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This text is designed for courses in finite mathematics and mathematics for 

the liberal arts student. It offers two main novelities: an early and substantial 

treatment of graphs (networks) and an explicit treatment of the process of 
mathematical modeling. 

Beginning the book with graph theory seems to us advantageous 

because graph theory not only has many useful applications, but also is so 

conceptually simple that students find it fun. We believe it is a more exciting 

way to start the course than the more traditional set theory and logic. 

Our treatment of modeling brings to the surface what is implicit in any 

book which discusses mathematical applications. Although it is a small step, 

it seems to us desirable and potentially very useful for mathematicians to 

comment on the interface between mathematics and the subjects to which 

it is applied. The concept of a model also provides some unity for the 

diverse subjects discussed in this book. 

The philosophy which guides our choice of subject matter and approach 

is this: The best way to teach mathematics to the nonmathematics major is 

to present him with mathematics which is interesting, useful, and accessible. 

This means, for example, that we avoid axiomatics, formality, and excessive 

rigor. 
Most standard topics for a finite mathematics course are included: 

probability, matrices, game theory, and linear programming. Although 

there is no separate chapter on matrices, they appear in connection with 

graphs in the chapter on computers and later in the chapter on probability. 

Set theory has been placed in an appendix so that the instructor can insert 

it where he likes. It is used in the text so sparingly that in the classroom we 
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usually introduce set concepts only when needed. Chapter 5 on computers 

is designed to give students a general understanding and we avoid the 

intricacies of a programming language. The concepts of algorithms, flow 

charts, and machine language are covered. In addition there are short dis¬ 

cussions on binary numbers and circuit theory. 

Chapter 11 on difference equations and the limits to growth is included 

because we feel that a strong case can be made for the inclusion of this 

material in finite mathematics courses. Difference equations, being discrete 

analogues of differential equations, are extremely useful in modeling many 

dynamic processes of ever increasing concern to us, such as ecological 

balances and the exponential growth tendencies in population and in pollu¬ 

tion. Some of these difference equations are more realistic models than 

differential equations and have the advantage of not requiring knowledge of 

calculus. 

Chapters 1 through 5 should be taught in sequential order. The sub¬ 

sequent chapters are essentially independent of one another. Chapter 7 
(Statistics) has some material helpful for Chapter 8 (Probability), and Chap¬ 

ter 11 (Difference Equations) may require Sections 1 through 4 of Chapter 6 

(Functional Models). Although Chapter 9 (Game Theory) can be best ap¬ 

preciated with some understanding of elementary probability (Chapter 8, 

Sections 8.1, 8.2, and 8.6), we have taught Chapter 9 without first covering 
Chapter 8 with considerable success. 

We have starred sections which we feel many instructors may wish to 

skip either because they are more difficult than the other sections or because 

they are not in the main stream of the content of the chapter. 

We have used examples from the social sciences and life sciences when¬ 

ever possible since we feel that these areas have sometimes been slighted. 

With this in mind, we would appreciate receiving examples of interesting 

but simple mathematical models from the social sciences and life sciences. 

Please send such examples to J. Malkevitch, Department of Mathematics, 
York College, Jamaica, New York 11432. 

Many persons have contributed to this book by making suggestions 

and corrections and by assisting in the preparation of the manuscript. We 

wish to extend our sincere thanks to all of them. Particular thanks are due 

to Professor Leroy Dickey and Professor Kenneth Hoffman for reading the 

manuscript and making helpful suggestions; to Reatha C. King, Dean for 

the Sciences and Mathematics at York College (CUNY) for her interest and 
unfailing support; and to Arthur Wester, our editor. 

Joseph Malkevitch 

Walter Meyer 
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graphs in disguise 

Here is a collection of problems. Try your hand at solving some of them. 

These problems are chosen from a wide variety of fields, including nutri¬ 

tion, business, and urban planning. The mathematics we develop in this 

book will enable us to solve these and other practical problems arising in 

many different areas. In addition to developing the mathematics necessary to 

answer specific questions, we shall be concerned with the process by which 

practical questions are converted into mathematical ones. This process, 

called modeling, is the subject of Chapter 2. 

MAILMAN PROBLEM 

A mailman must distribute mail to all the houses along the boldly lined 

sides of the streets indicated in the map shown in Figure 1.1. He needs to 

begin and end his route at the Post Office, marked A on the map, and he 

would like to make his route as efficient as possible. The mailman takes his 

problem to MAIL (Mathematical Aid to Inefficient Lettercarriers), which 

designs a route for him according to the following principle: Each boldly 

lined sidewalk should be traversed only once. In other words, it should 

never be necessary to travel down a sidewalk where deliveries have already 

been made just for the purpose of reaching another part of the route. 

QUESTION 1 

MAIL found such a route. Can you? 

1 



MAIL DISTRIBUTOR PROBLEM 

Suppose the Post Office Department wishes to assist the mailman of 

the previous problem by hiring a mail distributor to deposit bundles of mail 

in special boxes, one of which is located at some corner of each intersection 

of the mailman’s route (see Figure 1.1). The mail distributor also needs to 

begin and end at the Post Office, marked A in Figure 1.1, and wants to have 

a route that is as efficient as possible. Since the distributor is using a truck, 

however, his idea of efficiency is different from that of the mailman. He 

decides that no intersection, other than A, should be passed through more 

than once. 

The distributor takes his problem to MAID (Mathematical Aid to 

Inefficient Distributors). 

QUESTION 2 

What did MAID tell him? 

SCHEDULING PROBLEM 

The student government of Utopia State College is holding a sympo¬ 

sium on urban problems featuring six speakers on the opening day. Each 
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speaker plans an hour lecture. If the speakers are scheduled in six different 

time slots, the day’s activities will be a bit lengthy. On the other hand, since 

several speakers are especially popular, it is undesirable that they speak at 

the same hour because this would require a person to choose which of two 

or more especially popular speakers he wants to hear. After some reflection, 

it is decided that there should be no more than four time slots. The following 

table, constructed on the basis of a student poll, indicates which speakers 

may or may not speak simultaneously. One reads the table in the following 

way: the X in the column labeled A and the row labeled E indicates that 

speakers labeled A and E should not speak simultaneously. If there is no 

tabular entry in a given row and column, this indicates that the corresponding 

speakers can speak simultaneously. 

A B C D E F 

A X 

B 

C X X X 

D X X X 

E X X X X 

F X X X 

QUESTION 3 

Can this symposium be scheduled in four time slots, subject to the restric¬ 

tions given in the table? 

PAPER RECYCLING PROBLEM 

A paper recycling company uses two materials, scrap paper and scrap 

cloth, to make two different grades of recycled paper. A single batch of grade 

A recycled paper is made from 4 tons of cloth and 18 tons of paper, while 

one batch of grade B needs 1 ton of cloth and 15 tons of paper. The company 

has on hand 10 tons of scrap cloth and 66 tons of scrap paper. There is a 

$1000 profit on each batch of grade A paper and a $500 profit on each batch 

of grade B paper. It is not absolutely necessary to use up all the paper and 

cloth. 
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QUESTION 4 

If the company produces 1 batch of each type, it will use 5 tons of scrap cloth 

and 33 tons of scrap paper, which is less than the available supply. This 

produces a profit of $1500. Can you do better without exceeding available 

supplies ? 
I 

QUESTION 5 

How many batches of each type should the company make to maximize its 

profit ? 

