
BE
R

rate

coat

age

L
I
S
S

F
e
a
r
n
e

G
a
s

HWA A

DISCARTEDEATRARY

OEMCO

rt OF 1

MEP i iye Oe, ee

ae Xe aN
=

Oxford Applied Mathematics

and Computing Science Series

General Editors

J. Crank, H. G. Martin, D. M. Melluish

BERNARD CARRE

University of Southampton

Graphs and networks

CLARENDON PRESS : OXFORD

1979

Oxford University Press, Walton Street, Oxford OX2 6DP
OXFORD LONDON GLASGOW NEW YORK

TORONTO MELBOURNE WELLINGTON IBADAN

NAIROBI DAR ES SALAAM LUSAKA CAPE TOWN KUALA LUMPUR

SINGAPORE JAKARTA HONG KONG TOKYO DELHI

BOMBAY CALCUTTA MADRAS KARACHI

© Oxford University Press 1979

All rights reserved. No part of this publication may be reproduced,

stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without
the prior permission of Oxford University Press

British Library Cataloguing in Publication Data

Carre, Bernard

Graphs and networks.—(Oxford applied
mathematics and computing science series).

1. Graph theory

Pe ewitle II. Series

SiS QA166 79-40423

ISBN 0 19 859615 4
ISBN 0 19 859622 7 Pbk

PRINTED IN GREAT BRITAIN BY

J. W. ARROWSMITH LTD., BRISTOL, ENGLAND

To

Francoise, Isabelle, and Claire

Preface

‘DISCRETE SYSTEMS’ or organized collections of objects are
frequently encountered, for instance in computer science,
engineering, and industrial management. Graph theory and

network flow theory provide simple techniques for constructing

models of systems of this kind, and powerful methods for their
analysis and optimization.

The object of this book is to provide a simple account of the basic

results and techniques of graph and network flow theory, with

strong emphasis on their applications and algorithmic aspects.

The book is written for undergraduate or first-year graduate

students in mathematics, computer science, engineering, or opera-

tional research. Students with some background in ‘modern’

algebra should find the book very easy to read; for those who have

no previous experience of modern mathematics, the first chapter is

intended to provide a simple but adequate introduction to algebraic

structures. There are no other prerequisites, although some know]-

edge of linear algebra—in particular of the basic direct and iterative

methods of solving systems of linear equations—would be useful in

reading the chapter on path problems (and, I hope, might make it a

little amusing).

Although the presentation is rather informal, all the results given

in the main text are proved, and a justification is given for all but the

most trivial algorithms.

Practical applications in computer science, engineering, and

operational research are presented, for the most part, as examples

in the body of the text. To make these realistic it has sometimes

been necessary to enter into technical details, but it is nevertheless

hoped that all the examples will be easily comprehensible, to

readers of any specialization.

With regard to the methods of presentation of the graph theory,

the most novel feature of the book is the algebraic approach to path

problems and connectivity, in Chapters 3 and 4. Path problems arise

in many different forms, and the variety of algorithms invented to

solve them is at first sight quite bewildering. The algebraic approach

to this subject provides a simple, elegant framework in which to

Vill Preface

situate a host of path problems, and allows a systematic develop-

ment of general algorithms to solve them.

In teaching this material I have found that mathematics students

are pleased—and sometimes even a little surprised—to discover

that abstract algebra can have mathematically substantial and at the

same time very practical applications. Engineering students are less

used to abstract structures but they nevertheless find the setting

familiar: the matrices which we use to describe graphs have the

same ‘structure’ as the admittance matrices of electric circuits and

the stiffness matrices of civil-engineering frameworks, and our

methods of solving linear systems are analogous.

In this context it will be observed that, although some authors

classify path-finding algorithms according to whether they are

‘algebraic’ or ‘matrix’ methods or ‘other’ methods, I do not accept

this type of classification. Algebras are /anguages in which we

formulate problems and devise methods for their solution. The

ultimate usefulness of an algebraic approach depends on the ease

and elegance with which it enables us to formulate problems

precisely, and to derive all the ‘best’, i.e. most efficient methods of

solving them. Here we give an algebraic development of all the most

important path-finding methods, and we even unashamedly present

critical path analysis as a problem of solving a system of simul-

taneous equations. Whether or not the algebraic approach meets its

objective will be for the reader to judge. Of course, to implement a

method on a computer, we must represent the mathematical objects

which it involves by appropriate data structures (for instance, we

may represent a sparse matrix by linked lists), and a computer’s

view of a method will always be much the same, whichever formal-

ism we use to develop it.

With regard to our particular choice of algebraic structure for

discussing path problems, it was necessary to make a com-

promise, between achieving maximum generality on the one hand

and clarity of exposition on the other. The directions in which

further generalizations can be made are indicated at the close
of Chapter 3.

To present network flow methods, in Chapter 6, I have made
extensive use of the notion of a ‘displacement network’, which
defines the ‘perturbations’ which can be made to a given network
flow. This approach, quite often used in operational research, seems
particularly appropriate for teaching the subject to engineers: the

Preface ix

displacement network plays essentially the same role as the ‘small-
signal equivalent circuit’ which is familiar to every student of
electronics.

The choice of a language in which to present algorithms is not
easy. The development of an algorithm for a computer involves four
stages, (i) the development of a mathematical model of the problem

to be solved, (ii) the formulation of a solution method in terms of the

mathematical objects defined in the first stage, (iii) the choice of

data structures to represent the mathematical objects in the

computer memory (for instance, we may represent a set by a binary

vector, a linear list, or a stack), and (iv) programming the method, in

terms of the chosen data structures.

Since this book is mainly concerned with aspects (i) and (ii),

algorithms are mostly described in plain English and familiar

mathematical notation. However, since the choice of data struc-

tures can strongly affect the efficiency of graph algorithms, this

matter is taken up in a few instances. Where there is a choice of

solution methods, I have tried to explain the principles of those

which can be implemented most efficiently; where possible, I have

also given references to program descriptions.

‘Backtrack programming’ or tree-search algorithms can be

described most concisely and elegantly in a recursive form, but I felt

this would not be sufficiently transparent to most readers; however,

I have tried to describe each tree-search algorithm in such a way

that, for readers familiar with recursive programming, the outline of

the recursive procedure would be clearly visible.

Since 1970, computer scientists have made important contribu-

tions to graph theory by developing the notion of computational

complexity; they have also achieved remarkable improvements in

performance of graph algorithms, mainly through the clever

manipulation of data structures. The literature on some of these

refined algorithms makes remarkably little use of graph theory: the

validity proofs are written in the language of computer science

(procedure calls, depth of recursion, popping and pushing nodes

onto a stack). I have not attempted to give full details of these

procedures; for these the reader will be referred to the original

papers. However, the ways in which their authors use data struc-

tures sometimes have graph-theoretic interpretations, which may

aid comprehension; where I have been able to make such inter-

pretations, I have given them.

x Preface

In writing this book I have benefited from the help of many

people. In particular, I have greatly enjoyed and profited from

collaborative work on path algebras with Roland Backhouse and

Ahnont Wongseelashote, and their ideas strongly influenced me in

writing Chapter 3. They also made many valuable comments on

other parts of the manuscript. Jean-Francois Bergeretti checked the

entire manuscript, and I am greatly indebted to him for all his advice

and help. I also received useful comments from Keith Lloyd, and

from several of my M.Sc. students, especially David Gill and Steven

Scott.

The manuscript was beautifully typed by Gina Pugsley and Elaine

Hare. I would also like to thank the staff of the Oxford University

Press for their encouragement and forbearance.

Finally, I am grateful to Francoise, my wife, not only for her

proof-reading but also for years of patience; and latterly some

impatience, without which this book would never have been

completed.

Southampton, July 1978 Bee

Contents

1. ALGEBRAIC FOUNDATIONS

ie

tz.

1.3:

1.4.

Sets :

1.1.1. The notion of set

1.1.2. The specification of sets

1.1.3. Subsets

1.1.4. Union and intersection

1.1.5. Difference and complement

1.1.6. Ordered pairs, and products of sets

1.1.7. Sets of sets

Exercises

Functions :

1.2.1. The notion of function

1.2.2. Injective, surjective, and bijective functions

1.2.3. Inverse functions

1.2.4. Composition of functions

Binary and n-ary operations

1.3.1. Binary operations on a set

1.3.2. Idempotent, commutative, and associative

operations

1.3.3. Unit and null elements

1.3.4. Cancellation

1.3.5. Distributivity

1.3.6. n-ary operations

Exercises

Binary relations

1.4.1. The concept of relation

1.4.2. Complementary and converse relations

1.4.3. Some special kinds of relations on a set

1.4.4. Equivalence relations

1.4.5. Orderings

Exercises

NAAN WN RRR

11
13
15
16
16
£7

£7
17
18
19
i
21
P53;

xil

£5:

Contents

Lattices

1.5.1. Introduction

1.5.2. Algebraic definition of a semilattice and

lattice

1.5.3. The principle of duality for lattices

1.5.4. Some further properties of lattices

1.5.5. Distributive lattices and complemented

lattices

1.5.6. Boolean algebras

Exercises

2. GRAPHS AND ALGORITHMS

LAE
Dan

23:

2.4.

pees

2.6.

Dads

Introduction

Graphs

2.2.1. Definition of a graph

2.2.2. Graphs and relations

2.2.3. Simple graphs

2.2.4. p-graphs and multigraphs

Paths on graphs

2.3.1. Paths and cycles

2.3.2. Chains on simple graphs

Some forms of connectedness of graphs

2.4.1. Accessibility

2.4.2. Connectivity

2.4.3. Strong connectivity

2.4.4. Algorithms for finding accessible sets and the

components of a graph

Acyclic graphs

Trees

2.6.1. Elementary properties of trees

2.6.2. Transverse orderings of trees

2.6.3. An algorithm for traversing trees

Backtrack programming (or ‘tree-search’)

algorithms

2.7.1. The determination of elementary paths

2.7.2. A general description of backtrack pro-

gramming

743,
23

24
oe
ae

28

30

34

32
32
32
35
a7
39

40

40

42

43

43

43

44

45

48

53
33
57
62

64
65

70

Contents

2.7.3. The determination of Hamiltonian cycles

2.8. The time complexity of algorithms

Exercises

Additional notes and bibliography

. PATH PROBLEMS

a. 1.

Ws

= oe

3.4.

Sis

3.5.

SRG

3:8.

Introduction

An algebra for path problems

3.2.1. Definition of a path algebra

3.2.2. Some examples of the path algebra

3.2.3. Elementary properties of path algebras

3.2.4. The solution of equations

3.2.5. Matrices

Labelled graphs

3.3.1. Definition of a labelled graph

3.3.2. Path labels

3.3.3. Absorptive graphs

Graphs and matrices

3.4.1. Adjacency matrices

3.4.2. Powers of matrices

3.4.3. Stable matrices

3.4.4. Absorptive matrices

The formulation and solution of path problems

Direct methods of solution

3.6.1. Triangular matrices

3.6.2. The Gauss elimination method

3.6.3. The Jordan elimination method

Iterative methods

3.7.1. The Jacobi, Gauss-Seidel, and double-sweep

iterative methods

3.7.2. Conditions for validity of the iterative

methods

3.7.3. Comparison of the iterative methods

A special method for totally ordered path algebras

Xill

71

75

81

82

84

84
84
85
88
a2
93

95

v5)

95

96

97

97

oe

102

103

105

108

108

it

119

123

123

127,

130

132

XV

en

Contents

Practical considerations

3.9.1. Implementation of the path-finding

algorithms

3.9.2. Comparison of the algorithms

Exercises

_Additional notes and bibliography

4. CONNECTIVITY

4.1.
4.2.

4.3.

4.4.

4.5.

4.6.

4.7.

Introduction

Separation by the removal of arcs

4.2.1. Separating arc sets

4.2.2. Cut sets of arcs

4.2.3. The determination of proper separating arc

sets
4.2.4. Basic arcs

Basis. graphs

Separation by the removal of nodes

4.4.1. Separating node sets

4.4.2. Separating nodes

Edge separation on simple graphs

4.5.1. Separating edge sets

4.5.2. Cut sets of edges

4.5.3. The determination of proper separating edge

sets
4.5.4. Bridges

Spanning trees in simple graphs

4.6.1. Free trees

4.6.2. Spanning trees

4.6.3. Shortest spanning trees
4.6.4. Determination of the spanning trees of a

graph

Node separation on simple graphs

4.7.1. Articulation sets

4.7.2. Articulation nodes

Exercises

Additional notes and bibliography

134

134
135

136
140

142

142

142

142

144
146

148

150
150
154

£53
13S
154

155
156

158
158
160
160

163

164
165
165

71
173

Contents

5. INDEPENDENT SETS, DOMINATING SETS,
AND COLORATIONS

a

eon

ome

5.4.

Introduction

Independent sets

5.2.1. Independent node sets

5.2.2. Cliques

5.2.3. Independent edge sets (matchings)

Dominating sets

Colorations

5.4.1. Node colorations

5.4.2. An algorithm for colouring a graph

5.4.3. Edge colorations

Exercises

Additional notes and bibliography

6. FLOWS IN NETWORKS

6.1.

6.2.
ne

6.4.

6.5.

6.6.

Introduction

Networks

Network flows

6.3.1. Definition of a network flow

6.3.2. Operations on flows

6.3.3. Elementary flows

6.3.4. Arc capacities

Displacement networks

6.4.1. The notion of a displacement network

6.4.2. Flows on displacement networks

6.4.3. Flow differences

Maximal flows in networks

6.5.1. The maximal flow problem

6.5.2. Cuts

6.5.3. An algorithm for constructing maximal flows

Minimal-cost maximal flows

6.6.1. Minimal-cost flows

6.6.2. Costs on displacement networks

6.6.3. Cost-reducing cycles

XV

io

175
175
177
181
187
188
188
192
195

196
196

198

198
199
199
200
200
201

202
202
203
204

206
206
210
212

214
214
214
216

Xvi Contents

6.6.4. Algorithms for constructing minimal-cost

maximal flows

6.7. Transportation and assignment problems

6.7.1. The transportation problem

6.7.2. The optimal assignment problem

6.7.3. The assignment of machines to a fixed

schedule of tasks

6.8. Circulations

6.8.1. Definition of a circulation

6.8.2. Auxiliary networks

6.8.3. The construction of circulations

6.8.4. Minimal-cost circulations

6.9. Practical considerations

6.9.1. Implementation of the flow-augmentation

method

6.9.2. Implementation of the cost-reduction

method

6.9.3. Comparison of methods

Exercises

Additional notes and bibliography

SOLUTIONS TO SELECTED EXERCISES

BIBLIOGRAPHY

SUBJECT INDEX

AUTHOR INDEX

Za]

Dik
24
220

224

226
226
226
229
2354

232

233

234
234

235
240

242

256

269

2S

1 Algebraic foundations

1.1. Sets

1.1.1. The notion of set

A set is a coliection of distinct objects of any nature, which are

called its elements or members. The following are examples:

The set of all fish in the Monaco Aquarium.

The set of all International Phonetic Script symbols.

The set of Seven Deadly Sins.

These are all finite sets, i.e. sets having only a finite number of

elements. As an example of an infinite set we have:

The set of all positive integers.

Here it will usually be convenient to represent sets by capital

letters A, B, C,..., and elements of sets by lower case letters a, b,

c,.... To indicate that an object x is an element of a set A we use

the notation

xeEA,

which is read as ‘x belongs to A’. If x is not an element of A, we may

write

xéA,

which is read as ‘x does not belong to A’.

A set is completely determined by its elements, i.e. it is fully

described by specifying which objects belong to it. Two sets A and B

are said to be equal, A = B, if they have the same elements, i.e. if

every element of A is an element of B and every element of B is an

element of A.

The number of elements in a finite set A is called the cardinality

of A and is denoted by |A|.

1.1.2. The specification of sets

Particular sets are usually specified in one of two ways. The first

method is to list all the elements of the set, between braces. For

2 Algebraic foundations

example, to specify a set S whose elements are the integers 2, 3, 5,

and 7 we may write

S ={2, 3, 5, 7}.

The order in which the elements are listed has no significance. Thus

12.3, Sa Ih Stove ee
Alternatively, it is often convenient to specify a set in terms of a

' property which is characteristic of its elements, i.e. a property which

all elements of the set and only elements of the set possess. In this

case the following type of notation is used:

P={x|x is a prime number}.

This is read as ‘P is the set of all objects x such that x is a prime

number’, or more simply as ‘P is the set of all prime numbers’. In

this notation the symbol on the left of the vertical line | stands for a

typical element of the set, while on the right of the vertical line is a

statement about this typical element which serves to determine the

set.

Example 1.1. The set {q|q was a wife of Henry VIII} has the following
elements: Catherine of Aragon, Anne Boleyn, Jane Seymour, Anne of

Cléves, Catherine Howard, Catherine Parr.

Example 1.2. Let P={x|x is a prime number}. Then the set S=

{2, 3, 5, 7} can be defined by the statement

S ={x|x ¢ P and x <8},

or more concisely, by the statement

S={xeP|x <8},

which is read as ‘S is the set of all elements x of P such that x is less than 8’.

1.1.3. Subsets

Given two sets A and B, the set B is said to be subset of A if every
element of B is an element of A. The statement ‘B is a subset of A’
is written symbolically as

BCA or ADB.

It will be noted that according to the above definition, a set A is
always a subset of itself, AC A. Any subset B of A which is not
equal to A is called a proper subset of A. The statement ‘B is a

Algebraic foundations 3

proper subset of A’ is denoted by

BCA -or ADB.

If ACB and B CA, then every element of A is an element of B

and every element of B is an element of A. Hence, from our

definition of equality,

if ACB and BCA then A=B.

In later sections we shall sometimes be faced with the problem of

proving that two sets are equal; the above statement suggests a

two-pronged attack on such a problem, for it follows from this

statement that to prove the equality of two sets A and B, it is

sufficient to demonstrate that (i) AC B and (ii) BCA.

1.1.4. Union and intersection

There are various ways of combining sets to form other sets,

which will be presented in this and the following sections.

If A and B are sets, then their union A U B is defined by

AUB={x|xeAorxeB}

and their intersection A() B is defined by

AN B={x|xeAandx eB}.

In other words, the union A UB is the set of all elements which
belong to A or to B (or to both); whereas the intersection A B is

the set of all those elements common to both A and B.

Example 1.3. If S={2,3,5,7} and T={1,2,3}, then SUT=

41. 253551) ANG S4 | r= 1253}:

If two sets A and B have no element in common, they are said to

be disjoint.

It will be noted that if A and B are disjoint then the set AM B

does not contain any elements. However, for our purposes the

concept of a set which contains no elements is quite acceptable, and

indeed very useful: we shall call this set the empty set and denote it

by the symbol ¢. Thus if A and B are disjoint, Af) B =¢. The

empty set is a subset of any set A. (Indeed, since ¢ does not contain

any elements at all, it does not contain any elements which do not

belong to A.)

4 Algebraic foundations

The operations of union and intersection have several important

properties. First, it is evident from the definitions of these opera-

tions that they obey the idempotent laws

AUA=A and ANA=A,

and the commutative laws

AUB=BUA and ANB=BNA,

for all sets A, B.

They also obey the associative laws

(AUB)UC=AU(BUC) and (ANB)NC=AN(BNOC),

and the distributive laws

AU(BNC)=(AUB)N(AUC)

and

AN(BUC)=(ANB)U(ANC),

for all sets A, B, and C. These identities can be proved formally by

the method suggested in Section 1.1.3, which is demonstrated in the
next example.

Example 1.4. To prove, that AM (BUC)=(AN B)U(ANC), for all

sets A, B, C.

Proof. (i) Ifx ¢e AM (BUC), then x €¢ A, and x € B or x € C. In the first case

x €Aand x e€B,hence x € Af) B. Inthe second case x € A and x € C, hence

x€ AMC. Hence in both cases, xe ANB or xe ANC, so that xe

(AMB)U(ANMC). This proves that

AN(BUC)C(ANB)U(ANC).

(ii) Conversely, if x «(AM B)U(ANC) then xe ANB orxe ANC In

the first case x ¢ A and x € B, and similarly, in the second case x € A and

x €C. Hence in both cases xe A and xe BUC, soxe AN(BUC). This

proves that

(AN B)U(ANC)CAN(BUC).

Combining the final relations of paragraphs (i) and (ii) we conclude that

ANM(BUC)=(AN B)U(ANC).

Algebraic foundations 5

1.1.5. Difference and complement

If A and B are sets then the difference A — B is defined by

A-B={x|xeA and x¢ B}.

In other words, the difference A — B is the set of all those elements

of A which do not belong to B. If B is a subset of A then A —B is

sometimes called the complement of B in A.

Example 1.5. If S ={2, 3, 5, 7} and T = {1, 2, 3} then S — T ={5, 7} and

T-S={l}.

1.1.6. Ordered pairs, and products of sets

In a game of tennis the score is declared simply by saying, for

instance, ‘forty, thirty’. Such a declaration is unambiguous because

it is understood that the first number of the pair is the score of the

person serving the ball, and the second the score of his opponent.

Thus if one declared the score as ‘thirty, forty’ when one should say

‘forty, thirty’, the person serving the ball would probably complain.

In mathematical terms, the score in a game of tennis is an example

of an ordered pair of objects (which in this case are numbers).

If x and y are objects, we shall denote by (x, y) the pair consisting

of x and y in that order. Two ordered pairs (u, v) and (x, y) are said

to be equal if and only if w= x and v = y. We describe x as the first

component and y as the second component of (x, y).

If A and B are sets, then the Cartesian product A X B of A and B

is the set of all ordered pairs (x, y) such that xe A and yeB. In

symbols,

AX B={(x, y)|x ¢A and ye B}.

Example 1.6. Let P = {a, b} and Q =({1, 2, 3}. Then

Px Q={(a, 1), (6, 1), (a, 2), (b, 2), (a, 3), (b, 3)};

Qx P={(1, a), (1, 5), (2, a), (2, b), (3, a), (3, b)};

Px P={(a, a), (a, b), (b, a), (b, b)}.

1.1.7. Sets of sets

The notion of a set whose elements are themselves sets will not

be entirely unfamiliar: For instance, the European Economic

6 Algebraic foundations

Community is a set of sets (nations) of people. In later sections we

shall frequently encounter sets of sets, and in particular sets of the

kind defined below:

If A is any set, then the power set P(A) of A is the set of all subsets

of A. Thus

P(A) ={X |X CA}.

Example 1.7. Let A ={x, y, z}. Then

P(A) ={d, {x}, fy}, {2}, {x yh, {x zh Ly, zh te y, Zz}.

The operations of union and intersection can be defined for a set

of sets, as follows:

Let ¥ be any set of sets. Then the union UF is the set of all

objects which belong to at least one member of ¥, that is

US ={x|x <A for at least one Ac F},

and the intersection (\F is the set of all objects which belong to all

the members of Y, that is

NS ={x|x eA forall Ac SF.

If S is a finite set of sets, say S={Aj, Ao, ..., An}, then in place of

the notation US we often write

Ly) Ay or A,VA2U::: UA,

k=1

and similarly, in place of 1S we write

mee or AiNA2n::: Ay.

k=1

Example 1.8. Let = {A, B, C} where A = {2, 3, 5, 7}, B ={1, 3, 5}, and

C=(1, 2, 3}. Then UF ={1; 2,3; 5, 7} and VF ={3}

As we have seen, the power set P(A) of aset A is constructed by

collecting together all the subsets of A. However, there are other

ways of constructing new sets from subsets of A, the following being

of special importance:

A set # of non-empty subsets of a set A is called a covering of A if

each element of A belongs to at least one member of Y, i.e. if

US=A.

Algebraic foundations x

A covering # of A is described as a partition of A if it has the

additional property that all distinct pairs of elements of ¥ are

disjoint. In other words, is a partition of A if each element of A

belongs to one and only one member of Y, and thus ¥ ‘decomposes’

A into various ‘parts’.

Example 1.9. If S={a, b,c, d,e}, then {{a, b}, {b, c, d}, {b, c, e}} and

{{a, b}, {c, d, e}} and {{a}, {b}, {c}, {d}, {e}} are three coverings of S, the last
two being partitions.

Example 1.10. Let A be the set of letters of the alphabet:

AL=AGQGDECs og Zhe

We may ‘classify’ these letters, according to whether they are vowels or

consonants, obtaining the two ‘classes’ of letters

V ={xceA|x isa vowel} = {a, e, i, 0, u},

C={x € A|x is a consonant} = {b, c, d, f,..., z}.

The set {V, C}is a partition of A. Any ‘classification’ of a set of objects such
that each object falls into one and only class results in a partition.

Exercises

1.1. Prove that for any sets A and B, the three conditions A C B, AUB =

B, and ANB =A are mutually equivalent.

1.2. Prove that for any sets A and B,

AVU(ANB)=A and AN(AUB)=A.

1.3. Prove that

A-(BUC)=(A-B)n(A-C)

and

A-—(BNC)=(A-B)V(A-C).

1.4. For anysets A and B, we define the symmetric difference of A and B as

the set

AAB=(AUB)-(ANB).

Prove the following identities:

(i) AAB=BAA
(ii) AAA=¢@
(iii) (AAB)AC=AA(BAC)
(iv) AN(BAC)=(ANB)A(ANC).

8 Algebraic foundations

1.2. Functions

1.2.1. The notion of function

Let A and B be any sets. Then a function f from A to B is

determined by any rule which assigns to each element x of A a

single element of B; this element of B is called the image of x under

f, and is denoted by f(x).
It will be convenient to use the notation

f:A>B

to indicate that f is a function from A to B. The set A is called the

domain of f, and B its codomain. The set f(A) of all images f(x) of

elements x €A is called the range of f. Note that f(A) may be a

proper subset of B.

Example 1.11. Let P be the set of all living people and let N be the set of

non-negative integers. Then we can define a function f from P to N by the

rule: if x € P then f(x) is the age in years of x.

Example 1.12. Let R be the set of real numbers, and R* the set of positive

real numbers. Then we can define a function from R to R® by the rule: if

x ER then f(x) =e”.

It is sometimes helpful to represent a function geometrically. For

instance, Fig. 1.1 depicts the function f from the set A = {p, q, r} to

the set B ={w, x, y, z} defined by the assignments

f(ip)=w, f(qad=y, = f(r) =x.

Thus we may consider that a function f: A > B ‘projects’ or ‘maps’

each element of A to its image in B; indeed, functions are

frequently called mappings.

A B A B A B

w P Pp ow eee Aer ule

x q q x

q a y
yy r 7 y

Li Zz

ez fone e eetd JS @9———___—» @7

FIG. 1.1 FIG. 1.2 FIG. 1.3

Algebraic foundations 9

Two functions f: A> B and g: A>B with the same domain A
and codomain B are called equal if f(x) = g(x) for every element x
in A.

1.2.2. Injective, surjective, and bijective functions

A function f: A > B is said to be injective if, whenever x and x’

are distinct elements of A, f(x) and f(x’) are distinct elements of B.

An injective function from A to B is often called: a one-to-one

transformation of A into B.

A function f: A > B is called surjective when its range is the whole

codomain, i.e. for each element y¢B there exists at least one

element x € A such that f(x) =y

Finally, a function f: A>B is said to be bijective if it is both

injective and surjective.

Example 1.13. The function f: P>N of Example 1.11 is not injective,

since f(x) = f(x’) for any two people x and x’ of the same age. Neither is it

surjective, for the set N contains integers which: are not ages of living

people.

Example 1.14. The function depicted in Fig. 1.1 is injective but not

surjective, whereas the function of Fig. 1.2 is surjective but not injective.

Figure 1.3 represents a bijective function.

1.2.3. Inverse functions

Any bijective function f: A> B has the property that, for each

element y € B there exists a unique element x € A such that f(x) =y

(The existence of such an element x € A is assured by the fact that

the function is surjective; the uniqueness of x follows from the fact

that the function is injective.) Hence, it is possible to define a

function f ': B>A by the rule: if y € B then f(y) =x, where x is

the element of A such that f(x) = y. The function f _': B > A is called

the inverse of f: A> B. It will be observed that f ': B>A is itself

bijective, and that its inverse is f: A> B again.

Example 1.15. The function f: R>R*, where f(x) =e* for each x ER, is

bijective. Its inverse f-': R* > R is given by the rule: if x ER™ then f ‘(x)=

In x.

10 Algebraic foundations

Example 1.16. In some shops the prices of articles are disguised by means

of a ‘price code’, which is a bijective function f: A>B, where A=

{0, 1, 2,..., 9}, B is a set of ten alphabetic characters which, taken in some

order, form a codeword (such as ‘mackintosh’), and the rule of assignment is

of the form: if n € A then f(n) is the (n +1)th letter of the codeword. Thus if

the codeword used is ‘mackintosh’, a price of £6.25 is specified on a price

tag as t.cn. To interpret this, the shopkeeper uses the assignment rule of the

inverse function f ': B>A.

1.2.4. Composition of functions

Let us suppose that A, B, C, and D are sets and that we have two

functions f: A> B and g: C> D. If f(A) CC that is if the range of f

is contained in the domain of g, then the result of applying first f and

then g may be regarded as the application of a single function from

A to D. This function, which is called the composite of f and g (in

that order), and denoted by g°f: A>D, is defined by the rule

ifxeA then (gef)(x)=g(f(x)).

Example 1.17. Let f:R->R and g:R->R be two functions defined
respectively by the rules: f(x) =2x for each x ER, and g(x) =x? for each
x €R. Then the function gof: R>R is defined by the rule

(g.°f)(x) = g(f(x))=4x7, foreachxeR

while fog: R>R is defined by the rule

(fog)(x) = f(g(x)) =2x?, for each x ER.

1.3. Binary and n-ary operations

1.3.1. Binary operations on a set

If x and y are any two real numbers, then there are various ways
of ‘operating’ on x and y which give another real number. For
example, the operation of addition gives their sum x+y, the
operation of multiplication gives their product x x y, and the
subtraction of y from x gives their difference x — y. These are all
examples of binary operations on the set R. Several other binary
operations were introduced earlier in this chapter: For instance, if
P(S) is the power set of a given set S, then from any two sets
X, Y € P(S) we may construct new sets, X U Y and Xn Y, which

Algebraic foundations 11

also belong to P(S); here the operations U and « are both binary

operations on A(S).

In general terms, if A is any set, then a binary operation ° on A is

defined as a function ° from A XA to A. In other words, a binary

operation ° on a set A is simply a function ° which assigns, to each

ordered pair (x, y) of elements of A, a unique element °(x, y) of A.

Since this concept is a generalization of the familiar notions of

‘addition’ and ‘multiplication’, it will be helpful to use here the

symbolism
xoy

rather than °(x, y), for the image of (x, y) under .

Example 1.18. We can define a binary operation on the set § = {0, 1, 2}

by the rule: if x, y ¢ S then x°y = max {x, y}. This operation is represented
geometrically in Fig. 1.4. It can also be represented by its operation table

(Fig. 1.5), where each element x° y appears in the cell whose row is labelled

‘x’ and whose column is labelled ‘y’.

SxS S

(0,0) ee

(0,1) :

aw

(1,0)

(1,1) 1

(1,2)

(2,0) Sey

(2,1) ie 2

(2,2) si

Fic. 1.4 FIG. 1.5

1.3.2. Idempotent, commutative, and associative operations

Particular binary operations may possess certain important pro-

perties, which are defined below:

Let A be any set. Then an operation ° on A is

(i) idempotent if x°ex =x forall xeA,

(ii) commutative if x ey =y ex for all x, ye A,

(iii) associative if (xe y)ez=x°(y°z) forall x, y,zeEA.

i Algebraic foundations

Example 1.19. The operations of addition and multiplication on the set

of real numbers are both commutative, and both associative, but not

idempotent. The operation of subtraction does not have any of the proper-

ties (i)—(iii).

Example 1.20. Let A(S) be the power set of any given set S. Then the

operations U and m on A(S) both possess all the properties (i)—(iii). (cf.

Section 1.1.4).

Example 1.21. The operation defined in Example 1.18 has all the

properties (i)—(iii).

Let be any binary operation on a set A. Then, given any number

of elements x1, X2,..., Xn of A, we define the repeated combination

X1°X2°*+:+°xX,, for n =2, by the recursive formula

Hy OHO? 9 OK, =(HPO NR. 2° OK 4) ON,

This determines the arrangement of parentheses (and hence the

order of combination) for n elements, given that for n — 1 elements.

As an example, the application of this formula to the case where

n =4 gives

X12 XQ °XZONX4 = (X1 9X22 X3) 9X4 = ((X1 2X2) 9X3) 0X4

Now for n > 2, there are obviously other possible ways of arrang-

ing the parentheses—for instance, if n =4 there are four other

arrangements, Viz. (x1 ° (X2° X3)) ° Xa, (X1°X2)°(x3° X4),

X1° ((x2°x3)°xX4), and x;°(x2°(x3°x4))—and in general these

would all give different results. However, if the operation © is

associative, then the value of any combination of elements of A,

obtained by repeated application of °, does not depend on the

arrangement of parentheses. This ‘generalized associative law’ can

be proved by induction, as follows:

First, it follows immediately from the definition (iii) above of

associativity that the law is obeyed for all combinations of three

elements. To prove that it holds for all combinations of n elements,

where n > 3, let us assume as an induction hypothesis that the law

holds for all combinations of fewer than n elements. Now in

whatever order we combine n elements x1, X2,..., Xn, the last step

is to make a combination of the form

(opera Pewee ie (resto ne Baa)

Algebraic foundations 13

where k is some integer in the range 1, 2,..., 1 —1, the combina-
tions X1°xX2°°* ox, and Xy41°° + OX, having been calculated
previously. By the induction hypothesis, the values of
X1°X2°°**+°ox, and x, °---°x, do not depend on the way in which
their parentheses were arranged. Furthermore, for any value of k in
thesrange 1, 2:.0., w= 2;

(PD OX) 8 ee xy)

SAN RO OK, O(N 9.2 (Kegs o seo)

and therefore, since ° is associative,

Ez oO) (NE OK,)

=(%1°XxX2°°: oN ESa) SW pan'e = OK).

It follows that for all values of k in the range 1, 2,...,—2,

(re ae Ah) ip OX,) AI OO ee, 1) oe

FXO XQ OT OX,
as required. ;

There is also a ‘generalized associative and commutative law’,

which asserts that if an operation © on A is both associative and

commutative, then the value of any combination of elements of A

(obtained by repeated application of °) is independent of both the

order and the grouping of the elements.

1.3.3. Unit and null elements

Let A be any set, and let > be a binary operation on A. Then any

element e of A which has the property

xee=x=eex, forallxeA,

is called a unit element (or a neutral element) for the operation °.

For any particular binary operation ° on a set A, the set A does

not necessarily contain a unit element; but if A does contain such an

element, it is unique. For suppose that A contains two distinct unit

elements e and e’ for °; then putting x =e’ in the equation x °e =

x =e°Xx gives

ece=e' =er°e,

while replacing e by e’ and putting x =e gives

ere’ =e =e'°@,

whence e = e’, contradicting our initial assumption.

14. ~=Algebraic foundations

Example 1.22. The number 1 is a unit element for ordinary multi-

plication, since 1 x x = x = x X 1 for all x € R. The number 0 is a unit element

for ordinary addition, since 0+ x =x =x +0, for all x ER.

Example 1.23. Languages over an alphabet. This example introduces

some concepts of the algebraic theory of languages, which will be applied

later to the enumeration of paths on graphs.

We call any finite set of symbols an alphabet, and describe the elements of

an alphabet as its letters. A word (or string) over an alphabet > is a finite

sequence of zero or more letters of &. The sequence of zero letters is called

the empty word, and is denoted by A. Thus

A, a, cab, dada, baaa

are all words over the alphabet {a, b, c, d}. The set of all words over an

alphabet = is denoted by =*, and the subsets of =* are called languages over
the alphabet >.

If P and Q are words over an alphabet >, then the sequence of letters

obtained by concatenating or ‘linking together’ P and Q is also a word over

x. Hence concatenation is a binary operation on =*. Obviously, conca-

tenation is not commutative: For instance, denoting concatenation on the

English alphabet by °, we have

se°ver=sever whereas ver°se = verse.

However, it is evident that concatenation is associative:

(joy ° ful) ¢ ness = joy ¢ (ful ° ness) = joyfulness.

It will also be noted that for any word P of >*,

PcoAX=P=AcP.

Thus A is the unit element for concatenation on 5%.

Now let be a binary operation on aset A, and let us suppose that
A has a unit element e for the operation. Thenit may happen that a
given element x € A has an inverse with respect to °, that is to say,
there may exist an element ¥€ A such that

¥°XRHe=7 ox:

It is easily proved that if the operation ° is associative then the
inverse of any given element x, when it exists, is unique. (We leave
the proof as an exercise for the reader.)

Algebraic foundations 15

Example 1.24. With respect to the operation of addition on R, every

number x €R has an inverse, which is —x. With respect to multiplication,

every number x €R other than 0 has an inverse, which is 1/x.

Given a set A and a binary operation ° on A, we call any element n

of A which has the property

x°n=n=noex, forallxeA,

a null element (or zero element) for the operation °. As with unit

elements, a given binary operation does not necessarily have a null

element, but if it does have one, then this is unique.

Example 1.25. The number 0 is a null element for ordinary multi-

plication, since 0X x =0=0 x for all x €R; there is no null element for

ordinary addition.

Example 1.26. For the operation of Example 1.18, the number 0 is a unit

element, while the number 2 is a null element.

Example 1.27. For the operation U on the power set A(S) of a given set
S, the unit and null elements are ¢ and S respectively, since X Ud = X and

X US =S, for all X ¢ A(S). For the operation - these roles are reversed,

i.e. d is the null element and S is the unit element.

1.3.4. Cancellation

Let A be a set equipped with a binary operation °. Then an

element x € A is said to be left-cancellative (with respect to °) if

xey=xez impliesthat y=z

or, to give an equivalent condition, if

y#z impliesthat xcoy#x oz.

Similarly, an element x is right-cancellative if

yox=zox impliesthat y=z.

An element which is both left- and right-cancellative is described

simply as being cancellative. If every element of A is cancellative,

other than the null element for o (if this exists), we say that the

operation o has the cancellation property.

16 Algebraic foundations

Example 1.28. On the set R of real numbers, the operations of addition

and multiplication both have the cancellation property, but the operation

x ° y =max (x, y} does not possess this property.

1.3.5. Distributivity

Let * and © be two binary operations on a set A. Then the

operation * is distributive over ° from the left if

x*(yez)=(x *y)e(x*z), forallx, y,zeA, (1)

and it is distributive over ° from the right if

(yoz)*x=(y*x)e(z*x), forallx, y,zeA. (2)

If both the laws (1) and (2) are obeyed, we say simply that the

operation * is distributive over the operation °.

It is evident that, if the operation * is commutative, each of the

distributive laws (1) and (2) implies the other.

Example 1.29. On the power set A(A) of any set A, the operations of

union and intersection are each distributive over the other.

Now let us suppose that a set A is equipped with two binary

operations * and °, where * is distributive over °, and the operation °

is associative. Then, from the distributive law (1) above we obtain

the n-term left-distributive law

X*(y1° yoo" ++ on) = (x * yi) o (x * yo)o*+-o(x *y,), (1)

and from (2) above we obtain the m-term right-distributive law

(X1°X2°°* OX) ¥y =(X1 * y)o (Ka Fy) e+ ++ O(n *Y). (2’)

The formulae (1’) and (2’) are easily proved, by induction on 1 and

m. Combining these formulae, we get the generalized distributive

law:

(Mg eke) Ya SV) ear ay ee as Key)

aS SIR BE Mer Sen FV le

1.3.6. n-ary operations

In Section 1.3.1 we defined a binary operation on a set A as a
function from A’ to _A (where A” denotes the Cartesian product
A x A). More generally, given a set A and an integer n, we describe

Algebraic foundations 17

any function from A” to A as an n-ary operation on A. For n = 1 we
have a unary operation, which is just a function f: A > A in the usual
sense; for instance the square-root operation is a unary operation
onR’. .
When we have several operations (of any kind) defined on a set

A, we may describe the collection of these operations as an alge-
braic structure on A; the set A with this structure is also called an

algebra. Some particular types of algebras will be presented in
Section 1.5.

Exercises

1.5. Test the following operations a ° 6 on real numbers a and b for being

idempotent, commutative, and associative:

(i) acb=(at+b)/2,

(ii) aob=(axb)/2,

(iii) acb=a,

(iv) acb=min {a, d},

(Wrage. b— ab —(aoab):

1.6. Let © be a binary operation on a set A. Prove that if an element x is

both a unit element and a null element for °, then A = {x}.

1.7. The table below defines a binary operation ° on the set S = {O, OH, A}.

By inspection of the table, determine whether this operation is

idempotent, and whether it is commutative. Does S contain a unit

element for °? If so, which elements of S are invertible, and what are

their inverses? Does S contain a null element for °? Does the opera-

tion ° have the cancellation property?

eo Oe ey A

@CunOrels)

J Ko s®

BA LX SD

1.4. Binary Relations

1.4.1. The concept of relation

It frequently happens that two objects are ‘related’ or associated

with each other in some way. For instance, we may say of two people

x and y that ‘x is the mother of y’, or ‘x is older than y’. And if x and

18 Algebraic foundations

y are positive integers, we may have that ‘x is a multiple of y’ or

‘x <y’. Each of these statements is said to express a relation

between two objects.

In the following general discussion, the symbol & will be used to

denote an arbitrary relation between two objects (thus ‘2’ may

stand for ‘is the mother of’, or ‘is older than’, or ‘is a multiple of’,

etc.), and we shall write

xRy

to indicate that x stands in the relation & to y.

Now let A and B be any sets. Then & is called a binary relation

from A to B if for any given pair (x, y) of A x B, the condition x R y

either does, or does not, hold. (In other words, & is a binary relation

from A to B if, for each pair (x, y)¢ A X B, the statement ‘x R y’ is

meaningful, being either true or false for that particular pair.) In the

particular case where A = B, we describe a relation 2 from A to B

as a relation on A.

Example 1.30. Let P be the set of all living people, and let M be the set of

months of the year. Then ‘was born in the month of’ denotes a binary

relation from P to M, while the expression ‘is a parent of’ denotes a relation

on P.

The concept of a binary relation from a set A to a set B is closely

connected with that of a function from A to B. Indeed, each

function f: A>B determines a binary relation ® from A to B,

through the rule

xRy ifandonlyif y=f(x).

Conversely if @ is a given relation from A to B, such that for each
x €A, there is precisely one y€ B withx Ry, then ® determines a
function f: A > B, through the rule

y=f(x) ifandonlyif x@y.

In this sense, the concept of a relation is a generalization of that of a
function.

1.4.2. Complementary and converse relations

For any relation & from a set A to a set B there exists a
complementary relation or negation R, such that for each pair

Algebraic foundations 19

(x, y)€ AX B, x Ry holds if and only if x R y does not hold. Also,
for any relation 2 from A to B we can define a converse relation R'
from B to A, by the rule

y&R'x ifandonlyif xRy, forall(x,y)eAXB.

Example 1.31. The relation ‘is a parent of’ on the set of living people has

the complement ‘is not a parent of’, while its converse is the relation ‘is a

child of’.

1.4.3. Some special kinds of relations on a set

Let A be any set, and let @ be a binary relation on A. Then & is

said to be x

Reflexive when x Rx forall xe A;

Anti-reflexive whenx &x fornoxe A;

Symmetric whenx Ry implies VA XS

Anti-symmetric when x&y and yx together imply x =y;

Transitive when x Ry and y &z together imply x & z.

Example 1.32. The relation ‘has the same parents as’ on the set of living

people is reflexive, symmetric, and transitive.

Example 1.33. The relation < on R is reflexive, anti-symmetric, and

transitive, while the relation < is anti-reflexive, anti-symmetric, and

transitive.

A relation on a set A is called a pre-ordering of A when it is

reflexive and transitive. A pre-ordering which is symmetric is called

an equivalence relation; whereas an anti-symmetric pre-ordering is

called an ordering of A.

Thus in Example 1.32 the relation ‘has the same parents as’ is an

equivalence relation, whereas in Example 1.33 the relation S is an

ordering of R. These two types of relations, which are of particular

importance, are considered in more detail in the following sections.

1.4.4, Equivalence relations

A relation on aset A is called an equivalence relation on A when it

is reflexive, symmetric, and transitive.

20 Algebraic foundations

There is an important connection between equivalence relations

and partitions, which were introduced in Section 1.1.7. Let 2 be an

equivalence relation on a set A, and for each element x € A let us

define the set

E,={yeA|xRy},

called the equivalence class of x (with respect to R). Note that since

R is reflexive, x ¢ E,, for each x € A.

Now for each pair of elements x and y of A, the equivalence

classes E, and Ey are either equal or disjoint, with

(i), 2 =.£,, if x Z y,

(ii) A, nBy=¢, ifx®Ry.

This can be proved as follows:

(i) Suppose x Ry. Then, for each element ze F,, x Ry, and

y&z, and therefore (by transitivity) x 2z, which implies that

z€E,; hence E, CE,. Also, by symmetry y & x, and reversing the

roles of x and y in the above argument gives EF, C F,. Combining

these results, we obtain E, = EF).

(ii) Alternatively, suppose x # y. Then E, and Ey, cannot have

any elements in common; for if an element z belonged to both E,

and £,, it would follow that x#z and y&Rz, and hence (by
symmetry) that x # z and z & y, and therefore (by transitivity) that
x Ry; but this would be contrary to our initial assumption that
wR y.

Since every element of A belongs to some equivalence class, and
distinct equivalence classes are disjoint, the set of all equivalence
classes is a partition of A (as defined in Section 1.1.8). This partition
is called the partition of A induced by R, and is denoted by A/&.

Conversely, given any partition ¥Y of a set A we may define a
relation % on A by the rule: x @ y if and only if x and y belong to
the same member of &. It is easy to verify that this is an equivalence
relation on A, and that the equivalence classes with respect to ® are
the sets which are members of &.

Example 1.34. Let P be the set of all living people, and let @ be the
equivalence relation ‘was born under the same sign of the Zodiac as’. Then
for any person x, the equivalence class of x (with respect to ®) is the set of
all people born under the same sign as x. The twelve distinct sets of this kind
constitute a partition of P.

Algebraic foundations 2

1.4.5. Orderings

A relation on aset A is called an ordering of A when it is reflexive,

anti-symmetric, and transitive. Orderings are often indicated by the

special relation symbol = (the notation x = y is read as ‘x is inferior

or equal to y’). Using this notation, the characteristic properties of

an ordering can be described as follows:

(i) x Xx, forallx <A; (reflexivity)

(ii) if x <y and y Xx, then x =y; (anti-symmetry)

(iii) if x <y and y Xz, then x Xz. (transitivity)

Two elements x and y of A are said to be comparable if x <y or

y <x; otherwise they are incomparable. If all the elements of A

taken two at a time are comparable, the ordering = of A is total,

and A is said to be a totally ordered set or chain.

Example 1.35. Let A be any set. Then the inclusion relation C on P(A)

is an ordering of P(A), since (i) X CX, for all X € P(A), (ii) if X C Y and

Y CX, then X = Y, and (iii) if X C Y and Y CZ, then X C Z. However, if

A contains more than one element, this ordering C of A(A) is not total:

For if A contains two distinct elements x and y say, then P(A) contains the

two distinct elements {x} and {y}, and these are incomparable, i.e. neither

{x} C{y} nor {y} C {x} holds.

Example 1.36. The ordering < of the set of real numbers is total, since

for any real numbers x and y, either x Sy or ySx.

It will be convenient to adopt the following conventions: x > y

(read as ‘x is superior or equal to y’) has the same significance as

y <x; x <y (read as ‘x is inferior to y’) means x <y but x # y; and

x >y (read as ‘x is superior to y’) means x > y but x #y.

An ordered set having only a few elements can be depicted

conveniently by a Hasse diagram, in which each element is

represented by a point, so placed that if x<y then the point

representing x lies below the point representing y; lines are drawn

to connect elements x, y such that y covers x, i.e. y > x and there is

no element z such that y > z > x. For example, Fig. 1.6 represents

the power set P(S) of aset S = {a, b, c}, ordered by the set inclusion

relation.

22 Algebraic foundations

{a,b,c}

FIG. 1.6

Least and greatest elements. If an ordered set A contains an element

¢ such that @ <x for all x € A, then ¢ is called the least element of

A. A set can have at most one least element: For if ¢ and ¢’ were

two least elements, we would have ¢ < ¢’ and ¢' X @, hence (by the

anti-symmetry rule (ii) above) ¢ = @’.

If.A contains an element u such that x <u for all x € A, then u is

the greatest element of A. A set can have at most one greatest

element.

Minimal and maximal elements. An element m of a set A is a

minimal element of A if there does not exist any element in A which

is strictly inferior to m:

xxm_ forallxeA.

In any set with a least element ¢, clearly ¢ is the only minimal

element. However, a minimal element, if it exists, is not necessarily

unique: For instance, the set {{a}, {b}, {a, b}} ordered by the
inclusion relation C has two minimal elements, {a} and {b}.

In the same way, an element m of aset A is a maximal element of

A if there does not exist any element in A which is strictly superior

to m.

Greatest lower and least upper bounds. Let B be any subset of an

ordered set A. Then we call an element p € A a lower bound of B if

p <x for all x € B; similarly, we call p¢ A an upper bound of B if
px for all x € B. If the set of lower bounds of B has a greatest
element, this is called the greatest lower bound (g.l.b.) of B;
similarly, if the set of upper bounds of B has a least element, this is
called the least upper bound (l.u.b.) of B.

Algebraic foundations 23

Example 1.37. The relation x|y (meaning that x is a factor of y) is an

ordering of the set J of all positive integers. With respect to this ordering, J

has a least element (the integer 1). For any subset B of J, any common

factor of the integers in B is a lower bound of B; the g.1.b. of B is just the

highest common factor of the integers in B.

Exercises

1.8. Test the following relations on the set of living people for being

reflexive, anti-reflexive, symmetric, anti-symmetric, and transitive:

(i) is taller than

(ii) lives within a mile of

(iii) is married to.

1.9. Let < bean ordering on aset A. Prove that in A, x and y are equal

if and only if, for any element z€A, z<x implies z<y and

conversely.

1.10. Let = be an alphabet, with a total ordering <. Let 2* be the set of all

words on &, and let a be the relation on =* defined by the rule: for

any two words X =x,x2...X, and Y=yiy2...y, of 2*, XaY if
either (i) m <n, and x; = y; for 1<is<m, or (ii) x; = y; for 1=i<k,

and x, <y,, for some k =m, n.

Prove that the relation a is a total ordering of =*. (The ordering a

is called the lexicographic ordering of ~* associated with the

alphabetic ordering =< of %.)

1.5. Lattices

1.5.1. Introduction

We define a join-semilattice as an ordered set in which any two

elements x and y have a least upper bound; we call this bound the

join of x and y, and denote it by x v y.

In asimilar fashion, we define a meet-semilattice as an ordered set

in which any two elements x and y have a greatest lower bound; this

bound is called the meet of x and y, and it is denoted by x y.

A lattice is an ordered set which is both a join-semilattice and a

meet-semilattice. In other words, a lattice is an ordered set in which

every pair of elements has a least upper bound and a greatest lower

bound.

24 Algebraic foundations

Example 1.38. The power set P(A) of a given set A, ordered by the

inclusion relation C, is a lattice. For all X, Y<¢ A(A), X v Y=X UY and

XNY=XAY.

Example 1.39. Any chain is a lattice, in which x v y is simply the greater

and x a y the lesser of x and y. One example is the set of real numbers with

the usual ordering <, where x v y = max {x, y} and x a y = min {x, y}.

Example 1.40. Of the four ordered sets whose Hasse diagrams are

shown in Fig. 1.7, the first three are lattices. The fourth is a join-semilattice,

but it is not a meet-semilattice since the elements c and d do not have a

greatest lower bound.

u u -

u

b b
a c c b

a a

¢ ce d

¢ ¢

(a) (b) (c) (d)

FIG. 1.7

1.5.2. Algebraic definition of a semilattice and lattice

In the previous section we presented semilattices and lattices in
terms of an order relation, but alternatively, we can regard a
semilattice or lattice as a set equipped with one, or two, binary
operations respectively.

For instance, in a join-semilattice we may consider the formation
of the element x v y from x and y as a binary operation defined on
the semilattice. It is easily verified that this operation obeys the
following laws:

ON Xe (Idempotent law)

xVyY=yvx (Commutative law)

(xvy)vz=xv(yvz) (Associative law).

Indeed, the idempotent and commutative laws follow immediately
from the definition of a least upper bound; and since the l.u.b. of the

Algebraic foundations 25

set {x, y, z} can be written either as (x vy)vz or x v(y vz), the
associative law also holds.

Conversely, let us consider a set A, equipped with a binary
operation ° which is idempotent, commutative, and associative. Let
us define a relation ® on A through the rule

x&y ifandonlyif xey=y.
Then,

(i) since the operation ° is idempotent, & is reflexive: x ox =x
implies x R x.

(ii) R is anti-symmetric: the conditions x Ry and yRx are

equivalent to x ° y = y and y ° x = x, from which it follows (by the

commutativity of °) that x =y;

(iii) & is transitive: the conditions x R y and y & z are equivalent

to x°y=y and y°ez=z, from which it follows (by the asso-

clativity of °) that x°z =x o(yoz)=(x°y)ez=yoz =z, which

implies that x R z.

Thus & is an ordering of A.

Furthermore, the set A with ordering & is a join-semilattice, x ° y

being the join of x and y. Indeed, x ® (x ° y) since

xo(xoy)=(xex)oy=xey,

and y ® (xe y) since

ryeG@oy)=(xey)oy=xe(yoy)=xey,

and therefore x ° y is an upper bound for x and y. If z is any other

upper bound of x and y then x Rz and y Kz, hence x °z =z and

y °z =z, and therefore

(xey)oz=xo(yoz)=x°z =z,

which implies that (x ° y) & z. It follows that x ° y is the least upper

bound of x and y, which proves our assertion.

It would have been possible, in place of the relation &, to consider

its converse &', which can be defined directly in terms of the °

operation through the rule

x&R'y ifandonlyif xoy=x.

It is evident that @’ is also an ordering of A, and by a similar

argument to our previous one we can show that the set A with

ordering R' is a meet-semilattice, x ° y being the meet of x and y.

26 = Algebraic foundations

Thus, the set A, equipped with the operation °, can be regarded

both as a join-semilattice and as a meet-semilattice. This justifies

the following ‘algebraic’ definition:

A semilattice is a set with a binary operation which is idempotent,

commutative and associative.

Using similar arguments, we can obtain an algebraic definition of

a lattice by regarding the formation of the join x v y and the meet

x Ay of x and y as two binary operations. By the definitions of the

join and meet, the operations v and ~ obey the following laws:

ley V0 — Qnd. -<Nha= x (Idempotent laws)

L2 xvy=yvx and xay=yax (Commutative laws)

L3. (wvy)vz and (xAy)Az (Associative laws)

=xv(yvz) =x A(yAzZ)

L4 xa(xvy)=x and xv(xay)=x (Absorption laws)

The validity of L1-L3 has already been established; the first part of

L4 follows from the fact that x <x v y, while the second part results

from the fact that x =x y.

In the algebraic description we start from these properties, and

we define a lattice as a set equipped with two binary operations,

denoted by v and a, which obey the laws L1—L4. The equivalence

of this definition with that given in the previous section is

established by the following theorem:

Let L be a set with two binary operations v and jn satisfying

L1-L4. Then an ordering < may be defined on L, by the rule

ES xy ifandonlyif xvy=y,

and relative to this ordering L is a lattice (as defined in Section

1.5.1) in which x v y and x ny are respectively the join and meet of

x and y.

To prove the theorem, we first observe that

L6 xvy=y ifandonlyif xany=x

(Consistency law)

For if x vy =y then (by L4) x =x a(x vy)=x Ay, and the con-
verse holds by symmetry. Next, it follows from our discussion of
semilattices that since the v operation on L is idempotent, com-
mutative, and associative, the relation < defined by LS is indeed an

Algebraic foundations 2

ordering, and relative to this ordering L is a join-semilattice in

which x v y is the join of x and y. Similarly, since the a operation is

idempotent, commutative, and associative, and (by L5 and L6) the

ordering < can be expressed as

L7 xy ifandonly if «x ny =x;

the set L with the ordering = is a meet-semilattice in which x A y is

the meet of x and y, which completes the proof.

