
GRAPHS
AND

... ■

Digitized by the Internet Archive
in 2019 with funding from
Kahle/Austin Foundation

https://archive.org/details/graphsapplicatioOOOOaldo

—

Springer
London
Berlin
Heidelberg
New York
Hong Kong
Milan
Paris
Tokyo

Joan M. Aldous and Robin J. Wilson

il

Graphs and
Applications
An Introductory Approach

With 644 illustrations by Steve Best

y t A ' A/
A/

V
\1

Springer

\Jb(p ■ /+W 2-tfxyo
Joan Aldous, BSc, PhD

Robin Wilson, MA, PhD

Faculty of Mathematics and Computing, The Open University,

Walton Hall, Milton Keynes MK7 6AA, UK

British Library Cataloguing in Publication Data

Aldous, Joan

Graphs and applications : an introductory approach

1.Graph theory

I.Title II.Wilson, Robin J. (Robin James), 1943-

511.5

ISBN 185233259X

Library of Congress Cataloging-in-Publication Data

Aldous, Joan M., 1938-

Graphs and applications : an introductory approach /

Joan M. Aldous and Robin J. Wilson

p. cm.

Includes bibliographical references and index.

ISBN 1-85233-259-X (alk. paper)

1. Graph theory. I. Wilson, Robin J. II. Title.

QA166 .A425 2000

511'.5—dc21 99-056960

Apart from any fair dealing for the purposes of research or private study, or criticism

or review, as permitted under the Copyright, Designs and Patents Act 1988, this

publication may only be reproduced, stored or transmitted, in any form or by any

means, with the prior permission in writing of the publishers, or in the case of

reprographic reproduction in accordance with the terms of licences issued by the

Copyright Licensing Agency. Enquiries concerning reproduction outside those

terms should be sent to the publishers.

ISBN 1-85233-259-X Springer-Verlag London Berlin Heidelberg

a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.co.uk

© The Open University 2000

Printed in Great Britain

3rd printing 2003

This book is based upon The Open University course MT365: Graphs, Networks and

Design, first published in 1995. Material is reproduced by permission of The Open
University.

To find out more about The Open University, visit the following website:
http://www.open.ac.uk

The software disk accompanying this book and all material contained on it is
supplied without any warranty of any kind.

The use of registered names, trademarks, etc. in this publication does not imply,

even in the absence of a specific statement, that such names are exempt from the

relevant laws and regulations and therefore free for general use.

The publisher makes no representation, express or implied, with regard to the accu¬

racy of the information contained in this book and cannot accept any legal responsi¬

bility or liability for any errors or omissions that may be made.

Typeset by Ian Kingston Editorial Services, Nottingham

Printed and bound at the Athenaeum Press Ltd, Gateshead, Tyne & Wear

12^3830-5432 Printed on acid-free paper SPIN 10908709

Preface

In recent years, there has been a significant movement away from

traditional calculus courses toward courses on discrete mathe¬

matics. The impetus for this has undoubtedly been due in part to

the increasing importance of the computer, and the consequence

has been a proliferation of courses and books entitled Discrete Math¬

ematics, Finite Mathematics, Mathematics for Computer Science, and

other similar titles.

It is an unfortunate feature of some of these courses that many

different topics are covered at a superficial level, leaving the

student frustrated and confused and having little understanding of

the underlying reasons for introducing so many seemingly unre¬

lated areas. Our experience is that students benefit more from an

introductory course based in just one area, chosen to link with other

subjects whenever the instructor considers it appropriate to do so.

Graph theory is an ideal topic for such an introductory course. It is

fun, students enjoy it, they can 'get their hands dirty' drawing

pictures, and it is an excellent stepping stone to a wide range of

courses in mathematics and computer science.

This book arose out of a British Open University course, Graphs,

Networks and Design, which first appeared in 1995 and regularly

attracts about 500 students per year. It supersedes an earlier book

Graphs: an Introductory Approach (John Wiley & Sons, 1990) with

similar content, produced by Robin J. Wilson and John J. Watkins

and based on a previous Open University course. As with other

Open University courses. Graphs, Networks and Design consists

mainly of correspondence material, supported by audio-cassette

tapes, computer software, and BBC videos. Having produced this

material, the course team felt that parts of it would be ideally suited

to the classroom situation, and could successfully be converted into

book form appropriate for an international audience.

A related volume, Networks and Algorithms: an Introductory

Approach (John Wiley & Sons, 1994), was prepared by A. K. Dolan

and J. M. Aldous. Each book is self-contained, and is suitable for a

semester course on discrete mathematics in the first, second or third

V

VI Graphs and Applications: An Introductory Approach

year of a college or university. The approach, terminology and

notation are the same for both books, so an instructor wishing to

teach both graphs and networks may use the two books

concurrently.

Chapters 1-6 contain the basic definitions relating to graphs and

digraphs, together with a number of examples. Chapters 7-13

contain a number of topics from which an instructor can select,

depending upon the length of the course. Case Studies are given at
the ends of selected chapters.

Included with this text is a CD-ROM for use with Windows on a

PC. This contains a database of 1252 graphs (all the simple unla¬

belled graphs with up to seven vertices). It also contains software

that enables the user to construct graphs and digraphs, and to

perform simple operations on vertices and edges. Brief notes on

how to use the software and some suggested activities are

described in the Computing Notes at the end of the book.

The book contains a large number of problems and exercises. An

instructor can also use the graph database as a resource for setting
further exercises.

The adaptation and general editing of this book is by Joan

Aldous. Much of the material is based on the work of Robin Wilson.

The Computing Notes are based on the work of Richard Scott,

Roger Lowry and Keith Cavanagh. The original software was

designed by Adam Gawronski and Jon Rosewell, and adapted by

Adam Gawronski. The original artwork, also used for the book, was

drawn by Steve Best and Howard Taylor, and adapted by Steve

Best. Others who contributed to the original course are Alan Dolan,

Jennifer Harding (editor), Jeff Johnson, Fred Holroyd, Rob Lyon
(designer), Roy Nelson and Joe Rooney.

Joan M. Aldous

Robin J. Wilson

Study Guide

An important part of learning graph theory is problem solving, and

for this reason a large number of problems are included within and

at the end of each main chapter. Most of these are routine exercises,

designed to test understanding of the material in the text. The prob¬

lems in the text are designed to be tackled as they are encountered:

full solutions are given at the back of the book. The exercises at the

ends of chapters are intended for revision or assessment purposes;

solutions to these are not given.
An appendix on the methods of proof used in the book is

included after the final chapter. The discussion is given in the

context of graph theory. The appendix may be studied at any time

after the study of Chapter 2.
The following diagram indicates possible study paths.

vii

Contents

1 Introduction . l
1.1 Graphs, Digraphs and Networks. 1

1.2 Classifying Problems. 20

1.3 Seeking Solutions. 23

2 Graphs. 25
2.1 Graphs and Subgraphs. 25

2.2 Vertex Degrees . 35

2.3 Paths and Cycles . 38

2.4 Regular and Bipartite Graphs. 43

2.5 Case Studies. 50

Four Cubes Problem . 51

Social Networks . 53

Exercises 2. 56

3 Eulerian and Hamiltonian Graphs. 61
3.1 Exploring and Travelling . 61

3.2 Eulerian Graphs . 64

3.3 Hamiltonian Graphs. 71

3.4 Case Studies. 75

Dominoes. 75
Diagram-Tracing Puzzles . 76

Knight's Tour Problem. 78

Gray Codes. 80

Exercises 3. 82

4 Digraphs . 84
4.1 Digraphs and Subdigraphs . 84

4.2 Vertex Degrees . 92

4.3 Paths and Cycles . 94
4.4 Eulerian and Hamiltonian Digraphs. 97

4.5 Case Studies. 99

Ecology. 99

IX

Graphs and Applications: An Introductory Approach

Social Networks . 101

Rotating Drum Problem . 104

Ranking in Tournaments. 106

Exercises 4. 108

Matrix Representations . 112
5.1 Adjacency Matrices. 113

5.2 Walks in Graphs and Digraphs. 117
5.3 Incidence Matrices . 122

5.4 Case Studies. 126

Interval Graphs. 126

Markov Chains. 129
Exercises 5. 133

Tree Structures . 138

6.1 Mathematical Properties of Trees. 140
6.2 Spanning Trees. 144

6.3 Rooted Trees . 146

6.4 Case Study . 152

Braced Rectangular Frameworks. 152
Exercises 6. 161

Counting Trees . 163

7.1 Counting Labelled Trees. 164
7.2 Counting Binary Trees. 171

7.3 Counting Chemical Trees . 174

Exercises 7. 181

Greedy Algorithms . 182
8.1 Minimum Connector Problem . 182
8.2 Travelling Salesman Problem. 191

Exercises 8. 198

Path Algorithms . 202
9.1 Fleury's Algorithm . 202

9.2 Shortest Path Algorithm. 204

9.3 Case Study . 212

Chinese Postman Problem . 212
Exercises 9. 214

Paths and Connectivity . 216
10.1 Connected Graphs and Digraphs. 216

10.2 Menger's Theorem for Graphs . 226

10.3 Some Analogues of Menger's Theorem . 230
10.4 Case Study . 236

Contents xi

Reliable Telecommunication Networks. 236

Exercises 10 239

11 Planarity. 242
11.1 Planar Graphs. 243

11.2 Euler's Formula. 247

11.3 Cycle Method for Planarity Testing . 256

11.4 Kuratowski's Theorem. 260

11.5 Duality. 264

11.6 Convex Polyhedra . 268

Exercises 11 274

12 Vertex Colourings and Decompositions . . . 277
12.1 Vertex Colourings . 277

12.2 Algorithm for Vertex Colouring. 288

12.3 Vertex Decompositions . 292

Exercises 12 299

13 Edge Colourings and Decompositions 303
13.1 Edge Colourings . 303

13.2 Algorithm for Edge Colouring . 313

13.3 Edge Decompositions . 317

Exercises 13 329

14 Conclusion . 332
14.1 Classification of Problems. 332

14.2 Efficiency of Algorithms. 338

14.3 Another Classification of Problems. 339

Suggestions for Further Reading . 346

Appendix: Methods of Proof. 348

Computing Notes .. 354

Solutions to Computer Activities. 380

Solutions to Problems in the Text . 384

Index 439

.

Chapter 1

Introduction

After studying this chapter, you should be able to:

• explain what are meant by the terms graph, weighted graph, digraph, weighted

digraph, vertex, edge, arc, weight and network;

• explain what are meant by the utilities problem, optimal path problems,

Konigsberg bridges problem, braced rectangular frameworks and the travelling

salesman problem.

In this introductory chapter, we aim to give you some idea of what this book is

about. We describe a number of problems and invite you to try to solve simple

instances of them. Several of these are straightforward, and are included in

order to give you an idea of some of the topics covered in the book. Others are

more difficult, and illustrate the need for a more systematic approach, to be

given in later chapters.
The primary aim of this chapter is to show that an important step in the

process of solving a problem may be to represent the situation by a diagram,

such as a graph. We also introduce some terminology associated with graphs

that is used throughout the book.

1.1 Graphs, Digraphs and Networks

Graphs

In order to introduce the idea of a graph, we study some problems and their

diagrammatic representations. We begin by considering some problems for

which appropriate representations are supplied or are natural.

1

2 Graphs and Applications: An Introductory Approach

Finding Routes

Consider the problem of finding a route between two stations of the London

Underground. The following diagram represents the central part of the
London Underground.

Like all maps, it does not represent every feature of the area, but only those

of relevance to the people that use it. The Underground map does not repre¬

sent the exact geographical locations of the stations, or the precise distances

between the stations, but does depict the way in which the stations are inter¬

connected, so that passengers can plan their routes from one station to
another.

Problem 1.1

On the London Underground map, find the 'best' route between Marble Arch and Westmin¬
ster. What interpretations can be given to the word 'best'?

However, when we use a road map, not only are the interconnections

between towns important, but so are the distances or travel times between

them. For example, the following map shows some of the major routes

between a number of cities in the USA, where the numbers indicate the
driving times (in hours) between pairs of cities.

Introduction 3

Problem 1.2

On the above map, find the shortest time taken to drive from Los Angeles to Amarillo, and

from San Francisco to Denver.

Chemistry

A molecule consists of a number of atoms linked by chemical bonds. For

example, a methane molecule (CH4) consists of a carbon atom (C) bonded to

four hydrogen atoms (H), and may be represented by diagram (a) below.

Similarly, an ethane molecule (C2H6) consists of two carbon atoms bonded to

six hydrogen atoms, and may be represented by diagram (b) below.

H—C—H H—C-C—H
I I I

H H H

(a) (b)

More generally, an alkane (or paraffin) is a molecule with formula CnH2n+2;

for every alkane, each carbon atom is bonded to exactly four atoms, and each

hydrogen atom is bonded to exactly one atom (a carbon atom). Such a mole¬

cule can be represented diagrammatically, with atoms indicated by their

chemical symbols, and chemical bonds shown by lines linking these symbols.

Diagrams of this sort do not tell us how the atoms are aligned in space; for

example, the hydrogen atoms of methane do not all lie in a plane, but are

4 Graphs and Applications: An Introductory Approach

situated at the vertices of a regular tetrahedron, with the carbon atom at the

centre.

H
I

H —C —H
I

H

Nevertheless, such diagrams are useful for illustrating how the various

atoms are connected, and we can obtain much information about the likely

chemical behaviour of a molecule by studying its diagram. For example, the

alkanes have the formula Cnli2n+2 and their graphs have a branching
tree-like structure.

If there are four or more carbon atoms, then there may exist different mole¬

cules (known as isomers) with the same formula, as illustrated by the following
diagram for CsH^-

H
methane

H H
I I

H—C-C-
I I

H H

H
I

■c-
I

H

H H
I I
C-C—H

I I
H H

H
I

H—C-
I

H

H-

H
I

C —H
H

I
c—c

I I
H H

H
I

C —H
I

H

Problem 1.3

Show that there is just one alkane with formula C3H8, but that there are two alkanes with

formula C4H10.

Utilities Problem

In this problem three quarrelsome neighbours wish to connect their houses to

the three utilities gas, water and electricity in such a way that the nine connec¬

tions do not cross each other in the plane. In the following diagram, eight

connections appear, but house B is not connected to water. Can you insert the
missing connection as required?

Introduction 5

The utilities problem is related to a number of practical problems arising in

the study of printed circuits. In these problems, electronic components are

constructed by means of conducting strips printed directly on to a flat board

of insulating material. Such printed connectors may not cross, since this

would lead to undesirable electrical contact at crossing points.

Problem 1.4

For which of the following circuits can you redraw the wires in such a way that no crossing

points occur?

6 Graphs and Applications: An Introductory Approach

In each of these examples, we have a system of objects that are interrelated

in some way - stations interconnected by rails, atoms connected by bonds,

and houses connected to utilities. In each case, we can draw a diagram in

which we represent the objects by points, and the interconnections between

pairs of objects by lines (not necessarily straight) between the corresponding

points. Such a diagram is called a graph; the points representing the objects are

called vertices, and the lines representing the interconnections are called edges.

We express these ideas as follows.

A graph is a diagram consisting of points, called vertices, joined by lines, called edges; each

edge joins exactly two vertices.

Remark This terminology is not completely standard; some authors use node

or point for what we call a vertex, and arc or line for what we call an edge.

The utilities problem can be represented by a graph with six vertices, corre¬

sponding to the three houses and the three utilities, and nine edges, corre¬

sponding to the nine possible connections. (Note that the three houses are not

joined to each other, and nor are the three utilities.) The following diagrams

illustrate two possible drawings of this graph. The utilities problem is that of

finding yet another drawing that involves no crossing of edges.

Such a graph, in which the vertices split naturally into two sets (corre¬

sponding here to houses and utilities), with edges joining vertices in different

sets, is called a bipartite graph. Bipartite graphs feature throughout this book,
particularly in applications.

Introduction 7

The concept of a graph is simple, and graphs can be used whenever we

wish to depict interconnections or relationships between objects. For

example, any of the following graphs with four vertices and five edges can be

used to depict the five football games played in a certain period among four

teams - Arsenal has played once against Chelsea and Everton, but not against

Liverpool; Chelsea and Everton have played each other twice; and Liverpool
has played Everton once.

Everton Liverpool

T . , „ Arsenal
Liverpool Everton_J Chelsea

■t

Everton Arsenal

We can draw a graph in many ways, as long as it represents the same inter¬

connections; each of the above drawings represents the same information

about which teams have played which, and we regard them as the same
graph.

Problem 1.5

Draw a graph that represents the following friendships among four people:

John is friends with Joan and Jill, but not Jack;

Jack is friends with Jill, but not Joan;

Joan is friends with Jill.

Problem 1.6

Suppose that there are six people at a party. Prove that it is always possible to find either

three people who all know each other, or three people none of whom knows either of the

other two.

Hint Represent the six people by the vertices of a graph, and consider the five possible edges

emerging from one of the vertices.

8 Graphs and Applications: An Introductory Approach

Problem 1.7

L

The Hampton Court maze may be represented by a graph that shows the available choices at

each junction; for example, at the junction B there are two choices - to go to C or to D. We

thus obtain the following graph:

Use this graph to list all the routes from the centre (71) to the exit (L) that do not involve

retracing steps.

Introduction 9

Konigsberg Bridges Problem

Koningsberga

In the early eighteenth century the medieval city of Konigsberg in Eastern
Prussia contained a central island called Kneiphof, around which the river
Pregel flowed before dividing into two. The four parts of the city (A, B, C, D)
were interconnected by seven bridges (a, b, c, d, e, j, g), as shown in the
following diagram:

Konigsberg

It is said that the citizens of Konigsberg entertained themselves by trying to
find a route that crosses each bridge exactly once, and returns to the starting
point. Try as they might, they could find no such route, and they began to
believe the task impossible.

10 Graphs and Applications: An Introductory Approach

Problem 1.8

In the above Konigsberg bridges diagram, try to find a route that crosses each bridge exactly

once and returns to the starting point. Do you think that such a route exists?

In this problem, there are four land areas interconnected by seven bridges.

We can represent these interconnections by drawing a graph with four

vertices, corresponding to the four land areas, and seven edges, corre¬

sponding to the seven bridges.

The problem of crossing each of the seven bridges exactly once has now

been transformed into a graph problem:

can you draw the above graph and return to your starting point, without

lifting your pen from the paper and without tracing any edge twice?

Braced Rectangular Frameworks

Many buildings are supported by rectangular steel frameworks, and it is

important that such frameworks should remain rigid under heavy loads. One

way to achieve this is to add braces, to prevent distortion in the plane.

For example, the following diagram shows how a simple unbraced rectan¬

gular framework can be distorted.

non-rigid

The addition of only two braces, in the form of rectangular plates (indicated

by shading), cannot make this framework rigid, as the following diagrams
illustrate:

Introduction 11

The minimum number of braces that must be added to make this frame¬
work rigid is 3.

Now consider the following three frameworks:

(a) (b)

Framework (a) is rigid, but is over-braced, since some braces can be

removed without affecting the rigidity of the framework.

Framework (b) is not rigid, since it can be distorted as shown below:

distort

But how about framework (c)? is it rigid?

If so, can any braces be removed without affecting the rigidity?

If not, how can it be made rigid?

12 Graphs and Applications: An Introductory Approach

Problem 1.9

(a) Which braces can be removed from framework (a) without losing the rigidity?

(b) Which braces could be added to framework (b) to achieve rigidity?

(c) Try to answer the questions about framework (c) in the above text.

We can represent a braced framework by a graph as follows. Each brace

occurs in one row and one column of the framework, so we can record the

positions of the various braces by drawing a graph whose vertices correspond

to the rows and columns of the framework and whose edges correspond to

those rows and columns where a brace appears. For example, in framework

(c) there is a brace in row 1, column 1, but no brace in row 1, column 2; in the

corresponding graph, there is an edge joining the row 1 vertex to the column 1

vertex, but no edge joining the row 1 vertex to the column 2 vertex.

col col col
1 2 3

rows columns

Notice that we obtain a bipartite graph in which the two sets correspond to
the rows and columns.

Problem 1.10

(a) Draw the graph for framework (b) above.

(b) By considering frameworks (b) and (c) and their graphs, try to determine a property of a

graph that corresponds to rigidity of the corresponding framework.

In Chapter 6 you will see how the problems of determining whether a given

braced rectangular framework is rigid, and whether any braces can be

removed without affecting the rigidity, can be answered directly by studying
the corresponding graph.

Introduction
13

Next, we introduce two important variations of the concept of a graph -
weighted graphs and digraphs.

Weighted Graphs

Earlier, we gave the following road map of cities in the USA. This map has the

form of a graph, with vertices representing cities and edges representing

roads joining them in pairs. Each edge has a number associated with it, repre¬

senting the driving time (in hours) between neighbouring pairs of cities. These

numbers are called weights, and a graph with a weight associated with each
edge is a weighted graph.

The weight on an edge can refer to many things. For example, on a road

map, it may represent the distance, time or cost involved in travelling along the
corresponding road.

Another example of a weighted graph appears in the following problem.

Travelling Salesman Problem

A travelling salesman wishes to visit a number of cities and return to his

starting point, selling his wares as he goes. He wants to select the route with

the least total length. Which route should he choose? And what is its length?

14 Graphs and Applications: An Introductory Approach

As a particular instance of this problem, consider the four cities illustrated

below.

This weighted graph has four vertices, corresponding to London,

Coventry, Preston and Leeds, and six edges joining them. Here, the weight on

each edge represents the distance (in miles) between the corresponding pair of

cities. The problem is to select a minimum-weight route that visits all the

vertices and returns to the starting point, London.

It is easy to show by trial-and-error methods that a solution of this instance

of the travelling salesman problem is the route

London - Coventry - Preston - Leeds - London

(in either direction), with total distance 100 + 125 + 68 + 194 = 487 miles. Any

other route involves a longer total distance.

Unfortunately, as soon as we increase the number of cities significantly, we

run into difficulties. There is no convenient method known that provides a

solution for any travelling salesman problem, although there are several ad

hoc procedures that yield approximate solutions. Indeed, the only known

procedure that is guaranteed to solve any given travelling salesman problem is

the exhaustion method that involves looking at all possible routes and

choosing the shortest. This is feasible if there are ten cities, since the number of

possible routes is then x/i(9!) = Yi(9 x8x7x6x5x4x3x2xl) = 181440,
and a computer sorting through these at the rate of one thousand per second

would find the best route in about 3 minutes. On the other hand, if there are

twenty cities, then the number of possible routes is 1/2(19!) or about 6.08 x 1016,
and a computer sorting through them at the same rate would take roughly two

Introduction
15

million years! This rapid increase in time as the number of cities grows is
known as the combinatorial explosion.

Problem 1.11

A zoo-keeper visiting the antelopes wishes to visit the bears, camels, dingos and elephants.

The locations are denoted by A, B, C, D, E, and the distances are as shown on the diagram.

Using trial and error, find a route that involves the least possible total distance and returns to
the starting point A.

Although there is no known efficient procedure that is guaranteed to solve

any given instance of the travelling salesman problem, several efficient proce¬

dures are known that give a good approximation to the minimum length of a

route that visits all the cities and returns to the starting point. Such a proce¬
dure is presented in Chapter 8.

Digraphs

Consider the following one-way street system in a town.

16 Graphs and Applications: An Introductory Approach

Because the streets are all one-way, we cannot represent this system by a

graph, but we can represent it by a similar diagram in which we put arrows on

the edges to indicate the directions of the one-way streets. Such a diagram is

called a digraph - an abbreviation of directed graph.

digraph

A digraph is a diagram consisting of points, called vertices, joined by directed lines, called

arcs; each arc joins exactly two vertices.

Another example of a digraph is the structural diagram of the book, given in

the Study Guide; here each vertex corresponds to a group of chapters, and the

arcs can be used to trace possible study paths through the book.

Problem 1.12

Represent the following one-way street system by a digraph.

PICCADILLY -►
I T

-- JERMYN STREET t ◄-
I UJ

UJ

H

£

'

H

UJ

H |

2 i

— PALL MALL UJ

Introduction 17

Networks

Just as we can assign weights to the edges of a graph to form a weighted

graph, so we can assign weights to the arcs of a digraph to form a weighted
digraph. This leads to the idea of a network.

The word network commonly arises in everyday life. We speak of a rail

network as a system of stations interlinked by railway lines, or a road network as

a system of towns interlinked by roads. We speak of a programme produced

by a television company being networked around the country, and an electrical

network involving terminals interconnected by wires or a telecommunication

network involving interlinked telephone exchanges and subscribers.

We also use the word network in a more specialized sense to mean a graph or

digraph that carries some numerical information. This information depends

on the particular application under consideration, but may consist of weights

associated with the edges or arcs, and possibly with some of the vertices.

Note that a graph or digraph represents only the interconnections of a

system, and gives no further information about its elements. A network

conveys additional quantitative information.

Road Networks

In a road network, the weight of each arc (road) may correspond to any of the

following: its length in miles or kilometres; the estimated or actual time taken

to travel along it; the cost involved in travelling along it (fuel, tolls, etc.). Other

possible weights may relate to the attractiveness of the scenery, the danger of

travelling along the road, or the quality of the road surface.

Now suppose that we wish to find the shortest route between two partic¬

ular towns. In this problem we are concerned not with the amount of traffic

that each road can take, but only with the length of each section of the road, so

we assign the length as the weight on the corresponding edge of our graph.

The problem of finding the shortest route between two towns on our map is

thus reduced to that of finding the shortest route between the two corre¬

sponding vertices on our graph - that is, the route with the lowest total

weight.
A simple shortest path problem like the following can be solved by inspec¬

tion, but for larger scale problems we need a systematic step-by-step method.

We describe such a method in Chapter 9.

18 Graphs and Applications: An Introductory Approach

Pipeline Networks

The following diagram represents a network of pipelines along which a fluid

(for example, gas, oil or water) flows from a source S to a terminal (or sink) T.

Each of the intermediate points A-I represents a pipe junction at which the

total flow into the junction must equal the total flow out (so no fluid is 'lost'

along the way). Each line between two junctions represents a pipeline, and

the number next to it is the capacity of that pipeline (in some appropriate

units); the flow along a pipeline must not exceed the capacity, and must be in
the direction indicated.

Inspection of the above diagram shows that a flow of at most 7 units of fluid

can be sent along the route S->A^>D->G->T without exceeding the capacity

of any of the pipelines SA, AD, DG, GT. This is illustrated in the following

diagram, where the first number on each line represents the flow along that
pipeline and the second number - in bold - is the capacity.

A 7,8 D 7,9
»■- *■ 9-i-

7,7/

S T

Introduction
19

Properties of Graph Models

We have indicated how we can use graphs to organize our knowledge of

structural features in a variety of situations. Such a graph representation of a

problem is called a model, because it models the essential features of the situa¬
tion for the problem in hand.

The models that we develop in this book are based upon the formal struc¬

tures of combinatorial mathematics, and on graph theory in particular. In the

situations we investigate, we select those features that can be represented by
graphs.

What kinds of features can be represented by graphs? Broadly speaking, we

represent structural features. This is done in one of the following two ways.
In many of our examples,

the elements of the structure are represented by vertices

and

the connections between them are represented by edges.

It is these relations that essentially constitute the structural features.

Another way in which graphs can represent structural features is, in a
sense, the dual of the first:

the elements of the structure are represented by edges

and

the connections between them are represented by vertices.

Network problems are often modelled in this way. For example, the edges

may represent roads or pipes, and the vertices represent the junctions or
connections between the elements.

For many applications, such a pictorial representation may be all that is

needed. By representing a situation in such a simple diagrammatic form, we

may be able to derive all the information we require. For other applications,

we may need to analyse the problems carefully and study the properties of

the graphs that arise as diagrammatic representations. In particular, we inves¬
tigate the properties of graphs of the following types:

bipartite graphs (Chapter 2);

graphs with a branching tree-like structure (Chapter 6);

graphs that are in one piece (Chapter 10);

graphs in which no edges cross (Chapter 11).

20 Graphs and Applications: An Introductory Approach

1.2 Classifying Problems

It is also useful to consider a classification of problems based on four types of

question that commonly arise. Most of the problems you will meet in this book

can be described under one or more of the following interrelated headings:

Existence problems

Construction problems

Enumeration problems

Optimization problems

Does there exist...? Is it possible to ...?

If ... exists, how can we construct it?

How many... are there? Can we list them all?

If there are several..., which one is the best?

Before discussing each of these types of problem in detail, we interpret all

four types of problem in the context of braced rectangular frameworks.

In investigating a given rectangular framework, we may wish to consider

any of the following questions:

Existence problem Is it possible to brace the framework so as to

make it rigid?

Construction problem If a rigid bracing exists, how can we construct

one?

Enumeration problem How many rigid bracings are there? Can we list

them all?

Optimization problem Which rigid bracings involve fewest braces?

We now look at each type of problem in turn.

Existence Problems

Faced with any problem, it is natural to ask does a solution exist? This question

is not always easy to answer.

For example, in the Konigsberg bridges problem, the question faced by the

citizens of Konigsberg was:

is it possible to go for a walk crossing each of the seven bridges once and

only once, and ending at the starting point?

This is clearly an example of an existence problem, since it is concerned with

whether or not a suitable walk exists.

Note that, in order to demonstrate that such a walk exists, it is sufficient to

produce a specific walk. However, to show that such a walk does not exist, we

must actually prove that the problem has no solution.

Introduction 21

Another celebrated example of an existence problem is the utilities

problem: does there exist a way of putting in all nine connections?

It is easy to convince oneself by trial and error that the answer to this exis¬

tence problem is no, but actually proving that no solution exists is more

difficult.

We can sometimes prove that something must exist, even though we may

not know how to find a specific instance of it. For example, it is easy to see that

in any group of eight people, there must exist at least two people who were

born on the same day of the week,

since there are only seven days in a week, so the eight people cannot all have

been born on different days. However, although we know that there exist two

people that were born on the same day of the week, the above explanation

does not help us to find them.

Construction Problems

Once we know that a solution to a problem exists, we may wish to find a way

of constructing it. For example, it is not particularly helpful to know that it is

possible to get out of a maze if you are stuck in the middle of it - what you

really need is a method for getting out! As we saw above, we can often show

that an existence problem can be solved by constructing a solution, but this is

not always the case, as you saw at the end of the previous subsection. In such

problems we know that solutions exist because there are theoretical reasons

for this, but these reasons may not give us any clue as to how a specific solu¬

tion may be constructed.
Some of the problems in this book can be solved by trial and error or by

examining all possible cases, but many problems are too complex to be solved

in this way, because the time involved may make such methods impractical.

For example, it is easy to analyse a telecommunication system that intercon¬

nects only five or six subscribers, since most problems that arise can be solved

by trial and error. On the other hand, a modern telephone exchange may

involve the interconnections of tens of thousands of subscribers, and any ad

hoc approach is out of the question.
For constructing solutions to complex problems we need a systematic

step-by-step procedure that can be applied to large systems. Such a procedure

is called an algorithm. You may find it helpful to think of an algorithm as

similar to a cookery recipe. A recipe consists of a list of ingredients, corre¬

sponding to the input data, and a list of instructions to be carried out in a

particular order. To make a particular dish, you take the ingredients and

follow the recipe.

22 Graphs and Applications: An Introductory Approach

Definition

An algorithm is a systematic step-by-step procedure consisting of:

a description of appropriate input data;

a finite, ordered list of instructions, to be carried out one at a time;

a STOP instruction, to indicate when the procedure is complete;

a description of appropriate output data.

In order to solve a given problem, we input the data and carry out the

instructions one at a time in the given order, until we obtain either a solution

to the problem in hand or an indication that the problem cannot be solved by
the algorithm for the given data.

The form in which an algorithm is presented varies from problem to

problem, and may consist of instructions written in everyday language or a

computer language. Often, if the input and/or output data are obvious, we do

not state them explicitly in our description of the algorithm.

In many cases we can apply algorithms without the aid of a computer. On

the other hand, many practical problems are far too large or complex to be

dealt with in this way. In such circumstances, it is necessary to express the

algorithm in a form that can be implemented by a computer. This means that

the instructions must be precisely and unambiguously stated, and that the
algorithm must terminate after a finite number of steps.

Several of the problems described in this book can be solved by means of an

efficient algorithm - one that can solve any instance of the problem in a 'rea¬

sonable' amount of time. However, for some problems, no efficient algorithm
is currently known.

Enumeration Problems

Once we know that a particular problem has a solution, and we can construct

such solutions, the next questions are how many solutions are there? and what are
they?

We distinguish between these two types of problem. A counting problem is

one in which we wish to know how many objects of a certain kind there are; a

listing problem is one in which we wish to produce a list of all these objects.

In general, the problems of counting and listing may be closely related. For

example, the easiest way of counting something is often to construct a list of

all possibilities and then to count how many there are. Indeed, for some

counting problems this may be the only known method of solution - for

example, when counting the number of times the digit 3 appears in the first
hundred significant figures of ji.

Introduction 23

In many instances the listing problem is much harder to solve than the corre¬

sponding counting problem. In fact, there are many problems for which the

answer to the counting problem is known, but no one has been able or willing

to list all the possibilities. For example, in chemistry, the problem of counting the

number of different alkanes CnH2n+2 for any given value of n has been solved,

although there is no simple formula for the answer. However, the problem of

listing such molecules for a given value of n is intractable except when n is small.

For example, the number of different molecules with the formula C25H52 is

known - it is over a million - but no one has ever made a complete list of them.

Optimization Problems

For many combinatorial problems it is not enough to know that a given

problem has a solution. It may not even be enough to be able to construct a

solution using an efficient algorithm, or to list all the possible solutions. In

many cases we need to find the 'best' solution, and part of the problem may be

in deciding what is meant by the word 'best'.

For example, in Problem 1.1, you were asked to find the 'best' route

between two stations of the London Underground. In this case, your 'best'

route might be a route that involves going through the smallest number of

stations on the way, or a route that involves the smallest number of changes,

or some mixture of the two. In any case, when solving such a problem, you

may need to seek some further information, such as the time required to

change lines, before you can determine the best solution.

In Problem 1.2 you were asked to find the shortest route (in hours) between

two American cities. Here, the meaning of 'best' is clear, as any route that

takes the shortest amount of time is a 'best' solution. However, even for this

problem, you may want to take other factors into account, such as the amount

of expressway driving, the attractiveness of the scenery, and so on.

Another optimization problem is the travelling salesman problem; here, we

wish to find a route of minimum total length joining a number of cities. Again,

the meaning of 'best' is clear, although there may be external considerations

that indicate one particular solution as the most appropriate.

Optimization problems of this kind occur frequently throughout the book.

In such problems, we usually want to maximize or minimize some given

parameter (distance, time, etc.), and we can sometimes do this by carrying out

an appropriate algorithm.

1.3 Seeking Solutions

Once we have represented a situation by a graph, digraph or network, and

identified the nature of the problem, what then? It is useful to pose some

further questions such as those outlined below.

24 Graphs and Applications: An Introductory Approach

What hope have we of finding a solution?

Can we show that a solution exists?

Can we show that there is no solution?

Is there only one solution?

Are there many solutions? If so, is there a 'best' solution?

Do we need to find a solution exactly, or is it sufficient to find an approxi¬

mate solution? or to find upper and lower bounds between which the
correct solution must lie?

How can we find a solution?

Are we going to construct the solution?

Can we develop a systematic method - an algorithm - that gives the correct

answer to any instance of the given problem in a reasonable time, regardless
of the size of the problem?

If not, can we develop a method that gives a reasonably accurate solution
with a known error bound?

The questions above indicate two types of approach.

One approach is theoretical. For graph representations, we develop the

theory of graphs. We define different types of graph, study their properties,

make conjectures, and prove theorems. Many graph theorems tell us whether

a graph has a certain property. However, many properties discovered theo¬

retically do not tell us anything directly useful; a theoretical method may

solve an existence problem, but not help with the corresponding construction
problem.

Another approach is concerned directly with showing how the property

can arise in the graph structure. Such methods construct objects with the

required property, and may be called practical methods. In this book we

encounter such methods in the form of graph algorithms. For many optimiza¬

tion problems, it is not difficult to find suitable algorithms that can be applied

quickly and efficiently; one example is the shortest route problem. Unfortu¬

nately, there are also a large number of problems for which no efficient algo¬

rithms are known, although there may be 'heuristic' methods based on

experience or intuition that work fairly well in practice; these are methods

that are quick to apply, but do not usually lead to a correct solution. An impor¬

tant example of such a problem is the travelling salesman problem, where we

can easily find approximate solutions that are close to the correct value.

Finally, a combination of the two approaches leads to a classification of

algorithms in terms of the times required for their execution, which in turn

enables us to classify many of the problems themselves as 'easy' or 'hard'. For

example, under this classification, the shortest route problem is 'easy': the
travelling salesman problem is 'hard'.

Chapter 2

Graphs

...

• :
After studying this chapter, you should be able to:

• explain the terms graph, labelled graph, unlabelled graph, vertex, edge, adjacent,

incident, multiple edges, loop, simple graph and subgraph;

• determine whether two given graphs are isomorphic;

• explain the terms degree, degree sequence and regular graph;

• state and use the handshaking lemma;

• explain the terms walk, trail, path, closed walk, closed trail, cycle, connected graph,

disconnected graph and component;

• explain what are meant by complete graphs, null graphs, cycle graphs, the Platonic

graphs, cubes and the Petersen graph;

• explain what are meant by bipartite graphs, complete bipartite graphs, trees, path

graphs and cubes;

• describe the use of graphs in the solution to the four-cubes problem, and in the

social sciences.

The intuitive idea of a graph is already familiar to you from the previous

chapter. In this chapter we treat the subject more formally, introducing the

basic definitions and examples that will be needed throughout the book.

2.1 Graphs and Subgraphs

We start by recalling the definition of a graph.

25

26 Graphs and Applications: An Introductory Approach

D

Each edge joins two vertices.

For example, the graph shown below has four vertices {u, v, w, x} and six

edges {1,2,3,4,5,6}. Edge 1 joins the vertices u and x, edge 2 joins the vertices

u and w, edges 3 and 4 join the vertices v and w, edge 5 joins the vertices w and
x, and edge 6 joins the vertex x to itself.

x 5 iv

We often denote an edge by specifying its two vertices; for example, edge 1

is denoted by ux or xu, edges 3 and 4 are denoted by vw or wv, and edge 6 is
denoted by xx.

The above graph contains more than one edge joining v and w, and an edge

joining the vertex x to itself. The following terminology is useful when
discussing such graphs.

For example, graph (a) below has multiple edges and graph (b) has a loop,

so neither is a simple graph. Graph (c) has no multiple edges or loops, and is
therefore a simple graph.

U V u 7? 1J

X IV

(C)

X w

(b)

ID X

Graphs 27

Problem 2.2

Draw the graphs whose vertices and edges are as follows. Are these graphs simple graphs?

(a) vertices: {u, v, w, x) edges: {uv, vw, vx, wx]
(b) vertices: {1,2,3,4,5,6,7,8} edges: {12,22,23,34,35,67,68,78}

Adjacency and Incidence

Since graph theory is primarily concerned with relationships between objects,

it is convenient to introduce some terminology that indicates when certain

vertices and edges are 'next to each other' in a graph.

Definitions

The vertices v and w of a graph are adjacent vertices if they are joined by an edge e. The

vertices v and w are incident with the edge e, and the edge e is incident with the vertices v

and w.

28 Graphs and Applications: An Introductory Approach

For example, in the graph below, the vertices u and x are adjacent, vertex w

is incident with edges 2, 3, 4 and 5, and edge 6 is incident with the vertex x.

U V

Problem 2.3

Which of the following statements hold for the graph on the right?

(a) vertices vand ware adjacent; ut
(b) vertices v and x are adjacent;

(c) vertex u is incident with edge 2; 1

2 vO*

A
(d) edge 5 is incident with vertex x.

X (.-1»
6

Isomorphism

It follows from the definition that a graph is completely determined when we

know its vertices and edges, and that two graphs are the same if they have the

same vertices and edges. Once we know the vertices and edges, we can draw

the graph and, in principle, any picture we draw is as good as any other; the

actual way in which the vertices and edges are drawn is irrelevant - although
some pictures are easier to use than others!

For example, recall the utilities graph, in which three houses A, B and C are

joined to the three utilities gas (g), water (w) and electricity (e). This graph is
specified completely by the following sets:

vertices: {A, B, C, g, w, e}

edges: {Ag, Aw, Ae, Bg, Bw, Be, Cg, Cw, Ce},

and can be drawn in many ways, such as the following:

Graphs 29

Each of these diagrams has six vertices and nine edges, and conveys the

same information - each house is joined to each utility, but no two houses are

joined, and no two utilities are joined. It follows that these two dissimilar

diagrams represent the same graph.

On the other hand, two diagrams may look similar, but represent different

graphs. For example, the diagrams below look similar, but they are not the

same graph: for example, AB is an edge of the second graph, but not the first.

g w e g B e

We express this similarity by saying that the graphs represented by these

two diagrams are isomorphic. This means that the two graphs have essentially the

same structure: we can relabel the vertices in the first graph to get the second

graph - in this case, we simply interchange the labels w and B.

This leads to the following definition.

Definition

Two graphs G and H are isomorphic if H can be obtained by relabelling the vertices of G -

that is, if there is a one-one correspondence between the vertices of 6 and those of H, such

that the number of edges joining each pair of vertices in 6 is equal to the number of edges

joining the corresponding pair of vertices in H. Such a one-one correspondence is an

isomorphism.

For example, the graphs G and H represented by the diagrams

are not the same, but they are isomorphic, since we can relabel the vertices in

the graph G to get the graph H, using the following one-one correspondence:

30 Graphs and Applications: An Introductory Approach

G H

U <-> 4

V <-> 3

w <-> 2
X <-4 1

Note that edges in G correspond to edges in H - for example:

the two edges joining u and v in G correspond to the two edges joining 4
and 3 in H;

the edge uw in G corresponds to the edge 42 in H;

the loop ww in G corresponds to the loop 22 in H.

To check whether two graphs are the same, we must check whether all the

vertex labels correspond. However, to check whether two graphs are isomor¬

phic, we must investigate whether we can relabel the vertices of one graph to

give those of the other. In order to do this, we first check that the graphs have

the same numbers of vertices and edges, and then look for special features in

the two graphs, such as a loop, multiple edges, or the number of edges

meeting at a vertex. For example, the following two graphs both have five

vertices and six edges, but are not isomorphic, as the first has two vertices
where just two edges meet, whereas the second has only one.

5 4 3

Graphs 31

Problem 2.5

Are the following two graphs isomorphic? If so, find a suitable one-one correspondence

between the vertices of the first and those of the second; if not, explain why no such one-one

correspondence exists.

Sometimes it is unnecessary to have labels on the graphs. In such cases, we

omit the labels and refer to the resulting object as an unlabelled graph. For

example, the unlabelled graph

corresponds to either of the following isomorphic graphs:

Indeed, it also corresponds to either of the following graphs, which are

isomorphic to the above two:

32 Graphs and Applications: An Introductory Approach

We say that two unlabelled graphs such as

are isomorphic if labels can be attached to their vertices so that they become the
same graph.

Problem 2.6

By suitably labelling the vertices, show that the following unlabelled graphs are isomorphic:

From now on, we use the term graph to indicate either a graph with labels

on the vertices and/or edges, or an unlabelled graph. The meaning is usually

clear from the context, but if there is any possibility of confusion, we insert the
word labelled or unlabelled, as appropriate.

Counting Graphs

What are the relative numbers of labelled and unlabelled graphs with the
same number of vertices?

When counting labelled graphs, we distinguish between any two that are

not the same. For example, there are eight different labelled simple graphs with
three vertices:

1 l l l i

3
• • \/ • »

2 3 2 3 2 3

Graphs 33

When counting unlabelled graphs, we distinguish between any two that are

not isomorphic. For example, there are just four different unlabelled simple

graphs with three vertices:

The following table lists the numbers of labelled and unlabelled simple

graphs with up to eight vertices:

n 1 2 3 4 5 6 7 8

labelled 1
graphs

2 8 64 1024 32768 2097152 268435456

unlabelled 1
graphs

2 4 11 34 156 1044 12346

Remark Notice how fast these numbers grow. This is another example of the

combinatorial explosion.

In general, counting problems for labelled graphs are much easier to solve than

their counterparts for unlabelled graphs. In fact, there are certain types of graph

for which the former problem has been solved while the latter remains unsolved.

Historical Note
In 1935, the Hungarian mathematician Georg Polya obtained a general formula from which

one can calculate the number of unlabelled graphs with any numbers of vertices and edges.

Polya's methods have since been applied to several other graph-counting problems.

Subgraphs

In mathematics we often study complicated objects by looking at simpler

objects of the same type contained in them - subsets of sets, subgroups of

groups, and so on. In graph theory we make the following definition.

Definition
A subgraph of a graph G is a graph all of whose vertices are vertices of G and all of whose

edges are edges of G.

34 Graphs and Applications: An Introductory Approach

Remark Note that G is a subgraph of itself.

For example, the following graphs are all subgraphs of the graph G on the
left, with vertices {u, v, w, x} and edges (1, 2, 3, 4, 5}.

Problem 2.7

Which of the following graphs are subgraphs of the graph G below?

IV Ml

U V X U V U)
• •-•-•

K w J 1-1 w

The idea of a subgraph can be extended to unlabelled graphs. For example,
the following graphs are all subgraphs of the unlabelled graph H on the left;
the configuration in graph (c) occurs at each corner of H.

(a) (b) (c)

Graphs 35

2.2 Vertex Degrees

In many applications of graph theory we need a term for the number of edges

meeting at a vertex. For example, we may wish to specify the number of roads

meeting at a particular intersection, the number of wires meeting at a given

terminal of an electrical network, or the number of chemical bonds joining a

given atom to its neighbours. These situations are illustrated below:

In chemistry, the term valency is used to indicate the number of bonds

connecting an atom to its neighbours. For example, a carbon atom C has

valenq' 4, an oxygen atom O has valency 2, and a hydrogen atom H has

valency 1, as illustrated in the above diagram representing the molecule

ethanol. For graphs, we usually use the word degree.

Definition

!n a graph, the degree of a vertex v is the number of edges incident with v, with each loop

counted twice, and is denoted by deg v.

36 Graphs and Applicahons: An Introductory Approach

Remark Each loop contributes 2 to the degree of the corresponding vertex

because it has two ends joined to that vertex.

For example, consider the following graphs:

(a)

Graph (a) has vertex degrees

deg u = 2, deg v — 1, deg iv = 4, deg x = 3, deg y = 0,

and graph (b) has vertex degrees

deg u = 2, deg v = 5, deg w = 4, deg x = 5, deg y = 0.

We sometimes need to list the degrees of all the vertices in a graph, and this

is usually done by writing them down in increasing order, with repeats where

necessary. Accordingly, we make the following definition.

Definition

G in increasing order, with repeats as necessary.

For example,

graph (a) above has degree sequence (0,1, 2, 3, 4);

graph (b) above has degree sequence (0, 2, 4,5, 5).

Graphs 37

Problem 2.10

For each of the graphs in Problem 2.9, write down:

the number of edges;

the sum of the degrees of all the vertices.

What is the connection between your answers? Can you explain why this connection arises?

Handshaking Lemma

In the solution to Problem 2.10, you should have noticed that the sum of the

vertex degrees of each graph is exactly twice the number of edges. A corre¬

sponding result holds for any graph, and is often called the handshaking lemma.

Theorem 2.1: Handshaking Lemma

In any graph, the sum of all the vertex degrees is equal to twice the number of edges.

Proof In any graph, each edge has two ends, so it contributes exactly 2 to the

sum of the vertex degrees. The result follows immediately. ■

38 Graphs and Applications: An Introductory Approach

The name handshaking lemma arises from the fact that a graph can be used to

represent a group of people shaking hands.

John

In such a graph, the vertices represent the people and an edge appears

whenever the corresponding people have shaken hands. With this interpreta¬

tion, the number of edges represents the total number of handshakes, the

degree of a vertex is the number of hands shaken by the corresponding

person, and the sum of the degrees is the total number of hands shaken. The

handshaking lemma states that the total number of hands shaken is twice the

number of handshakes - the reason being that exactly two hands are involved
in each handshake.

Historical note

The handshaking lemma first appeared in 1736 in Leonhard Euler's paper on the Konigsberg

bridges problem. This important paper, although not in the language of graph theory, is
widely regarded as 'the earliest paper in graph theory'.

Problem 2.11

(a) Use the handshaking lemma to prove that, in any graph, the number of vertices of odd
degree is even.

(b) Verify that the result of part (a) holds for each of the graphs in Problem 2.9.

2.3 Paths and Cycles

Many applications of graphs involve 'getting from one vertex to another'. For

example, you may wish to find the shortest route between one town and

another. Other examples include the routeing of a telephone call between one

subscriber and another, the flow of current between two terminals of an elec¬

trical network, and the tracing of a maze. We now make this idea precise by
defining a walk in a graph.

Graphs 39

Definition

A walk of length k in a graph is a succession of k edges of the form

This walk is denoted by uvm...yz, and is referred to as a walk between u and z.

U
K
V

We can think of such a walk as going from u to v, then from v to w, then from

w to x, and so on, until we arrive eventually at the vertex z. Since the edges are

undirected, we can also think of it as a walk from z to y and on, eventually, to

x, w, v and u. So we can equally well denote this walk by zy...xwvu, and refer to

it as a walk between z and u.

Note that we do not require all the edges or vertices in a walk to be different.

For example, in the following graph, uvwxywvzzy is a walk of length 9

between the vertices u and y, which includes the edge vw twice and the

vertices v, w, y and z twice.

w V

X u

Paths, Trails and Connected Graphs

It is sometimes useful to be able to refer to a walk under more restrictive condi¬

tions in which we require all the edges, or all the vertices, to be different.

40 Graphs and Applications: An Introductory Approach

■ : ■■

Definitions
■

A trail is a walk in which all the edges, but not necessarily all the vertices, are different.

A path is a walk in which all the edges and all the vertices are different.

V w

For example, in the graph above, the walk vzzywxy is a trail which is not a

path, since the vertices y and 2 both occur twice, whereas the walk vivxyz has

no repeated vertices, and is therefore a path.

Problem 2.12

Complete the following statements concerning the above graph:

(a) xyzzvy is a.of length.between and

(b) uvyz is a.of length between and

We can use the concept of a path to define a connected graph. Intuitively, a

graph is connected if it is 'in one piece'; for example, the following graph is not

connected, but can be split into four connected subgraphs.

Graphs 41

The observation that there is a path between x and y (which lie in the same

subgraph), but not between u and y (which lie in different subgraphs), leads to
the following definitions.

Definitions

A graph is connected if there is a path between each pair of vertices, and is disconnected

otherwise.

An edge in a connected graph is a bridge if its removal leaves a disconnected graph.

Every disconnected graph can be split up into a number of connected subgraphs, called

components.

For example, in the graph in Problem 2.13, the edge tz is a bridge; and the

following disconnected graph has three components:

Problem 2.14

Draw:

(a) a connected graph with eight vertices;

(b) a disconnected graph with eight vertices and two components;

(c) a disconnected graph with eight vertices and three components.

42 Graphs and Applications: An Introductory Approach

Closed Trails and Cycles

It is also useful to have a special term for those walks or trails that start and

finish at the same vertex. We say that they are closed.

Definitions

A closed walk in a graph is a succession of edges of the form

uv, vw, wx, ...,yz,zu,

that starts and ends at the same vertex.

A closed trail is a closed walk in which all the edges are different.

A cycle is a dosed walk in which all the edges are different and all the intermediate vertices

are different.

A walk or trail is open if it starts and finishes at different vertices.

For example, consider the following graph:

V IV

The closed walk vywxyzv is a closed trail which is not a cycle, whereas the

closed trails zz, vwxyv and vwxyzv are all cycles. A cycle of length 3, such as

vwyv or wxyw, is called a triangle. In describing closed walks, we can allow

any vertex to be the starting vertex. For example, the triangle vwyv can equally

well be written as wyvw or yvwy or (since the direction is immaterial) by vywv,
wvyw or ywvy.

Graphs 43

Problem 2.15

For the graph on the right, write down: r
(a) a closed walk that is not a closed trail;

(b) a closed trail that is not a cycle; V eye
(c) all the cycles of lengths 1,2,3 and 4.

2.4 Regular and Bipartite Graphs

In this section we give some examples of two important classes of graphs:

regular and bipartite graphs.

Regular Graphs

A graph in which all the vertex degrees are the same is given a special name.

Definitions

' A graph is regular if its vertices all have the same degree.

A regular graph is r-regular, or regular of degree r, if the degree of each vertex is r.

In the following diagrams we illustrate some r-regular graphs, for various

values of r:

44 Graphs and Applications: An Introductory Approach

Problem 2.16

Draw an /--regular graph with eight vertices when:

(a) r= 3; (b) r = 4; (c) r= 5.

A useful consequence of the handshaking lemma is the following result.

Theorem 2.2

Let G be an /--regular graph with n vertices. Then G has nr/2 edges.

Proof Let G be a graph with n vertices, each of degree r; then the sum of the

degrees of all the vertices is nr. By the handshaking lemma, the number of

edges is one-half of this sum, which is nr/2. ■

Problem 2.18

(a) Prove that there are no 3-regular graphs with seven vertices.

(b) Prove that, if n and r are both odd, then there are no /--regular graphs with n vertices.

Graphs
45

Examples of Regular Graphs

We now consider some important classes of regular graphs.

Complete Graphs

A complete graph is a graph in which each vertex is joined to each of the
others by exactly one edge.

The complete graph with n vertices is denoted by Kn.

Ki

•-•
K2

The graph Kn is regular of degree n-1, and therefore has n(n - l)/2 edges, by
Theorem 2.2.

Null Graphs

A null graph is a graph with no edges.

The null graph with n vertices is denoted by Nn.

• • •

• •

• «••••• •• ••
Nj N2 N3 N4 N5 Nb

The graph Nn is regular of degree 0.

Cycle Graphs

A cycle graph is a graph consisting of a single cycle of vertices and edges.

The cycle graph with n vertices is denoted by Cn.

46 Graphs and Applications: An Introductory Approach

The graph C„ is regular of degree 2, and has n edges. For n > 3, Cn can be

drawn in the form of a regular polygon.

Problem 2.19

Draw the graphs Ky, Ny and Cy.

The Platonic Graphs

The following five regular solids are known as the Platonic solids.

We can regard the vertices and edges of each solid as the vertices and edges

of a regular graph. The resulting five graphs are known as the Platonic

graphs, and are often drawn as follows:

The tetrahedron, cube and dodecahedron are 3-regular, the octahedron

graph is 4-regular and the icosahedron graph is 5-regular.

Graphs
47

The Petersen Graph

The Petersen graph is named after the Danish mathematician Julius Petersen;

he discussed this graph in a paper of 1898. The Petersen graph is a 3-regular

graph with 10 vertices and 15 edges; it may be drawn in various ways, two of
which are

This graph has many interesting properties that we shall meet in later
chapters.

Bipartite Graphs

Of particular importance in applications are the bipartite graphs.

Definition

A

V"
B

A bipartite graph is a graph whose set of vertices can be split into two subsets A and B in

such a way that each edge of the graph joins a vertex in A and a vertex in B.

48 Graphs and Applications: An Introductory Approach

We can distinguish the vertices in A from those in B by drawing one set in

black and one set in white; then each edge is incident with a black vertex and a

white vertex. Two examples of bipartite graphs are:

Problem 2.20

Prove that, in a bipartite graph, every cycle has an even number of edges.

Examples of Bipartite Graphs

As with regular graphs, there are several important classes of bipartite graphs.

Complete Bipartite Graphs

A complete bipartite graph is a bipartite graph in which each vertex in A is

joined to each vertex in B by just one edge.

The complete bipartite graph with r vertices in A and s vertices in B is

denoted by Kr s. Some examples of complete bipartite graphs are:

The graph Kr s is the same as Ks r (exchange the roles of A and B); it has r+s

vertices (r vertices of degree s and s vertices of degree r) and rs edges.

Problem 2.21

(a) Draw the graphs /<j,7 and /C4 4.

How many vertices and edges does each have?

(b) Under what condition on r and s is /Cr,s a regular graph?

Graphs 49

Trees

One of the most important classes of bipartite graphs is the class of trees. A tree

is a connected graph with no cycles. Some examples of trees are:

Since a tree is connected, there is at least one path between each pair of

vertices. Suppose that there are two vertices of the tree joined by two paths.

Then these paths create a cycle that may include all the edges in both paths, or
only some of them:

But this contradicts our definition of a tree, so no such pair of vertices exists. It
follows that

in a tree, there is just one path between each pair of vertices.

Problem 2.22

There are eight unlabelled trees with five or fewer vertices. Draw them.

Problem 2.23

(a) Explain why every tree is a bipartite graph, by colouring alternate vertices black and

white.

(b) Explain why a tree with n vertices has n - 1 edges.

50 Graphs and Applications: An Introductory Approach

Path Graphs

A path graph is a tree consisting of a single path through all its vertices.

The path graph with n vertices is denoted by Pn.

The graph Pn has n - 1 edges, and is obtained from the cycle graph Cn by

removing any edge.

Cubes

Of particular interest among the bipartite graphs are the cubes. They have

important applications in coding theory, and may be constructed by taking as

vertices all binary words (sequences of Os and Is) of a given length and joining

two of these vertices whenever the corresponding sequences differ in just one

place. The graph thus obtained from the binary words of length k is called the

k-cube or k-dimensional cube, and is denoted by Qk.

mo mi

The graph Qk has 2k vertices, and is regular of degree k. It follows from
Theorem 2.2 that Qk has k x 2k~l edges.

2.5 Case Studies

We conclude this chapter with two case studies - the four cubes problem and
social networks.

Graphs
51

Four Cubes Problem

An intriguing recreational puzzle, which has been marketed under the name

of Instant Insanity, concerns four cubes whose faces are coloured red, blue,

green and yellow. These cubes are depicted in flattened-out form below.

R

R Y G B

R

cube 1

R

R Y B G

Y

cube 2

G

B B R Y

G

cube 3

B

G Y R G

Y

cube 4

The problem is

to pile the cubes on top of each other so that all four colours appear on each
side of the resulting 'stack'.

cube 4-► 7 ; 7

cube 3-►
7 7

cube 2-►
7

cube 1-►
? 7

As we shall see, there is essentially only one way in which this can be done for
this particular set of cubes.

A trial-and-error approach to this problem is inadvisable, since there are

many thousands of different ways of stacking the cubes.

Now, if one face of a cube appears on one side of the stack, then the oppo¬

site face of the cube must appear on the opposite side of the stack. It follows

that our primary concern is with opposite pairs of faces, and that we must

decide, for each cube, which two of the three opposite pairs should appear on

the sides of the stack.

To solve this problem, we represent each cube by a graph that tells us which

pairs of colours appear on opposite faces. More precisely, we represent each

cube by a graph with four vertices R, B, G, Y (corresponding to the four

colours) in which two vertices are adjacent when the cube in question has the

corresponding colours on opposite faces. For example, in cube 1, blue and

yellow appear on opposite faces, and so the vertices B and Y are joined in the

corresponding graph.

52 Graphs and Applications: An Introductory Approach

The graphs for the above set of cubes are:

cube 1 cube 2 cube 3 cube 4

We now superimpose them to give a new graph G:

A solution to the four cubes problem is obtained by finding two particular

subgraphs Hi and H2 of G. The subgraph H\ tells us which pair of colours

appears on the front and back faces of each cube, and the subgraph H2 tells us

which pair of colours appears on the left-hand and right-hand faces of each

cube. The subgraphs Hi and H2 must possess three properties:

(a) each subgraph contains exactly one edge from the graph of each cube;

(b) the subgraphs have no edges in common;

(c) each vertex is incident with two edges.

Property (a) tells us that each cube has a front and a back, and a left side and a

right side, and the subgraphs Hi and H2 tell us which pairs of colours appear

on these faces.
Property (b) tells us that the faces appearing on the front and back of a cube

cannot be the same as those appearing on the sides.

Property (c) tells us that each colour appears exactly twice on the sides of the

stack (once on each side), and exactly twice on the front and back (once on the

front and once on the back).

Graphs 53

A solution for the above set of cubes is shown below. In this solution, the

subgraphs Hi and H2 tell us that cube 1 has yellow on the front and blue on the

back (from Hi) and red on the left and green on the right (from H2), and simi¬
larly for the other cubes.

G 2 Y G 4 Y

front and back
Ha

left and right
h2

cube 4

cube 3

cube 2

cube 1

the solution

This solution is the only one possible in this instance (see Exercise 2.16). Other

instances exist that have no solution or several solutions.

Probiem 2.24

Use the above approach to find a solution to the four-cubes problem for the following set of

cubes:

Y

R G B R

Y

G

R G B G

R

Y

R Y R B

G

Y

R G R Y

B

cube 1 cube 2 cube 3 cube 4

Social Networks

Graphs have been used extensively in the social sciences to represent interper¬

sonal relationships. The vertices correspond to individuals in a group or society,

and the edges join pairs of individuals that are related in some way - for

example, x is joined to y if x likes, hates, agrees with, avoids, or communicates

with y. Such representations have been extended to relationships between

groups of individuals, and have proved useful in a number of contexts

ranging from kinship relationships in certain primitive tribes to relationships

between political parties. Graphs have also been used by political scientists to

study international relations, where the vertices correspond to nations or

groups of nations, and the edges join pairs of nations that are allied, maintain

diplomatic relations, agree on a particular strategy, etc.

54 Graphs and Applications: An Introductory Approach

We can analyse the possible tension in such situations by using the concept

of a signed graph. This is a graph with either + or - associated with each edge,

indicating a positive relationship (likes, loves, agrees with, communicates

with, etc.) or a negative one (dislikes, hates, disagrees with, avoids, etc.). For

example, in the signed graph below, Jack likes Jill but not John, Jill likes Jack

and Mary but not John, Mary likes John and Jill, and John likes Mary but not

Jack or Jill; Jack and Mary have no strong feelings about each other, and are

therefore not joined by an edge.

John Mary

Consider now the following diagrams, which illustrate some of the situa¬

tions that can occur when three people work together. Which of these situa¬

tions is most likely to cause tension between John, Jack and Jill?

John John John

In the first case, all three get on well, and there is no tension. In the second

case. Jack and Jill get on well and both dislike John; the result is that John

works on his own, and again there is no tension. In the third case, John likes

both Jack and Jill and would like to work with them, but Jack and Jill dislike

each other and do not wish to work together; in this case, a suitable working

arrangement cannot be found, and there is tension. We express this by saying

that the first two situations are balanced, whereas the third is unbalanced.

