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Preface 

‘DISCRETE SYSTEMS’ or organized collections of objects are 
frequently encountered, for instance in computer science, 
engineering, and industrial management. Graph theory and 

network flow theory provide simple techniques for constructing 

models of systems of this kind, and powerful methods for their 
analysis and optimization. 

The object of this book is to provide a simple account of the basic 

results and techniques of graph and network flow theory, with 

strong emphasis on their applications and algorithmic aspects. 

The book is written for undergraduate or first-year graduate 

students in mathematics, computer science, engineering, or opera- 

tional research. Students with some background in ‘modern’ 

algebra should find the book very easy to read; for those who have 

no previous experience of modern mathematics, the first chapter is 

intended to provide a simple but adequate introduction to algebraic 

structures. There are no other prerequisites, although some know]- 

edge of linear algebra—in particular of the basic direct and iterative 

methods of solving systems of linear equations—would be useful in 

reading the chapter on path problems (and, I hope, might make it a 

little amusing). 

Although the presentation is rather informal, all the results given 

in the main text are proved, and a justification is given for all but the 

most trivial algorithms. 

Practical applications in computer science, engineering, and 

operational research are presented, for the most part, as examples 

in the body of the text. To make these realistic it has sometimes 

been necessary to enter into technical details, but it is nevertheless 

hoped that all the examples will be easily comprehensible, to 

readers of any specialization. 

With regard to the methods of presentation of the graph theory, 

the most novel feature of the book is the algebraic approach to path 

problems and connectivity, in Chapters 3 and 4. Path problems arise 

in many different forms, and the variety of algorithms invented to 

solve them is at first sight quite bewildering. The algebraic approach 

to this subject provides a simple, elegant framework in which to 
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situate a host of path problems, and allows a systematic develop- 

ment of general algorithms to solve them. 

In teaching this material I have found that mathematics students 

are pleased—and sometimes even a little surprised—to discover 

that abstract algebra can have mathematically substantial and at the 

same time very practical applications. Engineering students are less 

used to abstract structures but they nevertheless find the setting 

familiar: the matrices which we use to describe graphs have the 

same ‘structure’ as the admittance matrices of electric circuits and 

the stiffness matrices of civil-engineering frameworks, and our 

methods of solving linear systems are analogous. 

In this context it will be observed that, although some authors 

classify path-finding algorithms according to whether they are 

‘algebraic’ or ‘matrix’ methods or ‘other’ methods, I do not accept 

this type of classification. Algebras are /anguages in which we 

formulate problems and devise methods for their solution. The 

ultimate usefulness of an algebraic approach depends on the ease 

and elegance with which it enables us to formulate problems 

precisely, and to derive all the ‘best’, i.e. most efficient methods of 

solving them. Here we give an algebraic development of all the most 

important path-finding methods, and we even unashamedly present 

critical path analysis as a problem of solving a system of simul- 

taneous equations. Whether or not the algebraic approach meets its 

objective will be for the reader to judge. Of course, to implement a 

method on a computer, we must represent the mathematical objects 

which it involves by appropriate data structures (for instance, we 

may represent a sparse matrix by linked lists), and a computer’s 

view of a method will always be much the same, whichever formal- 

ism we use to develop it. 

With regard to our particular choice of algebraic structure for 

discussing path problems, it was necessary to make a com- 

promise, between achieving maximum generality on the one hand 

and clarity of exposition on the other. The directions in which 

further generalizations can be made are indicated at the close 
of Chapter 3. 

To present network flow methods, in Chapter 6, I have made 
extensive use of the notion of a ‘displacement network’, which 
defines the ‘perturbations’ which can be made to a given network 
flow. This approach, quite often used in operational research, seems 
particularly appropriate for teaching the subject to engineers: the 
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displacement network plays essentially the same role as the ‘small- 
signal equivalent circuit’ which is familiar to every student of 
electronics. 

The choice of a language in which to present algorithms is not 
easy. The development of an algorithm for a computer involves four 
stages, (i) the development of a mathematical model of the problem 

to be solved, (ii) the formulation of a solution method in terms of the 

mathematical objects defined in the first stage, (iii) the choice of 

data structures to represent the mathematical objects in the 

computer memory (for instance, we may represent a set by a binary 

vector, a linear list, or a stack), and (iv) programming the method, in 

terms of the chosen data structures. 

Since this book is mainly concerned with aspects (i) and (ii), 

algorithms are mostly described in plain English and familiar 

mathematical notation. However, since the choice of data struc- 

tures can strongly affect the efficiency of graph algorithms, this 

matter is taken up in a few instances. Where there is a choice of 

solution methods, I have tried to explain the principles of those 

which can be implemented most efficiently; where possible, I have 

also given references to program descriptions. 

‘Backtrack programming’ or tree-search algorithms can be 

described most concisely and elegantly in a recursive form, but I felt 

this would not be sufficiently transparent to most readers; however, 

I have tried to describe each tree-search algorithm in such a way 

that, for readers familiar with recursive programming, the outline of 

the recursive procedure would be clearly visible. 

Since 1970, computer scientists have made important contribu- 

tions to graph theory by developing the notion of computational 

complexity; they have also achieved remarkable improvements in 

performance of graph algorithms, mainly through the clever 

manipulation of data structures. The literature on some of these 

refined algorithms makes remarkably little use of graph theory: the 

validity proofs are written in the language of computer science 

(procedure calls, depth of recursion, popping and pushing nodes 

onto a stack). I have not attempted to give full details of these 

procedures; for these the reader will be referred to the original 

papers. However, the ways in which their authors use data struc- 

tures sometimes have graph-theoretic interpretations, which may 

aid comprehension; where I have been able to make such inter- 

pretations, I have given them. 
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In writing this book I have benefited from the help of many 

people. In particular, I have greatly enjoyed and profited from 

collaborative work on path algebras with Roland Backhouse and 

Ahnont Wongseelashote, and their ideas strongly influenced me in 

writing Chapter 3. They also made many valuable comments on 

other parts of the manuscript. Jean-Francois Bergeretti checked the 

entire manuscript, and I am greatly indebted to him for all his advice 

and help. I also received useful comments from Keith Lloyd, and 

from several of my M.Sc. students, especially David Gill and Steven 

Scott. 

The manuscript was beautifully typed by Gina Pugsley and Elaine 

Hare. I would also like to thank the staff of the Oxford University 

Press for their encouragement and forbearance. 

Finally, I am grateful to Francoise, my wife, not only for her 

proof-reading but also for years of patience; and latterly some 

impatience, without which this book would never have been 

completed. 

Southampton, July 1978 Bee 
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1 Algebraic foundations 

1.1. Sets 

1.1.1. The notion of set 

A set is a coliection of distinct objects of any nature, which are 

called its elements or members. The following are examples: 

The set of all fish in the Monaco Aquarium. 

The set of all International Phonetic Script symbols. 

The set of Seven Deadly Sins. 

These are all finite sets, i.e. sets having only a finite number of 

elements. As an example of an infinite set we have: 

The set of all positive integers. 

Here it will usually be convenient to represent sets by capital 

letters A, B, C,..., and elements of sets by lower case letters a, b, 

c,.... To indicate that an object x is an element of a set A we use 

the notation 

xeEA, 

which is read as ‘x belongs to A’. If x is not an element of A, we may 

write 

xéA, 

which is read as ‘x does not belong to A’. 

A set is completely determined by its elements, i.e. it is fully 

described by specifying which objects belong to it. Two sets A and B 

are said to be equal, A = B, if they have the same elements, i.e. if 

every element of A is an element of B and every element of B is an 

element of A. 

The number of elements in a finite set A is called the cardinality 

of A and is denoted by |A|. 

1.1.2. The specification of sets 

Particular sets are usually specified in one of two ways. The first 

method is to list all the elements of the set, between braces. For 
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example, to specify a set S whose elements are the integers 2, 3, 5, 

and 7 we may write 

S ={2, 3, 5, 7}. 

The order in which the elements are listed has no significance. Thus 

12.3, Sa Ih Stove ee 
Alternatively, it is often convenient to specify a set in terms of a 

' property which is characteristic of its elements, i.e. a property which 

all elements of the set and only elements of the set possess. In this 

case the following type of notation is used: 

P={x|x is a prime number}. 

This is read as ‘P is the set of all objects x such that x is a prime 

number’, or more simply as ‘P is the set of all prime numbers’. In 

this notation the symbol on the left of the vertical line | stands for a 

typical element of the set, while on the right of the vertical line is a 

statement about this typical element which serves to determine the 

set. 

Example 1.1. The set {q|q was a wife of Henry VIII} has the following 
elements: Catherine of Aragon, Anne Boleyn, Jane Seymour, Anne of 

Cléves, Catherine Howard, Catherine Parr. 

Example 1.2. Let P={x|x is a prime number}. Then the set S= 

{2, 3, 5, 7} can be defined by the statement 

S ={x|x ¢ P and x <8}, 

or more concisely, by the statement 

S={xeP|x <8}, 

which is read as ‘S is the set of all elements x of P such that x is less than 8’. 

1.1.3. Subsets 

Given two sets A and B, the set B is said to be subset of A if every 
element of B is an element of A. The statement ‘B is a subset of A’ 
is written symbolically as 

BCA or ADB. 

It will be noted that according to the above definition, a set A is 
always a subset of itself, AC A. Any subset B of A which is not 
equal to A is called a proper subset of A. The statement ‘B is a 
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proper subset of A’ is denoted by 

BCA -or ADB. 

If ACB and B CA, then every element of A is an element of B 

and every element of B is an element of A. Hence, from our 

definition of equality, 

if ACB and BCA then A=B. 

In later sections we shall sometimes be faced with the problem of 

proving that two sets are equal; the above statement suggests a 

two-pronged attack on such a problem, for it follows from this 

statement that to prove the equality of two sets A and B, it is 

sufficient to demonstrate that (i) AC B and (ii) BCA. 

1.1.4. Union and intersection 

There are various ways of combining sets to form other sets, 

which will be presented in this and the following sections. 

If A and B are sets, then their union A U B is defined by 

AUB={x|xeAorxeB} 

and their intersection A() B is defined by 

AN B={x|xeAandx eB}. 

In other words, the union A UB is the set of all elements which 
belong to A or to B (or to both); whereas the intersection A B is 

the set of all those elements common to both A and B. 

Example 1.3. If S={2,3,5,7} and T={1,2,3}, then SUT= 

41. 253551) ANG S4 | r= 1253}: 

If two sets A and B have no element in common, they are said to 

be disjoint. 

It will be noted that if A and B are disjoint then the set AM B 

does not contain any elements. However, for our purposes the 

concept of a set which contains no elements is quite acceptable, and 

indeed very useful: we shall call this set the empty set and denote it 

by the symbol ¢. Thus if A and B are disjoint, Af) B =¢. The 

empty set is a subset of any set A. (Indeed, since ¢ does not contain 

any elements at all, it does not contain any elements which do not 

belong to A.) 
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The operations of union and intersection have several important 

properties. First, it is evident from the definitions of these opera- 

tions that they obey the idempotent laws 

AUA=A and ANA=A, 

and the commutative laws 

AUB=BUA and ANB=BNA, 

for all sets A, B. 

They also obey the associative laws 

(AUB)UC=AU(BUC) and (ANB)NC=AN(BNOC), 

and the distributive laws 

AU(BNC)=(AUB)N(AUC) 

and 

AN(BUC)=(ANB)U(ANC), 

for all sets A, B, and C. These identities can be proved formally by 

the method suggested in Section 1.1.3, which is demonstrated in the 
next example. 

Example 1.4. To prove, that AM (BUC)=(AN B)U(ANC), for all 

sets A, B, C. 

Proof. (i) Ifx ¢e AM (BUC), then x €¢ A, and x € B or x € C. In the first case 

x €Aand x e€B,hence x € Af) B. Inthe second case x € A and x € C, hence 

x€ AMC. Hence in both cases, xe ANB or xe ANC, so that xe 

(AMB)U(ANMC). This proves that 

AN(BUC)C(ANB)U(ANC). 

(ii) Conversely, if x «(AM B)U(ANC) then xe ANB orxe ANC In 

the first case x ¢ A and x € B, and similarly, in the second case x € A and 

x €C. Hence in both cases xe A and xe BUC, soxe AN(BUC). This 

proves that 

(AN B)U(ANC)CAN(BUC). 

Combining the final relations of paragraphs (i) and (ii) we conclude that 

ANM(BUC)=(AN B)U(ANC). 
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1.1.5. Difference and complement 

If A and B are sets then the difference A — B is defined by 

A-B={x|xeA and x¢ B}. 

In other words, the difference A — B is the set of all those elements 

of A which do not belong to B. If B is a subset of A then A —B is 

sometimes called the complement of B in A. 

Example 1.5. If S ={2, 3, 5, 7} and T = {1, 2, 3} then S — T ={5, 7} and 

T-S={l}. 

1.1.6. Ordered pairs, and products of sets 

In a game of tennis the score is declared simply by saying, for 

instance, ‘forty, thirty’. Such a declaration is unambiguous because 

it is understood that the first number of the pair is the score of the 

person serving the ball, and the second the score of his opponent. 

Thus if one declared the score as ‘thirty, forty’ when one should say 

‘forty, thirty’, the person serving the ball would probably complain. 

In mathematical terms, the score in a game of tennis is an example 

of an ordered pair of objects (which in this case are numbers). 

If x and y are objects, we shall denote by (x, y) the pair consisting 

of x and y in that order. Two ordered pairs (u, v) and (x, y) are said 

to be equal if and only if w= x and v = y. We describe x as the first 

component and y as the second component of (x, y). 

If A and B are sets, then the Cartesian product A X B of A and B 

is the set of all ordered pairs (x, y) such that xe A and yeB. In 

symbols, 

AX B={(x, y)|x ¢A and ye B}. 

Example 1.6. Let P = {a, b} and Q =({1, 2, 3}. Then 

Px Q={(a, 1), (6, 1), (a, 2), (b, 2), (a, 3), (b, 3)}; 

Qx P={(1, a), (1, 5), (2, a), (2, b), (3, a), (3, b)}; 

Px P={(a, a), (a, b), (b, a), (b, b)}. 

1.1.7. Sets of sets 

The notion of a set whose elements are themselves sets will not 

be entirely unfamiliar: For instance, the European Economic 
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Community is a set of sets (nations) of people. In later sections we 

shall frequently encounter sets of sets, and in particular sets of the 

kind defined below: 

If A is any set, then the power set P(A) of A is the set of all subsets 

of A. Thus 

P(A) ={X |X CA}. 

Example 1.7. Let A ={x, y, z}. Then 

P(A) ={d, {x}, fy}, {2}, {x yh, {x zh Ly, zh te y, Zz}. 

The operations of union and intersection can be defined for a set 

of sets, as follows: 

Let ¥ be any set of sets. Then the union UF is the set of all 

objects which belong to at least one member of ¥, that is 

US ={x|x <A for at least one Ac F}, 

and the intersection (\F is the set of all objects which belong to all 

the members of Y, that is 

NS ={x|x eA forall Ac SF. 

If S is a finite set of sets, say S={Aj, Ao, ..., An}, then in place of 

the notation US we often write 

Ly) Ay or A,VA2U::: UA, 

k=1 

and similarly, in place of 1S we write 

mee or AiNA2n::: Ay. 

k=1 

Example 1.8. Let = {A, B, C} where A = {2, 3, 5, 7}, B ={1, 3, 5}, and 

C=(1, 2, 3}. Then UF ={1; 2,3; 5, 7} and VF ={3} 

As we have seen, the power set P(A) of aset A is constructed by 

collecting together all the subsets of A. However, there are other 

ways of constructing new sets from subsets of A, the following being 

of special importance: 

A set # of non-empty subsets of a set A is called a covering of A if 

each element of A belongs to at least one member of Y, i.e. if 

US=A. 
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A covering # of A is described as a partition of A if it has the 

additional property that all distinct pairs of elements of ¥ are 

disjoint. In other words, is a partition of A if each element of A 

belongs to one and only one member of Y, and thus ¥ ‘decomposes’ 

A into various ‘parts’. 

Example 1.9. If S={a, b,c, d,e}, then {{a, b}, {b, c, d}, {b, c, e}} and 

{{a, b}, {c, d, e}} and {{a}, {b}, {c}, {d}, {e}} are three coverings of S, the last 
two being partitions. 

Example 1.10. Let A be the set of letters of the alphabet: 

AL=AGQGDECs og Zhe 

We may ‘classify’ these letters, according to whether they are vowels or 

consonants, obtaining the two ‘classes’ of letters 

V ={xceA|x isa vowel} = {a, e, i, 0, u}, 

C={x € A|x is a consonant} = {b, c, d, f,..., z}. 

The set {V, C}is a partition of A. Any ‘classification’ of a set of objects such 
that each object falls into one and only class results in a partition. 

Exercises 

1.1. Prove that for any sets A and B, the three conditions A C B, AUB = 

B, and ANB =A are mutually equivalent. 

1.2. Prove that for any sets A and B, 

AVU(ANB)=A and AN(AUB)=A. 

1.3. Prove that 

A-(BUC)=(A-B)n(A-C) 

and 

A-—(BNC)=(A-B)V(A-C). 

1.4. For anysets A and B, we define the symmetric difference of A and B as 

the set 

AAB=(AUB)-(ANB). 

Prove the following identities: 

(i) AAB=BAA 
(ii) AAA=¢@ 
(iii) (AAB)AC=AA(BAC) 
(iv) AN(BAC)=(ANB)A(ANC). 
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1.2. Functions 

1.2.1. The notion of function 

Let A and B be any sets. Then a function f from A to B is 

determined by any rule which assigns to each element x of A a 

single element of B; this element of B is called the image of x under 

f, and is denoted by f(x). 
It will be convenient to use the notation 

f:A>B 

to indicate that f is a function from A to B. The set A is called the 

domain of f, and B its codomain. The set f(A) of all images f(x) of 

elements x €A is called the range of f. Note that f(A) may be a 

proper subset of B. 

Example 1.11. Let P be the set of all living people and let N be the set of 

non-negative integers. Then we can define a function f from P to N by the 

rule: if x € P then f(x) is the age in years of x. 

Example 1.12. Let R be the set of real numbers, and R* the set of positive 

real numbers. Then we can define a function from R to R® by the rule: if 

x ER then f(x) =e”. 

It is sometimes helpful to represent a function geometrically. For 

instance, Fig. 1.1 depicts the function f from the set A = {p, q, r} to 

the set B ={w, x, y, z} defined by the assignments 

f(ip)=w, f(qad=y, = f(r) =x. 

Thus we may consider that a function f: A > B ‘projects’ or ‘maps’ 

each element of A to its image in B; indeed, functions are 

frequently called mappings. 

A B A B A B 

w P Pp ow eee Aer ule 

x q q x 

q a y 
yy r 7 y 

Li Zz 

ez fone e eetd JS @9———___—» @7 

FIG. 1.1 FIG. 1.2 FIG. 1.3 
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Two functions f: A> B and g: A>B with the same domain A 
and codomain B are called equal if f(x) = g(x) for every element x 
in A. 

1.2.2. Injective, surjective, and bijective functions 

A function f: A > B is said to be injective if, whenever x and x’ 

are distinct elements of A, f(x) and f(x’) are distinct elements of B. 

An injective function from A to B is often called: a one-to-one 

transformation of A into B. 

A function f: A > B is called surjective when its range is the whole 

codomain, i.e. for each element y¢B there exists at least one 

element x € A such that f(x) =y 

Finally, a function f: A>B is said to be bijective if it is both 

injective and surjective. 

Example 1.13. The function f: P>N of Example 1.11 is not injective, 

since f(x) = f(x’) for any two people x and x’ of the same age. Neither is it 

surjective, for the set N contains integers which: are not ages of living 

people. 

Example 1.14. The function depicted in Fig. 1.1 is injective but not 

surjective, whereas the function of Fig. 1.2 is surjective but not injective. 

Figure 1.3 represents a bijective function. 

1.2.3. Inverse functions 

Any bijective function f: A> B has the property that, for each 

element y € B there exists a unique element x € A such that f(x) =y 

(The existence of such an element x € A is assured by the fact that 

the function is surjective; the uniqueness of x follows from the fact 

that the function is injective.) Hence, it is possible to define a 

function f ': B>A by the rule: if y € B then f(y) =x, where x is 

the element of A such that f(x) = y. The function f _': B > A is called 

the inverse of f: A> B. It will be observed that f ': B>A is itself 

bijective, and that its inverse is f: A> B again. 

Example 1.15. The function f: R>R*, where f(x) =e* for each x ER, is 

bijective. Its inverse f-': R* > R is given by the rule: if x ER™ then f ‘(x)= 

In x. 
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Example 1.16. In some shops the prices of articles are disguised by means 

of a ‘price code’, which is a bijective function f: A>B, where A= 

{0, 1, 2,..., 9}, B is a set of ten alphabetic characters which, taken in some 

order, form a codeword (such as ‘mackintosh’), and the rule of assignment is 

of the form: if n € A then f(n) is the (n +1)th letter of the codeword. Thus if 

the codeword used is ‘mackintosh’, a price of £6.25 is specified on a price 

tag as t.cn. To interpret this, the shopkeeper uses the assignment rule of the 

inverse function f ': B>A. 

1.2.4. Composition of functions 

Let us suppose that A, B, C, and D are sets and that we have two 

functions f: A> B and g: C> D. If f(A) CC that is if the range of f 

is contained in the domain of g, then the result of applying first f and 

then g may be regarded as the application of a single function from 

A to D. This function, which is called the composite of f and g (in 

that order), and denoted by g°f: A>D, is defined by the rule 

ifxeA then (gef)(x)=g(f(x)). 

Example 1.17. Let f:R->R and g:R->R be two functions defined 
respectively by the rules: f(x) =2x for each x ER, and g(x) =x? for each 
x €R. Then the function gof: R>R is defined by the rule 

(g.°f)(x) = g(f(x))=4x7, foreachxeR 

while fog: R>R is defined by the rule 

(fog)(x) = f(g(x)) =2x?, for each x ER. 

1.3. Binary and n-ary operations 

1.3.1. Binary operations on a set 

If x and y are any two real numbers, then there are various ways 
of ‘operating’ on x and y which give another real number. For 
example, the operation of addition gives their sum x+y, the 
operation of multiplication gives their product x x y, and the 
subtraction of y from x gives their difference x — y. These are all 
examples of binary operations on the set R. Several other binary 
operations were introduced earlier in this chapter: For instance, if 
P(S) is the power set of a given set S, then from any two sets 
X, Y € P(S) we may construct new sets, X U Y and Xn Y, which 
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also belong to P(S); here the operations U and « are both binary 

operations on A(S). 

In general terms, if A is any set, then a binary operation ° on A is 

defined as a function ° from A XA to A. In other words, a binary 

operation ° on a set A is simply a function ° which assigns, to each 

ordered pair (x, y) of elements of A, a unique element °(x, y) of A. 

Since this concept is a generalization of the familiar notions of 

‘addition’ and ‘multiplication’, it will be helpful to use here the 

symbolism 
xoy 

rather than °(x, y), for the image of (x, y) under . 

Example 1.18. We can define a binary operation on the set § = {0, 1, 2} 

by the rule: if x, y ¢ S then x°y = max {x, y}. This operation is represented 
geometrically in Fig. 1.4. It can also be represented by its operation table 

(Fig. 1.5), where each element x° y appears in the cell whose row is labelled 

‘x’ and whose column is labelled ‘y’. 

SxS S 

(0,0) ee 

(0,1) : 

aw 

(1,0) 

(1,1) 1 

(1,2) 

(2,0) Sey 

(2,1) ie 2 

(2,2) si 

Fic. 1.4 FIG. 1.5 

1.3.2. Idempotent, commutative, and associative operations 

Particular binary operations may possess certain important pro- 

perties, which are defined below: 

Let A be any set. Then an operation ° on A is 

(i) idempotent if x°ex =x forall xeA, 

(ii) commutative if x ey =y ex for all x, ye A, 

(iii) associative if (xe y)ez=x°(y°z) forall x, y,zeEA. 
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Example 1.19. The operations of addition and multiplication on the set 

of real numbers are both commutative, and both associative, but not 

idempotent. The operation of subtraction does not have any of the proper- 

ties (i)—(iii). 

Example 1.20. Let A(S) be the power set of any given set S. Then the 

operations U and m on A(S) both possess all the properties (i)—(iii). (cf. 

Section 1.1.4). 

Example 1.21. The operation defined in Example 1.18 has all the 

properties (i)—(iii). 

Let be any binary operation on a set A. Then, given any number 

of elements x1, X2,..., Xn of A, we define the repeated combination 

X1°X2°*+:+°xX,, for n =2, by the recursive formula 

Hy OHO? 9 OK, =(HPO NR. 2° OK 4) ON, 

This determines the arrangement of parentheses (and hence the 

order of combination) for n elements, given that for n — 1 elements. 

As an example, the application of this formula to the case where 

n =4 gives 

X12 XQ °XZONX4 = (X1 9X22 X3) 9X4 = ((X1 2X2) 9X3) 0X4 

Now for n > 2, there are obviously other possible ways of arrang- 

ing the parentheses—for instance, if n =4 there are four other 

arrangements, Viz. (x1 ° (X2° X3)) ° Xa, (X1°X2)°(x3° X4), 

X1° ((x2°x3)°xX4), and x;°(x2°(x3°x4))—and in general these 

would all give different results. However, if the operation © is 

associative, then the value of any combination of elements of A, 

obtained by repeated application of °, does not depend on the 

arrangement of parentheses. This ‘generalized associative law’ can 

be proved by induction, as follows: 

First, it follows immediately from the definition (iii) above of 

associativity that the law is obeyed for all combinations of three 

elements. To prove that it holds for all combinations of n elements, 

where n > 3, let us assume as an induction hypothesis that the law 

holds for all combinations of fewer than n elements. Now in 

whatever order we combine n elements x1, X2,..., Xn, the last step 

is to make a combination of the form 

(opera Pewee ie (resto ne Baa) 
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where k is some integer in the range 1, 2,..., 1 —1, the combina- 
tions X1°xX2°°* ox, and Xy41°° + OX, having been calculated 
previously. By the induction hypothesis, the values of 
X1°X2°°**+°ox, and x, °---°x, do not depend on the way in which 
their parentheses were arranged. Furthermore, for any value of k in 
thesrange 1, 2:.0., w= 2; 

(PD OX) 8 ee xy) 

SAN RO OK, O(N 9.2 (Kegs o seo) 

and therefore, since ° is associative, 

Ez oO) (NE OK, ) 

=(%1°XxX2°°: oN ESa) SW pan'e = OK). 

It follows that for all values of k in the range 1, 2,...,—2, 

(re ae Ah) ip OX, ) AI OO ee, 1) oe 

FXO XQ OT OX, 
as required. ; 

There is also a ‘generalized associative and commutative law’, 

which asserts that if an operation © on A is both associative and 

commutative, then the value of any combination of elements of A 

(obtained by repeated application of °) is independent of both the 

order and the grouping of the elements. 

1.3.3. Unit and null elements 

Let A be any set, and let > be a binary operation on A. Then any 

element e of A which has the property 

xee=x=eex, forallxeA, 

is called a unit element (or a neutral element) for the operation °. 

For any particular binary operation ° on a set A, the set A does 

not necessarily contain a unit element; but if A does contain such an 

element, it is unique. For suppose that A contains two distinct unit 

elements e and e’ for °; then putting x =e’ in the equation x °e = 

x =e°Xx gives 

ece=e' =er°e, 

while replacing e by e’ and putting x =e gives 

ere’ =e =e'°@, 

whence e = e’, contradicting our initial assumption. 
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Example 1.22. The number 1 is a unit element for ordinary multi- 

plication, since 1 x x = x = x X 1 for all x € R. The number 0 is a unit element 

for ordinary addition, since 0+ x =x =x +0, for all x ER. 

Example 1.23. Languages over an alphabet. This example introduces 

some concepts of the algebraic theory of languages, which will be applied 

later to the enumeration of paths on graphs. 

We call any finite set of symbols an alphabet, and describe the elements of 

an alphabet as its letters. A word (or string) over an alphabet > is a finite 

sequence of zero or more letters of &. The sequence of zero letters is called 

the empty word, and is denoted by A. Thus 

A, a, cab, dada, baaa 

are all words over the alphabet {a, b, c, d}. The set of all words over an 

alphabet = is denoted by =*, and the subsets of =* are called languages over 
the alphabet >. 

If P and Q are words over an alphabet >, then the sequence of letters 

obtained by concatenating or ‘linking together’ P and Q is also a word over 

x. Hence concatenation is a binary operation on =*. Obviously, conca- 

tenation is not commutative: For instance, denoting concatenation on the 

English alphabet by °, we have 

se°ver=sever whereas ver°se = verse. 

However, it is evident that concatenation is associative: 

(joy ° ful) ¢ ness = joy ¢ (ful ° ness) = joyfulness. 

It will also be noted that for any word P of >*, 

PcoAX=P=AcP. 

Thus A is the unit element for concatenation on 5%. 

Now let be a binary operation on aset A, and let us suppose that 
A has a unit element e for the operation. Thenit may happen that a 
given element x € A has an inverse with respect to °, that is to say, 
there may exist an element ¥€ A such that 

¥°XRHe=7 ox: 

It is easily proved that if the operation ° is associative then the 
inverse of any given element x, when it exists, is unique. (We leave 
the proof as an exercise for the reader.) 
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Example 1.24. With respect to the operation of addition on R, every 

number x €R has an inverse, which is —x. With respect to multiplication, 

every number x €R other than 0 has an inverse, which is 1/x. 

Given a set A and a binary operation ° on A, we call any element n 

of A which has the property 

x°n=n=noex, forallxeA, 

a null element (or zero element) for the operation °. As with unit 

elements, a given binary operation does not necessarily have a null 

element, but if it does have one, then this is unique. 

Example 1.25. The number 0 is a null element for ordinary multi- 

plication, since 0X x =0=0 x for all x €R; there is no null element for 

ordinary addition. 

Example 1.26. For the operation of Example 1.18, the number 0 is a unit 

element, while the number 2 is a null element. 

Example 1.27. For the operation U on the power set A(S) of a given set 
S, the unit and null elements are ¢ and S respectively, since X Ud = X and 

X US =S, for all X ¢ A(S). For the operation - these roles are reversed, 

i.e. d is the null element and S is the unit element. 

1.3.4. Cancellation 

Let A be a set equipped with a binary operation °. Then an 

element x € A is said to be left-cancellative (with respect to °) if 

xey=xez impliesthat y=z 

or, to give an equivalent condition, if 

y#z impliesthat xcoy#x oz. 

Similarly, an element x is right-cancellative if 

yox=zox impliesthat y=z. 

An element which is both left- and right-cancellative is described 

simply as being cancellative. If every element of A is cancellative, 

other than the null element for o (if this exists), we say that the 

operation o has the cancellation property. 
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Example 1.28. On the set R of real numbers, the operations of addition 

and multiplication both have the cancellation property, but the operation 

x ° y =max (x, y} does not possess this property. 

1.3.5. Distributivity 

Let * and © be two binary operations on a set A. Then the 

operation * is distributive over ° from the left if 

x*(yez)=(x *y)e(x*z), forallx, y,zeA, (1) 

and it is distributive over ° from the right if 

(yoz)*x=(y*x)e(z*x), forallx, y,zeA. (2) 

If both the laws (1) and (2) are obeyed, we say simply that the 

operation * is distributive over the operation °. 

It is evident that, if the operation * is commutative, each of the 

distributive laws (1) and (2) implies the other. 

Example 1.29. On the power set A(A) of any set A, the operations of 

union and intersection are each distributive over the other. 

Now let us suppose that a set A is equipped with two binary 

operations * and °, where * is distributive over °, and the operation ° 

is associative. Then, from the distributive law (1) above we obtain 

the n-term left-distributive law 

X*(y1° yoo" ++ on) = (x * yi) o (x * yo)o*+-o(x *y,), (1) 

and from (2) above we obtain the m-term right-distributive law 

(X1°X2°°* OX) ¥y =(X1 * y)o (Ka Fy) e+ ++ O(n *Y). (2’) 

The formulae (1’) and (2’) are easily proved, by induction on 1 and 

m. Combining these formulae, we get the generalized distributive 

law: 

(Mg eke) Ya SV) ear ay ee as Key) 

aS SIR BE Mer Sen FV le 

1.3.6. n-ary operations 

In Section 1.3.1 we defined a binary operation on a set A as a 
function from A’ to _A (where A” denotes the Cartesian product 
A x A). More generally, given a set A and an integer n, we describe 
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any function from A” to A as an n-ary operation on A. For n = 1 we 
have a unary operation, which is just a function f: A > A in the usual 
sense; for instance the square-root operation is a unary operation 
onR’. . 
When we have several operations (of any kind) defined on a set 

A, we may describe the collection of these operations as an alge- 
braic structure on A; the set A with this structure is also called an 

algebra. Some particular types of algebras will be presented in 
Section 1.5. 

Exercises 

1.5. Test the following operations a ° 6 on real numbers a and b for being 

idempotent, commutative, and associative: 

(i) acb=(at+b)/2, 

(ii) aob=(axb)/2, 

(iii) acb=a, 

(iv) acb=min {a, d}, 

(Wrage. b— ab —(aoab): 

1.6. Let © be a binary operation on a set A. Prove that if an element x is 

both a unit element and a null element for °, then A = {x}. 

1.7. The table below defines a binary operation ° on the set S = {O, OH, A}. 

By inspection of the table, determine whether this operation is 

idempotent, and whether it is commutative. Does S contain a unit 

element for °? If so, which elements of S are invertible, and what are 

their inverses? Does S contain a null element for °? Does the opera- 

tion ° have the cancellation property? 

eo Oe ey A 

@CunOrels) 

J Ko s® 

BA LX SD 

1.4. Binary Relations 

1.4.1. The concept of relation 

It frequently happens that two objects are ‘related’ or associated 

with each other in some way. For instance, we may say of two people 

x and y that ‘x is the mother of y’, or ‘x is older than y’. And if x and 
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y are positive integers, we may have that ‘x is a multiple of y’ or 

‘x <y’. Each of these statements is said to express a relation 

between two objects. 

In the following general discussion, the symbol & will be used to 

denote an arbitrary relation between two objects (thus ‘2’ may 

stand for ‘is the mother of’, or ‘is older than’, or ‘is a multiple of’, 

etc.), and we shall write 

xRy 

to indicate that x stands in the relation & to y. 

Now let A and B be any sets. Then & is called a binary relation 

from A to B if for any given pair (x, y) of A x B, the condition x R y 

either does, or does not, hold. (In other words, & is a binary relation 

from A to B if, for each pair (x, y)¢ A X B, the statement ‘x R y’ is 

meaningful, being either true or false for that particular pair.) In the 

particular case where A = B, we describe a relation 2 from A to B 

as a relation on A. 

Example 1.30. Let P be the set of all living people, and let M be the set of 

months of the year. Then ‘was born in the month of’ denotes a binary 

relation from P to M, while the expression ‘is a parent of’ denotes a relation 

on P. 

The concept of a binary relation from a set A to a set B is closely 

connected with that of a function from A to B. Indeed, each 

function f: A>B determines a binary relation ® from A to B, 

through the rule 

xRy ifandonlyif y=f(x). 

Conversely if @ is a given relation from A to B, such that for each 
x €A, there is precisely one y€ B withx Ry, then ® determines a 
function f: A > B, through the rule 

y=f(x) ifandonlyif x@y. 

In this sense, the concept of a relation is a generalization of that of a 
function. 

1.4.2. Complementary and converse relations 

For any relation & from a set A to a set B there exists a 
complementary relation or negation R, such that for each pair 



Algebraic foundations 19 

(x, y)€ AX B, x Ry holds if and only if x R y does not hold. Also, 
for any relation 2 from A to B we can define a converse relation R' 
from B to A, by the rule 

y&R'x ifandonlyif xRy, forall(x,y)eAXB. 

Example 1.31. The relation ‘is a parent of’ on the set of living people has 

the complement ‘is not a parent of’, while its converse is the relation ‘is a 

child of’. 

1.4.3. Some special kinds of relations on a set 

Let A be any set, and let @ be a binary relation on A. Then & is 

said to be x 

Reflexive when x Rx forall xe A; 

Anti-reflexive whenx &x fornoxe A; 

Symmetric whenx Ry implies VA XS 

Anti-symmetric when x&y and yx together imply x =y; 

Transitive when x Ry and y &z together imply x & z. 

Example 1.32. The relation ‘has the same parents as’ on the set of living 

people is reflexive, symmetric, and transitive. 

Example 1.33. The relation < on R is reflexive, anti-symmetric, and 

transitive, while the relation < is anti-reflexive, anti-symmetric, and 

transitive. 

A relation on a set A is called a pre-ordering of A when it is 

reflexive and transitive. A pre-ordering which is symmetric is called 

an equivalence relation; whereas an anti-symmetric pre-ordering is 

called an ordering of A. 

Thus in Example 1.32 the relation ‘has the same parents as’ is an 

equivalence relation, whereas in Example 1.33 the relation S is an 

ordering of R. These two types of relations, which are of particular 

importance, are considered in more detail in the following sections. 

1.4.4, Equivalence relations 

A relation on aset A is called an equivalence relation on A when it 

is reflexive, symmetric, and transitive. 



20 Algebraic foundations 

There is an important connection between equivalence relations 

and partitions, which were introduced in Section 1.1.7. Let 2 be an 

equivalence relation on a set A, and for each element x € A let us 

define the set 

E,={yeA|xRy}, 

called the equivalence class of x (with respect to R). Note that since 

R is reflexive, x ¢ E,, for each x € A. 

Now for each pair of elements x and y of A, the equivalence 

classes E, and Ey are either equal or disjoint, with 

(i), 2 =.£,, if x Z y, 

(ii) A, nBy=¢, ifx®Ry. 

This can be proved as follows: 

(i) Suppose x Ry. Then, for each element ze F,, x Ry, and 

y&z, and therefore (by transitivity) x 2z, which implies that 

z€E,; hence E, CE,. Also, by symmetry y & x, and reversing the 

roles of x and y in the above argument gives EF, C F,. Combining 

these results, we obtain E, = EF). 

(ii) Alternatively, suppose x # y. Then E, and Ey, cannot have 

any elements in common; for if an element z belonged to both E, 

and £,, it would follow that x#z and y&Rz, and hence (by 
symmetry) that x # z and z & y, and therefore (by transitivity) that 
x Ry; but this would be contrary to our initial assumption that 
wR y. 

Since every element of A belongs to some equivalence class, and 
distinct equivalence classes are disjoint, the set of all equivalence 
classes is a partition of A (as defined in Section 1.1.8). This partition 
is called the partition of A induced by R, and is denoted by A/&. 

Conversely, given any partition ¥Y of a set A we may define a 
relation % on A by the rule: x @ y if and only if x and y belong to 
the same member of &. It is easy to verify that this is an equivalence 
relation on A, and that the equivalence classes with respect to ® are 
the sets which are members of &. 

Example 1.34. Let P be the set of all living people, and let @ be the 
equivalence relation ‘was born under the same sign of the Zodiac as’. Then 
for any person x, the equivalence class of x (with respect to ®) is the set of 
all people born under the same sign as x. The twelve distinct sets of this kind 
constitute a partition of P. 



Algebraic foundations 2 

1.4.5. Orderings 

A relation on aset A is called an ordering of A when it is reflexive, 

anti-symmetric, and transitive. Orderings are often indicated by the 

special relation symbol = (the notation x = y is read as ‘x is inferior 

or equal to y’). Using this notation, the characteristic properties of 

an ordering can be described as follows: 

(i) x Xx, forallx <A; (reflexivity) 

(ii) if x <y and y Xx, then x =y; (anti-symmetry) 

(iii) if x <y and y Xz, then x Xz. (transitivity) 

Two elements x and y of A are said to be comparable if x <y or 

y <x; otherwise they are incomparable. If all the elements of A 

taken two at a time are comparable, the ordering = of A is total, 

and A is said to be a totally ordered set or chain. 

Example 1.35. Let A be any set. Then the inclusion relation C on P(A) 

is an ordering of P(A), since (i) X CX, for all X € P(A), (ii) if X C Y and 

Y CX, then X = Y, and (iii) if X C Y and Y CZ, then X C Z. However, if 

A contains more than one element, this ordering C of A(A) is not total: 

For if A contains two distinct elements x and y say, then P(A) contains the 

two distinct elements {x} and {y}, and these are incomparable, i.e. neither 

{x} C{y} nor {y} C {x} holds. 

Example 1.36. The ordering < of the set of real numbers is total, since 

for any real numbers x and y, either x Sy or ySx. 

It will be convenient to adopt the following conventions: x > y 

(read as ‘x is superior or equal to y’) has the same significance as 

y <x; x <y (read as ‘x is inferior to y’) means x <y but x # y; and 

x >y (read as ‘x is superior to y’) means x > y but x #y. 

An ordered set having only a few elements can be depicted 

conveniently by a Hasse diagram, in which each element is 

represented by a point, so placed that if x<y then the point 

representing x lies below the point representing y; lines are drawn 

to connect elements x, y such that y covers x, i.e. y > x and there is 

no element z such that y > z > x. For example, Fig. 1.6 represents 

the power set P(S) of aset S = {a, b, c}, ordered by the set inclusion 

relation. 
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{a,b,c} 

FIG. 1.6 

Least and greatest elements. If an ordered set A contains an element 

¢ such that @ <x for all x € A, then ¢ is called the least element of 

A. A set can have at most one least element: For if ¢ and ¢’ were 

two least elements, we would have ¢ < ¢’ and ¢' X @, hence (by the 

anti-symmetry rule (ii) above) ¢ = @’. 

If.A contains an element u such that x <u for all x € A, then u is 

the greatest element of A. A set can have at most one greatest 

element. 

Minimal and maximal elements. An element m of a set A is a 

minimal element of A if there does not exist any element in A which 

is strictly inferior to m: 

xxm_ forallxeA. 

In any set with a least element ¢, clearly ¢ is the only minimal 

element. However, a minimal element, if it exists, is not necessarily 

unique: For instance, the set {{a}, {b}, {a, b}} ordered by the 
inclusion relation C has two minimal elements, {a} and {b}. 

In the same way, an element m of aset A is a maximal element of 

A if there does not exist any element in A which is strictly superior 

to m. 

Greatest lower and least upper bounds. Let B be any subset of an 

ordered set A. Then we call an element p € A a lower bound of B if 

p <x for all x € B; similarly, we call p¢ A an upper bound of B if 
px for all x € B. If the set of lower bounds of B has a greatest 
element, this is called the greatest lower bound (g.l.b.) of B; 
similarly, if the set of upper bounds of B has a least element, this is 
called the least upper bound (l.u.b.) of B. 
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Example 1.37. The relation x|y (meaning that x is a factor of y) is an 

ordering of the set J of all positive integers. With respect to this ordering, J 

has a least element (the integer 1). For any subset B of J, any common 

factor of the integers in B is a lower bound of B; the g.1.b. of B is just the 

highest common factor of the integers in B. 

Exercises 

1.8. Test the following relations on the set of living people for being 

reflexive, anti-reflexive, symmetric, anti-symmetric, and transitive: 

(i) is taller than 

(ii) lives within a mile of 

(iii) is married to. 

1.9. Let < bean ordering on aset A. Prove that in A, x and y are equal 

if and only if, for any element z€A, z<x implies z<y and 

conversely. 

1.10. Let = be an alphabet, with a total ordering <. Let 2* be the set of all 

words on &, and let a be the relation on =* defined by the rule: for 

any two words X =x,x2...X, and Y=yiy2...y, of 2*, XaY if 
either (i) m <n, and x; = y; for 1<is<m, or (ii) x; = y; for 1=i<k, 

and x, <y,, for some k =m, n. 

Prove that the relation a is a total ordering of =*. (The ordering a 

is called the lexicographic ordering of ~* associated with the 

alphabetic ordering =< of %.) 

1.5. Lattices 

1.5.1. Introduction 

We define a join-semilattice as an ordered set in which any two 

elements x and y have a least upper bound; we call this bound the 

join of x and y, and denote it by x v y. 

In asimilar fashion, we define a meet-semilattice as an ordered set 

in which any two elements x and y have a greatest lower bound; this 

bound is called the meet of x and y, and it is denoted by x  y. 

A lattice is an ordered set which is both a join-semilattice and a 

meet-semilattice. In other words, a lattice is an ordered set in which 

every pair of elements has a least upper bound and a greatest lower 

bound. 
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Example 1.38. The power set P(A) of a given set A, ordered by the 

inclusion relation C, is a lattice. For all X, Y<¢ A(A), X v Y=X UY and 

XNY=XAY. 

Example 1.39. Any chain is a lattice, in which x v y is simply the greater 

and x a y the lesser of x and y. One example is the set of real numbers with 

the usual ordering <, where x v y = max {x, y} and x a y = min {x, y}. 

Example 1.40. Of the four ordered sets whose Hasse diagrams are 

shown in Fig. 1.7, the first three are lattices. The fourth is a join-semilattice, 

but it is not a meet-semilattice since the elements c and d do not have a 

greatest lower bound. 

u u - 

u 

b b 
a c c b 

a a 

¢ ce d 

¢ ¢ 

(a) (b) (c) (d) 

FIG. 1.7 

1.5.2. Algebraic definition of a semilattice and lattice 

In the previous section we presented semilattices and lattices in 
terms of an order relation, but alternatively, we can regard a 
semilattice or lattice as a set equipped with one, or two, binary 
operations respectively. 

For instance, in a join-semilattice we may consider the formation 
of the element x v y from x and y as a binary operation defined on 
the semilattice. It is easily verified that this operation obeys the 
following laws: 

ON Xe (Idempotent law) 

xVyY=yvx (Commutative law) 

(xvy)vz=xv(yvz) (Associative law). 

Indeed, the idempotent and commutative laws follow immediately 
from the definition of a least upper bound; and since the l.u.b. of the 
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set {x, y, z} can be written either as (x vy)vz or x v(y vz), the 
associative law also holds. 

Conversely, let us consider a set A, equipped with a binary 
operation ° which is idempotent, commutative, and associative. Let 
us define a relation ® on A through the rule 

x&y ifandonlyif xey=y. 
Then, 

(i) since the operation ° is idempotent, & is reflexive: x ox =x 
implies x R x. 

(ii) R is anti-symmetric: the conditions x Ry and yRx are 

equivalent to x ° y = y and y ° x = x, from which it follows (by the 

commutativity of °) that x =y; 

(iii) & is transitive: the conditions x R y and y & z are equivalent 

to x°y=y and y°ez=z, from which it follows (by the asso- 

clativity of °) that x°z =x o(yoz)=(x°y)ez=yoz =z, which 

implies that x R z. 

Thus & is an ordering of A. 

Furthermore, the set A with ordering & is a join-semilattice, x ° y 

being the join of x and y. Indeed, x ® (x ° y) since 

xo(xoy)=(xex)oy=xey, 

and y ® (xe y) since 

ryeG@oy)=(xey)oy=xe(yoy)=xey, 

and therefore x ° y is an upper bound for x and y. If z is any other 

upper bound of x and y then x Rz and y Kz, hence x °z =z and 

y °z =z, and therefore 

(xey)oz=xo(yoz)=x°z =z, 

which implies that (x ° y) & z. It follows that x ° y is the least upper 

bound of x and y, which proves our assertion. 

It would have been possible, in place of the relation &, to consider 

its converse &', which can be defined directly in terms of the ° 

operation through the rule 

x&R'y ifandonlyif xoy=x. 

It is evident that @’ is also an ordering of A, and by a similar 

argument to our previous one we can show that the set A with 

ordering R' is a meet-semilattice, x ° y being the meet of x and y. 
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Thus, the set A, equipped with the operation °, can be regarded 

both as a join-semilattice and as a meet-semilattice. This justifies 

the following ‘algebraic’ definition: 

A semilattice is a set with a binary operation which is idempotent, 

commutative and associative. 

Using similar arguments, we can obtain an algebraic definition of 

a lattice by regarding the formation of the join x v y and the meet 

x Ay of x and y as two binary operations. By the definitions of the 

join and meet, the operations v and ~ obey the following laws: 

ley V0 — Qnd. -<Nha= x (Idempotent laws) 

L2 xvy=yvx and xay=yax (Commutative laws) 

L3. (wvy)vz and (xAy)Az (Associative laws) 

=xv(yvz) =x A(yAzZ) 

L4 xa(xvy)=x and xv(xay)=x (Absorption laws) 

The validity of L1-L3 has already been established; the first part of 

L4 follows from the fact that x <x v y, while the second part results 

from the fact that x =x y. 

In the algebraic description we start from these properties, and 

we define a lattice as a set equipped with two binary operations, 

denoted by v and a, which obey the laws L1—L4. The equivalence 

of this definition with that given in the previous section is 

established by the following theorem: 

Let L be a set with two binary operations v and jn satisfying 

L1-L4. Then an ordering < may be defined on L, by the rule 

ES xy ifandonlyif xvy=y, 

and relative to this ordering L is a lattice (as defined in Section 

1.5.1) in which x v y and x ny are respectively the join and meet of 

x and y. 

To prove the theorem, we first observe that 

L6 xvy=y ifandonlyif xany=x 

(Consistency law) 

For if x vy =y then (by L4) x =x a(x vy)=x Ay, and the con- 
verse holds by symmetry. Next, it follows from our discussion of 
semilattices that since the v operation on L is idempotent, com- 
mutative, and associative, the relation < defined by LS is indeed an 
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ordering, and relative to this ordering L is a join-semilattice in 

which x v y is the join of x and y. Similarly, since the a operation is 

idempotent, commutative, and associative, and (by L5 and L6) the 

ordering < can be expressed as 

L7 xy ifandonly if «x ny =x; 

the set L with the ordering = is a meet-semilattice in which x A y is 

the meet of x and y, which completes the proof. 

1.5.3. The principle of duality for lattices 

If in the identities L1-L4 we interchange the symbols v and a 

throughout, the identities are preserved. Moreover, when we 

interchange v and a, the condition x vy =y becomes xv y=y 

which (by L7) is equivalent to x v y = x; thus (by LS) the condition 

x ~<y becomes y <x, which can also be written as x =y. This 

suggests and essentially proves the following principle of duality: 

Every statement which is deducible from the laws L1-L4 and the 

definition L5 of the relation < remains valid if the operation symbols 

v and v* and the relation symbols < and > are interchanged 

throughout the statement. 