THE MODEL HOME PROBLEM 

A contractor who plans a housing development wishes to construct 

some model homes to advertise and to encourage advance sales. Since he 

is anxious to have them done as soon as possible, he wishes to minimize 

the time required for their construction. He divides the job into a number of 

component activities as listed in the table below. The second column of the 

table lists the time required for the various activities. To save time the con¬ 

tractor decides to perform activities simultaneously whenever possible since 

he has sufficient manpower available to do this. Of course, it is not possible 

to perform certain activities simultaneously. For example, the main structure 

cannot be started until after the foundation has been poured. The last column 

of the table indicates which activities must immediately precede certain others. 

For example, line 3 is interpreted to mean that the activity of building the 

main structure takes 14 days and that this activity can be started immediately 

after the foundation has been completed. Note that since site preparation 

immediately precedes the building of the foundation, building the main 

structure is also preceded, though not immediately, by site preparation. 

Activity Time (days) 

Immediate 

Predecessors 

(1) Site preparation 2 None 

(2) Build foundation 3 Activity 1 

(3) Build main structure 14 Activity 2 

(4) Electric wiring 5 Activity 3 

(5) Plumbing 4 Activity 3 

(6) Interior finishing 7 Activities 4 and 5 

(7) Exterior finishing 11 Activity 3 

(8) Furnishing 2 Activities 6 and 7 

(9) Landscaping 4 Activity 7 
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QUESTION 6 

What is the minimum amount of time required to complete the whole job? 

QUESTION 7 

If the job begins on day 1, on which days should the various component 

activities begin to achieve this minimum amount of time? 



modeling 

2. 7 introduction 

In order to solve the problems in Chapter 1, we shall discuss in this chapter 

some mathematical models of a special type. To help understand what 

a mathematical model is, let us first discuss our commonsense understanding 

of the word model. 

A good place to start might be with model airplanes. It is interesting 

to note how far model airplanes are from being true airplanes. For example, 

they are usually made of balsa wood or plastic, materials that are absurdly 

inappropriate for construction of real airplanes. The parts are put together 

with glue instead of rivets or welded joints, the size is way off, and it is 

common for model planes not to have any moving parts. Nevertheless, 

everyone recognizes a model airplane for what it is, a representation of an 

airplane. 

Similarly, when a chemist makes a model of a complicated molecule, 

he uses round balls to represent atoms and connects these balls with rods, 

which represent the chemical bonds. Round balls aren’t much like atoms 

nor are rods much like chemical bonds, but the resulting assemblage (see, for 

instance, Figure 2.1) is a tolerably good model for a molecule. 

These examples illustrate some important points about models: 

(1) The model may differ substantially from the object or situation it 
represents. 

(2) The model is simpler than the object or situation it represents. 

6 



Hydrogen 

Model airplanes are usually constructed just for the fun of it. Models 

often serve practical functions as well as aesthetic ones, however. A case in 

point would be the models or prototypes constructed by aircraft companies 

for the purpose of testing various design features for a plane that is just 

coming off the drawing boards. For example, the company may be concerned 

about the possibility of a wing snapping off an actual aircraft in flight, result¬ 

ing in an air disaster. To test whether or not a new wing design will withstand 

the stresses it will encounter, a model may be constructed for testing in a wind 

tunnel. For the sake of simplicity and economy, design features such as 

landing gear and instrument panels that are not essential to the problem 

under consideration, namely, stresses on the wing, will not be included in 

the model. 

For another insight into models, suppose for a moment you wished 

to take a cross-country drive from Miami to Seattle. How would you deter¬ 

mine your route? One possibility would be to hop into your car and drive 

off, determining your route as you go along on the basis of road signs, trial 

and error, and your knowledge of geography. This seems so absurd and the 

alternative of using a road map is so obviously sensible that discussion may 

appear superfluous. Nevertheless, it is worth remarking that modeling the 

road system of the United States by a road map is a logically more sophisti¬ 

cated idea than simply getting in your car and driving off. The fact that map 

reading or map making is so simple and familiar to us in no way alters the 

fact that it is an important example of mathematical modeling. When man 

made his first map, he had made a tremendous conceptual stride. 

Just as aircraft models are only approximations of real airplanes, road 

maps do not reflect every detail of the geography and cloverleafery they 

represent. Not only are the small twists, turns, and ups and downs straighten¬ 

ed out, but certain more important details like toll rates and local speed limits 

are usually not included. Worst of all, small roads, such as the back streets 

of Topeka, may not even be on the map. Some of these details could be 

included but only at the cost of others because a map is limited in size and 

must be clear and readable. Precisely what information will be put into the 

map will depend on what the map is to be used for. A great deal is left to the 

judgment of the map maker. 

7 
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The field of medicine is one in which the concept of a model is especially 

valuable. The value that we place on human life is so high that risking new 

drugs and speculative treatments on human patients is undesirable. Animals 

such as monkeys, dogs, rats, and mice are used as models for human beings. 

New drugs or surgical treatments are tried on these animals before testing 

them on human beings. For example, heart transplants were attempted on 

dogs much earlier than on human beings. Also, mechanical hearts have been 

transplanted into animals as a preparation for the development of a successful 

mechanical heart for humans. 

In summary, then, a model is a representation of something else. It rarely 

reflects all the details of the reality it represents; for the sake of simplicity or 

economy, some things are left out. The simplest function of such a model is 

to give us an idea of what reality is like, as in the case of a hobbyist’s model 

airplane. Often there is a more important function: Certain tests or investi¬ 

gations can be performed upon the model more simply or economically than 

upon whatever the model represents. 

EXERCISES 2.1 

1. List some other details about roads and terrain that are left off road 

maps. Can you illustrate how these details might be of interest to the 
motorist? 

2. A filter is a mechanical object that is sometimes regarded as a crude 

model for the human kidney. Here are some other mechanisms that 

might be appropriate models for parts of the body. Can you match up 
each mechanism with a bodily organ ? 

(a) Transport network Blood system 
(b) Pump Brain 
(c) Energy storage cell Eye 
(d) Computer Heart 
(e) Electrical wires Female breast 
(f) Camera Liver 
(g) Baby’s bottle Nerves 

3. There are numerous contexts in which the word model occurs but 

which were not discussed in the text. An example might be model home. 

Can you give other examples? How do these examples fit the descrip¬ 
tion in the last paragraph of this section? 

4. When is a globe a better model for the earth than a flat map of the 

world? When is a flat map a better model than a globe? 

5. A sphere is a mathematical idealization of certain objects that occur in 

the real world. Name four such objects and mention some ways in 
which they differ from a sphere. 
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6. Children’s toys are often models of objects adults use. Give six exam¬ 
ples. 

7. Explain why rats are preferred to monkeys as models for human beings 
in certain medical and psychological experiments. 

8. A psychologist is doing an experiment in an attempt to investigate 
learning behavior in humans. Explain why he might run mice rather 
than monkeys through a maze. 

9. * Consult your local organic chemist to find out the uses of ball-and-rod 
models in chemistry. 

10. * Investigate the history of the drug thalidomide. What danger does this 
spell for the transfer of drugs from experimental animals to human 
beings? 

11. * How did the use of animals as models affect the marketing of cyclamates 
and DDT in the United States? 

2.2 a model for the mailman 

In this section we shall give an example of the special type of mathematical 
modeling we are interested in and we shall see how it sheds light on the 
mailman problem. Our models will not be physical ones such as the model 
aircraft. Rather, they will resemble road maps, in that they will be diagrams 
that can be drawn on a piece of paper. The sort of diagrams we have in mind 
are like those in Figure 2.2. When we get around to making formal defini¬ 
tions, we shall call such diagrams graphs. 

