and H, must be subgraphs of the following graph:

The result now follows easily by considering the possible cases that can arise.

3.35. The lengths of the corresponding paths are (a) 3; (b) 4; (c) 3; (d) 2. Thus, key change

(d) is the least ‘remote.’

CHAPTER 4

4.1. (a) vertex-set: {1, 2, 3,4, 5}

arc-list: (21, 25, 42, 43, 51, 52, 54)

(b)- vertex set: {a, b,c, d, e,f, g}

arc-list: (ab, bb, bb, cd, cf, dd, ed, ef, ef, fc, fc).

4.2. (a) is a subdigraph—for example, the subdigraph whose arcs are 42, 43, 52, and 54;

(b) is a subdigraph—for example, the subdigraph whose arcs are 21, 51, 52, and 54;

(c) is not a subdigraph.

4.4, Digraphs (b) and (d) are the same;

digraph (c) is isomorphic to (b) and (d), as can be seen by interchanging the labels 1

and 4;

digraph (a) is not isomorphic to any of the other three, since it contains a vertex (2) with

out-degree 3.

4.10. (a) and (d) are TRUE; (b), (c), (e) and (f) are FALSE.

4.11. (a) out-degree sequence: (0,1,1,1,1,1,1,1,1),

in-degree sequence: (0,0,0,0,0,0,1,3,4);

(b) out-degree sequence: (1,2,2,2,3),

in-degree sequence: (1,2,2,2,3);

(c) out-degree sequence: (1,1,2,2,2,3),

in-degree sequence: (0,0,2,3,3,3).

digraph digraph digraph

(a) (b) (c)

4.12.

number of arcs

era ey sum of in-degrees

In each case, the sum of the out-degrees and the sum of the in-degrees are both equal to

the number of arcs.

312 CHAPTER 5

4.16.
1 2

e3

5 4

4.17. (a) The sum of the numbers in any row is the out-degree of the vertex corresponding to

that row.

(b) The sum of the numbers in any column is the in-degree of the vertex corresponding

to that column. '

4.19. 1
© Cae @

1K 6 eA)

eS
Qs @

4.22. (a) length 5: stvwyz

length 6: stuvwyz and stvwxyz

length 7: stuvwxyz;

(b) length 3: zuvs and zwxs

length 5: zuvwxs;

(c) stvwyzuys and stvwyzwxs.

Any cycle containing both s and z must consist of a path from s to z followed by a path

from z to s. However, all paths from s to z contain both v and w [by part (a)], and all

paths from z to s contain v or w [by part (b)], so either v or w must occur twice. Since

this is not allowed, there can be no cycle containing both s and z.

4.23. (a) connected, but not strongly connected (since there are no paths from the center vertex

to any other);

(b) strongly connected;

(c) disconnected;

(d) connected, but not strongly connected (since there are no paths from the top right-hand

vertex to any other).

CHAPTER 5

Sk, (a) and (b) negative feedback cycles; (c) positive feedback cycle.

5.3. Positive feedback cycle: cefhgc; negative feedback cycles; ghg, ahga, abdfhga, ceifhgc.

Be) (a) ;
0 1

cee pea an ae
0

SOLUTIONS TO SELECTED PROBLEMS 313

(b)
number of | out-degree of] in-degree of

states each vertex | each vertex
one-moment

two-moment

three-moment

For an n-moment machine, there are 2” states, each with out-degree and in-degree 2.

2

2

2

5.10. | Applying reduction (v), we eliminate the cycle of length 2:

Xe a, OX bes pXqn id Xs

-of

Applying reduction (ii), we eliminate the vertex x,:

e

xy xX, bed Xs
1-ef

Applying reduction (i), we eliminate the multiple arcs:

on bed
a l=¢f

x4 *) x5

Applying reduction (ii), we eliminate the vertex x,:

bed a(e+ -?)

@—_>—_®

* x5

It follows that

Xs = (ae — acef + abcd) x,/(\-cf).

CHAPTER 6

6.1. Eulerian Eulerian trail

(a) no bs
(b) yes ABCDEACEBDA

(c) no =
(d) yes ABCADCFBEFDEA

(e) no es

(f) no

(g) no

314

6.3.

6.5.

6.8.

6.9.

CHAPTER 6

Hamiltonian Hamiltonian cycle

(a) yes ABCDA

(b) yes ABCDEA

(c) yes ABCDHGFEA

(d) yes ABCDFEA

(e) no x
(f) yes ADBECFA

(g) yes ACDBA

Strictly speaking, the answer is no, since (according to Saalschiitz) the new bridge was

a railway bridge! If we ignore that fact, the answer is yes, since A and D are now the

only vertices of odd degree. A suitable open trail is ABACADBCD, crossing the bridges

in the order abcdefhg.

(a) Ky is Eulerian when n is odd (since K;, is regular of degree n — 1);

(b) K;.5is Eulerian when r and s are both even (since each of the vertex-degrees is either

rors);

(c) C, is Eulerian for all values of n (since C,, is regular of degree 2);

(d) the octahedron graph is Eulerian (since it is regular of degree 4); the other Platonic

graphs are not Eulerian (since they are regular of degree 3 or 5);

(e) Q, is Eulerian when n is even (since Q, is regular of degree n);

(f) the Petersen graph is not Eulerian (since it is regular of degree 3).

There is only one possibility—the cycles C,, C,, C3, and C, shown below:

xp

If we trace around C,, ‘picking up’ C, and C, as we go, we get the closed trail

u(vwtv)(ztyz)u.

This trail misses C,, which can be inserted at the vertex w to give the Eulerian trail

uv(wxyw)tvztyzu.

Removing the edges uv and vz, we obtain the following graph:

We cannot use the edge uz (which is a bridge), so we must use either zt or zy. There are

SOLUTIONS TO SELECTED PROBLEMS 315

now several possibilities. For example, we can traverse the edges zt, tv, vw, and wy,

giving the following graph:

At this stage, we cannot use the edge yz (which is a bridge), so we traverse the cycle

ytwxy, returning (since there is no alternative) by the bridges yz and zu. Thus we obtain

the Eulerian trail uvztvwytwxyzu.

6.10. (a) is edge-traceable, since A and B are the only vertices of odd degree; a suitable open

trail is ACBDAEB, starting at-A and ending at B.

(b) is not edge-traceable, since it has four vertices of odd degree.
(c) is edge-traceable, since the only vertices of odd degree are u and x; a suitable open

trail is uwvwxyzuwyUuxvzx.