1.5.4. Some further properties of lattices 

(i) If a lattice L contains a least element then, by LS and L7, 

L8 dvx=x and drx=¢@_ forallxeL; 

thus the least element of L is the unit element for v and the null 

element for ~. Similarly, if a lattice L has a greatest element u, 

then 

L9 uvx=u and uax=x ~forallxeL, 

so u is the null element for v and the unit element for n. 

(ii) Every lattice has the following property: 

L10 The conditions x<z and y~<z are together equivalent to 

VVey =z. 

For if x <z and y Xz then (by LS) x vz =z and y vz =z, hence 

(xvy)vz=xv(yvz)=xVvz=Z, which implies that x v y <z, 

conversely, if x v y<z then (since xXx vy andy<xvy),x<z 

and y <z. Applying the duality principle to L10, we obtain 
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L10' The conditions z<x and z~<y are together equivalent to 

ZSXANY. 

(iii) In any lattice L, 

L11 x<yimpliesxvz<yvzandxaz~=<yQz, forallzeL. 

Indeed, if x <y then x vy =y, and therefore (x vz) v(yvz)= 

(x vy)v(zvz)=yvz, which implies that x vz~<yvz; that 

x A z<y a z follows by duality. The property L11 is expressed 

in words by saying that the operations v and a are isotone for the 

ordering =. 

1.5.5. Distributive lattices and complemented lattices 

A lattice L is said to be distributive if it satisfies the laws 

L112) xal(yvz)=@ay)v(xanz) forallx, y,zeL, 

L12’ xv(yaz)=(vy)A(cvz) forallx, y,zeéL. 

Actually these two laws are not independent: each implies the 

other. To show that L12 implies L12’ we have from L12 that 

(xvy)a(xvz)=[(xvy)ax]vLxvy)az] 

=x vi@ vadnz] (by L2 and L4) 

=xvi(eazviGn Zz) (by L2 and L12) 

=[x v(x az)]v(y az) (by L3) 

=xv(yaz) (by L4). 

By duality, it follows that L12' implies L12. 

Example 1.41. Any chain is a distributive lattice. For in a chain x A y is 

the lesser of x and y, while x v y is the greater of x and y. Thus x a (y vz) 

and (x a y) v (x Az) are both equal to x if x is inferior to y or z; and both are 

equal to y vz in the alternative case where x is superior to y and z. 

Now let us suppose that in a distributive lattice, three elements 

x, y, and z satisfy the conditions 

ZVK=ZVY Sanda zn x = ZN y: 
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Then, using the absorptive, commutative and distributive laws we 
obtain 

X=XV(ZAx)=xv(zaAy)=(xvz)a(xvy) 

=(yvz)a(yvx)=yv(zax)=yv(zay)=y. 

Thus, in any distributive lattice, 

L13 zvx=zvy and zax=zany_ togetherimply x=y. 

Complements. In a lattice with a least element ¢@ and a greatest 

element u, two elements x and y are said to be complementary 

whenever i 

xAy=q@ and xvy=u. 

‘An element which is complementary to x is also called a complement 

of x. 

Example 1.42. In any lattice L with a least element ¢ and a greatest 

element u, the element ¢ is the unique complement of u, and wu is the unique 

complement of ¢. However in general, the elements of L need not all have 

complements; for instance, in the lattice of Fig. 1.7(a), the elements a and b 

do not have complements. Alternatively, an element may have several 

complements; for example, in Fig. 1.7(b) each of the elements a, b, c is 

complementary to the other two. 

Example 1.43. Consider the lattice formed by the power set P(A) of a 

given set A, the operations v and a” being set union and intersection 

respectively. The least and greatest elements of this lattice are the null set @ 

and the set A respectively. Each element X € P(A) has exactly one 

complement, which is the set difference A — X (i.e. the complement of X in 

A in the set-theoretic sense). 

It will be observed that in a distributive lattice, a given element x 

can have at most one complement. For suppose that in such a lattice, 

two elements y and z satisfy the conditions 

xAy=q@ and xvy=u, 

xAz=q@ and xvz=u. 

Then 

XAy=xAz and xvy=xvz, 

and by L13 these conditions together imply that y = z. 
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In a distributive lattice, the unique complement of a given 

element x, when it exists, is usually denoted by x. 

A complemented lattice is a lattice with a least and greatest 

element, in which every element has at least one complement. 

Clearly, if a lattice is distributive and complemented, each of its 

elements has a unique complement. The lattices with these parti- 

cular properties are considered in more detail below. 

1.5.6. Boolean algebras 

A lattice which is distributive and complemented is called a 

Boolean lattice, or Boolean algebra. 

Example 1.44. The power set P(A) of a given set A, with binary 

operations U and 4, forms a Boolean algebra. (See Example 1.38.) 

Example 1.45. The lattice comprising two elements x and y with x < y is 

distributive and complemented, with x=y and y=x. It is called the 

two-element Boolean algebra. 

The two elements x and y of this algebra are often denoted by the 

numerals 0 and 1. In this case the ordering X can be interpreted as the usual 

ordering = of integers, and the operations v and a take the significance 

xvy=max {x,y},  xAy=min {x, y}, 

or in terms of the usual arithmetic operations, 

xvy=xt+y-—(xxXy), XAY=XXy. 

Clearly, since a Boolean algebra is distributive and complemen- 
ted, all the properties of distributive lattices and complemented 
lattices are properties of a Boolean algebra. Moreover, in a Boolean 
algebra we have 

L14 ¥=x (law of involution), 

LIS (xvy)=XA¥ and (xny)=Kvy 

(de Morgan’s laws). 

The law L14 follows immediately from the unicity of comple- 
ments. To prove the first part of L15 we observe that 

(XV Y)ACEAV)=(KAKAV)V (YAY) 

=(PAY)V(PGAX)=GrG=H 
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(xvy)V(KAY)=(XVyVE)A(xvyvy) 

=(uvy)A(uvx)=uvu=u, 

from which it follows that x 4 y is the complement of x v y. By a dual 

argument, x v y is the complement of x a y. 

Exercises 

ie 

Le yee 

Prove that if the binary operations v and 4 onaset L obey the laws 

L2-L4, then they obey thé law L1. 

Prove that in any lattice, the conditions w <x and y <z imply that 

wvySxvz and waAyNxaz. 

. Prove that in any lattice L, 

xA(yvz)=(xny)v(x¥ Az), 

xXV(yAzZ)<(xvy)a(xvz), 

for all x, y, z ¢ L. (These formulae are called the one-sided distributive 

laws.) 

. Let L be a distributive lattice, and let L’ be the lattice obtained by 

adding-to L two elements a and 6 such that a<x <b forall xeL. 

Prove that the lattice L’ is distributive. 

. A lattice L is said to be modular if x <z implies that x v(y A z)= 

(x vy) Az, for all x, y, z¢L. Prove that every distributive lattice is 

modular. 

. Prove that for any elements x and y of a Boolean algebra, 

xV(XAy)=xVy and xA(Kvy)=xAy. 



2 Graphs and algorithms 

2.1. Introduction 

IN THIS chapter we shall first present the basic concepts of graph 

theory, and then consider some particular kinds of graphs which are 

of special importance from both a theoretical and a practical 

viewpoint. In the course of our discussion we shall develop a 

number of methods of analysing graphs; these will usually be 

presented in the form of algorithms, from which computer pro- 

grams can easily be constructed. 

Many graph-theoretic algorithms are deceptively simple in 

appearance: in practice they may require a prohibitive amount of 

work. The final section of this chapter introduces the notion of the 

complexity of an algorithm—which is a measure of the work 

involved in executing it—and explains how this complexity can be 

determined. 

2.2. Graphs 

2.2.1. Definition of a graph 

A graph G =(X, U) consists of 

(i) a finite set X ={x1, x2,...,x,}, whose elements are called 

nodes, and 

(ii) a subset U of the Cartesian product X x X, the elements of 
which are called arcs. 

A graph can be depicted by a diagram in which nodes are 
represented by points in the plane, and each arc (x;, x;) is indicated 
by an arrow drawn from the point representing x; to the point 
representing x; For example, Fig. 2.1 represents the graph G = 
(X, U) where 

x = {x1, X2, X3, Xa}, 

U ={(%3, X2), (x1, %4), (% 2, X2), (Xo, Xa), (Ka, X9), (0a, 1), a, Xa). 

In discussing graphs we shall use the following terminology: 
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3 

FIG. 2.1 

Initial and terminal endpoints of an arc. For an arc (x;, x;), the node x; 

is the initial endpoint and the node x; is the terminal endpoint. Anarc 

whose endpoints are coincident, i.e. an arc of the form (x;, x;), is 

called a loop. 

Adjacent nodes, adjacent arcs. Two nodes are said to be adjacent if 

they are joined by an arc. Two arcs are adjacent if they have at least 

one common endpoint. 

Successors, predecessors, and neighbours of a node. In a graph 

G =(X, U), anode x; is called a successor of a node x; if (x;, x;)€ U; 

the set of allsuccessors of x; is denoted by I” (x;). Similarly, a node x; 

is called a predecessor of x; if (x;, x;) € U, and the set of all predeces- 

sors of x; is denoted by I” (x;). A node which is either a predecessor 

or a successor of a node x; is sometimes called a neighbour of x;; the 

set of all neighbours of x; is denoted by I(x;). It is evident that 

T(x;) =I" (x;) vl" (xi). 

Arcs incident to and from a node. If an arc u has node x; as its initial 

endpoint, we say that the arc u is incident from x;; whereas if an arc u 

has node x; as its terminal endpoint we say that arc u is incident to x;. 

The number of arcs incident from a node x; is called the exterior 

semi-degree or the out-degree of x;, and it is denoted by p *(x;); while 

the number of arcs incident to x; is called the interior semi-degree or 

in-degree of x;, and it is denoted by p (x;). 

Example 2.1. In the graph of Fig. 2.1, the node x, has the set of 

’successors I'*(x ) ={x>, x4} and the set of predecessors I (x2) = {x1, x2, x3}; 
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the out-degree of this node is p*(x2)=|I'*(x2)|=2, and its in-degree is 

p (x2)= IT (x2)| =3. 

Partial graphs. If we remove from a graph G = (X, U) asubset of its 

arcs, we are left with a graph of the form 

H=(X, V). where VY CU, 

which is called a partial graph of G. The graph of Fig. 2.3 is a partial 

graph of that shown in Fig. 2.2. 

Subgraphs. If we remove from a graph G =(X, U) a subset of its 

nodes, together with all the arcs incident to or from those nodes, we 

are left with a graph of the form 

H=(Y, Uy) where YCX and Uy=Un(YXY), 

which is called a subgraph of G. We may describe H more precisely, 

as the subgraph of G generated by Y. As an example, Fig. 2.4 shows 

a subgraph of the graph in Fig. 2.2, in particular the subgraph 

generated by {x1, x2, x3}. 

Condensations. Let G=(X,U) be any graph, and let S= 

{X,, X2,..., X,} be a partition of the node-set X of G. Then the 

condensation of G induced by ¥ is defined as the graph Gy= 

(FY, Uy), where 

Uy ={(X,, X3)€ SX S|X,  X,, and for some x; € X, 

and some x; € Xz, (xj, x;) € U}. 

In pictorial terms, Gy is obtained from G by coalescing the nodes of 

each member of ¥, and then removing any loops. The condensation 

l | 

BiG32.2 FIG. 233 
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3 {3.4 

FIG. 2.4 FIG. 2.5 

of the graph of Fig. 2.2 which is induced by the partition 

{{x1, xs}, {x2}, {x3, x4}} is shown in Fig. 2.5. 

2.2.2. Graphs and relations 

Each graph G = (X, U) determines a binary relation Rg on the 

set X of its nodes, through the rule 

xiRox; ifandonlyif (x, x;)eU. 

(Using the terminology of the previous section, Rg is the relation ‘is 

a predecessor of’ on the node-set X.) 

Conversely, each binary relation 2 onaset X determines a graph 

G =(X, Ug), where 

Te ={(xi, x;)€ X X X|x:Rx;}, 

which is called the graph of &. As an illustration, Fig. 2.7 shows the 

graph of the relation ‘was a parent of’ on a set of nine Greek gods, 

whose genealogical tree is given in Fig. 2.6. 

As one might therefore expect, the concepts introduced in our 

discussion of relations in Section 1.4 all have counterparts in the 

theory of graphs. Indeed, just as a relation # on a set has a 

complement & and a converse &' (see Section 1.4.2), a graph 

Cronus 7 Rhea 

Medusa iro Zeus —— Leto 

Pegasus Apollo Artemis 

FIG. 2.6 
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Cronus Rhea 

Medusa Poseidon Zeus Leto 

Pegasus Apollo Artemis 

FIG. 2.7 

G =(X, U) has a complement G = (X, U) where 

U =4G,, 4, eX XX |G, x4) 2 U} 

and a converse G' = (X, U') where 

U' = {(x,, xj) € X X X | (x; x) € U}. 

The complement and the converse of the graph of Fig. 2.1 are 

shown in Figs. 2.8 and 2.9 respectively. 

FIG. 2.8 FIG. 2.9 

Again, in accordance with our nomenclature for special kinds of 
relations (see Sections 1.4.3, 1.4.5), we say that a graph G = (x, U) 
is: 

Reflexive when (x;.x;)€ U_ for all x;¢ X; 
Anti-reflexive when (x;,x;)¢ U forall x;¢X; 
Symmetric when (x;, x;)€ U_ implies (x;, x;)€ U; 
Anti-symmetric when (x; x;)€ U and (x;, x:)€ U together 

imply x; = x;; 
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Transitive when (x;,x;)€ U and (x; x.) € U together 

imply (xj, x.) € U; 
Complete when (x;,x;)¢U and (x, x;)¢ U together 

imply x; = x;. 

Example 2.2. The graph of Fig. 2.10 is reflexive, anti-symmetric, tran- 
sitive, and complete. Accordingly, the relation ‘is a predecessor of’ is a total 
ordering of its node set (as defined in Section 1.4.5). 

Pic? 7.10 

2.2.3. Simple graphs 

A graph is said to be simple if it is anti-reflexive and symmetric. 

As an example, the graph of Fig. 2.11(a) is simple. 

1 l 

3 3 

FIG. 2.11(a) FIG. 2,11 (6) 

In a simple graph the arcs occur in pairs, the two arcs in each pair 

having the same endpoints but opposite orientations. In analysing 

such a graph it is often convenient to consider each arc pair as a 

single entity; in this case we describe a pair of arcs (x;, x;) and (x;, x;) 
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as an edge and denote it by [x;, x;], or by [x;, x]. (We observe that an 

edge of a graph is essentially a two-element subset of its node set; 

the order in which these elements are listed has no significance.) The 

set of edges of a simple graph is usually denoted by E, and we may 

write G =(X, E). 

To represent a simple graph pictorially we often draw each edge 

[x;, x;] as a single undirected line, rather than a pair,of arrows, 

between the points representing x; and x;; as an example, Fig. 

2.11(b) shows this type of representation of the graph of Fig. 

2.11(a). Diagrams of this kind are frequently encountered, for 

instance as street maps or wiring diagrams of electric circuits. 

For a simple graph, the terms ‘predecessor’, ‘successor’, and 

‘neighbour’ are all synonymous. Also, for each node x;, the in- 

degree p (x;) is equal to the out-degree p “(x;); we may describe this 

number simply as the degree p(x;) of x; When an edge e has a node x; 

as one of its endpoints we say that the edge e is incident with x;. 

Obviously, the degree p(x;) of a node x; is equal to the number of 

edges incident with x;. 

We remark that, although graphs are often presented as being of 

two different kinds—namely ‘directed’ graphs and ‘undirected’ 

graphs—here we consider all graphs to be ‘directed’, and we regard 

an ‘undirected’ graph as a ‘directed’ graph which is anti-reflexive 

and symmetric. Of course, in constructing a graph model of a 

physical system such as a traffic network or an electric circuit, it may 

be more natural to relate the components of the system (such as 

streets or electrical conductors) to edges than to arcs, and the 

subsequent analysis of the graph may be easier to perform in terms 

of edges. However, there are many graph concepts and analysis 

methods which are relevant to all graphs, simple and otherwise, and 

which we shall want to present in their most general form. In order 

to apply these methods to a simple graph, it will only be necessary to 

decompose its edges into their constituent arcs. This decomposition 

of edges into arcs usually has a simple physical interpretation: we 

note for instance that a two-way street is essentially a pair of 

contiguous one-way streets which carry traffic in opposite direc- 

tions. 

The simplification of a graph. Any graph G = (X, U) determines a 

simple graph G, = (X, U,), where U, = {(x;, x;)¢ X x X |x; Ax, and 
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either (x;, x;)€ U or (x;, x;)€ U}. This graph G, is called the simple 

graph associated with G, or the simplification of G. As an example, 

the simplification of the graph of Fig. 2.12(a) is shown in Fig. 

2:42(b). 

l 1 

2S: S 

3 3 

' FIG. 2.12(a) FiG. 2.12(b) 

2.2.4. p-graphs and multigraphs 

The concept of a graph can be extended by allowing a pair of 

nodes to be joined by several distinct arcs with the same orien- 

tations (see Fig. 2.13). A schema of this kind is called a p-graph, 

where p is the maximum number of arcs having the same initial 

endpoints and the same terminal endpoints. (Thus, the schema of 

Fig. 2.13 isa 3-graph.) 

The notion of a simple graph can also be extended, by allowing a 

pair of nodes to be joined by more than one edge (see Fig. 2.14); a 

schema of this kind is called a multigraph. We shall make some use 

of these concepts in later chapters. 

OO? 
FIG. 2.13 FIG. 2.14 
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2.3. Paths on graphs 

2.3.1. Paths and cycles 

A path is a finite sequence of arcs of the form 

uU= ie i) (Kiss Key fey (Genes = ae B 

i.e. a finite sequence of arcs in which the terminal node of each arc 

coincides with the initial node of the following arc; the number r of 

arcs in the sequence is called the order of the path. The initial 

endpoint of the first arc and the terminal endpoint of the last arc of a 

path are called respectively the initial and terminal endpoints of the 

path. 
A path whose endpoints are distinct is said to be open; whereas a 

path whose endpoints coincide is called a closed path, or cycle. 

A path is simple if it does not traverse any arc of a graph more 

than once. A path is elementary if it does not traverse any node 

more than once, i.e. if all the initial endpoints (or all the terminal 

endpoints) of its arcs are distinct. It is evident that every elementary 

path is simple. 

It will be observed that a path is completely determined by the 

sequence of nodes X;,, X;,, Xi,,.--, X;, Which it visits; we shall often 

find it convenient to specify a path by listing this node sequence 

rather than the arc sequence. 

Example 2.3. In the graph of Fig. 2.1, the arc sequence 

(X15 ¥4)s(X4, Xs), (X55 Xo), Ces, Xe), ee X1), (%1, X2) 

is a path of order 6, from x, to x2; this path is simple, but it is not 

elementary. The same path is described by the node sequence 

X1, X4, X3, X2, Xa, X1, X2. The arc sequence 

(X1, X4), (Xa, X3), (x3, X2) 

is an elementary path from x, to x2, and the arc sequence 

(X95 Xa), (X45 X1), (xa, Xo) 

is an elementary cycle. 

Example 2.4. Finite-state systems. Many problems involve a ‘system’ 
which at any time can be in only one of a finite number of different ‘states’. 
A system of this kind can be represented by a state diagram, a graph whose 
nodes correspond to the system states and whose arcs represent the possible 
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direct transitions from one state to another. This form of representation is 

helpful in investigating the possible ‘modes of behaviour’ of the system, 

since the paths on the state diagram determine the possible sequences of 

state transitions. 
Before considering more serious applications we shall illustrate these 

ideas with a well-known puzzle: A ferryman (f) has to take a wolf (w), a goat 

(g), and a cabbage (c) across a river. His skiff is so small that, besides the 

ferryman, it can take only one of the other objects. The wolf cannot be left 

alone with the goat, nor the goat with the cabbage. How must the ferryman 

proceed? 

We may consider that the ferryman, wolf, goat, and cabbage form a 

system, whose state at any time can be described by listing the objects left 

on the first bank of the river. The state diagram, showing all possible direct 

transitions, is given in Fig. 2.15. (The graph is symmetric because, for this 

particular system, all transitions are reversible.) The solutions to the 

problem are given by the paths from the ‘initial state’ node to the ‘final 

state’ node. 

fw} t fiw.g} 

{fwg.c} {wc} { fw.c} {g} {fg} ¢ 

Initial Final 
state state 

{c} {fg.c} 

FIG. 2.15 

As another example, an important concept in computer science is that of 

a finite-state machine, which consists of 

(1) a finite set S of states, 

(2) a finite set X of input symbols, 

(3) a finite set Y of output symbols, 
(4) a transition function f: Sx X >S, 
(5) an output function g: Sx X > Y. 

A finite-state machine acts by ‘reading’ a string of input symbols and 

‘writing’ a string of output symbols in the following manner. If the machine 

is currently in the state s ¢ S and it is presented with an input symbol x € X, 

then it will change its state to f(s, x) and write the output symbol g(s, x). 

To illustrate the manner in which such machines operate, Fig. 2.16 shows 

the state diagram of a machine which recognizes every sequence ‘101’ ina 

string of zeros and ones. In this diagram, the first label on each arc is the 

input symbol which causes the corresponding transition; the second label is 
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the symbol which is written when this transition takes place. The response 

of this machine to a particular input string is shown below, for the case 

where the machine is initially in the state ‘a’. 

0,0 

Input string: Oe1 F000 ISO test Oss ie 

Successive states: alalb|c|alb|c]d | b | bjcld | bic 

Output string: OROTOLOS Os OO O20) L006 

Finite-state machines can easily be simulated by computer programs, 

and programmed models of ‘recognizers’ of the type described above are 

used for lexical analysis in compilers, to recognize program identifiers and 

‘reserved’ words such as if, do, go to, etc. (Aho and Ullman 1977). 

Finite-state machine concepts are also used in designing hardware for 

digital systems (Clare 1973). 

2.3.2. Chains on simple graphs 

In a simple graph G =(X, E), a chain is defined to be a finite 

sequence of edges, of the form 

Oo [ms 5 te I [Xi,) Xl eee ease cm 

i.e. a sequence of edges in which each edge has one endpoint in 

common with the preceding edge, and the other endpoint in com- 

mon with the following edge. The nodes x;, and x; are called the 
endpoints of the chain. A chain is open if its endpoints are distinct; it 

is closed if the endpoints are coincident. 

A chain is simple if it does not use any edge of a graph more than 

once. A closed, simple chain is called a circuit. 

A chain is elementary if it does not traverse any node more than 

once. Every elementary chain is simple. 
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Example 2.5. In the graph of Fig. 2.11, the edge sequence [x,, x2], 
[x2, x3}, [x3, X1], [x1, x4] is a simple but non-elementary chain, from x, to x4. 

The sequence [x2, x3], [x3, x1], [x1, x4] is an elementary chain from x, to x4, 

and the sequence [x,, x2], [x2, x3], [x3, x1] is a circuit. 

2.4. Some forms of connectedness of graphs 

2.4.1. Accessibility 

Let G =(X, U) be any graph, and let x; be one of its nodes. Then 

any node x; (not necessarily distinct from x;) such that there exists a 

path from x; to x; is called a descendant of x;; while any node x; (not 

necessarily distinct from x;) such that there exists a path from x; to x; 

is called an ascendant of x;. It will be observed that a node x; can be 

both a descendant and an ascendant of x;: this occurs whenever 

there exists a cycle passing through both Xi and x,;. We shall denote 

the set of descendants of a node x; by ['*(x;), and the set of its 

ascendants by ra (x;). 

A node x; 1s said to be accessible from a node x; if x; is a 

descendant of x; or x;=x;; similarly, x; is said to be converse- 

accessible from x; if x; is an ascendant of x; or x; =x;. The sets of 

nodes which are accessible and converse-accessible from x; will be 

denoted by r *(x;) and Pod) respectively. Clearly, 
: * 

I*(x,) = {x} UF (x), and I(x) ={x,}UI (x). 

Example 2.6. On the graph of Fig. 2.7, 

f* (Cronus) = {Poseidon, Zeus, Pegasus, Apollo, Artemis}, 

I’ (Pegasus) = {Poseidon, Cronus, Rhea, Medusa}. 

Example 2.7. On the graph G=(X, U) of Fig. 2.1, f*(x,)=X and 
I (x;) =X, for all x; eX. 

2.4.2. Connectivity 

For any graph G = (X, U), we define a binary relation called the 

connectivity relation C on the node set X by the rule: 

x;Cx; if x; is accessible from x; on the simplification G, of G. When 

x,;Cx;, we say that x; is connected to x;. 

Now the relation C is obviously reflexive, symmetric and tran- 

sitive, and since it has these properties, it is an equivalence relation. 



44 Graphs and algorithms 

Consequently, it induces a partition X/C of the node-set of G, 

whose members are the equivalence classes with respect to C (see 

Section 1.4.4). The subgraphs of G which are generated by these 

equivalence classes are called the connected components of G. 

If a graph has only one connected component, we say that the 

graph is connected. 

Example 2.8. The graph G =(X, U) of Fig. 2.17 has two connected 

components; these are the subgraphs of G _ generated by 

{x1, X2, X3, Xo, X7, Xs} and {x4, Xs}. 

3 {1,7,8} {2,3} 

6 5 

FIG. 2.17 FIG. 2.18 

2.4.3. Strong connectivity 

Again, let G =(X, U) be any graph, and let us define another 

binary relation S on the node-set X of G, by the rule: 

x; S x; if on G, each of the nodes x; and x; is accessible from the 

other. S is called the strong connectivity relation on G, and when 

x; S x; we say that x; is strongly connected to x;. 

It is easily verified that like C, the relation S is an equivalence 
relation. The subgraphs of G which are generated by the 
equivalence classes with respect to S are called the strongly connec - 
ted components of G. If G contains only one strongly connected 
component, we say that G is strongly connected. Clearly, every 
strongly connected graph is connected. 

Example 2.9. The graph G=(X,U) of Fig. 2.17 has four strong 
components, namely the subgraphs of G generated by {x,, x7, xs}, {x2, xs}, 
{x4, Xs} and {x}. The arcs which belong to these components are indicated 
by bold lines. 
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In studying the structural properties of a graph G = (Xx, U), it is 
often helpful to determine the set of equivalence classes X/S, and 
then to construct the condensation of G induced by X/S (as defined 
in Section 2.2). This particular condensation, which is called the 
reduced graph G® of G, shows clearly the form of connectivity 
between each pair of nodes on G. (See for instance Fig. 2.18 which 
shows the reduced form of the graph of Fig. 2.17.) In particular, it is 
easily verified that if x; and x; are nodes of G, which belong 
respectively to members X, and X;, of X/S, then 

(i) x; is connected to x; on G if and only if X, is connected to X, 
on G®, and é 
(ii) x; is accessible from x; on G if and only if X; is accessible from 
X, on G®. 

Finally, it is important to note that for any graph G, the reduced 

graph G* does not contain any cycles. This can be proved by 

contradiction: Suppose G® contains a cycle, and let (X,, X;) be one 

of its arcs. Then on G®, X, is strongly connected to X;, which 

implies that in G there exist nodes x;¢ X, and x; ¢X; which are 

strongly connected. Now the nodes x; and x; belong to the same 

member of X/S, and so X, = X;. But then, by the method of 

construction of G* (see Section 2.2), this graph cannot contain the 

arc (X,, X;), which contradicts our assumption that G* contains a 

cycle. 

Some special properties of graphs without cycles will be presen- 

ted in Section 2.6. 

2.4.4. Algorithms for finding accessible sets and the components of 

a graph 

Accessible sets. The accessible set of a specified node x, can be 

found by a simple ‘labelling’ algorithm, which is described in 

pictorial terms in Fig. 2.19(a). This algorithm progressively labels 

the node x; and its descendants with the symbol *, in such a way that 
ag 

on termination all the members of I’*(x,) have received this label. In 

the course of the algorithm each member x; of C(x.) also bears a 

label +, from the time when x; is labelled with * until its set of 

successors I'*(x;) is explored. 
To implement this algorithm on a computer we must first choose 

data structures, i.e. methods of arranging items of data, which 
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Step 1 Label node x, with the symbols 7 and «. 

Step 2 Let x; be any node labelled with the symbol f. Delete the label + of x; and 

label with both + and * every successor of x; which does not have the 

label *. 

Step 3 If the graph still contains a node labelled with + then return to Step De 

End The nodes with the label * form the set f*(xz). 

FIG. 2.19(a) 

enable us to represent the graph and the assignment of labels to its 

nodes conveniently in the computer memory. For instance, we may 

choose to define the graph by specifying, for each node x;, a list L; of 

the indices of its successors. The set of nodes labelled ¢ can also be 

recorded conveniently in a list T. To define the set of nodes labelled 

with * we could again use a list, but we shall find it more appropriate 

to represent this set by its characteristic vector, i.e. a vector ¢ = 

[c(1), c(2),..., ¢(n)]of n elements (where x is the number of nodes 

in G) in which c(i) =1 if node x; is labelled with * and c(i)=0 

otherwise. 

A more precise version of the algorithm of Fig. 2.19(a), using 

these choices of data structures, is given in Fig. 2.19(b). In this 

description, the symbolism ‘p < q’ is read as ‘Assign to the variable p 

the value of q’. This version of the algorithm prints out the indices of 

the nodes of I *(x,)—see Step 2 and Step 6. 
With regard to the choice of data structures, we could of course 

have represented the set of elements labelled with f by its charac- 

teristic vector, rather than by the list T, but this would involve more 

Step 1 [Initialize] Clear the list T, and set c(i)< 0 for i=1,2,...,n. 

Step 2 [Label x; ] Enter the index k in the list T, set c(k) < 1 and print the index k. 

Step 3 [Find some node x; labelled with +] Let i be any index in T. Delete i from 

16: 

Step 4 [Is list of successors of x; empty?] If L; is empty then go to Step 7. 
Step 5 [Choose a successor x; of x;] Let j be any index in L;. Delete j from L;. 

Step 6 [If x; is not labelled with * then label it with + and *] If c(j) = 0 then enter 

the index j in T, set c(j)< 1, and print the index j. Return to Step 4. 

Step 7 —_ [Does graph still contain any nodes with label +?] If T is not empty then 

return to Step 3. 

End 

FIG. 2.19(b) 
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work. (To find a node labelled with +, in Step 3, we would have to 
scan the elements of this characteristic vector one by one, searching 
for an element with the value ‘1’; in the worst case this could involve 
the inspection of all the elements of the vector.) To represent the set 
of nodes labelled with «, we chose to use the characteristic vector c 
rather than a list because in Step 6 we wish to test whether a 
particular node x; has the label *; with the vector representation this 

only involves the examination of one element, c(/) of the vector, 

whereas in a list representation we might in the worst case have to 

scan all the entries in the list. (The choice of data structures for 

graph: algorithms is discussed in detail by Aho, Hopcroft, and 

Ullman, 1974.) ’ 
To find the converse-accessible set of a specified node, the same 

algorithm can be used: for this purpose we simply specify in each list 

L; the predecessors, rather than the successors, of x;. 

Determination of the connected components of a graph. From the 

definition of connectivity in Section 2.4.2 it follows immediately 

that for any node x,, the set of nodes which are connected to x, on G 

is identical to the accessible set of x, on the simplification G, of G. 

Hence the algorithm of Fig. 2.19(b) will list the nodes of the 

connected component which contains any specified node x; of G, if 

each list L; comprises the indices of the neighbours of x; on G. 

To find ali the components of a graph, we can proceed as follows. 

First we arbitrarily choose some node x; of G, and find the node set 

of the component containing x; by the labelling method described 

above. If all the nodes of G are labelled by this process, the problem 

is solved. Otherwise we arbitrarily select some node which has not 

yet been labelled and find its component, again by labelling. By 

repeating this process until all the nodes are labelled, we obtain 

successively the node sets of all the connected components of G. A 

detailed version of this algorithm is presented in Fig. 2.20. 

Determination of strong components. From the definition of strong 

connectivity it follows immediately that the set S(x;) of nodes which 

are strongly connected to a given node x, can be expressed as 
* ae 

S (xi) =P" (x4) OP (xx). 

Thus we can obtain the node set of the strong component containing 

any specified node x, by constructing the sets I *(x,) and Iv (xx) 
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Step 1 [Initialize] Set k <0 and set c(i)< 0 for i=1,2,...,n. 

Step 2 [Increment node index k] Set k<k +1. 

Step 3 [Has component containing x, already been labelled?] If c(k) =1 then go to 

Step 5. 

Step 4 [Find the nodes of the component containing x,, by the labelling method. | 

Step 4.1 [Initialize] Clear the list T. 

Step 4.2 [Label x,] Enter the index k in T, set c(k)<1 and print the index k. 

Step 4.3 [Find some node x; labelled with +] Let i be any index in T. Delete i 

from T. 

Step 4.4 [Has x; any successors?] If L; is empty then go to Step 4.7. 

Step 4.5 [Choose a successor x; of x;] Let j be any index in L;. Delete j from Lj. 

Step 4.6 [If x; isnot labelled with * then label it with ¢ and *] If c(7) = 0 then enter 

the index j in T, set c(j)<1 and print the index j. Return to Step 4.4. 

Step 4.7 [Does graph still contain any nodes with the label +?] If T is not empty 

then return to Step 4.3. 

Step 4.8 [Terminate labelling procedure] Print ‘end of component’. 
Step 5 [Have all nodes been examined?] If k #n then return to Step 2. 

End 

FIG. 2.20 

separately, using the labelling algorithm of Fig. 2.19, and then 

forming the intersection of these sets. 

If all the strong components of a graph are to be found, they can 

be obtained one after the other, by selecting a node of the graph 

arbitrarily, finding its strong component, then selecting another 

node whose strong component has not yet been determined, and so 

on until all nodes have been assigned to components. 

Although this is probably the simplest method, it may involve the 

repeated labelling of some nodes, since a particular node may be 

accessible, or converse-accessible, from many _ different 

components. Alternative methods which are more efficient for 

graphs containing many components have been devised by Munro 

(1971) and Tarjan (1972). 

2.5. Acyclic graphs 

An acyclic graph is a graph which does not contain any cycles. In 
this section, our purpose is to establish some important properties 
of acyclic graphs in general; some particular kinds of acyclic graphs 
will be considered in detail in the next section. 

First, we shall demonstrate that any acyclic graph contains at least 
one node which has no successors, and at least one node which has no 
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predecessors. The first part is proved by contradiction, as follows: 
Let G =(X, U) be an acyclic graph, and let us assume that every 
node on G has at least one successor. Then, starting from any node 
Xi, We can find a successor of x;,, say x;,, and then a successor of te, 
say x;,, and so on, and hence we may construct a pathix;,5 xh, 
Xi,,-.., X;, Of arbitrarily high order. But since the number of nodes 
of G is finite, on a path of sufficiently high order some node Xi, Say 
will be encountered twice. Hence x;, lies on a cycle, which 
contradicts the assumption that G is acyclic. The second part can be 
proved by a similar argument (we trace a path ‘backwards’, rather 

than ‘forwards’, from some node x;,). 

This result leads to the important concept of node rank, which is 

defined as follows. Let G = (X, U) be an acyclic graph, and let No be 

the (non-empty) set of nodes without predecessors on G: 

No = {x; eX|T (x) = d}. 

Now consider the subgraph Gp of G which is generated by X — No, 

i.e. the subgraph obtained by removing from G all nodes in No, and 

all arcs incident from those nodes. If Gp contains any nodes, then it 

must contain at least one node without predecessors (since all 

subgraphs of G are acyclic), and collecting together all such nodes 

we obtain a non-empty set 

ae N, ={x; € X —No|P (x;) C No}. 

Now consider the subgraph G, of Go which is generated by 

X —(No UN), i.e. the subgraph obtained from Go by removing the 

nodes of N;, together with all arcs incident from these nodes. Again, 

if G; contains any nodes, then it contains at least one node without 

predecessors, and the collection of all such nodes constitutes a 

non-empty set 

N2={x; €X —(NoUNi)|T (x;) CNoU Ni}. 

Continuing in this manner until all the nodes of G have been 

removed, we construct successively the (non-empty) sets 

is eae Us 
k=0 

Sieiy Goa UM. 

Pee Uw. nd Ng = fo sei 
k=0 
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where q is the smallest integer such that 

q 

X-UN.=¢. 
k=0 

From the method of construction of these sets, it is evident that 

{N,, No,..., Na} is a partition of X. 

Let us now assign to each node x; of G an integer r(x;), through 

the rule 

ifx;e.N, thenr(x;)=k. 

We call r(x;) the rank of node x;. Clearly, for each node x; of G 

(i) r(x;)<r(x;), for all x; ¢T” (x;), and 
(ii) if r(x;)>0, then x; has at least one predecessor of rank 

r(x;)—1. 

Example 2.10. In Fig. 2.21 which depicts an acyclic graph, all nodes of 

the same rank are placed in the same vertical line. 

The concept of node rank leads to the following useful charac- 

terization of an acyclic graph: 

A necessary and sufficient condition for a graph G = (X, U) to be 

acyclic is that its nodes x1, X2,..., X, can be numbered (i.e. assigned 

their integer indices) in such a way that if (x;, x;)€ U then i<j. 

To prove that the condition is necessary, we demonstrate that 

such a numbering scheme does exist for any acyclic graph: Indeed, if 

Ne N, N, 

| 

| 
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we successively assign the integers, 1, 2,3,..., first to those nodes 

which are of rank 0, then to the nodes of rank 1, and so on (see, for 

instance, Fig. 2.21), then we obviously obtain a numbering of the 

form defined above. The sufficiency of the condition can be demon- 

strated by contradiction: Let G = (X, U) be a graph which contains 

a cycle, and let us assume that its nodes are numbered in such a way 

that if (x;, x;)¢ U then i<j. Now let x; be the node whose index is 

maximal on this cycle, and let x; be its successor on the cycle; then 

(x:, x;)€ U and i>j, which contradicts our initial assumption. 

Example 2.11. Critical-path analysis. A project such as the construction 

of a large building involves numerous interrelated activities (for instance 

the clearing of a site, laying of foundations, erection of cranes, and so on). In 

general some activities of a project can take place concurrently, but some 

cannot begin until certain others have terminated. In organizing a project it 

is important to know the earliest time at which each activity can begin, and 

the least time in which the entire project can be completed. 

The table below shows how the relationships between the activities of a 

project may be specified. The activities 1 and 10 are ‘dummy’ activities of 

zero duration, representing the project commencement and termination 

respectively. For each activity i the table gives the activity duration d;, anda 

list of predecessors of activity i, that is, a list of activities which must all have 

finished before activity i can commence. 

Activity Duration Predecessors 

1 (start) 0 

2 4 

k) 10 
4 6 

5 2 

6 11 

Gf 
8 
9 

10 

NNN | 

pL 4,5 
3 5 

17 3,6,8 

(finish) 0 ED 

From this information one can construct an activity graph (Fig. 2.22) to 

represent the project. In this graph, the nodes correspond to the project 

activities; more precisely, each node x; represents an event—the com- 

mencement of activity i. The timing constraints are represented by the arcs 

of the graph; specifically, if activity i cannot commence before activity k 
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has finished, that is to say until at least d, time units after activity k 

commenced, this condition is represented by an arc (xx, X;), which is labelled 

with d,. (The label assigned to an arc is called its length.) Note that an 

activity graph is necessarily acyclic, for if a cycle did exist, none of the 

activities on that cycle could ever commence. 

17 
Start Finish 

BiG: 2:22 

The earliest time ¢; at which the ith activity can commence, measured 

from the start of the project, is obviously given by the length of a longest 

path from the ‘start’ node to node x;. Accordingly, the shortest time in 

which the entire project can be executed is given by the length of a longest 

path from the ‘start’ node to the ‘finish’ node; for this reason, the longest 

paths from the ‘start’ to the ‘finish’ nodes are called critical paths. (The 

activity graph of Fig. 2.22 has two critical paths, of length 32, which are 

indicated by bold lines.) 

It is evident that activities which do not lie on critical paths can be~ 

retarded to some extent without increasing the time needed for the 

execution of a complete project, and it is useful to have a measure of this 

latitude: If the earliest possible project completion time is 7, then the /atest 

time ¢; at which an activity 7 can begin without delaying the project 

completion is given by 

ti =7T-l, 

where /; is the length of a longest path from node x; to the ‘finish’ node. The 

maximum amount by which the ith activity can be delayed (its ‘slack time’) 

is then given by the difference 

i i earls 

The table below gives the earliest and latest possible starting times, and 

the slack times, for the project of Fig. 2.22. 
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Activity: STAG Gay SRG «Try TR ake OWT 1.0 
Earliest startingtime: 0 0 0 .4° 4 4-10 6 15 2 
Latest starting time: DearS aS A Oh 10. 15, 35 
Slack time: Wee Dae). Gs) 

A systematic method of obtaining these times, suitable for use on a 
computer, will be given in the next chapter (Example 3.20). For a more 
detailed discussion of network models of projects see Elmaghraby (1970) 
and Roy (1970). 

2.6. Trees 

2.6.1. Elementary properties of trees 

A tree is an acyclic graph G = (X, U) in which one node x, has no 
predecessors and every other node has exactly one predecessor‘. 
The node x, is called the root of the tree. The graphs shown in Fig. 
2.23 are both trees. 

Ae 
x x, T 

(a) (b) 
FIG. 2.23 

Trees can be characterized in several different ways, as is demon- 

strated by the following theorem. 

For a graph G =(X, U), the following statements are equivalent: 

(1) Gis an acyclic graph in which one node x, has no predecessors 

and every other node has exactly one predecessor. 

(2) G is a connected graph in which one node x, has no pre- 

decessors and every other node has exactly one predecessor. 

(3) Ghas anode x, which is joined to every other node by a unique 

path from x,. 

+ Some authors describe graphs of this kind as ‘arborescences’. 
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We shall prove this theorem by demonstrating that (1) implies (2), 

(2) implies (3), and (3) implies (1). 

(1) implies (2). In any acyclic graph, each node x; with rank r(x;) #0 

has a predecessor of rank r(x;) — 1, which implies that x; is accessible 

from some node of rank zero. Since x, is the only node of G with 

rank zero, all the nodes of G are accessible from x,, which implies 

that G is connected. 

(2) implies (3). Since G is connected, the simple graph G, asso- 

ciated with G has at least one path from x, to each of the other 

nodes. Now let uw be such a path, from x, to x; say, and let (x,, x;,) be 

the first arc of this path. The existence of (x,, x,) in G, implies that 

either (x,, x,) belongs to G or (xx, x,) belongs to G; however, the arc 

(xx, Xr) cannot belong to G, since x, has no predecessors on G, and 

therefore the arc (x,, x,) belongs to G. In the same way, since x, has 

only one predecessor on G, the second arc of u must also belong to 

G, and by repeating the argument we find that G contains all the 

arcs of w. It follows that G contains at least one path from x, to each 

of the other nodes. There cannot be more than one path from x, 

to any other node x,, for this would imply that x; or one of its 

ascendants had more than one predecessor. 

(3) implies (1). G cannot contain a cycle, for otherwise each node 

on this cycle could be reached from x, by more than one path. The 

node x, has no predecessors, for if x, had a predecessor x; then the 

path from x, to x; together with the arc (x;, x,) would form a cycle. 

Each node x;#x, has at least one predecessor, since x; is the 

endpoint of a path from x,; however, x; cannot have more than one 

predecessor, for this would imply the existence of more than one 
path from x, to x;. 

Example 2.12. Lineal charts (family trees). Let X be a set of people, 
comprising some individual together with ail his or her descendants, and let 
G be the graph of the relation ‘is a parent of’ on X. The graph G is acyclic, 
since no person can be an ancestor of himself; furthermore, if no ‘inbreed- 
ing’ has occurred, G is a tree. 

Example 2.13. Classification systems. A classification of a set X of 
objects is essentially a partition of X into blocks, which may themselves be 
partitioned into blocks, and so on. For instance, in the biological 
classification system the animal and plant kingdoms are classified in this 
way, the blocks of the successive partitions being known as the phyla, 
classes, orders, families, genera, and species of organisms. Any classification 
system of this kind can be regarded as a tree (see Fig. 2.24). 
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The nodes of a tree which have no successors are called its 

terminal nodes. 
A tree in which each node has not more than two successors is 

called a binary tree; a binary tree is said to be complete if its 

non-terminal nodes all have exactly two successors. The graph of 

Fig. 2.23(b) is a complete binary tree. 

Example 2.14. Syntactic trees. A sentence consists of a number of 

syntactic entities (such as ‘noun phrases’ or ‘verb phrases’) which are 

concatenated with each other in accordance with certain syntactic or 

grammatical rules. The process of parsing or resolving a sentence into its 

syntactic components leads naturally to a tree. For example, the syntactic 

structure of the sentence “The bird pecked a cherry’ is depicted by the tree 

of Fig. 2.25, whose non-terminal nodes are labelled with syntactic cate- 

gories, and whose terminal nodes are labelled with the words of the 

sentence. 

<Sentence > 
ya 

<Noun phrase> <Verb phrase > 

<Article> <Noun> <Verb> <Noun phrase> 
i) ' 1 

1 ‘h i} 

4 | <Article> <Noun> 

. 
' all 1 1 ! 

The bird pecked a cherry 

FIG. 2.25 

In a similar way, an arithmetic expression such as 

(aX(b—c))+d 

can be decomposed into a pair of ‘sub-expressions’ linked by a binary 
operator symbol (in this instance we have the sub-expressions ‘a x (b —c)’ 
and ‘d’, linked by the operator symbol ‘ +’), and by repeated decomposition 
of the sub-expressions we again obtain a tree—see Fig. 2.26(a). An 
alternative way of representing this expression by a tree is shown in Fig. 
2.26(b), which is obtained from Fig. 2.26(a) by ‘hoisting’ each operator 
symbol to the node above it. 

The parsing of a computer program, using the syntactic rules of the 
programming language, is an important step in program compilation. (Aho 
and Ullman 1977). 
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ORe 

Wr Xs 
FIG. 2.26(a) FIG. 2.26(b) 

2.6.2. Transverse orderings of trees 

In an English sentence, or an arithmetic expression, the order of 

occurrence of the syntactic constituents is usually significant, and in 

drawing a syntactic tree we take account of this ordering. For 

instance, when we parsed the sentence ‘The bird pecked a cherry’ 

we noted first that the sentence comprised a noun phrase (‘The 

bird’) followed by a verb phrase (‘pecked a cherry’), and in drawing 

the syntactic tree we indicated this ordering by placing the node 

representing the verb phrase to the right of the node representing 

the noun phrase (see Fig. 2.25). The same convention was observed 

in drawing Fig. 2.26, where the relative disposition of the nodes b 

and c indicates that c is to be subtracted from 5, rather than b 

from c. 

In algebraic terms, the node set of each of these trees is equipped 

with an ordering, of the following kind. 

Let G =(X, U) be any tree; then a transverse ordering of G is an 

ordering ~ of its node set X such that for any two nodes xi, x;, 

(i) if 1 (x;) =I" (x;) then either x; <x; or x; <x;, and 

(ii) if I (x;) AT (x;) then x; and x; are incomparable. 

Thus, a transverse ordering of a tree provides a total ordering of 

the successor set of each of its nodes. 

Given a transverse ordering < of a tree G=(X, U), we may 

construct a total ordering a of X which is compatible with < (in 

that for every pair (x;, x;) for which x; <x, we also have x; a x;), in 

several different ways. As an important example, the Tarry ordering 

a of X is the ordering defined by the rules 
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(i) if x; is an ascendant of x; then x; a x;, and 
* * 

(ii) if x; <x, then for all x;’¢I'*(x;) and all x;'€ I (x;), x;'a x;'. 

Alternatively, if we replace the word ‘ascendant’ by ‘descendant’ 

in rule (i) above, we obtain another total ordering of X called the 

reverse Tarry ordering. 

As an example, let us suppose that for the tree of Fig. 2.27 we 

have the transverse ordering < where 

b<cX<d, ex<f, gxh. 

(In Fig. 2.27(a) the sets of nodes which are totally ordered by = are 

circumscribed by broken lines, and when x;<x; the node x; is 

placed to the left of x;.) 
Then in the Tarry order the nodes appear as 

GD: ees fe se Lae Sak 

whereas in the reverse Tarry order we have 

CPB ek, tear dS a: 

For any tree, these orderings can easily be constructed as follows. 

Let us suppose that, starting from the root, we ‘visit’ the nodes of the 

tree in the order defined by the following rule, (cf. Fig. 2.27(b)): 

Let x, be the node currently being visited. If x, has any successors 

which have not yet been visited then proceed to the least of these (with 

respect to the transverse ordering =<); otherwise return to the pre- 

decessor of x, (unless x, is the root, in which case the procedure is 

terminated). 

FIG. 2.27(a) FIG. 2.27(b) 
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Then the Tarry order (or, respectively, reverse Tarry order) is the 

order in which the nodes are first (or, aepectivelys last) visited in 

this ‘traversal’ of the treet. 

Example 2.15. Polish notation. Let G be a tree representing an arith- 

metic expression, as in Fig. 2.26(b). Then the listing of the nodes of G in 

Tarry order is called the Polish (or prefix) representation of the expression, 

while the listing of the nodes in reverse Tarry order is the reverse Polish (or 

postfix) representation of the expression. Thus the expression in the usual 

(infix) notation 

(ax(b—c))+d 

depicted in Fig. 2.26(b) appears : Polish notation as 

+ xXa—bcd 

and in reverse Polish notation as 

abe=Xd+. 

These notations, introduced by the Polish logician Lukasiewicz, eliminate 

the need for parentheses or rules of operator precedence to make the 

syntactic structure of an expression clear. The notations are also of practical 

importance in connection with program compilation (Aho and Ullman 

1977). 