1.5.3. The principle of duality for lattices

If in the identities L1-L4 we interchange the symbols v and a

throughout, the identities are preserved. Moreover, when we

interchange v and a, the condition x vy =y becomes xv y=y

which (by L7) is equivalent to x v y = x; thus (by LS) the condition

x ~<y becomes y <x, which can also be written as x =y. This

suggests and essentially proves the following principle of duality:

Every statement which is deducible from the laws L1-L4 and the

definition L5 of the relation < remains valid if the operation symbols

v and v* and the relation symbols < and > are interchanged

throughout the statement.

1.5.4. Some further properties of lattices

(i) If a lattice L contains a least element then, by LS and L7,

L8 dvx=x and drx=¢@_ forallxeL;

thus the least element of L is the unit element for v and the null

element for ~. Similarly, if a lattice L has a greatest element u,

then

L9 uvx=u and uax=x ~forallxeL,

so u is the null element for v and the unit element for n.

(ii) Every lattice has the following property:

L10 The conditions x<z and y~<z are together equivalent to

VVey =z.

For if x <z and y Xz then (by LS) x vz =z and y vz =z, hence

(xvy)vz=xv(yvz)=xVvz=Z, which implies that x v y <z,

conversely, if x v y<z then (since xXx vy andy<xvy),x<z

and y <z. Applying the duality principle to L10, we obtain

28 Algebraic foundations

L10' The conditions z<x and z~<y are together equivalent to

ZSXANY.

(iii) In any lattice L,

L11 x<yimpliesxvz<yvzandxaz~=<yQz, forallzeL.

Indeed, if x <y then x vy =y, and therefore (x vz) v(yvz)=

(x vy)v(zvz)=yvz, which implies that x vz~<yvz; that

x A z<y a z follows by duality. The property L11 is expressed

in words by saying that the operations v and a are isotone for the

ordering =.

1.5.5. Distributive lattices and complemented lattices

A lattice L is said to be distributive if it satisfies the laws

L112) xal(yvz)=@ay)v(xanz) forallx, y,zeL,

L12’ xv(yaz)=(vy)A(cvz) forallx, y,zeéL.

Actually these two laws are not independent: each implies the

other. To show that L12 implies L12’ we have from L12 that

(xvy)a(xvz)=[(xvy)ax]vLxvy)az]

=x vi@ vadnz] (by L2 and L4)

=xvi(eazviGn Zz) (by L2 and L12)

=[x v(x az)]v(y az) (by L3)

=xv(yaz) (by L4).

By duality, it follows that L12' implies L12.

Example 1.41. Any chain is a distributive lattice. For in a chain x A y is

the lesser of x and y, while x v y is the greater of x and y. Thus x a (y vz)

and (x a y) v (x Az) are both equal to x if x is inferior to y or z; and both are

equal to y vz in the alternative case where x is superior to y and z.

Now let us suppose that in a distributive lattice, three elements

x, y, and z satisfy the conditions

ZVK=ZVY Sanda zn x = ZN y:

Algebraic foundations 29

Then, using the absorptive, commutative and distributive laws we
obtain

X=XV(ZAx)=xv(zaAy)=(xvz)a(xvy)

=(yvz)a(yvx)=yv(zax)=yv(zay)=y.

Thus, in any distributive lattice,

L13 zvx=zvy and zax=zany_ togetherimply x=y.

Complements. In a lattice with a least element ¢@ and a greatest

element u, two elements x and y are said to be complementary

whenever i

xAy=q@ and xvy=u.

‘An element which is complementary to x is also called a complement

of x.

Example 1.42. In any lattice L with a least element ¢ and a greatest

element u, the element ¢ is the unique complement of u, and wu is the unique

complement of ¢. However in general, the elements of L need not all have

complements; for instance, in the lattice of Fig. 1.7(a), the elements a and b

do not have complements. Alternatively, an element may have several

complements; for example, in Fig. 1.7(b) each of the elements a, b, c is

complementary to the other two.

Example 1.43. Consider the lattice formed by the power set P(A) of a

given set A, the operations v and a” being set union and intersection

respectively. The least and greatest elements of this lattice are the null set @

and the set A respectively. Each element X € P(A) has exactly one

complement, which is the set difference A — X (i.e. the complement of X in

A in the set-theoretic sense).

It will be observed that in a distributive lattice, a given element x

can have at most one complement. For suppose that in such a lattice,

two elements y and z satisfy the conditions

xAy=q@ and xvy=u,

xAz=q@ and xvz=u.

Then

XAy=xAz and xvy=xvz,

and by L13 these conditions together imply that y = z.

30. ~=6 Algebraic foundations

In a distributive lattice, the unique complement of a given

element x, when it exists, is usually denoted by x.

A complemented lattice is a lattice with a least and greatest

element, in which every element has at least one complement.

Clearly, if a lattice is distributive and complemented, each of its

elements has a unique complement. The lattices with these parti-

cular properties are considered in more detail below.

1.5.6. Boolean algebras

A lattice which is distributive and complemented is called a

Boolean lattice, or Boolean algebra.

Example 1.44. The power set P(A) of a given set A, with binary

operations U and 4, forms a Boolean algebra. (See Example 1.38.)

Example 1.45. The lattice comprising two elements x and y with x < y is

distributive and complemented, with x=y and y=x. It is called the

two-element Boolean algebra.

The two elements x and y of this algebra are often denoted by the

numerals 0 and 1. In this case the ordering X can be interpreted as the usual

ordering = of integers, and the operations v and a take the significance

xvy=max {x,y}, xAy=min {x, y},

or in terms of the usual arithmetic operations,

xvy=xt+y-—(xxXy), XAY=XXy.

Clearly, since a Boolean algebra is distributive and complemen-
ted, all the properties of distributive lattices and complemented
lattices are properties of a Boolean algebra. Moreover, in a Boolean
algebra we have

L14 ¥=x (law of involution),

LIS (xvy)=XA¥ and (xny)=Kvy

(de Morgan’s laws).

The law L14 follows immediately from the unicity of comple-
ments. To prove the first part of L15 we observe that

(XV Y)ACEAV)=(KAKAV)V (YAY)

=(PAY)V(PGAX)=GrG=H

and

Algebraic foundations 31

(xvy)V(KAY)=(XVyVE)A(xvyvy)

=(uvy)A(uvx)=uvu=u,

from which it follows that x 4 y is the complement of x v y. By a dual

argument, x v y is the complement of x a y.

Exercises

ie

Le yee

Prove that if the binary operations v and 4 onaset L obey the laws

L2-L4, then they obey thé law L1.

Prove that in any lattice, the conditions w <x and y <z imply that

wvySxvz and waAyNxaz.

. Prove that in any lattice L,

xA(yvz)=(xny)v(x¥ Az),

xXV(yAzZ)<(xvy)a(xvz),

for all x, y, z ¢ L. (These formulae are called the one-sided distributive

laws.)

. Let L be a distributive lattice, and let L’ be the lattice obtained by

adding-to L two elements a and 6 such that a<x <b forall xeL.

Prove that the lattice L’ is distributive.

. A lattice L is said to be modular if x <z implies that x v(y A z)=

(x vy) Az, for all x, y, z¢L. Prove that every distributive lattice is

modular.

. Prove that for any elements x and y of a Boolean algebra,

xV(XAy)=xVy and xA(Kvy)=xAy.

2 Graphs and algorithms

2.1. Introduction

IN THIS chapter we shall first present the basic concepts of graph

theory, and then consider some particular kinds of graphs which are

of special importance from both a theoretical and a practical

viewpoint. In the course of our discussion we shall develop a

number of methods of analysing graphs; these will usually be

presented in the form of algorithms, from which computer pro-

grams can easily be constructed.

Many graph-theoretic algorithms are deceptively simple in

appearance: in practice they may require a prohibitive amount of

work. The final section of this chapter introduces the notion of the

complexity of an algorithm—which is a measure of the work

involved in executing it—and explains how this complexity can be

determined.

2.2. Graphs

2.2.1. Definition of a graph

A graph G =(X, U) consists of

(i) a finite set X ={x1, x2,...,x,}, whose elements are called

nodes, and

(ii) a subset U of the Cartesian product X x X, the elements of
which are called arcs.

A graph can be depicted by a diagram in which nodes are
represented by points in the plane, and each arc (x;, x;) is indicated
by an arrow drawn from the point representing x; to the point
representing x; For example, Fig. 2.1 represents the graph G =
(X, U) where

x = {x1, X2, X3, Xa},

U ={(%3, X2), (x1, %4), (% 2, X2), (Xo, Xa), (Ka, X9), (0a, 1), a, Xa).

In discussing graphs we shall use the following terminology:

Graphs and algorithms 33

3

FIG. 2.1

Initial and terminal endpoints of an arc. For an arc (x;, x;), the node x;

is the initial endpoint and the node x; is the terminal endpoint. Anarc

whose endpoints are coincident, i.e. an arc of the form (x;, x;), is

called a loop.

Adjacent nodes, adjacent arcs. Two nodes are said to be adjacent if

they are joined by an arc. Two arcs are adjacent if they have at least

one common endpoint.

Successors, predecessors, and neighbours of a node. In a graph

G =(X, U), anode x; is called a successor of a node x; if (x;, x;)€ U;

the set of allsuccessors of x; is denoted by I” (x;). Similarly, a node x;

is called a predecessor of x; if (x;, x;) € U, and the set of all predeces-

sors of x; is denoted by I” (x;). A node which is either a predecessor

or a successor of a node x; is sometimes called a neighbour of x;; the

set of all neighbours of x; is denoted by I(x;). It is evident that

T(x;) =I" (x;) vl" (xi).

Arcs incident to and from a node. If an arc u has node x; as its initial

endpoint, we say that the arc u is incident from x;; whereas if an arc u

has node x; as its terminal endpoint we say that arc u is incident to x;.

The number of arcs incident from a node x; is called the exterior

semi-degree or the out-degree of x;, and it is denoted by p *(x;); while

the number of arcs incident to x; is called the interior semi-degree or

in-degree of x;, and it is denoted by p (x;).

Example 2.1. In the graph of Fig. 2.1, the node x, has the set of

’successors I'*(x) ={x>, x4} and the set of predecessors I (x2) = {x1, x2, x3};

34 Graphs and algorithms

the out-degree of this node is p*(x2)=|I'*(x2)|=2, and its in-degree is

p (x2)= IT (x2)| =3.

Partial graphs. If we remove from a graph G = (X, U) asubset of its

arcs, we are left with a graph of the form

H=(X, V). where VY CU,

which is called a partial graph of G. The graph of Fig. 2.3 is a partial

graph of that shown in Fig. 2.2.

Subgraphs. If we remove from a graph G =(X, U) a subset of its

nodes, together with all the arcs incident to or from those nodes, we

are left with a graph of the form

H=(Y, Uy) where YCX and Uy=Un(YXY),

which is called a subgraph of G. We may describe H more precisely,

as the subgraph of G generated by Y. As an example, Fig. 2.4 shows

a subgraph of the graph in Fig. 2.2, in particular the subgraph

generated by {x1, x2, x3}.

Condensations. Let G=(X,U) be any graph, and let S=

{X,, X2,..., X,} be a partition of the node-set X of G. Then the

condensation of G induced by ¥ is defined as the graph Gy=

(FY, Uy), where

Uy ={(X,, X3)€ SX S|X, X,, and for some x; € X,

and some x; € Xz, (xj, x;) € U}.

In pictorial terms, Gy is obtained from G by coalescing the nodes of

each member of ¥, and then removing any loops. The condensation

l |

BiG32.2 FIG. 233

Graphs and algorithms 35

3 {3.4

FIG. 2.4 FIG. 2.5

of the graph of Fig. 2.2 which is induced by the partition

{{x1, xs}, {x2}, {x3, x4}} is shown in Fig. 2.5.

2.2.2. Graphs and relations

Each graph G = (X, U) determines a binary relation Rg on the

set X of its nodes, through the rule

xiRox; ifandonlyif (x, x;)eU.

(Using the terminology of the previous section, Rg is the relation ‘is

a predecessor of’ on the node-set X.)

Conversely, each binary relation 2 onaset X determines a graph

G =(X, Ug), where

Te ={(xi, x;)€ X X X|x:Rx;},

which is called the graph of &. As an illustration, Fig. 2.7 shows the

graph of the relation ‘was a parent of’ on a set of nine Greek gods,

whose genealogical tree is given in Fig. 2.6.

As one might therefore expect, the concepts introduced in our

discussion of relations in Section 1.4 all have counterparts in the

theory of graphs. Indeed, just as a relation # on a set has a

complement & and a converse &' (see Section 1.4.2), a graph

Cronus 7 Rhea

Medusa iro Zeus —— Leto

Pegasus Apollo Artemis

FIG. 2.6

36 Graphs and algorithms

Cronus Rhea

Medusa Poseidon Zeus Leto

Pegasus Apollo Artemis

FIG. 2.7

G =(X, U) has a complement G = (X, U) where

U =4G,, 4, eX XX |G, x4) 2 U}

and a converse G' = (X, U') where

U' = {(x,, xj) € X X X | (x; x) € U}.

The complement and the converse of the graph of Fig. 2.1 are

shown in Figs. 2.8 and 2.9 respectively.

FIG. 2.8 FIG. 2.9

Again, in accordance with our nomenclature for special kinds of
relations (see Sections 1.4.3, 1.4.5), we say that a graph G = (x, U)
is:

Reflexive when (x;.x;)€ U_ for all x;¢ X;
Anti-reflexive when (x;,x;)¢ U forall x;¢X;
Symmetric when (x;, x;)€ U_ implies (x;, x;)€ U;
Anti-symmetric when (x; x;)€ U and (x;, x:)€ U together

imply x; = x;;

Graphs and algorithms 37

Transitive when (x;,x;)€ U and (x; x.) € U together

imply (xj, x.) € U;
Complete when (x;,x;)¢U and (x, x;)¢ U together

imply x; = x;.

Example 2.2. The graph of Fig. 2.10 is reflexive, anti-symmetric, tran-
sitive, and complete. Accordingly, the relation ‘is a predecessor of’ is a total
ordering of its node set (as defined in Section 1.4.5).

Pic? 7.10

2.2.3. Simple graphs

A graph is said to be simple if it is anti-reflexive and symmetric.

As an example, the graph of Fig. 2.11(a) is simple.

1 l

3 3

FIG. 2.11(a) FIG. 2,11 (6)

In a simple graph the arcs occur in pairs, the two arcs in each pair

having the same endpoints but opposite orientations. In analysing

such a graph it is often convenient to consider each arc pair as a

single entity; in this case we describe a pair of arcs (x;, x;) and (x;, x;)

38 Graphs and algorithms

as an edge and denote it by [x;, x;], or by [x;, x]. (We observe that an

edge of a graph is essentially a two-element subset of its node set;

the order in which these elements are listed has no significance.) The

set of edges of a simple graph is usually denoted by E, and we may

write G =(X, E).

To represent a simple graph pictorially we often draw each edge

[x;, x;] as a single undirected line, rather than a pair,of arrows,

between the points representing x; and x;; as an example, Fig.

2.11(b) shows this type of representation of the graph of Fig.

2.11(a). Diagrams of this kind are frequently encountered, for

instance as street maps or wiring diagrams of electric circuits.

For a simple graph, the terms ‘predecessor’, ‘successor’, and

‘neighbour’ are all synonymous. Also, for each node x;, the in-

degree p (x;) is equal to the out-degree p “(x;); we may describe this

number simply as the degree p(x;) of x; When an edge e has a node x;

as one of its endpoints we say that the edge e is incident with x;.

Obviously, the degree p(x;) of a node x; is equal to the number of

edges incident with x;.

We remark that, although graphs are often presented as being of

two different kinds—namely ‘directed’ graphs and ‘undirected’

graphs—here we consider all graphs to be ‘directed’, and we regard

an ‘undirected’ graph as a ‘directed’ graph which is anti-reflexive

and symmetric. Of course, in constructing a graph model of a

physical system such as a traffic network or an electric circuit, it may

be more natural to relate the components of the system (such as

streets or electrical conductors) to edges than to arcs, and the

subsequent analysis of the graph may be easier to perform in terms

of edges. However, there are many graph concepts and analysis

methods which are relevant to all graphs, simple and otherwise, and

which we shall want to present in their most general form. In order

to apply these methods to a simple graph, it will only be necessary to

decompose its edges into their constituent arcs. This decomposition

of edges into arcs usually has a simple physical interpretation: we

note for instance that a two-way street is essentially a pair of

contiguous one-way streets which carry traffic in opposite direc-

tions.

The simplification of a graph. Any graph G = (X, U) determines a

simple graph G, = (X, U,), where U, = {(x;, x;)¢ X x X |x; Ax, and

Graphs and algorithms 39

either (x;, x;)€ U or (x;, x;)€ U}. This graph G, is called the simple

graph associated with G, or the simplification of G. As an example,

the simplification of the graph of Fig. 2.12(a) is shown in Fig.

2:42(b).

l 1

2S: S

3 3

' FIG. 2.12(a) FiG. 2.12(b)

2.2.4. p-graphs and multigraphs

The concept of a graph can be extended by allowing a pair of

nodes to be joined by several distinct arcs with the same orien-

tations (see Fig. 2.13). A schema of this kind is called a p-graph,

where p is the maximum number of arcs having the same initial

endpoints and the same terminal endpoints. (Thus, the schema of

Fig. 2.13 isa 3-graph.)

The notion of a simple graph can also be extended, by allowing a

pair of nodes to be joined by more than one edge (see Fig. 2.14); a

schema of this kind is called a multigraph. We shall make some use

of these concepts in later chapters.

OO?
FIG. 2.13 FIG. 2.14

40 Graphs and algorithms

2.3. Paths on graphs

2.3.1. Paths and cycles

A path is a finite sequence of arcs of the form

uU= ie i) (Kiss Key fey (Genes = ae B

i.e. a finite sequence of arcs in which the terminal node of each arc

coincides with the initial node of the following arc; the number r of

arcs in the sequence is called the order of the path. The initial

endpoint of the first arc and the terminal endpoint of the last arc of a

path are called respectively the initial and terminal endpoints of the

path.
A path whose endpoints are distinct is said to be open; whereas a

path whose endpoints coincide is called a closed path, or cycle.

A path is simple if it does not traverse any arc of a graph more

than once. A path is elementary if it does not traverse any node

more than once, i.e. if all the initial endpoints (or all the terminal

endpoints) of its arcs are distinct. It is evident that every elementary

path is simple.

It will be observed that a path is completely determined by the

sequence of nodes X;,, X;,, Xi,,.--, X;, Which it visits; we shall often

find it convenient to specify a path by listing this node sequence

rather than the arc sequence.

Example 2.3. In the graph of Fig. 2.1, the arc sequence

(X15 ¥4)s(X4, Xs), (X55 Xo), Ces, Xe), ee X1), (%1, X2)

is a path of order 6, from x, to x2; this path is simple, but it is not

elementary. The same path is described by the node sequence

X1, X4, X3, X2, Xa, X1, X2. The arc sequence

(X1, X4), (Xa, X3), (x3, X2)

is an elementary path from x, to x2, and the arc sequence

(X95 Xa), (X45 X1), (xa, Xo)

is an elementary cycle.

Example 2.4. Finite-state systems. Many problems involve a ‘system’
which at any time can be in only one of a finite number of different ‘states’.
A system of this kind can be represented by a state diagram, a graph whose
nodes correspond to the system states and whose arcs represent the possible

Graphs and algorithms 41

direct transitions from one state to another. This form of representation is

helpful in investigating the possible ‘modes of behaviour’ of the system,

since the paths on the state diagram determine the possible sequences of

state transitions.
Before considering more serious applications we shall illustrate these

ideas with a well-known puzzle: A ferryman (f) has to take a wolf (w), a goat

(g), and a cabbage (c) across a river. His skiff is so small that, besides the

ferryman, it can take only one of the other objects. The wolf cannot be left

alone with the goat, nor the goat with the cabbage. How must the ferryman

proceed?

We may consider that the ferryman, wolf, goat, and cabbage form a

system, whose state at any time can be described by listing the objects left

on the first bank of the river. The state diagram, showing all possible direct

transitions, is given in Fig. 2.15. (The graph is symmetric because, for this

particular system, all transitions are reversible.) The solutions to the

problem are given by the paths from the ‘initial state’ node to the ‘final

state’ node.

fw} t fiw.g}

{fwg.c} {wc} { fw.c} {g} {fg} ¢

Initial Final
state state

{c} {fg.c}

FIG. 2.15

As another example, an important concept in computer science is that of

a finite-state machine, which consists of

(1) a finite set S of states,

(2) a finite set X of input symbols,

(3) a finite set Y of output symbols,
(4) a transition function f: Sx X >S,
(5) an output function g: Sx X > Y.

A finite-state machine acts by ‘reading’ a string of input symbols and

‘writing’ a string of output symbols in the following manner. If the machine

is currently in the state s ¢ S and it is presented with an input symbol x € X,

then it will change its state to f(s, x) and write the output symbol g(s, x).

To illustrate the manner in which such machines operate, Fig. 2.16 shows

the state diagram of a machine which recognizes every sequence ‘101’ ina

string of zeros and ones. In this diagram, the first label on each arc is the

input symbol which causes the corresponding transition; the second label is

42 Graphs and algorithms

the symbol which is written when this transition takes place. The response

of this machine to a particular input string is shown below, for the case

where the machine is initially in the state ‘a’.

0,0

Input string: Oe1 F000 ISO test Oss ie

Successive states: alalb|c|alb|c]d | b | bjcld | bic

Output string: OROTOLOS Os OO O20) L006

Finite-state machines can easily be simulated by computer programs,

and programmed models of ‘recognizers’ of the type described above are

used for lexical analysis in compilers, to recognize program identifiers and

‘reserved’ words such as if, do, go to, etc. (Aho and Ullman 1977).

Finite-state machine concepts are also used in designing hardware for

digital systems (Clare 1973).

2.3.2. Chains on simple graphs

In a simple graph G =(X, E), a chain is defined to be a finite

sequence of edges, of the form

Oo [ms 5 te I [Xi,) Xl eee ease cm

i.e. a sequence of edges in which each edge has one endpoint in

common with the preceding edge, and the other endpoint in com-

mon with the following edge. The nodes x;, and x; are called the
endpoints of the chain. A chain is open if its endpoints are distinct; it

is closed if the endpoints are coincident.

A chain is simple if it does not use any edge of a graph more than

once. A closed, simple chain is called a circuit.

A chain is elementary if it does not traverse any node more than

once. Every elementary chain is simple.

Graphs and algorithms 43

Example 2.5. In the graph of Fig. 2.11, the edge sequence [x,, x2],
[x2, x3}, [x3, X1], [x1, x4] is a simple but non-elementary chain, from x, to x4.

The sequence [x2, x3], [x3, x1], [x1, x4] is an elementary chain from x, to x4,

and the sequence [x,, x2], [x2, x3], [x3, x1] is a circuit.

2.4. Some forms of connectedness of graphs

2.4.1. Accessibility

Let G =(X, U) be any graph, and let x; be one of its nodes. Then

any node x; (not necessarily distinct from x;) such that there exists a

path from x; to x; is called a descendant of x;; while any node x; (not

necessarily distinct from x;) such that there exists a path from x; to x;

is called an ascendant of x;. It will be observed that a node x; can be

both a descendant and an ascendant of x;: this occurs whenever

there exists a cycle passing through both Xi and x,;. We shall denote

the set of descendants of a node x; by ['*(x;), and the set of its

ascendants by ra (x;).

A node x; 1s said to be accessible from a node x; if x; is a

descendant of x; or x;=x;; similarly, x; is said to be converse-

accessible from x; if x; is an ascendant of x; or x; =x;. The sets of

nodes which are accessible and converse-accessible from x; will be

denoted by r *(x;) and Pod) respectively. Clearly,
: *

I*(x,) = {x} UF (x), and I(x) ={x,}UI (x).

Example 2.6. On the graph of Fig. 2.7,

f* (Cronus) = {Poseidon, Zeus, Pegasus, Apollo, Artemis},

I’ (Pegasus) = {Poseidon, Cronus, Rhea, Medusa}.

Example 2.7. On the graph G=(X, U) of Fig. 2.1, f*(x,)=X and
I (x;) =X, for all x; eX.

2.4.2. Connectivity

For any graph G = (X, U), we define a binary relation called the

connectivity relation C on the node set X by the rule:

x;Cx; if x; is accessible from x; on the simplification G, of G. When

x,;Cx;, we say that x; is connected to x;.

Now the relation C is obviously reflexive, symmetric and tran-

sitive, and since it has these properties, it is an equivalence relation.

44 Graphs and algorithms

Consequently, it induces a partition X/C of the node-set of G,

whose members are the equivalence classes with respect to C (see

Section 1.4.4). The subgraphs of G which are generated by these

equivalence classes are called the connected components of G.

If a graph has only one connected component, we say that the

graph is connected.

Example 2.8. The graph G =(X, U) of Fig. 2.17 has two connected

components; these are the subgraphs of G _ generated by

{x1, X2, X3, Xo, X7, Xs} and {x4, Xs}.

3 {1,7,8} {2,3}

6 5

FIG. 2.17 FIG. 2.18

2.4.3. Strong connectivity

Again, let G =(X, U) be any graph, and let us define another

binary relation S on the node-set X of G, by the rule:

x; S x; if on G, each of the nodes x; and x; is accessible from the

other. S is called the strong connectivity relation on G, and when

x; S x; we say that x; is strongly connected to x;.

It is easily verified that like C, the relation S is an equivalence
relation. The subgraphs of G which are generated by the
equivalence classes with respect to S are called the strongly connec -
ted components of G. If G contains only one strongly connected
component, we say that G is strongly connected. Clearly, every
strongly connected graph is connected.

Example 2.9. The graph G=(X,U) of Fig. 2.17 has four strong
components, namely the subgraphs of G generated by {x,, x7, xs}, {x2, xs},
{x4, Xs} and {x}. The arcs which belong to these components are indicated
by bold lines.

Graphs and algorithms 45

In studying the structural properties of a graph G = (Xx, U), it is
often helpful to determine the set of equivalence classes X/S, and
then to construct the condensation of G induced by X/S (as defined
in Section 2.2). This particular condensation, which is called the
reduced graph G® of G, shows clearly the form of connectivity
between each pair of nodes on G. (See for instance Fig. 2.18 which
shows the reduced form of the graph of Fig. 2.17.) In particular, it is
easily verified that if x; and x; are nodes of G, which belong
respectively to members X, and X;, of X/S, then

(i) x; is connected to x; on G if and only if X, is connected to X,
on G®, and é
(ii) x; is accessible from x; on G if and only if X; is accessible from
X, on G®.

Finally, it is important to note that for any graph G, the reduced

graph G* does not contain any cycles. This can be proved by

contradiction: Suppose G® contains a cycle, and let (X,, X;) be one

of its arcs. Then on G®, X, is strongly connected to X;, which

implies that in G there exist nodes x;¢ X, and x; ¢X; which are

strongly connected. Now the nodes x; and x; belong to the same

member of X/S, and so X, = X;. But then, by the method of

construction of G* (see Section 2.2), this graph cannot contain the

arc (X,, X;), which contradicts our assumption that G* contains a

cycle.

Some special properties of graphs without cycles will be presen-

ted in Section 2.6.

2.4.4. Algorithms for finding accessible sets and the components of

a graph

Accessible sets. The accessible set of a specified node x, can be

found by a simple ‘labelling’ algorithm, which is described in

pictorial terms in Fig. 2.19(a). This algorithm progressively labels

the node x; and its descendants with the symbol *, in such a way that
ag

on termination all the members of I’*(x,) have received this label. In

the course of the algorithm each member x; of C(x.) also bears a

label +, from the time when x; is labelled with * until its set of

successors I'*(x;) is explored.
To implement this algorithm on a computer we must first choose

data structures, i.e. methods of arranging items of data, which

46 Graphs and algorithms

Step 1 Label node x, with the symbols 7 and «.

Step 2 Let x; be any node labelled with the symbol f. Delete the label + of x; and

label with both + and * every successor of x; which does not have the

label *.

Step 3 If the graph still contains a node labelled with + then return to Step De

End The nodes with the label * form the set f*(xz).

FIG. 2.19(a)

enable us to represent the graph and the assignment of labels to its

nodes conveniently in the computer memory. For instance, we may

choose to define the graph by specifying, for each node x;, a list L; of

the indices of its successors. The set of nodes labelled ¢ can also be

recorded conveniently in a list T. To define the set of nodes labelled

with * we could again use a list, but we shall find it more appropriate

to represent this set by its characteristic vector, i.e. a vector ¢ =

[c(1), c(2),..., ¢(n)]of n elements (where x is the number of nodes

in G) in which c(i) =1 if node x; is labelled with * and c(i)=0

otherwise.

A more precise version of the algorithm of Fig. 2.19(a), using

these choices of data structures, is given in Fig. 2.19(b). In this

description, the symbolism ‘p < q’ is read as ‘Assign to the variable p

the value of q’. This version of the algorithm prints out the indices of

the nodes of I *(x,)—see Step 2 and Step 6.
With regard to the choice of data structures, we could of course

have represented the set of elements labelled with f by its charac-

teristic vector, rather than by the list T, but this would involve more

Step 1 [Initialize] Clear the list T, and set c(i)< 0 for i=1,2,...,n.

Step 2 [Label x;] Enter the index k in the list T, set c(k) < 1 and print the index k.

Step 3 [Find some node x; labelled with +] Let i be any index in T. Delete i from

16:

Step 4 [Is list of successors of x; empty?] If L; is empty then go to Step 7.
Step 5 [Choose a successor x; of x;] Let j be any index in L;. Delete j from L;.

Step 6 [If x; is not labelled with * then label it with + and *] If c(j) = 0 then enter

the index j in T, set c(j)< 1, and print the index j. Return to Step 4.

Step 7 —_ [Does graph still contain any nodes with label +?] If T is not empty then

return to Step 3.

End

FIG. 2.19(b)

Graphs and algorithms 47

work. (To find a node labelled with +, in Step 3, we would have to
scan the elements of this characteristic vector one by one, searching
for an element with the value ‘1’; in the worst case this could involve
the inspection of all the elements of the vector.) To represent the set
of nodes labelled with «, we chose to use the characteristic vector c
rather than a list because in Step 6 we wish to test whether a
particular node x; has the label *; with the vector representation this

only involves the examination of one element, c(/) of the vector,

whereas in a list representation we might in the worst case have to

scan all the entries in the list. (The choice of data structures for

graph: algorithms is discussed in detail by Aho, Hopcroft, and

Ullman, 1974.) ’
To find the converse-accessible set of a specified node, the same

algorithm can be used: for this purpose we simply specify in each list

L; the predecessors, rather than the successors, of x;.

Determination of the connected components of a graph. From the

definition of connectivity in Section 2.4.2 it follows immediately

that for any node x,, the set of nodes which are connected to x, on G

is identical to the accessible set of x, on the simplification G, of G.

Hence the algorithm of Fig. 2.19(b) will list the nodes of the

connected component which contains any specified node x; of G, if

each list L; comprises the indices of the neighbours of x; on G.

To find ali the components of a graph, we can proceed as follows.

First we arbitrarily choose some node x; of G, and find the node set

of the component containing x; by the labelling method described

above. If all the nodes of G are labelled by this process, the problem

is solved. Otherwise we arbitrarily select some node which has not

yet been labelled and find its component, again by labelling. By

repeating this process until all the nodes are labelled, we obtain

successively the node sets of all the connected components of G. A

detailed version of this algorithm is presented in Fig. 2.20.

Determination of strong components. From the definition of strong

connectivity it follows immediately that the set S(x;) of nodes which

are strongly connected to a given node x, can be expressed as
* ae

S (xi) =P" (x4) OP (xx).

Thus we can obtain the node set of the strong component containing

any specified node x, by constructing the sets I *(x,) and Iv (xx)

48 Graphs and algorithms

Step 1 [Initialize] Set k <0 and set c(i)< 0 for i=1,2,...,n.

Step 2 [Increment node index k] Set k<k +1.

Step 3 [Has component containing x, already been labelled?] If c(k) =1 then go to

Step 5.

Step 4 [Find the nodes of the component containing x,, by the labelling method. |

Step 4.1 [Initialize] Clear the list T.

Step 4.2 [Label x,] Enter the index k in T, set c(k)<1 and print the index k.

Step 4.3 [Find some node x; labelled with +] Let i be any index in T. Delete i

from T.

Step 4.4 [Has x; any successors?] If L; is empty then go to Step 4.7.

Step 4.5 [Choose a successor x; of x;] Let j be any index in L;. Delete j from Lj.

Step 4.6 [If x; isnot labelled with * then label it with ¢ and *] If c(7) = 0 then enter

the index j in T, set c(j)<1 and print the index j. Return to Step 4.4.

Step 4.7 [Does graph still contain any nodes with the label +?] If T is not empty

then return to Step 4.3.

Step 4.8 [Terminate labelling procedure] Print ‘end of component’.
Step 5 [Have all nodes been examined?] If k #n then return to Step 2.

End

FIG. 2.20

separately, using the labelling algorithm of Fig. 2.19, and then

forming the intersection of these sets.

If all the strong components of a graph are to be found, they can

be obtained one after the other, by selecting a node of the graph

arbitrarily, finding its strong component, then selecting another

node whose strong component has not yet been determined, and so

on until all nodes have been assigned to components.

Although this is probably the simplest method, it may involve the

repeated labelling of some nodes, since a particular node may be

accessible, or converse-accessible, from many _ different

components. Alternative methods which are more efficient for

graphs containing many components have been devised by Munro

(1971) and Tarjan (1972).

2.5. Acyclic graphs

An acyclic graph is a graph which does not contain any cycles. In
this section, our purpose is to establish some important properties
of acyclic graphs in general; some particular kinds of acyclic graphs
will be considered in detail in the next section.

First, we shall demonstrate that any acyclic graph contains at least
one node which has no successors, and at least one node which has no

Graphs and algorithms 49

predecessors. The first part is proved by contradiction, as follows:
Let G =(X, U) be an acyclic graph, and let us assume that every
node on G has at least one successor. Then, starting from any node
Xi, We can find a successor of x;,, say x;,, and then a successor of te,
say x;,, and so on, and hence we may construct a pathix;,5 xh,
Xi,,-.., X;, Of arbitrarily high order. But since the number of nodes
of G is finite, on a path of sufficiently high order some node Xi, Say
will be encountered twice. Hence x;, lies on a cycle, which
contradicts the assumption that G is acyclic. The second part can be
proved by a similar argument (we trace a path ‘backwards’, rather

than ‘forwards’, from some node x;,).

This result leads to the important concept of node rank, which is

defined as follows. Let G = (X, U) be an acyclic graph, and let No be

the (non-empty) set of nodes without predecessors on G:

No = {x; eX|T (x) = d}.

Now consider the subgraph Gp of G which is generated by X — No,

i.e. the subgraph obtained by removing from G all nodes in No, and

all arcs incident from those nodes. If Gp contains any nodes, then it

must contain at least one node without predecessors (since all

subgraphs of G are acyclic), and collecting together all such nodes

we obtain a non-empty set

ae N, ={x; € X —No|P (x;) C No}.

Now consider the subgraph G, of Go which is generated by

X —(No UN), i.e. the subgraph obtained from Go by removing the

nodes of N;, together with all arcs incident from these nodes. Again,

if G; contains any nodes, then it contains at least one node without

predecessors, and the collection of all such nodes constitutes a

non-empty set

N2={x; €X —(NoUNi)|T (x;) CNoU Ni}.

Continuing in this manner until all the nodes of G have been

removed, we construct successively the (non-empty) sets

is eae Us
k=0

Sieiy Goa UM.

Pee Uw. nd Ng = fo sei
k=0

50 Graphs and algorithms

where q is the smallest integer such that

q

X-UN.=¢.
k=0

From the method of construction of these sets, it is evident that

{N,, No,..., Na} is a partition of X.

Let us now assign to each node x; of G an integer r(x;), through

the rule

ifx;e.N, thenr(x;)=k.

We call r(x;) the rank of node x;. Clearly, for each node x; of G

(i) r(x;)<r(x;), for all x; ¢T” (x;), and
(ii) if r(x;)>0, then x; has at least one predecessor of rank

r(x;)—1.

Example 2.10. In Fig. 2.21 which depicts an acyclic graph, all nodes of

the same rank are placed in the same vertical line.

The concept of node rank leads to the following useful charac-

terization of an acyclic graph:

A necessary and sufficient condition for a graph G = (X, U) to be

acyclic is that its nodes x1, X2,..., X, can be numbered (i.e. assigned

their integer indices) in such a way that if (x;, x;)€ U then i<j.

To prove that the condition is necessary, we demonstrate that

such a numbering scheme does exist for any acyclic graph: Indeed, if

Ne N, N,

|

|

Graphs and algorithms 51

we successively assign the integers, 1, 2,3,..., first to those nodes

which are of rank 0, then to the nodes of rank 1, and so on (see, for

instance, Fig. 2.21), then we obviously obtain a numbering of the

form defined above. The sufficiency of the condition can be demon-

strated by contradiction: Let G = (X, U) be a graph which contains

a cycle, and let us assume that its nodes are numbered in such a way

that if (x;, x;)¢ U then i<j. Now let x; be the node whose index is

maximal on this cycle, and let x; be its successor on the cycle; then

(x:, x;)€ U and i>j, which contradicts our initial assumption.

Example 2.11. Critical-path analysis. A project such as the construction

of a large building involves numerous interrelated activities (for instance

the clearing of a site, laying of foundations, erection of cranes, and so on). In

general some activities of a project can take place concurrently, but some

cannot begin until certain others have terminated. In organizing a project it

is important to know the earliest time at which each activity can begin, and

the least time in which the entire project can be completed.

The table below shows how the relationships between the activities of a

project may be specified. The activities 1 and 10 are ‘dummy’ activities of

zero duration, representing the project commencement and termination

respectively. For each activity i the table gives the activity duration d;, anda

list of predecessors of activity i, that is, a list of activities which must all have

finished before activity i can commence.

Activity Duration Predecessors

1 (start) 0

2 4

k) 10
4 6

5 2

6 11

Gf
8
9

10

NNN |

pL 4,5
3 5

17 3,6,8

(finish) 0 ED

From this information one can construct an activity graph (Fig. 2.22) to

represent the project. In this graph, the nodes correspond to the project

activities; more precisely, each node x; represents an event—the com-

mencement of activity i. The timing constraints are represented by the arcs

of the graph; specifically, if activity i cannot commence before activity k

52. Graphs and algorithms

has finished, that is to say until at least d, time units after activity k

commenced, this condition is represented by an arc (xx, X;), which is labelled

with d,. (The label assigned to an arc is called its length.) Note that an

activity graph is necessarily acyclic, for if a cycle did exist, none of the

activities on that cycle could ever commence.

17
Start Finish

BiG: 2:22

The earliest time ¢; at which the ith activity can commence, measured

from the start of the project, is obviously given by the length of a longest

path from the ‘start’ node to node x;. Accordingly, the shortest time in

which the entire project can be executed is given by the length of a longest

path from the ‘start’ node to the ‘finish’ node; for this reason, the longest

paths from the ‘start’ to the ‘finish’ nodes are called critical paths. (The

activity graph of Fig. 2.22 has two critical paths, of length 32, which are

indicated by bold lines.)

It is evident that activities which do not lie on critical paths can be~

retarded to some extent without increasing the time needed for the

execution of a complete project, and it is useful to have a measure of this

latitude: If the earliest possible project completion time is 7, then the /atest

time ¢; at which an activity 7 can begin without delaying the project

completion is given by

ti =7T-l,

where /; is the length of a longest path from node x; to the ‘finish’ node. The

maximum amount by which the ith activity can be delayed (its ‘slack time’)

is then given by the difference

i i earls

The table below gives the earliest and latest possible starting times, and

the slack times, for the project of Fig. 2.22.

Graphs and algorithms 53

Activity: STAG Gay SRG «Try TR ake OWT 1.0
Earliest startingtime: 0 0 0 .4° 4 4-10 6 15 2
Latest starting time: DearS aS A Oh 10. 15, 35
Slack time: Wee Dae). Gs)

A systematic method of obtaining these times, suitable for use on a
computer, will be given in the next chapter (Example 3.20). For a more
detailed discussion of network models of projects see Elmaghraby (1970)
and Roy (1970).

2.6. Trees

2.6.1. Elementary properties of trees

A tree is an acyclic graph G = (X, U) in which one node x, has no
predecessors and every other node has exactly one predecessor‘.
The node x, is called the root of the tree. The graphs shown in Fig.
2.23 are both trees.

Ae
x x, T

(a) (b)
FIG. 2.23

Trees can be characterized in several different ways, as is demon-

strated by the following theorem.

For a graph G =(X, U), the following statements are equivalent:

(1) Gis an acyclic graph in which one node x, has no predecessors

and every other node has exactly one predecessor.

(2) G is a connected graph in which one node x, has no pre-

decessors and every other node has exactly one predecessor.

(3) Ghas anode x, which is joined to every other node by a unique

path from x,.

+ Some authors describe graphs of this kind as ‘arborescences’.

54 Graphs and algorithms

We shall prove this theorem by demonstrating that (1) implies (2),

(2) implies (3), and (3) implies (1).

(1) implies (2). In any acyclic graph, each node x; with rank r(x;) #0

has a predecessor of rank r(x;) — 1, which implies that x; is accessible

from some node of rank zero. Since x, is the only node of G with

rank zero, all the nodes of G are accessible from x,, which implies

that G is connected.

(2) implies (3). Since G is connected, the simple graph G, asso-

ciated with G has at least one path from x, to each of the other

nodes. Now let uw be such a path, from x, to x; say, and let (x,, x;,) be

the first arc of this path. The existence of (x,, x,) in G, implies that

either (x,, x,) belongs to G or (xx, x,) belongs to G; however, the arc

(xx, Xr) cannot belong to G, since x, has no predecessors on G, and

therefore the arc (x,, x,) belongs to G. In the same way, since x, has

only one predecessor on G, the second arc of u must also belong to

G, and by repeating the argument we find that G contains all the

arcs of w. It follows that G contains at least one path from x, to each

of the other nodes. There cannot be more than one path from x,

to any other node x,, for this would imply that x; or one of its

ascendants had more than one predecessor.

(3) implies (1). G cannot contain a cycle, for otherwise each node

on this cycle could be reached from x, by more than one path. The

node x, has no predecessors, for if x, had a predecessor x; then the

path from x, to x; together with the arc (x;, x,) would form a cycle.

Each node x;#x, has at least one predecessor, since x; is the

endpoint of a path from x,; however, x; cannot have more than one

predecessor, for this would imply the existence of more than one
path from x, to x;.

Example 2.12. Lineal charts (family trees). Let X be a set of people,
comprising some individual together with ail his or her descendants, and let
G be the graph of the relation ‘is a parent of’ on X. The graph G is acyclic,
since no person can be an ancestor of himself; furthermore, if no ‘inbreed-
ing’ has occurred, G is a tree.

Example 2.13. Classification systems. A classification of a set X of
objects is essentially a partition of X into blocks, which may themselves be
partitioned into blocks, and so on. For instance, in the biological
classification system the animal and plant kingdoms are classified in this
way, the blocks of the successive partitions being known as the phyla,
classes, orders, families, genera, and species of organisms. Any classification
system of this kind can be regarded as a tree (see Fig. 2.24).

a5 Graphs and algorithms

(3
1M
1J
e3

UO
UI

UI
OD

)

DI
AD
IN
IL
AN
D

DI
NI
YA
OT

1aysaf pynrysoq

sa
is
ed
s

“‘
SI

MI
CD

UO
WU
IO
D

9Y
}

JO

UO
NR

OY
IS

SE
[D

“p
77

“O
l

ppistiajdp

D
I
N
O
]

sn
ua
s)

anpuqvy aupynoyfioy appianpidvy]
Ayre

(s
or
y

on
J}
)

p
i
a
d
q

(s
ap
ee
q)

ps
aj
do
aj
oy
)

(s
or

uo
se

ip
)

DI
DU

OP
E

(S
3I

MI
v9

)
pi
aj
do
uu
aq
g

(
s
y
j
o
w

pu
e

so
qy

ji
9}

3n
q)

pi
aj
do
pi
da
T

(s
}o
yo
IN

pu
r

SO
YO
RO
IY
IO
S)

pi
aj
do
yl
ao
C

PIO

(s
uo
id
.1
00
s

pu
e

si
op
id
s)

pp
lu
yo
oi
p

(s
yo
os
ur
)

DI
Ia
sU
y (s
ap
od
iu
as
)

pp
od
ni
.a
d

Ww

(s19}SqO]

pue

sqeio)

DIIDISNAD

S
s
B
l
D

ppodoayjip

wn
yp
Ay
d

56 Graphs and algorithms

The nodes of a tree which have no successors are called its

terminal nodes.
A tree in which each node has not more than two successors is

called a binary tree; a binary tree is said to be complete if its

non-terminal nodes all have exactly two successors. The graph of

Fig. 2.23(b) is a complete binary tree.

Example 2.14. Syntactic trees. A sentence consists of a number of

syntactic entities (such as ‘noun phrases’ or ‘verb phrases’) which are

concatenated with each other in accordance with certain syntactic or

grammatical rules. The process of parsing or resolving a sentence into its

syntactic components leads naturally to a tree. For example, the syntactic

structure of the sentence “The bird pecked a cherry’ is depicted by the tree

of Fig. 2.25, whose non-terminal nodes are labelled with syntactic cate-

gories, and whose terminal nodes are labelled with the words of the

sentence.

<Sentence >
ya

<Noun phrase> <Verb phrase >

<Article> <Noun> <Verb> <Noun phrase>
i) ' 1

1 ‘h i}

4 | <Article> <Noun>

.
' all 1 1 !

The bird pecked a cherry

FIG. 2.25

In a similar way, an arithmetic expression such as

(aX(b—c))+d

can be decomposed into a pair of ‘sub-expressions’ linked by a binary
operator symbol (in this instance we have the sub-expressions ‘a x (b —c)’
and ‘d’, linked by the operator symbol ‘ +’), and by repeated decomposition
of the sub-expressions we again obtain a tree—see Fig. 2.26(a). An
alternative way of representing this expression by a tree is shown in Fig.
2.26(b), which is obtained from Fig. 2.26(a) by ‘hoisting’ each operator
symbol to the node above it.

The parsing of a computer program, using the syntactic rules of the
programming language, is an important step in program compilation. (Aho
and Ullman 1977).

Graphs and algorithms 57

ORe

Wr Xs
FIG. 2.26(a) FIG. 2.26(b)

2.6.2. Transverse orderings of trees

In an English sentence, or an arithmetic expression, the order of

occurrence of the syntactic constituents is usually significant, and in

drawing a syntactic tree we take account of this ordering. For

instance, when we parsed the sentence ‘The bird pecked a cherry’

we noted first that the sentence comprised a noun phrase (‘The

bird’) followed by a verb phrase (‘pecked a cherry’), and in drawing

the syntactic tree we indicated this ordering by placing the node

representing the verb phrase to the right of the node representing

the noun phrase (see Fig. 2.25). The same convention was observed

in drawing Fig. 2.26, where the relative disposition of the nodes b

and c indicates that c is to be subtracted from 5, rather than b

from c.

In algebraic terms, the node set of each of these trees is equipped

with an ordering, of the following kind.

Let G =(X, U) be any tree; then a transverse ordering of G is an

ordering ~ of its node set X such that for any two nodes xi, x;,

(i) if 1 (x;) =I" (x;) then either x; <x; or x; <x;, and

(ii) if I (x;) AT (x;) then x; and x; are incomparable.

Thus, a transverse ordering of a tree provides a total ordering of

the successor set of each of its nodes.

Given a transverse ordering < of a tree G=(X, U), we may

construct a total ordering a of X which is compatible with < (in

that for every pair (x;, x;) for which x; <x, we also have x; a x;), in

several different ways. As an important example, the Tarry ordering

a of X is the ordering defined by the rules

58 Graphs and algorithms

(i) if x; is an ascendant of x; then x; a x;, and
* *

(ii) if x; <x, then for all x;’¢I'*(x;) and all x;'€ I (x;), x;'a x;'.

Alternatively, if we replace the word ‘ascendant’ by ‘descendant’

in rule (i) above, we obtain another total ordering of X called the

reverse Tarry ordering.

As an example, let us suppose that for the tree of Fig. 2.27 we

have the transverse ordering < where

b<cX<d, ex<f, gxh.

(In Fig. 2.27(a) the sets of nodes which are totally ordered by = are

circumscribed by broken lines, and when x;<x; the node x; is

placed to the left of x;.)
Then in the Tarry order the nodes appear as

GD: ees fe se Lae Sak

whereas in the reverse Tarry order we have

CPB ek, tear dS a:

For any tree, these orderings can easily be constructed as follows.

Let us suppose that, starting from the root, we ‘visit’ the nodes of the

tree in the order defined by the following rule, (cf. Fig. 2.27(b)):

Let x, be the node currently being visited. If x, has any successors

which have not yet been visited then proceed to the least of these (with

respect to the transverse ordering =<); otherwise return to the pre-

decessor of x, (unless x, is the root, in which case the procedure is

terminated).

FIG. 2.27(a) FIG. 2.27(b)

Graphs and algorithms 59

Then the Tarry order (or, respectively, reverse Tarry order) is the

order in which the nodes are first (or, aepectivelys last) visited in

this ‘traversal’ of the treet.

Example 2.15. Polish notation. Let G be a tree representing an arith-

metic expression, as in Fig. 2.26(b). Then the listing of the nodes of G in

Tarry order is called the Polish (or prefix) representation of the expression,

while the listing of the nodes in reverse Tarry order is the reverse Polish (or

postfix) representation of the expression. Thus the expression in the usual

(infix) notation

(ax(b—c))+d

depicted in Fig. 2.26(b) appears : Polish notation as

+ xXa—bcd

and in reverse Polish notation as

abe=Xd+.

These notations, introduced by the Polish logician Lukasiewicz, eliminate

the need for parentheses or rules of operator precedence to make the

syntactic structure of an expression clear. The notations are also of practical

importance in connection with program compilation (Aho and Ullman

1977).

Example 2.16. Succession to the English throne. Let X be the set

comprising a reigning English monarch together with all his or her living

descendants, and let G be the graph of the relation ‘is a parent of’ on X. It

will be assumed that no in-breeding has occurred, so that G is a tree. Now

let < be the transverse ordering of G in which, for any two individuals x;

and x, which have the same parent in X, x; < x; if either (i) x; is male and x; is
female or (ii) x; and x; are of the same sex and x; is older than x;. Then the

Tarry order of G is the order of succession to the throne.

Now let us suppose that we are given a complete binary tree

= (X, U), with a transverse ordering <. Then as another exam-

ple of a total ordering of X which is compatible with < we have the

symmetric ordering o, defined by the following rule: if x, is any

+ In computer science these orderings are often called respectively the pre-order

and post-order of the nodes of a tree. However, since the term ‘pre-ordering’ is

commonly used for a relation which is reflexive and transitive (see Section 1.4.3), we

prefer the alternative names, after Tarry (1895) who devised a graph traversal

algorithm of the kind described here.

60 Graphs and algorithms

non-terminal node of G, having successors x; and x; with x; <x;

then
f

ae

x! ox, for every node x; €I” (x),

and
Uy oe

X,ax; forevery mode x; <I” (x;).

As an illustration, for the binary tree of Fig. 2.28, with a trans-

verse ordering < given by

De d Xe, fg, h Xi,

the listing of the nodes in symmetric order is

a Eo “ee fF ee

@)
|
|
|
|

d

|

(e) : |
1

' f
! I
| 1
' !
! l

e c

|
!
1
|
I
|
I
|
|
|
I
\
1

a ES

i
i

1
h g i

FIG. 2.28

The symmetric ordering of a binary tree can easily be obtained by

‘traversing’ the tree in the manner described previously and listing

the names of nodes as they are first encountered (in the case of

terminal nodes) or first revisited (in the case of non-terminal nodes).

Example 2.17. Binary sort trees. Let us suppose that we are given a

written text, and that we require a listing of all the words which appear in

the text, in lexicographic order. One way of solving this problem is to scan

the text from the beginning to the end, and in doing so to construct a

‘labelled’ binary tree, as follows.

Initially, the tree consists of a single node, which is labelled with a ‘blank’

symbol #. Subsequently, when we read each word w of the text, we enter the

tree at its root, and execute the following algorithm:

Step 1 Let x, be the node currently reached, and let /, be its label. If J, is

the symbol ‘#’, go to Step 2; if |, is a word lexicographically inferior

to w, go to Step 3; if I, is a word lexicographically superior to w, go

to Step 4; and if /, is the word w, go to End.

Graphs and algorithms 61

Step 2 Replace the label # of x, by the word w: add two new nodes to the
tree—a ‘left successor’ and a ‘right successor’ of x,—both labelled
with #; then go to End.

Step 3 Advance to the right successor of x,, then repeat Step 1.
Step 4 Advance to the left successor of x, then repeat Step 1.
End

As an illustration, Fig. 2.29 shows the tree generated from the following
lines of ‘The walrus and the carpenter’:

‘The time has come’, the Walrus said,

‘To talk of many things:

Of shoes—and ships—and sealing-wax—

Of cabbages—and kings—

the

cabbagés- many

\ ° sealin # kings ae & \ships

t—pr# #

FIG. 2.29

If we now construct the symmetric ordering of the nodes of the tree (by

traversing it in the manner indicated previously), and we list the labels of

the nodes in this order, we obtain the words of the text in lexicographic

order, with a blank symbol before and after each word. Thus for the tree of

Fig. 2.29 we obtain

and # cabbages # come # has # kings #.. . # to # walrus #.

Binary trees of this kind are often used in compilers, to construct a file (or

‘dictionary’) giving information on the variables whose names appear in a

program text (Knuth 1973).

62 Graphs and algorithms

2.6.3. An algorithm for traversing trees

An algorithm for traversing a binary tree with transverse order-

ing, in the manner indicated in the previous section, is given in Fig.

2.30. It is assumed that the nodes of the tree are arbitrarily

numbered x1, x2,..., xX, and that their successors are specified by

two vectors I and r of order n, whose ith entries /(i) and r(i) are the

indices of the left and right successors of node x;; if x; does not have

a left (resp. right) successor then /(i) = 0 (resp. r(i) = 0).

Step 1 [Initialize] Set »<— k and w<k (where k is the index of the root node).

Step 2 [Advance to left successor, if this exists] If /(v) #0 set v</(v), then set

w<w°v, and then repeat Step 2.

Step 3 [Advance to right successor, if this exists] If r(v) #0 set » < r(v), then set

@ <q °v, and then return to Step 2.

Step 4 [Backtrack] Set w < sub(w). If w is the empty word then go to End.

Step 5 [Has right successor been visited?] If v # r(last(w)) then set v <last(w)

and return to Step 3; otherwise set v < last(w) and return to Step 4.

End

FIG. 2.30

At each stage of the algorithm, v is the index of the node which is

being visited, while w is the word (or string) of indices of the nodes
which lie on the unique path from the root of the tree to the node x,.
The symbolism

OG) oy

represents the concatenation of the index v to the word w (see
Example 1.23); also, for any non-empty word w the notation

last(w)

represents the last symbol in w, whereas

sub(w)

denotes the word obtained from w by deleting its last symbol.
It is easy to obtain a Tarry ordering, reverse Tarry ordering or

symmetric ordering during the execution of this algorithm: in
particular, we can obtain a string o of the node indices in any one of
these orders by inserting the assignment statement

) ORK /\-

Graphs and algorithms 63

where A is the empty word, in Step 1, and inserting the assignment

statement
OoO-aO°v

either at the beginning of Step 2 (to obtain a Tarry ordering) or in

Step 4 (to obtain a reverse Tarry ordering) or at the beginning of

Step 3 (for asymmetric ordering, in the case where the binary tree is

complete).

The application of this algorithm to the tree of Fig. 2.31 is

demonstrated in Fig. 2.32, which gives the successive values of v

) wn
NS) — oO

uo}

2
2
3
4

5 2
3 5 125 42

2 1245
3 425

4 12 45

5 2
4 1 452

5 1
3 3 13 4251
2 12453
3 42513

4 1 4523

5 ip
4 A 45231

FIG: 2°32

64 Graphs and algorithms

and w, and also of the strings or, Orr and as (which eventually

represent the Tarry, reverse Tarry and symmetric orders respec-

tively) after the execution of each step.