More generally, we say that a signed graph is balanced if we can colour its

vertices black or white in such a way that positive edges have ends of the same

colour, and negative edges have a black end and a white end. Clearly, the first

two of the above diagrams can be coloured in this way, whereas the third

cannot:

John John

This definition resembles that of a bipartite graph. To see the connection,

take a balanced signed graph and remove all the positive edges; this leaves a

bipartite graph, as indicated by the following diagram:

Graphs 55

balanced signed graph bipartite graph

We can exploit this connection between balanced signed graphs and bipar¬
tite graphs a little further. Recall from Problem 2.20 that

in a bipartite graph, every cycle has an even number of edges.

For balanced signed graphs the corresponding result is

in a balanced signed graph, every cycle has an even number of negative
edges.

Before studying Chapter 3, you may find it helpful to read the Appendix:

Methods of Proof.

56 Graphs and Applications: An Introductory Approach

Exercises 2

Graphs and Subgraphs

2.1 Consider the graph G shown on the right. Which of

the following statements hold for G?

(a) vertices v and x are adjacent;

(b) edge 6 is incident with vertex w;

(c) vertex x is incident with edge 4;

(d) vertex w and edges 5 and 6 form a subgraph of G.

2.2 By suitably labelling the vertices, show that the following graphs are

isomorphic:

2.3 Draw the eleven unlabelled simple graphs with four vertices.

Vertex Degrees

2.4 (a) If two graphs have the same degree sequence, must they be
isomorphic?

(b) If two graphs are isomorphic, must they have the same degree

sequence?

2.5 Let G be a graph with degree sequence (1, 2, 3, 4). Write down the

number of vertices and number of edges of G, and construct such a

graph. Are there any simple graphs with degree sequence (1, 2, 3, 4)?

2.6 Prove that, if G is a simple graph with at least two vertices, then G has

two or more vertices of the same degree.

Graphs 57

Paths and Cycles

2.7 For the graph shown on the right, write down:

(a) a walk of length 7 between u and w;

(b) all the cycles of lengths 1, 2, 3 and 4;

(c) a path of maximum length.

2.8 Draw four connected graphs, G\, G2, G3 and G$, each with 5 vertices

and 8 edges, satisfying the following conditions:

G-[is a simple graph;

G2 is a non-simple graph with no loops;

G3 is a non-simple graph with no multiple edges;

G4 is a graph with both loops and multiple edges.

2.9 (a) Draw a simple connected graph with degree sequence

(1,1, 2, 3, 3, 4, 4, 6).

(b) Draw a simple connected graph with degree sequence

(3, 3, 3, 3, 3, 5, 5, 5).

Regular and Bipartite Graphs

2.10 Draw:
(a) two non-isomorphic regular graphs with 8 vertices and 12 edges;

(b) two non-isomorphic regular graphs with 10 vertices and 20 edges.

2.11 Determine the number of edges of each of the following graphs:

(a) C10; (b) K9/10; (c) Kw; (d) Q5;
(e) the dodecahedron.

58 Graphs and Applications: An Introductory Approach

2.12 The complement of a simple graph G is obtained by taking the vertices

of G and joining two of them whenever they are not joined in G.

complement of G a simple graph G

(a) Verify that the complement of P4 is P4.

(b) What is the complement of K4? of K3^3? of C5?

(c) Show that, if a simple graph G is isomorphic to its complement,

then the number of vertices of G has the form 4k or 4ft: + 1, for some

positive integer k.

(d) Find all the simple graphs with four or five vertices that are

isomorphic to their complements.

(e) Construct a graph with eight vertices that is isomorphic to its
complement.

2.13 The girth of a graph G is the length of a shortest cycle in G, and the

circumference of G is the length of a longest cycle in G. Find the girth

and circumference of:

(a) the Petersen graph; (b) the 4-cube graph Q4.

2.14 Prove that, if every cycle of a graph has an even number of edges,

then the graph is bipartite. (This is the converse of Problem 2.20.)

Hint Consider a connected graph G. Choose a vertex v in G and

consider those vertices whose minimum distance from v is even and

those whose minimum distance from v is odd. To which vertices are

the 'odd' vertices adjacent? To which vertices are the 'even' vertices
adjacent?

2.15 The line graph L(G) of a simple graph G is the graph obtained by

taking the edges of G as vertices, and joining two of these vertices

whenever the corresponding edges of G have a vertex in common.

Find an expression for the number of edges of L(G) in terms of the
degrees of the vertices of G, and show that:

(a) L(C„) is isomorphic to Cn;

(b) L(Kn) has Vm{n - 1) vertices and is regular of degree 2n - 4;

(c) L(tetrahedron graph) = octahedron graph;

(d) the complement of L(K5) is the Petersen graph.

Graphs 59

Case Studies

Four Cubes Problem

2.16 Show that the subgraphs H\ and H2 of the graph G shown below are
the only pair of subgraphs possessing the following properties for the
given set of cubes:

(a) each contains exactly one edge from the graph for each cube;

(b) they have no edges in common;

(c) each vertex is incident with two edges.

R

R Y G B

R

cube 1

R

R Y B G

Y

cube 2

G

B B R Y

G

cube 3

B

G Y R G

Y

cube 4

Hint First show that neither subgraph can contain the loop at R, then
repeat the process for the loop at G, and then for the edge joining R
and Y.

2.17 Show that there is no solution to the four cubes problem for the
following set of cubes:

G

Y G R B

R

B

G R R Y

G

Y

R Y G B

Y

B

Y B G R

B

cube 1 cube 2 cube 3 cube 4

60 Graphs and Applications: An Introductory Approach

Social Networks

2.18 Draw the signed graph representing the following relationships, and

determine whether it is balanced.

John likes Joan, Jean and Jane, but dislikes both Joe and Jill;

Jill and Joe like each other, but both dislike John, Joan, Jean and Jane;

Joan, Jean and Jane like each other and John, but each dislikes Joe and

JiH-

2.19 Draw the signed graph representing the following relationships, and

determine whether it is balanced. (Assume that all relationships are

symmetric - that is, x likes y if and only if y likes x.)

Michael likes Ian and Leslie, but dislikes Jean and Kate;

Kate dislikes Ian and Leslie;

Jean likes Ian but dislikes Leslie.

2.20 Prove that in any balanced signed graph every cycle has an even

number of edges.

Chapter 3

Eulerian and Hamiltonian Graphs

After studying this chapter, you should be able to:

• explain the terms Eulerian graph and Eulerian trail, and state a necessary and suffi¬

cient condition for a connected graph to be Eulerian;

• explain the terms semi-Eulerian graph and semi-Eulerian trail, and state a neces¬

sary and sufficient condition for a connected graph to be semi-Eulerian;

• explain the terms Hamiltonian graph, Hamiltonian cycle, semi-Hamiltonian graph

and semi-Hamiltonian path, and state a sufficient condition for a simple

connected graph to be Hamiltonian;

• explain the relevance of the above ideas to the Konigsberg bridges problem, the icosian

game, dominoes, diagram-tracing puzzles, the knight's tour problem and Gray codes.

In this chapter we introduce two important types of graph - Eulerian and

Hamiltonian graphs, named after the mathematicians Leonhard Euler and William

Rowan Hamilton. In particular, we give a necessary and sufficient condition for a

connected graph to be Eulerian, and show the connection between Eulerian

graphs and diagram-tracing puzzles. We also give sufficient conditions for a

connected graph to be Hamiltonian, and show the connection between

Hamiltonian graphs and the knight's tour problem and Gray codes. Because of the

importance of Eulerian and Hamiltonian graphs in the development of graph

theory, some of this chapter is presented from a historical point of view.

3.1 Exploring and Travelling

In this section, we consider two types of problem concerned with the routes

joining a number of cities in a road map.

61

62 Graphs and Applications: An Introductory Approach

Explorer's Problem

An explorer wishes to find a tour that traverses each road exactly once and returns to the

starting point.

Traveller's Problem

A traveller wishes to find a tour that visits each city exactly once and returns to the starting

point.

To appreciate the difference between these two problems, consider the
following road map.

The explorer wishes to find a tour that starts at city a, goes along each road

exactly once (in either direction) and ends back at a; two examples of such a
tour are

a b c d e f b g c e g f a and afgcdegbcefba.

The traveller wishes to find a tour that starts at city a, goes to each city exactly
once and ends back at a; two examples of such a tour are

abcdegfa and afedcgba.

Note that the explorer travels along each road just once, but may visit a

particular city several times, whereas the traveller visits each city just once,
but may omit several roads.

Let us regard the road map as a connected graph whose vertices corre¬

spond to the cities and whose edges correspond to the roads. The explorer's
problem is now to

find a closed trail that includes every edge of the graph,

whereas the traveller's problem is now to

find a cycle that includes every vertex of the graph.

With this in mind, we make the following definitions.

Eulerian and Hamiltonian Graphs 63

Definitions

A connected graph is Eulerian if it contains a closed trail that includes every edge; such a trail

is an Eulerian trail.

A connected graph is Hamiltonian if it contains a cycle that includes every vertex; such a

cycle is a Hamiltonian cycle.

Remark It is easy to remember which definition is which, since Eulerian

graphs are defined in terms of Edges.

For example, consider the following four graphs:

graph (a) is both Eulerian and Hamiltonian, as we saw above;

graph (b) is Eulerian - an Eulerian trail is b c gfe g b; it is not Hamiltonian;

graph (c) is Hamiltonian - a Hamiltonian cycle is bcgefb; it is not Eulerian;

graph (d) is neither Eulerian nor Hamiltonian.

64 Graphs and Applications: An Introductory Approach

3.2 Eulerian Graphs

In Chapter 1, you met the Konigsberg bridges problem: is it possible to find a

route that crosses each of the seven bridges of Konigsberg exactly once and

returns to the starting point? It was not until Leonhard Euler tackled the

problem in the 1730s that this was proved to be impossible.

We represent the Konigsberg bridges problem in terms of a graph by taking

the four land areas as vertices and the seven bridges as edges joining the

corresponding pairs of vertices. This gives the graph shown on the right

above. The problem of finding a route crossing each bridge exactly once corre¬

sponds to that of finding an Eulerian trail in this graph, and you have already

seen in Problem 3.1(g) that no such trail exists. It follows that there is no route

of the desired kind crossing the seven bridges of Konigsberg.

Euler also considered the corresponding problem of finding a route

crossing all the bridges in a more general arrangement of bridges and land

areas. This led him to present a rule that tells us when such a route is possible,

and hence when a graph is Eulerian. In the following problem we ask you to
try to formulate this rule.

Problem 3.2

(a) Finding a route crossing each bridge just once and returning to the starting point (that

is, finding an Eulerian trail in the corresponding graph) is possible only when the
following condition is satisfied:

whenever you cross into a part of the city, you must be able to leave it by another
bridge.

What does this tell you about the vertex degrees in an Eulerian graph?

(b) Using the result of part (a), guess a rule that tells you whether a given connected graph
is Eulerian, and test your rule on the graphs of Problem 3.1.

Eulerian and Hamiltonian Graphs 65

Historical Note

Leonhard Euler (1707-1783), possibly the most prolific mathematician of all time, solved the

Konigsberg bridges problem in an important paper entitled Solutio problematis ad
geometriam situs pertinentis (the solution of a problem relating to the geometry of position).

In the solution to Problem 3.2, we gave a criterion that enables us to tell

whether a given connected graph is Eulerian - namely, check whether all the

vertex degrees are even. Before stating this criterion formally, we state a result

needed in the proof; its proof is given at the end of this section.

Theorem 3.1

Let G be a graph in which each vertex has even degree. Then 6 can be split into cycles, no two

of which have an edge in common.

We now state the above criterion formally; its proof is given at the end of

this section.

Theorem 3.2

A connected graph is Eulerian if and only if each vertex has even degree.

66 Graphs and Applications: An Introductory Approach

Remark Eulerian graphs have Even degrees.

This theorem gives a necessary and sufficient condition for a connected

graph to be Eulerian. It is equivalent to the following two statements for a

connected graph G:

(a) if G is Eulerian, then each vertex of G has even degree;

(b) if each vertex of G has even degree, then G is Eulerian.

Problem 3.4

Use Theorem 3.2 to determine which of the following graphs are Eulerian:

(a) the complete graph %

(b) the complete bipartite graph % a;
(c) the cycle graph C&

(d) the dodecahedron graph;

(e) the cube graph Os-

Combining the statements of Theorems 3.1 and 3.2, we obtain the following
theorem.

Theorem 3.3

An Eulerian graph can be split into cycles, no two of which have an edge in common.

Semi-Eulerian Graphs

There are several simple modifications of the above ideas. The most important

of these arises when we do not insist that the citizens of Konigsberg return to
their starting point.

Suppose that the citizens of Konigsberg are keen to cross each of the seven

bridges exactly once, but are content to start and finish their walk at

different places. Is the walk possible under these conditions?

Eulerian and Hamiltonian Graphs 67

A little experimentation with the above graph should convince you that, even

with this modification to the conditions, such a walk is not possible.

This idea leads to the following definition.

Definition

A connected graph is semi-Eulerian if there is an open trail that includes every edge; such a

trail is a semi-Eulerian trail.

The following theorem is derived from Theorem 3.2; its proof is given at the

end of this section.

Theorem 3.4

A connected graph is semi-Eulerian if and only if it has exactly two vertices of odd degree.

This theorem gives a necessary and sufficient condition for a connected graph

to be semi-Eulerian. It is equivalent to the following two statements for a

connected graph G:

(a) if G is semi-Eulerian, then G has exactly two vertices of odd degree;

(b) if G has exactly two vertices of odd degree, then G is semi-Eulerian.

It follows from the above discussion that, in a semi-Eulerian graph G, the

starting and finishing vertices of an open trail that includes every edge of G

must be the two vertices of odd degree.

68 Graphs and Applications: An Introductory Approach

Proofs of Theorems

We now supply the three proofs omitted earlier.

Theorem 3.1

Let 6 be a graph in which each vertex has even degree. Then G can be split into cycles, no two
of which have an edge in common.

Proof Let G be a graph in which each vertex has even degree. We obtain our

first cycle in G by starting at any vertex u and traversing edges in an arbitrary

manner, never repeating any edge. Because each vertex has even degree, we

know that, whenever we enter a vertex, we must be able to leave it via a

different edge. Since there is only a finite number of vertices, we must eventu¬

ally reach a vertex v that we have met before. The edges of the trail between

the two occurrences of the vertex v must therefore form a cycle, Cp

part of G

Eulerian and Hamiltonian Graphs 69

We now remove from G the edges of Cj. This leaves a graph H (possibly

disconnected) in which each vertex has even degree. If H has any edges (that

is, if G is not just C\), we can repeat the procedure above to find a cycle C2 in H,

with no edges in common with C\.

part of H

Removal of the edges of C2 from H leaves yet another graph in which each

vertex has even degree, and which therefore contains a cycle C3. We continue

in this way until there are no edges left, at which stage we have a number of

cycles Ci, C2, ..., Cfc which together include every edge of G, and no two of

which have any edges in common. ■

Theorem 3.2

A connected graph is Eulerian if and only if each vertex has even degree.

Proof There are two statements to prove.

(a) If G is Eulerian, then each vertex of G has even degree.

Let G be an Eulerian graph; then there is an Eulerian trail. Whenever this trail

passes through a vertex, there is a contribution of 2 to the degree of that

vertex. Since each edge is used just once, the degree of each vertex is a sum of

2s - that is, an even number.

(b) If each vertex of a connected graph G has even degree, then G is Eulerian.

Let G be a connected graph in which each vertex has even degree. We know

from Theorem 3.1 that G can be split into cycles, no two of which have an edge

in common.
We now fit these cycles together to make an Eulerian trail. We start at any

vertex of a cycle C\ and travel round C\ until we meet a vertex of another

cycle, C2 say.

70 Graphs and Applications: An Introductory Approach

We traverse the edges of this cycle, and then resume travelling round C\.

This gives a closed trail that includes C\ and C2. If this trail includes all the

edges in G, then we have the required Eulerian trail. If not, we travel round

our new closed trail, and add a new cycle, C3 say, when we come to it; since G

is connected, there is always at least one cycle to add to our closed trail. We

continue this process until all the cycles have been traversed, at which stage

we have the required Eulerian trail. It follows that G is Eulerian. B

The above proof is not the shortest possible; for example, there is a shorter

proof that uses the method of mathematical induction. However, the advan¬

tage of the above proof is that it is constructive - it gives a method for
constructing an Eulerian trail in a given graph.

Theorem 3.4

A connected graph is semi-Eulerian if and only if it has exactly two vertices of odd degree.

Proof There are two statements to prove.

(a) If G is semi-Eulerian, then G has exactly two vertices of odd degree.

v

w
G

Let G be a semi-Eulerian graph, and let v and w be the starting and finishing

vertices of an open trail. Let us add an edge e joining v and w; then we obtain

an Eulerian graph in which each vertex has even degree, by Theorem 3.2. If

Eulerian and Hamiltonian Graphs 71

we now recover G by removing the edge e, we see that v and w are the only
vertices of odd degree.

(b) If a connected graph G has exactly two vertices of odd degree, then G is

semi-Euler ian.

Let G be a graph with exactly two vertices of odd degree, v and w. Let us add

an edge e joining v and w; then we obtain a connected graph in which each

vertex has even degree. By Theorem 3.2, this graph is Eulerian, and so has an

Eulerian trail. Removal of the edge e from this trail produces an open trail that

includes every edge of G, so G is semi-Eulerian. ■

3.3 Hamiltonian Graphs

We now turn our attention to Hamiltonian graphs - graphs in which there is a

cycle passing through every vertex.

The name Hamiltonian derives from a game invented by Sir William Rowan

Hamilton (1805-1865), one of the leading mathematicians of his time. He did

brilliant work in geometrical optics, dynamics and algebra. His icosian calculus

can be expressed in terms of finding Hamiltonian cycles in the graph of the

regular dodecahedron, shown below.

He also turned the problem into a game, the icosian game, in which the

player has to find Hamiltonian cycles starting with five given letters. For

example, given the initial letters BCPNM, the player can complete a

Hamiltonian cycle in exactly two ways:

BCPNMDFKLTSRQZXWVJHGB;

BCPN MDF GHXWVJKLT SRQZB.

The game was marketed in 1859. It also appeared in a solid dodecahedron

form under the title A voyage round the world, with the vertices representing

places - Brussels, Canton, Delhi,..., Zanzibar.

72 Graphs and Applications: An Introductory Approach

Problem 3.6

How many Hamiltonian cycles on the dodecahedron begin with 7l/r5/??

Problem 3.7

Find a path on the dodecahedron starting with BCD, ending with T, and including each vertex

just once.

The name Hamiltonian cycle can be regarded as a misnomer, since Hamilton

was not the first to look for cycles that pass through every vertex of a graph.

An earlier example of a problem that can be expressed in terms of

Hamiltonian cycles is the knight's tour problem, which we discuss later in this

chapter. Yet another is the travelling salesman problem, introduced in Chapter 1.

In this problem, a graph is given in which the vertices represent locations, and

each edge has a weight, representing the distance between its endpoints. The

problem is to find a route that visits each vertex just once and returns to the

starting point, covering the shortest possible total distance - that is, to find a

minimum-weight Hamiltonian cycle in the graph.

Properties of Hamiltonian Graphs

At first sight, the problem of deciding whether a given graph is Hamiltonian

may seem similar to that of deciding whether it is Eulerian, and we might

expect there to be a simple necessary and sufficient condition for a graph to be

Hamiltonian, analogous to that of Theorem 3.2 for Eulerian graphs. However,

no such condition is known, and the search for necessary or sufficient condi¬

tions for a graph to be Hamiltonian is a major area of study in graph theory.

Faced with this situation, the best we can do is to look for various classes of

graphs that are Hamiltonian. For example, it is clear that the cycle graph Cn is

Hamiltonian for all values of n. Also, the graph Kn is Hamiltonian for n > 3; if

the vertices are denoted by 1, 2,..., n, then a Hamiltonian cycle is 1 2 3 ... n 1.

*5
4 3

Eulerian and Hamiltonian Graphs 73

Problem 3.8

Which of the following graphs are Hamiltonian?

(a) the complete bipartite graph K^;
(b) a tree.

Problem 3.9

(a) Prove that a bipartite graph with an odd number of vertices is not Hamiltonian.

(b) Use the result of part (a) to prove that the following graph is not Hamiltonian.

If we take a Hamiltonian graph and add an edge to it, then we obtain

another Hamiltonian graph, since we can take the same Hamiltonian cycle as

before. It follows that graphs with large vertex degrees, and hence many

edges, are more likely to be Hamiltonian than graphs with small vertex

degrees. We can make this idea precise in various ways. One of these is the

following result of Oystein Ore, proved in 1960; the proof is omitted.

Theorem 3.5: Ore's Theorem

Let 6 be a simple connected graph with n vertices, where n > 3, and

deg v + deg w > n,

for each pair of non-adjacent vertices vand w. Then 6 is Hamiltonian.

74 Graphs and Applications: An Introductory Approach

For example, for the graph shown below, deg v + deg w > 5 for each pair of

non-adjacent vertices v and w (in fact, for all pairs of vertices), so this graph is

Hamiltonian, by Ore's theorem.

Problem 3.10

(a) Let 6 be a simple connected graph with n vertices, where n > 3 and deg v > nil for each

vertex v. Use Ore's theorem to show that G is Hamiltonian.

(This result is known as Dirac's theorem; it was proved in 1952.)

(b) Give an example of a Hamiltonian graph that does not satisfy the conditions of Ore's

theorem.

Just as for Eulerian graphs, there are several variations of the above ideas

and results. For example, we can define semi-Hamiltonian graphs - graphs in

which it is possible to visit every vertex, but not return to the starting point.

Definition
' > ’ ? fp ^ ff 7 <\> - (

A connected graph is semi*Hamiltonian if there is a path, but not a cycle, that includes

every vertex; such a path is a semi-Hamiltonian path.
■

There is no known general criterion for testing whether a given graph is

semi-Hamiltonian.

Eulerian and Hamiltonian Graphs 75

3.4 Case Studies

We conclude this chapter with four case studies - dominoes, diagram-tracing

puzzles, the knight's tour problem and Gray codes.

Dominoes

An unusual application of Eulerian graphs is to the game of dominoes. We use

the complete graph Ky, which is Eulerian since each vertex has degree 6.

0

Let us label the vertices 0,1,2,3,4,5,6, consecutively. Then an Eulerian trail

is obtained by tracing the edges in the following order:

01,12, 23, 34, 45, 56, 60, 02, 24, 46, 61,13, 35, 50, 03, 36, 62, 25, 51,14, 40.

(There are many other Eulerian trails.)

We can regard each of these edges as a domino - for example, the edge 24

corresponds to the domino

76 Graphs and Applications: An Introductory Approach

It follows that the above Eulerian trail corresponds to an arrangement of the

dominoes of a normal set (other than the doubles 0-0,1-1,..., 6-6) in a contin¬

uous sequence. Once this basic sequence is found, we can insert the doubles at

appropriate places, thus showing that a complete game of dominoes is

possible. The following ring of dominoes corresponds to the above Eulerian

trail:

Diagram-Tracing Puzzles

A common type of recreational puzzle is that of drawing a given diagram with

as few continuous pen-strokes as possible, without covering any part of the

diagram twice. For example, it is easy to draw the following diagram with four

continuous strokes, but can it be done with three?

m

Eulerian and Hamiltonian Graphs 77

Such problems are equivalent to determining the minimum number of

open trails with no edge in common that make up the corresponding graph.

In 1809 Louis Poinsot, unaware of Euler's solution to the Konigsberg

bridges problem, showed that diagrams consisting of n mutually connected

points can be drawn in one continuous stroke if n is odd, but not if n is even:

yes no yes no yes

In the terminology of graph theory, this amounts to saying that the

complete graph Kn is Eulerian only for odd values of n, since such graphs have

even vertex degrees. Poinsot's account of the subject included an ingenious

construction for finding an Eulerian trail when n is odd - no mean feat, as you

will see if you try to describe a method for constructing an Eulerian trail in
(say) K99.

In 1847, Johann Listing wrote an important treatise entitled Vorstudien zur

Topologie (Introductory studies in topology), which included a discussion of

diagram-tracing puzzles. In particular, he observed that the following

diagram has eight vertices of odd degree, and so cannot be drawn with fewer
than four continuous strokes.

He also remarked that the following diagram can be drawn in one contin¬

uous stroke, starting at one end and ending at the other, since these are the

only points that correspond to vertices of odd degree:

-*•

78 Graphs and Applications: An Introductory Approach

The following problem answers the question of how many continuous

pen-strokes are needed to draw a given connected graph.

Problem 3.14

Prove that, if a connected graph G has k vertices of odd degree, then the smallest number of

continuous pen-strokes needed to cover all the edges is k/2.
Hint Add k/2 edges to G, in a suitable manner, to obtain an Eulerian graph.

Knight's Tour Problem

On a chessboard, a knight always moves two squares in a horizontal or

vertical direction and one square in a perpendicular direction, as illustrated

below.

A celebrated recreational problem, which has been studied for many

hundreds of years, is the following.

Eulerian and Hamiltonian Graphs 79

Knight's Tour Problem

Can a knight visit each square of a chessboard just once by a sequence of knight's moves, and
finish on the same square as it began?

We represent the board as a graph in which each vertex corresponds to a

square, and each edge corresponds to a pair of squares connected by a

knight's move. We deduce that finding a knight's tour is equivalent to finding

a Hamiltonian cycle in the associated graph of the chessboard. The following

diagram shows a 4 x 4 chessboard and its associated graph.

In fact, there is no knight's tour on a 4 x 4 chessboard. In order to see this,

note that the only way that we can include the top-left square in the tour is to

include the two moves shown in figure (a) below. Similarly, the only way that

we can include the lower-right square is to include the two moves shown in

figure (b). Combining these, we see that the tour has to include the four moves

in figure (c). But these already form a cycle, so it is impossible to include them

as part of a full tour. Thus, no knight's tour is possible on a 4 x 4 chessboard.

(a) (b)

There is no knight's tour on a chessboard with an odd number of squares

(such as a 5 x 5 chessboard), as you will see in the following problem.

However, for certain other chessboards, a knight's tour is possible. The

following diagram illustrates a knight's tour on an ordinary 8x8 chessboard,

thus answering the original knight's tour problem in the affirmative.

80 Graphs and Applications: An Introductory Approach

50 11 24 63 14 37 26 35

23 62 51 12 25 34 15 38

10 49 64 21 40 13 36 27

61 22 9 52 33 28 39 16

48 7 60 1 20 41 54 29

59 4 45 8 53 32 17 42

6 47 2 57 44 19 30 55

3 58 5 46 31 56 43 18

This solution is particularly interesting, because if we write down the order of

the moves, as in the right-hand diagram, we get a magic square, in which the

numbers in each row or column have the same total, 260.

Problem 3.15

Show that there is no knight's tour ona5x5or7x7 chessboard.

Hint Use the result of Problem 3.9(a): a bipartite graph with an odd number of vertices is

not Hamiltonian.

Gray Codes

Engineers sometimes wish to represent the angular position (in multiples of

45°) of a shaft that is rotating continuously. An arrangement of brushes on a

commutator is used to read certain tracks inscribed on the shaft and convert

the angle through which the shaft rotates into a 3-digit binary word (a string

of Os and Is), as follows:

angle segment A B C D E F G H

binary word 000 001 011 010 110 111 101 100

Each 3-digit binary word identifies the angle segment in the position occupied
by A in the diagram above.

As the shaft rotates, the binary word changes by only one digit at a time as we

progress from each word to the next in the sequence. A sequence of binary words

Eulerian and Hamiltonian Graphs 81

with this property is called a Gray code. The advantage of such a code is that it

minimizes ambiguities that might be caused by misalignments of the brushes
that read the tracks.

Gray codes can be found by tracing Hamiltonian cycles on the graph of a
cube. For example, the above code,

000 -» 001 -* Oil -* 010 -> 110 -* 111 -» 101 -» 100 (-*• 000),

and the code

000 -* 100 -* 110 -> 010 011 -> 111 101 001 (-» 000),

both correspond to Hamiltonian cycles in the 3-cube, shown below.

Similarly, to find a Gray code of 4-digit binary words, we trace a

Hamiltonian cycle in the 4-cube. An example of such a code, illustrated below

as a Hamiltonian cycle in the 4-cube, is

0000 -> 0001 -> 0011 -* 0010 -* 0110 -> 0111 -> 0101 -> 0100

lioo -> lioi -> mi mo -> ioio ^ ion iooi ^ 1000 (-> oooo).

1110 1111

Problem 3.16

Find another Gray code of 4-digit binary words.

82 Graphs and Applications: An Introductory Approach

Exercises 3

Eulerian Graphs

3.1 For which values of n, r and s are the following graphs Eulerian? For

which values are they semi-Eulerian?

(a) the complete graph Kn;

(b) the complete bipartite graph Kr s;

(c) the n-cube Qn.

3.2 Write down all the ways in which the following Eulerian graph can be

split into cycles, no two of which have an edge in common.

a

3.3 Theorems 3.2 and 3.4 tell us about the properties of connected graphs

with zero or two vertices of odd degree. What can you say about

connected graphs with exactly one vertex of odd degree?

Hamiltonian Graphs

3.4 For which values of n, r and s are the graphs in Exercise 3.1

Hamiltonian? For which values are they semi-Hamiltonian?

3.5 Draw two graphs each with 10 vertices and 13 edges: one that is

Eulerian but not Hamiltonian and one that is Hamiltonian but not
Eulerian.

3.6 Check whether the conditions of Ore's theorem hold for the following
Hamiltonian graphs:

(a) (b)

Eulerian and Hamiltonian Graphs 83

3.7 (a) Let G be a simple connected graph with n vertices and

y(n - 1)(n - 2) + 2 edges. Use Ore's theorem to prove that G is
Hamiltonian.

(b) Give an example of a non-Hamiltonian simple connected graph
with n vertices and J-(n - l)(n - 2) + 1 edges.

Case Studies

Dominoes

3.8 Find two further ways of arranging:

(a) a full set of dominoes in a ring;

(b) fifteen dominoes from (0-0 to 4-4) in a ring.

Diagram-Tracing Puzzles

3.9 How many continuous pen-strokes are needed to draw each of the

following diagrams without covering any part twice?

Knight's Tour Problem

3.10 Prove that there is no knight's tour on a 3 x 6 chessboard.

Gray Codes

3.11 Write down a Gray code of 5-digit binary words.

Chapter 4

Digraphs

After studying this chapter, you should be able to:

• explain the terms digraph, labelled digraph, unlabelled digraph, vertex, arc, adja¬

cent, incident, multiple arcs, loop, simple digraph, underlying graph and

subdigraph;

• determine whether two given digraphs are isomorphic;

• explain the terms in-degree, out-degree, in-degree sequence and out-degree

sequence;

• state and use the handshaking dilemma;

• explain the terms walk, trail, path, closed walk, closed trail, cycle, connected,

disconnected and strongly connected in the context of digraphs;

• explain the terms Eulerian digraph and Eulerian trail, and state a necessary and

sufficient condition fora connected digraph to be Eulerian;

• explain the terms Hamiltonian digraph and Hamiltonian cycle;

• describe the use of digraphs in ecology, social networks, the rotating drum

problem, and ranking in tournaments.

In this chapter we discuss digraphs and their properties. Our treatment of the
subject is similar to that of Chapters 2 and 3 for graphs, except that we need to
take account of the directions of the arcs.

4.1 Digraphs and Subdigraphs

We start by recalling the definition of a digraph.

84

Digraphs 85

Definitions

—-ph consists of a set of elements called vertices and a set of elements called arcs. Each

arc joins two vertices in a specified direction.

For example, the digraph shown below has four vertices {u, v, w, x} and six

arcs {1, 2, 3,4,5, 6}. Arc 1 joins x to u, arc 2 joins u to w, arcs 3 and 4 join w to v,

arc 5 joins x to w, and arc 6 joins the vertex x to itself.

arc

We often denote an arc by specifying its two vertices in order; for example,

arc 1 is denoted by xu, arcs 3 and 4 are denoted by ivv, and arc 6 is denoted by

xx. Note that xu is not the same as ux.

The above digraph contains more than one arc joining w to v, and an arc

joining the vertex x to itself. The following terminology is useful when

discussing such digraphs.

Definitions

In a digraph, two or more arcs joining the same pair of vertices in the same direction are

multiple arcs. An arc joining a vertex to itself is a loop.

A digraph with no multiple arcs or loops is a simple digraph.

For example, digraph (a) below has multiple arcs and digraph (b) has a loop,

so neither is a simple digraph. Digraph (c) has no multiple arcs or loops, and is

therefore a simple digraph.

86 Graphs and Applications: An Introductory Approach

Problem 4.1

Write down the vertices and arcs of each of the following digraphs. Are these digraphs simple

digraphs?

tb

0

i 1 / y' w'
i

A t c 3k >- />

(a) (b)

Problem 4.2

Draw the digraphs whose vertices and arcs are as follows. Are these digraphs simple

digraphs?

(a) vertices: {u, v, w, x} arcs: {vw, wu, wv, wx, xu]

(b) vertices: {1,2,3,4,5,6,7,8} arcs: {12,22,23,34,35,67,68,78}

Adjacency and Incidence

The digraph analogues of adjacency and incidence are similar to the corre¬

sponding definitions for graphs, except that we take account of the directions

of the arcs.

Definitions

V 1U
•-*-•

e

The vertices v and w of a digraph are adjacent vertices if they are joined (in either direction)

by an arc e. An arc e that joins v to tv is incident from v and incident to w, v is incident to e,
and tv is incident from e.

Digraphs 87

For example, in the digraph below, the vertices u and x are adjacent, vertex

w is incident from arcs 2 and 5 and incident to arcs 3 and 4, and arc 6 is incident
to (and from) the vertex x.

U V

6

x 5 w

Problem 4.3

Which of the following statements hold forthe digraph on the right? 2 vft3
(a) vertices vand ware adjacent; A
(b) vertices v and x are adjacent; v ' 4L T5
(c) vertex u is incident to arc 2; \
(d) arc 5 is incident from vertex v. xi >->-Vw;

6

Isomorphism

It follows from the definition that a digraph is completely determined when

we know its vertices and arcs, and that two digraphs are the same if they have

the same vertices and arcs. Once we know the vertices and arcs, we can draw

the digraph and, in principle, any picture we draw is as good as any other; the

actual way in which the vertices and arcs are drawn is irrelevant - although

some pictures are easier to use than others!

We extend the concept of isomorphism to digraphs, as follows.

Definition

Two digraphs Cand D are isomorphic if D can be obtained by relabelling the vertices of C-

that is, if there is a one-one correspondence between the vertices of C and those of D, such

that the arcs joining each pair of vertices in C agree in both number and direction with the
arcs joining the corresponding pair of vertices in D.

88 Graphs and Applications: An Introductory Approach

For example, the digraphs C and D represented by the diagrams

X

u

C D

are not the same, but they are isomorphic, since we can relabel the vertices in

the digraph C to get the digraph D, using the following one-one

correspondence:

C ^ D

u <-> 2

v <-> 3
w 4

X 4-> 1

Note that arcs in C correspond to arcs in D - for example:

the two arcs from u to v in C correspond to the two arcs from 2 to 3 in D;

the arcs wx and xw in C correspond to the arcs 41 and 14 in D;

the loop ww in C corresponds to the loop 44 in D.

Problem 4.4

By suitably relabelling the vertices, show that the following digraphs are isomorphic:

Digraphs 89

Problem 4.5

Are the following two digraphs isomorphic? If so, find a suitable one-one correspondence

between the vertices of the first and those of the second; if not, explain why no such one-one
correspondence exists.

Sometimes it is unnecessary to have labels on the digraphs. In such cases,

we omit the labels, and refer to the resulting object as an unlabelled digraph. For
example, the unlabelled digraph

corresponds to any of the following isomorphic digraphs:

We say that two unlabelled digraphs are isomorphic if labels can be attached

to their vertices so that they become the same digraph.

90 Graphs and Applications: An Introductory Approach

Subdigraphs and Underlying Graphs

It is convenient to define a concept analogous to that of a subgraph of a graph.

Definition

A subdigraph of a digraph D is a digraph all of whose vertices are vertices of D and all of

whose arcs are arcs of D.

Remark Note that D is a subdigraph of itself.

For example, the following digraphs are all subdigraphs of the digraph D

on the left, with vertices {u, v, w, x} and arcs {1, 2, 3, 4, 5, 6}.

Digraphs 91

Problem 4.7

Which of the following digraphs are subdigraphs of the digraph D below?

The idea of a subdigraph can be extended to unlabelled digraphs. For

example, the following digraphs are all subdigraphs of the unlabelled digraph

C on the left:

92 Graphs and Applications: An Introductory Approach

It is also convenient to introduce the idea of the underlying graph of a

digraph.

Definition

The underlying graph of a digraph D is the graph obtained by replacing each arc of D by the

corresponding undirected edge.

To obtain the underlying graph, we simply remove the arrows from the

arcs; for example:

U V

4.2 Vertex Degrees

We now give analogues of the degree of a vertex in a graph.

Definitions

In a digraph, the out-degree of a vertex v is the number of arcs incident from v, and is

denoted by outdeg v; the in-degree of v is the number of arcs incident to v, and is denoted

by indeg v.
_

Remark Each loop contributes 1 to both the in-degree and the out-degree of

the corresponding vertex.

For example, the digraph below has the following out-degrees and
in-degrees:

Digraphs 93

v zv

outdeg u = 1

indeg u — 0
outdeg v — 3 outdeg w = 2

indeg v = 1 indeg w = 1

outdeg x = 0 outdeg y = 2

indeg x = 0 indeg y = 6
outdeg z = 2

indeg z = 2

There are also analogues of the degree sequence of a graph, corresponding

to the out-degree and in-degree of a vertex.

Definitions
The out-degree sequence of a digraph D is the sequence obtained by listing the

out-degrees of D in increasing order, with repeats as necessary.

The in-degree sequence of D is defined analogously.

For example, the above digraph has out-degree sequence (0,1,2,2,2,3) and

in-degree sequence (0, 0,1,1, 2, 6).

94 Graphs and Applications: An Introductory Approach

Problem 4.10

For each of the digraphs in Problem 4.9, write down:

the number of arcs;

the sum of the out-degrees of all the vertices;

the sum of the in-degrees of all the vertices.

What is the connection between your answers? Can you explain why this connection arises?

Handshaking Dilemma

In the solution to Problem 4.10, you should have noticed that the sum of the

out-degrees and the sum of the in-degrees of each digraph are both equal to

the number of arcs. A corresponding result holds for any digraph; we call it
the handshaking dilemma).

Theorem 4.1: Handshaking Dilemma

In any digraph, the sum of all the out-degrees and the sum of all the in-degrees are both

equal to the number of arcs.

Proof In any digraph, each arc has two ends, so it contributes exactly 1 to the

sum of the out-degrees and exactly 1 to the sum of the in-degrees. The result
follows immediately. g

Problem 4.11

(a) Use the handshaking dilemma to prove that, in any digraph, if the number of vertices

with odd out-degree is odd, then the number of vertices with odd in-degree is odd.

(b) Verify that the result of part (a) holds for the digraph in Problem 4.12.

4.3 Paths and Cycles

Just as you may be able to get from one vertex of a graph to another by tracing

the edges of a walk, trail or path, so you may be able to get from one vertex of a

Digraphs 95

digraph to another by tracing the arcs of a 'directed' walk, trail or path. This

means that you have to follow the directions of the arcs as you go, just as if you

were driving around a one-way street system in a town. We make this idea

precise, as follows.

Definitions

A walk of length k in a digraph is a succession of k arcs of the form uv, vw, wx, ...,yz.

This walk is denoted by uvwx... yz, and is referred to as a walk from u to z.

A trail is a walk in which all the arcs, but not necessarily all the vertices, are different.

A path is a walk in which all the arcs and all the vertices are different.

In the following diagram, the walk vwxyvwyzzu is a walk of length 9 from v

to u, which includes the arc vw twice and the vertices v, w, y and z twice. The

walk uvwyvz is a trail which is not a path, since the vertex v occurs twice,

whereas the walk vwxyz has no repeated vertices and is therefore a path.

V W

The terms closed walk, closed trail and cycle also apply to digraphs.

Definitions

A closed walk in a digraph is a succession of arcs of the form

UV'VW,wx,...,yz,zu.

A closed trail is a closed walk in which all the arcs are different.

A cycle is a closed trail in which all the intermediate vertices are different.

In the digraph above, the closed walk uvwyvzu is a closed trail which is not a

cycle (since the vertex v occurs twice), whereas the closed trails zz, wxw, vwxyv

and uvwxyzu are all cycles. In describing closed walks, we can allow any vertex

96 Graphs and Applications: An Introductory Approach

to be the starting vertex. For example, the triangle vwyv can also be written as

wyvw or yvwy.

As with graphs, we can use the concept of a path to tell us whether or not a

digraph is connected. Recall that a graph is connected if it is 'in one piece', and

this means that there is a path between each pair of vertices. For digraphs these

two ideas are not the same, and this leads to two different definitions of the word

connected for digraphs.

Definitions

A digraph is connected if its underlying graph is a connected graph, and is disconnected
otherwise.

A digraph is strongly connected if there is a path between each pair of vertices.

These three types of digraph are illustrated below:

w-«--m
x w

(c)

Digraphs 97

Digraph (a) is disconnected, since its underlying graph is a disconnected

graph. Digraph (b) is connected but is not strongly connected since, for

example, there is no path from z to y. Digraph (c) is strongly connected, since

there are paths joining all pairs of vertices.

Alternatively, you can think of driving around a one-way street system in a

town. If the town is strongly connected, then you can drive from any part of

the town to any other, following the directions of the one-way streets as you

go; if the town is merely connected, then you can still drive from any part of

the town to any other, but you may have to ignore the directions of the

one-way streets!

4.4 Eulerian and Hamiltonian Digraphs

In Chapter 3, we discussed the problem of finding a route that includes every

edge or every vertex of a graph exactly once, and it is natural to consider the

corresponding problem for digraphs. This leads to the following definitions.

Definitions
A connected digraph is Eulerian if it contains a closed trail that includes every arc; such a trail

is an Eulerian trail.
A connected digraph is Hamiltonian if it contains a cycle that includes every vertex; such a

cycle is a Hamiltonian cycle.

98 Graphs and Applications: An Introductory Approach

For example, consider the following four digraphs:

be b c b c

digraph (a) is Eulerian - an Eulerian trail is abcdefbgcegfa

and Hamiltonian - a Hamiltonian cycle is a b c d e g f a;

digraph (b) is Eulerian - an Eulerian trail is b c gfe g b

it is not Hamiltonian;

digraph (c) is Hamiltonian - a Hamiltonian cycle is b c de gfb

it is not Eulerian;

digraph (d) is neither Eulerian nor Hamiltonian.

Much of the earlier discussion of Eulerian and Hamiltonian graphs can be

adapted to Eulerian and Hamiltonian digraphs. In particular, there is an

analogue of Theorem 3.2. We ask you to discover this analogue in the
following problem.

Digraphs 99

Problem 4.15

(a) Guess a necessary and sufficient condition for a digraph to be Eulerian, involving the

in-degree and out-degree of each vertex.

(b) Use the condition obtained in part (a) to check which of the digraphs in Problem 4.14
are Eulerian.

We now state the analogues of Theorem 3.2 and Theorem 3.3.

Theorem 4.2

A connected digraph is Eulerian if and only if, for each vertex, the out-degree equals the

in-degree.

Theorem 4.3

An Eulerian digraph can be split into cycles, no two of which have an arc in common.

The proofs of these theorems are similar to those of Theorems 3.2 and 3.3. In

the sufficiency part of the proof of Theorem 4.2, the basic idea is to show that

the digraph contains a (directed) cycle, and then to build up the required

Eulerian trail from cycles step by step, as in the proof of Theorem 3.2. We omit

the details.

There is an analogue of Ore's theorem for Hamiltonian graphs, but it is

harder to state and prove than the theorem for graphs, so we omit it.

4.5 Case Studies

We conclude this chapter with four case studies - ecology, social networks,

the rotating drum problem (involving Eulerian digraphs) and tournaments

(involving Hamiltonian digraphs).

Ecology

Snakes eat frogs, and birds eat spiders; birds and spiders both eat insects; frogs

eat snails, spiders and insects. Given any such tangle of interrelationships

between predator and prey, how do ecologists sort out the overall predatory

behaviour of the various species they are investigating?

100 Graphs and Applications: An Introductory Approach

When studying relationships between animals and plants and their envi¬

ronment, ecologists sometimes use a digraph known as a food web. In such a

digraph, the vertices correspond to the species under investigation, and there

is an arc from a species A to a species B whenever A preys on B.

As an example of a food web, consider the following digraph, which repre¬

sents the predatory habits of organisms in a Canadian willow forest.

(meadow willow ()-«—((leaf beetle -►-((pussywillow j

((bronze grackle ^ ((yellow warbler ()

C sawfly J)-■*-((spider ()

((snail () ((garter snake

In untangling such food webs, ecologists introduce a graph that tells them

which species compete for food. This graph is known as the competition

graph or niche overlap graph, and its edges join pairs of vertices representing

species that share a common prey. For example, in the above food web the

bronze grackle and the yellow warbler both eat spiders, so the corresponding

vertices are adjacent in the competition graph:

C leaf beetle ()

sawfly flea beetle 3

(bronze grackle ()—((yellow warbler

((spider ()

((pussywillow j
((meadow willow 'f _^roS

((sandbat willow ()

((garter snake J
((snail 'f

Such a representation has ecological significance in that adjacent vertices

tend to correspond to species that react in the same way to particular environ¬

mental factors such as temperature, humidity or altitude. In the above

example, the beetles and the sawfly have similar predatory behaviour, as do
the birds, the spider and the frog.

Digraphs 101

Social Networks

In Section 2.5 we described the use of signed graphs to represent symmetric

relationships (x likes y if and only if y likes x). When some relationships are not

symmetric (x likes y, but y dislikes x), we use a signed digraph. This is a

digraph with either + or - associated with each arc, indicating a positive rela¬

tionship (likes, supports, threatens, etc.) or a negative one (dislikes, is junior

to, is afraid of, etc.). For example, in the signed digraph below, John and Jack

like each other, Mary likes Jill but Jill dislikes Mary, John dislikes Jill but we

have no information about Jill's feelings for John, and so on.

Jack + Jill

Note that a negative arc from x to y (Jill dislikes Mary) is not the same as a

positive arc from y to x (Mary likes Jill).

Signed digraphs also have other uses. Many problems of modern society

involve complex systems made up of a number of variables that constantly

change and interact. Often we wish to predict the future development of the

system when the amount of available information is minimal. For such situa¬

tions, signed digraphs have proved to be convenient, and their use has led to

precise and valid conclusions. In particular, they have successfully been

applied to problems of waste disposal, energy planning, research funding,

environmental contamination, allocation of medical resources, and so on.

Although our discussion here is necessarily simplified, the ideas are also

revelant to more complex examples.

102 Graphs and Applications: An Introductory Approach

The signed digraph below gives a simplified representation of the conse¬

quences of changes in energy use. The arc pu is marked positive, since an

increase in population in a given area is likely to increase the amount of

energy7 used; the arc ur is marked negative, since the more energy is used, the

less it costs per unit. There is no arc from; to r, since an increase in the number

of available jobs has no direct effect on the unit cost of electricity.

r
c = energy capacity

/ = number of factories

j = number of jobs

p = size of population

(] = quality of environment

r = electrical rate (per kilowatt hour)

u = amount of energy used

When following walks through such a signed digraph, we need to be

careful. For example, the negative sign on the arc uq tells us that an increase in

the amount of energy used leads to a decrease in the quality of environment,

and the positive sign on the arc qp tells us that an increase in the quality of envi¬

ronment leads to an increase in the population. However, if we follow these

arcs consecutively, from u to p, the first tells us that an increase in the amount of

energy use leads to a decrease in the quality of environment, as before; but we

now need to interpret the second arc differently - the decrease in the quality of

environment together with the positive sign on the arc qp must be interpreted

as leading to a decrease in the population. Similarly, following the negative arc

cr and then the negative arc ru must be interpreted as an increase in the energy

capacity leading to a decrease in the electrical rate, leading to an increase in the
amount of electricity used.

Of particular interest in this digraph are the cycles. An increase in popula¬

tion (p) results in an increase in the amount of energy used (u), which in turn

produces a decrease in the quality of environment (q), which then tends to

decrease the population (p). A cycle of this kind, in which an increase in any vari¬

able (p) ultimately gives rise to a decrease in the same variable, is called a nega¬

tive feedback cycle; thus the cycle puqp is a negative feedback cycle. On the

other hand, an increase in the energy capacity (c) tends to lead to an increase in

the number of factories (/), leading to an increase in the amount of energy used

(u), thereby increasing the energy capacity still further (c). A cycle of this kind,

in which an increase in any variable (c) ultimately gives rise to a further increase

in the same variable, is called a positive feedback cycle; thus the cycle cfuc is a
positive feedback cycle.

Digraphs 103

It is easy to see whether a given cycle is a positive or a negative feedback
cycle, since

every positive feedback cycle has an even number of negative arcs,

whereas

every negative feedback cycle has an odd number of negative arcs.

In a positive feedback cycle, whenever an increase or decrease is counter¬

acted by a negative arc, the counteraction is itself counteracted by the next

negative arc. In a negative feedback cycle, one counteraction is never
counteracted.

By counting the negative arcs in each cycle and using the above criterion, we

see that the cycle uqpu is a negative feedback cycle, whereas the cycles cruc, cfuc,

rur and cfjpuc are all positive feedback cycles. The existence of several positive

feedback cycles containing the vertex c explains why the electrical energy

demand system is so unstable, in the sense that initial increases in energy

capacity lead eventually to further increases of the same kind. Although this

had been observed empirically by environmentalists, the signed digraph repre¬

sentation tells us, from a structural point of view, why it occurs.

Even with such a simple model as this, we can make some remarkably accu¬

rate predictions. Some of the variables (such as 'quality of environment') may

be difficult or impossible to measure, but this makes little difference to the

conclusions we can draw.

Problem 4,17

The following signed digraph is adapted from a study by the Organization for Economic

Co-operation and Development into the support that governments should provide for the

funding of research projects in science and technology.

a = number of available jobs

b = number of poorly trained researchers

c = number of well trained researchers

d = amount of 'bad science' produced

e = amount of 'good science' produced

/= public opinion in favour of science

g = amount of available budget

h = pressure to increase budget

i = external or internal threats to society
that call for science to alleviate them

List as many positive and negative feedback cycles as you can.

a + b

104 Graphs and Applications: An Introductory Approach

Rotating Drum Problem

A problem that has arisen in telecommunications (and also in cryptography

and the design of washing machines) is the rotating drum problem or tele¬

printer's problem.

The surface of a rotating drum is divided into sixteen parts, as shown on the

left; the shaded areas represent conducting materials and the unshaded areas

represent non-conducting materials. We represent the position of the drum

by four binary digits a, b, c and d, as indicated on the right. Depending on the

position of the drum, the terminals represented by a, b, c and d are either

earthed or insulated from the earth - for example, in the above diagram, the

earthed terminals are a, c and d. The earthed terminals emit a signal repre¬

sented by 1, and the insulated terminals emit a signal represented by 0.

In order that each of the sixteen positions of the drum may be represented

uniquely by a four-digit binary word abed, the conducting and non-conducting

materials must be assigned to the sixteen positions in such a way that all

sixteen possible four-digit binary words abed occur. Can this be done? If so,

how can it be arranged?

A solution is given in the right-hand diagram above. The position shown

corresponds to the four-digit binary word 1011. Rotating the drum

anticlockwise successively gives the binary words

0110,1100,1001,0010, 0100,1000, 0000, 0001,
ooii, oin, mi, mo, noi, ioio, oioi, ion.

These four-digit binary words are all different, and represent all sixteen posi¬

tions of the drum.

In order to obtain this and other solutions, we construct a digraph with

eight vertices, corresponding to the three-digit binary words

000, 001, 010, 011,100,101,110, 111,

and with arcs from each vertex abc to the vertices be0 and bcl.

Digraphs 105

This digraph is clearly Eulerian, since the out-degree and in-degree of each

vertex are both equal to 2. Any Eulerian trail gives a solution to the rotating

drum problem. For example, if we take the Eulerian trail

101 -» Oil -* 110 -* 100 -* 001 -* 010 -* 100 -> 000 ->

000 -» 001 -> 011 -> 111 -> 111 110 - 101 -* 010 -*> 101,

then we can 'compress' consecutive terms cumulatively (for example, the first

three terms 101 -* Oil -* 110 compress to 10110) to give the sequence

1011001000011110.

This gives the following circular arrangement of positions:

Using a similar argument, we can answer the corresponding question for

rotating drums with 32, 64,... divisions.

Problem 4.18

Find a different Eulerian trail in the above digraph, and hence construct a different solution to

the rotating drum problem for sixteen divisions.

106 Graphs and Applications: An Introductory Approach

Ranking in Tournaments

We conclude this chapter with an application of Hamiltonian digraphs that

arises in statistics.
A tournament is a digraph whose underlying graph is a complete graph.

For example, the following diagram shows tournaments with 3 and 4 vertices:

(a) (b) (c) (d)

Such a digraph can be used to record the winners in a round-robin tourna¬

ment in which each player plays each of the others. For example:

in tournament (a), a beats both b and c, and b beats c;

in tournament (d), c beats a, d and b; b beats a and d; and a beats d.

Tournaments also arise in other contexts, such as in the method of paired

comparisons, in which we compare a number of commodities by testing them

in pairs. For example, consider the following tournament, used for comparing

six types of dog food. These delicacies were tested in pairs on a number of

dogs, and the following preferences were recorded.

The problem now arises as to how we rank the various commodities in

order of preference. For some tournaments there is no difficulty, since we can

order them in such a way that each vertex 'beats' the others beneath it; for

example, in tournaments (a) and (d) we can rank the participants in this way,

as shown below.

Digraphs 107

a c

d
(a) (d)

Unfortunately, in many practical examples a consistent ranking is impos¬

sible; for example, in tournament (b), a beats b, b beats c, and c beats a, so it is

not possible to rank these three players directly. There is a similar inconsis¬

tency in the dog-food example, where Wooffo was preferred to Doggo,

Doggo was preferred to Joocy-chunks, and Joocy-chunks was preferred to

Wooffo. For such tournaments we must find alternative methods for ranking
the participants or commodities.

In such circumstances, no method is entirely satisfactory, but a method that

has been much used in practice is to look for paths containing each vertex -

that is, semi-Hamiltonian paths. It can be proved that every tournament has at

least one path of this kind, and each such path leads to a ranking.

For example, in tournament (c), possible rankings include a, b, d, c and b, c, a,

d, whereas for the dog-food example, possible rankings include:

Wooffo, Doggo, Joocy-chunks, Waggo, Slurp, Bitey-bits

and

Bitey-bits, Joocy-chunks, Wooffo, Doggo, Waggo, Slurp.

Once we have listed all the possible rankings of this kind, we then take

other considerations into account in deciding which ranking is best for our

purposes.

108 Graphs and Applications: An Introductory Approach

Exercises 4

Digraphs and Subdigraphs

4.1 Consider the digraph D shown on the right. Which of

the following statements hold for D?

(a) vertices u and x are adjacent;

(b) arc 2 is incident to vertex w;

(c) vertex x is incident from arc 3;

(d) vertex x and arc 7 form a subdigraph of D.

4.2 Of the following four digraphs, which two are the same, which one is

isomorphic to these two, and which is not isomorphic to any of the

others?

4.3 Draw two non-isomorphic non-simple digraphs, each with 4 vertices

and 7 arcs. Explain why your digraphs are not isomorphic.

Vertex Degrees

4.4 Write down the out-degree sequence and the in-degree sequence for

each of the digraphs in Exercise 4.2.

4.5 (a) If two digraphs have the same out-degree sequence and the same

in-degree sequence, must they be isomorphic?

(b) If two digraphs are isomorphic, must they have the same

out-degree sequence and the same in-degree sequence ?

4.6 Draw a digraph with 4 vertices and 7 arcs such that the number of

vertices with odd out-degree is odd and the number of vertices with

odd in-degree is odd.

Digraphs
109

Paths and Cycles

4.7 For the digraph shown on the right, write
possible):

(a) a walk of length 7 from u to w;

(b) cycles of lengths 1, 2, 3 and 4;

(c) a path of maximum length.

4.8 Draw four connected digraphs, Dh D2, D3 and D4, each with 5 vertices
and 8 arcs, satisfying the following conditions:

Dj is a simple digraph;

D2 is a non-simple digraph with no loops;

D3 is a digraph with both loops and multiple arcs;
D4 is strongly connected.

4.9 Classify each of the following digraphs as disconnected, connected but
not strongly connected, or strongly connected:

CK$
(a) (b) (c)

4.10 A graph is orientable if a direction can be assigned to each edge in
such a way that the resulting digraph is strongly connected. Show that
K5 and the Petersen graph are orientable, and find a graph that is not.

k5 Petersen

110 Graphs and Applications: An Introductory Approach

Eulerian and Hamiltonian Digraphs

4.11 Are the following digraphs Eulerian? Hamiltonian?

(a) (b)

4.12 In the digraph on the right, find:

(a) all cycles of lengths 3,4 and 5;

(b) an Eulerian trail;

(c) a Hamiltonian cycle.

Case Studies

Ecology

4.13 A food web involves ten species, 1,..., 10, with the following

behaviour:

species 1 eats species 3, 7,10;

species 2 eats species 7;

species 3 eats species 7;

species 4 eats species 2, 5, 6, 8,10;

species 5 eats species 6;

species 6 eats species 7;

species 8 eats species 7;

species 9 eats species 2, 6.

(a) Draw the corresponding food web and competition graph.

(b) Draw the food web and competition graph that result if species 7

dies out.

Digraphs 111

Social Networks

4.14 The following signed digraph was used in a transport study in

Vancouver to determine whether a large increase in the funding of

public transport could make city travelling easier:

c

a = cost of an automobile

b = amount of automobile use

c = convenience of automobile use

d = freedom of choice in travel time

e = speed

Determine whether each of the following cycles is a positive or a nega¬
tive feedback cycle:

(a) abca; (b) beacb; (c) adea.

Rotating Drum Problem

4.15 Solve the rotating drum problem for a drum with 32 divisions.

Ranking in Tournaments

4.16 Draw all the tournaments with four vertices.

In which of them can the participants be ranked in just one way?

4.17 How many rankings are possible in the following tournament?

U

Chapter 5

Matrix Representations

After studying this chapter, you should be able to:

• write down the adjacency matrix and incidence matrix of a given labelled graph or

digraph, and draw the graph or digraph with a given adjacency or incidence

matrix;

• use an adjacency matrix to determine the number of walks between two given

vertices in a graph or digraph;

• use an adjacency matrix to determine whether a given graph/digraph is

connected/strongly connected;

• describe the connections between adjacency matrices and problems in archae¬

ology and genetics;

• describe the connections between adjacency matrices and Markov chains.
■

Up to now, you have seen two ways of representing a graph or digraph - as a

diagram of points joined by lines, and as a set of vertices and a set of edges or arcs.

The pictorial representation is useful in many situations, especially when we

wish to examine the structure of the graph or digraph as a whole, but its value

diminishes as soon as we need to describe large or complicated graphs and

digraphs. For example, if we need to store a large graph in a computer, then a

pictorial representation is unsuitable and some other representation is necessary.

One possibility is to store the set of vertices and the set of edges or arcs. This

method is often used, especially when the graph or digraph is 'sparse', with

many vertices but relatively few edges or arcs. Another method is to take each

vertex in turn and list those vertices adjacent to it; by joining each vertex to its

neighbours, we can reconstruct the graph or digraph. Yet another method is

to give a table indicating which pairs of vertices are adjacent, or indicating

which vertices are incident to which edges or arcs.

112

Matrix Representations 113

Each of these methods has its advantages, but the last one is particularly

useful. Using this method, we represent each graph or digraph by a rectan¬

gular array of numbers, called a matrix. Such matrices lend themselves to

computational techniques, and are often the most natural way of formulating

a problem. There are various types of matrix that we can use to specify a given

graph or digraph. Here we describe the two simplest types - the adjacency
matrix and the incidence matrix.

5.1 Adjacency Matrices

Consider the following example:

col col col col
1 2 3 4

i ; 1

rowl -*■ 0 i 0 1
' L

row 2 -> 1 i 1 2

row 3 -> 0 i 0 1

-< '3
row4 -* 1 2 1 0

On the left we have a graph with four labelled vertices, and on the right we

have a matrix with four rows and four columns - that is, a 4 x 4 matrix. The

numbers appearing in the matrix refer to the number of edges joining the
corresponding vertices in the graph. For example,

vertices 1 and 2 are joined by 1 edge,

so 1 appears in row 1 column 2, and in row 2 column 1;

vertices 2 and 4 are joined by 2 edges,

so 2 appears in row 2 column 4, and in row 4 column 2;

vertices 1 and 3 are joined by 0 edges,

so 0 appears in row 1 column 3, and in row 3 column 1;

vertex 2 is joined to itself by 1 edge,

so 1 appears in row 2 column 2.

We generalize this idea, as follows.

■■■ • ;. ; . v :
Let G be a graph with n vertices labelled 1,2,3,..., n.
The adjacency matrix A(G) of G is then x n matrix in which the entry in row/and column j\s
the number of edges joining the vertices / and j.

114 Graphs and Applications: An Introductory Approach

Problem 5.2

Draw the graph represented by each of the following adjacency matrices:

1 2 3 4 5 1 2 3 4 5 6

1 0 2 0 1 1 1 0 1 1 1 0 0

2 2 0 0 1 1 2 1 0 0 1 0 0

3 0 0 0 0 0 3 1 0 0 1 0 0

4 1 1 0 0 2 4 1 1 1 0 0 0

5 1 1 0 2 0 5 0 0 0 0 0 1

(a)
6 0 0 0 0 1 0

(b)

The adjacency matrix of a graph is symmetrical about the main diagonal

(top-left to bottom-right). Also, for a graph without loops, each entry on the

main diagonal is 0, and the sum of the entries in any row or column is the

degree of the vertex corresponding to that row or column.