Figure 2.2 
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Our first step in modeling the mailman problem is to simplify the map 

of Figure 1.1 somewhat. We shall assume that the amount of walking the 

mailman does across intersections is small enough to be neglected and we shall 

replace each intersection with a dot, henceforth called a vertex. A curved or 

straight line segment, henceforth called an edge, drawn between two such 

dots will represent a sidewalk connecting the two intersections and along 

which the mailman needs to deliver mail. In this way we represent Figure 1.1 

by the graph in Figure 2.3. Note that only the boldly lined sidewalks from 

Figure 1.1 are represented in Figure 2.3. 

Figure 2.3 

Recall that the mailman’s job calls for him to travel down each edge 

of the graph. In some routes, however, it would be necessary for him to 

travel some sidewalk (edge) a second time, even after he delivered mail along 

that sidewalk (edge) once. This is precisely what MAIL wishes to avoid in 

designing a route for him. A route which starts at a specific vertex (corner), 

say, A, and ends at the same vertex and which uses each edge exactly once is 

called an Euler circuit. Such a route does exist in Figure 2.3, and you can 

probably find one by trial and error. Figure 2.4 shows an Euler circuit. (Just 

follow the numbers in the directions indicated by the arrows.) In Chapter 4 

we shall find an elegant way to determine without trial and error whether 

a graph of this sort has an Euler circuit and, if it does, how to find one. 

Before proceeding further, let us compare what we have done here to 

our earlier example of the model airplane in the windtunnel. In order to test 
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Figure 2.4 

wing stress, the aircraft company builds a model of the proposed plane which 

is accurate only in those features which affect wing stress in a major way. 

In particular, landing gear, which has a minor and only indirect effect on 

wing stress, is left out. The mailman, in order to find the best route, draws 

a model of his route and plays pencil and paper games with his model instead 

of actually walking through the streets. This is analogous to the decision of 

the aircraft company to work in a wind tunnel rather than in the air. The 

model the mailman chooses represents each intersection by a single dot. 

Implicit in this is the assumption that he can disregard the time and effort 

spent in crossing intersections. This is analogous to the assumption that 

the landing apparatus doesn’t affect wing stress a great deal. 

After one has completed investigations in the model, one needs to 

consider what all this means for the original situation. For example, suppose 

the aircraft wing holds up in the tunnel; to what degree can one be confident 

that it will hold up when aloft? Is it conceivable that the retraction of the 

landing gear during takeoff may actually affect the wing stress enough to 

cause damage? Let us now interpret what the Euler circuit in Figure 2.4 

means for our mailman. In Figure 2.5 we have transferred the corresponding 

circuit onto the original street map. When we examine this, some things 

become apparent that could not be so easily determined from the model in 

Figure 2.3. For instance, from Figure 2.5 we see that the mailman crosses 

the intersection at D three times. If D is the town’s busiest intersection, it 

might have been better if MAIL’S route had not required crossing this inter¬ 

section so often. Furthermore, we see that so many streets must be crossed 

that the total distance covered in street crossings is considerable. 

11 
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EXERCISES 2.2 

1. Find an Euler circuit for the graph in Figure 2.3 different from the one 

shown in Figure 2.4. 

2. Interpret the solution to Exercise 1 in the original street map of Figure 

1.1. Is the number of crossings at intersection D in your solution fewer 

than the number in the solution given in the text? 

2.3 principles of modeling 

We have referred rather loosely to the concept of modeling and to the notion 

that a graph may be a model for a real situation. In the last section we actually 

carried out the process of modeling. Let us be a bit more explicit about 

what modeling means. There are four aspects to modeling with graphs: 

conversion: The real-world problem is simplified so that it can be 

converted to a problem about an appropriately constructed graph. Writing 

a list of ways in which the real-world problem has been simplified is often 

useful. 

solution : The graph theory solution is obtained using either trial and 

error or mathematical techniques such as those we shall study in this book. 

12 
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reinterpretation: The graph theory solution is reinterpreted in 

terms of the real-world problem to obtain a solution in the real-world 
situation. 

estimation of fit: Some estimate of how well the model fits reality 

is made in order to help determine how much faith we can have in the solu¬ 

tion. The list of simplifying assumptions made in the conversion process 
will help in evaluating how good a fit we have. 

The conversion step can be, in turn, broken down into three constituent 
parts: 

(1) Decide what entities are to be represented as vertices of the graph. 

(2) Decide which vertices are to be connected by edges. This is always 

done on the basis of some important relationships among the entities, 
which are represented as vertices. 

(3) Restate the original problem in terms of the graph. 

To illustrate these ideas, let us review the problem that we have modeled 
—the mailman problem. 

THE MAILMAN PROBLEM REVISITED 

CONVERSION: 

(1) Vertices represent intersections of streets. 

(2) Two vertices are connected when the intersections they represent are 

on the same street and one block apart down the street from one 

another. 

(3) The problem of finding a route that covers each side of the street once 

and only once becomes the problem of placing a pencil at point A in 

Figure 2.3 and traversing each edge of the graph once and only once, 

ending at A. 

solution: We already have given a solution to this problem (see 

Figure 2.4). You may have found a (different) solution of your own by trial 

and error. We shall postpone temporarily the question of how to do better 

than trial and error. 

reinterpretation: The trial and error solution in Figure 2.4 gives 

rise to the route shown in Figure 2.5. 

estimation of fit: Because MAIL chose a very precise interpretation 

of how to provide an efficient route for the mailman—to traverse each bold- 

lined stretch of sidewalk once—the route that we found gives a perfect fit! 

But is the mailman’s route really efficient in terms of the time necessary to 
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traverse his route or the total distance he must travel? Suppose, in Figure 

2.3, that the intersection at D is extremely busy and without a traffic light. 

Our path requires the mailman to cross this intersection three times. There¬ 

fore, our solution may not really yield the best route for the mailman after 

all. Note also that by crossing streets the mailman must add distance to his 

route, and this is not reflected in the solution found in Figure 2.4 for the 

mathematical problem. This illustrates the fact that unless we put all the 

important data into the model, we may not get a sufficiently realistic answer. 

Estimate of fit is an important aspect of the modeling process because 

we would like to be able to use the solution from our model. Often, however, 

it is the most difficult aspect of modeling to carry out. Usually so many 

simplifying assumptions are made during the conversion process that it is 

difficult to assess the adequacy of the solution. 

The trial and error method we used to find an Euler circuit is obviously 

unsatisfactory from either a practical or theoretical point of view. It would 

be convenient if one could tell at a glance whether or not an Euler circuit 

existed in a given graph. For example, if the mailman is given a choice of 10 

delivery districts and he wishes to determine whether any of them has an 

Euler circuit, he may do a lot of trying and a lot of erring before he can pick 

the best delivery district. Happily, there is a simple test, applicable to any 

graph, that tells us whether or not it has an Euler circuit. This test is: 

For a connected graph to possess an Euler circuit, it is necessary that at 

each vertex an even number of edges meet. Conversely, if an even number of 

edges meet at each vertex of a given connected graph, then there will be an 
Euler circuit. 

Notice that the test is very simple to apply and is not time-consuming. 

Applying it to the diagram of Figure 2.3, we see that at every vertex there 

are two, six, or eight edges meeting. Since two, six, and eight are all even 

numbers, the test assures us that there is an Euler circuit. 

At this point, we shall not take time out to prove that this test really 

works, although we shall do so in Chapter 4. Note that the test above does 

not tell us how to find an Euler circuit even though we know one exists. 