To implement the algorithm on a computer, the word w can be

represented conveniently by a vector w = [w(1), w(2),..., w(n) lof

n integers, together with an integer variable t (which at each stage

gives the number of symbols in the word w). The operations on w

and t which correspond to our operations on the word w are listed in

Fig. 2.33:

Reference or assignment statements

In terms of In terms of In terms of

word w vector w and t stack S$

w<d t<0 clear S$

t<et+1
Oowcv | push v onto $

w(t)h<v

w<sub(@) t<t—1 pop S

last(w) w(t) top(S$)

FIG, 2.33

Alternatively, readers with some knowledge of computer science

will perhaps already have visualized these operations in terms of a

stack (Knuth 1968). This is a store which holds a list or sequence of

items of data, with all insertions and deletions being made at one

end (the top of the stack), in rather the same way as one adds or

removes plates from a stack of these; the action of adding an item d

of data to a stack is described as pushing d onto the stack, whereas

the removal of the top item is described as popping the stack. (For

obvious reasons, a stack is sometimes also called a /ast-in-first-out

store or a push-down store). The stack operations corresponding to

our operations on the word w are also listed in Fig. 2.33.

2.7. Backtrack programming (or ‘tree-search’) algorithms

Many combinatorial problems involve the determination of all

the elements of a set whose characteristic property is specified. For

instance, we may wish to find all the elementary cycles or all the

elementary paths between two particular nodes of a given graph. In

Graphs and algorithms 65

this section we shall present a systematic method of solving prob-
lems of this kind. To introduce the method, it will be convenient to

consider first a particular problem.

2.7.1. The determination of elementary paths

Let us suppose that for a given graph G = (X, U), we wish to find
all the elementary paths from one specified node x, to another
specified node x,. (It will be assumed here that the nodes x, and x,

are distinct, and that x, is accessible from x,.) We shall denote the

set of required paths by M.

Now let S, = {Xs,, Xs,,---,Xs,} be the set of all nodes which are

successors of x, in G, and which are also converse-accessible from

X, in the subgraph H of G obtained by deleting x,. Also, for

i=1,2,...,k, let M; denote the subset of paths of M in which the

first arc is (x,, Xs,). Then the set

{M,, Mo, . o. ,M,}

is a partition of M. It follows that if we determine the set S, (which

can easily be done, since the required converse-accessible set of x,

can be found by the labelling algorithm of Fig. 2.19), we can

‘decompose’ the original problem of finding M into k ‘sub-prob-

lems’, involving the separate determination of each of the blocks

M,, M2. .2, MM.

If we now consider the problem of finding one of these blocks M,,

we observe that either

(i) Xs, =Xg, in which case M; contains only one path, which

consists of the arc (x,, x,), or

(ii) xs, #Xq, in which case M; comprises all the paths obtained by

concatenating the arc (x,, x,,) with each path in the set M; of

elementary paths from x,, to x, on H.

In case (i) the problem of finding M; is trivial; in case (ii) the

problem reduces to the determination of the set of paths M; on H,

which is a ‘smaller version’ of the original problem and which can be

decomposed in a similar manner. Thus, by repeated decom-

positions, we can obtain all the required paths.

As an illustration, let us consider the problem of finding all the

elementary paths from x2 to x4 on the graph of Fig. 2.34. The

successive stages of the decomposition and solution of this problem

are depicted by the tree of Fig. 2.35. The root of this tree represents

66 Graphs and algorithms

4)

FIG. 2.34

the original problem: inside the root node we have drawn in solid

lines the subgraph H of the original graph G which is obtained by

removing the node x, = x2; the asterisks indicate the nodes which

belong to the converse-accessible set of the node x, = x4 on H, and

the broken lines indicate the arcs from x2 which terminate on these

nodes. In this particular case $2 ={x1, x3}, so the original problem

can be decomposed into two sub-problems, involving the separate

determination of the elementary paths from x, to x4, and from x3 to

x4, on the subgraph H;; these sub-problems are represented by the

two tree nodes of rank 1, in which the arcs already assigned to

elementary paths are also indicated, by bold lines. The descendants

of these tree nodes represent the subsequent decompositions of the

sub-problems, and in particular the terminal nodes depict all the

trivial sub-problems (and solutions) eventually obtained.

For obvious reasons, the decomposition and solution of a

combinatorial problem in this manner is often called a tree search.

Implementation of the tree search. With regard to the order in which

the sub-problems should be considered after decomposing the

original problem we might decompose all the sub-problems which

appear as nodes of rank 1 in the search tree, then decompose all the

sub-problems of rank 2, and so on; a procedure of this kind is

sometimes called a ‘breadth-first search’. However, it is evident that

if the original graph has many nodes and arcs, the number of

sub-problems produced may be very large, in which case a breadth-
first search would involve recording a vast amount of data.

As an alternative, we may construct all the sub-problems by

repeated application of the following rule:

At every stage decompose one of the most recently
created sub-problems which remain to be decomposed.

Graphs and algorithms 67

FIG. 2.35

68 Graphs and algorithms

This rule has a simple graph-theoretic interpretation: it states

that the problems are to be decomposed in the Tarry order asso-

ciated with some transverse ordering =< of the search tree. (The

transverse ordering <, which corresponds to a total ordering of the

set of sub-problems obtained by each decomposition, can be chosen

arbitrarily.) Since the decomposition of the sub-problems in a Tarry

order effectively involves a traversal of the search tree, this pro-

cedure is called a backtrack programming or depth-first search

method. It has the advantage that the only problems which need to

be retained at any stage are those which lie on the path from the root

of the search tree to the tree node currently being visited, since any

other problems which remain to be solved will eventually be derived

from problems on this path.

An algorithm for listing elementary paths. A concise description of

the above path-finding method is given in Fig. 2.36(a). In this

Step 1 [Initialize] w <p, v<p.
Step 2 [Construct list S, of successors] Construct S,, by the procedure of Fig.

2.36(b).

Step 3 [Have all successors been explored? If not select one] If the list S, is empty
then go to Step 5; otherwise let k be any integer in S,, and delete this
integer from S,,.

Step 4 [Destination reached? If so, then print path, otherwise extend path] If
k =q then print the word w © q and return to Step 3; otherwise w<w ok
v<k and return to Step 2.

Step 5 [Backtrack] w < sub(w); if o AA then v<last(w) and return to Step 3.
End

>

FIG. 2.36(a)

Step 2.1 [Initialize labelling procedure] Clear the list T. Set c(i)<0 and d(i)<0
for /=1,2,...,n. For each index i which appears in w, set c(i)< 1.

Step 2.2 [Label x,] Enter the index q inthe list T and set c(q)<1landd(q)<1.
Step 2.3 [Label the predecessors of a labelled node] Let r be any index in T.

Delete r from T. For each index i which appears in L, and for which
c(i) =0, enter index i in T and set c(i)<1 and d(i)<1.

Step 2.4 [Have all ancestors of Xq been labelled?] If T is not empty return to Step
28:

Step 2.5 [Form the list S,,] Clear S,. Enter in S, every index i which appears in L*
and for which d(i) = 1.

FIG. 2.36(b)

Graphs and algorithms 69
= a ia

Output
Baan w L Vv k S; S> S3 | S4 Ss string

ali ee |
1 2 2

2 13

3 1 3

4 al 1

2 35

3 3 5

4 213 3

2 4

3 4 od
4 2134
3

5 21 1

3 5 co)

4 215 5

2 3

3 3 d
4 2153 3

2 4

3 4 d
4 21534

3

5 PAWS) 5

3

5 2A 1

3

5 2 2

3 3 ¢
4 23 3

D 4

3 4 d
4 234

3

5 2 7

3

jsigeca ine lab ey Sl ail a i elas

FIG: 2.37

algorithm, the symbols p and q represent the indices of the initial

and terminal nodes of the required paths. At each stage, w is the

string of indices of the nodes on the partially formed path from x, to

Xq and v is the index of the last of these nodes. (In a programmed

version of the algorithm, the string w can be represented

70 Graphs and algorithms

conveniently by a vector and pointer, or by a stack, as indicated in

Fig. 2.33.) In Step 2, the list S$, comprises the indices of the nodes of

the set
* _—

Tal) (Ty(xq)

where I'G(x,) denotes the set of successors of x, on the original

graph G and Taxa) is the converse-accessible set of x, on the

subgraph H of G obtained by removing all the nodes whose indices

appear in w.

The application of this algorithm to the problem of Fig. OE oe

demonstrated in Fig. 2.37, which gives the values assigned to

variables at the execution of each step.
A procedure to compute S, (in Step 2) is also given, in Fig.

?.36(b). Here the steps 2.1-2.4 construct the characteristic vector d

of the set Pats), by the labelling method of Section 2.4.4; the final

step 2.5 performs the intersection of Tat.) with the set 'G(x,), and

enters the indices of the nodes of the resulting set in the list S,. In

this procedure it is assumed that the original graph has been defined

by specifying for each node x; two lists L; and L; , comprising the

indices of the successors and predecessors of x; respectively.

Pe TN general description of backtrack programming

The general concept underlying all backtrack programming

methods is that which Polya describes as ‘specialization’ of a

problem (Polya 1957). Let us consider the problem of determining

all the elements of some finite set So, whose characteristic property

is specified: we shall call this ‘problem Po’. To solve the problem we

first use some ‘specialization rule’ to reduce Po to a number of

sub-problems P;, P2,..., P, where each sub-problem P; involves

the determination of some subset S; of So. The specialization rule is

chosen in such a way that each sub-problem P; is a smaller version of

the original problem Po. Obviously, it is also necessary for every

element of So to appear in at least one of the subsets S;, so that by

solving all the sub-problems we obtain every element of So. If

possible, the sets S;, S2,..., S; should also be pairwise disjoint, for

otherwise some element of So will be obtained more than once, and

the recognition of repeated elements is troublesome.

After specializing the problem Po we specialize each of the

sub-problems P;, P2,..., Px, and so on, until the original problem

Graphs and algorithms 71

Po is reduced to a collection of sub-problems whose solutions are

immediately obtainable.

Quite generally, a specialization process of this kind can be

regarded as a tree, in which each node represents a problem (or the

corresponding subset of So to be determined). More precisely, the

root of the tree represents the original problem Pp (or the required

set So), and for any node x; of the tree, the successors of x; represent

the sub-problems (or subsets of So) obtained by the specialization of

the problem at x;; while each arc (x;, x;) represents the constraint

whose addition to the problem at x; reduces it to the problem at x;.

The terminal nodes represent the trivial sub-problems eventually

obtained by the specialization process, whose solutions yield all the

required elements of So.

To solve a particular problem, the first step is to devise an

appropriate specialization rule; a backtrack programming

algorithm can then be constructed, by devising a procedure to

traverse the search tree determined by the specialization rule.

2.7.3. The determination of Hamiltonian cycles

A cycle of a graph is said to be Hamiltonian if it traverses every

node of the graph exactly once; in the same way, a circuit of a simple

graph is said to be Hamiltonian if it traverses every node of the

graph exactly once.

To give another demonstration of a tree search, we shall now

consider the problem of finding all the Hamiltonian cycles of a given

graph G =(X, U). It will be assumed that G has at least two nodes,

and no loops.

To present the search method, it will be convenient to view this

problem as the problem of finding every subset V of the arc set U of

G such that

(i) in the partial graph H = (X, V) of G, every node has exactly

one predecessor and exactly one successor, and

(ii) the partial graph H = (X, V) is strongly connected.

We shall denote by M the set of all subsets of U which satisfy these

conditions.

Now it is evident that no partial graph of G can be strongly

connected unless the graph G is strongly connected. Therefore, as a
*

preliminary step we may construct the accessible sets I'*(x;) and

72 Graphs and algorithms

iene of some node x; of G (by the labelling method of Fig. 2.19)

and if we find that I'*(x,) # X or I'-(x,) #.X, we know that M=4¢
and the search can be terminated.

If we find that G is strongly connected we may next check

whether G has exactly two nodes. If so, then M = {U} and again the

problem is solved. Otherwise, the problem can be decomposed into

two ‘sub-problems’, which are smaller versions of the original one,

in the following manner: Let u be any arc of G, and let

M,={VeM|uceV} and M,={VeEM|uE V}.

It is evident that

M,0M,=M-_ and M,7AM;=¢.

These two subsets M,, and M; of M can be determined separately,

as follows.

(i) The determination of M,,. Let the initial and terminal end-

points of the arc u be x; and x; respectively. Then we define the

contraction of G with respect to u as the graph G,, obtained from G

by (a) removing all the arcs incident from x; and all the arcs incident

to x;, and also the arc (x;, x;) if it exists, and then (b) coalescing the

nodes x; and x;. As an illustration, Fig. 2.38(b) shows the contrac-

tion of the graph of Fig. 2.38(a) with respect to the arc ‘a’. It is

evident that for each set VeM,, the arc set V—{u} forms a

Hamiltonian cycle on G,,; and conversely, for every arcset V’ which

forms a Hamiltonian cycle on G,, the arc set V’U{u} forms a

Hamiltonian cycle on G. Thus the problem of finding M,, reduces to

the problem of finding the Hamiltonian cycles of G,,.

(ii) The determination of M,. It is evident that the members of M,

are the Hamiltonian cycles of the partial graph G; of G obtained by

removing the arc u.

FIG, 2.38(a) FIG. 2.38(b)

Graphs and algorithms 73

From these arguments it follows that the problem of finding the
Hamiltonian cycles of G can be decomposed into two sub-prob-
lems, involving the separate determination of the sets of Hamil-
tonian cycles on the graphs G,, and G,. These sub-problems may
themselves be decomposed, repeatedly, until all the problems
become trivial (in that their graphs are either not strongly connec-
ted, or have only two nodes).

As an illustration, Fig. 2.39 depicts a search for the Hamiltonian
cycles of a 5-node graph (which is drawn inside the root node of the
search tree). The label on each tree arc indicates the arc u of G
which is used to decompose the problem at each stage. (In this
example we have always chosen the arc of G whose name appears
first in the alphabetic order, but any other arc could have been
chosen.)

It will be. observed that, unlike the specialization method
employed for finding elementary paths, the specialization method
used here can create sub-problems for which the associated subsets
of M are null. (For instance, it can be seen on Fig. 2.39 that as a
result of two specializations, we create the problem of determining
the set

{VeM|aec V andcé€ V},

which is null.) Thus the search tree can have terminal nodes which

do not represent Hamiltonian cycles.

The exploration of ‘void’ problems of this kind can involve a great

deal of work, and therefore it is important to eliminate them at an

early stage, if possible.

In this connection, it is evident that if a graph G obtained at any

stage has any node x; such that p (x;)=1 (resp. p (x;)=1), then

every Hamiltonian cycle of G must contain the arc u which is

incident from x; (resp. incident to x;), and therefore M = M,, and

M,=¢. An arc u of this kind is called an essential arc of G. It is

profitable, before each specialization of a problem, to search for an

essential arc; if one is found, we perform the corresponding

contraction immediately, then perform the test for strong connec-

tivity, search for another essential arc, and so on until no further

simplifications of this kind can be made. In Fig. 2.39 the broken

lines indicate the simplifications obtained by contracting essential

arcs.

74 Graphs and algorithms

V=fa,c,e,h,i} ifeV ifeV fev
|

g g
1 @——®

V={a.c.figl} No Hamilton cycles V=\b,d,f.g,j}

FIG. 2.39

Graphs and algorithms 75

For large graphs, the test for strong connectivity is also useful,
in detecting some of the void sub-problems at a relatively early
stage. (In fact this is the only reason for performing it, before the
number of nodes of a graph has been reduced to two.) Some other
ways of eliminating void sub-problems are discussed by Rubin
(1974).

Several more examples of backtrack programming will be given

in later chapters.

2.8. The time complexity of algorithms

In designing an algorithm, we must obviously ensure that it will be

finite (i.e. that it will terminate in a finite number of steps) and

correct (i.e. that it will give the required output and no other output).

However, for practical purposes it is also important to consider the

amount of work which will be involved in its execution; for instance,

if we envisage programming an algorithm for a computer, we would

like to have some idea of its running time.

It is obviously very difficult to predict the running time of an

algorithm precisely, for it will depend not only on the characteristics

of the problem to be solved, but also on the precise way in which the

algorithm is programmed, and the instruction execution speeds of

the computer which is to be used. However, as we shall demon-

strate, it is often possible to estimate the rate of growth of the

running time, for larger and larger instances of a problem.

To obtain this information, we need to associate with a problem

an integer s, called the problem size, which is a measure of the

amount of input data. For example, the size of a graph-theoretic

problem might be the number of nodes of the graph, or the number

of its arcs. Then for each step of the algorithm, we establish the

ordert of the time needed to execute it, as a function of s, and we

also determine the number of times that the step will be repeated,

again as a function of s; with this information we can determine the

order of the running time of the complete algorithm, as a function

f(s) of the problem size. The function f(s) is described as the

asymptotic time complexity of the algorithm.

+ A function f(s) is said to be of order g(s), or in symbols f(s) is O(g(s)), if there

exists a constant k such that f(s) <kg(s) for all but some finite (and possibly empty)

set of non-negative values of s.

76 Graphs and algorithms

Of course, this function does not define the running time LS

cisely: If we assert that the running time ¢ of an algorithm is O(s’),

we are only saying that this time is expressible in the form

2,
t=agtaist+a2s .

However, the order of the running time does indicate the rate of

increase of running time with problem size. For instance, if we can

establish that the running time of an algorithm is O(s~), then we

know that for large problems, a twofold increase in problem size will

increase the running time by a factor of four. Furthermore, this

result will hold for any ‘straight-forward’ programming implemen-

tation (without clever tricks or silly inefficiencies), and it will not be

affected by changes in computer execution speeds; program details

and execution speeds affect the coefficients ao, a;, and a>, but not

the order of the running time.

Essentially, it is the asymptotic time complexity of an algorithm

which determines how large a problem it can solve. To illustrate this

point, if a graph-theoretic algorithm has a running time of order 2”,

where n is the number of nodes (and we shall encounter several

problems for which the best algorithms available have running

times of this order) then an increase of 10 in the number of

nodes—say from. 10 to 20, or from 20 to 30—will increase the

running time by a factor of 2'°, or approximately 1000. An

algorithm whose complexity is of this exponential form? can only

solve very small problems, even on the fastest computers. (We

observe that for such an algorithm, even a tenfold increase in

computer speed only adds three to the size of problem which can be

solved in a given time, since 10 ~2°*.)

The determination of complexity. Although it is not necessary to
consider such details as instruction timing, we cannot establish the
complexity of an algorithm until we have specified the nature of the
machine which is to execute it, and the types of operations which
this machine can perform. Here, we shall suppose that our
algorithms are to be executed on a ‘conventional’ digital computer
(rather than say, a machine equipped with an associative memory,
or some abstract machine capable of unbounded parallelism).

1 A function f(s) is exponential if there exist constants c,>0, k,>1, C2>0 and
ky>1 such that cyk} <f(s)<ck3 for all but a finite number of values of s.

Graphs and algorithms 77

However, to simplify the analysis it will be convenient to suppose
that the random access memory of our computer is unlimited, and
that the computer words can store integers of any required size.

To determine the order of the running time of an algorithm on
this machine, we will assume that the algorithm is programmed for it
in an obvious, straight-forward way. Of course, if an algorithm
contains an operation involving objects such as sets or graphs, which
can be stored in the memory of a computer in several different ways,
it is usually necessary to ‘refine’ the algorithm by specifying which
types of data structures are to be used to define these objects, as the
choice of data structure may affect the order of the running time.

Example 2.18. Complexity of the tree-traversal algorithm. Let us consider

the application of the algorithm of Fig. 2.30, to a complete binary tree

which has v nodes. If the word w is represented by a vector (as indicated in

Fig. 2.33), then for each of the steps 1-5 of the algorithm, the time needed

for a single execution of the step is independent of n. With regard to the

number of times that each step is executed, it is evident that step 1 is

executed only once; each of the steps 2-4 are obeyed once for each node of

the tree, or n times in all; and step 5 is executed twice for each non-terminal

node, that is n—1 times in all (see Exercise 2.5). Thus the running time

attributable to step 1 is bounded by a constant and the running times

attributable to each of the other steps is O(n); hence the total running time

of the algorithm is O(n).

With many algorithms, the running time can be substantially

different for different problems of the same size. If so, we may wish

to know the maximum order of the running time, taken over all

problems of a given size; this is called the worst-case complexity.

Alternatively we may try to determine the ‘average’ order of the

running time over all problems of a given size, which is called the

expected complexity. The worst-case complexity is usually easier to

find than the expected complexity; to obtain the latter we need a

realistic probability distribution of the inputs, which may be very

hard to specify.

Example 2.19. Complexity of an algorithm for finding the connected

components of a graph. Let us determine the order of the running time of the

algorithm of Fig. 2.20, when applied to a simple graph which has n nodes

and e edges. Here, the time taken to execute step 1 is O(n), and it is

executed once only; hence the running time attributable to this step is O().

78 Graphs and algorithms

The execution times of steps 2,3, and 5 are each bounded by-a constant,

and these steps are performed n times, so the running time attributable to

them is also O(n). For the steps 4.1-4.8, the execution times are all

bounded by constants; steps 4.1, 4.2, and 4.8 are executed once for each

component, and therefore at most n times; steps 4.3 and 4.7 are executed

once for each node, or n times in all; step 4.4 is executed o(x;) + 1 times for

each node x; of the graph, or 2e +n times in all, and steps 4.5 and 4.6 are

performed twice for each edge, or 2e times in all. Thus, the time attribut-

able to each of the steps 4.1, 4.2, 4.3, 4.7, and 4.8 is at worst O(), the time

attributable to step 4.4 is O(e+n), and the time attributable to steps 4.5

and 4.6 is O(e). The running time of the algorithm is therefore O(e +n).

As a final example we shall establish a bound on the running time

of a backtrack programming algorithm. For algorithms of this kind

the running times typically increase exponentially with problem

size, and this severely limits their usefulness. However, for some

problems we do not have any alternative methods, and

consequently there is great interest in techniques which attenuate

the exponential growth in running time, for instance by ‘pruning’

branches of a search tree which cannot lead to solutions. Here

complexity analyses may be helpful, in providing some indication of

the effectiveness of techniques of this kind.

Frequently, the cardinality of the set of elements to be generated

by a backtrack algorithm increases very rapidly with problem size

(for instance, it is easy to see that an n-node complete and sym-

metric graph has (nm — 1)! Hamiltonian cycles.) In such a case it is

often most convenient, and informative, to determine the running

time in terms of measures of both the input and the output data.

Example 2.20. Complexity of the backtrack algorithm for listing elemen-
tary paths. For the algorithm of Fig. 2.36(a), it is convenient to establish a
bound on the running time in terms of n (the number of nodes of the input
graph), a (the number of arcs of this graph), and r (the number of
elementary paths from x, to x,).

Let us consider first the time taken to execute each step of the algorithm
once. For step 1, the execution time is obviously bounded by a constant.
The execution time for step 2, as defined in Fig. 2.36(b), can be determined
by arguments very similar to those used in the previous example; we leave it
as a simple exercise for the reader to verify that this procedure has a running
time bound of O(a +n). The execution times of steps 3, 4, and 5 are each
bounded by a constant (we ignore the time taken to print the results, in step
4). These execution times are listed in row (i) of Fig. 2.40.

Graphs and algorithms 79

Step 1 2 3 4 5

(i) Maximum time for const. O(at+n) const. const. const.
a single execution

(ii) Maximum number const. O(nr) O(nr) O(nr) O(nr)
of executions

(iii) Maximum running const. O((a+n)nr) O(nr) O(nr) O(nr)
time

FIG. 2.40

With regard to the number of executions of each step, we recall that the

algorithm traverses a search tree, whose terminal nodes represent the

required elementary paths (see, for instance, Fig. 2.35). The search tree

obviously has exactly r terminal nodes and, since the required elementary

paths cannot be of order greater than n — 1, the tree has at most (n —2)r+1

nodes altogether. Now from the definition of the algorithm it is clear that

step | is executed only once; step 2 is executed once for each non-terminal

node of the tree; step 3 is executed once for every node other than the root,

with S, non-empty, and also once for every non-terminal node, with S,

empty; step 4 is executed once for every tree node other than the root; and

step 5 executed once for every non-terminal node. On this basis, we obtain

the bounds on the numbers of executions given in row (ii) of Fig. 2.40.

Combining the results in rows (i) and (ii) of this table we obtain bounds on

the running time attributable to each step (these are listed in row (iii)), and

hence we find that the total running time of the algorithm has a bound

O((a+n)nr). Of course in the worst case, r is itself an exponential function

of n.

Easy and hard problems. An algorithm is said to be polynomial-

bounded if its running time is bounded by a function of order s“,

where s is the problem size and k is a constant. In the context of

combinatorial computing, an algorithm is regarded as being fast or

efficient if it is polynomial-bounded, and inefficient otherwise.

Accordingly, a problem is said to be easy if a polynomial-bounded

algorithm has been found for it.

The association of polynomial-boundedness with computational

efficiency has a theoretical justification in that, above a certain

problem size, a polynomial-bounded algorithm will always have a

smaller running time than a non-polynomial-bounded one. Of

course, for very small problems the non-polynomial algorithm

80. Graphs and algorithms

could have a better performance, but experience indicates that this

is not likely to happen in practice.

As we shall see in later chapters, fast algorithms are available for

many graph-theoretic problems, but there are a number of

important graph problems for which no fast algorithms have ever

been found. Among these more difficult problems, we have

(1) The clique problem: given a simple graph and an integer k,

does the graph have a complete subgraph with k nodes?

(2) The feedback node set problem: given a strongly connected

graph and an integer k, is it possible to remove k nodes from the

graph in such a way as to render it acyclic?

(3) The feedback arc set problem: given a strongly connected

graph and an integer &, is it possible to remove & arcs from the

graph in such a way as to render it acyclic?

(4) The Hamiltonian cycle problem: does a given graph contain a

Hamiltonian cycle?

(5) The Hamiltonian circuit problem: does a given simple graph

contain a Hamiltonian circuit?

(6) The chromatic number problem: given a graph and an integer

k, is it possible to paint the nodes of the graph with k colours, in

such a way that no two adjacent nodes are of the same colour?

In principle, all these problems can be solved by tree-search

methods, but large instances of the problems are at the moment

intractable.

In fact, all the problems listed above belong to a larger class of

combinatorial problems (called the ‘non-deterministic polynomial-

time complete’ or NP-complete problems), which have been proved

to be equivalent, in the sense that either all or none of them can be

solved by fast algorithms. (More precisely, it has been shown that

each NP-complete problem can be transformed into any other

NP-complete problem in polynomial time; clearly, if a problem is

easily transformed into an easy problem, then it is also an easy

problem, from which it follows that either the NP-complete prob-

lems are all easy or none of them are easy.) Since many of these

problems have been studied intensively for decades, and no fast

algorithms have been found for any of them, it seems likely that no

such algorithms exist.

A problem is said to be hard if the existence of a fast algorithm for

its solution implies that the NP-complete problems are easy. Of

Graphs and algorithms 81

course, the NP-complete problems themselves are hard. Some

combinatorial optimization problems are also hard, one notorious

example being the Travelling salesman problem: given a graph in

which every arc has a specified length, find a Hamiltonian cycle of

minimum length. This problem does not belong to the class of

NP-complete problems, but it is obvious that if we had a fast

algorithm to solve it, this algorithm could be used to decide quickly

whether a given graph has any Hamiltonian cycles at all (see

problem (4) above).

Uses and abuses of complexity theory. Quite apart from their intrin-

sic interest to computer scientists, the techniques and results

achieved in complexity analysis are very helpful to those involved in

the development of algorithms for practical problems. They enable

us to sharpen our otherwise purely intuitive and rather vague

notions of the ‘efficiency’ of algorithms, of ‘easy’ and ‘hard’ prob-

lems, and they draw attention to the importance of the choice of

data structures in implementing graph-theoretic methods.

Certainly, in developing any graph algorithm one should establish

its worst-case complexity, and when an algorithm cannot be

guaranteed to run in less than exponential time one should take a

cautious view of its practical feasibility.

At the same time, it is important not to take the worst-case

complexity for the expected complexity, and to remember that the

worst-case complexity is a measure of the asymptotic performance

of an algorithm, as the size of its input goes to infinity. There is a

tendency to regard an algorithm with a running-time bound of

O(s*) as being ‘better’ than one with a running-time bound of

O(s af)? and yet in practical situations, the latter may invariably have

a better performance. Again, in practical applications involving

very ‘sparse’ graphs, the running times of some backtrack

algorithms are found to grow as low-order polynomial rather than

exponential functions of problem size.

Exercises

2.1. An Euler cycle of a graph is a cycle which traverses every arc of the

graph once and once only.

Prove that a connected graph G = (X, U) has an Euler cycle if and

only if p*(x;)=p (x;) for all x; ¢X.

82

PLO

23.

2.4.

25%

2.6.

Pele

Graphs and algorithms

Three jealous husbands and their wives want to cross a river. A boat is

available, but it is so small that it can only take two people at a time.

How can all six people make the crossing, if the husbands will not

allow their wives to stay without them in company where other men

are present?

Prove the following:

(i) a graph G =(X, U) is connected if and only if, for any partition
{X,, X>} of X, there exists an arc with one endpoint in X, and the other

endpoint in X2, and

(ii) a graph G =(X, U) is strongly connected if and only if, for any
partition {X,, X2} of X, there exists an arc (x,, x;) with x;¢X, and

x; € X.

Prove that in an acyclic graph, the rank of a node is equal to the

maximum number of arcs in a path terminating on that node.

Prove that in a complete binary tree, the number of terminal nodes is

one more than the number of non-terminal nodes.

Let G be a tree, equipped with a transverse ordering =. Prove that if

x, and x; are nodes of G, the node x; is an ascendant of x; if and only if x;

precedes x; in the Tarry order and x; follow x; in the reverse Tarry
order associated with =.

Given a graph G = (X, U) we say that a subset Y of X is a feedback

node set of G if every cycle of G traverses at least one node in Y.

(i) Develop a tree-search method to find the feedback node sets of a

graph, and apply it to the graph of Fig. 2.1.

(ii) In practical situations we sometimes require only one feedback

node set, of minimum cardinality. (For instance, in the diagnosis of

faults in logic circuits, a feedback node set of minimum cardinality

defines an appropriate set of ‘test points’ at which to monitor a circuit’s

behaviour.) Modify your search method, to determine such a set as

efficiently as possible.

Additional notes and bibliography

The works of Ore (1962) and Berge (1976) are important reference texts
on graph theory, giving a rigorous treatment of the subject; for an interes-
ting historical account of its development, see Biggs, Lloyd, and Wilson
(1976). Guidance on the choice of data structures and the development of
algorithms for manipulating graphs on computers is given by Knuth (1968)
and Aho, Hopcroft, and Ullman (1974).

Graphs and algorithms 83

The use of trees in sorting and searching is discussed in detail by Knuth
(1973).

For general discussions of backtrack programming techniques, with
examples, see Walker (1960), Golomb and Baumert (1965), Wells (1971),
and Fillmore and Williamson (1974). Floyd (1967) describes techniques for
developing backtrack algorithms.

Backtrack programming is essentially recursive, and backtrack
algorithms can be defined very elegantly in recursive form; see Aho,
Hopcroft, and Ullman (1974), and also Tarjan (1972). Bitner and Reingold
(1975) discuss the implementation of backtrack algorithms using macros.

With reference to the examples used in Section 2.7, a backtrack

algorithm for finding elementary paths has been published by Kroft (1967);

it is simpler than the algorithm of Section 2.7, but it is usually much less

efficient. The problem of finding all the elementary cycles of a graph has

been studied extensively, because knowledge of the cycles is useful in

optimizing computer programs; backtrack algorithms for finding the cycles

(rather similar in principle to the algorithm of Section 2.7) have been

developed by Tiernan (1970), Tarjan (1973), Johnson (1975), Read and

Tarjan (1975), Tsukiyama, Shirakawa, and Ozaki (1975), and Szwarcfiter

and Lauer (1976). The generation of Hamiltonian cycles by backtrack

programming is discussed by Roberts and Flores (1966) and Rubin (1974).

Kaufmann and Pichat (1977) have made a general study of path algorithms

using stacks.

Tree-search methods have been extended to the branch-and-bound

methods of solving discrete optimization problems (Lawler and Wood

1966; Mitten 1970; Garfinkel and Nemhauser 1972). Branch-and-bound

methods of solving the travelling-salesman problem in particular are

described by Little, Murty, Sweeney, and Karel (1963) and Bellmore and

Nemhauser (1968); algorithms for finding a shortest Hamiltonian circuit on

a simple graph are given by Held and Karp (1970, 1971). See also Bellmore

and Hong (1974).

For a lucid introduction to the subject of computational complexity see

Lawler (1976a), and for a more detailed treatment see Aho, Hopcroft, and

Ullman (1974). The complexity of graph-theoretic problems has been

studied extensively by Karp (1972, 1975a,b). See also Corneil (1974) and

Knuth (1975).

Feedback node sets (as defined in Exercise 2.7) are also important in the

formal verification of computer programs; backtrack programming

methods for obtaining these sets are described by Guardabassi (1971) and

Smith and Walford (1975).

3 Path problems

3.1. Introduction

PROBLEMS involving the determination of paths take many

different forms. For instance, we have already encountered the

problem of finding the ‘critical’ or longest paths in an activity graph.

Later we shall present transportation problems in which we require

‘least-cost’ or shortest paths through a network, from the points

where a commodity is produced to the points where it is consumed.

Again, in transmitting messages through a communication network

we may have to find a path of maximum reliability between two

points, given the reliabilities (that is, the probabilities of successful

operation) of the individual links.

These are all examples of ‘extremal’ path problems, i.e. problems

in which each arc of a graph has a real number associated with it

(representing for instance an activity duration, transit cost, or

reliability), and in which we seek a path for which some function of

the arc parameters is either maximized or minimized. Sometimes
we also encounter path enumeration problems—such as the prob-
lem of finding all the elementary paths from one node to another,
which arises for instance in testing computer logic circuits.

In this chapter we shall first present an algebraic structure—a
‘path algebra’—which can be used to formulate and solve a wide
variety of path problems. We shall then consider graphs whose arcs
are ‘labelled’ with elements of a path algebra, which may be for
instance real numbers, or words on some alphabet. It will then be
shown that many path problems—including all those mentioned
above—can be posed as a problem of solving a set of simultaneous
equations in a path algebra. We shall then derive some direct and
iterative methods of solving such equations, thereby obtaining
different path-finding algorithms.

3.2. An algebra for path problems

3.2.1. Definition of a path algebra

We define a path algebra as a set P equipped with two binary
operations v and - which have the following properties.

Path problems 85

(i) The v operation is idempotent, commutative, and associative:

XVX=X forallx <P, (3.1)

xVyY=yvx forallx, y €P, (3.2)

(xvy)vz=xv(yvz) forallx,y,zeP. (3.3)

(ii) The - operation is associative, and distributive over v:

(x-y):-z=x-(y-z) forall x, y,z €P, (3.4)

Keky Vz) =4xey) VK Zz)
forailx, y, Ze. (3.5)

(yz) = yx) Viz x)
(iii) The set P contains a zero element @ such that

OVX=xX forallx €P, (3.6)

d:x=b¢=x:¢d forallx €P, (3.7)

and a unit element e such that

ex=x=x-e- forallxeP. (3.8)

The operation v is called the join operation of P, and an element

xvy is called the join of x and y. The operation - is called

multiplication, and an element x - y is described as the product of x

and y (in that order). For simplicity, we may denote a product x: y

by xy.

3.2.2. Some examples of the path algebra

Eight concrete examples of the path algebra are given in Table

3.1. For each example this table defines the set P, its join and

multiplicative operations, and the zero and unit elements of P. The

practical applications, which are also indicated in the table, will be

discussed in more detail later in this chapter.

The algebra P, will be recognised as the two-element Boolean

algebra. (In fact, any distributive lattice which has least and greatest

elements can be regarded as a path algebra, the meet operation of

the lattice playing the role of multiplication.)

The examples P,—Ps; arise in connection with ‘extremal’ path

problems of the kind described in the introduction. In P, for

instance, the set P is the set R of real numbers, augmented by an

element ‘00’; the join operation is defined by

x vy =min {x,y} forall x, yER,

MVC =e for all x € P,

Path problems 86

syjyed
Arejuowieyo

S
u
s
i
]

V

p

{
A
a
p

x
a
X
|
P
o
X
}

(A
O
x
)
q

q
d

8
q

syjed
ojduiis

s
u
n
s
]

Vv
?

{
A
a
p

x
a
X
x
|
g
a
p
o
X
x
}

A
M
X

(S)G
L
d

syjed
je

s
u
n
s
]

V

P

{
A
a
p

x
a
X
|

p
o

X}

A
R
N
G

(
O
G

Pali

Aytoedeo
jsojye013

Josyq@g
0

{A ‘x} r
u

{4 ‘x} x
u

{oo} A
(
0
 =x
|
y
>

x}

S
q

syjed
o[qel[ol

I
s
o

I
0

x
X

{4 ‘x} x
e

{
T
=
x
5
0
|
u
N
2

%}

v
a
i

syyed
(jsasuoy)

[
R
O
W
S

0
o
o
—

A
+
x

{4 ‘x} x
e
u

{oo-} O
Y

&
d

syjed
jsoJ1OYS

JO
UOT}BUIWIO}I9G

0
o
o

A+Xx
{4 x

}
 uru

{
o
}

Ney
t
g

$}JOS
J[QISs909e

JO
U
O
T
B
U
I
W
I
I
D
I
9
G

I
0

{A “x} urut
{A ‘x} xeUul

{I ‘o}
M
2
 /

u
o
y
j
e
s
y
d
d
y

a
P

Arex!
A
N
X

d

lee
S
r
a

Path problems 87

and the multiplicative operation is defined by

xX-y=xty for all x, y ER,

x-0C=0=0:x forallxeP.

It is easily verified that P obeys all the laws (3.1)—(3.8), the zero of P
being 00, the unit element being the number 0.

The algebras Ps—Ps are derived from the linguistic concepts

introduced in Example 1.23, as follows:

(i) Let = be any alphabet, let =* be the set of all words over >, and

let A(=*) be the power set of =*. (We recall that the elements of

Y(=*), which are the subsets of =*, are called languages over >.)

For any two languages X, Y € P(=*), we define the join X v Y by

XVY=XUY

and we define the product X - Y by

X:-Y={youlyeX andwe Y}

where y ° & denotes the concatenation of the words y and w. (Asan

illustration, if X={A,a,ba} and Y-={aa,b} then X-Y=

{aa, b, aaa, ab, baaa, bab}.)

It is easily verified that the set A(=*) with these operations is a

path algebra, whose zero element is the null language (or nullset) ¢,

and whose unit element is the language A={A}, where A is the

empty word. (This is the algebra P, of Table 3.1.)

(ii) Again, let & be any alphabet. Then we say that a word w on

> is simple if no letter of } appears in w more than once. Let us

denote the set of all simple words over > by S, and let A(S) be the

power set of S, i.e. the set of all languages which comprise only

simple words. For any two languages X, Y € A(S) we define the

join of X and Y as their set union:

XVY=XUY

and we define their product X - Y as

X-Y={yoweS|xeX and we Y}

where y ° & is the concatenation of the words yx and w. The set A(S)

with these operations is a path algebra, whose zero and unit

elements are the languages @ and A respectively. (This is the

algebra P7 of Table 3.1.)

88 Path problems

(iii) We define an abbreviation of a word w as any word which can

be obtained by removing at least one (and possibly all) of the letters

of w (note that every word with at least one letter has the abbre-

viation A). For any language X, we say that a word w € X Is basic toX

if X does not contain any abbreviation of w, and we describe the set

b(X) of all basic words of X as the basis of X. If b(X) = X then X is

a basic language; in particular, the languages ¢ and A are both

basic.

Now let = be any alphabet, and let B be the set of all basic

languages on >. For any two languages X, Y € B, we define the join

of X and Y by

XVY=d(X UY)

and we define the product X -Y by

X:-Y={yow|x eX and we Y}.

The set B with these operations is a path algebra, with zero and unit
elements ¢ and A respectively. (This is the algebra Ps of Table 3.1.)

Some further exampies of path algebras will be given later in this

chapter, and in Chapter 4.

3.2.3. Elementary properties of path algebras

Since the join operation of P is idempotent, commutative, and
associative, we can define an ordering ~ of P by the following rule
(see Section 1.5.2):

xy ifandonlyif xvy=y. (3.9)

It is evident from (3.6) that with respect to this ordering, ¢ is the ~
least element of P:

@x<x forallxeP. (3.10)

Also, since the join operation is idempotent,

xvy>x and xvy>y forallx,yeP (3.11)

It is important also to note that the join operation is isotone for <:

if x<y then xvzXyvz forallzeP. (3:12)

(For the proof, see Section 1.5.4.) The multiplicative operation is
also isotone for <:

if x<y then x-z<y-z and z-x<z-y forallzeP

(3.13)

Path problems 89

For if x<y then xvy=y and therefore (by the distributive

law (3.5)) y:-z=(xvy)-z=(x:z)v(y-z), which implies that

xX +zZNy-z; we obtain z - x <z- y bya similar argument.

In a path algebra, an element x is said to be sub-unitary if x Xe,

whereas x is said to be super-unitary if x >e.

Example 3.1. For the path algebras P,, P3, P, and P; the ordering ~X is the

familiar ordering < of the real numbers, whereas for P the ordering X is

the familiar ordering =. For P, and P; < becomes the set inclusion relation

C; while in Ps, x < y means that each word in the language x occurs in the

language y, or has an abbreviation in y.

Powers. The powers of an element x € P are defined by

Det ger ek ee be he La Nk (3.14)

An element x for which x” = x is said to be idempotent. An element

x such that x* = ¢ for some positive integer q is said to be nilpotent.

Closure. An element x is said to be stable if for some non-negative

integer q,
q ke q+1 k

Voto = VS (3.15)
k=0 k=0

where \/7_, x“ denotes the joine vx vx’ v-- + vx“; the least value
of q for which (3.15) holds is called the stability index of x.

If (3.15) holds then, by multiplying both sides by x, we have

k 5 i k
Wax Sih) x
k=1 k=1

and by joining x° to each side we obtain

qt+l1 k q+2 k

Vx = Ke (3.16)
k=0 k=0

From (3.15) and (3.16),
q be q+2 k

We matey
k=0 k=0

By repetition of this argument it follows that if x is stable of index q

then
q fe

V x*=\V x* forallr=q. (S571)
k=0 k=0

90 ~=Path problems

For a stable element x, the join (3.17) is. called the strong closure

(or simply the closure) of x, and it is denoted by x*.

Asan important special case, it will be observed that if an element

x is sub-unitary then x <e,(k =1,2,...), and therefore x is stable

of index 0, with

x*=e, (3.18)

In particular, the zero element ¢ of any path algebra is stable, with

closure

b* =e. (3.19)

Example 3.2. In the path algebras P,, P,, Ps, and Ps of Table 3.1, the unit

element is the greatest element. Hence in those algebras all elements are

stable, and their closures are given by (3.18).

Example 3.3. In a path algebra whose multiplicative operation has the

cancellation property, an element x is stable if and only if it is sub-unitary.

Indeed, it has already been shown that if x <e then x is stable. To prove the

converse, let us assume that x is stable; then, since x* v xx* = x*,

(CN) x exo.

It follows (by cancellation) that e vx =e, which implies that x is sub-

unitary.

As concrete examples, in both P, and P; the multiplicative operation has

the cancellation property. In P, the non-negative numbers are stable (of

index 0) and the negative numbers are unstable, whereas in P; the non-

positive numbers are stable and the positive numbers are unstable.

Example 3.4. Let x be any element of the algebra P,. Then x“ is the set of

all simple words which can be obtained by concatenating k words of x. For

any non-negative integer r,

which is the set comprising the empty word A, the words of x, and all the

simple words which can be obtained by concatenating up to r words in x.

Now let q be the number of letters of the alphabet =. Then, since no simple

word has more than q letters,

q r

Vix = \ x*- forall r=a-
k=0 k=0

It follows that all elements of P, are stable.

Path problems 91

From the definition of closure, it follows immediately that for any
stable element x,

x* =e v xx", (3.20)

x*=(ev-x)*, (3.21)

(Cer = et (6222)

xa (3.23)

Also, provided that the ‘starred’ terms are stable,

(xy)* =e vx(yx)*y, (3.24)

(xy)*x =x(yx)*, (3:25)

(x vy)* = (x*y*)*, (3.26)

avg) = tyne, (3.27)

Cary = x7 (ye*)*, (3.28)

Indeed,

(xy)* =e vxy vx(yx)y vx(yxyx)y v-+ + =e vx(yx)*y

proving (3.24), and similarly

(xy)*x =x v (xy)x v (xyxy)x v---

=xvx(yx)vx(yxyx)v-:

= x(yx)*,

which proves (3.25). For the identity (3.26) it can be shown by

expansion that (x v y)* is the join of all products of x’s and y’s, and

that (x*y*)* is also the join of these terms. A similar argument is
used to prove (3.27) and (3.28).

Finally, we note that by (3.12) and (3.13),

x~<y impliesthat x*<y* (3.29)

provided of course that both x and y are stable.

Weak closure. From (3.17) it follows that for any element x which is

stable of index q,

q+1 r

VP aN xe forvall’7 =q +1: (3.30)
1 k=1 k=

92 Path problems

The join (3.30) is called the weak closure x of x. It is evident that

axe ae 631)

x* =e Vv x. (3.32)

3.2.4. The solution of equations

Let us now consider the problem of finding an element y which

satisfies an equation

y=ayvb (3.33)

where a and D are specified, the element a being stable of index q.

First, it will be observed that the equation has a solution

y=a"*b, (3.34)

for it follows from (3.20) that

a(a*b)v b=(aa*ve)b=a*b.

Now let yo be an arbitrary solution of (3.33), i.e.

Yo=ayoV b.

By substituting, we obtain

yo=alayovb)vb= a*yov (eva)b,

and by repeated substitutions

yo=a*yov(evavav:::va*')b, (k= hyo oe

It follows that

yYo=a*yova*b forallk>q, (3.35)

and consequently (by (3.11)),

yo2a*b. (3.36)

From this inequality it follows that the solution (3.34) is the least
solution of the equation (3.33). It is also evident from (3.35) that in
the particular case where a is nilpotent, the solution (3.34) is
unique.

By a similar argument it can be shown that if an element a is
stable then the equation

y=yavb (3.33’)

Path problems 93

has the least solution

y= ba: (3.34')

and again, if a is nilpotent this solution is unique.

Example 3.5. If the element a in equation (3.33) is sub-unitary (as is
always the case for instance in a Boolean algebra), then byIG LS)iaaes
and the least solution (3.34) becomes y = b. This solution is not necessarily
unique: for instance, it is easily verified that in any Boolean algebra, the
equation y = ay vb has for solutions all those elements y which satisfy the
condition b<y~avb.

Example 3.6. Let us consider the equation (3.33) in the algebra P,, in the
particular case in which a ={a} and b ={6}, where a and B are two
non-empty words which do not have any letters in common. Here a is
nilpotent, with a? = 4, hence the equation (3.33) has a unique solution

y=a*b=(Ava)b={A, a}: {B}={B, aB}.

3.2.5. Matrices

Let P be a path algebra, and let M,,(P) be the set of all n Xn

matrices whose entries belong to P. We define two binary opera-

tions on M,,(P) as follows: given any matrices X =[x;,;]and Y =[y,)]

in M,(P), their join is the n Xn matrix

XM VE = [xii V yi] (3.37)

and their product XY is the n Xn matrix

XY = [VV Xx a) (3.38)
k=1

Thus we form the join X v Y and the product XY in the same way

as we construct the sum and product in ordinary matrix algebra,

except that here we use the join operation of P in place of addition

on R, and we use multiplication on P in place of multiplication on R.

It is easy to establish that for any path algebra P, the set of matrices

M,,(P), equipped with the join and multiplicative operations defined

in (3.37) and (3.38), is itself a path algebra.

Indeed, it follows immediately from the definition (3.37) that the

join operation of M,,(P) is idempotent, commutative and asso-

ciative. Also, since in P multiplication is associative and distributive

over the join operation, matrix multiplication is also associative,

94 Path problems

and distributive over the matrix join operation. (These properties

can be demonstrated by the same arguments as are used in ordinary

matrix algebra to prove that matrix multiplication is associative, and

distributive over matrix addition—see for instance Birkhoff and

MacLane (1965).) Finally, the m x n matrix ® whose entries are all d

(the zero element of P) satisfies the conditions (cf. (3.6) and (3.7))

®vX=X and ®X=0=X® forall X¢M,(P)

and the n Xn matrix é~.b & - b

ge ¢ d
E=|¢ @ e d

¢ ¢ e

is a unit element for multiplication (cf. (3.8)):

EX =X =XE forall X<€M,(P).

The matrices ® and E are called respectively the zero matrix and the

unit matrix of M,,(P).

Since the matrix algebra M,,(P) is a path algebra, we can extend

all the definitions and results of Sections 3.2.3 and 3.2.4 to M,,(P),

without modification.
Thus, we may define an ordering of matrices by the rule (cf. (3.9))

X=<Y ifandonlyif XvY=Y.

From (3.9) and (3.37) it follows that this ordering of matrices can be

expressed in terms of the ordering of their entries:

X*<Y ifandonlyif x;<y, forall i, 7.

The significance of closure for matrices, and the solution of

matrix equations, will be discussed later in this chapter.

Example 3.7. As a concrete example, let us take the path algebra P, of

Table 3.1. The operations of the matrix algebra M,,(P2) are defined by

Xv Y =[min {x;, y;}] and XY= min {xj.+ ve}
1<k<n

for all X, Ye M,(P;).

The zero matrix ® of M,,(P2) is the n Xn matrix all of whose entries are 00,

while the unit matrix E =[e,] has e; =0 if i=j and e; =0 if i#j. Asa

Path problems 95

numerical illustration,

for i | and ae a
1b) COD

xvy=[' | and ps al
lee 2! 4 5

3.3. Labelled graphs

3.3.1. Definition of a labelled graph

A graph G = (X, U) is said to be labelled with a path algebra P

when each arc of G is assigned some element of P, other than its

zero element ¢. We describe the element of P which is assigned to

an arc (x;, x;) as its label, and denote it by 1(x;, x;).

3.3.2. Path labels

Let G be a graph labelled with a path algebra P, and let

HM = (Xi, Xi), (Xiz, Xi), -- + » (Xi,_, Xi,) be any path on G. Then the

label I(x) of the path w is defined as the product of the arc labels of

uu, taken in order:

I(w) trad ee Xi,) . I(Xi,5 Xi,) ali cake ihe ie ea):

In the present context, it will be convenient to suppose that each

node x; of a graph G is connected to itself by a null path 6;. By

definition, each null path 6; is of order zero (for it contains no arcs),

and /(6;) =e.

Example 3.8. In graphs labelled with the algebras P,—P; of Table 3.1,

each arc label is a real number. If a graph G is labelled with P, or P3—as in

Fig. 3.1 for example—then the label /(u) of a path w on G is the

96 Path problems

arithmetical sum of the labels on the arcs of w. (Thus if the labels on arcs

represent their lengths, as on a road map for instance, the label /(w) is the

total length of w.) If G is labelled with P,, /(w) is the arithmetical product of

the labels of the arcs of w. (In this way, if G represents a communication

network, and each arc label represents its reliability, the label /(w) is the

reliability of the path w.) If G is labelled with P; then /(w) is the smallest of

the labels on the arcs of w. (Hence if each arc label represents its capacity,

i.e. the rate at which some substance can flow along the arc, then /(w) is the

capacity of the path w.)

Example 3.9. Fig. 3.2 shows a graph whose arcs have distinct names

a, b,c,.... Now this graph can be considered being labelled with the

linguistic algebra Ps, where 2 ={a,b,c,...}. (To be precise, the labels

assigned to arcs are the one-word languages {a}, {b}, {c}. . . which comprise

their names.) Then for any path yu, the label /(w) is a language comprising a

single word, this word being the concatenation of the names of the arcs of wu.

For instance, the path wu = (x3, x2), (%2, x4), (x4, X1) on Fig. 3.2 has the label

I(u) = {d}- {c}- {f} = {def}.

Since the word in the label /(«) of a path u completely defines ~, we may

describe this word as the name of p.

3.3.3, Absorptive graphs

A graph G labelled with a path algebra P is said to be absorptive if
for every elementary cycle y on G,

l(y) Xe. (3.39)

Let G be an absorptive graph, and let us suppose that G contains
anon-elementary path uw, from x; to x; say. (Here the nodes x; and x;
need not be distinct.) Since « is non-elementary, it traverses at least
one elementary cycle. We may therefore regard uw as the conca-
tenation of three paths B,, y1, 51, where y; is an elementary cycle,
and where the paths 8, and 6, together form a single path y; from x;
to x;, which is of lower order than uw. (It is possible for either Bor 6;
to be a null path.) Now since the multiplicative operation of P is
associative, we can write the labels of « and mw; as

I(w) = 1(B1) + U(y1)- 18), (3.40)

and

I(u1) = 1(B1)-1(81), (Sra)

Path problems 97

and since G is absorptive it follows from (3.39), (3.40), and (3.41)
that

(ye) <1 (m1). (3.42)

If 4; is non-elementary, we may also consider this path as the
concatenation of three paths B2, y2, 52, where y2 is an elementary
cycle and the segments 82 and 62 together form a path p> from x; to
x;, Of lower order than w;. Repeating the previous argument, we
find that /(421) </(w2), and since the relation < is transitive it follows
by (3.42) that

Iw) <1 (t42). (3.43)

By repetition of this process, we must eventually obtain an elemen-

tary path uw, from x; to x; such that /(w)</(u;,). To summarize:

In any absorptive graph, if there exists a non-elementary path w

from a node x; to a node x;, then there also exists an elementary path

from x; to x;, of order less than w, and such that I(w) <I().

Example 3.16. Let G be a graph labelled with P», and let us interpret the

(numerical) labels of the arcs of G as their lengths. Then G is absorptive if

and only if the lengths of its elementary cycles are all non-negative. For the

case where G is absorptive our theorem above states that if there exists a

non-elementary path wu from x; to x, then there also exists an elementary

path from x; to x;, whose length is less than or equal to the length of w.

3.4. Graphs and matrices

3.4.1. Adjacency matrices

An n-node graph G = (X, U) labelled with a path algebra P can

be described by its adjacency matrix, which is the n Xn matrix

A =[a;;] of M,(P) with entries

hs fe io if (Xis x;) € U,

Pts fGen we Ui;

where ¢ is the zero element of P. Conversely, any m Xn matrix A

whose entries all belong to a path algebra P can be visualized

as an n-node labelled graph G0) where

U ={(x;, x;))€ X x X|a; 7A}, each arc (x;,x;) of G having a

label 1(x;, x;) = aij.

98 Path problems

Example 3.11. In the case where a graph G = (X, U) is labelled with the

two-element Boolean algebra, every arc has the label ‘1’ (since the zero

element of a path algebra cannot be used as an arc label—see Section

3.3.1), and the adjacency matrix A of G has

= if (x;, x;) € U,

7110 if (x, x,)éU.

This matrix is usually called the Boolean adjacency matrix of G. As an

illustration, the Boolean adjacency matrix of the graph cf Fig. 3.3(a) is

given in Fig. 3.3(b).

ae oe SL

1 Or 0 cil

s i (TASS IRR zt |

hee. Ona)

3

FIG. 3.3(a) FIG. 3.3(b)

In Section 2.2 we defined the complement G and the converse G' of a

graph G. It is easily verified that if G has a Boolean adjacency matrix A

then the adjacency matrix of G is A =[4,;], where @,; denotes the Boolean
complement of a;;; the adjacency matrix of G’ is the transpose A' of A.

As one might expect, many basic properties of graphs can be interpreted

very simply in terms of their Boolean adjacency matrices. For instance,

given a graph G with adjacency matrix A: (i) G is reflexive if and only if

E <A; (ii) G is symmetric if and only if A = A’; and (iii) G is transitive if

and only if A7<A.

Example 3.12. The graph of Fig. 3.1, labeiled with P2, has the adjacency

matrix

w 8 w 8 8 FBN Se Bas 25 Vin 6

Adjacency matrices of acyclic graphs. In Section 2.9 it was shown

that if the nodes of an acyclic graph G = (X, U) are numbered in

order of increasing rank, then for every arc (x;, x;) in G we have i <j.