The representation of a graph by an adjacency matrix has a digraph

analogue that is frequently used when storing large digraphs in a computer.

When defining the adjacency matrix of a digraph, we have to take into
account the directions of the arcs.

Matrix Representations

Consider the following example:

col
1

col
2

col
3

col
4

i 1 1 1

rowl -* 0 1 0 1 1 L

row2 -* 0 1 0 2

r / a/ / i i
row 3 -> 0 1 0 0

>- —(>3
row4 -* 0 0 1 0

115

On the left we have a digraph with four labelled vertices, and on the right we

have a matrix with four rows and four columns. The numbers appearing in the

matrix refer to the number of arcs joining the corresponding vertices in the
digraph. For example,

vertices 1 and 2 are joined (in that order) by 1 arc,

so 1 appears in row 1 column 2;

vertices 2 and 4 are joined (in that order) by 2 arcs,

so 2 appears in row 2 column 4;

vertices 4 and 1 are joined (in that order) by 0 arcs,

so 0 appears in row 4 column 1;

vertex 2 is joined to itself by 1 arc,

so 1 appears in row 2 column 2.

We generalize this idea, as follows.

Definition

Let D be a digraph with n vertices labelled 1,2,3,n.
The adjacency matrix A(0) of D is the n x n matrix in which the entry in row /'and column j is

the number of arcs from vertex / to vertex j.

116 Graphs and Applications: An Introductory Approach

Problem 5.4

Draw the digraph represented by each of the following adjacency matrices:

1 2 3 4 5 1 2 3 4 5

1 0 1 0 0 1 1 0 0 0 0 1

2 1 0 0 1 0 2 0 0 0 0 1

3 0 0 0 0 0 3 1 0 0 0 1

4 1 0 0 0 0 4 1 1 0 0 0

5 0 1 0 2 0 5 1 0 0 1 0

(a) (b)

The adjacency matrix of a digraph is not usually symmetrical about the

main diagonal. Also, if the digraph has no loops, then each entry on the main

diagonal is 0, the sum of the entries in any row is the out-degree of the vertex

corresponding to that row, and the sum of the numbers in any column is the

in-degree of the vertex corresponding to that column.

Matrix Representations 117

5.2 Walks in Graphs and Digraphs

We can establish the existence of walks in a graph or digraph by using the

adjacency matrix. In the following, we restrict our attention to digraphs:

similar results can be derived for graphs.

Consider the following digraph and table:

a b c d

a 0 0 0 1

b 1 0 0 0

c 0 1 0 0

d 0 2 1 0

The table shows the number of walks of length 1 between each pair of vertices.

For example.

the number of walks of length 1 from a to c is 0,

so 0 appears in row 1 column 3;

the number of walks of length 1 from b to a is 1,

so 1 appears in row 2 column 1;

the number of walks of length 1 from d to b is 2,

so 2 appears in row 4 column 2.

Now a walk of length 1 is an arc, so the table above is the adjacency matrix A of

the digraph:

"0 0 0 1'

10 0 0

0 10 0

0 2 10

adjacency matrix A

Next, we consider walks of lengths 2 and 3. For example, there are two

different walks of length 2 from a to b, because there is one arc from a to d and

two arcs from d to b. Similarly, there are two different walks of length 3 from d

to d, since there are two arcs from d to b, and one walk of length 2 from b to d,

namely, bad.

118
Graphs and Applications: An Introductory Approach

Problem 5.5

(a) Complete the following tables for the numbers of walks of lengths 2 and 3 in the above

digraph.

U abed abed
£

< a 2 a

'//> b 1 b

c c

i ' d d 2

numbers of walks of length 2 numbers of walks of length 3

(b) Find the matrix products A2 and A3, where A is the adjacency matrix of the above

digraph.

(0 Comment on your results.

The solution to the above problem illustrates the following theorem; the

proof is given at the end of this section.

Theorem 5.1

Let D be a digraph with n vertices labelled 1,2,n, let A be its adjacency matrix with respect

to this listing of the vertices, and let k be any positive integer.

Then the number of walks of length k from vertex / to vertex) is equal to the entry in row /and

column y of the matrix A* (the Ath power of the matrix A).

Problem 5.6

Consider the following digraph:

a

Write down the adjacency matrix A, calculate the matrices A2, A3 and A4, and hence find the

numbers of walks of lengths 1,2,3 and 4 from b to d. Are there walks of lengths 1,2,3 or 4

from d to bl

Matrix Representations 119

Theorem 5.1 also gives a method of determining whether a digraph is

strongly connected, by working directly from its adjacency matrix.

Recall that a digraph is strongly connected if there is a path from vertex i to

vertex j, for each pair of distinct vertices i and j, and that a path is a walk in

which all the vertices are different. For example, in the digraph considered

earlier, there are four vertices, so a path has length 1,2 or 3. We have seen that

the numbers of walks (including the paths) of lengths 1,2 and 3 between pairs

of distinct vertices are given by the non-diagonal entries in the matrices

'0 0 0 r '0 2 1 0'

1
to

1 0 O'

1 0 0 0
, A2 =

0 0 0 1
, a3 =

0 2 1 0

0 1 0 0 1 0 0 0 0 0 0 1

1 O 2 1 0 2 1 0 0 1 0 0 2

By examining these matrices, we can see that each pair of distinct vertices is

indeed joined by at least one path of length 1,2 or 3, so the digraph is strongly

connected. However, we can check this more easily if we consider the matrix

B obtained by adding the three matrices together:

B = A +A2 +A3

'2 3 11'

12 11

110 1

3 3 12

Let by denote the entry in row i and column j in the matrix B. Then each

entry by is the total number of walks of lengths 1, 2 and 3 from vertex i to

vertex j. Since all the non-diagonal entries are positive, each pair of distinct

vertices is connected by a path, so the digraph is strongly connected.

We generalize this result in the following theorem; the proof is given at the

end of this section.

Theorem 5.2

Let D be a digraph with n vertices labelled 1,2,..., n, let A be its adjacency matrix with respect

to this listing of the vertices, and let B be the matrix

B = A +A2 + ...+ An_1.

Then D is strongly connected if and only if each non-diagonal entry in B is positive - that is,

bij > 0 whenever / * j.

120 Graphs and Applications: An Introductory Approach

Problem 5.7

Find B for the digraph in Problem 5.6, and hence determine whether the digraph is strongly

connected.

Problem 5.8

Determine whether the digraph with the following adjacency matrix is strongly connected:

0 0 0 1 0

10 10 0

0 0 0 1 0

0 0 0 0 1

0 10 0 0

Proofs of Theorems

We now supply the proofs of Theorems 5.1 and 5.2.

Theorem 5.1

Let D be a digraph with n vertices labelled 1,2,..., n, let A be its adjacency matrix with respect

to this listing of the vertices, and let k be any positive integer.

Then the number of walks of length k from vertex/to vertex; is equal to the entry in row / and

column y of the matrix A* (the kth power of the matrix A).

Proof The proof is by mathematical induction on k, the length of the walk.

Step 1 The statement is true when k = 1, since the number of walks of length

1 from vertex i to vertex; is the number of arcs from vertex i to vertex;, and this

is equal to a,;, the entry in row i and column; of the adjacency matrix A.

Step 2 We assume that k > 1, and that the statement is true for all positive

integers less than k. We wish to prove that the statement is true for the positive

integer k.

Matrix Representations 121

Consider any walk of length k from vertex i to vertex;. Such a walk consists

of a walk of length k - 1 from vertex i to some vertex r adjacent to vertex ;',

followed by a walk of length 1 from vertex r to vertex ;'.

length k-1 length 1

length k

By our assumption, the number of walks of length k-1 from vertex i to

vertex r is the entry in row i and column r of the matrix A^-1, which we denote

by a^-1^. Since the number of walks of length 1 from vertex r to vertex; is arp it

follows that

the number of walks of length k from vertex i to vertex ;' via

vertex r (at the previous step) is a^~^ar-. (*)

Now the total number of walks of length k from vertex i to vertex; equals

the number of such walks via vertex 1 (at the previous step)

+ the number of such walks via vertex 2 (at the previous step)

+ the number of such walks via vertex r (at the previous step)

+ the number of such walks via vertex n (at the previous step).

By our previous result (*), this is equal to

a. (k-1).
n ij

(k-1)
+ 'a

i2 2 j

(k-1)
,+... + aK ’a

IT rJ
+ ... + a^k ^a

in nj

By the rules for matrix multiplication, this is just the entry in row i and column

; of the matrix A^_1A = Ak, as required.

column j column j

aij

a_l

WMMS/

row i (k-1) (k-1) 4 4 • •r1 aTj
=

anj

row t

,k-1

122 Graphs and Applications: An Introductory Approach

Thus, if the statement is true for all positive integers less than k, then it is

true for the integer k. This completes Step 2.
Therefore, by the principle of mathematical induction, the statement is true

for all positive integers k. ■

Theorem 5.2

Let D be a digraph with n vertices labelled 1,2,n, let A be its adjacency matrix with respect

to this listing of the vertices, and let B be the matrix

B = A + A2 + ... + An_1.

Then D is strongly connected if and only if each non-diagonal entry in B is positive - that is,

bij > 0 whenever / ^

Proof There are two statements to prove.

(a) If each iron-diagonal entry in B is positive, then D is strongly connected.

Let D be a digraph that satisfies the given conditions, and suppose that each

non-diagonal entry in B is positive - that is, btj > 0 whenever i * j - then

a^ >0 for some k < n - 1. Therefore there is a walk of length at most n - 1

from vertex i to vertex j whenever i ^ j, so the digraph D is strongly connected.

(b) If the digraph D is strongly connected, then each non-diagonal entry in B is

positive.

Let D be a strongly connected digraph that satisfies the given conditions;

then there is a path from any vertex to any other. Since D has n vertices, such

a path has length at most n -1. It follows that a ^ > 0 for at least one value of

k < n — 1, and hence that the entry in row i and column; of B is positive; that is,

bij > 0 whenever i ^ j. ■

5.3 Incidence Matrices

For convenience, in this section we restrict our attention to graphs and digraphs
without loops.

Whereas the adjacency matrix of a graph or digraph involves the adjacency

of vertices, the incidence matrix involves the incidence of vertices and edges

or arcs. To see what is involved, consider the following example:

Matrix Representations 123

CD.

col col col col col col
1 2 3 4 5 6

1 1 i 1 1

• 1 , ,(2) row(T) -» 1 0 0 1 0 0

row(2) 1 1 0 0 1 1

a/ 2
row(3) -> 0 1 1 0 0 0

row(4) -* 0 0 1 1 1 ij

On the left we have a graph with four labelled vertices and six labelled

edges, and on the right we have a matrix with four rows and six columns. Each

of the numbers appearing in the matrix is 1 or 0, depending on whether the

corresponding vertex and edge are incident with each other. For example,

vertex ® is incident with edge 4,

so 1 appears in row 1 column 4;

vertex © is not incident with edge 4,

so 0 appears in row 2 column 4.

We generalize this idea, as follows.

Definition

Let 6 be a graph without loops, with n vertices labelled ©, ©,..., (n), and m edges labelled 1,2,

3,..., m.
The incidence matrix 1(6) of G is the n x m matrix in which the entry in row /and column; is

1 if the vertex /' is incident with the edge j,

0 otherwise.

124 Graphs and Applications: An Introductory Approach

Problem 5.10

Draw the graph represented by each of the following incidence matrices:

1 2 3 4 5 6 7 8 1 2 3 4 5 6

CD 1 1 1 1 0 0 0 0 1 1 1 0 0 0

(D 1 1 0 0 1 1 0 0 1 0 0 1 0 0

(D 0 0 0 0 0 0 0 0 ® 0 1 0 0 1 0

® 0 0 0 1 0 1 1 1 0 0 1 0 0 1

© 0 0 1 0 1 0 1 1 © 0 0 0 1 1 1

(a) (b)

In the incidence matrix of a graph without loops, each column contains

exactly two Is, as each edge is incident with just two vertices; the sum of the

numbers in a row is the degree of the vertex corresponding to that row.

Whereas the adjacency matrix of a digraph involves the adjacency of

vertices, the incidence matrix of a digraph involves the incidence of vertices

and arcs. Since an arc can be incident from, incident to, or not incident with a

vertex, we have to take account of this when defining the matrix. To see what

is involved, consider the following example:

col col col col col col

row(T) ->

row (2) -*

row (3) -*■

row(4) -*■

1 2 3

111
10 0

-1 -1 0

0 1 -1

4

1

1

0

5

1

0

1

0 0

0 0 1 -1 -1 -1

On the left we have a digraph with four labelled vertices and six labelled arcs,

and on the right we have a matrix with four rows and six columns. Each of the

numbers appearing in the matrix is 1, -1 or 0, depending on whether the

corresponding arc is incident from, incident to, or not incident with, the corre¬

sponding vertex. For example,

arc 4 is incident from vertex (D,

so 1 appears in row 1 column 4;

arc 5 is incident to vertex ®,

so -1 appears in row 4 column 5;

arc 4 is not incident with vertex (D,

so 0 appears in row 2 column 4.

Matrix Representations 125

We generalize this idea, as follows.

Definition

Let D be a digraph without loops, with n vertices labelled ©, ©,©and m arcs labelled 1,2,

3,..., m.
The incidence matrix 1(D) of D is the n x m matrix in which the entry in row / and column) is

1 if arcy is incident from vertex/,

- -1 if arc j is incident to vertex /',

0 otherwise.

Problem 5.12

Draw the digraph represented by each of the following incidence matrices:

1 2 3 4 5 1 2 3 4 5 6 7 8

CD 1 1 0 0 0 1 -1 1 -1 0 0 0 0

© -1 0 0 1 1 -1 1 0 0 -1 1 0 0

© 0 0 - -1 0 -1 0 0 0 0 0 0 0 0

0 -1 1 -1 0 0 0 0 1 0 -1 -1 -1

(a) © 0 0 -1 0 1 0 1 1

(b)

126 Graphs and Applications: An Introductory Approach

In the incidence matrix of a digraph without loops, each column has exactly

one 1 and one -1, since each arc is incident from one vertex and incident to

one vertex; the number of Is in any row is the out-degree of the vertex corre¬

sponding to that row, and the number of -Is in any row is the in-degree of the

vertex corresponding to that row.

5.4 Case Studies

We conclude this chapter with two case studies - interval graphs and Markov

chains.

Interval Graphs

Interval graphs have been used extensively in situations involving the

arrangement of data into chronological order. In such graphs, the vertices

correspond to the objects being arranged and the edges correspond to pairs of

objects that overlap in some way. Although interval graphs first arose in a

genetic context, they have also been used in areas such as archaeology. We

give a brief account of these applications, indicating how the relevant data can

be represented by an interval graph.

Archaeology

At the end of the nineteenth century archaeologists were interested in the

various types of pottery and other artefacts that had been found in several

graves in predynastic Egypt (c. 4000-2400 BC). In particular. Sir Flinders Petrie

used the data from nine hundred graves in the cemeteries of Naqada, Balias,

Abadiyeh and Hu in an attempt to arrange the graves chronologically and

assign a time period to each artefact found in them - this process is known as
sequence dating or seriation.

pottery found by Sir Flinders Petrie

Matrix Representations 127

In dating the graves, they assumed that if two different artefacts occurred

together in the same grave, then their time periods must have overlapped.

They also assumed, since the number of graves was large, that if the time

periods of two artefacts overlapped, then the artefacts should appear together

in some of the graves.
One of the most promising approaches to seriation problems in archae¬

ology has been the representation of such data as a graph in which the

vertices correspond to the artefacts, and the edges correspond to pairs of

artefacts that have appeared together in the same grave. To see how this

arises, suppose that there are just six artefacts a, b, c, d, e,f, and that the matrix

on the left below tells us which pairs of artefacts occurred together in the same

grave; for example, artefacts a and b occurred together in some grave, whereas

a and / did not. We can regard such a matrix as the adjacency matrix of a

graph, by replacing each / by 1 and each x or - by 0; the adjacency matrix

and the corresponding graph are shown below.

a b c d e / a b c d e /

a — ✓ X X X X a 0 1 0 0 0 0

b ✓ — ✓ ✓ ✓ X b 1 0 1 1 1 0

c X ✓ — ✓ ✓ X c 0 1 0 1 1 0

d X ✓ ✓ — ✓ X d 0 1 1 0 1 0

e X ✓ ✓ ✓ — ✓ e 0 1 1 1 0 1

f X X X X ✓ — f 0 0 0 0 1 0

The problem is now to represent this information in chronological form. To

do this, we construct a set of intervals on the real line corresponding to the

time periods during which the artefacts were in use. Artefacts correspond to

intervals, and pairs of artefacts that occurred together in the same grave corre¬

spond to overlapping intervals. This means that each vertex of the graph gives

rise to an interval and each edge gives rise to overlapping intervals.

One way of doing this is shown below. Note, for example, that the vertices

corresponding to artefacts a and b are adjacent, so their intervals overlap;

however, the vertices corresponding to artefacts a and / are not adjacent, and

so their intervals do not overlap. Any graph that gives rise to a set of intervals

in this way is called an interval graph.

d- /'

e--—■— ---

—i-1-1-1 r iii>
-4000 -3800 -3600 -3400 -3200 -3000 -2800 -2600 -2400

interval graph

a •—--

b

a : (- 4000, - 3600)

b :(- 3800, -3200)

c : (-3600,-3000)

d : (- 3400, - 3200)

e :(-3400,-2600)

/ : (-2800,-2400)

intervals

128 Graphs and Applications: An Introductory Approach

Unfortunately, the problem is not as simple in practice as this example may

imply. In particular, several different arrangements of intervals may arise

from the same graph - for example, we can simply reverse the entire pattern

of intervals - and it is usually impossible to choose the correct arrangement

unless some other information is available. In spite of this drawback, the

interval graph approach has had some spectacular successes, and has led to

the solution of many seriation problems, including the chronological ordering

of bronze-age material in Central Europe, arrowheads in a palaeo-Indian site

in Wyoming, and Greek inscriptions at Histria, in Romania.

Problem 5.13

Draw the graph that gives rise to the following set of intervals:

(1,2), (3,4), (5,6), (7,8), (1,6), (2,7), (3,8).

Genetics

For some time, geneticists have regarded the chromosome as a linear arrange¬

ment of genes, and it is natural to ask whether the fine structure inside the

gene is also arranged in a linear manner; this problem is called Benzer's

problem. Unfortunately, this fine structure is too detailed to be observed

directly, and so one has to study changes in the structure of the whole gene,

known as mutations.

In analysing the genetic structure of a particular bacterial virus called phage

T4, Seymour Benzer considered the mutations that result when part of the

gene is missing. In particular, he studied mutations in which the missing

segments overlap, and expressed his results in the form of an overlap matrix,

part of which is shown as (a) opposite. This 19 x 19 matrix is the adjacency

matrix of the graph (b), in which the vertices correspond to mutations, and the

edges correspond to pairs of mutations whose missing segments overlap. In

these terms, Benzer's problem is that of determining whether the matrix (a)

represents the overlapping of a suitably chosen collection of intervals, or

(equivalently) of determining whether the graph (b) is an interval graph. In (c)

we see that this is indeed the case - there are intervals that arise from this adja¬

cency matrix and graph. This interval graph is consistent with the parts of the

gene corresponding to each mutation being lined up within the gene in a

linear fashion in left-to-right order, as shown in (c).

129 Matrix Representations

structure
number 1

in
r—1
(M

r-1 o
3S3 4

5
5

 On
m

NO

55
ON

R
NO

CNj
co

m
in
00

m
oo
OO A

1
0

3

B
1

3
9

s C
3

3

C
5

1
 m

s

184 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 1 1

215 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

221 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1

250 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

347 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
455 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
459 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 1
506 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
749 0 0 1 0 0 0 1 0 0 1 1 1 0 0 0 1 0 0 1
761 0 0 1 0 0 0 1 0 1 0 1 1 0 0 0 1 0 0 1
782 1 0 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1
852 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 1 0 0 1
882 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1

A103 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1
B139 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1

C4 0 0 1 0 0 0 1 0 1 1 1 1 1 0 0 0 0 0 1
C33 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

C51 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
H23 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

(a)

H23

C51-

184------

H23 -----

215 -- 455- 250-

C33

-B139 ■

-A103-

■852

■761

■749

■459 ■882 ■347

■ 221

■782

506- ■C4

(c)

Although the representation of this data as an interval graph does not prove

that the fine structure inside the gene is arranged linearly, it certainly

provides support for such a hypothesis. In fact, Benzer extended his analysis

to no fewer than 145 mutations and showed that, even with this number of

rows, the resulting matrix can still be represented by an interval graph. By this

means he was able to show that, for this virus at least, the evidence for a linear

arrangement is overwhelming.

Markov Chains

The study of Markov chains has arisen in a wide variety of areas, ranging from

genetics and statistics to computing and sociology. For ease of presentation

we consider a rather trivial Markov chain problem, that of a drunkard

standing directly between his two favourite pubs, The Source and Sink and The

Black Vertex.
Every minute he behaves in one of three ways, each with a given

probability:

he staggers ten metres towards the first pub with probability

or he staggers ten metres towards the second pub with probability

or he stays where he is with probability F.

130 Graphs and Applications: An Introductory Approach

Such a procedure is called a one-dimensional random walk. We assume

that the two pubs are 'absorbing', in the sense that if he arrives at either of

them he stays there. Given the distance between the two pubs and his initial

position, there are several questions we can ask. For example, which pub is he

more likely to reach first? How long is he likely to take getting there?

Let us suppose that the two pubs are fifty metres apart and that our friend is

initially twenty metres from The Black Vertex. Let us denote the various places

at which he can stop by E\,..., £5, where E\ and £5 denote the two pubs. Then

his initial position £4 can be described by the vector x = [0, 0, 0, 1, 0, 0], in

which the zth component is the probability that he is initially at £,. Further¬

more, the probabilities of his position after one minute are given by the vector

[0,0,^-,|,^,01, and after two minutes by for example,

the probability that he is at £4 after two minutes is given by

It is awkward to calculate directly the probability of his being at a given place

after k minutes. Fortunately, there is a more convenient way of doing this, by

introducing the idea of a transition matrix.

Let pij be the probability that he moves from E, to Ej in one minute; for

example, £23 = y and £24 = 0- These probabilities py are called the transition
probabilities, and the 6x6 matrix P in which the entry in row i and column; is

py is known as the transition matrix, shown below. Note that each entry of P is

non-negative and that the sum of the entries in arty row is 1.

'1 0 0 0 0 O'

-1 i 1 0 0 0
2 6 3

P_ 0 H 1 ” 0
0 0 T 6 3 0

000001

It now follows that if x is the initial row vector defined above, then the prob¬

abilities of his position after one minute are given by the row vector

Matrix Representations 131

xP = [0 0 0 1 0

1

J.
2

0

0

0

0

0

1
6

_1
2

0

0

0

0

1

3
1

6
x
2

0

0

0

0

1

3
1
6

JL
2
0

0

0

0

i
3
1

6
0

0

0

0

0

1

3
1

[0 0 1 1 1
6 3 0]

and after k minutes by the vector xP*\ In other words, the z'th component of xP^

represents the probability that he is at position E, after k minutes have elapsed.

In general, a transition matrix is a square matrix, each of whose rows

contains non-negative numbers, called transition probabilities, with sum 1,

and a Markov chain consists of an n x n transition matrix P and a 1 x n row

vector x. The positions E, are the states of the Markov chain, and our aim is to

describe a way of classifying them.
We are mainly concerned with whether we can get from a given state to

another state, and if so, how long it takes. For example, in the above problem,

the drunkard can get from E4 to E\ in three minutes and from E4 to £5 in two

minutes, but he can never get from E\ to £4 because of our assumption that the

pubs are 'absorbing'. It follows that our main concern is not with the actual

probabilities ptj, but with when they are non-zero. To decide this, we repre¬

sent the situation by a digraph whose vertices correspond to the states and

whose arcs tell us whether we can go from one state to another in one minute.

Thus, if each state E, is represented by a corresponding vertex vx, then the

required digraph is obtained by joining V{ to vj if and only if pij * 0. We refer to

this digraph as the associated digraph of the Markov chain. The associated

digraph of the above problem is as follows:

The adjacency matrix of the associated digraph of a Markov chain, known

as the associated adjacency matrix of the Markov chain, is easily obtained

from the transition matrix P by replacing each non-zero entry of P by 1. Thus

the associated adjacency matrix for the above problem is as follows:

"1 0 0 0 0 0_

1110 0 0

0 1110 0

0 0 1110

0 0 0 1 1 1

0 0 0 0 0 1

132 Graphs and Applications: An Introductory Approach

As a further example, suppose that we are given a Markov chain whose

transition matrix is as shown on the left below; then its associated adjacency

matrix and digraph are as shown on the right below.

’o 1
4

1
2

0 0 1"
4

'0 1 1 0 0 r

0 1 0 0 0 0 0 1 0 0 0 0

1
2

1
3

0 1
12

0 1
12

1 1 0 1 0 1

0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 1 0 0

transition matrix adjacency matrix

It should now be clear that we can get from a state £; to a state Ej in a Markov

chain if and only if there is a path from vt to vj in the associated digraph, and

that the least possible time to do so is the length of the shortest such path.

A Markov chain in which we can get from any state to any other is called an

irreducible Markov chain. Clearly a Markov chain is irreducible if and only if

its associated digraph is strongly connected. Note that neither of the Markov

chains described above is irreducible. For example, in the second Markov

chain, there is no path from V2 to any other vertex.

Problem 5.14

(a) Suppose that, in the problem of the drunkard, The Black Vertex ejects him as soon as he

gets there. Write down the resulting transition matrix and its associated digraph, and

decide whether the resulting Markov chain is irreducible.

(b) How would your answers to part (a) be changed if both pubs eject him?

Matrix Representations 133

Exercises 5

Adjacency Matrices

5.1 Write down the adjacency matrices of the following graph and

digraph.

5.2 Draw the graph corresponding to adjacency matrix (a) and the

digraph corresponding to adjacency matrix (b).

'0 l 1 1 o' '0 1 0 0 1'

1 0 0 0 1 1 0 0 1 0

1 0 0 0 1 0 0 0 0 0

1 0 0 0 1 1 0 1 0 0

j
O

1 1 1 1
o

 1 o

1 0 2

o

(a) (b)

5.3 Consider the following adjacency matrix of a digraph D:

'0 1 0 0 O'

0 0 10 0

1 0 0 0 1

0 0 10 0

0 0 0 1 0

Write down the out-degree and the in-degree of each vertex of the

digraph D, and hence determine whether D is Eulerian. Check your

answer by drawing the digraph D.

Hint Use Theorem 4.2.

134 Graphs and Applications: An Introductory Approach

5.4 The following matrix is the adjacency matrix of a graph G.

'0 0 0 1 1 0 O'

0 0 0 1 1 1 1

0 0 0 0 0 1 1

1 1 0 0 0 0 0

1 1 0 0 0 0 0

0 1 1 0 0 0 0

0 1 1 0 0 0 0

Which three of the following statements are TRUE?

(a) G is connected;

(c) G is bipartite;
(e) G is Eulerian;

(b) G is regular;

(d) G is a tree;
(f) G is Hamiltonian.

Walks in Graphs and Digraphs

5.5 Consider the following digraph:

Write down the adjacency matrix A, calculate the matrices A2, A3 and
A4, and hence find the numbers of walks of lengths 1, 2, 3 and 4 from
w to u. Is there a walk of length 1, 2, 3 or 4 from u to w?

5.6 Find the matrix B for the digraph in Exercise 5.5, and hence determine
whether the digraph is strongly connected.

5.7 Use Theorem 5.2 to determine whether the digraphs with the
following adjacency matrices are strongly connected:

'0 0 0 0 1" '0 0 0 0 r
0 0 0 1 0 0 0 1 0 0

1 0 0 0 0 1 0 1 0 0

1 0 0 0 0 1 0 0 0 0

' o

1 1 0 0 0 1 1 0 0

(a) (b)

Matrix Representations 135

5.8 Write an analogue for graphs of Theorem 5.2, and use it to determine

whether the graphs with the following adjacency matrices are

connected:

'0 0 0 1 O' '0 0 0 1 1'

0 0 1 0 0 0 0 1 0 0

0 1 0 0 0 0 1 0 0 1

1 0 0 0 1 1 0 0 0 0

0 0 0 1 0 1 0 1 0 0

(a) (b)

Incidence Matrices

5.9 Write down the incidence matrices of the following graph and

digraph.

(a)

5.10 Draw the digraph whose incidence matrix is

' 1 -1 1 -1 0 0 0 O'

-110 0-1100

00000000

0 0 0 1 0 -1 -1 -1

0 0-101011

5.11 The following matrix is the incidence matrix of a graph G. What is the

adjacency matrix of G with the same labelling?

'0 1 0 1 0 0 O'

0 0 1110 0

0 0 1 0 0 1 1

1 0 0 0 1 1 0

1 1 0 0 0 0 1

136 Graphs and Applications: An Introductory Approach

Case Studies

Interval Graphs

5.12 Show that the cycle graph C4 is not an interval graph.

5.13 Seven types of jewellery were found in five ancient tombs 1,2,3, 4, 5,

as shown in the following table:

tombs

jewellery

a b c d e / $

1 — / - / — — —

2 / /

3 - / - - / — —

4 / — / - - / —

5 — / / — / — —

Draw the graph with vertex set {a, b, c, d, e,f, g} in which two vertices

are joined when the corresponding types of jewellery are found in the

same tomb. Show how this graph gives rise to a set of overlapping

intervals, and hence write down a possible chronological ordering of

the seven types of jewellery.

Markov Chains

5.14 The transition matrix of a Markov chain is as follows.

' 0 0.5 0.3 0 0.2'

1 0 0 0 0

0.5 0.5 0 0 0

0.4 0.4 0 0 0.2

0 0 0 0.1 0.9

Draw the associated adjacency matrix and digraph. Is the Markov

chain irreducible?

Matrix Representations 137

5.15 A game is played with a die by five people around a circular table:

a player who throws an odd number passes the die to the player imme¬
diately to his/her left;

a player who throws 2 or 4 passes the die to the player two places to
his/her right;

a player who throws 6 keeps the die and throws it again.

Write down the corresponding transition matrix, draw its associated

digraph, and determine whether the corresponding Markov chain is
irreducible.

Chapter 6

Tree Structures

After working through this chapter, you should be able to:

• state several properties of a tree, and give several equivalent definitions of a tree;

• distinguish between physical and conceptual tree structures, and give examples

of each type;

• appreciate the uses of rooted trees in different areas;

• construct the bipartite graph representation of a given braced rectangular frame¬

work and use it to determine whether the system is rigid; if so, determine whether

the system is minimally braced.

In this chapter we focus our attention on one particularly important and

useful type of graph - a tree. Although trees are relatively simple structures,

they form the basis of many of the practical techniques used to model and to

design large-scale systems.

The concept of a tree is one of the most important and commonly used ideas

in graph theory, especially in the applications of the subject. It arose in

138

Tree Structures 139

connection with the work of Gustav Kirchhoff on electrical networks in the

1840s, and later with Arthur Cayley's work on the enumeration of molecules

in the 1870s. More recently, trees have proved to be of value in such areas as

computer science, decision making, linguistics, and the design of gas pipeline

systems.

Trees are often used to model situations involving various physical or

conceptual tree-like structures. These structures are also commonly referred

to as 'trees'. In the following examples, we classify such 'trees' in terms of the

type of application in which they occur.

Many trees have a physical structure which may be either natural or artificial

and either static or time-dependent. Two examples of natural trees are the

biological variety with trunk, branches and leaves, and the drainage system of

tributaries forming a river basin. Less obvious examples of tree structures are

provided by the chemical structure of certain organic molecules.

a sapling river tributaries a molecule

An example of the artificial variety of tree is an oil or gas pipeline distribu¬

tion system, such as an undersea pipeline network; since the cost of

constructing such a network may be very large, a tree structure with no

unnecessary edges may be the most economical form for the network.

a pipeline distribution system

140 Graphs and Applications: An Introductory Approach

Many trees do not have a well-defined physical structure, but are concep¬

tual. Probably the most familiar type of conceptual tree is a family tree,

depicting ancestors and descendants. The following diagram illustrates part

of the family tree of Saxon kings in the ninth century in England.

Egbert

Ethel wulf

Ethelbald Ethelbert Ethelred I Alfred the Great Aethelswith

Adhelm Ethelward (name unknown)

Edward Ethelward Elfleda Ethelswithe Ethelgiva
the Elder

Another example of a conceptual tree is the following hierarchical tree, repre¬

senting the lines of responsibility in a company.

/ \ / \ / / \
sales sales warehouse coordinator secretary clerk typist

assistant assistant assistant

6.1 Mathematical Properties of Trees

We start by recalling the definition of a tree, given in Chapter 2.

Definition
A tree is a connected graph that has no cycles.

.

For example, the following diagram depicts all the unlabelled trees with at

most five vertices.

Tree Structures 141

n = 1

•-• •-•-• •-•-•-•
n = 2 n = 3 n = 4

n =

Problem 6.1

Draw the six unlabelled trees with six vertices.

Each unlabelled tree with six vertices can be obtained from an unlabelled

tree with five vertices by adding an edge joining a new vertex to an existing

vertex. This is a general procedure for increasing the size of a tree, since it

creates no cycles and can be carried out systematically by adjoining the new

edge to each vertex in turn. For example, consider the following tree with six

vertices.

-*-#

By adjoining a new edge to each vertex in turn, we obtain the following trees

with seven vertices.

We can omit tree (f) from this list, since it is isomorphic to tree (a), so we obtain

five trees with seven vertices from our original tree with six vertices. The diffi¬

culty of producing trees in this way lies in recognizing duplicates, but at least

we can be sure that each tree with seven vertices can be thus obtained from

some tree with six vertices.

142
Graphs and Applications: An Introductory Approach

Problem 6.2
By adding a new edge in all possible ways to each unlabelled tree with six vertices, draw the

eleven unlabelled trees with seven vertices.

Starting with the tree with just one vertex, we can build up any tree we wish

by successively adding a new edge and a new vertex. At each stage, the

number of vertices exceeds the number of edges by 1, so

every tree with n vertices has exactly n -1 edges.

At no stage is a cycle created, since each added edge joins an old vertex to a

new vertex.
At each stage, the tree remains connected, so any two vertices must be

connected by at least one path. However, they cannot be connected by more

than one path, since any two such paths would contain a cycle (and possibly

other edges as well).

We therefore deduce that

any two vertices in a tree are connected by exactly one path.

In particular, any two adjacent vertices are connected by exactly one path -

the edge joining them. If this edge is removed, then there is no path between

the two vertices.

remove

It follows that

the removal of any edge of a tree disconnects the tree.

Moreover, any two vertices v and w are connected by a path, and the addi¬

tion of the edge vw produces a cycle - the cycle consisting of the path and the

added edge vw.

Tree Structures 143

v

So

joining any two vertices of a tree by an edge creates a cycle.

Several of the above properties can be used as definitions of a tree. In the

following theorem, we state six possible definitions. They are all equivalent:

any one of them can be taken as the definition of a tree, and the other five can

then be deduced. We omit the proof.

Theorem 6.1: Equivalent Definitions of a Tree

Let F be a graph with n vertices. Then the following statements are equivalent

■
• Fis connected and has no cycles.

• Fhasn-1 edges and has no cycles.

• Fis connected and has n-1 edges.

• Fis connected and the removal of any edge disconnects F.

• Any two vertices of Fare connected by exactly one path.

• F contains no cycles, but the addition of any nev
_

Problem 6.3

(a) Use a proof by contradiction to show that the removal of an edge cannot disconnect a

tree into more than two components.

(b) Use a proof by contradiction to show that the addition of a new edge to a tree cannot

create more than one cycle.

144 Graphs and Applications: An Introductory Approach

Problem 6.4

(a) Give an example of a tree with seven vertices and

(1) exactly two vertices of degree 1;

(2) exactly four vertices of degree 1;

(3) exactly six vertices of degree 1.
(b) Use the handshaking lemma to prove that every tree with n vertices, where n> 2, has at

least two vertices of degree 1.

6.2 Spanning Trees

An important concept that we need later is that of a spanning tree in a graph.

Definition .
Let G be a connected graph. Then a spanning tree in G is a subgraph of G that includes every

vertex and is also a tree.

For example, the following diagram shows a graph and three of its span¬

ning trees.

z y x

spanning tree

v w

z y

spanning tree

The number of spanning trees in a graph can be very large; for example, the

Petersen graph has 2000 labelled spanning trees.

Given a connected graph, we can construct a spanning tree by using either

of the following two methods. We illustrate these by applying them to the

graph G above.

x
m

Tree Structures 145

v w

AA
z y X

graph G

Building-up method

Select edges of the graph one at a

time, in such a way that no cycles

are created;

repeat this procedure until all

vertices are included.

Example

In the above graph G, we select the

edges

uz, zvx, xy, yz;

then no cycles are created.

We obtain the following spanning

tree.

Cutting-down method

Choose any cycle and remove any
one of its edges;

repeat this procedure until no

cycles remain.

Example

From the above graph G, we

remove the edges

vy (destroying the cycle vwyv),

yz (destroying the cycle vwyzv),

xy (destroying the cycle wxyw).

We obtain the following spanning

tree.

spanning tree spanning tree

146
Graphs and Applications: An Introductory Approach

6.3 Rooted Trees

Among the examples of tree structures, one particular type of tree occurs

repeatedly. This is the hierarchical structure in which one vertex is singled out

as the starting point, and the branches fan out from this vertex. We call such

trees rooted trees, and refer to the starting vertex as the root. For example, the

tree representing the lines of responsibility of a company is a rooted tree, with

the managing director as the root.

/ \ / \ / / \
sales sales warehouse coordinator secretary clerk typist

assistant assistant assistant

Tree Structures 147

A rooted tree is often drawn as follows, with the root indicated by a small

square at the top, and the various branches descending from it. When a path

from the top reaches a vertex, it may split into several new branches.

Although a top-to-bottom direction is often implied, we usually draw a rooted

tree as a graph with undirected edges, rather than as a digraph with arcs

directed downwards. A rooted tree in which there are at most two descending
branches at any vertex is a binary tree.

root root

Such trees are often called branching trees. We have already seen two

instances of branching trees - the family tree and the hierarchical tree. There

are many further examples, as we now show.

Outcomes of Experiments

If we toss a coin or throw a die several times, then the possible outcomes can

be represented by a branching tree. In the case of tossing a coin, each possible

outcome has two edges leading from it, since the next toss may be a head (H)

or a tail (T), and we obtain a binary tree. For example, if we toss a coin three

times, then there are eight possible outcomes, and we obtain the following

branching tree.

148
Graphs and Applications: An Introductory Approach

Problem 6.8
Draw the branching tree representing the outcomes of two throws of a six-sided die.

Games of Strategy

Branching trees arise in the analysis of games, particularly games of strategy

such as chess and noughts-and-crosses (tic-tac-toe), and for strategic

manoeuvres such as those arising in military situations. In such tree represen¬

tations, a path from the top corresponds to a sequence of moves from each

position to the next. The following diagram illustrates the branching tree

representing the first three moves in a game of noughts-and-crosses.

first move by X

first move by O

second move by X X O

Equivalent moves such as

are considered to be the same.

Grammatical Trees

Branching trees occur in the parsing of a sentence in a natural language, such

as English. The tree represents the interrelationships between the words and

phrases of the sentence, and hence the underlying syntactic structure. Such a

branching tree is obtained by splitting the sentence into noun phrases and

verb phrases, then splitting these phrases into nouns, verbs, adjectives, and so

on. For example, the structure of the sentence Good students read books can be

represented by the following tree.

Tree Structures 149

sentence

noun phrase

/ \
adjective noun

Good students

verb phrase

/ \
verb noun phrase

read

noun

books

If a sentence is ambiguous, we can use branching trees to distinguish

between the different sentence constructions. For example, the newspaper

headline Council rents rocket can be interpreted in two ways, as illustrated by

the following trees.

sentence

noun phrase

noun

verb phrase

/ \
verb noun phrase

Council rents

noun

rocket

sentence

Council

verb phrase

verb

rents rocket

Computer Science

Rooted tree structures arise in computer science, where they are used to

model and describe branching procedures in programming languages (the

languages used to write algorithms to be interpreted by computers). In partic¬

ular, they are used to store data in a computer's memory in many different

ways. For example, consider the list of seven numbers 7, 5, 4, 2, 1, 6, 8. The

following trees represent ways of storing this list in the memory - as a stack

and as a binary tree. Each representation has its advantages, depending on

how the data is to be manipulated, but in both representations it is important

to distinguish where the data starts, so the trees are rooted trees.

150

8D

6 i>

1 <>

2«»

4 '»

5«»

7 •

stack

We obtain the tree by writing the numbers in a string 7542168, 'promoting'

every second number (5, 2, 6) and then 'promoting' the new second number

(2).

Sorting Trees

Sorting trees are branching trees that arise when we wish to make a succes¬

sion of choices, each dependent on the previous one. For example, a sorting

tree can be used to represent the sorting of mail according to postcode.

(MK7 6AA ~^)

Graphs and Applications: An Introductory Approach

Equivalent Forms

We conclude this subsection by showing how rooted trees can be represented

in several different ways. Because such trees are important and widespread,

we need to be able to recognize these different forms.

The following diagrams illustrate four equivalent ways of representing the

same rooted tree.

Tree Structures 151

(a) a rooted tree (b) subsets of a set

8

8.1

8.1.1

8.1.1.1

8.1.1.2
8.1.2

8.2

8.3

8.3.1

8.3.2

(c) nested parentheses (d) sections of a report

Diagram (a) has the conventional appearance of a rooted tree.

Diagram (b) is a system of subsets of a set representing, say, the organization of

subsystems within a complex machine system; this has the same tree structure

as diagram (a), but the different levels are defined by the depth of nesting.

Diagram (c) is a system of nested parentheses as used in English text and

mathematical equations; again, the level is defined by the depth of nesting.

Diagram (d) is provided by the organization of a report such as a govern¬

ment report or a legal contract; these are often arranged in nested sections

(subsections, paragraphs, etc.), and the level of each section is indicated by

indentation and by the length of the decimal number in the heading.

Problem 6.9

Draw the corresponding subsets of a set and nested parentheses for the following tree.
a

152 Graphs and Applications: An Introductory Approach

The advantage of tree structures is the ease with which they can be altered

or updated. This is particularly important in computer applications, where we

can insert or delete branches (such as subroutines) without having to change

the whole system. On the other hand, a major drawback of tree structures is

that they can be vulnerable to faults or damage. The removal of a single vertex

or the breaking of a single edge is sufficient to disconnect or destroy the

system, which can be disastrous for efficient operation. A striking example of

this vulnerability was given by the collapse of the Inca civilization which

virtually disintegrated overnight when the Spanish conquistador Pizarro

captured the chief Inca, Emperor Atahuallpa, in 1532. The latter occupied the

top position in a rigid hierarchical social pyramid, and his removal destroyed

the root of the tree, thereby breaking the chain of command.

6.4 Case Study

Braced Rectangular Frameworks

Many buildings are supported by steel frameworks, which usually consist of

rectangular arrangements of girder beams and welded or riveted joints. A

simple rectangular framework by itself is inadequate as a stable support struc¬

ture. A rectangular framework maintains its shape by having rigid joints at its

corners and if these fail (often under relatively small loads) the rectangle

deforms by bending at its corners to form a parallelogram, as we saw in

Chapter 1.
Despite the inherent lack of stability in rectangular frameworks, they are

used widely because they fit the natural bias towards the horizontal, the

vertical and the perpendicular in buildings. Thus they provide strong vertical

columns to support the weight of the building, and strong horizontal beams

to support the concrete floors. For many purposes they may be regarded as

planar structures (rather than spatial), with pin-joints holding them together

(rather than rigid welds). Here we address the problem of making such rect¬

angular frameworks rigid by adding braces in an .optimal way.

Bracings

A rectangular framework consists of rectangles, or bays. A brace is a mechan¬

ical restriction on the motion of a bay. A bracing of a framework is a particular

allocation of braces to bays of the framework. We indicate the insertion of a

brace by shading the appropriate bay in the framework.

We simplify matters by adopting a standard rectangular framework in

which all the bays have the same size and (undeformed) shape. As we saw in

Chapter 1, is not necessary to brace every bay of the framework in order to

make the framework rigid.

Tree Structures 153

Consider the three frameworks shown below. Framework (a) has six bays

braced, whereas each of the others has just five bays braced.

Only framework (c) is rigid, even though it has fewer braces than the first;

frameworks (a) and (b) deform kinematically in the plane, as shown below.

So, given a general framework, which bays need to be braced in order to

make it rigid? To answer this question, we introduce some further

terminology.
In a standard rectangular framework of congruent rectangles, a row is the

set of all links forming the vertical sides of a horizontal string of bays, and a

column is the set of all links forming the horizontal sides of a vertical string of

bays. We number the rows r\, ... sequentially from top to bottom and the

columns c\, c^,... sequentially from left to right. The bay in row i and column;

is bay(i,;).

C1 c2 c3 c4

What happens to the links when a framework deforms? Under a deforma¬

tion, all the links in any one row remain parallel. Similarly, all the links in any

one column remain parallel. Also, if a bay in a framework is braced, then all

the links in this bay's rows are perpendicular to all the links in this bay's

columns; in general, the links in other rows and columns do not satisfy the

parallelism or the perpendicularity relationships of the braced bay.

154 Graphs and Applications: An Introductory Approach

Now, if a framework is to be rigid, we must ensure that all the links in all the

rows remain parallel and that all the links in all the columns remain parallel.

For example, consider framework (c):

G c2 C3

We deduce that

row r\ must remain perpendicular to columns c\ and C3,

row r2 must remain perpendicular to column c2,

row r3 must remain perpendicular to columns c\ and c2.

Now, since column c\ must remain perpendicular to rows r\ and r3, rows r\

and r3 must remain parallel to each other. Similarly, since column c2 must

remain perpendicular to rows r2 and r3, rows r2 and r3 must remain parallel to

each other. Hence all three rows remain parallel to each other. Consequently, since

row r\ must remain perpendicular to columns c\ and c3, and row r2 must

remain perpendicular to column c2, all three columns remain parallel to each other.

Furthermore, we can deduce that each row remains perpendicular to each column.

The only possible conclusion is that the framework is rigid.

We now use these observations to deduce a criterion for a braced rectan¬

gular framework to be rigid.

Rigidity Criterion

If a braced rectangular framework, with rows q, r2, q,..., and columns Cp c2, C3,..., is rigid, then

the braces must be located such that, under any attempted deformation of the framework,

• r, remains parallel to ry, for all r/and /y

• c/remains parallel to 9, for all c/and 9

• n remains perpendicular to 9, for all r, and 9.

The task of checking the conditions above becomes tedious as the number

of rows and columns in the framework increases significantly, so we look for a

better approach.

Tree Structures 155

Braced Frameworks and Bipartite Graphs

The rigidity conditions can be formulated in terms of a bipartite graph. This

graph formulation provides a powerful technique for determining the rigidity

of a given rectangular framework, and for deciding where to insert braces in a

framework. It also provides a systematic method for obtaining a rigid frame¬

work which is minimally braced, in the sense that it has the fewest number of

braces, so the approach leads to significant structural economy.

To see how it works, consider the 3x3 framework shown on the left below.

We model this with a bipartite graph whose two sets of three vertices, labelled

rl, r2, r3 and ci, C2, C3, represent the rows and columns of the framework,

respectively. A vertex r, is joined to a vertex Cj by an edge if and only if the

bay(i,j) is braced.

Cl c2 C3
Cl

r2

r3

ci

c2

c3

Problem 6.10

Draw the bipartite graphs corresponding to the braced frameworks (a), (b), (c) introduced

earlier:

What do you notice about the resulting graphs?

Framework (c) in Problem 6.10 is rigid and its bipartite graph is connected.

However, frameworks (a) and (b) in Problem 6.10 are not rigid and their bipar¬

tite graphs are not connected. So, does the connectedness of the bipartite

graph correspond to the rigidity of the framework?

156 Graphs and Applications: An Introductory Approach

Consider the following framework and its bipartite graph.

Cl

c2

C3

In the framework, bay(l, 2) and bay(2, 2) are braced, so

row r\ remains perpendicular to column C2,

row r2 remains perpendicular to column C2,

and hence

row r\ remains parallel to row r2.

Correspondingly, in the bipartite graph,

r\ is joined to C2 by an edge riC2,

T2 is joined to C2 by an edge r^ci,

and hence

r\ is joined to C2 by a path r\Ctf2-

This correspondence between parallelism and perpendicularity in the

framework and a path in the graph extends to all pairs of rows and/or

columns that must remain parallel or perpendicular. Furthermore, the corre¬

spondence enables us to deduce the maintenance of parallelism or perpendic¬

ularity in the framework from any path in the graph.

For example, in the above bipartite graph,

1-3 is joined to r2 by the path r 3^7-2,

so

1-3 is joined to c\ by an edge,

r2 is joined to c\ by an edge.

It follows that, in the framework,

row r3 remains perpendicular to column c\,

row r2 remains perpendicular to column C\,

Tree Structures 157

SO

row q remains parallel to row r\.

In fact,

this framework is rigid and its bipartite graph is connected.

Now consider the following braced rectangular framework and its bipartite

graph.

This time the situation is different. We can show that

row r\ remains parallel to row q (path qqq in the graph),

and that

column c\ remains parallel to column C3 (path qr1C3 in the graph).

But we cannot show that

row r2 remains parallel to row r\,

nor that

row r2 remains parallel to row r3,

because there are no paths in the bipartite graph from r2 to q or r3.

In this case,

the framework is not rigid and its bipartite graph is disconnected.

We summarize the result of our discussion as follows.

158 Graphs and Applications: An Introductory Approach

Problem 6.11

By constructing the associated bipartite graph,

braced rectangular frameworks is rigid.

C] C2 c 3 C 4

determine whether each of the following

Cl C2 C3 C4

Minimum Bracings

The associated bipartite graph of a rigid braced rectangular framework is

connected. If the graph has a cycle, then the removal of any edge of this cycle

does not disconnect the graph. Hence the new graph (with one less edge)

represents another rigid bracing.
For example, in the following graph, we remove the edge ^3 of the cycle

rlclr3c3rl-

Cl c2 c3

connected bipartite graph

If we repeat this procedure and continue to remove edges from cycles in the

bipartite graph of a rigid framework, we eventually obtain a tree. Moreover,

since we destroy all the cycles in this process, we produce a spanning tree.

Tree Structures 159

A braced rectangular framework whose associated bipartite graph is a span¬

ning tree is minimally braced; the bracing is a minimum bracing.

Using the familiar properties of a tree, we state these results as follows.

A given bracing of a rectangular framework is not a minimum bracing if the associated bipar¬

tite graph has either of the following properties:

• the graph has n vertices and more than n -1 edges;

• the graph contains a cycle.

Problem 6.12

(a) By constructing the associated bipartite graph, show that the following braced rectan¬

gular framework is minimally braced.

C\ c2 c3 c4

(b) Construct another minimum bracing for a 3 x 4 rectangular framework.

New Minimum Bracings From Old

We can derive further minimum bracings from a given minimum bracing by

considering various alterations to the bipartite graph which maintain the

rigidity. If we insert an extra brace into an unbraced bay in a minimum

bracing, then we create a cycle in the corresponding bipartite graph, and of

course the new framework remains rigid.

160 Graphs and Applications: An Introductory Approach

minimally braced rigid
framework

another rigid framework

Cl

Cl

c3

bipartite graph:
a spanning tree

add edge

IP ' ’

h

r2

*3

C\

c2

c3
bipartite graph

with cycle

The new bipartite graph created by adding an extra brace in the above

framework is no longer a spanning tree since it contains the cycle r2c2r3c3r2-

But if we now remove a different edge (that is, not the one we added) from this

cycle, we obtain a spanning tree different from the original. Since the cycle we

created has length 4, we can remove any one of its four edges. This leads to

four different spanning trees: the original tree and three others, which give

rise to three new minimum bracings for the framework.

new minimum bracing new minimum bracing new minimum bracing

Tree Structures 161

Exercises 6

Mathematical Properties of Trees

6.1 By adding a new edge in all possible ways to each unlabelled tree with

seven vertices, draw the twenty-three unlabelled trees with eight

vertices.

6.2 A forest is a graph (not necessarily connected), each of whose compo¬

nents is a tree.

(a) Let G be a forest with n vertices and k components. How many

edges does G have?

(b) Construct a forest with 12 vertices and 9 edges.

(c) Is it true that every forest with k components has at least 2k vertices

of degree 1?

Spanning Trees

6.3 Find all the spanning trees in each of the following graphs.

6.4 How many spanning trees has ^2,3? £2,100?

6.5 A spanning forest in a graph G (not necessarily connected) is obtained

by constructing a spanning tree for each component of G.

(a) Find a spanning forest for the following graph.

(b) Let G be a graph, and let F be a subgraph of G. If F is a forest which

includes all vertices of G, is F necessarily a spanning forest of G?

162 Graphs and Applications: An Introductory Approach

Rooted Trees

6.6 The ambiguous sentence Help rape victims appeared as a newspaper

headline, and can be interpreted in two ways. Draw two tree struc¬

tures that correspond to this sentence.

6.7 Draw a rooted tree and a system of subsets of a set with essentially the

same structure as the following nested parentheses:

(((())((())((()))))())•

Case Study

Braced Rectangular Frameworks

6.8 Consider the following braced rectangular framework:

(a) Explain why the framework is rigid.

(b) Determine the braces that may be removed without destroying the

rigidity.

6.9 Show that:
(a) if we permute the rows (or columns) of a rigid bracing, then we

obtain another rigid bracing;

(b) if we permute the rows (or columns) of a minimum bracing, then

we obtain another minimum bracing.

(This exercise indicates another method of obtaining new minimum

bracings from old.)

6.10 Use one of the minimum bracings in a 3 x 3 rectangular framework

given earlier to determine two further minimum bracings.

6.11 Determine the number of braced cells in a minimum bracing of an

r x s rectangular framework.

Chapter 7

Counting Trees

After studying this chapter, you should be able to:

• find the Prufer sequence associated with a given labelled tree, and vice versa;

• state and use Cayley's theorem for labelled trees;

• understand the method for counting binary trees;

• distinguish between central and bicentral trees, and describe their use in the

counting of alkanes.

Much of the interest and importance of trees arises from the fact that, in many

ways, a tree is the simplest non-trivial type of graph. Consequently, when

investigating a problem in graph theory, it is sometimes convenient to start by

investigating the corresponding problem for trees.
In this chapter we turn our attention to the problem of counting trees with

particular properties.
Two typical enumeration problems are given below.

How many irrigation canal systems are there linking eight locations with

seven canals?
How many molecules are there with the formula QH14?

We can reduce such problems to that of determining the number of trees with

a particular property. For example, the first problem amounts to counting

labelled trees with eight vertices; the second reduces to that of determining

the number of unlabelled trees with six vertices, each of degree 4 or less.

163

164 Graphs and Applications: An Introductory Approach

7.1 Counting Labelled Trees

As we saw in Chapter 2, counting problems for labelled graphs are usually

much easier to solve than their analogues for unlabelled graphs; in fact, there

are certain types of graph for which the former problem has been solved while

the latter problem remains unsolved. However, the problems of counting

labelled and unlabelled trees have both been solved, although the former

problem is much easier to solve than the latter.
The following table lists the numbers of unlabelled and labelled trees with n

vertices, where n < 9. The labelled case illustrates the combinatorial explosion,

mentioned in Chapter 1.

n 1 2 3 4 5 6 7 8 9

unlabelled trees 1 1 1 2 3 6 11 23 47

labelled trees 1 1 3 16 125 1296 16807 262144 4782969

The labelled trees with at most three vertices are as follows.

1

n — 1

1 2

n = 2 n = 3

Problem 7.1

Draw the sixteen labelled trees with four vertices.

Hint Draw the two unlabelled trees with four vertices (K}:3 and P4) and label them in all

possible ways.

Problem 7.2

Using the above table, try to guess a simple formula for the number of labelled trees with n

vertices.

Counting Trees 165

In fact, there are exactly nn~2 labelled trees with n vertices; this is known as

Cayley's theorem. To prove this result, we construct a one-one correspondence

between labelled trees with n vertices and sequences of n - 2 numbers, called

Priifer sequences. (This construction is due to H. Priifer.) The construction of

the one-one correspondence between labelled trees and Priifer sequences is

in two parts.
In the first part, given a labelled tree with n vertices, we construct a Priifer

sequence (denoted by bold type)

(al/ a2/ a3/ •••/ an-2)/

where each a, is one of the integers 1, 2, 3, ..., n (allowing repetition); for

example, for n = 7, two possible sequences are (1, 2, 3, 4, 5) and (7, 7, 7,1, 2).

This construction is given below and illustrated in Example 7.1 A.

-

Construction A: To Construct a Priifer Sequence from a Given Labelled Tree

Step 1 Find the vertices of degree 1 and choose the one with the smallest label.

Step 2 Look at the vertex adjacent to the one just chosen and place its label in the first avail¬

able position in the Priifer sequence.
Step 3 Remove the vertex chosen in Step 1 and its incident edge, leaving a smaller tree.

r

Repeat Steps 1-3 for the remaining tree, continuing until there are only two vertices left,

then STOP: the required Prufer sequence has been constructed.

Example 7.1A
Consider the following labelled tree.

This labelled tree has 7 vertices, so the corresponding Prufer sequence has

5 numbers.

First term Prtifer sequence

Step 1 The vertices of degree 1 are vertices 3, 2, 4 and 7;

the one with the smallest label is vertex 2.

Step 2 The vertex adjacent to vertex 2 is vertex 6,

so the first term in the sequence is 6. (6, ?, ?, ?, ?)

166 Graphs and Applications: An Introductory Approach

Step 3 Removal of vertex 2 and edge 2 6 leaves the following

tree.

Second term
Step 1 The vertices of degree 1 are vertices 3, 4 and 7;

the one with the smallest label is vertex 3.

Step 2 The vertex adjacent to vertex 3 is vertex 6,

so the second term in the sequence is 6.

Step 3 Removal of vertex 3 and edge 3 6 leaves the

following tree.

(6, 6, ?, ?, ?)

Third term
Step 1 The vertices of degree 1 are vertices 4, 6 and 7;

the one with the smallest label is vertex 4.

Step 2 The vertex adjacent to vertex 4 is vertex 5,

so the third term in the sequence is 5. (6, 6, 5, ?, ?)

Step 3 Removal of vertex 4 and edge 45 leaves the

following tree.

•-•-•-•
6 5 17

Fourth term
Step 1 The vertices of degree 1 are vertices 6 and-7;

the one with the smaller label is vertex 6.

Step 2 The vertex adjacent to vertex 6 is vertex 5,

so the fourth term in the sequence is 5. (6, 6, 5, 5, ?)

Step 3 Removal of vertex 6 and edge 65 leaves the

following tree.

5 1 7

Fifth term

Step 1 The vertices of degree 1 are vertices 5 and 7;

the one with the smaller label is vertex 5.

Counting Trees 167

Step 2 The vertex adjacent to vertex 5 is vertex 1,

so the next term in the sequence is 1. (6, 6, 5, 5,1)

Step 3 Removal of vertex 5 and edge 51 leaves a tree with

only two vertices.

•-•
1 7

STOP.

We thus obtain the Priifer sequence (6,6,5,5,1). □

Problem 7.3

Find the Priifer sequence corresponding to each of the following labelled trees.

In the second part of the construction of the one-one correspondence

between labelled trees and Priifer sequences, we give the converse of

Construction A.
In this second part, given a sequence (ai, a.2, ■.., a„_2), where each a,• is one

of the integers 1, 2, 3,..., n (allowing repetition), we construct a labelled tree

with n vertices. This construction is given below and illustrated in

Example 7.IB.

Construction B: To Construct a Labelled Tree from a Given Priifer Sequence

Step 1 Draw the n vertices, labelling them from 1 to n, and list the integers from 1 to n.
Step 2 Find the smallest number that is in the list but not in the Priifer sequence, and also

find the first number in the sequence; then add an edge joining the vertices with

these labels.
Step 3 Remove the first number found in Step 2 from the list and the second number found

in Step 2 from the sequence, leaving a smaller list and a smaller sequence.

Repeat Steps 2 and 3 for the remaining list and sequence, continuing until there are only two

terms left in the list. Join the vertices with these labels and STOP: the required labelled tree

has been constructed.

168 Graphs and Applications: An Introductory Approach

Example 7.1 B
Consider the Priifer sequence (6,6,5,5,1). This sequence has five numbers, so

the corresponding labelled tree has 7 vertices.

No edges
Step 1 Draw the 7 vertices, labelling them 1 to 7,

and list the integers from 1 to 7.

The list is (1,2, 3,4,5,6, 7) and the sequence

is (6, 6, 5, 5,1).

First edge
Step 2 The smallest number in the list but not in the

sequence is 2, and the first number in the

sequence is 6, so we add an edge joining

vertices 2 and 6.
Step 3 We remove the number 2 from the list and the

number 6 from the sequence.

This leaves the list (1, 3, 4, 5, 6, 7) and the

sequence (6, 5, 5,1).

Labelled tree

1 2
• •

7» »3

6* *4

5

Second edge

Step 2 The smallest number in the new list but not in

the new sequence is 3, and the first number in

the new sequence is 6, so we add an edge

joining vertices 3 and 6.

Step 3 We remove the number 3 from the list and the

number 6 from the sequence.

This leaves the list (1, 4, 5, 6, 7) and the

sequence (5, 5,1).

l 2

Third edge

Step 2 The smallest number in the new list but not in

the new sequence is 4, and the first number in

the new sequence is 5, so we add an edge

joining vertices 4 and 5.

Step 3 We remove the number 4 from the list and the

number 5 from the sequence.

This leaves the list (1, 5, 6, 7) and the sequence

(5,1).

1 2

Counting Trees

Fourth edge

Step 2 The smallest number in the new list but not in

the new sequence is 6, and the first number in

the new sequence is 5, so we add an edge

joining vertices 6 and 5.

Step 3 We remove the number 6 from the list and the

number 5 from the sequence.

This leaves the list (1, 5, 7) and the sequence

(1).

1

7»

6

5

Fifth edge

Step 2 The smallest number in the new list but not in

the new sequence is 5, and the only number in

the new sequence is 1, so we add an edge

joining vertices 5 and 1.

Step 3 We remove the number 5 from the list and the

number 1 from the sequence.