In Chapter 4 we shall also consider methods of finding Euler circuits. We 

mention this test here mainly to illustrate how theoretical results concerning 
graphs can give a quick answer to a practical problem. 

EXERCISES 2.3 

1. State which of the graphs in Figure 2.6 have Euler circuits starting at 
the points marked A. 
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Figure 2.6 A A A 

2. The mailman s supervisor offers to modify the mailman’s territory by 

letting someone else deliver to one of the sidewalks (edges) connecting 

B and C (see Figure 1.1). The mailman declines the offer, commenting 

that it wouldn't save him any steps after all. After a moment’s thought, 

however, the mailman tells his supervisor that if both the sidewalks 

(edges) between B and C are removed, he will agree to this modification. 

Can you explain this by reference to the Euler circuit test? 

3. Make a list of the simplifying assumptions made in the conversion 
process for the mailman problem. 

2.4 modeling the mail distributor problem 

In this section we shall follow the modeling format of the last section in 

analyzing the mail distributor’s attempts to deposit mail bundles at each 

intersection in Figure 1.1. 

conversion: Again we shall let vertices represent the intersections 

but our edges will now represent streets instead of sidewalks. Consequently, 

it will not be necessary to have two edges joining any pair of intersections 

but rather only one edge, as shown in Figure 2.7. Our problem now becomes 

that of tracing a path on this diagram, beginning and ending at A and passing 

through each vertex exactly once. Note the difference between this and the 

mailman’s problem where we wished to pass along each edge exactly once. 

Figure 2.7 

15 
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solution: Trial and error should convince you that no such route 

starting and ending at A and passing through each vertex—called a Hamilton 

circuit—exists for the graph in Figure 2.7. We shall see there is a simpler way 

of determining this, based on some theoretical considerations (see Exercise 

2, below) rather than on trial and error. 

reinterpretation: The nonexistence of a Hamilton circuit in the 

graph of Figure 2.7 shows that there is no route for the mail distributor that 

goes through every intersection exactly once and begins and ends at A. The 

distributor will have to settle for something less efficient. 

estimate of fit: The answer we have determined for the distributor’s 

problem, while valuable and interesting, is by no means an end to the problem 

from a practical point of view. Although we have discovered that the ideal is 

unattainable, we have not given any indication of how close the distributor 

could come to this ideal. Can he arrange a route that duplicates only one 

intersection? What is the minimum number of duplications he can get away 

with ? The fact that these questions can be posed and are unanswered indicates 

that the model in Figure 2.7 can be used as a jumping off point for further 

investigations. 

EXERCISES 2.4 

1. For each of the graphs indicated in Exercise 1, p. 15, determine by 

trial and error which ones have Hamilton circuits. 

2. Can you prove (i.e., give ironclad reasons) why the graph in Figure 

2.8 has no Hamilton circuits? {Hint: A circuit must alternate between 

the row of two vertices at the top and the column of three vertices 
below.) 

Figure 2.8 

3. Answer the questions raised in the discussion of estimate of fit by using 
trial and error in the graph in Figure 2.7. 

4. Give an “exhaustive” list of the simplifying assumptions made in the 
conversion step of the distributor problem. 
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2.5 modeling the scheduling problem 

In this section we shall follow the modeling format of Section 2.3 to analyze 

the scheduling problem. This may be more interesting than the last two 

problems because it is not so obvious what graph should be drawn. 

conversion : Each speaker will be represented by a vertex. Two vertices 

will be joined by an edge provided the speakers they represent should not speak 

during the same hour. If the speakers may speak simultaneously, they will not 

be connected by an edge. In this way we arrive at the graph of Figure 2.9(a). 

Notice that two of the edges in the graph cross. This could have been 

avoided by letting one of these edges curve around as in Figure 2.9(b). There 

is no harm in letting them cross, however, as long as we do not become con¬ 

fused and consider the intersection point a vertex representing some speaker. 

Our problem now is to provide each vertex (speaker) with one of the numbers 

1, 2, 3, or 4 representing the four time slots so that two vertices joined by 

an edge never have the same number. For historical reasons, problems of 

assigning labels to the vertices of a graph so that vertices connected by an edge 

receive different labels are called coloring problems. One might think of color¬ 

ing vertices so that vertices joined by an edge are colored differently. 

solution: A solution is shown in Figure 2.9(a) itself. Another equally 

valid solution is shown in Figure 2.9(b). 

interpretation : Interpreting the numbering of our first graph [Figure 

2.9(a)] we can assert that four time slots are sufficient. One way to assign 

these times is to give the same time to speakers A, B, and C and then appor¬ 

tion the three other times among the other speakers, each speaker receiving 

a different time slot. 
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estimate of fit: According to the information given, we seem to 

have obtained a solution that fits the problem perfectly well. In the spirit of 

practical analysis, it may be interesting, however, to consider some changes 

in the data of the problem that would lead us to different solutions. The most 

natural change might be to assume that we are dealing with a larger number 

of speakers. This would not change the nature of the problem—it would 

still be a coloring problem—except to make the trial and error procedure for 

solving the problem more difficult. A second change might be that we wish 

to have about the same number of people speaking during each time slot. 

This might be desirable from the point of view of room availabilities and 

might ensure that no speaker would feel slighted by having to compete with 

a large number of other speakers while some speakers would have no com¬ 

peting speakers. In our example of six speakers, a step toward such equaliza¬ 

tion would be taken by using the second solution, Figure 2.9(b), in which 

the largest number of speakers in a time slot is two, compared with three in 

the first solution, which is shown in Figure 2.9(a). Is any further equalization 

possible with four time slots? 

Our modeling of this problem illustrated a very significant fact. Often 

it is not obvious what graph to draw as a model for the situation. A certain 

amount of trial and error may be necessary. We might start out representing 

speakers as vertices but connecting them when they may speak simultane¬ 

ously. Such a graph may be useful for other problems involving this sympo¬ 

sium but it does not seem useful for the given problem. We can then try 

another criterion for connecting the vertices by edges. Here the only other 

criterion is the one we actually used. Usually there are not too many methods 

of connecting vertices that suggest themselves. After a bit of hunting around, 

one finds the useful method. 

EXERCISES 2.5 

1. Discuss some practical considerations that would make our modeling 

of the scheduling problem impractical. 

2. For each of the graphs in Exercise 1 on p. 15, state the smallest number 

of colors needed to color them so that vertices joined by an edge 
receive different colors. 

3. Color each of the graphs in Figure 2.10 using the minimum number 
of colors possible each time. 



Figure 2.10 

4. Color the vertices of the graph in Figure 2.11 with as few colors as 
possible. 

Figure 2.11 

5.* Suppose a graph G is such that each vertex has < k edges touching it. 

Show that G can be colored with k + 1 colors. 

2.6 the relationship between models 

and problems 

There are two important aspects of mathematical modeling that have not 

been mentioned so far. They are that: 

(1) For a given problem there may be a number of mathematical models 

that could be useful. 

(2) Each type of mathematical model will usually be applicable to many 

different problems. 

In this section we want to illustrate these points in the context of graph 

theoretical models. We begin with point (1) by giving an alternative to the 

Euler circuit model for the mailman problem. 