Example 2.16. Succession to the English throne. Let X be the set 

comprising a reigning English monarch together with all his or her living 

descendants, and let G be the graph of the relation ‘is a parent of’ on X. It 

will be assumed that no in-breeding has occurred, so that G is a tree. Now 

let < be the transverse ordering of G in which, for any two individuals x; 

and x, which have the same parent in X, x; < x; if either (i) x; is male and x; is 
female or (ii) x; and x; are of the same sex and x; is older than x;. Then the 

Tarry order of G is the order of succession to the throne. 

Now let us suppose that we are given a complete binary tree 

= (X, U), with a transverse ordering <. Then as another exam- 

ple of a total ordering of X which is compatible with < we have the 

symmetric ordering o, defined by the following rule: if x, is any 

+ In computer science these orderings are often called respectively the pre-order 

and post-order of the nodes of a tree. However, since the term ‘pre-ordering’ is 

commonly used for a relation which is reflexive and transitive (see Section 1.4.3), we 

prefer the alternative names, after Tarry (1895) who devised a graph traversal 

algorithm of the kind described here. 
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non-terminal node of G, having successors x; and x; with x; <x; 

then 
f 

ae 

x! ox, for every node x; €I” (x), 

and 
Uy oe 

X,ax; forevery mode x; <I” (x;). 

As an illustration, for the binary tree of Fig. 2.28, with a trans- 

verse ordering < given by 

De d Xe, fg, h Xi, 

the listing of the nodes in symmetric order is 

a Eo “ee fF ee 

@) 
| 
| 
| 
| 

d 

| 

(e) : | 
1 

' f 
! I 
| 1 
' ! 
! l 

e c 

| 
! 
1 
| 
I 
| 
I 
| 
| 
| 
I 
\ 
1 

a ES 

i 
i 

1 
h g i 

FIG. 2.28 

The symmetric ordering of a binary tree can easily be obtained by 

‘traversing’ the tree in the manner described previously and listing 

the names of nodes as they are first encountered (in the case of 

terminal nodes) or first revisited (in the case of non-terminal nodes). 

Example 2.17. Binary sort trees. Let us suppose that we are given a 

written text, and that we require a listing of all the words which appear in 

the text, in lexicographic order. One way of solving this problem is to scan 

the text from the beginning to the end, and in doing so to construct a 

‘labelled’ binary tree, as follows. 

Initially, the tree consists of a single node, which is labelled with a ‘blank’ 

symbol #. Subsequently, when we read each word w of the text, we enter the 

tree at its root, and execute the following algorithm: 

Step 1 Let x, be the node currently reached, and let /, be its label. If J, is 

the symbol ‘#’, go to Step 2; if |, is a word lexicographically inferior 

to w, go to Step 3; if I, is a word lexicographically superior to w, go 

to Step 4; and if /, is the word w, go to End. 
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Step 2 Replace the label # of x, by the word w: add two new nodes to the 
tree—a ‘left successor’ and a ‘right successor’ of x,—both labelled 
with #; then go to End. 

Step 3 Advance to the right successor of x,, then repeat Step 1. 
Step 4 Advance to the left successor of x, then repeat Step 1. 
End 

As an illustration, Fig. 2.29 shows the tree generated from the following 
lines of ‘The walrus and the carpenter’: 

‘The time has come’, the Walrus said, 

‘To talk of many things: 

Of shoes—and ships—and sealing-wax— 

Of cabbages—and kings— 

the 

cabbagés- many 

\ ° sealin # kings ae & \ships 

# # t—pr# # 

FIG. 2.29 

If we now construct the symmetric ordering of the nodes of the tree (by 

traversing it in the manner indicated previously), and we list the labels of 

the nodes in this order, we obtain the words of the text in lexicographic 

order, with a blank symbol before and after each word. Thus for the tree of 

Fig. 2.29 we obtain 

# and # cabbages # come # has # kings #.. . # to # walrus #. 

Binary trees of this kind are often used in compilers, to construct a file (or 

‘dictionary’) giving information on the variables whose names appear in a 

program text (Knuth 1973). 
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2.6.3. An algorithm for traversing trees 

An algorithm for traversing a binary tree with transverse order- 

ing, in the manner indicated in the previous section, is given in Fig. 

2.30. It is assumed that the nodes of the tree are arbitrarily 

numbered x1, x2,..., xX, and that their successors are specified by 

two vectors I and r of order n, whose ith entries /(i) and r(i) are the 

indices of the left and right successors of node x;; if x; does not have 

a left (resp. right) successor then /(i) = 0 (resp. r(i) = 0). 

Step 1 [Initialize] Set »<— k and w<k (where k is the index of the root node). 

Step 2 [Advance to left successor, if this exists] If /(v) #0 set v</(v), then set 

w<w°v, and then repeat Step 2. 

Step 3 [Advance to right successor, if this exists] If r(v) #0 set » < r(v), then set 

@ <q °v, and then return to Step 2. 

Step 4 [Backtrack] Set w < sub(w). If w is the empty word then go to End. 

Step 5 [Has right successor been visited?] If v # r(last(w)) then set v <last(w) 

and return to Step 3; otherwise set v < last(w) and return to Step 4. 

End 

FIG. 2.30 

At each stage of the algorithm, v is the index of the node which is 

being visited, while w is the word (or string) of indices of the nodes 
which lie on the unique path from the root of the tree to the node x,. 
The symbolism 

OG) oy 

represents the concatenation of the index v to the word w (see 
Example 1.23); also, for any non-empty word w the notation 

last(w) 

represents the last symbol in w, whereas 

sub(w) 

denotes the word obtained from w by deleting its last symbol. 
It is easy to obtain a Tarry ordering, reverse Tarry ordering or 

symmetric ordering during the execution of this algorithm: in 
particular, we can obtain a string o of the node indices in any one of 
these orders by inserting the assignment statement 

) ORK /\- 
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where A is the empty word, in Step 1, and inserting the assignment 

statement 
OoO-aO°v 

either at the beginning of Step 2 (to obtain a Tarry ordering) or in 

Step 4 (to obtain a reverse Tarry ordering) or at the beginning of 

Step 3 (for asymmetric ordering, in the case where the binary tree is 

complete). 

The application of this algorithm to the tree of Fig. 2.31 is 

demonstrated in Fig. 2.32, which gives the successive values of v 

) wn 
NS) — oO 

uo} 

2 
2 
3 
4 

5 2 
3 5 125 42 

2 1245 
3 425 

4 12 45 

5 2 
4 1 452 

5 1 
3 3 13 4251 
2 12453 
3 42513 

4 1 4523 

5 ip 
4 A 45231 

FIG: 2°32 
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and w, and also of the strings or, Orr and as (which eventually 

represent the Tarry, reverse Tarry and symmetric orders respec- 

tively) after the execution of each step. 

To implement the algorithm on a computer, the word w can be 

represented conveniently by a vector w = [w(1), w(2),..., w(n) lof 

n integers, together with an integer variable t (which at each stage 

gives the number of symbols in the word w). The operations on w 

and t which correspond to our operations on the word w are listed in 

Fig. 2.33: 

Reference or assignment statements 

In terms of In terms of In terms of 

word w vector w and t stack S$ 

w<d t<0 clear S$ 

t<et+1 
Oowcv | push v onto $ 

w(t)h<v 

w<sub(@) t<t—1 pop S 

last(w) w(t) top(S$) 

FIG, 2.33 

Alternatively, readers with some knowledge of computer science 

will perhaps already have visualized these operations in terms of a 

stack (Knuth 1968). This is a store which holds a list or sequence of 

items of data, with all insertions and deletions being made at one 

end (the top of the stack), in rather the same way as one adds or 

removes plates from a stack of these; the action of adding an item d 

of data to a stack is described as pushing d onto the stack, whereas 

the removal of the top item is described as popping the stack. (For 

obvious reasons, a stack is sometimes also called a /ast-in-first-out 

store or a push-down store). The stack operations corresponding to 

our operations on the word w are also listed in Fig. 2.33. 

2.7. Backtrack programming (or ‘tree-search’) algorithms 

Many combinatorial problems involve the determination of all 

the elements of a set whose characteristic property is specified. For 

instance, we may wish to find all the elementary cycles or all the 

elementary paths between two particular nodes of a given graph. In 
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this section we shall present a systematic method of solving prob- 
lems of this kind. To introduce the method, it will be convenient to 

consider first a particular problem. 

2.7.1. The determination of elementary paths 

Let us suppose that for a given graph G = (X, U), we wish to find 
all the elementary paths from one specified node x, to another 
specified node x,. (It will be assumed here that the nodes x, and x, 

are distinct, and that x, is accessible from x,.) We shall denote the 

set of required paths by M. 

Now let S, = {Xs,, Xs,,---,Xs,} be the set of all nodes which are 

successors of x, in G, and which are also converse-accessible from 

X, in the subgraph H of G obtained by deleting x,. Also, for 

i=1,2,...,k, let M; denote the subset of paths of M in which the 

first arc is (x,, Xs,). Then the set 

{M,, Mo, . o. ,M,} 

is a partition of M. It follows that if we determine the set S, (which 

can easily be done, since the required converse-accessible set of x, 

can be found by the labelling algorithm of Fig. 2.19), we can 

‘decompose’ the original problem of finding M into k ‘sub-prob- 

lems’, involving the separate determination of each of the blocks 

M,, M2. .2, MM. 

If we now consider the problem of finding one of these blocks M,, 

we observe that either 

(i) Xs, =Xg, in which case M; contains only one path, which 

consists of the arc (x,, x,), or 

(ii) xs, #Xq, in which case M; comprises all the paths obtained by 

concatenating the arc (x,, x,,) with each path in the set M; of 

elementary paths from x,, to x, on H. 

In case (i) the problem of finding M; is trivial; in case (ii) the 

problem reduces to the determination of the set of paths M; on H, 

which is a ‘smaller version’ of the original problem and which can be 

decomposed in a similar manner. Thus, by repeated decom- 

positions, we can obtain all the required paths. 

As an illustration, let us consider the problem of finding all the 

elementary paths from x2 to x4 on the graph of Fig. 2.34. The 

successive stages of the decomposition and solution of this problem 

are depicted by the tree of Fig. 2.35. The root of this tree represents 
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4) 

FIG. 2.34 

the original problem: inside the root node we have drawn in solid 

lines the subgraph H of the original graph G which is obtained by 

removing the node x, = x2; the asterisks indicate the nodes which 

belong to the converse-accessible set of the node x, = x4 on H, and 

the broken lines indicate the arcs from x2 which terminate on these 

nodes. In this particular case $2 ={x1, x3}, so the original problem 

can be decomposed into two sub-problems, involving the separate 

determination of the elementary paths from x, to x4, and from x3 to 

x4, on the subgraph H;; these sub-problems are represented by the 

two tree nodes of rank 1, in which the arcs already assigned to 

elementary paths are also indicated, by bold lines. The descendants 

of these tree nodes represent the subsequent decompositions of the 

sub-problems, and in particular the terminal nodes depict all the 

trivial sub-problems (and solutions) eventually obtained. 

For obvious reasons, the decomposition and solution of a 

combinatorial problem in this manner is often called a tree search. 

Implementation of the tree search. With regard to the order in which 

the sub-problems should be considered after decomposing the 

original problem we might decompose all the sub-problems which 

appear as nodes of rank 1 in the search tree, then decompose all the 

sub-problems of rank 2, and so on; a procedure of this kind is 

sometimes called a ‘breadth-first search’. However, it is evident that 

if the original graph has many nodes and arcs, the number of 

sub-problems produced may be very large, in which case a breadth- 
first search would involve recording a vast amount of data. 

As an alternative, we may construct all the sub-problems by 

repeated application of the following rule: 

At every stage decompose one of the most recently 
created sub-problems which remain to be decomposed. 
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FIG. 2.35 
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This rule has a simple graph-theoretic interpretation: it states 

that the problems are to be decomposed in the Tarry order asso- 

ciated with some transverse ordering =< of the search tree. (The 

transverse ordering <, which corresponds to a total ordering of the 

set of sub-problems obtained by each decomposition, can be chosen 

arbitrarily.) Since the decomposition of the sub-problems in a Tarry 

order effectively involves a traversal of the search tree, this pro- 

cedure is called a backtrack programming or depth-first search 

method. It has the advantage that the only problems which need to 

be retained at any stage are those which lie on the path from the root 

of the search tree to the tree node currently being visited, since any 

other problems which remain to be solved will eventually be derived 

from problems on this path. 

An algorithm for listing elementary paths. A concise description of 

the above path-finding method is given in Fig. 2.36(a). In this 

Step 1 [Initialize] w <p, v<p. 
Step 2 [Construct list S, of successors] Construct S,, by the procedure of Fig. 

2.36(b). 

Step 3 [Have all successors been explored? If not select one] If the list S, is empty 
then go to Step 5; otherwise let k be any integer in S,, and delete this 
integer from S,,. 

Step 4 [Destination reached? If so, then print path, otherwise extend path] If 
k =q then print the word w © q and return to Step 3; otherwise w<w ok 
v<k and return to Step 2. 

Step 5 [Backtrack] w < sub(w); if o AA then v<last(w) and return to Step 3. 
End 

> 

FIG. 2.36(a) 

Step 2.1 [Initialize labelling procedure] Clear the list T. Set c(i)<0 and d(i)<0 
for /=1,2,...,n. For each index i which appears in w, set c(i)< 1. 

Step 2.2 [Label x,] Enter the index q inthe list T and set c(q)<1landd(q)<1. 
Step 2.3 [Label the predecessors of a labelled node] Let r be any index in T. 

Delete r from T. For each index i which appears in L, and for which 
c(i) =0, enter index i in T and set c(i)<1 and d(i)<1. 

Step 2.4 [Have all ancestors of Xq been labelled?] If T is not empty return to Step 
28: 

Step 2.5 [Form the list S,,] Clear S,. Enter in S, every index i which appears in L* 
and for which d(i) = 1. 

FIG. 2.36(b) 
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algorithm, the symbols p and q represent the indices of the initial 

and terminal nodes of the required paths. At each stage, w is the 

string of indices of the nodes on the partially formed path from x, to 

Xq and v is the index of the last of these nodes. (In a programmed 

version of the algorithm, the string w can be represented 
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conveniently by a vector and pointer, or by a stack, as indicated in 

Fig. 2.33.) In Step 2, the list S$, comprises the indices of the nodes of 

the set 
* _— 

Tal) ( Ty(xq) 

where I'G(x,) denotes the set of successors of x, on the original 

graph G and Taxa) is the converse-accessible set of x, on the 

subgraph H of G obtained by removing all the nodes whose indices 

appear in w. 

The application of this algorithm to the problem of Fig. OE oe 

demonstrated in Fig. 2.37, which gives the values assigned to 

variables at the execution of each step. 
A procedure to compute S, (in Step 2) is also given, in Fig. 

?.36(b). Here the steps 2.1-2.4 construct the characteristic vector d 

of the set Pats), by the labelling method of Section 2.4.4; the final 

step 2.5 performs the intersection of Tat.) with the set 'G(x,), and 

enters the indices of the nodes of the resulting set in the list S,. In 

this procedure it is assumed that the original graph has been defined 

by specifying for each node x; two lists L; and L; , comprising the 

indices of the successors and predecessors of x; respectively. 

Pe TN general description of backtrack programming 

The general concept underlying all backtrack programming 

methods is that which Polya describes as ‘specialization’ of a 

problem (Polya 1957). Let us consider the problem of determining 

all the elements of some finite set So, whose characteristic property 

is specified: we shall call this ‘problem Po’. To solve the problem we 

first use some ‘specialization rule’ to reduce Po to a number of 

sub-problems P;, P2,..., P, where each sub-problem P; involves 

the determination of some subset S; of So. The specialization rule is 

chosen in such a way that each sub-problem P; is a smaller version of 

the original problem Po. Obviously, it is also necessary for every 

element of So to appear in at least one of the subsets S;, so that by 

solving all the sub-problems we obtain every element of So. If 

possible, the sets S;, S2,..., S; should also be pairwise disjoint, for 

otherwise some element of So will be obtained more than once, and 

the recognition of repeated elements is troublesome. 

After specializing the problem Po we specialize each of the 

sub-problems P;, P2,..., Px, and so on, until the original problem 
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Po is reduced to a collection of sub-problems whose solutions are 

immediately obtainable. 

Quite generally, a specialization process of this kind can be 

regarded as a tree, in which each node represents a problem (or the 

corresponding subset of So to be determined). More precisely, the 

root of the tree represents the original problem Pp (or the required 

set So), and for any node x; of the tree, the successors of x; represent 

the sub-problems (or subsets of So) obtained by the specialization of 

the problem at x;; while each arc (x;, x;) represents the constraint 

whose addition to the problem at x; reduces it to the problem at x;. 

The terminal nodes represent the trivial sub-problems eventually 

obtained by the specialization process, whose solutions yield all the 

required elements of So. 

To solve a particular problem, the first step is to devise an 

appropriate specialization rule; a backtrack programming 

algorithm can then be constructed, by devising a procedure to 

traverse the search tree determined by the specialization rule. 

2.7.3. The determination of Hamiltonian cycles 

A cycle of a graph is said to be Hamiltonian if it traverses every 

node of the graph exactly once; in the same way, a circuit of a simple 

graph is said to be Hamiltonian if it traverses every node of the 

graph exactly once. 

To give another demonstration of a tree search, we shall now 

consider the problem of finding all the Hamiltonian cycles of a given 

graph G =(X, U). It will be assumed that G has at least two nodes, 

and no loops. 

To present the search method, it will be convenient to view this 

problem as the problem of finding every subset V of the arc set U of 

G such that 

(i) in the partial graph H = (X, V) of G, every node has exactly 

one predecessor and exactly one successor, and 

(ii) the partial graph H = (X, V) is strongly connected. 

We shall denote by M the set of all subsets of U which satisfy these 

conditions. 

Now it is evident that no partial graph of G can be strongly 

connected unless the graph G is strongly connected. Therefore, as a 
* 

preliminary step we may construct the accessible sets I'*(x;) and 
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iene of some node x; of G (by the labelling method of Fig. 2.19) 

and if we find that I'*(x,) # X or I'-(x,) #.X, we know that M=4¢ 
and the search can be terminated. 

If we find that G is strongly connected we may next check 

whether G has exactly two nodes. If so, then M = {U} and again the 

problem is solved. Otherwise, the problem can be decomposed into 

two ‘sub-problems’, which are smaller versions of the original one, 

in the following manner: Let u be any arc of G, and let 

M,={VeM|uceV} and M,={VeEM|uE V}. 

It is evident that 

M,0M,=M-_ and M,7AM;=¢. 

These two subsets M,, and M; of M can be determined separately, 

as follows. 

(i) The determination of M,,. Let the initial and terminal end- 

points of the arc u be x; and x; respectively. Then we define the 

contraction of G with respect to u as the graph G,, obtained from G 

by (a) removing all the arcs incident from x; and all the arcs incident 

to x;, and also the arc (x;, x;) if it exists, and then (b) coalescing the 

nodes x; and x;. As an illustration, Fig. 2.38(b) shows the contrac- 

tion of the graph of Fig. 2.38(a) with respect to the arc ‘a’. It is 

evident that for each set VeM,, the arc set V—{u} forms a 

Hamiltonian cycle on G,,; and conversely, for every arcset V’ which 

forms a Hamiltonian cycle on G,, the arc set V’U{u} forms a 

Hamiltonian cycle on G. Thus the problem of finding M,, reduces to 

the problem of finding the Hamiltonian cycles of G,,. 

(ii) The determination of M,. It is evident that the members of M, 

are the Hamiltonian cycles of the partial graph G; of G obtained by 

removing the arc u. 

FIG, 2.38(a) FIG. 2.38(b) 
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From these arguments it follows that the problem of finding the 
Hamiltonian cycles of G can be decomposed into two sub-prob- 
lems, involving the separate determination of the sets of Hamil- 
tonian cycles on the graphs G,, and G,. These sub-problems may 
themselves be decomposed, repeatedly, until all the problems 
become trivial (in that their graphs are either not strongly connec- 
ted, or have only two nodes). 

As an illustration, Fig. 2.39 depicts a search for the Hamiltonian 
cycles of a 5-node graph (which is drawn inside the root node of the 
search tree). The label on each tree arc indicates the arc u of G 
which is used to decompose the problem at each stage. (In this 
example we have always chosen the arc of G whose name appears 
first in the alphabetic order, but any other arc could have been 
chosen.) 

It will be. observed that, unlike the specialization method 
employed for finding elementary paths, the specialization method 
used here can create sub-problems for which the associated subsets 
of M are null. (For instance, it can be seen on Fig. 2.39 that as a 
result of two specializations, we create the problem of determining 
the set 

{VeM|aec V andcé€ V}, 

which is null.) Thus the search tree can have terminal nodes which 

do not represent Hamiltonian cycles. 

The exploration of ‘void’ problems of this kind can involve a great 

deal of work, and therefore it is important to eliminate them at an 

early stage, if possible. 

In this connection, it is evident that if a graph G obtained at any 

stage has any node x; such that p (x;)=1 (resp. p (x;)=1), then 

every Hamiltonian cycle of G must contain the arc u which is 

incident from x; (resp. incident to x;), and therefore M = M,, and 

M,=¢. An arc u of this kind is called an essential arc of G. It is 

profitable, before each specialization of a problem, to search for an 

essential arc; if one is found, we perform the corresponding 

contraction immediately, then perform the test for strong connec- 

tivity, search for another essential arc, and so on until no further 

simplifications of this kind can be made. In Fig. 2.39 the broken 

lines indicate the simplifications obtained by contracting essential 

arcs. 
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For large graphs, the test for strong connectivity is also useful, 
in detecting some of the void sub-problems at a relatively early 
stage. (In fact this is the only reason for performing it, before the 
number of nodes of a graph has been reduced to two.) Some other 
ways of eliminating void sub-problems are discussed by Rubin 
(1974). 

Several more examples of backtrack programming will be given 

in later chapters. 

2.8. The time complexity of algorithms 

In designing an algorithm, we must obviously ensure that it will be 

finite (i.e. that it will terminate in a finite number of steps) and 

correct (i.e. that it will give the required output and no other output). 

However, for practical purposes it is also important to consider the 

amount of work which will be involved in its execution; for instance, 

if we envisage programming an algorithm for a computer, we would 

like to have some idea of its running time. 

It is obviously very difficult to predict the running time of an 

algorithm precisely, for it will depend not only on the characteristics 

of the problem to be solved, but also on the precise way in which the 

algorithm is programmed, and the instruction execution speeds of 

the computer which is to be used. However, as we shall demon- 

strate, it is often possible to estimate the rate of growth of the 

running time, for larger and larger instances of a problem. 

To obtain this information, we need to associate with a problem 

an integer s, called the problem size, which is a measure of the 

amount of input data. For example, the size of a graph-theoretic 

problem might be the number of nodes of the graph, or the number 

of its arcs. Then for each step of the algorithm, we establish the 

ordert of the time needed to execute it, as a function of s, and we 

also determine the number of times that the step will be repeated, 

again as a function of s; with this information we can determine the 

order of the running time of the complete algorithm, as a function 

f(s) of the problem size. The function f(s) is described as the 

asymptotic time complexity of the algorithm. 

+ A function f(s) is said to be of order g(s), or in symbols f(s) is O(g(s)), if there 

exists a constant k such that f(s) <kg(s) for all but some finite (and possibly empty) 

set of non-negative values of s. 
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Of course, this function does not define the running time LS 

cisely: If we assert that the running time ¢ of an algorithm is O(s’), 

we are only saying that this time is expressible in the form 

2, 
t=agtaist+a2s . 

However, the order of the running time does indicate the rate of 

increase of running time with problem size. For instance, if we can 

establish that the running time of an algorithm is O(s~), then we 

know that for large problems, a twofold increase in problem size will 

increase the running time by a factor of four. Furthermore, this 

result will hold for any ‘straight-forward’ programming implemen- 

tation (without clever tricks or silly inefficiencies), and it will not be 

affected by changes in computer execution speeds; program details 

and execution speeds affect the coefficients ao, a;, and a>, but not 

the order of the running time. 

Essentially, it is the asymptotic time complexity of an algorithm 

which determines how large a problem it can solve. To illustrate this 

point, if a graph-theoretic algorithm has a running time of order 2”, 

where n is the number of nodes (and we shall encounter several 

problems for which the best algorithms available have running 

times of this order) then an increase of 10 in the number of 

nodes—say from. 10 to 20, or from 20 to 30—will increase the 

running time by a factor of 2'°, or approximately 1000. An 

algorithm whose complexity is of this exponential form? can only 

solve very small problems, even on the fastest computers. (We 

observe that for such an algorithm, even a tenfold increase in 

computer speed only adds three to the size of problem which can be 

solved in a given time, since 10 ~2°*.) 

The determination of complexity. Although it is not necessary to 
consider such details as instruction timing, we cannot establish the 
complexity of an algorithm until we have specified the nature of the 
machine which is to execute it, and the types of operations which 
this machine can perform. Here, we shall suppose that our 
algorithms are to be executed on a ‘conventional’ digital computer 
(rather than say, a machine equipped with an associative memory, 
or some abstract machine capable of unbounded parallelism). 

1 A function f(s) is exponential if there exist constants c,>0, k,>1, C2>0 and 
ky>1 such that cyk} <f(s)<ck3 for all but a finite number of values of s. 
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However, to simplify the analysis it will be convenient to suppose 
that the random access memory of our computer is unlimited, and 
that the computer words can store integers of any required size. 

To determine the order of the running time of an algorithm on 
this machine, we will assume that the algorithm is programmed for it 
in an obvious, straight-forward way. Of course, if an algorithm 
contains an operation involving objects such as sets or graphs, which 
can be stored in the memory of a computer in several different ways, 
it is usually necessary to ‘refine’ the algorithm by specifying which 
types of data structures are to be used to define these objects, as the 
choice of data structure may affect the order of the running time. 

Example 2.18. Complexity of the tree-traversal algorithm. Let us consider 

the application of the algorithm of Fig. 2.30, to a complete binary tree 

which has v nodes. If the word w is represented by a vector (as indicated in 

Fig. 2.33), then for each of the steps 1-5 of the algorithm, the time needed 

for a single execution of the step is independent of n. With regard to the 

number of times that each step is executed, it is evident that step 1 is 

executed only once; each of the steps 2-4 are obeyed once for each node of 

the tree, or n times in all; and step 5 is executed twice for each non-terminal 

node, that is n—1 times in all (see Exercise 2.5). Thus the running time 

attributable to step 1 is bounded by a constant and the running times 

attributable to each of the other steps is O(n); hence the total running time 

of the algorithm is O(n). 

With many algorithms, the running time can be substantially 

different for different problems of the same size. If so, we may wish 

to know the maximum order of the running time, taken over all 

problems of a given size; this is called the worst-case complexity. 

Alternatively we may try to determine the ‘average’ order of the 

running time over all problems of a given size, which is called the 

expected complexity. The worst-case complexity is usually easier to 

find than the expected complexity; to obtain the latter we need a 

realistic probability distribution of the inputs, which may be very 

hard to specify. 

Example 2.19. Complexity of an algorithm for finding the connected 

components of a graph. Let us determine the order of the running time of the 

algorithm of Fig. 2.20, when applied to a simple graph which has n nodes 

and e edges. Here, the time taken to execute step 1 is O(n), and it is 

executed once only; hence the running time attributable to this step is O(). 
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The execution times of steps 2,3, and 5 are each bounded by-a constant, 

and these steps are performed n times, so the running time attributable to 

them is also O(n). For the steps 4.1-4.8, the execution times are all 

bounded by constants; steps 4.1, 4.2, and 4.8 are executed once for each 

component, and therefore at most n times; steps 4.3 and 4.7 are executed 

once for each node, or n times in all; step 4.4 is executed o(x;) + 1 times for 

each node x; of the graph, or 2e +n times in all, and steps 4.5 and 4.6 are 

performed twice for each edge, or 2e times in all. Thus, the time attribut- 

able to each of the steps 4.1, 4.2, 4.3, 4.7, and 4.8 is at worst O(), the time 

attributable to step 4.4 is O(e+n), and the time attributable to steps 4.5 

and 4.6 is O(e). The running time of the algorithm is therefore O(e +n). 

As a final example we shall establish a bound on the running time 

of a backtrack programming algorithm. For algorithms of this kind 

the running times typically increase exponentially with problem 

size, and this severely limits their usefulness. However, for some 

problems we do not have any alternative methods, and 

consequently there is great interest in techniques which attenuate 

the exponential growth in running time, for instance by ‘pruning’ 

branches of a search tree which cannot lead to solutions. Here 

complexity analyses may be helpful, in providing some indication of 

the effectiveness of techniques of this kind. 

Frequently, the cardinality of the set of elements to be generated 

by a backtrack algorithm increases very rapidly with problem size 

(for instance, it is easy to see that an n-node complete and sym- 

metric graph has (nm — 1)! Hamiltonian cycles.) In such a case it is 

often most convenient, and informative, to determine the running 

time in terms of measures of both the input and the output data. 

Example 2.20. Complexity of the backtrack algorithm for listing elemen- 
tary paths. For the algorithm of Fig. 2.36(a), it is convenient to establish a 
bound on the running time in terms of n (the number of nodes of the input 
graph), a (the number of arcs of this graph), and r (the number of 
elementary paths from x, to x,). 

Let us consider first the time taken to execute each step of the algorithm 
once. For step 1, the execution time is obviously bounded by a constant. 
The execution time for step 2, as defined in Fig. 2.36(b), can be determined 
by arguments very similar to those used in the previous example; we leave it 
as a simple exercise for the reader to verify that this procedure has a running 
time bound of O(a +n). The execution times of steps 3, 4, and 5 are each 
bounded by a constant (we ignore the time taken to print the results, in step 
4). These execution times are listed in row (i) of Fig. 2.40. 
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Step 1 2 3 4 5 

(i) Maximum time for const. O(at+n) const. const. const. 
a single execution 

(ii) Maximum number const. O(nr) O(nr) O(nr) O(nr) 
of executions 

(iii) Maximum running const. O((a+n)nr) O(nr) O(nr) O(nr) 
time 

FIG. 2.40 

With regard to the number of executions of each step, we recall that the 

algorithm traverses a search tree, whose terminal nodes represent the 

required elementary paths (see, for instance, Fig. 2.35). The search tree 

obviously has exactly r terminal nodes and, since the required elementary 

paths cannot be of order greater than n — 1, the tree has at most (n —2)r+1 

nodes altogether. Now from the definition of the algorithm it is clear that 

step | is executed only once; step 2 is executed once for each non-terminal 

node of the tree; step 3 is executed once for every node other than the root, 

with S, non-empty, and also once for every non-terminal node, with S, 

empty; step 4 is executed once for every tree node other than the root; and 

step 5 executed once for every non-terminal node. On this basis, we obtain 

the bounds on the numbers of executions given in row (ii) of Fig. 2.40. 

Combining the results in rows (i) and (ii) of this table we obtain bounds on 

the running time attributable to each step (these are listed in row (iii)), and 

hence we find that the total running time of the algorithm has a bound 

O((a+n)nr). Of course in the worst case, r is itself an exponential function 

of n. 

Easy and hard problems. An algorithm is said to be polynomial- 

bounded if its running time is bounded by a function of order s“, 

where s is the problem size and k is a constant. In the context of 

combinatorial computing, an algorithm is regarded as being fast or 

efficient if it is polynomial-bounded, and inefficient otherwise. 

Accordingly, a problem is said to be easy if a polynomial-bounded 

algorithm has been found for it. 

The association of polynomial-boundedness with computational 

efficiency has a theoretical justification in that, above a certain 

problem size, a polynomial-bounded algorithm will always have a 

smaller running time than a non-polynomial-bounded one. Of 

course, for very small problems the non-polynomial algorithm 
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could have a better performance, but experience indicates that this 

is not likely to happen in practice. 

As we shall see in later chapters, fast algorithms are available for 

many graph-theoretic problems, but there are a number of 

important graph problems for which no fast algorithms have ever 

been found. Among these more difficult problems, we have 

(1) The clique problem: given a simple graph and an integer k, 

does the graph have a complete subgraph with k nodes? 

(2) The feedback node set problem: given a strongly connected 

graph and an integer k, is it possible to remove k nodes from the 

graph in such a way as to render it acyclic? 

(3) The feedback arc set problem: given a strongly connected 

graph and an integer &, is it possible to remove & arcs from the 

graph in such a way as to render it acyclic? 

(4) The Hamiltonian cycle problem: does a given graph contain a 

Hamiltonian cycle? 

(5) The Hamiltonian circuit problem: does a given simple graph 

contain a Hamiltonian circuit? 

(6) The chromatic number problem: given a graph and an integer 

k, is it possible to paint the nodes of the graph with k colours, in 

such a way that no two adjacent nodes are of the same colour? 

In principle, all these problems can be solved by tree-search 

methods, but large instances of the problems are at the moment 

intractable. 

In fact, all the problems listed above belong to a larger class of 

combinatorial problems (called the ‘non-deterministic polynomial- 

time complete’ or NP-complete problems), which have been proved 

to be equivalent, in the sense that either all or none of them can be 

solved by fast algorithms. (More precisely, it has been shown that 

each NP-complete problem can be transformed into any other 

NP-complete problem in polynomial time; clearly, if a problem is 

easily transformed into an easy problem, then it is also an easy 

problem, from which it follows that either the NP-complete prob- 

lems are all easy or none of them are easy.) Since many of these 

problems have been studied intensively for decades, and no fast 

algorithms have been found for any of them, it seems likely that no 

such algorithms exist. 

A problem is said to be hard if the existence of a fast algorithm for 

its solution implies that the NP-complete problems are easy. Of 
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course, the NP-complete problems themselves are hard. Some 

combinatorial optimization problems are also hard, one notorious 

example being the Travelling salesman problem: given a graph in 

which every arc has a specified length, find a Hamiltonian cycle of 

minimum length. This problem does not belong to the class of 

NP-complete problems, but it is obvious that if we had a fast 

algorithm to solve it, this algorithm could be used to decide quickly 

whether a given graph has any Hamiltonian cycles at all (see 

problem (4) above). 

Uses and abuses of complexity theory. Quite apart from their intrin- 

sic interest to computer scientists, the techniques and results 

achieved in complexity analysis are very helpful to those involved in 

the development of algorithms for practical problems. They enable 

us to sharpen our otherwise purely intuitive and rather vague 

notions of the ‘efficiency’ of algorithms, of ‘easy’ and ‘hard’ prob- 

lems, and they draw attention to the importance of the choice of 

data structures in implementing graph-theoretic methods. 

Certainly, in developing any graph algorithm one should establish 

its worst-case complexity, and when an algorithm cannot be 

guaranteed to run in less than exponential time one should take a 

cautious view of its practical feasibility. 

At the same time, it is important not to take the worst-case 

complexity for the expected complexity, and to remember that the 

worst-case complexity is a measure of the asymptotic performance 

of an algorithm, as the size of its input goes to infinity. There is a 

tendency to regard an algorithm with a running-time bound of 

O(s*) as being ‘better’ than one with a running-time bound of 

O(s af)? and yet in practical situations, the latter may invariably have 

a better performance. Again, in practical applications involving 

very ‘sparse’ graphs, the running times of some backtrack 

algorithms are found to grow as low-order polynomial rather than 

exponential functions of problem size. 

Exercises 

2.1. An Euler cycle of a graph is a cycle which traverses every arc of the 

graph once and once only. 

Prove that a connected graph G = (X, U) has an Euler cycle if and 

only if p*(x;)=p (x;) for all x; ¢X. 
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Three jealous husbands and their wives want to cross a river. A boat is 

available, but it is so small that it can only take two people at a time. 

How can all six people make the crossing, if the husbands will not 

allow their wives to stay without them in company where other men 

are present? 

Prove the following: 

(i) a graph G =(X, U) is connected if and only if, for any partition 
{X,, X>} of X, there exists an arc with one endpoint in X, and the other 

endpoint in X2, and 

(ii) a graph G =(X, U) is strongly connected if and only if, for any 
partition {X,, X2} of X, there exists an arc (x,, x;) with x;¢X, and 

x; € X. 

Prove that in an acyclic graph, the rank of a node is equal to the 

maximum number of arcs in a path terminating on that node. 

Prove that in a complete binary tree, the number of terminal nodes is 

one more than the number of non-terminal nodes. 

Let G be a tree, equipped with a transverse ordering =. Prove that if 

x, and x; are nodes of G, the node x; is an ascendant of x; if and only if x; 

precedes x; in the Tarry order and x; follow x; in the reverse Tarry 
order associated with =. 

Given a graph G = (X, U) we say that a subset Y of X is a feedback 

node set of G if every cycle of G traverses at least one node in Y. 

(i) Develop a tree-search method to find the feedback node sets of a 

graph, and apply it to the graph of Fig. 2.1. 

(ii) In practical situations we sometimes require only one feedback 

node set, of minimum cardinality. (For instance, in the diagnosis of 

faults in logic circuits, a feedback node set of minimum cardinality 

defines an appropriate set of ‘test points’ at which to monitor a circuit’s 

behaviour.) Modify your search method, to determine such a set as 

efficiently as possible. 

Additional notes and bibliography 

The works of Ore (1962) and Berge (1976) are important reference texts 
on graph theory, giving a rigorous treatment of the subject; for an interes- 
ting historical account of its development, see Biggs, Lloyd, and Wilson 
(1976). Guidance on the choice of data structures and the development of 
algorithms for manipulating graphs on computers is given by Knuth (1968) 
and Aho, Hopcroft, and Ullman (1974). 
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The use of trees in sorting and searching is discussed in detail by Knuth 
(1973). 

For general discussions of backtrack programming techniques, with 
examples, see Walker (1960), Golomb and Baumert (1965), Wells (1971), 
and Fillmore and Williamson (1974). Floyd (1967) describes techniques for 
developing backtrack algorithms. 

Backtrack programming is essentially recursive, and backtrack 
algorithms can be defined very elegantly in recursive form; see Aho, 
Hopcroft, and Ullman (1974), and also Tarjan (1972). Bitner and Reingold 
(1975) discuss the implementation of backtrack algorithms using macros. 

With reference to the examples used in Section 2.7, a backtrack 

algorithm for finding elementary paths has been published by Kroft (1967); 

it is simpler than the algorithm of Section 2.7, but it is usually much less 

efficient. The problem of finding all the elementary cycles of a graph has 

been studied extensively, because knowledge of the cycles is useful in 

optimizing computer programs; backtrack algorithms for finding the cycles 

(rather similar in principle to the algorithm of Section 2.7) have been 

developed by Tiernan (1970), Tarjan (1973), Johnson (1975), Read and 

Tarjan (1975), Tsukiyama, Shirakawa, and Ozaki (1975), and Szwarcfiter 

and Lauer (1976). The generation of Hamiltonian cycles by backtrack 

programming is discussed by Roberts and Flores (1966) and Rubin (1974). 

Kaufmann and Pichat (1977) have made a general study of path algorithms 

using stacks. 

Tree-search methods have been extended to the branch-and-bound 

methods of solving discrete optimization problems (Lawler and Wood 

1966; Mitten 1970; Garfinkel and Nemhauser 1972). Branch-and-bound 

methods of solving the travelling-salesman problem in particular are 

described by Little, Murty, Sweeney, and Karel (1963) and Bellmore and 

Nemhauser (1968); algorithms for finding a shortest Hamiltonian circuit on 

a simple graph are given by Held and Karp (1970, 1971). See also Bellmore 

and Hong (1974). 

For a lucid introduction to the subject of computational complexity see 

Lawler (1976a), and for a more detailed treatment see Aho, Hopcroft, and 

Ullman (1974). The complexity of graph-theoretic problems has been 

studied extensively by Karp (1972, 1975a,b). See also Corneil (1974) and 

Knuth (1975). 

Feedback node sets (as defined in Exercise 2.7) are also important in the 

formal verification of computer programs; backtrack programming 

methods for obtaining these sets are described by Guardabassi (1971) and 

Smith and Walford (1975). 



3 Path problems 

3.1. Introduction 

PROBLEMS involving the determination of paths take many 

different forms. For instance, we have already encountered the 

problem of finding the ‘critical’ or longest paths in an activity graph. 

Later we shall present transportation problems in which we require 

‘least-cost’ or shortest paths through a network, from the points 

where a commodity is produced to the points where it is consumed. 

Again, in transmitting messages through a communication network 

we may have to find a path of maximum reliability between two 

points, given the reliabilities (that is, the probabilities of successful 

operation) of the individual links. 

These are all examples of ‘extremal’ path problems, i.e. problems 

in which each arc of a graph has a real number associated with it 

(representing for instance an activity duration, transit cost, or 

reliability), and in which we seek a path for which some function of 

the arc parameters is either maximized or minimized. Sometimes 
we also encounter path enumeration problems—such as the prob- 
lem of finding all the elementary paths from one node to another, 
which arises for instance in testing computer logic circuits. 

In this chapter we shall first present an algebraic structure—a 
‘path algebra’—which can be used to formulate and solve a wide 
variety of path problems. We shall then consider graphs whose arcs 
are ‘labelled’ with elements of a path algebra, which may be for 
instance real numbers, or words on some alphabet. It will then be 
shown that many path problems—including all those mentioned 
above—can be posed as a problem of solving a set of simultaneous 
equations in a path algebra. We shall then derive some direct and 
iterative methods of solving such equations, thereby obtaining 
different path-finding algorithms. 

3.2. An algebra for path problems 

3.2.1. Definition of a path algebra 

We define a path algebra as a set P equipped with two binary 
operations v and - which have the following properties. 



Path problems 85 

(i) The v operation is idempotent, commutative, and associative: 

XVX=X forallx <P, (3.1) 

xVyY=yvx forallx, y €P, (3.2) 

(xvy)vz=xv(yvz) forallx,y,zeP. (3.3) 

(ii) The - operation is associative, and distributive over v: 

(x-y):-z=x-(y-z) forall x, y,z €P, (3.4) 

Keky Vz) =4xey) VK Zz) 
forailx, y, Ze. (3.5) 

(yz) = yx) Viz x) 
(iii) The set P contains a zero element @ such that 

OVX=xX forallx €P, (3.6) 

d:x=b¢=x:¢d  forallx €P, (3.7) 

and a unit element e such that 

ex=x=x-e- forallxeP. (3.8) 

The operation v is called the join operation of P, and an element 

xvy is called the join of x and y. The operation - is called 

multiplication, and an element x - y is described as the product of x 

and y (in that order). For simplicity, we may denote a product x: y 

by xy. 

3.2.2. Some examples of the path algebra 

Eight concrete examples of the path algebra are given in Table 

3.1. For each example this table defines the set P, its join and 

multiplicative operations, and the zero and unit elements of P. The 

practical applications, which are also indicated in the table, will be 

discussed in more detail later in this chapter. 

The algebra P, will be recognised as the two-element Boolean 

algebra. (In fact, any distributive lattice which has least and greatest 

elements can be regarded as a path algebra, the meet operation of 

the lattice playing the role of multiplication.) 

The examples P,—Ps; arise in connection with ‘extremal’ path 

problems of the kind described in the introduction. In P, for 

instance, the set P is the set R of real numbers, augmented by an 

element ‘00’; the join operation is defined by 

x vy =min {x,y} forall x, yER, 

MVC =e for all x € P, 
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and the multiplicative operation is defined by 

xX-y=xty for all x, y ER, 

x-0C=0=0:x forallxeP. 

It is easily verified that P obeys all the laws (3.1)—(3.8), the zero of P 
being 00, the unit element being the number 0. 

The algebras Ps—Ps are derived from the linguistic concepts 

introduced in Example 1.23, as follows: 

(i) Let = be any alphabet, let =* be the set of all words over >, and 

let A(=*) be the power set of =*. (We recall that the elements of 

Y(=*), which are the subsets of =*, are called languages over >.) 

For any two languages X, Y € P(=*), we define the join X v Y by 

XVY=XUY 

and we define the product X - Y by 

X:-Y={youlyeX andwe Y} 

where y ° & denotes the concatenation of the words y and w. (Asan 

illustration, if X={A,a,ba} and Y-={aa,b} then X-Y= 

{aa, b, aaa, ab, baaa, bab}.) 

It is easily verified that the set A(=*) with these operations is a 

path algebra, whose zero element is the null language (or nullset) ¢, 

and whose unit element is the language A={A}, where A is the 

empty word. (This is the algebra P, of Table 3.1.) 

(ii) Again, let & be any alphabet. Then we say that a word w on 

> is simple if no letter of } appears in w more than once. Let us 

denote the set of all simple words over > by S, and let A(S) be the 

power set of S, i.e. the set of all languages which comprise only 

simple words. For any two languages X, Y € A(S) we define the 

join of X and Y as their set union: 

XVY=XUY 

and we define their product X - Y as 

X-Y={yoweS|xeX and we Y} 

where y ° & is the concatenation of the words yx and w. The set A(S) 

with these operations is a path algebra, whose zero and unit 

elements are the languages @ and A respectively. (This is the 

algebra P7 of Table 3.1.) 
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(iii) We define an abbreviation of a word w as any word which can 

be obtained by removing at least one (and possibly all) of the letters 

of w (note that every word with at least one letter has the abbre- 

viation A ). For any language X, we say that a word w € X Is basic toX 

if X does not contain any abbreviation of w, and we describe the set 

b(X) of all basic words of X as the basis of X. If b(X) = X then X is 

a basic language; in particular, the languages ¢ and A are both 

basic. 

Now let = be any alphabet, and let B be the set of all basic 

languages on >. For any two languages X, Y € B, we define the join 

of X and Y by 

XVY=d(X UY) 

and we define the product X -Y by 

X:-Y={yow|x eX and we Y}. 

The set B with these operations is a path algebra, with zero and unit 
elements ¢ and A respectively. (This is the algebra Ps of Table 3.1.) 

Some further exampies of path algebras will be given later in this 

chapter, and in Chapter 4. 

3.2.3. Elementary properties of path algebras 

Since the join operation of P is idempotent, commutative, and 
associative, we can define an ordering ~ of P by the following rule 
(see Section 1.5.2): 

xy ifandonlyif xvy=y. (3.9) 

It is evident from (3.6) that with respect to this ordering, ¢ is the ~ 
least element of P: 

@x<x forallxeP. (3.10) 

Also, since the join operation is idempotent, 

xvy>x and xvy>y forallx,yeP (3.11) 

It is important also to note that the join operation is isotone for <: 

if x<y then xvzXyvz forallzeP. (3:12) 

(For the proof, see Section 1.5.4.) The multiplicative operation is 
also isotone for <: 

if x<y then x-z<y-z and z-x<z-y forallzeP 

(3.13) 
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For if x<y then xvy=y and therefore (by the distributive 

law (3.5)) y:-z=(xvy)-z=(x:z)v(y-z), which implies that 

xX +zZNy-z; we obtain z - x <z- y bya similar argument. 

In a path algebra, an element x is said to be sub-unitary if x Xe, 

whereas x is said to be super-unitary if x >e. 

Example 3.1. For the path algebras P,, P3, P, and P; the ordering ~X is the 

familiar ordering < of the real numbers, whereas for P the ordering X is 

the familiar ordering =. For P, and P; < becomes the set inclusion relation 

C; while in Ps, x < y means that each word in the language x occurs in the 

language y, or has an abbreviation in y. 

Powers. The powers of an element x € P are defined by 

Det ger ek ee be he La Nk (3.14) 

An element x for which x” = x is said to be idempotent. An element 

x such that x* = ¢ for some positive integer q is said to be nilpotent. 

Closure. An element x is said to be stable if for some non-negative 

integer q, 
q ke q+1 k 

Voto = VS (3.15) 
k=0 k=0 

where \/7_, x“ denotes the joine vx vx’ v-- + vx“; the least value 
of q for which (3.15) holds is called the stability index of x. 

If (3.15) holds then, by multiplying both sides by x, we have 

k 5 i k 
Wax Sih) x 
k=1 k=1 

and by joining x° to each side we obtain 

qt+l1 k q+2 k 

Vx = Ke (3.16) 
k=0 k=0 

From (3.15) and (3.16), 
q be q+2 k 

We matey 
k=0 k=0 

By repetition of this argument it follows that if x is stable of index q 

then 
q fe 

V x*=\V x* forallr=q. (S571) 
k=0 k=0 
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For a stable element x, the join (3.17) is. called the strong closure 

(or simply the closure) of x, and it is denoted by x*. 

Asan important special case, it will be observed that if an element 

x is sub-unitary then x <e,(k =1,2,...), and therefore x is stable 

of index 0, with 

x*=e, (3.18) 

In particular, the zero element ¢ of any path algebra is stable, with 

closure 

b* =e. (3.19) 

Example 3.2. In the path algebras P,, P,, Ps, and Ps of Table 3.1, the unit 

element is the greatest element. Hence in those algebras all elements are 

stable, and their closures are given by (3.18). 

Example 3.3. In a path algebra whose multiplicative operation has the 

cancellation property, an element x is stable if and only if it is sub-unitary. 

Indeed, it has already been shown that if x <e then x is stable. To prove the 

converse, let us assume that x is stable; then, since x* v xx* = x*, 

(CN) x exo. 

It follows (by cancellation) that e vx =e, which implies that x is sub- 

unitary. 

As concrete examples, in both P, and P; the multiplicative operation has 

the cancellation property. In P, the non-negative numbers are stable (of 

index 0) and the negative numbers are unstable, whereas in P; the non- 

positive numbers are stable and the positive numbers are unstable. 

Example 3.4. Let x be any element of the algebra P,. Then x“ is the set of 

all simple words which can be obtained by concatenating k words of x. For 

any non-negative integer r, 

which is the set comprising the empty word A, the words of x, and all the 

simple words which can be obtained by concatenating up to r words in x. 

Now let q be the number of letters of the alphabet =. Then, since no simple 

word has more than q letters, 

q r 

Vix = \ x*- forall r=a- 
k=0 k=0 

It follows that all elements of P, are stable. 
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From the definition of closure, it follows immediately that for any 
stable element x, 

x* =e v xx", (3.20) 

x*=(ev-x)*, (3.21) 

(Cer = et (6222) 

xa (3.23) 

Also, provided that the ‘starred’ terms are stable, 

(xy)* =e vx(yx)*y, (3.24) 

(xy)*x =x(yx)*, (3:25) 

(x vy)* = (x*y*)*, (3.26) 

avg) = tyne, (3.27) 

Cary = x7 (ye*)*, (3.28) 

Indeed, 

(xy)* =e vxy vx(yx)y vx(yxyx)y v-+ + =e vx(yx)*y 

proving (3.24), and similarly 

(xy)*x =x v (xy)x v (xyxy)x v--- 

=xvx(yx)vx(yxyx)v-: 

= x(yx)*, 

which proves (3.25). For the identity (3.26) it can be shown by 

expansion that (x v y)* is the join of all products of x’s and y’s, and 

that (x*y*)* is also the join of these terms. A similar argument is 
used to prove (3.27) and (3.28). 