6.12. Such graphs do not exist, since the number of vertices of odd degree is always even, by

the handshaking lemma.

6.15. If we add k edges to G, joining the k vertices of odd degree in pairs, we get a new graph

G’ in which every vertex has even degree. It follows that G’ has an Eulerian trail. If we

now write out this trail, and then omit the added edges, we get the required k pen-

strokes.

6.18.

Edge AB a BGC eB Deeg) Ene ee)

Markers at beginning 2 2 0 2 2 2 2

Markers at end 3 3 0 3 3 3 1
ie ae Eee

Edge DF FG GH “Hil” IH” +H” “IM

Markers at beginning 1 2 2 D 0 2 2

Markers at end 0 3 3 3 0 3 3

6.19. There are exactly two vertices of odd degree, b and c, and the shortest path between

them is bedc, of length 6. Doubling up the edges in this path, we obtain the following

Eulerian graph:

316

6.22.

CHAPTER 7

An Eulerian trail is abcdedcebea, of total length 27.

(a) Since there is no vertex whose in-degree and out-degree are equal, this digraph is

neither Eulerian nor arc-traceable.

(b) In this digraph, the in-degree and out-degree of each vertex are equal, and the digraph

is therefore Eulerian: an Eulerian trail is ABDECDACBEA.

(c) In this digraph,

indeg B = outdeg B, indeg C = outdeg C,
indeg D = outdeg D, outdeg A — indeg A = 1,
indeg E — outdeg E = 1;

the digraph is therefore arc-traceable: a suitable trail is ABDECDACBE. Note that any

such trail must start at A and finish at E.

CHAPTER 7

7.2.

lads

7.12.

(a) There are two Hamiltonian cycles:

JVTSRWXZOPNMLKFDCBGHJ and JVTSRWXHGFDCBZQPNMLKJ.

(Note that the letter after R must be W, since otherwise W would have to be omitted.)

(b) There is only one such path—BCDFGHXZOPNMLKJVWRST.

(a) K, is Hamiltonian if n > 3; if the vertices are denoted by 1,2....,, then a Hamiltonian

cycle is 123---nl.

(b) K;,;is Hamiltonian whenever r =s and r 22.

(c) Since a tree contains no cycles, no tree can be Hamiltonian.

(d) All five Platonic graphs are Hamiltonian.

(Hamiltonian cycles for the tetrahedron, cube and octahedron were given in parts (a),

(c), and (d) of Problem 6.1. Several Hamiltonian cycles for the dodecahedron were

given in our discussion of the Icosian game, and a Hamiltonian cycle for the

icosahedron is as follows:

wa

The vertices of any bipartite graph can be split into two sets A and B in such a way that

each edge has one end in A and one end in B. Any Hamiltonian cycle must alternate be-

tween these two sets, ending in the same set as it started. It follows that if a bipartite

graph is Hamiltonian then the sets A and B must have the same number of vertices. This

is impossible if the total number of vertices is odd.

(a) This graph is a bipartite graph with an odd number of vertices, and so cannot be

SOLUTIONS TO SELECTED PROBLEMS 317

7.14.

7:15.

7.19.

7.20.

4

Hamiltonian. (You can check that the graph is bipartite by writing down the sets A
and B. They are

{a,c,e,h,j,l,m} and {b,d,f,2,i,k},

containing seven and six vertices, respectively.)

(b) The graph associated with any chessboard is bipartite, since a knight’s move always

takes a knight to a square of a different color. So

A = {black squares} and B = {white squares}.

The result now follows immediately from the above. (All we are saying is that, since

a knight always moves from a black square to a white square, or vice versa, the number

of black squares must equal the number of white squares. However, this is impossible

for any board with an odd number of squares.)

(a) Any of the cycle graphs C,,, where n > 5.

(b) The complete bipartite graph K,, where r = 3(n-1), = 3(n+1), and n is odd.

[Note that, if n is even, then deg v 2 5n for each vertex v, and so the graph is Hamilto-

nian, by Dirac’s theorem.]

(a) A Hamiltonian cycle is ABDA;

(b) a Hamiltonian cycle is ABECDA:

(c) a Hamiltonian cycle is ABECDA.

Since the number of cities is small, we can solve this problem by trial and error. The

two shortest routes are AECBDA and AEDBCA (and their reverses). The total distance

traveled in each case is 20+30+50+80+80 = 260. The reverses of these routes are

equally short, so the king has a choice of four routes.

Since the number of possible routes is enormous (about 6.08 x 10”), there is no possibility

of sorting through all of them, even on the fastest computer. We are therefore forced to make

certain simplifications based on the particular layout of the map in question. For example,

since Florida and Georgia are neighboring states in the Southeast, whereas Oregon is a long

way away on the West Coast, it is unlikely that our route will take us from Florida to Geor-

gia via Oregon. We can therefore simplify the problem considerably by leaving out connec-

tions between pairs of cities which are more than (say) 1000 miles apart, since it is unlikely

that any such connection will appear on the shortest route. We might go even further and ig-

nore all connections between pairs of states which do not meet. This would simplify the

problem considerably, and although the solution of the new problem may not be exactly the

same as that of the original problem, it will probably be a good approximation to it. Finally,

we might try a regional approach to the problem in which we break the original problem into

much smaller ones involving the various regions of the United States (such as the Northeast,

the Midwest, the Southwest, and so on). If we can solve the shortest route problem for the

different regions, we may be able to combine these solutions so as to give a solution (possi-

bly approximate) for the original shortest route problem.

318 CHAPTER 8

CHAPTER 8

8.1 We obtain the following table:

Vertices |S

Thus, the shortest distance from S to T is 22. Tracing back through the network, we ob-

tain the shortest path SABDT.

8.5. The graph representing the problem is

8.6. We obtain the following table:

Vertices Si A B G D E Te

= (S) (S,A) (S,B) (A,B) (A,C) (D,E)

s [oJ
S,A

S,A, B

SAB CD

S A BCeD ae

Thus, the longest distance from S to T is 43. Tracing back through the network, we

obtain the longest path SCET.

SOLUTIONS TO SELECTED PROBLEMS 319

8.9.