This leaves the list (1, 7) and an empty

sequence.

1

7*

6

5

Sixth edge

The labels 1 and 7 are the only two terms left in

the list, so we join vertices 1 and 7.

1

5

STOP

We thus obtain the required labelled tree.
Redrawing the tree without edges crossing, we obtain the following.

2 4

•-

3 6 5 1 7

170 Graphs and Applications: An Introductory Approach

Problem 7.4
Find the labelled tree corresponding to each of the following Priifer sequences,

(a) (2,1,1,3,5,5) (b) (1,1,4,4,4)

What do you notice about your results?

Notice that, both in the above examples and in Problems 7.3 and 7.4, the

Priifer sequence arising from a particular labelled tree in Construction A gives

rise to the same labelled tree in Construction B; for example, the Priifer

sequence (6,6,5,5,1) arising from the labelled tree in Example 7.1 A gives rise

to the same labelled tree in Example 7.1B.
This happens in general - if you start with any labelled tree, find the corre¬

sponding Priifer sequence, and then find the labelled tree corresponding to

this sequence, you always get back to the original labelled tree. The two

constructions above do indeed give us the required one-one correspondence

between labelled trees and Priifer sequences.

labelled tree Priifer sequence

This one-one correspondence can be used to prove Cayley's theorem.

Proof We assume that n > 3, since the result is clearly true for n = 1 and 2.

We construct the above one-one correspondence between the set of

labelled trees with n vertices and the set of all Priifer sequences of the form

(ai, a2, a3,..., a„_2), where each a, is one of the integers 1, 2, 3,..., n (allowing

repetition). Since there are exactly n possible values for each integer a;, the

total number of such sequences is

n x n x ... x n = nn~2
(n-2 terms)

so, by the one-one correspondence, the number of labelled trees with

n vertices is also tin~2. ■

Counting Trees 171

Problem 7.5

Construct explicitly the one-one correspondence between the sixteen labelled trees with

four vertices obtained in Problem 7.1 and the sixteen Prtifer sequences (ai, a2), where each

term is 1,2,3 or 4.

Problem 7.6

How many irrigation canal systems are there linking eight locations with seven canals?

: 1 ' ■< ■' • '■ \: y ,
Historical Note

The earliest statement of Cayley's theorem occurred in his article A theorem on trees, written

in 1889, although related results had been described earlier. However, Cayley's 'proof was

unsatisfactory, since he discussed only the case n = 6 and his argument cannot easily be

generalized to larger values of n. Since then, several proofs have appeared, of which Priifer's,

given in 1918, is probably the best known.

7.2 Counting Binary Trees

In this section we illustrate a different technique - this time for counting

certain unlabelled trees - by deriving an equation expressing the number of

trees with a given number of vertices in terms of the numbers of trees with

fewer vertices; such an equation is called a recurrence relation. Most problems

of this kind are too complicated for us to consider here, but the following

discussion of binary trees illustrates some of the techniques involved.

Definition

A binary tree is a rooted tree in which the number of descending edges at each vertex is at

most 2, and a distinction is made between left-hand and right-hand branches.

172 Graphs and Applications: An Introductory Approach

The binary trees with at most three vertices (including the root) are as

follows; as before, we represent the root by a small square.

n=1 n=2

Note that branching to the left and branching to the right at each stage give

rise to different binary trees. Thus there are five binary trees with three vertices,

whereas there are only two rooted trees with three vertices, as shown below.

Problem 7.7

Draw the fourteen binary trees with four vertices.

We now consider the question: how many different binary trees are there

with a given number of vertices?
Let un denote the number of binary trees with n vertices. Then, from the

above diagrams and Problem 7.7, we have

u\ = 1, U-2 — 2, U3 = 5, U4 = 14.

In order to find un, for a general value of n, we distinguish between those

binary trees with one edge emerging from the root to the left, those with one

edge emerging from the root to the right, and those with two edges emerging

from the root. For example, for n = 3, the first two binary trees depicted above

have a 'root edge' to the left, the next two have a 'root edge' to the right, and

the last one has both.

Let an denote the number of binary trees with n vertices and a root edge to

the left, let bn denote the number of binary trees with n vertices and a root

edge to the right, and let cn denote the number of binary trees with n vertices

and two root edges. Then, from the above diagrams and Problem 7.7, we have

Counting Trees 173

for the binary tree with 1 vertex,

for the binary trees with 2 vertices,

for the binary trees with 3 vertices,

for the binary trees with 4 vertices,

a1 = 0, b1 =

«2 = 1/ ^2 =

fl3 = 2, bo, =
04 = 5, =

0, q = 0, iq

1, c2 = 0, u2

2, c3 = 1, u3

5, C4 = 4, U4

l;
2;
5;

14;

in fact, for n > 2, we have

+ cw.

Now consider an and bn. Any binary tree with n vertices and a single root

edge has one of the forms shown below, and can be obtained by taking a

binary tree with n- 1 vertices rooted at Q and joining it to the root R by the
root edge RQ.

R R

Since the number of binary trees rooted at Q is un_we deduce that

an = un_i and bn = un_\, for n > 2.

You can check from the above lists of numbers that this is correct for n — 2, 3

and 4; for example, £4 = = u3 = 5.

Next, consider cn. Any binary tree with n vertices and two root edges has the

form shown below, and can be obtained by taking a binary tree with k vertices

rooted at P, and a binary tree with (n -1) - k vertices rooted at Q, and joining

them both to the root R by the root edges RP and RQ.

R

174
Graphs and Applications: An Introductory Approach

Since there are ujt such binary trees rooted at P, and un_k~\ such binary trees

rooted at Q, and as k can be any of the numbers 1, 2,3,..., n- 2, we deduce that,

for n > 3,

cn = uxun_2 + u2un_3 + u3un_ 4 + ... + un_2 u i

Again, you can check from the above lists of numbers that this is correct for

n = 3 and 4; for example,

c4 = ui«2 + U2U1 = (1 x 2) + (2 x 1) = 4.

If we now substitute these expressions for an, bn and cn into the equation

un = an + bn + Cn, we obtain:

U„ =2un_!+ (Mi«n_2 + «2un-3 + w3un-4 + - + un-2wl)‘

Using this recurrence relation with n = 5,6,..., we can find the values of u5/ U&

and so on, as far as we wish. For example,

u5 = 2u4 + (m4«3 + w2 u2 + M3U1)

= (2 x 14) + (1 x 5) + (2 x 2) + (5 x 1) = 42.

Problem 7.8
Use the above recurrence relation to determine the number of binary trees with six vertices.

7.3 Counting Chemical Trees

We saw in Chapter 1 that a molecule can be represented as a graph whose

vertices correspond to the atoms and whose edges correspond to the bonds

connecting them. For example, the molecule ethanol, with formula C2H5OH,

can be represented by a graph as follows:

H —C-C-o—H

I I
H H

In such a graph, the degree of each vertex is simply the valency of the corre¬

sponding atom - the carbon vertices have degree 4, the oxygen vertex has

degree 2, and the hydrogen vertices have degree 1.

Counting Trees 175

Diagrams of the above type can be used to represent the arrangement of

atoms in a molecule. They explain the existence of isomers - molecules with

the same formula but different properties. For example, the molecules

n-butane and 2-methyl propane (formerly called butane and isobutane) both

have the formula C4H10, but the atoms inside the molecule are arranged
differently:

H H H H
I I I I

H —C-C-C-C—H

I I I I
H H H H

H
I

H —C —H
H I H

I I I
H —C-C-C—H

I I I
H H H

n-butane 2-methyl propane

It is natural to ask whether there are any other molecules with the formula

C4H10, and this leads us directly to the problem of isomer enumeration - the

determination of the number of non-isomeric molecules with a given formula.

The most celebrated problem of this kind is that of counting the alkanes

(paraffins) CnH2„+2- For small values of n, we can construct a table, as on page

176, where for clarity the carbon vertices are drawn white.

Such diagrams become very complicated as n increases. We can simplify

them considerably by removing all the hydrogen atoms, as follows:

H
I

H—C—H C
H | H

I I I
H C C C H remove ^

I I hydrogens
H H H

draw
graph

a.

This leaves the following non-isomorphic carbon graphs with up to five

carbon atoms:

n = 5

Each of these carbon graphs has a tree-like structure in which each vertex

has degree 4 or less.

176
Graphs and Applications: An Introductory Approach

Counting Trees 177

Conversely, from any tree in which each vertex has degree 4 or less, we can

construct an alkane by adding enough hydrogen atoms to bring the degree of

each carbon vertex up to 4, as follows:

H

H —C —H

H

Problem 7.10

Determine the numbers of vertices and edges in the graph of a molecule with formula C6H14.

Deduce that such a graph is a tree.

178 Graphs and Applications: An Introductory Approach

Using the list of unlabelled trees with six vertices (given in Solution 6.1), we

can find all the alkanes with formula C6Hi4. There are six such trees:

The first five trees are the carbon graphs of the alkanes: hexane, 2-methyl pentane,

3-methyl pentane, 2,3-dimethyl butane and 2,2-dimethyl butane; the sixth tree

cannot be the carbon graph of a molecule, as it has a vertex of degree 5.

We now ask you to show that the graph of any alkane is a tree. It follows that

the problem of counting alkanes is essentially a tree-counting problem.

Problem 7.11
Determine the numbers of vertices and edges in the graph of any alkane with formula

CnH2n+2- Deduce that such a graph is a tree.

The general problem of determining the number of alkanes with formula

C„H2n+2 was solved in the 1870s by the English mathematician Arthur

Cayley. In order to outline his method, we introduce the concept of the

'middle' of a tree. For some trees this is easy to define:

But how do we define the 'middle' of the following trees?

Counting Trees 179

#■ -•-•-•

To answer this question, we take our tree and remove all the vertices of

degree 1, together with their incident edges; we then repeat this process until

we obtain either a single vertex, called the centre, or two adjacent vertices,

called the bicentre. A tree with a centre is called a central tree, and a tree with

a bicentre is called a bicentral tree. Every tree is either central or bicentral, but

not both.

For example, the following tree is a central tree with centre e.

a c
remove

vertices of
degree 1

•-•-•
c e f

remove
vertices of
degree 1

e

The following tree is a bicentral tree with bicentre cd.

c c c

Problem 7.12

Classify each of the trees with five and six vertices as central or bicentral, and locate the centre

or bicentre in each case.

180
Graphs and Applications: An Introductory Approach

Cayley's approach to the problem of finding the number of alkanes was to

regard each molecule as a tree with either a centre (a carbon vertex of degree

4) or a bicentre (two such vertices, joined by an edge). By removing the centre

or bicentre, he produced a number of smaller trees; thus he obtained a compli¬

cated recurrence relation that successively gives the number of alkanes with

formula C„H2n+2/ f°r increasing values of n. Using this, Cayley correctly

calculated the number of alkanes with up to eleven carbon atoms.

The following table lists the number of different alkanes CnH2„+2 with n

carbon atoms, for n = 1,..., 15.

„ ! 2 3 4 5 6 7 8 9 10 11 12 13 14 15

number 1 1 1 2 3 5 9 18 35 75 159 355 802 1858 4347

of alkanes

Historical Note
Although graph-like diagrams had been used as far back as 1789 to represent molecules, it

was not until the 1850s that the way atoms combine was sufficiently well understood for

meaningful diagrams to be drawn. This occurred when August Kekute and others put forward

ideas that led to the theory of valency. In 1864 Alexander Crum Brown introduced structural

diagrams to represent this theory and explain the nature of isomerism. Meanwhile, the

mathematician Arthur Cayley (1821-95) had spent some time studying and counting trees,

and in 1875 showed how to calculate the number of alkanes with a given number of carbon

atoms. Arthur Cayley had been interested in trees for almost twenty years before solving the

alkane-counting problem. His first two papers on trees, On the theory of the analytical forms
called trees, appeared in 1857 and 1859, and were concerned with counting rooted trees in

connection with a problem in the differential calculus.

Counting Trees 181

Exercises 7

Counting Labelled Trees

7.1 Use Cayley's theorem to write down the number of labelled spanning

trees in the complete graph Kn.

7.2 Show that there are 125 labelled trees with five vertices.

7.3 Write down the Priifer sequence associated with each of the following

labelled trees.

7.4 Draw the labelled tree associated with each of the Priifer sequences

(1, 2, 3, 4) and (3, 3, 3, 3).

7.5 Draw the labelled tree associated with the Priifer sequence (5,2, 6,2,5,1).

Counting Binary Trees

7.6 Determine the number of binary trees with:

(a) 7 vertices; (b) 8 vertices.

Counting Chemical Trees

7.7 Classify all the trees with seven vertices as central or bicentral. (These

trees are shown in Solution 6.2.)

7.8 Draw a central tree and a bicentral tree, each with:

(a) 8 vertices; (b) 9 vertices.

7.9 A carbon atom has valency 4, an oxygen atom has valency 2, and a

hydrogen atom has valency 1.
(a) There are two different molecules with formula C3H7OH. Draw

the graphs representing these molecules.

(b) Prove that the graph of any alcohol C„H2„+iOH is a tree.

(c) Is the graph of a molecule with formula CgH1802 a tree?

Chapter 8

Greedy Algorithms

.

After studying this chapter, you should be able to:

• define the terms minimum spanning tree and minimum connector,

• use Kruskal's and Prim's algorithms for solving the minimum connector problem;

• find upper bounds for the solution to the travelling salesman problem by using a

heuristic algorithm;

- i«wer bounds for the solution to the travelling salesman problem by using a

mm connector. minimum

In this chapter we turn our attention to some common algorithms associated

with the construction of trees. In particular, we introduce the minimum

connector problem, and show how its solution can give information about the

solution to the travelling salesman problem. Both these topics involve the idea of

a spanning tree in a connected graph.
Recall that a spanning tree in a connected graph G is a subgraph of G that

includes every vertex and is also a tree.

8.1 Minimum Connector Problem

Suppose that an irrigation canal system is to be built, interconnecting a

number of given locations. The cost of digging and maintaining each canal in

the system is known. Some pairs of locations cannot be joined by a canal for

geographical reasons (for example, there is a gorge). How do we design a

canal system that interconnects all the locations at minimum total cost?

This problem can be interpreted in two ways, depending on whether or not

we allow extra 'locations' where canals may intersect. For example, in the case

182

Greedy Algorithms 183

of the canal system shown below, we may be able to reduce the total cost by

creating an extra location at the point E and linking it to A.

16

canal system system with extra location E

Unfortunately, for many such problems, the additional cost of inserting an

extra location (which may be a telephone exchange or power station) can

exceed the possible saving in cost from a shorter connection system, and the

mathematical analysis becomes complicated. In view of this, we adopt the

second interpretation of the problem and assume that each connection joins

two existing locations; no new locations are allowed.

We can model this problem graphically by representing the locations by

vertices and the canals by edges - that is, by a weighted graph in which the

weights are the costs. The problem is now to find a connected subgraph of

minimum total weight, passing through each vertex. Such a subgraph is

necessarily a spanning tree, because, if there is a cycle, we can lower the total

cost by removing any one of its edges.

spanning tree

In our example, the graph has total weight 100. The removal of an edge from

the cycle ABDA and an edge from the remaining cycle - ABCDA or BCDB -

lowers the total weight, and gives a spanning tree. The spanning tree of

minimum total weight is obtained by removing the two edges of maximum

weight - AD and BC. The minimum total cost is thus 16 + 20 + 10 = 46. We call

this spanning tree a minimum connector for the locations A, B, C, D.

Definition

Let The a spanning tree of minimum total weight in a connected weighted graph 6. Then Tis

a minimum spanning tree or a minimum connector in G.

\ Graphs and Applications: An Introductory Approach

We now state the minimum connector problem in graph-theoretical terms.

Minimum Connector Problem

Given a weighted graph, find a minimum spanning tree.

We present two algorithms for solving the minimum connector problem.
Both belong to a class of algorithms known as greedy algorithms. The name
arises from the fact that at each stage we make the 'greediest', or best,
choice available, regardless of the subsequent effect of that choice. Such 'local'
algorithms do not succeed for most combinatorial problems, but this is one
case where they do. We present each algorithm formally as a sequence of
steps, and then summarize it informally in a form suitable for small examples
to be tackled without the use of a computer.

The first algorithm we describe is Kruskal's algorithm. (This algorithm was
derived by Joseph Kruskal in 1956, but had been stated thirty years earlier by
O. Boruvka.) In applying this algorithm, at each stage we choose the edge of
least weight, provided that it does not create a cycle. We need to avoid cycles
because, if there is a cycle, then we can decrease the total distance by

removing any one of its edges.

Kruskal's Algorithm

START with a finite set of vertices, where each pair of vertices is joined by a weighted edge.

Step 1 List all the weights in ascending order.

Step 2 Draw the vertices and weighted edge corresponding to the first weight in the list,

provided that, in so doing, no cycle is formed. Delete the weight from the list.

Repeat Step 2 until all the vertices are connected, then STOP.

The weighted graph obtained is a minimum connector, and the sum of the weights on its

edges is the total weight of the minimum connector.

Remarks

1. When two or more weights are equal, they may appear in the list in any
order. Strictly speaking, the weights are in non-descending order, rather
than ascending order.

Greedy Algorithms 185

2. We do not necessarily obtain a connected graph at each intermediate

stage.

When the number of vertices is small, we can solve the problem by hand,

using the following simplified version of the algorithm.

Summary of Kruskal's Algorithm

To construct a minimum connector in a connected weighted graph 6, successively choose

edges of G of minimum weight in such a way that no cycles are created, until a spanning tree

is obtained.

We illustrate the use of this form of the algorithm in the following example.

Example 8.1
Consider the given connected weighted graph.

Note that, in this example, some of the weights are the same, so we may have a

choice of edges at some stages, and there may be more than one minimum

spanning tree.

First edge

We choose an edge of minimum weight -

the only possibility is AE, with weight 2.

Second edge

We choose an edge of next smallest weight -

we can choose either AC or CE, with weight 4;

let us choose CE.

186 Graphs and Applications: An Introductory Approach

Third edge

We cannot now choose AC, also with weight 4,

as this would create a cycle (ACEA),
so we choose an edge of next smallest weight -

the only possibility is BC, with weight 5.

A

Fourth edge

The edges of next smallest weight are AB and BE,

with weight 6. We cannot choose either of these,

as each would create a cycle (ABCEA or BCEB),

so we choose an edge of next smallest weight -

the only possibility is DE, with weight 7.

A

This completes a spanning tree, which is a minimum spanning tree of total

weight 2 + 4 + 5 + 7=18. O

Problem 8.1

In Example 8.1, which minimum spanning tree would we have obtained if at the second

stage we had chosen the edge AC, instead of the edge Cf?

When there are more than five vertices in a weighted graph, the weights are

usually given in tabular form, as in the following example.

Example 8.2
The following table gives the distances (in hundreds of miles) between six

cities. We use Kruskal's algorithm to find a minimum spanning tree

connecting these cities.

Berlin London Moscow Paris Rome Seville

Berlin — 7 11 7 10 15

London 7 — 18 3 12 11

Moscow 11 18 — 18 20 27

Paris 7 3 18 — 9 8

Rome 10 12 20 9 — 13

Seville 15 11 27 8 13 —

For a small table such as this, we can select the distances in ascending order

directly from the table. However, you may prefer to begin by drawing up a

table of the distances in ascending order.

Greedy Algorithms 187

First edge

We choose an edge of minimum weight -

the only possibility is London-Paris,

with weight 3.

Second edge

We choose an edge of next smallest weight

we can choose either Berlin-London or

Berlin-Paris, with weight 7;

let us choose Berlin-London.

Third edge

We cannot now choose Berlin-Paris,

also with weight 7, as this would create a cycle, so

we choose an edge of next smallest weight -

the only possibility is Paris-Seville, with weight 8.

Fourth edge

We choose an edge of next smallest weight -

the only possibility is Paris-Rome, with weight 9

Fifth edge

We cannot now choose Berlin-Rome (weight

10) or London-Seville (weight 11), as each

would create a cycle, so we choose

Berlin-Moscow, with weight 11.

This completes a spanning tree, which is a minimum spanning tree of total

weight 3 + 7 + 8 + 9 + 11 = 38. O

188 Graphs and Applications: An Introductory Approach

Problem 8.2

The following table gives the distances (in miles) between six places in Ireland. Use Kruskal's

algorithm to find a minimum spanning tree connecting these places.

Athlone Dublin Galway Limerick Sligo Wexford

Athlone — 78 56 73 71 114

Dublin 78 — 132 121 135 96

Galway 56 132 — 64 85 154

Limerick 73 121 64 — 144 116

Sligo 71 135 85 144 — 185

Wexford 114 96 154 116 185 —

Although Kruskal's algorithm can be applied easily when the number of

cities is small, it is not well suited for efficient computer implementation, due

to the need to arrange the edges in order of ascending weight, and the need to

recognize cycles as they are created.
Both these difficulties are overcome by a slight modification of the algo¬

rithm; the result is called Prim's algorithm. In applying this algorithm, we start

with any vertex and build up the required spanning tree edge by edge.

Prim's Algorithm

START with a finite set of vertices, where each pair of vertices is joined by a weighted edge.

Step 1 Choose and draw any vertex.

Step 2 Find theedge of leastweight joining a drawn vertex to a vertex not currently drawn.

Draw this weighted edge and the corresponding new vertex.

Repeat Step 2 until all the vertices are connected, then STOP.

Remarks

1. When there are two or more edges with the same weight, choose any of

them.

2. With this construction, we obtain a connected graph at each stage.

We can summarize Prim's algorithm as follows.

Greedy Algorithms 189

Summary of Prim's Algorithm

To construct a minimum connector fin a connected weighted graph 6, build up T step by

step as follows:

• put an arbitrary vertex of G into T;
• successively add edges of minimum weight joining a vertex already in Tto a vertex not in

T, until a spanning tree is obtained.

Example 8.3
The following table gives the distances (in hundreds of miles) between six

cities. We use Prim's algorithm to find a minimum spanning tree Tconnecting

these cities.

Berlin London Moscow Paris Rome Seville

Berlin — 7 11 7 10 15

London 7 — 18 3 12 11

Moscow 11 18 — 18 20 27

Paris 7 3 18 — 9 8

Rome 10 12 20 9 — 13

Seville 15 11 27 8 13 —

We start by choosing any vertex and putting it in T. Let us choose Berlin.

First edge

We choose an edge of minimum weight joining

Berlin to another vertex; we can choose either

Berlin-London or Berlin-Paris, with weight 7;

let us choose Berlin-London.

Second edge

We choose an edge of minimum weight joining

Berlin or London to another vertex;

the only possibility is London-Paris, with weight 3

Third edge

We choose an edge of minimum weight joining

Berlin, London or Paris to another vertex;

the only possibility is Paris-Seville, with weight 8.

190 Graphs and Applications: An Introductory Approach

Fourth edge

We choose an edge of minimum weight joining

Berlin, London, Paris or Seville to another vertex;

the only possibility is Paris-Rome, with weight 9.

Fifth edge

We choose an edge of minimum weight joining

Berlin, London, Paris, Rome or Seville to the

remaining vertex; the only possibility is n 7

Berlin-Moscow, with weight 11. m B L

This completes a spanning tree, which is a minimum spanning tree of

weight 7 + 3 + 8 + 9 + 11 = 38. (It is the tree we obtained in Example 8.2.) □

Problem 8.3
In Example 8.3, which minimum spanning tree would we have obtained

(a) if at the first stage we had chosen Berlin-Paris, instead of Berlin-London?

(b) if we had started by choosing Rome as our first vertex, instead of Berlin?

We close this section by outlining a proof of the fact that the algorithms

given above always produce a minimum connector.

Theorem 8.1

Prim's and Kruskal's algorithms always produce a spanning tree of minimum weight.

Outline of proof

The proof is by contradiction.
Suppose that the algorithm produces a tree T, and that there exists a span¬

ning tree S with smaller total weight than T. Let e be an edge of smallest

weight lying in T but not in S.

Greedy Algorithms

spanning tree S

(2 edges in common with T)

191

spanning tree S'

(3 edges in common with T)

If we add the edge e to S we create a cycle containing e. Since this cycle must

contain an edge e' not contained in T, the subgraph obtained from S on

replacing e' by e is also a spanning tree, S' say. It follows from the construction

of T that the weight of e cannot exceed the weight of e'. So the total weight of

S' does not exceed the total weight of S, and S' has one more edge in common

with T than has S.
It follows that, by repeating this procedure, we can change S into T, one

edge at a time, with the weight not increasing at each stage. This shows that

the total weight of T does not exceed the total weight of S, contradicting the

definition of S. This contradiction establishes the result. ■

8.2 Travelling Salesman Problem

In Chapter 1 we introduced the travelling salesman problem, in which a salesman

wishes to visit a number of cities and return to the starting point, covering the

minimum possible total distance. This is an important problem in practice, and

can appear in a number of different guises; for example, it arises in situations

such as drilling holes in a printed circuit board involving thousands of holes.

We can express the problem in graphical language. In such terms, we are

given a weighted graph, usually a complete graph, and our aim is to find a

cycle of minimum total weight passing through every vertex - in other words,

a minimum-weight Hamiltonian cycle.

Travelling Salesman Problem

Given a weighted complete graph, find a minimum-weight Hamiltonian cycle.

In view of the simple nature of Kruskal's and Prim's algorithms for solving

the minimum connector problem, we might hope that there is a simple algo¬

rithm here as well. Unfortunately, no such algorithm is known. We could, of

course, try all possible Hamiltonian cycles, but this is a hopeless task, even on

192 Graphs and Applications: An Introductory Approach

a computer, unless the number of vertices is small. For a travelling salesman

problem involving 100 cities, there would be J/2(99!) ~ 4.65 x 10l35 cycles to be

considered, which is way beyond present computer capacities. In fact, there is

no known efficient algorithm for the travelling salesman problem.

In view of this, we are forced to look for approximate solutions to the problem

- that is, we look for upper and lower bounds for the length of a

minimum-weight Hamiltonian cycle.

Historical Note
The travelling salesman problem appeared in rudimentary form in a practical German book

of 1831 for the Handlungsreisende (travelling salesman). Its first appearance in mathematical

circles was at Princeton University in the 1930s.

Upper Bound for the Solution to the Travelling Salesman Problem

We now describe a heuristic algorithm for the travelling salesman problem -

that is, an algorithm that does not necessarily give the correct answer, but

gives a good approximation to it.
The idea is to build up the required cycle step by step, starting with a single

vertex. It is similar to Prim's algorithm, except that we build up a cycle rather

than a tree.

Method for Finding An Upper Bound for the Solution to the Travelling
Salesman Problem

START with a finite set of vertices, where each pair of vertices is joined by a weighted edge.

Step 1 Choose any vertex and find a vertex joined to it by an edge of minimum weight.

Draw these two vertices and join them with two edges to form a 'cycle'; give the

cycle a clockwise orientation.

Step 2 Find a vertex not currently drawn joined by an edge of least weight to a vertex

already drawn.

Insert this new vertex into the cycle in front of the 'nearest' already-connected

vertex.

Repeat Step 2 until all the vertices are joined by a cycle, then STOP.

The weighted cycle obtained is a Hamiltonian cycle, and its total weight - given by the sum of

the weights on its edges - is an upper bound for the solution to the travelling salesman

problem.

We can summarize this algorithm as follows.

Greedy Algorithms 193

Summary of Algorithm

To construct a cycle Cthat gives an approximate solution to the travelling salesman problem

for a connected weighted graph G, build up C step by step as follows:

• choose an arbitrary vertex of G and its 'nearest neighbour' and put them into C;

• successively insert vertices joined by edges of minimum weight to a vertex already in Cto a

vertex not in C, until a Hamiltonian cycle is obtained.

Remark Different choices of the initial vertex may give different upper

bounds. The best upper bound is the smallest: it gives the most information

about the actual solution. (If you are saving up for something, then it is more

helpful to know that you need at most £100 than to know that you need at

most £120.)

Example 8.4
We find an upper bound for the solution to the travelling salesman problem

for the six European cities.

Berlin London Moscow Paris Rome Seville

Berlin — 7 11 7 10 15

London 7 — 18 3 12 11

Moscow 11 18 — 18 20 27

Paris 7 3 18 — 9 8

Rome 10 12 20 9 — 13

Seville 15 11 27 8 13 —

First vertex

We start by choosing any vertex. Let us choose Berlin.

Second vertex

The city nearest to Berlin is London or Paris

(distance 7). Let us choose London.
We draw two vertices and two edges joining

them, and give the 'cycle' a clockwise orientation.

Third vertex

The city nearest to Berlin and London is Paris

(distance 3 from London).
We insert Paris in front of London in the cycle.

194 Graphs and Applications: An Introductory Approach

Fourth vertex

The city nearest to Berlin, London and Paris is

Seville (distance 8 from Paris).
We insert Seville in front of Paris in the cycle.

Fifth vertex

The city nearest to Berlin, London, Paris and

Seville is Rome (distance 9 from Paris).
We insert Rome in front of Paris in the cycle.

Sixth vertex

The final city is Moscow. It is closest to Berlin

(distance 11).
We insert Moscow in front of Berlin in the cycle.

All the cities are now joined by the cycle

Berlin-Moscow-London-Paris-Rome-Seville-Berlin.

An upper bound for the solution is therefore

11 + 18 + 3 + 9 + 13 + 15 = 69. □

Problem 8.4

In Example 8.4, which upper bound would we have obtained if we had started with Rome?

Lower Bound for the Solution to the Travelling Salesman Problem

Another method for finding an approximate solution to the travelling

salesman problem, which often works well in practice, is to find a lower bound

for the total weight of a minimum-weight Hamiltonian cycle by solving a

related minimum connector problem instead. We then know that the length

of the cycle that is the correct solution must exceed this lower bound,

although the method does not yield an approximate route. We illustrate the

method by the following graph.

Greedy Algorithms 195

D C

minimum-weight
Hamiltonian cycle

ADCBEA

(The weights are irrelevant here, so they are omitted.)
If we take a minimum-weight Hamiltonian cycle in this (weighted)

complete graph and remove the vertex A and its incident edges, we get a path

passing through the remaining vertices.

minimum-weight path through B, C, D, E two edges at A

Hamiltonian cycle

ADCBEA

Such a path is a spanning tree for the complete graph formed by these

remaining vertices, and the weight of the Hamiltonian cycle is obtained by

adding the weight of this spanning tree to the weights of the two edges inci¬

dent with A:

total weight of

minimum-weight

Hamiltonian cycle

It follows that:

total weight of sum of weights of

spanning tree connecting + two edges

B, C, D, E incident with A

total weight of

minimum-weight

Hamiltonian cycle

total weight of sum of two smallest

> minimum spanning tree + weights of edges

connecting B, C, D, E incident with A

So the expression on the right-hand side gives a lower bound for the solution to

the travelling salesman problem in this case.
In general, we can use the generalized form of this inequality to obtain a

lower bound to any travelling salesman problem, as outlined below.

196 Graphs and Applications: An Introductory Approach

Method for Finding a Lower Bound for the Solution to the Travelling
Salesman Problem

Step 1 Choose a vertex V and remove it from the graph.
Step 2 Find a minimum spanning tree connecting the remaining vertices, and calculate its

total weight w.
Step 3 Find the two smallest weights, W] and vjj, of the edges incident with V.

Step 4 Calculate the lower bound w + W] + \nj-

Remark Different choices of the initial vertex V may give different lower

bounds. The best lower bound is the largest: it gives the most information

about the actual solution. (If you are saving up for something, then it is more

helpful to know that you need at least £100 than to know that you need at least

£80.)

Example 8.5
We find a lower bound for the solution to the travelling salesman problem for

the following weighted graph.

We start by removing any vertex. Let us choose the vertex A. Then the

remaining weighted graph has the four vertices B, C, D, E.

total weight > (7 + 4 + 5) + (2 + 4) = 22

The minimum spanning tree joining these vertices is the tree whose edges

are ED, CE, BC, with total weight 7 + 4 + 5 = 16.

The two edges of smallest weight incident with A are AE and AC, with

weights 2 and 4.

Greedy Algorithms 197

A lower bound for the solution is therefore

16 + 2 + 4 = 22.

A little experimentation shows that this lower bound is not very good: the

actual solution to this problem is the cycle ACBDEA with total weight 26, so

our lower bound is not the correct solution.

A better lower bound (that is, a greater one, giving more information) can

be obtained by removing the vertex D instead of A. In this case, the remaining

weighted graph has the four vertices A, B, C, E, and there are two minimum

spanning trees joining these vertices, each with total weight 2 + 4 + 5 = 11

(only one is highlighted below).

The two edges of smallest weight incident with D are DE and DA, or DE and

DB, with weights 7 and 8.
A better lower bound for the solution is therefore 11 + 7 + 8 = 26, which is

the correct solution. O

In the above example, we found a minimum spanning tree by inspection of

the diagram (with the given vertex removed). However, for larger examples, a

diagram becomes congested and it is easier to find a minimum spanning tree

using Kruskal's or Prim's algorithm.

Problem 8.5
In Example 8.5, which lower bounds would we have obtained if we had started by removing:

(a) vertex 8? (b) vertex £?

Which of these lower bounds is the better one?

198 Graphs and Applications: An Introductory Approach

Exercises 8

Minimum connector problem

8.1 The following graph shows the distances (in miles) between five

towns.

D 7 C

Find a minimum connector for this graph by using Kruskal's

algorithm.

8.2 Find a minimum connector for the graph of Exercise 8.1 by using

Prim's algorithm, starting at:

(a) vertex A; (b) vertex C.

8.3 The following table gives the distances (in miles) between six cities in

England.

Bristol Exeter Hull Leeds Oxford York

Bristol — 84 231 220 74 225

Exeter 84 — 305 271 154 280

Hull 231 305 — 61 189 37

Leeds 220 271 61 — 169 24

Oxford 74 154 189 169 — 183

York 225 280 37 24 183 —

Find a minimum connector for these six cities by using Kruskal's

algorithm.

8.4 Find a minimum connector for the six cities of Exercise 8.3 by using

Prim's algorithm, starting at:

(a) Oxford; (b) Hull.

Greedy Algorithms 199

8.5 The following table gives the distances (in miles) between six cities in

Canada.

Edmonton London Montreal Ottawa Regina Toronto

Edmonton — 2144 2301 2173 482 2107

London 2144 — 425 357 1696 122

Montreal 2301 425 — 127 1853 344

Ottawa 2173 357 127 — 1725 248

Regina 482 1696 1853 1725 — 1659

Toronto 2107 122 344 248 1659 —

Find a minimum connector for these six cities by using KruskaFs

algorithm.

8.6 Find a minimum connector for the six cities of Exercise 8.5 by using

Prim's algorithm, starting at:

(a) London; (b) Montreal.

Travelling Salesman Problem

8.7 Find an upper bound for the solution to the travelling salesman

problem for the five towns of Exercise 8.1 by using the heuristic algo¬

rithm, starting with:

(a) town B; (b) town £.

Which of your upper bounds is the better one?

Find the correct solution by inspection.

8.8 Find an upper bound for the solution to the travelling salesman

problem for the six European cities, by using the heuristic algorithm,

starting with:

(a) Moscow; (b) Seville.

Which of your upper bounds is the better one?

Berlin London Moscow Paris Rome Seville

Berlin — 7 11 7 10 15

London 7 — 18 3 12 11

Moscow 11 18 — 18 20 27

Paris 7 3 18 — 9 8

Rome 10 12 20 9 — 13

Seville 15 11 27 8 13 —

200 Graphs and Applications: An Introductory Approach

8.9 Find an upper bound for the solution to the travelling salesman

problem for the six places in Ireland, by using the heuristic algorithm,

starting with:

(a) Galway; (b) Sligo.

Which of your upper bounds is the better one?

Athlone Dublin Galway Limerick Sligo Wexford

Athlone — 78 56 73 71 114

Dublin 78 — 132 121 135 96

Galway 56 132 — 64 85 154

Limerick 73 121 64 — 144 116

Sligo 71 135 85 144 — 185

Wexford 114 96 154 116 185 —

8.10 Find an upper bound for the solution to the travelling salesman

problem for the six cities of Exercise 8.3 by using the heuristic algo¬

rithm, starting with:

(a) Bristol; (b) Exeter.

Which of your upper bounds is the better one?

8.11 Find an upper bound for the solution to the travelling salesman

problem for the six cities of Exercise 8.5 by using the heuristic algo¬

rithm, starting with:

(a) Regina; (b) Toronto.

Which of your upper bounds is the better one?

8.12 Find a lower bound for the solution to the travelling salesman

problem for the towns in Exercise 8.1 by removing:

(a) town B; (b) town E.

Which of your lower bounds is the better one?

8.13 Find a lower bound for the solution to the travelling salesman

problem for the six cities of Exercise 8.3 by removing:

(a) Hull; (b) York.

Which of your lower bounds is the better one?

8.14 Find a lower bound for the solution to the travelling salesman

problem for the six cities of Exercise 8.5 by removing:

(a) Edmonton; (b) Ottawa.

Which of your lower bounds is the better one?

Greedy Algorithms 201

8.15 Find a iower bound for the solution to the travelling salesman

problem for the six places of Exercise 8.9 by removing

(a) Athlone; (b) Dublin.

Which of your lower bounds is the better one?

Chapter 9

Path Algorithms

After reading this chapter, you should be able to:

• use Fleury's algorithm to find an Eulerian trail in an Eulerian graph;

• use the shortest path algorithm to find the shortest path between two vertices of

a weighted graph or digraph;

• solve simple instances of the Chinese postman problem.

In this chapter we consider some problems that involve finding a path with

some special property in a given graph or digraph. First, we describe Fleury's

algorithm for finding an Eulerian trail in a given Eulerian graph. We then turn

our attention to weighted graphs and digraphs and describe an algorithm for

finding a shortest path from any given vertex to another. Finally, we present a

case study concerned with finding optimal routes for a postman.

9.1 Fleury's Algorithm

In Chapter 3 we described how to construct an Eulerian trail in a given

Eulerian graph by combining cycles. Another way of constructing an Eulerian

trail is to use the following algorithm.

202

Path Algorithms 203

Fleur/s Algorithm

START with an Eulerian graph G.

Step 1 Choose a starting vertex.
Step 2 Starting from the current vertex, traverse any available edge, choosing a bridge only

if there is no alternative. Then erase that edge and any isolated vertex.

Repeat Step 2 until there are no more edges, then STOP.

Recall that a bridge is an edge in a connected graph whose removal discon¬

nects the graph.

Example 9.1
We illustrate the use of Fleury's algorithm by applying it to the following

graph.

c a e

Step 1 We start at the vertex u.

Step 2 We traverse the edge ua and erase it.

Step 2 We traverse the edge ab and erase it, together with vertex a.

We now have the following graph:

c e

Step 2 We cannot use the edge bu because it is a bridge, so we choose

the edge be and erase it.

Step 2 We traverse the edge cd and erase it, together with vertex c.

Step 2 We traverse the edge db and erase it, together with vertex d.

204 Graphs and Applications: An Introductory Approach

We now have the following graph:

e

Step 2 We traverse the bridge bu and erase it, together with vertex b.

Step 2 We traverse the edge ue and erase it.

Step 2 We traverse the bridge ef and erase it, together with vertex e.

Step 2 We traverse the bridge fu and erase it, together with vertex /.

There are no more edges, so we STOP.

Thus we obtain the Eulerian trail uabcdbueju. O

9.2 Shortest Path Algorithm

In this section we present the shortest path algorithm for finding a shortest

path from a given vertex S in a weighted graph or digraph to another vertex T.

We start from S and calculate the shortest distance from S to each interme¬

diate vertex as we go. At each stage of the algorithm, we look at all vertices

reached by an edge or arc from the current vertex and assign to each such

vertex a temporary label representing the shortest distance from S to that

vertex by all paths so far considered. Eventually each vertex acquires a perma¬

nent label, called a potential, that represents the shortest distance from S to

that vertex. Once T has been assigned a potential, we find the shortest path(s)

from S to T by tracing back through the labels.

Path Algorithms 205

The algorithm may be used for graphs or digraphs; here we illustrate its use

by applying it to digraphs. To see how it works, consider the following

example.

Example 9.2

A

The problem is to find the shortest path from S to T, where the length of each

arc is represented by the number next to the arc. We wish to assign a potential

to each vertex; this represents the shortest distance along any path from S to

that vertex. We denote a potential by a number inside a square. We start by

assigning zero potential to S.
We illustrate the algorithm by drawing a sequence of diagrams. However, it

is sometimes convenient to use a tabular method, rather than annotate a

diagram. The tabular method enables the steps of the algorithm to be clearly

displayed, and this makes for more accurate working and easier checking,

particularly for large-scale examples. We illustrate the tabular method by

giving the corresponding table for each iteration.

First Iteration: Vertices Reached Directly from S

We start from vertex S and consider each vertex that can be reached from S by

a single arc - vertices A, B, C, D. We label each of these vertices with the

distance along the corresponding arc from S, as shown below.

Graphs and Applications: An Introductory Approach

A 7

Now we take the lowest number on these vertices (that is, the shortest

distance from S) and mark it as a potential. The shortest of the four distances

SA, SB, SC, SD is SB, which is 4, so this is marked as a potential by putting a

square round it, as shown above. This is the shortest distance to B along any

path from S, since any other path is via A, C or D, and the first stage alone of

such a path is longer than the direct path.
Using the tabular method, we draw up a table and record the information

obtained in the first iteration in the first line, as follows:

origin
ltemt,on vertex

vertices assigned labels

A 3 C D T

1 5 7 0] 9 7

Second Iteration: Vertices Reached Directly from B

We start from vertex B, the vertex just assigned a potential, and repeat the

procedure with the vertices that can be reached from B by a single arc - A and

C. Their distances from S via B are 5 and 7, respectively; these are labelled on

the following figure.

Path Algorithms 207

The distance to A via B is 5, which is less than the previously marked label 7

for B, so we cross out the 7 and replace it by 5. The same applies to vertex C. If,

however, the existing label were lower than the new distance, then we would

leave it in place, since we are assigning potentials equal to the shortest

distances to vertices.

The shortest marked distance that is not a potential is 5, at A, so we make

this a potential, as shown above.

Using the tabular method, we record this information in the second line of

the table, as follows:

iteration
origin vertices assigned labels
vertex A a C P r

1 5
2 3 m 7

Third Iteration: Vertices Reached Directly from A

We start from vertex A, the vertex just assigned a potential. Only vertex T can

be reached from A by a single arc, so we label T with the distance from S via A.

This is obtained by adding the potential at A to the distance along arc AT, that

is, 5 + 6 = 11.

208 Graphs and Applications: An Introductory Approach

C has potential 7 assigned from 3.
0 has potential 7 assigned from 5.

There are now two vertices - C and D - with the lowest labelled distance 7,

so these distances become potentials, as shown above.
Using the tabular method, we record this information in the third line of the

table. This time we add arrows to the boxes round the two new potentials, as

shown below, to indicate that we are making potentials out of the label

assigned to C at iteration 2 and the label assigned to D at iteration 1.

iteration
origin
vertex

vertices assigned labels
A 3 C P T

1 5 Z 0 ? 7-
2 3 ® A)
3 A \7f 77 11

Fourth Iteration: Vertices Reached Directly from C or D

We start from the vertices C and D and look at all the vertices that can be

reached from either of these vertices by a single arc. There is only one such

vertex - the vertex T. The path via D has total distance 7 + 4 = 11, which

equals the current label on T, corresponding to the path via A. However, the

path via C has distance 10, and is clearly the shortest of the three paths, so the

label at T, and hence its potential, becomes 10, as shown below.

Path Algorithms 209

Using the tabular method, we record this information in two rows, one for

each of the vertices C and D:

iteration
origin vertices assigned labels
vertex A 0 C D r

1 5 At s & 7-
2 3 A
3 A ffl 7 / p

4 C 10
D 11

We have found that the shortest distance from S to T is 10, and it remains

only to identify the corresponding shortest path. We do this by backtracking

from T, choosing at each stage the vertex whose potential equals the potential

at the previous vertex minus the distance along the arc joining them. Thus we

backtrack from T to C, since 7 (the potential of C) is 10 (the potential of T)

minus 3 (the length of the arc CT); then from C to B, and then from B to S.

Hence the shortest path is SBCT.

210 Graphs and Applications: An Introductory Approach

5 — a — c — r
[o] 0 m M

Using the tabular method, we can read off the shortest path(s) from the

table. We find that

T has potential 10 assigned from C,

C has potential 7 assigned from B,

B has potential 4 assigned from S,

so

the shortest path is SBCT with length 10.

We trace the path back through the table as follows:

iteration

2
3
4

origin
vertex

S*

— 3'

A
-C-

D

1
vertices assigned labels

A

-AA*-
4 D T

7.

ffl A 11
10

11

□
We now give a formal description of the algorithm.

Path Algorithms 211

Shortest Path Algorithm

ST ART Assign potential 0 to S.

GENERAL STEP Consider the vertex (or vertices) just assigned a potential. For each such

vertex V, consider each vertex W that can be reached from V along an arc VW, and assign W
the label

(potential of 10 + (distance VW)

unless W already has a smaller label assigned from an earlier iteration.

When all such vertices W have been labelled, choose the smallest vertex label that is not

already a potential, and make it a potential at each vertex where it occurs.

REPEAT the general step with the new potential(s).

STOP when Thas been assigned a potential.

The shortest distance from S to Tis the potential of T.

To find a shortest path, trace backwards from Tand include an arc VW whenever

(potential of W) - (potential of 10 = distance VW

until 5 is reached.

212
Graphs and Applications: An Introductory Approach

9.3 Case Study

Chinese Postman Problem

An important problem that has appeared in various guises is the so-called

Chinese postman problem, which may be stated as follows.

Remark The word Chinese refers to the problem, not the postman! The

problem was considered in 1962 by Mei-ko Kwan.

If the map of his area happens to correspond to an Eulerian graph, there is no

difficulty with this problem - he simply finds an Eulerian trail (using Fleury's

algorithm, if necessary) and such a trail involves the smallest total distance; this

situation occurs when all the vertices in the corresponding graph have even

degree. What usually happens in practice, of course, is that the postman needs to

visit some parts of the route more than once, and wants to minimize the amount

of retracing. We assume that we know the length of each part of the route.

Similar problems have arisen in other contexts. For example, there was a

major study of snow-clearing routes in Zurich some years ago. Snow-ploughs

are expensive to operate, so it was necessary to arrange a route that involved

revisiting streets as little as possible. Other cities have initiated similar investi¬

gations into the sweeping or cleaning of streets.
We can reformulate this problem in terms of weighted graphs as follows.

Chinese Postman Problem
Find a closed walk of minimum total weight that includes every edge at least once.

This problem has been solved in general, using an algorithm that combines

features of Fleury's algorithm and the shortest path algorithm. If the graph is

not Eulerian, then there exist vertices of odd degree. However, it follows from

the handshaking lemma that the number of such vertices is even (see Problem

2.11), so is equal to 2k, say. We can make the graph Eulerian by doubling the

Path Algorithms 213

edges along k paths that join these vertices in pairs; we ensure that we obtain a

closed walk of minimum weight by choosing the pairs so that the sum of the

lengths of these k paths is as small as possible.
The details of the algorithm are too complicated to be given here, but we

can get an idea of what is involved by considering the particular case of a

graph with just two vertices v and w of odd degree, such as graph (a) below:

The shortest path from v to w is vbcw, of total weight 1 + 2 + 3 = 6. If we

double up each of the edges in this path, we get the Eulerian graph (b). The

required closed walk of minimum total weight is obtained by finding an

Eulerian trail in this graph (using Fleury's algorithm if necessary), such as

abvdcvbcbwcwa. The only edges that need to be retraced are vb, be and cw.

Alternatively, we find a semi-Eulerian path from vtow (using a modifica¬

tion of Fleury's algorithm) and then find the shortest path from w back to v.

The combination of these paths is then a trail of minimum weight. For the

above graph we obtain the route v devb cwb aw cbv.

Now suppose that the problem is one of street-cleaning or snow-ploughing,

and that the vehicle needs to travel along both sides of each road, once in each

direction. We replace each edge of the corresponding graph by two arcs, one in

each direction. We thus obtain a strongly connected digraph in which, for each

vertex, the out-degree equals the in-degree. It follows from Theorem 4.2 that

the digraph is Eulerian, so there exists a minimum-weight Eulerian trail; it can

be found by a modification of Fleury's algorithm.

214 Graphs and Applications: An Introductory Approach

Exercises 9

Fleury's Algorithm

9.1 Use Fleury's algorithm to obtain an Eulerian trail in the following

graph:

a

9.2 Use Fleury's algorithm to obtain an Eulerian trail in the following

graph:

a b c d

Shortest Path Algorithm

9.3 Find the shortest path from S to T and the shortest distance from S to

each of the other vertices in the following weighted digraph:

C 6 F

Path Algorithms 215

9.4 Find the shortest path(s) from S to T in the following weighted

digraph:

A 7 D

9.5 Find the shortest path(s) from S to T in the following weighted

digraph:

Chinese Postman Problem

9.6 Solve the Chinese postman problem for the following weighted graph:

9.7 Solve the Chinese postman problem for the following weighted graph:

Chapter 10

Paths and Connectivity

After reading this chapter, you should be able to:
'

• explain the terms edge connectivity, vertex connectivity, cutset and vertex cutset;

• understand and use the various forms of Wenger's theorem;

• discuss the reliability of a telecommunication network in terms of the concepts

introduced in this chapter.

In this chapter we investigate the extent to which a given graph or digraph is

connected. In particular, we discuss the following question:

how many edges (or vertices) do we need to remove from a given

connected graph so that it becomes disconnected?

This, and similar questions related to connectivity, are important ones to

consider when designing telecommunication networks, road systems and

other networks - for example, in a telecommunication network it is essential

that the network should still be operable if some of the links between the

exchanges become damaged, or are blocked by other calls. After discussing

the theory of connectivity in graphs and digraphs in general, we describe its

relevance to such networks.

10.1 Connected Graphs and Digraphs

In Chapter 2 we introduced the idea of a connected graph - a graph that is 'in

one piece'. We noted that in any connected graph there is a path between

each pair of vertices, and this led to the following definitions.

216

Paths and Connectivity 217

Definitions

A graph is connected if there is a path between each pair of vertices, and is disconnected

otherwise.

Every disconnected graph can be split up into a number of connected subgraphs, called

components.

For example:

a connected graph a disconnected graph with 3 components

In the case of digraphs, it is not true in general that a digraph that is 'in one

piece' has a (directed) path between each pair of vertices, and this observation

led us to define two types of connected digraph, as follows.

Definitions
A digraph is connected if its underlying graph is a connected graph, and is disconnected

otherwise.

A digraph is strongly connected if there is a path between each pair of vertices.

For example:

a disconnected digraph a connected digraph a strongly connected digraph
(not strongly connected)

218 Graphs and Applications: An Introductory Approach

Edge Connectivity

For many applications it is necessary to know more about a graph than just

whether it is connected. For example, in telecommunication networks there

are usually several paths between a given pair of subscribers (vertices), and it

is important to know how many links (edges) can be broken without

preventing a call being made between the two subscribers. In order to answer

this and similar questions, we investigate connected graphs in more detail.

Consider the following connected graphs:

Graph (a) can be split into two components by removing one of the edges vw

and vx. We say that the removal of either of these edges disconnects the graph.

Graph (b) can also be disconnected by the removal of a single edge - vw.

t X t X

Graph (c) cannot be disconnected by removing a single edge, but the removal

of two edges - for example, uw and vw - disconnects it.

Paths and Connectivity 219

Similarly, graph (d) can be disconnected by removing two edges - for

example, uw and wx.

remove
uw, wx

(d)

-#
V X

With these examples in mind, we define the edge connectivity of a graph as

follows.

Definition
The edge connectivity X{6) of a connected graph G is the smallest number of edges whose

removal disconnects G.

For example, graphs (a) and (b) have edge connectivity 1, and graphs (c)

and (d) have edge connectivity 2.
If we wish to disconnect a graph by removing edges, we often have a choice

of edges to delete. It seems natural to consider ways of disconnecting a graph

that do not involve the removal of 'redundant' edges.

Consider the following graph G.

We can disconnect G by removing the three edges uw, ux, vx, but we cannot

disconnect it by removing just two of these edges. We can also disconnect G

by removing the four edges uw, wx, xz, yz, but the edge yz is redundant here,

since we need remove only the edges uw, wx, xz to disconnect G. A set of such

edges in which no edge is redundant - such as {uw, ux, vx), {wy, xz) or {yt} -

is called a cutset.

220 Graphs and Applications: An Introductory Approach

Definition
A cutset of a connected graph G is a set 5 of edges with the following two properties:

• removal of all the edges in S disconnects G;

• removal of some (but not all) of the edges in 5 does not disconnect G.

Remarks
1. Two cutsets of a graph need not necessarily have the same number of

edges. For example, in the above graph, the sets {uw, ux, vx}, {wy, xzj and

{yt} are all cutsets.

2. The edge connectivity A(G) of a graph G is the size of the smallest cutset of

G. For example, for the above graph, A(G) = 1.

Paths and Connectivity 221

Vertex Connectivity

We can also think of connectivity in terms of the minimum number of vertices

that need to be removed in order to disconnect a graph. When we remove a

vertex, we must also remove the edges incident with it:

remove v

Consider again the connected graphs (a)-(d):

Graphs (a) and (b) can be disconnected by the removal of a single vertex,

either v or w.

222 Graphs and Applications: An Introductory Approach

Graph (c) can also be disconnected by removing just one vertex, w.

Graph (d) cannot be disconnected by removing a single vertex, but the

removal of two non-adjacent vertices - for example, v and w - disconnects it.

remove
v, w

u

x

A single vertex whose removal disconnects a graph, such as v or w in graph

(b), or w in graph (c), is called a cut vertex.
With these examples in mind, we define the connectivity (or vertex connec¬

tivity) of a graph as follows; we use the simpler term connectivity when there is

no possibility of confusion with edge connectivity.

Definition
The connectivity (or vertex connectivity) k(G) of a connected graph G (other than a

complete graph) is the smallest number of vertices whose removal disconnects G.

For example, graphs (a), (b) and (c) have connectivity 1, and graph (d) has

connectivity 2.

The above definition breaks down when G is a complete graph, since we

cannot then disconnect G by removing vertices. We therefore make the

following definition.

Paths and Connectivity 223

Definition

The connectivity k(Kn) of the complete graph Kn (n > 3) is n -1.

There is also a 'vertex analogue' of the concept of a cutset.

Consider the following graph G.

We can disconnect G by removing the two vertices u and x, but we cannot

disconnect it by removing just one of these vertices. We can also disconnect G

by removing the two vertices y and z, but the vertex z is redundant here, since

we need remove only the vertex y to disconnect G. A set of such vertices in

which no vertex is redundant, such as {u, x} or {y}, is called a vertex cutset.

Definition
A vertex cutset of a connected graph 6 is a set S of vertices with the following two

properties:

• removal of all the vertices in 5 disconnects 6;

• removal of some (but not all) of the vertices in 5 does not disconnect G.

Remarks
1. Two vertex cutsets of a graph need not necessarily have the same number

of vertices. For example, in the above graph, the sets {«, x} and {y} are

both vertex cutsets.
2. The connectivity /c(G) of a graph G is the size of the smallest vertex cutset of

G. For example, for the above graph, k(G) = 1.

224 Graphs and Applications: An Introductory Approach

In each part of Problem 10.4, you may have noticed that the vertex connec¬

tivity /c(G) does not exceed the edge connectivity A(G), which does not exceed

(5(G). These inequalities hold for all connected graphs.

Theorem 10.1
Let 6 be a connected graph with smallest vertex degree d(G). Then

k(G) < A(G) < d(G).
' . '

Paths and Connectivity 225

Outline of Proof

If G is the complete graph Kn/ then k(G) = A(G) = (5(G) = n -1.

If G is a connected graph that is not Kn, and if v is a vertex of degree (5(G),

then G can be disconnected by removing all the (5(G) edges incident with v. It

follows that 2(G), the minimum number of edges whose removal disconnects

G, cannot exceed (5(G). So

A(G) < (5(G). (*)

It remains to show that k(G) < A(G) whenever G is not a complete graph.

Let G be a simple connected graph with n vertices and edge connectivity

A(G). Since G is not Kn, the smallest vertex degree is at most n - 2, so, by equa¬

tion (*), 2(G) < n - 2. There is at least one set of A(G) edges whose removal

disconnects G into two components G\ and G2, as illustrated below.

(For example, in the above case, A(G) = 3 and we can disconnect the graph by

removing the three edges ua, vb and wc.)

But we can also remove these edges by removing at most A(G) vertices, since

we have only to remove one suitably chosen end-vertex from each of these

A(G) edges. (For example, in the above case, we can remove the vertices u, v

and c.) Let us remove these A(G) edges one at a time. Since there are at most n -

2 edges to be removed, and since at each step we can remove an edge either

from Gj or from G2, we can achieve this by removing a set of vertices that

leaves neither Gj nor G2 empty. It follows that the minimum number of

vertices whose removal disconnects G cannot exceed A(G); that is, /c(G) < 2(G).

Finally, let G be a non-simple connected graph, and let G' be the graph

obtained by deleting loops and changing multiple edges to single edges. If

/c(G') < A(G') for the simple graph G', then /c(G) < A(G), since the changes

cannot affect /c(G), and can only decrease A(G); that is,

k(G) = k(G’) < 2(G’) = 2(G).

Thus, for any connected graph G,

k(G) < A(G) < (5(G).

226 Graphs and Applications: An Introductory Approach

Remark It is possible for both inequalities in Theorem 10.1 to be strict inequal¬

ities: k(G) < A(G) < <5(G). For example, for the graph shown below, k(G) = 1,

A(G) = 2 and d(G) = 3:

10.2 Menger's Theorem for Graphs

In this section we discuss an important result which relates the above ideas to

the number of 'disjoint paths' between two vertices in a graph. This result is

known as Menger's theorem.
We start by defining disjoint paths in a graph.

Definitions
Let 6 be a connected graph, and let s and t be vertices of G.

A path between s and f is an sf-path. Two or more st-paths are edge-disjoint if they have no

edges in common, and vertex-disjoint if they have no vertices in common, apart from s

and t.

For example, in the following graph,

a c

the paths sad and sbdt are both edge-disjoint and vertex-disjoint sf-paths;

the paths sad and sbd are neither edge-disjoint nor vertex-disjoint, since

they have the edge ct in common;
the paths sad and sbcdt are edge-disjoint, but not vertex-disjoint, since they

have the vertex c in common.

Remark For convenience, we sometimes abuse the terminology and say

'there is at most one vertex-disjoint/edge-disjoint sf-path' when there do not

exist two vertex-disjoint/edge-disjoint sf-paths (see Example 10.1).

Paths and Connectivity 227

Problem 10.6

(a) Prove that if two sf-paths in a graph are vertex-disjoint, then they are also edge-disjoint.

(b) Give an example of a graph in which no two edge-disjoint sf-paths are vertex-disjoint.

We also need the following definitions.

Definitions
Let 6 be a connected graph, and let s and f be vertices of G.

Certain edges separate s from f if the removal of these edges destroys all paths between s

and f.

Certain vertices separates from f if the removal of these vertices destroys all paths between

s and f.

228 Graphs and Applications: An Introductory Approach

For example, in the following graph,

a c

the edges ac, be, bd separate s from f, as do the edges sa, ac, be, bd, dt;

the vertices b and c separate s from f, as do the vertices a, b, d.

We now show how these ideas are related to that of edge-disjoint sf-paths.

We motivate our discussion with three examples.

Example 10.1

u y

In this graph, the single edge vox separates s from f. It follows that there cannot

be two edge-disjoint st-paths, since each sf-path must include the edge wx, so

there is at most one edge-disjoint sf-path. d

Example 10.2

V X

In this graph, the two edges vx and wy separate s from t. It follows that there are

at most two edge-disjoint st-paths, since each sf-path must include one of these

two edges. d

Example 10.3

Paths and Connectivity 229

In this graph, the three edges ce, de and df separate s from f. It follows that there

are at most three edge-disjoint st-paths, since each sf-path must include one of

these three edges. O

More generally, consider a set of edges separating s from t in an arbitrary

connected graph.

Since the removal of these edges destroys all paths between s and t, each

sf-path includes at least one of them. It follows that the maximum number of

edge-disjoint st-paths cannot exceed the number of edges in this set. Since this

applies to any set of edges separating s from t,

the maximum number < the number of edges in any set

of edge-disjoint sf-paths ~ of edges separating s from t.

But this is true for any set of edges separating s from t, so it must be true for a set

with the smallest possible number of edges. Thus

the maximum number < the minimum number

of edge-disjoint sf-paths “ of edges separating s from t.

The two numbers in the above inequality are, in fact, equal. This is the edge

form of Menger's theorem for graphs, which we state formally as follows.

Theorem 10.2: Menger's Theorem for Graphs (Edge Form)

Let G be a connected graph, and lets and t be vertices of G.

Then the maximum number of edge-disjoint sf-paths is equal to the minimum number of

edges separating s from f.

Remark It follows that, if we can find k edge-disjoint sf-paths and k edges

separating s from f (for the same value of fc), then k is the maximum number of

edge-disjoint sf-paths and the minimum number of edges separating s from f.

These k edges separating s from f necessarily form a cutset. It follows that,

when looking for them, we need consider only cutsets whose removal discon¬

nects G into two components, one containing s and the other containing f.

230 Graphs and Applications: An Introductory Approach

Problem 10.7

By finding k edge-disjoint sf-paths, and k edges separating s from t (for the same value of k),

and using the edge form of Menger's theorem, find the maximum number of edge-disjoint

sf-paths for each of the following graphs:

We can use Menger's theorem to obtain a result about edge connectivity.

Recall that the edge connectivity A(G) of a connected graph G is the smallest

number of edges whose removal disconnects G. So, by Menger's theorem,

there are at least A(G) edge-disjoint paths between any given pair of vertices.

We restate this result as follows.

Corollary of Menger's Theorem for Graphs (Edge Form)

A connected graph 6 has edge connectivity / if and only if there are / or more edge-disjoint

paths between each pair of vertices in G, and there are exactly/edge-disjoint paths between
at least one pair of vertices in G.

Notice that, in Examples 10.1, 10.2 and 10.3, the edge connectivities are 1, 2
and 3, respectively.

10.3 Some Analogues of Menger's Theorem

We now present some analogues of Menger's theorem, starting with

Menger's theorem for digraphs (arc form), and continuing with the vertex

forms for both graphs and digraphs. We present all these results without
proof.