Finally, we note that by (3.12) and (3.13), 

x~<y impliesthat x*<y* (3.29) 

provided of course that both x and y are stable. 

Weak closure. From (3.17) it follows that for any element x which is 

stable of index q, 

q+1 r 

VP aN xe forvall’7 =q +1: (3.30) 
1 k=1 k= 
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The join (3.30) is called the weak closure x of x. It is evident that 

axe ae 631) 

x* =e Vv x. (3.32) 

3.2.4. The solution of equations 

Let us now consider the problem of finding an element y which 

satisfies an equation 

y=ayvb (3.33) 

where a and D are specified, the element a being stable of index q. 

First, it will be observed that the equation has a solution 

y=a"*b, (3.34) 

for it follows from (3.20) that 

a(a*b)v b=(aa*ve)b=a*b. 

Now let yo be an arbitrary solution of (3.33), i.e. 

Yo=ayoV b. 

By substituting, we obtain 

yo=alayovb)vb= a*yov (eva)b, 

and by repeated substitutions 

yo=a*yov(evavav:::va*')b, (k= hyo oe 

It follows that 

yYo=a*yova*b forallk>q, (3.35) 

and consequently (by (3.11)), 

yo2a*b. (3.36) 

From this inequality it follows that the solution (3.34) is the least 
solution of the equation (3.33). It is also evident from (3.35) that in 
the particular case where a is nilpotent, the solution (3.34) is 
unique. 

By a similar argument it can be shown that if an element a is 
stable then the equation 

y=yavb (3.33’) 
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has the least solution 

y= ba: (3.34') 

and again, if a is nilpotent this solution is unique. 

Example 3.5. If the element a in equation (3.33) is sub-unitary (as is 
always the case for instance in a Boolean algebra), then byIG LS )iaaes 
and the least solution (3.34) becomes y = b. This solution is not necessarily 
unique: for instance, it is easily verified that in any Boolean algebra, the 
equation y = ay vb has for solutions all those elements y which satisfy the 
condition b<y~avb. 

Example 3.6. Let us consider the equation (3.33) in the algebra P,, in the 
particular case in which a ={a} and b ={6}, where a and B are two 
non-empty words which do not have any letters in common. Here a is 
nilpotent, with a? = 4, hence the equation (3.33) has a unique solution 

y=a*b=(Ava)b={A, a}: {B}={B, aB}. 

3.2.5. Matrices 

Let P be a path algebra, and let M,,(P) be the set of all n Xn 

matrices whose entries belong to P. We define two binary opera- 

tions on M,,(P) as follows: given any matrices X =[x;,;]and Y =[y,)] 

in M,(P), their join is the n Xn matrix 

XM VE = [xii V yi] (3.37) 

and their product XY is the n Xn matrix 

XY = [ VV Xx a) (3.38) 
k=1 

Thus we form the join X v Y and the product XY in the same way 

as we construct the sum and product in ordinary matrix algebra, 

except that here we use the join operation of P in place of addition 

on R, and we use multiplication on P in place of multiplication on R. 

It is easy to establish that for any path algebra P, the set of matrices 

M,,(P), equipped with the join and multiplicative operations defined 

in (3.37) and (3.38), is itself a path algebra. 

Indeed, it follows immediately from the definition (3.37) that the 

join operation of M,,(P) is idempotent, commutative and asso- 

ciative. Also, since in P multiplication is associative and distributive 

over the join operation, matrix multiplication is also associative, 
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and distributive over the matrix join operation. (These properties 

can be demonstrated by the same arguments as are used in ordinary 

matrix algebra to prove that matrix multiplication is associative, and 

distributive over matrix addition—see for instance Birkhoff and 

MacLane (1965).) Finally, the m x n matrix ® whose entries are all d 

(the zero element of P) satisfies the conditions (cf. (3.6) and (3.7)) 

®vX=X and ®X=0=X® forall X¢M,(P) 

and the n Xn matrix é~.b & - b 

ge ¢ d 
E=|¢ @ e d 

¢ ¢ e 

is a unit element for multiplication (cf. (3.8)): 

EX =X =XE forall X<€M,(P). 

The matrices ® and E are called respectively the zero matrix and the 

unit matrix of M,,(P). 

Since the matrix algebra M,,(P) is a path algebra, we can extend 

all the definitions and results of Sections 3.2.3 and 3.2.4 to M,,(P), 

without modification. 
Thus, we may define an ordering of matrices by the rule (cf. (3.9)) 

X=<Y ifandonlyif XvY=Y. 

From (3.9) and (3.37) it follows that this ordering of matrices can be 

expressed in terms of the ordering of their entries: 

X*<Y ifandonlyif x;<y, forall i, 7. 

The significance of closure for matrices, and the solution of 

matrix equations, will be discussed later in this chapter. 

Example 3.7. As a concrete example, let us take the path algebra P, of 

Table 3.1. The operations of the matrix algebra M,,(P2) are defined by 

Xv Y =[min {x;, y;}] and XY= min {xj.+ ve} 
1<k<n 

for all X, Ye M,(P;). 

The zero matrix ® of M,,(P2) is the n Xn matrix all of whose entries are 00, 

while the unit matrix E =[e,] has e; =0 if i=j and e; =0 if i#j. Asa 
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numerical illustration, 

for i | and ae a 
1b) COD 

xvy=[' | and ps al 
lee 2! 4 5 

3.3. Labelled graphs 

3.3.1. Definition of a labelled graph 

A graph G = (X, U) is said to be labelled with a path algebra P 

when each arc of G is assigned some element of P, other than its 

zero element ¢. We describe the element of P which is assigned to 

an arc (x;, x;) as its label, and denote it by 1(x;, x;). 

3.3.2. Path labels 

Let G be a graph labelled with a path algebra P, and let 

HM = (Xi, Xi), (Xiz, Xi), -- + » (Xi,_, Xi,) be any path on G. Then the 

label I(x) of the path w is defined as the product of the arc labels of 

uu, taken in order: 

I(w) trad ee Xi,) . I(Xi,5 Xi,) ali cake ihe ie ea): 

In the present context, it will be convenient to suppose that each 

node x; of a graph G is connected to itself by a null path 6;. By 

definition, each null path 6; is of order zero (for it contains no arcs), 

and /(6;) =e. 

Example 3.8. In graphs labelled with the algebras P,—P; of Table 3.1, 

each arc label is a real number. If a graph G is labelled with P, or P3—as in 

Fig. 3.1 for example—then the label /(u) of a path w on G is the 
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arithmetical sum of the labels on the arcs of w. (Thus if the labels on arcs 

represent their lengths, as on a road map for instance, the label /(w) is the 

total length of w.) If G is labelled with P,, /(w) is the arithmetical product of 

the labels of the arcs of w. (In this way, if G represents a communication 

network, and each arc label represents its reliability, the label /(w) is the 

reliability of the path w.) If G is labelled with P; then /(w) is the smallest of 

the labels on the arcs of w. (Hence if each arc label represents its capacity, 

i.e. the rate at which some substance can flow along the arc, then /(w) is the 

capacity of the path w.) 

Example 3.9. Fig. 3.2 shows a graph whose arcs have distinct names 

a, b,c,.... Now this graph can be considered being labelled with the 

linguistic algebra Ps, where 2 ={a,b,c,...}. (To be precise, the labels 

assigned to arcs are the one-word languages {a}, {b}, {c}. . . which comprise 

their names.) Then for any path yu, the label /(w) is a language comprising a 

single word, this word being the concatenation of the names of the arcs of wu. 

For instance, the path wu = (x3, x2), (%2, x4), (x4, X1) on Fig. 3.2 has the label 

I(u) = {d}- {c}- {f} = {def}. 

Since the word in the label /(«) of a path u completely defines ~, we may 

describe this word as the name of p. 

3.3.3, Absorptive graphs 

A graph G labelled with a path algebra P is said to be absorptive if 
for every elementary cycle y on G, 

l(y) Xe. (3.39) 

Let G be an absorptive graph, and let us suppose that G contains 
anon-elementary path uw, from x; to x; say. (Here the nodes x; and x; 
need not be distinct.) Since « is non-elementary, it traverses at least 
one elementary cycle. We may therefore regard uw as the conca- 
tenation of three paths B,, y1, 51, where y; is an elementary cycle, 
and where the paths 8, and 6, together form a single path y; from x; 
to x;, which is of lower order than uw. (It is possible for either Bor 6; 
to be a null path.) Now since the multiplicative operation of P is 
associative, we can write the labels of « and mw; as 

I(w) = 1(B1) + U(y1)- 18), (3.40) 

and 

I(u1) = 1(B1)-1(81), (Sra) 
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and since G is absorptive it follows from (3.39), (3.40), and (3.41) 
that 

(ye) <1 (m1). (3.42) 

If 4; is non-elementary, we may also consider this path as the 
concatenation of three paths B2, y2, 52, where y2 is an elementary 
cycle and the segments 82 and 62 together form a path p> from x; to 
x;, Of lower order than w;. Repeating the previous argument, we 
find that /(421) </(w2), and since the relation < is transitive it follows 
by (3.42) that 

Iw) <1 (t42). (3.43) 

By repetition of this process, we must eventually obtain an elemen- 

tary path uw, from x; to x; such that /(w)</(u;,). To summarize: 

In any absorptive graph, if there exists a non-elementary path w 

from a node x; to a node x;, then there also exists an elementary path 

from x; to x;, of order less than w, and such that I(w) <I(). 

Example 3.16. Let G be a graph labelled with P», and let us interpret the 

(numerical) labels of the arcs of G as their lengths. Then G is absorptive if 

and only if the lengths of its elementary cycles are all non-negative. For the 

case where G is absorptive our theorem above states that if there exists a 

non-elementary path wu from x; to x, then there also exists an elementary 

path from x; to x;, whose length is less than or equal to the length of w. 

3.4. Graphs and matrices 

3.4.1. Adjacency matrices 

An n-node graph G = (X, U) labelled with a path algebra P can 

be described by its adjacency matrix, which is the n Xn matrix 

A =[a;;] of M,(P) with entries 

hs fe io if (Xis x;) € U, 

Pts fGen we Ui; 

where ¢ is the zero element of P. Conversely, any m Xn matrix A 

whose entries all belong to a path algebra P can be visualized 

as an n-node labelled graph G0) where 

U ={(x;, x;))€ X x X|a; 7A}, each arc (x;,x;) of G having a 

label 1(x;, x;) = aij. 
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Example 3.11. In the case where a graph G = (X, U) is labelled with the 

two-element Boolean algebra, every arc has the label ‘1’ (since the zero 

element of a path algebra cannot be used as an arc label—see Section 

3.3.1), and the adjacency matrix A of G has 

= if (x;, x;) € U, 

7110 if (x, x,)éU. 

This matrix is usually called the Boolean adjacency matrix of G. As an 

illustration, the Boolean adjacency matrix of the graph cf Fig. 3.3(a) is 

given in Fig. 3.3(b). 

ae oe SL 

1 Or 0 cil 

s i (TASS IRR zt | 

hee. Ona) 

3 

FIG. 3.3(a) FIG. 3.3(b) 

In Section 2.2 we defined the complement G and the converse G' of a 

graph G. It is easily verified that if G has a Boolean adjacency matrix A 

then the adjacency matrix of G is A =[4,;], where @,; denotes the Boolean 
complement of a;;; the adjacency matrix of G’ is the transpose A' of A. 

As one might expect, many basic properties of graphs can be interpreted 

very simply in terms of their Boolean adjacency matrices. For instance, 

given a graph G with adjacency matrix A: (i) G is reflexive if and only if 

E <A; (ii) G is symmetric if and only if A = A’; and (iii) G is transitive if 

and only if A7<A. 

Example 3.12. The graph of Fig. 3.1, labeiled with P2, has the adjacency 

matrix 

w 8 w 8 8 FBN Se Bas 25 Vin 6 

Adjacency matrices of acyclic graphs. In Section 2.9 it was shown 

that if the nodes of an acyclic graph G = (X, U) are numbered in 

order of increasing rank, then for every arc (x;, x;) in G we have i <j. 
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In this case, the adjacency matrix A of G has a;; = @ whenever i = /; 

in other words, all elements on and below the principal diagonal are 

null. We describe such a matrix as being strictly upper triangular. In 

the same way, if the nodes of a graph are numbered in order of 

decreasing rank, its adjacency matrix is strictly lower triangular. 

Conversely, it follows directly from the characterization of acyclic 

graphs in Section 2.5 that if a matrix A € M,(P) is strictly upper or 

lower triangular, then its labelled graph is acyclic. 

As an illustration, Fig. 3.4 shows a graph whose nodes are 

numbered in order of increasing rank, together with its Boolean 

adjacency matrix. 

FIG. 3.4(a) FIG. 3.4(b) 

3.4.2. Powers of matrices 

Let P be any path algebra, and let A be any matrix belonging to 

M,,(P). Then, by the definition (3.14), the powers of A are 

ADEE At eA A | sae WP RRL 8 

where E is the unit matrix of M,,(P). 

The elements of these powers can be defined in terms of the labels 

of paths on the graph corresponding to A, as follows: 

Let ai; denote the typical element of A“, and let Si; be the set of all 

paths of order k from x; to x;, on the labelled graph G of A. Then 

SM nGass yf (hei 12502) (3.44) 
weS Me 

+ To simplify notation, we adopt the usual convention that \/ x denotes ¢ if S is 
xeS 

empty. 
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This formula is obviously valid for k =0, since So 10 (i = 

1,2,...,n), where 6; is the null path associated with x;, while Sj; is 

empty if i#/. For k >0, the typical element of A* can be written 

as 

aij Ee V Ding Gnghy* Ong (3.45) 

where V ho,h1,....4_, denotes the join extended over the n ea possible 

values of the indices. Since the label of every path in Sé is a product 

in (3.45), and every non-null product in (3.45) is the label of a path 

in Si, the formula (3.44) is also valid for all k >0. 

Example 3.13. On a graph G labelled with the two-element Boolean 

algebra, every arc has the label 1, and every path wu has the label /(w) = 1. 

The powers A“ of the Boolean adjacency matrix of G have elements af = 1 
if G contains any paths of order k from x; to x; and aj; = 0 otherwise. 

For the graph of Fig. 3.3(a), whose adjacency matrix A is given in Fig. 

3.3(b), 

PaO Oe ij, ep ee as ee 
FOV AS Ceres) mere ie Came ye ng es oe 

ir Ou Oant Ife gies (en ae ee 
OF 0,0 12 Oxy a Es te OO 

Example 3.14. Let G be a graph labelled with P,, and let us interpret its 

arc labels as physical lengths (see Examples 3.8, 3.10). Then each element 

ai; is the length of a shortest path of order k from x; to x;, provided that 

these nodes are joined by at least one path of order k; otherwise aj = ©. 

For the graph of Fig. 3.1, whose adjacency matrix A is given in Example 

Sei2. 

10° ‘co cos GR 1E Tea HO 

Hicie te eae al Re 6 © ll 

9 0c. cA.5 8 <Dhesen 1): 

10°45: soo 32 €3% 12 |e. 1G 

Example 3.15. Let G be a graph whose arcs have distinct names 
a, b,c,..., and let us consider these names as elements of the algebra P, (as 
in Example 3.9). Let A be the adjacency matrix of G. Then each element as 
is the set of names of all the paths of order k from x; to x;. Thus for the graph 
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of Fig. 3.2, 

d {at @ ¢ jab} 1 @ ¢@ | {ach 
Aau|te @ ¢ {ch az=| ‘cf {bak & — {cg} 

d {d} @ fe}! {db, ef} 6 ¢ {dc,eg}|’ 
{ff} @ @ {g} | {gf} {fat d {gg} 

{acf} {abas ¢  {acg} 
a {bab, cgf} {cfa} @ {bac, cgg} 

{dcf, egf} {dba,efa} @ {dcg, egg}|’ 

{fab, gef}  {gfa} «=f Sf{fac, ggg} 

For any matrix Ac M,(P) and any positive integer h, let us 
denote by Al”!= a the join 

h 

Ae AX (3.46) 

Then A™ has entries 

hence 

1 (3.47) 

By (3.44) 

h ” h 

Vazg=V V u)= Vu) foralli,j (3.48) 
k=1 k=1 weS; weTh 

where 7’; denotes the set of all non-null paths from x; to x;, of order 
less than or equal to h, and therefore (3.47) can be written as 

Vu) if i; 
wel; 

a= (3.49) 

1(6,) v( Vv, Mu) Fie 

In words, each element a"! of A" in the join of the labels of all the 
paths from x; to x;, of order less than or equal to h. 
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Example 3.16. Let A be the Boolean adjacency matrix of a graph G. 

Then A” has entries a‘"! =1 if G has any paths from x; to x; of order less 

than or equal to h, and a‘! = 0 otherwise. 

For the A-matrix of Fig. 3.3, whose powers were given in Example 3.13, 

1 0 0 1 tec. ah 

ie ale Lai Oerd 
ee At for all h=2. A hit ee es Ses oe 4 Co 

ORO 1 Or 

3.4.3. Stable matrices 

We recall that since M,,(P) is a path algebra, all the definitions 

and results of Sections 3.2.3 and 3.2.4 can be applied to matrices. 

Accordingly, we say that a matrix A € M,,(P) is stable if for some 

non-negative integer q, 

qt+1 

V At (3.50(a)) 
k=0 

k VA 
k=0 

or (using the notation of the previous section) 

Alt = Alati) (3.50(b)) 

and we describe the least value of q for which (3.50) holds as the 

stability index of A. 

The definitions of closures given in Section 3.2.3 will also be 

applied to matrices; we shall denote the strong and weak closure of 

a stable matrix A by A*=[aj;] and A =[4;,;] respectively. (To 

denote the strong closure of an element a;; of A, we shall use the 

symbolism (a;;)*.) 

Since A*=EvA (cf. (3.32)), the elements of A* and A are 

related by 

de oon ghee 
a* -| i ; (3.51) 

ev aij if i=]. 

Example 3.17. Let G be a graph with m arcs, which are assigned ‘names’, 

i.e. distinct symbols from an alphabet &, and let us consider these arc labels 

as elements of the path algebra P,. Then for any simple path uw on G, 

I() = {a}, where a is the ‘name’ of uw (as defined in Example 3.9); whereas 

for any non-simple path yu, /(w) is the empty set @. 

Now let us consider the adjacency matrix A of G. By (3.44) each element 

ai; of A“ is the set of names of all the simple paths of order k from x; to X}. 
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Since no simple path has more than m arcs, A“ =@ for all k >m, and 

therefore A is stable, with a stability index not greater than m. Each 

element aj; of A®* is the set of names of all the simple paths from x; to x; 

(which in the case of a diagonal element includes the name A of the null path 

6;). Each element 4;; of Ais the set of names of all the non-null simple paths 
from x; to x,. 

A particularly important class of matrices which have the stable 

property is presented in the next section. 

3.4.4. Absorptive matrices 

A matrix Ace M,(P) is said to be absorptive if its graph is 

absorptive. 

Let A be an absorptive matrix. It was shown in Section 3.3.3 

that if the graph G of A contains a non-elementary path uw from 

x; to x;, then G also contains an elementary path 2 between 

these nodes, such that Iu) v Ma) = l(a). It follows that for any 

positive integer h, 

V iu)= V. (uw) for all i, j, (3:52) 
pete weT & 

where co denotes the set of all non-null elementary paths from x; to 

x;, of order less than or equal to h. 
Now since G has n nodes, each open elementary path on G is of 

order less than n, and each elementary cycle of G is of order less 

than or equal to n. Thus if we denote by si the set of all non-null 

elementary paths from x; to x;, we have by (3.52) that 

fhisyz> then!-V Mm) = V. lu) forallh=n-1 
eed weTij 

(3.53(a)) 

ifi=j then V le) = Vi iw) forallh =n. 
weTy weTi 

(3.53(b)) 

Also, it follows from (3.52) and (3.39) that for any positive integer 

h, 

Vou) = a Wu)<e ifi=j. (3.54) 
weTi wey 
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It follows from (3.49), (3.53(a)) and (3.54) that A" has entries 

Vi Mu) if iA; 
4 fie 

[A] al ME Li; 

Qi = for all h=n-—1, (3559 

e if i=] 

which implies that Alls A for all h=n-—1. Thus, every 

absorptive matrix of M,,(P) is stable, with a stability index not greater 

thann—1. 

Since A* = A""~"! the entries of A* are evidently given by (3.55). 

For the weak closure, 

A=AAt=AAT Ue V AS 
kt 

and therefore, by (3.44), (3.52), and (3.53), the entries of A canbe 

written as 

aiy= VV ai= Voiw)= Vil) forall.” “650 
weTi wei 

In words, each element 4;; is the join of the labels of the non-null 

elementary paths from x; to x;. 

Example 3.18. Let P be any path algebra in which the unit element e is 

the greatest element. (As examples we have the path algebras P,, P,, Ps, 

and Ps.) Then any graph labelled with P is absorptive, since the condition 

(3.39) is always satisfied. It follows that all matrices in M,,(P) are stable, 

with stability indices not greater than n—1. 

Example 3.19. From the previous example it follows immediately that all 

Boolean matrices are stable. If A is the Boolean adjacency matrix of a 

graph G, then A* has entries a = 1 if there exist any paths from x; to x; and 

a* =0 otherwise; whereas A has 4, =1 if there exist any non-null paths 
from x; to x,, and 4, = 0 otherwise. 

As a particular case, the Boolean matrix of Fig. 3.3 is stable of index 2 

(see Example 3.16), with 

A* = A?l= 

FP RP Re Re PP Re RP So - oOo & FP RP PP 

> I 

PRP RP Re Ee RP RP Re Saou a 
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Example 3.20. Shortest paths. Let G bea graph labelled with P;, and let 
us interpret its arc labels as physical lengths. In this case, G is absorptive if 
all its cycles are of non-negative length. If G is absorptive then in the 
closure A* of the adjacency matrix A of G, each element ai; is the distance 
(i.e. the length of a shortest path) from x; to X}. 

For the graph of Fig. 3.1 (whose adjacency matrix A is given in Example 
3.12, with its powers in Example 3.14), 

ARON ceo ME: Se ws 

4 

k=0 8 

3 

Finally, we give two useful results relating to absorptive matrices: 

(i) Let A and B be two matrices in M,,(P), such that B < A. Then if 
A is absorptive, B is also absorptive. 
Let G4 =(X, Us) and Gg = (X, Ug) be the labelled graphs of A 
and B respectively. Then since B < A, Ug C Us, and for any arc 

(x;, x;) € Up, the label /g(x;, x;) of this arc on Gg is not greater than 

the label /4(x;, x;) of the corresponding arc on G4. It follows that 

since /(y) Xe for every cycle y on Ga, I(y) Xe for every cycle y 

on Gz, which implies that B is absorptive. 

(ii) Let A be any matrix in M,(P). Then if A is absorptive, A* is 

also absorptive. 

Let us assume that A is absorptive. Then by (3.55) all diagonal 

entries of A* have the value e, and since A*A*=A%*, the 

diagonal elements of all the powers of A* also have the value e. It 

follows by (3.44) that for every elementary cycle y on the graph of 

A*, I(y) Xe, as required. 

3.5. The formulation and solution of path problems 

From the examples of the previous section it will be clear that, in 

algebraic terms, many path problems consist essentially of the 

determination of one or more elements of the weak or strong 

closure of an adjacency matrix: Table 3.2 shows how a number of 

different types of path problems can be formulated in this way. 

To obtain the weak or strong closure of a matrix A, it is of course 

possible to compute successive powers of A and to form their join. 

However, there are much less laborious methods, which can be used 

either to form a complete closure matrix, or only particular rows, 

columns, or other submatrices of it, as required. 
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Let us consider the matrix equations 

Y=AYvB and Y=YAvB, 

where A and B are specified matrices in a path algebra M,,(P). We 

recall from Section 3.2.4 that (if A is stable) the least solutions of 

these equations are 

Y=A*B and Y=BA* 

respectively, and we observe that with B = E these solutions both 

become 

Yy=A* 

while if B =A they become 

Y =A. 

Therefore, if we can find a method of solving such equations, it will 

enable us to compute closure matrices. Furthermore, it will be 

noted that if we require only the ith column of A® say, this can be 

expressed as the least column vector y which satisfies the simpler 

equation 

y=Ayvb (3.57) 

where b is the ith unit vector, that is, the ith column vector e; of the 

unit matrix £; similarly, the ith row of A* can be expressed as the 

least row vector y which satisfies the equation 

y=yAvb (3.58) 

where b is the ith row of E. (Alternatively, if the multiplicative 

operation of P is commutative it may be convenient to express the 

ith row of A®* as the least solution of the equation 

y=A'yvb (3.59) 

where b = e;.) In the same way, the ith column of A can be expressed 

as the least solution of (3. 57) with b = a,, the ith column of A, and we 

may also express rows of A as solutions of equations of the form 

(3.58) or (3.59). 

Now let us consider the problem of finding the least solution of 

(3-57); Viz. 

y=A*b=(EvAvA’v -::)b. (3.60) 
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In ordinary matrix algebra, we frequently encounter the problem of 

solving a linear system of the form 

Cy=b (3.61) 
where the matrix C and vector b are specified. Now by defining the 

matrix A =I —C, where J is the unit matrix, we may write (3.61) as 

y=Ay-+b. (3.62) 

If the sequence of powers of A converges to a zero matrix, then the 

series 1+ A+A°+--- is convergent, and its sum is equal to (J — 

Ay = C_': we may then write the solution of (3.62) as 

y=([—-A) ‘b=(I+A+A*+->--)b. (3.63) 

We observe a certain similarity between our problem (3.57) and the 

linear algebraic problem (3.62), and between their solutions (3.60) 

and (3.63). Rather surprisingly, many results in ordinary matrix 

algebra hold in the algebra M,,(P), if ordinary matrix addition 

X+/Y and multiplication X - Y are interpreted as the operations 

Xv Y and XY of M,,(P), and if each inverse (J =X) replaced 

by a closure X™. 
This similarity suggests the possibility of solving equations in 

M,,(P) by variants‘of the classical methods of linear algebra, the new 

methods differing from the classical ones only in the significance of 

the elementary operations. In the following sections we shall 

demonstrate that it is indeed possible to solve systems of the form 

y = Ayvb by the classical direct and iterative methods of solving 

linear systems. Furthermore, we shall find that with different 

concrete interpretations of the join and multiplicative operations, 

these methods become well-known algorithms for finding paths on 

graphs. 

3.6. Direct methods of solution 

3.6.1. Triangular matrices 

Before deriving the general direct methods of solving matrix 

equations, it will be helpful to consider some properties of tri- 

angular matrices. 

Let A be a strictly upper or lower triangular matrix belonging to 

some algebra M,(P), and let G be its graph. As was shown in 
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Section 3.4.1, the graph G is acyclic; it follows that A is absorptive, 
and furthermore, since G does not contain any paths of order 
greater than n —1, A is nilpotent (with A” =). 
Now let us consider the problem of solving a system 

y=Ayvb (3.64) 

where A is a strictly upper or lower triangular matrix, and b is a 
column vector. Since A is absorptive, it is stable, so the system has a 
least solution y=A*b. Furthermore, since A is nilpotent, this 
solution is unique (see Section 3.2.4). The solution can be obtained 
easily, as follows. i 

Let us suppose first that A is strictly lower triangular. Then the 

system (3.64) can be expressed as 

yi=bi (3.65(a)) 
=i 

yi = VV aiyi) Vv b; (i = Ds By chagute'r n). (3.65(b)) 
WH ; 

The first equation (3.65(a)) gives y, directly. Having found y,, we 

may use the equation for y> in (3.65(b)) to obtain y> directly: 

Y2=An1y1V bo, 

and then the equation for y3 gives this unknown immediately, as 

¥3 = 4311 V A322 V bs. 

Continuing in this fashion, we obtain in turn all the unknowns 

yi, Y2,--+,Yn- This procedure is called the forward substitution 

method of solving (3.65). 

If A is strictly upper triangular, the system y= Ayvb can be 

written as 

n=( V avi) v by (i=1,2,...,n—1),] (3.66(a)) 
j=i+1 

Vin De. (3.66(b)) 

Here, the last equation (3.66(b)) immediately gives y,. Having 

found y,, we can use the equation for y,_; in (3.66(a)) to obtain this 

unknown, and then we can determine y,_2 from the preceding 

equation, and so on. Continuing in this way, we obtain in turn all the 

unknowns y,, Yn—1, Yn—2)+- +> Y1- This process is called back-substi- 

tution. 
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Example 3.21. Critical path analysis. In Example 2.11 it was shown how 

a project can be represented by an ‘activity graph’. For the project 

considered in this example it was easy to determine the lengths of longest 

paths from the ‘start’ node to each of the other nodes by inspection, but for 

large projects this would be impossible. 

To find the path lengths systematically, it is convenient to consider an 

activity graph as a graph labelled with the path algebra P3, in which case the 

length of a longest path from a node x; to a node x; is given by the element 

a* of the closure matrix A*. Thus, if the ‘start’ node of the activity graph is 

x,, the earliest starting time of the ith activity (which is the length of a 

longest path from x, to x;) is given by a3. The required starting times are 

therefore defined by the sth row of A*—or alternatively the sth column of 

(A’)*. (Since multiplication on P is commutative here, the usual ‘reversal 

rule’ applies to transposed products: (XY)' = Y'X', and therefore (A*)' = 
(A')*.) Now the sth column of (A’)* is the least solution of the equation 

y=A’yve.. (3.67) 

If the nodes of the graph are numbered in order of increasing rank then A’ is 

strictly lower triangular, and this equation can be solved by forward 

substitution. 

For the graph of Fig. 2.22 equation (3.67) becomes 

y1 yi 0 

Y2 0 Y2 05 

y3 UPR ak Y3 —oo 

Ya —-0© 4 -w ——Oo) V4 —oo 

YEU 4 CON — CO oa —a 

We —O 4 —-& —o —cO Ye —00 

y7 OO 200) 001) GG EE 08 y7 00 
Yg 0) 12) 188) eo wo) eS Ys —0o 

Yo 008 =O) 1 now 95 a Seo" 5 Yo —00 

Yio —0 —0O -—© —cO —0 -—c 22 -c 17 Yio 50 

Applying the forward substitution method, with x v y and x-y inter- 
preted as max {x, y} and x + y respectively, we obtain successively 

yr= 0, 

y2=0+y,=0, 

Ve = Orn ys = OF 

ya=4+y2.=4, 

ety 4, 

Yo=4+y2.=4, 
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y7 = max {6+ ys, 2+ys}= 10, 

yg=2+y5=6, 

Yo=max {10+ ys, 11+ ye, 3+ ys} = 15, 

Yio = max {22+ yz, 17+ yo} = 32. 

These y-values are the earliest starting times of the activities. The latest 

starting times can be obtained similarly (by solving y = Ay v e,o by back- 

substitution). 

The techniques described here are essentially those used in practice for 

critical path analysis of large projects (Leavenworth 1961; Montalbano 

1967). 5 

Example 3.22. Multi-stage decision problems. The following kind of 

problem arises for instance in stock control and in planning industrial 

investments. 

At a time fo, a system is in a known state s°”’. At each of r subsequent 

times ¢,, (kK =1,2,...,1r), the system will be in one of several possible 

states; we denote the number of possible states at time 4, by n,, and denote 

these states by s{*’, s%, ..., s (see Fig. 3.5). At each time #, a decision is 
made, which determines the state of the system at time ¢,,,. Each feasible 

(k) (k+1) 

(0) 

transition from a state s;° at time ¢, to a state s; at time ¢,,, has an 

associated cost c‘*’. The problem is to find an optimal policy, i.e. a sequence 
of decisions at the times fo, t1,..., --1 for which the total expenditure over 

the period f to t, is minimal. (For a concrete example, see Exercise 3.4 at 

the end of the chapter.) 

ives eee | nl cea ey tS aed ata 
he ty i trl B 

Time 
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Let us assign a length to each arc on the state diagram of the system, this 

being the cost of the corresponding state transition. Then a shortest path 

from the node s to any node s{” representing a state at time ¢, defines an 

optimal policy. 

To find such a path, we consider the state diagram as a graph labelled with 

P,. Then, for a node ordering 

(0 (1) (1) (2) (2) (3) (r) 
s LE EOI EY SS HD SL) us ietst= oka 

the adjacency matrix of the network has the block form 

D® M® 

D® M™ 

A = De he : : 

iy how 

00. D” 

where each diagonal block D“’ is asquare matrix of order n,, whose entries 

are all 00, while each block M“’ is a matrix of n, rows and n;,., columns, 

with 

(k) tad -{"" , if the transition from s‘\*? (k+1) to s; is feasible, 
Mi 

oo, otherwise. 

Now let us denote the distance from s‘“” to each node s‘“’ by y“*’. Then the 
vector of these distances 

ee vou (1) 

y=l[yi ay po es ick 

can be expressed as the least solution of the equation 

y=A'yve,. 

Since the matrix A’ is lower triangular, this equation can be solved by the 

forward substitution method. We note that if the vector y is partitioned into 

r+1 components 

(0) y 
V= ly sate oh 

where 

(k) \\(k) 
sores » Y2 ate ee bie OT a sr), 

then the forward substitution method gives each component of y in turn, as 

=, =(m Dy (k— ok (k = di: om Boake mY 

This algorithm is well-known, as a form of dynamic programming (Bellman 
1957; White 1969). 
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3.6.2. The Gauss elimination methodt+ 

Let us now consider the problem of finding the least solution of a 

system y = Ay vb, where A is any stable n Xn matrix. 

To define the Gauss method, we denote the system to be solved 

by 

y=Aryvb”. (3.68) 

From this system we shall derive n new systems 

Y¥=Ayvb”, © (k=1,2,...,7) (3.69) 

which are all equivalent to the original one in that they all have the 

same least solution, and where the matrix A‘”’ of the final system is 

strictly upper triangular. (The final system can then be solved by 

back-substitution.) 

Essentially, we obtain the kth system from the previous one by 

using its equation for y, to eliminate this unknown from the 

right-hand sides of the equations for yx, ye+1,-.-, Yn. To define the 

process formally, let us write the matrix A“~ and vector b“~” of 

the (k —1)th system in partitioned form, as 

(k-1) (k-1) (k~1) (k-1) 
Ait Ai2 Ai3 bi 

(k-1) _ a: 1) (k-1) (k-1) (k~1) _} p(k-1) A L Adj Ar Az3 |, b =| b> ; 
je 1) a 1) (k-1) (k-1) 

A31 A32 A33 bs 

Ged 2, cin agult)S (3.70) 

where the diagonal submatrices Ae ze AS Hak and Aa. are 

square, of order k—1, 1, andn—k respectively: (Note that in A, 

the first row and column of this partition do not exist.) Using the 

same partitioning as (3.70), we define two matrices Oo” and R™ by 

Coe De anh Ang TA Ane 
O”= ra) AS 1) @p : RY= Age @ An, 

® Ae 1) ra) ASS 1) ra) AK 1) 

(k =1,2,...,n). (3.71) 

+ To be precise, the method presented here is the counterpart in M,,(P) of Crout’s 

variant of the Gauss elimination method (Fox 1964). 
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Then (assuming that each Oo matrix is stable) the successive 

matrices A“ and vectors b“” in (3.69) are constructed using 

A®M= oMrR® : 

b® = Q®*pe-» (Ke; 25 05250): (3.72) 

To prove that all the systems (3.69) obtained in this way have the 

same least solution as (3.68), we note from (3.70) and (3.71) that 

APSO? VR? (= 1.2..-..): (3.73) 

It follows by (3.72), (3.27), and (3.73) that (on condition that A is 

stable), 

AM*D® = (QH*R®)*QMepkD 

=(Q9y R® ype? = Ae DHE, 

(= 1, 2. esl doin toe) 

as required. 

It is also easy to show that in each matrix A“”, all elements on and 

below the principal diagonal, in the first k columns, are null: indeed, 

this condition obviously holds for A’; so let us assume that it holds 
for some A“~”: where 1<k <n, ond show that it holds for A“’. 

From (3.71), 

® ® 2 
(os =| © (ag): ® |, iS 4220 2. ay, 

® AS MAS? © 

and therefore 

B ® ® 
Q)* = © AK D* ® |. (3.75) 

® AS YAS * E 

Also, since AS’ and A$‘) are both null (by assumption), we may 

write (cf. (3.71)) 

Aa, Asse eee 
Dah. (3.76) 
Oi SA 
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By (3.72), (3.75), and (3.76) 

(k-1) (k—1) k-1 
Ai Aj? AL” 

AY = o®*R® — ® ® Ae Ve AS 1) 

® ® AAS Ae De A of 

(3:77) 

Since A{S” is strictly upper triangular (by assumption), all the 

elements of A“’ which lie on or below the diagonal in the first k 
columns are null, as required. Thus, in the final system, the matrix 

A” will be strictly upper triangular. 
With regard to the calculation of the successive At matrices, tt 

follows from (3.77) that their entries can be calculated using 

(Grae Sa if i=k,j>k, 
(k) d if i=k,j =k, 
‘hale a Diy gik- Dig k- D)x gl oe 1) ifi>k,j>k, (3.78) 

eee otherwise. 

(In practice, it is convenient to record these computations simply by 

making successive modifications to the original matrix A. When 

this is done, it is of course not necessary to nullify sub-diagonal 

entries at any stage.) 

To construct the successive b““’ vectors, we have from (3.72) and 

(3.75) that 

k-1 pew, 
1 Lat att p= Op a AS xp ) (3.79) 

(k-1) (Ay hata) 
bs VA32 Ax “bo 

so the elements of b“ are given by 

pik» ie ey 

bp = (af OF sd hal ous 1) if jm ke 

nt “» VGy aye POL. it i> kh 

(k=, '2, 2. rt)y | (3.80) 

If solutions are required for more than one b-vector, but the same 

matrix A, we can of course perform the transformations of A as 

before, and apply the transformations (3.79) to all the b-vectors 

together. A separate back-substitution must then be carried out for 

each vector. 
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Gauss elimination for absorptive matrices. In deriving the Gauss 

elimination method it was necessary to assume that the matrices 

Oo” and A™ are stable at every stage (see (3.72) and (3.74)). It can 

be demonstrated that these conditions hold if the initial matrix A 

is absorptive: for if A is absorptive then, since OY <A, the 

matrix Q" is also absorptive (and therefore stable). In this case the 

matrix A” is well defined by (3.72), and since O<A and 

R™® <A it follows by (3.72) that 

A® = QU*R® < Av AO < A Ow 

which implies that A” is absorptive. By repetition of this argument 

it follows that the successive A“ and O™ matrices are all absorp- 

tive, and consequently stable. 

We observe that, since the diagonal elements of an absorptive 

matrix are necessarily sub-unitary, the ‘pivotal’ element Ga in 

(3.78) and (3.80) has a closure (a ”)*=e. Thus when “4 ig 

absorptive these formulae can be simplified to 

p fizkj=k 
ay =\ay > va Pag? ifi>ki>k (3.81) 

{ a % otherwise, 

and 

p® = Ca i if i<k, 
DED ygEDAEYD if Gok (3.82) 

respectively. Furthermore, it is evident from (3.82) that b”?=p"? 

so it is only necessary to perform n—1 transformations of the 
b-vector. 

Example 3.23. Shortest path calculations. Let us consider the problem of 
finding the distances from each of the nodes to the node ‘4’ on the graph of 
Fig. 3.6. 
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We denote the distance from each node x; to x, by y;. Then, using P2, the 

vector y=[y1, y2, y3, Ya, Ys’ of these distances can be obtained as the least 

solution of the equation y = Ay vb, where 

’ and b=e,= > ll 

8 & wre 8B 8Bvne 8 B Bsa" 5 18 ww ~ 8 8 ow 8B 8 8H 8 8B S Caos 6.3 

Since the graph does not contain any cycles of negative length the matrix A 

is absorptive, and therefore we can use the simplified form (3.81), (3.82) of 

the Gauss elimination method. The successive matrices A“ and vectors b“ 
obtained by this algorithm are given below. (The shading indicates nullified 

elements of the lower triangle, and the circles indicate other elements 

whose values change at each stage.) 

CONS CON CO 00 

o @ 8 w oo) 

Aves tL @ ed b? =| 00 |; 

D Rae] Si4 Ole 100 0 

COMG FZ co 00 

3. Or. a 00 “wi paar * 

© ® 1) b?=|~}; 
© G0 ~ 0 

Oe 24 00, 

fo ounce) oo 

8 © oO 

Ge Ay b® =| co |; 

10 @ 0 

2D 00 

(oe) oe) 

00 (ee) 

A® 1,31, b® =| 0 |; 

0 
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a I 

OIE tk to tS 

By applying the back-substitution method of Section 3.6.1 to the system 

y=A™y v b® we obtain the solution 

y=[6 7 3 0 2). 

If all the cycles on a graph are of strictly positive length then all shortest 

paths are elementary. In this case it is possible to determine the sequence of 

nodes traversed by a shortest path, from node x, to node x, say, in the 

following manner. First, we construct the vector y of distances from each 

node to node x,, as above. If y, =00, there are no paths from x, to x,; 
otherwise, we execute the following algorithm: 

Step1 Let so=p and let k =1. 

Step 2 Let s, be any index such that a,, 15, + Vsx = Vsp_1- 

Step3 Ifs, =q then halt; otherwise record s;,, increase k by 1, and return 

to Step 2. 

It is easily verified that the sequence of indices 5, 52,..., 5-1 produced 
by this algorithm defines a shortest path from x, to x,: 

Np Ke > Neg Ol Xe 

As an illustration, to find a shortest path from x, to x, on the graph given 
above, we first set sy = 1; we then set 

5; =3 (since a43+y3= yi); 

S2=5 (since a35+ ys = ys); 

S3 =4 (since as4+y4=ys). 

These indices define the shortest path x; > x323%x5> x4. 

Example 3.24. Determination of simple paths. Let us consider the prob- 
lem of finding the simple paths on the graph of Fig. 3.2, from each of the 
nodes to the node ‘2’. Using the algebra P;, the required paths are given by 
the second column of A (see Example 3.17), which can be expressed as the 
(unique) solution y of the system y = Ay v a9, where a, is the second column 
of A. 

In this system the A-matrix is not absorptive, but it is easily demonstrated 
that all matrices on P; are stable (the proof is left as an exercise for the 
reader). Applying the Gauss elimination method (3.78), (3.80) we obtain: 
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¢ ¢ {a} 

“hs & {c} pou? |. 
td} fey)" {d}}’ 

d {g} d 

¢ ¢ {a} 
d {c} ay _ |{ba}} 

{d} & {e}f BeCan 
| {fa} d {g} {fa} 

a) ¢ d {a} 
aaa|? 1; {c, bac} po_| a |. 

d &|¢@ {e,de,dbac} |’ {d, dba} |’ 

$ ¢\¢  {g, fac} {fa} 

od | {a} ¢ 7) {a} 

ol su {c, bac} (3) _ {ba} : 
d  @¢ | {e,dc,dbac} |’ {d, dba} |’ 

¢  ¢ {g, fac} {fa} 

[ i) d {a} 
A® co) {c, bac} b= {ba} 

&’ | {e,dc, dbac} {d, dba} |" 

¢ ¢ @ ¢ {fa, gfa} 

Then, application of the back-substitution method to the system 
y=A”yv b™ gives 

{a} 

_ {cfa, cgfa, ba} 

{efa, egfa, dcfa, dcgfa, d, dba} |’ 

{fa, gfa} 

The same technique can be used to determine the elementary paths and 

cycles of a graph: if each arc is labelled with the index of its terminal 

endpoint, viz. /(x;, x;) ={j}, then each element 4; of A gives the set of node 

sequences of the elementary paths from x; to x;. 

3.6.3. The Jordan elimination method 

As an alternative to the Gauss method, it is possible to perform 

the n successive transformations of the system y= Ay vb® in 

such a way that in the final system the matrix A” is null, so that no 
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back-substitutions are required. Essentially, the difference between 

the transformations performed in the Jordan method and those of 

the Gauss method is that, in the kth step of the Jordan method, we 

use the kth equation to eliminate y, from all the other equations of 

the system, and not just the equations for Ye Visier ioe 20 

achieve this, we simply replace the matrices OQ and R“ of (3.72) 

by 
ro) Aa 1) ro) AK 1) ra) AY 

oO” = ra) Ass 1) ro) R®= A 1) d AG 1) 

6 AS” © As; ® ASS” 
(hed. 2. sneeeamn ds (3.83) 

It is evident from (3.83) that, as in the Gauss method, 

ASO ER Ue 1 Dee a) 

which implies (through (3.74)) that all the systems y= A“’y v bP 

have the same least solution. 

Next, we can show by induction on k that in each matrix ae the 

first k columns are null: indeed, it is evident from (3.83) that if the 

first k —1 columns of A“~" are null, then the first k columns of R“’ 

are null, which implies by (3.72) that the first k columns of A are 

null, as required. 

Thus in the final system y= A‘ y vb” the matrix A” is null, so 
this system gives the required solution directly, as y=b'”. 

With regard to the calculation of the successive matrices A““’ and 

vectors b‘“”, it is evident from (3.83) that 

E Ais PAS * & 
o** =| AX D* i a ee Rg 

® AS AS 1)x E 

(3.84) 

“) in (3.83) are null, we can write and, since the first k columns of R 

this matrix as 

® ® Anas 1) 

ROS Ore hae ada). (385A 
DOA. 
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It follows from (3.72) that 

&& AVA PAL At 
AX =|@ AS DEAGED 

Db ALP VAS ALMA AEY 
and 

(k-1) (aD (kS1) (k-1) 
bi V Aid Ax *bs 

(ky __ (k=~1) xp (k-1) 
b= As b> CRIS, 4253.71): 

k=1) (k—-1) 4 (k—1) xy (k-1) 
bs VA35 A» b> 

(3.86) 

As in the derivation of the Gauss method, it has been assumed 
here that the matrices Q“ and A™ are stable at every stage. In the 
particular case where A“? is absorptive, this condition holds (the 
proof given for the Gauss method being valid here also). Again, if 

ACs absorptive the formulae (3.86) can be simplified, by setting 
ASS P* =e throughout. 

The computation of closure matrices. If we require the least solution 

of a system Y=AYvB where B is an n Xm matrix, we can of 

course obtain this by performing the transformations of A as 

before, and operating on each column of B in the same way as we 

treated the single b-vector previously. Thus, writing A“ =A and 
B =B, we compute successively (cf. (3.72)) 

AM=Q”*R® 

B® =Qh*BeEY Ce 2e, <b), (3.87) 

and on termination we have B” = A*B. 
In particular, this technique can be used to compute the weak 

closure of a matrix A: since A is the least solution of the equation 

Y =AY VA, if we set A® = B® =A and then apply (3.87), this 

gives B” =A. Furthermore, since A= B™ initially, it follows 

from (3.83) and (3.87) that at every stage, the non-null columns of 

A” are identical to the corresponding columns of B“?, and there- 

fore in place of (3.84) we may write 

zz Be Bes ® 

o* = ® Be @ |, Rete? 8 Sey); 
(k—1) p(k—-1) x ® B32 Bn E (3.88) 
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Thus, by (3.87) and (3.88), each matrix B“? can be defined directly 

in terms of B“~”: 

B® = OR 1) 

k-1 k—1) pl(k-1) (k—1) 
Bu ; vB Bx °*Br 

= Be <p 

k-1 k-1 (k—1) (k-1) Bo VBS By “B 

= = _ - k-1) 

BEBE * Bis? v BY YBa “Bas 
BS Be? bea ye eas 2 iat 

BEBE BEY vBE BE BS 
(hed, 2c Jt), (3.89) 

and therefore its elements can be computed using successively 

oe Oh if j=k 
bi =\(bu ba ifi=ike 

by vb (be by? fii Ak, 
ae 2 sory Ds (3.90) 

In the particular case where A is absorptive this formula simplifies 

to 

ae be ifi=k orj=k, 

eae pe Dv bE PRE. Baek 

(RSs? = on). 491) 

The algorithm (3.90) has a counterpart in linear algebra—the 

well-known Jordan method of matrix inversion. It has been 

invented for regular languages by McNaughton and Yamada 

(1960). The simplified algorithm (3.91) has also been invented as a 

method of finding closures of Boolean matrices by Roy (1959) and 

Warshall (1962). In the context of shortest path problems it is 

known as Floyd’s algorithm (Floyd 1962), and it has been invented 

as a method of listing elementary paths by Murchland (1965). 

Example 3.25. Determination of elementary paths and cycles. Let G bea 

graph whose arcs have names—as in Fig. 3.2—and let us consider these arc 

labels as elements of the path algebra P. Then for any path uw on the graph, 

I(u) ={o} where o is the name of uw (as defined in Example 3.9). 
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Let A be the adjacency matrix of G. Now all matrices in M,,(Ps) are 

absorptive (see Example 3.18), and by (3.56), and the definition of the join 

operation (given in Section 3.2.2), the matrix A has entries 

ay = V Mu)=0( V. Mu)) =2(N,) 
we Tij we Ti 

where N,, is the set of names of the elementary paths from x; to x;. Now if uw 

is an elementary path from x; to x;, no proper subset of the arcset of ~ forms 

a path from x; to x;,; it follows that each path name in N,, is basic to N;,, and 

therefore 

Gij =b (Ni;) = Ni. 

The matrix A can be computed using the simplified form (3.91) of the 

Jordan ‘inversion’ method: for the graph of Fig. 3.2, 

Ter gine 3 6 f) ¢ ¢ 
past tat alae {b} {ba}  {c}], 

& {d} ¢ {e} & {d} @ {e}] 

{f} 6  {g} {f} {fa}  {g} 

{ab} {at} {ac} 

732) {b} {ba} ¢ {co} | 3) — p2). 