19 
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Example 1 

The motivation for this alternative model for the mailman is the notion 

that it might be wise to take into account the time and effort required to cross 

intersections. In our earlier model an entire intersection was represented by 

a single point, which meant that the distance traveled in crossing an inter¬ 

section was ignored. In our new model, instead of representing each inter¬ 

section by a vertex,/we represent each corner of a block by a vertex (Figure 

2.12). We join two corners if they are (1) adjacent on the same block or (2) 

across from one another at an intersection. We assume that if the corners are 

diagonally across, as at the center intersection, the mailman cannot or will 

not make a diagonal crossing. For convenience we represent the first type 

of edge in boldface. In addition to drawing these edges we shall also weight 

them with numbers that represent the time required to travel them. We 

formulate the problem this way: Find a circuit in this graph which begins and 

ends at A, which covers every boldfaced edge at least once but possibly more 

often, and which takes the minimal amount of time to traverse. 

Figure 2.12 
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Can you find a circuit of this sort that requires only 332 time units to 

traverse? 

This model is more realistic than our earlier one since it takes into 

account the intersection crossings and since it has time estimates on the 

edges. However, this doesn’t necessarily make it better than the earlier model. 

In exchange for being more realistic, it is also more difficult to work with. 

For example, it probably took you longer to find a circuit with time-length 

332 in Figure 2.12 than it took you to find the Euler circuit in Figure 2.3. 

Having found a path of time-length 332, how sure are you that this is the best 

you can do? Assuming that you are happy with a solution involving 332 

time units, how much is really gained over the solution in our earlier model? 

To illustrate point (2) about the wide applicability of a given type of 

Figure 2.13a 
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model, we shall describe the problem that historically gave rise to the idea 

of a graph coloring. This problem seems to have little to do, at least super¬ 

ficially, with our scheduling problem. The two problems are mathematically 

quite similar, however, since both can be reduced to a graph coloring prob¬ 

lem. 

Example 2 

Map makers traditionally color the various regions and bodies of 

water in their maps with different colors to aid the reader. In order for this 

to be helpful, it is imperative that regions that have a common stretch of 

border receive different colors. This suggests the question of minimizing 

the number of colors required. Figure 2.13(a) shows a map of the states of 

Australia, including the island state of Tasmania. By experimenting directly 

on the map you can probably find a coloring with four colors. Alternatively, 

we could represent each region and the ocean by a vertex, join two of them 

if they share a stretch of border, and then attempt to color the vertices of 

the resulting graph [Figure 2.13(b)]. 

This problem of coloring the regions and bodies of water of a map 

gives rise to a very famous mathematical conjecture called the four-color 

conjecture, which was recently proved by W. Haken and K. Appel. 

Northern Territory 

Figure 2.13b 
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The conjecture stated that any map that could be drawn on the surface 

of a sphere can be colored with four colors. This problem was invented 

around 1852 by a student and since then had baffled the world’s best mathe¬ 

maticians, an interesting reversal of the usual relationship between students 
and professors. 

Our final example of the versatility of a given modeling approach 
involves Hamilton circuits. 

Example 3 

A factory makes eight varieties of guitar pick using just one machine, 

the Presto Pick Puncher. This machine needs different adjustments in order 

to make the different styles of guitar pick. The company desires to spend 

1 hr of each working day on each style of pick. At the end of each hour the 

adjustments on the machine need to be converted to those necessary for 

the next pick style. At the end of the day the machine must be converted back 

to the style produced at the beginning of the day. The times required for con¬ 

version depend on which styles one is converting between and are given 
below. 

A B C D E F G H 

A 5 2 6 6 5 2 5 

B 5 3 4 5 6 1 6 

C 2 3 1 6 5 5 6 

D 6 4 1 2 4 5 5 

E 6 5 6 2 3 6 2 

F 5 6 5 4 3 3 6 

G 2 1 5 5 6 3 1 

H 5 6 6 5 2 6 1 

Since these conversion times are not all the same, it makes a difference in 

what order the styles are made. Can you arrange an order, beginning and 

ending with style A, so that no conversion ever takes more than 3 min? If 

not, can you do it so that no task takes more than 4 min? 

Solution: We shall draw a graph whose vertices represent the styles 

and where two styles are joined by an edge, provided the machine can be 
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converted from one to the other in 3 minutes or less. In this graph [Figure 

2.14(a)] a path visiting a sequence of vertices indicates that those styles, in 

the order in which they occur in the path, can be performed in sequence with 

all conversions requiring only 3 minutes or less. Since we are looking for 

such a sequence of styles which also has the property that each style occurs 

exactly once (except that the last style A is the same as the first), we clearly 

need to find a Hamilton circuit in the graph of Figure 2.14(a) which begins 

and ends at A. A little trial and error should convince you that no such 

Hamilton circuit exists. 

(a) (b) 

Figure 2.14 

To determine whether a sequence exists in which no conversion takes 

more than 4 minutes, we need to work with a different graph. We use the 

same set of vertices as before, one for each style, but now we join styles where 

the conversion between them requires no more than 4 minutes. This yields 

the graph of Figure 2.14(b). Once again the problem is to find a Hamilton 

circuit beginning and ending at A. This time you should be successful in 

finding one. 

EXERCISES 2.6 

Each of the exercises that follow can be modeled as a problem involving 

a graph. Furthermore, each exercise, when interpreted in terms of the graph, 

involves finding an Euler circuit (as in the mailman problem), a Hamilton 

circuit (as in the mail distributor problem), or a coloring of the graph (as in 

the scheduling problem.) For each exercise below, draw the appropriate 

graph, describing what the vertices represent and on what basis the edges 

are drawn between vertices. State whether the given problem involves finding 

an Euler circuit, a Hamilton circuit, or a coloring of the vertices for the graph 

you have drawn. Then give an estimate of fit between the graph you have 
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drawn and the real-world situation it models. Finally, using the graph you 

have drawn, solve the problem. If you are unable to see how to carry out 

any of these steps, consult the hints that follow these exercises. 

1. A highway inspector is supposed to check for potholes by driving down 

each of the streets indicated in Figure 2.15. Assume each street is a two- 

way street, but he needs to go down it in only one direction to inspect 

all lanes. Can he arrange a route for himself that covers each street, 

covers none more than once, and begins and ends at the corner labeled 

1? 

L 

2. Figure 2.16 shows a road map of the island of Zanderbecca. Vertices 

represent cities and edges are roads. In each city one of the following 

facilities is to be built: a theater, a sports stadium, and a swimming pool. 

Furthermore, it is decided that when two cities are next to one another 

on a road, they should not receive the same facility. Is such an assign¬ 

ment of facilities possible? 

Figure 2.16 
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3. Figure 2.17 shows a rough sketch of part of Canada. Can you color the 

provinces so that those that share part of a border are colored differ¬ 

ently ? 

4. Mr. Daily’s first-grade class is secretly planning an insurrection. The 

seven key leaders are listed in the chart below. It is decided that during 

recess the written details of the uprising will be passed among the seven, 

starting with Abe. The process is complicated by two factors. First, 

ideological rifts among the seven make even casual contacts between 

some of them impossible without risk of a major tantrum. Second, in 

the interest of avoiding interception, it is required to pass the piece of 

paper, starting and ending with Abe, among all seven without it ever 

reaching anyone twice (except Abe). The chart indicates which pairs 

of students have friendly relations (F) and can make contact to pass a 

message and which pairs are not friends (NF) and cannot have a mes¬ 

sage passed directly between them. Can the message be passed as 
required ? 
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12 2 4 

(a) 

Figure 2.18 

Abe Tom Dave John Lee Gerry Ren 

Abe — F NF NF F NF NF 
Tom F — F F NF NF F 
Dave NF F — NF F F F 
John NF F NF — F F NF 

Lee F NF F F — F F 
Gerry NF NF F F F — NF 

Ren NF F F NF F NF — 

5. Mr. Daily puts down the rebellion of Exercise 4 and wishes to punish 

the seven leaders with an extra graph theory problem for homework. 