Paths and Connectivity 231

Meager's Theorem for Digraphs (Arc Form)

Many of the concepts introduced earlier for graphs have analogues for

digraphs. For example, the following definitions are almost identical to those

given for graphs.

Definitions

Let D be a connected digraph, and let s and t be vertices of D.

A path from s to t is an st-path. Two or more sf-paths are arc-disjoint if they have no arcs in

common, and vertex-disjoint if they have no vertices in common, apart from s and f.

For example, in the following digraph,

a c

the paths sad and sbdt are both arc-disjoint and vertex-disjoint sf-paths;

the paths sad and sbd are neither arc-disjoint nor vertex-disjoint;

the paths sad and sbcdt are arc-disjoint, but not vertex-disjoint.

Remark For convenience, we sometimes abuse the terminology and say

'there is at most one vertex-disjoint/arc-disjoint sf-path' when there do not

exist two vertex-disjoint/arc-disjoint sf-paths (see Example 10.4).

Definitions

Let D be a connected digraph, and let s and t be vertices of D.

Certain arcs separate s from f if the removal of these arcs destroys all paths from s to t.

Certain vertices separate s from f if the removal of these vertices destroys all paths from s to t.

For example, in the above digraph,

the arcs ac, be, bd separate s from t, as do the arcs sa, ac, be, bd, dt,

the vertices b and c separate s from t, as do the vertices a, b, d.

232 Graphs and Applications: An Introductory Approach

Using this terminology, we state the arc form of Menger's theorem for

digraphs.

Theorem 10.3: Menger's Theorem for Digraphs (Arc Form)

Let D be a connected digraph, and lets and t be vertices of D.

Then the maximum number of arc-disjoint sf-paths is equal to the minimum number of arcs

separating s from t.

Remark It follows that, if we can find k arc-disjoint sf-paths and k arcs sepa¬

rating s from f (for the same value of k), then k is the maximum number of

arc-disjoint sf-paths and the minimum number of arcs separating s from t.

Menger's Theorem for Graphs (Vertex Form)

We have seen how Menger's theorem (edge form) relates the number of

edge-disjoint sf-paths in a graph to the smallest number of edges separating s

from f, and how this result relates to edge connectivity. We now state an

analogous theorem for vertex-disjoint sf-paths.

As before, we motivate our discussion with examples.

Paths and Connectivity 233

Example 10.4

V y

In this graph, the vertex w separates s from f. It follows that there cannot be two

vertex-disjoint st-paths, since all sf-paths must include the vertex w, so there is at

most one vertex-disjoint sf-path.) □

Example 10.5

In this graph, the vertices d and e separate s from t. It follows that there are at

most two vertex-disjoint st-paths, since all sf-paths must include one of these

vertices. □

More generally, consider a set of vertices (excluding s and f) separating

non-adjacent vertices s and t in an arbitrary connected graph.

Since the removal of these vertices destroys all paths between s and f, every

sf-path includes at least one of them. It follows that the maximum number of

vertex-disjoint st-paths cannot exceed the number of vertices in this set.

As with the edge form of Menger's theorem, these numbers are, in fact,

equal. This is the vertex form of Menger's theorem, which we state formally as

follows.

234 Graphs and Applications: An Introductory Approach

• - .

Theorem 10.4: Menger's Theorem for Graphs (Vertex Form)

Let G be a connected graph, and let s and f be non-adjacent vertices of G.
Then the maximum number of vertex-disjoint sf-paths is equal to the minimum number of

vertices separating s from t.

Remark It follows that, if we can find k vertex-disjoint sf-paths and k vertices
separating s from f (for the same value of k), then k is the maximum number of
vertex-disjoint sf-paths and the minimum number of vertices separating s from
f. These k vertices separating s from f necessarily form a vertex cutset. It
follows that, when looking for them, we need consider only vertex cutsets
whose removal disconnects G into two or more components, one containing s

and another containing f.

Problem 10.9

By finding k vertex-disjoint sf-paths, and k vertices separating s from t (for the same value of
k), and using the vertex form of Menger's theorem, find the maximum number of
vertex-disjoint sf-paths for the following graph:

V X

w y

We can use Menger's theorem to obtain a result about vertex connectivity.
Recall that the connectivity /c(G) of a graph G (other than a complete graph) is
the smallest number of vertices whose removal disconnects G. So, by the
vertex form of Menger's theorem, there are at least /c(G) vertex-disjoint paths
between any given pair of vertices.

We restate this result as follows.

Corollary of Menger's Theorem for Graphs (Vertex Form)

A connected graph G (other than a complete graph) has vertex connectivity A if and only if
every non-adjacent pair of vertices in G is joined by k or more vertex-disjoint paths, and at
least one non-adjacent pair of vertices is joined by exactly k vertex-disjoint paths.

Paths and Connectivity 235

Notice that, in Examples 10.4 and 10.5, the vertex connectivities are 1 and 2,

respectively.

Historical Note
.

.
■

The vertex form for graphs is the version of Monger's theorem actually proved by K. Menger

in 1927. The corollary was proved five years later by H. Whitney. The edge form and arc form

of Menger's theorem were proved in 1955 by L.R. Ford and D.R. Fulkerson.

Menger7s Theorem for Digraphs (Vertex Form)

Finally, for completeness, we present the vertex form of Menger's theorem for

digraphs. This is almost identical to the vertex form for graphs.

Theorem 10.5: Menger's Theorem for Digraphs (Vertex Form)

Let D be a connected digraph, and let s and t be non-adjacent vertices of D.

Then the maximum number of vertex-disjoint sf-paths is equal to the minimum number of

vertices separating s from t.

Problem 10.10

By finding k vertex-disjoint sf-paths, and k vertices separating s from t (for the same value of

k), and by using the vertex form of Menger's theorem, find the maximum number of

vertex-disjoint 5f-paths for the following digraph:

w

236 Graphs and Applications: An Introductory Approach

10.4 Case Study

Reliable Telecommunication Networks

In this section we look at the use of graph theory to represent telecommunica¬

tion networks and show how it can be of value in the design of efficient

networks. We find that the notion of connectivity is important in this context.

A graph of a telecommunication network may contain a very large number

of vertices and edges. The vertices may represent telephone exchanges and

subscribers; the edges represent links between them. It is important that such

a network should be reliable. One aspect of reliability is that calls between

subscribers should be possible even if a few exchanges or links fail. Consider

the following graph, which represents a possible interconnection of

exchanges:

F

If the link AB fails, then communication between exchanges A and B is still

possible, but if the link EA fails, then exchange E cannot communicate with

any other exchange. The minimum number of links whose failure prevent the

system from functioning fully is equal to the edge connectivity of the corre¬

sponding graph. Similarly, the vertex connectivity tells us how many exchanges

must fail before there is a breakdown in communications between the

remaining exchanges.

So it is necessary to provide alternative paths between exchanges so that

communication between the exchanges is still possible if one path fails.

Furthermore, a particular link or exchange in the path between two

exchanges may also form part of the path between another pair of exchanges.

The link or the exchange may therefore be already used to capacity by other

calls when a new call is attempted, thus preventing the new call from being

made. In such a case we say that the new call is blocked.

For any two particular exchanges, the maximum number of alternative

paths, no two of which pass through the same intermediate exchange, is (in

the terminology of graph theory) the maximum number of vertex-disjoint

paths between the corresponding vertices of the graph. By the corollary to the

vertex form of Menger's theorem, the smallest number of such paths between

any two exchanges is the vertex connectivity. Similarly, the maximum number

Paths and Connectivity 237

of alternative paths, no two of which use the same link between exchanges, is

the maximum number of edge-disjoint paths between the corresponding

vertices of the graph. By the corollary to the edge form of Menger's theorem,

the smallest number of such paths between any two exchanges is the edge
connectivity.

If reliability were the only consideration, a telecommunication system

would have as many alternative paths as possible between exchanges - it

would have the largest possible vertex connectivity and the largest possible

edge connectivity. To achieve this, each exchange would need to be

connected to every other exchange, and the corresponding graph would be a

complete graph. This is usually impracticable. Designers try to achieve the

largest possible values of the vertex connectivity k(G) and the edge connec¬

tivity A(G) for a graph G with a given number of vertices and edges.

We know from Theorem 10.1 that, for any connected graph G,

/c(G) < A(G) < (3(G),

where (5(G) is the minimum vertex degree in G. Suppose that G has n vertices

and m edges. Then, by the handshaking lemma, the sum of all the vertex

degrees is 2m. It follows that the average of the vertex degrees is 2m/n, so the

minimum degree of the vertices cannot be greater than this. Combining these

results, we obtain the following inequalities:

k(G) < A(G) < (5(G) < 2m/n.

A graph G for which these inequalities are all equalities has the maximum

vertex connectivity and the maximum edge connectivity possible for any

graph with n vertices and m edges. Such a graph is said to have optimal

connectivity. To show that a graph has optimal connectivity, it is sufficient to

show that k(G) = 2m/n, as then the above inequalities guarantee that

/c(G) = A(G) = (5(G).
All graphs with optimal connectivity are regular graphs (since the smallest

vertex degree equals the average of the vertex degrees), but not every regular

graph has optimal connectivity. For example, the following graph G is regular

of degree 3, but /c(G) = A(G) = 2, so G does not have optimal connectivity.

238 Graphs and Applications: An Introductory Approach

Problem 10.11
Show that the following regular graphs all have optimal connectivity:

(a) the cycle graph Cn (n > 3);

(b) the complete graph Kn (n > 3);

(c) the complete bipartite graph Ku (r > 2).

Problem 10.12
(a) There are two non-isomorphic simple graphs with 6 vertices and 9 edges that have

optimal connectivity. Draw them.
(b) Draw a regular graph with 7 vertices and 14 edges that does not have optimal

connectivity.

We have seen that the values of rc(G) and A(G) for a graph G give us informa¬

tion about the reliability of the corresponding telecommunication system.

However, these values do not tell us the whole story: two graphs with the

same number of vertices, the same number of edges, and the same values of

k(G) and A(G), may not correspond to equally reliable systems.

Consider, for example, the following two graphs, each of which has 10

vertices and 12 edges, and satisfies k(G) = A(G) = 2.

In the first graph, all paths from the vertex s to the vertex t can be destroyed

by removing the edges of any one of the four cutsets with two edges sepa¬

rating s from t - {su, sv}, {wt, xt}, {su, xt} and (su, wt}. However, the second

graph has only two cutsets with two edges separating s from t - {su, su} and

{wt, xt}. So if all the edges contained in these cutsets have equal likelihood of

being blocked or damaged, we would expect the second graph to correspond

to a more reliable system than the first, and this is indeed the case.

In order to have full information about the reliability of a network repre¬

sented by a graph, we need to know not only the vertex connectivity and edge

connectivity, but also all the cutsets of the graph. Although this account is

necessarily simplified, the ideas presented here have proved to be of great

importance in the design and analysis of telecommunication systems.

Paths and Connectivity 239

Exercises 10

Connectivity of Graphs

10.1 Write down the values of k(G) and A(G) for each of the following
graphs G:

10.2 Give an example (where possible) of a graph G for which:

(a) /c(G) = 2, MG) = 3, <3(G) = 4;

(b) /c(G) = 3, A(G) = 2, d(G) = 4;

(c) k(G) = 2, A(G) = 2, d(G) = 4.

10.3 In the Petersen graph, find:

(a) a cutset with 3 edges;

(b) a cutset with 4 edges;

(c) a cutset with 5 edges;

(d) a cutset with 6 edges.

240 Graphs and Applications: An Introductory Approach

Menger's Theorem and its Analogues

10.4 In the complete bipartite graph K10,13/ let v be any vertex in the set

with 10 vertices, and w be any vertex in the other set.

(a) Find the maximum number of edge-disjoint uze-paths.

(b) Find the maximum number of vertex-disjoint uze-paths.

Hint First remove the edge vw, apply the vertex form of Menger's

theorem, then restore the edge vw.

10.5 (a) By finding k arc-disjoint sf-paths and k arcs separating s from t (for

the same value of k), find the maximum number of arc-disjoint

sf-paths in the following digraph:

b d

(b) Similarly, find the maximum number of vertex-disjoint sf-paths in

the above digraph.

Case Study

Telecommunication Networks

10.6 The following diagrams represent telecommunication networks:

B C B C

In each case, find:

(a) the smallest number of links whose failure would separate the

network into two parts, and the corresponding links;

(b) the smallest number of exchanges whose failure would separate the

network into two parts, and the corresponding exchanges.

Paths and Connectivity 241

10.7 Which of the graphs in Exercise 10.1 have optimal connectivity?

10.8 Which of the Platonic graphs have optimal connectivity?

dodecahedron

10.9 Determine whether the complete bipartite graph K4/6 has optimal

connectivity.

Chapter 11

Planarity

After studying this chapter,

• explain the terms

face, degree of a face,:

• state and use the har,

• state and use Euler's l

• understand the statemer

• explain the term dualt

• recognize the five i

• state and use Euler's |

• state and use the I

i should be able to:

jraph, non-planar graph, plane drawing, face, infinite

vision of a graph and contraction of a graph;
■

;ing lemma for planar graphs;

jla and the corollaries to Theorem 11.2;

}f Kuratowski's theorem;

1 and describe its properties;

yhedra, and the duality relationships between them;

Iron formula;

dng lemma for polyhedra.

In Chapter 1, you met a problem related to the theme of this chapter - the

utilities problem. In this problem, three neighbours wish to be connected to the

three utilities gas, water and electricity, in such a way that the connections do

not cross.

242

Planarity 243

A more practical version of this type of problem arises in the design of

printed circuit boards, on which electronic components are connected by

means of conducting strips printed directly onto the flat board of insulating

material. Such printed connections may not cross, since this would lead to
undesirable electrical contact at crossing points.

In this chapter we investigate the properties of graphs that can be drawn in

the plane without any of their edges crossing; such graphs are called planar

graphs. In particular, we determine whether the complete bipartite graph K3/3

is planar, thereby solving the utilities problem. We discuss Euler's formula

and Kuratowski's theorem; the latter is an important theoretical result which

gives a necessary and sufficient condition for a graph to be planar. We also

describe a heuristic algorithm that can be used to determine whether a given
graph is planar.

11.1 Planar Graphs

Suppose that you wish to design a nine-hole golf course. It is advisable to do

so in such a way that no two of the fairways intersect, as this would cause

inconvenience and possible danger to the golfers. For example, the first

diagram below would be unsuitable, whereas the second would be more

appropriate.

We can represent each of these layouts by the cycle graph C9; the nine vertices

correspond to the tees (or greens), and the edges correspond to the fairways.

In the first drawing, some of the edges cross, whereas in the second drawing

there are no crossings.

9 6' 8 6

244
Graphs and Applications: An Introductory Approach

You have seen several instances of graphs drawn in more than one way. For

example, the complete graph K4 and the complete bipartite graph K3,3 can be

drawn as follows.

The particular drawing we choose often depends on the use to which the

graph is to be put. As we have seen, it is sometimes useful to know whether

we can draw a graph in such a way that no two edges cross. For some graphs,

such as K4, it is possible to find a drawing that involves no crossings, whereas

for others, such as K3/3, there are no such drawings, as you will see. This leads

to the following definitions.

Definitions
A graph G is planar if it can be drawn in the plane in such a way that no two edges meet

except at a vertex with which they are both incident. Any such drawing is a plane drawing

of 6.
A graph G is non-planar if no plane drawing of G exists.

For example, the graph K4 is planar, since it can be drawn in the plane

without edges crossing. The following diagram shows three plane drawings

of K4.

The graphs of the cube and dodecahedon are planar, since they can be

drawn as follows.

Planarity 245

cube dodecahedron

Similarly, the following graph is planar, since it can be 'unravelled' as
shown.

On the other hand, the complete bipartite graph K3/3 is non-planar, since

every drawing of it must contain at least one crossing. To see why this is, note

that K3 3 has a cycle of length 6 - the cycle uavbwcu. In any plane drawing, this

cycle must appear as a hexagon (not necessarily regular).

246 Graphs and Applications: An Introductory Approach

We must now insert the edges ub, vc, wa. Only one of them can be drawn inside

the hexagon, since two would cross. Similarly, only one of them can be drawn

outside the hexagon, since two would cross.

It is therefore impossible to insert all three of these edges without creating a

crossing. This demonstrates that K3 3 is non-planar.

Problem 11.2

Explain why the utilities problem has no solution - that is, why it is not possible to connect

each of the three houses to the three utilities so that no connections cross.

Problem 11.3

Give an explanation, similar to that given for ^3,3, to demonstrate that the complete graph K$

is non-planar.

Problem 11.4

There was once a king with five sons. In his will he stated that after his death each son should

build a castle, and that the five castles should be connected in pairs by non-intersecting

roads. Can the terms of the will be satisfied?

Planarity 247

When studying planar graphs, we may restrict our attention to simple

graphs whenever it is convenient to do so. If a planar graph has multiple

edges or loops, we replace the multiple edges by a single edge and remove the

loops. After drawing the resulting simple graph without crossings, we can

then insert the loops and multiple edges, as follows.

remove insert

Problem 11.5

Decide whether each of the following statements is true or false, and give a reason or

counter-example as appropriate.

(a) Every subgraph of a planar graph is planar.

(b) Every subgraph of a non-planar graph is non-planar.

(c) Every graph that contains a planar subgraph is planar.

(d) Every graph that contains a non-planar subgraph is non-planar.

Problem 11.6

(a) Which trees are planar?

(b) For which values of n is the cycle graph Cn planar?

(c) For which values of n is the complete graph Kn planar?

(d) For which values of 5 are the complete bipartite graphs K]iS and KiiS planar?

(e) For which values of r and s (r < s) is the complete bipartite graph KfiS planar?

11.2 Euler's Formula

In this section we introduce Euler's formula, which relates the numbers of

vertices, edges and faces of a plane drawing of a planar graph. First, we intro¬

duce the idea of a face of such a drawing.
Every plane drawing of a planar graph divides the plane into a number of

regions. For example, any plane drawing of K4 divides the plane into four

regions - three triangles (3-cycles) and one 'infinite region':

Similarly, any plane drawing of K2,5 divides the plane into five regions -

four quadrilaterals and one 'infinite region':

We make these ideas precise as follows.

Remark The regions do not include the vertices and edges forming their

boundaries.

For example, the graph in diagram (a) below has four faces,/i,/^ fo and/4,

where /4 is the infinite face. An alternative drawing of G, in which the faces

have the same boundaries but/3 is the infinite face, is given in diagram (b).

Planarity 249

Problem 11.7

Find plane drawings of the above graph in which:

(a) fj is the infinite face;

(b) fi is the infinite face.

We define the degree of each face of a plane drawing of a connected planar

graph as follows.

Definitions

Let 6 be a connected planar graph, and let f be any face of a plane drawing of G. Then the

degree of f, denoted by deg f, is the number of edges encountered in a walk around the

boundary of the face f.

If all faces have the same degree g, then G is face-regular of degree g.

For example, in each drawing of the graph G in diagrams (a) and (b) above,

deg/i = 3 and deg/3 = 4.

Note that both sides of the edge gf lie on the boundary of the face/2,so must be

counted twice as we walk around the boundary of the face; thus, deg/2 = 9.

If we find the sum of all the face degrees, we obtain 3 + 4 + 9 + 6 = 22,

which is exactly twice the number of edges of G. This makes us suspect that

the handshaking lemma for graphs has a 'face analogue' for the faces in a

plane drawing of a planar graph. This is indeed the case, and we refer to it as

the handshaking lemma for planar graphs.

Theorem 11.1: Handshaking Lemma for Planar Graphs

In any plane drawing of a planar graph, the sum of all the face degrees is equal to twice the

number of edges.

250 Graphs and Applications: An Introductory Approach

Proof In any plane drawing of a planar graph, each edge has two sides

(which may lie on the boundary of a single face or on the boundaries of two

different faces), so it contributes exactly 2 to the sum of the face degrees. The

result follows immediately. ®

Problem 11.9
For each of the plane drawings in Problem 11.8, count the numbers of vertices, edges and

faces, and find the value of

(number of vertices) - (number of edges) + (number of faces).

In the solution to Problem 11.9, you saw that, for each of the plane drawings

under consideration,

(number of vertices) - (number of edges) + (number of faces) = 2.

This equation holds for any plane drawing of a connected planar graph, and is

known as Euler's formula. It tells us that each plane drawing of a given

connected planar graph with n vertices and m edges must have the same

number of faces - namely, 2 - n + m.

Planarity 251

Theorem 11.2: Euler's Formula for Planar Graphs

Let 6 be a connected planar graph, and let n, m and f denote, respectively, the numbers of

vertices, edges and faces in a plane drawing of 6. Then

n-m + f=2. Mils

Proof A plane drawing of any connected planar graph G can be constructed

by taking a spanning tree of G and adding edges to it, one at a time, until a

plane drawing of G is obtained.

We prove Euler's formula by showing that:

(a) for any spanning tree, n-m + / = 2;

(b) adding an edge does not change the value of n-m + f.

First, we prove statement (a). Let T be any spanning tree of G; then we may

draw T in the plane without crossings.

Since T has n vertices and n -1 edges, and there is only 1 face (the infinite face),

we have

n-m+f—n-(n-l) + l = 2,

as required.
Now we prove statement (b) by adding in the other edges one at a time until

a plane drawing of the graph G is obtained. At each stage the added edge

either joins two different vertices:

or joins a vertex to itself (if it is a loop):

252 Graphs and Applications: An Introductory Approach

In each case, since we have a plane drawing of G, the added edge cuts an

existing face in two, as illustrated above. This leaves n unchanged, increases m

by 1, and increases/by 1, and so leaves n-m +/unchanged. Since n-m + f= 2

throughout the process, the result follows. ■

We now show how Euler's formula can be used to prove that certain graphs

are non-planar. We first derive two corollaries of Theorem 11.2 that give upper

bounds for the number of edges of a planar graph.

Planarity 253

Corollary 11.1

Let G be a simple connected planar graph with n (> 3) vertices and m edges. Then

m < 3n-6.

Proof Consider a plane drawing of a simple connected planar graph G with/

faces. Since a simple graph has no loops or multiple edges, the degree of each

face is at least 3. It follows from the handshaking lemma for planar graphs that

3/ < 2m.

Substituting for /from Euler's formula / = m-n + 2, we obtain

3m - 3n + 6 < 2m,

and hence

m < 3n - 6,

as required. ■

Using Corollary 11.1, we can prove that the complete graph K5 is

non-planar.

Example 11.1: Ks is Non-Planar
The proof is by contradiction.

Suppose that K5 is planar. Since K5 is a simple connected graph with

5 vertices and 10 edges, it follows from Corollary 11.1 that

10 < (3 x 5) - 6 = 9,

which is false. This contradiction shows that K5 is non-planar. O

We cannot use Corollary 11.1 to prove that the complete bipartite graph

X3 3 is non-planar, since K3/3 has 6 vertices and 9 edges, and the inequality

9 < (3 x 6) - 6 = 12

is true. However, we can prove that K3/3 is non-planar by using the following

corollary for graphs with no triangles.

254 Graphs and Applications: An Introductory Approach

Corollary 11.2

Let G be a simple connected planar graph with n (> 3) vertices, m edges and no triangles.

Then m < 2n - 4.

Proof Consider a plane drawing of a simple connected planar graph G with/

faces and no triangles. The degree of each face of such a graph is at least 4. It

follows from the handshaking lemma for planar graphs that

4/ < 2m,

so

2/ < m.

Substituting for/from Euler's formula/ = m-n + 2, we obtain

2m - 2n + 4 < m,

and hence

m < 2n - 4,

as required. ■

Using Corollary 11.2, we can prove that the complete bipartite graph K3 3 is

non-planar.

Example 11.2: K3,3 is Non-Planar
The proof is by contradiction.

Suppose that K3 3 is planar. Since K3 3 is a simple connected graph with 6

vertices, 9 edges and no triangles, it follows from Corollary 11.2 that

9 < (2 x 6) - 4 = 8,

□ which is false. This contradiction shows that K33 is non-planar.

Planarity 255

Problem 11.11

Under what conditions do Corollaries 11.1 and 11.2 give equalities

m = 3n - 6 and m = 2n - 4

rather than inequalities?

We can prove the following result similarly.

Corollary 11.3
Let G be a simple connected planar graph. Then G contains a vertex of degree 5 or less.

Problem 11.13

Prove Corollary 11.3.

Hint Use Corollary 11.1 and give a proof by contradiction.

256 Graphs and Applications: An Introductory Approach

Problem 11.14

Give an example of each of the following:

(a) a simple connected planar graph in which each vertex has degree 5;

(b) a non-simple connected planar graph in which each vertex has degree 6.

The restrictions on the number of edges of a planar graph given in Corol¬

laries 11.1 and 11.2 are useful for showing that certain graphs are non-planar.

For example, we used them to show that K$ and K3 3 are non-planar. Unfortu¬

nately, the method does not work the other way round - there are graphs

(such as the Petersen graph) that satisfy these inequalities but are non-planar.

Because of this, we now turn our attention to other ways of determining

whether a given graph is planar.

11.3 Cycle Method for Planarity Testing

In many practical applications it is important to test whether a given graph is

planar. There are several methods for this purpose in current use, and we

present one of these, the cycle method, informally here. It is a heuristic algo¬

rithm that can be applied to any small graph containing a Hamiltonian cycle.

There exist algorithms that are faster and work in all cases, but they are too

complicated to be described here.

Given a graph G that we wish to test for planarity, we look for a

Hamiltonian cycle, draw this cycle as a regular polygon, and then try to draw

the remaining edges so that no edges cross.
Having chosen a Hamiltonian cycle C, we list the remaining edges of G, and

try to divide them into two disjoint sets A and B, as follows:

A is a set of edges that can be drawn inside C without crossing;

B is a set of edges that can be drawn outside C without crossing.

If this is possible, the graph G is planar, and we can use the sets A and B to

obtain a plane drawing of G. If this is not possible, the graph G is non-planar.

You met an example of this procedure earlier when we tested the complete

bipartite graph K33 for planarity. We started by noting that £3,3 has a

Hamiltonian cycle C of length 6, which we drew in the plane as a regular

hexagon uavbwc. We then tried to draw in the three remaining edges ub, vc

and wa; but only one of these edges can lie inside C and only one can lie

outside C, since otherwise two of them cross. Thus, if we put ub in the set A

and vc in the set B, then we cannot allocate wa to either set; it follows that we

cannot draw in all three edges without crossings, so the graph K33 is

non-planar.

Planarity 257

w b

^3,3
C is cycle uavbwcu

u a

w b

ub, vc cross

inside C

ub, vc cross

outside C

We say that the edges ub and vc are incompatible, since they cannot both be

drawn inside C, or both be drawn outside C, without crossing. Similarly, the

edges ub and wa are incompatible, as are the edges vc and wa. Edges that can

be drawn both inside C or both outside C without crossing are compatible.

The following example shows how this idea of incompatible edges can be

used to test the planarity of more complicated graphs.

Example 11.3
We determine whether the following graph G is planar.

a

cycle abcdefghia.

choose the Hamiltonian

ac
ad
ae
ah

bd df
bg eh
bi fh

gi

edges which do
not belong to C

We list the edges that do not belong to C, as shown above.
We put the first edge in the list, ac, in a set A, and delete this edge from the

list:

list: ad, ae, ah, bd, bg, bi, df, eh,fh, gi.

258 Graphs and Applications: An Introductory Approach

The edge ac is incompatible with bd, bg and hi, so we put the edges bd, bg and

bi in a set B. All the edges in B are compatible with each other, so we delete the

edges bd, bg and bi from the list:

list: ad, ae, ah, df, eh,fh, gi.

We now have the following situation:

edges in A:
drawn inside C

A ={ac}

edges in B:
drawn outside C

B = {bd, bg, bi}

We now consider each edge of B in turn.

The edge bd is compatible with each edge in the list.

The edge bg is incompatible with ad, ae, eh and fh, so we put the edges ad, ae, eh

and fh into A. All the edges in A are compatible with each other, so we delete

the edges ad, ae, eh and fh from the list:

list: ah, df, gi.

The edge bi is incompatible with ah, so we put the edge ah into A. All the

edges in A are compatible with each other, so we delete the edge ah from the

list:

list: df, gi.

The situation is now as follows:

Planarity 259

We now consider each edge of A in turn.
The edge ad is compatible with each edge in the list.
The edge ae is incompatible with df, so we put the edge d/into B. All the edges
in B are compatible with each other, so we delete the edge df from the list:

list: gi.

The edge eh is incompatible with gi, so we put the edge gi into B. All the
edges in B are compatible with each other, so we delete the edge gi from the
list.

The list is new empty, and we have:

All the edges in A are compatible and all the edges in B are compatible, so G
is planar. To obtain a plane drawing of G, we combine the above two figures,
as follows.

260 Graphs and Applications: An Introductory Approach

11.4 Kuratowski's Theorem

We now describe two theoretical methods for determining planarity.

The first method involves the insertion of vertices of degree 2 into the edges

of a graph G, as shown in the following diagram.

Any graph formed from G in this way is called a subdivision of G. Since the

insertion of a vertex of degree 2 does not affect the planarity or non-planarity

of a graph, we deduce the folowing result.

• If G is a planar graph, then every subdivision of G is planar.

This is often stated in the following alternative form.

• If G is a subdivision of a non-planar graph, then G is non-planar.

For example, the following graphs are non-planar, since the first is a subdi¬

vision of K5 and the second is a subdivision of K33.

Planarity 261

a subdivision of X5

It follows from these two observations that

• If G is a graph that contains a subdivision of or K3 3, then G is non-planar.

For example, the following graphs are non-planar, since the first contains a

subdivision of K$ and the second contains a subdivision of K3 3.

You may be wondering why we are so concerned with K5 and K33 and their

subdivisions. The reason is that every non-planar graph is obtained in the way

we have just described - namely, by adding vertices and edges to a subdivi¬

sion of K5 or K33.

• If G is a non-planar graph, then G contains a subdivision of K5 or £3,3.

This result appeared in 1930, and is due to the Polish mathematician

Kazimierz Kuratowski. We state it formally but omit the proof, which is rather

long and complicated.

Theorem 11.3: Kuratowski's Theorem

A graph is planar if and only if it contains no subdivision of K$ or ^3,3.

262 Graphs and Applications: An Introductory Approach

Another characterization of planar graphs involves the notion of 'contract¬

ing' an edge. This is done by bringing one vertex closer and closer to the other

vertex until they coincide, and then coalescing any resulting multiple edges

into a single edge. In the following diagrams, we contract the edge vw.

coalesce
multiple

edges

u

ov,zv

4
x

A contraction of a graph is the result of a sequence of such edge contrac¬

tions. For example, K$ is a contraction of the Petersen graph, since it is the

result of contracting each of the five 'spokes' (the edges joining the inner and

outer 5-cycles).

We now state the following analogue of Kuratowski's theorem. We omit the

proof.

Theorem 11.4

A graph is planar if and only if it contains no subgraph that has K$ or ^3,3 as a contraction.

Planarity 263

The importance of Theorems 11.3 and 11.4 is that they give necessary and

sufficient conditions for a graph to be planar in graph-theoretic terms

(subgraph, subdivision, contraction of a graph), rather than in geometric

terms (crossing, drawing in the plane). They also provide a convincing

demonstration that a given graph is non-planar, if we happen to spot a

subgraph that is a subdivision of K5 or K33 or a subgraph that has K5 or K3 3 as

a contraction.

However, Theorems 11.3 and 11.4 do not provide an easy way of showing

that a given graph is planar, since this would involve looking at a large

number of subgraphs and verifying that none of them is a subdivision of K5 or

K3 3 or contains K5 or K3 3 as a contraction. For this reason, no currently used

algorithm for testing the planarity of a graph is based on either of these

theorems.
Finally, we make a few observations that simplify the task of determining

whether a given graph is planar.

• A disconnected graph is planar if and only if each of its components is

planar; for example, the following graph is non-planar, because one of its

components is a subdivision of K5.

• A graph that has a cut vertex (a vertex whose removal disconnects the

graph) is planar if and only if each of the subgraphs obtained when the

graph is disconnected at the cut vertex is planar; for example, the following

graph is non-planar, because one of these subgraphs is K33.

cut vertex

• A graph that has loops or multiple edges is planar if and only if the graph

obtained by removing the loops and coalescing the multiple edges is

planar; for example, the following graph is non-planar, because the

resulting graph is the Petersen graph.

264 Graphs and Applications: An Introductory Approach

Using these observations, we can sometimes reduce a given graph to a

number of smaller graphs that we can deal with more easily.

11.5 Duality

We next introduce the idea of duality for plane drawings of planar graphs.

To illustrate this idea, we consider the graph of the cube. If we place a new

vertex within each face (including the infinite face) and join the pairs of new

vertices in adjacent faces, we obtain the graph of the octahedron, and vice

versa, as follows.

\ 4 7
3 1 5

6
cube

8 vertices

6 faces

1
.9

/' »\
/its

i \ \

/ 5p --o4\
- \ / \ \

:/ .o_, \\
2o-'---—- — :;-'b3

octahedron

8 faces

6 vertices

(The new vertices are represented by small circles, and the lines joining them

are indicated by dashed lines.)
More generally, for any connected planar graph G, we define the corre¬

sponding dual graph G* as follows.

7 - - .

Definition

Let G be a connected planar graph. Then a dual graph G* is constructed from a plane

drawing of G, as follows.
Draw one new vertex in each face of the plane drawing: these are the vertices of G*.
For each edge e of the plane drawing, draw a line joining the vertices of G* in the faces on

either side of e: these lines are the edges of G*.

Remark We always assume that we have been presented with a plane

drawing of G.

Planarity 265

The procedure is illustrated below.

G

Different plane drawings of a planar graph G may give rise to non-isomor¬

phic dual graphs G*, as we saw in the above problem.
Also, if G is a plane drawing of a connected planar graph, then so is its dual

G*, and we can thus construct (G*)*, the dual of G*.

266 Graphs and Applications: An Introductory Approach

Q

The above diagrams demonstrate that the construction that gives rise to G*

from G can be reversed to give G from G*; for example, the dual of the

octahedron graph is the cube graph. It follows that (G*)* is isomorphic to G.

There is a simple relationship between the numbers of vertices, edges and

faces of a graph and its dual. In the above example, G has 5 vertices, 7 edges and

4 faces (including the infinite face), and G* has 4 vertices, 7 edges and 5 faces.

In general, we have the following result.

Theorem 11.5

Let 6 be a plane drawing of a connected planar graph with n vertices, m edges and f faces.

Then 6* has f vertices, m edges and n faces.

Proof It follows directly from the construction of G* that G* has / vertices

and m edges. If G* has f* faces, then, by applying Euler's formula to both G

and G*, we obtain

for G: n - m + / = 2; for G*: f-m+f* = 2.

Comparing these, we obtain/* = n, as required. ■

In fact, a vertex of degree k in G corresponds to a face of degree k in G*, and

vice versa. The following diagram illustrates this correspondence for k = 5.

o
face of degree 5 in G*

corresponds to
vertex of degree 5 in G

vertex of degree 5 in G
corresponds to

face of degree 5 in G*

Planarity 267

Further, a cycle of length k in G corresponds to a cutset with k edges in G*,

and vice versa. Again, we illustrate this correspondence for k = 5.

cycle of length 5 in G
corresponds to

cutset of G* with 5 edges cycle of length 5 in G

To obtain the first of the above correspondences, we take a cycle in G (with

solid edges); the corresponding edges of G* (the dashed edges) form a cutset

whose removal separates the set of vertices inside the cycle from those

outside. To obtain the second correspondence, we interchange the roles of G

and G*.

We summarize these correspondences as follows.

plane drawing G dual graph G*

an edge of G corresponds to an edge of G*

a vertex of degree k in G corresponds to a face of degree k in G*

a face of degree k in G corresponds to a vertex of degree k in G*

a cycle of length k in G corresponds to a cutset of G* with k edges

a cutset of G with k edges corresponds to a cycle of length k in G*

We can use these correspondences to obtain new results from old ones. For

example, we can reword Corollary 11.1 as follows.

Let G be a connected planar graph with n (> 3) vertices and m edges, and

with no loops or multiple edges. Then m < 3n - 6.

Now, loops (cycles of length 1) and pairs of multiple edges (cycles of

length 2) in G correspond to cutsets with 1 and 2 edges in G*.

cutset with
2-cycle

in G

o--

cutset with
2 edges in G*

- -o / \

loop in G 2 multiple edges in G

268 Graphs and Applications: An Introductory Approach

The above correspondence therefore gives the following 'dual' theorem.

Theorem 11.6

Let G* be a connected planar graph with /faces and m edges, and with no cutsets with 1 or 2

edges. Then m < 3f- 6.

Conversely, we can dualize Theorem 11.6 to obtain Corollary 11.1.

Similarly, we can reword Corollary 11.3 as follows.

Let G be a connected planar graph with no loops or multiple edges. Then G

has a vertex of degree 5 or less.

Dualizing this result, we deduce the following theorem.

11.6 Convex Polyhedra

Several of the results obtained above for planar graphs have analogues for

convex polyhedra.

Consider the cube shown below.

cube

Planarity 269

The faces are all congruent regular polyhedra (squares), and the same

number of them (three) meet at each vertex. Also, the cube is convex: it has no

dents or spikes. These are the defining features of a regular polyhedron.

Definition

A regular polyhedron is a convex polyhedron in which all the polygonal faces are

congruent regular polygons, and each vertex has exactly the same arrangement of polygons
around it.

Remark At least three polygons must meet at each vertex, for if only two

polygons, P and Q, were to meet at a vertex v, then the two edges of P incident

with v would coincide with the two edges of Q incident with v, and so P and Q

would lie in the same plane and could not enclose a volume.

The following table gives the interior angles 6 of the n-sided regular poly¬

gons, for n = 3,4,5,6. Using this information, we can determine which group¬

ings of congruent regular polygons can fit in edge-to-edge contact around a

vertex in a regular polyhedron, so that there are no gaps or overlaps.

n 3 4 5 6

6 ji/3 n/2 3ji/5 2jt/3

In fact, there are only five types of vertex that can occur in a regular polyhe¬

dron:

270 Graphs and Applications: An Introductory Approach

What regular polyhedra can be formed from them?
From the definition, every vertex must be of the same type, so there can be

at most five regular polyhedra, corresponding to the five vertex types. It is

perhaps surprising that all five do exist; they are the Platonic solids, intro¬

duced in Chapter 2:

tetrahedron octahedron cube icosahedron dodecahedron

The numbers of vertices, edges and faces of the Platonic solids are listed

below.

polyhedron vertices edges faces

tetrahedron 4 6 4

octahedron 6 12 8

cube 8 12 6

icosahedron 12 30 20

dodecahedron 20 30 12

Euler's Polyhedron Formula

There is a simple relationship between the numbers of faces, vertices and

edges of any convex polyhedron. It is the analogue for polyhedra of

Theorem 11.2.

Theorem 11.8: Euler's Polyhedron Formula

Let v, e and f denote, respectively, the numbers of vertices, edges and faces of a convex

polyhedron. Then

Planarity 271

Historical Note

The polyhedron formula first appeared in this form in a letter from Leonhard Euler to the

number theorist Christian Goldbach in November 1750. At that time, Euler was unable to

prove the result, but he presented a proof two years later. Unfortunately, Euler's proof was

deficient, but a correct proof was obtained by Adrien Marie Legendre in 1794.

The connection between Euler's formula for planar graphs and Euler's

formula for polyhedra is immediate, because we can represent any convex

polyhedron as a planar graph by projecting it down onto a plane; this method

of projection, called stereographic projection, does not alter the value of n-m+f.

stereographic projection of cube

We can use Euler's polyhedron formula to prove that there are only five

regular convex polyhedra. To do this, we also need the following result,

which is an analogue of the handshaking lemma for graphs. In order to state

it, we define the degree of a face of a polyhedron to be the number of edges

around it: a triangular face has degree 3, a square face has degree 4, and so on.

Theorem 11.9: Handshaking Lemma for Polyhedra

In any polyhedron, the sum of all the face degrees is equal to twice the number of edges.

Proof In any polyhedron, each edge has two sides, so it contributes exactly 2

to the sum of the face degrees. The result follows immediately. ■

272
Graphs and Applications: An Introductory Approach

We can now prove the following theorem.

Theorem 11.10

There are only five regular polyhedra:

• three with triangular faces - the tetrahedron, the octahedron and the icosahedron;

• one with square faces-the cube;

• one with pentagonal faces - the dodecahedron.

We prove the first part of the theorem and leave you to prove the rest (Exer¬

cise 11.15).

Proof Let v, e and / denote, respectively, the numbers of vertices, edges and

faces of a regular polyhedron with triangular faces. It follows from Theorem

11.9 that

3/ = 2e.

If exactly d edges meet at each vertex, then it follows from the handshaking

lemma for graphs that

dv = 2e.

These two results can be rewritten as

/ = 2e/3 and v = 2e/d.

Substituting these two results into Euler's polyhedron formula, v-e + f = 2,

we obtain

2e/d - e + 2e/3 = 2,

which, after division by 2e, can be rewritten as

1/d-1/6 = 1/e.

Since 1/e > 0, it follows that

1/d > 1/6,

so d < 6. This means that the only possible values of d are 3, 4 and 5.

We consider each case in turn.

Planarity 273

Case 1: d = 3: then 1/e = 1/3 -1/6 = 1/6, so e = 6;

it follows that / = 4 and v = 4 - this gives the tetrahedron.

Case 2: d = 4: then 1/e = 1/4 - 1/6 = 1/12, so e = 12;

it follows that / = 8 and v = 6 - this gives the octahedron.

Case 3: d = 5: then 1/e = 1/5 - 1/6 = 1/30, so e = 30;

it follows that/ = 20 and v = 12 - this gives the icosahedron. ■

Dual Polyhedra

There is a duality construction for convex polyhedra, similar to that for

graphs. The dual of a convex polyhedron can be constructed by placing a

vertex at the centre of each face of the original polyhedron, and joining a pair

of vertices with a line-segment whenever the corresponding faces of the orig¬

inal polyhedron are adjacent along an edge. For example, the dual of a cube is

an octahedron, as shown below.

forming the dual cube

8 vertices

6 faces

octahedron

8 faces

6 vertices

The duals of all the Platonic solids are themselves Platonic solids. The roles

of the vertices and faces are exchanged, so we can read off the duality rela¬

tions from the table given earlier.

Problem 11.20

Identify the dual of each of the Platonic solids.

274
Graphs and Applications: An Introductory Approach

Exercises 11

Planar Graphs

11.1 Decide which of the following graphs are planar.

For each planar graph, give a plane drawing.

11.2 By finding a plane drawing, show that the following graph is planar.

a b

Euler's Formula

11.3 Let G be a simple connected planar graph with n (> 3) vertices and

m edges, and let g be the length of the shortest cycle in G. Prove that

m < g(n- 2)/(g - 2).

Hint Imitate the proof of Corollary 11.1..

11.4 Use the result of Exercise 11.3 to prove that K5, K3/3 and the Petersen

graph are non-planar.

11.5 Let G be a simple connected graph with n (> 4) vertices and m edges

and no cycles of length 5 or less. Prove that

m < (3n/2) - 3.

Deduce that G has at least one vertex of degree 1 or 2.

Planarity 275

11.6 Prove the following statement.

Let G be a simple connected planar graph with n vertices. If n < 11,

then G contains at least one vertex of degree 4 or less.

Hint Use a proof by contradiction.

11.7 Let G be a planar graph with k components, and let n, m and/denote,

respectively, the numbers of vertices, edges and faces in a plane
drawing of G.

(a) Show that if each component has at least three vertices, then
Euler's formula has the form

n-m+f=k + 1.

(b) Deduce that if G is simple and each vertex has degree at least 2,
then

m < 3n - 3(k + 1).

11.8 Let G be a connected planar graph with 11 vertices. Use the result of

Exercise 11.7(b) to prove that the complement of G is non-planar.

(Note that the complement of a connected graph need not be

connected.)

11.9 Give an example of a connected planar graph G with 7 vertices such

that its complement is also planar.

Cycle Method

11.10 Use the cycle method to determine whether each of the following

graphs is planar. If it is, give a plane drawing.

/ e

(a)

a b

276
Graphs and Applications: An Introductory Approach

Kuratowski's Theorem

11.11 For each non-planar graph in Exercise 11.1, verify Kuratowski's

theorem by finding a subgraph that is a subdivision of K5 or K3 3.

Duality

11.12 Draw the dual of each of the following plane drawings of planar

graphs.

11.13 Dualize the statement given in Exercise 11.6.

11.14 Let G be a plane drawing of a connected planar graph. Prove that G is

bipartite if and only if its dual G* is Eulerian.

Convex Polyhedra

11.15 By imitating the proof of the first part of Theorem 11.10, show that

(a) the cube is the only regular polyhedron with square faces;

(b) the dodecahedron is the only regular polyhedron with pentagonal

faces.

11.16 Prove that if a convex polyhedron has only square and hexagonal

faces, and if exactly three faces meet at each vertex, then it has exactly

6 square faces.

11.17 Prove that if a convex polyhedron has only pentagonal and hexagonal

faces, and if exactly three faces meet at each vertex, then it has exactly

12 pentagonal faces.
What does this have to do with the game of soccer?

Chapter 12

Vertex Colourings and Decompositions

After studying this chapter, you should be able to:

• explain the terms vertex colouring, k-colouring and chromatic number;

• use Brooks'theorem;

• use the greedy algorithm to colour the vertices of a graph;

• explain what are meant by colouring problems, the map colouring problem and

domination problems, and how they can be represented as vertex decomposition
problems.

... :

In this chapter, we consider problems involving the colouring of the vertices

of a graph, and we introduce an algorithm for vertex colouring. We then

consider problems that involve splitting the set of vertices of a graph into

disjoint subsets with particular properties. Such problems include colouring

problems and domination problems.

12.1 Vertex Colourings

Example 12.1: Storing Chemicals
A chemical manufacturer wishes to store chemicals in a warehouse. Some

chemicals react violently when in contact with each other, and the manufac¬

turer decides to divide the warehouse into a number of areas so as to separate

dangerous pairs of chemicals. In the following table, an asterisk indicates

those pairs of chemicals that must be kept apart. What is the smallest number

of areas needed to store these chemicals safely?

277

278 Graphs and Applications: An Introductory Approach

a b c d e f 8

a - * X- * - - X

b * - X X X _ X

c X X - X _ X -

d * X X — _ X -

e - *

f - - * * - - X

8
* * - - — X —

We note first that chemicals a, b, c, d must all be in separate areas, so at least

four areas are necessary. In fact, four areas are sufficient, as the following

graph shows; the vertices correspond to the seven chemicals, and two vertices

are joined by an edge whenever the corresponding chemicals must be kept

separate. If we colour the vertices with the minimum number of colours so

that adjacent vertices are coloured differently, we find that 4 colours are

needed, as indicated by the numbers next to the vertices in the following

graph; the four colours 1, 2, 3, 4 correspond to the four areas.

a 1

Thus we can split the set of chemicals into four disjoint subsets corre¬

sponding to the four areas:

{a, e}, {b,fj, {c}, {d, g}.

(Other solutions are possible.) □

Chromatic Number

The assignment of colours to chemicals in Example 12.1 illustrates the

following definitions.

Vertex Colourings and Decompositions 279

Definitions

Let G be a simple graph. A /(-colouring of G is an assignment of at most k colours to the

vertices of G in such a way that adjacent vertices are assigned different colours. If G has a

/r-colouring, then G is /(-colourable.

The chromatic number of 6, denoted by x(G), is the smallest number k for which G is

/(-colourable.

In the above chemical storage example, the graph has chromatic number 4.

Remark The above definitions are given only for simple graphs. Loops must

be excluded since, in any /(-colouring, the vertices at the ends of each edge

must be assigned different colours, so the vertex at both ends of a loop would

have to be assigned a different colour from itself. We also exclude multiple

edges, since the presence of one edge between two vertices forces them to be

coloured differently, and the addition of further edges between them is then

irrelevant to the colouring. We therefore restrict our attention to simple graphs.

We usually show a /(-colouring by writing the numbers 1,2,..., k next to the

appropriate vertices. For example, diagrams (a) and (b) below illustrate a

4-colouring and a 3-colouring of a graph G with five vertices; note that

diagram (c) is not a 3-colouring of G, since the two vertices coloured 2 are adja¬

cent.

3 4 2 1 3 2

(a) (b) (c)

Since G has a 3-colouring,%(G) < 3; thus 3 is an upper hound for^(G). Also, G

contains three mutually adjacent vertices (forming a triangle) that must be

assigned different colours, so x(G) > 3; thus 3 is a lower hound for %(G).

Combining these inequalities, we obtain x(G) = 3.

280 Graphs and Applications: An Introductory Approach

Problem 12.2

What can you say about the graphs 6 for which

(a) *(G) = I? (b) *(G) = 2?

Problem 12.3

Write down the chromatic number of each of the following graphs:

(a) the complete graph Kn;
(b) the complete bipartite graph Kry,
(c) the cycle graph Cn (n > 3);

(d) a tree.

Problem 12.4

Decide whether each of the following statements about a graph 6 is true or false, and give a

proof or counter-example, as appropriate.

(a) If G contains the complete graph Kr as a subgraph, then%(G) > r.
(b) If x(G) ^ r, then 6 contains the complete graph Kr as a subgraph.

Vertex Colourings and Decompositions 281

Given a particular graph G, how can we determine its chromatic number?

We have seen that an upper bound for x(G) may be obtained by construction:

to obtain an upper bound for x(G), construct an explicit colouring for the

vertices of G.

A lower bound for^(G) may be obtained using the result of Problem 12.4(a):

to obtain a lower bound for x(G), find the number of vertices in the largest

complete subgraph of G.

For example, if G contains a triangle (£3), then x{G) > 3.

If we can find an upper bound and a lower bound that are the same, then

X(G) is equal to this common value. For example, the vertices of the graph G

below can be coloured with four colours, as shown, sox(G) < 4. But G cannot

be coloured with fewer than four colours, since G contains the complete graph

K4, so x{G) > 4. Combining these two inequalities, we obtain ^(G) = 4.

4

Note that if a graph G has n vertices, then x{G) ^ n. However, this upper

bound is usually poor, except when G has many edges. This inequality

becomes an equality (x(G) = n) only when G is the complete graph Kn.

We can improve on this upper bound considerably if we know the largest

vertex degree in G, as our next theorem shows.

Theorem 12.1

Let 6 be a simple graph whose maximum vertex degree is d. Then

X(G) <d + 1.

282 Graphs and Applications: An Introductory Approach

Proof The proof is by mathematical induction on n, the number of vertices

of G.

Step 1 The statement is true for Klf the simple graph with one vertex, since

X(K\) = 1 and d = 0.

Step 2 We assume that *(H) < d + 1 for all simple graphs H with fewer than

n vertices. We wish to show that*(G) <d + 1 for all simple graphs G with n

vertices.

Let G be a simple graph with n vertices and maximum vertex degree d, and

let H be any graph obtained from G by removing a vertex v and the edges inci¬

dent with it.

The graph H has fewer than n vertices and maximum vertex degree d (or less)

so, by our assumption,x(H) —d + 1-that is, the graph His (d + l)-colourable.

We can now obtain a (d + l)-colouring of G by colouring v with any colour not

assigned to the (at most d) vertices adjacent to v, since these vertices can be

coloured with at most d colours. It follows that^(G) < d + 1. Thus if the state¬

ment is true for all simple graphs with fewer than n vertices, then it is true for

all simple graphs with n vertices. This completes Step 2.

Therefore, by the principle of mathematical induction, the statement is true

for all simple graphs with n vertices, for each positive integer n. H

(An alternative method of proof, using a greedy algorithm, is outlined in

Section 12.2.)
With a lot more effort, we can prove the following slightly stronger

theorem, proved by L. Brooks in 1941. We omit the proof.

Theorem 12.2: Brooks' Theorem

Let 6 be a connected simple graph whose maximum vertex degree is d. If G is neither a cycle

graph with an odd number of vertices, nor a complete graph, then x(G) ^ d.

Vertex Colourings and Decompositions 283

To illustrate the use of Brooks' theorem, we consider again the graph G

below. We have already observed that^(G) > 4, since G contains the complete

graph K4. On the other hand, G satisfies the conditions of Brooks' theorem

with d = 4, so^(G) < 4. It follows that^(G) = 4.

Unfortunately, the situation is not always as satisfactory as this. In partic¬

ular, if G contains a few vertices of high degree, then the bound given by

Brooks' theorem may be very poor. For example, if G is the bipartite graph

K\ i2, then Brooks' theorem gives the upper bound x(G) < 12, whereas the

actual value of x(G) is 2.

Problem 12.5

For each of the following graphs G, write down:

the lower bound for^fG) given by the size of the largest complete subgraph in 6;

the upper bound for^(G) given by Brooks' theorem;

the actual value of/{G}, and a colouring using^(G) colours.

We summarize the above results as follows.

284 Graphs and Applications: An Introductory Approach

To find the chromatic number x(G) of a simple graph 6

Try to find an upper bound and a lower bound that are the same; then x(G) is equal to this

common value.

Possible upper bounds for x(G)

• the number of colours in an explicit vertex colouring of G;

• the number n of vertices in G;
• d +1, where d is the maximum vertex degree in G (Theorem 12.1);
• d, where d is the maximum vertex degree in G, provided that G is not Cn (for odd n) or Kn

(Brooks' theorem).

Possible lower bound for x(G)

• the number of vertices in the largest complete subgraph in G.

Colouring Planar Graphs

It seems natural to conjecture that the more complicated a graph, the more
colours are needed to colour its vertices. In this subsection we show that this
conjecture is false for planar graphs - the chromatic number of any planar

graph is 'small'.
Our first result of this type shows that every planar graph is 6-colourable.

Theorem 12.3: Six Colour Theorem for Planar Graphs

The vertices of any simple connected planar graph G can be coloured with six (or fewer)

colours in such a way that adjacent vertices are coloured differently.

Proof The proof is by mathematical induction on n, the number of vertices

of G.

Step 1 The statement is trivially true when n = 1. (In fact, the statement is
obviously true for all graphs with up to six vertices, since a different colour can
be used for each vertex.)

Step 2 We assume that the vertices of all simple connected planar graphs
with fewer than n vertices can be coloured with six (or fewer) colours. We
wish to show that the vertices of all simple connected planar graphs with n
vertices can be coloured with six (or fewer) colours.

Vertex Colourings and Decompositions 285

Let G be a simple connected planar graph with n vertices. It follows from

Corollary 11.3 that G contains a vertex v of degree 5 or less. We remove v and

its incident edges; then the resulting planar graph H has fewer than n vertices.

remove v

By our assumption, the vertices of H (or of each component of H, if H is

disconnected) can be coloured with six colours in such a way that adjacent

vertices are coloured differently. We now reinstate the vertex v.

Since v has at most five neighbours, and six colours are available, there is a

spare colour that can be used to colour v. This gives a 6-colouring of the

vertices of G, as required. Thus if the statement is true for all simple connected

planar graphs with fewer than n vertices, then it is true for all simple

connected planar graphs with n vertices. This completes Step 2.

Therefore, by the principle of mathematical induction, the statement is true

for all simple connected planar graphs with n vertices, for each positive

integer n. ■

With a little more effort, we can prove the following stronger theorem.

Theorem 12.4: Five Colour Theorem for Planar Graphs

The vertices of any simple connected planar graph G can be coloured with five (or fewer)

colours in such a way that adjacent vertices are coloured differently.

286 Graphs and Applications: An Introductory Approach

Proof The proof is by mathematical induction on n, the number of vertices

of G.

Step 1 The statement is trivially true when n = 1. (In fact, the statement is

obviously true for all graphs with up to five vertices, since a different colour

can be used for each vertex.)

Step 2 We assume that the vertices of all simple connected planar graphs

with fewer than n vertices can be coloured with five (or fewer) colours. We

wish to show that the vertices of all simple connected planar graphs with n

vertices can be coloured with five (or fewer) colours.
Let G be a simple connected planar graph with n vertices. It follows from

Corollary 11.3 that G contains a vertex v of degree 5 or less. We remove v and

its incident edges; then the resulting planar graph H has fewer than n vertices.

By our assumption, the vertices of H (or of each component of H, if H is

disconnected) can be coloured with five colours in such a way that adjacent

vertices are coloured differently. We now reinstate the vertex v.

Since there are at most five vertices adjacent to v, and five colours are avail¬

able, there is a spare colour that can be used to colour v, unless v is surrounded

by five vertices of different colours; in this case, there is no spare colour that can be

used to colour v.

To overcome this difficulty, we consider just the red and green vertices

adjacent to v, and investigate whether there is a path of red and green vertices

between the adjacent red vertex and the adjacent green vertex. There are two

cases that can arise.

In case (a), all the red and green vertices reachable from the adjacent red

vertex are different from those reachable from the adjacent green vertex, so

there is no such red-green path. In this case, we interchange the colours in the

red-green part at the top, say, as shown below.

Vertex Colourings and Decompositions 287

This replaces the red vertex adjacent to v by a green one, so that v can now be

coloured red. This completes the 5-colouring of the vertices of G in this case.

In case (b), the two red-green parts link up, so there is a red-green path, but

interchanging the colours does not help us, as the vertex v is still adjacent to a

red vertex and a green vertex. However, there can be no path of blue and

yellow vertices between the blue and yellow vertices adjacent to v, because

the red-green path 'gets in the way'. We can therefore interchange the

colours in the blue-yellow part on the right-hand side, say, as shown below.

case (b): interchange blue and yellow on right; colour v blue

This replaces the blue vertex adjacent to v by a yellow vertex, so that v can now

be coloured blue. This completes the 5-colouring of the vertices of G in this

case.
It follows that the statement is true for all simple connected planar graphs

with n vertices. This completes Step 2.

Therefore, by the principle of mathematical induction, the statement is true

for all simple connected planar graphs with n vertices, for each positive

integer n. ®

We conclude this section by stating without proof the four colour theorem

for planar graphs. It is related to the four colour theorem for maps, described

later, and is considerably more difficult to prove than the five and six colour

theorems for planar graphs.

288 Graphs and Applications: An Introductory Approach

Theorem 12.5: Four Colour Theorem for Planar Graphs

The vertices of any simple connected planar graph can be coloured with four (or fewer)

colours in such a way that adjacent vertices are coloured differently.

12.2 Algorithm for Vertex Colouring

It is natural to ask whether there are efficient algorithms for colouring the

vertices of a graph. Unfortunately, no such efficient algorithms are known.

We must therefore seek either inefficient algorithms that give the correct

value for the number of colours needed, or heuristic algorithms that are effi¬

cient but give only an approximation to the correct value. In this subsection

we present such a heuristic algorithm - a straightforward colouring algorithm

that usually gives good answers. The method we describe is a greedy algo¬

rithm, and may be stated as follows.

Greedy Algorithm for Vertex Colouring

START with a graph G and a list of colours 1,2,3,....

Step 1 Label the vertices a, b, c,... in any manner.

Step 2 Identify the uncoloured vertex labelled with the earliest letter in the alphabet;

colour it with the first colour in the list not used for any adjacent coloured vertex.

Repeat Step 2 until all the vertices are coloured, then STOP.

A vertex colouring of 6 has been obtained. The number of colours used depends on the label¬

ling chosen for the vertices in Step 1.

We present two examples using the same graph with different labellings.

Illustration A

Find a vertex colouring of the following graph G.

Vertex Colourings and Decompositions 289

Step 1 We label the vertices a, ...,/as follows.

a b

Step 2 We successively colour

vertex a with colour 1,

vertex b with colour 2,

vertex c with colour 1,

vertex d with colour 2,

vertex e with colour 3,

vertex/with colour 4.

All the vertices are now coloured, so we STOP.

We thus obtain the 4-colouring of G shown above.

a 1 b 2

n

Illustration B

Find a vertex colouring of the following graph G.

Step 1 We label the vertices a, ...,/as follows.

/ b

290 Graphs and Applications: An Introductory Approach

Step 2 We successively colour

vertex a with colour 1,

vertex b with colour 1,

vertex c with colour 1,

vertex d with colour 2,

vertex e with colour 3,

vertex/with colour 2.

All the vertices are now coloured, so we STOP.

We thus obtain the 3-colouring of G shown above.

2/ b 1

Notice that, in the above examples, x(G) = 3, and in Illustration B we found

a vertex colouring of G that uses 3 colours.

Problem 12.6
Use the greedy algorithm to colour the vertices of the following graph G, using each of the

given labellings.

(a) (b) (c)

What is the actual value of%(6)?

More generally, we have the following theorem.

Theorem 12.6

For any graph 6, there is a labelling of the vertices for which the greedy algorithm yields a

vertex colouring with^fG) colours.

Vertex Colourings and Decompositions 291

Outline of Proof

Take any vertex colouring of G with ^(G) colours, denoted by 1, 2, 3, and

sequentially label with a, b, c, ... the vertices coloured 1, then the vertices

coloured 2, then the vertices coloured 3, and so on. For this labelling, the

greedy algorithm assigns the colours 1, 2, 3, ... in that order, so only y(G)

colours are needed. ■

Problem 12.7

Find a labelling of the vertices of the following graph, for which the greedy algorithm yields a

vertex colouring of G with y(6) colours.

We conclude this section by returning to a result that we proved earlier

using the method of mathematical induction. We outline an alternative proof

using the greedy algorithm.

Theorem 12.1

Let G be a simple graph whose maximum vertex degree is d. Then

X(G) <d+~\.

Outline of Proof
Let a,b,c,... be any labelling of the vertices of G. Colour these vertices in turn,

using the lowest numbered colour available. At each stage the vertex to be

coloured has at most d adjacent vertices, and there are d + 1 colours, so there is

always a colour available. The colouring with d + 1 colours can therefore be

completed. ■

Brooks' theorem (Theorem 12.2) may be proved similarly; the proof

requires a more complicated version of the greedy algorithm.

292 Graphs and Applications: An Introductory Approach

12.3 Vertex Decompositions

Some of the most interesting problems in graph theory involve the decompo¬

sition of a graph G into subgraphs of a particular type. In several of these prob¬

lems, we split the set of vertices of G into disjoint subsets; this is called a vertex

decomposition of G.
For example, consider the following disconnected graph G.

A natural vertex decomposition is to split the set of vertices into the disjoint

subsets that correspond to the components of G:

{a, b, cj, {d, e,/, g}, {h}.