(eae eae 
i aes ae ee 
{ab, acf} {a} Pu nacy 

{b, cf} {ba, cfa} {c} 

{db, ef, dcf} {d,efa} g {e,dc}] 

{f} {fa}  {g, fac} 

Bo a 

3.7. Iterative methods 

3.7.1. The Jacobi, Gauss-Seidel, and double-sweep iterative 

methods 

In this section we shall present three iterative methods for finding 

the least solution y = A*b of a system 

y=Ayvb, (3.92) 
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where the matrix A is stable. For simplicity, it will be assumed 

throughout that the diagonal entries of A are all null. We note that, 

should an A-matrix not satisfy this condition, we may express it as 

the join of two matrices: 

A=ECvVD,; (3.93) 

where C is the matrix obtained from A by nullifying its diagonal 

elements, and D = diag (a11, 422, .--5 Gnn)- It follows by (3.27) that 

(on condition that all the diagonal elements a, are stable) the least 

solution of (3.92) can be written as 

A*b=(C v D)*b=(D*C)*D*b, 

and it can therefore be obtained as the least solution of the system 

y=Ayvb (3.94(a)) 

where 

A=D*C--and b=D*b. (3.94(b)) 

From (3.94(b)) the entries of the matrix A= [a;;] and the vector 

b =[6;] can be written as 

é =f Gy thas, 
aij = ie 

od Lip = J, 

thus, in the new system (3.94), all diagonal entries of the matrix A 

are null. 

In an iterative method of solving the system (3.92), we first 

choose some estimate y© of the required solution, and then we 

derive from it a sequence of successive estimates yo"; KH 1725259 

if the method is successful, these vectors ultimately take the value of 

the required solution. Some techniques for constructing the y““’ 

vectors are defined below. 

and b; = (aii)* bi; 

(i) The Jacobi method. The form of the system (3.92) immediately 

suggests the iterative scheme 

Dies Ay Ve oe pa (3.95) 

This iterative method is the counterpart of the Jacobi method of 

solving a system y= Ay+b in linear algebra (Varga 1962). The 

concrete interpretation of (3.95) for the path algebra P, is also 
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widely known, as Bellman’s method of solving shortest-path prob- 
lems (Bellman 1958). 

It will be noted that, since all diagonal elements of A are null, the 
formula for calculating the elements of the kth estimate y“ can be 
written as 

ys =(V. ets vb, GaSe ey, ot) 
JA 

(ii) The Gauss-Seidel method. From the formula (3.96) it is clear 

that in the Jacobi method one only uses elements of sane in 

calculating ye. but intuitively it would seem reasonable to use 

always the latest available estimates of the components y; of the 

required solution y. This leads to the iterative method in which each 

of the elements y\*’, yS’,..., y“ are obtained in turn using (cf. 

(3.96)) 

y® -(V cup) v ie V adr. ”) vb, 

j=it+l 

(= Ti Qoesesr) (3.97) 

This method has the additional advantage over the Jacobi method 

that it does not require the simultaneous storage of the two approx- 
(k=1) (k) : 

imations y; and y; in the course of computation. 

This procedure can be defined in matrix form, by writing 

A=LvU (3.98) 

where L and U are respectively strictly lower and strictly upper 

triangular matrices, whose non-null entries are the entries of A 

respectively below and above its main diagonal. Then in matrix 

notation, (3.97) becomes 

y=Ly® v Uy? vb, (3.99) 
and since L is strictly lower triangular, we can write (3.99) 

equivalently as 

Feel yy ih (3.100) 

(Indeed, since L is strictly lower triangular, this matrix is nilpotent, 

and therefore the system (3.99) has a unique solution—see Section 

BiG) 
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This method is the counterpart of the Gauss-Seidel method of 

solving a system y= Ay+b in linear algebra (Varga 1962). The 

concrete interpretation of this method for the algebra P? is also well 

known, as Ford’s method of finding shortest paths (Ford and 

Fulkerson 1962). 

(iii) The ‘double-sweep’ method. The performance of the Gauss— 

Seidel method may be strongly affected by the ordering of the 

equations in the system y = Ay v b. For instance, it is evident from 

(3.97) that if A is strictly lower triangular, the Gauss-Seidel method 

becomes the forward substitution method of Section 3.6.1, and only 

one iteration is required. However, if the ordering of the y-variables 

of the system is reversed, making the A-matrix upper triangular, the 

Gauss-Seidel method (3.100) becomes equivalent to the Jacobi 

method (3.95) and y“” is constructed using only elements of the 

previous estimate yoo in this case, a large number of iterations 

may be needed to obtain the solution. 

This defect is largely overcome in the ‘double-sweep’ iterative 

method, where initially we choose some estimate y°° >b and then 

construct successively the vectors yo and y”, (k=1;2.5..) 

which are the (unique) solutions of the equations 

y®D = ye) nite (3.101(a)) 
y= Ly y yb, (3.101(b)) 

these being respectively 

tie a obs (3.102(a)) 
yO =Lty*, (3.102(b)) 

The equation (3.101(a)) is solved by the back-substitution method 
of Section 3.6.1, and (3.101(b)) is solved by the forward-substitu- 
tion method. Thus, the elements of y““”? are calculated in the order 

(k-3) | (k—3) (ae 
Va so Yard yes sla USINg 

eye aa) CE rad Gc (k-4) (k-1 
Yn =n ’ yi 5 V Qijy j VYi if 

jy=itl 

(= 1 ee oe Ls (3.103(a)) 
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ang en the elements of yo are calculated in the order 
yr sys ates Oni using 

i—1 (Ee) 2) con (k) (=D Vie a > yi =(V QiiVj |V Yi , 
j=1 

(Piet 2. Sirs a isthe (3.103(b)) 

It is evident from (3.101) that 

yo <y® <y? <y0 < mee, (3.104) 

Also, from (3.102), we may express this iterative method as 

y = (3.105) 

or, since b =, and (3.104) holds, as 

No es Uy NEU. (3.106) 

This algorithm is a generalization of a method developed by Yen 

(1970, 1975) for solving shortest-path problems. It does not have a 

counterpart in linear algebra, although it bears some resemblance 

to Aitken’s ‘double-sweep’ method (Varga 1962). 

3.7.2. Conditions for validity of the iterative methods 

Let us suppose that we can represent the closure of the A-matrix 

of the system (3.92) by a product 

A*=M*N (3.107) 

where M and N aren Xn matrices, the matrix M being stable. Then 

we associate with this product an iterative scheme 

fo =My ORNDs Oh = 1 275. (3.108) 

It will be observed that if (3.107) holds, the equations (3.92) and 

(3.108) have the same least solutions. 

In fact, all the iterative methods of the previous section can be 

described in this way, their M and N matrices being as follows (cf. 

(3.95), (3.100), and (3.106)): 

Jacobi method: M;=LvU N;=E (3.109(a)) 

Gauss-Seidel method: Mggs=L*U Nos=L* (3.109(b)) 

Double-sweep method: Mg,=L*U*  Na,= L*U* (3.109(c)) 
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For the Jacobi method the condition (3.107) obviously holds. For 

the Gauss-Seidel method it follows by (3.27) that when L*U is 

stable, 

MésNoas aa Gee Sa eal bs =(Lv yy = A*, 

while for the double-sweep method it follows by (3.20) and (3.26) 

that when L* U* is stable, 

MIN =(L°U" LOU BYy OH 4 D iea o5) Gall OF ies B Saas 

ALVA tA 

Now for any iterative method of the form (3.108), it follows by 

substitution in (3.108) that 

y=M (My v Nb) v Nb= My“ v (Ev M)Nb 

and by repeated substitutions, 

y=M*yv (EvMvM?v --- vM*"")Nb, 

“R= 172555 3S G1) 

Hence, by (3.107), 

yO=M*yvA*b forall k=q+1, (3.111) 

where q is the stability index of M, and therefore 

y°>=A*b forall /-=qt+1. (3.112) 

From (3.111) it is clear that in general, the validity of iterative 

methods of the form (3.108) is not assured for all initial estimates 

y’”. However, let us impose the condition 

y <A*b. 

(In practice this condition is easily met, for instance by setting 

yy" =b.) Then in (3.110) we have 

M*y® <M*A*b= M*M*Nb<M*Nb= A*b 

and therefore 

yO <A*b, eG =ne2,...): (3.113) 

Combining (3.112) and (3.113) we obtain 

y°=A*b forall k=q+1. 
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Hence, any iterative method of the form (3.108), with y°<A*b, 

gives the least solution of a system y= Ayvb after at most q+1 

iterations, where q is the stability index of M. 

In the particular case where A is absorptive, this result leads to a 

useful practical bound to the number of iterations. It was implied by 

our choice of M and N in (3.107) that 

M =< MA* < M*A* = A*. 

Hence if A is absorptive then M is also absorptive (see Section 

3.4.4) and therefore the stability index of M is less than n. Thus if A 

is absorptive, then any method-of the form (3.108), with y° <A*b, 

gives the least solution of a system y = Ay v b after at most n iterations 

(where n is the order of A). 

Given further information about M and N, it is sometimes 

possible to obtain better upper bounds for the number of iterations. 

In particular, this can be done for the double-sweep method: by 

comparing terms in their expansions it is clear that 

(Rail) ee Ae ik = 1, 
(3.114) 

Now if A is stable of index q, thent 

(EvLw-Uy"*S(6v A) 

=Ev.Am Ao ww A =A", 

forall k=|q/2}+1, (3.115) 

and by combining (3.114) and (3.115) we obtain 

(L*U*) =A* _ forall k =|q/2) +1. 

It follows from (3.105) that for the double-sweep method, with 

bx<y<A*b, 

yo SLU )y"" = A*h for all KS 1q/2| +1. 

Consequently the double-sweep method, with b<y” <A*b, gives 

the least solution of a system y=Ayvb after at most |q/2|+1 

iterations (where q is the stability index of A). It follows that if A is 

absorptive, the method requires at most |(n+1)/2] iterations. 

+ The symbolism |x| means “‘the largest integer not exceeding Ge 
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3.7.3. Comparison of the iterative methods 

By comparing the definitions (3.96), (3.97), and (3.103) of the 

Jacobi, Gauss-Seidel, and double-sweep methods we see that in 

each iteration, the numbers of join and multiplicative operations 

performed are precisely the same in all of them. 

It is also possible to relate the numbers of iterations required, by 

the following argument. Let us suppose that we have two iterative 

methods of the form (3.108), the first constructing vectors wa 

(k =1,2,...) using 

yi =My\ Vv Nib (3.116(a)) 

and the second constructing vectors y>”, (k =1,2,...) where 

ys = Moy? v Nob. (3.116(b)) 

We assume that the same initial estimate is used in both cases, 

yi =y2 - (3.117) 

and that this vector is not greater than A*b. 
Now let us suppose that 

M,=<M,2 and N,SN>. (3.118) 

Then, since the join and multiplicative operations are isotone, it 

follows from (3.117) and (3.118) that y{<y$”, which in turn 
implies that y{” <y$”, and so on. Combining this result with (3.113), 
we obtain 

yi <y2 <A*b, (Kk =0,1,2,...). 
Hence, if for some value of k we have y\’ = A*b, then y%’ = A*b 
also, which implies that the number of iterations required by the 
second method is not greater than the number required by the first. 

For the iterative methods presented in Section 3.7.1 we have (cf. 
(3.109)) 

My, Mes X Mas and Ny, Nes X Nas. 

Hence, for any initial estimate y in the range b<y® <A*hb, the 
number of iterations required by the double-sweep method is not 
greater than the numbers required by the Jacobi and Gauss-Seidel 
methods. 
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Example 3.26. Shortest path calculations. For the shortest-path problem 
of Example 3.23, the successive y-vectors obtained by Yen’s double-sweep 
method, with y = b, are given below. It will be seen that only two complete 
iterations are needed to reach the solution. (With any problem, the iterative 
process can be terminated as soon as two successive y-vectors are identical: 
indeed, by premultiplying (3.102(b)) by L*, and noting that L*L* = L*, we 
find that L*y“ =y™, for k =1, 2,...; hence if y“» =y~”, it follows by 
(3.102(b)) that y“ = L*y*“"? =y*—. Similarly, it follows from (3.102(a)) 
that if y“’ =y“~ then all subsequent y-vectors have this value.) 

y” 5 y” s® @ 5) yo? gt) y” 5?) 

00 0 00 0 00 0 © @ 6 3 
co} | 0 @] | 8 4 8 4)|@0]|}@ 
00 0 oO 0 OES Oe elas 6) 3 5 
0 0 0 0 0 0 0 0 0 0 

ett cork ON VO4 (Ay Ol also) bd 

To obtain the sequences of nodes traversed by shortest paths, we can 

construct a sequence of successor vectors s®, s°, s°’, .. .in the course of the 
computation as follows. In the initial successor vector s“’, all entries are 

zero. In the first part of the kth iteration, when each element y‘*~» is 
formed we set 

(cad) es (k-4) (k-1) 
Gye 5: Mey ve SV 

se ref? 3 aa(6 =) 9) (k-1) (i=1,2,...,7), j yp ey 

where j is any index such that y‘*~) =a,y‘*-. In the following 
half iteration the elements of s‘“’ are obtained from s“~* in the same 
manner: 

(k-4) ‘ (k) — ,,(k-4) 
Ke _ JS ify; =Yyi (i= 1,2 ) 

Si . te a (k)  y(k-4) Jo AE ] ify AY: 

where j is any index such that y‘“’ = a;y\*~. It is evident that on termina- 
tion, the ith element of the final successor vector is the index j of the 

successor x, of node x; on ashortest path from x; to the destination node. In 
this way, the final successor vector defines shortest paths from all nodes to 

the destination. 
As an illustration, to find a shortest path from x, to x4 in our example, we 

find in turn the entries s =3, s?’ =5, s?’ =4, which give the path 

X17 X37 X57 Xq. 
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3.8. A special method for totally ordered path algebras 

Here we consider the particular case of a path algebra P in which 

(i) the ordering < is total, and (ii) the unit element e is the greatest 

element of P. 

As examples we have the two-element Boolean algebra, and the 

algebras P, and P; of Table 3.1. The conditions (i) and (ii) are also 

satisfied by the algebra P3 which is obtained from P) by replacing 

the set R of real numbers by the set of non-negative real 

numbers. (This can be used to formulate shortest-path problems, 

when all arc lengths are non-negative.) 

Dijkstra’s method 

Let us again suppose that we are given a system 

y=Ayvb (3.119) 

for which we require the least solution, and let us write this solution 

as 

y=A*b. (3.120) 

Since P is totally ordered, the vector b has a greatest element, b, 
say: 

by, = b;, (j= 12 at): (3.124) 

From (3.120), the corresponding element ¥, of ¥ can be expressed 
as 

ae ai bj. (3.122) 
i= 

Now since e is the greatest element of P, 

BAe. Ape lee), (3.123) 
and furthermore, 

Qin =e. (3.124) 

From (3.121), (3.123) and (3.124), 

Aid, = ab; (= 1, 2 oe Ds 

and therefore, from (3.122), 

Ve = Gib. = by. 
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Having found y,, we can delete the kth equation of the original 
system (3.199), and substitute b, for y, in the remaining ones. In 
this way the original system, which can be written in expanded form 
as 

w=(V aiv)ve,  =1,2-...m), 125) = 

is transformed into the system 

n=(V auy;) V (aixbx V bi), ea le Zee ck ee Ls ee 0) 

jak 
(3.126) 

which is of order n — 1. Repeating the process, we can find another 

element of y, and then transform the system (3.126) into a system of 

order n —2; continuing in this fashion, we eventually obtain all the 

elements of y. 

The method can be implemented by the following algorithm, in 

which the set of variables y; which remain undetermined at each 

stage is defined by the set M of their indices: 

Step 1 Let M ={1, 2,..., n}. 

Step2 Finda greatest element b, of the set {b;|i ¢ M}, and remove 

the index k from M. 

Step3 If M is empty then go to End. 

Step 4 For each index ie M, replace b; by a;,b, v b;. Return to 

Step 2. 

End 

On termination, the vector b has been transformed into the 

required solution y. 

This algorithm is a generalized form of Dijkstra’s algorithm for 

finding shortest paths (Dijkstra 1959). 

In practice, the work involved in finding a greatest element b, in 

each b-vector may be considerable. However, in some problems the 

value of b, is known a priori, in which case the algorithm can be 

greatly simplified: as an illustration, the simple technique described 

in Section 2.4 for finding accessible sets is essentially an implemen- 

tation of Dijkstra’s algorithm, on the two-element Boolean algebra. 

The following example also demonstrates this point. 
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Example 3.27. Finding lowest-order paths. The problem of finding paths 

of lowest order from a node x, to all other nodes of a graph can be treated as 

a shortest path problem, by assigning lengths of ‘1’ to all arcs. Then, using 

the path algebra Pz defined above, the orders of lowest-order paths to all 

nodes are given by the least solution of the system y= A’y ve,. 

The application of Dijkstra’s method to this problem has a simple 

graphical interpretation. If we regard the assignment of a value to y, as a 

‘labelling’ of the node x, with the value of y,, then we proceed as follows: 

first, we label node x, with a ‘0’. Then, we attach the label ‘1’ to every 

successor of the node labelled ‘0’. Next, we attach the label ‘2’ to all 

unlabelled successors of nodes labelled ‘1’, and so on until all nodes have 

been labelled. 

When the labelling process is finished, a lowest-order path from x, to any 

other node x, can be found, by tracing a path ‘backwards’ from x, insucha 

way that, at each successive node encountered, the value of the node label 

decreases. This algorithm has been used extensively in the design of printed 

circuits (Lee 1961). 

3.9. Practical considerations 

3.9.1. Implementation of the path-finding algorithms 

In most practical problems the number of arcs in a graph is much 

smaller than the maximum possible number, and consequently its 

adjacency matrix is sparse, that is to say, only a small proportion of 

the elements of the matrix are non-null. Under these circumstances, 

the performance of any path-finding program depends strongly on 

the extent to which it exploits sparsity. 

To implement the substitution methods of Section 3.6.1, the 

iterative methods of Section 3.7 and Dijkstra’s method on a 

computer, it is convenient to specify each row of an A-matrix by a 

list of its non-null entries, together with their column indices. In this 

way, one easily avoids storing or operating with any null elements. 

In the Gauss and Jordan elimination methods, it is rather more 

difficult to exploit sparsity because the successive eliminations tend 
to fill in the A-matrix: it is clear from (3.77) and (3.86) that at each 

elimination step, elements which are null in A“~” may become: 

non-null in A“. However, the techniques which have been devised 
to overcome this problem in the context of numerical linear algebra 
are all applicable here. In particular, by using ‘linked-list’ represen- 
tations of matrices (Knuth 1968) one can avoid storing and operat- 
ing on any null elements. The ‘optimally ordered elimination 
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schemes’ of linear algebra—which essentially permute the rows and 

columns of a matrix in such a way as to minimize the filling-in of its 

null entries—are also directly applicable to our problems (Rose 

1972; Tewarson 1973). 

With regard to the implementation of Dijkstra’s method, it is 

sometimes profitable to use sorting techniques, in the search for 

greatest elements of the b-vectors (Johnson 1972). 

3.9.2. Comparison of the algorithms 

Table 3.3 gives the best available upper bounds of the numbers of 

join and multiplicative operations required by various methods, to 

solve a system y= Ayvb where A is absorptive. To obtain these 

bounds it has been assumed that: (i) no join or multiplicative 

operations are performed with null elements in the substitution 

methods, iterative methods, or Dijkstra method; (ii) in the direct 

methods, maximum possible fill-in occurs (so that in effect, all 

entries of the original A matrix are non-null); and (iii) the 

iterative methods take the maximum possible number of iterations. 

TABLE 3.3 

Method Number of v-operations Number of multiplications 

Substitution methods mq mq 

Gauss elimination <n(n—1)(2n—1)/6 <n(n—1)(2n-1)/6 

+mn(n-—1) +mn(n-1) 

Jordan elimination <n(n—1)*/2+mn(n—-1) <n(n—1)?/2+mn(n—-1) 

Matrix closure 

algorithm <n(n-1)* <n(n-1)* 

Jacobi and 

Gauss-Seidel <m@qn <=mqn 

Double-sweep (Yen) =ma|(n+1)/2] <= ma|(n+1)/2) 

Dijkstra <m/(n(n—-1)/2+q) <=mq 

n represents the order of A; m is the number of different b-vectors for which 

solutions are required; and q is the number of non-null entries in A. 

It must be emphasized however that for sparse matrices, the 

assumption (ii) above is not realistic; indeed as is pointed out by 
Rose (1972), when a matrix is sparse its order n has only minor 

importance, as a measure of the work required by a direct method. 

Also, in connection with assumption (ili), the number of iterations 
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required by an iterative method is usually small in comparison with 

the maximum possible number. Thus, the bounds in Table 3.3 must 

not be regarded as indicators of the relative efficiencies of the 

various algorithms, when applied to real problems. 

Nevertheless, from analytic considerations, and practical 

experiments (Fontan 1974), we can draw the following general 

conclusions: 

(i) When A is sparse, and solutions are required for only a few 

b-vectors, the double-sweep method is usually the most efficient. 

It is easy to programme, and its storage requirements are 

minimal. 

(ii) If A is sparse and the disposition of its non-null entries is such 

that the fill-in can be small (as is the case for instance if A is a 

‘band’ matrix—see Tewarson (1973)), then the Gauss elimina- 

tion method may involve least work. It becomes more advan- 

tageous as the number of b-vectors increases, since the 

transformation of A into an upper triangular matrix need not be 

repeated. Gaussian elimination involves less work than the 

Jordan method (Fox 1964; Tewarson 1973). The programming 

involved, to exploit sparsity, is relatively difficult. 

(iii) Dijkstra’s method becomes more competitive as the number 
q of non-null elements in A increases. 

With regard to the time complexities of these algorithms, it will be 

noted that for the path algebras P,—P; the times required to perform 

a join operation or a multiplication are bounded by constants, so the 

algorithms are all ‘fast’. However, for the algebras P.—Ps, the time 

needed to perform a multiplication can increase exponentially with 

problem size. 

Exercises 

3.1. Let A be astable matrix on a path algebra, and let the matrices A and 

A* be partitioned in the same manner, into 

aalee Aix By ea 

Arn Ax ; 

| and ee al 
By, By 

where the diagonal submatrices are square. Prove that (on condition 
that all starred terms are stable) the submatrices of A* are related to 
the submatrices of A by the following identities: 
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Boo = (Ani (Ai1)* Aya V Ar)*, 

By =(Ai1)*A12Bx, 

Bo, = BxAr(Ai1)*, 

By =(Ai)*(Ai2Bo: v Ei), 

where £;, is a unit matrix. 

(Note: These identities taken in order define a procedure for cal- 

culating A* which is analogous to the method of inverting a matrix by 

partitioning.) 

Let P be a path algebra whose multiplicative operation has the 

cancellation property. Prove that every stable matrix of M,,(P) is 

absorptive. 

A project involves ten activities, for which the durations and con- 
straints (as described in Example 2.11) are specified in the table 

below. Find the critical paths, and the slack time for each activity, if 

the project is to be completed in 60 time units. 

Activity Duration Predecessors 

a 25 _ 

b 14 a, d,e 
c 5 — 

d 4 c 

e 16 d,h 
f 3 a,e 

g 10 c 

h 20 g 

i 2 f 

j 6 g 

3.4. A reactor in a chemical plant is shut down annually and either 

overhauled or replaced. The cost of overhaul is related to the age of 

the reactor, as shown in the table below 

Reactor age (years) 1 2 3 

Cost of overhaul (£1000s) 10 25 60 

The cost of a new reactor is £100 000. The expected life of the 

whole plant is ten years, starting from new. Determine an optimal 

policy for the replacement of the reactor over the ten-year period, and 

the total expenditure under this policy. 
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FIG. 3.7 

3.5. Solve the following path problems for the graph of Fig. 3.7, using the 

double-sweep iterative method. 

(i) Assuming that the arc labels represent physical length, find shortest 
paths from node 2 to each of the other nodes. 

(ii) Assuming that the label on each arc represents its capacity, find paths 

of maximum capacity from node 2 to each of the other nodes. 

(iii) Assuming that the label on each arc represents its reliability, find a 

most reliable path from node 2 to each of the other nodes. 

3.6. Find all the Hamiltonian cycles on the graph of Fig. 3.8, 

(i) by the Gauss elimination method and 
(ii) by the double-sweep iterative method. 

FIG. 3.8 

3.7. (i) Prove that, with an initial approximation y© =b, the y“-vectors 
obtained by the Jacobi method (3.109(a)), the Gauss-Seidel method 

(3.109(b)), and the double-sweep iterative method (3.109(c)) are 

respectively 

yy°=(EvLvU)*b,  -y&=(L* vL*U)*b, y= (L*U*)*b. 



3.6. 

3.9; 

3:10. 
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(ii) Using the results of (i) above, show that with y = b, the number 
of iterations needed to solve an equation y = Ay vb by the Gauss— 
Seidel method is not greater than the number required by the Jacobi 
method. 

(iii) Compare the y“’-vectors obtained by the three methods in the 
particular cases where (a) the matrix A is strictly lower triangular, (b) 

A is strictly upper triangular, (c) A is of the form 

a “| 

C 

where the null submatrices ®, and ®, are both square. 

(i) Prove that for any elements w, xX, y, z of a path algebra 

(w v xyz)* = w* v w*x(yzw*x)*yzw*. 

(ii) Let A be a square matrix on a path algebra, and let B be the 

matrix obtained by changing the value of some element a; of A toa, 

where o = a,;. Using the identity given above, prove that 

B*=A*y c(aa*)*od, 

where c is the ith column of A%* and d is the jth row of A*. 

Let P be a path algebra whose multiplicative operation is com- 

mutative. Then the determinant |A| of a matrix A € M,,(P) is defined 

by 
IAJ= Vo inm@2ne+ ++ Ann 

hi}, hn 

where \/;,._.,, means that the join is extended over all permutations 

(hy, ho,...,h,) of the indices 1,2,...,n. The adjoint of A is the 

matrix adj (A) =[a,] with elements 

a= |Axl for all E ip 

where |A;;| is the determinant of the minor A,; of a; in A. 

Prove that if A is absorptive then 

adj (Ev A)=A*. 

(i) Let G be an n-node graph labelled with the path algebra P, (for 
finding shortest paths), let A be the adjacency matrix of G, and let 

A“ =[a] be the matrix obtained at the kth step of the Gauss 
elimination method (as defined by (3.81)). Prove that if the subgraph 

of G generated by {x1,x2,...,xx} does not contain a cycle of 

negative length, then each non-null entry a{;? of A“ for which i>k 
and j >k is the length of a shortest elementary path from x; to x;, on 

the subgraph of G generated by {xj, x2,..., xx} U{xi, x)}. 
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(ii) Using this result, develop an algorithm to determine whether a 

given graph contains any cycles of negative length. Devise also a 

method for finding a cycle of negative length, if one exists. 

Additional notes and bibliography 

The first algebraic study of path problems was by Lunts (1950), who 

applied Boolean matrix algebra to the analysis of relay networks. Moisil 

(1960) and Yoeli (1961) extended his results to a more general algebraic 

structure, applicable to several different types of path problems, and 

further extensions of this work were described subsequently by Cruon and 

Hervé (1965), Tomescu (1966, 1968), Peteanu (1967, 1969, 1970), Ben- 

zaken (1968), Robert and Ferland (1968), Carré (1971), Derniame and 

Pair (1971), Backhouse and Carré (1975), Gondran (1975), Roy (1975), 

and Wongseelashote (1976). See also Cuninghame-Green (1962, 1976) 

and Minoux (1976). 

The ‘path algebra’ presented in Section 3.2 will be recognized by 

algebraists as a multiplicative semi-lattice, or semi-lattice-ordered monoid. 

For a fundamental treatment of lattice-ordered structures see Birkhoff 

(1967) and Dubreil-Jacotin, Lesieur, and Croisot (1953). 

Some further concrete examples of the path algebra will be found in 

Derniame and Pair (1971), Minieka and Shier (1973), Brucker (1974), 

Gondran (1975) and Shier (1976). 

The formulae (3:71); (3.72), and (3.83) defining the Gauss and Jordan 

elimination methods suggest the possibility of developing triangular factors 

and product forms of closure matrices, analogous to the triangular 

factorizations and product forms of inverses used in ordinary matrix 

algebra; these are described by Carré (1969, 1971) and Backhouse and 

Carré (1975). Many other techniques of numerical linear algebra are 

applicable to path problems, and several of them have been reinvented in a 

graph-theoretic context. For instance, the escalator method of matrix 

inversion (Faddeeva 1959) has been developed as a method of computing 

shortest paths by Dantzig (1966). Graph-theoretic counterparts of the 

‘decomposition’ or ‘block’ methods of inverting sparse matrices (Tewarson 

1973) have also been discovered (Land and Stairs 1967; Hu and Torres 

1969; Yen 1975); see also Hoffman and Winograd (1972). We note 

however that in numerical linear algebra, decomposition methods have 

been largely superceded by ordered elimination techniques (Tewarson 

1973; Duff 1977). 
The formula given in Exercise 3.8 is our counterpart of the method 

of finding inverses of modified matrices in linear algebra (Householder 

1953). This formula was derived on P, from graph-theoretic considera- 

tions by Murchland (1967) .and Rodionov (1968), who used it to 
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calculate the changes in distances on a graph when one of its arc lengths is 

reduced. 
The solution of path problems using determinants (see Exercise 3.9) was 

first proposed by Lunts (1950), and Hammer and Rudeanu (1968) used 

determinants on a Boolean algebra to enumerate elementary paths. There 

is a close connection between the method of evaluating such determinants, 

using expansion by elements of rows, and the back-track programming 

method of finding elementary paths which was presented in Section 2.7. 

A bibliography on algorithms for path problems has been published 

by Pierce (1975). 
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4.1. Introduction 

IN THIS CHAPTER we Shall first consider the ways in which it is 

possible to ‘separate’ two nodes of a graph, that is, to destroy all the 

paths between them, by removing arcs. The concept of a ‘separating 

arc set’ which is developed here is important for instance in deter- 

mining the reliability of a communication network with faulty links, 

and in studying flows in transportation networks. Next we shall 

discuss the complementary notion of a minimal ‘connecting’ set of 

arcs of a graph, which preserves the accessibility between nodes, 

even when all the other arcs are removed. We shall then consider 

the separation of two points, by removing nodes rather than arcs; 

this type of decomposition of a graph finds applications for instance 

in the compilation of computer programs. 

After exploring these concepts, in which arc orientations are 

significant, we shall present their ‘undirected’ counterparts for 

simple graphs, whose edges are not oriented. 

4.2. Separation by the removal of arcs 

4.2.1. Separating arc sets 

Let x; and x; be any two nodes of a graph G =(X, U). Then a 

subset V of U is an (x;, x;)-separating arc set if every path from x; to 
x; traverses at least one arcin V. When V isan (x;, x;)-separating arc 
set, and no proper subsets of V have this property, we say that V isa 
proper (x;, x;)-separating arc set. 

Example 4.1. In the graph of Fig. 4.1, the proper (xs, X4)-Separating arc 
sets are 

{a, b, h}, {b, c, h}, {b, d, h}, {g, h}. 

4.2.2. Cut sets of arcs 

Now let x; and x; be two distinct nodes on a graph G = (X, U) and 
let {X', X"} be any partition of the node set of G such that x; ¢.X’ 
and x; ¢X”. Then the set ofall arcs with initial endpoints in X’ and 
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FIG. 4.1 FIG. 4.2 

terminal endpoints in X" is called a cut set of arcs (or simply a cut) 
separating x; from x; (in that order). It will sometimes be con- 
venient to denote this cut by (X’, X”); thus 

(X", X") = {(x;, xe U |x; EX’, xjEX"}. 

When (X’, X”) is a cut separating x; from x;, and no proper 

subsets of (X’, X”) have this property, we say that (X’, X") is a 

proper cut separating x; from x;. 

Example 4.2. The following are two examples of cuts separating x, from 

x4, on the graph of Fig 4.1: 

(i) By partitioning the node set X into the subsets X’={x,, x.} and 
X" ={x3, X4, Xs} we obtain the cut (X’, X”) = {b, c}. This partition of X is 
indicated by a broken line in Fig. 4.2; the bold lines indicate the members 

of the cut. 

(ii) With X' = {x,, x2, xs} and X” = {x3, x4} we obtain the cut (X’, X") = 
{b, c, h}. The first of these is a proper cut separating x, from x4; the 

second is not a proper cut separating x, from x4, since it contains the first. 

The relationship between the cuts and the separating arc sets of a 

graph can be summarized as follows: 

(1) Every cut (X', X") separating x; from x; is an (x;, x;)-separating 

arc set. Indeed, since x;¢X’ and x;¢ X", every path from x; to x; 

must traverse some arc of (X', X”). 

The converse of (1) is not necessarily true. For instance, on a 

complete symmetric graph the set of all arcs is a separating arc set, 

for every pair of nodes, but it is not a cut. However we can prove the 

following: 

(2) For any two distinct nodes x; and x;, every proper (x;, x;)- 
separating arc set is a proper cut separating x; from x;. Indeed, let x; 
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and x; be distinct nodes on G, let V be any proper (x;, x;)-separating 

arc set, let X’ be the set of nodes which are accessible from x; on the 

partial graph of G obtained by removing the arcs of V, and let X” be 

the complement of X’ relative to X. Then clearly x; € X' and x; < X", 

and therefore on G, the arc set (X’', X”) is a cut separating x; from x;. 

Now (X’, X”) CV, by the definitions of X’ and X”; also, since 

(X', X") is an (x;, x;)-separating arc set (by result (1) above), and V 

is a proper (x;, x;)-separating arc set, (X’, X”) cannot be a proper 

subset of V. It follows that (X’, X”) = V, which implies that V is a 

cut separating x; from x;. Furthermore, since none of the proper 

subsets of V are (x;, x;)-separating arc sets, it follows from result (1) 

above that none of these subsets are cuts separating x; from xj. 

Hence V is a proper cut separating x; from x;, as required. 

From the results (1) and (2) we deduce the following: 

(3) Every proper cut separating x; from x; is a proper (x;, x;)-separat- 

ing arc set. Indeed let C be any proper cut separating x; from x;. 

Then by result (1) above, C is an (x;, x;)-separating arc set. Now if C 

is not a proper (x,, x;)-separating arc set, it must contain a subset 

C'CC which does have this property. But then, by result (2), C’ 

is a proper cut separating x; from x; which violates our initial 

assumption. Hence C is a proper (x;, x;)-separating arc set, as 

required. 

The concept of a cut will be used in studying network flows, in 

Chapter 6. 

4.2.3. The determination of proper separating arc sets 

The proper separating arc sets on a graph can be found by means 

of the following path algebra, which is due to Martelli (1974, 1976). 

Let 2 be a finite alphabet, and let S be any set of subsets of ©; then 
we say that amember a of S isa minimal member of S if § does not 
contain any proper subsets of o. The reduction r(S) of S is the set of 
all minimal members of S. If r(S) = S then S is a reduced set of sets; 
in particular, the empty set @ and the set ® = {d} are both reduced 
sets of sets. 

Let Ps be the set of all reduced sets of subsets of 2, and let us 
define a join and multiplicative operation on Ps by the rules 

XvY=r({aUBlaeX, Be Y}), 
for all X, Y Ps. 

X«Y=r(Xu ¥), an ada Ge 
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It is easily verified that with these operations Ps forms a path 
algebra, whose unit and zero elements are the sets @ and ® 
respectively. It will be noted that the unit element ¢ is the greatest 
element of Ps. 

Now let G be a graph in which each arc (x;, x;) has a name nj. Let 
= be the set of arc names, and let Ps be the path algebra derived 
from = in the manner indicated above. If we assign to each arc 
(xi, x;) the label {{1,;}}, then we may consider G as a graph labelled 
with Ps. In this case, the label /(u) of each path u on G is the union 
of the labels of its arcs. For instance, on Fig. 4.1 the path w= 
(x1, X4), (%4, X3), (x3, x4) has the label /(w) = {{b}, {f}, {d}}. Since @ is 
the greatest element of Ps, all graphs labelled with Ps are absorp- 
tive. 

Now let A be the adjacency matrix of G. Then, by (3.56), its weak 

closure A =[4,,] has entries 

aiy= VV I(u) (4:2) 
weTiy 

where tT: is the set of all non-null elementary paths from x; to x;. 

If we denote the elementary paths from x; to x; by 

Ps ey ed) (q) 
DPA ils, pe Oe ae ts 

then (4.2) can be rewritten as 

q 

Gx = Vf Mids 
k=1 

and therefore from (4.1) 

q 

Gi;=r(M,) where M,, =| LU) ax lax € Kui). (4.3) 
k=1 

Here M,; is the set of all sets of arc names which can be formed by 

taking the label of one arc from each elementary path from x; to x;. 

Thus, if x; is a descendant of x; then dj, is the set of all proper 

(x;, x;)-Separating arc sets; whereas if x; is not a descendant of x; 

then Gij =, 

Example 4.3. The adjacency matrix of the graph of Fig. 4.1. is given in 

Fig. 4.3(a). To obtain the proper separating arc sets which Separate each 

node from node x4 say, we require the fourth column of A. This can be 

found by solving the system y = Ay v au, using any of the direct or iterative 
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methods of Sections 3.6 and 3.7. As an illustration, the successive y-vectors 

obtained by the double-sweep method are given in Fig. 4.3(b). (The 

solution is obtained in one iteration.) 

> {{a}} @D {{b}} ® 
© o {ch} © © 

© ® ® {{d}} ® 

© {fe} {{f}} © ® 

{{g}} @® ® {{h}} ® 

FIG. 4.3(a) 

(0) G) (i) 

{{b}} | l{{ab}, {bc}, {bd}} {{ab}, {bc}, {bd}} 

® {{c}, {d}} {{c}, {d}} 

{{d}} {{d}} {{d} 

® ® {{cf}, {d}, {ef} 

{{h}} {{h}} {{abh}, {bch}, {bdh}, {gh}} 

FIG. 4.3(b) 

An alternative technique for finding proper separating arc sets, 

using a network flow method, will be presented in Chapter 6. 

4.2.4. Basic arcs 

An arc u = (x;, x;) of a graph G is called a basic arc of G if on the 

graph obtained by removing u from G, x; isnot a descendant of x;. In 

other words, u is a basic arc if and only if {u} is a proper separating 

arc set. As an example, the graph of Fig. 4.1 has four basic arcs: c, d, 

e, and g. 

If an arc u =(x;, x;) is not a basic arc of G then obviously G 

contains an elementary path from x; to x; which does not traverse u, 

and which is therefore of order greater than one. For this reason, an 

arc which is not basic is called a chord. 

The determination of basic arcs. It is easy to find the basic arcs of a 
graph, by means of the following path algebra: Let = be a finite 
alphabet, and let w be any symbol which does not belong to >. Let 
0 = {w}, and let 
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where (2) is the power set of 2. We define a join operation on P by 
the rules 

XVY=XnNY for all _X, Y €¢ A(3), 
(4.4 

XVOQ=X=OvxX iforallXeP, ue 

and we define multiplication on P by 

Ae YS XY for all X, Ye A(3), (4.5) 

X-Q=0=0-X  forallXeP. 

It is easily verified that the set P equipped with these operations is a 

path algebra, whose unit and zero elements are the sets @ and 0 

respectively. It will be noted that the unit element ¢ is the greatest 

element of P. 

Now let G be a graph in which each arc (x;, x;) has a name nj;. Let 

= be the set of these names and let P be the path algebra derived 

from  , as indicated above. If each arc (x;, x;) is assigned the label 

{ni}, we may consider G as a graph labelled with P. Then for any 

path uw on G, the label /(w) is the union of the labels of the arcs of uw; 

for instance on Fig. 4.1 the path uw = (x1, x4), (x4, x3), (x3, x4) has the 

label /(u) = {b, f, d}. Since @ is the greatest element of P, all graphs 

labelled with P are absorptive. 

Let A be the adjacency matrix of G. Then by (3.56) and (4.4), its 

weak closure A has entries 

weTy (4.6) ay= Vi MH)=) 4 if T;; is empty 

| 1 lu) if T, isnot empty, 

weTiy 

where Ti; is the set of non-null elementary paths from x; to x,;. Thus 

if x; is a descendant of x;, Gj; is the set of arcs which are common to 

all elementary paths from x; to x;, that is, the set of all basic arcs 

which separate x; from x;; whereas if x; is not a descendant of 

Xi then Gi 10). . 

The matrix A (or any particular row or column of A) can be 

computed by any of the direct or iterative methods of Sections 3.6 

or 3.7. 
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Example 4.4. For the graph of Fig. 4.1. 

Q fa} 2 {b} 2 0) 7) ¢ ¢@ a 
OF OMe FORO 0. 4c, Ge te} fed} “2 

A= 0. 0 8 4d Ol, A=(0O> ade id Adi OE 

Q {e} f} 2 0 Q “fer? “pS td <Q 
{gt QO~XO fh} 0 {g} 7) @¢ ¢ Oo 

4.3. Basis graphs 

So far we have been interested in removing arcs in such a way as 

to destroy all the paths between two nodes. Here we again consider 

the removal of arcs, but our aim is to eliminate arcs which are 

‘superfluous’, in the sense that their removal does not change the 

accessible set of any node. 

Given a graph G=(X,U), we describe a partial graph 

H =(X, V) of G as a basis graph of G if 

(i) for every node x;¢X, each descendant of x; on G is a 

descendant of x; on H, and 

(ii) the arc set of H is minimal (in the sense that if any arc is 

removed from H, condition (i) is no longer satisfied). 

As an example, the graph of Fig. 4.4(a) has a unique basis graph, 

which is shown in Fig. 4.4(b). 

FIG. 4.4 

It is evident that for any graph, we can always obtain a basis 
graph, by the successive removal of chords. However, a graph may 
have several basis graphs, with different numbers of arcs. For 
instance, the graph of Fig. 4.5(a) has five basis graphs, two of which 
are shown in Figs. 4.5(b) and 4.5(c). 
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(a) (b) (c) 

FIG. 4.5 

Let us consider the question of when a graph has a unique basis 

graph. First, we observe that the concept of a basis graph is related 

to that of a basic arc, as defined in the previous section, in the 

following manner: In a graph G, an arc (x;, x;) is basic if and only if it 

belongs to every basis graph of G. To prove this, let us first suppose 

that (x;, x;) is a basic arc. Then by definition, all the paths from x; to 

x; traverse the arc (x;,, x;), and therefore this arc must belong to 

every basis graph of G. Conversely, let us suppose that (x, x,) 

belongs to every basis graph of G. Then there exist two nodes x, and 

x; such that x; is a descendant of x, on G, but not on the partial 

graph of G obtained by removing (x;, x;). Hence on G all the paths 

from x, to x; traverse (x;, x;), which implies that all the paths from x; 

to x; traverse (x;, x;). Thus (x;, x;) is a basic arc, as required. 

From this result it follows that a graph G has a unique basis graph 

if and only if its basic arcs form a basis graph. Hence, a necessary 

and sufficient condition for a graph to have a unique basis graph is 

that for every arc (x;, x;) of G, there exists a path from x; to x; consisting 

entirely of basic arcs. 

This condition applies in particular to acyclic graphs. Indeed, let 

G be an acyclic graph, let (x;, x;) be any arc of G, and let uw be any 

path of maximum order from x; to x;. Now let us suppose that some 

arc (Xx, x) of uw is not basic; then G contains a path from x, to x; of 

order greater than one, which contradicts our assumption that wu is 

of maximum order. Hence yw consists entirely of basic arcs, as 

required. We conclude therefore that every acyclic graph has a 

unique basis graph, consisting of all its basic arcs. 

Example 4.5. Construction of the basis graph of an acyclic graph. Since all 

the paths in an acyclic graph are elementary, an arc (x;, x;) of an acyclic 

graph G is basic if and only if G does not contain any paths of order greater 

than one from x; to x;. Hence if G has a Boolean adjacency matrix A, then 
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the Boolean adjacency matrix A of the basis graph of G can be written ast 

A=AnAA. 

Here the weak closure A of A can be calculated conveniently by Warshall’s 

algorithm (3.91). (To save work, one can exploit the fact that when A is 

strictly upper triangular, all the B“? matrices in (3.91) have this property 

also.) 

As an illustration, for the graph of Fig. 4.4(a), 

The corresponding basis graph is shown in Fig. 4.4(b). 

An algorithm to perform this calculation has been described by Fisher, 

Liebman, and Nemhauser (1968), who use it to remove the chords from 

activity graphs for critical path analysis. (It will be observed that in activity 

graphs of the kind described in Example 2.11, chords are always 

‘superfluous’ in the sense that they never determine earliest or latest 

starting times.) 

4.4. Separation by the removal of nodes 

4.4.1. Separating node sets 

Let us now consider the ways in which the paths between two 

nodes can be destroyed, by removing nodes rather than arcs. 

Let x; and x; be any two nodes (which need not be distinct) on a 

graph G =(X, U). Then an (x,, x;)-separating node set is a set W of 

+ Given two m Xn Boolean matrices X =[x;;]and Y = [y,], their meet is the m xn 
matrix X 0 ¥ =[xj A y,]. ; 
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nodes, not containing x; or x;, such that every path from x; to x; 

traverses at least one node of W. If W is an (x,, x;)-separating node 

set, and none of its proper subsets have this property, we say that W 

is a proper (x;, x;)-separating node set. 

It will be noted that if x; is a successor of x;, then there do not exist 

any (x;, x;)-separating node sets. 

Example 4.6. In the graph of Fig. 4.1, the proper (x5, x3)-separating 

node sets are {x,, x4} and {xo, x4}. 

The determination of proper separating node sets. Separating node 

sets can be obtained by a technique similar to that used previously to 

determine separating arc sets. Let us suppose that the nodes of a 

graph G are numbered 1, 2,...,n. Let 2={1,2,...,n}, and let Ps 

be the path algebra derived from > as in Section 4.2.3. Then, if we 

give each arc (x;, x;) of G the name of its terminal endpoint, and set 

I(x;, x;) = {{7}}, we obtain a graph labelled with Ps. It follows by (4.3) 

that if x; is accessible from x;, then the entry 4; of the closure matrix 

A is the reduction of the set M,; of all sets of node indices which can 

be formed by taking the index of one node on each elementary path 

from x; to x; other than the initial node x;; thus a,; comprises the 

sets of indices of all the proper (x;, x;)-separating node sets, together 

with the set {/}. If x; is not accessible from x; then a; =®. 

Example 4.7. For the graph of Fig. 4.1, 

a 4 a Ie 8 a 
D3} pr 

A=doe@e SOor oO) {al Dal, 

Po MA USED. ,  P 
ee OS AL 

® {{2}} {{2, 4}, {3}} athe. 
: dD = {{2}, {3}, {43} {{3}} {{3}, {4}} ® 
7 A {{2}, {4}} {{3}, {43} Hath @ 

® {{2}} {{3}} {{3}, {4}} ® 
{1} {{1,4},2  {{1, 4},{2,4}, 3 {4} © 

4.4.2. Separating nodes 

A node x; is called an (x;, x;)-separating node if every path from x; 

to x; traverses x,. In other words, x, is an (x;, x;)-Separating node if 

and only if {x;} is an (x; x;)-separating node set. 
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As an illustration, on Fig. 4.6(a), the node x6 is an (x1, X7)- 

separating node. 

Example 4.8. Dominators of computer programs. A computer program is 

often represented by a control flow graph G in which each node represents a 

‘block’ of program statements, i.e. a sequence of statements such that (i) no 

other statement of the program can transfer control to any but the first 

statement of the sequence, and (ii) if control is passed to the first statement 

of the sequence then all the statements of the sequence are executed, in 

order; two nodes x; and x; in G are joined by an arc (x;, x;) if the last 

statement of block i can transfer control of the first statement of block /. 

The node corresponding to the block containing the first statement of the 

program is called the entry node of G, and the node representing the block 

which contains the ‘end’ statement of the program is called the exit node. 

We note that if a program is ‘properly constructed’ then every node of the 

control flow graph is accessible from its entry node (an inaccessible node 

would represent a block of statements which could never be executed), and 

the exit node is accessible from all other nodes (for if control could be 

passed to a block from which the exit could not be reached, the program 

would not always terminate). 

An important concept in program analysis and code optimization is that 

of domination of one block by another: We say that a block i pre-dominates 

a block j if the first execution of j is always preceded by an execution of /; 

whereas block i post-dominates block j if the last execution of j is always 

followed by an execution of i. To interpret this notion in graph-theoretic 

terms, let us denote by x, and x, the entry and exit nodes of a control flow 

graph. Then block i pre-dominates block ; if x; is an (x,, x;)-separating 

node, or x;=x,; whereas block i post-dominates block ; if x; is an 

(x;, X,)-Separating node, or x; = x;. 

For a discussion of the significance of dominators in programming see for 

instance Schaefer (1973) and Hecht (1977). 

An algebraic method of finding separating nodes. Separating nodes 

can be found by a technique similar to that used previously for 

finding basic arcs. Let us suppose that the nodes of a graph G are 
numbered 1, 2,...,, and that each arc (x;, x;) is assigned the label 
I(x:, xj) ={j}. Let 2={1, 2,..., n} and let Ps be the path algebra 
derived from > as in Section 4.2.4. By (4.6), if a node x; is accessible 
from a node x;, the entry 4;; of the weak closure matrix A is the set of 
indices of the nodes which belong to every path from x; to x;, other 
than the initial node x;; thus Gi; comprises the indices of all the 
(x; x;)-Separating nodes, together with the index ‘j’. If x; is not 
accessible from x; then (by*(4.6)) 4 =. 
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Example 4.9. Using the technique described above, the adjacency 
matrix A of the graph of Fig. 4.6(a) has the form shown in Fig. 4.6(b). To 
find the separating nodes between each node and node x; say, we solve the 
equation y = Ay v a, (where az; is the seventh column vector of A). Apply- 
ing the double-sweep method to this problem, we obtain the iterates shown 
in Fig. 4.6(c). 
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a FIG. 4.6 

An alternative method of finding separating nodes is outlined in 

Exercise 4.3. (See also the Additional notes and bibliography.) 