His plan is complicated by the fact that friendly students.will collaborate 

(assume that unfriendly ones will not) if they are given the same prob¬ 

lem. Therefore, he would like to make sure that friendly students are 

given different problems. He would like to minimize the number of 

different problems he assigns. What is the minimum number? 

6. A domino is a rectangle divided into two squares, into each of which is 

placed one of the numbers between 0 and 6. We shall allow two domi¬ 

noes to be placed end to end in a row, as in Figure 2.18(a), when the 

squares at which the dominoes meet are labeled with the same numbers. 

When the two squares do not have the same labels, as in Figure 2-18(b), 

we do not allow the configuration to be formed. Similarly, we do not 

allow L-shaped configurations as in Figure 2.18(c). We do, however, 

allow a domino to be turned around as in Figure 2.18(d). Suppose you 

are given dominoes with the following labelings: (1,2), (1,4), (1,6), 

(2, 3), (2, 6), (3, 5), (3, 4), (4, 5), (5, 6). Can you arrange them all in a 

row in accordance with the rules above and so that the first number in 

the row is the same as the last number in the row? 

1 2 to 

U) 

(b) (c) (d) 

7. An airport radar device designed to assist in the prevention of midair 

collisions scans eight sectors in the vicinity of the airport. When two 

planes are detected in close proximity, the number of the sector in which 

this is occurring is reported, providing a rough “fix” on the possibly 

dangerous situation. Since computers use numbers written in a binary 

code, the sectors are labeled 000, 001, 010, Oil, 100, 101, 110, 111, as in 
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Figure 2.19(a). When the scanner is in a particular sector, the computer 

keeps the number of that sector “in its head,” reporting it to the opera¬ 

tor only when two planes are detected. As the scanner passes from one 

sector to another, the number held by the computer changes. Thus, as 

the scanner goes from sector 0 to sector 1, the computer changes what 

it holds from 000 to 001. In doing this, only 1 digit (the final 1) needs 

changing. By contrast, in going from sector 3 to 4 the computer changes 

its number from 011 to 100, a change involving 3 digits. Such a change 

involves a higher risk of error due to lack of synchronization than a 

change involving fewer digits. You may verify that the total number of 

digit changes in going counterclockwise from 000 back to 000 with the 

labeling of Figure 2.19(a) is 14. If we relabel the sectors as in Figure 

2.19(b), however, we have only 12 digit changes. Can you relabel the 

sectors so that only 8 digit changes take place; that is, can you relabel 

the sectors so that in going from any sector to the next only one digit 
needs changing? 

(a) (b) 

Figure 2.1 9 

8. In a newly emergent nation, each of the six principal cities is to be given 

one television station. Four different channels are available. Luckily, 

it is not necessary to have different channels for different stations. 

It is necessary, however, that two cities that are within 80 mi or less of 

one another receive different channels to avoid possible interference 

problems. Let the cities be named A, B, C, D, E, and F, and let the 
distances between them be given by the following chart. 
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Can you make an assignment of the four channels such that cities 
within 80 mi or less receive different channels? 

9. Modern trends in zoo keeping call for large enclosures of a few acres or 

more in which a number of different species are allowed to roam freely 

and through which zoo visitors pass in enclosed or elevated vehicles. 

Suppose that a zoo wishes to provide such enclosures for 10 species 

listed in the table below. Things are complicated by the fact that it is 

thought to be inadvisable to allow species that are natural enemies to 

live in the same enclosure. The table indicates such incompatibilities by 

the mark X. No entry in a box indicates compatibility. For reasons of 

economy it is desired to have as few different enclosures as possible. 
What is that minimum number? 

1 2 3 4 5 6 7 8 9 10 

1 X 

2 X 

3 X X 

4 X X 

5 X X 

6 X X 

7 X X X 

8 X X 

9 X X 

10 X X X 
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10. A scoutmaster is planning to drive the eight members of his troop in 

cars to a jamboree. To avoid trouble, only boys who are friends (F) are 

to go in the same car. What is the smallest number of cars that are neces¬ 

sary to transport the boys? If cars could carry only two boys, would 

you have a different answer? 

1 2 3 4 5 6 7 8 

1 — F NF NF NF F NF F 

2 F — F F NF NF NF F 

3 NF F — NF NF F NF NF 

4 NF F NF — F F NF NF 

5 NF NF NF F — F F NF 

6 F NF F F F — F F 

7 NF NF NF NF F F — NF 

8 F F NF NF NF F NF — 

Hints for the Exercises in Section 2.6 

1. Let intersections be vertices and join two of them if they are a block 

apart on the same street. Reread the analysis of the mailman problem. 

2. The graph is already drawn. Reread the scheduling problem. 

3. Let vertices represent provinces and join two of them if they have a 

common border. A convenient way to do this is to place the points 

inside the respective countries and join them across the common border 

arcs. Now you need to assign colors to vertices subject to a certain con¬ 
dition. 

4. Let vertices represent people and join them according to the chart. 

The chart contains at least two distinct criteria that might be used to 

determine whether vertices should be joined or not. One is useful; the 
other is not. Reread the mail distributor problem. 

5. Let vertices represent people and use the same graph as in Exercise 4. 
Reread the scheduling problem. 

6. Let vertices represent numbers and join two of them if there exists a 

domino containing precisely those two numbers. In this graph the edges 



modeling 31 

can be thought of as representing dominoes. What would using all the 

dominoes mean in terms of the graph? Conversely, in terms of the 

dominoes, what is signified by two edges with a common point? 

7. Let the binary numbers 000, 001, etc., be represented by vertices and 

join two of them if only one digit needs to be changed to get from one 

to the other. The solution involves the same sort of circuit we looked for 

in the mail distributor problem. 

8. Let the cities be vertices and connect two if those cities are within 80 mi. 

Reread the scheduling problem. 

9. Let the species be vertices, joined on the basis of incompatibility. 

10. Let the boys be vertices, joined on the basis of friendship or non¬ 

friendship. Which? 
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graphs and digraphs 

3. 7 graphs and isomorphism 

We have examined some problems that can be usefully modeled by a geo¬ 

metric structure consisting of points and properly chosen connecting lines. 

Since we shall be discussing such structures at length, we shall give precise 

definitions of what we are talking about in this section. 

DEFINITION 1 

A graph G is a finite set of points, called vertices, together with a finite set of 

curved or straight connecting lines called edges, each of which joins a pair of 

vertices. These vertices and edges must satisfy the condition that no edge 

begins and ends at the same vertex. 

If G is a graph, the set of vertices of G is denoted V(G) and is always 

assumed to be nonempty. The set of edges of G is denoted E(G) and may be 

empty, as in the graph depicted in Figure 3.1(a). Graphs without edges are 

called null graphs. They are seldom useful and always uninteresting. 

At the other extreme, one may have every pair of vertices joined by a 

single edge. In this case we call the graph a complete graph and denote it Kn 

where n is the number of vertices. Figure 3.1(b) shows the complete graph Kx. 

It is important to observe that the definition of a graph imposes re¬ 

strictions on the types of structures that qualify as graphs. Thus, the structure 

in Figure 3.2 is not a graph because it violates the condition that no edge may 

join a vertex to itself. 
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(a) 

Figure 3.1 

(b) 

Figure 3.2 

When a graph has two or more different edges joining the same pair of 

vertices, these edges are called multiple edges. See Figure 3.3 for an example 
of such a graph. 