Activity SAD SBS CamAD ML ADL SAL em DCm BD INCH. SDT rT:

Earliest
starting time 0 ORO 7 7 eS ee a2 oor 2 31

Latest
Starting time 6 TOO OS eee oe) a One 31

Float time 6 1070 12 (So eS gy 0 6 0

8.12. The activity network is

; [3] A ® cy] :

R © @
6) sf@ L 0 20

:
[4] p(i3

The critical path is SACDT, with length 20. We obtain the following table:

SAm SB ACs BC BD «CDS CTS (Di Activity

Earliest
starting time 0 0 3 4 4 11 11 i

Latest

starting time 0 1 3 5 6 11 13 13

Poarame 0) Ot, 0. he 2

CHAPTER 9

9.1. (a) «(G) = 2, G is 2-connected, but not 3-connected.

MG) = 2; G is 2-edge connected, but not 3-edge connected.

(b) «(G) = 1; Gis neither 2-connected nor 3-connected.

MG) = 1; Gis neither 2-edge connected nor 3-edge connected.

(c) «(G) = 2; G is 2-connected, but not 3-connected.

MG) = 3; G is both 2-edge connected and 3-edge connected.

9.4. (a), (c), (d), and (f) are cutsets; (b) is not a cutset, since its removal does not disconnect

the graph; (e) is not a cutset, since we can disconnect the graph by removing just xz and

yz.

9.6. (a) and (d) are vertex-cutsets; (b) is not a vertex-cutset, since its removal does not dis-

connect the graph; (c) is not a vertex-cutset, since we can disconnect the graph by re-

moving just wu and x, or just y.

a2: In each case there are several possibilities—for example:

(a) saet, sbdt, sceft;

(b) sbet, sabdt;

(c) saet, sbft.

This graph does not contain three vertex-disjoint st-paths, since every st-path must pass

through at least one of the two vertices bande.

320 CHAPTER 10

9.11. (a) Ifthe two st-paths were not edge-disjoint, then they would have an edge in common.

But this would mean that they had at least one vertex (other than s and t) in common,

contradicting the fact that they are vertex-disjoint.

(b) There are many possibilities—for example,

In the above graph the only pairs of edge-disjoint st-paths are savct and sbvdt, and

savdt and sbvct. In neither case are the paths vertex-disjoint, since they all pass through

the vertex v.

9.12. (a) In this case, k = 2; two edge-disjoint st-paths are sact and sbdt, and two edges

separating s from tare sa and sb. Thus the maximum number of edge-disjoint s¢-paths

and the minimum number of edges separating s from ¢ are both equal to 2.
(b) Again, k = 2; two edge-disjoint st-paths are svxt and swyt, and two edges separating s

from t are vx and wy. Thus the maximum number of edge-disjoint st-paths and the

minimum number of edges separating s from ¢ are both equal to 2.

(c) Inthis case, k = 3; three edge-disjoint st-paths are suwzt, syt, and svxt, and three edges

separating s from ¢ are su, sv, and sy. Thus the maximum number of edge-disjoint

st-paths and the minimum number of edges separating s from ¢ are both equal to 3.

9.18. (a) 5; (b) 5.

CHAPTER 10

10.1. There are eleven non-isomorphic trees with seven vertices:

[2a Ae Yara (eee ter ee

foto

a laanees
10.4. (a) For each component of G, the number of vertices exceeds the number of edges by 1.

Since there are k components, the total number of edges is n — k.

(b) By the result of part (a), any forest with 12 vertices and 9 edges has exactly three

components. An example of such a forest is

SOLUTIONS TO SELECTED PROBLEMS 321

av gee eee)
(c) If each component has at least two vertices, then the result is true, since each

component would then have at least two vertices of degree 2. (This can be seen by

applying the handshaking lemma to each component.) However, the result is not true,

in general—for example, the following forest has eight components, but only two
vertices of degree 1:

10.8. 3

Central with center v

Centroidal with centroid v

Bicentral with bicenter vw

Centroidal with centroid w

@—_@__e__#__e
v

v w a

ss Central with center v

eee __e_®

Centroidal with centroid v

Bicentral with bicenter vw

vOUwW Bicentroidal with bicentroid vw

Central with center w

raat Bicentroidal with bicentroid vw

Central with center v

Centroidal with centroid v °

Bicentral with center vw

: Y Centroidal with centroid w

v w

7a

Bicentral with bicenter vw

Bicentral with bicentroid vw

Central with center v

Centroidal with centroid v

322 CHAPTER 10

10.10. The 16 labeled trees are as follows. Note that the first four are obtained by labeling the

star graph K, ;, whereas the other 12 arise from labeling the path graph P,.

1 2 1 2 Ki 1 D i NJ 1 2 1

“A 4 4 3) ee 3 64 ay 4 3 4

10.12. (a) Successively removing the edges 42, 21, 61, 13, 35, and 75, we obtain the Priifer

sequence (2,1,1,3,5,5).

(b) Successively removing the edges 21, 31, 14, 54, and 64, we obtain the Priifer sequence

(1,1,4,4,4).

10.14. (a) We start with the list (/,2,3,4,5,6,7,8) and the sequence (2,1,1,3,5,5). Successively

adding the edges 42, 21, 61, 13, 35, and 75, leaves us with the list (5,8). Joining the

vertices with these labels, we obtain the labeled tree in Problem 10.12(a).

(b) Westart with the list (1,2,3,4,5,6,7) and the sequence (1,1,4,4,4). Successively adding

the edges 21, 31, 14, 54, and 64, leaves us with the list (4,7). Joining the vertices with

these labels, we obtain the labeled tree in Problem 10.12(b).

10.16. (a) There are several DFS orderings, depending on how we choose the vertices at each

stage. If we choose the left-hand vertex whenever there is a choice, we select the

vertices in the order abefcgdhijk.

(b) There are several BFS orderings, depending on how we choose the vertices at each

stage. If we move from left to right on each level, we select the vertices in the order

abcdefghijk.

10.20. We start by choosing the edges AB and AC. We can then choose either of the edges AD

and CD, and then either of the edges DE and BE. These choices give us four minimum

spanning trees, all of weight 49:

ah Sethe ee
DmoRG D3 C

10.24. (a)

The minimum-weight spanning tree joining the vertices A, C, D, and E is the tree with

edges AE, DE, and AC or CE, with total weight 13. The two edges of smallest weight

incident to B are BC and BA or, BE with total weight 11. The lower bound is therefore

13+11=24.

SOLUTIONS TO SELECTED PROBLEMS 323

BF
The minimum-weight spanning tfee joining the vertices A, B, C, and D is the tree with

edges AC, BC, and AD or BD with total weight 17. The two edges of smallest weight

incident to E are EA and EC, with total weight 6. The lower bound is therefore 17 +

6 = 23.