Path problems 99

In this case, the adjacency matrix A of G has a;; = @ whenever i = /;

in other words, all elements on and below the principal diagonal are

null. We describe such a matrix as being strictly upper triangular. In

the same way, if the nodes of a graph are numbered in order of

decreasing rank, its adjacency matrix is strictly lower triangular.

Conversely, it follows directly from the characterization of acyclic

graphs in Section 2.5 that if a matrix A € M,(P) is strictly upper or

lower triangular, then its labelled graph is acyclic.

As an illustration, Fig. 3.4 shows a graph whose nodes are

numbered in order of increasing rank, together with its Boolean

adjacency matrix.

FIG. 3.4(a) FIG. 3.4(b)

3.4.2. Powers of matrices

Let P be any path algebra, and let A be any matrix belonging to

M,,(P). Then, by the definition (3.14), the powers of A are

ADEE At eA A | sae WP RRL 8

where E is the unit matrix of M,,(P).

The elements of these powers can be defined in terms of the labels

of paths on the graph corresponding to A, as follows:

Let ai; denote the typical element of A“, and let Si; be the set of all

paths of order k from x; to x;, on the labelled graph G of A. Then

SM nGass yf (hei 12502) (3.44)
weS Me

+ To simplify notation, we adopt the usual convention that \/ x denotes ¢ if S is
xeS

empty.

100 Path problems

This formula is obviously valid for k =0, since So 10 (i =

1,2,...,n), where 6; is the null path associated with x;, while Sj; is

empty if i#/. For k >0, the typical element of A* can be written

as

aij Ee V Ding Gnghy* Ong (3.45)

where V ho,h1,....4_, denotes the join extended over the n ea possible

values of the indices. Since the label of every path in Sé is a product

in (3.45), and every non-null product in (3.45) is the label of a path

in Si, the formula (3.44) is also valid for all k >0.

Example 3.13. On a graph G labelled with the two-element Boolean

algebra, every arc has the label 1, and every path wu has the label /(w) = 1.

The powers A“ of the Boolean adjacency matrix of G have elements af = 1
if G contains any paths of order k from x; to x; and aj; = 0 otherwise.

For the graph of Fig. 3.3(a), whose adjacency matrix A is given in Fig.

3.3(b),

PaO Oe ij, ep ee as ee
FOV AS Ceres) mere ie Came ye ng es oe

ir Ou Oant Ife gies (en ae ee
OF 0,0 12 Oxy a Es te OO

Example 3.14. Let G be a graph labelled with P,, and let us interpret its

arc labels as physical lengths (see Examples 3.8, 3.10). Then each element

ai; is the length of a shortest path of order k from x; to x;, provided that

these nodes are joined by at least one path of order k; otherwise aj = ©.

For the graph of Fig. 3.1, whose adjacency matrix A is given in Example

Sei2.

10° ‘co cos GR 1E Tea HO

Hicie te eae al Re 6 © ll

9 0c. cA.5 8 <Dhesen 1):

10°45: soo 32 €3% 12 |e. 1G

Example 3.15. Let G be a graph whose arcs have distinct names
a, b,c,..., and let us consider these names as elements of the algebra P, (as
in Example 3.9). Let A be the adjacency matrix of G. Then each element as
is the set of names of all the paths of order k from x; to x;. Thus for the graph

Path problems 101

of Fig. 3.2,

d {at @ ¢ jab} 1 @ ¢@ | {ach
Aau|te @ ¢ {ch az=| ‘cf {bak & — {cg}

d {d} @ fe}! {db, ef} 6 ¢ {dc,eg}|’
{ff} @ @ {g} | {gf} {fat d {gg}

{acf} {abas ¢ {acg}
a {bab, cgf} {cfa} @ {bac, cgg}

{dcf, egf} {dba,efa} @ {dcg, egg}|’

{fab, gef} {gfa} «=f Sf{fac, ggg}

For any matrix Ac M,(P) and any positive integer h, let us
denote by Al”!= a the join

h

Ae AX (3.46)

Then A™ has entries

hence

1 (3.47)

By (3.44)

h ” h

Vazg=V V u)= Vu) foralli,j (3.48)
k=1 k=1 weS; weTh

where 7’; denotes the set of all non-null paths from x; to x;, of order
less than or equal to h, and therefore (3.47) can be written as

Vu) if i;
wel;

a= (3.49)

1(6,) v(Vv, Mu) Fie

In words, each element a"! of A" in the join of the labels of all the
paths from x; to x;, of order less than or equal to h.

102 Path problems

Example 3.16. Let A be the Boolean adjacency matrix of a graph G.

Then A” has entries a‘"! =1 if G has any paths from x; to x; of order less

than or equal to h, and a‘! = 0 otherwise.

For the A-matrix of Fig. 3.3, whose powers were given in Example 3.13,

1 0 0 1 tec. ah

ie ale Lai Oerd
ee At for all h=2. A hit ee es Ses oe 4 Co

ORO 1 Or

3.4.3. Stable matrices

We recall that since M,,(P) is a path algebra, all the definitions

and results of Sections 3.2.3 and 3.2.4 can be applied to matrices.

Accordingly, we say that a matrix A € M,,(P) is stable if for some

non-negative integer q,

qt+1

V At (3.50(a))
k=0

k VA
k=0

or (using the notation of the previous section)

Alt = Alati) (3.50(b))

and we describe the least value of q for which (3.50) holds as the

stability index of A.

The definitions of closures given in Section 3.2.3 will also be

applied to matrices; we shall denote the strong and weak closure of

a stable matrix A by A*=[aj;] and A =[4;,;] respectively. (To

denote the strong closure of an element a;; of A, we shall use the

symbolism (a;;)*.)

Since A*=EvA (cf. (3.32)), the elements of A* and A are

related by

de oon ghee
a* -| i ; (3.51)

ev aij if i=].

Example 3.17. Let G be a graph with m arcs, which are assigned ‘names’,

i.e. distinct symbols from an alphabet &, and let us consider these arc labels

as elements of the path algebra P,. Then for any simple path uw on G,

I() = {a}, where a is the ‘name’ of uw (as defined in Example 3.9); whereas

for any non-simple path yu, /(w) is the empty set @.

Now let us consider the adjacency matrix A of G. By (3.44) each element

ai; of A“ is the set of names of all the simple paths of order k from x; to X}.

Path problems 103

Since no simple path has more than m arcs, A“ =@ for all k >m, and

therefore A is stable, with a stability index not greater than m. Each

element aj; of A®* is the set of names of all the simple paths from x; to x;

(which in the case of a diagonal element includes the name A of the null path

6;). Each element 4;; of Ais the set of names of all the non-null simple paths
from x; to x,.

A particularly important class of matrices which have the stable

property is presented in the next section.

3.4.4. Absorptive matrices

A matrix Ace M,(P) is said to be absorptive if its graph is

absorptive.

Let A be an absorptive matrix. It was shown in Section 3.3.3

that if the graph G of A contains a non-elementary path uw from

x; to x;, then G also contains an elementary path 2 between

these nodes, such that Iu) v Ma) = l(a). It follows that for any

positive integer h,

V iu)= V. (uw) for all i, j, (3:52)
pete weT &

where co denotes the set of all non-null elementary paths from x; to

x;, of order less than or equal to h.
Now since G has n nodes, each open elementary path on G is of

order less than n, and each elementary cycle of G is of order less

than or equal to n. Thus if we denote by si the set of all non-null

elementary paths from x; to x;, we have by (3.52) that

fhisyz> then!-V Mm) = V. lu) forallh=n-1
eed weTij

(3.53(a))

ifi=j then V le) = Vi iw) forallh =n.
weTy weTi

(3.53(b))

Also, it follows from (3.52) and (3.39) that for any positive integer

h,

Vou) = a Wu)<e ifi=j. (3.54)
weTi wey

104 Path problems

It follows from (3.49), (3.53(a)) and (3.54) that A" has entries

Vi Mu) if iA;
4 fie

[A] al ME Li;

Qi = for all h=n-—1, (3559

e if i=]

which implies that Alls A for all h=n-—1. Thus, every

absorptive matrix of M,,(P) is stable, with a stability index not greater

thann—1.

Since A* = A""~"! the entries of A* are evidently given by (3.55).

For the weak closure,

A=AAt=AAT Ue V AS
kt

and therefore, by (3.44), (3.52), and (3.53), the entries of A canbe

written as

aiy= VV ai= Voiw)= Vil) forall.” “650
weTi wei

In words, each element 4;; is the join of the labels of the non-null

elementary paths from x; to x;.

Example 3.18. Let P be any path algebra in which the unit element e is

the greatest element. (As examples we have the path algebras P,, P,, Ps,

and Ps.) Then any graph labelled with P is absorptive, since the condition

(3.39) is always satisfied. It follows that all matrices in M,,(P) are stable,

with stability indices not greater than n—1.

Example 3.19. From the previous example it follows immediately that all

Boolean matrices are stable. If A is the Boolean adjacency matrix of a

graph G, then A* has entries a = 1 if there exist any paths from x; to x; and

a* =0 otherwise; whereas A has 4, =1 if there exist any non-null paths
from x; to x,, and 4, = 0 otherwise.

As a particular case, the Boolean matrix of Fig. 3.3 is stable of index 2

(see Example 3.16), with

A* = A?l=

FP RP Re Re PP Re RP So - oOo & FP RP PP

> I

PRP RP Re Ee RP RP Re Saou a

Path problems 105

Example 3.20. Shortest paths. Let G bea graph labelled with P;, and let
us interpret its arc labels as physical lengths. In this case, G is absorptive if
all its cycles are of non-negative length. If G is absorptive then in the
closure A* of the adjacency matrix A of G, each element ai; is the distance
(i.e. the length of a shortest path) from x; to X}.

For the graph of Fig. 3.1 (whose adjacency matrix A is given in Example
3.12, with its powers in Example 3.14),

ARON ceo ME: Se ws

4

k=0 8

3

Finally, we give two useful results relating to absorptive matrices:

(i) Let A and B be two matrices in M,,(P), such that B < A. Then if
A is absorptive, B is also absorptive.
Let G4 =(X, Us) and Gg = (X, Ug) be the labelled graphs of A
and B respectively. Then since B < A, Ug C Us, and for any arc

(x;, x;) € Up, the label /g(x;, x;) of this arc on Gg is not greater than

the label /4(x;, x;) of the corresponding arc on G4. It follows that

since /(y) Xe for every cycle y on Ga, I(y) Xe for every cycle y

on Gz, which implies that B is absorptive.

(ii) Let A be any matrix in M,(P). Then if A is absorptive, A* is

also absorptive.

Let us assume that A is absorptive. Then by (3.55) all diagonal

entries of A* have the value e, and since A*A*=A%*, the

diagonal elements of all the powers of A* also have the value e. It

follows by (3.44) that for every elementary cycle y on the graph of

A*, I(y) Xe, as required.

3.5. The formulation and solution of path problems

From the examples of the previous section it will be clear that, in

algebraic terms, many path problems consist essentially of the

determination of one or more elements of the weak or strong

closure of an adjacency matrix: Table 3.2 shows how a number of

different types of path problems can be formulated in this way.

To obtain the weak or strong closure of a matrix A, it is of course

possible to compute successive powers of A and to form their join.

However, there are much less laborious methods, which can be used

either to form a complete closure matrix, or only particular rows,

columns, or other submatrices of it, as required.

Path problems 106

'y 0}
'x w

o

syed

Ayeyuowlaya
[[nu-uoU

oY}
JO

SsaUeU
JO

JOS
OU}

SI
Np

'y 0}
'x WOT]

syyed
oduits

[jnu-uoU
sy}

JO S
O
W
U

JO
JAS

Ol}
SI "yp

'x

0}
!'x Wor]

syjed
[[NU-UOU

JY} JO SAWLU
JO JOS OY} SI "py

'x oy
Ix

wogy
A
y
o
e
d
e
s

winuitxew

jo yjed
e Jo A

y
o
e
d
e
s

ay)

st i
p

!y oy fx W
O
T

y
e

V[QeI[91
ISOU

B JO AjT]IGeITO1
OU} SI 2

D

fy 0}
1x W

o
y

Yyyed ysaduO]
B Jo Y

B
a
]

OY)
SI i

v

'y 0)
1x w

r
y

yyed

ysoqOYs
B JO YISUI|

SY)
SI L

v

asimsiayio
— =

"yp “x

0} x Wouy
yyed [[NU-UOU

k S}sIXO 1
9
}

FIT =

"Y SOStaA

-104}0
(=

f
v

pue

“x
Wor}

s[qQISss00e
SI x

y

[=

0

6'¢
a[durexg

ves—('x
“x)

jo
ouleu

oy)
si

“w
o
0
y
M

‘
(
f
y

=
 (!x 4x)]

(‘x x)
Suo[e

MOY
JO 9381

WINWIXeU
“9

‘Ayioeded

(!x #x) Jo
gouaystxa

Jo
Ayyiqeqoid

‘o'r
‘AIIGelaYy

uoneinp
swt)

10
“YyyBuay

peoiskyd

I, eget ay} oaey sour [Ty

fi
h

"py 10
fp

yuowlaye
x11}eU

JO QQUROYIUBIS
(x 4x)]

Joqe]
ore

JO BOURDYTUSIC

J
E

A
T
G
V
L

8d ‘d

oa ‘d

Ud fd
“d

'd

syjed
Arejusule[9

jo uoleroumnug

syjyed
o[duiis

jo uoneioumnug

syjed
[je

jo uoneioumnug

syjed
Ayloedes

[eullxe|

syjed
a[qei[al

S
O

syyed
(3saduo])

[
2
9
N
D

syyed
j
s
o
1
0
4
S

syjed
Jo 90U9}SIXY

Biqosje
yled

w
a
j
q
o
i
d

W
e
d

Path problems 107

Let us consider the matrix equations

Y=AYvB and Y=YAvB,

where A and B are specified matrices in a path algebra M,,(P). We

recall from Section 3.2.4 that (if A is stable) the least solutions of

these equations are

Y=A*B and Y=BA*

respectively, and we observe that with B = E these solutions both

become

Yy=A*

while if B =A they become

Y =A.

Therefore, if we can find a method of solving such equations, it will

enable us to compute closure matrices. Furthermore, it will be

noted that if we require only the ith column of A® say, this can be

expressed as the least column vector y which satisfies the simpler

equation

y=Ayvb (3.57)

where b is the ith unit vector, that is, the ith column vector e; of the

unit matrix £; similarly, the ith row of A* can be expressed as the

least row vector y which satisfies the equation

y=yAvb (3.58)

where b is the ith row of E. (Alternatively, if the multiplicative

operation of P is commutative it may be convenient to express the

ith row of A®* as the least solution of the equation

y=A'yvb (3.59)

where b = e;.) In the same way, the ith column of A can be expressed

as the least solution of (3. 57) with b = a,, the ith column of A, and we

may also express rows of A as solutions of equations of the form

(3.58) or (3.59).

Now let us consider the problem of finding the least solution of

(3-57); Viz.

y=A*b=(EvAvA’v -::)b. (3.60)

108 Path problems

In ordinary matrix algebra, we frequently encounter the problem of

solving a linear system of the form

Cy=b (3.61)
where the matrix C and vector b are specified. Now by defining the

matrix A =I —C, where J is the unit matrix, we may write (3.61) as

y=Ay-+b. (3.62)

If the sequence of powers of A converges to a zero matrix, then the

series 1+ A+A°+--- is convergent, and its sum is equal to (J —

Ay = C_': we may then write the solution of (3.62) as

y=([—-A) ‘b=(I+A+A*+->--)b. (3.63)

We observe a certain similarity between our problem (3.57) and the

linear algebraic problem (3.62), and between their solutions (3.60)

and (3.63). Rather surprisingly, many results in ordinary matrix

algebra hold in the algebra M,,(P), if ordinary matrix addition

X+/Y and multiplication X - Y are interpreted as the operations

Xv Y and XY of M,,(P), and if each inverse (J =X) replaced

by a closure X™.
This similarity suggests the possibility of solving equations in

M,,(P) by variants‘of the classical methods of linear algebra, the new

methods differing from the classical ones only in the significance of

the elementary operations. In the following sections we shall

demonstrate that it is indeed possible to solve systems of the form

y = Ayvb by the classical direct and iterative methods of solving

linear systems. Furthermore, we shall find that with different

concrete interpretations of the join and multiplicative operations,

these methods become well-known algorithms for finding paths on

graphs.

3.6. Direct methods of solution

3.6.1. Triangular matrices

Before deriving the general direct methods of solving matrix

equations, it will be helpful to consider some properties of tri-

angular matrices.

Let A be a strictly upper or lower triangular matrix belonging to

some algebra M,(P), and let G be its graph. As was shown in

Path problems 109

Section 3.4.1, the graph G is acyclic; it follows that A is absorptive,
and furthermore, since G does not contain any paths of order
greater than n —1, A is nilpotent (with A” =).
Now let us consider the problem of solving a system

y=Ayvb (3.64)

where A is a strictly upper or lower triangular matrix, and b is a
column vector. Since A is absorptive, it is stable, so the system has a
least solution y=A*b. Furthermore, since A is nilpotent, this
solution is unique (see Section 3.2.4). The solution can be obtained
easily, as follows. i

Let us suppose first that A is strictly lower triangular. Then the

system (3.64) can be expressed as

yi=bi (3.65(a))
=i

yi = VV aiyi) Vv b; (i = Ds By chagute'r n). (3.65(b))
WH ;

The first equation (3.65(a)) gives y, directly. Having found y,, we

may use the equation for y> in (3.65(b)) to obtain y> directly:

Y2=An1y1V bo,

and then the equation for y3 gives this unknown immediately, as

¥3 = 4311 V A322 V bs.

Continuing in this fashion, we obtain in turn all the unknowns

yi, Y2,--+,Yn- This procedure is called the forward substitution

method of solving (3.65).

If A is strictly upper triangular, the system y= Ayvb can be

written as

n=(V avi) v by (i=1,2,...,n—1),] (3.66(a))
j=i+1

Vin De. (3.66(b))

Here, the last equation (3.66(b)) immediately gives y,. Having

found y,, we can use the equation for y,_; in (3.66(a)) to obtain this

unknown, and then we can determine y,_2 from the preceding

equation, and so on. Continuing in this way, we obtain in turn all the

unknowns y,, Yn—1, Yn—2)+- +> Y1- This process is called back-substi-

tution.

110 Path problems

Example 3.21. Critical path analysis. In Example 2.11 it was shown how

a project can be represented by an ‘activity graph’. For the project

considered in this example it was easy to determine the lengths of longest

paths from the ‘start’ node to each of the other nodes by inspection, but for

large projects this would be impossible.

To find the path lengths systematically, it is convenient to consider an

activity graph as a graph labelled with the path algebra P3, in which case the

length of a longest path from a node x; to a node x; is given by the element

a* of the closure matrix A*. Thus, if the ‘start’ node of the activity graph is

x,, the earliest starting time of the ith activity (which is the length of a

longest path from x, to x;) is given by a3. The required starting times are

therefore defined by the sth row of A*—or alternatively the sth column of

(A’)*. (Since multiplication on P is commutative here, the usual ‘reversal

rule’ applies to transposed products: (XY)' = Y'X', and therefore (A*)' =
(A')*.) Now the sth column of (A’)* is the least solution of the equation

y=A’yve.. (3.67)

If the nodes of the graph are numbered in order of increasing rank then A’ is

strictly lower triangular, and this equation can be solved by forward

substitution.

For the graph of Fig. 2.22 equation (3.67) becomes

y1 yi 0

Y2 0 Y2 05

y3 UPR ak Y3 —oo

Ya —-0© 4 -w ——Oo) V4 —oo

YEU 4 CON — CO oa —a

We —O 4 —-& —o —cO Ye —00

y7 OO 200) 001) GG EE 08 y7 00
Yg 0) 12) 188) eo wo) eS Ys —0o

Yo 008 =O) 1 now 95 a Seo" 5 Yo —00

Yio —0 —0O -—© —cO —0 -—c 22 -c 17 Yio 50

Applying the forward substitution method, with x v y and x-y inter-
preted as max {x, y} and x + y respectively, we obtain successively

yr= 0,

y2=0+y,=0,

Ve = Orn ys = OF

ya=4+y2.=4,

ety 4,

Yo=4+y2.=4,

Path problems Pit

y7 = max {6+ ys, 2+ys}= 10,

yg=2+y5=6,

Yo=max {10+ ys, 11+ ye, 3+ ys} = 15,

Yio = max {22+ yz, 17+ yo} = 32.

These y-values are the earliest starting times of the activities. The latest

starting times can be obtained similarly (by solving y = Ay v e,o by back-

substitution).

The techniques described here are essentially those used in practice for

critical path analysis of large projects (Leavenworth 1961; Montalbano

1967). 5

Example 3.22. Multi-stage decision problems. The following kind of

problem arises for instance in stock control and in planning industrial

investments.

At a time fo, a system is in a known state s°”’. At each of r subsequent

times ¢,, (kK =1,2,...,1r), the system will be in one of several possible

states; we denote the number of possible states at time 4, by n,, and denote

these states by s{*’, s%, ..., s (see Fig. 3.5). At each time #, a decision is
made, which determines the state of the system at time ¢,,,. Each feasible

(k) (k+1)

(0)

transition from a state s;° at time ¢, to a state s; at time ¢,,, has an

associated cost c‘*’. The problem is to find an optimal policy, i.e. a sequence
of decisions at the times fo, t1,..., --1 for which the total expenditure over

the period f to t, is minimal. (For a concrete example, see Exercise 3.4 at

the end of the chapter.)

ives eee | nl cea ey tS aed ata
he ty i trl B

Time

112 Path problems

Let us assign a length to each arc on the state diagram of the system, this

being the cost of the corresponding state transition. Then a shortest path

from the node s to any node s{” representing a state at time ¢, defines an

optimal policy.

To find such a path, we consider the state diagram as a graph labelled with

P,. Then, for a node ordering

(0 (1) (1) (2) (2) (3) (r)
s LE EOI EY SS HD SL) us ietst= oka

the adjacency matrix of the network has the block form

D® M®

D® M™

A = De he : :

iy how

00. D”

where each diagonal block D“’ is asquare matrix of order n,, whose entries

are all 00, while each block M“’ is a matrix of n, rows and n;,., columns,

with

(k) tad -{"" , if the transition from s‘*? (k+1) to s; is feasible,
Mi

oo, otherwise.

Now let us denote the distance from s‘“” to each node s‘“’ by y“*’. Then the
vector of these distances

ee vou (1)

y=l[yi ay po es ick

can be expressed as the least solution of the equation

y=A'yve,.

Since the matrix A’ is lower triangular, this equation can be solved by the

forward substitution method. We note that if the vector y is partitioned into

r+1 components

(0) y
V= ly sate oh

where

(k) \\(k)
sores » Y2 ate ee bie OT a sr),

then the forward substitution method gives each component of y in turn, as

=, =(m Dy (k— ok (k = di: om Boake mY

This algorithm is well-known, as a form of dynamic programming (Bellman
1957; White 1969).

Path problems 113

3.6.2. The Gauss elimination methodt+

Let us now consider the problem of finding the least solution of a

system y = Ay vb, where A is any stable n Xn matrix.

To define the Gauss method, we denote the system to be solved

by

y=Aryvb”. (3.68)

From this system we shall derive n new systems

Y¥=Ayvb”, © (k=1,2,...,7) (3.69)

which are all equivalent to the original one in that they all have the

same least solution, and where the matrix A‘”’ of the final system is

strictly upper triangular. (The final system can then be solved by

back-substitution.)

Essentially, we obtain the kth system from the previous one by

using its equation for y, to eliminate this unknown from the

right-hand sides of the equations for yx, ye+1,-.-, Yn. To define the

process formally, let us write the matrix A“~ and vector b“~” of

the (k —1)th system in partitioned form, as

(k-1) (k-1) (k~1) (k-1)
Ait Ai2 Ai3 bi

(k-1) _ a: 1) (k-1) (k-1) (k~1) _} p(k-1) A L Adj Ar Az3 |, b =| b> ;
je 1) a 1) (k-1) (k-1)

A31 A32 A33 bs

Ged 2, cin agult)S (3.70)

where the diagonal submatrices Ae ze AS Hak and Aa. are

square, of order k—1, 1, andn—k respectively: (Note that in A,

the first row and column of this partition do not exist.) Using the

same partitioning as (3.70), we define two matrices Oo” and R™ by

Coe De anh Ang TA Ane
O”= ra) AS 1) @p : RY= Age @ An,

® Ae 1) ra) ASS 1) ra) AK 1)

(k =1,2,...,n). (3.71)

+ To be precise, the method presented here is the counterpart in M,,(P) of Crout’s

variant of the Gauss elimination method (Fox 1964).

114. ~==Path problems

Then (assuming that each Oo matrix is stable) the successive

matrices A“ and vectors b“” in (3.69) are constructed using

A®M= oMrR® :

b® = Q®*pe-» (Ke; 25 05250): (3.72)

To prove that all the systems (3.69) obtained in this way have the

same least solution as (3.68), we note from (3.70) and (3.71) that

APSO? VR? (= 1.2..-..): (3.73)

It follows by (3.72), (3.27), and (3.73) that (on condition that A is

stable),

AM*D® = (QH*R®)*QMepkD

=(Q9y R® ype? = Ae DHE,

(= 1, 2. esl doin toe)

as required.

It is also easy to show that in each matrix A“”, all elements on and

below the principal diagonal, in the first k columns, are null: indeed,

this condition obviously holds for A’; so let us assume that it holds
for some A“~”: where 1<k <n, ond show that it holds for A“’.

From (3.71),

® ® 2
(os =| © (ag): ® |, iS 4220 2. ay,

® AS MAS? ©

and therefore

B ® ®
Q)* = © AK D* ® |. (3.75)

® AS YAS * E

Also, since AS’ and A$‘) are both null (by assumption), we may

write (cf. (3.71))

Aa, Asse eee
Dah. (3.76)
Oi SA

Path problems 15

By (3.72), (3.75), and (3.76)

(k-1) (k—1) k-1
Ai Aj? AL”

AY = o®*R® — ® ® Ae Ve AS 1)

® ® AAS Ae De A of

(3:77)

Since A{S” is strictly upper triangular (by assumption), all the

elements of A“’ which lie on or below the diagonal in the first k
columns are null, as required. Thus, in the final system, the matrix

A” will be strictly upper triangular.
With regard to the calculation of the successive At matrices, tt

follows from (3.77) that their entries can be calculated using

(Grae Sa if i=k,j>k,
(k) d if i=k,j =k,
‘hale a Diy gik- Dig k- D)x gl oe 1) ifi>k,j>k, (3.78)

eee otherwise.

(In practice, it is convenient to record these computations simply by

making successive modifications to the original matrix A. When

this is done, it is of course not necessary to nullify sub-diagonal

entries at any stage.)

To construct the successive b““’ vectors, we have from (3.72) and

(3.75) that

k-1 pew,
1 Lat att p= Op a AS xp) (3.79)

(k-1) (Ay hata)
bs VA32 Ax “bo

so the elements of b“ are given by

pik» ie ey

bp = (af OF sd hal ous 1) if jm ke

nt “» VGy aye POL. it i> kh

(k=, '2, 2. rt)y | (3.80)

If solutions are required for more than one b-vector, but the same

matrix A, we can of course perform the transformations of A as

before, and apply the transformations (3.79) to all the b-vectors

together. A separate back-substitution must then be carried out for

each vector.

116 Path problems

Gauss elimination for absorptive matrices. In deriving the Gauss

elimination method it was necessary to assume that the matrices

Oo” and A™ are stable at every stage (see (3.72) and (3.74)). It can

be demonstrated that these conditions hold if the initial matrix A

is absorptive: for if A is absorptive then, since OY <A, the

matrix Q" is also absorptive (and therefore stable). In this case the

matrix A” is well defined by (3.72), and since O<A and

R™® <A it follows by (3.72) that

A® = QU*R® < Av AO < A Ow

which implies that A” is absorptive. By repetition of this argument

it follows that the successive A“ and O™ matrices are all absorp-

tive, and consequently stable.

We observe that, since the diagonal elements of an absorptive

matrix are necessarily sub-unitary, the ‘pivotal’ element Ga in

(3.78) and (3.80) has a closure (a ”)*=e. Thus when “4 ig

absorptive these formulae can be simplified to

p fizkj=k
ay =\ay > va Pag? ifi>ki>k (3.81)

{ a % otherwise,

and

p® = Ca i if i<k,
DED ygEDAEYD if Gok (3.82)

respectively. Furthermore, it is evident from (3.82) that b”?=p"?

so it is only necessary to perform n—1 transformations of the
b-vector.

Example 3.23. Shortest path calculations. Let us consider the problem of
finding the distances from each of the nodes to the node ‘4’ on the graph of
Fig. 3.6.

Path problems 117

We denote the distance from each node x; to x, by y;. Then, using P2, the

vector y=[y1, y2, y3, Ya, Ys’ of these distances can be obtained as the least

solution of the equation y = Ay vb, where

’ and b=e,= > ll

8 & wre 8B 8Bvne 8 B Bsa" 5 18 ww ~ 8 8 ow 8B 8 8H 8 8B S Caos 6.3

Since the graph does not contain any cycles of negative length the matrix A

is absorptive, and therefore we can use the simplified form (3.81), (3.82) of

the Gauss elimination method. The successive matrices A“ and vectors b“
obtained by this algorithm are given below. (The shading indicates nullified

elements of the lower triangle, and the circles indicate other elements

whose values change at each stage.)

CONS CON CO 00

o @ 8 w oo)

Aves tL @ ed b? =| 00 |;

D Rae] Si4 Ole 100 0

COMG FZ co 00

3. Or. a 00 “wi paar *

© ® 1) b?=|~};
© G0 ~ 0

Oe 24 00,

fo ounce) oo

8 © oO

Ge Ay b® =| co |;

10 @ 0

2D 00

(oe) oe)

00 (ee)

A® 1,31, b® =| 0 |;

0

118 Path problems

a I

OIE tk to tS

By applying the back-substitution method of Section 3.6.1 to the system

y=A™y v b® we obtain the solution

y=[6 7 3 0 2).

If all the cycles on a graph are of strictly positive length then all shortest

paths are elementary. In this case it is possible to determine the sequence of

nodes traversed by a shortest path, from node x, to node x, say, in the

following manner. First, we construct the vector y of distances from each

node to node x,, as above. If y, =00, there are no paths from x, to x,;
otherwise, we execute the following algorithm:

Step1 Let so=p and let k =1.

Step 2 Let s, be any index such that a,, 15, + Vsx = Vsp_1-

Step3 Ifs, =q then halt; otherwise record s;,, increase k by 1, and return

to Step 2.

It is easily verified that the sequence of indices 5, 52,..., 5-1 produced
by this algorithm defines a shortest path from x, to x,:

Np Ke > Neg Ol Xe

As an illustration, to find a shortest path from x, to x, on the graph given
above, we first set sy = 1; we then set

5; =3 (since a43+y3= yi);

S2=5 (since a35+ ys = ys);

S3 =4 (since as4+y4=ys).

These indices define the shortest path x; > x323%x5> x4.

Example 3.24. Determination of simple paths. Let us consider the prob-
lem of finding the simple paths on the graph of Fig. 3.2, from each of the
nodes to the node ‘2’. Using the algebra P;, the required paths are given by
the second column of A (see Example 3.17), which can be expressed as the
(unique) solution y of the system y = Ay v a9, where a, is the second column
of A.

In this system the A-matrix is not absorptive, but it is easily demonstrated
that all matrices on P; are stable (the proof is left as an exercise for the
reader). Applying the Gauss elimination method (3.78), (3.80) we obtain:

Path problems 119

¢ ¢ {a}

“hs & {c} pou? |.
td} fey)" {d}}’

d {g} d

¢ ¢ {a}
d {c} ay _ |{ba}}

{d} & {e}f BeCan
| {fa} d {g} {fa}

a) ¢ d {a}
aaa|? 1; {c, bac} po_| a |.

d &|¢@ {e,de,dbac} |’ {d, dba} |’

$ ¢\¢ {g, fac} {fa}

od | {a} ¢ 7) {a}

ol su {c, bac} (3) _ {ba} :
d @¢ | {e,dc,dbac} |’ {d, dba} |’

¢ ¢ {g, fac} {fa}

[i) d {a}
A® co) {c, bac} b= {ba}

&’ | {e,dc, dbac} {d, dba} |"

¢ ¢ @ ¢ {fa, gfa}

Then, application of the back-substitution method to the system
y=A”yv b™ gives

{a}

_ {cfa, cgfa, ba}

{efa, egfa, dcfa, dcgfa, d, dba} |’

{fa, gfa}

The same technique can be used to determine the elementary paths and

cycles of a graph: if each arc is labelled with the index of its terminal

endpoint, viz. /(x;, x;) ={j}, then each element 4; of A gives the set of node

sequences of the elementary paths from x; to x;.

3.6.3. The Jordan elimination method

As an alternative to the Gauss method, it is possible to perform

the n successive transformations of the system y= Ay vb® in

such a way that in the final system the matrix A” is null, so that no

120 Path problems

back-substitutions are required. Essentially, the difference between

the transformations performed in the Jordan method and those of

the Gauss method is that, in the kth step of the Jordan method, we

use the kth equation to eliminate y, from all the other equations of

the system, and not just the equations for Ye Visier ioe 20

achieve this, we simply replace the matrices OQ and R“ of (3.72)

by
ro) Aa 1) ro) AK 1) ra) AY

oO” = ra) Ass 1) ro) R®= A 1) d AG 1)

6 AS” © As; ® ASS”
(hed. 2. sneeeamn ds (3.83)

It is evident from (3.83) that, as in the Gauss method,

ASO ER Ue 1 Dee a)

which implies (through (3.74)) that all the systems y= A“’y v bP

have the same least solution.

Next, we can show by induction on k that in each matrix ae the

first k columns are null: indeed, it is evident from (3.83) that if the

first k —1 columns of A“~" are null, then the first k columns of R“’

are null, which implies by (3.72) that the first k columns of A are

null, as required.

Thus in the final system y= A‘ y vb” the matrix A” is null, so
this system gives the required solution directly, as y=b'”.

With regard to the calculation of the successive matrices A““’ and

vectors b‘“”, it is evident from (3.83) that

E Ais PAS * &
o** =| AX D* i a ee Rg

® AS AS 1)x E

(3.84)

“) in (3.83) are null, we can write and, since the first k columns of R

this matrix as

® ® Anas 1)

ROS Ore hae ada). (385A
DOA.

Path problems 121

It follows from (3.72) that

&& AVA PAL At
AX =|@ AS DEAGED

Db ALP VAS ALMA AEY
and

(k-1) (aD (kS1) (k-1)
bi V Aid Ax *bs

(ky __ (k=~1) xp (k-1)
b= As b> CRIS, 4253.71):

k=1) (k—-1) 4 (k—1) xy (k-1)
bs VA35 A» b>

(3.86)

As in the derivation of the Gauss method, it has been assumed
here that the matrices Q“ and A™ are stable at every stage. In the
particular case where A“? is absorptive, this condition holds (the
proof given for the Gauss method being valid here also). Again, if

ACs absorptive the formulae (3.86) can be simplified, by setting
ASS P* =e throughout.

The computation of closure matrices. If we require the least solution

of a system Y=AYvB where B is an n Xm matrix, we can of

course obtain this by performing the transformations of A as

before, and operating on each column of B in the same way as we

treated the single b-vector previously. Thus, writing A“ =A and
B =B, we compute successively (cf. (3.72))

AM=Q”*R®

B® =Qh*BeEY Ce 2e, <b), (3.87)

and on termination we have B” = A*B.
In particular, this technique can be used to compute the weak

closure of a matrix A: since A is the least solution of the equation

Y =AY VA, if we set A® = B® =A and then apply (3.87), this

gives B” =A. Furthermore, since A= B™ initially, it follows

from (3.83) and (3.87) that at every stage, the non-null columns of

A” are identical to the corresponding columns of B“?, and there-

fore in place of (3.84) we may write

zz Be Bes ®

o* = ® Be @ |, Rete? 8 Sey);
(k—1) p(k—-1) x ® B32 Bn E (3.88)

122 Path problems

Thus, by (3.87) and (3.88), each matrix B“? can be defined directly

in terms of B“~”:

B® = OR 1)

k-1 k—1) pl(k-1) (k—1)
Bu ; vB Bx °*Br

= Be <p

k-1 k-1 (k—1) (k-1) Bo VBS By “B

= = _ - k-1)

BEBE * Bis? v BY YBa “Bas
BS Be? bea ye eas 2 iat

BEBE BEY vBE BE BS
(hed, 2c Jt), (3.89)

and therefore its elements can be computed using successively

oe Oh if j=k
bi =\(bu ba ifi=ike

by vb (be by? fii Ak,
ae 2 sory Ds (3.90)

In the particular case where A is absorptive this formula simplifies

to

ae be ifi=k orj=k,

eae pe Dv bE PRE. Baek

(RSs? = on). 491)

The algorithm (3.90) has a counterpart in linear algebra—the

well-known Jordan method of matrix inversion. It has been

invented for regular languages by McNaughton and Yamada

(1960). The simplified algorithm (3.91) has also been invented as a

method of finding closures of Boolean matrices by Roy (1959) and

Warshall (1962). In the context of shortest path problems it is

known as Floyd’s algorithm (Floyd 1962), and it has been invented

as a method of listing elementary paths by Murchland (1965).

Example 3.25. Determination of elementary paths and cycles. Let G bea

graph whose arcs have names—as in Fig. 3.2—and let us consider these arc

labels as elements of the path algebra P. Then for any path uw on the graph,

I(u) ={o} where o is the name of uw (as defined in Example 3.9).

Path problems 123

Let A be the adjacency matrix of G. Now all matrices in M,,(Ps) are

absorptive (see Example 3.18), and by (3.56), and the definition of the join

operation (given in Section 3.2.2), the matrix A has entries

ay = V Mu)=0(V. Mu)) =2(N,)
we Tij we Ti

where N,, is the set of names of the elementary paths from x; to x;. Now if uw

is an elementary path from x; to x;, no proper subset of the arcset of ~ forms

a path from x; to x;,; it follows that each path name in N,, is basic to N;,, and

therefore

Gij =b (Ni;) = Ni.

The matrix A can be computed using the simplified form (3.91) of the

Jordan ‘inversion’ method: for the graph of Fig. 3.2,

Ter gine 3 6 f) ¢ ¢
past tat alae {b} {ba} {c}],

& {d} ¢ {e} & {d} @ {e}]

{f} 6 {g} {f} {fa} {g}

{ab} {at} {ac}

732) {b} {ba} ¢ {co} | 3) — p2).

(eae eae
i aes ae ee
{ab, acf} {a} Pu nacy

{b, cf} {ba, cfa} {c}

{db, ef, dcf} {d,efa} g {e,dc}]

{f} {fa} {g, fac}

Bo a

3.7. Iterative methods

3.7.1. The Jacobi, Gauss-Seidel, and double-sweep iterative

methods

In this section we shall present three iterative methods for finding

the least solution y = A*b of a system

y=Ayvb, (3.92)

124 Path problems

where the matrix A is stable. For simplicity, it will be assumed

throughout that the diagonal entries of A are all null. We note that,

should an A-matrix not satisfy this condition, we may express it as

the join of two matrices:

A=ECvVD,; (3.93)

where C is the matrix obtained from A by nullifying its diagonal

elements, and D = diag (a11, 422, .--5 Gnn)- It follows by (3.27) that

(on condition that all the diagonal elements a, are stable) the least

solution of (3.92) can be written as

A*b=(C v D)*b=(D*C)*D*b,

and it can therefore be obtained as the least solution of the system

y=Ayvb (3.94(a))

where

A=D*C--and b=D*b. (3.94(b))

From (3.94(b)) the entries of the matrix A= [a;;] and the vector

b =[6;] can be written as

é =f Gy thas,
aij = ie

od Lip = J,

thus, in the new system (3.94), all diagonal entries of the matrix A

are null.

In an iterative method of solving the system (3.92), we first

choose some estimate y© of the required solution, and then we

derive from it a sequence of successive estimates yo"; KH 1725259

if the method is successful, these vectors ultimately take the value of

the required solution. Some techniques for constructing the y““’

vectors are defined below.

and b; = (aii)* bi;

(i) The Jacobi method. The form of the system (3.92) immediately

suggests the iterative scheme

Dies Ay Ve oe pa (3.95)

This iterative method is the counterpart of the Jacobi method of

solving a system y= Ay+b in linear algebra (Varga 1962). The

concrete interpretation of (3.95) for the path algebra P, is also

Path problems 125

widely known, as Bellman’s method of solving shortest-path prob-
lems (Bellman 1958).

It will be noted that, since all diagonal elements of A are null, the
formula for calculating the elements of the kth estimate y“ can be
written as

ys =(V. ets vb, GaSe ey, ot)
JA

(ii) The Gauss-Seidel method. From the formula (3.96) it is clear

that in the Jacobi method one only uses elements of sane in

calculating ye. but intuitively it would seem reasonable to use

always the latest available estimates of the components y; of the

required solution y. This leads to the iterative method in which each

of the elements y*’, yS’,..., y“ are obtained in turn using (cf.

(3.96))

y® -(V cup) v ie V adr. ”) vb,

j=it+l

(= Ti Qoesesr) (3.97)

This method has the additional advantage over the Jacobi method

that it does not require the simultaneous storage of the two approx-
(k=1) (k) :

imations y; and y; in the course of computation.

This procedure can be defined in matrix form, by writing

A=LvU (3.98)

where L and U are respectively strictly lower and strictly upper

triangular matrices, whose non-null entries are the entries of A

respectively below and above its main diagonal. Then in matrix

notation, (3.97) becomes

y=Ly® v Uy? vb, (3.99)
and since L is strictly lower triangular, we can write (3.99)

equivalently as

Feel yy ih (3.100)

(Indeed, since L is strictly lower triangular, this matrix is nilpotent,

and therefore the system (3.99) has a unique solution—see Section

BiG)

126 Path problems

This method is the counterpart of the Gauss-Seidel method of

solving a system y= Ay+b in linear algebra (Varga 1962). The

concrete interpretation of this method for the algebra P? is also well

known, as Ford’s method of finding shortest paths (Ford and

Fulkerson 1962).

(iii) The ‘double-sweep’ method. The performance of the Gauss—

Seidel method may be strongly affected by the ordering of the

equations in the system y = Ay v b. For instance, it is evident from

(3.97) that if A is strictly lower triangular, the Gauss-Seidel method

becomes the forward substitution method of Section 3.6.1, and only

one iteration is required. However, if the ordering of the y-variables

of the system is reversed, making the A-matrix upper triangular, the

Gauss-Seidel method (3.100) becomes equivalent to the Jacobi

method (3.95) and y“” is constructed using only elements of the

previous estimate yoo in this case, a large number of iterations

may be needed to obtain the solution.

This defect is largely overcome in the ‘double-sweep’ iterative

method, where initially we choose some estimate y°° >b and then

construct successively the vectors yo and y”, (k=1;2.5..)

which are the (unique) solutions of the equations

y®D = ye) nite (3.101(a))
y= Ly y yb, (3.101(b))

these being respectively

tie a obs (3.102(a))
yO =Lty*, (3.102(b))

The equation (3.101(a)) is solved by the back-substitution method
of Section 3.6.1, and (3.101(b)) is solved by the forward-substitu-
tion method. Thus, the elements of y““”? are calculated in the order

(k-3) | (k—3) (ae
Va so Yard yes sla USINg

eye aa) CE rad Gc (k-4) (k-1
Yn =n ’ yi 5 V Qijy j VYi if

jy=itl

(= 1 ee oe Ls (3.103(a))

Path problems 127

ang en the elements of yo are calculated in the order
yr sys ates Oni using

i—1 (Ee) 2) con (k) (=D Vie a > yi =(V QiiVj |V Yi ,
j=1

(Piet 2. Sirs a isthe (3.103(b))

It is evident from (3.101) that

yo <y® <y? <y0 < mee, (3.104)

Also, from (3.102), we may express this iterative method as

y = (3.105)

or, since b =, and (3.104) holds, as

No es Uy NEU. (3.106)

This algorithm is a generalization of a method developed by Yen

(1970, 1975) for solving shortest-path problems. It does not have a

counterpart in linear algebra, although it bears some resemblance

to Aitken’s ‘double-sweep’ method (Varga 1962).

3.7.2. Conditions for validity of the iterative methods

Let us suppose that we can represent the closure of the A-matrix

of the system (3.92) by a product

A*=M*N (3.107)

where M and N aren Xn matrices, the matrix M being stable. Then

we associate with this product an iterative scheme

fo =My ORNDs Oh = 1 275. (3.108)

It will be observed that if (3.107) holds, the equations (3.92) and

(3.108) have the same least solutions.

In fact, all the iterative methods of the previous section can be

described in this way, their M and N matrices being as follows (cf.

(3.95), (3.100), and (3.106)):

Jacobi method: M;=LvU N;=E (3.109(a))

Gauss-Seidel method: Mggs=L*U Nos=L* (3.109(b))

Double-sweep method: Mg,=L*U* Na,= L*U* (3.109(c))

128 Path problems

For the Jacobi method the condition (3.107) obviously holds. For

the Gauss-Seidel method it follows by (3.27) that when L*U is

stable,

MésNoas aa Gee Sa eal bs =(Lv yy = A*,

while for the double-sweep method it follows by (3.20) and (3.26)

that when L* U* is stable,

MIN =(L°U" LOU BYy OH 4 D iea o5) Gall OF ies B Saas

ALVA tA

Now for any iterative method of the form (3.108), it follows by

substitution in (3.108) that

y=M (My v Nb) v Nb= My“ v (Ev M)Nb

and by repeated substitutions,

y=M*yv (EvMvM?v --- vM*"")Nb,

“R= 172555 3S G1)

Hence, by (3.107),

yO=M*yvA*b forall k=q+1, (3.111)

where q is the stability index of M, and therefore

y°>=A*b forall /-=qt+1. (3.112)

From (3.111) it is clear that in general, the validity of iterative

methods of the form (3.108) is not assured for all initial estimates

y’”. However, let us impose the condition

y <A*b.

(In practice this condition is easily met, for instance by setting

yy" =b.) Then in (3.110) we have

M*y® <M*A*b= M*M*Nb<M*Nb= A*b

and therefore

yO <A*b, eG =ne2,...): (3.113)

Combining (3.112) and (3.113) we obtain

y°=A*b forall k=q+1.

Path problems 129

Hence, any iterative method of the form (3.108), with y°<A*b,

gives the least solution of a system y= Ayvb after at most q+1

iterations, where q is the stability index of M.

In the particular case where A is absorptive, this result leads to a

useful practical bound to the number of iterations. It was implied by

our choice of M and N in (3.107) that

M =< MA* < M*A* = A*.

Hence if A is absorptive then M is also absorptive (see Section

3.4.4) and therefore the stability index of M is less than n. Thus if A

is absorptive, then any method-of the form (3.108), with y° <A*b,

gives the least solution of a system y = Ay v b after at most n iterations

(where n is the order of A).

Given further information about M and N, it is sometimes

possible to obtain better upper bounds for the number of iterations.

In particular, this can be done for the double-sweep method: by

comparing terms in their expansions it is clear that

(Rail) ee Ae ik = 1,
(3.114)

Now if A is stable of index q, thent

(EvLw-Uy"*S(6v A)

=Ev.Am Ao ww A =A",

forall k=|q/2}+1, (3.115)

and by combining (3.114) and (3.115) we obtain

(L*U*) =A* _ forall k =|q/2) +1.

It follows from (3.105) that for the double-sweep method, with

bx<y<A*b,

yo SLU)y"" = A*h for all KS 1q/2| +1.

Consequently the double-sweep method, with b<y” <A*b, gives

the least solution of a system y=Ayvb after at most |q/2|+1

iterations (where q is the stability index of A). It follows that if A is

absorptive, the method requires at most |(n+1)/2] iterations.

+ The symbolism |x| means “‘the largest integer not exceeding Ge

130 ~=Path problems

3.7.3. Comparison of the iterative methods

By comparing the definitions (3.96), (3.97), and (3.103) of the

Jacobi, Gauss-Seidel, and double-sweep methods we see that in

each iteration, the numbers of join and multiplicative operations

performed are precisely the same in all of them.

It is also possible to relate the numbers of iterations required, by

the following argument. Let us suppose that we have two iterative

methods of the form (3.108), the first constructing vectors wa

(k =1,2,...) using

yi =My\ Vv Nib (3.116(a))

and the second constructing vectors y>”, (k =1,2,...) where

ys = Moy? v Nob. (3.116(b))

We assume that the same initial estimate is used in both cases,

yi =y2 - (3.117)

and that this vector is not greater than A*b.
Now let us suppose that

M,=<M,2 and N,SN>. (3.118)

Then, since the join and multiplicative operations are isotone, it

follows from (3.117) and (3.118) that y{<y$”, which in turn
implies that y{” <y$”, and so on. Combining this result with (3.113),
we obtain

yi <y2 <A*b, (Kk =0,1,2,...).
Hence, if for some value of k we have y\’ = A*b, then y%’ = A*b
also, which implies that the number of iterations required by the
second method is not greater than the number required by the first.

For the iterative methods presented in Section 3.7.1 we have (cf.
(3.109))

My, Mes X Mas and Ny, Nes X Nas.

Hence, for any initial estimate y in the range b<y® <A*hb, the
number of iterations required by the double-sweep method is not
greater than the numbers required by the Jacobi and Gauss-Seidel
methods.

Path problems 131

Example 3.26. Shortest path calculations. For the shortest-path problem
of Example 3.23, the successive y-vectors obtained by Yen’s double-sweep
method, with y = b, are given below. It will be seen that only two complete
iterations are needed to reach the solution. (With any problem, the iterative
process can be terminated as soon as two successive y-vectors are identical:
indeed, by premultiplying (3.102(b)) by L*, and noting that L*L* = L*, we
find that L*y“ =y™, for k =1, 2,...; hence if y“» =y~”, it follows by
(3.102(b)) that y“ = L*y*“"? =y*—. Similarly, it follows from (3.102(a))
that if y“’ =y“~ then all subsequent y-vectors have this value.)

y” 5 y” s® @ 5) yo? gt) y” 5?)

00 0 00 0 00 0 © @ 6 3
co} | 0 @] | 8 4 8 4)|@0]|}@
00 0 oO 0 OES Oe elas 6) 3 5
0 0 0 0 0 0 0 0 0 0

ett cork ON VO4 (Ay Ol also) bd

To obtain the sequences of nodes traversed by shortest paths, we can

construct a sequence of successor vectors s®, s°, s°’, .. .in the course of the
computation as follows. In the initial successor vector s“’, all entries are

zero. In the first part of the kth iteration, when each element y‘*~» is
formed we set

(cad) es (k-4) (k-1)
Gye 5: Mey ve SV

se ref? 3 aa(6 =) 9) (k-1) (i=1,2,...,7), j yp ey

where j is any index such that y‘*~) =a,y‘*-. In the following
half iteration the elements of s‘“’ are obtained from s“~* in the same
manner:

(k-4) ‘ (k) — ,,(k-4)
Ke _ JS ify; =Yyi (i= 1,2)

Si . te a (k) y(k-4) Jo AE] ify AY:

where j is any index such that y‘“’ = a;y*~. It is evident that on termina-
tion, the ith element of the final successor vector is the index j of the

successor x, of node x; on ashortest path from x; to the destination node. In
this way, the final successor vector defines shortest paths from all nodes to

the destination.
As an illustration, to find a shortest path from x, to x4 in our example, we

find in turn the entries s =3, s?’ =5, s?’ =4, which give the path

X17 X37 X57 Xq.

132 Path problems

3.8. A special method for totally ordered path algebras

Here we consider the particular case of a path algebra P in which

(i) the ordering < is total, and (ii) the unit element e is the greatest

element of P.

As examples we have the two-element Boolean algebra, and the

algebras P, and P; of Table 3.1. The conditions (i) and (ii) are also

satisfied by the algebra P3 which is obtained from P) by replacing

the set R of real numbers by the set of non-negative real

numbers. (This can be used to formulate shortest-path problems,

when all arc lengths are non-negative.)

Dijkstra’s method

Let us again suppose that we are given a system

y=Ayvb (3.119)

for which we require the least solution, and let us write this solution

as

y=A*b. (3.120)

Since P is totally ordered, the vector b has a greatest element, b,
say:

by, = b;, (j= 12 at): (3.124)

From (3.120), the corresponding element ¥, of ¥ can be expressed
as

ae ai bj. (3.122)
i=

Now since e is the greatest element of P,

BAe. Ape lee), (3.123)
and furthermore,

Qin =e. (3.124)

From (3.121), (3.123) and (3.124),

Aid, = ab; (= 1, 2 oe Ds

and therefore, from (3.122),

Ve = Gib. = by.

Path problems 133

Having found y,, we can delete the kth equation of the original
system (3.199), and substitute b, for y, in the remaining ones. In
this way the original system, which can be written in expanded form
as

w=(V aiv)ve, =1,2-...m), 125) =

is transformed into the system

n=(V auy;) V (aixbx V bi), ea le Zee ck ee Ls ee 0)

jak
(3.126)

which is of order n — 1. Repeating the process, we can find another

element of y, and then transform the system (3.126) into a system of

order n —2; continuing in this fashion, we eventually obtain all the

elements of y.

The method can be implemented by the following algorithm, in

which the set of variables y; which remain undetermined at each

stage is defined by the set M of their indices:

Step 1 Let M ={1, 2,..., n}.

Step2 Finda greatest element b, of the set {b;|i ¢ M}, and remove

the index k from M.

Step3 If M is empty then go to End.

Step 4 For each index ie M, replace b; by a;,b, v b;. Return to

Step 2.

End

On termination, the vector b has been transformed into the

required solution y.

This algorithm is a generalized form of Dijkstra’s algorithm for

finding shortest paths (Dijkstra 1959).

In practice, the work involved in finding a greatest element b, in

each b-vector may be considerable. However, in some problems the

value of b, is known a priori, in which case the algorithm can be

greatly simplified: as an illustration, the simple technique described

in Section 2.4 for finding accessible sets is essentially an implemen-

tation of Dijkstra’s algorithm, on the two-element Boolean algebra.

The following example also demonstrates this point.

134 Path problems

Example 3.27. Finding lowest-order paths. The problem of finding paths

of lowest order from a node x, to all other nodes of a graph can be treated as

a shortest path problem, by assigning lengths of ‘1’ to all arcs. Then, using

the path algebra Pz defined above, the orders of lowest-order paths to all

nodes are given by the least solution of the system y= A’y ve,.

The application of Dijkstra’s method to this problem has a simple

graphical interpretation. If we regard the assignment of a value to y, as a

‘labelling’ of the node x, with the value of y,, then we proceed as follows:

first, we label node x, with a ‘0’. Then, we attach the label ‘1’ to every

successor of the node labelled ‘0’. Next, we attach the label ‘2’ to all

unlabelled successors of nodes labelled ‘1’, and so on until all nodes have

been labelled.

When the labelling process is finished, a lowest-order path from x, to any

other node x, can be found, by tracing a path ‘backwards’ from x, insucha

way that, at each successive node encountered, the value of the node label

decreases. This algorithm has been used extensively in the design of printed

circuits (Lee 1961).

3.9. Practical considerations

3.9.1. Implementation of the path-finding algorithms

In most practical problems the number of arcs in a graph is much

smaller than the maximum possible number, and consequently its

adjacency matrix is sparse, that is to say, only a small proportion of

the elements of the matrix are non-null. Under these circumstances,

the performance of any path-finding program depends strongly on

the extent to which it exploits sparsity.

To implement the substitution methods of Section 3.6.1, the

iterative methods of Section 3.7 and Dijkstra’s method on a

computer, it is convenient to specify each row of an A-matrix by a

list of its non-null entries, together with their column indices. In this

way, one easily avoids storing or operating with any null elements.

In the Gauss and Jordan elimination methods, it is rather more

difficult to exploit sparsity because the successive eliminations tend
to fill in the A-matrix: it is clear from (3.77) and (3.86) that at each

elimination step, elements which are null in A“~” may become:

non-null in A“. However, the techniques which have been devised
to overcome this problem in the context of numerical linear algebra
are all applicable here. In particular, by using ‘linked-list’ represen-
tations of matrices (Knuth 1968) one can avoid storing and operat-
ing on any null elements. The ‘optimally ordered elimination

Path problems 135

schemes’ of linear algebra—which essentially permute the rows and

columns of a matrix in such a way as to minimize the filling-in of its

null entries—are also directly applicable to our problems (Rose

1972; Tewarson 1973).