4.5. Edge separation on simple graphs 

In all the notions of connectivity discussed so far, the orientations 

of the arcs of a graph have been significant. The remainder of this 

chapter presents ‘undirected’ counterparts of these concepts relat- 

ing to simple graphs (as defined in Section 2.2), in which the edges 

are not oriented. 

4.5.1. Separating edge sets (cf. Section 4.2.1) 

Let G =(X, E) be a connected simple graph, and let x; and x; be 

any two distinct nodes of G. Then a set F of edges of G is a 

separating edge set between x; and x; if every chain between x; and x; 
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contains at least one edge of F. When F is a separating edge set 

between x; and x;, and no proper subset of F has this property, we 

say that F is a proper separating edge set between x; and x;. 

Example 4.10. In the graph of Fig. 4.7, the proper separating edge sets 

between x; and x7 are 

{a, b, e}, {b, d, e}, {c, e}, {f}, {g, h}, fh, i}. 

FIG. 4.7 

4.5.2. Cut sets of edges (cf. Section 4.2.2) 

Again, let x; and x; be any two distinct nodes of a connected 

simple graph G = (X, E), and let {X’, X"} be a partitioning of the 
node set X such that x;¢ X' and x;¢ X”. Then the set F of edges 

which have one endpoint in X’ and the other endpoint in X” is 

called a cut set of edges, between x; and x;. 

When F is a cut set of edges, but no proper subset of F has this 

property, we say that F is a proper cut set of edges. 

Clearly, a cut set of edges on a connected graph G = (X, E) is 

proper if and only if the graph G = (X, E—F) has precisely two 
connected components: For if G has only two components then the 

addition of any edge of F to G reunites these components, which 

implies that none of the proper subsets of F are cut sets on G; 

whereas if G has more than two components, then after adding any 

edge f € F to G, this graph is still not connected, which implies that 

the edge set F —{f} is a cut set on G. 

Example 4.11. As examples of cut sets of edges between x3 and x7, on 

the graph of Fig. 4.7 we have 

(i) with X' = {x2, x3} and X" ={xj, x4, Xs, X6, X7}, the cut {a, b, e}; 
(ii) with X'={x2, x3, xe} and X" = {xj, x4, Xs, x7}, the cut {a, b, e, g, i}. 
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The first is a proper cut set, the second is not (for it obviously contains the 

first). In the first case the subgraphs generated by X’ and X" are obviously 
connected, whereas in the second case the subgraph generated by X’ is not 

connected. 

The relationship between the cut sets of edges and the separating 

edge sets of a graph can be summarized as follows: 

(1) Every cut set of edges between two nodes x; and x; is a 

separating edge set between x; and x;, (although the converse is not 

necessarily true), and 

(2) Every proper separating edge set between two nodes x; and x; is 

a proper cut set of edges between x; and x;, and the converse is also 

true. 

These statements are proved by arguments similar to those used 

in Section 4.2.2 (with the term ‘edge’ substituted for ‘arc’ 

throughout). 

4.5.3. The determination of proper separating edge sets (cf. Section 

4.2.3) 

Let G=(X, E) be a simple graph whose edges have distinct 

names and let H = (X, U) be the graph with the same node set as G, 

and which has two arcs (x;, x;) and (x;, x;) between each pair of nodes 

x; and x; which are joined by an edge on G; on H, the arcs (x;, x;) and 

(x;, x;) both bear the name of the corresponding edge [x,, x;] on G. 
As an example, for the simple graph of Fig. 4.7, the corresponding 

graph H is shown in Fig. 4.8. 

FIG. 4.8 

It is evident that, if S is the set of names of the edges of an 

elementary chain between x; and x; on G, then S is also the set of 

names of the arcs of an elementary path from x; to x; on H, and the 

converse is also true. Thus, if we consider H to be labelled with the 
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path algebra of Section 4.2.3, the entry aj; of the closure of its 

adjacency matrix A gives the proper separating edge sets between x; 

and x;. 

4.5.4 Bridges (cf. Section 4.2.4) 

An edge e =[x;, x;] of asimple graph G is called a bridge of G if in 

the graph obtained from G by removing e, the nodes x; and x; are 

not connected. In other words, an edge e is a bridge if and only if {e} 

is a cut set. 

As an example, the graph of Fig. 4.7 has one bridge, namely the 

edge f =[xa, x5]. 

An edge e¢ is called a circuit edge when it belongs to a circuit. We 

observe that an edge e is a circuit edge if and only if it is not a bridge. 

Indeed, if e is not a bridge, then the endpoints of e are joined by a 

simple chain which does not contain e, and by joining e to this chain 

we obtain a circuit. Conversely, if e is a bridge, there cannot be any 

chain between its endpoints which does not contain e, and therefore 

e does not lie on a circuit. 

We say that two nodes x; and x; are circuit-edge connected if there 

exists a chain between x; and x; whose edges are all circuit edges, or 

if x; = x;. The relation of circuit-edge connectedness is obviously an 

equivalence relation on the node set X of G; the subgraphs of G 

generated by the equivalence classes of X are called the leaves of G. 

In other words, the leaves of G are the connected components of 

the partial graph of G which is obtained by removing its bridges. 

As an example, the graph of Fig. 4.7 has two leaves, these being 

the subgraphs generated by the node sets {x1, x2, x3, x4} and 

{x5, X6, X7}. Again, the graph of Fig. 4.9(a) has five leaves (which are 

indicated by broken lines). 

It follows from the above definitions that leaves have the follow- 

ing properties: 

(1) Every leaf of a graph is ‘circuit-closed’ in the sense that if a 
circuit C of a graph has any node in common witha leaf L, then all 
the nodes and edges of C belong to L. 

(2) A leaf is connected, and does not contain any bridges : indeed, 
let G be any simple graph, and let G be the partial graph of G 
obtained by removing all its bridges. Since the removal of a bridge 
does not destroy any circuits, every circuit edge of G is also a 
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FIG. 4.9(a) FIG. 4.9(b) 

circuit edge in G, which implies that G does not contain any 

bridges. 

(3) There can be at most one bridge joining two leaves, for if two 

leaves were joined by more than one bridge, these bridges would 

become circuit edges. 

Leaf graphs. Let G=(X,E) be a simple graph, and let 

X 1, X2,..., X, be the node sets of its leaves. Then the conden- 

sation of G induced by the partition {X,, X2,..., X;} is called the 

leaf graph G;, of G. Thus, the nodes of G; correspond to the leaves of 

G, and two nodes in G; are joined by an edge if and only if the 

corresponding leaves are connected by a bridge in G. We note that, 

by property (3) above, there is a one-to-one correspondence 

between the bridges of G and the edges of G;. We observe also that 

G; does not contain any circuits, for a circuit in G; would represent a 

circuit in G passing through several leaves. 

For the graph of Fig. 4.9(a) the leaf graph is shown in Fig. 4.9(b). 

An algebraic method of finding bridges and leaves. Let G be a simple 

graph whose edges have distinct names, and let H be the cor- 

responding directed graph, as defined in Section 4.5.3. Then, if H is 

considered to be labelled with the path algebra of Section 4.2.4, 

each entry aj; of the closure of its adjacency matrix A is the set of 

names of all the bridges between x; and x;. Clearly, the matrix A* is 

symmetrical. When two nodes x; and x; belong to the same leaf we 

have a% =a* = ¢, and the ith and jth rows (and columns) of A* are 
identical. 
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Example 4.12. For the graph of Fig. 4.7, 
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Another method of finding bridges and leaves, through the 

construction of a leaf graph, is given in Exercise 4.7. 

4.6. Spanning trees in simple graphs 

4.6.1. Free trees 

A simple graph is called a free tree if it is connected and has no 

circuits. For instance, the graphs in Fig. 4.10 are all free trees.t 

The following theorem lists some properties of free trees. 

Let G be a simple graph; the following properties are equivalent, for 

characterizing a free tree: 

(1) Gis connected and contains no circuits; 

(2) Gis connected and every edge of G is a bridge; 

(3) Every pair of nodes of G is joined by precisely one chain; 

(4) Gcontains no circuits, but the addition of any new edge creates 

a circuit. 

+ Graphs of this kind are often simply called ‘trees’. However, in Computer science 

and other applications areas the term ‘tree’ is generally used for graphs of the kind 

described in Section 2.6, which have a root, and branches directed away from the 

root. The nomenclature used here is that of Knuth (1968). 
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peed X 
Ethane 

Propane Isobutane 
Butane 

FIG. 4.10. Graphs of the saturated hydrocarbons C,H>, +2 which have up to 

four carbon atoms. (Nodes of degree four represent carbon atoms, nodes of 

degree one are hydrogen atoms.) 

The theorem is proved as follows: 

(1) implies (2). Indeed, it was proved in the previous section that in 

a simple graph, any edge which does not belong to a circuit is a 

bridge. Since G has no circuits, all its edges are bridges. 

(2) implies (3). Since G is connected, every pair of nodes is joined 

by at least one chain. Also, a given pair of nodes cannot be joined by 

two chains, for otherwise the removal of an edge which belonged 

only to one of them would not disconnect the graph. 

(3) implies (4). If G contained a circuit, then any two nodes in the 

circuit would be joined by two chains. The addition of any new edge 

e creates a circuit because in G, the endpoints of e are already 

joined by a chain. 

(4) implies (1). G is connected because if G had two nodes which 

were not connected, it would be possible to add to G an edge 

between these nodes, without creating a circuit. 

From the characterization (2) above, it follows that every free tree 

with n nodes has precisely n — 1 edges. Indeed, if an n-node graph G 

is a free tree then the removal of any edge divides G into two 

connected components, which are both free trees. Then, the remo- 

val of asecond edge divides G into three free trees, and so on. When 

we have removed all its edges, the graph G comprises n free trees 

(which are all isolated nodes). The number of edges removed in this 

process is obviously n — 1. 
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4.6.2. Spanning trees 

Let G be a simple graph. Then any partial graph of G which is a 

free tree is called a spanning tree of G. As an example, Fig. 4.11 

shows two of the spanning trees of the graph of Fig. 4.7. 

D<| D1 
FIG. 4.11 

Clearly, a graph must be connected to have a spanning tree. Also, 

any connected graph has at least one spanning tree: indeed, for any 

connected graph G, we can always construct a spanning tree as 

follows. If all the edges of G are bridges, then (by property (2) 

above) G is a free tree; otherwise, if G has an edge which is not a 

bridge, it can be removed without disconnecting G, and by the 

successive removal of such edges we eventually obtain a spanning 

tree. 

It is evident that a spanning tree represents a minimal collection 

of edges which preserves the connectedness of a graph. This concept 

is in a sense complementary to that of a proper cut set of edges 

(which is a minimal collection of edges whose removal disconnects 

some nodes from others). These notions are related precisely by the 

following theorem: 

In a connected graph, every cut set of edges has at least one edge in 

common with every spanning tree. 

To prove the theorem, let C be acut set of edges of a graph G, and 

let T be a spanning tree of G. Then, if C did not contain at least one 

edge from T, the removal of C from G would not separate G into 

two or more components. 

4.6.3. Shortest spanning trees 

Let us consider the following problem. In an electrical network 

there are n terminals, in fixed positions, which must all be 

electrically connected together by wires. Which pairs of terminals 

should be joined, if the total length of wire used is to be as small 

as possible? ; 
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This problem can be presented in graph-theoretic terms, as 

follows. Let G = (X, E) be a simple graph in which every edge e is 

assigned a real number /(e), called its length. It is required to find a 

connected partial graph H = (X, F) of G whose total length 

HE)=ay) Ue) 
ecF 

is as small as possible. It is evident that H must be a spanning tree of 

G: we describe such a graph as a shortest spanning tree. 

The construction of a shortest spanning tree. A shortest spanning tree 

can be ‘grown’ from an arbitrarily chosen node x’, one edge at a 

time, by constructing a sequence of graphs HH“ =(X, F®), 

(k =0,1,...,n-—1), as follows. 

Step 1 Let x be any node of G, and let ESO? ex eae FO= d. 

Step2 Fork =1,2,...,n—1, form X and F“ as follows: let 

C“ be the cut set of edges which have exactly one end- 

point in X“~", let e’ be a shortest edge of C™?, and let 

x be the endpoint of e“’ which does not belong to. X“*~”. 

Then set 

KPa KE Mh FOL ROM GeO (47) 
On termination, the graph H ? =(X“"~”, F“~) is a shortest 

spanning tree of G. To demonstrate this, it suffices to prove the 

following. 

Each graph H“ =(X“, F) constructed by the algorithm is a 

(k + 1)-node connected subgraph of a shortest spanning tree on G. 

The proof is by induction. For k = 0 the statement is evidently true. 

Let us therefore suppose that it holds for k = r—1, and demonstrate 

its validity for k =r. It is clear from (4.7) that since HH” is an 

r-node connected graph, H” has r+1 nodes, and is connected. 

Now let H be any shortest spanning tree of G which contains all the 

edges of H” ”. If H also contains e“”’, then H is a connected 
subgraph of H. Alternatively, let us suppose that H does not 

contain e”. Then if e°” is added to H, a circuit is created, com- 

posed of e” together with the chain in H between the endpoints 

of e’. Now this chain must contain some edge f say of C“”. If f is 
removed from H we obtain another spanning tree of G, and since 

I(e’”) <I(f), this spanning tree is another shortest spanning tree of 
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G. Hence there exists a shortest tree containing all the edges of H ap 

which completes the proof. 

It will be noted that at the kth step, the chosen edge is always a 

shortest edge among the edges between x“’ and the nodes of X bented 

It follows that at each stage, after x has been selected, if any node 

y not in X“ has edges joining it both to x” and to some other node 

in X“, the longer of these two edges can immediately be deleted 

from G. This technique substantially reduces the number of 

comparisons of edge lengths required (see Exercise 4.6). 

Example 4.13. The construction of a shortest spanning tree is demon- 

strated in Fig. 4.12. At each stage, the bold lines are the edges of the graph 

H“~”, the closed curve indicates the cut set of edges C“, and the broken 
line indicates the next edge e““’ to be assigned to the spanning tree. 

For the case where we require a single spanning tree on a graph 

G =(X, E) whose edge lengths can be considered to be equal, it is 

convenient to recast the above algorithm in the following form. (In 

(e) (f) 

* FIG. 4.12 
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this version of the algorithm we again ‘grow’ a spanning tree from an 
arbitrarily chosen node x by successively adding edges and nodes to 
aconnected subgraph H = (X, E) ofa spanning tree of G. However, 
instead of adding edges one at a time, each step of the algorithm 
joins to H all the neighbours of some node y in H.) 

Step 1 Let x be any node of G, and let X = {x}, E = @, Y = {x}. 

Step 2 Let y be any node in Y, and let Z be the set of all 
neighbours of y which do not belong to X: 

Z =T(y)-X. 

Then modify the sets x E, and Y as follows: 

ie XZ. 

E<Butly,z]lzeZ}, 
Y<(Y—WyHyUZ. 

Step 3 If Y =¢ then halt; otherwise return to Step 2. 

On termination, the graph H = (X, E) is a spanning tree of G. 

4.6.4. Determination of the spanning trees of a graph 

It is possible to obtain all the spanning trees of a graph by a 

backtrack programming method of the kind described in Section 

2.7. To present the method it is convenient to consider a more 

general problem—that of finding the spanning trees of a given 

multigraph. (Our definition of a spanning tree in Section 4.6.2 still 

applies when G is a multigraph; we note in particular that even fora 

multigraph, a spanning tree cannot have more than one edge joining 

the same pair of nodes.) Our reason for considering this more 

general problem is that in searching for spanning trees, even on a 

simple graph, we may create sub-problems which involve multi- 

graphs. 

Now let G be a connected multigraph, and let S be the set of all 

spanning trees of G. Let e be any edge of G, let S, be the set of 

spanning trees of G which contain e, and let S; be the set of 

spanning trees of G which do not contain e. Clearly, 

S=S.US; and $.0S:=4¢, 
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so if we can construct the two sets S, and S; separately we shall 

obtain all the required spanning trees, without duplications. Now it 

will be observed that: 

(i) Each spanning tree in S, comprises the edge e, together with 

the edges of a spanning tree of the multigraph G. obtained by 

contracting the edge e, that is, by coalescing its endpoints and 

removing any loops created (see Fig. 4.13); and conversely, the 

edges of any spanning tree in G., together with the edge e, forma 

spanning tree in S,. 

Multigraph G Multigraph G, Multigraph G; 

FIG. 4.13 

(ii) The spanning trees in S; are the spanning trees of the 

multigraph G; obtained from G by removing the edge e. (Note 

that if e is a bridge, Sz is an empty set; to determine whether or 

not e is a bridge it is convenient here to establish whether one 

endpoint of e is accessible from the other in Gg, by the labelling 

algorithm of Fig. 2.19.) 

Thus we can decompose the problem of finding the spanning trees 

of G into two sub-problems, each involving the determination of 

the spanning trees of a multigraph which has less edges than G. By 

repeated decompositions of this kind, we eventually obtain all the 

required spanning trees. 

4.7. Node separation on simple graphs 

In this section we consider ways of destroying all the chains 

between two points on a simple graph, by removing some of its 

nodes. 



Connectivity 165 

4.7.1. Articulation sets (cf. Section 4.4.1) 

Let x; and x; be any two nodes (which need not be distinct) on a 

connected simple graph G=(X,£). Then an articulation set 

between x; and x; is a node set W, not containing x; or x;, such that 

every chain between x; and x; traverses at least one node in W. 

When W is an articulation set between x; and x;, and none of its 

proper subsets have this property, we say that W is a proper 

articulation set between x; and x;. 

It is evident that when the nodes of an articulation set are 

removed from a graph, the graph becomes disconnected. 

Example 4.14. On the graph of Fig. 4.7, the proper articulation sets 

between the nodes x, and x¢ are {x,, x3}, {x4} and {xs}. 

The determination of articulation sets. Let G =(X, E) be a simple 

graph and let H = (X, U) be the graph with the same node set X as 

G, and which has two arcs (x;, x;) and (x;, x;) between each pair of 

nodes x; and x; which are joined by an edge of G. Then for any two 

nodes x, and x), each proper articulation set between x, and x, on G 

is a proper (x,, x;)-separating node set on H, and the converse is also 

true. It is therefore possible to find the proper articulation sets of G 

by applying the technique of Section 4.4.1 to the graph H. 

4.7.2. Articulation nodes (cf. Section 4.4.2) 

A node x, in a connected simple graph G is an articulation node 

of G if the graph obtained from G by removing x, and all edges 

incident to x, is not connected. In other words, a node x, is an 

articulation node if and only if {x,} is an articulation set between 

some pair of nodes x; and x;. 

As an illustration, the graph of Fig. 4.7 has two articulation 

nodes, x4 and xs. 

Bi-connected graphs. Two edges e; and e2 of a graph G are said to be 

strongly circuit-connected if G has an elementary circuit which 

contains both e, and eo, or if e; = é. It is evident that the relation of 

strong circuit-connectedness between edges is reflexive, and sym- 

metric. We can also show it to be transitive, by proving the following 

theorem: 

Let €1, €2, and e3 be three edges of a graph G. If e is strongly 

circuit-connected to é2, and é2 is strongly circuit-connected to e3, then 

é, is strongly circuit-connected to é3. 
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To prove the theorem, let a be any elementary circuit which 

contains e; and é2, and let B be any elementary circuit containing e2 

and e3. Since e2 belongs to both a and B, these circuits have at least 

two nodes in common (see Fig. 4.14). Following a in both directions 

from é1, let x and y be the first two nodes on @ which lie also on B, 

and let a’ and 8’ be the segments of a and B which join x to y and 

which contain e, and e3 respectively. Since the segments a’ and B' 

have no nodes in common other than their endpoints, these two 

segments form an elementary circuit. Thus e; and e3 lie on an 

elementary circuit, as required. 

x 

ey e3 

N 
y 

FIG. 4.14 

From this result we conclude that the relation of strong circuit- 

connectedness is an equivalence relation on the edge set of G. 

Now we can relate this notion of connectedness to that of an 

articulation nodé: 

Let G be a simple graph with at least three nodes. Then the 

following statements are equivalent: 

(1) Gis connected, and has no articulation nodes 

(2) Gis connected, and any two edges of G are strongly circuit- 

connected. 

(3) Any two nodes of G lie on a common elementary circuit. 

The proof is as follows: 

(1) implies (2). First we show that when G has no articulation 

nodes, any two edges with a common endpoint are strongly circuit- 

connected: indeed, if g contains two edges e=[x;,x,] and f= 

[xx, x;], and x, is not an articulation node, then x; and x; must be 

joined by a chain which does not traverse x;,. It follows that x; and x; 

are joined by an elementary chain which does not traverse x,;, and 

the edges of this chain, together with e and f, form an elementary 

circuit. Hence e and f are strongly circuit-connected. 

Now let e and f be any two edges in G. Since G is connected, G 

contains a chain C whose first edge is e and whose last edge is f. By 
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the above argument, each edge of C is strongly circuit-connected to 
its succeeding edge; it follows, by the transitivity of the circuit- 
connectedness relation, that e is strongly circuit-connected to f. 

(2) implies (3). Since G is connected, every node is the endpoint of 
an edge, and since any two edges lie on a common elementary 
circuit, any two nodes lie on a common elementary circuit. 

(3) implies (1). Any two nodes are connected, therefore G is 

connected. Also, for any two nodes x; and x,, there does not exist a 

third node x, which lies on every chain between x; and x;, and 

therefore G has no articulation nodes. 

A graph with at least three nodes, which has these properties, is 

said to be bi-connected. 

The blocks of a graph. In section 4.5.4 we introduced an 

equivalence relation on the node set of a graph—that of circuit-edge 

connectedness—and we saw that it defined a ‘decomposition’ of a 

graph into ‘leaves’, these being the connected subgraphs obtained 

by cutting all the bridges. 

Earlier in this section we introduced the relation of strong 

circuit-connectedness, and we showed that this relation is an 

equivalence relation on the edge set of a graph. We shall now 

demonstrate that this relation leads to another way of decomposing 

a graph, in which this time we ‘split’ the articulation nodes. 

For a graph G = (X, E), let P={E,, F2,..., E,} be the partition 

of the edge set E induced by the strong circuit-connectedness 

relation, and for each block EF; in P, let X; be the set of nodes which 

are endpoints of edges in E;. Each partial graph B; = (X;, E;) of G is 

called a block of G. 

Example 4.15. For the graph of Fig. 4.7, the equivalence classes of 

strongly circuit-connected edges are 

{a, b, c, d, e}, {f}, {g, h, i}. 

The blocks associated with these equivalence classes are shown in Fig. 4.15. 

The blocks of a graph have the following properties: 

(1) Every block is ‘circuit-closed’ in the sense that if an elementary 
circuit C of G has any edge in common with a block B, then all the 

edges of C appear in B. 
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(2) A block is connected, and does not contain any articulation 

nodes. In the case where a block B comprises exactly one edge and 

its endpoints, this statement is obviously true. Now let us suppose 

that a block B has more than one edge, and let e and f be any two 

edges in B. Then in G, the edges e and f belong to a common 

elementary circuit, and by property (1) above all the edges of this 

circuit appear in B. It follows that in B, every pair of edges is 

strongly circuit-connected. Furthermore, since every node in B is 

the endpoint of an edge, B must be connected. Thus B is a 

bi-connected graph, as required. 

(3) Every block of a graph G is a subgraph of G. To prove this it 

suffices to show that if two nodes of a block B are joined by an edge e 

in G then the edge e belongs to B. If B has only two nodes this is 

evidently true. Alternatively, if B has more than two nodes then by 

(2) above B is bi-connected, which implies that in B any pair of 

nodes x; and x; lie on a common elementary circuit, C say. If G 

contains an edge e =[x;, x;], this edge forms an elementary circuit 

with one of the segments of C which join x; to x;, which implies that 

e belongs to B. 

(4) Two different blocks have at most one node in common. If two 

blocks had two nodes in common then, since each block is connec- 

ted, there would exist an elementary circuit with at least one edge in 

each block, which is impossible. 

(5) A node of G is an articulation node of G if and only if it is 

common to two distinct blocks of G. Let x, be anode common to two 

blocks B,; and Bz of G, and let e =[x;, x,] and f =[x,, x,] be any 

edges incident to x,, in B; and B2 respectively. Since e and f do not 

lie on a common elementary circuit, every chain between x; and x; 

traverses x,, which implies that x, is an articulation node. Con- 

versely, if x, is an articulation node, there exist two edges incident 



Connectivity 169 

to x, which do not lie on an elementary circuit. These two edges 
belong to different blocks, and x, belongs to the node set of both 
blocks. 

Block graphs. The ‘block structure’ of a simple graph G = (X, E) 
can be portrayed by constructing its block graph G,, whose nodes 
correspond to the blocks of G, and in which two nodes are joined by 
an edge if the corresponding blocks of G have a common arti- 
culation node of G. 

As an illustration, the graph of Fig. 4.16(a) has the block de- 
composition depicted by Fig.-4.16(b); the corresponding block 
graph is given in Fig. 4.16(c). 

FIG. 4.16 

It is clear that within a block graph Gy, each block is a complete 

graph, which corresponds to an articulation node of G. 

Algebraic methods of finding the articulation nodes and blocks of a 

graph. Let G =(X, E) be asimple graph and let H = (X, U) be the 

corresponding symmetric graph, having two arcs (x;, x;) and (x; x;) 

in place of each edge [x;, x;] of G. Then for any two nodes x,, x; € _X, 
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each articulation node between x, and x, on G is an (xx, Xi)- 

separating node on H, and the converse is also true. The articulation 

nodes of G can therefore be obtained by applying the technique of 

Section 4.4.2 to the graph H. 

An alternative approach is as follows. Given any simple graph 

G =(X, E), we define the interchange graph I of G as the graph 

whose nodes represent the edges of G, and in which two nodes ¢; 

and e; are joined by an edge [e;, e;] if in G the edges e; and e; havea 

common endpoint. As an illustration, Fig. 4.17 shows the inter- 

change graph of Fig. 4.7. 

FIG. 4.17 

Now let us suppose that each edge [e;, e;] on the interchange 

graph IJ is labelled with the index of the common endpoint of the 
edges e; and e; on G (cf. Figs. 4.7 and 4.17) and let H be the 

corresponding symmetric graph obtained by replacing each edge 

[x;, x;] by a pair of arcs (x;, x;) and (x;, x;), both these bearing the 

same name as the edge which they replace. Then we may consider H 

as a graph labelled with the path algebra of Section 4.2.4; if A is the 

adjacency matrix of H, it follows from (4.6) that the entries of A* 

are as follows: 

(i) if on G the edges e; and e; belong to different connected 

components then a =Q); 
(ii) if on G the edges e; and e; belong to the same connected 

component then aj; is the set of all articulation nodes between the 
block containing e; and the block containing e;; in particular, if e; 

and e; belong to the same block then ai; = @. 

Example 4.16. For the interchange graph of Fig. 4.17, the A-matrix and 

A*-matrix are given in Fig. 4.18. The entries of A* define the blocks and 

articulation nodes of G (see Fig. 4.15). 



Connectivity 171 

a b c d e f g h i 

ay] a {1} {1} {2} a 0) a 0) a 
b {1} 0 {1} {3} {3} 10) 0 c0) 10} 

c {1} {1} 0 19) {4} {4} 10) 10) 0, 

d {2} {3} co) Q {3} .0) 19) Q 10} 

é Q {3} {4} {3} 0 {4} 10) 0, 0} 

f 0) co} {4} 10) {4} 10) {5} {5} Q 

g 0 Q 10) 10) 0 {5} 0 {5} {6} 

h 0 .0) 10} 0 0 {5} {5} 10) {7} 

i 10} 0 0 0 10) 0 {6} {7} 10} 

(a) A-matrix 

a b c d e g h i 

a ¢ ¢ ¢ ¢ ¢ {4,5} {4,5} {4,5} 

b ¢ @ ¢ ¢ ¢ {4,5} {4,5}  {4, 5} 

c ¢ ¢ ¢ ¢ ¢ {4,5} {4,5} {4, 5} 

d ¢ d ¢ ¢ ~ ¢ {4,5} {4,5} {4,5} 

€ ¢ ¢ d g ¢ {4,5} {4,5} {4,5} 

f {4} {4} {4} {4} {4} {5} {5} {5} 

s | 44,5) 14,5} 44,5) 44,5) {4,5} ¢ d d 

h | {4,5} {4,5} {4,5} {4,5}. {4,5} ¢ ¢ d 

i [44,3} {4,5} {4,5} _{4,5}-—{4, 5} g ¢ ¢ 

ee (b) A*-matrix 

Fic. 4.18 

Exercises 

4.1. Prove that every Hamiltonian cycle on a graph G contains all the basic 

arcs of G. 

4.2. Using the path algebra of Section 4.2.4, construct the weak closure 

matrix A of the graph of Fig. 4.19, and hence find its basic arcs. 

4.3. Let x, be any node on a graph G = (X, U). We say that on G, a node x; 

is a dominator of another node x; (relative to x,) if x; is an (x,, x;)- 

separating node, or x;=x,. A node x; is an immediate (or direct) 

dominator of another node x; (relative to x,) if 

(a) x; dominates x,, and 

(b) every other dominator of x; also dominates x;. 



172 Connectivity 

Fic. 4.19 

(i) Prove that if all the nodes of G are accessible from x,, the graph of the 

immediate dominance relation on X is a tree rooted at x,, and show that 

this tree contains a path from a node x; to a node x, if and only if x; 

dominates x;. (This tree is called the domination tree of G, relative to x,.) 

(ii) Prove that if G is a tree rooted at x,, then the domination tree of G 

relative to x, is identical to G. 

(iii) Let G be any graph in which all nodes are accessible from x,, and let 

T be its domination tree (relative to x,). Let G be the graph obtained by 

adding some arc (x;, x;) to G, and let T be the new domination tree. 
Formulate rules for constructing T from T, in each of the three following 

cases: 

(a) T contains a path from x; to x;; 

(b) T contains a path from x; to x;; 

(c) T does not contain any paths between x; and x,. 

(The results of (ii) and (iii) suggest a method of constructing a domination 

tree. First we choose a partial graph H of G which isa tree rooted at x,; we 

then obtain the domination tree of G by making a succession of 

modifications to H, to take account of the arcs of G which were not assigned 

to A initially.) 

4.4. Prove that on a simple graph, every circuit has an even number of 
edges in common with every cut set. 

4.5. Let T, and T, be two spanning trees of a simple graph G. Prove that if 
a is any edge in T,, then there exists an edge b in T> such that the 
graph obtained from T, by replacing a by b is a spanning tree of G. 

4.6. Show that, in the algorithm of Section 4.6.3 for finding a shortest 
spanning tree, the number of comparisons of edge lengths is not 
greater than (n —1) (n—2). 

4.7. (i) Let G be a free tree. Explain how the nodes and edges of the leaf 
graph G, of G are related to the nodes and edges of G. 
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(i) Let G be a connected simple graph, and let G, be its leaf graph. 
Also, let G be the graph obtained by adding some edge e to G and let 
G;, be the leaf graph of G. Explain how G; can be derived from G, in the 
cases where (a) the endpoints of e belong to the same leaf in G, and (b) 
the endpoints of e belong to different leaves in G. 

(These rules suggest a simple method of finding the leaves and bridges 
of a connected graph G. First we construct a spanning tree T of G, for 
instance by the algorithm described in Section 4.6.3; we then derive 
the leaf graph of G by a succession of modifications of the leaf graph of 
T, to take account of the edges of G which do not appear in T.) 

Additional notes and bibliography 

The notions of separating arc and node sets on directed graphs are 

discussed at length by Harary, Norman, and Cartwright (1965). 

Martelli (1976) discusses the application of the path algebra of Section 

4.2.3 to the determination of all the proper cut sets of arcs, between each 

pair of nodes of a graph. 

It will be noted that the number of proper cut sets between two nodes of a 

graph can be very large, and their computation may not be practically 

feasible. However, if one only requires one cut set of minimum cardinality, 

this can be found conveniently by a network flow method, which will be 

presented in Chapter 6. (The network flow method, which is a polynomial 

algorithm, canalso be used for instance when the arcs of a graph have 

numerical weights, to find a cut set of minimum total weight between two 

specified points.) 

The path algebra for finding basic arcs (Section 4.2.4) is apparently new. 

However, it is very similar to the ‘distributive monotone framework’ given 

by Hecht (1977) for finding dominator nodes, and our formulations of the 

problem of finding dominators are essentially the same. The ‘round robin’ 

algorithm used by Hecht to solve this and other program data flow 

problems can be seen to be an extension of the Gauss-Seidel method. 

Tarjan (1974a) gives an efficient algorithm for finding immediate 

dominators, based on the principles set out in Exercise 4.3. Other tech- 

niques for finding dominators are described by Lowry and Medlock (1969), 

and Purdom and Moore (1972). 

A general algorithm for constructing an arbitrary basis graph of a graphis 

described by Moyles and Thompson (1969). 

The notion of a basis graph can be extended to graphs labelled with 

certain path algebras. For instance, given a graph G whose arcs have 

lengths, we may wish to find a partial graph H of G such that (i) the distance 
between any two points is the same on G and H, and (ii) the number of arcs 
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of H is minimal. An extension of the notion of a basis graph to include 

partial graphs of this kind is presented by Robert (1971). 

The algebraic structure for finding cut sets of edges is discussed by Hulme 

(1975). For an alternative backtrack programming method of finding these 

cut sets, and applications to system reliability studies, see Jensen and 

Bellmore (1969). 

Different algorithms for finding bridges and blocks are given by Paton 

(1971), Corneil (1971), Tarjan (1972) and Hopcroft and Tarjan (1973). See 

also Tarjan (1974)). 

The method described in Section 4.6.3 for constructing shortest spanning 

trees, which is due to Prim (1957), is a particular example of a class of 

methods first proposed by Kruskal (1956) (see Kruskal’s ‘Construction B’). 

For a FORTRAN version of Prim’s algorithm, see Whitney (1972). Yao 

(1975) gives an alternative method which has a lower time bound but which 

is more intricate. See also Kershenbaum and Van Slyke (1972), Cheriton 

and Tarjan (1976), and Gabow (1977). 

A backtrack programming method of finding all the spanning trees of a 

graph, based on the strategy of Section 4.6.4, has been outlined by Minty 

(1965), and implemented in ALGOL by Mcllroy (1969). For an analysis of 

its complexity see Read and Tarjan (1975). The spanning trees of a graph 

can also be found using Wang’s algebra of networks (Duffin 1959; Chen 

1971). See also Trent (1954). 



5 Independent sets, dominating sets, and 
colorations 

5.1. Introduction 

THE TOPICs discussed in this chapter all relate to simple graphs. In 

particular, our purpose is to characterize certain subsets of nodes on 

a simple graph (the independent node sets, cliques, and dominating 

sets), and also certain subsets of edges (the matchings of a graph), 

and to demonstrate their practical relevance. We shall then present 

ways of partitioning the sets of nodes and edges, which may be 

interpreted as ‘colorations’; these also find practical applications, 

for instance in the construction of time-tables. 

5.2. Independent sets 

5.2.1. Independent node sets 

In a simple graph G = (X, E), a set of nodes S CX is said to be 

independent if no two nodes in S are joined by an edge. Clearly, 

every subset of an independent set is independent. A maximal 

independent set is an independent set which ceases to be indepen- 

dent when any node is added to it. 

In the graph of Fig. 5.1, the maximal independent sets are 

{x1, xs}, {X2, X3, Xs}, {x2, Xs, Xo}, {xa}. 
The largest number of nodes in an independent set of a graph G is 

called the independence number of G and is denoted by a(G). For 

the graph of Fig. 5.1, a(G) =3. 

1 2 
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Example 5.1.  Error-detecting and error-correcting codes. Let 

X =(x1, X2,..., Xn} be the set of basic signals which can be transmitted 

through a digital communication channel. (For instance, X could be a set of 

binary words such as are used to represent alphanumeric characters in a 

computer system.) Because of electrical noise and distortion, some trans- 

mitted signals may be misinterpreted on reception. In general, for each pair 

of signals x; and x, the reception of x, as x; occurs with a different 

probability, but for practical purposes it is sometimes adequate to consider 

the definite case where, for any pair of signals x, and x;, the reception of x; as 

x; either can or cannot occur: in this case, the possible communication 

errors can be represented conveniently by a signal-relation graph 

G =(X, E) whose nodes correspond to the basic signals, and where two 

nodes x; and x; are joined by an edge if either of these signals can be 

received as the other (see Fig. 5.2). 

Signal transmitted Signal received a b 

aorb 

bore f i 

cord 

dore 

b oreorf 4 

aut Fic. 5.2 moaadadqc” 

Now it is possible to detect all errors in received signals, if we restrict the 

transmitted signals to a subset of X which is independent on the signal- 

relation graph G. Indeed, let us suppose that the set S of transmitted signals 

is independent; then if a received signal belongs to S it is correct (since no 

signal in S can be transformed into any other signal in S), whereas if a 

received signal does not belong to S, it is evidently incorrect. On the other 

hand, if the set of transmitted signals is not independent, some pair of 

transmitted signals can be confused by the receiver. 

In the example of Fig. 5.2 the largest independent sets, which determine 

the largest sets of signals which can be used with detection of all errors, are 

{a, c, e} and {b, d, f}. 

It is also possible to correct errors in received signals, as follows. Let us 

construct another signal-relation graph H, whose nodes correspond to the 

signals as before, but in which two nodes x; and x; are now joined by an edge 

if and only if the transmission of x; and x, can result in the same received 
signal (which need not be x; or x;). For instance, the graph H for our 
example above is shown in Fig. 5.3. 

Now let us suppose that the set S of transmitted signals is independent on 

H. Then, if a received signal x; belongs to S it must be correct (since no 
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signal in S can be transformed into any other signal in S$); if x; does not 

belong to S then x; is incorrect, but since there is only one signal in S which 

can be received as x;, the error cambe corrected. On the other hand, if S is 

not independent on H, there exist two different signals in S which can be 

received as the same signal; in this case it is obviously impossible to 

determine at the receiver which signal was transmitted. Thus, the indepen- 

dent sets on H determine the sets of transmitted signals for which all errors 

can be corrected by the receiver. 

For the above example, the set of signals {b, d, f} is the largest for which 

all errors can be corrected. (Error correction is not always possible for the 

set {a, c, e}, since the transmission of ‘a’ and ‘e’ can both result in a ‘b’). 

5.2.2. Cliques 

A set C of nodes in a simple graph G is called a clique of G if the 

subgraph of G generated by C is complete, that is, if every pair of 

nodes in C is connected by an edge. A clique which is not a subset of 

a larger clique is said to be maximal. 

It is clear that a set of nodes C is a clique of a simple graph G if 

and only if C is an independent set on the complement G of G. 

In the graph of Fig. 5.1, the maximal cliques are {x1, x3, X4, Xe}, 

{x1, X2, X4}, {x4, x5}. The complete subgraph generated by the first of 

these cliques is indicated by bold lines in Fig. 5.4. The nodes of the 

corresponding maximal independent set, on the complementary 

graph, are indicated by squares in Fig. 5.5. 

The concept of a clique is important in taxonomy (Augustson and 

Minker 1970) and in the design of sequential logic networks (Paull 

and Unger 1959). 

An algorithm for constructing maximal cliques. It is possible to find 

all the maximal cliques of a graph by a tree-search method of the 

type described in Section 2.7. To present the method, it will be 

convenient to consider the following more general problem: 
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Given a simple graph G =(X, E), together with a specified sub- 

graph G =(X, E) of G, and a specified node set NC X — X, find all 

the maximal cliques of G which are not contained in the set T (x;) of 

neighbours on G of any node x; € N. 

It will be noted that our original problem of finding all the 

maximal cliques of a graph G is the particular form of this new 

problem in which G = G (which implies N=¢@). 

To solve the general problem, let § denote the set of all maximal 
cliques of G, and let S be the set of required cliques; then we may 
write 

S={CeS$|CC¢T(x;), for all x; ¢ N}. (5.1) 
Now this set S can be constructed by the following specialization 
process. 

Step 1 First we determine whether or not the node set X of G 
satisfies the condition 

GC I'(x;) forsome x; €N. (5.2) 

If this condition holds, then for every clique C € § we have 

CCI (x;) for some x; €N, (5.3) 

which implies (by (5.1)) that the required set Sis null, and 
the problem is solved; otherwise we proceed to Step 2. 

Step2 If the subgraph G =(X, E) is complete then § = {X}, and 
since the condition (5.2) does not hold it follows (by (5.1)) 
that S = {X}, so the problem is solved; otherwise we pro- 
ceed to Step 3. 

Step3 Since the subgraph G is not complete, it has at least one 
node x, which is not adjacent to every node of X. Now let 
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us express the required set S as the union of two disjoint 
sets 

S=S,U0S% (5.4(a)) 

where 

S. ={CeS|x, eC}, Se={CeES|x,€EC}. (5.4(b)) 

From (5.1) and (5.4(b)), it follows that (cf. (5.1)) 

S.={C € S,|C CT (x;), for all x; ¢ Ne}, (5.5) 

where Sx i is the set of all maximal cliques on the subgraph 

G; of G which contains only the node x, and its neigh- 

bours, and N, =.N; whereas 

Sz={C €S<|CET(x,), for all x; ¢ Nc}, (5.6) 

where S « is the set of all maximal cliques on the subgraph 

Gi of G obtained by removing x,, and Ng =N uU{x;}. 

Thus the problem of finding the set S of (5.1) is reduced to 

two sub-problems, involving the separate determination of 

the sets S, and S; defined by (5.5) and (5.6) respectively. 

It will be observed that the problems of constructing the sets S, 

and S; are both ‘simpler’ than the original problem of finding S, in 

that the subgraphs G, and Gg both contain less nodes than G. 

Consequently, the repeated application of the specialization 

process ultimately yields sub-problems which are all ‘trivial’ (in that 

for each sub-problem, either condition (5.2) holds or the subgraph 

G is complete). 

The use of this method, for finding the maximal cliques of the 

graph of Fig. 5.1, is depicted by the search tree of Fig. 5.6. Here the 

root node represents the original problem (for which G =G, and 

N=4®). The labels on the arcs of the search tree indicate which 

nodes have been selected, in performing the specializations; at each 

node of the tree—which represents a sub-problem—we have given 

the corresponding subgraph G and node set N. 

A backtrack programming algorithm based on this specialization 

method has been published by Bron and Kerbosch (1973). (Their 

algorithm also incorporates a particular method of selecting the 

nodes for the successive specializations, whose aim is to minimize 

the total number of selections required.) 
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A simplification rule. The number of specializations involved in 
finding all the maximal cliques of a graph can often be reduced 
considerably, by applying the following rule: 

Let G =(X, E) be a simple graph, let C be any maximal clique of 
G, and let x, be any node such that x,é C;; if x, has any neighbour x, 
such that 

{x} UP(x1) C {xn} UT (xx) (5.7) 
then x:€é C. 

Indeed, it is evident that since the clique C is maximal, and x, ¢ C, 

the clique C contains at least one node x; which is not adjacent to 

x, ; but then x; is not adjacent to any node x; for which the condition 

(5.7) holds, and therefore C cannot contain any of these nodes. 

From this rule it follows that, in applying the specialization 

method described above, when we construct the subgraphs Gi and 

Gr of G we can omit from Gz any node x, such that on G, the 

condition (5.7) holds. 

As an illustration, in Fig. 5.6 when we specialized the original 

problem to obtain G; and Gi, we could have omitted from Gi all 

the nodes x2, x3, and x6; the modified specialization process, in 

which we have made this simplification, is depicted in Fig. 5.7. 

5.2.3. Independent edge sets (matchings) 

By analogy with our definition of an independent node set, we say 

that a set M of edges of a simple graph G is an independent edge set 

or a matching of G if no two edges of M are adjacent, that is if no 

two edges of M have a common endpoint. 

As an illustration, Fig. 5.8 shows three different matchings of a 

simple graph, the edges of the matchings being indicated by bold 

lines. 

Given any matching M onasimple graph G = (X, E) we describe 

the edges in M as the matching edges of G (relative to M), whereas 

we cail the edges in E—M the non-matching edges of G (relative to 

M). The nodes which are endpoints of matching edges are said to be 

covered by M, whereas nodes which are not endpoints of matching 

edges are said to be exposed relative to M. 

A matching M is maximal if there is no other matching which 

properly contains M; and M is called a maximum matching if no 

other matching contains more edges. If every node is covered, the 

matching is said to be perfect. Clearly, if a perfect matching exists for 

a graph G, that matching is a maximum matching. 
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As an illustration, the matchings shown in Fig. 5.8(b) and Fig. 

5.8(c) are both perfect. For the graph of Fig. 5.9, the matching 
shown is a maximum matching; this graph does not have a perfect 

matching. 

Example 5.2. Matching transistors for push-pull amplifiers. A batch of 

power transistors has been manufactured for use in pairs, in push-pull 
amplifiers. In this application two transistors can only be used together if 
the differences between their gains, and the differences between their 
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FIG. 5.9 

resistances, lie within small prescribed tolerances. Because the fabrication 

process is imperfect it is necessary to measure the parameters of each of the 

transistors produced, and on this basis to decide which transistors are 

compatible. Given this information, how should the transistors be arranged 

in pairs, to minimize wastage? 

Let G be the simple graph whose nodes represent the transistors, two 

nodes being joined by an edge if the corresponding transistors are compa- 

tible. Then a maximum matching on G gives the greatest possible number 

of ‘matched pairs’. 

In Section 4.7 we defined the interchange graph of asimple graph. 

From that definition it follows immediately that a set M of edges of 

a graph G is a matching of G if and only if M is an independent set 

of nodes on the interchange graph of G. As an illustration, Fig. 5.10 

shows the interchange graph for the graph of Fig. 5.8; the indepen- 

dent set marked on Fig. 5.10 corresponds to the matching of Fig. 

5.8(b). 

Fic. 5.10 

Since the matchings of G correspond to the independent sets of 

the interchange graph J of G, and these sets in turn correspond to 

the cliques of the complementary graph I of J, it is possible to find 

all the maximal matchings of G by the algorithm described in the 

previous section. However if we require only one maximum match- 

ing, we can obtain this by an alternative method, of only polynomial 

complexity, as indicated below. 
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Alternating chains. Let M be a matching ona graph G. Thena chain 

« on G is called an alternating chain (relative to M) if (i) the chain « 

is simple, and (ii) in each pair of consecutive edges of x, one edge isa 

matching edge and the other is a non-matching edge. For instance, 

in the graph of Fig. 5.8(a) the chain 

a, ct. te 

is an alternating chain. 
Now let us suppose that, for a given matching M on G, the graph 

G has an alternating chain « between two exposed nodes. Let K be 

the set of edges in x, and let M be the symmetric difference between 

M and K, 

M=MQAK, 

that is, the set of edges which belong either to M or to K but not 

both. To describe this set in another way, M is the set obtained by 

deleting from M the matching edges of « and then adding all the 

non-matching edges of x. It is clear from this method of con- 

struction that every node which is an endpoint of an edge of M is an 

endpoint of precisely one edge of M; and that none of the nodes 

which are exposed relative to M are the endpoints of edges of 

M—except each endpoint of x, which is an endpoint of precisely 

one edge in M. It follows that M is a matching of G, and that this 

matching has one more edge than M. For this reason, an alternating 

chain between two exposed nodes is called an augmenting chain. 

As an illustration, in Fig. 5.8(a) we have depicted a matching 

M ={ce, hh: 

Relative to this matching the graph has two exposed nodes; these 

are joined by an augmenting chain 

K =a,c,e 

from which we obtain the new matching 

M = {c,h} A {a, c, e} = {a, e, h} 

which is depicted in Fig. 5.8(b). The graph of Fig. 5.8(a) also has an 
augmenting chain 

k =a,c,f,h,g 
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trom which we obtain the matching 

M ={c,h} A {a, c, f, h, g} = {a, f, g} 

which is depicted in Fig. 5.8(c). 

The process of constructing M from M can be visualized as 

follows. If the edges of M have been drawn as thick edges and the 

edges not in M appear as thin edges, then an augmenting chain x 

relative to M is a simple chain between two exposed nodes whose 

edges are alternately thin, thick, thin, ... , thick, thin. To obtain M, 

we simply redraw the edges of x, replacing its thick edges by thin 

ones and vice versa. : 

The above arguments suggest that to obtain a maximum match- 

ing, we might first choose a matching M arbitrarily, and then search 

for an augmenting chain « relative to M. If this search should be 

successful we would construct a larger matching M, as the sym- 

metric difference between M and the set of edges of x. Then, after 

replacing M by M, we would search for another augmenting chain, 

and so on until eventually we obtained a matching Mp for which no 

augmenting chains existed. However, can we be sure that, when this 

algorithm terminates, the final matching Mo is always a maximum 

matching? An affirmative answer is provided by the following 

theorem, due to Berge (1957). 

A matching M in a graph G is a maximum matching if and only if 

G does not contain any augmenting chains relative to M. 

To prove the theorem, we need only show that if M is not a 

maximum matching then G contains an augmenting chain relative 

to M, the converse having already been established. Let us there- 

fore assume that G has a matching M, which contains more edges 

than M, and let us consider the partial graph H = (X, F) of G, where 

F=M (A M,). Now in H, each node x;¢X has a node degree 

p(x;) <2, since at most one edge of M, and one edge of Mo, is 

incident with x;. Thus each connected component of H is either (i) 

an isolated node or (ii) a circuit of even order, with edges alternately 

in M and Mg, or (iii) an open simple chain, with edges alternately in 

M and Mp. Now since M, has more edges than M, the graph H has a 

connected component containing more edges of Mo than edges of 

M. It follows that H has a component which is an open simple chain 

kK, With edges alternately in M and Mo and whose first and last edges 

both belong to Mo. On G, the edges of this chain « form an 

alternating chain relative to M, and the endpoints of x are exposed 
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relative to M. Thus G does contain an augmenting chain relative to 

M, as required. 