10.32. First, we order the items in decreasing order of value per unit weight, as shown below.

(In this case, the weight of an item is the time needed to produce that item.)
7

(b)

Order number 7 1 ps 3 4 5

Item B ie D é A

Weight wi di 4 4 Z 3

Value v; 14 8 oT 3 3)

Value per unit weight 2 2 WIS ile 1

We begin by branching out from the null solution:

(050900) We 7h =(14)

(0, 1,0,0,0) w=4,v=

(0, 0,0, 0,0) € (0,0, 1,0,0) w=4,r

(0,0,0,1,0) w=2,v=

ll

Ga) G3 =) 160) (0,0,0,0,1) w=3,v=

STORE v = 14, solution = (1,0,0,0,0)

Next we branch out from the solution (1,0,0,0,0):

(1, 1,0,0,0) w= 11

ON 10:10) eal

(10; 105,1,0), swe 9,0 = (17)

(1,0,0,0,1) w= 10,v = 17

(0, 1,0,0,0) v=8

(0, 0, 0, 0, 0)
(0,0,1,0,0) v=7

(0, 0,0, 1,0) v=3

STORE v = 17, solution = (1,0,0,1,0)

We delete the marked vertices and continue the branching process from vertex (1,0,0,1,0).

324 CHAPTER 10

(1,0,0,0,0) (1,0, 0, 1, 0)
(1, 0,0, 1,1) w= 12

(0, 1,0,0,0) r=@)

(0,0, 1,0,0) »=7

(0, 0,0, 1,0) v=3

(0, 0, 0, 0, 0)

STORE v = 17, solution = (0,1,0,0,0)

The new solution is infeasible, so we continue the branching process from the current

feasible solution with the highest value—namely, (0,1,0,0,0).

(0, 1, 1, 0, 0) w = 8,v = (15)

(0,1,0,1,0) w=6,r=11

(0,1,0,0,1) w=7,v=11
(0, 0, 0, 0, 0)

(0,0, 1,0,0) v=7

(07050) 1510)» mi =93

STORE v = 17, solution = (1,0,0,1,0)

We continue the branching process from vertex (0,1,1,0,0).

(0, 1,1,1,0) w= 10,v=

(0, 1, 0, 0, 0)
(0,1,1,0,1) w= 11

(O81) OF, 0) ae = 1

(0, 0, 0, 0, 0)
(CO; 01 O10) ea 7

(0,0,0,1,0) v=3

STORE v = 18, solution = (0,1,1,1,0)

The solution (0,1,1,1,0) is a feasible solution with a value greater than the previous

stored value, so we update the stored value, as shown above.

We continue the branching process as shown in the following diagrams.

(0, 1,0,0,0) (0, 1, 0, 1, 0)
(0, 1,0,1,1) w= 9,0 =(14)

6, 0,1,0,0) ve?
(0, 0, 0, 0, 0) (Ys

(0,0,0,1,0) v=3

STORE v = 18, solution = (0,1,1,1,0)

SOLUTIONS TO SELECTED PROBLEMS 325

(0, 0, 1, 1, 0) w = 6,0 = (10)

(0, 0, 0, 0, 0)

(0,0,1,0,1) w=7,v = 10
(0,0,0,1,0) v=3

STORE v = 18, solution = (0,1,1,1,0)

0,0,1,0,0) (0,0, 1, 1,0
(0, 0, 0, 0, 0) : used (0,0,1,1,1) w=9,0 = (13)

(0050212 0) a3

STORE v = 18, solution = (0,1,1,1,0)

(0, 0, 0, 1, 0)
(0, 0,0, 0,0) #———+ + 0,0,0,1,1) w=5,0=©

STORE v = 18, solution = (0,1,1,1,0)

The branch-and-bound procedure has now been completed, so the optimum solution

vector is (0,1,1,1,0), corresponding to items E, D, and C, with a total value of 18.

CHAPTER 11

LEZ: K 7

¥ x: Q Ky

(a) (b) (c)

11.4. In any plane drawing of K,, the cycle wwwxyu must appear as a pentagon. The edge vy

must lie either inside or outside this pentagon. Since the argument is similar in each

case, we shall assume that vy lies inside the pentagon, as in diagram (b).

u u u

Gy | ei | <

¥. w x w x w

(a) (b) (c)

Since the edges ux and uw cannot cross vy, they must lie outside the pentagon, as in dia-

gram (c). But the edge vx cannot cross uw, and the edge wy cannot cross ux, so both vx

and wy must lie inside the pentagon, and must therefore cross. Since this is not allowed,

we deduce that K, has no plane drawing—that is, K; is non-planar.

326

11.5.

11.8.

11.9.

11.12.

11.14.

11.15.

CHAPTER 10

(a) TRUE, since if G is planar, we can draw G without crossings. If we now omit the vertices

and edges not contained in the subgraph, we get a plane drawing of the subgraph.

(b) FALSE—for example, K3, is not planar, whereas the cycle graph C¢ (a subgraph of K33)

is planar.

(c) FALSE—for example, Ce is planar, whereas K3,3 (which contains C6) is not.

(d) TRUE, since if G is planar, then G cannot have a non-planar subgraph (by the result of

part (a).

For graph (a), there are 9 edges, the face-degrees are 3, 3, 4, 4, and 4, and

34+34+44+44+4=2x9;

for graph (b), there are 11 edges, the face-degrees are 3, 3, 3, 3, 3, 3, and 4, and

34+3434+3434+34+4=2x11;

for graph (c), there are 11 edges, the face-degrees are 3, 3, 3, 3, 3, 3, and 4, and

3434+3434+34+34+4=2x11;

The handshaking lemma is therefore verified in each case.

For graph (a),n=6,m= 9,f=5,son—m+f=2,

For graph (b), n= 6, m= 11,f=7,son—m+f=2,;

For graph (c),n =6,m=11,f=7,son—m+f= 2.

Euler’s formula is therefore verified in each case.

(a) Since the shortest cycle length in G is 5, the degree of each face in a plane drawing is

at least 5, so that 2m > Sf and we have f < 2 m. Combining this with Euler’s formula,

f=m-—n+2, we getm—n+2<2m, and hence mS 3 (n-2).

(b) Suppose that the Petersen graph is planar. Since it contains no triangles or cycles of

length 4, we can substitute n = 10 and m= 15 into the result of part (a) to give

15 <2. This contradiction shows that the Petersen graph is not planar.