With regard to the implementation of Dijkstra’s method, it is

sometimes profitable to use sorting techniques, in the search for

greatest elements of the b-vectors (Johnson 1972).

3.9.2. Comparison of the algorithms

Table 3.3 gives the best available upper bounds of the numbers of

join and multiplicative operations required by various methods, to

solve a system y= Ayvb where A is absorptive. To obtain these

bounds it has been assumed that: (i) no join or multiplicative

operations are performed with null elements in the substitution

methods, iterative methods, or Dijkstra method; (ii) in the direct

methods, maximum possible fill-in occurs (so that in effect, all

entries of the original A matrix are non-null); and (iii) the

iterative methods take the maximum possible number of iterations.

TABLE 3.3

Method Number of v-operations Number of multiplications

Substitution methods mq mq

Gauss elimination <n(n—1)(2n—1)/6 <n(n—1)(2n-1)/6

+mn(n-—1) +mn(n-1)

Jordan elimination <n(n—1)*/2+mn(n—-1) <n(n—1)?/2+mn(n—-1)

Matrix closure

algorithm <n(n-1)* <n(n-1)*

Jacobi and

Gauss-Seidel <m@qn <=mqn

Double-sweep (Yen) =ma|(n+1)/2] <= ma|(n+1)/2)

Dijkstra <m/(n(n—-1)/2+q) <=mq

n represents the order of A; m is the number of different b-vectors for which

solutions are required; and q is the number of non-null entries in A.

It must be emphasized however that for sparse matrices, the

assumption (ii) above is not realistic; indeed as is pointed out by
Rose (1972), when a matrix is sparse its order n has only minor

importance, as a measure of the work required by a direct method.

Also, in connection with assumption (ili), the number of iterations

136 Path problems

required by an iterative method is usually small in comparison with

the maximum possible number. Thus, the bounds in Table 3.3 must

not be regarded as indicators of the relative efficiencies of the

various algorithms, when applied to real problems.

Nevertheless, from analytic considerations, and practical

experiments (Fontan 1974), we can draw the following general

conclusions:

(i) When A is sparse, and solutions are required for only a few

b-vectors, the double-sweep method is usually the most efficient.

It is easy to programme, and its storage requirements are

minimal.

(ii) If A is sparse and the disposition of its non-null entries is such

that the fill-in can be small (as is the case for instance if A is a

‘band’ matrix—see Tewarson (1973)), then the Gauss elimina-

tion method may involve least work. It becomes more advan-

tageous as the number of b-vectors increases, since the

transformation of A into an upper triangular matrix need not be

repeated. Gaussian elimination involves less work than the

Jordan method (Fox 1964; Tewarson 1973). The programming

involved, to exploit sparsity, is relatively difficult.

(iii) Dijkstra’s method becomes more competitive as the number
q of non-null elements in A increases.

With regard to the time complexities of these algorithms, it will be

noted that for the path algebras P,—P; the times required to perform

a join operation or a multiplication are bounded by constants, so the

algorithms are all ‘fast’. However, for the algebras P.—Ps, the time

needed to perform a multiplication can increase exponentially with

problem size.

Exercises

3.1. Let A be astable matrix on a path algebra, and let the matrices A and

A* be partitioned in the same manner, into

aalee Aix By ea

Arn Ax ;

| and ee al
By, By

where the diagonal submatrices are square. Prove that (on condition
that all starred terms are stable) the submatrices of A* are related to
the submatrices of A by the following identities:

3.2

333

Path problems 137

Boo = (Ani (Ai1)* Aya V Ar)*,

By =(Ai1)*A12Bx,

Bo, = BxAr(Ai1)*,

By =(Ai)*(Ai2Bo: v Ei),

where £;, is a unit matrix.

(Note: These identities taken in order define a procedure for cal-

culating A* which is analogous to the method of inverting a matrix by

partitioning.)

Let P be a path algebra whose multiplicative operation has the

cancellation property. Prove that every stable matrix of M,,(P) is

absorptive.

A project involves ten activities, for which the durations and con-
straints (as described in Example 2.11) are specified in the table

below. Find the critical paths, and the slack time for each activity, if

the project is to be completed in 60 time units.

Activity Duration Predecessors

a 25 _

b 14 a, d,e
c 5 —

d 4 c

e 16 d,h
f 3 a,e

g 10 c

h 20 g

i 2 f

j 6 g

3.4. A reactor in a chemical plant is shut down annually and either

overhauled or replaced. The cost of overhaul is related to the age of

the reactor, as shown in the table below

Reactor age (years) 1 2 3

Cost of overhaul (£1000s) 10 25 60

The cost of a new reactor is £100 000. The expected life of the

whole plant is ten years, starting from new. Determine an optimal

policy for the replacement of the reactor over the ten-year period, and

the total expenditure under this policy.

138 Path problems

FIG. 3.7

3.5. Solve the following path problems for the graph of Fig. 3.7, using the

double-sweep iterative method.

(i) Assuming that the arc labels represent physical length, find shortest
paths from node 2 to each of the other nodes.

(ii) Assuming that the label on each arc represents its capacity, find paths

of maximum capacity from node 2 to each of the other nodes.

(iii) Assuming that the label on each arc represents its reliability, find a

most reliable path from node 2 to each of the other nodes.

3.6. Find all the Hamiltonian cycles on the graph of Fig. 3.8,

(i) by the Gauss elimination method and
(ii) by the double-sweep iterative method.

FIG. 3.8

3.7. (i) Prove that, with an initial approximation y© =b, the y“-vectors
obtained by the Jacobi method (3.109(a)), the Gauss-Seidel method

(3.109(b)), and the double-sweep iterative method (3.109(c)) are

respectively

yy°=(EvLvU)*b, -y&=(L* vL*U)*b, y= (L*U*)*b.

3.6.

3.9;

3:10.

Path problems 139

(ii) Using the results of (i) above, show that with y = b, the number
of iterations needed to solve an equation y = Ay vb by the Gauss—
Seidel method is not greater than the number required by the Jacobi
method.

(iii) Compare the y“’-vectors obtained by the three methods in the
particular cases where (a) the matrix A is strictly lower triangular, (b)

A is strictly upper triangular, (c) A is of the form

a “|

C

where the null submatrices ®, and ®, are both square.

(i) Prove that for any elements w, xX, y, z of a path algebra

(w v xyz)* = w* v w*x(yzw*x)*yzw*.

(ii) Let A be a square matrix on a path algebra, and let B be the

matrix obtained by changing the value of some element a; of A toa,

where o = a,;. Using the identity given above, prove that

B*=A*y c(aa*)*od,

where c is the ith column of A%* and d is the jth row of A*.

Let P be a path algebra whose multiplicative operation is com-

mutative. Then the determinant |A| of a matrix A € M,,(P) is defined

by
IAJ= Vo inm@2ne+ ++ Ann

hi}, hn

where \/;,._.,, means that the join is extended over all permutations

(hy, ho,...,h,) of the indices 1,2,...,n. The adjoint of A is the

matrix adj (A) =[a,] with elements

a= |Axl for all E ip

where |A;;| is the determinant of the minor A,; of a; in A.

Prove that if A is absorptive then

adj (Ev A)=A*.

(i) Let G be an n-node graph labelled with the path algebra P, (for
finding shortest paths), let A be the adjacency matrix of G, and let

A“ =[a] be the matrix obtained at the kth step of the Gauss
elimination method (as defined by (3.81)). Prove that if the subgraph

of G generated by {x1,x2,...,xx} does not contain a cycle of

negative length, then each non-null entry a{;? of A“ for which i>k
and j >k is the length of a shortest elementary path from x; to x;, on

the subgraph of G generated by {xj, x2,..., xx} U{xi, x)}.

140 Path problems

(ii) Using this result, develop an algorithm to determine whether a

given graph contains any cycles of negative length. Devise also a

method for finding a cycle of negative length, if one exists.

Additional notes and bibliography

The first algebraic study of path problems was by Lunts (1950), who

applied Boolean matrix algebra to the analysis of relay networks. Moisil

(1960) and Yoeli (1961) extended his results to a more general algebraic

structure, applicable to several different types of path problems, and

further extensions of this work were described subsequently by Cruon and

Hervé (1965), Tomescu (1966, 1968), Peteanu (1967, 1969, 1970), Ben-

zaken (1968), Robert and Ferland (1968), Carré (1971), Derniame and

Pair (1971), Backhouse and Carré (1975), Gondran (1975), Roy (1975),

and Wongseelashote (1976). See also Cuninghame-Green (1962, 1976)

and Minoux (1976).

The ‘path algebra’ presented in Section 3.2 will be recognized by

algebraists as a multiplicative semi-lattice, or semi-lattice-ordered monoid.

For a fundamental treatment of lattice-ordered structures see Birkhoff

(1967) and Dubreil-Jacotin, Lesieur, and Croisot (1953).

Some further concrete examples of the path algebra will be found in

Derniame and Pair (1971), Minieka and Shier (1973), Brucker (1974),

Gondran (1975) and Shier (1976).

The formulae (3:71); (3.72), and (3.83) defining the Gauss and Jordan

elimination methods suggest the possibility of developing triangular factors

and product forms of closure matrices, analogous to the triangular

factorizations and product forms of inverses used in ordinary matrix

algebra; these are described by Carré (1969, 1971) and Backhouse and

Carré (1975). Many other techniques of numerical linear algebra are

applicable to path problems, and several of them have been reinvented in a

graph-theoretic context. For instance, the escalator method of matrix

inversion (Faddeeva 1959) has been developed as a method of computing

shortest paths by Dantzig (1966). Graph-theoretic counterparts of the

‘decomposition’ or ‘block’ methods of inverting sparse matrices (Tewarson

1973) have also been discovered (Land and Stairs 1967; Hu and Torres

1969; Yen 1975); see also Hoffman and Winograd (1972). We note

however that in numerical linear algebra, decomposition methods have

been largely superceded by ordered elimination techniques (Tewarson

1973; Duff 1977).
The formula given in Exercise 3.8 is our counterpart of the method

of finding inverses of modified matrices in linear algebra (Householder

1953). This formula was derived on P, from graph-theoretic considera-

tions by Murchland (1967) .and Rodionov (1968), who used it to

Path problems 141

calculate the changes in distances on a graph when one of its arc lengths is

reduced.
The solution of path problems using determinants (see Exercise 3.9) was

first proposed by Lunts (1950), and Hammer and Rudeanu (1968) used

determinants on a Boolean algebra to enumerate elementary paths. There

is a close connection between the method of evaluating such determinants,

using expansion by elements of rows, and the back-track programming

method of finding elementary paths which was presented in Section 2.7.

A bibliography on algorithms for path problems has been published

by Pierce (1975).

4 Connectivity

4.1. Introduction

IN THIS CHAPTER we Shall first consider the ways in which it is

possible to ‘separate’ two nodes of a graph, that is, to destroy all the

paths between them, by removing arcs. The concept of a ‘separating

arc set’ which is developed here is important for instance in deter-

mining the reliability of a communication network with faulty links,

and in studying flows in transportation networks. Next we shall

discuss the complementary notion of a minimal ‘connecting’ set of

arcs of a graph, which preserves the accessibility between nodes,

even when all the other arcs are removed. We shall then consider

the separation of two points, by removing nodes rather than arcs;

this type of decomposition of a graph finds applications for instance

in the compilation of computer programs.

After exploring these concepts, in which arc orientations are

significant, we shall present their ‘undirected’ counterparts for

simple graphs, whose edges are not oriented.

4.2. Separation by the removal of arcs

4.2.1. Separating arc sets

Let x; and x; be any two nodes of a graph G =(X, U). Then a

subset V of U is an (x;, x;)-separating arc set if every path from x; to
x; traverses at least one arcin V. When V isan (x;, x;)-separating arc
set, and no proper subsets of V have this property, we say that V isa
proper (x;, x;)-separating arc set.

Example 4.1. In the graph of Fig. 4.1, the proper (xs, X4)-Separating arc
sets are

{a, b, h}, {b, c, h}, {b, d, h}, {g, h}.

4.2.2. Cut sets of arcs

Now let x; and x; be two distinct nodes on a graph G = (X, U) and
let {X', X"} be any partition of the node set of G such that x; ¢.X’
and x; ¢X”. Then the set ofall arcs with initial endpoints in X’ and

Connectivity 143

FIG. 4.1 FIG. 4.2

terminal endpoints in X" is called a cut set of arcs (or simply a cut)
separating x; from x; (in that order). It will sometimes be con-
venient to denote this cut by (X’, X”); thus

(X", X") = {(x;, xe U |x; EX’, xjEX"}.

When (X’, X”) is a cut separating x; from x;, and no proper

subsets of (X’, X”) have this property, we say that (X’, X") is a

proper cut separating x; from x;.

Example 4.2. The following are two examples of cuts separating x, from

x4, on the graph of Fig 4.1:

(i) By partitioning the node set X into the subsets X’={x,, x.} and
X" ={x3, X4, Xs} we obtain the cut (X’, X”) = {b, c}. This partition of X is
indicated by a broken line in Fig. 4.2; the bold lines indicate the members

of the cut.

(ii) With X' = {x,, x2, xs} and X” = {x3, x4} we obtain the cut (X’, X") =
{b, c, h}. The first of these is a proper cut separating x, from x4; the

second is not a proper cut separating x, from x4, since it contains the first.

The relationship between the cuts and the separating arc sets of a

graph can be summarized as follows:

(1) Every cut (X', X") separating x; from x; is an (x;, x;)-separating

arc set. Indeed, since x;¢X’ and x;¢ X", every path from x; to x;

must traverse some arc of (X', X”).

The converse of (1) is not necessarily true. For instance, on a

complete symmetric graph the set of all arcs is a separating arc set,

for every pair of nodes, but it is not a cut. However we can prove the

following:

(2) For any two distinct nodes x; and x;, every proper (x;, x;)-
separating arc set is a proper cut separating x; from x;. Indeed, let x;

144 Connectivity

and x; be distinct nodes on G, let V be any proper (x;, x;)-separating

arc set, let X’ be the set of nodes which are accessible from x; on the

partial graph of G obtained by removing the arcs of V, and let X” be

the complement of X’ relative to X. Then clearly x; € X' and x; < X",

and therefore on G, the arc set (X’', X”) is a cut separating x; from x;.

Now (X’, X”) CV, by the definitions of X’ and X”; also, since

(X', X") is an (x;, x;)-separating arc set (by result (1) above), and V

is a proper (x;, x;)-separating arc set, (X’, X”) cannot be a proper

subset of V. It follows that (X’, X”) = V, which implies that V is a

cut separating x; from x;. Furthermore, since none of the proper

subsets of V are (x;, x;)-separating arc sets, it follows from result (1)

above that none of these subsets are cuts separating x; from xj.

Hence V is a proper cut separating x; from x;, as required.

From the results (1) and (2) we deduce the following:

(3) Every proper cut separating x; from x; is a proper (x;, x;)-separat-

ing arc set. Indeed let C be any proper cut separating x; from x;.

Then by result (1) above, C is an (x;, x;)-separating arc set. Now if C

is not a proper (x,, x;)-separating arc set, it must contain a subset

C'CC which does have this property. But then, by result (2), C’

is a proper cut separating x; from x; which violates our initial

assumption. Hence C is a proper (x;, x;)-separating arc set, as

required.

The concept of a cut will be used in studying network flows, in

Chapter 6.

4.2.3. The determination of proper separating arc sets

The proper separating arc sets on a graph can be found by means

of the following path algebra, which is due to Martelli (1974, 1976).

Let 2 be a finite alphabet, and let S be any set of subsets of ©; then
we say that amember a of S isa minimal member of S if § does not
contain any proper subsets of o. The reduction r(S) of S is the set of
all minimal members of S. If r(S) = S then S is a reduced set of sets;
in particular, the empty set @ and the set ® = {d} are both reduced
sets of sets.

Let Ps be the set of all reduced sets of subsets of 2, and let us
define a join and multiplicative operation on Ps by the rules

XvY=r({aUBlaeX, Be Y}),
for all X, Y Ps.

X«Y=r(Xu ¥), an ada Ge

Connectivity 145

It is easily verified that with these operations Ps forms a path
algebra, whose unit and zero elements are the sets @ and ®
respectively. It will be noted that the unit element ¢ is the greatest
element of Ps.

Now let G be a graph in which each arc (x;, x;) has a name nj. Let
= be the set of arc names, and let Ps be the path algebra derived
from = in the manner indicated above. If we assign to each arc
(xi, x;) the label {{1,;}}, then we may consider G as a graph labelled
with Ps. In this case, the label /(u) of each path u on G is the union
of the labels of its arcs. For instance, on Fig. 4.1 the path w=
(x1, X4), (%4, X3), (x3, x4) has the label /(w) = {{b}, {f}, {d}}. Since @ is
the greatest element of Ps, all graphs labelled with Ps are absorp-
tive.

Now let A be the adjacency matrix of G. Then, by (3.56), its weak

closure A =[4,,] has entries

aiy= VV I(u) (4:2)
weTiy

where tT: is the set of all non-null elementary paths from x; to x;.

If we denote the elementary paths from x; to x; by

Ps ey ed) (q)
DPA ils, pe Oe ae ts

then (4.2) can be rewritten as

q

Gx = Vf Mids
k=1

and therefore from (4.1)

q

Gi;=r(M,) where M,, =| LU) ax lax € Kui). (4.3)
k=1

Here M,; is the set of all sets of arc names which can be formed by

taking the label of one arc from each elementary path from x; to x;.

Thus, if x; is a descendant of x; then dj, is the set of all proper

(x;, x;)-Separating arc sets; whereas if x; is not a descendant of x;

then Gij =,

Example 4.3. The adjacency matrix of the graph of Fig. 4.1. is given in

Fig. 4.3(a). To obtain the proper separating arc sets which Separate each

node from node x4 say, we require the fourth column of A. This can be

found by solving the system y = Ay v au, using any of the direct or iterative

146 Connectivity

methods of Sections 3.6 and 3.7. As an illustration, the successive y-vectors

obtained by the double-sweep method are given in Fig. 4.3(b). (The

solution is obtained in one iteration.)

> {{a}} @D {{b}} ®
© o {ch} © ©

© ® ® {{d}} ®

© {fe} {{f}} © ®

{{g}} @® ® {{h}} ®

FIG. 4.3(a)

(0) G) (i)

{{b}} | l{{ab}, {bc}, {bd}} {{ab}, {bc}, {bd}}

® {{c}, {d}} {{c}, {d}}

{{d}} {{d}} {{d}

® ® {{cf}, {d}, {ef}

{{h}} {{h}} {{abh}, {bch}, {bdh}, {gh}}

FIG. 4.3(b)

An alternative technique for finding proper separating arc sets,

using a network flow method, will be presented in Chapter 6.

4.2.4. Basic arcs

An arc u = (x;, x;) of a graph G is called a basic arc of G if on the

graph obtained by removing u from G, x; isnot a descendant of x;. In

other words, u is a basic arc if and only if {u} is a proper separating

arc set. As an example, the graph of Fig. 4.1 has four basic arcs: c, d,

e, and g.

If an arc u =(x;, x;) is not a basic arc of G then obviously G

contains an elementary path from x; to x; which does not traverse u,

and which is therefore of order greater than one. For this reason, an

arc which is not basic is called a chord.

The determination of basic arcs. It is easy to find the basic arcs of a
graph, by means of the following path algebra: Let = be a finite
alphabet, and let w be any symbol which does not belong to >. Let
0 = {w}, and let

Connectivity 147

where (2) is the power set of 2. We define a join operation on P by
the rules

XVY=XnNY for all _X, Y €¢ A(3),
(4.4

XVOQ=X=OvxX iforallXeP, ue

and we define multiplication on P by

Ae YS XY for all X, Ye A(3), (4.5)

X-Q=0=0-X forallXeP.

It is easily verified that the set P equipped with these operations is a

path algebra, whose unit and zero elements are the sets @ and 0

respectively. It will be noted that the unit element ¢ is the greatest

element of P.

Now let G be a graph in which each arc (x;, x;) has a name nj;. Let

= be the set of these names and let P be the path algebra derived

from , as indicated above. If each arc (x;, x;) is assigned the label

{ni}, we may consider G as a graph labelled with P. Then for any

path uw on G, the label /(w) is the union of the labels of the arcs of uw;

for instance on Fig. 4.1 the path uw = (x1, x4), (x4, x3), (x3, x4) has the

label /(u) = {b, f, d}. Since @ is the greatest element of P, all graphs

labelled with P are absorptive.

Let A be the adjacency matrix of G. Then by (3.56) and (4.4), its

weak closure A has entries

weTy (4.6) ay= Vi MH)=) 4 if T;; is empty

| 1 lu) if T, isnot empty,

weTiy

where Ti; is the set of non-null elementary paths from x; to x,;. Thus

if x; is a descendant of x;, Gj; is the set of arcs which are common to

all elementary paths from x; to x;, that is, the set of all basic arcs

which separate x; from x;; whereas if x; is not a descendant of

Xi then Gi 10). .

The matrix A (or any particular row or column of A) can be

computed by any of the direct or iterative methods of Sections 3.6

or 3.7.

148 Connectivity

Example 4.4. For the graph of Fig. 4.1.

Q fa} 2 {b} 2 0) 7) ¢ ¢@ a
OF OMe FORO 0. 4c, Ge te} fed} “2

A= 0. 0 8 4d Ol, A=(0O> ade id Adi OE

Q {e} f} 2 0 Q “fer? “pS td <Q
{gt QO~XO fh} 0 {g} 7) @¢ ¢ Oo

4.3. Basis graphs

So far we have been interested in removing arcs in such a way as

to destroy all the paths between two nodes. Here we again consider

the removal of arcs, but our aim is to eliminate arcs which are

‘superfluous’, in the sense that their removal does not change the

accessible set of any node.

Given a graph G=(X,U), we describe a partial graph

H =(X, V) of G as a basis graph of G if

(i) for every node x;¢X, each descendant of x; on G is a

descendant of x; on H, and

(ii) the arc set of H is minimal (in the sense that if any arc is

removed from H, condition (i) is no longer satisfied).

As an example, the graph of Fig. 4.4(a) has a unique basis graph,

which is shown in Fig. 4.4(b).

FIG. 4.4

It is evident that for any graph, we can always obtain a basis
graph, by the successive removal of chords. However, a graph may
have several basis graphs, with different numbers of arcs. For
instance, the graph of Fig. 4.5(a) has five basis graphs, two of which
are shown in Figs. 4.5(b) and 4.5(c).

Connectivity 149

(a) (b) (c)

FIG. 4.5

Let us consider the question of when a graph has a unique basis

graph. First, we observe that the concept of a basis graph is related

to that of a basic arc, as defined in the previous section, in the

following manner: In a graph G, an arc (x;, x;) is basic if and only if it

belongs to every basis graph of G. To prove this, let us first suppose

that (x;, x;) is a basic arc. Then by definition, all the paths from x; to

x; traverse the arc (x;,, x;), and therefore this arc must belong to

every basis graph of G. Conversely, let us suppose that (x, x,)

belongs to every basis graph of G. Then there exist two nodes x, and

x; such that x; is a descendant of x, on G, but not on the partial

graph of G obtained by removing (x;, x;). Hence on G all the paths

from x, to x; traverse (x;, x;), which implies that all the paths from x;

to x; traverse (x;, x;). Thus (x;, x;) is a basic arc, as required.

From this result it follows that a graph G has a unique basis graph

if and only if its basic arcs form a basis graph. Hence, a necessary

and sufficient condition for a graph to have a unique basis graph is

that for every arc (x;, x;) of G, there exists a path from x; to x; consisting

entirely of basic arcs.

This condition applies in particular to acyclic graphs. Indeed, let

G be an acyclic graph, let (x;, x;) be any arc of G, and let uw be any

path of maximum order from x; to x;. Now let us suppose that some

arc (Xx, x) of uw is not basic; then G contains a path from x, to x; of

order greater than one, which contradicts our assumption that wu is

of maximum order. Hence yw consists entirely of basic arcs, as

required. We conclude therefore that every acyclic graph has a

unique basis graph, consisting of all its basic arcs.

Example 4.5. Construction of the basis graph of an acyclic graph. Since all

the paths in an acyclic graph are elementary, an arc (x;, x;) of an acyclic

graph G is basic if and only if G does not contain any paths of order greater

than one from x; to x;. Hence if G has a Boolean adjacency matrix A, then

150 Connectivity

the Boolean adjacency matrix A of the basis graph of G can be written ast

A=AnAA.

Here the weak closure A of A can be calculated conveniently by Warshall’s

algorithm (3.91). (To save work, one can exploit the fact that when A is

strictly upper triangular, all the B“? matrices in (3.91) have this property

also.)

As an illustration, for the graph of Fig. 4.4(a),

The corresponding basis graph is shown in Fig. 4.4(b).

An algorithm to perform this calculation has been described by Fisher,

Liebman, and Nemhauser (1968), who use it to remove the chords from

activity graphs for critical path analysis. (It will be observed that in activity

graphs of the kind described in Example 2.11, chords are always

‘superfluous’ in the sense that they never determine earliest or latest

starting times.)

4.4. Separation by the removal of nodes

4.4.1. Separating node sets

Let us now consider the ways in which the paths between two

nodes can be destroyed, by removing nodes rather than arcs.

Let x; and x; be any two nodes (which need not be distinct) on a

graph G =(X, U). Then an (x,, x;)-separating node set is a set W of

+ Given two m Xn Boolean matrices X =[x;;]and Y = [y,], their meet is the m xn
matrix X 0 ¥ =[xj A y,]. ;

Connectivity PST

nodes, not containing x; or x;, such that every path from x; to x;

traverses at least one node of W. If W is an (x,, x;)-separating node

set, and none of its proper subsets have this property, we say that W

is a proper (x;, x;)-separating node set.

It will be noted that if x; is a successor of x;, then there do not exist

any (x;, x;)-separating node sets.

Example 4.6. In the graph of Fig. 4.1, the proper (x5, x3)-separating

node sets are {x,, x4} and {xo, x4}.

The determination of proper separating node sets. Separating node

sets can be obtained by a technique similar to that used previously to

determine separating arc sets. Let us suppose that the nodes of a

graph G are numbered 1, 2,...,n. Let 2={1,2,...,n}, and let Ps

be the path algebra derived from > as in Section 4.2.3. Then, if we

give each arc (x;, x;) of G the name of its terminal endpoint, and set

I(x;, x;) = {{7}}, we obtain a graph labelled with Ps. It follows by (4.3)

that if x; is accessible from x;, then the entry 4; of the closure matrix

A is the reduction of the set M,; of all sets of node indices which can

be formed by taking the index of one node on each elementary path

from x; to x; other than the initial node x;; thus a,; comprises the

sets of indices of all the proper (x;, x;)-separating node sets, together

with the set {/}. If x; is not accessible from x; then a; =®.

Example 4.7. For the graph of Fig. 4.1,

a 4 a Ie 8 a
D3} pr

A=doe@e SOor oO) {al Dal,

Po MA USED. , P
ee OS AL

® {{2}} {{2, 4}, {3}} athe.
: dD = {{2}, {3}, {43} {{3}} {{3}, {4}} ®
7 A {{2}, {4}} {{3}, {43} Hath @

® {{2}} {{3}} {{3}, {4}} ®
{1} {{1,4},2 {{1, 4},{2,4}, 3 {4} ©

4.4.2. Separating nodes

A node x; is called an (x;, x;)-separating node if every path from x;

to x; traverses x,. In other words, x, is an (x;, x;)-Separating node if

and only if {x;} is an (x; x;)-separating node set.

152. Connectivity

As an illustration, on Fig. 4.6(a), the node x6 is an (x1, X7)-

separating node.

Example 4.8. Dominators of computer programs. A computer program is

often represented by a control flow graph G in which each node represents a

‘block’ of program statements, i.e. a sequence of statements such that (i) no

other statement of the program can transfer control to any but the first

statement of the sequence, and (ii) if control is passed to the first statement

of the sequence then all the statements of the sequence are executed, in

order; two nodes x; and x; in G are joined by an arc (x;, x;) if the last

statement of block i can transfer control of the first statement of block /.

The node corresponding to the block containing the first statement of the

program is called the entry node of G, and the node representing the block

which contains the ‘end’ statement of the program is called the exit node.

We note that if a program is ‘properly constructed’ then every node of the

control flow graph is accessible from its entry node (an inaccessible node

would represent a block of statements which could never be executed), and

the exit node is accessible from all other nodes (for if control could be

passed to a block from which the exit could not be reached, the program

would not always terminate).

An important concept in program analysis and code optimization is that

of domination of one block by another: We say that a block i pre-dominates

a block j if the first execution of j is always preceded by an execution of /;

whereas block i post-dominates block j if the last execution of j is always

followed by an execution of i. To interpret this notion in graph-theoretic

terms, let us denote by x, and x, the entry and exit nodes of a control flow

graph. Then block i pre-dominates block ; if x; is an (x,, x;)-separating

node, or x;=x,; whereas block i post-dominates block ; if x; is an

(x;, X,)-Separating node, or x; = x;.

For a discussion of the significance of dominators in programming see for

instance Schaefer (1973) and Hecht (1977).

An algebraic method of finding separating nodes. Separating nodes

can be found by a technique similar to that used previously for

finding basic arcs. Let us suppose that the nodes of a graph G are
numbered 1, 2,...,, and that each arc (x;, x;) is assigned the label
I(x:, xj) ={j}. Let 2={1, 2,..., n} and let Ps be the path algebra
derived from > as in Section 4.2.4. By (4.6), if a node x; is accessible
from a node x;, the entry 4;; of the weak closure matrix A is the set of
indices of the nodes which belong to every path from x; to x;, other
than the initial node x;; thus Gi; comprises the indices of all the
(x; x;)-Separating nodes, together with the index ‘j’. If x; is not
accessible from x; then (by*(4.6)) 4 =.

Connectivity 153

Example 4.9. Using the technique described above, the adjacency
matrix A of the graph of Fig. 4.6(a) has the form shown in Fig. 4.6(b). To
find the separating nodes between each node and node x; say, we solve the
equation y = Ay v a, (where az; is the seventh column vector of A). Apply-
ing the double-sweep method to this problem, we obtain the iterates shown
in Fig. 4.6(c).

OC Or a OU eho» Or Gy OD
{1} 10) (@) {4} 0) 0) 19)

a OF SOON Ore HO: oh ole nag

fF A2h0 -O Q oO -toh @)
OPA) Sr FOO OP od

ORLROT POLS. Ores) Oo oth
Ce ONO a A 8” -O

yy y® y.

() F.27 [{6,747 {6,7}
he@ {4, 6, 7} {6, 7}

0} |} 6,7} ||} 6,73
QI) 66 eT sl 467}
D 10) {2, 6, 7}

{7} tht {7}
c@) Q {4, 6, 7}

a FIG. 4.6

An alternative method of finding separating nodes is outlined in

Exercise 4.3. (See also the Additional notes and bibliography.)

4.5. Edge separation on simple graphs

In all the notions of connectivity discussed so far, the orientations

of the arcs of a graph have been significant. The remainder of this

chapter presents ‘undirected’ counterparts of these concepts relat-

ing to simple graphs (as defined in Section 2.2), in which the edges

are not oriented.

4.5.1. Separating edge sets (cf. Section 4.2.1)

Let G =(X, E) be a connected simple graph, and let x; and x; be

any two distinct nodes of G. Then a set F of edges of G is a

separating edge set between x; and x; if every chain between x; and x;

154 Connectivity

contains at least one edge of F. When F is a separating edge set

between x; and x;, and no proper subset of F has this property, we

say that F is a proper separating edge set between x; and x;.

Example 4.10. In the graph of Fig. 4.7, the proper separating edge sets

between x; and x7 are

{a, b, e}, {b, d, e}, {c, e}, {f}, {g, h}, fh, i}.

FIG. 4.7

4.5.2. Cut sets of edges (cf. Section 4.2.2)

Again, let x; and x; be any two distinct nodes of a connected

simple graph G = (X, E), and let {X’, X"} be a partitioning of the
node set X such that x;¢ X' and x;¢ X”. Then the set F of edges

which have one endpoint in X’ and the other endpoint in X” is

called a cut set of edges, between x; and x;.

When F is a cut set of edges, but no proper subset of F has this

property, we say that F is a proper cut set of edges.

Clearly, a cut set of edges on a connected graph G = (X, E) is

proper if and only if the graph G = (X, E—F) has precisely two
connected components: For if G has only two components then the

addition of any edge of F to G reunites these components, which

implies that none of the proper subsets of F are cut sets on G;

whereas if G has more than two components, then after adding any

edge f € F to G, this graph is still not connected, which implies that

the edge set F —{f} is a cut set on G.

Example 4.11. As examples of cut sets of edges between x3 and x7, on

the graph of Fig. 4.7 we have

(i) with X' = {x2, x3} and X" ={xj, x4, Xs, X6, X7}, the cut {a, b, e};
(ii) with X'={x2, x3, xe} and X" = {xj, x4, Xs, x7}, the cut {a, b, e, g, i}.

Connectivity fos

The first is a proper cut set, the second is not (for it obviously contains the

first). In the first case the subgraphs generated by X’ and X" are obviously
connected, whereas in the second case the subgraph generated by X’ is not

connected.

The relationship between the cut sets of edges and the separating

edge sets of a graph can be summarized as follows:

(1) Every cut set of edges between two nodes x; and x; is a

separating edge set between x; and x;, (although the converse is not

necessarily true), and

(2) Every proper separating edge set between two nodes x; and x; is

a proper cut set of edges between x; and x;, and the converse is also

true.

These statements are proved by arguments similar to those used

in Section 4.2.2 (with the term ‘edge’ substituted for ‘arc’

throughout).

4.5.3. The determination of proper separating edge sets (cf. Section

4.2.3)

Let G=(X, E) be a simple graph whose edges have distinct

names and let H = (X, U) be the graph with the same node set as G,

and which has two arcs (x;, x;) and (x;, x;) between each pair of nodes

x; and x; which are joined by an edge on G; on H, the arcs (x;, x;) and

(x;, x;) both bear the name of the corresponding edge [x,, x;] on G.
As an example, for the simple graph of Fig. 4.7, the corresponding

graph H is shown in Fig. 4.8.

FIG. 4.8

It is evident that, if S is the set of names of the edges of an

elementary chain between x; and x; on G, then S is also the set of

names of the arcs of an elementary path from x; to x; on H, and the

converse is also true. Thus, if we consider H to be labelled with the

156 Connectivity

path algebra of Section 4.2.3, the entry aj; of the closure of its

adjacency matrix A gives the proper separating edge sets between x;

and x;.

4.5.4 Bridges (cf. Section 4.2.4)

An edge e =[x;, x;] of asimple graph G is called a bridge of G if in

the graph obtained from G by removing e, the nodes x; and x; are

not connected. In other words, an edge e is a bridge if and only if {e}

is a cut set.

As an example, the graph of Fig. 4.7 has one bridge, namely the

edge f =[xa, x5].

An edge e¢ is called a circuit edge when it belongs to a circuit. We

observe that an edge e is a circuit edge if and only if it is not a bridge.

Indeed, if e is not a bridge, then the endpoints of e are joined by a

simple chain which does not contain e, and by joining e to this chain

we obtain a circuit. Conversely, if e is a bridge, there cannot be any

chain between its endpoints which does not contain e, and therefore

e does not lie on a circuit.

We say that two nodes x; and x; are circuit-edge connected if there

exists a chain between x; and x; whose edges are all circuit edges, or

if x; = x;. The relation of circuit-edge connectedness is obviously an

equivalence relation on the node set X of G; the subgraphs of G

generated by the equivalence classes of X are called the leaves of G.

In other words, the leaves of G are the connected components of

the partial graph of G which is obtained by removing its bridges.

As an example, the graph of Fig. 4.7 has two leaves, these being

the subgraphs generated by the node sets {x1, x2, x3, x4} and

{x5, X6, X7}. Again, the graph of Fig. 4.9(a) has five leaves (which are

indicated by broken lines).

It follows from the above definitions that leaves have the follow-

ing properties:

(1) Every leaf of a graph is ‘circuit-closed’ in the sense that if a
circuit C of a graph has any node in common witha leaf L, then all
the nodes and edges of C belong to L.

(2) A leaf is connected, and does not contain any bridges : indeed,
let G be any simple graph, and let G be the partial graph of G
obtained by removing all its bridges. Since the removal of a bridge
does not destroy any circuits, every circuit edge of G is also a

Connectivity 157

FIG. 4.9(a) FIG. 4.9(b)

circuit edge in G, which implies that G does not contain any

bridges.

(3) There can be at most one bridge joining two leaves, for if two

leaves were joined by more than one bridge, these bridges would

become circuit edges.

Leaf graphs. Let G=(X,E) be a simple graph, and let

X 1, X2,..., X, be the node sets of its leaves. Then the conden-

sation of G induced by the partition {X,, X2,..., X;} is called the

leaf graph G;, of G. Thus, the nodes of G; correspond to the leaves of

G, and two nodes in G; are joined by an edge if and only if the

corresponding leaves are connected by a bridge in G. We note that,

by property (3) above, there is a one-to-one correspondence

between the bridges of G and the edges of G;. We observe also that

G; does not contain any circuits, for a circuit in G; would represent a

circuit in G passing through several leaves.

For the graph of Fig. 4.9(a) the leaf graph is shown in Fig. 4.9(b).

An algebraic method of finding bridges and leaves. Let G be a simple

graph whose edges have distinct names, and let H be the cor-

responding directed graph, as defined in Section 4.5.3. Then, if H is

considered to be labelled with the path algebra of Section 4.2.4,

each entry aj; of the closure of its adjacency matrix A is the set of

names of all the bridges between x; and x;. Clearly, the matrix A* is

symmetrical. When two nodes x; and x; belong to the same leaf we

have a% =a* = ¢, and the ith and jth rows (and columns) of A* are
identical.

158 Connectivity

Example 4.12. For the graph of Fig. 4.7,

QO. Say, BP tee a oa
fa) @ td - Oo" en

{b} id} = “Hee FO ee
A= ley O- fe) Oe. 2h Qe

Oo De 22 LS igh « ee
Oe) (Oe ete pies
0” 30 Oy > Tie enh FO

od od od od

d 7) 7) d

od od od od

Pe ec eae cae ON
ff) oo SE AB tt
ee (2 Se ae | an er Ae
{ef EG iL oD

Another method of finding bridges and leaves, through the

construction of a leaf graph, is given in Exercise 4.7.

4.6. Spanning trees in simple graphs

4.6.1. Free trees

A simple graph is called a free tree if it is connected and has no

circuits. For instance, the graphs in Fig. 4.10 are all free trees.t

The following theorem lists some properties of free trees.

Let G be a simple graph; the following properties are equivalent, for

characterizing a free tree:

(1) Gis connected and contains no circuits;

(2) Gis connected and every edge of G is a bridge;

(3) Every pair of nodes of G is joined by precisely one chain;

(4) Gcontains no circuits, but the addition of any new edge creates

a circuit.

+ Graphs of this kind are often simply called ‘trees’. However, in Computer science

and other applications areas the term ‘tree’ is generally used for graphs of the kind

described in Section 2.6, which have a root, and branches directed away from the

root. The nomenclature used here is that of Knuth (1968).

Connectivity

peed X
Ethane

Propane Isobutane
Butane

FIG. 4.10. Graphs of the saturated hydrocarbons C,H>, +2 which have up to

four carbon atoms. (Nodes of degree four represent carbon atoms, nodes of

degree one are hydrogen atoms.)

The theorem is proved as follows:

(1) implies (2). Indeed, it was proved in the previous section that in

a simple graph, any edge which does not belong to a circuit is a

bridge. Since G has no circuits, all its edges are bridges.

(2) implies (3). Since G is connected, every pair of nodes is joined

by at least one chain. Also, a given pair of nodes cannot be joined by

two chains, for otherwise the removal of an edge which belonged

only to one of them would not disconnect the graph.

(3) implies (4). If G contained a circuit, then any two nodes in the

circuit would be joined by two chains. The addition of any new edge

e creates a circuit because in G, the endpoints of e are already

joined by a chain.

(4) implies (1). G is connected because if G had two nodes which

were not connected, it would be possible to add to G an edge

between these nodes, without creating a circuit.

From the characterization (2) above, it follows that every free tree

with n nodes has precisely n — 1 edges. Indeed, if an n-node graph G

is a free tree then the removal of any edge divides G into two

connected components, which are both free trees. Then, the remo-

val of asecond edge divides G into three free trees, and so on. When

we have removed all its edges, the graph G comprises n free trees

(which are all isolated nodes). The number of edges removed in this

process is obviously n — 1.

160 Connectivity

4.6.2. Spanning trees

Let G be a simple graph. Then any partial graph of G which is a

free tree is called a spanning tree of G. As an example, Fig. 4.11

shows two of the spanning trees of the graph of Fig. 4.7.

D<| D1
FIG. 4.11

Clearly, a graph must be connected to have a spanning tree. Also,

any connected graph has at least one spanning tree: indeed, for any

connected graph G, we can always construct a spanning tree as

follows. If all the edges of G are bridges, then (by property (2)

above) G is a free tree; otherwise, if G has an edge which is not a

bridge, it can be removed without disconnecting G, and by the

successive removal of such edges we eventually obtain a spanning

tree.

It is evident that a spanning tree represents a minimal collection

of edges which preserves the connectedness of a graph. This concept

is in a sense complementary to that of a proper cut set of edges

(which is a minimal collection of edges whose removal disconnects

some nodes from others). These notions are related precisely by the

following theorem:

In a connected graph, every cut set of edges has at least one edge in

common with every spanning tree.

To prove the theorem, let C be acut set of edges of a graph G, and

let T be a spanning tree of G. Then, if C did not contain at least one

edge from T, the removal of C from G would not separate G into

two or more components.

4.6.3. Shortest spanning trees

Let us consider the following problem. In an electrical network

there are n terminals, in fixed positions, which must all be

electrically connected together by wires. Which pairs of terminals

should be joined, if the total length of wire used is to be as small

as possible? ;

Connectivity 161

This problem can be presented in graph-theoretic terms, as

follows. Let G = (X, E) be a simple graph in which every edge e is

assigned a real number /(e), called its length. It is required to find a

connected partial graph H = (X, F) of G whose total length

HE)=ay) Ue)
ecF

is as small as possible. It is evident that H must be a spanning tree of

G: we describe such a graph as a shortest spanning tree.

The construction of a shortest spanning tree. A shortest spanning tree

can be ‘grown’ from an arbitrarily chosen node x’, one edge at a

time, by constructing a sequence of graphs HH“ =(X, F®),

(k =0,1,...,n-—1), as follows.

Step 1 Let x be any node of G, and let ESO? ex eae FO= d.

Step2 Fork =1,2,...,n—1, form X and F“ as follows: let

C“ be the cut set of edges which have exactly one end-

point in X“~", let e’ be a shortest edge of C™?, and let

x be the endpoint of e“’ which does not belong to. X“*~”.

Then set

KPa KE Mh FOL ROM GeO (47)
On termination, the graph H ? =(X“"~”, F“~) is a shortest

spanning tree of G. To demonstrate this, it suffices to prove the

following.

Each graph H“ =(X“, F) constructed by the algorithm is a

(k + 1)-node connected subgraph of a shortest spanning tree on G.

The proof is by induction. For k = 0 the statement is evidently true.

Let us therefore suppose that it holds for k = r—1, and demonstrate

its validity for k =r. It is clear from (4.7) that since HH” is an

r-node connected graph, H” has r+1 nodes, and is connected.

Now let H be any shortest spanning tree of G which contains all the

edges of H” ”. If H also contains e“”’, then H is a connected
subgraph of H. Alternatively, let us suppose that H does not

contain e”. Then if e°” is added to H, a circuit is created, com-

posed of e” together with the chain in H between the endpoints

of e’. Now this chain must contain some edge f say of C“”. If f is
removed from H we obtain another spanning tree of G, and since

I(e’”) <I(f), this spanning tree is another shortest spanning tree of

162 Connectivity

G. Hence there exists a shortest tree containing all the edges of H ap

which completes the proof.

It will be noted that at the kth step, the chosen edge is always a

shortest edge among the edges between x“’ and the nodes of X bented

It follows that at each stage, after x has been selected, if any node

y not in X“ has edges joining it both to x” and to some other node

in X“, the longer of these two edges can immediately be deleted

from G. This technique substantially reduces the number of

comparisons of edge lengths required (see Exercise 4.6).

Example 4.13. The construction of a shortest spanning tree is demon-

strated in Fig. 4.12. At each stage, the bold lines are the edges of the graph

H“~”, the closed curve indicates the cut set of edges C“, and the broken
line indicates the next edge e““’ to be assigned to the spanning tree.

For the case where we require a single spanning tree on a graph

G =(X, E) whose edge lengths can be considered to be equal, it is

convenient to recast the above algorithm in the following form. (In

(e) (f)

* FIG. 4.12

Connectivity 163

this version of the algorithm we again ‘grow’ a spanning tree from an
arbitrarily chosen node x by successively adding edges and nodes to
aconnected subgraph H = (X, E) ofa spanning tree of G. However,
instead of adding edges one at a time, each step of the algorithm
joins to H all the neighbours of some node y in H.)

Step 1 Let x be any node of G, and let X = {x}, E = @, Y = {x}.

Step 2 Let y be any node in Y, and let Z be the set of all
neighbours of y which do not belong to X:

Z =T(y)-X.

Then modify the sets x E, and Y as follows:

ie XZ.

E<Butly,z]lzeZ},
Y<(Y—WyHyUZ.

Step 3 If Y =¢ then halt; otherwise return to Step 2.

On termination, the graph H = (X, E) is a spanning tree of G.

4.6.4. Determination of the spanning trees of a graph

It is possible to obtain all the spanning trees of a graph by a

backtrack programming method of the kind described in Section

2.7. To present the method it is convenient to consider a more

general problem—that of finding the spanning trees of a given

multigraph. (Our definition of a spanning tree in Section 4.6.2 still

applies when G is a multigraph; we note in particular that even fora

multigraph, a spanning tree cannot have more than one edge joining

the same pair of nodes.) Our reason for considering this more

general problem is that in searching for spanning trees, even on a

simple graph, we may create sub-problems which involve multi-

graphs.

Now let G be a connected multigraph, and let S be the set of all

spanning trees of G. Let e be any edge of G, let S, be the set of

spanning trees of G which contain e, and let S; be the set of

spanning trees of G which do not contain e. Clearly,

S=S.US; and $.0S:=4¢,

164 Connectivity

so if we can construct the two sets S, and S; separately we shall

obtain all the required spanning trees, without duplications. Now it

will be observed that:

(i) Each spanning tree in S, comprises the edge e, together with

the edges of a spanning tree of the multigraph G. obtained by

contracting the edge e, that is, by coalescing its endpoints and

removing any loops created (see Fig. 4.13); and conversely, the

edges of any spanning tree in G., together with the edge e, forma

spanning tree in S,.

Multigraph G Multigraph G, Multigraph G;

FIG. 4.13

(ii) The spanning trees in S; are the spanning trees of the

multigraph G; obtained from G by removing the edge e. (Note

that if e is a bridge, Sz is an empty set; to determine whether or

not e is a bridge it is convenient here to establish whether one

endpoint of e is accessible from the other in Gg, by the labelling

algorithm of Fig. 2.19.)

Thus we can decompose the problem of finding the spanning trees

of G into two sub-problems, each involving the determination of

the spanning trees of a multigraph which has less edges than G. By

repeated decompositions of this kind, we eventually obtain all the

required spanning trees.

4.7. Node separation on simple graphs

In this section we consider ways of destroying all the chains

between two points on a simple graph, by removing some of its

nodes.

Connectivity 165

4.7.1. Articulation sets (cf. Section 4.4.1)

Let x; and x; be any two nodes (which need not be distinct) on a

connected simple graph G=(X,£). Then an articulation set

between x; and x; is a node set W, not containing x; or x;, such that

every chain between x; and x; traverses at least one node in W.

When W is an articulation set between x; and x;, and none of its

proper subsets have this property, we say that W is a proper

articulation set between x; and x;.

It is evident that when the nodes of an articulation set are

removed from a graph, the graph becomes disconnected.

Example 4.14. On the graph of Fig. 4.7, the proper articulation sets

between the nodes x, and x¢ are {x,, x3}, {x4} and {xs}.

The determination of articulation sets. Let G =(X, E) be a simple

graph and let H = (X, U) be the graph with the same node set X as

G, and which has two arcs (x;, x;) and (x;, x;) between each pair of

nodes x; and x; which are joined by an edge of G. Then for any two

nodes x, and x), each proper articulation set between x, and x, on G

is a proper (x,, x;)-separating node set on H, and the converse is also

true. It is therefore possible to find the proper articulation sets of G

by applying the technique of Section 4.4.1 to the graph H.

4.7.2. Articulation nodes (cf. Section 4.4.2)

A node x, in a connected simple graph G is an articulation node

of G if the graph obtained from G by removing x, and all edges

incident to x, is not connected. In other words, a node x, is an

articulation node if and only if {x,} is an articulation set between

some pair of nodes x; and x;.

As an illustration, the graph of Fig. 4.7 has two articulation

nodes, x4 and xs.

Bi-connected graphs. Two edges e; and e2 of a graph G are said to be

strongly circuit-connected if G has an elementary circuit which

contains both e, and eo, or if e; = é. It is evident that the relation of

strong circuit-connectedness between edges is reflexive, and sym-

metric. We can also show it to be transitive, by proving the following

theorem:

Let €1, €2, and e3 be three edges of a graph G. If e is strongly

circuit-connected to é2, and é2 is strongly circuit-connected to e3, then

é, is strongly circuit-connected to é3.

166 Connectivity

To prove the theorem, let a be any elementary circuit which

contains e; and é2, and let B be any elementary circuit containing e2

and e3. Since e2 belongs to both a and B, these circuits have at least

two nodes in common (see Fig. 4.14). Following a in both directions

from é1, let x and y be the first two nodes on @ which lie also on B,

and let a’ and 8’ be the segments of a and B which join x to y and

which contain e, and e3 respectively. Since the segments a’ and B'

have no nodes in common other than their endpoints, these two

segments form an elementary circuit. Thus e; and e3 lie on an

elementary circuit, as required.

x

ey e3

N
y

FIG. 4.14

From this result we conclude that the relation of strong circuit-

connectedness is an equivalence relation on the edge set of G.

Now we can relate this notion of connectedness to that of an

articulation nodé:

Let G be a simple graph with at least three nodes. Then the

following statements are equivalent:

(1) Gis connected, and has no articulation nodes

(2) Gis connected, and any two edges of G are strongly circuit-

connected.

(3) Any two nodes of G lie on a common elementary circuit.

The proof is as follows:

(1) implies (2). First we show that when G has no articulation

nodes, any two edges with a common endpoint are strongly circuit-

connected: indeed, if g contains two edges e=[x;,x,] and f=

[xx, x;], and x, is not an articulation node, then x; and x; must be

joined by a chain which does not traverse x;,. It follows that x; and x;

are joined by an elementary chain which does not traverse x,;, and

the edges of this chain, together with e and f, form an elementary

circuit. Hence e and f are strongly circuit-connected.

Now let e and f be any two edges in G. Since G is connected, G

contains a chain C whose first edge is e and whose last edge is f. By

Connectivity 167

the above argument, each edge of C is strongly circuit-connected to
its succeeding edge; it follows, by the transitivity of the circuit-
connectedness relation, that e is strongly circuit-connected to f.

(2) implies (3). Since G is connected, every node is the endpoint of
an edge, and since any two edges lie on a common elementary
circuit, any two nodes lie on a common elementary circuit.

(3) implies (1). Any two nodes are connected, therefore G is

connected. Also, for any two nodes x; and x,, there does not exist a

third node x, which lies on every chain between x; and x;, and

therefore G has no articulation nodes.

A graph with at least three nodes, which has these properties, is

said to be bi-connected.

The blocks of a graph. In section 4.5.4 we introduced an

equivalence relation on the node set of a graph—that of circuit-edge

connectedness—and we saw that it defined a ‘decomposition’ of a

graph into ‘leaves’, these being the connected subgraphs obtained

by cutting all the bridges.

Earlier in this section we introduced the relation of strong

circuit-connectedness, and we showed that this relation is an

equivalence relation on the edge set of a graph. We shall now

demonstrate that this relation leads to another way of decomposing

a graph, in which this time we ‘split’ the articulation nodes.

For a graph G = (X, E), let P={E,, F2,..., E,} be the partition

of the edge set E induced by the strong circuit-connectedness

relation, and for each block EF; in P, let X; be the set of nodes which

are endpoints of edges in E;. Each partial graph B; = (X;, E;) of G is

called a block of G.

Example 4.15. For the graph of Fig. 4.7, the equivalence classes of

strongly circuit-connected edges are

{a, b, c, d, e}, {f}, {g, h, i}.

The blocks associated with these equivalence classes are shown in Fig. 4.15.

The blocks of a graph have the following properties:

(1) Every block is ‘circuit-closed’ in the sense that if an elementary
circuit C of G has any edge in common with a block B, then all the

edges of C appear in B.

168 Connectivity

Fic. 4.15

(2) A block is connected, and does not contain any articulation

nodes. In the case where a block B comprises exactly one edge and

its endpoints, this statement is obviously true. Now let us suppose

that a block B has more than one edge, and let e and f be any two

edges in B. Then in G, the edges e and f belong to a common

elementary circuit, and by property (1) above all the edges of this

circuit appear in B. It follows that in B, every pair of edges is

strongly circuit-connected. Furthermore, since every node in B is

the endpoint of an edge, B must be connected. Thus B is a

bi-connected graph, as required.

(3) Every block of a graph G is a subgraph of G. To prove this it

suffices to show that if two nodes of a block B are joined by an edge e

in G then the edge e belongs to B. If B has only two nodes this is

evidently true. Alternatively, if B has more than two nodes then by

(2) above B is bi-connected, which implies that in B any pair of

nodes x; and x; lie on a common elementary circuit, C say. If G

contains an edge e =[x;, x;], this edge forms an elementary circuit

with one of the segments of C which join x; to x;, which implies that

e belongs to B.

(4) Two different blocks have at most one node in common. If two

blocks had two nodes in common then, since each block is connec-

ted, there would exist an elementary circuit with at least one edge in

each block, which is impossible.

(5) A node of G is an articulation node of G if and only if it is

common to two distinct blocks of G. Let x, be anode common to two

blocks B,; and Bz of G, and let e =[x;, x,] and f =[x,, x,] be any

edges incident to x,, in B; and B2 respectively. Since e and f do not

lie on a common elementary circuit, every chain between x; and x;

traverses x,, which implies that x, is an articulation node. Con-

versely, if x, is an articulation node, there exist two edges incident

Connectivity 169

to x, which do not lie on an elementary circuit. These two edges
belong to different blocks, and x, belongs to the node set of both
blocks.

Block graphs. The ‘block structure’ of a simple graph G = (X, E)
can be portrayed by constructing its block graph G,, whose nodes
correspond to the blocks of G, and in which two nodes are joined by
an edge if the corresponding blocks of G have a common arti-
culation node of G.

As an illustration, the graph of Fig. 4.16(a) has the block de-
composition depicted by Fig.-4.16(b); the corresponding block
graph is given in Fig. 4.16(c).

FIG. 4.16

It is clear that within a block graph Gy, each block is a complete

graph, which corresponds to an articulation node of G.

Algebraic methods of finding the articulation nodes and blocks of a

graph. Let G =(X, E) be asimple graph and let H = (X, U) be the

corresponding symmetric graph, having two arcs (x;, x;) and (x; x;)

in place of each edge [x;, x;] of G. Then for any two nodes x,, x; € _X,

170 Connectivity

each articulation node between x, and x, on G is an (xx, Xi)-

separating node on H, and the converse is also true. The articulation

nodes of G can therefore be obtained by applying the technique of

Section 4.4.2 to the graph H.

An alternative approach is as follows. Given any simple graph

G =(X, E), we define the interchange graph I of G as the graph

whose nodes represent the edges of G, and in which two nodes ¢;

and e; are joined by an edge [e;, e;] if in G the edges e; and e; havea

common endpoint. As an illustration, Fig. 4.17 shows the inter-

change graph of Fig. 4.7.