In this section, we adopt a similar approach to several other problems. Each

problem can be formulated in graph-theoretic terms, and involves splitting

the set of vertices of a graph into disjoint subsets with particular properties. By

doing this, we observe similarities between seemingly different problems and

can begin to classify them, thereby gaining insight into the nature of the

different types of problem.

Colouring Problems

Example 12.1: Storing Chemicals
In Section 12.1 we considered the problem of a chemical manufacturer who

wishes to store chemicals a, b, ..., g in a warehouse. Some chemicals react

violently when in contact, and the manufacturer divides the warehouse into a

number of areas so as to separate certain pairs of chemicals.

In order to determine the smallest number of areas needed to store these

chemicals safely, we drew the graph shown below. The vertices correspond to

the chemicals, and two vertices are joined by an edge whenever the corre¬

sponding chemicals must be kept separate.

a 1

Vertex Colourings and Decompositions 293

We saw that the assignment of chemicals to areas is a vertex colouring

problem in which the colours correspond to the areas. Such a colouring gives

rise to a vertex decomposition of the graph in which no two vertices in the same

subset are adjacent. The vertex decomposition arising from this example is

{a, e}, {b,f}, {c}, {d,g};

the four subsets correspond to the chemicals in the four areas. In such a

problem, the minimum number of subsets needed is the chromatic number of

the corresponding graph. □

Example 12.2: Map Colouring
In the map colouring problem, we wish to determine the smallest number of

colours required to colour the countries of a map in such a way that any two

countries with a common boundary are coloured differently. This enables us

to distinguish between the various countries, and to locate the boundaries.

Consider the following map of the USA (excluding Alaska and Hawaii):

How many colours are needed to colour the entire map?
This map cannot be coloured with three colours, because three colours are

needed for the ring of five states surrounding Nevada, so at least four colours

are needed.
However, it can be coloured with just four colours, as follows.

294 Graphs and Applications: An Introductory Approach

We can represent this situation as a vertex colouring problem by consid¬

ering the dual problem in which each state is represented by a vertex, and two

vertices are joined whenever the corresponding states share a common

boundary line. This gives the following graph, in which each vertex has been

assigned a symbol to represent the colour of the corresponding state. Since

any two neighbouring states in the original map were coloured differently,

any two adjacent vertices in this graph must also be assigned different

colours.

A Washington, Nevada, Wyoming, New Mexico, Minnesota, Mississippi, Missouri, Indiana,
Georgia, Virginia, Pennsylvania, Connecticut, Vermont;

O Oregon, Montana, Arizona, Nebraska, Oklahoma, Louisiana, Wisconsin, Tennessee, Ohio,
Florida, South Carolina, Delaware, New York, Rhode Island, New Hampshire

• California, Idaho, Colorado, North Dakota, Texas, Iowa, Michigan, Alabama, Kentucky,
North Carolina, Maryland, New Jersey, Massachusetts, Maine, Arkansas;

▲ Utah, South Dakota, Kansas, Illinois, West Virginia.

Vertex Colourings and Decompositions 295

Such a colouring of the vertices of the graph splits the set of vertices into

four disjoint subsets, corresponding to the four colours.

It is simple to prove that any map can be coloured with six colours so that

neighbouring countries are coloured differently; the proof is essentially the

'dual' of the proof of Theorem 12.3. With a little more effort, it can be shown

that any map can be coloured with five colours so that neighbouring countries

are coloured differently; the proof is essentially the 'dual' of the proof of

Theorem 12.4. The celebrated four colour problem is related to Theorem 12.5.

■

l; -

Historical Note

In 1852 Francis Guthrie posed the famous four colour problem: can all maps be coloured with

four colours in such a way that neighbouring countries are coloured differently? This problem

was studied by a number of mathematicians, including Augustus De Morgan, Arthur Cayley

and Alfred Kempe, but it was not until 1976 that a proof was finally obtained, by Kenneth

Appel and Wolfgang Haken. Their proof involved the consideration of nearly 2000 configura¬

tions of countries, and made extensive use of a computer. To this day, no 'simple' proof has

been discovered.
__

Vertex decomposition problems also arise in situations that involve plan¬

ning a tour, such as refuse collection.

296 Graphs and Applications: An Introductory Approach

Example 12.3: Refuse Collection
A weekly route schedule for refuse collection lorries is to be organized. The

daily routes must be different for Monday to Saturday, and some sites need to

be visited several times a week. No route is to be too long or too short, every

lorry must be used on every working day, and every site must be visited the

required number of times. How can a suitable schedule be designed?

In its full complexity, this problem is too hard to be considered here, so we

look at just one aspect of it. We investigate whether it is possible to arrange a

schedule in such a way that two different lorries do not visit the same site on

the same day. To this end, we construct a tour graph in which each vertex

represents a route, and two vertices are joined by an edge whenever the corre¬

sponding routes have a site in common. If the vertices of this tour graph can

be coloured with six colours (corresponding to the days Monday to Saturday)

so that adjacent vertices are coloured differently, then any such vertex

colouring gives rise to a suitable schedule. So the problem reduces to that of a

vertex colouring problem. It is therefore again a vertex decomposition

problem in which no two vertices in the same subset are adjacent. O

Problem 12.9
Draw the tour graph for the following routes for refuse vehicles collecting from industrial

sites A,..., Ft, and use it to find the minimum number of days needed to ensure that no place is

visited more than once on the same day. What is the corresponding vertex decomposition?

route 1 sites A, B, C and D route 2 sites B, E,F,G

route 3 sites B, H, 1 route 4 sites B,F

route 5 sites E, G, J route 6 sites G, K, L

route 7 sites L, M, N route 8 sites K,N

route 9 sites A, H, 0,1 route 10 sites O.P

route 11 sites C, P, Q route 12 sites CO,/?

Domination Problems

Communication Links

Suppose that communication links are to be set up between a number of cities,

and transmitting stations are to be built in some of these cities so that each city

can receive messages from at least one transmitting station. For reasons of

economy, we require the number of transmitting stations to be as small as

possible. How can this be done?

Vertex Colourings and Decompositions 297

We can represent this situation by a graph whose vertices correspond to the

cities, and whose edges correspond to pairs of cities that can communicate

directly with each other. Since each city must either contain a transmitting station

or communicate with a city containing a transmitting station, we wish to find a

set of vertices that (between them) are adjacent to all other vertices of the graph.

Example 12.4: Location of Transmitting Stations
Suppose that the following graph represents the communication links

between six cities. A,..., F.

A B

We can locate the transmitting stations at A, C, E, since each of the other

vertices (B, D, F) is adjacent to at least one of these vertices; we say that the

vertices A, C and E form a dominating set. We thus obtain a vertex decomposi¬

tion into subsets of cities served by the same transmitting station:

{A, B, F}, (C, D}, {£}.

We obtain a more economical solution by taking just two transmitting

stations and locating them at A and D. As before, each of the other vertices (B,

C, E, F) is adjacent to at least one of these vertices. Thus the vertices A and D

form a dominating set that is smaller than the one given above. A corre¬

sponding vertex decomposition is

{A, B, F}, {D, C, E}.

There is no dominating set comprising just one vertex, so we say that the

vertices A and D form a minimum dominating set. The number of vertices in a

minimum dominating set is the dominating number - in this case, 2.

Notice that, in each of the above vertex decompositions, each subset contains

a vertex adjacent to all the other vertices in that subset. □

Problems that reduce to that of finding a minimum dominating set in a given

graph occur in many guises. For example, suppose that a number of locations in

a nuclear power plant are fitted with warning lights, and that sensors are to be

stationed in various places to keep watch on these lights. We can minimize the

number of sensors by finding a minimum dominating set in the corresponding

graph and positioning the sensors accordingly. Any light that comes on can

then be seen by at least one sensor, and appropriate action can be taken.

298 Graphs and Applications: An Introductory Approach

Problem 12.10
Find a minimum dominating set in each of the following graphs.

In each case, write down a vertex decomposition in which each subset contains a vertex adja¬

cent to all the other vertices in that subset.

Note that the type of vertex decomposition described for domination prob¬

lems is different from that described for colouring problems. For colouring

problems, in each subset, no two vertices are adjacent. For domination problems,

each subset contains a vertex adjacent to all the other vertices in that subset.

Vertex Colourings and Decompositions 299

Exercises 12

Vertex Colourings

12.1 A zoo-keeper wishes to place eight animals A, B,..., H into enclosures.

For safety reasons, some of the animals cannot be placed in the same

enclosure. In the following table, crosses indicate pairs of animals that

must be placed in different enclosures.

A B C D

A

B

C

D

E

F

G

H

- x - -

X - X -

- X - X

- - X -

X - - X

X X X X

- - X X

XXX-

E F G H

X X - X

- X - X

-XXX

XXX-

-XX-

X — - —

X - - X

— — X —

By drawing a suitable graph, determine the least number of enclosures

that are needed to house all the animals, and an appropriate placing of

the animals.

12.2 Determine x(G) for each of the following graphs G.

12.3 Consider the following graph G.

(a) Use results from Section 12.1 to obtain lower and upper bounds for

X(G).

(b) What is the actual value of /(G)?

300 Graphs and Applications: An Introductory Approach

12.4 Draw two non-isomorphic simple connected graphs G with five

vertices and maximum vertex degree d for which x(G) = d + 1.

12.5 Let G be the graph obtained by removing an edge from the complete

graph Kn. By Brooks' theorem, ^(G) < n -1. Give a method for

(n - l)-colouring G, and test your method by 6-colouring K7 with one

edge removed.

12.6 Prove that if G is an r-regular graph with n vertices, then

X(G) > n/(n - r).

Algorithm for Vertex Colouring

12.7 Use the greedy colouring algorithm to colour the vertices of each of

the following labelled graphs.

a n

b c
9-e

Comment on your results.

Vertex Decompositions

12.8 A youth club organizer wishes to arrange outings to the Zoo for nine

children: Andrew, Bill, Catherine, Deirdre, Edward, Fiona, Gina,

Harry and Iris. Unfortunately, Catherine refuses to go on an outing

with any of the boys, Andrew will not go if there are any girls (except

Deirdre), Edward and Harry must not be allowed to go together since

they will cause havoc, Fiona cannot stand Bill or Gina, and Bill and

Edward both dislike Iris. Express this information in terms of a suitable

graph, find the minimum number of outings needed, and write down

the corresponding vertex decomposition.

Vertex Colourings and Decompositions 301

12.9 Each of ten students A, B,..., /, must attend three (out of eight)

lectures, as indicated by the crosses in the following table:

1 2 3 4 5 6 7 8

A X X - - X - - -

B X — - - X X - -

C X — - - - X X -

D X X X

E — - X - - - X X

F - - X X - - - X

G - X X X - - - -

H — X - X X - - -

I - — - X X - - X

J — — — — X X — X

Each student can attend only one lecture per day. By drawing a suit¬

able graph, find the minimum number of days needed to timetable all

the lectures and write down a suitable timetable.

12.10 The following map shows sixteen countries, numbered from 0 to 15.

Each country other than country 0 has been allocated one of the

colours red (r), blue (b), yellow (y), green (g).

(a) Write down the numbers of the countries in the blue-green part of

the map adjacent to country 0, and the blue-yellow part adjacent

to country 0.

Explain why an interchange of colours on just one of these

two-coloured parts does not help to find a 4-colouring of the map.

(b) By interchanging the colours of countries 1 and 2 and recolouring

countries 3 and 5, find a 4-colouring of the map.

(c) Write down a vertex decomposition of the coresponding graph with

the property that no two vertices in the same subset are adjacent.

302

12.11

Graphs and Applications: An Introductory Approach

a

For the octahedron graph shown above, find, if possible:

(a) a vertex decomposition in which no two vertices in the same

subset are adjacent;

(b) a vertex decomposition in which each subset contains a vertex

adjacent to each of the other vertices in the subset.

12.12 Find a minimum dominating set and the dominating number for each

of the graphs in Exercise 12.7.

12.13 Find a minimum dominating set and the dominating number for the

octahedron graph in Exercise 12.11.

12.14 Find the dominating number of:

(a) the Petersen graph; (b) the 4-cube graph Q4.

Chapter 13

Edge Colourings and Decompositions

After studying this chapter, you should be able to:

• explain the terms edge colouring, k-edge colouring and chromatic index;

• use Vizing's theorem (both versions), Shannon's theorem and Konig's theorem;

• use the greedy algorithm to colour the edges of a graph;

• explain what are meant by the printed circuits problem, matching problems, and

various bus route problems, and how they can be represented as edge decomposi¬

tion problems.

In this chapter, we consider problems involving the colouring of the edges of a

graph, and we introduce an algorithm for edge colouring. We then consider

problems that involve splitting the set of edges of a graph into disjoint subsets

with particular properties. Our discussion involves problems relating to

printed circuits, matchings, and the scheduling of examinations.

13.1 Edge Colourings

Example 13.1: Wire Colouring
An engineer wishes to make a display panel on which electrical components

a, b,... are to be mounted and then interconnected. The connecting wires are

formed into a cable, with the wires to be connected to a emerging through one

hole in the panel, those connected to b emerging through another hole, and so

on. In order to distinguish the wires that emerge from the same hole, they are

coloured differently. What is the minimum number of colours necessary for

the whole system? (This problem was posed by C. E. Shannon in 1949, in a

paper on electrical networks.)

303

304
Graphs and Applications: An Introductory Approach

In order to investigate this problem, we represent the connection points by

the vertices of a graph and the wires by edges. For example, the following

graph represents a panel with six components, a,

Since vertex b has five edges incident with it, and since these edges must all

be coloured differently, at least five colours are necessary. In fact, five colours

are sufficient, as the following diagram shows; the numbers on the edges

correspond to the five colours.

□

Chromatic Index

The assignment of colours to wires in Example 13.1 illustrates the following

definitions.

Definitions

Let G be a graph without loops. A /(-edge colouring of G is an assignment of at most k

colours to the edges of G in such a way that any two edges meeting at a vertex are assigned

different colours. If G has a /c-edge colouring, then G is /(-edge colourable.
The chromatic index of G, denoted by /(G), is the smallest number k for which 6 is /c-edge

colourable.

In the above wire colouring example, the graph has chromatic index 5.

Edge Colourings and Decompositions 305

Remark The above definitions are given only for graphs without loops. Loops

must be excluded since, in any fc-edge colouring, the edges meeting at a vertex

must be assigned different colours. However, we sometimes wish to consider

graphs with multiple edges, since the introduction of multiple edges may

alter the chromatic index, as in the wire colouring problem.

We usually show a k-edge colouring by writing the numbers 1,2,..., k next to

the appropriate edges. For example, diagrams (a) and (b) below illustrate a

5-edge colouring and a 4-edge colouring of a graph G with eight edges; note

that diagram (c) is not a 5-edge colouring of G, since two of the edges coloured
2 meet at a vertex.

Since G has a 4-edge colouring, ^ '(G) < 4; thus 4 is an upper bound for x '(G).

Also, G contains four edges meeting at a common vertex (a vertex of degree 4)

that must be assigned different colours, so x '(G) > 4; thus 4 is a lower bound for

X'(G). Combining these inequalities, we obtain x'(G) = 4.

306
Graphs and Applications: An Introductory Approach

Problem 13.2

What can you say about the graphs G for which

(a) /'(G) = 1? (b) /'(G) = 2?

Problem 13.3
Write down the chromatic index of each of the following graphs:

(a) the complete graph K4;

(b) the complete bipartite graph Ki,3;

(c) the cycle graph Ce-

Problem 13.4
Decide whether each of the following statements about a graph 6 is true or false, and give a

proof or counter-example, as appropriate.

(a) If G contains a vertex of degree r, then /' (G) > r.

(b) If/ '(G) > r, then G contains a vertex of degree r.

Given a particular graph G, how can we determine its chromatic index? We

have seen that an upper bound for/'(G) may be obtained by construction:

to obtain an upper bound for/'(G), construct an explicit colouring for the

edges of G.

A lower bound for /'(G) may be obtained using the result of Problem

13.4(a):

to obtain a lower bound for/'(G), find the largest vertex degree in G.

For example, if G contains a vertex of degree 3, then/'(G) > 3.

If we can find an upper bound and a lower bound that are the same, then

/'(G) is equal to this common value. For example, the edges of the graph G

below can be coloured with five colours, as shown, so /'(G) < 5. But G cannot

Edge Colourings and Decompositions 307

be coloured with fewer than 5 colours, since G contains a vertex of degree 5, so

X'(G) ^ 5. Combining these two inequalities, we obtain %'(G) = 5.

Note that if a graph G has m edges, then^'(G) < m. However, this upper

bound is usually poor. This inequality becomes an equality (^'(G) = m) only

when G is a complete bipartite graph of the form

Much better upper bounds have been established by V. G. Vizing and by

C. E. Shannon. For simple graphs, Vizing proved the following result in 1963,

which we state without proof.

Theorem 13.1: Vizing's Theorem

Let 6 be a simple graph whose maximum vertex degree is d. Then

d < x'(G) — d+1. Sill :
.

Illliillliii

This remarkable result tells us that, if G is any simple graph with maximum

vertex degree d, then the chromatic index of G is either d or d + 1. This classi¬

fies simple graphs into two classes: those for which x'(G) = d, and those for

which x '(G) = d + 1. The graphs in Problem 13.1 show that both possibilities

occur, but it is not known in general which graphs belong to which class.

Problem 13.5

For each of the following simple graphs G, write down:

the lower and upper bounds forx'(G) given by Vizing's theorem;

the actual value of £'(G), and an edge colouring usingx'(G) colours:

(a) the cycle graph Cr,

(b) the complete bipartite graph /<2,4;

(c) the complete graph Ke-

308
Graphs and Applications: An Introductory Approach

Before investigating the problem of classifying simple graphs into those

with ^'(G) = d and those with %'(G) = d + 1, we state (without proof) two

results that give upper bounds for the chromatic index of a graph with

multiple edges. The first of these is an extension of Vizing's theorem; it

reduces to the earlier version of Vizing's theorem when G is a simple graph.

Theorem 13.2: Vizing's Theorem (Extended Version)

Let G be a graph whose maximum vertex degree is d, and let h be the maximum number of

For example, for the graph G shown below, d — 3 and h 2, since there are

two edges joining a pair of vertices, so the lower bound is 3 and the upper

bound is 5; in fact, *'(G) = 4 for this particular graph.

4

Another upper bound for the chromatic index of a graph was obtained by

Shannon in his paper on the wire colouring problem.

Let G be a graph with maximum vertex degree d. Then

d <x'(® — 3d/2, if d is even;

d<x'(G)^(3d-1)/2, if dis odd.

For example, for the graph G above, d = 3, and {3d - l)/2 = 4. So the lower

bound is 3 and the upper bound is 4; in fact, %'(G) = 4.

Edge Colourings and Decompositions 309

Problem 13.6

For each of the following graphs G, write down:

the lower and upper bounds for%'(G) given by Vizing's theorem (extended version);
the lower and upper bounds forx'(G) given by Shannon's theorem;
the actual value ofx'(G), and a colouring usingy'(G) colours.

We summarize the above results as follows.

To find the chromatic index x'«J) of a graph 6 without loops

Try to find an upper bound and a lower bound that are the same; then x'(G) is equal to this
common value.

Possible upper bounds for x' (G)

• the number of colours in an explicit edge colouring of 6;
• the number m of edges in G;
• d +1, where d is the maximum vertex degree in G, provided that G has no multiple edges

(Vizing's theorem);
• d+h, where d is the maximum vertex degree in G and h is the maximum number of edges

joining a pair of vertices (Vizing's theorem, extended version);
• 3d/2, where d is the maximum vertex degree and d is even (Shannon's theorem);
• (3d -1)/2, where d is the maximum vertex degree and d is odd (Shannon's theorem).

Possible lower bound for / '(<?)

• d, the maximum vertex degree in G.

Classifying Some Simple Graphs

We now return to the problem of classifying simple graphs into two classes:
those with *'(G) = d and those with*'(G) = d + 1. For some types of graph,

310 Graphs and Applications: An Introductory Approach

this is straightforward; for example, it is easy to show that, for the cycle graphs

Cn (n > 3),

f 2 if n is even;
x\cn)=\ .

13 if n is odd.

For example, for C5 and C6, we have the following edge colourings:

For the complete graphs K5 and K6, we have the following edge colourings:

n = 6

More generally, we have the following theorem.

Theorem 13.4

For the complete graph Kn,

fn-1 if n is even;
y(Kn)=t

\n if n is odd.

Proof Since each vertex has degree n - 1, it follows from Vizing's theorem

thatx'(Kn) is either n -1 or n.

Edge Colourings and Decompositions 311

If n is odd, then the maximum number of edges that can be assigned the

same colour is (n -1)/2, since otherwise two of these edges meet at a common

vertex. But Kn has exactly n(n -1)/2 edges, so the number of colours must be at

least n. Hence x'(Kn) > n.

We can obtain an explicit n-edge colouring of Kn by drawing the vertices in

the form of a regular n-gon and colouring the edges of the boundary using a

different colour for each edge. Each of the remaining edges is then assigned

the same colour as the boundary edge parallel to it. It follows that %' (Kn) < n.

Combining the above inequalities, we deduce thatx'(Kn) = n, if n is odd.

If n is even, we prove that x'(Kn) = n - 1, by explicitly constructing an

(n - l)-edge colouring of Kn. If n = 2, this is trivial. If n > 2, we choose any

vertex v and remove it, together with its incident edges. This leaves a

complete graph Kn_\ with an odd number of vertices, whose edges can be

coloured with n -1 colours, using the above construction. At each vertex there

is exactly one colour missing, and these missing colours are all different. The

edges of Kn incident to v can therefore be coloured using these missing

colours. It follows that x' (Kn) = n -1, if n is even. ■

Problem 13.7

(a) Suppose that 31 teams take part in a competition in which each team must play exactly

one match against each of the other 30 teams. If no team can play more than one match

a day, how many days are needed?

(b) What is the corresponding answer if there are 32 teams, each of which must play exactly

one match against each of the other 31 teams?

We conclude this section with a theorem of Denes Konig, a Hungarian

mathematician who wrote the first comprehensive treatise on graph theory,

Theorie der Endlichen und Unendlichen Graphen (Theory of Finite and Infinite

Graphs) in 1936. His theorem tells us that the edges of any bipartite graph (not

necessarily simple) with maximum vertex degree d can be coloured with just d

colours.

Theorem 13.5: Konig's Theorem
,

Let 6 be a bipartite graph whose maximum vertex degree is d. Then

X'(G) = d.
:

■

312 Graphs and Applications: An Introductory Approach

Proof The proof is by mathematical induction on m, the number of edges

of G.

Step 1 The statement is true for m = 1 since, for the bipartite graph G with

one edge,x'(G) = 1 and d = 1.

Step 2 We assume that *'(G) = d for all bipartite graphs with fewer than

m edges. We wish to show thatx'(G) = d for all bipartite graphs with m edges.

Let G be a bipartite graph with m edges and maximum vertex degree d, and

let H be the graph obtained from G by removing an edge e adjacent to the

vertices v and zv:

Since H has fewer than m edges and maximum vertex degree d (or less), it

follows from our assumption that^'(H) < d; that is, His d-edge colourable. We

now colour the edges of H with d colours, and replace the edge e. If we can

colour e with one of the d colours, then we obtain a d-edge colouring of G, as

required.
To show that the edge e can always be coloured in this way, we argue as

follows. Since H is obtained from G by removing the edge e, there must be at

least one colour missing at v, and at least one colour missing at w.

If there is some colour missing at both v and w, then we can assign this colour

to the edge e, thereby completing the d-edge colouring of G.
If there is no colour missing at both v and w, suppose that the colour blue is

missing at v, and the colour red is missing at w, and consider the path starting

at v and consisting entirely of red and blue edges. The edges in such a path

must alternate in colour, and must alternate between the vertices on the left

and those on the right of the bipartite graph. Since there are no blue edges at

v, the colour red must appear there. It follows that w cannot be reached from v

by such a red-blue path, since w would have to be reached by a red edge.

interchange red and blue

Edge Colourings and Decompositions 313

We now interchange the colours on this path, so that the blue edges become

red, and the red edges become blue. Then the colours appearing at w are

unchanged, and the colour red is now missing at both v and w. We can there¬

fore assign to the edge e the colour red, thereby completing the colouring of
the edges of G.

It follows that the statement is true for all bipartite graphs with m edges.
This completes Step 2.

Therefore, by the principle of mathematical induction, the statement is true

for all bipartite graphs with m edges, for each positive integer m. ■

Problem 13.8

Use Konig's theorem to write down the chromatic index of each of the following graphs:

(a) the complete bipartite graph Kf:S (r < s);

(b) the graph of the cube;

(c) the /r-cube Qk.

13.2 Aigorithm for Edge Colouring

In Section 12.2 we presented a greedy algorithm for vertex colouring. We now

present a corresponding greedy algorithm for edge colouring.

Greedy algorithm for edge colouring

START with a graph G and a list of colours 1,2,3,....

Step 1 Label the edges a, b, c,... in any manner.

Step 2 Identify the uncoloured edge labelled with the earliest letter in the alphabet;

colour it with the first colour in the list not used for any coloured edge that meets it

at a vertex.

Repeat Step 2 until all the edges are coloured, then STOP.

An edge colouring of G has been obtained. The number of colours used depends on the label¬

ling chosen for the edges in Step 1.

We present two examples using the same graph with different labellings.

314 Graphs and Applications: An Introductory Approach

Illustration A

Find an edge colouring of the following graph G.

Step 2 We successively colour

edge a with colour 1,

edge b with colour 2,

edge c with colour 1,

edge d with colour 3,

edge e with colour 3,

edge/with colour 2,

edge g with colour 4.

All the edges are now coloured, so we STOP.
We thus obtain the 4-edge colouring of G shown above. □

Edge Colourings and Decompositions 315

Illustration B

Find an edge colouring of the following graph G.

Step 1 We label the edges a,..., g as follows.

Step 2 We successively colour

edge a with colour 1,

edge b with colour 1,

edge c with colour 2,

edge d with colour 2,

edge e with colour 3,

edge/with colour 3,

edge g with colour 3.

All the edges are now coloured, so we STOP.

We thus obtain the 3-edge colouring of G shown above.

a 1

Notice that, in the above examples, % '(G) = 3, and in Illustration B we found

an edge colouring of G that uses 3 colours.

316 Graphs and Applications: An Introductory Approach

Problem 13.9
Use the greedy algorithm to colour the edges of the following graph G, using each of the

given labellings.

(a) (b) (c)

What is the actual value of%'(G)?

More generally, we have the following theorem.

Theorem 13.6

For any graph G, there is a labelling of the edges for which the greedy algorithm yields an

edge colouring with /'(G) colours.

Outline of Proof
Take any edge colouring of G with *'(G) colours, denoted by 1, 2, 3, ..., and

sequentially label with a, b, c, ... the edges coloured 1, then the edges

coloured 2, then the edges coloured 3, and so on. For this labelling, the greedy

algorithm assigns the colours 1, 2, 3,... in that order, so only x'(G) colours are

needed. ■

Problem 13.10

Find a labelling of the edges of the following graph, for which the greedy algorithm yields an

edge colouring of G with^'(G) colours.

Edge Colourings and Decompositions 317

13.3 Edge Decompositions

Some of the most interesting problems in graph theory involve the decompo¬

sition of a graph G into subgraphs of a particular type. In several of these prob¬

lems, we split the set of edges of G into disjoint subsets; this is called an edge
decomposition of G.

For example, consider the following disconnected graph G.

A natural edge decomposition is to split the set of edges into disjoint subsets

that correspond to the components of G:

{a, b, c}, {d, e,f,g,h}.

Another natural edge decomposition arises from the idea of an Eulerian

graph. In Chapter 3 we investigated conditions under which a given

connected graph is Eulerian, and showed that every Eulerian graph can be

split into disjoint cycles - this means that we can split the set of edges of G into

disjoint subsets.
For example, for the Eulerian graph G shown below, there are five edge

decompositions of G into disjoint cycles:

{a, b, c, d, e,f}, {g, h, *};

{a,f, i}, {b,c,g}, {d, e,h};

{a,f,h, g}, {b, c, d, e,i};

{b, c, h, i}, {a,/, e, d, g};

{d, e, i, g}, {a, b,c,h,f}.

In this section, we adopt a similar approach to several other problems. Each

problem can be formulated in graph-theoretic terms, and involves splitting

the set of edges of a graph into disjoint subsets with particular properties. By

doing this, we observe similarities between seemingly different problems and

can begin to classify them, thereby gaining insight into the nature of the

different types of problem.

318 Graphs and Applications: An Introductory Approach

Decomposition Into Matchings

The following diagram shows the cube graph and three sets of edges indi¬

cated by thick lines.

These three sets have the property that each edge of the graph appears in just

one of them, and this leads to the following edge decomposition:

{ab, cd, ef, gh}, {ad, be, eh,fg}, {ae, bf, eg, dh}.

Each of the above sets consists of edges that have no vertex in common. Such a

set of edges is called a matching.

Definition
A matching in a graph G is a set of edges of G, no two of which have a vertex in common.

Every graph can be decomposed into matchings, since if there are m edges,

then we can simply take m matchings, each consisting of a single edge.

However, the problem of determining the minimum number of matchings

needed to decompose a given graph can be much more difficult, and is

unsolved in general. This question is of more than academic interest, and has

arisen in several contexts, two of which we consider below.

Notice that the problem of decomposing a graph into the minimum

number of matchings is an edge colouring problem in which the edges of each

matching are assigned the same colour.

Example 13.1: Wire Colouring
In Section 13.1 we considered a display panel on which six electrical compo¬

nents a, ...,/are mounted and then interconnected.

Edge Colourings and Decompositions 319

The connecting wires are first formed into a cable, with the wires to be

connected to a emerging through one hole in the panel, those connected to b

emerging through another hole, and so on. In order to distinguish the wires

that emerge from the same hole, they are coloured differently.

In order to determine the minimum number of colours necessary for the

whole system, we represented the connection points by the vertices of a

graph and the wires by edges. We found that five colours are necessary to

colour the wires in the system. The following diagram shows the edges of
each colour.

graph

The edge decomposition corresponding to the above edge colouring

consists of the five subsets of edges coloured with each of the five colours:

{af, be}, {ab, cd, ef}, {ab, de}, {ah, cf, de}, {be, de}. □

In a wire colouring problem, the edges of each colour form a matching, so

the problem of finding the smallest number of colours needed to colour the

wires is the same as that of determining the minimum number of matchings

needed to decompose the graph. In other words, it is an edge decomposition

of the graph in which the edges in each subset form a matching.

Since the graphs considered in wire colouring problems usually have

multiple edges, the best we can say is that the number of matchings is limited

by the bounds for the chromatic index given by the extended version of

Vizing's theorem (Theorem 13.2) and Shannon's theorem (Theorem 13.3):

d<x'(G)<d + h and d<x'(G)<jd,

where d is the maximum vertex degree in the graph G and h is the maximum

number of edges joining a pair of vertices.

It is possible to find graphs attaining any of these bounds, so we cannot

obtain better results than this in general.

Example 13.2: Scheduling Examinations
At the end of an academic year, all students have to take an hour-long exami¬

nation with each of their tutors. How many examination periods are

required?

320
Graphs and Applications: An Introductory Approach

To see what is involved, consider a simple example with four students a, b,

c, d and three tutors A, B, C. We represent the students and tutors by the

vertices of a bipartite graph, and join a student vertex to a tutor vertex when¬

ever the student needs to be examined by the tutor. An example of such a

graph is:

students tutors

If two edges meet at a common vertex, then the corresponding examina¬

tions cannot take place simultaneously. So the problem is an edge decomposi¬

tion problem in which we must split the graph into subgraphs in which no

two edges meet - that is, into matchings. In this particular case, the minimum

number of matchings is 3, and a suitable timetable is as follows.

The corresponding edge decomposition is

{aA, bB, dC}, {aC, bA, cB}, {bC, cA, dB}.

This problem can also be thought of as an edge colouring problem. If we

colour the 9 am edges red, the 10 am edges yellow, and the 11 am edges blue,

then the colours appearing at each vertex (student or tutor) are different. All

edges of the same colour form a matching. CD

In a scheduling problem of the above type, the graphs under consideration

are bipartite graphs. The problem therefore reduces to that of finding the

chromatic index of a bipartite graph, and this problem is answered by Konig's

theorem (Theorem 13.5) - the smallest number of matchings needed is equal

to the largest vertex degree in the bipartite graph.

Edge Colourings and Decompositions 321

Problem 13.11

Five students a,..., e, are to be examined by five tutors A,..., E\

tutors must examine students b and d;

tutor B must examine students a, b and e;

tutor C must examine students b, c and e;

tutor D must examine students a and c;

tutor E must examine students b, d and e.

If each examination takes the same amount of time, find the minimum number of examina¬

tion periods needed, and devise a suitable schedule.

Decomposition Into Planar Subgraphs

Printed Circuits Problem

Recall that in printed circuits, electronic components are connected by

conducting strips printed directly onto a flat board of insulating material.

Such printed connectors may not cross, since this would lead to undesirable

electrical contact at crossing points.

Circuits in which many crossings are unavoidable may be printed on

several boards that are then sandwiched together. Each board consists of a

printed circuit without crossings. What is the smallest number of such layers

needed for a given circuit?

We illustrate this problem with a particular example.

Example 13.3: Printed Circuits
Consider a printed circuit that has 36 interconnections and is represented by

the complete graph Kg. It is impossible to arrange all these interconnections in

one layer, or even two; three layers are needed, and a solution is given below.

Note that each edge of Kg is included on just one of the layers - for example,

the edge 28 appears on layer 2, and the edge 69 appears on layer 3.

Each of these three graphs is a planar graph. So the printed circuits problem

reduces to that of decomposing the graph into smaller graphs, each of which

322
Graphs and Applications: An Introductory Approach

is planar. In other words, it is an edge decomposition problem in which the

edges in each subset form a planar graph. In the case of K9, we get the following

edge decomposition corresponding to the three layers shown above.

{12,13,16,18,19, 23, 29, 34, 38, 39, 45, 46, 47, 48, 56, 57, 67, 68, 78, 89},

{14,15, 17, 24, 28, 35, 36, 37, 79},
{25, 26, 27, 49, 58, 59, 69}. LJ

Problem 13.12
Show that Ke can be 'printed' in two layers, and write down a corresponding edge

decomposition.

The above idea of splitting a graph into planar graphs leads us to define the

thickness of a graph G, denoted by f(G), to be the minimum number of planar

graphs that can be superimposed to form G. For example, the thickness of any

planar graph is 1, and the thickness of the complete graph K9 is 3.

Problem 13.13

Determine the thickness of each of the following graphs:

(a) the complete graph Ks;

(b) the complete bipartite graph ^3,3;

(c) the Petersen graph.

In general, there is no known formula that gives the thickness of a graph G.

However, we can easily obtain a lower bound for f(G) that often coincides with

the correct value. We restrict our attention to simple graphs, since we can

collapse multiple edges to a single edge and remove loops, as we did in

Section 11.1. We adopt the following notation.
Let a be any positive number. Then [a J is the integer obtained by 'rounding

a down', and [a] is the integer obtained by 'rounding a up'; for example,

\jc\ = 3, 1_6.2J = 6, |_4J = 4 and [jr] = 4, [6.2] = 7, [4] = 4.

The connection between these functions is given by

[fl/F] = [_(«/&) + {b-T)/bj;

Edge Colourings and Decompositions

for example,

323

[7/5-| = |_7/5 + 4/5j = |_ll/5j = 2.

Note that, if a is an integer, then |_«J = \a] = a.

We can now prove the following result.

Theorem 13.7

Let G be a simple connected graph with n (> 3) vertices and m edges. Then

(a) f(G) > [“ /77/(3/7—6)~|;

(b) t(G) > [~m/(2n—4)~], if G has no triangles.

Proof

(a) By Corollary 11.1, the number of edges in a simple connected planar

graph with n (> 3) vertices and m edges is at most 3n - 6; thus the

number of edges on each 'layer' of G is at most 3n - 6. Since there are m

edges altogether, the number of planar graphs must be at least

m/(3n - 6). However, the number of planar graphs is an integer, so
t(G) > [~ra/(3n - 6)~|.

(b) By Corollary 11.2, the number of edges in a simple connected planar graph

with n (> 3) vertices, m edges and no triangles is at most 2n - 4. Since

there are m edges altogether, the number of planar graphs must be at

least m/(2n - 4). However, the number of planar graphs is an integer, so
t(G) > [”m/ (2n - 4)"|. g

We can now deduce lower bounds for the thickness of Kn and that of Krs.

Theorem 13.8

(a) f{/g>|_(rt + 7)/6j;

(b) t(Kr s) >[~rs/{2r+2s - 4)~],

Proof

(a) If G = Kn/ then m = ~-n(n -1). It follows from part (a) of Theorem 13.7 that

f(K„)>rl*("-l)/(3n-6)l

324
Graphs and Applications: An Introductory Approach

Using [a / b~\ = |_(a / b) + (b -1)/ b J , we can rewrite the expression on

the right as follows:

[y n(n - 1)/ (3n - 6)]

= L y «(« - 1)/(3n - 6) + (3n - 7)/(3n - 6) J

= L(y(n2 “ «) + (3n " 7))/(3n " 6)J

= |_((n2 - n) + (6n - 14))/2(3n - 6)J

= |_(n2 + 5n - 14)/2(3n - 6)J

= |_(n + 7)(n - 2)/6(n - 2) J

- L (n + 7)/6j

Thus

f(K„)>L(» + 7)/6j.

(b) If G = Kr/S, then m = rs and G has no triangles.

It follows from part (b) of Theorem 13.7 that

t(Krs)>[m/(2n- 4)~| = ^rs / (2(r + s) - 4)~|.

Thus

t(Kr s) > f rs / (2r + 2s-4)~|. ■

It can be shown that t(Kn) = [_(n + 7)/ 6j for all n, except for n = 9 and n = 10,

when t(Kn) = 3.
It is not known whether the inequality in part (b) is always an equality, but

it certainly is for all complete bipartite graphs with fewer than 48 vertices.

So, to sum up, although we cannot solve the printed circuits problem in

general, we have obtained a lower bound for the solution, and this bound

coincides with the correct value surprisingly often.

Decomposition Into Spanning Subgraphs

Bus Route Problems

In a certain county there are a number of rival bus companies. Each company

wishes to run a service that includes every town in the county, in such a way

that passengers using that company can get from any town to any other town.

However, the County Council will not allow different companies to operate

along the same stretch of road. How many companies can be accommodated?

Edge Colourings and Decompositions 325

We solve this problem by drawing a graph whose vertices correspond to

the towns and whose edges correspond to the roads joining them.

Example 13.4: Bus Routes
The following graph represents a county containing 11 towns joined by

22 roads.

l 2

6

10

Each bus company needs a network that connects all 11 towns, so each

company must be assigned at least 10 of the interconnecting roads. Since there

are only 22 roads, the maximum number of companies that can be accommo¬

dated is 2. The following diagram shows an appropriate allocation of roads to

the two companies.

Red Devil bus company Purple Peril bus company

□
Such an allocation of roads to companies produces an edge decomposition

of the original graph. Each subgraph in this decomposition must include

edges incident with all the vertices and must be connected, so that a passenger

can travel from any town to any other by the buses of each company. So the

problem reduces to that of decomposing the graph into the maximum

number of connected subgraphs, each of which includes every vertex of the

graph; such subgraphs are called spanning subgraphs.
We denote the number of spanning subgraphs of a graph G by s(G). An

expression for the number s(G) was obtained by W. T. Tutte, who proved the

following result in 1961.

326 Graphs and Applications: An Introductory Approach

Let 6 be a connected graph with n vertices. Then s(G) is the largest integer for which the

following statement is true:

for each positive integer k < n, at least (/r -1) x s(G) edges must be removed in order to

disconnect G into k components.

To illustrate this result, we consider the following graph G, for which s(G) = 2,

as we saw in Example 13.4.

1 2

11

To disconnect G into

2 components, we must remove at least 3 edges, so

s(G) < 3/(2-1) = 3;

3 components, we must remove at least 5 edges, so

s(G) < 5/(3 - 1) = 5/2;

4 components, we must remove at least 7 edges, so

s(G) < 7/(4 -1) = 7/3;

11 components, we must remove all 22 edges, so

s(G) < 22/(11 - 1) - 22/10.

The largest integer s(G) that satisfies all these inequalities is 2.

The formal proof of the above result is too complicated to include here, but
the following remark indicates why the condition is necessary.

Assume that the graph G has been disconnected into k components by the

removal of r edges. In order to have a connected system, each bus company

Edge Colourings and Decompositions 327

must have at least k-1 linking edges between the various components. Thus,

if there are s(G) bus companies, then

r > (k-1) x s(G).

Decomposition into Spanning Trees

Several variations of the above problem lead to interesting mathematical

results. For example, suppose that each bus company operates from a depot in

one of the towns and chooses each of its routes to be a path out to another

vertex, returning the same way. Then each of the connected subgraphs must be a

tree - in other words, the graph can be decomposed into spanning trees. Such

a decomposition is possible only when the number of edges in the graph is a

multiple of the number of edges in a spanning tree; if the graph has n vertices

and m edges, then m must be a multiple of n - 1.

Example 13.5: Bus Routes - A Variation
In the above example, where n = 11 and m = 22, the graph can be decom¬

posed into spanning trees only if two of the roads are not used by either

company. For example, if the roads 3-8 and 5-6 are removed from the graph,

the resulting graph can be decomposed into the following spanning trees.

328 Graphs and Applications: An Introductory Approach

The following theorem gives a necessary and sufficient condition for the

existence of a decomposition into spanning trees.

Theorem 13.10

Let G be a connected graph with n vertices and s(n -1) edges. Then G can be decomposed into

s spanning trees if and only if

for each positive integer k < n, at least (k - 1) x s edges must be removed in order to

disconnect G into k components.

Proof By Theorem 13.9, this theorem asserts that G can be decomposed into

s spanning trees if and only if s = s(G). However, if G can be decomposed into

s connected subgraphs each of which includes every vertex of the graph, then

each such subgraph must have n-1 edges, and must therefore be a spanning

tree, since there are no edges left to form any cycles. ■

We have now found an expression for the maximum number of bus compa¬

nies that can be accommodated in the first type of problem, and we have

obtained a necessary and sufficient condition for the existence of a solution to

the second type of problem.

Edge Colourings and Decompositions 329

Exercises 13

Edge Colourings

13.1 Determine x '(G) for the following graph G.

13.2 Determine x'(G) for each of the following graphs G.

(a) Use Vizing's theorem to obtain lower and upper bounds for %' (G).

(b) What is the actual value of x'(G)l

13.4 Consider the following graph G.

(a) Use the theorems of Vizing and Shannon to obtain lower and

upper bounds for x'(G).

(b) What is the actual value of x'(G)?

330 Graphs and Applications: An Introductory Approach

13.5 Prove that the Petersen graph has chromatic index 4.

Hint Apply Vizing's theorem. Then assume that the chromatic index

is 3, and note that there is essentially only one way to 3-edge colour

the outside pentagon.

13.6 Let G be a 3-regular Hamiltonian graph. Show that *'(G) = 3-

Algorithm for Edge Colouring

13.7 Use the greedy colouring algorithm to colour the edges of each of the

following labelled graphs.

Edge Decompositions

13.8 Five students are to be examined by four tutors:

tutor A must examine students a, b and e;

tutor B must examine students a, c and d;

tutor C must examine students b, c and e;

tutor D must examine students b, c and d.

If each examination takes the same amount of time, find the minimum

number of examination periods needed, and devise a suitable

schedule.

Edge Colourings and Decompositions 331

13.9 For the octahedron graph shown below, find an edge decomposition

into each of the following, where possible:

a

(a) disjoint cycles;

(b) planar subgraphs;

(c) subsets in which no two edges in any subset meet;

(d) connected subgraphs that include every vertex;

(e) spanning trees.

13.10 Show how the complete graph Ky can be 'printed' in two layers, and

write down a corresponding edge decomposition.

13.11 Use Theorem 13.8 to determine the thickness of each of the following

graphs:

(a) K20; (b) ^20,20-

13.12 Determine the thickness of the complete bipartite graph Kio,40-

Hint To obtain an upper bound, split K\0,40 into a number of copies

of the planar graph o-

13.13 Decompose the following graph into disjoint spanning trees.

a

13.14 Verify that Theorem 13.10 holds for the following graph.

a

Chapter 14

Conclusion

After working through this chapter, you should be able to:

• explain what is meant by the efficiency of an algorithm;

• understand what are meant by a P-problem, an NP-problem and an NP-complete

problem.

We conclude by presenting two classifications of some of the problems intro¬

duced in this book. First, we use the classification introduced in Chapter 1 and

describe the problems as existence, construction, enumeration and optimization

problems; we discuss briefly the ways of solving each class of problem. Then

we introduce a new classification that indicates whether it is 'easy' or 'hard' to

solve particular problems.

14.1 Classification of Problems

In Chapter 1 we classified problems as follows.-

Existence problems

Construction problems

Enumeration problems

Optimization problems

Does there exist...? Is it possible to ...?

If... exists, how can we construct it?

How many ... are there? Can we list them all?

If there are several..., which one is the best?

We now review some problems of each type.

332

Conclusion 333

Existence Problems

From a historical point of view, some of the problems that we now regard as

part of graph theory arose as recreational puzzles. For instance:

Konigsberg bridges problem (Chapters 1 and 3)

Does there exist a closed trail that crosses each of the seven bridges exactly
once?

Knight's tour problem (Chapter 3)

Does there exist a sequence of knight's moves that visits each square of an

8x8 chessboard exactly once and returns to the starting point?

Utilities problem (Chapters 1 and 11)

Does there exist a way of connecting three neighbours to three utilities so

that no two connections cross?

Four colour problem (Chapter 12)

Does there exist a map that requires more than four colours to colour it so

that neighbouring countries are coloured differently?

The methods used to answer such questions vary considerably, even for

different instances of the same problem. For example, if the answer is yes, as

in the knight's tour problem for an 8 x 8 chessboard, then it is sufficient to

produce a single example. This may not be easy to do in practice - for

example, it may take a lot of trial and error to find a knight's tour - but once a

single solution has been found, the problem is answered.

If the answer is no, then a different approach is required. It may be suffi¬

cient to make a simple observation, or we may need to produce a formal proof.

For the Konigsberg bridges problem, it is sufficient to observe that when we

enter one part of the city we must be able to leave it again, so each vertex of the

corresponding graph must have even degree; but in the corresponding graph

each vertex has odd degree, so a solution cannot exist. For the utilities

problem, we need to show that the complete bipartite graph is non-planar,

and this can be done either directly or by using Euler's formula. Finally, in the

case of the four colour problem, it was a major task lasting many years to

prove that no map needing more than four colours exists.

It is instructive to generalize such specific problems. For example, we can

generalize the Konigsberg bridges problem by asking whether any given

graph has an Eulerian trail. We answered this question in Theorem 3.1 which

gives a simple test that can be used to determine whether a given connected

graph is Eulerian.
We can pose the knight's tour problem for 'chessboards' of other sizes.

There exist tours for some chessboards, but not for others; to establish

whether or not a tour exists in a particular instance, we may have to guess the

334 Graphs and Applications: An Introductory Approach

answer and then attempt to show that our guess is correct. Even more gener¬
ally, we may ask whether any given graph has a Hamiltonian cycle. Unlike the
Eulerian problem, no useful test is known for determining whether a given
graph is Hamiltonian, although there are some sufficient conditions, such as
those given by Dirac's or Ore's theorem, that work well in particular cases.

The problem of deciding whether a given graph is planar generalizes the
utililities problem. We have a result that answers the question in principle -
Kuratowski's theorem (Theorem 11.3): a graph is planar if and only if it
contains no subdivision of K5 or K33. Unfortunately, it is usually very difficult
to recognize subdivisions of JC5 or K3,3 in a given graph, so this theorem is
almost useless in practice. We therefore have to resort to other means, such as
using Euler's formula to show that a particular graph is non-planar. Alterna¬
tively, there are a number of planarity algorithms that can be used.

The problem of determining the chromatic number of a given graph gener¬
alizes the four colour problem. There is no simple method for determining the

chromatic number of any given graph.
In general, we cannot even determine when two given graphs are essen¬

tially the same. There is no simple method for determining whether there
exists an isomorphism between two given graphs, although we can answer
this question in particular instances - for example, no isomorphism exists if

the graphs have different degree sequences.
We note, finally, that for every property that a graph G may possess (planar,

Eulerian, Hamiltonian, fc-colourable, etc.), there is a corresponding existence

problem; for example:

planar
Eulerian
Hamiltonian
fc-colourable

does there exist a plane drawing of G?
does there exist an Eulerian trail in G?
does there exist a Hamiltonian cycle in G?
does there exist a fc-colouring of G?

Construction Problems

For each type of problem, we may be able to construct the required solution
for small instances of the problem by trial and error. For example, if you are
given a graph with six vertices, then to determine whether it is Eulerian,
planar or 3-colourable, it is probably easiest to use inspection, rather than a
systematic method. However, for large graphs, we need to use an algorithm.
In order to introduce the idea of an efficient algorithm, we need some way of
specifying the number of operations that may be involved.

We say that a graph algorithm involves O(n) operations when the number
of operations a computer uses in applying the algorithm to a given graph is at
most cn, where c is some fixed constant (depending on the particular algo¬
rithm) and n is a parameter related to the input required (usually the number
of vertices or edges of the given graph). Similarly, a graph algorithm involves

Conclusion 335

0(nk) operations when the number of operations a computer uses when

applying it is at most cnk, for some fixed constant c.

The following algorithms are examples of algorithms used for problems

where a solution is known to exist and we wish to find one.

Spanning Tree Algorithms

In Chapter 6 we described two methods for finding a spanning tree in a

connected graph. In the building-up method, we start with no edges and add

edges one at a time in such a way that no cycles are created; in the

cutting-down method, we start with the graph and remove one edge at a time

in such a way that the resulting graph is never disconnected. These algo¬

rithms are easy to apply by hand, or to adapt for computer use, and are effi¬

cient algorithms involving 0(n2) operations, where n is the number of vertices

in the graph.

Fleury's Algorithm

This algorithm, presented in Chapter 9, is used to find an Eulerian trail in an

Eulerian graph; it involves O(m) operations, where m is the number of edges

in the graph.

Enumeration Problems

The subject of graphical enumeration is a major one, although it has not

featured prominently in this book. However, we have looked at a few impor¬

tant problems, which we now summarize.

Labelled Graphs

A simple graphical enumeration problem is that of determining the number of

simple labelled graphs with n vertices. Since each of the j-n(n - 1) possible

edges is either present or absent, and the number of distinct subsets of k
objects is 2k, there are 2”(n_1)/2 such graphs. The number of simple labelled

graphs with n vertices and m edges is the binomial coefficient

rTn(n -1)>

v m 7

336 Graphs and Applications: An Introductory Approach

since each choice of m of the ~n(n - 1) possible edges determines a different

labelled graph with exactly m edges.

Labelled Digraphs

Similarly, there are 2labelled digraphs with n vertices, and the number of

labelled digraphs with n vertices and m arcs is the binomial coefficient

^n(n -l)''

Labelled Trees

In Chapter 7 we proved that the number of labelled trees with n vertices is n"-2

(Cayley's theorem).

Unlabelled Graphs

The corresponding enumeration problems for unlabelled graphs are far more

difficult. The numbers of simple graphs of various types are given in the

following table.

Number of vertices 1 2 3 4 5 6 7 8

labelled graphs 1 2 8 64 1024 32768 2097152 268435456

unlabelled graphs 1 2 4 11 34 156 1044 12346

unlabelled connected graphs 1 1 2 6 21 112 853 11117

unlabelled regular graphs 1 2 2 4 3 8 6 20

unlabelled Eulerian graphs 1 0 1 1 4 8 37 184

unlabelled Hamiltonian 1 0 1 3 8 48 383 6020

graphs

labelled trees 1 1 3 16 125- 1296 16807 262144

unlabelled trees 1 1 1 2 3 6 11 23

labelled digraphs 1 4 64 4096 22) 230 242 256

unlabelled digraphs 1 3 16 218 9608 1540944 ~9xl09 ~2xl012

In practice, we are interested not just in counting various types of graph, but

also the number of solutions to various problems. For example, in Chapter 7 we

considered the problems of counting binary trees and counting alkanes. Also, it

follows from our discussion in Chapter 6 that the number of distinct minimum

bracings of a rectangular framework is the number of non-isomorphic span¬

ning trees in the corresponding bipartite graph. We may also be interested in

other attributes of a given graph; for example, the number of minimum connec¬

tors, or the number of shortest paths between two given vertices.

Conclusion 337

Optimization Problems

We now review some problems for which solutions are known to exist, and
we wish to find the 'best' solution.

Minimum Connector Problem

We introduced this problem in Chapter 8, and presented Prim's algorithm for

its solution. This algorithm is efficient and involves 0(n2) operations, where n

is the number of vertices of the graph.

Travelling Salesman Problem

There is no efficient algorithm known for the travelling saleman problem. As

we saw in Chapter 8, lower and upper bounds for the solution can be derived
fairly easily.

Shortest Path Problem

In Chapter 9 we presented an algorithm for finding the shortest path(s)

between two vertices of a weighted digraph. This is an efficient algorithm that

involves 0(n2) operations, where n is the number of vertices of the digraph.

Longest Path Problem

We can modify the shortest path algorithm to obtain an algorithm for finding

the longest path(s) between two vertices of a weighted digraph that does not

contain a cycle. (The concept of a longest path is needed in certain scheduling

problems.) However, the procedure does not terminate for a digraph

containing a cycle; such a digraph has no longest path, because we can

traverse the cycle indefinitely.

Chinese Postman Problem

In Chapter 9 we showed how to solve this problem for simple instances.

An algorithm employing computations on shortest paths and weighted

matchings was developed by J. Edmonds; it involves 0(n3) operations, where

n is the number of vertices of the graph.

338
Graphs and Applications: An Introductory Approach

Dominating Set Problem

In Chapter 12 we introduced the idea of a dominating set of vertices of a graph

G - a subset of the set of vertices of G such that each vertex of G is adjacent to at

least one of the vertices in the subset; we then looked for minimum domi¬

nating sets. There is no known algorithm for solving this problem in general.

Edge-dominating Set Problem

Similarly, we can define an edge-dominating set of a graph G to be a subset of

the set of edges of G such that each edge of G has at least one endpoint in

common with some edge in the subset; we can then look for minimum

edge-dominating sets. There is no known algorithm for solving this problem

in general.

14.2 Efficiency of Algorithms

Next, we consider the nature and efficiency of some of the algorithms

presented in this book.
Once an algorithm has been constructed for solving a particular problem, a

number of questions arise as to the efficient implementation of the algorithm:

• can moderately large instances of the problem be solved in a reasonable

time?
• can we construct another algorithm that solves the problem more quickly?

What does it mean to say that an algorithm is efficient, and why is this

important?
In this book you have met many algorithms, some more efficient than

others. For some problems, we can find an algorithm where the time taken is

proportional to n2, or to n3, or more generally to nk, for some fixed number k;

here, n is some parameter associated with the amount of input data required

for the problem, such as the number of cities, or the number of vertices of a

graph.
Such algorithms are called polynomial-time algorithms, because the time

taken is bounded by a polynomial in n. Examples of polynomial-time algo¬

rithms are Prim's algorithm for the minimum connector problem, and the

algorithm given for the shortest path problem.
Algorithms with a time proportional to a power of n (such as 2”, 3n) or to n!

are known as exponential-time algorithms.

The times taken by exponential-time algorithms for problem instances of

moderate size may be so long that problems for which no polynomial-time

algorithm exists are generally considered to be intractable. So we make the

Conclusion 339

distinction between polynomial-time algorithms, which are normally efficient,

and exponential-time algorithms, which are usually so inefficient as to be of little
practical use except for problem instances of small size.

Some caution must be exercised in applying this general conclusion to

particular problems. For example, it is possible for the time taken by a polyno¬

mial-time algorithm to involve a large coefficient of proportionality (such as

10100n) or a very large exponent (such as n100), so that the algorithm is not effi¬

cient in practice. However, such cases are rare, and most polynomial-time

algorithms met in practice have a reasonably small coefficient and an expo¬

nent not greater than 3. Further, some exponential-time algorithms are some¬
times efficient in practice.

The following table compares the approximate times for two polyno¬

mial-time algorithms (with times n and n3) and two exponential-time-algo-

rithms (with times 2” and 3n), using a computer performing a thousand
operations per second:

n = 10 n = 50

n 0.01 seconds 0.05 seconds

n3 1 second 2 minutes

2” 1 second 35 years

3" 1 minute 2.3 x 1013 years

14.3 Another Classification of Problems

NP-Problems

We remarked earlier that nobody has been able to find a polynomial-time

algorithm for the travelling salesman problem. Suppose that, instead of the

usual travelling salesman problem:

find a sequence of cities that forms a Hamiltonian cycle of minimum length,

we consider the related problem:

is there a Ffamiltonian cycle of total length less than k?

where k is some given number. This is called the corresponding decision

problem.

Suppose that we have a particular instance of this problem, and that we are

given a cycle whose total length is less than k. If we wish to check that the given

cycle really does have total length less than k, then this is straightforward: the

checking can certainly be done in polynomial time. (Consider the effort

involved in originating the solution to a problem as compared to checking

someone else's solution.) Any problem like this whose solution when given can

340
Graphs and Applications: An Introductory Approach

be checked in polynomial time (even if it took exponential time to find tha
solution originally) is called a non-deterministic polynomial-tame prob em,

abbreviated to NP-problem. The class of all such problems is denoted by NP.

In particular, any problem that can be solved in polynomial time is an

NP-problem, because we can certainly check the given solution in polynomia

time if it took only polynomial time to find it in the first place! A problem

whose solution can be found using a polynomial-time algorithm is called a

polynomial-time problem or P-problem. The class of all such problems is

denoted by P. »TT3
To compare the performance of algorithms for problems in the class N

with that of algorithms for problems in the class P, logicians have introduced

the concept of a non-deterministic computer. This is a model of computation that

is deliberately unrealistic and does not correspond to any existing physical

computing device. An ordinary computer is a deterministic machine - one m

which the state at a particular time is determined in a predictable manner by

the state and input to the machine at a previous time. A non-deterministic

computer is a hypothetical device that has the remarkable ability to 'guess' the

answer to a problem. ,
For the decision-problem form of the travelling salesman problem, the

'guess' takes the form of a sequence of cities. The computer can then verify

that the 'guess' is a solution - that is, that the sequence forms a cycle with total

length less than k. This checking stage can be carried out in polynomial time by

a deterministic process. Thus the non-deterministic computer operates in two

stages: a 'guessing' stage and a checking stage, in which the computer verifies

that the 'guess' is in fact a solution.
The non-deterministic computer always 'guesses' correctly. The reason for

having a checking stage in the non-deterministic computer is so that the

performance of an algorithm for a non-deterministic computer can be

compared with the performance of an algorithm for an ordinary deterministic

machine.
It is assumed that the 'guessing' stage takes no appreciable time, so in this

case, since the checking stage can be carried out in polynomial time, the

non-deterministic computer can answer the decision form of the travelling

salesman problem in polynomial time. Thus an NP-problem (non-determin¬

istic polynomial-time problem) is one that can be solved in polynomial time

on a non-deterministic computer.
We can use the non-deterministic computer to solve a decision problem - if

the answer is yes, the computer produces a 'guess' and verifies it in polyno¬

mial time, while if the answer is no, the computer either produces this answer

or does not stop running. For example, if we want to find the chromatic

number of a graph G, then we can repeatedly bisect the range of the value of

X(G), asking: is*(G) less than 20? is*(G) between 11 and 20? and so on.
Another example of a problem that cannot be solved in polynomial time is

the graph isomorphism decision problem:

given two graphs G and H, are they isomorphic?

Conclusion 341

To date, the best known algorithm for solving this problem is an exponen¬

tial-time algorithm. But suppose that, for a particular instance of this problem,

an isomorphism between G and H is given. Then it takes only polynomial time

to verify that this one-one correspondence really is an isomorphism. A

non-deterministic computer can therefore solve the graph isomorphism deci¬

sion problem by producing a one-one correspondence in the 'guessing' stage,

and by verifying that this is an isomorphism in the checking stage. Hence this

problem is an NP-problem.

Some Important Results

We now state and discuss three important results concerning these classes of

problems.

The class P is contained in NP

PCNP

Is P a proper subclass of NP?

Every decision problem in P is also in NP. This is obvious, since if a problem is

solvable in polynomial time on a deterministic computer, we can solve it using

a non-deterministic computer by ignoring the guessing stage and using the

deterministic algorithm instead of the checking stage. The question arises as

to whether there are any problems in NP that are not in P. Algorithms for a

non-deterministic computer seem to be very much more powerful than algo¬

rithms for a deterministic computer, so we expect NP to contain more prob¬

lems than P. However, nobody has yet been able to prove this, so it remains a

conjecture, although one that is generally accepted to be true.

A polynomial-time algorithm for a non-deterministic computer can be

converted to an exponential-time algorithm for a deterministic computer

To convert an algorithm for a non-deterministic computer to one for a deter¬

ministic machine, we must replace the guessing stage by a deterministic

process. The only obvious way of doing this is to try all possible guesses.

Unfortunately, the number of possible guesses is usually an exponential func¬

tion of the problem size. It can be shown that a problem of size n in NP can be

solved by an algorithm for a deterministic computer that has time-complexity

2P(”), where p(n) is a polynomial function. It seems likely, therefore, that there

are problems in NP for which the only possible algorithms for a deterministic

machine have exponential time complexity.

342
Graphs and Applications: An Introductory Approach

A decision problem is no harder than the corresponding optimization problem

We can associate a decision problem with any optimization problem. For

example, if an optimization problem requires a solution which has minimum

cost or minimum length, we can associate with it a decision problem which

asks whether there is a solution whose cost or length is not more than a given

bound k. Decision problems can be associated in a similar way with maximiza¬

tion problems by replacing 'not more than' by not less than . Provided that

the cost or length of a solution is easy to evaluate, a decision problem can be

no harder than the corresponding optimization problem. For example, if we

have solved an instance of the travelling salesman problem, all we have to do

to answer the corresponding decision problem is to compare the length of a

minimum cycle with the bound k in the decision problem. So, altnough the

theory of NP-complete problems applies to decision problems, we can extend

many of the results about the difficulty of a problem to the corresponding

optimization problems.