A #00
icosahedron dodecahedron

(a) (b) (c) és)

(a) Since G is simple, we can apply Corollary 1 to deduce that m < 3n—6, where m is the

number of edges of G. If every vertex has degree 5 or more, we have (on counting the

edges around each vertex) 2m = 5n. Thus Sn < m § 3n-6, giving n = 12. This

contradiction establishes the result.

¥/(b) Since G has no vertices of degree 1 or 2, we have (on counting the edges around each

vertex) 2m 2 3n. If every face has degree 5 or more, we have (on counting the edges

around each face) 2m = 5f. Combining these two inequalities with Euler’s formula

yields f = 12. This contradiction establishes the result.

[Note that either of these results can be deduced from the other by duality.]

SOLUTIONS TO SELECTED PROBLEMS 327

‘

11.20. Deletion of the edge vw gives the following subgraph, which is a subdivision of K; ,:

It follows from Kuratowski’s theorem that the given graph is non-planar.

11.22. (a) Planar: a plane drawing is as follows:

For this graph, n = 6, m = 10, and f= 6, son—m+f=2.

(b) Planar: a plane drawing is as follows:

For this graph, n = 6, m= 11, andf=7,son—m+f=2.

(c) Non-planar: this graph clearly contains K3,3 as a subgraph, as can be seen by comparing

it with card 175; it also contains a subdivision of Ks, as can be seen by removing the

vertical edge in the center.

(d) Non-planar: this graph contains K3;3 as a subgraph (the two vertices of degree 4 and

any vertex of degree 5 form one set, the remaining three vertices of degree 5 form the

other); it also contains Ks as a subgraph, as can be seen by removing one of the vertices

of degree 4 and its incident edges.

[Note that in parts (c) and (d), K; and K, , are regarded as subdivisions of themselves.]

11.25. Three planar subgraphs which can be superimposed to form K, are shown on page 227.

It follows that t(K,) < 3.

11.27. Since the graph K, , is planar for any given value of s, we can split K, , into sr planar

subgraphs, each of which is isomorphic to K,,. Thus ¢(K,,, S47. Combining this with

the lower bound for ¢(K,,) given on page 226, we get

[rs / (2r + 2s—4) 1S W(K,,,) $57.

These two bounds are equal if

peel
2 2r+2s—4

Rearranging this inequality gives

s Mr yt

Thus, if s > L(r - 2)”, then #(K,,,) = 57.

328 CHAPTER 12

11.32. (a) card 50; (b) card 51; (c) card 189.

11.34. The dual graphs are as follows. Since their degree-sequences are (3,3,3,3,3,5) and

(3,3,3,3,4,4), they are clearly not isomorphic.

11.36. It follows directly from the construction of G*, that G* has f vertices and m edges. If

G* has f* faces, then, by applying Euler’s formula to both G and G*, we obtain

forG:n-e+f=2; forG*: f—e+ f*=2.

Comparing these gives f* =n, as required.

11.37. If Gis bipartite, then every cycle of G has even length, by the result of Problem 2.23.

By duality, every cutset of G* has an even number of edges. In particular, every vertex

of G* has even degree. Thus, G* is Eulerian, by Theorem 6.1. Conversely, if G* is

Eulerian, then every vertex of G* has even degree. By duality, every face of G has even

degree. In particular, every cycle of G has even length. Thus, G is bipartite.

CHAPTER 12

12.1. 4

Zn
“43S
(3 pen aN

Z 3

12.4. (a) 7; (b) 2; (c) 3: (d) 2: (e) 4.

12.5. (a) The only graphs with x(G) = 1 are the graphs with no edges—that is, the null graphs
Nn.

(b) The graphs with x(G) = 2 are the bipartite graphs (other than N,), since we can color
their vertices black and white so that each edge has a black end and a white end.

12.6. a. TRUE, because if G contains K, as a subgraph, then G contains r mutually adjacent ver-
tices which require r colors. So ¥(G) > r.

b. FALSE—for example, the cycle graph C, has chromatic number 3, but contains no tri-
angle.

12.12. (a) k(k-1)(K-2)(k-3)(k-4); (b) k(K-1)*.

12.15. (a) k(k-1)°(k-2), since we can assign k colors to v, kK-1 colors to u and x, and k-2 colors
to w;

(b) k(k-1)°(k-2), since we can assign k colors to v, k-1 colors to u and x, k-2 colors to w,
and k—1 colors to y;

SOLUTIONS TO SELECTED PROBLEMS 329

12.16.

12.18.

12.20.

12.23.

‘

(c) k(k-1)(k-2)°, since we can assign k colors to v, kK-1 colors to w, and k-2 colors to u

and x;

(d) R(kel Y(k-2), since we can color K3 with k(k—1)(k—2) colors and K2 with k(k—1) colors;

(e) the number of colorings in which v and w are colored the same is k(nt)’. since we

can assign k colors to v, 1 color (that used for v) to w, kK-1 colors to u, and k-1 colors

to x; the number of colorings in which v and w are colored differently is k(k-1)(k-2)’,

since we can assign k colors to v, kK-1 colors to w, k-2 colors to u, and k—2 colors to

x. The total number of colorings is therefore

k(k-1)° +/k(k-1)(K-2) = k(k-1)(k°-3k+3).

The polynomials in parts (a) and (b) of Problem 12.15 are, respectively,

kA — 4k? + 5k? — 2k

and

*, -5k' +98 — 7K + 2k.

These polynomials clearly satisfy the given properties.

alee
Po(k) = {k(k-1)(K-2)}? — (RV) (K-2)° = k(K-1)°(K-2).

Jeon
P,(k) = k(k-1)* — k(k-1)(k°-3k+3) [by Problem 12.15(e)]

= k(k-1)(K-4k+6k-4)

= k(k-1)(k-2)(k°-2k+2).

(a) Since the graph G contains vertices of degree 3, we have x’(G) = 3. The following

diagram illustrates a 3-edge-coloring of G. So x’(G) = 3.

(b)

(b) Since the graph G contains vertices of degree 4, we have x'(G) 2 4. The following

diagram illustrates a 5-edge-coloring of G. So x'(G) = 4 or 5S. A little trial and error

will convince you that no 4-edge-coloring is possible, so X/(G) = 5.

(a) The only graphs with ’(G) = 1 are the graphs whose components are either single

edges or isolated vertices. (At least one edge must be included.)

(b) The only graphs with x’(G) = 2 are the graphs whose components are either path

graphs, cycles of even length, or isolated vertices. (At least one path of length 2 or

more, or cycle of even length, must be included.)