FIG. 4.17

Now let us suppose that each edge [e;, e;] on the interchange

graph IJ is labelled with the index of the common endpoint of the
edges e; and e; on G (cf. Figs. 4.7 and 4.17) and let H be the

corresponding symmetric graph obtained by replacing each edge

[x;, x;] by a pair of arcs (x;, x;) and (x;, x;), both these bearing the

same name as the edge which they replace. Then we may consider H

as a graph labelled with the path algebra of Section 4.2.4; if A is the

adjacency matrix of H, it follows from (4.6) that the entries of A*

are as follows:

(i) if on G the edges e; and e; belong to different connected

components then a =Q);
(ii) if on G the edges e; and e; belong to the same connected

component then aj; is the set of all articulation nodes between the
block containing e; and the block containing e;; in particular, if e;

and e; belong to the same block then ai; = @.

Example 4.16. For the interchange graph of Fig. 4.17, the A-matrix and

A*-matrix are given in Fig. 4.18. The entries of A* define the blocks and

articulation nodes of G (see Fig. 4.15).

Connectivity 171

a b c d e f g h i

ay] a {1} {1} {2} a 0) a 0) a
b {1} 0 {1} {3} {3} 10) 0 c0) 10}

c {1} {1} 0 19) {4} {4} 10) 10) 0,

d {2} {3} co) Q {3} .0) 19) Q 10}

é Q {3} {4} {3} 0 {4} 10) 0, 0}

f 0) co} {4} 10) {4} 10) {5} {5} Q

g 0 Q 10) 10) 0 {5} 0 {5} {6}

h 0 .0) 10} 0 0 {5} {5} 10) {7}

i 10} 0 0 0 10) 0 {6} {7} 10}

(a) A-matrix

a b c d e g h i

a ¢ ¢ ¢ ¢ ¢ {4,5} {4,5} {4,5}

b ¢ @ ¢ ¢ ¢ {4,5} {4,5} {4, 5}

c ¢ ¢ ¢ ¢ ¢ {4,5} {4,5} {4, 5}

d ¢ d ¢ ¢ ~ ¢ {4,5} {4,5} {4,5}

€ ¢ ¢ d g ¢ {4,5} {4,5} {4,5}

f {4} {4} {4} {4} {4} {5} {5} {5}

s | 44,5) 14,5} 44,5) 44,5) {4,5} ¢ d d

h | {4,5} {4,5} {4,5} {4,5}. {4,5} ¢ ¢ d

i [44,3} {4,5} {4,5} _{4,5}-—{4, 5} g ¢ ¢

ee (b) A*-matrix

Fic. 4.18

Exercises

4.1. Prove that every Hamiltonian cycle on a graph G contains all the basic

arcs of G.

4.2. Using the path algebra of Section 4.2.4, construct the weak closure

matrix A of the graph of Fig. 4.19, and hence find its basic arcs.

4.3. Let x, be any node on a graph G = (X, U). We say that on G, a node x;

is a dominator of another node x; (relative to x,) if x; is an (x,, x;)-

separating node, or x;=x,. A node x; is an immediate (or direct)

dominator of another node x; (relative to x,) if

(a) x; dominates x,, and

(b) every other dominator of x; also dominates x;.

172 Connectivity

Fic. 4.19

(i) Prove that if all the nodes of G are accessible from x,, the graph of the

immediate dominance relation on X is a tree rooted at x,, and show that

this tree contains a path from a node x; to a node x, if and only if x;

dominates x;. (This tree is called the domination tree of G, relative to x,.)

(ii) Prove that if G is a tree rooted at x,, then the domination tree of G

relative to x, is identical to G.

(iii) Let G be any graph in which all nodes are accessible from x,, and let

T be its domination tree (relative to x,). Let G be the graph obtained by

adding some arc (x;, x;) to G, and let T be the new domination tree.
Formulate rules for constructing T from T, in each of the three following

cases:

(a) T contains a path from x; to x;;

(b) T contains a path from x; to x;;

(c) T does not contain any paths between x; and x,.

(The results of (ii) and (iii) suggest a method of constructing a domination

tree. First we choose a partial graph H of G which isa tree rooted at x,; we

then obtain the domination tree of G by making a succession of

modifications to H, to take account of the arcs of G which were not assigned

to A initially.)

4.4. Prove that on a simple graph, every circuit has an even number of
edges in common with every cut set.

4.5. Let T, and T, be two spanning trees of a simple graph G. Prove that if
a is any edge in T,, then there exists an edge b in T> such that the
graph obtained from T, by replacing a by b is a spanning tree of G.

4.6. Show that, in the algorithm of Section 4.6.3 for finding a shortest
spanning tree, the number of comparisons of edge lengths is not
greater than (n —1) (n—2).

4.7. (i) Let G be a free tree. Explain how the nodes and edges of the leaf
graph G, of G are related to the nodes and edges of G.

Connectivity 173

(i) Let G be a connected simple graph, and let G, be its leaf graph.
Also, let G be the graph obtained by adding some edge e to G and let
G;, be the leaf graph of G. Explain how G; can be derived from G, in the
cases where (a) the endpoints of e belong to the same leaf in G, and (b)
the endpoints of e belong to different leaves in G.

(These rules suggest a simple method of finding the leaves and bridges
of a connected graph G. First we construct a spanning tree T of G, for
instance by the algorithm described in Section 4.6.3; we then derive
the leaf graph of G by a succession of modifications of the leaf graph of
T, to take account of the edges of G which do not appear in T.)

Additional notes and bibliography

The notions of separating arc and node sets on directed graphs are

discussed at length by Harary, Norman, and Cartwright (1965).

Martelli (1976) discusses the application of the path algebra of Section

4.2.3 to the determination of all the proper cut sets of arcs, between each

pair of nodes of a graph.

It will be noted that the number of proper cut sets between two nodes of a

graph can be very large, and their computation may not be practically

feasible. However, if one only requires one cut set of minimum cardinality,

this can be found conveniently by a network flow method, which will be

presented in Chapter 6. (The network flow method, which is a polynomial

algorithm, canalso be used for instance when the arcs of a graph have

numerical weights, to find a cut set of minimum total weight between two

specified points.)

The path algebra for finding basic arcs (Section 4.2.4) is apparently new.

However, it is very similar to the ‘distributive monotone framework’ given

by Hecht (1977) for finding dominator nodes, and our formulations of the

problem of finding dominators are essentially the same. The ‘round robin’

algorithm used by Hecht to solve this and other program data flow

problems can be seen to be an extension of the Gauss-Seidel method.

Tarjan (1974a) gives an efficient algorithm for finding immediate

dominators, based on the principles set out in Exercise 4.3. Other tech-

niques for finding dominators are described by Lowry and Medlock (1969),

and Purdom and Moore (1972).

A general algorithm for constructing an arbitrary basis graph of a graphis

described by Moyles and Thompson (1969).

The notion of a basis graph can be extended to graphs labelled with

certain path algebras. For instance, given a graph G whose arcs have

lengths, we may wish to find a partial graph H of G such that (i) the distance
between any two points is the same on G and H, and (ii) the number of arcs

174 Connectivity

of H is minimal. An extension of the notion of a basis graph to include

partial graphs of this kind is presented by Robert (1971).

The algebraic structure for finding cut sets of edges is discussed by Hulme

(1975). For an alternative backtrack programming method of finding these

cut sets, and applications to system reliability studies, see Jensen and

Bellmore (1969).

Different algorithms for finding bridges and blocks are given by Paton

(1971), Corneil (1971), Tarjan (1972) and Hopcroft and Tarjan (1973). See

also Tarjan (1974)).

The method described in Section 4.6.3 for constructing shortest spanning

trees, which is due to Prim (1957), is a particular example of a class of

methods first proposed by Kruskal (1956) (see Kruskal’s ‘Construction B’).

For a FORTRAN version of Prim’s algorithm, see Whitney (1972). Yao

(1975) gives an alternative method which has a lower time bound but which

is more intricate. See also Kershenbaum and Van Slyke (1972), Cheriton

and Tarjan (1976), and Gabow (1977).

A backtrack programming method of finding all the spanning trees of a

graph, based on the strategy of Section 4.6.4, has been outlined by Minty

(1965), and implemented in ALGOL by Mcllroy (1969). For an analysis of

its complexity see Read and Tarjan (1975). The spanning trees of a graph

can also be found using Wang’s algebra of networks (Duffin 1959; Chen

1971). See also Trent (1954).

5 Independent sets, dominating sets, and
colorations

5.1. Introduction

THE TOPICs discussed in this chapter all relate to simple graphs. In

particular, our purpose is to characterize certain subsets of nodes on

a simple graph (the independent node sets, cliques, and dominating

sets), and also certain subsets of edges (the matchings of a graph),

and to demonstrate their practical relevance. We shall then present

ways of partitioning the sets of nodes and edges, which may be

interpreted as ‘colorations’; these also find practical applications,

for instance in the construction of time-tables.

5.2. Independent sets

5.2.1. Independent node sets

In a simple graph G = (X, E), a set of nodes S CX is said to be

independent if no two nodes in S are joined by an edge. Clearly,

every subset of an independent set is independent. A maximal

independent set is an independent set which ceases to be indepen-

dent when any node is added to it.

In the graph of Fig. 5.1, the maximal independent sets are

{x1, xs}, {X2, X3, Xs}, {x2, Xs, Xo}, {xa}.
The largest number of nodes in an independent set of a graph G is

called the independence number of G and is denoted by a(G). For

the graph of Fig. 5.1, a(G) =3.

1 2

176 Independent sets, dominating sets, and colorations

Example 5.1. Error-detecting and error-correcting codes. Let

X =(x1, X2,..., Xn} be the set of basic signals which can be transmitted

through a digital communication channel. (For instance, X could be a set of

binary words such as are used to represent alphanumeric characters in a

computer system.) Because of electrical noise and distortion, some trans-

mitted signals may be misinterpreted on reception. In general, for each pair

of signals x; and x, the reception of x, as x; occurs with a different

probability, but for practical purposes it is sometimes adequate to consider

the definite case where, for any pair of signals x, and x;, the reception of x; as

x; either can or cannot occur: in this case, the possible communication

errors can be represented conveniently by a signal-relation graph

G =(X, E) whose nodes correspond to the basic signals, and where two

nodes x; and x; are joined by an edge if either of these signals can be

received as the other (see Fig. 5.2).

Signal transmitted Signal received a b

aorb

bore f i

cord

dore

b oreorf 4

aut Fic. 5.2 moaadadqc”

Now it is possible to detect all errors in received signals, if we restrict the

transmitted signals to a subset of X which is independent on the signal-

relation graph G. Indeed, let us suppose that the set S of transmitted signals

is independent; then if a received signal belongs to S it is correct (since no

signal in S can be transformed into any other signal in S), whereas if a

received signal does not belong to S, it is evidently incorrect. On the other

hand, if the set of transmitted signals is not independent, some pair of

transmitted signals can be confused by the receiver.

In the example of Fig. 5.2 the largest independent sets, which determine

the largest sets of signals which can be used with detection of all errors, are

{a, c, e} and {b, d, f}.

It is also possible to correct errors in received signals, as follows. Let us

construct another signal-relation graph H, whose nodes correspond to the

signals as before, but in which two nodes x; and x; are now joined by an edge

if and only if the transmission of x; and x, can result in the same received
signal (which need not be x; or x;). For instance, the graph H for our
example above is shown in Fig. 5.3.

Now let us suppose that the set S of transmitted signals is independent on

H. Then, if a received signal x; belongs to S it must be correct (since no

Independent sets, dominating sets, and colorations Wy)

a b

f c

ec d

FIG. 5.3

signal in S can be transformed into any other signal in S$); if x; does not

belong to S then x; is incorrect, but since there is only one signal in S which

can be received as x;, the error cambe corrected. On the other hand, if S is

not independent on H, there exist two different signals in S which can be

received as the same signal; in this case it is obviously impossible to

determine at the receiver which signal was transmitted. Thus, the indepen-

dent sets on H determine the sets of transmitted signals for which all errors

can be corrected by the receiver.

For the above example, the set of signals {b, d, f} is the largest for which

all errors can be corrected. (Error correction is not always possible for the

set {a, c, e}, since the transmission of ‘a’ and ‘e’ can both result in a ‘b’).

5.2.2. Cliques

A set C of nodes in a simple graph G is called a clique of G if the

subgraph of G generated by C is complete, that is, if every pair of

nodes in C is connected by an edge. A clique which is not a subset of

a larger clique is said to be maximal.

It is clear that a set of nodes C is a clique of a simple graph G if

and only if C is an independent set on the complement G of G.

In the graph of Fig. 5.1, the maximal cliques are {x1, x3, X4, Xe},

{x1, X2, X4}, {x4, x5}. The complete subgraph generated by the first of

these cliques is indicated by bold lines in Fig. 5.4. The nodes of the

corresponding maximal independent set, on the complementary

graph, are indicated by squares in Fig. 5.5.

The concept of a clique is important in taxonomy (Augustson and

Minker 1970) and in the design of sequential logic networks (Paull

and Unger 1959).

An algorithm for constructing maximal cliques. It is possible to find

all the maximal cliques of a graph by a tree-search method of the

type described in Section 2.7. To present the method, it will be

convenient to consider the following more general problem:

178 Independent sets, dominating sets, and colorations

1 D] 2

iD)
5 4 5 4

FIG. 5.4 FIG. 55

Given a simple graph G =(X, E), together with a specified sub-

graph G =(X, E) of G, and a specified node set NC X — X, find all

the maximal cliques of G which are not contained in the set T (x;) of

neighbours on G of any node x; € N.

It will be noted that our original problem of finding all the

maximal cliques of a graph G is the particular form of this new

problem in which G = G (which implies N=¢@).

To solve the general problem, let § denote the set of all maximal
cliques of G, and let S be the set of required cliques; then we may
write

S={CeS$|CC¢T(x;), for all x; ¢ N}. (5.1)
Now this set S can be constructed by the following specialization
process.

Step 1 First we determine whether or not the node set X of G
satisfies the condition

GC I'(x;) forsome x; €N. (5.2)

If this condition holds, then for every clique C € § we have

CCI (x;) for some x; €N, (5.3)

which implies (by (5.1)) that the required set Sis null, and
the problem is solved; otherwise we proceed to Step 2.

Step2 If the subgraph G =(X, E) is complete then § = {X}, and
since the condition (5.2) does not hold it follows (by (5.1))
that S = {X}, so the problem is solved; otherwise we pro-
ceed to Step 3.

Step3 Since the subgraph G is not complete, it has at least one
node x, which is not adjacent to every node of X. Now let

Independent sets, dominating sets, and colorations 179

us express the required set S as the union of two disjoint
sets

S=S,U0S% (5.4(a))

where

S. ={CeS|x, eC}, Se={CeES|x,€EC}. (5.4(b))

From (5.1) and (5.4(b)), it follows that (cf. (5.1))

S.={C € S,|C CT (x;), for all x; ¢ Ne}, (5.5)

where Sx i is the set of all maximal cliques on the subgraph

G; of G which contains only the node x, and its neigh-

bours, and N, =.N; whereas

Sz={C €S<|CET(x,), for all x; ¢ Nc}, (5.6)

where S « is the set of all maximal cliques on the subgraph

Gi of G obtained by removing x,, and Ng =N uU{x;}.

Thus the problem of finding the set S of (5.1) is reduced to

two sub-problems, involving the separate determination of

the sets S, and S; defined by (5.5) and (5.6) respectively.

It will be observed that the problems of constructing the sets S,

and S; are both ‘simpler’ than the original problem of finding S, in

that the subgraphs G, and Gg both contain less nodes than G.

Consequently, the repeated application of the specialization

process ultimately yields sub-problems which are all ‘trivial’ (in that

for each sub-problem, either condition (5.2) holds or the subgraph

G is complete).

The use of this method, for finding the maximal cliques of the

graph of Fig. 5.1, is depicted by the search tree of Fig. 5.6. Here the

root node represents the original problem (for which G =G, and

N=4®). The labels on the arcs of the search tree indicate which

nodes have been selected, in performing the specializations; at each

node of the tree—which represents a sub-problem—we have given

the corresponding subgraph G and node set N.

A backtrack programming algorithm based on this specialization

method has been published by Bron and Kerbosch (1973). (Their

algorithm also incorporates a particular method of selecting the

nodes for the successive specializations, whose aim is to minimize

the total number of selections required.)

180 Independent sets, dominating sets, and colorations

N=$

C={1,2,4,} , C={1,3,4,6} No cliques
(xo)

No cliques
(X¥CT(1)) 5eEC

C= {4,5} No cliques
(X¥ST())

to FIG .526

Independent sets, dominating sets, and colorations 181

A simplification rule. The number of specializations involved in
finding all the maximal cliques of a graph can often be reduced
considerably, by applying the following rule:

Let G =(X, E) be a simple graph, let C be any maximal clique of
G, and let x, be any node such that x,é C;; if x, has any neighbour x,
such that

{x} UP(x1) C {xn} UT (xx) (5.7)
then x:€é C.

Indeed, it is evident that since the clique C is maximal, and x, ¢ C,

the clique C contains at least one node x; which is not adjacent to

x, ; but then x; is not adjacent to any node x; for which the condition

(5.7) holds, and therefore C cannot contain any of these nodes.

From this rule it follows that, in applying the specialization

method described above, when we construct the subgraphs Gi and

Gr of G we can omit from Gz any node x, such that on G, the

condition (5.7) holds.

As an illustration, in Fig. 5.6 when we specialized the original

problem to obtain G; and Gi, we could have omitted from Gi all

the nodes x2, x3, and x6; the modified specialization process, in

which we have made this simplification, is depicted in Fig. 5.7.

5.2.3. Independent edge sets (matchings)

By analogy with our definition of an independent node set, we say

that a set M of edges of a simple graph G is an independent edge set

or a matching of G if no two edges of M are adjacent, that is if no

two edges of M have a common endpoint.

As an illustration, Fig. 5.8 shows three different matchings of a

simple graph, the edges of the matchings being indicated by bold

lines.

Given any matching M onasimple graph G = (X, E) we describe

the edges in M as the matching edges of G (relative to M), whereas

we cail the edges in E—M the non-matching edges of G (relative to

M). The nodes which are endpoints of matching edges are said to be

covered by M, whereas nodes which are not endpoints of matching

edges are said to be exposed relative to M.

A matching M is maximal if there is no other matching which

properly contains M; and M is called a maximum matching if no

other matching contains more edges. If every node is covered, the

matching is said to be perfect. Clearly, if a perfect matching exists for

a graph G, that matching is a maximum matching.

182 Independent sets, dominating sets, and colorations

N=$

C={1,2,4\ C={1,3,4,6}

p FIG. 5.7

As an illustration, the matchings shown in Fig. 5.8(b) and Fig.

5.8(c) are both perfect. For the graph of Fig. 5.9, the matching
shown is a maximum matching; this graph does not have a perfect

matching.

Example 5.2. Matching transistors for push-pull amplifiers. A batch of

power transistors has been manufactured for use in pairs, in push-pull
amplifiers. In this application two transistors can only be used together if
the differences between their gains, and the differences between their

Independent sets, dominating sets, and colorations 183

FIG. 5.9

resistances, lie within small prescribed tolerances. Because the fabrication

process is imperfect it is necessary to measure the parameters of each of the

transistors produced, and on this basis to decide which transistors are

compatible. Given this information, how should the transistors be arranged

in pairs, to minimize wastage?

Let G be the simple graph whose nodes represent the transistors, two

nodes being joined by an edge if the corresponding transistors are compa-

tible. Then a maximum matching on G gives the greatest possible number

of ‘matched pairs’.

In Section 4.7 we defined the interchange graph of asimple graph.

From that definition it follows immediately that a set M of edges of

a graph G is a matching of G if and only if M is an independent set

of nodes on the interchange graph of G. As an illustration, Fig. 5.10

shows the interchange graph for the graph of Fig. 5.8; the indepen-

dent set marked on Fig. 5.10 corresponds to the matching of Fig.

5.8(b).

Fic. 5.10

Since the matchings of G correspond to the independent sets of

the interchange graph J of G, and these sets in turn correspond to

the cliques of the complementary graph I of J, it is possible to find

all the maximal matchings of G by the algorithm described in the

previous section. However if we require only one maximum match-

ing, we can obtain this by an alternative method, of only polynomial

complexity, as indicated below.

184 Independent sets, dominating sets, and colorations

Alternating chains. Let M be a matching ona graph G. Thena chain

« on G is called an alternating chain (relative to M) if (i) the chain «

is simple, and (ii) in each pair of consecutive edges of x, one edge isa

matching edge and the other is a non-matching edge. For instance,

in the graph of Fig. 5.8(a) the chain

a, ct. te

is an alternating chain.
Now let us suppose that, for a given matching M on G, the graph

G has an alternating chain « between two exposed nodes. Let K be

the set of edges in x, and let M be the symmetric difference between

M and K,

M=MQAK,

that is, the set of edges which belong either to M or to K but not

both. To describe this set in another way, M is the set obtained by

deleting from M the matching edges of « and then adding all the

non-matching edges of x. It is clear from this method of con-

struction that every node which is an endpoint of an edge of M is an

endpoint of precisely one edge of M; and that none of the nodes

which are exposed relative to M are the endpoints of edges of

M—except each endpoint of x, which is an endpoint of precisely

one edge in M. It follows that M is a matching of G, and that this

matching has one more edge than M. For this reason, an alternating

chain between two exposed nodes is called an augmenting chain.

As an illustration, in Fig. 5.8(a) we have depicted a matching

M ={ce, hh:

Relative to this matching the graph has two exposed nodes; these

are joined by an augmenting chain

K =a,c,e

from which we obtain the new matching

M = {c,h} A {a, c, e} = {a, e, h}

which is depicted in Fig. 5.8(b). The graph of Fig. 5.8(a) also has an
augmenting chain

k =a,c,f,h,g

Independent sets, dominating sets, and colorations 185

trom which we obtain the matching

M ={c,h} A {a, c, f, h, g} = {a, f, g}

which is depicted in Fig. 5.8(c).

The process of constructing M from M can be visualized as

follows. If the edges of M have been drawn as thick edges and the

edges not in M appear as thin edges, then an augmenting chain x

relative to M is a simple chain between two exposed nodes whose

edges are alternately thin, thick, thin, ... , thick, thin. To obtain M,

we simply redraw the edges of x, replacing its thick edges by thin

ones and vice versa. :

The above arguments suggest that to obtain a maximum match-

ing, we might first choose a matching M arbitrarily, and then search

for an augmenting chain « relative to M. If this search should be

successful we would construct a larger matching M, as the sym-

metric difference between M and the set of edges of x. Then, after

replacing M by M, we would search for another augmenting chain,

and so on until eventually we obtained a matching Mp for which no

augmenting chains existed. However, can we be sure that, when this

algorithm terminates, the final matching Mo is always a maximum

matching? An affirmative answer is provided by the following

theorem, due to Berge (1957).

A matching M in a graph G is a maximum matching if and only if

G does not contain any augmenting chains relative to M.

To prove the theorem, we need only show that if M is not a

maximum matching then G contains an augmenting chain relative

to M, the converse having already been established. Let us there-

fore assume that G has a matching M, which contains more edges

than M, and let us consider the partial graph H = (X, F) of G, where

F=M (A M,). Now in H, each node x;¢X has a node degree

p(x;) <2, since at most one edge of M, and one edge of Mo, is

incident with x;. Thus each connected component of H is either (i)

an isolated node or (ii) a circuit of even order, with edges alternately

in M and Mg, or (iii) an open simple chain, with edges alternately in

M and Mp. Now since M, has more edges than M, the graph H has a

connected component containing more edges of Mo than edges of

M. It follows that H has a component which is an open simple chain

kK, With edges alternately in M and Mo and whose first and last edges

both belong to Mo. On G, the edges of this chain « form an

alternating chain relative to M, and the endpoints of x are exposed

186 Independent sets, dominating sets, and colorations

relative to M. Thus G does contain an augmenting chain relative to

M, as required.

With regard to the practical determination of augmenting chains,

we note first from the proof of Berge’s theorem that augmenting

chains are always elementary. Now let G be a graph with a matching

M, and let G be the graph obtained by adding to G a new node xo,

and placing an edge between x 9 and each node of G which is

exposed relative to M (see Fig. 5.11). Also, let us partition the edges

of G into two classes—one of thick edges (comprising the matching

edges of G, together with the new edges incident with xo), and one

of thin edges (the non-matching edges of G). Then clearly the

augmenting chains of G correspond to those elementary chains

from Xo to itself on G, whose edges are alternately thick and thin.

(An example of such a chain is indicated by arrows on Fig. 5.11(b).)

An elementary chain of this kind can be obtained by a backtrack

programming method; alternatively, some very efficient ‘node-

labelling’ algorithms have been devised for this purpose (see the

Additional notes and bibliography).

FIG. 5.11(a) FIG. 5.11(b)

Matching in bipartite graphs. A simple graph G = (X, E) is said to be
bipartite if its node set X can be partitioned into two subsets X, and

X, such that every edge of G has one endpoint in X, and one

endpoint in X>. An example is shown in Fig. 5.12.

Very often, the graphs for which maximum matchings are
required arise naturally in a bipartite form—as in the following
example.

Example 5.3. An assignment problem. A firm has q vacant jobs
Bi, Bo,.-.., Bq of different types. There are p applicants a1, a,..., a, for

Independent sets, dominating sets, and colorations 187

work with the firm, each applicant being suited for one or more of the
vacancies. How should the applicants be assigned to jobs, in order to fill as
many of the jobs as possible?

Let G be the bipartite graph with node set X = A UB, where A is the set

of applicants and B is the set of jobs, and which has an edge [a,, B;]

whenever applicant q; is able to fill job B;. Then a matching on G defines an

assignment of jobs to applicants; for a maximum matching, the number of

jobs assigned is as great as possible. As an illustration, Fig. 5.12 shows a

maximum matching on a bipartite graph, of the kind which arises in

assignment problems.

By

Py

x2

Applicants Ba \ Jobs

a5

Bo

p

FIG. 5.12

A very efficient algorithm for constructing maximum matchings

on bipartite graphs, using augmenting chains, has been devised by

Hopcroft and Karp (1973). Problems of this kind can also be solved

by the network flow methods which will be presented in the next

chapter.

5.3. Dominating sets

Given a simple graph G = (X, E), we say that aset S of nodes of G

is a dominating set if every node of G either belongs to S or is

adjacent to one or more nodes of S. A dominating set is minimal if

none of its proper subsets are dominating sets.

For the graph of Fig. 5.1, the minimal dominating sets are {x1, xs},

{x2, X3, Xs}, {x2, Xs, Xot, {xa}.

The domination number B(G) of a graph G is the smallest number

of nodes in any dominating set of G. For the graph of Fig. 5.1,

B(G)=1.

188 Independent sets, dominating sets, and colorations

As might be expected, there is a close connection between the

dominating sets and the independent sets of a graph. In particular, it

is easy to prove that in any graph, an independent set is maximal if

and only if it is a dominating set. Indeed, if I is a maximal indepen-

dent set then there cannot be any node x ¢ I which is not adjacent to

some node in J, for otherwise the set J U {x} would be independent.

Conversely, if an independent set J is dominating then it is

impossible to add any node to J without destroying the indepen-

dence of J.

From this result it follows that for any graph, the independence

number is greater than or equal to the domination number:

a(G)=B(G).

It will be noted that, although a maximal independent set is

necessarily a dominating set, a minimal dominating set need not be

independent. For instance, the graph of Fig. 5.13 has a minimal

dominating set {x3, x4} which is not independent.

FIG. 5.13

5.4. Colorations

5.4.1. Node colorations

By a coloration of a simple graph G = (X, E) we mean a partition
€ ={X1, Xo,..., X,} of its node set _X in which every block X; is an
independent set. In pictorial terms, if we suppose that each block of
a coloration is associated with a different colour, then we may
regard a coloration as an assignment of a colour to each of the nodes
of a graph, such that no two adjacent nodes have the same colour.
A coloration which has exactly k blocks is sometimes called a

k-coloration. The smallest number k for which a graph G has a
k-coloration is called the chromatic number of G and is denoted by
y(G); a coloration which uses only y(G) colours is called a mini-
mum coloration of G.

As examples, the chromatic numbers of the graphs of Fig. 5.14
and Fig. 5.15 are 4 and 3 respectively; on these diagrams we have

Independent sets, dominating sets, and colorations 189

Y G R

R R B R Y

G Y R

FIG. 5.14 FIG. 5.15

specified minimum colorations by labelling the nodes with the

letters R (for red), Y (for yellow), G (for green), and B (for blue). As

another important example, we note that a complete graph with n

nodes has the chromatic number n.

Example 5.4. Construction of an examination timetable. In a university

faculty, the final-year students have to sit anumber of written examinations

in different subjects, each examination taking half a day. The examinations

in any pair of subjects can be held concurrently if and only if no student is a

candidate for both subjects. A timetable is required, in which the examina-

tions are all completed in the shortest possible time.

Let X ={x1, X2,...,X,} be the set of all examinations, and let us con-

struct the simple graph G=(X, E), where [x,, x;]¢ E if and only if the

examinations x; and x; cannot be held concurrently. Then any coloration of

G defines a partition € ={X,, X.,..., X,} of X, such that all the examina-

tions in any one block _X; of € can be held concurrently. Thus if we find a

minimum coloration of G and assign half a day to each block of the

corresponding partition of X, we obtain a timetable which meets our

requirements.

Example 5.5. The assignment of memory locations to program variables.

In writing or compiling a program for a computer with a small rapid-access

memory it is sometimes desirable to determine which variables may occupy

the same memory locations and hence to find an assignment of memory

locations to variables which uses least space. To achieve this we may

construct a data-transmission graph G of a program as follows:

(i) Each instruction of the program is represented in G by apair of nodes .

r, and t,, joined by an arc (%,¢). The nodes r, and ¢ are called

respectively the receiver and transmitter nodes of the kth program

instruction. The node 7, is labelled with the set of program variables

whose values are read (or received) from the memory in the execution of

the kth instruction; whereas the node ¢, is labelled with the set of

190 Independent sets, dominating sets, and colorations

variables to which values are assigned (and transmitted to the memory) in

executing the instruction.

(ii) If the ith instruction transfers control (conditionally or uncondition-

ally) to the jth instruction, then G has an arc (f, 7;).

As a simple example, Fig. 5.16(a) is the flow chart of a program to

calculate the highest common factor of two integers m and n, by Euclid’s
method. (In this program, first the number m is divided by n, to obtain their
quotient g =|m/n| and corresponding remainder r. If the remainder is

non-zero, the value of n is assigned to m, the value of r is assigned to n, and

the division process is repeated. Eventually a zero remainder is obtained, at

which point the value of 1 is the highest common factor of the original pair

of numbers.) The corresponding data-transmission graph is shown in Fig.

5.16(b).

FIG. 5.16(a) FIG. 5.16(b)

Independent sets, dominating sets, and colorations 191

On a data-transmission graph G we define a carrier of a variable v asa

path from a transmitter of v to a receiver of v, on which none of the

intermediate nodes are transmitters of v. Now let G, be the graph compris-

ing the nodes and arcs of G which belong to carriers of v; we describe the

node-set of each connected component of G, as a region of v.

As an illustration, the program by Fig. 5.16(a) has four variables, m, n, q,

and r. The corresponding graphs G,,, G,, G, and G, are shown in Fig.

5.16(c); since these graphs are all connected, our program has only one

region for each variable.

Now let S be the set of regions of all the variables of a program and let M

be the set of memory locations of a computer. Then a memory assignment is

a function f: S>M which assigns a memory location to each region. A
memory assignment f is said to be proper if for any two regions s,, 5; € S such

that 5; 5; 4 ¢, f(s;) 4 f(s;). Thus with any proper memory assignment, the

contents of a memory location can only be ‘over-written’ when they are no

longer required.

©) ©)

Gn Gh G,

FIG. 5.16(c)

192 Independent sets, dominating sets, and colorations

To obtain a proper memory assignment we may construct an interference

graph H;; this is a simple graph, whose node set is the set S of program

regions, two nodes s; and s; being joined by an edge whenever 5; 15; 4 @.

Then the colorations of H correspond to the proper memory assignments

for the program, and in particular a minimum coloration of H determines a

proper memory assignment using least memory locations.

For the program of Fig. 5.16(a), the interference graph is shown in Fig.

5.16(d). (Since this particular program has only one region for each

variable, we have simply labelled the nodes (regions) in H with the names

of the corresponding variables.) The graph has a 3-coloration, hence only 3

memory locations are required—one to store m, one to store n, and one for

the pair of variables q and r. (Alternatively, we might ‘rename’ q as r, or r as

q, throughout the program text.)

m q

r

FIG. 5.16(d)

5.4.2. An algorithm for colouring a graph

The colorations of a graph G can be constructed by backtrack
programming, as follows.

If the graph G is complete then it has only one coloration (in
which every node is assigned a different colour). Otherwise, the
problem of finding all the colorations can be ‘specialized’ (cf.
Section 2.7) in the following way. Let x; and x; be any two nodes of
G which are not adjacent; then the set S of colorations of G can be
partitioned into two sets S$; and Sz where S$; is the set of all
colorations in which x; and x; are of the same colour, and S7 is the
set of all colorations in which x; and x; have different colours.
Clearly, the colorations in S;; correspond to the colorations of the
condensation Gi; of G which is obtained by coalescing x; and x;;
whereas S7 is the set of colorations of the graph G7 obtained by
adding the edge [x;, x;] to G.

It is evident that the graph G;; has one node less than G, while GF
has the same node set as G, but one more edge. Thus, by repetition
of the specialization process we ultimately obtain graphs which are

Independent sets, dominating sets, and colorations 193

all complete, and the (unique) colorations of all these complete

graphs give all the colorations of the original graph G.

This specialization process is demonstrated for a 5-node graph in

Fig. 5.17. (In this diagram, the symbolism x; =x, indicates that x;

has the same colour as x;.) It will be seen that the graph has a

chromatic number of 3; it has one 3-coloration, namely

{{x1, x3}, {x2, xa}, {xst},

and also three 4-colorations, and one 5-coloration.

It is often possible to simplify graphs obtained during the search,

by applying the following rule.

FIG. 5.17

194 Independent sets, dominating sets, and colorations

Rule 1: If a graph G has a node x; which is adjacent to every other

node, then in every coloration of G the node x; has a colour different

from the colours of all other nodes.

Thus, a node which is adjacent to all other nodes can be deleted,

for the purpose of finding colorations. Simplifications of this kind do

not reduce the number of specializations to be performed, but they

greatly reduce the amount of data to be manipulated and stored at

each stage. For the problem of Fig. 5.17 for instance, Rule 1 enables

us to remove node x; from the original problem, and to make

further simplifications to all the sub-problems.

Determination of a minimum coloration. In practical problems we

usually require only one coloration, which uses least colours. To

find such a coloration, it is unfortunately still necessary to use a

search method of the kind described above, and to extract a

minimum coloration from the set of all colorations obtained.

However, it is usually possible to ‘prune’ the search tree in such a

way as to discard many sub-problems, while retaining always at

least one sub-problem which leads to a minimum coloration.

For instance, we can make use of the following rule.

Rule 2: If a graph G has two nodes x; and x; such that 1(x;) CT (x,),

then G has a minimum coloration in which x; and x; are of the same
colour.

Thus, if a graph G has two nodes x; and x; with I'(x;) CI'(x;), the

problem of finding a minimum coloration of G reduces to the
problem of finding a minimum coloration of its condensation Gj;

(which is obtained simply by removing x; from G).
As an example, it follows from Rule 2 that the 5-node graph of

Fig. 5.17 has a minimum coloration in which x; has the same colour
as x3, and x2 has the same colour as x4; by constructing the
corresponding condensation, we immediately obtain the complete
3-node graph which defines its minimum coloration. Minimum
‘colorations of the graphs of Fig. 5.14 and Fig. 5.15 can also be
obtained easily, by repeated applications of Rule 2.

As a further method of pruning the search tree, one can use a
‘branch-and-bound’ method, in which the search is restricted by
calculating lower bounds to the chromatic numbers of graphs
obtained in the course of the specialization process (Corneil and
Graham 1973).

Independent sets, dominating sets, and colorations 195

Finally, we note that if at any stage we obtain a graph which has

articulation nodes, a minimum coloration of that graph can be

obtained by finding a minimum coloration of each of its blocks

separately.

5.4.3. Edge colorations

An edge coloration of a simple graph G = (X, E) is a partition

€ ={E,, Er,..., E,} of its edge set E in which every block E; is a

matching of G. In pictorial terms, if we suppose that each block of

an edge coloration is associated with a particular colour, then we

may consider an edge coloration as an assignment of a colour to

every edge of a graph, such that no two adjacent edges have the

same colour.

An edge coloration which has exactly k blocks is sometimes

called a k-edge coloration. The smallest number k for which a graph

G has a k-edge coloration is called the chromatic index x(G) of G.

From these definitions it follows immediately that every k-edge

coloration of a graph G determines a k-node coloration of its

interchange graph, and that the converse is also true. (As an

illustration, Fig. 5.18(a) shows a minimum edge coloration of a

graph, and Fig. 5.18(b) shows the corresponding minimum node
coloration of its interchange graph.) It is therefore possible to

construct edge colorations by the algorithms described in the pre-

vious section.

FIG. 5.18(a) FIG. 5.18(b)

Example 5.6. A wiring problem. An electronic unit consists of a number
of integrated circuit modules, joined together by coloured wires. To

facilitate testing of the unit, it is required that all wires connected to the
same module be coloured differently. How can this be achieved, using as

few different colours of wire as possible?

196 Independent sets, dominating sets, and colorations

In graph-theoretic terms, this problem simply involves finding a mini-

mum edge coloration of the graph whose nodes represent the modules and

whose edges represent the wires joining them.

Exercises

5.1. A firm manufactures Schottky diodes, to be used in ‘matched pairs’ in

radar sets. For a batch of ten diodes, measurements have been made of

certain diode parameters (in particular, their junction capacitances

and series resistances), and from these measurements it has been

found that the following pairs of diodes are compatible:

(1, 2], [1, 5}, [2, 3], (2, 4], (2, 5], [3, 5], [4,5], [4,6], [4, 9],
[5, 6], [5, 7], [6, 7], [6, 8], [6, 9], [6, 10], [7, 9], [8, 91, [9, 10].

How many matched pairs can’be obtained from the batch?

5.2. Prove that, if the largest node degree of a simple graph is p, then its

chromatic number is not greater than p + 1.

5.3. Prove that a graph has a 2-coloration if and only if it does not contain

any circuits of odd length.

5.4. Seven local television stations are to be built in different geographic

locations. Stations which are far apart can use the same frequency, but

to avoid interference certain pairs of stations must use different

frequencies; these pairs are specified by crosses in the table below.

ee te Se TS

Find an assignment of frequencies to transmitters which uses the
smallest possible number of different frequencies.

Additional notes and bibliography

It has been shown by Moon and Moser (1965) that the number of cliques
in a graph may grow exponentially with n. However in many practical
applications this does not happen, and the specialization method of Section

Independent sets, dominating sets, and colorations 197

5.2.2 for constructing the maximal cliques works very effectively (see Bron
and Kerbosch 1973). Some other algorithms for constructing maximal
cliques are described by Augustson and Minker (1970), Mulligan and
Corneil (1972), Akkoyunlu (1973), Osteen and Tou (1973), Osteen (1974),
and Johnston (1976).

The first polynomial algorithm for constructing a maximum matching

was developed by Edmonds (1965); this algorithm was of complexity

O(n*). More efficient ‘node labelling’ techniques for finding augmenting

chains were subsequently developed by Witzgall and Zahn (1965), Balinski

(1969), Even and Kariv (1975), and Gabow (1976). The algorithm of Even

and Kariv is of least complexity, this being only O(n*°).
For a full discussion of the analytical results obtained relating to node and

edge colorations, see Berge (1976) and Ore (1967).

The method of assigning memory locations to variables described in

Example 5.7 is based on the work of Lavrov (1961). See also Logrippo

(1972, 1978). -

The backtrack programming method of constructing colorations (Section

5.4.1) is based on a technique of Zykov (1949) for representing chromatic

polynomials; the simplification rules were suggested by Hedetniemi (1971).

An alternative coloration method involving the generation of maximal

independent sets was developed by Christofides (1971) and subsequently

refined by Roschke and Furtado (1973) and Wang (1974). Corneil and

Graham (1973) compared their branch-and-bound method (based on

Zykov’s technique) with the Roschke—Furtado algorithm for a number of

families of graphs, and found that the branch-and-bound method was

always substantially superior.

The problem of finding a minimum coloration is NP-complete (see Karp

1972; Lawler 19765). Polynomial algorithms have been developed, to

construct ‘approximate’ solutions to the minimum coloration problem (see

Peck and Williams 1966; Welsh and Powell 1967; Wood 1969; Williams

1970; Matula, Marble, and Isaacson 1972). However, it has subsequently

been shown that the results of all these algorithms may be arbitrarily bad

(Johnson 1974; Mitchem 1976; Garey and Johnson 1976). é

In practice it is very difficult to obtain sharp bounds for the chromatic

number of a graph, but very sharp bounds for the chromatic index are easily

obtainable: specifically, if p is the largest node degree of a simple graph G,

then p=x(G)<p+1. The validity of the first of these inequalities is

evident; the proof of the second (which is due to Vizing) is given in English

by Ore (1967) and Berge (1976).

It is possible to enumerate the maximal independent sets and cliques, the

minimal dominating sets, and the colorations of a graph by Boolean

methods (Hammer and Rudeanu 1968). See also Kaufmann and Pichat

(1977).

6 Flows in networks

6.1. Introduction

THIS CHAPTER is concerned with p-graphs in which some

substance can flow along the arcs, from one point to another. Much

of the theory presented here originated in the study of trans-

portation problems, i.e. problems of transporting a commodity

from certain points of supply to other points of demand in such a

way as to minimize shipping cost. However, the graph-theoretic

techniques first developed in this context are applicable to several

other kinds of flow problems, involving for instance the flow of

information in communication systems, and the flow of traffic in

road networks. Furthermore, many practical problems of a

combinatorial nature, which do not involve flows in any physical

sense, can nevertheless be formulated and solved very elegantly by

using network-flow models.

6.2. Networks

In discussing flows it will be convenient to consider only p-graphs

which are connected and which do not contain any loops. This will

not involve any loss in generality, for the flows in a disconnected

p-graph can be analysed by considering each of its connected

components separately, and flows in loops contribute nothing to

flows between nodes. In this chapter, p-graphs which are connected

and without loops will be called networks.

Now let G=(X, U) be a network, whose nodes and arcs are

arbitrarily numbered: MSA gewetie, kat and =
{U1, U2,..., Um}. Then the incidence matrix of G is the n X m matrix
S =[s,;] whose rows and columns correspond to the nodes and arcs
of G respectively, and whose elements are

+1 if u; is incident from x;,

Sj =4—1 if u; is incident to x,,

0 if u; is not incident to or from x,;.

Flows in networks 199

As an example, the network of Fig. 6.1 has the incidence matrix

se Sai on | re he OF, Oi =F 0

el Deel Gi OOo On. 0

SF D0 er Ol Oe) ale Sd SO. LOI,

Dees eS 50

6.3. Network flows

6.3.1. Definition of a network flow

A flow on a network G is a vector f=[f,, fo,..., fn] of m real

numbers (where m is the number of arcs in G) such that

(i) each element f; of f, which is called the flow in the arc u;, is

non-negative, and

(ii) for every node x; of G, the sum of the flows in arcs incident to

x; is equal to the sum of the flows in arcs incident from x;. (This

condition is called the flow conservation condition.)

The condition (i) is conveniently written as

f=0; (6.1)

the flow conservation condition (ii) can be expressed in terms of the

coefficients of the incidence matrix of G, as

AT aaa ey eae (6.2(a))
j=1

200 Flows in networks

or, more concisely, as

St =O; (6.2(b))

As an example, the vector [1, 1, 3, 1, 2, 2,1, 1, 2] is a flow on

the network of Fig. 6.1; this flow is depicted in Fig. 6.2.

6.3.2. Operations on flows

Let f be a flow on a network G, and let k be a non-negative

number. Then kfis a flow on G, since the condition f= 0 implies that

kf£=0, and the condition Sf’ = 0 implies that S(kf)’ = Sfk =0.

In the same way, it is easily verified that for any two flows f; and f,

on the same network G, the vector sum f, + f2 is a flow on G; and if

f{, =f, then the difference f,; —f, is also a flow on G.

6.3.3. Elementary flows

Let y be an elementary cycle on G, and let v be the vector with

elements

1 ifarc yu; lies on y, 2 al NA See ap) WES ae
O otherwise,

It is easily verified that v is a flow on G: this flow is called the

elementary cyclic-flow associated with y.

Now let vi, V2,..., Vx be elementary cyclic flows on G and let

r1,12,...,1 be non-negative numbers. Then, from our previous

discussion of operations on flows it is clear that the vector

£=ryvi trove t+ reVE (6.3)

is a flow on G.

Conversely, any feasible flow f on G can be expressed in the form

(6.3). To prove this, let us suppose that f is a non-zero flow on G (for

a zero flow, the proof is trivial), and let H be the partial graph of G

obtained by deleting those arcs in which the flow is zero. Now since

{4 0, H contains at least one arc; and from the flow conservation

condition, it follows that on H

p (xi)=0 ifandonlyif p (x;)=0 forall x;eX.

Hence, starting from the initial endpoint of any arc of H, it is

possible to construct a path of arbitrary order on H, which implies

that H contains at least one elementary cycle. Now let y; be any

elementary cycle on H, let r, be the smallest flow in the arcs of y1,

Flows in networks 201

and let v; be the elementary cyclic flow on G associated with y;.

Then f£; = f—7,v, is a flow on G, having more zero elements than f.

By repeated decompositions of this kind we ultimately obtain a flow

f, =f-ryVi — revo - + + — KV, =O,

from which it follows that f is expressible in the form (6.3).

The fact that any network flow can be decomposed into elemen-

tary cyclic flows—or constructed by combining elementary flows—

will be of great importance in later sections.

As an example, Fig. 6.3 depicts two different decompositions of

the network fiow of Fig. 6.2.

6.3.4. Arc capacities

Let us now suppose that each arc u; of G has associated with it a

non-negative integer c;, called the capacity of u;; this may be

regarded as the maximum permissible value of the flow in the arc

u;. Then a flow f on G is said to be feasible if and only if

fSe PAP 2), m). (6.4)

202 Flows in networks

To express the feasibility condition in matrix form, we define the

capacity vector of G ase =[c1, C2,..., Cm]. Then from (6.4) a flow f

on G is feasible if and only if

f<c. (6.5)

The properties of feasible flows are most conveniently described

in terms of ‘displacement networks’, which are defined in the next

section.

6.4. Displacement networks

6.4.1. The notion of a displacement network

Let f be a feasible flow on G; then the displacement network

G(f) associated with f is the network which has the same nodes as G,

and arcs determined as follows. For each arc u; of G, G(f) has (i) a

normal arc u;_ which has the same initial and terminal endpoints as

u;, and (ii) an inverted arc u; which has the same endpoints as u; but

the opposite orientation. The capacities of u; and u;, which are

denoted by c; and c; respectively, are defined by

Ci Cp fe)

ines

For example, Fig. 6.5 shows the displacement network associated

with the network flow of Fig. 6.4; in Fig. 6.5 the solid lines represent

normal arcs, broken lines represent inverted arcs.

Se a. 5 WE) (6.6)

FIG. 6.4.The first number on each arc is its capacity; the second is the arc
flow.

Flows in networks 203

FIG. 6.5. The numbers indicate arc capacities.

It will be observed that on a displacement network G(f), the

capacity of each normal (or, respectively, inverted) arc is the

amount by which the flow in the corresponding arc of the original

network G can be increased (or, respectively, reduced) without

exceeding the arc capacity (or becoming negative). As one might
therefore expect, for a given flow f on G it is possible to describe the

‘difference’ between f and any other flow on G in terms of a feasible

flow on the displacement network G(f). To demonstrate how this
can be done it will be helpful first to establish some properties of the

feasible flows on Gif).

6.4.2. Flows on displacement networks

Let us suppose that the arcs of G(f) are listed in the order

Uj, Uz,..., Um, U1, U2,-.-., Um. Then the incidence matrix S of
G(f), which is of dimensions n X 2m, can be written in the parti-

tioned form

§ =[S|-S], (6.7)

where S is the n X m incidence matrix of G. The capacity vector ¢ of

G(f) is also conveniently written in the partitioned form

é=[e*|e"], (6.8)
where c' =[ci, c3,...,Cn] and e¢ =[ci,c2,...,¢»]. From (6.6)
these two components of ¢ can be written as

c =c-f,
(6.9)

c =f.
aa

os

204 Flows in networks

Now from the definition of a feasible flow it follows that a vector f

of 2m real numbers is a feasible flow on G(f) if and only if

O<f<é 6.10)

and

S¥ =0. (6.11)

If f is partitioned in the form

f={f lf (6.12)

where f* andf each have m elements, then the condition (6.10) can

be written as

0=F Se.
+ (6.13)

O=<f Sc,

and by (6.9) these conditions can be expressed as

O<f <c-f,
(6.14)

O<f <f.

Also, by (6.7) and (6.12), the conservation condition (6.11) can be

expressed in the form

S(f -f£)' =0. (6.15)

Thus, a vector f =[f* |f]is a feasible flow on G(f) if and only if its

components f° andf satisfy the conditions (6.14) and (6.15).

6.4.3. Flow differences

Now let f and g be any two feasible flows on G. Then the vector

difference g—f determines a feasible flow on G(f), as follows: Let f

and f be the vectors with elements

Fr let tomatoes At aaa
2) olay Ha (6.16)

It is evident that

f'-f =g-f. (6.17)

Also, it is easily verified that the vector f=(f* |f]is a feasible flow

on G(f). Indeed, since 0<f<c and 0<g<c it follows immediately

Flows in networks 205

from (6.16) that the vectors f° and f satisfy the feasibility condi-

tions (6.14); and by (6.17),

S(t -f£)' = S(g—f)' = Sg'— Sf’ =0

so the flow conservation condition (6.15) is also satisfied.

It will be noted that the flow f = [f* |f] on G(f) defined by (6.16)

has the property

fi -fi =9, ade 25 sonata D5

a flow with this property is said to be disjunctive.

As an illustration, Figs. 6.4 and 6.6 show two flows f and g on the

same network; the disjunctive flow on G(f) associated with the

difference g—f is shown in Fig. 6.7.

FIG. 6.6. The first number on each arc is its capacity; the second is the arc

flow.

FIG. 6.7. The numbers indicate arc flows.

206 ~=Flows in networks

It has been demonstrated that if f and g are feasible flows on G,

then the vector f =[f*|f] defined by (6.16) is a disjunctive feasible

flow on G(f). Conversely, it can be shown that if f is a feasible flow

on G, and f= [f"|f] is a feasible flow on G/(f), disjunctive or

otherwise, then the vector g defined by (cf. (6.17))

g=f+f -f (6.18)

is a feasible flow on G. Indeed, it follows from (6.14) that

—f<f -f <c-f (6.19)

and by adding f throughout (6.19) we obtain the feasibility condi-

tion

O=g=c.

Also, using (6.15) we obtain the flow conservation condition

Sg’ = S(f+f' —-f)'=Sf+S(f -f)'=0

as required.

6.5. Maximal flows in networks

6.5.1. The maximal flow problem

It will now be supposed that G contains two nodes x, and ve

called the source and sink of G respectively, which are joined by an
arc u; = (x, Xs) of infinite capacity; this arc is called the return arc of
G. For any feasible flow f on G, we describe the flow f, in the return
arc u, as the value of f. The problem to be considered here is that of
finding a maximal flow, that is, a feasible flow whose value is as large
as possible.

Example 6.1. A shipping problem. A certain commodity is stored at Pp
depots a1, a@2,...,a,, each depot a; having a stock of 5; units. The
commodity is required at q distribution centres B,, B2,..., Bg, the demand
at B; being for d; units. The maximum quantity w;; which can be transported
from each depot a; to each distribution centre B; is specified. Is it possible to
meet all the demands? How many units of the commodity should be sent
from each depot to each distribution centre, in order to meet the demands?

This problem can be represented by a network of the form shown in Fig.
6.8, in which the labels on arcs indicate their capacities. For any maximal
flow on this network, the arc flows define a distribution of the commodity

Flows in networks 207

Distribution
centres

Return arc

FIG. 6.8

from the depots a; to the centres 8; which meets the demands as well as

possible.

It was shown earlier that any flow on a network can be expressed

as a combination of elementary cyclic flows. This suggests that to

obtain a maximal flow we might successively combine elementary

flows, in such a way as to increase the value of the resulting flow at

every stage, until we obtain a flow whose value is maximal. But how

should these elementary flows be chosen?

Let f be any flow on a network G; then we define a flow-

augmenting cycle of the corresponding displacement network G(f)

as an elementary cycle which traverses u; but not u;, and whose

arcs all have non-zero capacities. The significance of flow-aug-

menting cycles is established in the following theorem:

A flow £ on a network G is a maximal flow if and only if G(f) does

not contain any flow-augmenting cycles. :

To prove the theorem, let us first suppose that G(f) contains a

flow-augmenting cycle y, and let 6 be the capacity of y (i.e. the
smallest of its arc capacities). Also, let f = [f” |f] be the feasible flow

on G(f) obtained by assigning a flow of 6 units to each arc of y. Since
u; lies on y and u, does not lie on y,

f/=5 and f, =0. (6.20)

208 Flows in networks

Now let g be the feasible flow on G defined by (cf. 6.18)

g=f+f'-f. ; (6.21)

From (6.20) and (6.21) it follows that

g:=heth fe aft 6. (6.22)

Thus the value of the flow g is 6 units greater than the value of f,

which implies that f is not a maximum flow.

Conversely, if f is not a maximum flow, there exists a feasible flow

g of G whose value is greater than that of f:

&r> fr (6.23)

Now let f=[f*|f] be the flow on G(f) determined by the flow

difference g—f, through the rule (6.16), and let us express f in the

form

f= 1r1¥,+rv2+ -+TRVK (6.24)

where 1, /2,...,/% are positive numbers and vw, ¥2,..., Vx are

elementary cyclic flows on G(f). Since f is a disjunctive flow, it

follows from (6.23) that

f= OS and y.-= U:

Hence in the flow decomposition (6.24) there exists at least one

elementary flow v; say for which the flow in the arc u, iS non-zero

and the flowin u, is zero. The corresponding elementary cycle y; on

G(f) therefore traverses u; but not u,. Also, since f is a feasible

flow on G(f), the flow ¥; is a feasible flow on G(f), which implies that

every arc on y; has a non-zero capacity. It follows that y; is a

flow-augmenting cycle on G(f), which proves the theorem.

Example 6.2. Let us consider the network flow f which is depicted in Fig.

6.9. (In this diagram, the first number on each arc is its capacity, the second

is the arc flow; the bold lines indicate arcs which are saturated, i.e. arcs in

which the flow is equal to the capacity.) At first sight this flow—which is of

value 6—might appear to be a maximal flow, but we shall see that this is not

the case. In Fig. 6.10 we have drawn the corresponding displacement

network G(f). (In this diagram the arc labels represent their capacities; for

simplicity, the arcs of zero capacity have been omitted.) It will be observed

that G(f) has a flow-augmenting cycle

ea (x1, X2), (X2, X3), (x3, X4), (X4, Ke)s (Kes X1),

Flows in networks 209

FIG. 6.12

210 Flows in networks

of capacity 2. (On Fig. 6.10 the arcs of this cycle are drawn in bold lines.) To

obtain the augmented flow g, as defined by (6.21), we modify the flow f as

follows: for each normal arc u; on y we increase the flow in the cor-
responding arc u; on G by 2 units, and for each inverted arc u; of y we

decrease the flow in u; on G by 2 units. The resulting flow, of value 8, is

shown in Fig. 6.11.

The displacement network associated with this new flow is shown in Fig.

6.12. Since this does not contain any flow-augmenting cycles, the flow

depicted in Fig. 6.11 is a maximal flow.

To summarize our discussion so far, we have shown that for any

flow f on a network G, it is possible to determine from G(f) whether

or not the flow is maximal. It has also been demonstrated that if f is

not a maximal flow, we can construct a flow of larger value.

However, it is not yet clear that the repetition of our flow-aug-

mentation method will always yield a maximal flow in a finite

number of steps. To demonstrate this we must first examine how the

maximum value of the flows in a network is determined, by the

capacities of its arcs.