Polynomial-Time Reducibility

We have seen that polynomial-time algorithms are generally considered to be

efficient, and that exponential-time algorithms are generally considered to be

inefficient. In comparing the difficulty of two problems, a useful technique is

to try to reduce one problem to the other - that is, to find a transformation that

converts any instance of one problem to an instance of the other. If such a

transformation can be carried out by a polynomial-time algorithm, and if the

first problem can be solved in polynomial time, then so can the second. Poly¬

nomial-time reducibility plays an important part in the theory of

NP-complete problems, as we shall see shortly.

NP-Complete Problems

The basis of the theory of NP-completeness was provided in 1971 by Stephen

Cook; he proved that one particular problem in NP, called the satisfiability

problem, has the property that every other problem in NP can be polynomially

reduced to it. The implication of this is that if the satisfiability problem can be

solved in polynomial time (on a deterministic computer), then so can every

other problem in NP, so NP = P. Also, if any problem in NP is intractable, in

the sense that it can be solved only in exponential time, then the satisfiability

problem must also be intractable, so NP is strictly larger than P.

Subsequently, a large number of problems (including the decision form of

the travelling salesman problem) have been shown to share this property of

the satisfiability problem. This class of problems is called the class of

NP-complete problems.

Conclusion 343

It follows that if a polynomial-time algorithm can be found for any one of

these NP-complete problems, then every one of them must be solvable in poly¬

nomial time; conversely, if any one of them can be proved to be intractable,

then they must all be intractable. The question of whether NP-complete prob¬

lems are intractable is generally considered to be one of the principal

unsolved problems of the theory of algorithms. However, as the number of

problems shown to be NP-complete grows, and no polynomial-time algo¬

rithm is found for any of them, it seems more and more likely that

NP-complete problems are intractable.

There are many problems that are known to be NP-complete. Those related

to problems described in this book are listed at the end of this chapter.

But suppose that we are presented with a new problem. How do we attempt

to classify it as a P-problem, NP-problem or NP-complete problem? It is

prudent to try both the practical and theoretical approaches described in

Chapter 1. One the one hand, we try to construct a polynomial-time algo¬

rithm to solve it: on the other, we try to prove that the problem is

NP-complete.

Grant me

The serenity to accept the problems that I cannot solve

The persistence to solve the problems that I can

And the wisdom to tell the difference.

344
Graphs and Applications: An Introductory Approach

NP-Complete Problems

Travelling Salesman Problem (Chapter 1)
given a set C of cities, the distances between each pair of cities, and a posi¬

tive integer k

problem is there a tour of C with total length not exceeding k?

Subgraph Isomorphism (related to Chapter 2)

given two graphs Gi and Gi

problem does Gj contain a subgraph isomorphic to G2?

comment can be solved in polynomial time if G\ is a forest and G2 is a tree

Generalized 4 Cubes Problem (related to Chapter 2)
given a finite set C of k colours, and a set Q of k cubes, with each side of

each cube in Q assigned a colour in C

problem can the cubes in Q be stacked in a vertical column such that each of

the colours in C appears exactly once on each of the four sides of

the column?

Hamiltonian Cycle (Chapter 3)

given a graph G

problem does G contain a Hamiltonian cycle?

Isomorphic Spanning Tree (related to Chapter 6)

given a graph G and a tree T

problem does G contain a spanning tree isomorphic to T?

comment remains NP-complete even if T is a path

Longest Path (related to Chapter 9)
given a digraph G, the length of each edge, a positive integer k, and two

specified vertices s and t

problem is there an sf-path in G of length at least k?

comment remains NP-complete when the length of each edge is 1, as does

the corresponding problem for paths in graphs

Conclusion 345

Planar Subgraph (Chapter 11)

given a graph G with m edges and a positive integer k < m

problem is there a planar subgraph of G with the same vertices as G and
more than k edges?

Graph k-Colourability (Chapter 12)

given a graph G with n vertices and a positive integer k < n

problem is G /c-colourable?

comment solvable in polynomial time for k = 2

Dominating Set (Chapter 12)

given a graph G with n vertices and a positive integer k < n

problem is there a dominating set of size k or less for G? - that is, is there a

subset S of V of size k or less such that each vertex in V is either in S

or adjacent to a vertex in S?

commen t the corresponding problem for trees is solvable in polynomial time

Suggestions for Further Reading

There are many books on graphs and digraphs and their applications.

Two books at an elementary level are:

G Chartrand, Introductory Graph Theory, Dover, New York, 1985.

O Ore, Graphs and their Uses, revised ed., New Mathematical Library 10, Math¬

ematical Association of America, Washington DC, 1990.

Standard texts in graph theory include:

J Clark and DA Holton, A First Look at Graph Theory, World Scientific

Publishing, Singapore, 1991.
RJ Wilson, Introduction to Graph Theory, 4th ed., Addison-Wesley Longman,

Harlow, Essex, 1996.
C Berge, Graphs, North-Holland, Amsterdam-New York, 1985.

JA Bondy and USR Murty, Graph Theory with Applications, American Elsevier,

New York, 1979.
G Chartrand and L Lesniak, Graphs & Digraphs, 3rd ed., Wadsworth &

Brooks/Cole, Monterey, California, 1996.
F Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts, 1969.

D West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, NJ.

VK Balakrishnan, Introductory Discrete Mathematics, Prentice Hall Interna¬

tional Inc., 1991.

A historical approach to graph theory can be found in:

NL Biggs, EK Lloyd and RJ Wilson, Graph Theory 1736-1936, paperback ed..

Clarendon Press, Oxford, 1998.

Applications of graph theory and the use of algorithms are discussed in:

A Dolan and J Aldous, Networks : An Introductory Approach, John Wiley & Sons,

New York, 1990.
G Chartrand and OR Oellermann, Applied and Algorithmic Graph Theory,

McGraw-Hill, 1993.

346

Suggestions for Further Reading 347

SB Maurer and A Ralston, Discrete Algorithmic Mathematics, Addison-Wesley,

1991.

S Even, Graph Algorithms, Computer Science Press, Potomac, Maryland, 1979.

MR Garey and DS Johnson, Computers and Intractability. A Guide to the Theory of

NP-Completeness, WH Freeman, San Francisco, 1979.

A Gibbons, Algorithmic Graph Theory, Cambridge University Press, Cambridge,

1985.
EL Lawler, JK Lenstra, AHG Rinnooy Kan and DB Shmoys (eds.), The

Travelling Salesman Problem, John Wiley & Sons, New York, 1985.

FS Roberts, Discrete Mathematical Models, with Applications to Social, Biological

and Environmental Problems, Prentice Hall, Englewood Cliffs, New Jersey,

1976.
A Tucker, Applied Combinatorics, 2nd ed., John Wiley & Sons, New York, 1984.

MN Swamy and K Thulasiraman, Graphs, Networks and Algorithms, John Wiley

& Sons, New York, 1981.
RJ Wilson and LW Beineke (eds.), Applications of Graph Theory, Academic Press,

London, 1979.
F Harary, RZ Norman and D Cartwright, Structural Models: An Introduction to

the Theory of Directed Graphs, John Wiley & Sons, New York, 1965.

Specialist texts on some of the topics in this book include:

LW Beineke and RJ Wilson (eds.), Selected Topics in Graph Theory, Academic

Press, London, Vol. 1,1978, Vol. 2,1983, Vol. 3, 1988.

TR Jensen and B Toft, Graph Coloring Problems, John Wiley & Sons, New York,

1995.
F Harary and EM Palmer, Graphical Enumeration, Academic Press, 1973.

RC Read and RJ Wilson, An Atlas of Graphs, Clarendon Press, Oxford, 1998.

The following book relates graph theory to other subjects:

LW Beineke and RJ Wilson (eds.), Graph Connections, Clarendon Press,

Oxford, 1997.

Appendix

Methods of Proof

Mathematical Statements

The basic ingredients of mathematical reasoning are sentences called state¬

ments. A mathematical statement is a sentence that is either TRUE or FALSE.

To prove that a given statement is FALSE, it is enough to produce a single

example for which the statement fails to be true; such an example is called a

counter-example. For example, consider the statement:

Every bipartite graph is a tree.

To prove that this statement is FALSE, it is sufficent to produce just one

counter-example, such as K33.

To prove that a given statement is TRUE, we need to provide a convincing

argument, or proof, that covers all possibilities. For example, consider the

statement

Every tree is a bipartite graph.

This statement is TRUE, and to establish this we must give a proof applicable to

all trees.
Our aim here is to explain what such a proof entails, and to describe some

methods of proof in the context of graph theory.

348

Methods of Proof 349

Methods of Proof

The four types of proof that appear in this book are direct proofs, indirect proofs

(proofs by contradiction), proofs by mathematical induction and if and only if

proofs. We look at each of these in turn.

Direct Proofs

In a direct proof (the most common type of proof), we start with the informa¬

tion we are given and proceed by logical steps, using known facts and theo¬

rems, to the result required. A simple example of such a proof is our proof of

Theorem 2.2. (Most direct proofs are longer!)

Theorem A.1
Let G be an r-regular graph with n vertices. Then 6 has nr/2 edges.

Proof Let G be a graph with n vertices, each of degree r; then the sum of the

degrees of all the vertices is nr. By the handshaking lemma, the number of

edges is one-half of this sum, which is nr/2. ■

Indirect Proofs

Indirect proofs are often called proofs by contradiction, or proofs by the method of

'reductio ad absurdumWe begin by assuming that the given statement is FALSE

and follow a logical argument until we obtain a contradiction or absurdity; we

conclude that the original statement must be TRUE. An example of such a

proof is given in the solution to Problem 2.11(a).

Theorem A.2
In any graph, the number of vertices of odd degree is even.

Proof Let G be a graph in which the number of vertices of odd degree is odd;

then the sum of all the vertex degrees is also odd. But we know from the hand¬

shaking lemma that the sum of the vertex degrees is twice the number of

350 Graphs and Applications: An Introductory Approach

edges, and is therefore even. We have obtained a contradiction, so no such

graph G exists. Thus, in any graph, the number of vertices of odd degree is

even.

Proofs by Mathematical Induction

Many mathematical statements include an integer variable n. Suppose that

we wish to prove a statement concerning a particular type of graph with n

vertices - for example,

the complete graph Kn has n(n - l)/2 edges

or

a tree with n vertices has n -1 edges.

We wish to prove that such a statement is true for all allowable values of the

integer n.
One approach to proving results of this kind is to use the principle of mathe¬

matical induction. (The method described here uses a version of this called the

principle of strong induction.) Such a proof is in two parts:

Step 1 Show that the statement is true for the appropriate graph with one

vertex.

Step 2 Show that, for each integer n > 1, if the statement is true for the appro¬

priate graphs with fewer than n vertices, then it must also be true for the

appropriate graphs with exactly n vertices.

We can thus deduce successively that:

since the statement is true for the appropriate graphs with fewer than two

vertices (Step 1), it must be true for the appropriate graphs with two vertices

(Step 2);

since the statement is true for the appropriate graphs with fewer than three

vertices (shown above), it must be true for the appropriate graphs with

three vertices (Step 2);

since the statement is true for the appropriate graphs with fewer than four

vertices (shown above), it must be true for the appropriate graphs with four

vertices (Step 2);

and so on.

We thus deduce, by the principle of mathematical induction, that the state¬

ment is true for the appropriate graphs with any given number of vertices n.

We illustrate the method by proving the following statement.

Methods of Proof 351

Theorem A.3
A tree with n vertices has n -1 edges.

Proof

Step 1 The statement is true when n = 1, since the only tree with one vertex is

Ki, which has no edges.

Step 2 We assume that the statement is true for trees with fewer than n

vertices - that is, that every tree with k vertices has k-1 edges whenever k<n.

We wish to deduce that every tree T with n vertices has n -1 edges.

To do this, we consider a tree T with n vertices and remove any edge e of T.

Since T has no cycles, this disconnects T and gives two trees, with k\ and k2

vertices, say, where Ay + k2 = n. These trees have fewer than n vertices so, by

our assumption, they have k± -1 and k2-1 edges, respectively. Reinstating the

edge e, we restore T, with a total of

(ki - 1) + (k2 - 1) + 1 = k\ + k2 - 1 = n - 1 edges.

Thus if the statement is true for trees with fewer than n vertices, then it is true

for trees with n vertices. This completes Step 2.
Therefore, by the principle of mathematical induction, the statement is true

for all positive integers n. ■

A similar approach can be used when we wish to prove a result concerning

particular types of graph with a general number of edges, rather than a general

number of vertices. In such proofs, we usually replace the words 'with one

vertex' in Step 1 by 'with no edges'. For example, we can adapt the proof of

Theorem A.3 to show that every tree with m edges has m + 1 vertices.

Proof
Step 1 The statement is true when m = 0, since the only tree with no edges is

Ki, which has one vertex.

Step 2 We assume that the statement is true for trees with fewer than m

edges - that is, that every tree with k edges has k + 1 vertices whenever k < m.

We wish to deduce that every tree T with m edges has m + 1 vertices.

352
Graphs and Applications: An Introductory Approach

To do this, we consider a tree T with m vertices and remove any edge e of T.

Since T has no cycles, this disconnects T and gives two trees, with /q and k2

edges say, where k1 + k2 = m-1. These trees have fewer than m edges so, by

our assumption, they have k\ + 1 and k2 + 1 vertices, respectively. Reinstating

the edge e, we restore T, with a total of

(jkj + 1) + (k2 +1) = fci + h + 2 = m + 1 vertices.

Thus if the statement is true for trees with fewer than m edges, then it is true

for trees with m edges. This completes Step 2.

Therefore, by the principle of mathematical induction, the statement is true

for all non-negative integers m. ®

Proofs Involving 'If and Only If

Consider the statement

A graph G is bipartite IF and ONLY IF every cycle of G has even length.

This statement is equivalent to the following two statements, so to prove it we

have to establish two things:

(a) IF every cycle of a graph G has even length, THEN G is bipartite.

(b) A graph G is bipartite ONLY IF every cycle of G has even length.

Statement (b) is the converse of statement (a), and we usually write it as follows.

if G is bipartite, then each cycle of G has even length.

Statement (a) tells us that 'having every cycle of even length' is a sufficient

condition for G to be bipartite. (Sufficient mean’s enough.)

Statement (b) tells us that 'having every cycle of even length' is a necessary

condition for G to be bipartite. (Necessary means essential.)

So we sometimes say that

'having every cycle of even length' is a necessary and sufficient condition for a

graph G to be bipartite.

In general, to prove a result of the form

a is true IF AND ONLY IF b is true

we must prove two separate statements - a statement and its converse:

Methods of Proof 353

1. a is true IF b is true

- that is, we must prove that IF b is true, THEN a is true.

(Here, b is true is SUFFICIENT to ensure that a is true.)

2. a is true ONLY IF b is true

- that is, we must prove that IF a is true, THEN b is true.

(Here, b is true is NECESSARY to have a is true.)

Some proofs of this type are given in Chapter 3; there the two statements are

proved directly, but any of the above types of proof may be used.

Computing Notes

The accompanying software is supplied on a CD-ROM for a PC. It and the

accompanying notes are designed to be used with Microsoft Windows 98 .

The software is compatible with earlier and later versions of Windows; we

assume that you are familiar with the basic facilities of Windows.
These notes introduce the software and suggest some activities - an introduc¬

tory activity associated with Chapter 1, followed by activities on selected chapters.

Installing the Software

• Insert the supplied disk into the appropriate disk drive (A:, B:,...).

• Click on Start, Run.
• Type A:\Graphs.exe in the dialogue box that appears, where A is the CD

drive letter.

Two programs are provided: the Graph Editor and the Graph Database.

Supporting Windows DLLs are also included and will be installed automati¬

cally. Please follow the procedure shown on the screen; suggested defaults

may be overwritten in your particular case.
A folder with the two programs will be created. It can be accessed by

clicking/selecting from the Start button - for example,

Start/Programs/Graphs and Applications/....

Computer Activities

These notes contain details of suggested activities on selected chapters.

1 Readers who experience any problems with the software, or with the instructions
given in the notes when using earlier or later versions of Windows, should contact the
publisher at Springer-Verlag London Ltd, Sweetapple House, Catteshall Road,
Godaiming, Surrey, GU7 3DJ, email: postmaster@svl.co.uk.

354

Computing Notes 355

Each activity number corresponds to a chapter.

Please read the relevant chapter before you attempt each activity.

The solutions to these activities are given at the end of the Computing Notes.

Tool Bar Buttons

For reference, we list the most commonly used tool bar buttons.

Open allows you to open a stored file.

a
Save allows you to save the contents of the top window as a file.

Print allows you to print the top window.

Undo allows you to undo the last operation.

Reset resets the top window to its initial state.

Cut allows you to delete a selected (highlighted) item (and

temporarily stores it in the clipboard).

W
Copy allows you to copy an item from the top window to the

clipboard.

Paste allows you to paste an item from the clipboard into the top

window.

Cascade

Tile

Help

allows you to rearrange the open windows in cascade

fashion.

allows you to tile the screen with the open windows,

allows you access to the help files.

356
Graphs and Applications: An introductory Approach

Computer Activity for Chapter 1

Activity 1

In this activity, you can:

• use the Graph Editor to create, label and colour a graph or digraph;

• save and print a graph or digraph.

Creating Your Own Graphs

The Graph Editor enables you to construct and modify graphs and digraphs.

We begin by describing how to draw a graph.

Drawing Vertices and Edges

Note that the right-hand button of the mouse is used only for creating new

vertices or edges. At all other times, use the left-hand button.

1 Select from the Start button by clicking
Start/Programs/Graphs and Applications/Editor.

A title page is displayed as a dialogue box.

Press OK to proceed.

You should now see a blank screen.

Select New from the File menu.

A dialogue box appears asking you to select the kind of graph you wish to

construct.

Select Graph and click on OK.

You now have an empty window for drawing. Draw some vertices in selected

positions, as follows.

2 Position the mouse somewhere in the window where you wish to draw

a vertex and click the right-hand button.

Computing Notes 357

Draw some more vertices in the same way.

[If you make an error, click on the vertex you wish to delete, then click

on the Cut button in the tool bar or on Cut or Delete from the Edit menu,

or press the Delete key. To delete the last vertex you drew, click on the

Undo button or on Undo from the Edit menu.]

Notice that newly created vertices are highlighted.

You now have several vertices. Join some of them by edges, as follows.

3 Position the mouse over any vertex, depress the right-hand button, drag

the cursor to another vertex, and release the button.

Draw some more edges in the same way.

[If you make an error, click on the edge you wish to delete, then click on

the Cut button in the tool bar or on Cut or Delete from the Edit menu, or

press the Delete key. To delete the last edge you drew, click on the Undo

button or on Undo from the Edit menu.]

Notice that newly created edges are highlighted.

Next, add a loop at one of the vertices.

4 Position the mouse over a vertex, depress the right-hand button, drag

away from the vertex, drag back to the vertex, and release the button.

Labelling Vertices and Edges

Next, label the vertices. For example, label the vertices 1, 2,... or A, B,...; you

may use longer labels if you wish.

5 Double-click on a vertex (using the left-hand button of the mouse) and use

the keyboard to type a label for the vertex into the dialogue box that appears.

Press the Return key or click on OK to apply that label to the vertex.

Repeat for the other vertices by double-clicking on each in turn.

[If you make an error, double-click on the vertex again and relabel it.]

An alternative to double-clicking is to click once on a vertex and then to select

Label from the Edit menu. (The selected vertex is highlighted by a coloured

ring round it.) The same dialogue box then appears.

A similar procedure is used to label edges.

6 Double-click on an edge (using the left-hand button of the mouse) and

use the keyboard to type a label for that edge. Press the Return key or

click on OK to apply that label to the edge.

Repeat for the other edges by double-clicking on each in turn.

358 Graphs and Applications: An Introductory Approach

An alternative to double-clicking is to click once on an edge and then to select

Label from the Edit menu. (The selected edge is highlighted by a strip of

colour either side of it.)
The labelling dialogue boxes can also be used to change the labels on vertices

and edges. Simply double-click on a vertex or edge (or click and use Label

from the Edit menu) and type in the new label.

7 Experiment with changing the labels on vertices and edges.

Colouring Vertices and Edges

All the vertices in a graph are, by default, coloured cyan (pale blue); the edges

are, by default, coloured black. You can change the colours of vertices or

edges, as follows.

8 Click on a vertex, to select it, then colour it by clicking on one of the

Colour buttons in the tool bar, or one of the items from the Colour

menu. Then click on another vertex and another colour, and so on, until

all the vertices are coloured.

Similarly, click on each edge, to select it, and then on a colour to colour

each edge of the graph.

You should now have a fully labelled and coloured graph.

Selecting Vertices and Edges

It is possible to select all the vertices and edges of a graph, by clicking on Select

All from the Edit menu. It is also possible to select several of the vertices

and/or edges of a graph by clicking on them in turn while holding down the

Control key. You can then apply the various editing and colouring facilities to

all the selected vertices and/or edges at once. You can also use the Control key in

this way to add vertices and/or edges to those already selected.

You can also select several items at once by using the Shift key. Clicking on

an edge while holding down the Shift key also selects the vertices incident

with the edge. Also, if one or more vertices have already been selected,

clicking on another vertex while holding down the Shift key also selects any

edges joining that vertex to the previously selected vertices.

Computing Notes 359

Deleting and Moving Vertices and Edges

You can delete a vertex (and the edges joined to it) or an edge by clicking on it
and then clicking on the Cut button or on the Cut item or Delete item from the
Edit menu. You can move a vertex (and the edges joined to it) around the
window by dragging it, using the left-hand button of the mouse.

To space the vertices regularly, select Snap to Grid from the Edit menu, and
move the vertices to the grid that appears.

9 Experiment with deleting vertices and edges and with moving vertices.

When you have finished experimenting, make sure you have a graph in
the window.

Saving and Printing Graphs

The graph you have created is given the name Untitled at the top of the
window. In order to give your graph a name, so that you can find it again
easily, use Save As from the File menu.

Look at the File Name edit box at the top left, where you will see,

highlighted:

*.grf

Use the keyboard to type a name to replace the asterisk, before saving your
graph. You can use up to eight characters for the name. (Some characters are
not allowed in the name; you'll get a warning message in a dialogue box if you
try to use a disallowed character.) The three letters after the dot - grf in this
instance - are known as the extension and indicate the type of object you have

saved - in this instance, a graph.

10 From the File menu, use Save As to save this graph as 'my. grf.

Another way of saving something for future reference is to print it. You can
print the contents of the top window by using Print from the File menu, or

the Print button.

11 Select Print from the File menu or click on the Print button.

You should now see the print dialogue box.
[You may find that you need different default printer settings for this work

than for other work on your computer.]

After doing any necessary checking and adjusting of the information in
the Print dialogue box, print my .grf by clicking on OK or pressing the

Return key.

360 Graphs and Applications: An Introductory Approach

Digraphs and Networks

The Graph Editor package can also be used to create and edit weighted

graphs, digraphs and networks by selecting the appropriate item from the

menu of graph types.
To create a digraph, click on New in the File menu of the Graph Editor

package. Then, in the dialogue box that appears, click on the arrow, to display

a menu of graph types. Select Digraph and then click on OK. You can now

create a digraph in the top window.

Digraphs are created in a similar manner to graphs. The only difference is

that, when adding arcs, you must drag the pointer (using the right-hand

button of the mouse) in the appropriate direction. For example, if you want to

add an arc from vertex 1 to vertex 2, you must drag from 1 to 2. Dragging from

2 to 1 adds an arc from vertex 2 to vertex 1.

Weighted graphs, digraphs and networks are created similarly. Each arc of

a weighted graph or digraph originally appears with zero weight, and each

arc of a network originally appears with zero flow and zero capacity; to

change a value, click on it and type the desired number(s).

Computing Notes 361

Computer Activities for Chapter 2

Using the Graph Database

The Graph Database package contains a database of all simple unlabelled

graphs with up to seven vertices - it contains 1252 graphs, numbered G1 to

G1252. They are ordered according to:

• number of vertices n

• number of edges m

9 degree sequence

For example, all the graphs with 4 vertices come before all those with 5

vertices; all the 5-vertex graphs with 6 edges come before all the 5-vertex

graphs with 7 edges; and the 5-vertex, 6-edge graphs are ordered according to

their degree sequences as follows:

G39 (0, 3, 3, 3, 3)

G40 (1/ 2, 2, 3,4)
G41 (1/ 2, 3, 3, 3)
G42 (2,2, 2,2, 4)

G43 (2,2, 2, 3, 3)

G44 (2,2, 2, 3, 3)

When two degree sequences are the same, the order of the two graphs is

arbitrary.
The next two activities use the Graph Database package. They both start

with the assumption that you are already running the Graph Database

package, and that you have the Graph Database window on your screen. To

obtain this:

Select from the Start button by clicking

Start/Programs/Graphs software/Database.

Activity 2A

In this activity, you can:

« use the graph database to find graphs with a given number of vertices, number of edges

and/or degree sequence.

362 Graphs and Applications: An Introductory Approach

The main window for the Graph Database package contains the numbers

and other information on all 1252 graphs in the database. You can find the

graph with a given number by scrolling through this window.

1 Scroll through the window until you see graph G39.

The information given for graph G39 is:

G39 n = 5 m = 6 (0, 3, 3, 3, 3)

2 Click on G39.

You should now see graph G39 in a window on the right of your screen,

together with the above information.

3 Remove graph G39 from the screen by clicking on the close icon HI in its

title bar.

You can observe two or more graphs at the same time.

4 Scroll through the main window until you reach G208, and then click on

G208 to display that graph. Continue scrolling until you reach G431, and

display that too.

You should now see the windows containing graphs G208 and G431 in tile

form - that is, side by side.
To see them in cascade form, click on Cascade from the Window menu or the

Cascade button in the tool bar.

5 Remove graphs G208 and G431 from the screen by clicking on the close

icon for each of the corresponding windows.

Another way to observe two or more graphs at the same time is to use the

Select menu or the corresponding buttons in the tool bar. The first three items

in this menu or the corresponding buttons enable you to reduce all those

graphs currently listed in the main window to those with one or more of the

following properties:

property

a given number of vertices

a given number of edges

a given degree sequence

menu item

No. Vertices (n)

No. edges (m)

Degree sequence

button label

n

m

DS

The fourth menu item All returns you to the full list of 1252 graphs; the corre¬

sponding button in the tool bar is the Reset button.

Computing Notes 363

6 Click on Select in the menu bar.

Click on No. Vertices from the Select menu or on the n button, then

type 5 in the dialogue box that appears, and then click on OK (or press

the Return key), to enter 5 for the number of vertices.

After a short delay, you should see, in the main window, a list of all 34 graphs

with exactly 5 vertices. The window's title bar tells you how many such

graphs there are.

7 Click on No. Edges from the Select menu or on the m button, then enter

6 for the number of edges.

You should now see, in the main window, a list of all six graphs with 5 vertices

that have 6 edges.

8 Click on Degree Sequence from the Select menu or on the DS button,

then type 22233 or (2,2,2,3,3) and click on OK (or press the Return key),

to enter (2, 2, 2, 3, 3) for the degree sequence.

You should now see, in the main window, a list of the two graphs with 5

vertices and 6 edges that have degree sequence (2, 2, 2, 3, 3).

9 Display these graphs by clicking on each one in the list in turn.

Note that, to obtain all the graphs with 5 vertices, 6 edges and degree

sequence (2, 2, 2, 3, 3), you do not need to enter values for the number of

vertices, for the number of edges and for the degree sequence; the degree

sequence alone is sufficient. The degree sequence (2, 2, 2, 3, 3) contains

5 values, so there are 5 vertices; also, since the sum of the vertex degrees is

2 + 2 + 2 + 3 + 3 = 12, the number of edges is 12/2 = 6, by the handshaking

lemma. So, if the computer searches the database for all graphs with degree

sequence (2, 2, 2, 3, 3), it finds only those obtained in Step 8.

10 Confirm this by selecting All from the Select menu or by clicking on the

Reset button in the tool bar, to return to the complete list of 1252 graphs,

and then repeating Step 8.

11 Use the Select menu and/or the corresponding buttons to find:

(a) all the graphs with 1 edge and not more than 7 vertices;

(b) all the graphs with 7 vertices and 15 edges;

(c) all the graphs with degree sequence (2, 3, 3, 3, 4, 4, 5).

364 Graphs and Applications: An Introductory Approach

Activity 2B

In this activity, you can:

• use the graph database to locate all the following simple graphs with up to six vertices:

null graphs, path graphs, cycle graphs, complete graphs, regular graphs and trees.

Use the Select menu and/or the corresponding buttons, together with what

you know about the number of edges and the degree sequence of null graphs,

path graphs, cycle graphs, complete graphs and regular graphs, and with

what you know about the number of edges of a tree with n vertices, to help

you to fill in the blank spaces in the following table.

Hint Use the following results.

An r-regular graph with n vertices has nr/2 edges (Theorem 2.2).

A tree with n vertices has n - 1 edges (Problem 2.23(b)).

n null
graphs

path
graphs

cycle
graphs

complete
graphs

trees regular
graphs

i G1 G1 - G1 G1 G1

2 G2 - G3 G2, G3

3 G7 G6 G4, G7

4 G13, G14 G8, Gil, G16, G18

5 G29, G30, G31 G19, G38, G52

6

Computing Notes 365

Activity 2C

In this activity, you can:

• locate the graph in the database that is isomorphic to a given unlabelled graph.

This activity uses both the Graph Database and the Graph Editor packages. It

starts with the assumption that you are running the Graph Database package,

and have the Graph Database window on your screen.

Consider the following unlabelled graph:

(a)

All the graphs in the database are different, so in the database there is only one

graph isomorphic to a given graph with at most 7 vertices.

When looking for a graph isomorphic to a given graph, we first identify

those graphs with the same degree sequence as the given graph.

1 Use the Select menu and/or the corresponding tool bar buttons to list all

those graphs in the database with the same degree sequence as graph

(a), and then display them.

Next, we examine specific features of the graphs, in order to try to find an

appropriate one-one correspondence between the vertices. This one-one

correspondence is shown by giving the same label to the corresponding

vertices in the graphs. For example, if each graph has just one vertex of degree

6, then the vertex of degree 6 should be given the same label in each graph.

2 Use a pencil to label the vertices of graph (a) above.

In order to label the vertices of a graph in the database, we first have to

transfer it to the Graph Editor.

3 Choose one of the displayed graphs and make its window the top one

by clicking somewhere in it, then copy it to the clipboard by selecting

Copy from the Edit menu or by clicking on the Copy button. Minimize

the Graph Database package by clicking on its minimize icon H .

366
Graphs and Applications: An Introductory Approach

A Graph Database icon should appear on the task bar. You will need this to

return to the Graph Database later; it enables you to return to that package

with the same selected graphs displayed as when you left it.

4 Run the Graph Editor package.

5 Select New from the File menu and click on OK in the dialogue box that

appears. Select Paste from the Edit menu or click on the Paste button to

paste your chosen graph into the new window.

Your chosen graph should now be displayed.
To label a vertex, double-click on the vertex (or click on it and then click on

Label in the Edit menu) and then type your chosen label and click on OK (or

press the Return key).
[Click on Cancel if you change your mind.]

6 Try to label the vertices of the graph in the window so that there is a

one-one correspondence between the vertices of that graph and those of

graph (a) that is an isomorphism.

The package enables you to check your potential isomorphism by manipu¬

lating your chosen graph so that it matches the given graph exactly. You can

use the Graph Editor to do this, by using the mouse to drag the vertices (and

their incident edges) around the window.

7 Use the mouse to drag the vertices (and edges) around the window to

try to obtain an exact copy of graph (a).

If you failed to find an isomorphism, try again with another of the graphs you

selected in Step 1, as follows.

8 Return to the Graph Database package by clicking on the Graph Data¬

base icon on your task bar. Choose another of the displayed graphs and

copy it to the clipboard.

9 Return to the Graph Editor package by clicking on the Graph Editor icon

on your task bar.

Repeat Steps 5 to 7 for your newly chosen graph.

10 Repeat Steps 8 and 9 until you think you have found the graph isomor¬

phic to graph (a).

Computing Notes 367

With practice, you should not need to go through all the above steps in order

to find the graph isomorphic to a given graph. You may be able to eliminate

some graphs immediately by inspection, and to eliminate some others and

spot the isomorphism after labelling just a few vertices and/or doing a little
manipulation.

11 Repeat some or all of Steps 1 to 10 for each of the following unlabelled

graphs, in order to find the graph isomorphic to each.

(b)

Activity 2D

In this activity you can:

• determine whether given pairs of labelled graphs are isomorphic.

This activity uses the Graph Editor package. It starts with the assumption that

you are already running that package, and that you have the Graph Editor

window on your screen.

For this activity, the graphs have more than seven vertices, so are not in the

graph database. Here your strategy is to draw each pair of graphs in a pair of

windows in the Graph Editor package and then to use the labelling, colouring

and manipulation facilities of the graph editor to try to determine an

isomorphism between the vertices of the two graphs.

368 Graphs and Applications: An Introductory Approach

Consider the following two labelled graphs:

1 2

3

4 3 5 4

1 Check that both graphs have the same number of vertices, the same

number of edges and the same degree sequence.

If they don't, then you know immediately that the graphs are not isomorphic.

If both graphs have the same degree sequence, the next step is to draw the

two graphs on the screen, ready to compare their features. Start with the

graph on the left above.

2 Draw and label the left-hand graph, as in Activity 1.

You should now have an exact copy of the left-hand graph in the window.

3 In a new window, draw, but do not label, the right-hand graph.

4 Select Tile from the Window menu or click on the Tile button in the tool

bar.

You should now see both graphs side by side in their separate windows.

To show that two labelled graphs are isomorphic, we compare the features

of the two graphs and then relabel the vertices of one of the graphs to give an

appropriate one-one correspondence between the vertices.

To help you identify corresponding features, and hence label corre¬

sponding vertices, you may wish to colour certain vertices. You can colour all

the vertices differently, or you can use different colours for vertices of

different degrees, for example.
You may also find it helpful to label edges, by double-clicking on them and

typing in the label, and/or to colour edges, by clicking on them and using the

colour buttons or the Colour menu.

[When you label edges that cross, the labels may overlap. You can usually

avoid this overlap by moving some of the vertices.]

You may find it easier to spot corresponding features if you move the

vertices of one or both graphs around, to try to change the orientations of the

graphs, or to rearrange the edges so that they cross as little as possible.

Computing Notes 369

Another strategy is to colour the two graphs differently, copy both graphs

to a single new window and try to manipulate them so that one lies exactly on

top of (or nearly on top of) the other. To do this, first select New from the File

menu to create a new window. Then, for each graph in turn, choose Select All

from the Edit menu to select all the vertices and edges of the graph, click on a

colour to colour them all, copy the coloured graph to the clipboard, and paste

it into the new window. The copying facilities enable you to copy all the

selected vertices and edges.

You should now have both graphs in the new window, differently

coloured, and ready to manipulate to try to find an isomorphism.

5 Use the labelling, colouring, moving, copying and pasting facilities to

help you determine whether the two labelled graphs are isomorphic.

6 Repeat Steps 1 to 5 for each of the following pairs of labelled graphs.

1 1

(b)

6 5

(c)

Tracing Paths and Cycles in Graphs

Note that the colouring facilities can be useful in helping you trace trails, paths

and cycles in graphs. You may find these facilities particularly helpful when

you are asked to find Eulerian trails, Hamiltonian cycles, semi-Eulerian trails

and semi-Hamiltonian paths in Chapters 3 and 4.

370 Graphs and Applications: An Introductory Approach

Computer Activities for Chapter 5

These activities use the Graph Editor package. This package contains a small

database of graphs, but you can also call up any graph from the Graph Data¬

base package or any that you have saved yourself.

Activity 5A

In this activity, you can:

• observe and comment on the form of the adjacency matrices of certain graphs, when the

vertices are suitably labelled;
• observe and comment on the effect of relabelling the vertices of a graph on the form of its

adjacency matrix;
• conjecture on the form of the adjacency matrices of certain types of graph when the

vertices are suitably labelled.

The graphs for this activity can be displayed by use of the File menu of the

Graph Editor package.

1 Select Open from the File menu of the Graph Editor package, or click on

the Open button, and then select the complete graph by

double-clicking on its file name k4.grf in the list box on the left of the

dialogue box that appears. Observe its labelling.

2 Click on the (A) button in the tool bar, or on Adjacency Matrix from the

View menu, to display its adjacency matrix. Observe its form.

[Clicking again on the (A) button or the Adjacency Matrix menu item

removes the adjacency matrix from the screen.]

The rows and columns of the adjacency matrix are labelled twice: once

numerically and once using the vertex labels of the graph.

We now ask you to try different labellings of K4, place the different versions

side by side, and observe the effect on the adjacency matrix.

3 Repeat Steps 1 and 2, to obtain another copy of JC4 and its adjacency

matrix, and then select Tile from the Window menu or click on the Tile

button to see both side by side.

Computing Notes 371

4 Relabel the vertices of the graph in one of the windows, using the
numbers 1, 2, 3,....

Observe the structure of the new adjacency matrix.

5 Repeat Step 4 for several different labellings.

Does the relabelling affect the form of the adjacency matrix? If so, in
what way?

6 Repeat Steps 1 to 5 for the complete graph Kg, and then conjecture on

the form of the adjacency matrix of any complete graph, and on whether
the labelling of the vertices affects this.

[The filename for Kg is k6.grf.]

Repeat Steps 1 to 5 for the cycle graph Cg, and then conjecture on the

form of the adjacency matrix of any cycle graph, and on whether the

labelling of the vertices affects this form.

[The filename for Cg is c6.grf.]

8 Repeat Steps 1 and 2 for the octahedron graph, and then try to relabel the

vertices of the graph so that its adjacency matrix is of a form similar to that

of suitably labelled complete graphs and of suitably labelled cycle graphs.

[The filename for the octahedron graph is octa.grf.]

9 Repeat Steps 1 to 5 for the complete bipartite graphs K24 and K33, and then

conjecture on the form of the adjacency matrix of any complete bipartite

graph, and on whether the labelling of the vertices affects this form.

[The filenames for K24 and K3 3 are k24.grf and k33.grf.]

10 Repeat Steps 1 and 2 for the cube graph, and then try to relabel the

vertices of the graph so that its adjacency matrix is of a form similar to

that of suitably labelled complete bipartite graphs.

If you were successful, why do you think this was so?

[The filename for the cube graph is cube.grf.]

11 Conjecture on the form of the adjacency matrix of suitably labelled

bipartite graphs, and on what constitutes a suitable labelling.

372
Graphs and Applications: An Introductory Approach

Activity 5 B

——————

In this activity, you can:

• observe and comment on the form of the incidence matrices of certain graphs, when the

vertices and edges are suitably labelled;
• observe and comment on the effect of relabelling the vertices and/or edges of a graph on

the form of its incidence matrix;
• conjecture on the form of the incidence matrices of certain types of graph when the

vertices and edges are suitably labelled.

1 Display the complete graph K4, and label its edges using the numbers

1, 2, 3,....

2 Click on the (I) button in the tool bar, or on Incidence Matrix from the

View menu, to display its incidence matrix. Observe its form.

[Clicking again on the (I) button or the Incidence Matrix menu item

removes the incidence matrix from the screen.]

The rows and columns of the incidence matrix are labelled twice: once numer¬

ically and once using the vertex and edge labels of the graph.

3 Relabel the vertices and edges of the graph in several different ways to

try to find the most 'structured' form of its incidence matrix.

4 Repeat Steps 1 to 3 for each of the following graphs in turn:

K6; C6; octahedron; K2/ 4; K3>3; cube.

5 Conjecture on the form of the incidence matrices of:

(a) complete graphs;

(b) cycle graphs;

(c) the octahedron graph;

(d) complete bipartite graphs;

(e) the cube graph;

(f) bipartite graphs;

and on whether the labelling of the vertices and edges affects this form.

Computing Notes 373

Activity 5C

In this activity, given several pairs of isomorphic graphs, you can:

• relabel the vertices of the second graph in each pair so that the labels on corresponding

vertices are the same, and observe the effect of the relabelling on the adjacency matrix of

the second graph;
• conjecture on the relationship between the adjacency matrices of isomorphic graphs.

Consider the following two isomorphic graphs:

1 2 3

5 4
Graph 2

[Their file names are graphl.grf and graph2.grf.]

1 Use Open from the File menu of the Graph Editor package or the Open

button, and Tile from the Window menu or the Tile button, to display

both graphs side by side.

2 Make each window the top window in turn, by clicking on it, and then

click on the (A) button or Adjacency Matrix from the View menu to

display both adjacency matrices.

Notice that the two matrices are different.

3 Interchange the labels 2 and 5 of Graph 2 and observe the effect on the

adjacency matrix.

4 Repeat Steps 1 and 2 for the following pair of isomorphic graphs.

4 3

Graph 3 Graph 4

[Their file names are graph3.grf and graph4.grf.]

374 Graphs and Applications: An Introductory Approach

5 Relabel the vertices of Graph 4 in stages, so that the labels on only two

vertices are changed at each stage, until both sets of labels correspond.

Observe the effect on the adjacency matrix at each stage.

6 Repeat Steps 4 and 5 for the two pairs of isomorphic graphs available as

Graphs 5 and 6 and as Graphs 7 and 8 via Open from the File menu or

the Open button.

[Their file names are graph5.grf, graph6.grf, graph7.grf, graph8.grf]

7 Conjecture on the relationship between the adjacency matrices of

isomorphic graphs.

From your work on Activity 5C, you may already be able to conjecture on the

relationship between the incidence matrices of isomorphic graphs. If not, try

the following activity.

Activity 5 D

In this activity, given several pairs of isomorphic graphs, you can:

• relabel the vertices and edges of the second graph in each pair so that the labels on corre¬

sponding vertices and edges are the same, and observe the effect of the relabelling on the

incidence matrix of the second graph;

• conjecture on the relationship between the incidence matrices of isomorphic graphs.

1 Use Open from the File menu of the Graph Editor package or the Open

button, and Tile from the Window menu or the Tile button, to display

Graphs 1 and 2, the first pair of isomorphic graphs from Activity 5C.

Label the edges of both graphs.

2 Make each window the top window in turn, by clicking on it, and then

click on the (I) button or Incidence Matrix from the View menu to display

both incidence matrices.

Notice that the two matrices are different.

3 Relabel the vertices and edges of Graph 2 in stages, so that the labels on

only two vertices or two edges are changed at each stage, until both sets of

labels correspond. Observe the effect on the incidence matrix at each stage.

4 Repeat Steps 1 to 3 for each of the other three pairs of isomorphic graphs
from Activity 5C.

5 Conjecture on the relationship between the incidence matrices of
isomorphic graphs.

Computing Notes 375

Computer Activities for Chapter 11

The following activities use the Graph Editor package.

Activity 11A

This activity is based on the definition of a planar graph and on the use of the

following results:

a graph is planar if and only if it does not contain a subdivision of K5 or a

subdivision of K33 (Theorem 11.3);
a graph is planar if and only if it does not have K5 or K3 3 as a contraction

(Theorem 11.4).

In this activity, you can determine whether certain graphs are planar or non-planar by

• redrawing them in planar form

or

• identifying a subgraph that is a subdivision of K$ or /C33

or

• identifying a subgraph that can be contracted to K$ or /C33.

To show that a graph you have drawn using the package is planar, move its

vertices around until no two edges cross.
To show that a graph is non-planar by identifying a subgraph that is a

subdivision of K5 or IC3 3 can be difficult, as subdivisions of these graphs are

not easy to spot. However, if you remove all vertices of degree 2 from the

graph, and replace each such vertex and its incident edges by a single edge,

then looking for subdivisions of K5 or JC3/3 in the graph may become a bit

easier.
The package allows you to replace each vertex of degree 2 and its incident

edges by an edge, by selecting the vertex and then clicking on Remove Vertex

from the Edit menu.

376 Graphs and Applications: An Introductory Approach

To show that a graph is non-planar by identifying a subgraph that can be

contracted to K5 or K3/3 can also be difficult, as the overall result of a series of

contractions is not easy to imagine. The package allows you to experiment with

different sets of contractions and to see the results. An edge may be contracted

by selecting it and then clicking on Contract Edge from the Edit menu.

(Note that the removal of a vertex of degree 2 is equivalent to a contraction.

However, the converse is not true: most contractions are not equivalent to the

removal of a vertex of degree 2.)

Consider the following graphs:

1 Select New from the File menu and draw graph (a).

[Save each graph once you have drawn it, in case you lose track of your

manipulations and need to start again. You will need graphs (a), (c) and

(d) again in Activity 11B.]

2 Determine whether graph (a) is planar or non-planar by:

• moving its vertices until no edges cross;

or

• using Remove Vertex and Contract Edge to help you to find a

subgraph that is a subdivision of, or can be contracted to, K5 or JC3 3.

3 Repeat Steps 1 and 2 for each of graphs (b) to (e).

Computing Notes 377

Activity 11B

In this activity, you can:

• use the cycle method to determine whether certain graphs are planar or non-planar.

This activity considers the same five graphs as Activity 11 A.

1 Use Open from the File menu to call up the copy of graph (a) that you

saved in Activity 11 A.

2 Identify a Hamiltonian cycle in the graph and colour all its edges the

same colour.

[The uncoloured edges are those in the 'list' of the cycle method.]

3 If necessary, move the vertices of the graph so that all the uncoloured

edges lie inside the cycle.

4 Identify, stage by stage, the edges in the two sets A and B of edges that

can be drawn respectively inside and outside the cycle, without

crossing, by:

• using a second colour to colour those edges in A;

• using a third colour to colour those edges in B.

[The colours should enable you to spot incompatibilities without having

to draw the edges in B outside the cycle.]

Stop when:

EITHER all edges are coloured;

in this case the graph is planar

OR an edge not in the cycle cannot be allocated to A or B;

in this case the graph is non-planar.

5 If the graph is planar, move its vertices to redraw it in planar form.

6 Repeat Steps 1 to 5 for each of graphs (c) and (d) of Activity 11 A. (Graph

(b) is the Petersen graph; graphs (b) and (e) are not Hamiltonian.)

378 Graphs and Applications: An Introductory Approach

Computer Activity for Chapter 12

The following activity uses the Graph Editor package.

Activity 12

In this activity, you can:

• use the greedy algorithm for vertex colouring to help you to determine the chromatic

numbered of various graphs 6.

Consider the following graphs:

1 Select New from the File menu and draw graph (a).

[Save each graph once you have drawn it, as you will need each graph

again in Activity 13.]

2 Label the vertices with the labels a, b, c,... in any manner.

3 Colour the vertices in the manner given by the greedy algorithm for

colouring vertices, and record an upper bound for the chromatic number.

4 Relabel the vertices of the graph, and make them the same colour.

[Use Select All to speed up the recolouring process.]

5 Repeat Step 3.

6 Repeat Steps 4 and 5 until you think you know the value of the chro¬
matic number.

7 Repeat Steps 1 to 6 for each of the graphs (b) to (g).

Computing Notes 379

Computer Activity for Chapter 13

The following activity uses the Graph Editor package.

Activity 13

This activity considers the same seven graphs as Activity 12.

1 Use Open from the File menu to call up your copy of graph (a).

2 Label the edges with the labels a,b,c,... in any manner.

3 Colour the edges in the manner given by the greedy algorithm for

colouring edges, and record an upper bound for the chromatic index.

4 Relabel the edges of the graph, and make them the same colour.

[Use Select All to speed up the recolouring process.]

5 Repeat Step 3.

6 Repeat Steps 4 and 5 until you think you know the value of the chro¬

matic index.

7 Repeat Steps 1 to 6 for each of the graphs (b) to (g).

Solutions to Computer Activities

Activity 2A

(a) 6 (G3, G5, G9, G20, G54, G210);

(b) 41 (G1172-G1212);

(c) 20 (G959-G978).

Activity 2B

n null
graphs

path
graphs

cycle
graphs

complete
graphs

trees regular graphs

i G1 G1 - G1 G1 G1

2 G2 G3 - G3 G3 G2, G3

3 G4 G6 G7 G7 G6 G4, G7

4 G8 G14 G16 G18 G13, G14 G8, Gil, G16, G18

5 G19 G31 G38 G52 G29, G30, G31 G19, G38, G52

6 G53 G83 G105 G208 G77, G78, G79,
G80, G81, G83

G53, G61, G105, G106,
G174, G175, G204, G208

Activity 2C

(a) G148; (b) G197; (c) G429; (d) G635; (e)

Activity 2D

(a) isomorphic; (b) non-isomorphic; (c) isomorphic.

380

Solutions to Computer Activities 381

Activity 5A

General observations on the form of the adjacency matrix of any graph are given in
Chapter 5, so here our observations are restricted to those specific to the particular
graphs considered in the activity.

Complete Graphs

The adjacency matrix of a complete graph consists of Is everywhere except along the
main diagonal, where there are Os, irrespective of the labelling of the vertices.

Cycle Graphs

The most 'structured' form of adjacency matrix for any cycle graph corresponds to a
labelling of the vertices in order around the cycle. This labelling gives an adjacency
matrix with Os along the main diagonal and Is along both of the diagonals next to the
main one. All other entries are Os except for Is in the top right and bottom left corners.

Octahedron Graph

The most 'structured' form of the adjacency matrix and a corresponding labelling are

as follows.

1

1 2 3 4 5 6

110 1

0 110

10 11

110 1

0 110

10 11

1

1

0

1

1

0

Complete Bipartite Graphs

The most 'structured' form of the adjacency matrix of any complete bipartite graph KriS
occurs when the black vertices are labelled 1,..., r and the white vertices are labelled r +
1,..., r + s, or vice versa. The adjacency matrix is partitioned into rectangular blocks of Is
in the top right and bottom left corners (one rxs and one s x r), and square blocks of 0s
in the top left and bottom right corners (one r x r and one s x s). This reflects the facts
that no two black vertices are adjacent and no two white vertices are adjacent.

382 Graphs and Applications: An Introductory Approach

Cube Graph

The most 'structured' form of the adjacency matrix and a corresponding labelling are

as follows.

1

2

7

8

1 2 3 4 5 6 7 8

0 0 0 0 1 1 1 0

0 0 0 0 1 1 0 1

0 0 0 0 1 0 1 1

o

0 0 0 0 1 1 1

1 1 1 0 0 0 0 0

1 1 0 1 0 0 0 0

1 0 1 1 0 0 0 0

0 1 1 1 0 0 0 0

The zeros in the top right and bottom left corners occur because the cube graph is not a
complete bipartite graph.

The adjacency matrix can be partitioned as shown above, with zeros in the top left
and bottom right corners, because the cube graph is a bipartite graph.

Bipartite Graphs

The adjacency matrix of any bipartite graph with r black vertices labelled 1,..., r and s
white vertices labelled r + 1,..., r + s, or vice versa, can be partitioned into square blocks
of Os in the top left and bottom right corners (one r x r and one s x s).

Activity 5C

The adjacency matrices of two isomorphic graphs can be made the same by inter¬
changing certain rows and the corresponding columns (corresponding to relabelling
the vertices) in one of the matrices.

Activity 5D

The incidence matrices of two isomorphic graphs can be made the same by inter¬
changing certain rows (corresponding to relabelling the vertices) and by inter¬
changing certain columns (corresponding to relabelling the edges) in one of the
matrices.

Solutions to Computer Activities 383

Activities 11A and 11B

(a) planar; (b) non-planar;
(d) non-planar; (e) non-planar.

Activity 12

The chromatic numbers are:

(a) 3; (b) 3; (c) 3; (d) 3;

Activity 13

The chromatic indices are:

(a) 4; (b) 3; (c) 4; (d) 4;

(c) planar;

(e) 4; (f) 4; (g) 4.

(e) 5; (f) 5; (g) 5.

Solutions to Problems in the Text

Chapter 1

1.1

A 'best' route might be one that involves the least number of intermediate
stations. One such route is:

Marble Arch -» Bond Street -> Green Park -»

Charing Cross -» Embankment -» Westminster;

Alternatively, since changing trains takes time, a 'best' route might be one that
involves the least number of changes. A route involving only one change is:

Marble Arch -» Lancaster Gate -» Queensway -»

Notting Hill Gate -* High Street Kensington ->

Gloucester Road -> South Kensington -» Sloane Square -*■

Victoria -* St James's Park -*> Westminster.

384

Solutions to Problems in the Text 385

1.2

The shortest time to travel from Los Angeles to Amarillo is 25 hours, using the

route

Los Angeles -* Phoenix -» Albuquerue -* Amarillo.

The shortest time to travel from San Francisco to Denver is 29 hours, using the

route

San Francisco -» Reno -» Salt Lake City -> Cheyenne -* Denver.

1.3 For an alkane with formula C3H8, the only possible arrangement is as follows:

H H H
I I I

H C C
1 1

-C — H
1 1 1

H H
1

H

For an alkane with formula C4H10, the carbon atoms
different ways, as follows:

can be arranged in two

H
1

H H
1 1

H H
1 1

HI-
FI

I

C—H
H

| 1 1
H —C C-

1 1
-C-c —H H C

I
C-C —H

1 1
1 1

H H
1 1

H H H
1

H H

386 Graphs and Applications: An Introductory Approach

1.4 (a) A suitable repositioning is:

(b) It is not possible to reposition the conducting strips in a way that avoids
crossing points.

1.5

1.6 We take a vertex corresponding to each person, and join two vertices by a thick
edge if the corresponding people know each other and by a thin edge otherwise.
We must show that there is always either a triangle of thick edge or a triangle of
thin edges.

Let v be any vertex. Then there must be exactly five edges emerging from v,
either thick or thin, so at least three of these edges must be of the same type.

Let us assume that there are at least three thick edges, as shown in the
following diagram:

If the people corresponding to vertices a and b know each other, then the edges
joining the vertices v, a and b form a triangle of thick edges, as required.

Similarly, if the people corresponding to vertices a and c know each other, then
the thick edges joining the vertices v, a and c form a triangle; and if the people
corrsponding to vertices b and c know each other, then the thick edges joining
the vertices v, b and c form a triangle.

In the remaining case, a and b do not know each other, a and c do not know

Solutions to Problems in the Text 387

each other, and b and c do not know each other; but then the thin edges joining
the vertices a, b and c form a triangle.

v a

b

c

The case of at least three thin edges is analogous.

17 Because we do not want routes that involve retracing steps, we can remove the
dead-end edges joining B and C, H and I, J and K, and L and M. This gives the

following graph:

F

Therefore the only four routes that do not involve retracing steps are:

A^>B-*D^E-+G->H-*J^>L,

A-*B^*D^*E->F-+G-*H-*J-+E,

A->B->D->F-*G-*H-*J-*L,

A-*B-*D-*F^>E->G->H->J^L.

1.8 We leave the solution to this problem open for the time being. A solution is given

in Chapter 3.

(a) One possibility is to start by removing the braces from the top-right and
bottom-right rectangles. You can then remove any one other brace, except

either of the two in the middle row.

(b) One possibility is to add a brace in the top-left corner.

(c) The framework is rigid, but the removal of any one of the five braces

destroys the rigidity.

388 Graphs and Applications: An Introductory Approach

1.10 (a)

C1 c2 c3

non-rigid bracing

(b) Framework (c) is rigid and the corresponding bipartite graph is 'in one
piece'.

Framework (b) is not rigid and the corresponding bipartite graph is 'in two

pieces'.

It seems possible that a framework is rigid when the corresponding bipar¬
tite graph is 'in one piece'.

1.11

The shortest route is:

A-*C->B->D->E-*A,

of total length

4 + 5 +11+ 8 + 2 = 30 metres.

1.12

Solutions to Problems in the Text 389

1.13

The shortest route from A to T is ADCT, with length 8;

the shortest route from B to T is BCT, with length 10;

hence the shortest route from S to T is SADCT, with length 13.

Chapter 2

2.1 (a) vertices: {a , b, c, d}

edges: {ab, ad, be, bd, cc, cd}

Graph (a) is not a simple graph, because there is a loop at the vertex c.

(b) vertices: {0,1,2, 3, 4, 5, 6, 7, 8, 9}

edges: {01, 04, 05,12,16, 23, 27, 34, 38, 49, 57, 58, 68,69, 79}

Graph (b) is a simple graph.

Graph (a) is a simple graph.

Graph (b) is not a simple graph, because there is a loop at the vertex 2.

2.3 (a) yes; (b) no; (c) yes; (d) no.

390 Graphs and Applications: An Introductory Approach

2.4 (a) To show that the graphs are isomorphic, we must match up:

the vertices with a loop: 3 and e;

the vertices where four edges meet: 1 and c;

the vertices where three edges meet: 5 and b;

the remaining vertices of the 'triangles': 4 and a;

the other two vertices: 2 and d.

Thus, to show that the two graphs are isomorphic, we use the one-one
correspondence:

1 O c

2 <-> d

3 o e

4 o a

5 o b

(b) To show that the graphs are isomorphic, we must match up:

the vertices where three edges meet;

the vertices where two edges meet.

Thus

{q, s} must correspond to {+, -}; we can do this in 2 ways.

{p, r, t} must correspond to { x, =, -r}; we can do this in 6 ways.

There are no other constraints. Thus there are 2 x 6 = 12 possible
matchings. For example, we can use the one-one correspondence

pox

q o +

r <-> =

s o -

t o 4-

2.5 No, the graphs are not isomorphic. One way of seeing this is to look at the four
vertices where just two edges meet - in the first graph they are the vertices 3,4,7
and 8, which are adjacent in pairs, whereas in the second graph they are b, d, f
and h, and none is adjacent to any other.

Solutions to Problems in the Text 391

2.6 One possible labelling is as follows:

2.7 Graphs (a) and (b) are subgraphs of G; graph (c) is not a subgraph of G, as it
contains the edges uw and vx which are not edges of G.

2.8 Graph (c) is a subgraph of H; graphs (a) and (b) are not.

2.9 The degree sequences are:
(a) (1,1,1,1,1,1, 2, 4, 4); (b) (4, 4, 4, 4, 4); (c) (0,1,3,4,4,5, 5).

graph number of edges sum of the vertex degrees

(a) 8 16

(b) 10 20

(c) 11 22

In each case, the sum of the vertex degrees is exactly twice the number of edges;
the reason for this is given in the following text.

2.11 (a) Let G be a graph in which the number of vertices of odd degree is odd;
then the sum of all the vertex degrees is also odd. But we know from the
handshaking lemma that the sum of the vertex degrees is twice the
number of edges, and is therefore even. We have obtained a contradiction,
so no such graph G exists. Thus, in any graph, the number of vertices of

odd degree is even.

(b) The three graphs (a), (b) and (c) have, respectively, 6, 0 and 4 vertices of
odd degree, and these numbers are all even.

2.12 (a) trail, 5, x, y; (b) path, 3, u,z.

Alternative answers are possible; for example, the answer walk is appropriate in

each case.

2.13 length 3

length 4

length 5

length 6

length 7

stzy;

stzxy and svtzy;

stzwxy, svtzxy and svutzy;

svutzxy and svtzwxy;

svutzwxy.

u

392 Graphs and Applications: An Introductory Approach

2.14 There are various possibilities - for example:

2.15

(a)

(b)

(c)

There are various possibilities - for example, uvu or uvwuxwu.

Again, there are various possibilities - for example, uwxxu.

length 1: the loop xx;

length 2: the multiple edges wxw;

length 3: the triangle uvwu, and both of the triangles uwxu;

length 4: both of the 'quadrilaterals' uvwxu.

2.16 There are various possibilities - for example:

r = 5

2.17 (a) n = 5, r = 2, so the number of edges is (5 x 2)/2 = 5;

(b) n = 10, r = 3, so the number of edges is (10 x 3)/2 = 15;

(c) n = 12, r — 5, so the number of edges is (12 x 5)/2 = 30.

You can check that these numbers are correct by counting the edges in each case.

2.18 (a) Suppose that such a graph exists. Then it has an odd number of vertices of
odd degree, contradicting the result of Problem 2.11(a).
Alternatively, such a graph has (7 x 3)/2 = 10x/i edges, which is impossible.
Thus no such graph exists.

(b) Suppose that such a graph exists. Then it has an odd number of vertices of
odd degree, contradicting the result of Problem 2.11(a).
Alternatively, such a graph has nr/2 edges; since n and r are odd, so is nr,
and hence nr/2 is not an integer. Thus no such graph exists.

Solutions to Problems in the Text 393

2.19

These graphs have, respectively, 21, 0 and 7 edges.

2.20 Let G be a bipartite graph. If we colour the vertices of G black and white, then the
vertices in each cycle must alternate between these two colours. This implies that
the number of edges in every cycle is even.

2.21 (a) There are various possible drawings - for example:

These graphs have, respectively,

5 vertices and 6 edges;

8 vertices and 7 edges;

8 vertices and 16 edges.

(b) Kr s is a regular graph when r and s are equal.

2.22

1 vertex

•-e a-•-•

2 vertices 3 vertices

5 vertices

394 Graphs and Applications: An Introductory Approach

2.23 (a) Choose any vertex v in a tree T and colour it black. Colour all vertices adja¬
cent to v white. Next, colour all vertices adjacent to these black. Continue

this process until every vertex has been coloured.

Since T is a tree, there is just one path between any two vertices. Thus, by
the way the vertices have been coloured, no two adjacent vertices in T
have the same colour. So T is bipartite.

(b) Every tree can be built up from a single vertex by successively adding an
edge and a new vertex, as often as necessary. At each stage we increase the
number of vertices by 1 and the number of edges by 1. Since we start with
1 vertex and 0 edges, we must end up with n vertices and n -1 edges.

2.24 Using the method described in the text, we obtain the following superimposed

graph G:

4

A pair of subgraphs H\ and H2 and a corresponding solution are as follows.

Hj H2 the solution

There are several other solutions

Solutions to Problems in the Text 395

2.25 The signed graphs (a) and (c) are balanced. The corresponding bipartite graphs

are

Chapter 3

Eulerian? Eulerian trail Hamiltonian? Hamiltonian cycle

(a) no - yes abeda

(b) yes abcdeacebda yes abc de a

(c) no - yes a bfehgd a

(d) yes aheadcfbefdea yes abedfea

(e) no - no -

(f) no - yes a dbe cfa

(g) no - yes abeda

In each case where an Eulerian trail or Hamiltonian cycle exists, there are several

different trails/cycles.

3.2 (a) If an Eulerian trail exists in a graph, then whenever you go into a vertex,
you must be able to leave it by another edge. It follows that each time you
pass through a vertex you contribute 2 to the degree of that vertex. (This is
also true of the first and last edges, which contribute 2 to the degree of the
starting vertex.) So, in an Eulerian graph, each vertex degree must be a

sum of 2s - that is, an even number.