*3 

Figure 3.3 

We may sometimes refer to an edge of a graph by naming the two ver¬ 

tices that determine it—these vertices are called end points of the edge in 

question. Thus the edge E in Figure 3.3 could be denoted [x1; x2] since x3 and 

x2 are the end points of E. In the graph of Figure 3.3, however, the edges 

£j and E2 both have jc3 and x4 as their end points. In this case, the notation 

[x3, xj would be ambiguous and we shall not use it, preferring to refer to the 

edges as £j and E2. 

It is convenient to have some terminology for the number of edges that 

share the same end point. 

33 
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DEFINITION 2 

Suppose G is a graph and x is a vertex of G. The valence of x, denoted val(x), 
is the number of edges of G that have x as one end point. If val(x) = i, we 
say x is i-valent. 

• X6 

(a) (b) 

Figure 3.4 

If G is the graph of Figure 3.4(a), val(Xj) = val(x2) = val(x4) = 3, 
val(x3) = 4, val(x5) = 1, while val(x6) = 0. 

If H is the graph with multiple edges in Figure 3.4(b), val(Xj) = 2, 
val(x2) = val(x3) = 3. 

A few remarks concerning how to draw graphs are in order. In Figure 
3.5 we have reproduced three graphs that three different people used to model 
the friendship relations among four individuals, Tom, Dick, Harry, and 
Gideon. 

Dick Dick Dick 

(c) 

Figure 3.5 
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All these graphs represent the same situation and, in some sense, the 

graphs are structurally the same. For example, the graphs in Figure 3.5(a) and 

(c) can be transformed into one another by moving the vertex representing 

Gideon up above the edge joining Tom and Harry. It is important to realize 

that the point where the edge joining Tom and Harry [Figure 3.5(a)] meets 

the edge joining Dick and Gideon is not a vertex. This crossing point is 

present by accident so to speak and certainly does not represent a person. 

To avoid possible confusion, we make the following convention: 

CONVENTION 

All vertices in the graphs drawn in this book will be denoted with dark dots. 

As a consequence of this convention, if a pair of edges intersect at a 

point that is not drawn with a heavy dark dot, we shall regard such a crossing 

point as “accidental” and shall not take it to be a vertex of the graph. 

At this point, we wish to give a more precise idea of what we mean 

when we say that two graphs are structurally the same. The technical term we 

shall use to indicate this condition is isomorphic. The word has Greek origins: 

iso means equal and morphe means structure. 

DEFINITION 3 

Suppose G is a graph with n vertices labeled xx,. . ., xn. We shall say that 

graph G' is isomorphic to G (or G' and G are isomorphic) if it is possible to 

find some labeling of the vertices of G' with x\, x'2, . . . , x'„ in such a fashion 

that: 

(1) Each vertex of G’ gets one and only one label. 

(2) If the vertices x; and Xj (x(. ^ Xj) of G are joined by k (k > 1) edges, 

then the vertices labeled xj and xj in G' are joined by k edges. 

(3) If the vertices x,. and Xj (xe ^ x;) of G are not joined by an edge, then 

the vertices labeled xj and xj in G’ are not joined by an edge. 

If it is impossible to label G' as required, then G and G' are not isomorphic. 

Example 1 

Verify that the labelings of the graphs G and G' in Figure 3.6 show that 

they are isomorphic graphs. 

Solution: We must verify that the number of edges that join any pair 

of vertices x,. and x; in G is the same as the number of edges joining vertices 

xj and xj in G'. The results are shown in tabular form. 



X 1 

G 

Figure 3.6 

G' 

Vertices in 

Graph G 

Number of Joining 

Edges in G 

Vertices in 

Graph G' 

Number of Joining 

Edges in G' 

xi and xi 1 x\ and x'2 1 
xi and *3 0 x\ and x'3 0 
x\ and X4 0 x\ and x'4 0 
xi and xs 0 x'i and *5 0 
xz and X3 1 x'2 and x'3 1 
X2 and X4 0 x'2 and x'4 0 
X2 and xs 1 x'2 and x'3 1 
X3 and X4 2 x'3 and x\ 2 

X3 and *5 0 x'3 and x'5 0 
X4 and xs 1 x\ and x's 1 

Since the numbers in columns 2 and 4 are the same, the graphs G and G' are 
isomorphic. 

Notice that in Example 1 the valences of corresponding vertices (e.g. xx 

corresponds to x'j) are the same. This is not an accident. It is an instance 

of the following theorem, whose proof is an easy consequence of the defini¬ 
tion of isomorphism. 

THEOREM 1 

If G and G' are isomorphic and xt and x\ are corresponding vertices in these 
graphs, then val(x,.) = val(x'). 
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The following example shows how this theorem can be used to help 
determine an isomorphism. 

Example 2 

Determine whether the graphs G and G' in Figure 3.7 are isomorphic. 

Figure 3.7 

Solution: Since none of the vertices of G in Figure 3.7 are labeled, we 

begin by labeling G”s vertices by xl5. . ., x7 in an arbitrary way, for example, 
as in Figure 3.8. 

*2 

Figure 3.8 

Since vertex x3 in G is 1-valent and G' has only one 1-valent vertex, by 

Theorem 1 this vertex must by labeled x'3 [see Figure 3.9(b)], Since the vertex 

Xj is joined to x3 in G, we can label the vertex joined to x'3 in G' by xj [see 

Figure 3.10(b)]. 



*3 

(a) (b) 

Figure 3.10 

In order to continue the labeling of G', we note that vertex Xj in G is 

joined to two 3-valent vertices, namely, x2 and x4. This means that we have 

a choice as to how to continue the labeling of G'. The possibilities are shown 

in Figure 3.11. 
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(a) (b) 

Figure 3.11 

Suppose we attempt to complete the labeling in Figure 3.11(a). Since 

x4 is joined to the 4-valent vertex x5 in G, x4 would have to be joined to a 

4-valent vertex in G'. However, there is no 4-valent vertex in Figure 3.11(a) 

connected to x\. Hence, this labeling [Figure 3.11(a)] amounts to having 

barked up the wrong tree. Abandoning this attempted labeling, let us try to 

complete the labeling in Figure 3.11(b). In this labeling of graph G', since x\ 

is joined to a 4-valent vertex, we label this 4-valent vertex x'5 (see Figure 3.12). 

G' Figure 3.12 

Since x5 is joined by two edges to x7, it is clear which vertex to label x'7 in 

Figure 3.12. The only remaining vertex is now labeled x'6. One can check, 

using a table similar to the one in Example 1 (but having 21 lines), that the 

labeling in Figure 3.13 exhibits an isomorphism. 

If neither of the labelings in Figure 3.11 could be completed, then the 

graphs would not have been isomorphic. 
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Figure 3.13 

Example 3 

Determine whether the graphs G and G' in Figure 3.14 are isomorphic. 

Figure 3.1 4 

Solution: Since G has precisely one 1-valent vertex x7 joined to the 

3-valent vertex x6, we begin the labeling of G' as in Figure 3.15. Since x6 is 

joined to two 2-valent vertices, the vertex x'6 would have to be joined to two 

2-valent vertices to complete the labeling of G'. Since x'6 is not joined to two 

2-valent vertices, G and G' are not isomorphic. 

Figure 3.15 
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One warning about a common source of error should be made. Consider 
the labeling of the graphs G and G' in Figure 3.16. 