6.5.2. Cuts

The notion of-a cut of a graph, which was presented in Section

4.2.2, can be extended to networks in an obvious way: Let G=

(X, U) be anetwork, and let {X’, X"} be any partition of its node-set

X ; then the set of all arcs of G whose initial endpoints belong to _X'

and whose terminal endpoints belong to X" is called a cut of G, and

is denoted by (X', X”). For any two nodes x;, x; € X, a cut (X’, X”)

such that x;¢ X’ and x; €X" is said to separate x; from x; (in that
order).

On a network, we define the capacity of a cut (X', X") as the

sum of the capacities of its arcs,

Cj.

(jluje(X'.X")}

As an illustration, the broken line on the network of Fig. 6.9
indicates a cut separating its source from its sink. Here X’=
1¥ae X35) X35 Mays; N= {Xs5, Xe} and

(X', X")= {(x3, Xs), (X45-X5)s (as X6)}.

(It will be noted that the arc (x6, x1) belongs to the cut (X”, X’), but
not to the cut (X’, X”).) The capacity of the cut (X", X”) is 11.

Flows in networks 211

Now let f be a feasible flow and let (X', X”) be a cut separating
the source x, from the sink x, on a network G. Then summing the
conservation equations (6.2a) for all those nodes x; which belong to
X', and noting cancellations, we obtain

— yi he (6.26) I J

{iluje(X",X)} {jluje(X',X")}

Also, since the return arc u, belongs to (X", X’),

a et Oe er (6.27)
{iluje(X",.X")}

and from the feasibility condition (6.5),

eS De Cj. (6.28)
(iluje(XX} Ciluje(X'.X°}

Combining (6.26), (6.27), and (6.28) we obtain

ae he eee ae} ee (6-29)
ime} Clue) ~ (iluje(X'X}

Thus for any feasible flow f, and any cut (X’, X”) separating x, from

Xt, the value of f is less than or equal to the capacity of (X’, X”). In

itself this result is hardly surprising, but it leads to the following

important theorem of Ford and Fulkerson (1962):

The ‘max-flow-min-cut theorem’: For any network, the value of a

maximal flow is equal to the minimal cut capacity of all cuts

separating the source from the sink.

To prove the theorem, it suffices to show that for any given

maximal flow, there exists a cut such that equality holds throughout

(6.29). Indeed, let f be any maximal flow on G, and let I(f£) be the

network obtained by removing from G(f) all arcs of zero capacity,

and also the arc u, . (As an illustration, for the flow f of Fig. 6.11, the

network in Fig. 6.12 is precisely the network J (f) as defined above.)

Also let X' be the set of nodes which are accessible from the source

x, on I(f), and let X” = X — X’. Since the flow f is maximal, G(f)

does not contain any flow-augmenting cycles, and consequently

there are no paths from x, to x, on I(f). Hence x,¢ X’ and x,¢ X”,

and therefore on G, the arc set (X’, X”) is a cut separating x, from x;.

Now from the definition of X’ it follows that J(f) does not contain

any arcs with initial endpoints in X’ and terminal endpoints in X”.

Consequently on G(f), every arc of (X’, X") other than u, has a

zero capacity. It follows that on G,

212 Flows in networks

(i) every arc of (X", X’) other than u, has a zero flow, which

implies that equality holds in (6.27), and

(ii) every arc of (X', X”) is saturated, which implies that equality

holds in (6.28).

Consequently, equality holds throughout (6.29), which proves the

theorem.

Example 6.3. Let us consider the maximal flow f of Fig. 6.11, for which

I(f) is shown in Fig. 6.12. On Fig. 6.12, the accessible set of the source node

x, is {x1, xo}. Accordingly, we partition the node set X into X' = {x,, x2} and

X" ={x3, X4, Xs, Xe}. On Fig. 6.11, the corresponding cut (indicated by a

broken line) is

(x, x") = {(x1, X3), (x2, X4)}.

This cut has a capacity of 8, equal to the value of the flow. It will be observed

that on Fig. 6.11, both the arcs of (X’, X") are saturated, and that the arc

(x3, X2)—which is the only arc of (X", X’) other than the return arc

(x6, X1)—has a zero flow.

6.5.3. An algorithm for constructing maximal flows

Let us assume that on G, the capacities of all arcs other than the

return arc u, are integers. (This is not an important restriction in

practice, since a flow problem in which arcs have rational capacities

can always be reduced to a problem with integer capacities, by

clearing fractions.) Then a maximal flow on G can be constructed by

the following algorithm.

Step 1 Choose arbitrarily some integral flow on G. (The null flow,

in which all arc flows are zero, is a possible choice.)

Step2 Let f be the present flow on G. Construct the displacement

network G(f), and search for a flow-augmenting cycle on

this network. If no such cycle exists go to End.

Step3 Let y bea flow-augmenting cycle on G(f), and let 6 be the

capacity of y. For each normal arc u; of y, increase the flow

in the arc u; on G by 6 units; for each inverted arc u; of y,

decrease the flow in the arc u; of G by 6 units. Then return
to Step 2.

End The flow on G is maximal.

Flows in networks 213

It is evident that if this algorithm terminates, then the flow on G is

maximal. It can also be proved that the algorithm does terminate, in

a finite number of steps, by the following argument.

From the max-flow—min-cut theorem it follows that, since the

capacities of all arcs other than u, are integers, the value of a

maximal flow is an integral number. Also, since the arc capacities

are integers, and the computation is initiated with an integral flow,

each successive flow is integral. Hence, since the flow value

increases by at least one unit each time Step 3 is executed, the

algorithm constructs a flow of maximal value in a finite number of

steps.
In the above proof it has emerged that for any network whose arc

capacities are integers, there exists a maximal flow in which all arc

flows are integers; and furthermore, our algorithm always gives a

maximal flow with this property. These facts can sometimes be

exploited, as in the following example.

Example 6.4. An assignment problem (cf. Example 5.3). A firm has q

vacant jobs $i, B2,...,8, of different types. There are p applicants

G1, @,..., a, for work with the firm, each applicant being suited for one or

more of the vacancies. How should the applicants be assigned to jobs, in

order to fill as many of the jobs as possible?

This problem can be solved by constructing a network in which each

applicant and job is represented by a node (see Fig. 6.13). The network also

Applicants Jobs

Source Sink

Return arc

FIG. 6.13. All arcs other than the return arc have unit capacities.

214 Flows in networks

contains a source node s and a sink node ¢. The source is joined to each

applicant node a; by an arc (s, a;) of unit capacity; and each job node B; is

joined to the sink by an arc (G,, ¢) of unit capacity. If applicant a; is qualified
for job B; the corresponding nodes are joined by an arc (a;, B;), of unit

capacity.

It is evident that each integral feasible flow on this network determines a

feasible assignment of applicants to jobs (through the rule that, if the flow in

(a;, B;) is unity, applicant a; is given job G,;); a maximal integral flow defines

an assignment which fills as many jobs as possible.

The successive flows and displacement networks obtained in applying the

maximal flow algorithm to this problem are shown in Fig. 6.14. (For

simplicity, the arc u, and all arcs of zero capacity have been removed from

the displacement networks.)

6.6. Minimal-cost maximal flows

6.6.1. Minimal-cost flows

Let us suppose that on a network G, each arc u; is assigned a

capacity c; as before, and also a number /; called the unit cost of u;.

The vector l=[J,, /2,...,1,] of these unit costs is called the cost

vector of G. For any feasible flow f on G, the total cost of f is

t= » l; he

j=l

As an illustration, in a transportation network the unit cost J; may
represent the cost of transporting one unit of a commodity along u,,
in which case the product If’ gives the total transportation cost
incurred by the flow f.
A feasible flow f on G is said to be a minimal-cost flow if the total

cost If’ of f is less than or equal to the total cost of every other
feasible flow which has the same value as f. This section is concerned
with the problem of finding a minimal-cost maximal flow, that is, a
maximal flow whose total cost is as small as possible.

6.6.2. Costs on displacement networks

For any feasible flow f we assign unit costs to the arcs of G(f) as
follows. Each normal arc uj of G(f) is given the unit cost J; of u;, and
each inverted arcu; of G(f) is assigned the unit cost —l;. Thus the
cost vector I of G(f) can be written as

= fis} (6.30)

Successive network flows

The bold lines indicate arcs carry-

ing one unit of flow; all other arcs

(except the return arc) have zero

flows.

Flow value =4

Flow value=

Flow value=6

FIG. 6.14

Flows in networks 215

Displacement networks

Arcs with zero capacities and the

arc u, have been omitted. The

bold lines indicate flow-augment-

ing cycles.

216 Flows in networks

From (6.30) it follows that the total cost of a feasible flow

f =(f*|f] on G(f) can be expressed as

lf’ =1¢" —f)’. (6.31)

Now in section 6.4 it was shown that for any two feasible flows f

and g on G, the flow difference g—f determines a disjunctive

feasible flow f =[f*|f] on G(f), such that (cf. (6.17))

f—-f =g-f. (6.32)

From (6.31) and (6.32), it follows immediately that

If’ =Ig'—If’. (6.33)

Thus, the difference between the total costs of f and g is given

directly by the cost of f.

Conversely, for any feasible flow f on G, and any feasible flow

f=[f*|f] on Gif), the flow g on G defined by (6.18), viz.

g=fif -f,

has a total cost

le’ =M(f+f* —f)’ =I +18 —£)’ =I +18. (6.34)

Thus, the total cost of g is the sum of the total costs of f and f.

As a consequence of these results it is possible to determine

whether a given flow f is of minimal cost by inspection of G(f), in the

manner described below.

6.6.3. Cost-reducing cycles

Let f be any feasible (but not necessarily maximal) flow on G, and

let us suppose that G(f) contains an elementary cycle y with the

following properties:

(i) y does not contain either of the arcs u; or u; ;

(ii) all arcs of y have non-zero capacities; and

(iii) the sum of the unit costs of the arcs of y is negative.

Let 5 be the smallest of the arc capacities on y, and let f=[f*|f] be
the feasible flow on G(f) obtained by assigning a flow of 6 units to

each arc of y.

Now consider the flow

g=ft+f—f

Flows in networks 217

on G. Since y has property (i), f; =0 and f, =0, hence the flow g
has the same value as f. Also, since y has property (iii) the total cost
of f is negative,

If’ <0. (6.35)
It follows from (6.34) and (6.35) that

Ig’ = If’ +1 <I’. (6.36)
Thus, the flow g has the same value as f, but a smaller total cost. For
obvious reasons, we describe any elementary cycle y on G(f) which
has the properties (i)—(iii) as a cost-reducing cycle.

From the above it is clear that if a displacement network G(f)
contains a cost-reducing cycle, then the flow f is not of minimal cost.
Conversely, it can be proved that if a flow f is not of minimal cost,
then G(f) contains at least one cost-reducing cycle. Indeed, let f and
g be two feasible flows of the same value, and let us suppose that
If’ >Ig'. Let f be the disjunctive flow on G(f) determined by g-f.
Then since If’ >Ig’, it follows from (6.33) that the total cost of f is
negative,

If’ <0. (6.37)
Now f can be expressed in the form

f= rnWitrovet tHe, (6.38)
where fi, ’2,,-.,7 are positive numbers and ¥j, ¥2,...,¥x are

elementary eae flows on G(f). Since f and g have the same value,

f; =0 and f,; =0, and consequently all the cycles y1, y2,.--, Yk
associated with the flows ¥,, ¥V2,...,¥, have property (i) above.

Also, since all the numbers 7, r2,..., r, in (6.38) are non-zero, the

cycles y1, y2,.-., yx all have property (ii). Finally, it follows from

(6.37) that for some elementary flow v; say in (6.38), 1¥/ <0, which

implies that y; has property (iii). Hence G(f) contains a cost-

reducing cycle, as required.

Combining the results of this section, we obtain the following

characterization of minimal-cost flows:

A flow £ on Gis a minimal-cost flow if and only if the displacement

network G(f) does not contain any cost-reducing cycles.

6.6.4. Algorithms for constructing minimal-cost maximal flows

The cost-reduction method. The characterization of minimal-cost

flows of the previous section immediately suggests the following

algorithm:

218 Flows in networks

Step 1 Construct a maximal flow on G. (The algorithm of Section

6.5.3 can be used for this purpose.)

Step 2 Let£be the present flow on G. Construct the displacement

network G(f), and search for a cost-reducing cycle on this

network. If no such cycle exists go to End.

Step 3 Let y be a cost-reducing cycle on G(f), and let & be the

smallest of its arc capacities. Modify the present flow on G

as follows: For each normal arc uj of y, increase the flow in
the corresponding arc u; on G by 6 units, and for each

inverted arcu; of y, decrease the flow in the corresponding

arc u; by 6 units. Then return to Step 2.

End The flow on G is a minimal-cost maximal flow.

As an illustration, for the network of Fig. 6.15, the successive

flows and displacement networks obtained by the cost-reduction

method are shown in Fig. 6.16. (For simplicity the arcs u;, u; , and

all arcs of zero capacity have been removed from the displacement

networks.)

FIG. 6.15. The numbers indicate arc capacities and costs.

The flow-augmentation method. In the previous method we
obtained a minimal-cost maximal flow by constructing a sequence
of maximal flows of successively smaller costs, until the flow cost
was as small as possible. Alternatively, if the unit costs of all the arcs
of a network are non-negative, we can construct a sequence of
minimal-cost flows with successively greater values, until the flow
value becomes maximal. It is very easy to obtain an appropriate
initial flow for this method: for if the unit costs of all arcs are

Flows in networks 219

Successive network flows Displacement networks
The numbers indicate capacities The numbers indicate capacities
and flows. and ‘unit costs; bold lines indicate

cost-reducing cycles.

Flow cost =82

Flow cost=78

Flow cost =77

FIG. 6.16

non-negative, the null flow f=0 is obviously a minimal-cost flow of

value zero! The method of constructing the subsequent flows is

defined and justified in the following theorem:

Let £ be a minimal-cost flow on G, let y be a flow-augmenting cycle

of minimal cost on G(f), and let & be the smallest arc ccpacity of y.

220 + Flows in networks

Then the vector g defined by

f,;+6 if the normal arc u; belongs to y,

gi=$\fi—6_ if the reverse arc u; belongs to y, (6.39)

fi if neither u; nor u; belongs to y,

is a minimal-cost feasible flow on G, whose value is 6 units greater

than the value of f.

Indeed, from the results of Section 6.5.1 it is evident that g is a

feasible flow, of value g,=f,+5. To prove that g is of minimal cost

we compare its cost with that of any other flow h which has the same

value. For this purpose, let us denote by i and f, the disjunctive

flows on G(f) determined by the flow differences g—f and h—f

respectively. The total costs of these flows are

if, =1g' —If’ (6.40)

and

if, =Ih’ —If’. (6.41)

Now the flow f, can be expressed in the form

f, = 5¥ (6.42)

where ¥ is the flow on G(f) obtained by assigning one unit of flow to
each arc of y. Also, the flow f, can be expressed in terms of
elementary cyclic flows:

aa k
f), = y aip; ae » biG, (6.43)

i=1 i

where 4j,42,...a; and b;,b2,...,5, are positive numbers,
Pi, P2,.-.., p; are elementary flows associated with flow-augment-
ing cycles, and qu, qo, ..., qx are elementary flows associated with
cycles which contain neither u; nor u;. The value of h is 6 units
greater than the value of f, therefore

y a; = 6. (6.44)

Since the flow-augmenting cycle y is of minimal cost,

iv=ipi: - C= yew (6.45)

Flows in networks 221

Hence, from (6.42), (6.44), and (6.45),

~ ~~ J ~

lf,= lv’ < Y ajlp}. (6.46)
i=1

Also, since f is a minimal-cost flow, G(f) does not contain any
cost-reducing cycles; consequently

Fe ee 1 ey (6.47)
and therefore

k

X blg; =o. (6.48)

If,= > alpi+ ¥ big! (6.49)

and combining (6.46), (6.48) and (6.49) we obtain

if, <if,,. (6.50)

Consequently, from (6.40), (6.41), and (6.50),

lg’ <Ih’.

The flow g is therefore of minimal cost, as required.

Thus, in the flow-augmentation method, we follow precisely

the procedure defined in Section 6.5.3 for constructing a maximal

flow, with the understanding that

(i) in Step 1 the initial flow is a minimal-cost flow, and

(ii) in Step 2 and Step 3, the required flow-augmenting cycle y is

of minimal cost.

For the network of Fig. 6.15, the successive flows obtained by this

method are shown in Fig. 6.17.

6.7. Transportation and assignment problems

We shall now give some examples of minimal-cost maximal flow

problems, which arise frequently in operational research.

6.7.1. The transportation problem

This problem, which is perhaps the most important instance of a

network-flow problem, arises for example in transporting coal from

222 Flows in networks

Successive displacement networks Successive network flows

The numbers indicate arc capaci- - The numbers indicate arc capaci-

ties and unit costs; bold lines ties and flows; bold lines indicate

indicate minimal-cost flow-aug- saturated arcs.

menting cycles.

' FIG. 6.17

Flows in networks 223

coalfields to power stations. The problem can be stated in general

terms as foliows: There are p sources a1, @2,...,a@, of a com-

modity, with c; units of supply at each node a;. The commodity is

required at q destinations Bi, B2,...,8,, the demand at each

destination 8; being for d; units. The cost of sending one unit from

each source a; to each destination 8; is A,;; it can be assumed that the
amount of the commodity which can be carried from each origin to

each destination is unlimited. How should the commodity be dis-

tributed, from the sources to the destinations, in order to meet all

the demands at minimum total cost?

This problem can be considered as a minimal-cost maximal flow

problem on a network of the form shown in Fig. 6.18, in which the

first number on each arc represents its capacity and the second is its

unit cost.

Source

FIG. 6.18

6.7.2. The optimal assignment problem

Let us suppose that in a machine-shop, there are q jobs

B1, Ba, ---, Bq to be executed concurrently by different machines,

and p machines a1, @2,..., @p available to execute these jobs. The

machines vary in their suitability for a particular job; we suppose

that these variations can be represented by attributing to each

possible assignment a; > B; a cost Aj, which is a real number. An

optimal assignment is one in which machines are assigned to all the

jobs, at minimum total cost.

The problem of constructing an optimal assignment can be

considered as a particular case of the transportation problem

224 Flows in networks

presented above: we may regard the machines as sources of a

commodity (each capable of supplying one unit), the jobs as

consumers (each requiring one unit), and consider the assignment of

machine a; to job 8; as a shipment of one unit of the commodity

from a; to @;. Thus the assignment problem can be regarded as the

problem of finding a minimal-cost integral maximal flow on a

network of the form shown in Fig. 6.18, in which all the arc

capacities c; and d; are set to unity.

There are many variants of these transportation and assignment

problems which at first sight appear to be more complicated, but

which reduce to flow problems on networks of the same basic form;

the following is an example.

6.7.3. The assignment of machines to a fixed schedule of tasks

Let us suppose that it is necessary to execute q_ tasks

Bi, B2,.--, Bq, Where each task 8; has a stipulated starting time a;

and finishing time ¢;, and where each task requires one machine. To

perform these tasks we have p machines aj, @2,..., @», which can

be considered to be identical. A machine can only perform one task

at a time, but can execute any number of tasks in succession.

Before a machine can perform any particular task, it must be ‘set

up’ or adjusted for the purpose. The time taken and the cost of

setting-up the machine depend on the nature of the task, and on

what the machine was doing previously; to set up machine a; (from

its initial state) for task B;, the time required is 6;;, and the cost A,;. To

‘reset’ the machine which performed task 6; for task 6, takes a time

5;x, and the cost of this re-set operation is A j,. It is required to assign

the machines to tasks in such a way that all tasks are performed, at

minimal total cost.

As an illustration, the tasks B; could be scheduled airline flights

between different cities, and the machines a; aircraft all of the same

type. In this case 6, and A;; would be the time required and the cost

of flying the aircraft a; from its initial location to the departure point

of the flight B;; whereas 5}, and Aj, would represent the time and

cost of flying any aircraft from the arrival point of flight 6; to the

departure point of flight Bx.

The problem can be reduceé to an optimal assignment problem of

the type considered in the previous section: we take as our set of

machines the p machines a1, a@2,...,a@p) which are initially avail-

Flows in networks 225

able, together with q additional machines 7}, VIsadigcygn where: y;
represents the machine which performs task 6; (and which becomes
available for assignment to other tasks when this task has been
completed).
A machine a; is considered capable of performing a task 8; if and

only if 6;;<;, and the cost of each feasible assignment a; > B; is Aj.
A machine y; is considered capable of performing task GB, if and
only if 6; + 6; = ox, and the cost of each feasible assignment Vi > Cx
is J jk:

A network model of this assignment problem is shown in Fig.

6.19. If the maximal flows on this network saturate all the arcs

FIG. 6.19. The numbers indicate arc capacities and costs.

(B;, t), then it is possible to execute all the tasks. A minimal-cost

integral maximal flow then defines an optimal assignment, through

the following rules:

(i) if the flow in an arc (aq; B;) is unity then machine q; is initially

assigned to the task 6,, and

(ii) if the flow in arc (y;, B,) is unity then the machine which

performs task 6; is next assigned the task Bx.

Several other examples of transportation and assignment prob-

lems are described in the Exercises at the end of this chapter.

226 ~=Flows in networks

6.8. Circulations

6.8.1. Definition of a circulation

In the preceding sections it has been assumed that a network

contains a source and a sink, joined by a return arc of infinite

capacity. Here we no longer distinguish a source node or sink node.

Instead we suppose that for each arc u; of a network we have a

specified lower bound b;=0 on the arc flow, as well as an upper

bound (or capacity) c;.

In this case, a flow f=[/1, f2,..., fm] on a network G is called a

circulation if

b<f<c, (6.51)

where b =[);, 2, ... , b,, |is the vector of lower bounds on arc flows

and c=[ci, C2,..., Cm] is the capacity vector of G.

The first problem to be considered here is that of finding a

circulation on G—if any circulations exist. (It is evident that there

may not be any flow f which satisfies the condition (6.51).) It will

then be shown how to construct a circulation of minimal cost.

6.8.2. Auxiliary networks

The problem of constructing a circulation on a network G can be

reduced to a maximal flow problem on a modified network C°, in

which the lower bounds on arc flows are all zero. This network G°,

called the auxiliary network of G, is obtained as follows.

The node set of G° consists of the nodes Xi Aig os <i OL AS.

together with a source node s and a sink node ¢. The arc set of G°

comprises the following:

(i) For every arc u; of G, the network G° contains an arc Dd;
which has the same initial and terminal endpoints as u,;, and a
capacity

U
Cj =c;—b,, Cy = 12 ae cauee ys (6.52)

(it) For every node x; of G, the network G° cpntains an entry arc

vs with initial endpoint s and terminal endpoint x;, and also an

exit arc v; with initial endpoint x; and terminal endpoint t. The

capacities of the arcs v$ and v; are

c? =max{0,d;}. and c! =max {0,—-d;} (6.53(a))

Flows in networks 227

respectively, where

Bray be 2 bj, CPS. a 10)
{ilsig=—1} {j|sy=+1} (6.53(b))

(iii) G° contains a return arc v® from t to s, which has a capacity

C=O, (6.54)

It will be noted that in the right-hand side of (6.53(b)), the first

term represents the sum of the lower bounds on all the arcs incident

to x;, while the second term is the sum of the lower bounds on the

arcs incident from x;. If the difference d; between these sums is

positive, the entry arc v> has a capacity c* =d; and the exit arc v;

has a zero capacity; whereas if d; is negative, the exit arc v; has a

capacity c; = —d; and the entry arc c; has zero capacity. In practical

computations, entry or exit arcs of zero capacity can be omitted; we

retain them only to simplify our algebraic presentation.

As an illustration, the network of Fig. 6.20 has the auxiliary

network shown in Fig. 6.21.

FIG. 6.21. The numbers indicate arc capacities.

228 Flows in networks

Let us suppose that the nodes of G are ordered as follows:

S, t, X1, X2,.--, Xn, and that its arcs are ordered as follows:

R Ss Ss S Tt iE 6 U U U
OMS NOs O25) ee Og O15 0 D5 eats U pihO ois Dis tos lete gatas
FSH SSS ee ee

Return Entry Exit Arcs

arc arcs arcs of G

Then the node-arc incidence matrix S° of G° can be written in the

partitioned form

25 7 ti AGeig

Sart fy? ey hire (6.55)

Os i Ss

where J isann Xn unit matrix, J is the universal row vector whose n

elements all have the value 1, and S is the incidence matrix of G.

With a corresponding partitioning, the capacity vector ¢c° of G°

has the form

ce =[e8 ele" |e") (6.56)

where c* is the capacity of the return arc, ¢° is the vector of

capacities of the entry arcs, c’ is the vector of capacities of the exit

arcs, and c” is the vector of capacities of those arcs of G° which

appear also in G.

In vector form, the condition (6.52) can be written as

c’=c—b. (6.57)

Also, the vector d=[d1, d2,...,d,] of elements d; defined by

(6.53(b)) can be expressed as

d=-bS'

and therefore, by (6.53(a)), the vectors ¢° and ¢* satisfy the condi-

tion

c—e’ = —bs’. (6.58)

Transposing both sides of (6.58), and premultiplying by the uni-
versal vector J we obtain

J(c°—e')' = JSb’ (6.59)

and since JS =0 (as a consequence of the fact that each column of S$
has precisely two non-zero elements, with values of +1 and —1), the

Flows in networks 229

equation (6.59) reduces to

J(e°)'=J(c")’. (6.60)

In words, (6.60) states that the sum of the capacities of the entry arcs
is equal to the sum of the capacities of the exit arcs.
Now let f° be any feasible flow on G°. If f° is partitioned in the

same manner as c°, viz.

ages Faia) ae aah ae (6.61)

then the flow feasibility condition 0 <f° <c° can be written as

o<f®=<c® ; (6.62(a))

0=Fec. (6.62(b))

O=f' Sc’, (6.62(c))

O=F =c% (6.62(d))

Also, from (6.55) and (6.61), the flow conservation condition

S°(£°)’ = 0 can be expressed as

ICV ae =S),, (6.63(a))

Sf?) =(8-£'Y. (6.63(b))

In words, (6.63(a)) states that the sum of the flows in the entry arcs is

equal to the flow in the return arc, and that this flow is also equal to

the sum of the flows in the exit arcs. We observe that (6.63(a)) and

(6.60) together imply that

f'=c ifandonlyif ft =c'; (6.64)

we shall describe a flow which saturates all the entry and exit arcs of

G° as a saturating flow.

6.8.3. The construction of circulations

Let us suppose that there exists a saturating flow on G°, and let

f° =[f* |f°|f"|£"] be such a flow. Also, let f be the vector of m
elements defined by

f=f "+b. (6.65)

From (6.57) and (6.62(d)),

0<f’<c-b,

230 Flows in networks

hence by (6.65)

b<f<c. (6.66)

Also, it follows from (6.65), (6.63(b)) and (6.58) that

St’ = S(£°)'+ Sb’ (6.67)

sl (es ae fT)’ nb (cS = cy’

= (eS . °S)' a (f° ue cy

=0. (6.68)

From (6.66) and (6.68), it follows that f is a circulation on G.

Conversely, it is evident that each circulation fon G determines a

saturating flow f°=[f"|f*|f"|f"] on G° through the rule (6.65),
which gives

P=asicy, fSeép i=, Pate” (69)

As an illustration, Fig. 6.22 shows a circulation on the network of

Fig. 6.20; the corresponding saturating flow on G° is shown in Fig.

6.23.

FIG. 6.22. The numbers indicate arc flows; bold lines indicate saturated

arcs.

From these arguments, it follows that we can obtain a circulation

on anetwork G simply by applying the maximum flow algorithm of

Section 6.5.3 to the corresponding auxiliary network G”: if this

produces a saturating flow on G°, the corresponding circulation is

given immediately by (6.65); whereas if the maximal flow obtained
on G° is not a saturating flow, then no circulations exist for G.

Flows in networks 231

FIG. 6.23. The numbers indicate arc flows; bold lines indicate saturated
arcs.

6.8.4. Minimal-cost circulations

Let us suppose that on G°, each arc vy is assigned the unit cost of

the corresponding arc u; on G:

hos Pinal coe eer ee) (6.70)

and that all other arcs of G° are assigned unit costs of zero. Then a

saturating flow f° on G° has a total cost

Pay =1e°y’. (6.71)

The total cost of the corresponding circulation f=f"+b on G is

If’ = 1(f")’ +b’. (6.72)

From (6.71) and (6.72), the total costs of f and f° are related by

If’ =1°(f°)' + Ib’. (6.73)

Hence if f° is a minimal-cost saturating flow on G°, then f is a

minimal-cost circulation on G. Consequently we can obtain a

minimal-cost circulation on G simply by constructing a minimal-

cost maximal flow on G°, using one of the algorithms of Section

6.6.4 and then applying (6.65).

Example 6.5. Production planning. A manufacturing firm has to meet a

demand for one of its products over k successive time-periods, the numbers

of units to be despatched to customers in each. period being d,, do,..., dy.

232 Flows in networks

Production costs vary from one period to the next, because of changes in

costs of raw materials: the expected unit production costs for each period

are /,,15,..., 1. The firm must make at least m units in each period, but up

to n additional units can be made by overtime working, at an additional unit

cost of e. Up to c units can be stored in a warehouse, the unit cost of storage

from one period to the next being w. How many units should be manufac-

tured in each period, to meet the demands at minimum total cost?

A network model of this problem is shown in Fig. 6.24 (for the case where

k =4). It is evident that a minimal-cost circulation on this network deter-

mines an optimal production pattern, the flows in the arcs joining node s to

node p; being the numbers of units to be manufactured by normal and

overtime working in the ith period.

mm,

O.7,/,+e

mm,L,

OnJ,+e

mm,l,

0.1,/,+e 3)

mm,

O.n,l,t+e

0,2, 0

FIG. 6.24. The labels on arcs are their lower flow bounds, capacities, and
unit costs.

6.9. Practical considerations

We shall now consider briefly the practical aspects of the appli-
cation of the algorithms of Section 6.6.4 for constructing a minimal-
cost maximal flow.

Flows in networks 233

6.9.1. Implementation of the flow-augmentation method

In practice, instead of constructing a displacement network G(f)
and searching for a flow-augmenting cycle on this network, it is
convenient to construct the network J(f), which only differs from
G(f) in that the arcs of zero capacity and the inverted arc u, are
omitted (see for example Fig. 6.17). Then, if the arc costs on I(f) are
regarded as ‘lengths’, a shortest path from the source s to the sink t
on this graph, together with the arc u;, constitutes a minimal-cost
flow-augmenting cycle. Since the flow f constructed at each stage of

the flow-augmentation method is a minimal-cost flow, the network

I(f) does not contain any cycles of negative length. The required

shortest path from s to ¢ can therefore be obtained by any of the

direct methods of Section 3.6 (such as Gauss elimination), or the

iterative methods of Section 3.7 (such as Yen’s double-sweep

method). In this application, Yen’s method is usually the most

efficient.
As an alternative strategy, Edmonds and Karp (1972) and

Tomizawa (1971) have shown that it is easily possible to modify the

arc costs on J(f) in such a way that they all become non-negative,

and yet the paths from s to ¢ which are shortest on /(f) remain

the shortest paths between these nodes on the modified network.

With all arc costs non-negative, it becomes possible to construct a

shortest path from s to t by Dijkstra’s method (see Section 3.8),

which is only of complexity O(n’)—or even O(n log n) if one

employs a sort tree—as compared with the complexity O(n’) of the

direct and iterative methods mentioned above. However, Edmonds

and Karp carefully describe their technique as giving a theoretical

improvement in algorithmic efficiency: an improvement in the

upper bound on running times does not imply a better practical

performance. In some experimental comparisons made by the

author of this book, for relatively small but realistic problems, the

use of Yen’s method on I (f) always gave the best results.

With regard to the number of flow augmentations performed by

the algorithm, it is evident that if all arc capacities are integers then

the total number of augmentations is not greater than the value of a

maximal flow. If at any stage a displacement network G/(f) contains
several minimal-cost flow-augmenting cycles, intuitively it would

seem possible that, by choosing among these a cycle of lowest order,

we might reduce the total number of augmentations required. A

theoretical justification of this refinement is given by Edmonds and

234 Flows in networks

Karp (1972). The refinement is very easily incorporated in a path-

finding algorithm: if all the arc lengths are integers, we simply

change each arc length J; to kl; + 1, where k is any constant greater

than the total number of arcs.

In applying the flow-augmentation method, it is sometimes

possible to exploit particular characteristics of a problem. For

instance in the case of transportation problems of the kind

described in Section 6.7, it is possible to modify the arc costs in such

a way as to facilitate the choice of an initial flow of value greater

than zero (see Exercise 6.7). For the same problem, it is also

possible to simplify the displacement networks, by removing many

of their inverted arcs (see Exercise 6.8). Other refinements of the

method, for the solution of assignment problems, are described by

Tabourier (1972).

Finally, we must draw attention to the ‘primal—dual’ method of

Ford and Fulkerson (1962), whose development was motivated by

considerations of duality in linear programming. In essence this is

very similar to the flow-augmentation method presented here, but

each successive flow is found by solving a maximal flow problem on

a partial network of the original one.

6.9.2. Implementation of the cost-reduction method

The cost-reducing cycles on a displacement network G(f) cor-

respond to the cycles of negative length on the network J/(f), as

defined above; a technique for finding such a cycle has already been

presented in Chapter 3 (see Exercise 3.10 and its solution). A

technique of this kind is used in the network flow algorithm of Klein

(1967).
For transportation problems in particular a special form of cost-

reduction method has been devised, in which the determination of

the cost-reducing cycles is greatly simplified, through a judicious

choice of the initial flow. This method, which is widely known as the

‘stepping-stone method’, was originally developed by G. B. Dantzig

as a particular form of his Simplex method for solving linear

programs. For a description of this method in graph-theoretic terms

see Dantzig (1963), Chapters 14-17.

6.9.3. Comparison of methods

With most network flow problems, the determination of a least-

cost flow-augmenting cycle involves much less work than the

Flows in networks 235

determination of a cost-reducing cycle. A flow-augmentation

method is therefore likely to be more efficient than a cost-reduction

method, unless a maximal flow of almost minimal cost is available

initially.

For transportation problems in particular, a great deal of effort

has been devoted to the development of efficient programs, these

being based mostly on the Ford—Fulkerson primal—dual method and

Dantzig’s Simplex method, and comparative results have been

published frequently. Although the conclusions drawn by different

authors on the relative merits of the primal—dual and Simplex

methods have often been contradictory, it would seem that pro-

grams based on the primal—dual method have a better performance

(Hatch 1975). Some comparisons between the basic flow-aug-

mentation method (using Gauss elimination to find flow-augment-

ing paths) and the primal—dual method suggest that the former is

better for problems of modest size, whereas the primal—dual

method is more efficient for large ones (Carré 1971).

Exercises

6.1. Node capacities. Let G =(X, U) be a network in which each node

x; € X has a flow capacity k; = 0, this being an upper limit to the sum

of flows in arcs incident to (or from) node x;. Show that the problem of

finding a maximal flow on G can be reduced to a maximal flow

problem on a network with flow bounds on arcs only.

6.2. Bilateral connections between nodes. In many physical networks, a

pair of nodes x; and x; may be joined by a ‘bilateral’ element, which

can carry up to p units of flow in either direction, but which cannot

carry flows in both directions simultaneously. (As an example, the

transmission lines of an electric power system have this property.)

How can one find a maximal flow between two nodes, in a network

whose nodes are joined by elements of this kind?

6.3. There are p families a1, a2,..., @, which want to go for an excursion

in q cars B,, B2,..., Bq Given the number 5; of members of each

family a;, and the number of seats d; in each car B;, is it possible to find

a seating arrangement such that no two members of the same family

are in the same car?

Formulate this problem as a maximal flow problem.

6.4. In a graph G =(X, U), let A and B be two disjoint subsets of the

node set X. Then (in accordance with the terminology of Sections 4.2

236

6.5.

Flows in networks

and 4.4) we say that a subset V of U is an (A, B)-separating arc set if

every path from a node of A to a node of B traverses at least one arc

in V. Similarly, a subset Y of X —(A UB) is an (A, B)-separating

node set if every path from a node of A to a node of B traverses at

least one node in Y. Using a network flow method, find a separating

arc set with the minimum number of arcs, and also a separating node

set with the minimum number of nodes, for the node sets A=

{x>, x6}, B ={x,} on the graph of Fig. 6.25.

FIG. 6.25

The network of Fig. 6.26 represents a transportation system, with

‘bilateral’ connections between nodes (see Exercise 6.2); the first

number associated with each connection is its capacity, the second its

unit transportation cost. The nodes a and b represent producers of a

commodity, capable of supplying up to 8 and 2 units respectively, at

unit production costs of 5 and 6 respectively. The nodes d and e

represent consumers, with demands of 6 and 1 units respectively.

There is no supply or demand at node c.

Using the flow-augmentation method, determine the number of
units to be supplied by each producer, and the amount to be sent
along each branch of the network, in order to meet the demands at
minimum total cost.

Flows in networks 237

6.6. The network of Fig. 6.27(a) represents a transportation system, with

G.7).

bilateral connections between nodes. The number associated with
each connection is its flow capacity; transportation costs can be
neglected. At node a, a commodity is available in unlimited quan-
tities; at nodes b, c, and d there is a demand for 3, 9, and 4 units
respectively.

To meet the demands, it is necessary to increase the capacities of
some connections in the network. The cost of increasing the capaci-
ties of the connections by one unit are indicated in Fig. 6.27(b).
Determine a minimal-cost improvement of the network, such that all
demands can be met.

FIG. 6.27(a) FIG. 6.27(b)

Let G be a network model of a transportation problem, as in Fig.

6.18, in which the sum of the supplies is greater than or equal to the

sum of the demands:

IMs

q

Ci = >: di,

t=1 i=1

and let G’ be the network derived from G by changing the cost of

each arc (a; B;) from A; to

Ay = Agave where y= min. {Ajj}.

Prove that a flow f is a minimal-cost maximal flow of G if and only

if f is a minimal-cost maximal flow of G’, and determine the

difference between the total costs of the minimal-cost maximal flows

in the two networks.

(Note: the transformation of G to G’ simplifies the transportation

problem in that on G’, at least one arc incident to each destination

node 6; has a cost of zero; by sending the commodity along these

arcs, one can easily obtain a zero-cost initial flow whose value is

greater than zero. If the sum of the supplies is equal to the sum of the

demands we can perform a further simplification, by changing the

238

6.8.

6.9.

6.10.

Flows in networks

cost of each arc (a;, B;) from Aj; to

A i — ti = 6; where 6; — min {r ut
=j=q

in which case there will be at least one arc of zero cost incident from

every source node q,.)

Let f be a minimal-cost (but not necessarily maximal) flow on a

network model G of a transportation problem (as in Fig. 6.18). We

say that a source node a; of G is saturated by f if the arc (s, a;) is

saturated; similarly, a destination node 8; is saturated by f if the arc

(6;, t) is saturated.

Let G(f) be the displacement network associated with f, and let

H(f) be the network obtained from G(f) by deleting all the inverted

arcs except those arcs (8;,a;) which are of non-zero capacity and

whose endpoints are both saturated. Prove that if the network G(f)

has any flow-augmenting cycles, then at least one of its minimal-cost

flow-augmenting cycles appears in H(f).

There are three sources a,, a2, and a3 of a commodity, which can

supply 14, 6, and 9 units respectively. Three consumers 8, B2, and B3

require 7, 10, and 8 units respectively. The relative costs of supplying

one unit to each consumer, from each source, are given in the table

below.

Using the flow-augmentation method, determine the number of

units to be sent from each source to each consumer, in order to meet

the demands at minimum total cost. (Employ the network

simplification method of Exercise 6.7 to obtain an initial flow; to find

flow-augmenting cycles use the simplified displacement networks, as

defined in Exercise 6.8.)

A job in a workshop involves five tasks, to be assigned concurrently
to five different machines. There are six machines available to
perform these tasks; the time taken to set up each machine for a
particular task is indicated in the table below. Find an assignment of
machines to tasks for which the total set-up time is minimal.

Flows in networks 239

Tasks

1 kes) = aaa

1 Ts Ae Saat gays.

A Walle: WARS ean ane

, Bi Apee dios Bo A
Machines AP Bw ky, Ge

Seno Ae Oe se 7

Gmiles= eC. ie 6. 4

6.11. (@) Transform the production planning problem of Example 6.5 into
a minimal-cost maximal flow problem.
(ii) Find an optimal production pattern over four months, if the
production costs and monthly demands are as follows.

Month 1 2 3 4
Demand 8 12 15 14
Unit production cost £6000 £8000 £8000 £7000

The other production and storage capacities and costs are given
below.

Minimum monthly production: 10 units

Maximum monthly production by overtime working: 5 units
Additional cost of production by overtime working: £1000 per

unit

Storage capacity: 5 units

Storage cost: £500 per unit per month.

(iii) In practice a ‘handling cost’ may be incurred in placing the

commodity in the warehouse and removing it subsequently. Con-

struct a new network model of the planning problem which takes

account of handling costs.

6.12. A firm has two factories f; and f, which both manufacture the same

commodity. Under normal working these factories produce 1000 and

500 units respectively, at unit production costs of £180 and £200

respectively. By overtime working the factory f, can produce up to

300 additional units per week, at a unit cost of £230, while the factory

f, can produce up to 100 additional units, at a unit cost of £240.

The commodity is to be supplied to three customers ¢,, C2, and c3,

which require 700, 600, and 400 units respectively. The cost of

240 Flows in networks

sending one unit from each factory to each customer is given in the

table below:

Cy C2 C3

fi £26 L220 els

fo £39. £16 £18

Determine the number of units to be produced by overtime

working at each factory, and the total number of units to be sent from

each factory to each customer, in order to meet the consumer

demands at minimum total cost.

6.13. The table below gives the departure times of passenger trains which

run every day between stations A and B, and stations B and C. Each

journey between A and B takes one hour, and each journey between

B and C takes 90 minutes.

Origin Destination Departure time

A B 0800, 0930, 1530 hours

B A 1400, 1500, 1600 hours
B ic 1100, 1730 hours
Cc B 1100, 1400 hours

Each train crew must finish its duties at the station from which it

starts, not more than eight hours after its starting time. Find the

minimum number of crews required, and a corresponding allocation

of crews to trains. (Any number of crews can travel as passengers on a

train.)

Additional notes and bibliography

The theory of network flows was largely developed by Ford and Fulker-

son (1962). The subject is also treated in depth by M. Horps (see Roy
1970), Frank and Frisch (1971), and Lawler (1976c) who describe some

extensions of the theory presented here, and further applications.

For efficient algorithms to solve maximal flow problems and discussions

of the complexity of these algorithms see Dinic (1970), Edmonds and Karp

(1972), Zadeh (1972), Hopcroft and Karp (1973) and Even and Tarjan

(1975). The complexity of algorithms for finding minimal-cost maximal

flows is also discussed by Zadeh (1973a, 1973b).

Algol programs based on the primal-dual method have been published,

for the general minimal-cost maximal flow problem (Bray and Witzgall
1968), and also for the transportation problem in particular (Bayer 1966).

Flows innetworks 241

A method of obtaining good initial flows, in applying flow-augmentation

methods to transportation problems, is described by Mueller-Merbach

(1966).
For a linear programming approach to network-flow problems see

Dantzig (1963) and Lawler (1976c). As an example to illustrate different

methods of problem formulation and solution, the production planning

problem of Example 6.5 has been solved by the Simplex method by Beale

(1968), and Kaufmann (1967) solves a similar problem by dynamic pro-

gramming.

With reference to Exercise 6.4, applications of network-flow methods to
the determination of cut sets and related problems are discussed by Frank

and Frisch (1971), Lawler (1973), and Colorni (1974).

Solutions to selected exercises

iheile

1.22.

Tals:

alles

One

The operation ° is not idempotent, but it is commutative (since the

operation table is symmetrical). The element O is a neutral element,

and all elements are invertible, the inverses of O, Land A being O, A

and (J respectively. The set S does not contain a null element for °.

The operation ° is cancellative (since in each row, and in each column,

all the entries are distinct).

. By setting y = x v x in the second identity of L, we obtain

WAG IA Vie) ae

From the first identity of L4 it follows (by setting y = x) that in the

above identity the expression in brackets is equal to x, hence x v x = x.

The identity x , x = x can be proved bya similar argument, with v and

A interchanged.

The conditions w <x and y Xz can be expressed as wv x =x and

yvz=z respectively. From these identities we obtain (wv x)v

(y vz) =x vz, hence (w v y) v(x vz) =x v z, which can be written as
WVYSXVZzZ.

Since the two inequalities are dual, it suffices to prove the first. Now
the relations y v z>y and y vz >z imply (by L11) that

xA(yvz)>xay and xa(yvz)>xaz

and therefore (by L11, and the first part of L1)

XA(yVvz)=(xay)v(xAnz).

; x Xz implies that x v(yaz)=(xvy)a(xvz)=(xvy)az.

xvV(XAy=(v¥)A(xvy)=un(xvy)=xvy;
XA(KVY)=(XAX)V(xny)=dv(xay)=xny.

(i) The tree search can be executed by repeated application of the
two following rules.

Simplification rule: On a graph G, any node x, which is the
endpoint of a loop belongs to every feedback node set of G;; these
feedback node sets (with x, removed) are the feedback node sets of
the subgraph of G obtained by deleting x,.

3.4:

Solutions to selected exercises 243

Specialization rule: Let x, be any node of a graph G which is not

the endpoint of a loop, and let us decompose the set M of feedback

node sets of G into two subsets M, ={Y¢M|x,¢ Y} and Mz =

{Y<¢M|x,¢ Y}. The members of M,, with x, removed, are the

feedback node sets of the subgraph G, of G obtained by deleting x,;

while M; is the set of feedback node sets of the graph G; which is

obtained from G by (a) joining each predecessor x; of x, to each

successor x, of x, by an arc (x, x,)—unless G contains this arc

already—and then (b) removing the node x,.

(ii) To find a feedback node set of minimum cardinality it is con-

venient first to apply the above simplification rule until all loops have

been removed, and then to-apply the following rule.

Second simplification rule: If G has a node x, which is not the

endpoint of a loop, and for which p*(x,)<1 and p (x,) <1, then

there exists a feedback node set of minimum cardinality which does

not contain x; (which implies that G can be replaced by the graph Gg

defined above).
Note that the application of this rule may create loops, allowing

further applications of the first simplification rule, which in turn may

permit further applications of the second rule, and so on.

The search can also be made more efficient by applying the

‘branch-and-bound’ principle, in the following way. In the course of

the search, we keep a record of the cardinality c of the smallest

feedback node set yet discovered (initially, c is set to 00); if for any

sub-problem the total number of nodes already assigned to a feed-

back node set exceeds c then exploration of this sub-problem is

terminated, since it could not yield any improved solutions.

Since (cf. (3.20)) A*=E v AA*,

Re Pia) [Pe ee elas a ee da

By Bn D1, En. An Ar By, Bn é

and therefore

By, =E\y,VAiBir Vv Ai2Ba, (1)

By =AwBi2V Ai2B2, (2)

By, =A2nBii V A22Ba, (3)

By = Ex. V Ar Bi2 V A22B22. (4)

The equations (1) and (2) can be rewritten as

By =A(A12Bai Vv E11), (5S)

By= Aji A12B22, (6)

244 Solutions to selected exercises

and substituting these expressions for B,, and By, in (3) and (4) we

obtain

By, = (An AA V A22)Ba VAnAn, (7)

Bo = Ex V (An ANA? V A22)Br2. (8)

From (8),

By = (An AHA Vv A22)* (9)

and from (7) and (8),

By, = (An ANA v A2)*AnAn = ByAnAjs. (10)

3.2. Let A be a stable matrix in M,,(P), and let A* =[aj;] denote its

closure. By (3.23), A*A* = A* and therefore, by the definition of

matrix multiplication,

ands az: GA aS 0):

Since multiplication has the cancellative property it follows that

Gare (isi ere)

Now let y be any elementary cycle on the graph of A, let k be the

order of y, and let x; be any node on y. Then by (3.44),

I(y) <a <a*.

It follows that /(y) <e, as required.

B53)

Activity Start ay 9b cy “duite f Pan eat i j Finish

Rank 0 Lanes) ENO. 2s 0S 2 SG ee 7
Earliest starting

time 0 On esit OO}. 458- SSee y5'1 SD Se O4 1S" 3G65
Latest starting

time =o 2 465" —5' 26 80) 555 OOS S8re49, 60

Slack time Ss) PA Ss Se I Sy Ie SBD

The activity network has one critical path:

Start>c>g>h>e->b> Finish,

whose length must be reduced by five time-units for the project to be

completed on time.

3.4. The state diagram of the system is shown in Fig. E.1, in which the

labels on the arcs are the costs of the corresponding transitions.

Reactor age (years)

Solutions to selected exercises 245

ib 100 100

S OK (SE 2 Vise sll acl
i er (}

Bi Aa ies Phe 9 0.
Elapsed time (years)

FIG. E.1

The adjacency matrix of this state diagram, regarded as a graph

labelled with P>, has off-diagonal blocks (cf. Example 3.22)

M© = [100 10], Mo os be 10 a

: LOO socom 25)

100 10 © ow

Me 0 COZ =|

100 co ow 60

and

q 100 10 © ow

100° co” 25 Oy M Ni tae for 3<k <9.

100 © © ©

The successive y“’-vectors obtained by the dynamic programming

algorithm are listed below. (The arrows indicate, for each element

2 ‘k—) Which determine its y<, those elements of the preceding vector y

value.) In this particular problem there is only one optimal policy—

yO yo y? y® y® y® y y® y® y®

Ok 100 110] [210]. ny 7] 2401s 71 300} 2D) 7/]375] 7) 435

ox 110 x 120 220 | \/ 203 250 310|\/¥1G40) 385

135 140 245 275 335

(95 ‘L195 a 200f {305} \} 290} \{335] \|395

which is to replace the reactor at the end of the fourth and seventh

years. The total cost under this policy is £365 000.

246 Solutions to selected exercises

3.5. The required paths are obtained by solving the set of equations

3.6.

y=A’y ve, where A is the adjacency matrix of the graph, using the

path algebras P:, P;, and P, of Section 3.2. The y-vectors and

s-vectors (as defined in Exercise 3.25) obtained in each case are

(i) 0.7 4 (ii) 0.8 2
0 0 co 0

0.2 2 oS) @ Tat.
Osan se nngey IN O6N > Er

0.8 1 0.6 4
0.3 3 0.5 5

(iii) 0.8 2
1 0

AD2Sh, Sa ned
2G Se ae

0.3 4
0.2 4

The s-vectors give the sequences of nodes on the required paths in

reverse order, since to solve the problem we have effectively reversed

all the arcs of the graph.

The Hamiltonian cycles on an n-node graph G can be obtained by

finding all the elementary cycles which terminate on some arbitrarily

chosen node of G, and selecting from these all the cycles of order n.

Using the path algebra Ps, the elementary cycles terminating on a

node x; are given by the ith entry of the vector y which satisfies the

equation y = Ay v b, where A is the adjacency matrix of G and bis its

ith column vector (see Table 3.2).

The successive y-vectors obtained by the double-sweep method

are listed below, for the case where b is the last column of A. (The

brackets in the y-vectors indicate the strings which are carried over

from previous iterations.)

y=b y” y? y>

b (b), af (b, af) (b, af), adcb

cb, caf (cb, caf)
f (f) (f), dcb (f, dcb), egcb

gcb, gcaf, hf, hdcb (gcb, gcaf, hf, hdcb)

igcb, igcaf, ihf, ihdcb (igcb, igcaf, ihf, ihdcb)

From the final entry in the y-vector we find that the graph has two

Hamiltonian cycles, igcaf, and ihdcb.

She

3.8.

SaO;

Solutions to selected exercises 247

(ii) Since “EvE<L*=<A* and U<L*U=<A* we _ have
EvLvU <A%*, and therefore y\? <yi<A*b.
(iii) In case ar we have U = ¢ and therefore

=(EVL)b. and .ySi=y%)=L*b:

the Gauss-Seidel and double-sweep methods become identical, and

require Only one iteration. In case (b), where L = 9,

yi =yoe =(Ev U)*b and--y% = U*b:

the Jacobi and Gauss-Seidel methods become identical, and the

double-sweep method requires only one iteration. In case (c) we have

L*=EvL and U*=Ev U and consequently

ys? =(EvLvU)*b and You Yu = (Ev LvVUVLU)'D;

the Gauss-Seidel and double-sweep methods again become iden-

tical.

(i) (wv xyz)* =(w*xyz)*w* (by (3.27))

=(e v w*x(yzw*x)*yz)w* (by (3.24))

=w*v w*x(yzw*x)*yzw*.

(ii) B* =(A vewe')*

=A*v A*e(cejA*e;)*ceA*

=A* ve(ca*)*od.

The following algorithm will detect a negative cycle on G. (In this

algorithm, the matrix M =[m,;] is initially a copy of the adjacency

matrix of G.)

Step1 [Initialize] k<- 0, h<0.

Step2 [Augment k]k<k+1.If k>n goto End.

Step3 [Set row index] i<k.

Step4 [Augment row index] i<i+1. If i>n return to Step 2.

Step5 [Set column index] j <i.

Step6 [Test for negative cycle]. If mx + my; <0 set h <i and go to
End.

Step 7 [Augment column index]/<j+1.Ifj>n return to Step 4.

Step8 [Modify M]. Set m,;<min{m,;,m,+m,} and
my <—min {m,;, my +m}. Return to Step 7.

End

248

4.2.

4.3.

4.7.

Dalbe

5.4

Solutions to selected exercises

If on termination h =0 then G has no cycles of negative length.

Otherwise, the subgraph H of G generated by {x1, x2,..-, Xe} U {xy}

contains a cycle of negative length, and this cycle traverses x,. To

determine such a cycle, one can use Yen’s method to find shortest

paths from x, to each of its predecessors, on the partial graph of H

obtained by removing the arcs incident to xp.

The weak closure matrix can be constructed using the simplified form

(3.91) of the Jordan method. Here

O- fat

CG *O. jp he ob

A=l\te. 8-2 - O Ot.

{d} O fe} 0 ff}
Lh np AD ne Sew OD

{a, b, c} {a} tae bt OPO

{b,c} {a,b,c} {b} Cae

A=| {c} fanch math. che Oe

¢ {a} d Q {fh
{g} {a,g} {a,b,g} O O

(iii) The rules for constructing T from T are as follows. In case (a),

remove from T the arc incident to x;, and insert the arc (x;, x;).
In case (b), T is identical to T.

In case (c), find the node x, which is of highest rank in the set

P(x) a) f-(x;); then remove from T the arc incident to x,, and insert

the arc (x, x;).

(i) G is its own leaf graph.

(ii) In case (a), G, is identical to G;. In case (b), let X, and X, be the

node sets of the leaves of G which contain the endpoints of e; then G,

is the condensation of G, which is obtained by coalescing all the

nodes of G; which lie on its elementary chain joining X, to_X,.

Only four matched pairs can be obtained from the batch. As an

example of a maximum matching we have {[2, 3], [4,5], [6, 7],
[9, 10]}.

Let G be the simple graph whose nodes correspond to the television

stations, two nodes x; and x; being joined by an edge if the entry in the
ith row and jth column of the table is a cross. Then a minimum

coloration of G defines an appropriate assignment of frequencies (the
different colours representing different frequencies). Using the

6.1.

6.2.

6.3.

6.4.

Solutions to selected exercises 249

simplification rules of Section 5.4.2 we find that four different

frequencies are required, one possible assignment being as follows.

Station 1 2 3 4 5 6 i

Frequency 1 2 3 1 2 3 4

Split each node x; (other than the source and sink) into two nodes x/

and x7, in such a way that x/ becomes the terminal endpoint of all arcs

previously incident to x; and x/ becomes the initial endpoint of all

arcs previously incident from x,, and join x/ and x7 by an arc (xj, x7) of

capacity k;.

Replace each bilateral connection by a pair of arcs with opposite

orientations, both these arcs having the same capacity as the original

connection. Then a flow of the required form can be obtained from

any maximal flow on the modified network, by reducing the flows in

the two arcs representing each bilateral connection by the lesser of

their two values.