CHAPTER 13 330

12.24. (a) TRUE, because if G contains a vertex of degree r, then G contains r edges all of which

must be differently colored. So y’(G) 2 r. .

(b) FALSE—for example, the cycle graph Cs has chromatic index 3, but contains no vertex

of degree 3.

12-252 12 (a) 254 (Cy S35; (by (C7) = 3;

2. (a) 5Sx'(Ke)S6; (b) x (Ko) =5;
3. (a) 4S y/(K34) $5; (b) x’ (K34) = 4.
A 5-edge-coloring of K,, and a 4-edge-coloring of K, ,, are

12.30. The graphs on cards 7, 38, 48, 51, and 52.

12.35. We can represent this situation by a complete graph K,,, and the solution is given by

x’ (K,,). Thus the number of matches necessary is n — 1 if n is even, and n if n is odd.

12.36. Most of the information is irrelevant! The maximum degree of a student-vertex is 3, and

that of a tutor-vertex is 15; thus the maximum vertex-degree in the bipartite graph is 15.

It follows from KGnig’s theorem that the number of periods needed is 15.

CHAPTER 13

13.1. i>

(Sosy
13.4. If there were a map in the plane with five mutually adjacent regions, it would then fol-

low by duality that the complete graph K, could be drawn in the plane without cross-
ings. Since K, is non-planar, no such map can exist. Note that if such a map were to
exist, then the four-color theorem would be false. However, the converse is not true: the
fact that no such map exists does not imply the four-color theorem.

13.6. (a) For any vertex v, the faces surrounding v must be even in number since they can be
colored with two colors. It follows that every vertex of G has even degree, and so G
is Eulerian.

(b) For any face F, the faces surrounding F must alternate in color, and so there must be
an even number of them. It follows that every face of G has even degree.

13.11. From Theorem 13.7, we obtain g(K,) = 1 and 9(K,,)=5.

13.15. For graphs of genus 1 embedded on the torus, we have g=1, and hence

n—-m+f=0.

For K;,n =5, m= 10, f=5, and thus

n—m+f=0;

SOLUTIONS TO SELECTED PROBLEMS 331

13.16.

for K,3,n = 6, m= 9, f=3, and thus

n—-m+f=0.

Drawings of K, and K, , with the requisite number of faces are

Ps LAs Hasg par
Ks K3,3

By Theorem 13.6, n—m+f=2-2g. However, each face is bounded by at least three

edges, and thus 3f < 2m. It follows that

2—-2g<n—m+=m,

and thus

g2im—n+2)=Xm-3n)+ 1.

Since g is an integer, the result follows.

CHAPTER 14

14.2. (a) There are many possibilities—for example:

The coloring in part (a) leads to a vertex decomposition of the required type—namely,

{1,3,8,11}, {2,10}, {4,6,9,12}, (5,7,13}.

332

14.5.

14.6.

14.7.

14.13.

14.14,

CHAPTER 14

The tour graph is

Since vertices 1, 2, 3, and 4 are mutually adjacent, at least four colors are needed to

color the vertices of this graph so that neighboring vertices are colored differently. This

means that at least four days are needed to schedule the various tours. In fact, four days

are sufficient, as the following vertex decomposition shows:

Monday: tours 1, 5, and 7;

Tuesday: tours 2, 9, and 12;

Wednesday: tours 3, 6, and 11;

Thursday: tours 4, 8, and 10.

(Several other vertex decompositions are possible.)

There are many possibilities—for example,

(a) {A, C} and {B, E} are minimum dominating sets, giving rise to the vertex decompo-

sitions {A, B, E}, {C, D} and {B, A, C}, {E, D}, respectively.

(b) {A, G} is aminimum dominating set, giving rise to the vertex decomposition

{A, B, D, E}, {G, F, H, C}.

There are no minimum dominating sets with three vertices. A minimum dominating set

with four vertices is {1,2,3,5}, giving rise to the vertex decomposition

LEGS} 2a- Ole (S44 tote

(Several other solutions are possible.) Hence the smallest number of knights is 4.

Since the edges incident to the vertex of degree k must all appear in different matchings,
the number of matchings is at least k.

By Problem 14.13, at least three matchings are needed for each graph, since each graph
has maximum vertex-degree 3. For graph (1), three matchings are sufficient; a corre-
sponding edge decomposition is

{AB, DE}, {AE, BC}, {BE, CD}.

However, for graph (2), four matchings are needed; a corresponding edge decomposi-
tion is

{AB, CE}, {AE, BD}, {BC, DE}, {CD}.

SOLUTIONS TO SELECTED PROBLEMS 333

14.16. The corresponding bipartite graph is

2 A

3 B

4 G

We can decompose this graph into four matchings, giving the following schedule:

9 am—10am: 1-A, 2-C, 3-B

10 am—11 am: 13. 4-A, 5—C

llam-—12noon: 2A, 3-C, 48

12 noon —1 pm: 5-B

Several other schedules are possible.

14:19. (a) Each bus company needs a network which connects all the n towns, and so must have

at least n — 1 interconnected roads. It follows that if there are k companies, then the

total number of roads is at least k(n—1); that is m > k (n—1). It follows that k $ m{(n-1).

(b) This network has 13 towns and 28 roads, and sok < > it follows that k = 1 or 2.

The following diagram shows that k = 2:

14.20. There are several possibilities—for example:

Note that in this example, n = 9 and m= 24, so mis a multiple of n—1.

, * fipyer

* Pe
¥

’ 4
%

4S. \

at: ; whe

. ©. i - ih -

oF Fi ty i At @idal we! 2

bec ntiis wether te seeihe ee
‘ a i. mee &

| as 4°" Ta aeeeny ie ; ARTA Gore ‘nervy ah ley 8202.
ie =. a yal , lied iw

' : Ys r=] nyt!’ + Gees

a” _— at nd = ae tome

a ee Se EE eee ks te
ae a " a6 «© ‘ a ‘ ae sch Si. > ae Be

2 ' oe ap on sae caes tgewegt a se

i : ad hit 19 Se 5 begy ps ea Lit if g ‘bacmn a, Low ghee wd O08, (i -J “aN
ae Len a oe aa el ee eeee | Me

if aac eae es eit tno ¢ COO NT ERMA Hie > eg! nag 9S
(SW | ARR eR om Mel tie SEO ih A cA STD ; re

a ‘+ n a cal ory "> 7 i, ~~ ride mua

co

ae ae Oe : | ot oe
rH 754 ee) —

~ eh oe 5
_ a ® 7 Be 7

Ad rr | if: ; =

se” Le j 7 i > . as” « === ~~, 7

‘wae et We ee ‘me a ~ sooty PTS iP on

@r hj gt wa 8 28> wrk > iange w ’
: ake "ie a. 9 gy | a

“ Der ‘s { De y [cet ‘

xy a rage om m9 ee aM ae se i ,

- oe, -
rés! Fs Y taj 95S es sh ve! areal at GRA wn a — :