With regard to the practical determination of augmenting chains, 

we note first from the proof of Berge’s theorem that augmenting 

chains are always elementary. Now let G be a graph with a matching 

M, and let G be the graph obtained by adding to G a new node xo, 

and placing an edge between x 9 and each node of G which is 

exposed relative to M (see Fig. 5.11). Also, let us partition the edges 

of G into two classes—one of thick edges (comprising the matching 

edges of G, together with the new edges incident with xo), and one 

of thin edges (the non-matching edges of G). Then clearly the 

augmenting chains of G correspond to those elementary chains 

from Xo to itself on G, whose edges are alternately thick and thin. 

(An example of such a chain is indicated by arrows on Fig. 5.11(b).) 

An elementary chain of this kind can be obtained by a backtrack 

programming method; alternatively, some very efficient ‘node- 

labelling’ algorithms have been devised for this purpose (see the 

Additional notes and bibliography). 

FIG. 5.11(a) FIG. 5.11(b) 

Matching in bipartite graphs. A simple graph G = (X, E) is said to be 
bipartite if its node set X can be partitioned into two subsets X, and 

X, such that every edge of G has one endpoint in X, and one 

endpoint in X>. An example is shown in Fig. 5.12. 

Very often, the graphs for which maximum matchings are 
required arise naturally in a bipartite form—as in the following 
example. 

Example 5.3. An assignment problem. A firm has q vacant jobs 
Bi, Bo,.-.., Bq of different types. There are p applicants a1, a,..., a, for 
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work with the firm, each applicant being suited for one or more of the 
vacancies. How should the applicants be assigned to jobs, in order to fill as 
many of the jobs as possible? 

Let G be the bipartite graph with node set X = A UB, where A is the set 

of applicants and B is the set of jobs, and which has an edge [a,, B;] 

whenever applicant q; is able to fill job B;. Then a matching on G defines an 

assignment of jobs to applicants; for a maximum matching, the number of 

jobs assigned is as great as possible. As an illustration, Fig. 5.12 shows a 

maximum matching on a bipartite graph, of the kind which arises in 

assignment problems. 

By 
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FIG. 5.12 

A very efficient algorithm for constructing maximum matchings 

on bipartite graphs, using augmenting chains, has been devised by 

Hopcroft and Karp (1973). Problems of this kind can also be solved 

by the network flow methods which will be presented in the next 

chapter. 

5.3. Dominating sets 

Given a simple graph G = (X, E), we say that aset S of nodes of G 

is a dominating set if every node of G either belongs to S or is 

adjacent to one or more nodes of S. A dominating set is minimal if 

none of its proper subsets are dominating sets. 

For the graph of Fig. 5.1, the minimal dominating sets are {x1, xs}, 

{x2, X3, Xs}, {x2, Xs, Xot, {xa}. 

The domination number B(G) of a graph G is the smallest number 

of nodes in any dominating set of G. For the graph of Fig. 5.1, 

B(G)=1. 
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As might be expected, there is a close connection between the 

dominating sets and the independent sets of a graph. In particular, it 

is easy to prove that in any graph, an independent set is maximal if 

and only if it is a dominating set. Indeed, if I is a maximal indepen- 

dent set then there cannot be any node x ¢ I which is not adjacent to 

some node in J, for otherwise the set J U {x} would be independent. 

Conversely, if an independent set J is dominating then it is 

impossible to add any node to J without destroying the indepen- 

dence of J. 

From this result it follows that for any graph, the independence 

number is greater than or equal to the domination number: 

a(G)=B(G). 

It will be noted that, although a maximal independent set is 

necessarily a dominating set, a minimal dominating set need not be 

independent. For instance, the graph of Fig. 5.13 has a minimal 

dominating set {x3, x4} which is not independent. 

FIG. 5.13 

5.4. Colorations 

5.4.1. Node colorations 

By a coloration of a simple graph G = (X, E) we mean a partition 
€ ={X1, Xo,..., X,} of its node set _X in which every block X; is an 
independent set. In pictorial terms, if we suppose that each block of 
a coloration is associated with a different colour, then we may 
regard a coloration as an assignment of a colour to each of the nodes 
of a graph, such that no two adjacent nodes have the same colour. 
A coloration which has exactly k blocks is sometimes called a 

k-coloration. The smallest number k for which a graph G has a 
k-coloration is called the chromatic number of G and is denoted by 
y(G); a coloration which uses only y(G) colours is called a mini- 
mum coloration of G. 

As examples, the chromatic numbers of the graphs of Fig. 5.14 
and Fig. 5.15 are 4 and 3 respectively; on these diagrams we have 
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Y G R 

R R B R Y 

G Y R 

FIG. 5.14 FIG. 5.15 

specified minimum colorations by labelling the nodes with the 

letters R (for red), Y (for yellow), G (for green), and B (for blue). As 

another important example, we note that a complete graph with n 

nodes has the chromatic number n. 

Example 5.4. Construction of an examination timetable. In a university 

faculty, the final-year students have to sit anumber of written examinations 

in different subjects, each examination taking half a day. The examinations 

in any pair of subjects can be held concurrently if and only if no student is a 

candidate for both subjects. A timetable is required, in which the examina- 

tions are all completed in the shortest possible time. 

Let X ={x1, X2,...,X,} be the set of all examinations, and let us con- 

struct the simple graph G=(X, E), where [x,, x;]¢ E if and only if the 

examinations x; and x; cannot be held concurrently. Then any coloration of 

G defines a partition € ={X,, X.,..., X,} of X, such that all the examina- 

tions in any one block _X; of € can be held concurrently. Thus if we find a 

minimum coloration of G and assign half a day to each block of the 

corresponding partition of X, we obtain a timetable which meets our 

requirements. 

Example 5.5. The assignment of memory locations to program variables. 

In writing or compiling a program for a computer with a small rapid-access 

memory it is sometimes desirable to determine which variables may occupy 

the same memory locations and hence to find an assignment of memory 

locations to variables which uses least space. To achieve this we may 

construct a data-transmission graph G of a program as follows: 

(i) Each instruction of the program is represented in G by apair of nodes . 

r, and t,, joined by an arc (%,¢). The nodes r, and ¢ are called 

respectively the receiver and transmitter nodes of the kth program 

instruction. The node 7, is labelled with the set of program variables 

whose values are read (or received) from the memory in the execution of 

the kth instruction; whereas the node ¢, is labelled with the set of 
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variables to which values are assigned (and transmitted to the memory) in 

executing the instruction. 

(ii) If the ith instruction transfers control (conditionally or uncondition- 

ally) to the jth instruction, then G has an arc (f, 7;). 

As a simple example, Fig. 5.16(a) is the flow chart of a program to 

calculate the highest common factor of two integers m and n, by Euclid’s 
method. (In this program, first the number m is divided by n, to obtain their 
quotient g =|m/n| and corresponding remainder r. If the remainder is 

non-zero, the value of n is assigned to m, the value of r is assigned to n, and 

the division process is repeated. Eventually a zero remainder is obtained, at 

which point the value of 1 is the highest common factor of the original pair 

of numbers.) The corresponding data-transmission graph is shown in Fig. 

5.16(b). 

FIG. 5.16(a) FIG. 5.16(b) 
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On a data-transmission graph G we define a carrier of a variable v asa 

path from a transmitter of v to a receiver of v, on which none of the 

intermediate nodes are transmitters of v. Now let G, be the graph compris- 

ing the nodes and arcs of G which belong to carriers of v; we describe the 

node-set of each connected component of G, as a region of v. 

As an illustration, the program by Fig. 5.16(a) has four variables, m, n, q, 

and r. The corresponding graphs G,,, G,, G, and G, are shown in Fig. 

5.16(c); since these graphs are all connected, our program has only one 

region for each variable. 

Now let S be the set of regions of all the variables of a program and let M 

be the set of memory locations of a computer. Then a memory assignment is 

a function f: S>M which assigns a memory location to each region. A 
memory assignment f is said to be proper if for any two regions s,, 5; € S such 

that 5; 5; 4 ¢, f(s;) 4 f(s;). Thus with any proper memory assignment, the 

contents of a memory location can only be ‘over-written’ when they are no 

longer required. 

©) ©) 

Gn Gh G, 

FIG. 5.16(c) 
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To obtain a proper memory assignment we may construct an interference 

graph H;; this is a simple graph, whose node set is the set S of program 

regions, two nodes s; and s; being joined by an edge whenever 5; 15; 4 @. 

Then the colorations of H correspond to the proper memory assignments 

for the program, and in particular a minimum coloration of H determines a 

proper memory assignment using least memory locations. 

For the program of Fig. 5.16(a), the interference graph is shown in Fig. 

5.16(d). (Since this particular program has only one region for each 

variable, we have simply labelled the nodes (regions) in H with the names 

of the corresponding variables.) The graph has a 3-coloration, hence only 3 

memory locations are required—one to store m, one to store n, and one for 

the pair of variables q and r. (Alternatively, we might ‘rename’ q as r, or r as 

q, throughout the program text.) 

m q 

r 

FIG. 5.16(d) 

5.4.2. An algorithm for colouring a graph 

The colorations of a graph G can be constructed by backtrack 
programming, as follows. 

If the graph G is complete then it has only one coloration (in 
which every node is assigned a different colour). Otherwise, the 
problem of finding all the colorations can be ‘specialized’ (cf. 
Section 2.7) in the following way. Let x; and x; be any two nodes of 
G which are not adjacent; then the set S of colorations of G can be 
partitioned into two sets S$; and Sz where S$; is the set of all 
colorations in which x; and x; are of the same colour, and S7 is the 
set of all colorations in which x; and x; have different colours. 
Clearly, the colorations in S;; correspond to the colorations of the 
condensation Gi; of G which is obtained by coalescing x; and x;; 
whereas S7 is the set of colorations of the graph G7 obtained by 
adding the edge [x;, x;] to G. 

It is evident that the graph G;; has one node less than G, while GF 
has the same node set as G, but one more edge. Thus, by repetition 
of the specialization process we ultimately obtain graphs which are 
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all complete, and the (unique) colorations of all these complete 

graphs give all the colorations of the original graph G. 

This specialization process is demonstrated for a 5-node graph in 

Fig. 5.17. (In this diagram, the symbolism x; =x, indicates that x; 

has the same colour as x;.) It will be seen that the graph has a 

chromatic number of 3; it has one 3-coloration, namely 

{{x1, x3}, {x2, xa}, {xst}, 

and also three 4-colorations, and one 5-coloration. 

It is often possible to simplify graphs obtained during the search, 

by applying the following rule. 

FIG. 5.17 
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Rule 1: If a graph G has a node x; which is adjacent to every other 

node, then in every coloration of G the node x; has a colour different 

from the colours of all other nodes. 

Thus, a node which is adjacent to all other nodes can be deleted, 

for the purpose of finding colorations. Simplifications of this kind do 

not reduce the number of specializations to be performed, but they 

greatly reduce the amount of data to be manipulated and stored at 

each stage. For the problem of Fig. 5.17 for instance, Rule 1 enables 

us to remove node x; from the original problem, and to make 

further simplifications to all the sub-problems. 

Determination of a minimum coloration. In practical problems we 

usually require only one coloration, which uses least colours. To 

find such a coloration, it is unfortunately still necessary to use a 

search method of the kind described above, and to extract a 

minimum coloration from the set of all colorations obtained. 

However, it is usually possible to ‘prune’ the search tree in such a 

way as to discard many sub-problems, while retaining always at 

least one sub-problem which leads to a minimum coloration. 

For instance, we can make use of the following rule. 

Rule 2: If a graph G has two nodes x; and x; such that 1(x;) CT (x,), 

then G has a minimum coloration in which x; and x; are of the same 
colour. 

Thus, if a graph G has two nodes x; and x; with I'(x;) CI'(x;), the 

problem of finding a minimum coloration of G reduces to the 
problem of finding a minimum coloration of its condensation Gj; 

(which is obtained simply by removing x; from G). 
As an example, it follows from Rule 2 that the 5-node graph of 

Fig. 5.17 has a minimum coloration in which x; has the same colour 
as x3, and x2 has the same colour as x4; by constructing the 
corresponding condensation, we immediately obtain the complete 
3-node graph which defines its minimum coloration. Minimum 
‘colorations of the graphs of Fig. 5.14 and Fig. 5.15 can also be 
obtained easily, by repeated applications of Rule 2. 

As a further method of pruning the search tree, one can use a 
‘branch-and-bound’ method, in which the search is restricted by 
calculating lower bounds to the chromatic numbers of graphs 
obtained in the course of the specialization process (Corneil and 
Graham 1973). 



Independent sets, dominating sets, and colorations 195 

Finally, we note that if at any stage we obtain a graph which has 

articulation nodes, a minimum coloration of that graph can be 

obtained by finding a minimum coloration of each of its blocks 

separately. 

5.4.3. Edge colorations 

An edge coloration of a simple graph G = (X, E) is a partition 

€ ={E,, Er,..., E,} of its edge set E in which every block E; is a 

matching of G. In pictorial terms, if we suppose that each block of 

an edge coloration is associated with a particular colour, then we 

may consider an edge coloration as an assignment of a colour to 

every edge of a graph, such that no two adjacent edges have the 

same colour. 

An edge coloration which has exactly k blocks is sometimes 

called a k-edge coloration. The smallest number k for which a graph 

G has a k-edge coloration is called the chromatic index x(G) of G. 

From these definitions it follows immediately that every k-edge 

coloration of a graph G determines a k-node coloration of its 

interchange graph, and that the converse is also true. (As an 

illustration, Fig. 5.18(a) shows a minimum edge coloration of a 

graph, and Fig. 5.18(b) shows the corresponding minimum node 
coloration of its interchange graph.) It is therefore possible to 

construct edge colorations by the algorithms described in the pre- 

vious section. 

FIG. 5.18(a) FIG. 5.18(b) 

Example 5.6. A wiring problem. An electronic unit consists of a number 
of integrated circuit modules, joined together by coloured wires. To 

facilitate testing of the unit, it is required that all wires connected to the 
same module be coloured differently. How can this be achieved, using as 

few different colours of wire as possible? 
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In graph-theoretic terms, this problem simply involves finding a mini- 

mum edge coloration of the graph whose nodes represent the modules and 

whose edges represent the wires joining them. 

Exercises 

5.1. A firm manufactures Schottky diodes, to be used in ‘matched pairs’ in 

radar sets. For a batch of ten diodes, measurements have been made of 

certain diode parameters (in particular, their junction capacitances 

and series resistances), and from these measurements it has been 

found that the following pairs of diodes are compatible: 

(1, 2], [1, 5}, [2, 3], (2, 4], (2, 5], [3, 5], [4,5], [4,6], [4, 9], 
[5, 6], [5, 7], [6, 7], [6, 8], [6, 9], [6, 10], [7, 9], [8, 91, [9, 10]. 

How many matched pairs can’be obtained from the batch? 

5.2. Prove that, if the largest node degree of a simple graph is p, then its 

chromatic number is not greater than p + 1. 

5.3. Prove that a graph has a 2-coloration if and only if it does not contain 

any circuits of odd length. 

5.4. Seven local television stations are to be built in different geographic 

locations. Stations which are far apart can use the same frequency, but 

to avoid interference certain pairs of stations must use different 

frequencies; these pairs are specified by crosses in the table below. 

ee te Se TS 

Find an assignment of frequencies to transmitters which uses the 
smallest possible number of different frequencies. 

Additional notes and bibliography 

It has been shown by Moon and Moser (1965) that the number of cliques 
in a graph may grow exponentially with n. However in many practical 
applications this does not happen, and the specialization method of Section 
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5.2.2 for constructing the maximal cliques works very effectively (see Bron 
and Kerbosch 1973). Some other algorithms for constructing maximal 
cliques are described by Augustson and Minker (1970), Mulligan and 
Corneil (1972), Akkoyunlu (1973), Osteen and Tou (1973), Osteen (1974), 
and Johnston (1976). 

The first polynomial algorithm for constructing a maximum matching 

was developed by Edmonds (1965); this algorithm was of complexity 

O(n*). More efficient ‘node labelling’ techniques for finding augmenting 

chains were subsequently developed by Witzgall and Zahn (1965), Balinski 

(1969), Even and Kariv (1975), and Gabow (1976). The algorithm of Even 

and Kariv is of least complexity, this being only O(n*°). 
For a full discussion of the analytical results obtained relating to node and 

edge colorations, see Berge (1976) and Ore (1967). 

The method of assigning memory locations to variables described in 

Example 5.7 is based on the work of Lavrov (1961). See also Logrippo 

(1972, 1978). - 

The backtrack programming method of constructing colorations (Section 

5.4.1) is based on a technique of Zykov (1949) for representing chromatic 

polynomials; the simplification rules were suggested by Hedetniemi (1971). 

An alternative coloration method involving the generation of maximal 

independent sets was developed by Christofides (1971) and subsequently 

refined by Roschke and Furtado (1973) and Wang (1974). Corneil and 

Graham (1973) compared their branch-and-bound method (based on 

Zykov’s technique) with the Roschke—Furtado algorithm for a number of 

families of graphs, and found that the branch-and-bound method was 

always substantially superior. 

The problem of finding a minimum coloration is NP-complete (see Karp 

1972; Lawler 19765). Polynomial algorithms have been developed, to 

construct ‘approximate’ solutions to the minimum coloration problem (see 

Peck and Williams 1966; Welsh and Powell 1967; Wood 1969; Williams 

1970; Matula, Marble, and Isaacson 1972). However, it has subsequently 

been shown that the results of all these algorithms may be arbitrarily bad 

(Johnson 1974; Mitchem 1976; Garey and Johnson 1976). é 

In practice it is very difficult to obtain sharp bounds for the chromatic 

number of a graph, but very sharp bounds for the chromatic index are easily 

obtainable: specifically, if p is the largest node degree of a simple graph G, 

then p=x(G)<p+1. The validity of the first of these inequalities is 

evident; the proof of the second (which is due to Vizing) is given in English 

by Ore (1967) and Berge (1976). 

It is possible to enumerate the maximal independent sets and cliques, the 

minimal dominating sets, and the colorations of a graph by Boolean 

methods (Hammer and Rudeanu 1968). See also Kaufmann and Pichat 

(1977). 



6 Flows in networks 

6.1. Introduction 

THIS CHAPTER is concerned with p-graphs in which some 

substance can flow along the arcs, from one point to another. Much 

of the theory presented here originated in the study of trans- 

portation problems, i.e. problems of transporting a commodity 

from certain points of supply to other points of demand in such a 

way as to minimize shipping cost. However, the graph-theoretic 

techniques first developed in this context are applicable to several 

other kinds of flow problems, involving for instance the flow of 

information in communication systems, and the flow of traffic in 

road networks. Furthermore, many practical problems of a 

combinatorial nature, which do not involve flows in any physical 

sense, can nevertheless be formulated and solved very elegantly by 

using network-flow models. 

6.2. Networks 

In discussing flows it will be convenient to consider only p-graphs 

which are connected and which do not contain any loops. This will 

not involve any loss in generality, for the flows in a disconnected 

p-graph can be analysed by considering each of its connected 

components separately, and flows in loops contribute nothing to 

flows between nodes. In this chapter, p-graphs which are connected 

and without loops will be called networks. 

Now let G=(X, U) be a network, whose nodes and arcs are 

arbitrarily numbered: MSA gewetie, kat and = 
{U1, U2,..., Um}. Then the incidence matrix of G is the n X m matrix 
S =[s,;] whose rows and columns correspond to the nodes and arcs 
of G respectively, and whose elements are 

+1 if u; is incident from x;, 

Sj =4—1 if u; is incident to x,, 

0 if u; is not incident to or from x,;. 
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As an example, the network of Fig. 6.1 has the incidence matrix 

se Sai on | re he OF, Oi =F 0 

el Deel Gi OOo On. 0 

SF D0 er Ol Oe) ale Sd SO. LOI, 

Dees eS 50 

6.3. Network flows 

6.3.1. Definition of a network flow 

A flow on a network G is a vector f=[f,, fo,..., fn] of m real 

numbers (where m is the number of arcs in G) such that 

(i) each element f; of f, which is called the flow in the arc u;, is 

non-negative, and 

(ii) for every node x; of G, the sum of the flows in arcs incident to 

x; is equal to the sum of the flows in arcs incident from x;. (This 

condition is called the flow conservation condition.) 

The condition (i) is conveniently written as 

f=0; (6.1) 

the flow conservation condition (ii) can be expressed in terms of the 

coefficients of the incidence matrix of G, as 

AT aaa ey eae (6.2(a)) 
j=1 
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or, more concisely, as 

St =O; (6.2(b)) 

As an example, the vector [1, 1, 3, 1, 2, 2,1, 1, 2] is a flow on 

the network of Fig. 6.1; this flow is depicted in Fig. 6.2. 

6.3.2. Operations on flows 

Let f be a flow on a network G, and let k be a non-negative 

number. Then kfis a flow on G, since the condition f= 0 implies that 

kf£=0, and the condition Sf’ = 0 implies that S(kf)’ = Sfk =0. 

In the same way, it is easily verified that for any two flows f; and f, 

on the same network G, the vector sum f, + f2 is a flow on G; and if 

f{, =f, then the difference f,; —f, is also a flow on G. 

6.3.3. Elementary flows 

Let y be an elementary cycle on G, and let v be the vector with 

elements 

1 ifarc yu; lies on y, 2 al NA See ap) WES ae 
O otherwise, 

It is easily verified that v is a flow on G: this flow is called the 

elementary cyclic-flow associated with y. 

Now let vi, V2,..., Vx be elementary cyclic flows on G and let 

r1,12,...,1 be non-negative numbers. Then, from our previous 

discussion of operations on flows it is clear that the vector 

£=ryvi trove t+ reVE (6.3) 

is a flow on G. 

Conversely, any feasible flow f on G can be expressed in the form 

(6.3). To prove this, let us suppose that f is a non-zero flow on G (for 

a zero flow, the proof is trivial), and let H be the partial graph of G 

obtained by deleting those arcs in which the flow is zero. Now since 

{4 0, H contains at least one arc; and from the flow conservation 

condition, it follows that on H 

p (xi)=0 ifandonlyif p (x;)=0 forall x;eX. 

Hence, starting from the initial endpoint of any arc of H, it is 

possible to construct a path of arbitrary order on H, which implies 

that H contains at least one elementary cycle. Now let y; be any 

elementary cycle on H, let r, be the smallest flow in the arcs of y1, 
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and let v; be the elementary cyclic flow on G associated with y;. 

Then f£; = f—7,v, is a flow on G, having more zero elements than f. 

By repeated decompositions of this kind we ultimately obtain a flow 

f, =f-ryVi — revo - + + — KV, =O, 

from which it follows that f is expressible in the form (6.3). 

The fact that any network flow can be decomposed into elemen- 

tary cyclic flows—or constructed by combining elementary flows— 

will be of great importance in later sections. 

As an example, Fig. 6.3 depicts two different decompositions of 

the network fiow of Fig. 6.2. 

6.3.4. Arc capacities 

Let us now suppose that each arc u; of G has associated with it a 

non-negative integer c;, called the capacity of u;; this may be 

regarded as the maximum permissible value of the flow in the arc 

u;. Then a flow f on G is said to be feasible if and only if 

fSe PAP 2), m). (6.4) 
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To express the feasibility condition in matrix form, we define the 

capacity vector of G ase =[c1, C2,..., Cm]. Then from (6.4) a flow f 

on G is feasible if and only if 

f<c. (6.5) 

The properties of feasible flows are most conveniently described 

in terms of ‘displacement networks’, which are defined in the next 

section. 

6.4. Displacement networks 

6.4.1. The notion of a displacement network 

Let f be a feasible flow on G; then the displacement network 

G(f) associated with f is the network which has the same nodes as G, 

and arcs determined as follows. For each arc u; of G, G(f) has (i) a 

normal arc u;_ which has the same initial and terminal endpoints as 

u;, and (ii) an inverted arc u; which has the same endpoints as u; but 

the opposite orientation. The capacities of u; and u;, which are 

denoted by c; and c; respectively, are defined by 

Ci Cp fe) 

ines 

For example, Fig. 6.5 shows the displacement network associated 

with the network flow of Fig. 6.4; in Fig. 6.5 the solid lines represent 

normal arcs, broken lines represent inverted arcs. 

Se a. 5 WE) (6.6) 

FIG. 6.4.The first number on each arc is its capacity; the second is the arc 
flow. 
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FIG. 6.5. The numbers indicate arc capacities. 

It will be observed that on a displacement network G(f), the 

capacity of each normal (or, respectively, inverted) arc is the 

amount by which the flow in the corresponding arc of the original 

network G can be increased (or, respectively, reduced) without 

exceeding the arc capacity (or becoming negative). As one might 
therefore expect, for a given flow f on G it is possible to describe the 

‘difference’ between f and any other flow on G in terms of a feasible 

flow on the displacement network G(f). To demonstrate how this 
can be done it will be helpful first to establish some properties of the 

feasible flows on Gif). 

6.4.2. Flows on displacement networks 

Let us suppose that the arcs of G(f) are listed in the order 

Uj, Uz,..., Um, U1, U2,-.-., Um. Then the incidence matrix S of 
G(f), which is of dimensions n X 2m, can be written in the parti- 

tioned form 

§ =[S|-S], (6.7) 

where S is the n X m incidence matrix of G. The capacity vector ¢ of 

G(f) is also conveniently written in the partitioned form 

é=[e*|e"], (6.8) 
where c' =[ci, c3,...,Cn] and e¢ =[ci,c2,...,¢»]. From (6.6) 
these two components of ¢ can be written as 

c =c-f, 
(6.9) 

c =f. 
aa 

os 
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Now from the definition of a feasible flow it follows that a vector f 

of 2m real numbers is a feasible flow on G(f) if and only if 

O<f<é 6.10) 

and 

S¥ =0. (6.11) 

If f is partitioned in the form 

f={f lf (6.12) 

where f* andf each have m elements, then the condition (6.10) can 

be written as 

0=F Se. 
+ (6.13) 

O=<f Sc, 

and by (6.9) these conditions can be expressed as 

O<f <c-f, 
(6.14) 

O<f <f. 

Also, by (6.7) and (6.12), the conservation condition (6.11) can be 

expressed in the form 

S(f -f£ )' =0. (6.15) 

Thus, a vector f =[f* |f ]is a feasible flow on G(f) if and only if its 

components f° andf satisfy the conditions (6.14) and (6.15). 

6.4.3. Flow differences 

Now let f and g be any two feasible flows on G. Then the vector 

difference g—f determines a feasible flow on G(f), as follows: Let f 

and f be the vectors with elements 

Fr let tomatoes At aaa 
2) olay Ha (6.16) 

It is evident that 

f'-f =g-f. (6.17) 

Also, it is easily verified that the vector f=(f* |f ]is a feasible flow 

on G(f). Indeed, since 0<f<c and 0<g<c it follows immediately 
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from (6.16) that the vectors f° and f satisfy the feasibility condi- 

tions (6.14); and by (6.17), 

S(t -f£)' = S(g—f)' = Sg'— Sf’ =0 

so the flow conservation condition (6.15) is also satisfied. 

It will be noted that the flow f = [f* |f ] on G(f) defined by (6.16) 

has the property 

fi -fi =9, ade 25 sonata D5 

a flow with this property is said to be disjunctive. 

As an illustration, Figs. 6.4 and 6.6 show two flows f and g on the 

same network; the disjunctive flow on G(f) associated with the 

difference g—f is shown in Fig. 6.7. 

FIG. 6.6. The first number on each arc is its capacity; the second is the arc 

flow. 

FIG. 6.7. The numbers indicate arc flows. 
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It has been demonstrated that if f and g are feasible flows on G, 

then the vector f =[f*|f ] defined by (6.16) is a disjunctive feasible 

flow on G(f). Conversely, it can be shown that if f is a feasible flow 

on G, and f= [f"|f ] is a feasible flow on G/(f), disjunctive or 

otherwise, then the vector g defined by (cf. (6.17)) 

g=f+f -f (6.18) 

is a feasible flow on G. Indeed, it follows from (6.14) that 

—f<f -f <c-f (6.19) 

and by adding f throughout (6.19) we obtain the feasibility condi- 

tion 

O=g=c. 

Also, using (6.15) we obtain the flow conservation condition 

Sg’ = S(f+f' —-f )'=Sf+S(f -f)'=0 

as required. 

6.5. Maximal flows in networks 

6.5.1. The maximal flow problem 

It will now be supposed that G contains two nodes x, and ve 

called the source and sink of G respectively, which are joined by an 
arc u; = (x, Xs) of infinite capacity; this arc is called the return arc of 
G. For any feasible flow f on G, we describe the flow f, in the return 
arc u, as the value of f. The problem to be considered here is that of 
finding a maximal flow, that is, a feasible flow whose value is as large 
as possible. 

Example 6.1. A shipping problem. A certain commodity is stored at Pp 
depots a1, a@2,...,a,, each depot a; having a stock of 5; units. The 
commodity is required at q distribution centres B,, B2,..., Bg, the demand 
at B; being for d; units. The maximum quantity w;; which can be transported 
from each depot a; to each distribution centre B; is specified. Is it possible to 
meet all the demands? How many units of the commodity should be sent 
from each depot to each distribution centre, in order to meet the demands? 

This problem can be represented by a network of the form shown in Fig. 
6.8, in which the labels on arcs indicate their capacities. For any maximal 
flow on this network, the arc flows define a distribution of the commodity 
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Distribution 
centres 

Return arc 

FIG. 6.8 

from the depots a; to the centres 8; which meets the demands as well as 

possible. 

It was shown earlier that any flow on a network can be expressed 

as a combination of elementary cyclic flows. This suggests that to 

obtain a maximal flow we might successively combine elementary 

flows, in such a way as to increase the value of the resulting flow at 

every stage, until we obtain a flow whose value is maximal. But how 

should these elementary flows be chosen? 

Let f be any flow on a network G; then we define a flow- 

augmenting cycle of the corresponding displacement network G(f) 

as an elementary cycle which traverses u; but not u;, and whose 

arcs all have non-zero capacities. The significance of flow-aug- 

menting cycles is established in the following theorem: 

A flow £ on a network G is a maximal flow if and only if G(f) does 

not contain any flow-augmenting cycles. : 

To prove the theorem, let us first suppose that G(f) contains a 

flow-augmenting cycle y, and let 6 be the capacity of y (i.e. the 
smallest of its arc capacities). Also, let f = [f” |f ] be the feasible flow 

on G(f) obtained by assigning a flow of 6 units to each arc of y. Since 
u; lies on y and u, does not lie on y, 

f/=5 and f, =0. (6.20) 
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Now let g be the feasible flow on G defined by (cf. 6.18) 

g=f+f'-f. ; (6.21) 

From (6.20) and (6.21) it follows that 

g:=heth fe aft 6. (6.22) 

Thus the value of the flow g is 6 units greater than the value of f, 

which implies that f is not a maximum flow. 

Conversely, if f is not a maximum flow, there exists a feasible flow 

g of G whose value is greater than that of f: 

&r> fr (6.23) 

Now let f=[f*|f ] be the flow on G(f) determined by the flow 

difference g—f, through the rule (6.16), and let us express f in the 

form 

f= 1r1¥,+rv2+ -+TRVK (6.24) 

where 1, /2,...,/% are positive numbers and vw, ¥2,..., Vx are 

elementary cyclic flows on G(f). Since f is a disjunctive flow, it 

follows from (6.23) that 

f= OS and y.-= U: 

Hence in the flow decomposition (6.24) there exists at least one 

elementary flow v; say for which the flow in the arc u, iS non-zero 

and the flowin u, is zero. The corresponding elementary cycle y; on 

G(f) therefore traverses u; but not u,. Also, since f is a feasible 

flow on G(f), the flow ¥; is a feasible flow on G(f), which implies that 

every arc on y; has a non-zero capacity. It follows that y; is a 

flow-augmenting cycle on G(f), which proves the theorem. 

Example 6.2. Let us consider the network flow f which is depicted in Fig. 

6.9. (In this diagram, the first number on each arc is its capacity, the second 

is the arc flow; the bold lines indicate arcs which are saturated, i.e. arcs in 

which the flow is equal to the capacity.) At first sight this flow—which is of 

value 6—might appear to be a maximal flow, but we shall see that this is not 

the case. In Fig. 6.10 we have drawn the corresponding displacement 

network G(f). (In this diagram the arc labels represent their capacities; for 

simplicity, the arcs of zero capacity have been omitted.) It will be observed 

that G(f) has a flow-augmenting cycle 

ea (x1, X2), (X2, X3), (x3, X4), (X4, Ke)s (Kes X1), 
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FIG. 6.12 
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of capacity 2. (On Fig. 6.10 the arcs of this cycle are drawn in bold lines.) To 

obtain the augmented flow g, as defined by (6.21), we modify the flow f as 

follows: for each normal arc u; on y we increase the flow in the cor- 
responding arc u; on G by 2 units, and for each inverted arc u; of y we 

decrease the flow in u; on G by 2 units. The resulting flow, of value 8, is 

shown in Fig. 6.11. 

The displacement network associated with this new flow is shown in Fig. 

6.12. Since this does not contain any flow-augmenting cycles, the flow 

depicted in Fig. 6.11 is a maximal flow. 

To summarize our discussion so far, we have shown that for any 

flow f on a network G, it is possible to determine from G(f) whether 

or not the flow is maximal. It has also been demonstrated that if f is 

not a maximal flow, we can construct a flow of larger value. 

However, it is not yet clear that the repetition of our flow-aug- 

mentation method will always yield a maximal flow in a finite 

number of steps. To demonstrate this we must first examine how the 

maximum value of the flows in a network is determined, by the 

capacities of its arcs. 

6.5.2. Cuts 

The notion of-a cut of a graph, which was presented in Section 

4.2.2, can be extended to networks in an obvious way: Let G= 

(X, U) be anetwork, and let {X’, X"} be any partition of its node-set 

X ; then the set of all arcs of G whose initial endpoints belong to _X' 

and whose terminal endpoints belong to X" is called a cut of G, and 

is denoted by (X', X”). For any two nodes x;, x; € X, a cut (X’, X”) 

such that x;¢ X’ and x; €X" is said to separate x; from x; (in that 
order). 

On a network, we define the capacity of a cut (X', X") as the 

sum of the capacities of its arcs, 

Cj. 

(jluje(X'.X")} 

As an illustration, the broken line on the network of Fig. 6.9 
indicates a cut separating its source from its sink. Here X’= 
1¥ae X35) X35 Mays; N= {Xs5, Xe} and 

(X', X")= {(x3, Xs), (X45-X5)s (as X6)}. 

(It will be noted that the arc (x6, x1) belongs to the cut (X”, X’), but 
not to the cut (X’, X”).) The capacity of the cut (X", X”) is 11. 
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Now let f be a feasible flow and let (X', X”) be a cut separating 
the source x, from the sink x, on a network G. Then summing the 
conservation equations (6.2a) for all those nodes x; which belong to 
X', and noting cancellations, we obtain 

— yi he (6.26) I J 

{iluje(X",X)} {jluje(X',X")} 

Also, since the return arc u, belongs to (X", X’), 

a et Oe er (6.27) 
{iluje(X",.X")} 

and from the feasibility condition (6.5), 

eS De Cj. (6.28) 
(iluje(XX} Ciluje(X'.X°} 

Combining (6.26), (6.27), and (6.28) we obtain 

ae he eee ae} ee (6-29) 
ime} Clue) ~ (iluje(X'X} 

Thus for any feasible flow f, and any cut (X’, X”) separating x, from 

Xt, the value of f is less than or equal to the capacity of (X’, X”). In 

itself this result is hardly surprising, but it leads to the following 

important theorem of Ford and Fulkerson (1962): 

The ‘max-flow-min-cut theorem’: For any network, the value of a 

maximal flow is equal to the minimal cut capacity of all cuts 

separating the source from the sink. 

To prove the theorem, it suffices to show that for any given 

maximal flow, there exists a cut such that equality holds throughout 

(6.29). Indeed, let f be any maximal flow on G, and let I(f£) be the 

network obtained by removing from G(f) all arcs of zero capacity, 

and also the arc u, . (As an illustration, for the flow f of Fig. 6.11, the 

network in Fig. 6.12 is precisely the network J (f) as defined above.) 

Also let X' be the set of nodes which are accessible from the source 

x, on I(f), and let X” = X — X’. Since the flow f is maximal, G(f) 

does not contain any flow-augmenting cycles, and consequently 

there are no paths from x, to x, on I(f). Hence x,¢ X’ and x,¢ X”, 

and therefore on G, the arc set (X’, X”) is a cut separating x, from x;. 

Now from the definition of X’ it follows that J(f) does not contain 

any arcs with initial endpoints in X’ and terminal endpoints in X”. 

Consequently on G(f), every arc of (X’, X") other than u, has a 

zero capacity. It follows that on G, 
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(i) every arc of (X", X’) other than u, has a zero flow, which 

implies that equality holds in (6.27), and 

(ii) every arc of (X', X”) is saturated, which implies that equality 

holds in (6.28). 

Consequently, equality holds throughout (6.29), which proves the 

theorem. 

Example 6.3. Let us consider the maximal flow f of Fig. 6.11, for which 

I(f) is shown in Fig. 6.12. On Fig. 6.12, the accessible set of the source node 

x, is {x1, xo}. Accordingly, we partition the node set X into X' = {x,, x2} and 

X" ={x3, X4, Xs, Xe}. On Fig. 6.11, the corresponding cut (indicated by a 

broken line) is 

(x, x") = {(x1, X3), (x2, X4)}. 

This cut has a capacity of 8, equal to the value of the flow. It will be observed 

that on Fig. 6.11, both the arcs of (X’, X") are saturated, and that the arc 

(x3, X2)—which is the only arc of (X", X’) other than the return arc 

(x6, X1)—has a zero flow. 

6.5.3. An algorithm for constructing maximal flows 

Let us assume that on G, the capacities of all arcs other than the 

return arc u, are integers. (This is not an important restriction in 

practice, since a flow problem in which arcs have rational capacities 

can always be reduced to a problem with integer capacities, by 

clearing fractions.) Then a maximal flow on G can be constructed by 

the following algorithm. 

Step 1 Choose arbitrarily some integral flow on G. (The null flow, 

in which all arc flows are zero, is a possible choice.) 

Step2 Let f be the present flow on G. Construct the displacement 

network G(f), and search for a flow-augmenting cycle on 

this network. If no such cycle exists go to End. 

Step3 Let y bea flow-augmenting cycle on G(f), and let 6 be the 

capacity of y. For each normal arc u; of y, increase the flow 

in the arc u; on G by 6 units; for each inverted arc u; of y, 

decrease the flow in the arc u; of G by 6 units. Then return 
to Step 2. 

End The flow on G is maximal. 
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It is evident that if this algorithm terminates, then the flow on G is 

maximal. It can also be proved that the algorithm does terminate, in 

a finite number of steps, by the following argument. 

From the max-flow—min-cut theorem it follows that, since the 

capacities of all arcs other than u, are integers, the value of a 

maximal flow is an integral number. Also, since the arc capacities 

are integers, and the computation is initiated with an integral flow, 

each successive flow is integral. Hence, since the flow value 

increases by at least one unit each time Step 3 is executed, the 

algorithm constructs a flow of maximal value in a finite number of 

steps. 
In the above proof it has emerged that for any network whose arc 

capacities are integers, there exists a maximal flow in which all arc 

flows are integers; and furthermore, our algorithm always gives a 

maximal flow with this property. These facts can sometimes be 

exploited, as in the following example. 

Example 6.4. An assignment problem (cf. Example 5.3). A firm has q 

vacant jobs $i, B2,...,8, of different types. There are p applicants 

G1, @,..., a, for work with the firm, each applicant being suited for one or 

more of the vacancies. How should the applicants be assigned to jobs, in 

order to fill as many of the jobs as possible? 

This problem can be solved by constructing a network in which each 

applicant and job is represented by a node (see Fig. 6.13). The network also 

Applicants Jobs 

Source Sink 

Return arc 

FIG. 6.13. All arcs other than the return arc have unit capacities. 
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contains a source node s and a sink node ¢. The source is joined to each 

applicant node a; by an arc (s, a;) of unit capacity; and each job node B; is 

joined to the sink by an arc (G,, ¢) of unit capacity. If applicant a; is qualified 
for job B; the corresponding nodes are joined by an arc (a;, B;), of unit 

capacity. 

It is evident that each integral feasible flow on this network determines a 

feasible assignment of applicants to jobs (through the rule that, if the flow in 

(a;, B;) is unity, applicant a; is given job G,;); a maximal integral flow defines 

an assignment which fills as many jobs as possible. 

The successive flows and displacement networks obtained in applying the 

maximal flow algorithm to this problem are shown in Fig. 6.14. (For 

simplicity, the arc u, and all arcs of zero capacity have been removed from 

the displacement networks.) 

6.6. Minimal-cost maximal flows 

6.6.1. Minimal-cost flows 

Let us suppose that on a network G, each arc u; is assigned a 

capacity c; as before, and also a number /; called the unit cost of u;. 

The vector l=[J,, /2,...,1,] of these unit costs is called the cost 

vector of G. For any feasible flow f on G, the total cost of f is 

t= » l; he 

j=l 

As an illustration, in a transportation network the unit cost J; may 
represent the cost of transporting one unit of a commodity along u,, 
in which case the product If’ gives the total transportation cost 
incurred by the flow f. 
A feasible flow f on G is said to be a minimal-cost flow if the total 

cost If’ of f is less than or equal to the total cost of every other 
feasible flow which has the same value as f. This section is concerned 
with the problem of finding a minimal-cost maximal flow, that is, a 
maximal flow whose total cost is as small as possible. 

6.6.2. Costs on displacement networks 

For any feasible flow f we assign unit costs to the arcs of G(f) as 
follows. Each normal arc uj of G(f) is given the unit cost J; of u;, and 
each inverted arcu; of G(f) is assigned the unit cost —l;. Thus the 
cost vector I of G(f) can be written as 

= fis} (6.30) 
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The bold lines indicate arcs carry- 

ing one unit of flow; all other arcs 

(except the return arc) have zero 

flows. 

Flow value =4 

Flow value= 

Flow value=6 
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Displacement networks 

Arcs with zero capacities and the 

arc u, have been omitted. The 

bold lines indicate flow-augment- 

ing cycles. 
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From (6.30) it follows that the total cost of a feasible flow 

f =(f*|f ] on G(f) can be expressed as 

lf’ =1¢" —f )’. (6.31) 

Now in section 6.4 it was shown that for any two feasible flows f 

and g on G, the flow difference g—f determines a disjunctive 

feasible flow f =[f*|f ] on G(f), such that (cf. (6.17)) 

f—-f =g-f. (6.32) 

From (6.31) and (6.32), it follows immediately that 

If’ =Ig'—If’. (6.33) 

Thus, the difference between the total costs of f and g is given 

directly by the cost of f. 

Conversely, for any feasible flow f on G, and any feasible flow 

f=[f*|f ] on Gif), the flow g on G defined by (6.18), viz. 

g=fif -f, 

has a total cost 

le’ =M(f+f* —f)’ =I +18 —£ )’ =I +18. (6.34) 

Thus, the total cost of g is the sum of the total costs of f and f. 

As a consequence of these results it is possible to determine 

whether a given flow f is of minimal cost by inspection of G(f), in the 

manner described below. 

6.6.3. Cost-reducing cycles 

Let f be any feasible (but not necessarily maximal) flow on G, and 

let us suppose that G(f) contains an elementary cycle y with the 

following properties: 

(i) y does not contain either of the arcs u; or u; ; 

(ii) all arcs of y have non-zero capacities; and 

(iii) the sum of the unit costs of the arcs of y is negative. 

Let 5 be the smallest of the arc capacities on y, and let f=[f*|f ] be 
the feasible flow on G(f) obtained by assigning a flow of 6 units to 

each arc of y. 

Now consider the flow 

g=ft+f—f 
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on G. Since y has property (i), f; =0 and f, =0, hence the flow g 
has the same value as f. Also, since y has property (iii) the total cost 
of f is negative, 

If’ <0. (6.35) 
It follows from (6.34) and (6.35) that 

Ig’ = If’ +1 <I’. (6.36) 
Thus, the flow g has the same value as f, but a smaller total cost. For 
obvious reasons, we describe any elementary cycle y on G(f) which 
has the properties (i)—(iii) as a cost-reducing cycle. 

From the above it is clear that if a displacement network G(f) 
contains a cost-reducing cycle, then the flow f is not of minimal cost. 
Conversely, it can be proved that if a flow f is not of minimal cost, 
then G(f) contains at least one cost-reducing cycle. Indeed, let f and 
g be two feasible flows of the same value, and let us suppose that 
If’ >Ig'. Let f be the disjunctive flow on G(f) determined by g-f. 
Then since If’ >Ig’, it follows from (6.33) that the total cost of f is 
negative, 

If’ <0. (6.37) 
Now f can be expressed in the form 

f= rnWitrovet tHe, (6.38) 
where fi, ’2,,-.,7 are positive numbers and ¥j, ¥2,...,¥x are 

elementary eae flows on G(f). Since f and g have the same value, 

f; =0 and f,; =0, and consequently all the cycles y1, y2,.--, Yk 
associated with the flows ¥,, ¥V2,...,¥, have property (i) above. 

Also, since all the numbers 7, r2,..., r, in (6.38) are non-zero, the 

cycles y1, y2,.-., yx all have property (ii). Finally, it follows from 

(6.37) that for some elementary flow v; say in (6.38), 1¥/ <0, which 

implies that y; has property (iii). Hence G(f) contains a cost- 

reducing cycle, as required. 

Combining the results of this section, we obtain the following 

characterization of minimal-cost flows: 

A flow £ on Gis a minimal-cost flow if and only if the displacement 

network G(f) does not contain any cost-reducing cycles. 

6.6.4. Algorithms for constructing minimal-cost maximal flows 

The cost-reduction method. The characterization of minimal-cost 

flows of the previous section immediately suggests the following 

algorithm: 
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Step 1 Construct a maximal flow on G. (The algorithm of Section 

6.5.3 can be used for this purpose.) 

Step 2 Let£be the present flow on G. Construct the displacement 

network G(f), and search for a cost-reducing cycle on this 

network. If no such cycle exists go to End. 

Step 3 Let y be a cost-reducing cycle on G(f), and let & be the 

smallest of its arc capacities. Modify the present flow on G 

as follows: For each normal arc uj of y, increase the flow in 
the corresponding arc u; on G by 6 units, and for each 

inverted arcu; of y, decrease the flow in the corresponding 

arc u; by 6 units. Then return to Step 2. 

End The flow on G is a minimal-cost maximal flow. 

As an illustration, for the network of Fig. 6.15, the successive 

flows and displacement networks obtained by the cost-reduction 

method are shown in Fig. 6.16. (For simplicity the arcs u;, u; , and 

all arcs of zero capacity have been removed from the displacement 

networks.) 

FIG. 6.15. The numbers indicate arc capacities and costs. 

The flow-augmentation method. In the previous method we 
obtained a minimal-cost maximal flow by constructing a sequence 
of maximal flows of successively smaller costs, until the flow cost 
was as small as possible. Alternatively, if the unit costs of all the arcs 
of a network are non-negative, we can construct a sequence of 
minimal-cost flows with successively greater values, until the flow 
value becomes maximal. It is very easy to obtain an appropriate 
initial flow for this method: for if the unit costs of all arcs are 
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Successive network flows Displacement networks 
The numbers indicate capacities The numbers indicate capacities 
and flows. and ‘unit costs; bold lines indicate 

cost-reducing cycles. 

Flow cost =82 

Flow cost=78 

Flow cost =77 

FIG. 6.16 

non-negative, the null flow f=0 is obviously a minimal-cost flow of 

value zero! The method of constructing the subsequent flows is 

defined and justified in the following theorem: 

Let £ be a minimal-cost flow on G, let y be a flow-augmenting cycle 

of minimal cost on G(f), and let & be the smallest arc ccpacity of y. 
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Then the vector g defined by 

f,;+6 if the normal arc u; belongs to y, 

gi=$\fi—6_ if the reverse arc u; belongs to y, (6.39) 

fi if neither u; nor u; belongs to y, 

is a minimal-cost feasible flow on G, whose value is 6 units greater 

than the value of f. 

Indeed, from the results of Section 6.5.1 it is evident that g is a 

feasible flow, of value g,=f,+5. To prove that g is of minimal cost 

we compare its cost with that of any other flow h which has the same 

value. For this purpose, let us denote by i and f, the disjunctive 

flows on G(f) determined by the flow differences g—f and h—f 

respectively. The total costs of these flows are 

if, =1g' —If’ (6.40) 

and 

if, =Ih’ —If’. (6.41) 

Now the flow f, can be expressed in the form 

f, = 5¥ (6.42) 

where ¥ is the flow on G(f) obtained by assigning one unit of flow to 
each arc of y. Also, the flow f, can be expressed in terms of 
elementary cyclic flows: 

aa k 
f), = y aip; ae » biG, (6.43) 

i=1 i 

where 4j,42,...a; and b;,b2,...,5, are positive numbers, 
Pi, P2,.-.., p; are elementary flows associated with flow-augment- 
ing cycles, and qu, qo, ..., qx are elementary flows associated with 
cycles which contain neither u; nor u;. The value of h is 6 units 
greater than the value of f, therefore 

y a; = 6. (6.44) 

Since the flow-augmenting cycle y is of minimal cost, 

iv=ipi: - C= yew (6.45) 
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Hence, from (6.42), (6.44), and (6.45), 

~ ~~ J ~ 

lf,= lv’ < Y ajlp}. (6.46) 
i=1 

Also, since f is a minimal-cost flow, G(f) does not contain any 
cost-reducing cycles; consequently 

Fe ee 1 ey (6.47) 
and therefore 

k 

X blg; =o. (6.48) 

If,= > alpi+ ¥ big! (6.49) 

and combining (6.46), (6.48) and (6.49) we obtain 

if, <if,,. (6.50) 

Consequently, from (6.40), (6.41), and (6.50), 

lg’ <Ih’. 

The flow g is therefore of minimal cost, as required. 

Thus, in the flow-augmentation method, we follow precisely 

the procedure defined in Section 6.5.3 for constructing a maximal 

flow, with the understanding that 

(i) in Step 1 the initial flow is a minimal-cost flow, and 

(ii) in Step 2 and Step 3, the required flow-augmenting cycle y is 

of minimal cost. 