The network model is precisely the same as that for the shipping

problem of Example 6.1, with each arc (a;, B;) having a capacity

w; = 1. If a maximal flow does not saturate all the arcs incident from

the source then the problem has no solution; otherwise, any maximal

flow in which the arc flows are all integers defines a seating arrange-

ment, through the rule that if the flow in arc (q@;, B;) is non-zero then a

member of family a; is assigned to car 6;.

To obtain an (A, B)-separating arc set on a graph G, assign a unit

capacity to each arc of G, and add to G

(i) asource node x,, with arcs of infinite capacity from s to each node

of A,

(ii) a sink node x,, with arcs of infinite capacity from each node of B

10 %e

(iii) a return arc (x,, x,) of infinite capacity.

Let f be a maximal flow on this network, let X' be the set of all

nodes which are accessible from x, on the corresponding displace-

ment network (with arcs of zero capacity removed), and let X” be the

set of remaining nodes. Then (X’, X") isan (A, B)-separating arc set

of minimum cardinality.

Applying this technique to the graph of Fig. 6.25 we obtain the

separating arc set {(x3, x4), (x7, X4), (x7, Xs)}.

To obtain an (A, B)-separating node set assign an infinite capacity

to each arc of G, assign a unit capacity to each node of G, and append

250

6.5.

6.6.

Solutions to selected exercises

to G asource and sink, as prescribed in (i)-(iii) above. Then replace

each node of unit capacity by a pair of nodes joined by an arc of unit

capacity (as in Exercise 6.1). Find a maximal flow on this network,

and the corresponding cut (X’, X”), as described above. This cut (in

which every arc represents a node of unit capacity on the original

graph) determines an (A, B)-separating node set of minimum

cardinality.

Applying this technique to the graph of Fig. 6.25 we obtain the

separating node set {x3, x7}.

A network G is constructed from the network of Fig. 6.26 as follows:

(i) each connection in Fig. 6.26 is replaced by a pair of arcs (as in

Exercise 6.2);

(ii) a source node s is added, with arcs (s,a) and (s,b) having

capacities 8 and 2 respectively and costs 5 and 6 respectively;

(iii) a sink node ¢ is added, with arcs (d, t) and (e, t) having capacities

6 and 1 respectively and: zero costs;

(iv) the source and sink are joined by a return arc (¢, s) of infinite

capacity and zero cost.

A minimal-cost maximal flow is then constructed on G. For this

particular network, only one such flow exists; its non-zero arc flows

are as follows.

Are” (sia) o(s.ib) (aso) aie) “at e)” (bhc)s (ed) eva)e (ds 2) (e, 2)

Flow: 5 2 2 1 2 4 5 1 6 1

The flows in the arcs (s, a) and (s, b) are the amounts to be supplied by

the producers a and b respectively, and the flows in the arcs (d, t) and
(e, t) are the amounts supplied to the consumers at d and e; it is

evident that the consumer demands are met. The total cost of the

flow is 95.

The problem involves finding a minimal-cost maximal flow through

the network of Fig. E.2, where the first number on each connection

represents its capacity, the second its cost; the flows in the connec-

tions of infinite capacity between the nodes a, b, c, and d then

represent the required augmentations in the capacities of the cor-

responding existing connections.

A minimal-cost improvement (at a total cost of 7) is obtained by
increasing the capacities of each of the connections a—d and b-c by

one unit. :

6.7.

6.8.

Solutions to selected exercises 251

FIG. E.2

Let f be any maximal flow and let and ¥' denote its costs on the

networks G and G' respectively. Then

Dp q p q

L'= X X fir iy = os, a fig(Ay — ¥;)

= y y fds ¥. a fii-
i=1 j=1

Now

P 4

yy fa 2
i=i j=1

and

Pp q q Pp q

YY fin= E(w E fi)= 5 vids
i=1 j=1 j=1 i=1 j=1

hence

(i) Since flow-augmenting cycles are elementary, and traverse the
arc (t,5), it is possible to remove from G(f) all the inverted arcs

incident to s, and all those which are incident from ¢, without

destroying any flow-augmenting cycles.

(ii) A flow-augmenting cycle y on G(f) is composed of a path wu
from s to ¢, together with the arc (t, s). The path w is either a direct

path of the form

(s, ai), (ai, B;)(B; t)

252

6.9.

Solutions to selected exercises

or an indirect path of the form

(s, Qi), (Qin, Bi)» (Bi, Qin), sey (a; B;.), (B;, t).

From the flow conservation condition it follows that if w is indirect

then, corresponding to each inverted arc (B;,, @i,.,) on this path, Gif)

contains two inverted arcs (a;,,,,5) and (¢, B;,) which are both of

non-zero capacity. Since both these arcs have zero unit costs, and

G(f) has no cost-reducing cycles, all the segments of « which are of

the form

(s, Qi), (aes B;,)> teey (Bixs ines) where 1 = k << lr,

and

(Bixs Chee or ey (Qi, Bi,)s (Bis t) where 1 = k oS r,

are of non-negative cost. It follows that for every unsaturated source

node a;,,, on uw, the path

(s, ines)» (naa Bicsa)s Mee (B;, is

together with the arc (¢, s), forms a flow-augmenting cycle whose cost

is not greater than the cost of y; similarly, for every unsaturated

destination node 8;, on wu, the path

(s, Qi), (ai, Bi)> ees (Bis t)

together with the arc (¢, s) forms a flow-augmenting cycle, whose cost

is not greater than the cost of y. Hence all the inverted arcs of the

form (8;, a;) whose endpoints are not both saturated can be removed

from G(f), without destroying all its minimal-cost paths.

Using the technique described in Exercise 6.7 we obtain the modified

table of transportation costs shown in Fig. E.3. Then we arbitrarily

Bi B82 6s
Qe Os

a2 0 6 0

a3 qj 0 0

Fic. E.3 FIG. E.4

choose a feasible flow, using the zero-cost arcs, which is shown in Fig.
E.4. Starting with this flow we then apply the flow-augmentation

method. The displacement networks (simplified in the manner

described in Exercise 6.8) and the successive flows are shown in Fig.
E.5. (Only two flow augmentations are required.)

Soluiions to selected exercises 253

Successive displacement networks Successive network flows
The numbers indicate arc capaci- The numbers indicate arc capaci-
ties and unit costs; bold lines ties and flows; bold lines indicate
indicate minimal-cost flow-aug- saturated arcs.
menting cycles.

6.10.

6.11.

6.12.

FIG. E.5

The solution of this problem can be simplified by the techniques of

Exercises 6.7 and 6.8. In an optimal assignment, the total time spent

setting up machines is 12. There are two such assignments:

Task: Task: 5

6 Machine: Machine: Ne wn WwW Pp ar WN RW NF ane.)

The numbers of units to be produced by overtime working in the

months 1, 2, 3, and 4 are 3, 0, 2, and 4, respectively.

The problem involves the determination of a minimal-cost circula-

tion on the network of Fig. E.6, in which the three numbers on each

arc are its lower flow bound, capacity and cost (all supplies and
demands having been scaled down by a factor of 100 for con-

venience). By applying the transformation described in Sections
6.8.3 and 6.8.4, this problem can be reduced to a minimal-cost

254

6.13.

Solutions to selected exercises

Production Transportation | Consumption
|

00 0 (17)

FiG: BF

maximal flow problem on the network of Fig. E.7, in which the first

number on each arc is its capacity and the second is its cost. (The

flows in the arcs (r, f;) and (r, f2) represent the amounts produced by

overtime working.) This particular problem has a unique solution,

for which the arc flows are indicated on Fig. E.7 in brackets.

The factory f; produces 200 units by overtime working, and the

amount sent from each factory to each consumer is as follows:

700 500 —

foul = onl 0) 400

The total cost of production and transportation is £363 000.

The daily activity of a train crew can be visualized as the traversal of

an elementary cycle on Fig. E.8, where

Solutions to selected exercises 255

—Time

800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900
al | 1 AY it l ! 1 at i L abs

Station A:

Station B:

Station C:

(i) traversal of a horizontal arc drawn as a solid line represents time

spent waiting in a station,

(ii) traversal of a diagonal arc represents a journey on a train, and

(iii) traversal of an arc drawn as a broken line represents time spent

off duty.

Lower flow bounds, capacities, and costs are assigned to the arcs as

follows:

(i) each horizontal arc is assigned a lower flow bound of zero, infinite

capacity and zero cost;

(ii) each diagonal arc is assigned a lower flow bound of one, infinite

capacity and zero cost;

(iii) each arc drawn as a broken line is assigned a lower flow bound of

zero, infinite capacity and a cost of one.

Any decomposition into elementary cyclic flows of an integer-

valued minimal-cost circulation on this network determines an

appropriate allocation of crews to trains. In this problem, three crews

are required; a feasible allocation of three crews p, q, and r to the

trains is indicated on the diagram.

Bibliography

AHO, A. V. and ULLMAN, J. D. (1977). Principles of Compiler Design.

Addison-Wesley, Reading, Mass.

HopcrorFt, J. E. and ULLMAN, J. D. (1974). The design and

analysis of computer algorithms. Addison-Wesley, Reading, Mass.

AKKOYUNLU, E. A. (1973). The enumeration of maximal cliques of large

graphs. SIAM J. Comput. 2, 1-6.

AUGUSTSON, J. G. and MINKER, J. (1970). An analysis of some graph

theoretical cluster techniques. J. Ass. Comput. Mach. 17, 571-88. (Cor-

rection: J. Ass. Comput. Mach. 19 (1972), 244-7.)

BACKHOUSE, R. C. and CARRE, B. A. (1975). Regular algebra applied to
path-finding problems. J. Inst. Math. & its Appl. 15, 161-86.

BALINSKI, M. L. (1969). Labelling to obtain a maximum matching. In

Combinatorial mathematics and its applications (edited by R. C. Bose

and T. A. Dowling), 585-602. University of North Carolina Press,

Chapel Hill.

BAYER, G. (1966). Algorithm 293: Transportation problem. Communs

Ass. Comput. Mach. 9, 869-71; 10, 453; 11, 271-2.

BEALE, E. M. L. (1968). Mathematical programming in practice. Pitman,

London.

BELLMAN, R. E. (1957). Dynamic programming. Princeton University

Press, N.J.

— (1958). On a routing problem. Q. Appl. Math. 16, 87-90.

BELLMORE, M. and HONG, S. (1974). Transformation of multisalesman

problem to the standard traveling salesman problem. J. Ass. Comput.

Mach. 21, 500-4.

—— and NEMHAUSER, G. L. (1968). The traveling salesman problem: a

survey. Ops Res. 16, 538-58.

BENZAKEN, C. (1968). Structures algébriques des cheminements: pseu-

dotreillis, gerbiers de carré nul. In Network and switching theory (edited

by G. Biorci), 40-57. Academic Press, London.

BERGE, C. (1957). Two theorems in graph theory. Proc. Natn. Acad. Sci.
U.S.A. 43, 842-4.

—— (1976). Graphs and hypergraphs (2nd edn.). North-Holland, Am-
sterdam.

BIGGs, N. L., LLOYD, E. K., and WILSON, R. J. (1976). Graph theory
1736-1936. Clarendon Press, Oxford.

BIRKHOFF, G. (1967). Lattice-theory (3rd edn). American Mathematical
Society, Providence, R.I.

Bibliography 257

—— and MAC LANE, S. (1977). A survey of modern algebra (4th edn).
Macmillan, New York.

BITNER, J. R. and REINGOLD, E. M. (1975). Backtrack programming
techniques. Communs Ass. Comput. Mach. 18, 651-6.

BRAY, T. A. and WITZGALL, C. (1968). Algorithm 336: Netflow. Com-
muns Ass. Comput. Mach. 11, 631-2; 13, 192.

BRON, C. and KERBOSCH, J. (1973). Algorithm 457: Finding all cliques of
an undirected graph. Communs Ass. Comput. Mach. 16, 575-7.

BRUCKER, P. (1974). Theory of matrix algorithms. Mathematical systems
in economics, Vol. 13. Verlag Anton Hain, Meisenheim am Glan.

CARRE, B. A. (1969). A matrix factorization method for finding optimal

paths through networks. [E.E. Conference Publication No. 51

(Computer-aided design), 388-97.

—— (1970). An elimination method for minimal-cost network flow prob-

lems. In Large sparse sets of linear equations (edited by J. K. Reid),

191-209. Academic Press, London.

— (1971). An algebra for network routing problems. J. Inst. Math. & its

Appl. 7, 273-94.

CHEN, W.-K. (1971). Applied graph theory. North-Holland, Amsterdam.

CHERITON, D. and TARIJAN, R. E. (1976). Finding minimum spanning

trees. SIAM J. Comput. 5, 704-14

CHRISTOFIDES, N. (1971). An algorithm for the chromatic number of a

graph. Comput. J. 14, 38-9.
CLARE, C. (1973). Designing logic systems using state machines, McGraw-

Hill, New York.
COLORNI, A. (1974). An algorithm for the determination of an optimal

cutset in a graph. Ric. Autom. 5, 41-51.

CORNEIL, D. G. (1971). An n’ algorithm for determining the bridges of a

graph. Inf. Process. Lett. 1, 51-5.

— (1974). The analysis of graph-theoretical algorithms. Proc. Fifth

South-Eastern Conference on Combinatorics, Graph Theory and

Computing, 3-38. Utilitas Mathematica Publishing Inc., Winnipeg.

and GRAHAM, B. (1973). An algorithm for determining the chroma-

tic number of a graph. SIAM J. Comput. 2, 311-18.

CRUON, R. and HERVE, P. (1965). Quelques résultats relatifs 4 une

structure algébrique et 4 son application au probléme central d’ordon-

nancement. Revue Francaise de Recherche Opérationnelle No. 34,

3-19,
CUNINGHAME-GREEN, R. A. (1962). Describing industrial processes

with interference and approximating their steady-state behaviour. Opl

Res. Q. 13, 95-100.

—(1976). Projections in minimax algebra. Math. Programming 10,

111-23.

258 Bibliography

DANTZIG, G. B. (1963). Linear programming and extensions. Princeton

University Press, Princeton, N.J.

(1966). All shortest routes in a graph. In Theory of graphs (Inter-

national Symposium, Rome 1966), 91-2. Gordon and Breach, New

York.

DERNIAME, J.-C. and PAIR, C. (1971). Problémes de cheminement dans

les graphes. Dunod, Paris.

DIJKSTRA, E. W. (1959). A note on two problems in connection with

graphs. Num. Math. 1, 269-71.

DINICc, E. A. (1970). Algorithm for solution of a problem of maximum

flow in a network with power estimation. Soviet Math. Dokl. 11,

1277-80.
DUBREIL-JACOTIN, M. L., LESIEUR, L., and CROISOT, R. (1953).

Lecons sur la théorie des treillis, des structures algébriques ordonnées et des

treillis géométriques. Gauthier- Villars, Paris.

DuFF, I. S. (1977). A survey of sparse matrix research. Proc. IEEE 65,

500-35.
DUFFIN, R. J. (1959). An analysis of the Wang algebra of networks. Trans.

Am. Math. Soc. October, 114-30.

EDMONDS, J. (1965). Paths, trees and flowers. Can. J. Math. 17, 449-67.

and KARP, R. M. (1972). Theoretical improvements in algorithmic

efficiency for network flow problems. J. Ass. Comput. Mach. 19, 248-

64.
ELMAGHRABY, S. E. (1970). Some network models in management

science. Lecture notes in operations research and mathematical systems,

Vol. 29. Springer-Verlag, Berlin.

EVEN, S. and KARIV, O. (1975). An O(n?*) algorithm for maximum
matching in general graphs. Proc. 16th Annual Symp. on Foundations of

Computer Science, 100-12. IEEE, New York.

and TARJAN, R. E. (1975). Network flow and testing graph connec-
tivity. SIAM J. Comput. 4, 507-518.

FADDEEVA, V. N. (1959). Computational methods of linear algebra.

Dover, New York.

FILLMORE, J. P. and WILLIAMSON, S. G. (1974). On backtracking: a

combinatorial description of the algorithm. SIAM J. Comput. 3, 41-55.

FISHER, A. C., LIEBMAN, J. S., and NEMHAUSER, G. L. (1968).

Computer construction of project networks. Communs Ass. Comput.

Mach. 11, 493-7.

FLOYD, R. W. (1962). Algorithm 97: shortest path. Communs Ass.
Comput. Mach. 5, 345.

Bibliography 259

—— (1967). Nondeterministic algorithms. J. Ass. Comput. Mach. 14,
636-44.

FONTAN, G. (1974). Sur les performances d’algorithmes de recherche de
chemins minimaux dans les graphes clairsemés. Revue Francaise

d’ Automatique, Informatique et Recherche Opérationnelle 8, V-2, 31-7.

FORD, L. R. and FULKERSON, D. R. (1962). Flows in networks. Princeton

University Press, Princeton, N.J.

Fox, L. (1964). An introduction to numerical linear algebra. Oxford

University Press.

FRANK, H. and FRISCH, I. T. (1971). Communication, transmission and

transportation networks. Addison-Wesley, Reading, Mass.

FRATTA, L. and MONTANARI, U. (1975). A vertex elimination algorithm

for enumerating ali simple paths in a graph. Networks 5, 151-77.

GABOwW, H. N. (1976). An efficient implementation of Edmonds’

algorithm for maximum matching on graphs. J. Ass. Comput. Mach. 23,

221-34.
(1977). Two algorithms for generating weighted spanning trees in

order. SIAM J. Comput. 6, 139-50.

GAREY, M. R. and JOHNSON, D. S. (1976). The complexity of near-

optimal graph coloring. J. Ass. Comput. Mach. 23, 43-9.

GARFINKEL, R. S. and NEMHAUSER, G. L. (1972). Integer programming.

Wiley, New York.

GOLDEN, B. (1976). Shortest path algorithms: a comparison. Ops Res. 24,

1164-8.
GOLOMB, S. W. and BAUMERT, L. D. (1965). Backtrack programming. J.

Ass. Comput. Mach. 12, 516-24.

GONDRAN, M. (1975). Algébre linéaire et cheminement dans un graphe.

Revue Francaise d’ Automatique, Informatique et Recherche Opération-

nelle 9, V-1, 77-99.
GUARDABASSI, G. (1971). A note on minimal essential sets. IEEE Trans.

on Circuit Theory CT-18, 557-60.

HAMMER, P. L. and RUDEANU, S. (1968). Boolean methods in operations

research. Springer-Verlag, Berlin.
HARARY, F., NORMAN, R. Z., and CARTWRIGHT, D. (1965). Structural

models: an introduction to the theory of directed graphs. John Wiley, New

York.

HATCH, R. S. (1975). Bench marks comparing transportation codes based
on primal simplex and primal-dual algorithms. Ops Res. 23, 1167-72.

HECHT, M. S. (1977). Flow analysis of computer programs. Elsevier-North-

Holland, New York.

HEDETNIEML, §S. T. (1971). Review No. 22063, Comput. Rev. 12, 446-7.

260 Bibliography

HELD, M. and KARP, R. M. (1970). The traveling-salesman problem and

minimum spanning trees. Ops Res. 18, 1138-62.

— (1971). The traveling-salesman problem and minimum spanning

trees: Part II. Math. Program. 1, 6-25.

HOFFMAN, A. J. and WINOGRAD, S. (1972). Finding all shortest dis-

tances in a directed network. IBM J. Res. Develop. 16, 412-4.

HopcrorFt, J. E. and KARP, R. M. (1973). An n°” algorithm for
maximum matchings in bipartite graphs. SIAM J. Comput. 2, 225-31.

and TARJAN, R. E. (1973). Efficient algorithms for graph manipula-

tion. Communs Ass. Comput. Mach. 16, 372-8.

HOUSEHOLDER, A. S. (1953). Principles of numerical analysis. McGraw-

Hill, New York.

Hu, T. C. and TORRES, W. T. (1969). Shortcut in the decomposition

algorithm for shortest paths in a network. IBM J. Res. Develop. 13,

387-90.
HULME, B. L. (1975). A lattice algebra for finding simple paths and cuts in

a graph. Proc. Sixth South-Eastern Conf. on Combinatorics, Graph

Theory and Computing, 419-28. Utilitas Mathematica Publishing Inc.,

Winnipeg.

JENSEN, P. A. and BELLMORE, M. (1969). An algorithm to determine the

reliability of a complex system. JEEE Trans. on Reliability R-18,

169-74.

JOHNSON, D. B. (1975). Finding all the elementary circuits of a directed

graph. SIAM J. Comput. 4, 77-84.

JOHNSON, D. S. (1974). Worst-case behaviour of graph coloring

algorithms. Proc. Fifth South-Eastern Conference on Combinatorics,

Graph Theory and Computing, 513-28. Utilitas Mathematics Publishing

Inc., Winnipeg.

JOHNSON, E. L. (1972). On shortest paths and sorting. Proc. Ass. Comput.

Mach. 25th Annual Conference, Boston, 1972, Vol. 1, 510-17.

JOHNSTON, H. C. (1976). Cliques of a graph: variations on the Bron-

Kerbosch algorithm. Int. J. Comput. & Inf. Sci. 5, 209-38.

KARP, R. M. (1972). Reducibility among combinatorial problems. In

Complexity of computer computations (edited by R. E. Miller and J. W.

Thatcher), 85-103. Plenum Press, New York.

—— (1975a). On the computational complexity of combinatorial prob-
lems. Networks 5, 45-68.

—— (19755). The fast approximate solution of hard combinatorial prob-
lems. Proc. Sixth South-Eastern Conference on Combinatorics, Graph
Theory and Computing, 15-31. Utilitas Mathematica Publishing Inc.,
Winnipeg.

Bibliography 261

KAUFMANN, A. (1967). Graphs, dynamic programming and finite games.
Academic Press, New York.

—— and PICHAT, E. (1977). Méthodes mathématiques non-numeriques et
leurs algorithmes. Tome 1: Algorithmes de recherche des éléments maxi-
maux. Tome 2: Algorithmes de recherche de chemins et problémes asso-
ciés. Masson, Paris.

KERSHENBAUM, A. and VAN SLYKE, R. (1972). Computing minimum

spanning trees efficiently. Proc. Ass. Comput. Mach. Conf. (1972),
518-27.

KLEIN, M. (1967). A primal method for minimal cost flows. Manage. Sci.
14, 205-20.

KNUTH, D. E. (1968). The art of computer programming, Vol. 1:

Fundamental algorithms. Addison-Wesley, Reading, Mass.

(1973). The art of computer programming, Vol. 3: Sorting and

searching. Addison-Wesley, Reading, Mass.

(1975). Estimating the efficiency of back-track programs. Maths

Comput. 29, 121-36.

—— (1977). A generalisation of Dijkstra’s algorithm. Inf. Process. Lett. 6,

1-5.
KROFT, D. (1967). All paths through a maze. Proc. IEEE 55, 88-90.

KRUSKAL, J. B. (1956). On the shortest spanning subtree of a graph and

the traveling salesman problem. Proc. Am. Math. Soc. 7, 48-50.

LAND, A. H. and STAIRS, S. W. (1967). The extension of the cascade

algorithm to large graphs. Manage. Sci. 14, 29-33.

LAVROV, S.’S. (1961). Store economy in closed operator schemes. J.

USSR, Comput. Maths. and Math. Physics (English Translations) 1,

810-28.
LAWLER, E. L. (1973). Cutsets and partitions of hypergraphs. Networks 3,

275-85.
— (1976a). Introduction to the complexity of algorithms. Chapter 2 of

Applied computation theory: analysis, design, modelling (edited by R. T.

Yeh). Prentice-Hall, Englewood Cliffs, N.J.

— (1976b). A note on the complexity of the chromatic number problem.

Inf. Process. Lett. 5, 66-7.

(1976c). Combinatorial optimization: networks and matroids. Holt,

Rinehart, and Winston, New York.

and WOOD, D.E. (1966). Branch-and-bound methods: a survey. Ops

Res. 14, 699-719.

LEAVENWORTH, B. (1961). Algorithm 40: Critical path scheduling.

Communs Ass. Comput. Mach. 4, 152; 4, 392; 5, 513; 7, 349.

LEE, C. Y. (1961). An algorithm for path connections and its applications.

IRE Trans. EC-10, 346-65.

262 ~Bibliography

LITTLE, J. D. C., MURTY, K. G., SWEENEY, D. W., and KAREL, C.

(1963). An algorithm for the traveling-salesman problem. Ops Res. 11,

972-89.
LOGRIPPO, L. (1972). Renaming in program schemas. JEEE Conference

Record 13th Annual Symposium on Switching and Automata Theory,

67-70.

—— (1978). Renamings and economy of memory in program schemata. J.

Ass. Comput. Mach. 25, 10-22.

Lowry, E. S. and MEDLOCK, C. W. (1969). Object code optimization,

Communs Ass. Comput. Mach. 12, 13-22.

Lunts, A. G. (1950). The application of Boolean matrix algebra to the

analysis and synthesis of relay-contact networks. (In Russian.) Dokl.

Akad. Nauk. SSSR 70, 421-3.

McILROY, M. D. (1969). Algorithm 354: Generator of spanning trees.

Communs Ass. Comput. Mach. 12, 511.

MCNAUGHTON, R. and YAMADA, H. (1960). Regular expressions and

state graphs for automata. IRE Trans. on Electronic Computers EC-9,

39-47.

MARTELLI, A. (1974). An application of Regular Algebra to the enu-

meration of the cut sets of a graph. Information Processing 74, 511-5.

North-Holland, Amsterdam.

— (1976). A Gaussian elimination algorithm for the enumeration of cut

sets in a graph J. Ass. Comput. Mach. 23, 58-73.

MATULA, D. W., MARBLE, G., and ISAACSON, J. D. (1972). Graph

colouring algorithms. In Graph theory and computing (edited by R. C.

Read), 109-22. Academic Press, London.

MINIEKA, E. and SHIER, D. R. (1973). A note on an algebra for the k best

routes in a network. J. Inst. Math. & its Appl. 11, 145-9.

MINOUx, M. (1976). Structures algébriques généralisées des problémes de

cheminement dans les graphes. Revue Francaise d’Automatique,

Informatique et Recherche Opérationnelle 10, 33-62.

MINTY, G. J. (1965). A simple algorithm for listing all the trees of a graph.

IEEE Trans. on Circuit Theory CT-12, 120.

MITCHEM, J. (1976). On various algorithms for estimating the chromatic

number of a graph. Comput. J. 19, 182-3.

MITTEN, L. G. (1970). Branch-and-bound methods: general formulation

and properties. Ops Res. 18, 24-34.

MOISIL, GR. C. (1960). Asupra unor representari ale grafurilor ce intervin

in probleme de economia transporturilor. Comunle Acad. Rep. Pop.

Rom. 10, 647-52.

MONTALBANO, M. (1967). High-speed calculation of the critical paths of
large networks. IBM Systems J. 6, 163-91.

Bibliography 263

MOON, J. W. and MOSER, L. (1965). On cliques in graphs. Israel J. Math.
3, 123-8.

MOYLES, D. M. and THOMPSON, G. L. (1969). An algorithm for finding a

minimum equivalent graph of a digraph. J. Ass. Comput. Mach. 16,

455-60.

MUELLER-MERBACH, H. (1966). An improved starting algorithm for the

Ford—Fulkerson approach to the transportation problem. Manage. Sci.

13, 97-104.
MULLIGAN, G. D. and CORNEIL, D. G. (1972). Corrections to Bier-

stone’s algorithm for generating cliques. J. Ass. Comput. Mach. 19,

244-7.
MUNRO, I. (1971). Efficient determination of the transitive closure of a

directed graph. Inf. Process. Lett. 1, 56-8.

MURCHLAND, J. D. (1965). A new method for finding all elementary

paths in acomplete directed graph. Report LSE-TNT-22, London School

of Economics.
(1967). The effect of increasing or decreasing the length of a single arc

on all shortest distances in a graph. Report LBS-TNT-26, London School

of Economics. i

ORE, O. (1962). Theory of graphs (Amer. Math. Soc. Colloquium Pub-

lications, Vol. 38), American Mathematical Society, Providence, R.I.

(1967). The four-color theorem. Academic Press, New York.

OSTEEN, R. E. (1974). Clique detection algorithms based on line addition

and line removal. SIAM J. Appl. Math. 26, 126-35.

—— and Tou, J. T. (1973). A clique-detection algorithm based on neigh-

bourhoods in graphs. Int. J. Comput. and Inf. Sci. 2, 257-68.

PATON, K. (1971). An algorithm for the blocks and cutnodes of a graph.

Communs Ass. Comput. Mach. 14, 468-75, Corrigendum Communs

Ass. Comput. Mach. 14, 592.

PAULL, M. C. and UNGER, S. H. (1959). Minimizing the number of states

in incompletely specified sequential switching functions. JRE Trans. on

Electronic Computers EC-8, 356-67.

PECK, J. E. L.and WILLIAMS, M. R. (1966). Algorithm 286: Examination

scheduling. Communs Ass. Comput. Mach. 9, 433-4.

PETEANU, V. (1967). An algebra of the optimal path in networks.

Mathematica (Cluj) 9, 335-42.

— (1969). Optimal paths in networks and generalizations (I). Mathema-

tica (Cluj) 11, 311-27.

— (1970). Optimal paths in networks and generalizations (II). Mathe-

matica (Cluj) 12, 159-86.

264 ~+Bibliography

PIERCE, A. R. (1975). Bibliography on algorithms for shortest path,

shortest spanning tree, and related circuit routing problems (1956-

1974). Networks 5, 129-49.

POLYA, G. (1957). How to solve it: a new aspect of mathematical method

(2nd ed). Princeton University Press, Princeton, N.J.,

PRIM, R. C. (1957). Shortest connection networks and some generaliza-

tions. Bell Syst. Tech. J. 36, 1389-1401.
PURDOM, P. W. and MOORE, E. F. (1972). Algorithm 430: Immediate

predominators in a directed graph. Communs Ass. Comput. Mach. 15,

777-8.

READ, R. C. and TARJAN, R. E. (1975). Bounds on backtrack algorithms

for listing cycles, paths, and spanning trees. Networks 5, 237-52.

ROBERT, P. (1971). An algorithm for finding the essential sets of arcs of

certain graphs. J. Combinatorial Theory (Series B) 10, 288-98.

and FERLAND, J. (1968). Généralisation de lalgorithme de

Warshall. Revue Francaise d’ Informatique et de Recherche Opération-

nelle 2, 71-85.

ROBERTS, S. M. and FLORES, B. (1966). Systematic generation of

Hamiltonian circuits. Communs Ass. Comput. Mach. 9, 690-4.

RODIONOV, V. V. (1968). The parametric problem of shortest distances.

USSR Comput. Math. & Math. Phys. 8, 336-43.

ROSCHKE, S. I. and FURTADO, A. L. (1973). An algorithm for obtaining

the chromatic number and an optimal coloring of a graph. Inf. Process.

Lett. 2, 34-8.
ROSE, D. J. (1972). A graph-theoretic study of the numerical solution of

sparse positive definite systems of linear equations. In Graph theory and

computing (edited by R. C. Read), 183-217. Academic Press, London.

Roy, B. (1959). Transitivité et connexité. C.R. Acad. Sci. Paris 249,

216-8.

(1969, 1970). Algébre moderne et théorie des graphes, Vol. 1 (1969)

and Vol. 2 (1970). Dunod, Paris. Vol. 1 has been translated (1978):

Modern algebra and graph theory applied to management. Springer-

Verlag.

(1975). Chemins et circuits: énumération et optimisation. In

Combinatorial programming: methods and applications (edited by B.

Roy). D. Reidel Publishing Company, Dordrecht.

RUBIN, F. (1974). A search procedure for Hamiltonian paths and circuits.
J. Ass. Comput. Mach. 21, 576-80.

SCHAEFER, M. (1973). A mathematical theory of global program opti-

misation. Prentice-Hall, Englewood Cliffs, N. J.

SEPPANEN, J. J. (1970). Algorithm 399: Spanning tree. Communs Ass.
Comput. Mach. 13, 621-2.

Bibliography 265

SHIER, D. R. (1976). Iterative methods for determining the k shortest

paths in a network. Networks 6, 205-29.

SMITH, G. W. and WALFORD, R. B. (1975). The identification of a

minimal feedback vertex set of a directed graph. IEEE Trans. on Circuits

and Systems CAS-22, 9-14.

SZWARCFITER, J. L. and LAUER, P. E. (1976). A search strategy for the

elementary cycles of a directed graph. BIT 16, 192-204.

TABOURIER, Y. (1972). Un algorithme pour le probléme d’affectation.
Revue Francaise d’ Automatique, Informatique et Recherche Opération-

nelle 6, V-3, 3-16.

TARIAN, R. E. (1972). Depth-first search and linear graph algorithms.

SIAM J. Comput. 1, 146-60.

— (1973). Enumeration of the elementary circuits of a directed graph.

SIAM J. Comput. 2, 211-6.

— (1974a). Finding dominators in directed graphs. SIAM J. Comput. 3,

62-89.
— (19745). A note on finding the bridges of a graph. Inf. Process. Lett. 2,

160-1.
—and TROJANOWSKI, A. E. (1977). Finding a maximum independent

set. SIAM J. Comput. 8, 537-46.
TARRY, M. G. (1895). Le probléme des labyrinthes. Nouv. Annls Math.

14, 187-90.
TEWARSON, R. P. (1973). Sparse matrices. Academic Press, New York.

TIERNAN, J. C.(1970). An efficient search algorithm to find the elemen-

tary circuits of a graph. Communs Ass. Comput. Mach. 13, 722-6.

TOMESCU, I. (1966). Sur les méthodes matricielles dans la théorie des

réseaux. C.R. Acad. Sci. Paris 263, Série A, 826-9.

(1968). Sur l’algorithme matriciel de B. Roy. Revue Francaise
d’ Informatique et de Recherche Opérationnelle 2, 87-91.

TOMIZAWA, N. (1971). On some techniques useful for solution of trans-

portation network problems. Networks 1, 173-94.
TRENT, H. M. (1954). A note on the enumeration and listing of all possible

trees in a connected linear graph. Proc. Natn. Acad. Sci. U.S.A. 40,

1004-7.
TSUKIYAMA, S., IDE, M., ARIYOSHI, H., and SHIRAKAWA, I. (1977). A

new algorithm for generating all the maximal independent sets. SIAM J.

Comput. 6, 505-17.

—— SHIRAKAWA, I., and OZAKI, H.(1975). An algorithm for generating

the cycles of a digraph. Electron. & Commun. Japan 58-A, 8-15.

VARGA, R. S. (1962). Matrix iterative analysis. Prentice-Hall, Englewood

Cliffs.

266 ~=@ Bibliography

WALKER, R. J. (1960). An enumerative technique for a class of combina-

torial problems. Proc. Sympos. Appl. Math. Vol. 10 (Combinatorial

analysis), 91-4. American Mathematical Society, Providence, R.I.

WANG, C. C. (1974). An algorithm for the chromatic number of a graph. J.

Ass. Comput. Mach. 21, 385-91.

WARSHALL, S. (1962). A theorem on Boolean matrices. J. Ass. Comput.

Mach. 9, 11-3.

WELLS, M. B. (1971). Elements of combinatorial computing. Pergamon,

Oxford.

WELSH, D. J. A. and POWELL, M. B. (1967). An upper bound for the

chromatic number of a graph and its application to timetabling problems.

Comput. J. 10, 85-6.

WHITE, D. J. (1969). Dynamic programming. Oliver and Boyd, Edin-

burgh.

WHITNEY, V. K. M. (1972). Algorithm 422: Minimal spanning tree.
Communs Ass. Comput. Mach. 15, 273-4.

WILLIAMS, M. R. (1970). The colouring of very large graphs. In

Combinatorial structures and their applications (edited by R. Guy, H.

Hanani, N. Sauer, and J. Schonheim), 477-8. Gordon and Breach, New

York.

WITZGALL, C. and ZAHN, C. T. (1965). Modification of Edmonds’

maximum matching algorithm. J. Res. NBS 69B, 91-8.

WONGSEELASHOTE, A. (1976). An algebra for determining all path-

values in a network, with application to k-shortest path problems.

Networks 6, 307-34.

WOOD, D.C. (1969). A technique for colouring a graph applicable to large

scale timetabling problems. Comput. J. 12, 317-9.

YAO, A. C. (1975). An O(|B| log log | V]|) algorithm for finding minimum
spanning trees. Inf. Process. Lett. 4, 21-3.

YEN, J. Y. (1970). An algorithm for finding shortest routes from all source
nodes to a given destination in general networks. Q. Appl. Math. 27,
526-30.

—— (1975). Shortest path network problems. Mathematical systems in
economics, Vol. 18, Verlag Anton Hain, Meisenheim am Glan.

YOELI, M. (1961). A note on a generalization of Boolean matrix theory.
Am. Math. Mon. 68, 552-7.

ZADEH, N. (1972). Theoretical efficiency of the Edmonds-Karp algorithm
for computing maximal flows. J. Ass. Comput. Mach. 19, 184-92.

—— (1973a). More pathological examples for network flow problems.
Math. Program. §, 217-24.

Bibliography 267

(1973). A bad network problem for the simplex method and other

minimum cost flow algorithms. Math. Program. 5, 255-66.

ZYKOV, A. A. (1949). On some properties of linear complexes. Math. Sb.

24, 163-88. English translation: Am. Math. Soc. Translation No. 79,

1952.

Subject index

abbreviation, 88

absorption law, 26

absorptive graph, 96-7

absorptive matrix, 103-S, 129, 137, 244

accessible set, 43

labelling algorithm for, 45-7

activity graph, 51-2, 110, 150

acyclic graph, 48-53, 98-9, 109, 149-50

adjacency, 33

adjacency matrix, 97-105

Boolean, 98, 99, 100, 102, 104, 149-

50

closure of, 102-5, 121-3

of acyclic graph, 98-9, 149-50

powers of, 99-101

alphabet, 14

anti-reflexive graph, 36

anti-symmetric graph, 36

arborescence, 53

arc, 32

basic, 146-7, 173

entry, 226 oa

exit, 226

inverted, 202

normal, 202

return, 206

saturated, 208

articulation node, 165-71

articulation set, 165

ascendant, 43
assignment problem, 186-7, 213-14,

234

optimal, 223-4, 234

associative law, 11

augmenting-chain algorithm,

197

auxiliary network, 226-9

184-7,

back-substitution, 109, 111, 126

backtrack programming method, 64—

75, 78, 83
for colouring a graph, 192-5, 197

for cut sets of edges, 174

for elementary cycles, 83

for elementary paths, 65-70, 78-9,

83, 141

for feedback node sets, 82, 83, 242-3

for Hamiltonian cycles, 71-5, 83

for maximal cliques, 177-81, 197

for spanning trees, 163-4, 174

basis, of a language, 88

basis graph, 148-50, 173-4

Bellman’s method, for shortest paths,

125

bijective function, 9

bilateral connection, 235, 249

binary tree, 56

bipartite graph, 186-7
block,

of a graph, 167-70, 174

of a program, 152

block graph, 169
Boolean algebra, 30-1, 85, 93, 140-1

branch-and-bound methods, 83, 194,

197, 243

bridge, 156-8, 173-4

cancellation property, 15, 90, 137, 244

capacity,
of a cut, 210-11

of a node, 235, 249

of an arc, 201

cardinality, of a set, 1

Cartesian product, 5

chain, 42-3

alternating, 184

augmenting, 184
closed, 42

elementary, 42

open, 42

simple, 42

chord, 146
detection in acyclic graphs, 150

chromatic index, 195, 197

chromatic number, 80, 188-9, 196, 197

circuit, 42
Hamiltonian, 71, 80, 83

circuit-edge connectedness, 156

270

circulation, 226-32, 253-5

construction of, 229-30

minimal-cost, 231-2

clique, 80, 177-81, 197

closure, 90-92

of a matrix, 102-5, 106, 121-3

strong, 90

weak, 91

codomain, 8

coloration, 188-97

construction of, 192-5, 197
edge, 195-7

node, 188-95

commutative law, 11

comparable elements, 21

complement, in a lattice, 29-31

complement, of a graph, 36

complement, of a set, 5

complete binary tree, 56

complete graph, 37
complexity, of an algorithm, 75-81, 83

composition, of functions, 10
concatenation, 14

condensation, 34

connected component, 44

labelling algorithm for, 47-8, 77-8
connected graph, 44

consistency law, 26

contraction, 72

of an edge, 164

control flow graph, 152

converse, of a graph, 36

converse-accessible set, 43, 47

cost-reducing cycle, 216-17, 218, 234,
DeD

cost-reduction method, 217-18, 234-5
cover relation, 21

covering, of a set, 6-7

critical-path analysis, 51-3, 110-11,
150

cut set of arcs (or cut), 142-4, 173, 241

in a network, 210-12

cut set of edges, 154-5, 172
cycle, 40

cost-reducing, 216-17, 218, 234, 235
Euler, 81

flow-augmenting, 207-9, 212, 219-
21, 233-4, 238, 251

Hamiltonian, 71-5, 80, 81, 83

negative, 140, 234, 247-8

Subject index

data structures, 45-7, 64, 83, 134-5

data-transmission graph, 189

de Morgan’s laws, 30

decomposition, of a flow, 200-1

degree, of a node, 38

descendant, 43

determinant, in a path algebra, 139

difference, of flows, 200, 204-6

difference, of sets, 5

Dijkstra’s method, for shortest paths,

132-4, 135, 136

disjoint sets, 3

disjunctive flow, 205

displacement network, 202-6

practical simplifications, 233, 234,

238, 251-2

representation of costs on, 214-17

distributive laws, 16

one-sided, 31

domain, 8

dominating set, of a simple graph, 187-8
domination number, 187

domination tree, 172

construction of, 172, 248

dominator, 171-2, 173

immediate, 171, 173

of a program, 152

double-sweep method, 126-31, 135,

136, 138, 146, 153, 233
duality, in lattices, 27

dynamic programming, 112, 241

edge, 38

circuit, 156

matching, 181

strongly circuit-connected, 165

elementary flow, 200-1
empty set, 3

empty word, 14, 87

equivalence class, 20

equivalence relation, 19-20

error-correcting code, 176-7

error-detecting code, 176

Euler cycle, 81

exterior semi-degree, 33

feasible flow, 201-2

feedback arc set, 80

feedback node set, 80, 82, 83

algorithm for, 83, 242-3

finite-state machine, 41

flow, 199

augmentation method, 218-21, 233-

4, 235, 240

augmenting cycle, 207-9, 212, 219-

21, 233-4, 238, 251

conservation condition, 199

cost, 214

cost-reducing cycle, 216-17, 218,

234, 235

cost-reduction method, 217-18, 234-

5

decomposition, 200-1

difference, 200, 204-6

disjunctive, 205

elementary, 200-1

feasible, 201-2

integral, 213-14

maximal, see maximal flow

minimal-cost, see minimal-cost flow

null, 212

saturating, 229-30

value, 206

Floyd’s algorithm, 122
Ford’s method, for shortest paths, 126

forward substitution, 109, 110, 112, 126

free tree, 158-9

function, 8-10

Gauss elimination, 113-9, 134, 135,

136, 140, 235

Gauss-Seidel iterative method, 125-6,

127-9, 130, 135, 173

graph, 32

absorptive, 96-7
activity, 51-2, 110, 150

acyclic, 48-53, 98-9, 109, 149-50

anti-reflexive, 36

anti-symmetric, 36

basis, 148-50, 173-4

bi-connected, 165-7, 168

bipartite, 186-7

block, 169

complementary, 36

complete, 37

connected, 44

control flow, 152

converse, 36

data-transmission, 189

interchange, 170, 183

interference, 192

labelled, 95-6

leaf, see leaf graph

partial, 34

reduced, 45

reflexive, 36
signal-relation, 176

Subject index 251

simple, 37-9

strongly-connected, 44

symmetric, 36

transitive, 37

greatest element, 22

greatest lower bound, 22-3

Hamiitonian cycle, 71-5, 80, 81, 83

Hasse diagram, 21

idempotent element, 89

idempotent law, 11

image, 8

in-degree, 33

incidence, 33, 38

incidence matrix, 198-9

independence number, 175

independent edge set, see matching

independent node set, 175-77, 188

initial endpoint, 33, 40

injective function, 9

integral flow, 213-14

‘interchange graph, 170, 183

interference graph, 192

interior semi-degree, 33

intersection, 3

inverse, of an element, 14

inverse function, 9-10

involution law, 30

isotonicity, 28, 88-9

Jacobi iterative method, 124-5, 127-30,

135, 138-9

join, 23, 85, 93

join-semilattice, 23-4
Jordan elimination, 119-23, 134, 135,

136

k-coloration, 188

k-edge coloration, 195

label, of a path, 95-6

labelled graph, 95-6

labelling algorithm,

for accessible sets, 45-7

for connected components, 47-8, 77-

8
for strong components, 47-8

language, 14

basic, 88

basis of, 88

null, 87

he

lattice, 23-31

Boolean, 30-1

complemented, 30

distributive, 28-30

modular, 31

leaf, 156-8

leaf graph, 157

construction of, 172-3, 248

least element, 22

least upper bound, 22

lexicographic ordering, 23, 60-1

loop, 33

Subject index

mapping, 8

matching, 181-7

algorithm for, 184-6, 197

in a bipartite graph, 186-7
matrix,

absorptive, 103-5, 129, 137, 244

adjacency, see adjacency matrix

closure, 102-5, 121-3

incidence, 198

join in path algebra, 93

ordering in path algebra, 94

powers in path algebra, 99-102

product in path algebra, 93
sparse, 134

stable, 102-3, 104, 137, 244

triangular, 99, 108-12

unit in path algebra, 94

zero in path algebra, 94

max-flow min-cut theorem, 211, 213

maximal element, 22

maximal flow, 206-12

algorithm for, 212-14, 240
meet, 23, 150

meet-semilattice, 23

memory assignment, 189-92

minimal element, 22

minimal-cost flow, 214-17

algorithms for, 217-21, 232-5, 240

multi-stage decision problem, 111-12
multigraph, 39

name, of a path, 96

negative cycle detection, 140, 234, 247-
8

neighbour, 33
network, 198

neutral element, 13

nilpotent element, 89
node, 32

articulation, 165-71

covered, 181

degree of, 38

exposed, 181

in-degree of, 33

out-degree of, 33

rank of, 49

saturated, 238

NP-complete problem, 80-1

null element, 15

null flow, 212

one-to-one transformation, 9

operation, 10

binary, 10

n-ary, 16

unary, 17

optimal assignment problem, 223-4,

234

order, of a path, 40

ordered pair, 5

ordering, 21-3

lexicographic, 23, 60-1

reverse Tarry, 58-9, 62

symmetric, 59-61, 62

Tarry, 57-9, 62

total, 21, 57, 132

transverse, 57-61, 62

out-degree, 33

p-graph, 39

partial graph, 34

partition, 7

path, 40

closed, 40

elementary, 40

null, 95
open, 40

simple, 40

path algebra, 84

for accessible sets, 85-6, 100, 102,
104, 106

for articulation nodes, 169-71

for articulation sets, 165

for basic arcs, 146-8

for bridges and leaves, 157-8

for critical paths, 85-6, 95-6, 106,
110-11

for elementary paths, 86, 88, 106,
122-3

for listing all paths, 86-7, 96, 100-1
106

for lowest-order paths, 134

>

for maximum capacity paths, 86, 95-
6, 106

for most reliable paths, 86, 95-6, 106

for separating arc sets, 144-6

for separating edge sets, 155-6

for separating node sets, 151

for separating nodes, 152-3

for shortest paths, 85-6, 100, 105,

106, 111-12, 116-18, 131
for simple paths, 86-7, 90, 102-3,

106, 118-19 ;
Polish notation, 59

polynomial-bounded algorithm, 79
power set, 6

pre-ordering, 19

predecessor, 33

Prim’s algorithm, for shortest spanning

tree, 160-3, 174

primal—dual method, 234, 235, 240
printed circuits, 134

production planning problem, 231-2,

241
proper subset, 2

rank, of a node, 49

reduced graph, 45

reflexive graph, 36
relation,

anti-reflexive, 19

anti-symmetric, 19

binary, 17 -

complementary, 18
connectivity, 43

converse, 19

equivalence, 19

ordering, see ordering

reflexive, 19

strong connectivity, 44

symmetric, 19

transitive, 19

return arc, 206

reverse Tarry ordering, 58-9, 62

root, of a tree, 53

saturating flow, 229, 230

semilattice, 26

separating arc set, 142-6
separating edge set, 153-6

separating node, 151-3, 171
separating node set, 150-1

set, 1

signal-relation graph, 176

simple graph, 37-9

Simplex method, 234, 235, 241

Subject index 273

simplification, of a graph, 38-9
sink, 206

sort tree, 60-1, 83

source, 206

spanning tree, 160-4

shortest, 160-2

stability index, 89, 102

stable element, 89, 90

stable matrix, 102-3, 104, 137, 244
stack, 64

state diagram, 40-2

stepping-stone method, 234
string, 14

strong closure, see closure

strongly-connected component, 44-5

labelling algorithm for, 47-8
strongly-connected graph, 44
sub-unitary element, 89

subgraph, 34

subset, 2

successor, 33

‘super-unitary element, 89

surjective function, 9

symmetric difference, of sets, 7

symmetric graph, 36
symmetric ordering, 59-61, 62

syntactic tree, 56-7

Tarry ordering, 57-9, 62

terminal endpoint, 33, 40

terminal node, of a tree, 56

timetable construction, 189

total cost, of a flow, 214

totally-ordered path algebra, 132-4

transitive graph, 37
transportation problem, 221-3, 234,

235, 237-8, 251-2

transverse ordering, 57-61, 62

travelling salesman problem, 81, 83

traversal, of a tree, 59

algorithm for, 62-4, 77

tree, 53-64

binary, 56

complete, 56

domination, see domination tree

free, 158-9

root of, 53

sort, 60-1, 83

spanning, see spanning tree

syntactic, 56-7

terminal node of, 56

traversal, see traversal

tree search, see backtrack programming

274 Subject index

union, 3

unit element, 13
of path algebra, 85

unit matrix, 94

value, of a flow, 206

Wang’s algebra, 174

Warshall’s algorithm, for matrix closure,

122
weak closure, see closure

word, 14

abbreviation of, 88

basic, 88

empty, 14

simple, 87

Yen’s method, for shortest paths, 127,

AB IISS

zero element, 15

of path algebra, 85

zero matrix, 94

Author index

Aho, A. V. 42, 47, 56, 59, 83

Akkoyunlu, E. A. 197

Augustson, J. G. 177, 197

Backhouse, R. C. 140

Balinski, M. L. 197

Baumert, L. D. 83

Bayer, G. 240

Beale, E. M. L. 241

Bellman, R. E. 112, 125

Bellmore, M. 83, 174

Benzaken, C. 140

Berge, C. 82, 185, 197

Biggs, N. L. 82

Birkhoff, G. 94, 140

Bitner, J. R. 83

Bray, T. A. 240

Bron, C. 179, 197

Brucker, P. 140

Carré, B. A. 140, 235

Cartwright, D. 173

Chen, W.-K. 174

Cheriton, D. 174.—

Christofides, N. 197

Clare, C. 42

Colorni, A. 241

Corneil, D. G. 83, 174, 194, 197

Croisot, R. 140

Cruon, R. 140

Cuninghame-Green, R. A. 140

Dantzig, G. B. 140, 234, 241
Derniame, J.-C. 140

Dijkstra, E. W. 133

Dinic, E. A. 240

Dubreil-Jacotin, M. L. 140

Duff, I. S. 140
Duffin, R. J. 174

Edmonds, J. 197, 233, 234, 240
Elmaghraby, S. E. 53

Even, S. 197

Faddeeva, V. N. 140

Ferland, J. 140

Fillmore, J. P. 83

Fisher, A. C. 150

Flores, B. 83

Floyd, R. W. 83, 122

Fontan, G. 136
Ford, L. R. 126, 211, 234, 240

Fox, L, 113; 136

Frank, H. 240, 241

Frisch, I. T. 240, 241

Fulkerson, D. R. 126, 211, 234, 240

Furtado, A. L. 197

Gabow, H. N. 174, 197

Garey, M. R. 197

Garfinkel, R. S. 83

‘Golomb, S. W. 83
Gondran, M. 140

Graham, B. 194, 197

Guardabassi, G. 83

Hammer, P. L. 141, 197

Harary, F. 173
Hatch, R. S. 235

Hecht, M. S. 152, 173

Hedetniemi, S. T. 197

Held, M. 83

Hervé, P. 140

Hoffman, A. J. 140

Hong, S. 83
Hopcroft, J. E. 47, 83, 174, 187, 240

Householder, A. S. 140

Hu, T. C. 140

Hulme, B. L. 174

Isaacson, J. D. 197

Jensen, P. A. 174

Johnson, D. B. 83

Johnson, D. S. 197

Johnson, E. L. 135

Johnston, H. C. 197

Karel, C. 83

Kariv, O. 197
Kapr, R. M. 83, 187, 197, 233, 234, 240

Kaufmann, A. 83, 197, 241

276 Author index

Kerbosch, J. 179, 197

Kershenbaum, A. 174

Klein, M. 234

Knuth, D. E. 61, 64, 83, 134, 158

Kroft, D. 83

Kruskal, J. B. 174

Land, A. H. 140

Laver, P. E. 83

Lavrov, S. S. 197

Lawler, E. L. 83, 197, 240, 241

Leavenworth, B. 111

Lee, C. Y. 134

Lesieur, L. 140

Liebman, J. S. 150

Little, J. D. C. 83

Lloyd, E. K. 82

Logrippo, L. 197

Lowry, E. S. 173

Lunts, A. G. 140, 141

MacLane, S. 94

Marble, G. 197

Martelli, A. 144, 173

Matula, D. W. 197

Mcllroy, M. D. 174

McNaughton, R. 122

Medlock, C. W. 173

Minieka, E. 140 °

Minker, J. 177, 197

Minoux, M. 140

Minty, G. J. 174

Mitchem, J. 197

Mitten, L. G. 83

Moisil, Gr. C. 140

Montalbano, M. 111

Moon, J. W. 196

Moore, E. F. 173

Moser, L. 196

Moyles, D. M. 173

Mueller-Merbach, H. 241

Mulligan, G. D. 197

Munro, I. 48

Murchland, J. D. 122, 140

Murty, K. G. 83

Nemhauser, G. L. 83, 150

Norman, R. Z. 173

Ore, O. 82, 197

Osteen, R. E. 197

Ozaki, H. 83

Pair, C. 140

Paton, K. 174

Paull, M. C. 177

Pecks J 2B, 197

Peteanu, V. 140

Pichat, E. 83, 197

Pierce, A. R. 141

Polya, G. 70

Powell, M. B. 197

Prim, R. C. 174

Purdom, P. W. 173

Read, R. C. 83, 174

Reingold, E. M. 83

Robert, P. 140, 174

Roberts, S. M. 83

Rodionov, V. V. 140

Roschke, S. I. 197

Rose, D: J. 135

Roy, B. 53, 122, 140, 240

Rubin, F. 75, 83

Rudeanu, S. 141, 197

Schaefer, M. 152

Shier, D. R. 140

Shirakawa, I. 83

Smith, G. W. 83

Stairs, S. W. 140

Sweeney, D. W. 83

Szwarcfiter, J. L. 83

Tabourier, Y. 234

Tarjan, R. E. 48, 83, 173, 174

Tarry, M. G. 59

Tewarson, R. P. 135, 136, 140

Thompson, G. L. 173

Tiernan, J. C. 83

Tomescu, I. 140

Tomizawa, N. 233

Torres, W. T. 140

Tou, J. T. 197

Trent, H. M. 174

Tsukiyama, S. 83

Ullman, J. D. 42, 47, 56, 59, 83

Unger, S. H. 177

Van Slyke, R. 174

Varga, R. S. 124, 126, 127

Walford, R. B. 83

Walker, R. J. 83

Wang, C. C. 197

Warshall, S. 122

Weils, M. B. 83

Welsh, D. J. A. 197

White, D. J. 112

Whitney, V. K. M. 174

Williams, M. R. 197

Williamson, S. G. 83

Wilson, R. J. 82

Winograd, S. 140

Witzgall, C. 197, 240

Wongseelashote, A. 140

Author index 29g)

Wood, D. C. 197

Wood, D. E. 83

Yamada, H. 122

Yao, A. C. 174

Yen Jo Yo127-140

Yoeli, M. 140

Zadeh, N. 240
Zahn, C. T. 197
Zykov, A. A. 197

forts