: Ss ee ae } ey 4 <i _

i 5 eV, ep rs Mile x eat = =e Pie Wilke ¢ pd tees f , " oes

or inne og ed Ma whe baleen.
eh Gm teenie. e on

“ee, w+ ae a ee ’ Se ast
wee det, wy Soeeaatiinet "s
a5 at i<-@

oa 4 ’

wari. 4 ee
: > .

ee
i" - ‘<

ee = 7

Ps 7 yy

‘ > [/

A

Activity network, 165

Adding machine, 100

Adjacency matrix, 33, 86

Adjacent vertices, 31, 84

Algorithm, 295

greedy, 199

Kruskal’s, 199

longest path, 162

Prim’s, 200
shortest path, 158

Tarry’s, 130

Alkane, 48

Appel, K., 251, 267

Arc, 81

Arc-disjoint, 176

Arc-list, 81
Arc-traceable digraph, 132

Archaeology, 66

Architectural floor plan, 7

Assigning radio frequencies, 64

Balanced signed graph, 52

Benzer’s problem, 67

INDEX

BFS spanning tree, 197

Bicentral tree, 189

Bicenter, 189

Bicentroid, 189

Bicentroidal tree, 190

Bipartite graph, 37

Bracing, 59

minimum, 60

rigid, 60

Branch, 187

Branch-and-bound method, 205

Breadth-first search (BFS), 196

Bridge, 89, 170

Brooks’ theorem, 237

Bus route problems, 280

C

Carbon-graph, 50

Cayley, A., 51

Cayley’s theorem, 193

Central tree, 189

Center, 189

Centroid, 189

Centroidal tree, 190

Chemistry, 6, 47

Chinese postman problem, 131

335

336

Chromatic index, 240

Chromatic number of graph, 235

Chromatic number of surface, 263

Chromatic polynomial, 237

Circulation diagram, 7

Circumference of graph, 46

Classical studies, 67

Clock diagram, 62

Closed trail, 35, 88

Closed walk, 35

Coloring, 235, 240, 250

Compatibility graph, 61

Competition graph, 69

Complement of a graph, 39

Complete bipartite graph, 37

Complete graph, 36

Complete tripartite graph, 45

Component, 35

Connected digraph, 88

Connected graph, 10, 35

Connectivity, 171

Construction problem, 293, 295

Contraction, 224

Counting graphs, 16

Counting trees, 190

Critical path, 166

Crossing number, 232

Crum Brown, A., 48

Cube, 37, 38

Cutset, 170

Cut-vertex, 171

Cycle, 35, 88

Hamiltonian, 122, 144, 148

Cycle graph, 36

D

Decision tree, 56

Decomposition of graph, 269
Degree of face, 218

Degree of vertex, 12

Degree-sequence, 12

Delay machine, 100

Deletion—contraction theorem, 239

Depth-first search (DFS), 194

INDEX

Developmental psychology, 66

DFS spanning tree, 195

Deagram-tracing puzzles, 128

Digraph, 81

arc-traceable, 132

connected, 88

disconnected, 88

Eulerian, 132

Hamiltonian, 148

’ signed, 96

simple, 81

strongly connected, 88

Dirac’s theorem, 146

Direct proof, 113

Directed arc, 81

Disconnected digraph, 88

Disconnected graph, 10, 35

Dodecahedron, 38

Dominating number, 273

Dominating set, 273

Domination problem, 273

Dominoes, 129

Dual graph, 227

E

Ecology, 68

Edge, 8, 10

Edge-coloring, 240

Edge-connectivity, 170

Edge decomposition, 269

Edge decomposition problems, 276

Edge-disjoint paths, 173

Edge-list, 10

Edge-traceable graph, 127

Efficient algorithm, 295

Eigenvalues of a graph, 43

Electrical energy demand, 98

Electrical network, 7

Embedded, 260

Enumeration problem, 293, 297

Euler, L., 14, 123, 140

Euler’s formula, 219, 262

Eulerian digraph, 132

Eulerian graph, 122

INDEX

Eulerian trail, 122, 132

Event, 165

Existence problem, 293

Explorer’s problem, 121

F

Face, 218

Face-coloring, 250

Face-regular, 218

Family tree, 54

Feasible solution, 205

Feedback cycle, 97 ms

Finite state machine, 98

Fleury’s algorithm, 126

Float time, 166

Food web, 68

Forest, 209

Four-color problem, 251

Four-color theorem, 228, 229, 256,

259

Four-cubes problem, 70

Framework, 59

G

Gas, water, and electricity problem, 9

Genetics, 67

Genus of graph, 261

Girth of graph, 45

Graph, 8, 10

balanced signed, 52

bipartite, 37

carbon, 50

compatibility, 61

competition, 69

complement of, 39

complete, 36

complete bipartite, 37

complete tripartite, 45

connected, 10, 35

counting, 16

cube, 37

cycle, 36

decomposition of, 269

337

‘

disconnected, 10, 35

dual, 227

edge-traceable, 127

Eulerian, 122

Hamiltonian, 122, 146

interval, 66

ismorphic, 15

labeled, 15

line, 46

niche overlap, 69

null, 36

orientable, 89

path, 36

Petersen, 39

Platonic, 38

regular, 12

self-complementary, 46

signal-flow, 104

signed, 52

simple, 10

star, 37

tour, 272

underlying, 81

unlabeled, 15

vertex-traceable, 148

Graph cards, 18

Graph decomposition, 269

Gray code, 148

Greedy algorithm, 199

H

Haken, W., 251

Hamilton, W.R., 143

Hamiltonian cycle, 122, 144, 148

Hamiltonian digraph, 148

Hamiltonian graph, 122, 146

Handshaking di-lemma, 85

Handshaking lemma, 13

Handshaking lemma, for planar graphs,

219

Heawood map-coloring theorem, 263

Heawood, P. J., 255

Heawood’s theorems, 260, 263

Hypergraph, 300

338

Icoshedron, 38

Icosian game, 144

Incidence matrix, 33, 87

Incident, 31, 84

In-degree, 84

In-degree sequence, 84

Independence problem, 275

Independent set, 275

Indirect proof, 113

Induction, 114

Inefficient algorithm, 295