For the network of Fig. 6.15, the successive flows obtained by this 

method are shown in Fig. 6.17. 

6.7. Transportation and assignment problems 

We shall now give some examples of minimal-cost maximal flow 

problems, which arise frequently in operational research. 

6.7.1. The transportation problem 

This problem, which is perhaps the most important instance of a 

network-flow problem, arises for example in transporting coal from 
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Successive displacement networks Successive network flows 

The numbers indicate arc capaci- - The numbers indicate arc capaci- 

ties and unit costs; bold lines ties and flows; bold lines indicate 

indicate minimal-cost flow-aug- saturated arcs. 

menting cycles. 

' FIG. 6.17 
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coalfields to power stations. The problem can be stated in general 

terms as foliows: There are p sources a1, @2,...,a@, of a com- 

modity, with c; units of supply at each node a;. The commodity is 

required at q destinations Bi, B2,...,8,, the demand at each 

destination 8; being for d; units. The cost of sending one unit from 

each source a; to each destination 8; is A,;; it can be assumed that the 
amount of the commodity which can be carried from each origin to 

each destination is unlimited. How should the commodity be dis- 

tributed, from the sources to the destinations, in order to meet all 

the demands at minimum total cost? 

This problem can be considered as a minimal-cost maximal flow 

problem on a network of the form shown in Fig. 6.18, in which the 

first number on each arc represents its capacity and the second is its 

unit cost. 

Source 

FIG. 6.18 

6.7.2. The optimal assignment problem 

Let us suppose that in a machine-shop, there are q jobs 

B1, Ba, ---, Bq to be executed concurrently by different machines, 

and p machines a1, @2,..., @p available to execute these jobs. The 

machines vary in their suitability for a particular job; we suppose 

that these variations can be represented by attributing to each 

possible assignment a; > B; a cost Aj, which is a real number. An 

optimal assignment is one in which machines are assigned to all the 

jobs, at minimum total cost. 

The problem of constructing an optimal assignment can be 

considered as a particular case of the transportation problem 
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presented above: we may regard the machines as sources of a 

commodity (each capable of supplying one unit), the jobs as 

consumers (each requiring one unit), and consider the assignment of 

machine a; to job 8; as a shipment of one unit of the commodity 

from a; to @;. Thus the assignment problem can be regarded as the 

problem of finding a minimal-cost integral maximal flow on a 

network of the form shown in Fig. 6.18, in which all the arc 

capacities c; and d; are set to unity. 

There are many variants of these transportation and assignment 

problems which at first sight appear to be more complicated, but 

which reduce to flow problems on networks of the same basic form; 

the following is an example. 

6.7.3. The assignment of machines to a fixed schedule of tasks 

Let us suppose that it is necessary to execute q_ tasks 

Bi, B2,.--, Bq, Where each task 8; has a stipulated starting time a; 

and finishing time ¢;, and where each task requires one machine. To 

perform these tasks we have p machines aj, @2,..., @», which can 

be considered to be identical. A machine can only perform one task 

at a time, but can execute any number of tasks in succession. 

Before a machine can perform any particular task, it must be ‘set 

up’ or adjusted for the purpose. The time taken and the cost of 

setting-up the machine depend on the nature of the task, and on 

what the machine was doing previously; to set up machine a; (from 

its initial state) for task B;, the time required is 6;;, and the cost A,;. To 

‘reset’ the machine which performed task 6; for task 6, takes a time 

5;x, and the cost of this re-set operation is A j,. It is required to assign 

the machines to tasks in such a way that all tasks are performed, at 

minimal total cost. 

As an illustration, the tasks B; could be scheduled airline flights 

between different cities, and the machines a; aircraft all of the same 

type. In this case 6, and A;; would be the time required and the cost 

of flying the aircraft a; from its initial location to the departure point 

of the flight B;; whereas 5}, and Aj, would represent the time and 

cost of flying any aircraft from the arrival point of flight 6; to the 

departure point of flight Bx. 

The problem can be reduceé to an optimal assignment problem of 

the type considered in the previous section: we take as our set of 

machines the p machines a1, a@2,...,a@p) which are initially avail- 
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able, together with q additional machines 7}, VIsadigcygn where: y; 
represents the machine which performs task 6; (and which becomes 
available for assignment to other tasks when this task has been 
completed). 
A machine a; is considered capable of performing a task 8; if and 

only if 6;;<;, and the cost of each feasible assignment a; > B; is Aj. 
A machine y; is considered capable of performing task GB, if and 
only if 6; + 6; = ox, and the cost of each feasible assignment Vi > Cx 
is J jk: 

A network model of this assignment problem is shown in Fig. 

6.19. If the maximal flows on this network saturate all the arcs 

FIG. 6.19. The numbers indicate arc capacities and costs. 

(B;, t), then it is possible to execute all the tasks. A minimal-cost 

integral maximal flow then defines an optimal assignment, through 

the following rules: 

(i) if the flow in an arc (aq; B;) is unity then machine q; is initially 

assigned to the task 6,, and 

(ii) if the flow in arc (y;, B,) is unity then the machine which 

performs task 6; is next assigned the task Bx. 

Several other examples of transportation and assignment prob- 

lems are described in the Exercises at the end of this chapter. 
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6.8. Circulations 

6.8.1. Definition of a circulation 

In the preceding sections it has been assumed that a network 

contains a source and a sink, joined by a return arc of infinite 

capacity. Here we no longer distinguish a source node or sink node. 

Instead we suppose that for each arc u; of a network we have a 

specified lower bound b;=0 on the arc flow, as well as an upper 

bound (or capacity) c;. 

In this case, a flow f=[/1, f2,..., fm] on a network G is called a 

circulation if 

b<f<c, (6.51) 

where b =[);, 2, ... , b,, |is the vector of lower bounds on arc flows 

and c=[ci, C2,..., Cm] is the capacity vector of G. 

The first problem to be considered here is that of finding a 

circulation on G—if any circulations exist. (It is evident that there 

may not be any flow f which satisfies the condition (6.51).) It will 

then be shown how to construct a circulation of minimal cost. 

6.8.2. Auxiliary networks 

The problem of constructing a circulation on a network G can be 

reduced to a maximal flow problem on a modified network C°, in 

which the lower bounds on arc flows are all zero. This network G°, 

called the auxiliary network of G, is obtained as follows. 

The node set of G° consists of the nodes Xi Aig os <i OL AS. 

together with a source node s and a sink node ¢. The arc set of G° 

comprises the following: 

(i) For every arc u; of G, the network G° contains an arc Dd; 
which has the same initial and terminal endpoints as u,;, and a 
capacity 

U 
Cj =c;—b,, Cy = 12 ae cauee ys (6.52) 

(it) For every node x; of G, the network G° cpntains an entry arc 

vs with initial endpoint s and terminal endpoint x;, and also an 

exit arc v; with initial endpoint x; and terminal endpoint t. The 

capacities of the arcs v$ and v; are 

c? =max{0,d;}. and c! =max {0,—-d;}  (6.53(a)) 
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respectively, where 

Bray be 2 bj, CPS. a 10) 
{ilsig=—1} {j|sy=+1} (6.53(b)) 

(iii) G° contains a return arc v® from t to s, which has a capacity 

C=O, (6.54) 

It will be noted that in the right-hand side of (6.53(b)), the first 

term represents the sum of the lower bounds on all the arcs incident 

to x;, while the second term is the sum of the lower bounds on the 

arcs incident from x;. If the difference d; between these sums is 

positive, the entry arc v> has a capacity c* =d; and the exit arc v; 

has a zero capacity; whereas if d; is negative, the exit arc v; has a 

capacity c; = —d; and the entry arc c; has zero capacity. In practical 

computations, entry or exit arcs of zero capacity can be omitted; we 

retain them only to simplify our algebraic presentation. 

As an illustration, the network of Fig. 6.20 has the auxiliary 

network shown in Fig. 6.21. 

FIG. 6.21. The numbers indicate arc capacities. 
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Let us suppose that the nodes of G are ordered as follows: 

S, t, X1, X2,.--, Xn, and that its arcs are ordered as follows: 

R Ss Ss S Tt iE 6 U U U 
OMS NOs O25) ee Og O15 0 D5 eats U pihO ois Dis tos lete gatas 
FSH SSS ee ee 

Return Entry Exit Arcs 

arc arcs arcs of G 

Then the node-arc incidence matrix S° of G° can be written in the 

partitioned form 

25 7 ti AGeig 

Sart fy? ey hire (6.55) 

Os i Ss 

where J isann Xn unit matrix, J is the universal row vector whose n 

elements all have the value 1, and S is the incidence matrix of G. 

With a corresponding partitioning, the capacity vector ¢c° of G° 

has the form 

ce =[e8 ele" |e") (6.56) 

where c* is the capacity of the return arc, ¢° is the vector of 

capacities of the entry arcs, c’ is the vector of capacities of the exit 

arcs, and c” is the vector of capacities of those arcs of G° which 

appear also in G. 

In vector form, the condition (6.52) can be written as 

c’=c—b. (6.57) 

Also, the vector d=[d1, d2,...,d,] of elements d; defined by 

(6.53(b)) can be expressed as 

d=-bS' 

and therefore, by (6.53(a)), the vectors ¢° and ¢* satisfy the condi- 

tion 

c—e’ = —bs’. (6.58) 

Transposing both sides of (6.58), and premultiplying by the uni- 
versal vector J we obtain 

J(c°—e')' = JSb’ (6.59) 

and since JS =0 (as a consequence of the fact that each column of S$ 
has precisely two non-zero elements, with values of +1 and —1), the 
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equation (6.59) reduces to 

J(e°)'=J(c")’. (6.60) 

In words, (6.60) states that the sum of the capacities of the entry arcs 
is equal to the sum of the capacities of the exit arcs. 
Now let f° be any feasible flow on G°. If f° is partitioned in the 

same manner as c°, viz. 

ages Faia) ae aah ae (6.61) 

then the flow feasibility condition 0 <f° <c° can be written as 

o<f®=<c® ; (6.62(a)) 

0=Fec. (6.62(b)) 

O=f' Sc’, (6.62(c)) 

O=F =c% (6.62(d)) 

Also, from (6.55) and (6.61), the flow conservation condition 

S°(£°)’ = 0 can be expressed as 

ICV ae =S),, (6.63(a)) 

Sf?) =(8-£'Y. (6.63(b)) 

In words, (6.63(a)) states that the sum of the flows in the entry arcs is 

equal to the flow in the return arc, and that this flow is also equal to 

the sum of the flows in the exit arcs. We observe that (6.63(a)) and 

(6.60) together imply that 

f'=c ifandonlyif ft =c'; (6.64) 

we shall describe a flow which saturates all the entry and exit arcs of 

G° as a saturating flow. 

6.8.3. The construction of circulations 

Let us suppose that there exists a saturating flow on G°, and let 

f° =[f* |f°|f"|£"] be such a flow. Also, let f be the vector of m 
elements defined by 

f=f "+b. (6.65) 

From (6.57) and (6.62(d)), 

0<f’<c-b, 
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hence by (6.65) 

b<f<c. (6.66) 

Also, it follows from (6.65), (6.63(b)) and (6.58) that 

St’ = S(£°)'+ Sb’ (6.67) 

sl (es ae fT)’ nb (cS = cy’ 

= (eS . °S)' a (f° ue cy 

=0. (6.68) 

From (6.66) and (6.68), it follows that f is a circulation on G. 

Conversely, it is evident that each circulation fon G determines a 

saturating flow f°=[f"|f*|f"|f"] on G° through the rule (6.65), 
which gives 

P=asicy, fSeép i=, Pate” (69) 

As an illustration, Fig. 6.22 shows a circulation on the network of 

Fig. 6.20; the corresponding saturating flow on G° is shown in Fig. 

6.23. 

FIG. 6.22. The numbers indicate arc flows; bold lines indicate saturated 

arcs. 

From these arguments, it follows that we can obtain a circulation 

on anetwork G simply by applying the maximum flow algorithm of 

Section 6.5.3 to the corresponding auxiliary network G”: if this 

produces a saturating flow on G°, the corresponding circulation is 

given immediately by (6.65); whereas if the maximal flow obtained 
on G° is not a saturating flow, then no circulations exist for G. 
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FIG. 6.23. The numbers indicate arc flows; bold lines indicate saturated 
arcs. 

6.8.4. Minimal-cost circulations 

Let us suppose that on G°, each arc vy is assigned the unit cost of 

the corresponding arc u; on G: 

hos Pinal coe eer ee) (6.70) 

and that all other arcs of G° are assigned unit costs of zero. Then a 

saturating flow f° on G° has a total cost 

Pay =1e°y’. (6.71) 

The total cost of the corresponding circulation f=f"+b on G is 

If’ = 1(f")’ +b’. (6.72) 

From (6.71) and (6.72), the total costs of f and f° are related by 

If’ =1°(f°)' + Ib’. (6.73) 

Hence if f° is a minimal-cost saturating flow on G°, then f is a 

minimal-cost circulation on G. Consequently we can obtain a 

minimal-cost circulation on G simply by constructing a minimal- 

cost maximal flow on G°, using one of the algorithms of Section 

6.6.4 and then applying (6.65). 

Example 6.5. Production planning. A manufacturing firm has to meet a 

demand for one of its products over k successive time-periods, the numbers 

of units to be despatched to customers in each. period being d,, do,..., dy. 
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Production costs vary from one period to the next, because of changes in 

costs of raw materials: the expected unit production costs for each period 

are /,,15,..., 1. The firm must make at least m units in each period, but up 

to n additional units can be made by overtime working, at an additional unit 

cost of e. Up to c units can be stored in a warehouse, the unit cost of storage 

from one period to the next being w. How many units should be manufac- 

tured in each period, to meet the demands at minimum total cost? 

A network model of this problem is shown in Fig. 6.24 (for the case where 

k =4). It is evident that a minimal-cost circulation on this network deter- 

mines an optimal production pattern, the flows in the arcs joining node s to 

node p; being the numbers of units to be manufactured by normal and 

overtime working in the ith period. 

mm, 

O.7,/,+e 

mm,L, 

OnJ,+e 

mm,l, 

0.1,/,+e 3) 

mm, 

O.n,l,t+e 

0,2, 0 

FIG. 6.24. The labels on arcs are their lower flow bounds, capacities, and 
unit costs. 

6.9. Practical considerations 

We shall now consider briefly the practical aspects of the appli- 
cation of the algorithms of Section 6.6.4 for constructing a minimal- 
cost maximal flow. 
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6.9.1. Implementation of the flow-augmentation method 

In practice, instead of constructing a displacement network G(f) 
and searching for a flow-augmenting cycle on this network, it is 
convenient to construct the network J(f), which only differs from 
G(f) in that the arcs of zero capacity and the inverted arc u, are 
omitted (see for example Fig. 6.17). Then, if the arc costs on I(f) are 
regarded as ‘lengths’, a shortest path from the source s to the sink t 
on this graph, together with the arc u;, constitutes a minimal-cost 
flow-augmenting cycle. Since the flow f constructed at each stage of 

the flow-augmentation method is a minimal-cost flow, the network 

I(f) does not contain any cycles of negative length. The required 

shortest path from s to ¢ can therefore be obtained by any of the 

direct methods of Section 3.6 (such as Gauss elimination), or the 

iterative methods of Section 3.7 (such as Yen’s double-sweep 

method). In this application, Yen’s method is usually the most 

efficient. 
As an alternative strategy, Edmonds and Karp (1972) and 

Tomizawa (1971) have shown that it is easily possible to modify the 

arc costs on J(f) in such a way that they all become non-negative, 

and yet the paths from s to ¢ which are shortest on /(f) remain 

the shortest paths between these nodes on the modified network. 

With all arc costs non-negative, it becomes possible to construct a 

shortest path from s to t by Dijkstra’s method (see Section 3.8), 

which is only of complexity O(n’)—or even O(n log n) if one 

employs a sort tree—as compared with the complexity O(n’) of the 

direct and iterative methods mentioned above. However, Edmonds 

and Karp carefully describe their technique as giving a theoretical 

improvement in algorithmic efficiency: an improvement in the 

upper bound on running times does not imply a better practical 

performance. In some experimental comparisons made by the 

author of this book, for relatively small but realistic problems, the 

use of Yen’s method on I (f) always gave the best results. 

With regard to the number of flow augmentations performed by 

the algorithm, it is evident that if all arc capacities are integers then 

the total number of augmentations is not greater than the value of a 

maximal flow. If at any stage a displacement network G/(f) contains 
several minimal-cost flow-augmenting cycles, intuitively it would 

seem possible that, by choosing among these a cycle of lowest order, 

we might reduce the total number of augmentations required. A 

theoretical justification of this refinement is given by Edmonds and 
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Karp (1972). The refinement is very easily incorporated in a path- 

finding algorithm: if all the arc lengths are integers, we simply 

change each arc length J; to kl; + 1, where k is any constant greater 

than the total number of arcs. 

In applying the flow-augmentation method, it is sometimes 

possible to exploit particular characteristics of a problem. For 

instance in the case of transportation problems of the kind 

described in Section 6.7, it is possible to modify the arc costs in such 

a way as to facilitate the choice of an initial flow of value greater 

than zero (see Exercise 6.7). For the same problem, it is also 

possible to simplify the displacement networks, by removing many 

of their inverted arcs (see Exercise 6.8). Other refinements of the 

method, for the solution of assignment problems, are described by 

Tabourier (1972). 

Finally, we must draw attention to the ‘primal—dual’ method of 

Ford and Fulkerson (1962), whose development was motivated by 

considerations of duality in linear programming. In essence this is 

very similar to the flow-augmentation method presented here, but 

each successive flow is found by solving a maximal flow problem on 

a partial network of the original one. 

6.9.2. Implementation of the cost-reduction method 

The cost-reducing cycles on a displacement network G(f) cor- 

respond to the cycles of negative length on the network J/(f), as 

defined above; a technique for finding such a cycle has already been 

presented in Chapter 3 (see Exercise 3.10 and its solution). A 

technique of this kind is used in the network flow algorithm of Klein 

(1967). 
For transportation problems in particular a special form of cost- 

reduction method has been devised, in which the determination of 

the cost-reducing cycles is greatly simplified, through a judicious 

choice of the initial flow. This method, which is widely known as the 

‘stepping-stone method’, was originally developed by G. B. Dantzig 

as a particular form of his Simplex method for solving linear 

programs. For a description of this method in graph-theoretic terms 

see Dantzig (1963), Chapters 14-17. 

6.9.3. Comparison of methods 

With most network flow problems, the determination of a least- 

cost flow-augmenting cycle involves much less work than the 
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determination of a cost-reducing cycle. A flow-augmentation 

method is therefore likely to be more efficient than a cost-reduction 

method, unless a maximal flow of almost minimal cost is available 

initially. 

For transportation problems in particular, a great deal of effort 

has been devoted to the development of efficient programs, these 

being based mostly on the Ford—Fulkerson primal—dual method and 

Dantzig’s Simplex method, and comparative results have been 

published frequently. Although the conclusions drawn by different 

authors on the relative merits of the primal—dual and Simplex 

methods have often been contradictory, it would seem that pro- 

grams based on the primal—dual method have a better performance 

(Hatch 1975). Some comparisons between the basic flow-aug- 

mentation method (using Gauss elimination to find flow-augment- 

ing paths) and the primal—dual method suggest that the former is 

better for problems of modest size, whereas the primal—dual 

method is more efficient for large ones (Carré 1971). 

Exercises 

6.1. Node capacities. Let G =(X, U) be a network in which each node 

x; € X has a flow capacity k; = 0, this being an upper limit to the sum 

of flows in arcs incident to (or from) node x;. Show that the problem of 

finding a maximal flow on G can be reduced to a maximal flow 

problem on a network with flow bounds on arcs only. 

6.2. Bilateral connections between nodes. In many physical networks, a 

pair of nodes x; and x; may be joined by a ‘bilateral’ element, which 

can carry up to p units of flow in either direction, but which cannot 

carry flows in both directions simultaneously. (As an example, the 

transmission lines of an electric power system have this property.) 

How can one find a maximal flow between two nodes, in a network 

whose nodes are joined by elements of this kind? 

6.3. There are p families a1, a2,..., @, which want to go for an excursion 

in q cars B,, B2,..., Bq Given the number 5; of members of each 

family a;, and the number of seats d; in each car B;, is it possible to find 

a seating arrangement such that no two members of the same family 

are in the same car? 

Formulate this problem as a maximal flow problem. 

6.4. In a graph G =(X, U), let A and B be two disjoint subsets of the 

node set X. Then (in accordance with the terminology of Sections 4.2 
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and 4.4) we say that a subset V of U is an (A, B)-separating arc set if 

every path from a node of A to a node of B traverses at least one arc 

in V. Similarly, a subset Y of X —(A UB) is an (A, B)-separating 

node set if every path from a node of A to a node of B traverses at 

least one node in Y. Using a network flow method, find a separating 

arc set with the minimum number of arcs, and also a separating node 

set with the minimum number of nodes, for the node sets A= 

{x>, x6}, B ={x,} on the graph of Fig. 6.25. 

FIG. 6.25 

The network of Fig. 6.26 represents a transportation system, with 

‘bilateral’ connections between nodes (see Exercise 6.2); the first 

number associated with each connection is its capacity, the second its 

unit transportation cost. The nodes a and b represent producers of a 

commodity, capable of supplying up to 8 and 2 units respectively, at 

unit production costs of 5 and 6 respectively. The nodes d and e 

represent consumers, with demands of 6 and 1 units respectively. 

There is no supply or demand at node c. 

Using the flow-augmentation method, determine the number of 
units to be supplied by each producer, and the amount to be sent 
along each branch of the network, in order to meet the demands at 
minimum total cost. 
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6.6. The network of Fig. 6.27(a) represents a transportation system, with 

G.7). 

bilateral connections between nodes. The number associated with 
each connection is its flow capacity; transportation costs can be 
neglected. At node a, a commodity is available in unlimited quan- 
tities; at nodes b, c, and d there is a demand for 3, 9, and 4 units 
respectively. 

To meet the demands, it is necessary to increase the capacities of 
some connections in the network. The cost of increasing the capaci- 
ties of the connections by one unit are indicated in Fig. 6.27(b). 
Determine a minimal-cost improvement of the network, such that all 
demands can be met. 

FIG. 6.27(a) FIG. 6.27(b) 

Let G be a network model of a transportation problem, as in Fig. 

6.18, in which the sum of the supplies is greater than or equal to the 

sum of the demands: 

IMs 

q 

Ci = >: di, 

t=1 i=1 

and let G’ be the network derived from G by changing the cost of 

each arc (a; B;) from A; to 

Ay = Agave where y= min. {Ajj}. 

Prove that a flow f is a minimal-cost maximal flow of G if and only 

if f is a minimal-cost maximal flow of G’, and determine the 

difference between the total costs of the minimal-cost maximal flows 

in the two networks. 

(Note: the transformation of G to G’ simplifies the transportation 

problem in that on G’, at least one arc incident to each destination 

node 6; has a cost of zero; by sending the commodity along these 

arcs, one can easily obtain a zero-cost initial flow whose value is 

greater than zero. If the sum of the supplies is equal to the sum of the 

demands we can perform a further simplification, by changing the 
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cost of each arc (a;, B;) from Aj; to 

A i — ti = 6; where 6; — min {r ut 
=j=q 

in which case there will be at least one arc of zero cost incident from 

every source node q,.) 

Let f be a minimal-cost (but not necessarily maximal) flow on a 

network model G of a transportation problem (as in Fig. 6.18). We 

say that a source node a; of G is saturated by f if the arc (s, a;) is 

saturated; similarly, a destination node 8; is saturated by f if the arc 

(6;, t) is saturated. 

Let G(f) be the displacement network associated with f, and let 

H(f) be the network obtained from G(f) by deleting all the inverted 

arcs except those arcs (8;,a;) which are of non-zero capacity and 

whose endpoints are both saturated. Prove that if the network G(f) 

has any flow-augmenting cycles, then at least one of its minimal-cost 

flow-augmenting cycles appears in H(f). 

There are three sources a,, a2, and a3 of a commodity, which can 

supply 14, 6, and 9 units respectively. Three consumers 8, B2, and B3 

require 7, 10, and 8 units respectively. The relative costs of supplying 

one unit to each consumer, from each source, are given in the table 

below. 

Using the flow-augmentation method, determine the number of 

units to be sent from each source to each consumer, in order to meet 

the demands at minimum total cost. (Employ the network 

simplification method of Exercise 6.7 to obtain an initial flow; to find 

flow-augmenting cycles use the simplified displacement networks, as 

defined in Exercise 6.8.) 

A job in a workshop involves five tasks, to be assigned concurrently 
to five different machines. There are six machines available to 
perform these tasks; the time taken to set up each machine for a 
particular task is indicated in the table below. Find an assignment of 
machines to tasks for which the total set-up time is minimal. 
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Tasks 

1 kes) = aaa 

1 Ts Ae Saat gays. 

A Walle: WARS ean ane 

, Bi Apee dios Bo A 
Machines AP Bw ky, Ge 

Seno Ae Oe se 7 

Gmiles= eC. ie 6. 4 

6.11. (@) Transform the production planning problem of Example 6.5 into 
a minimal-cost maximal flow problem. 
(ii) Find an optimal production pattern over four months, if the 
production costs and monthly demands are as follows. 

Month 1 2 3 4 
Demand 8 12 15 14 
Unit production cost £6000 £8000 £8000 £7000 

The other production and storage capacities and costs are given 
below. 

Minimum monthly production: 10 units 

Maximum monthly production by overtime working: 5 units 
Additional cost of production by overtime working: £1000 per 

unit 

Storage capacity: 5 units 

Storage cost: £500 per unit per month. 

(iii) In practice a ‘handling cost’ may be incurred in placing the 

commodity in the warehouse and removing it subsequently. Con- 

struct a new network model of the planning problem which takes 

account of handling costs. 

6.12. A firm has two factories f; and f, which both manufacture the same 

commodity. Under normal working these factories produce 1000 and 

500 units respectively, at unit production costs of £180 and £200 

respectively. By overtime working the factory f, can produce up to 

300 additional units per week, at a unit cost of £230, while the factory 

f, can produce up to 100 additional units, at a unit cost of £240. 

The commodity is to be supplied to three customers ¢,, C2, and c3, 

which require 700, 600, and 400 units respectively. The cost of 
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sending one unit from each factory to each customer is given in the 

table below: 

Cy C2 C3 

fi £26 L220 els 

fo £39. £16 £18 

Determine the number of units to be produced by overtime 

working at each factory, and the total number of units to be sent from 

each factory to each customer, in order to meet the consumer 

demands at minimum total cost. 

6.13. The table below gives the departure times of passenger trains which 

run every day between stations A and B, and stations B and C. Each 

journey between A and B takes one hour, and each journey between 

B and C takes 90 minutes. 

Origin Destination Departure time 

A B 0800, 0930, 1530 hours 

B A 1400, 1500, 1600 hours 
B ic 1100, 1730 hours 
Cc B 1100, 1400 hours 

Each train crew must finish its duties at the station from which it 

starts, not more than eight hours after its starting time. Find the 

minimum number of crews required, and a corresponding allocation 

of crews to trains. (Any number of crews can travel as passengers on a 

train.) 

Additional notes and bibliography 

The theory of network flows was largely developed by Ford and Fulker- 

son (1962). The subject is also treated in depth by M. Horps (see Roy 
1970), Frank and Frisch (1971), and Lawler (1976c) who describe some 

extensions of the theory presented here, and further applications. 

For efficient algorithms to solve maximal flow problems and discussions 

of the complexity of these algorithms see Dinic (1970), Edmonds and Karp 

(1972), Zadeh (1972), Hopcroft and Karp (1973) and Even and Tarjan 

(1975). The complexity of algorithms for finding minimal-cost maximal 

flows is also discussed by Zadeh (1973a, 1973b). 

Algol programs based on the primal-dual method have been published, 

for the general minimal-cost maximal flow problem (Bray and Witzgall 
1968), and also for the transportation problem in particular (Bayer 1966). 
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A method of obtaining good initial flows, in applying flow-augmentation 

methods to transportation problems, is described by Mueller-Merbach 

(1966). 
For a linear programming approach to network-flow problems see 

Dantzig (1963) and Lawler (1976c). As an example to illustrate different 

methods of problem formulation and solution, the production planning 

problem of Example 6.5 has been solved by the Simplex method by Beale 

(1968), and Kaufmann (1967) solves a similar problem by dynamic pro- 

gramming. 

With reference to Exercise 6.4, applications of network-flow methods to 
the determination of cut sets and related problems are discussed by Frank 

and Frisch (1971), Lawler (1973), and Colorni (1974). 



Solutions to selected exercises 

iheile 

1.22. 

Tals: 

alles 

One 

The operation ° is not idempotent, but it is commutative (since the 

operation table is symmetrical). The element O is a neutral element, 

and all elements are invertible, the inverses of O, Land A being O, A 

and (J respectively. The set S does not contain a null element for °. 

The operation ° is cancellative (since in each row, and in each column, 

all the entries are distinct). 

. By setting y = x v x in the second identity of L, we obtain 

WAG IA Vie) ae 

From the first identity of L4 it follows (by setting y = x) that in the 

above identity the expression in brackets is equal to x, hence x v x = x. 

The identity x , x = x can be proved bya similar argument, with v and 

A interchanged. 

The conditions w <x and y Xz can be expressed as wv x =x and 

yvz=z respectively. From these identities we obtain (wv x)v 

(y vz) =x vz, hence (w v y) v(x vz) =x v z, which can be written as 
WVYSXVZzZ. 

Since the two inequalities are dual, it suffices to prove the first. Now 
the relations y v z>y and y vz >z imply (by L11) that 

xA(yvz)>xay and xa(yvz)>xaz 

and therefore (by L11, and the first part of L1) 

XA(yVvz)=(xay)v(xAnz). 

; x Xz implies that x v(yaz)=(xvy)a(xvz)=(xvy)az. 

xvV(XAy=(v¥)A(xvy)=un(xvy)=xvy; 
XA(KVY)=(XAX)V(xny)=dv(xay)=xny. 

(i) The tree search can be executed by repeated application of the 
two following rules. 

Simplification rule: On a graph G, any node x, which is the 
endpoint of a loop belongs to every feedback node set of G;; these 
feedback node sets (with x, removed) are the feedback node sets of 
the subgraph of G obtained by deleting x,. 
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Specialization rule: Let x, be any node of a graph G which is not 

the endpoint of a loop, and let us decompose the set M of feedback 

node sets of G into two subsets M, ={Y¢M|x,¢ Y} and Mz = 

{Y<¢M|x,¢ Y}. The members of M,, with x, removed, are the 

feedback node sets of the subgraph G, of G obtained by deleting x,; 

while M; is the set of feedback node sets of the graph G; which is 

obtained from G by (a) joining each predecessor x; of x, to each 

successor x, of x, by an arc (x, x,)—unless G contains this arc 

already—and then (b) removing the node x,. 

(ii) To find a feedback node set of minimum cardinality it is con- 

venient first to apply the above simplification rule until all loops have 

been removed, and then to-apply the following rule. 

Second simplification rule: If G has a node x, which is not the 

endpoint of a loop, and for which p*(x,)<1 and p (x,) <1, then 

there exists a feedback node set of minimum cardinality which does 

not contain x; (which implies that G can be replaced by the graph Gg 

defined above). 
Note that the application of this rule may create loops, allowing 

further applications of the first simplification rule, which in turn may 

permit further applications of the second rule, and so on. 

The search can also be made more efficient by applying the 

‘branch-and-bound’ principle, in the following way. In the course of 

the search, we keep a record of the cardinality c of the smallest 

feedback node set yet discovered (initially, c is set to 00); if for any 

sub-problem the total number of nodes already assigned to a feed- 

back node set exceeds c then exploration of this sub-problem is 

terminated, since it could not yield any improved solutions. 

Since (cf. (3.20)) A*=E v AA*, 

Re Pia) [Pe ee elas a ee da 

By Bn D1, En. An Ar By, Bn é 

and therefore 

By, =E\y,VAiBir Vv Ai2Ba, (1) 

By =AwBi2V Ai2B2, (2) 

By, =A2nBii V A22Ba, (3) 

By = Ex. V Ar Bi2 V A22B22. (4) 

The equations (1) and (2) can be rewritten as 

By =A(A12Bai Vv E11), (5S) 

By= Aji A12B22, (6) 
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and substituting these expressions for B,, and By, in (3) and (4) we 

obtain 

By, = (An AA V A22)Ba VAnAn, (7) 

Bo = Ex V (An ANA? V A22)Br2. (8) 

From (8), 

By = (An AHA Vv A22)* (9) 

and from (7) and (8), 

By, = (An ANA v A2)*AnAn = ByAnAjs. (10) 

3.2. Let A be a stable matrix in M,,(P), and let A* =[aj;] denote its 

closure. By (3.23), A*A* = A* and therefore, by the definition of 

matrix multiplication, 

ands az: GA aS 0): 

Since multiplication has the cancellative property it follows that 

Gare (isi ere) 

Now let y be any elementary cycle on the graph of A, let k be the 

order of y, and let x; be any node on y. Then by (3.44), 

I(y) <a <a*. 

It follows that /(y) <e, as required. 

B53) 

Activity Start ay 9b cy “duite f Pan eat i j Finish 

Rank 0 Lanes) ENO. 2s 0S 2 SG ee 7 
Earliest starting 

time 0 On esit OO}. 458- SSee y5'1 SD Se O4 1S" 3G65 
Latest starting 

time =o 2 465" —5' 26 80) 555 OOS S8re49, 60 

Slack time Ss) PA Ss Se I Sy Ie SBD 

The activity network has one critical path: 

Start>c>g>h>e->b> Finish, 

whose length must be reduced by five time-units for the project to be 

completed on time. 

3.4. The state diagram of the system is shown in Fig. E.1, in which the 

labels on the arcs are the costs of the corresponding transitions. 
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ib 100 100 

S OK (SE 2 Vise sll acl 
i er (} 

Bi Aa ies Phe 9 0. 
Elapsed time (years) 

FIG. E.1 

The adjacency matrix of this state diagram, regarded as a graph 

labelled with P>, has off-diagonal blocks (cf. Example 3.22) 

M© = [100 10], Mo os be 10 a 

: LOO socom 25) 

100 10 © ow 

Me 0 COZ =| 

100 co ow 60 

and 

q 100 10 © ow 

100° co” 25 Oy M Ni tae for 3<k <9. 

100 © © © 

The successive y“’-vectors obtained by the dynamic programming 

algorithm are listed below. (The arrows indicate, for each element 

2 ‘k—) Which determine its y<, those elements of the preceding vector y 

value.) In this particular problem there is only one optimal policy— 

yO yo y? y® y® y® y y® y® y® 

Ok 100 110] [210]. ny 7] 2401s 71 300} 2D) 7/]375] 7) 435 

ox 110 x 120 220 | \/ 203 250 310|\/¥1G40) 385 

135 140 245 275 335 

(95 ‘L195 a 200f {305} \} 290} \{335] \|395 

which is to replace the reactor at the end of the fourth and seventh 

years. The total cost under this policy is £365 000. 
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3.5. The required paths are obtained by solving the set of equations 

3.6. 

y=A’y ve, where A is the adjacency matrix of the graph, using the 

path algebras P:, P;, and P, of Section 3.2. The y-vectors and 

s-vectors (as defined in Exercise 3.25) obtained in each case are 

(i) 0.7 4 (ii) 0.8 2 
0 0 co 0 

0.2 2 oS) @ Tat. 
Osan se nngey IN O6N > Er 

0.8 1 0.6 4 
0.3 3 0.5 5 

(iii) 0.8 2 
1 0 

AD2Sh, Sa ned 
2G Se ae 

0.3 4 
0.2 4 

The s-vectors give the sequences of nodes on the required paths in 

reverse order, since to solve the problem we have effectively reversed 

all the arcs of the graph. 

The Hamiltonian cycles on an n-node graph G can be obtained by 

finding all the elementary cycles which terminate on some arbitrarily 

chosen node of G, and selecting from these all the cycles of order n. 

Using the path algebra Ps, the elementary cycles terminating on a 

node x; are given by the ith entry of the vector y which satisfies the 

equation y = Ay v b, where A is the adjacency matrix of G and bis its 

ith column vector (see Table 3.2). 

The successive y-vectors obtained by the double-sweep method 

are listed below, for the case where b is the last column of A. (The 

brackets in the y-vectors indicate the strings which are carried over 

from previous iterations.) 

y=b y” y? y> 

b (b), af (b, af) (b, af), adcb 

cb, caf (cb, caf) 
f (f) (f), dcb (f, dcb), egcb 

gcb, gcaf, hf, hdcb (gcb, gcaf, hf, hdcb) 

igcb, igcaf, ihf, ihdcb (igcb, igcaf, ihf, ihdcb) 

From the final entry in the y-vector we find that the graph has two 

Hamiltonian cycles, igcaf, and ihdcb. 
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(ii) Since “EvE<L*=<A* and U<L*U=<A* we _ have 
EvLvU <A%*, and therefore y\? <yi<A*b. 
(iii) In case ar we have U = ¢ and therefore 

=(EVL)b. and .ySi=y%)=L*b: 

the Gauss-Seidel and double-sweep methods become identical, and 

require Only one iteration. In case (b), where L = 9, 

yi =yoe =(Ev U)*b and--y% = U*b: 

the Jacobi and Gauss-Seidel methods become identical, and the 

double-sweep method requires only one iteration. In case (c) we have 

L*=EvL and U*=Ev U and consequently 

ys? =(EvLvU)*b and You Yu = (Ev LvVUVLU)'D; 

the Gauss-Seidel and double-sweep methods again become iden- 

tical. 

(i) (wv xyz)* =(w*xyz)*w* (by (3.27)) 

=(e v w*x(yzw*x)*yz)w* (by (3.24)) 

=w*v w*x(yzw*x)*yzw*. 

(ii) B* =(A vewe')* 

=A*v A*e(cejA*e;)*ceA* 

=A* ve(ca*)*od. 

The following algorithm will detect a negative cycle on G. (In this 

algorithm, the matrix M =[m,;] is initially a copy of the adjacency 

matrix of G.) 

Step1 [Initialize] k<- 0, h<0. 

Step2 [Augment k]k<k+1.If k>n goto End. 

Step3 [Set row index] i<k. 

Step4  [Augment row index] i<i+1. If i>n return to Step 2. 

Step5 [Set column index] j <i. 

Step6 [Test for negative cycle]. If mx + my; <0 set h <i and go to 
End. 

Step 7 [Augment column index]/<j+1.Ifj>n return to Step 4. 

Step8 [Modify M]. Set m,;<min{m,;,m,+m,} and 
my <—min {m,;, my +m}. Return to Step 7. 

End 
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4.2. 

4.3. 

4.7. 
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If on termination h =0 then G has no cycles of negative length. 

Otherwise, the subgraph H of G generated by {x1, x2,..-, Xe} U {xy} 

contains a cycle of negative length, and this cycle traverses x,. To 

determine such a cycle, one can use Yen’s method to find shortest 

paths from x, to each of its predecessors, on the partial graph of H 

obtained by removing the arcs incident to xp. 

The weak closure matrix can be constructed using the simplified form 

(3.91) of the Jordan method. Here 

O- fat 

CG *O. jp he ob 

A=l\te. 8-2 - O Ot. 

{d} O fe} 0 ff} 
Lh np AD ne Sew OD 

{a, b, c} {a} tae bt OPO 

{b,c} {a,b,c} {b} Cae 

A=| {c} fanch math. che Oe 

¢ {a} d Q {fh 
{g} {a,g} {a,b,g} O O 

(iii) The rules for constructing T from T are as follows. In case (a), 

remove from T the arc incident to x;, and insert the arc (x;, x;). 
In case (b), T is identical to T. 

In case (c), find the node x, which is of highest rank in the set 

P(x) a) f-(x;); then remove from T the arc incident to x,, and insert 

the arc (x, x;). 

(i) G is its own leaf graph. 

(ii) In case (a), G, is identical to G;. In case (b), let X, and X, be the 

node sets of the leaves of G which contain the endpoints of e; then G, 

is the condensation of G, which is obtained by coalescing all the 

nodes of G; which lie on its elementary chain joining X, to_X,. 

Only four matched pairs can be obtained from the batch. As an 

example of a maximum matching we have {[2, 3], [4,5], [6, 7], 
[9, 10]}. 

Let G be the simple graph whose nodes correspond to the television 

stations, two nodes x; and x; being joined by an edge if the entry in the 
ith row and jth column of the table is a cross. Then a minimum 

coloration of G defines an appropriate assignment of frequencies (the 
different colours representing different frequencies). Using the 
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simplification rules of Section 5.4.2 we find that four different 

frequencies are required, one possible assignment being as follows. 

Station 1 2 3 4 5 6 i 

Frequency 1 2 3 1 2 3 4 

Split each node x; (other than the source and sink) into two nodes x/ 

and x7, in such a way that x/ becomes the terminal endpoint of all arcs 

previously incident to x; and x/ becomes the initial endpoint of all 

arcs previously incident from x,, and join x/ and x7 by an arc (xj, x7) of 

capacity k;. 

Replace each bilateral connection by a pair of arcs with opposite 

orientations, both these arcs having the same capacity as the original 

connection. Then a flow of the required form can be obtained from 

any maximal flow on the modified network, by reducing the flows in 

the two arcs representing each bilateral connection by the lesser of 

their two values. 

The network model is precisely the same as that for the shipping 

problem of Example 6.1, with each arc (a;, B;) having a capacity 

w; = 1. If a maximal flow does not saturate all the arcs incident from 

the source then the problem has no solution; otherwise, any maximal 

flow in which the arc flows are all integers defines a seating arrange- 

ment, through the rule that if the flow in arc (q@;, B;) is non-zero then a 

member of family a; is assigned to car 6;. 

To obtain an (A, B)-separating arc set on a graph G, assign a unit 

capacity to each arc of G, and add to G 

(i) asource node x,, with arcs of infinite capacity from s to each node 

of A, 

(ii) a sink node x,, with arcs of infinite capacity from each node of B 

10 %e 

(iii) a return arc (x,, x,) of infinite capacity. 

Let f be a maximal flow on this network, let X' be the set of all 

nodes which are accessible from x, on the corresponding displace- 

ment network (with arcs of zero capacity removed), and let X” be the 

set of remaining nodes. Then (X’, X") isan (A, B)-separating arc set 

of minimum cardinality. 

Applying this technique to the graph of Fig. 6.25 we obtain the 

separating arc set {(x3, x4), (x7, X4), (x7, Xs)}. 

To obtain an (A, B)-separating node set assign an infinite capacity 

to each arc of G, assign a unit capacity to each node of G, and append 
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to G asource and sink, as prescribed in (i)-(iii) above. Then replace 

each node of unit capacity by a pair of nodes joined by an arc of unit 

capacity (as in Exercise 6.1). Find a maximal flow on this network, 

and the corresponding cut (X’, X”), as described above. This cut (in 

which every arc represents a node of unit capacity on the original 

graph) determines an (A, B)-separating node set of minimum 

cardinality. 

Applying this technique to the graph of Fig. 6.25 we obtain the 

separating node set {x3, x7}. 

A network G is constructed from the network of Fig. 6.26 as follows: 

(i) each connection in Fig. 6.26 is replaced by a pair of arcs (as in 

Exercise 6.2); 

(ii) a source node s is added, with arcs (s,a) and (s,b) having 

capacities 8 and 2 respectively and costs 5 and 6 respectively; 

(iii) a sink node ¢ is added, with arcs (d, t) and (e, t) having capacities 

6 and 1 respectively and: zero costs; 

(iv) the source and sink are joined by a return arc (¢, s) of infinite 

capacity and zero cost. 

A minimal-cost maximal flow is then constructed on G. For this 

particular network, only one such flow exists; its non-zero arc flows 

are as follows. 

Are” (sia) o(s.ib) (aso) aie) “at e)” (bhc)s (ed) eva)e (ds 2) (e, 2) 

Flow: 5 2 2 1 2 4 5 1 6 1 

The flows in the arcs (s, a) and (s, b) are the amounts to be supplied by 

the producers a and b respectively, and the flows in the arcs (d, t) and 
(e, t) are the amounts supplied to the consumers at d and e; it is 

evident that the consumer demands are met. The total cost of the 

flow is 95. 

The problem involves finding a minimal-cost maximal flow through 

the network of Fig. E.2, where the first number on each connection 

represents its capacity, the second its cost; the flows in the connec- 

tions of infinite capacity between the nodes a, b, c, and d then 

represent the required augmentations in the capacities of the cor- 

responding existing connections. 

A minimal-cost improvement (at a total cost of 7) is obtained by 
increasing the capacities of each of the connections a—d and b-c by 

one unit. : 
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FIG. E.2 

Let f be any maximal flow and let and ¥' denote its costs on the 

networks G and G' respectively. Then 

Dp q p q 

L'= X X fir iy = os, a fig(Ay — ¥;) 

= y y fds ¥. a fii- 
i=1 j=1 

Now 

P 4 

yy fa 2 
i=i j=1 

and 

Pp q q Pp q 

YY fin= E(w E fi)= 5 vids 
i=1 j=1 j=1 i=1 j=1 

hence 

(i) Since flow-augmenting cycles are elementary, and traverse the 
arc (t,5), it is possible to remove from G(f) all the inverted arcs 

incident to s, and all those which are incident from ¢, without 

destroying any flow-augmenting cycles. 

(ii) A flow-augmenting cycle y on G(f) is composed of a path wu 
from s to ¢, together with the arc (t, s). The path w is either a direct 

path of the form 

(s, ai), (ai, B; )(B; t) 
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or an indirect path of the form 

(s, Qi), (Qin, Bi)» (Bi, Qin), sey (a; B;.), (B;, t). 

From the flow conservation condition it follows that if w is indirect 

then, corresponding to each inverted arc (B;,, @i,.,) on this path, Gif) 

contains two inverted arcs (a;,,,,5) and (¢, B;,) which are both of 

non-zero capacity. Since both these arcs have zero unit costs, and 

G(f) has no cost-reducing cycles, all the segments of « which are of 

the form 

(s, Qi), (aes B;,)> teey (Bixs ines) where 1 = k << lr, 

and 

(Bixs Chee or ey (Qi, Bi,)s (Bis t) where 1 = k oS r, 

are of non-negative cost. It follows that for every unsaturated source 

node a;,,, on uw, the path 

(s, ines)» (naa Bicsa)s Mee (B;, is 

together with the arc (¢, s), forms a flow-augmenting cycle whose cost 

is not greater than the cost of y; similarly, for every unsaturated 

destination node 8;, on wu, the path 

(s, Qi), (ai, Bi)> ees (Bis t) 

together with the arc (¢, s) forms a flow-augmenting cycle, whose cost 

is not greater than the cost of y. Hence all the inverted arcs of the 

form (8;, a;) whose endpoints are not both saturated can be removed 

from G(f), without destroying all its minimal-cost paths. 

Using the technique described in Exercise 6.7 we obtain the modified 

table of transportation costs shown in Fig. E.3. Then we arbitrarily 

Bi B82 6s 
Qe Os 

a2 0 6 0 

a3 qj 0 0 

Fic. E.3 FIG. E.4 

choose a feasible flow, using the zero-cost arcs, which is shown in Fig. 
E.4. Starting with this flow we then apply the flow-augmentation 

method. The displacement networks (simplified in the manner 

described in Exercise 6.8) and the successive flows are shown in Fig. 
E.5. (Only two flow augmentations are required.) 
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Successive displacement networks Successive network flows 
The numbers indicate arc capaci- The numbers indicate arc capaci- 
ties and unit costs; bold lines ties and flows; bold lines indicate 
indicate minimal-cost flow-aug- saturated arcs. 
menting cycles. 

6.10. 

6.11. 

6.12. 

FIG. E.5 

The solution of this problem can be simplified by the techniques of 

Exercises 6.7 and 6.8. In an optimal assignment, the total time spent 

setting up machines is 12. There are two such assignments: 

Task: Task: 5 

6 Machine: Machine: Ne wn WwW Pp ar WN RW NF ane.) 

The numbers of units to be produced by overtime working in the 

months 1, 2, 3, and 4 are 3, 0, 2, and 4, respectively. 

The problem involves the determination of a minimal-cost circula- 

tion on the network of Fig. E.6, in which the three numbers on each 

arc are its lower flow bound, capacity and cost (all supplies and 
demands having been scaled down by a factor of 100 for con- 

venience). By applying the transformation described in Sections 
6.8.3 and 6.8.4, this problem can be reduced to a minimal-cost 
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Production Transportation | Consumption 
| 

00 0 (17) 

FiG: BF 

maximal flow problem on the network of Fig. E.7, in which the first 

number on each arc is its capacity and the second is its cost. (The 

flows in the arcs (r, f;) and (r, f2) represent the amounts produced by 

overtime working.) This particular problem has a unique solution, 

for which the arc flows are indicated on Fig. E.7 in brackets. 

The factory f; produces 200 units by overtime working, and the 

amount sent from each factory to each consumer is as follows: 

700 500 — 

foul = onl 0) 400 

The total cost of production and transportation is £363 000. 

The daily activity of a train crew can be visualized as the traversal of 

an elementary cycle on Fig. E.8, where 
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—Time 

800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 
al | 1 AY it l ! 1 at i L abs 

Station A: 

Station B: 

Station C: 

(i) traversal of a horizontal arc drawn as a solid line represents time 

spent waiting in a station, 

(ii) traversal of a diagonal arc represents a journey on a train, and 

(iii) traversal of an arc drawn as a broken line represents time spent 

off duty. 

Lower flow bounds, capacities, and costs are assigned to the arcs as 

follows: 

(i) each horizontal arc is assigned a lower flow bound of zero, infinite 

capacity and zero cost; 

(ii) each diagonal arc is assigned a lower flow bound of one, infinite 

capacity and zero cost; 

(iii) each arc drawn as a broken line is assigned a lower flow bound of 

zero, infinite capacity and a cost of one. 

Any decomposition into elementary cyclic flows of an integer- 

valued minimal-cost circulation on this network determines an 

appropriate allocation of crews to trains. In this problem, three crews 

are required; a feasible allocation of three crews p, q, and r to the 

trains is indicated on the diagram. 
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