(b) The rule is as follows.

To show that a given connected graph is Eulerian, demonstrate that all

the vertices have even degree.

To show that a given connected graph is not Eulerian, exhibit just one

vertex of odd degree.

In Problem 3.1,

graph (a) has vertex degrees 3, 3, 3, 3, so is not Eulerian;

graph (b) has vertex degrees 4, 4, 4, 4, 4, so is Eulerian;

graph (c) has vertex degrees 3, 3, 3, 3, 3, 3, 3, 3, so is not Eulerian;

graph (d) has vertex degrees 4, 4, 4, 4, 4, 4, so is Eulerian;

graph (e) has vertex degrees 3, 3, 2, 2, 2, so is not Eulerian;

graph (f) has vertex degrees 3, 3, 3, 3, 3, 3, so is not Eulerian;

graph (g) has vertex degrees 5, 3, 3, 3, so is not Eulerian.

For each of the graphs (a), (c), (e), (f) and (g), it is sufficient to exhibit just

one vertex of odd degree.

396

3.3

Graphs and Applications: An Introductory Approach

viu

One possibility uses the cycles C\, C3 and C4.

If we trace around C\, 'picking up' C2 and C3 as we go, we get the closed trail
tuvzuyzxyt. This trail misses out C4, which can be inserted, on tracing round this
trail, at the vertex v to give the Eulerian trail tuvzvxvzuyzxyt.

3.4 (a) Kg is not Eulerian, since it is regular of degree 7;

(b) Kg g is Eulerian, since it is regular of degree 8;

(c) Cg is Eulerian, since it is regular of degree 2;

(d) the dodecahedron graph is not Eulerian, since it is regular of degree 3;

(e) Qg is Eulerian, since it is regular of degree 8.

3.5 Graph (a) is semi-Eulerian, since a and b are the only vertices of odd degree; a
suitable open trail is acbdaeb, starting at a and ending at b.

Graph (b) is not semi-Eulerian, since it has four vertices of odd degree.

Graph (c) is semi-Eulerian, since the only vertices of odd degree are w and z; a
suitable open trail is wxyzuvwyuzuzvxz.

3.6 There are two such Hamiltonian cycles:

JVTSRWXZQPNMLKFDCBGHJ and JVTSRWXHGFDCBZQPNMLKJ.

Note that the letter after R must be W, since otherwise W would have to be
omitted.

3.7 There is only one such path - BCDFGHXZQPNMLKJVWRST.

3.8 (a) The graph K4/ 4 is Hamiltonian; a suitable Hamiltonian cycle is ahbgcfdea.

abed

(b) A tree does not contain a cycle, so the only tree which is Hamiltonian is the
trivial tree with one vertex and no edges.

Solutions to Problems in the Text 397

3.9 (a) The vertices of any bipartite graph can be split into two sets A and B in
such a way that each edge has one end in A and one end in B.

A

Any Hamiltonian cycle must alternate between these two sets, ending in
the same set as it started. It follows that if a bipartite graph is Hamiltonian
then the sets A and B must have the same number of vertices. This is
impossible if the total number of vertices is odd.

(b)

The graph is a bipartite graph with an odd number of vertices, so cannot
be Hamiltonian, by part (a).

3.10 (a) If deg v > n/2 for each vertex v, then deg v + deg w > n for each pair of
vertices v and w, whether adjacent or not. The result now follows from
Ore's theorem.

(b) Any cycle graph C„, where n > 5, is Hamiltonian, but does not satisfy the
conditions of Ore's theorem, because each vertex has degree 2.

3.11 Graph (a) is semi-Hamiltonian - a suitable path is cadbe.

Graph (b) is Hamiltonian - a suitable cycle is abcda - so is not semi-Hamiltonian.

Graph (c) is Hamiltonian - a suitable cycle is vwxyuzv - so is not semi-
Hamiltonian.

3.12 There are many possibilities. For example, if we take the Eulerian trail 01234024130,
and add the 'doubles' in a suitable way, we obtain the following ring:

398 Graphs and Applications: An Introductory Approach

3.13 The diagram has four vertices of odd degree, so at least two continuous

pen-strokes are required; in fact, two are sufficient.

3.14 If we add k/2 edges to G, joining the k vertices of odd degree in pairs, we obtain a
new graph G' in which each vertex has even degree. It follows that G' contains
an Eulerian trail. If we now write out this trail, and then omit the added edges,

we get the required k/2 pen-strokes.

3.15 The graph associated with any chessboard is bipartite, since a knight's move
always takes a knight to a square of a different colour. So we can take A to be the
set of black squares and B to be the set of white squares. The result now follows
immediately from the fact that a bipartite graph with an odd number of vertices

is not Hamiltonian. (See Problem 3.9(a).)
(In other words, since a knight always moves from a black square to a white

square, or vice versa, the number of black squares must equal the number of
white squares. But this is impossible for any board with an odd number of

squares.)

3.16 We find another Hamiltonian cycle in the 4-cube. One possibility is

oooo oioo -* lioo -> mo mi -»ion -* oon -> oooi
1001 - 1101 -* 0101 -» 0111 0110 0010 -> 1010 - 1000 (^ 0000).

Chapter 4

4.1 (a) vertices: {a, b, c, d}

arcs: {ba, bd, cb, da, db, dc}

Digraph (a) is a simple digraph,

(b) vertices: {0,1, 2, 3, 4}

arcs: (10,12, 32, 40, 43}

Digraph (b) is a simple digraph.

Digraph (a) is a simple digraph.

Digraph (b) is not a simple digraph, because there is a loop at the vertex 2.

4.3 (a) yes; (b) no; (c) yes; (d) yes.

Solutions to Problems in the Text 399

4.4 To show that the digraphs are isomorphic, we must match up:

the vertices with a loop: c and 1;

the vertices where six arcs meet: d and 3;

the vertices where five arcs meet: a and 2;

the other two vertices: b and 4.

Thus, to show that the two digraphs are isomorphic, we use the one-one
correspondence

a 2

b <-> 4

c <-> 1

d t^ 3

4.5 No, the digraphs are not isomorphic. One way of seeing this is to notice that the
second digraph has a vertex with three emerging arcs (vertex 1), whereas the
first digraph has no such vertex. Another way is to notice that the first digraph
has a 'directed triangle' (a -> b -> c -> a), whereas the second digraph has no such
triangle.

4.6 One possible labelling is as follows:

4.7 Digraph (a) is a subdigraph of D; digraph (b) is not a subdigraph of D, as it
contains the arc xv which is not an arc of D; digraph (c) is not, as it contains the
arc ux which is not an arc of D.

4.8 Digraphs (a) and (b) are subdigraphs of C; digraph (c) is not.

400 Graphs and Applications: An Introductory Approach

4.9 The out-degree and in-degree sequences are:

(a) out-degree sequence: (0,1,1,1,1,1,1,1,1);

in-degree sequence: (0,0,0, 0, 0, 0,1, 3,4);

(b) out-degree sequence: (1,2,2, 2, 3);

in-degree sequence: (1, 2,2, 2, 3);

(c) out-degree sequence: (1,1, 2,2, 2,3);

in-degree sequence: (0, 0, 2, 3, 3, 3).

digraph number of arcs sum of out-degrees sum of in-degrees

(a) 8 8 8

(b) 10 10 10

(c) 11 11 11

In each case, the sum of the out-degrees and the sum of the in-degrees are both
equal to the number of arcs; the reason for this is given in the following text.

4.11 (a) For any digraph, the handshaking dilemma holds, so the sum of all the
out-degrees is equal to the sum of all the in-degrees. But the sum of the
out-degrees and the sum of the in-degrees must both be odd. It follows
that the number of vertices with odd in-degree must be odd.

(b) For this digraph, the out-degrees and in-degrees are as follows:

vertex s t u V TV X y z

out-degree 2 1 2 1 2 1 2 2

in-degree 1 2 1 2 1 2 2 2

The number of vertices with odd out-degree is odd (3);

the number of vertices with odd in-degree is odd (3).

4.12 (a)

(b)

(c)

(d)

length 5: tsyzvio

length 6: tsxyzvw and tsyzuvw

length 7: tsxyzuvw

length 3: wxyt and wzut

length 5: ivxyzut;

There are two possibilities:
tsyzvwxyt and tsyzvwzut.

Any cycle containing both t and w consists of a path from t to w followed
by a path from w to t. But all paths from t to w contain both y and z (see part
(a)), and all paths from w to t contain y or z (see part (b)), so that either y or z
occurs twice. Since this is not allowed, there can be no cycle containing
both t and w.

Solutions to Problems in the Text 401

4.13 Digraph (a) is connected, but not strongly connected, since there are no paths
from the centre vertex to any other.

Digraph (b) is strongly connected.

Digraph (c) is disconnected.

Digraph (d) is connected, but not strongly connected, since, for example, there
are no paths from the top right-hand vertex to any other.

Eulerian? Eulerian trail Hamiltonian? Hamiltonian cycle

(a) no - yes ab dca

(b) ye? abdecdacbea yes abec da

(c) no - yes abecda

4.15 (a) A digraph is Eulerian if and only if the out-degree and in-degree of each
vertex are equal.

(b) In digraph (a), there is no vertex whose out-degree and in-degree are
equal, so digraph (a) is not Eulerian.

In digraph (b), the out-degree and in-degree of each vertex are equal, so
digraph (b) is Eulerian.

In digraph (c), the out-degree and in-degree of the vertices a and e are not
equal, so digraph (c) is not Eulerian.

4.16

insect 3 grass

c fox bird > -1 deer 3
4.17 Positive feedback cycle: cefhgc.

Negative feedback cycles: ghg, ahga, abdfhga, ceifhgc.

4.18 Another Eulerian trail is

101 -> 010 -» 100 -* 001 -* Oil -» 110 -> 100 -* 000 -»

000 001 -> 010 -> 101 -* 011 -* 111 -» 110 101

This can be compressed to give the 16-bit sequence

1 01 001 1 00001 01 1 1.

This leads to the following solution to the rotating drum problem for 16 divisions.

4.19 Five: abecd, bcaed, becad, cubed, ecabd.

402 Graphs and Applications: An Introductory Approach

Chapter 5

1 2 3 4 5 1 2 3 4 5

1 'o 1 0 0 1 1 ’o 1 0 0 \

2 1 0 1 3 0 2 1 0 0 2 1

3 0 1 0 1 0 3 0 0 0 0 0

4 0 3 1 0 1 4 0 2 0 0 1

5 1 0 0 1 0 5 1 1 0 1 0

(a) (b)

1 2 3 4 5 1 2 3 4 5

1 0 1 0 0 o’ 1 ’o 0 0 1 o’

2 0 0 1 1 0 2 1 0 0 0 0

3 0 0 0 0 0 3 1 1 0 1 0

4 0 2 1 0 0 4 1 0 0 0 1

5 1 0 0 1 0 5 1 0 0 0 0

(a) (b)

5.4

• 3

5

Solutions to Problems in the Text 403

5.5 (a)

(b)

a b C d a b C d

a 0 2 l 0 a 2 1 0 0
b 0 0 0 1 b 0 2 l 0
c 1 0 0 0 c 0 0 0 1
d 2 1 0 0 d 1 0 0 2

numbers of walks of length 2 numbers of walks of length 3

'0 2 1 O' '2 1 0 o'

a2 =
0 0 0 1

, A3 =
0 2 1 0

1 0 0 0 0 0 0 1

2 1 0 0 1 0 0 2

(c) The tables in part (a) correspond to the matrix products in part (b).

For example, the number of walks of length 2 between vertices d and a is
the entry in row 4 (corresponding to d) and column 1 (corresponding to a)
in the matrix A2; a similar result holds for the number of walks of length 3
and the entries in A3.

'0 1 0 0 r '1 0 2 1 O'

1 0 1 0 0 0 1 0 2 1

0 0 0 2 0 , A2 = 0 0 0 0 2

0 0 0 0 1 0 0 1 1 0

0 0 1 1 0 0 0 0 2 1

"0 1 0 4 2 1 0 3 2 4'

1 0 2 1 2 0 1 2 6 2

0 0 2 2 0 II

<
 0 0 0 4 2

0 0 0 2 1 0 0 1 1 2

0 0 1 1 2 0 0 2 4 1

The numbers of walks from b to d of lengths 1,2,3 and 4 are given by the entries
in row 2 column 4 of the matrices A, A2, A3 and A4, respectively - namely, 0,2,1

and 6.

There is no walk of length 1,2,3 or 4 from d to b, because each of the matrices A,
A2, A3 and A4 has 0 in row 4 column 2.

5.7

B A + A2 + A3 + A4 =

2

2

0

0

0

2

2

0

0

0

5 7 7

5 9 5

2 8 4

2 4 4

4 8 4

The matrix B contains some zero entries off the main diagonal, so the digraph is

not strongly connected, by Theorem 5.2.

Note that this fact was already clear from the matrix A in Solution 5.6, so in this
case we do not need to go on and calculate B explicitly.

404 Graphs and Applications: An Introductory Approach

5.8 The adjacency matrix A is a 5 x 5 matrix, so the digraph has five vertices.
We therefore need to find A, A2, A3, A4 and B = A + A2 + A3 + A4.

'0 0 0 1 O' '0 0 0 0

1 0 1 0 0 0 0 0 2

A = 0 0 0 1 0

II

<
 0 0 0 0

0 0 0 0 1 0 1 0 0

0 1 0 0 0 1 0 1 0

'0 1 0 0 o' '1 0 1 0

0 0 0 0 2 0 2 0 0

a3 = 0 1 0 0 0 >

II 1 0 1 0

1 0 1 0 0 0 0 0 2

0 0 0 2 0 0 0 0 0

"1 1 1 1 r

1 2 1 2 2

B = 1 1 1 1 1

1 1 1 2 1

1 1 1 2 2_

All the entries in B off the main diagonal are non-zero, so the digraph with adja¬
cency matrix A is strongly connected, by Theorem 5.2.

5.9

i 2 3 4 5 6 7 8 l 2 3 4 5 6 7

G) ’i 0 0 0 1 0 0 o’ (D "i 0 0 0 0 1 r
(D i 1 0 0 0 1 1 1 (D i 1 1 1 0 0 0

(D 0 1 1 0 0 0 0 0 <D 0 1 1 1 1 0 1

@ 0 0 1 1 0 1 1 1 (D 0 0 0 0 1 1 0

0 0 0 1 1 0 0 0 (b)

(a)

5.10

Solutions to Problems in the Text 405

5.11

i 2 3 4 5 l 2 3 4 5 6 7 8

CD l 0 0 0 -1 (D i 0 0 0 -1 0 0 0

(D -i 1 0 1 1 © -i 1 0 0 0 1 -1 -1

CD 0 -1 1 0 0 © 0 -1 -1 0 0 0 0 0

® 0 0 -1 -1 0 ® 0 0 1 -1 0 -1 1 1

(a) © 0 0 0 1 1 0 0 0

(b)

5.12

(5,6) (3,4)

406 Graphs and Applications: An Introductory Approach

5.14 (a) 1 0 0

111
2 6 3

oil
U 2 6

0 0 A

0 0 0

0 0 0

0 0 0

0 0 0

J 0 0
1 1 o
6 3
ill
2 6 3

0 1 0

The associated digraph is not strongly connected, as there is no arc out of
v\ to another vertex, so the resulting Markov chain is not irreducible.

'0 1 0 0 0 O'

1 i 1 0 0 0
2

0

6
1

3
1 1 0 0

0

2

0

6
1
2

3
1
6

1
3

0

0 0 0 1
2

1
6

1
3

0 0 0 0 1 0

The associated digraph is strongly connected, so the resulting Markov
chain is irreducible.

Chapter 6

6.1 The six unlabelled trees with six vertices are as follows.

+ AY

%

-%-•

Solutions to Problems in the Text 407

6.2 The eleven unlabelled trees with seven vertices are as follows.

6.3 By definition, a tree is a connected graph that has no cycles.
(a) Suppose that the removal of an edge e disconnects a tree into more than

two components:

Since e joins only two vertices, it can link at most two of these components,
so at least one component remains disconnected from the rest when e is
reinstated in the tree. This contradicts the fact that a tree is connected.
Thus, the removal of e disconnects the tree into just two components.

(b) Suppose that the addition of an edge e creates two or more cycles:

two cycles
containing e

closed walk
not containing e

408 Graphs and Applications: An Introductory Approach

The parts of any two such cycles other than e can be combined into a
closed walk that does not contain e, and this closed walk must contain a
cycle. This contradicts the fact that a tree contains no cycles. Thus, the
addition of a new edge cannot create more than one cycle.

6.4 (a)

(b) Let T be a tree with n (> 2) vertices and at most one vertex of degree 1.
Then T has at least n -1 vertices of degree 2 or more. It follows that the sum
of the vertex degrees is at least 2 (n -1) + 1, so, by the handshaking lemma,
the number of edges of T is at least (n -1) + j-. This contradicts the fact that
T has exacdy n - 1 edges. Thus, T has at least two vertices of degree 1.

^5 spanning tree (a)

v

spanning tree (b)

Building-up method: We choose the edges vw, wx, vy and yz; then no cycles are
created, and we obtain spanning tree (a) above.

Cutting-down method: We remove the edges

vw (destroying the cycle vwxv),

wx (destroying the cycle wxyw),

xy (destroying the cycle xyzx),

yz (destroying the cycle vyzv),

vz (destroying the cycle vxzv),

wy (destroying the cycle vxzwyv);

then no cycles remain, and we obtain the spanning tree with edges vx, xz, wz, vy,
that is, spanning tree (b) above.

Solutions to Problems in the Text 409

6.6 The eighteen spanning trees (other than those depicted in the text) are the
following; for clarity, the labels are omitted from these diagrams.

6.7 Three spanning trees of the Petersen graph are:

vV xA/
There are 1997 other possibilities, so we cannot show them all! The Petersen
graph has 10 vertices, so a spanning tree is a connected graph with 9 edges
linking all the vertices. Check that your trees have this property.

6.8 In the branching tree representing the outcomes of two throws of a six-sided die,
there are three 'levels' (including the root) with six downward edges from each
vertex:

/77TT\ /7m\ /7TTW /7TTV\

□ □ □ 0 ■ ■ • □ tm 10 10

410 Graphs and Applications: An Introductory Approach

6.9 The subsets of a set corresponding to this tree can be drawn as follows.

The nested parentheses corresponding to this tree are:

(((()()())(()(()))))

6.10

The bipartite graphs corresponding to frameworks (a) and (b) are disconnected;
the bipartite graph corresponding to framework (c) is connected.

6.11

The bipartite graph corresponding to framework (a) is connected, so framework
(a) is rigid.

The bipartite graph corresponding to framework (b) is disconnected - the path
c2r\C4 and the cycle c1r3c3r2c1 are components of the graph - so framework (b) is
not rigid.

Solutions to Problems in the Text 411

6.12 (a)

h

*2

r3

ci

c2

C3

C4

The bipartite graph is a spanning tree, so the braced framework is mini¬
mally braced.

(b) We find another spanning tree and construct the corresponding braced
framework. For example:

h

r2

r3

Cl

c2

C3

c4

Chapter?

7.1 The sixteen labelled trees with four vertices are as follows. The first four arise
from labelling the complete bipartite graph Ki/3, and the others arise from label¬

ling the path graph P4.

7.2 For each value of n, the number of labelled trees with n vertices is a power of n; it

is in fact nn~2.

412 Graphs and Applications: An Introductory Approach

(a) Successively removing the edges 42,21,61,13,35,75, we obtain the Prixfer

sequence (2,1,1, 3, 5, 5).

(b) Successively removing the edges 21, 31, 14, 54, 64, we obtain the Prixfer

sequence (1,1, 4, 4, 4).

7.4 (a) We start with the list (1, 2, 3, 4, 5, 6, 7, 8) and the sequence (2,1,1, 3, 5, 5).
Successively adding the edges 42, 21, 61,13, 35, 75 leaves us with the list
(5,8). Joining the vertices with these labels, we obtain the labelled tree (a)

in Problem 7.3.

(b) We start with the list (1,2,3,4,5,6,7) and the sequence (1,1,4,4,4). Succes¬
sively adding the edges 21, 31, 14, 54, 64 leaves us with the list (4, 7).
Joining the vertices with these labels, we obtain the labelled tree (b) in
Problem 7.3.

7.5 The sixteen labelled trees with four vertices, and their associated Prixfer
sequences are as follows.

1 21 21 21 21 21 21 2

4 34 34 34 34 34 34 3

(1,1) (2,2) (3,3) (4,4) (1,4) (2,3) (2,1)

1 2

4 3

(4, 3)

1 2

4 3

(3,2)

1 2

4 3

(3, 4)

1 2

4 3

(4,1)

1 2

4 3

(1,2) (4,2) . (3,1) (1,3) (2, 4)

Note that each of the sixteen possible sequences occurs exactly once.

7.6 Each canal system corresponds to a labelled tree with eight vertices. By Cayley's
theorem, there are 86 = 262144 of these.

Solutions to Problems in the Text 413

7.7 The fourteen binary trees with four vertices are:

7.8 Substituting the value n = 6 in the recurrence relation, we obtain

«6 = 2 u5 + (»1u4 + «2w3 +u3u2 +u4ul)

= (2 x 42) + (l x 14) +(2 x 5) + (5x 2)+ (14 xl) = 132.

Thus there are 132 binary trees with six vertices.

7.9

H—C —H

H-

(b)

H
I

■c—c-
I I

H H

H H
I I
C-C —H

I
H

H —C—H
I

H

7.10 The number of vertices in the graph of a molecule with formula C6Hi4 is

6 + 14 = 20.

By the handshaking lemma, the number of edges is half the sum of the vertex

degrees, that is,

y[(6 x 4) + (14 x 1)] = 19.

Since the graph is connected, and the number of vertices exceeds the number of
edges by 1, the graph is a tree, by Theorem 7.1.

7.11 The number of vertices in the graph of any alkane with formula CnH2n+2 is

n + (In + 2) = 3n + 2.

By the handshaking lemma, the number of edges is

j-[(n x 4) + ((2n + 2) x 1)] = y(4n +(2n + 2)) = 3n + 1.

Since the graph is connected, and the number of vertices exceeds the number of

edges by 1, the graph is a tree, by Theorem 7.1.

414 Graphs and Applications: An Introductory Approach

7.12
central with centre v

bicentral with bicentre vw

central with centre v

bicentral with bicentre vw

central with centre v

central with centre v

bicentral with bicentre vw

bicentral with bicentre vw

central with centre v

Chapter 8

8.1 We should have chosen edges in the order AE (length 2), AC (length 4), BC
(length 5), DE (length 7), obtaining the following minimum spanning tree.

A

Solutions to Problems in the Text 415

8.2 We apply Kruskal's algorithm as follows.

First edge

Second edge

Third edge

Fourth edge

Fifth edge

We choose Athlone-Galway (weight 56).

We choose Galway-Limerick (weight 64).

We choose Athlone-Sligo (weight 71).

We cannot choose Athlone-Limerick (weight 73), as this creates a
cycle, so we choose Athlone-Dublin (weight 78).

We cannot choose Galway-Sligo (weight 85), as this creates a
cycle, so we choose Dublin-Wexford (weight 96).

This completes the required minimum spanning tree of total weight 365.

96 78

71

56 64

W D A

8.3 (a) We should have chosen edges in the order

Berlin-Paris (weight 7),

Paris-London (weight 3),

Paris-Seville (weight 8),

Paris-Rome (weight 9),

Berlin-Moscow (weight 11),

obtaining the following spanning tree of total weight 38.

R L

(b) We should have chosen edges in the order

Rome-Paris (weight 9),

Paris-London (weight 3),

Paris-Berlin or London-Berlin (weight 7),

Paris-Seville (weight 8),

Berlin-Moscow (weight 11),

obtaining a spanning tree of total weight 38 - either the same spanning
tree as in part (a) or the spanning tree obtained in Example 8.3, depending
on the choice of edge of weight 7.

416 Graphs and Applications: An Introductory Approach

8.4 We should have chosen vertices in the order
Rome,

Paris (distance 9),

London (distance 3 from Paris),

Berlin (distance 7 from London or Paris),

Seville (distance 8 from Paris),

Moscow (distance 11 from Berlin),

obtaining one of the following cycles, giving an upper bound of 66 or 73.

M iTT^TTi s 18 M 11 B 15

8.5 (a)

total weight > (7 + 2 + 4)

(b)

The minimum spanning tree joining the vertices A, C, D, E is the tree with
edges AE, DE and AC or CE, with total weight 13. The two edges of
smallest weight incident with B are BC and BA, or BC and BE, with total
weight 11. The lower bound is therefore 13 + 11 = 24.

A

The minimum spanning tree joining the vertices A, B, C, D is the tree with
edges AC, BC and AD or BD, with total weight 17. The two edges of
smallest weight incident with E are EA and EC, with total weight 6. The
lower bound is therefore 17 + 6 = 23.

The better lower bound is that given by part (a), that is, 24.

Solutions to Problems in the Text 417

Chapter 9

9.1 Removing the edges uv and vz, we obtain the following graph:

v w

We cannot use the edge uz (which is a bridge), so we must use either zf or zy.
There are now several possibilities. For example, we can traverse the edges zf, tv,
wo and wy, giving the following graph:

w

At this stage, we cannot use the edge yz (which is a bridge), so we traverse the
cycle ytwxy, returning (since there is no alternative) by the bridges yz and zu.
Thus we obtain the Eulerian trail uvztuwytwxyzu.

418 Graphs and Applications: An Introductory Approach

9.2 We obtain the following:

T has potential 22 assigned from D.

iteration
origin
vertex

1
2
3
4
5

5
A

3
C

0
E

vertices assigned labels

A 3 ~C D E T

0 &

0
2#

29

Solutions to Problems in the Text 419

Tracing back from T, we find the shortest path SABDT, with length 22.

c

\0\ [7] |1 ozi m

iteration
origin
vertex

1

2
3
4
5

•A'

C
■D-

E

vertices assigned labels

A § C D T

7 2# 1
Til ^ 17,

16
17

22
29

There are two vertices of odd degree - b and c.

A semi-Eulerian path from b to c is bedceabc with length 21.

The shortest path from c to b is cdeb with length 6.

Thus a suitable route is bedceabcdeb with length 27.

420 Graphs and Applications: An Introductory Approach

Chapter 10

10.1 (a), (c), (f) are cutsets;
(b) is not a cutset, since removal of the edges does not disconnect the graph;

(d) is not a cutset, since we can disconnect the graph by removing yf;

(e) is not a cutset, since we can disconnect the graph by removing xz and yz.

10.2 (a) 2(G) = 2 (for example, remove the edges vw and xy);

(b) 2(G) = 1 (remove any edge);

(c) 2(G) = 3 (for example, remove the edges uw, ux, vx).

10.3 (a) and (d) are vertex cutsets;
(b) is not a vertex cutset, since removal of its edges does not disconnect the

graph;

(c) is not a vertex cutset, since we can disconnect the graph by removing u and x,
or by removing y.

10.4 (a) k(G) = 2 (for example, remove the vertices v and x),2(G) = 2,3(G) = 2;

(b) k(G) - 1 (for example, remove the vertex v), 2(G) = 1, 3(G) = 1;

(c) k(G) - 2 (for example, remove the vertices w and x), 2(G) = 3, d(G) = 3.

10.5
d a

f c

In each case there are several possibilities; for example,

(a) sad, sbdt, sceft; (b) sbet, sabdt; (c) sad, sbft.

This graph does not contain three vertex-disjoint sf-paths, since every sf-path
must pass through at least one of the two vertices b and e.

10.6 (a) Suppose that two vertex-disjoint sf-paths are not edge-disjoint; then they
have an edge in common. This means that they have at least one vertex
(other than s and f) in common, contradicting the fact that they are
vertex-disjoint. This contradiction proves that two vertex-disjoint sf-paths
are edge-disjoint.

(b) There are many possibilities; for example.

a c

b d

In the above graph, the only pairs of edge-disjoint sf-paths are savct and
sbvdt, and savdt and sbvct. In neither case are the paths vertex-disjoint,
since they all pass through the vertex v.

Solutions to Problems in the Text 421

10.7 (a)
a c

(b)

In this case, k = 2; two edge-disjoint sf-paths are sad and sbdt, and two
edges separating s from f are sa and sb. Thus the maximum number of
edge-disjoint sf-paths and the minimum number of edges separating s
from f are both 2.

v x

w y

(c)

In this case, k = 2; two edge-disjoint sf-paths are svxt and suryt, and two
edges separating s from f are vx and wy. Thus the maximum number of
edge-disjoint sf-paths and the minimum number of edges separating s

from f are both 2.

u w y

In this case, k = 3; three edge-disjoint sf-paths are suwzt, syt, svxt, and
three edges separating s from f are su,sv,sy. Thus the maximum number of
edge-disjoint sf-paths and the minimum number of edges separating s

from f are both 3.

422 Graphs and Applications: An Introductory Approach

10.8 (a)
v x

-*-•
w y

In this case, k = 2; two arc-disjoint sf-paths are svxt and swyt, and two arcs
separating s from f are vx and wy. Thus the maximum number of
arc-disjoint sf-paths and the minimum number of arcs separating s from f

are both 2.

In this case, k = 3; three arc-disjoint sf-paths are sadt, sbft, scet, and three
arcs separating s from < are sa, sb, sc. Thus the maximum number of
arc-disjoint sf-paths and the minimum number of arcs separating s from f
are both 3.

10.9
v x

In this case, k = 2; two vertex-disjoint sf-paths are svxt and swyt, and two vertices
separating s from f are v and w. Thus the maximum number of vertex-disjoint
sf-paths and the minimum number of vertices separating s from f are both 2.

10.10
u w y

In this case, k - 3; three vertex-disjoint sf-paths are suwzt, syt, svxt, and three
vertices separating s from f are u, v, y. Thus the maximum number of
vertex-disjoint sf-paths and the minimum number of vertices separating s from f
are both 3.

Solutions to Problems in the Text 423

10.11 (a) For C„,

ic(Cn) = 2 and 2 mjn — 2 n/n =2,

so C„ has optimal connectivity.

(b) For Kn, the number of edges is ^n(n - 1), by a consequence of the hand¬
shaking lemma, so

k(Ku) = 7i-l and 2m/n = 2 x yn(n -1)/n = n -1,

so Kn has optimal connectivity.

(c) For Kr r,

k(Kr r) = r and 2m/n = 2r2/(r + r) = r,

so Kr r has optimal connectivity.

10.12 (a) There are only two regular graphs with 6 vertices and 9 edges:

For each of these two graphs,

/c(G) = 3 and 2 m/n = 3,

so the graphs have optimal connectivity,

(b) There is only one possibility:

The removal of the middle three vertices disconnects the graph, so
k(G) = 3; since d(G) = 4, the graph does not have optimal connectivity.

424 Graphs and Applications: An Introductory Approach

Chapter 11

n.i

11.2 The nine connections are not possible, because the corresponding graph is K33,
which is non-planar.

11.3

(a) (b) (c)

In any plane drawing of K$, the cycle uvwxyu in diagram (a) must appear as a
pentagon. The edge vy must lie either inside or outside the pentagon. Since the
argument is similar in each case, we assume that vy lies inside the pentagon, as in
diagram (b).

Since the edges ux and uw cannot cross vy, they must lie outside the pentagon, as
in diagram (c). But the edge vx cannot cross uw, and the edge wy cannot cross ux,
so both vx and wy must lie inside the pentagon, and must therefore cross. Since
this is not allowed, we deduce that K5 has no plane drawing - that is, Kc, is
non-planar.

11.4 No. The corresponding graph is K5, which is non-planar.

11.5 (a) This statement is TRUE, since if G is a planar graph, then we can draw G in
the plane without crossings. If we now remove the vertices and edges not
included in the subgraph, then we obtain a plane drawing of the
subgraph.

(b) This statement is FALSE; for example, the graph X3 3 is non-planar, whereas
the cycle graph C6, a subgraph of K3/3, is planar. ’

(c) This statement is FALSE; for example, the graph C6 is planar, whereas the
graph K3/3, which contains C6, is non-planar.

(d) This statement is TRUE, since if G is a planar graph, then G cannot have a
non-planar subgraph, by part (a).

Solutions to Problems in the Text 425

11.6 (a)

(b)

(c)

(d)

(e)

11.7

11.8 (a)

(b)

(c)

All trees are planar.

All cycle graphs are planar.

Using the results of Problem 11.5, parts (a) and (d), we deduce that:

since K4 is planar and Kn is a subgraph of K4 when n < 4,
Kn is planar when n < 4;

since K5 is non-planar, and K5 is a subgraph of Kn when n > 5,
Kn is non-planar when n > 5.

Thus Kn is planar for n = 1, 2, 3,4.

The bipartite graphs Ki s and K2,sare planar for all values of s, as illustrated
in the following diagrams.

1

The graphs K1/S and K2iS are planar for all values of s, by part (d). Since K3<3

is non-planar and is a subgraph of KTiS when r > 3, it follows from Problem
11.5(d) that KT/S is non-planar when r > 3.

Thus Kr s is planar only when r = 1 or 2, for all values of s.

i

There are 10 edges and six faces with face degrees 1, 2, 3, 3, 4, 7, and

1 + 2 + 3 + 3 + 4 + 7 = 20 = 2x10.

There are 11 edges and seven faces with face degrees 3,3,3,3,3,3,4, and

3 + 3 + 3 + 3 + 3 + 3 + 4 = 22 = 2x11.

There are 10 edges and six faces with face degrees 3, 3, 3, 3, 4, 4, and

3 + 3 + 3 + 3 + 4 + 4 = 20 = 2x10.

426 Graphs and Applications: An Introductory Approach

11.9 (a) There are 6 vertices, 10 edges and 6 faces, so the required value is

6-10 + 6 = 2.

(b) There are 6 vertices, 11 edges and 7 faces, so the required value is

6-11 + 7 = 2.

(c) There are 6 vertices, 10 edges and 6 faces, so the required value is

6-10 + 6 = 2.

11.10 (a) There are 6 vertices, 12 edges and 8 faces, and

n-m + f — 6 -12+ 8 = 2.

(b) There are k + 1 vertices, 2k edges and k + 1 faces, and

n - m + / = (k + 1) - 2k + (k + 1) = 2.

(c) There are k + 2 vertices, 2k edges and k faces, and

n - m + f = (k + 2) - 2k + k - 2.

(d) There are (k + l)2 vertices, 2k(k + 1) edges and k2 + 1 faces, and

n _ m + / = (k + l)2 - 2k(k + 1) + (k2 + 1) = 2.

11.11 In Corollary 11.1, equality occurs when m = 3n-6or3n = m + 6. Substituting for
n in Euler's formula n-m + / = 2, we obtain2m = 3/. So equality occurs when G is
face-regular of degree 3; for example, (m — 6,/ = 4).

In Corollary 11.2, equality occurs when m — 2n —4 or 2n = m -I- 4. Substituting for
n in Euler's formula n-m +f= 2, we obtain 2m = 4f. So equality occurs when G is
face-regular of degree 4; for example, the 3-cube (m = 12,/ = 6).

11.12 (a) For a plane drawing of G with / faces, it follows from the handshaking
lemma for planar graphs that

2m > 5f,

since the degree of each face is at least 5.

Substituting for/from Euler's formula/ = m - n + 2, we obtain

2m > 5m- 5n + 10 or 3m < 5(n - 2),

and hence

m < J-(n -2).

(b) Suppose that the Petersen graph is planar. Then the inequality in part (a)
becomes (with m = 15 and n - 10):

15<§x(10-2) = 13±,

which is FALSE. Thus the Petersen graph is non-planar.

Solutions to Problems in the Text 427

11.13 Since G is a simple graph, we can apply Corollary 11.1 to deduce that, if G has n
vertices and m edges, then

m > 3n - 6.

Suppose that each vertex of G has degree 6 or more. Then, by the handshaking

lemma for graphs,

2m > 6n or 3n < m.

Combining these two inequalities, we obtain

3n < 3n - 6,

which is FALSE. Thus G must have at least one vertex of degree 5 or less.

11.14

11.15 (a) We choose C to be the cycle abcdefga.

a

graph G

a

ac af

be bf

ce eg

df dg

edges which do
not belong to C

We list the edges which do not belong to C:

list: ac, af, be, bf, ce, eg, df, dg

We put the first edge in the list, ac, in a set A and delete this edge from the

list:

/I = {ac,...}.

list: af, be, bf, ce, eg, df, dg

The edge ac is incompatible with be and bf, so we put the edges be and bf in

a set B:

B = {be, bf,...}.

We check and find that the edges be and bf are compatible with each other.

We delete the edges be and bf from the list:

list: af, ce, eg, dt, dg

We consider the edge be in B.

The edge be is incompatible with eg, df and dg, so we put the edges eg, df

and dg in A:

71 = {ac, eg, df, dg}.

We check and find that the edges in A are compatible with each other.

428 Graphs and Applications: An Introductory Approach

We delete the edges eg, df and dg from the list:

list: af, ce

The edge eg in A is incompatible with af and ce, so we put the edges af and
ce in B:

B — {be, bf, af, ce}

We check and find that all the edges in B are compatible with each other.

We delete the edges af and ce from the list.

The list is now empty, and we have:

A = {ac, eg, df, dg}; B = {be, bf, af, ce}.

f

edges in A edges in B

All the edges in A are compatible and all the edges in B are compatible, so
G is planar.

To obtain a plane drawing of G, we combine the above two figures as
follows.

/

graph G plane drawing of G

(b) We choose C to be the cycle abcdefghijklmna.

a b

e

i h

graph G

Solutions to Problems in the Text 429

We list the edges which do not belong to C:

list: af, bk, ch, dm, ej, gl, in

We put the first edge in the list, af, into a set A and delete this edge from the

list:

A = {af}

list: bk, ch, dm, ej, gl, in

The edge af is incompatible with bk, ch, dm and ej, so we put the edges bk,

ch, dm and ej into a set B.

B — {bk, ch, dm, ej}

a b

We check the compatibility of the edges in B with each other, but find that
bk and dm are incompatible, so G is non-planar.

11.16 (a) Deletion of the edge sw gives the following subgraph.

V 9

^3,3

This is a subdivision of K33. It follows from Kuratowski s theorem that the

given graph is non-planar.

(b) Deletion of the two 'horizontal' edges gives the following subgraph.

This is a subdivision of K33. It follows from Kuratowski's theorem that the

Petersen graph is non-planar.

Note that the Petersen graph does not contain a subdivision of K5.

430 Graphs and Applications: An Introductory Approach

11.17

Notice that in parts (a) and (c) the dual graph is isomorphic to the original graph.

11.18 The dual graphs are as follows.

Their degree sequences are (3, 3, 3, 3, 3, 5) and (3, 3, 3, 3, 4, 4), so they are not
isomorphic.

11.19 Since a triangle in G corresponds to a cutset with 3 edges in G*, the dual state¬
ment is as follows.

Let G* be a connected planar graph with / faces and m edges, and with no
cutsets with 1,2 or 3 edges. Then m < 2/- 4.

11.20 In each case, the dual is the solid with the same number of edges as the original,
and with the numbers of vertices and faces interchanged:

the tetrahedron is its own dual;

the octahedron and the cube are duals of each other,

the dodecahedron and the icosahedron are duals of each other.

Solutions to Problems in the Text 431

Chapter 12

12.1 Possible vertex colourings are given below.

2 1 3

(a) The vertices can all be coloured with the same colour.

Thus x(G) = 1.

(b) Since the graph contains an edge, at least two colours are needed, so

X(G) ^ 2.

A 2-colouring is shown above, so %(G) < 2.

Thus %(G) = 2.

(c) Since the graph contains a triangle (K3), at least three colours are needed,

so*(G)>3.

A 3-colouring is shown above, so x(G) < 3.

Thus x(G) = 3.

(d) Since the graph contains K4, at least four colours are needed, so x(G) > 4.

A 4-colouring is shown above, so x(G) <. 4.

Thus x(G) = 4.

12.2 (a) The graphs with x(G) = 1 are the graph with no edges-the null graphs N„.

(b) The graphs with *(G) = 2 are the bipartite graphs (other than Nn), since we
can colour their vertices black and white in such a way that each edge joins

a black vertex to a white vertex.

12.3 (a) n;

(b) 2;

(c) 2, if n is even; 3, if n is odd;

(d) 2, if the tree has at least two vertices;

1, if the tree has only one vertex.

12.4 (a) This statement is TRUE, because if G contains Kr as a subgraph, then G
contains r mutually adjacent vertices, and these require r colours. So

X(G)> r.
(b) This statement is FALSE; for example, the cycle graph C5 has chromatic

number 3, but does not contain a triangle (K3).

432 Graphs and Applications: An Introductory Approach

12.5

(a)

1

(b) (d)

(a) lower bound: x(G) > 2; upper bound: x(G) < 3; actual value: x(G) = 2;

(b) lower bound: x(G) > 2; upper bound: x(G) < 3; actual value: x(G) = 3;

(c) lower bound: x(G) > 3; upper bound: x(G) < 3; actual value: x(G) = 3;

(d) lower bound: x(G) > 3; upper bound: x(G) < 3; actual value: ^(G) = 3.

12.6 We obtain the following vertex colourings with 4, 3 and 2 colours.

(a) (b) (c)

We showed that x(G) = 2 in Solution 12.5(a), so only colouring (c) uses x(G)
colours.

12.7 We showed that^(G) = 3 in Solution 12.5(c). A suitable labelling is shown below.

1 a c2

Solutions to Problems in the Text 433

12.8

(a) There are many possibilities - for example, the colouring shown on the left
below.

(b) The corresponding graph is shown above. The colouring in part (a) leads
to a vertex decomposition of the required type:

{a, c, h, k}r {b,j}, {d,f, i, /}, {e, g, m}.

12.9 The tour graph is given below.

Since vertices 1,2,3,4 are mutually adjacent, at least four colours are needed to
colour the vertices of this graph so that neighbouring vertices are coloured
differently. This means that at least four days are needed.

In fact, four days are sufficient, as the following vertex decomposition shows:

Monday routes 1, 5, 7;

Tuesday routes 2, 9,12;

Wednesday routes 3, 6,11;

Thursday routes 4, 8,10.

Other vertex decompositions are possible.

434 Graphs and Applications: An Introductory Approach

12.10 There are several possibilities - for example:

minimum dominating set vertex decomposition

(a) {a,c} {a, b, e}, {c, d}-,

{b, d} {b, a, e}, {d, c};

(b) {a, £} {a, b, d, e), {g,f, h, c};

{b,h} {b, a, c,f}, {h, d, e,g}.

Chapter 13

13.1 Possible edge colourings are given below.

(a)

(a) Since the graph contains a vertex of degree 3, at least three colours are
needed, so % '(G) > 3.

A 3-edge colouring is shown above, so%'(G) < 3.

Thus ^'(G) = 3.

(b) Since the graph contains a vertex of degree 3, at least three colours are
needed, sox'(G) > 3.

However, in this case there is no 3-edge colouring, because three colours
are needed to colour the pentagon and a further colour is needed to colour
one of the inside edges, so^'(G) > 3.

A 4-edge colouring is shown above, so x '(G) ^ 4.

Thus x'(G) = 4.
(c) Since the graph contains a vertex of degree 3, at least three colours are

needed, so x'(G) > 3.

A 3-edge colouring is shown above, so x'(G) < 3.
Thus x'(G) = 3.

Solutions to Problems in the Text 435

13.2 (a) The graphs with %' (G) = 1 are the graphs containing one component that is
a single edge and in which each other component is either a single edge or

an isolated vertex.

•-• •-•

X'(G)= 1

(b) The graphs with %' (G) = 2 are the graphs whose components are cycles of
even length, path graphs or isolated vertices, and in which at least one

component is a cycle or path graph.

in*-
X’(G) = 2

13.3 (a) 3; (b) 3; (c) 2.

13.4 (a) This statement is TRUE, because if G contains a vertex of degree r, then G
contains r edges, and these require r colours. So x’(G) > r.

(b) This statement is FALSE; for example, the cycle graph C5 has chromatic
index 3, but does not contain a vertex of degree 3.

13.5

(c) Kb

(a) lower bound: x'(G) > 2; upper bound: x'(G) < 3; actual value: x'(G) = 3;

(b) lower bound: x'(G) > 4; upper bound: x'(G) ^ 5; actual value: x'(G) = 4;

(c) lower bound: x'(G) ^ 5; upper bound: x'(G) < 6; actual value: x'(G) = 5.

436 Graphs and Applications: An Introductory Approach

13.6

1

(b)

(a) Vizing's theorem: lower bound: *'(G) > 4; upper bound: y'(G) < 6;
Shannon's theorem: lower bound: x'(fi) ^ 4; upper bound: y'(G) ^ 6;
actual value: ^'(G) = 5.

(b) Vizing's theorem: lower bound: x'(Q > 5; upper bound: ^'(G) < 8;
Shannon's theorem: lower bound: ^'(G) > 5; upper bound: x'(G) < 7;
actual value: y'(G) = 5.

13.7 In each part, we represent the competition by a complete graph Kn; the solution
is then given byx'(Kn).

(a) If n = 31, we have x'(K„) = 31, by Theorem 13.4.

(b) If n - 32, we have x'(Kn) = 31, by Theorem 13.4.

Thus, in each case, 31 matches are necessary.

13.8 In each case, the chromatic index is the maximum vertex degree:
(a) s (b) 3; (c) k.

13.9 We obtain the following edge colourings with 4, 3 and 3 colours.

(a)

(a) (b) (c)

The actual value of *'(G) is 3, so colourings (b) and (c) use*'(G) colours.

13.10 We showed that*'(G) = 3 in Solution 13.1(a). A suitable labelling is shown
below.

Solutions to Problems in the Text 437

13.11 The bipartite graph representing this situation is shown below.

tutor student

Since this graph has maximum degree 4, it follows from Konig's theorem that
four examination periods are needed. One such schedule is as follows.

tutor A B

first examination period b a

second examination period d b

third examination period - e

fourth examination period

C D £

c - e

e a

bed

b

13.12 The graph K(, can be 'printed' in two layers, as follows.

The corresponding edge decomposition is:

{12,13,15,16, 23, 24, 25, 34, 45, 46, 56}, {14, 26, 35, 36}.

Other solutions are possible.

438 Graphs and Applications: An Introductory Approach

13.13 Since each graph is non-planar, the thickness cannot equal 1.
But each graph can be 'printed' on two layers, as follows.

Petersen layer 1 layer 2

Other solutions are possible.

Thus, in each case, the thickness is 2.

13.14 The network has 13 towns and 28 roads, so s(G) < 28/13; it follows that s(G) = 1
or 2.

The following diagram shows that s(G) = 2.

13.15 There are several possibilities - for example:

Note that n - 9 and m = 24, so m is a multiple of n - 1.

Index

When several page references are given and

they are not of equal status, the most

important reference is shown in bold.

A

A (D) 115

A (G) 113
Adjacency matrix 113,115

associated with Markov chain 131

Adjacent 27,86

Algorithm 22

edge colouring 313

efficient 22, 334, 338

exhaustion 14

exponential-time 338,339

Fleury's 203,335

greedy 184

heuristic 24

Kruskal's 184,185

planarity testing 256

polynomial-time 338,339

Prim's 188,189, 337, 338

shortest path 204, 211, 338

spanning tree 145, 335

vertex colouring 288

Alkane 3, 23,175,176,180

Appel, K 295

Arc 16,85
Arc-disjoint sf-paths 231

Archaeology 126

Associated adjacency matrix 131

Associated digraph 131

B
Balanced signed graph 54, 55

Balanced situation 54

Bay 152

Bay(f,;) 153
Benzer's problem 128

Benzer, S 128
Bicentral tree 179

Bicentre 179

Binary tree 147,171

Binary word 80

Bipartite graph 6,12, 47, 55,155

complete 48

examples 48-50

Blocked call 236

Boruvka, O 184

Brace 10,152
Braced rectangular framework 10,152

Bracing 152

minimum 159

Branching tree 147

Bridge 41

Brook's theorem 282

Brooks, L 282
Building-up method for spanning tree 145,

335
Bus route problems 324, 325, 327

C

X(G) 279
lower bound for 281, 284
upper bounds for 281, 282, 284

X'(G) 304
lower bound for 306, 309

upper bounds for 306, 307, 308,309

Capacity 18

Carbon graph 175

Cayley's theorem 165,170

Cayley, A 139,178,180, 295

Central tree 179

Centre 179

Chemistry 3,174

Chinese postman problem 212, 337

Chromatic index 304

Chromatic number 279, 334

Circumference of graph 58

Classification of problems 20, 332, 339

Closed trail 42, 95

Closed walk 42,95

Cn 45,72
chromatic index of 310

Colouring planar graphs 284

Colouring problems 292

439

440 Graphs and Applications: An Introductory Approach

Column of rectangular framework 12,153

Combinatorial explosion 15, 33,164

Communication links 296

Compatible edges 257

Competition graph 100

Complement of simple graph 58

Complete bipartite graph 48

Complete graph 45

Component 41

Computer science 149

Conceptual tree 140

Connected digraph 96

Connected graph 41

Connectivity 222,223

Construction problem 20, 21, 334

Contraction of graph 262

Converse 352
Convex polyhedron 269

dual 273

Cook, S 342

Counter-example 348
Counting

alkanes 23,175,180

binary trees 171

chemical trees 174

graphs 32, 33, 336

labelled digraphs 336

labelled graphs 32, 33, 335

labelled trees 164, 336

trees 163

unlabelled graphs 33, 336

unlabelled trees 164, 336
Counting problem 22

Crum Brown, A 180

Cube 46, 270,272

Cube graph 46, 50, 81

Cutset 220

Cutting-down method for spanning

tree 145,335

Cut vertex 222

Cycle 42,95

feedback 102

Hamiltonian 63,97

longest/shortest 58
Cycle graph 45

Cycle method for planarity testing 256

D
Decision problem 339

graph isomorphism 340

travelling salesman 339

Decomposition of graph

edge 317

vertex 292
deg/ 249

Degree

of face of plane drawing 249

of face of polyhedron 271

of vertex of graph 35

Degree sequence 36

deg v 35

De Morgan, A 295

Deterministic computer 340

Diagram-tracing puzzles 76

Digraph 16,85

associated with Markov chain 131

connected 96

disconnected 96

Eulerian 97

Hamilitonian 97

signed 101

simple 85

strongly connected 96,119

unlabelled 89

Dirac's theorem 74

Directed graph 16

Direct proof 349

Disconnected digraph 96

Disconnected graph 41

Dodecahedron 46, 270, 272

Dominating number 297

Dominating set 297, 338

minimum 297,338

Dominating set problem 338, 345

Domination problems 296

Dominoes 75

Dual

of convex polyhedron 273

of connected planar graph 264
Duality 264

E

Ecology 99

Edge 6,26

Edge colouring 303

algorithm 313

Edge connectivity 218, 219

Edge decomposition 317

into matchings 318

into planar subgraphs 321

into spanning subgraphs 324

into spanning trees 327

Edge-disjoint sf-paths 226

Edge-dominating set problem 338
Edmonds, J 337

Efficient algorithm 22, 334, 338

Enumeration problem 20, 22, 335

Euler's formula for planar graphs 251

Euler's polyhedron formula 270
Euler, L 38,65, 271

Eulerian digraph 97

Eulerian graph 63, 64, 317

Eulerian trail 63, 97

Exhaustion method 14

Existence problem 20, 333

Explorer's problem 62

Index 441

Exponential-time algorithm 338, 339

F
Face,

of plane drawing 248

of polyhedron 269

Face-regular graph 249

Family tree 140

Feedback cycle 102

Five colour theorem for planar graphs 285

Fleury's algorithm 203, 335

Flow 18

Food web 100

Ford, LR 235

Forest 161

Four colour problem 295, 333

Four colour theorem for planar graphs 288

Four cubes problem 51

generalized 344

Framework 10

Fulkerson, DR 235

G
Games of strategy 148

Gas, water and electricity problem 4, 6, 28,

242

Genetics 128

Girth of graph 58

Goldbach, C 271

Golf course layout 243

Grammatical tree 148

Graph 6,26

balanced signed 54

bipartite 6, 47, 48-50, 55,155

carbon 175
circumference of 58

competition 100

complement of 58

complete 45

complete bipartite 48

connected 41

contraction of 262

cube 50,81

cycle 45
decomposition of 292, 317

directed 16

disconnected 41

dual 264
edge decomposition of 317

Eulerian 63

face-regular 249

girth of 58
Hamiltonian 63

interval 127

Gcolourable 279

fc-cube 50,81

Gedge colourable 304

labelled 32

line 58

niche overlap 100

non-planar 244

null 45

orientable 109

path 50

Petersen 47,144, 255, 262

planar 244

Platonic 46

regular 43,45-47

r-regular 43

semi-Eulerian 67

semi-Hamiltonian 74

signed 54

simple 26

subdivision of 260

thickness of 322

tour 296

underlying 92

unlabelled 31

vertex decomposition of 292

weighted 13

Graph decomposition

edge 317

vertex 292
Graph isomorphism decision problem 340

Gray code 81

Greedy algorithm 184

edge colouring 313

Kruskal's 184,185

Prim's 188,189, 338

vertex colouring 288

Guthrie, F 295

H
Haken, W 295

Hamilton, WR 71

Hamiltonian cycle 63, 97, 344

minimum weight 191

Hamiltonian digraph 97

Hamiltonian graph 63, 71

Hampton Court maze 8

Handshaking dilemma 94

Handshaking lemma

for digraphs 94

for graphs 37, 44

for planar graphs 249

for polyhedra 271

Heuristic algorithm 24

for edge colouring 313

for planarity testing 256

for travelling salesman problem 192,196

for vertex colouring 288

Hierarchical tree 140

1(D) 125

1(G) 123

442 Graphs and Applications: An Introductory Approach

Icosahedron 46, 270, 272

Icosian game 71

If 352

If and only if 352

Incidence matrix 123,125

Incident 27,86

Incompatible edges 257

In-degree 92

In-degree sequence 93

indeg v 92

Indirect proof 349

Induction 350

Infinite face 248

Instant insanity 51

Interpersonal relationships 53

Interval graph 127

Irreducible Markov chain 132

Isomer 4,175

Isomer enumeration 175

Isomorphic digraphs 87

Isomorphic graphs 29

Isomorphism 29

J
Join 6,16, 26, 85

Joocy-chunks 106

K
K5 253, 261, 262

KX3 245,254,261,262

k(G) 222

^-colourable graph 279

fc-colouring 279

fc-cube 50,81

/c-dimensional cube 50, 81

fc-edge colouring 304

fc-edge colourable graph 304

Kekule, A 180
Kempe, A 295

Kirchhoff, G 139

K„ 45, 72, 281, 310

chromatic index of 310

chromatic number of 281

connectivity of 223

lower bound for thickness of 323

Knight's tour problem 79, 333

Konig's theorem 311

Konig, D 311

Konigsberg bridges problem 9, 20, 64, 333

Kr,s 48

lower bound for thickness of 323
Kruskal, J 184

Kruskal's algorithm 184,185

Kuratowski, K 261

Kuratowski's theorem 261

L
A(G) 219

Labelled graph 32

Legendre, AM 271
Length of walk 39, 95

Line graph 58

Listing, JB 77

Listing problem 22

Location of transmitting stations 297

London Underground 2

Longest path problem 337, 344

Loop 26,85

Lower bound

for^(G) 284

for x '(G) 309
for solution to Travelling Salesman

Problem 194,196

for t(G) 323

M
Main diagonal 114

Map colouring problem 293

Markov chain 131

irreducible 132

Matching 318

Mathematical induction 350

Mathematical statement 348
Matrix 113

adjacency 113,115

incidence 123,125

overlap 128

transition 131

Maze 8

Menger, K 235

Menger's theorem

for digraphs (arc form) 232

for digraphs (vertex form) 235

for graphs (edge form) 229

for graphs (vertex form) 234

Method of paired comparisons 106
Methods of proof 348-353

Minimally braced framework 159

Minimum bracing 159

new from old 159,162

Minimum connector 183

Minimum connector problem 184, 337, 338

Minimum dominating set 297, 338

Minimum spanning tree 183
Model 19

Multiple arcs 85

Multiple edges 26

Mutation 128

N
Necessary and sufficient condition 352
Necessary condition 352

Negative feedback cycle 102

Nested parentheses 151
Network 17

pipeline 18

Index 443

road 17

social 53,101
telecommunication 17,236

Niche overlap graph 100

N„ 45
Non-deterministic computer 340

Non-deterministic polynomial-time

problem 340

Non-planar graph 244

NP 340
NP-complete problem 342, 344

NP-problem 340

Null graph 45

O
Octahedron 46, 270,272

O(n) 334

0(nk) 335

Only if 352

Open trail 42

Open walk 42

Optimal connectivity 237

Optimization problem 20, 23, 337

Ore, O 73

Ore's theorem 73
Orientable graph 109

Outcomes of experiments 147

Out-degree 92

Out-degree sequence 93

outdeg v 92
Over-braced framework 10

Overlap matrix 128

P
P 340

Paraffin 3,175

Path 40,95
semi-Hamiltonian 74

st- 226,231

Path graph 50
Petersen graph 47,144, 255, 262

Petersen, J 47
Pipeline network 18

Planar graph 244
Planarity testing 256, 263

Plane drawing 244

Platonic graph 46

Platonic solid 46, 270, 273

dual of 273

Pn 50
Poinsot, L 77

Polya, G 33
Polynomial-time algorithm 338, 339

Polynomial-time problem 340

Polynomial-time reducibility 342

Positive feedback cycle 102

Potential 204

P-problem 340

Prim's algorithm 188,189, 337, 338

Principle of mathematical induction 350

Principle of strong induction 350

Printed circuits 5, 243,321
Proof

by contradiction 349

by mathematical induction 350

direct 349

indirect 349

involving if and only if 352

Phifer's construction 165

Prtifer, H 165
Phifer sequence 165

Q
Qk 50,81

R
Random walk 130

Ranking in tournaments 106
Rectangular framework 10,20,152
Recurrence relation 171

Reductio ad absurdum 349

Refuse collection 296

Regular graph 43

examples 45-47

Regular polyhedron 269
Reliable telecommunication network 236

r-regular graph 43

Rigid framework 10

Rigidity criterion 154

Road network 17

Root 146

Rooted tree 146
equivalent forms 150

Rotating drum problem 104

Route-finding 2
Row of rectangular framework 12,153

S
Same digraphs 87

Same graphs 7, 28

Satisfiability problem 342
Scheduling examinations 319

Semi-Eulerian

graph 67

trail 67
Semi-Hamiltonian

graph 74

path 74
Separate 227,231

Sequence dating 126

Seriation 126

s(G) 325
Shannon, CE 303, 307

Shannon's theorem 308

Shortest path algorithm 204, 211, 338

tabular method 206

444 Graphs and Applications: An Introductory Approach

Shortest path problem 23, 204, 337, 338

Signed digraph 101

Signed graph 54

Simple digraph 85

Simple graph 26

Sink 18

Six colour theorem for planar graphs 284

Snow-ploughing 212,213

Social networks 53,101

Sorting tree 150

Source 18

Spanning forest 161

Spanning subgraph 325

Spanning tree 144,158

construction of 145, 335

minimum 183

Stack 149

Statement 348

State of Markov chain 131

Stereographic projection 271

Storing chemicals 277, 292

sf-paths 226,231

arc-disjoint 231

edge-disjoint 226

vertex-disjoint 226,231

Street-cleaning 212,213

Strong induction 350

Strongly connected digraph 96,119

Subdigraph 90

Subdivision of graph 260

Subgraph 33

spanning 325

Sufficient condition 352

T
Tabular method for shortest path

algorithm 206

Telecommunication network 17, 236

Teleprinter's problem 104

Tetrahedron 46, 270, 272

t(G) 322

lower bound for 322, 323

Thickness 322

Tour graph 296

Tournament 106

Trail 40,95

closed 42,95

Eulerian 63,97
open 42

semi-Eulerian 67

Transition matrix 131

Transition probability 131

Traveller's problem 62

Travelling salesman problem 13, 23,191,
337, 339, 344

lower bound for solution 196

u pper bound for solu tion 192

Tree 49

bicentral 179

binary 147

branching 147

central 179

conceptual 140

equivalent definitions of 143

family 140

grammatical 148

hierarchical 140

minimum spanning 183

properties of 140

rooted 146

sorting 150

spanning 144

Triangle 42

Tutte, WT 325

U
Unbalanced situation 54

Underlying graph 92

Unlabelled digraph 89

Unlabelled graph 31

Upper bounds

fory(G) 281,282,284

for y'(G) 306,307,308,309

for solution to Travelling Salesman
Problem 192

Utilities problem 4,6, 21, 28, 242, 333

V
Valency 35

Vertex 6,16, 26, 85

Vertex colouring 277

Vertex connectivity 221,222

Vertex cutset 223

Vertex decomposition 292

colouring problems 292-296

domination problems 296-298

Vertex-disjoint st-paths 226, 231

Vizing's theorem 307

extended version 308
Vizing, VG 307

W
Walk 39,95,118

closed 42,95

open 42

Weight of edge 13

Weighted graph 13

Whitney, H 235

Wire-colouring 303,318

DATE DUE

■:M 7 ccli'o

OSf-t-^2886

OCT 2 n 2006 -

M. Mms amd Rohm J. Wilson

GRAPHS AND APPLICATIONS
An Introductory Approach

Discrete Mathematics is one of the fastest growing areas in
mathematics today with an ever-increasing number of courses in
schools and universities. Graphs and Applications is based on a
highly successful Open University course and the authors have
paid particular attention to the presentation, clarity and
arrangement of the material, making it ideally suited for
independent study and classroom use. An important part of
learning graph theory is problem solving; for this reason large
numbers of examples, problems (with full solutions) and exercises
(without solutions) are included. Many chapters also present
application case studies.

Accompanying the book is a CD-ROM designed for use on a PC
with Microsoft Windows. It comprises a Graphs Database,
containing all the simple unlabelled graphs with up to seven
vertices, and a Graphs Editor that enables students to construct
and manipulate graphs. Both the Database and Editor are simple
to use and allow students to investigate graphs with ease.
Computing Notes and suggested activities are provided.

ISBN 1 — 85233 — 259—X

9 78' 852 332594 >

www.sprsnger-ny.com
www.springer.de
www.sprin@er.co.uk

ISBN 1-85233-259-X

TheOpen
University