Infinite face, 218

Input, 100

Instant insanity, 70

Interpersonal relationships, 51

Interval, 65

Interval graph, 66

Isomer enumeration, 48

Isomorphic digraphs, 82

Isomorphic graphs, 14, 15

J

Job-sequencing problem, 150

Join, 10, 81

K

k-colorable, 235

k-coloring, 235

k-connected, 171

k-cube, 37

k-edge-colorable, 240

k-edge-coloring, 240

k-edge-connected, 170

k-vertex-connected, 171

Kempe-chain argument, 254

Key change, 72

Knapsack problem, 204

Knight’s tour problem, 145

KO6nig’s theorm, 243

Konigsberg bridges problem, 117,

123

INDEX

Kruskal’s algorithm, 199

Kuratowski’s theorm, 224

L

Labeled digraph, 83

Labeled graph, 15

Language, 102

Length of walk, 34
Line graph, 46

Linguistic tree, 56

Listing, J. B., 128

Longest path algorithm, 162

Loop, 10, 81

Map-coloring problems, 119, 250,

210

Matching, 277

Mathematical induction, 114

Matrix, 32

adjacency, 33

incidence, 33

Maximum dominating set, 273

Maximum independent set, 275

Mazes and labyrinths, 129

Menger’s theorem, 175

for digraphs (arc-form), 117, 178

for digraphs (vertex-form), 178,

180

for graphs (edge-form), 175, 179

for graphs (vertex-form), 178,
180

Method of paired comparisons, 151
Minimum bracing, 60

Minimum connector problem, 197

Minimum dominating set, 273

Minimum spanning tree, 198
Mobius strip, 265

Multiple arcs, 81

Multiple edges, 10

Music, 72

Mutations, 67

INDEX

N

Necessary condition, 112

Negative feedback cycle, 97

Niche overlap graph, 69

Node, 8

NP-complete problems, 295

NP-hard, 295
Null graph, 36

Null solution, 205

O

Octahedron, 38

Open trail, 127

Optimization problem, 293, 298

Ore’s theorem, 146

Orientable graph, 89

Out-degree, 84

Out-degree sequence, 84

Output, 100

Overlap matrix, 67

P

Parity machine, 100

Path, 35, 87

Path graph, 36

Paths, 35, 87

edge-disjoint, 173

vertex-disjoint, 173, 176

Petersen, J., 39

Petersen graph, 39

Phasing traffic lights, 62

Planar graph, 216, 277

Plane drawing, 216

Platonic graph, 38, 217

Platonic solid, 38

Point, 8
Potya, G., 17,31

Polyhedral formula, 220

Polynomial algorithm, 295

Positive feedback cycle, 97

Potential, 158

Prim’s algorithm, 200

339

4

Primary applications, 291

Printed circuits problem, 119, 276

Proofs, 112

Priifer’s construction, 191

Priifer sequence, 191

Psychology, 66

Q

Queens-on-a-chessboard problems, 274

R

Radio frequencies, 64

Ranking in tournaments, 151

Recognizable word, 102

Rectangular framework, 60

Reducible configuration, 255

Regular graph, 12

Rigid bracing, 60

Ringel and Youngs’ theorem, 262

Root vertex, 58

Rooted tree, 58

Rotating drum problem, 133

Route map, 5

S

Sanitation problem, 272

Scheduling, 165, 280

Search, 193

breadth-first, 196

depth-first, 194

Searching trees, 193

Secondary applications, 291

Self-complementary graph, 46

Separate, 174, 176

Sequence dating, 66

Shannon’s theorem, 242

Shortest path algorithm, 158

Shortest path problem, 118, 157

Signal-flow graph, 104

Signed digraph, 96

Signed graph, 52

340

Simple digraph, 81

Simple graph, 10

Simplicial complex, 299

Social sciences, 51

Solid waste disposal, 97

Solution vector, 205

Sorting tree, 57

Spanning forest, 209

Spanning tree, 39, 187

st-path, 173, 176
Star graph, 37

State, 99

Stereographic projection, 221

Strong induction, 114

Strongly connected digraph, 88

Structural diagram, 6

Subdigraph, 82

Subdivision, 223

Subgraph, 11

Sufficient condition, 112

Surface of genus g, 261

+

Tabular method, 161, 164

Tait’s theorem, 259

Tarry’s algorithm, 130

Tetrahedron, 38

Thickness, 225, 277

Tour graph, 272

Tournament, 95, 151

Traffic lights, 62

Trail, 35

closed, 35

Eulerian, 122, 132

open, 127

Traveler’s problem, 121

Traveling salesman problem, 149, 151, 202

Tree, 39,53, 185

bicentral, 189

bicentroidal, 190

BFS spanning, 197

central, 189

centroidal, 190

decision, 56

INDEX

DFS spanning, 195

family, 54

linguistic, 56

minimum spanning, 198

of life, 54

rooted, 58

sorting, 57

spanning, 39, 187

Triangle, 35

U

Unavoidable set, 253

Underlying graph, 81

Unlabeled digraph, 83

Unlabeled graph, 15

Union of graphs, 39

Utilities problem, 9

V

Valency, 11

Vertex, 8, 10, 81

root, 58

Vertex-coloring, 235

Vertex-connectivity, 171

Vertex-cutset, 172

Vertex decomposition, 269

Vertex decomposition problems, 270

Vertex-disjoint paths, 173, 176

Vertex-set, 10, 81

Vertex-traceable graph, 148

Vizing’s theorem, 241

W

Walk, 34, 87

Closed, 35, 87

Weight of edge, 35, 132

Weight of spanning treee, 198

Weighted graph, 132

Wire-coloring problem, 278

t
h

»

i
g

a
c

A ;

nie

Wp jie! é ;
7 \@ oe 7 a

e oie 7 ne

ry an —_ ae e@s 7

ee, 7
‘giles, pues ae aes

ie ; =".
we Me av mt =

; : GE pele Bs

Pi Sac rm eae agp, om
pis i ana iieeee |

Pr +) an val ad

re tis

—

> i

a) 2 =

E ie

8
’

) =
7 7 ~~

> ——

’

¥ : wv

=

- ast ive 7

soe (Rae na
‘i

Lae ’