(a) 

Figure 3.1 6 

(b) 

Note that although x, and x2 are joined in G, x\ and x'2 are not joined 

in G'. However, G and G' are isomorphic. The labeling in Figure 3.16(b) will 

not demonstrate this, yet the labeling in Figure 3.17 enables one to conclude 

G and G' are isomorphic. 

With a little practice you will be able to pick out structural properties 

of a pair of graphs G and G', which, when they are not present in both, will 

show that G and G' are not isomorphic. 

For example, 

(1) If G and G' do not have the same number of vertices and the same num¬ 

ber edges, they are not isomorphic. 

(2) If G and G' do not have the same number of k-valent vertices, they 

are not isomorphic. 
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EXERCISES 3.1 

1. Explain why each of the structures in Figure 3.18 is not a graph. 

(a) 

9 9 9 ... continued indefinitely 

(b) 

(c) 

Figure 3.18 

(d) (e) 

2. (a) Draw a complete graph with six vertices. How many edges are 

there in the graph you drew ? 

(b) Draw a null graph with eight vertices. 

(c) If a complete graph has n vertices, how many edges does it have? 

(d) Can you think of real-world situations where the appropriate 

graph model would be (i) the complete graph? (ii) the null graph? 

3. What are the valences of the vertices in the graphs in Figure 3.19? 

(a) (b) 

Figure 3.1 9 

4. For each of the pairs of graphs in Figure 3.20, determine whether the 

two graphs are isomorphic. If they are, label the graphs to demonstrate 

the isomorphism. If they are not, can you say why not? 



(a) 

(b) 

(d) 

(f) 

Figure 3.20 
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5. For each of the structures in Figure 3.21, state whether it is a graph or 

not. For those that are graphs, try to redraw them with as many straight 

edges as possible, changing the number of accidental crossings if 

necessary. The redrawn graph should be isomorphic to the original. 

Figure 3.21 
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6. A graph G is called planar if it is isomorphic to a graph G' that has no 

accidental crossings. For each of the graphs in Figure 3.22, determine 

whether or not it is planar. If it is not, draw a graph isomorphic to the 

given one but with as few accidental crossings as possible. You may 

introduce curved edges if that is helpful. 

(b) 

Figure 3.22 
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7* (a) A graph G is said to have a biplanar representation if it can be 

drawn on a piece of paper with solid lines and dotted lines so that 

the solid lines meet only at vertices and the dotted lines meet only 

at vertices. The graph on the left in Figure 3.23 is biplanar, as 

shown by the drawing on the right. 

Figure 3.23 

(b) Do the graphs in Exercises 6(a) and 6(d) have biplanar drawings ? 

(c) Does the complete graph with seven vertices have a biplanar 

drawing? 

(d) Does the complete graph with eight vertices have a biplanar 

drawing? 

Remark: The complete graph with nine or more vertices has no 

biplanar drawing. 

(e) Explain how the concept of a biplanar drawing has applications in 

the theory of designing printed circuits for electric components. 

(Hint: Think of the components as vertices, the edges as solder 

or an electric conductor, and the paper as an insulator board. 

What happens when two solder strips meet at a point that is not a 

vertex ?) 

8. * Draw as large a collection as you can of graphs with six vertices and 

three or fewer edges and such that no two graphs in your collection are 

isomorphic. 

9. * Draw as large a collection as you can of graphs with four vertices and 

no multiple edges and such that no two graphs in your collection are 

isomorphic. (Hint: There are 11 such graphs.) 

10.* Draw as large a collection as you can of graphs with exactly five vertices 

and at least five edges but no multiple edges and such that no two 

graphs in your collection are isomorphic. (Hint: Your collection should 

have exactly 20 graphs in it.) 
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counting in graphs and an application 
to chemistry 

We have seen many different examples of graphs—so many that perhaps you 

may be surprised that there is more underlying structure to a graph than the 

definition seems to imply. To illustrate this we issue the following challenge: 

Can you construct a graph with four vertices xux2,x3, x4, with the properties 

vaK*i) = vaK*2) = val(x3) = 2 and val(x4) = 3? When you have decided 
that it is impossible, read the following theorem to see why. 

THEOREM 2 

If G is a graph with n vertices labeled x3, ... ,xn and G has e edges, then 

val(Xi) + val(x2) + • • • + val(xj = 2e (3.1) 

In particular, in any graph, the sum of the valences, i.e., the left-hand 
side of Equation (3.1), is an even number. 

Proof: Let us take an animated view of the situation. Imagine an 

observer moving from vertex to vertex, visiting in turn xu . . . , xn (see Figure 

3.24). At each vertex he puts a check mark at every edge that touches that 

Figure 3.24 

vertex and counts the number of check marks he has made. Thus, at x3 he 

counts val(Xj), at x2 he counts val(x2), etc. If he keeps a running total, the 

number he arrives at is the left-hand side of the equation in the statement 

of the theorem; namely, val(Xj) + val(x2) + • • • + val(x„). This number 

signifies the total number of check marks he has made. Since each edge has 

received exactly two check marks, however—because our observer occupies 

each of the two end points for any particular edge—the number of check 

marks is also 2e. 

It is important to realize that the condition in Theorem 2 is necessary 

but not sufficient for the existence of a graph with a prescribed number of 
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edges and certain valence conditions. For example, suppose we are asked to 

find a graph with vertices x,,x2 and with valences 5 and 1, respectively. 

Notice that the sum of the valences is even. Hence, our theorem does not rule 

out the existence of such a graph. In fact, it even tells us how many edges to 

expect in the graph if it exists. A little experimentation should convince you 

that the task is hopeless, however. No graph exists with the required proper¬ 

ties. 

Some more examples may shed further light on Theorem 2. 

Example 1 

Does there exist a graph with two vertices, each of which has valence 4? 

Solution: First we apply Theorem 2 to see if there is any hope that 

a graph will exist. If we denote the vertices by x, and x2, then we have val(Xj) 

= 4 and val(x2) = 4. 

Hence, val(Xj) + val(x2) = 4 + 4 = 2e and e — 4. Hence, perhaps 

such a graph exists. Trial and error leads to the graph in Figure 3.25. 

x, x2 

Figure 3.25 

Note that if we required a graph with two 4-valent vertices, which had 
no multiple edges, no such graph would exist. 

Example 2 

Does there exist a graph with vertices xl5 x2, x3, x4, x5, having valences 
1, 3, 4, 2, 3, respectively? 

Solution: Applying the theorem, 

val(xj) + val(x2) + val(x3) + val(x4) + val(x5) = l+ 3 + 4 + 2 + 3 = 2e 

Hence, 2e = 13, which is impossible. No such graph can exist. 

We can indicate a simple application of Theorem 2 if we take a brief 

excursion into the world of chemistry. Chemical molecules consist of a num¬ 

ber of atoms joined to one another by bonds. Thus, for example, the simple 

graph in Figure 3.26 is a model for a molecule of ordinary water, written 

H20 by the chemist. Chemists call diagrams of this type structural formulas. 
The edges between two atoms represent bonds between them. 



Hydrogen Oxygen Hydrogen 
•- 

Figure 3.26 

♦ -• 

The fact that the oxygen atom is involved in two bonds is expressed by 

saying that the valence of oxygen in this compound is 2. Actually, chemists 

often refine this concept further by calling some valences negative and others 

positive but this need not concern us. In general, if an atom is involved in k 

bonds in a certain compound, then it is said to have a valence k in that com¬ 

pound. For example, in the methane molecule shown in Figure 3.27(a), 

H 

H H 

C 

H 

Methane CjH4 

(a) 

1 H 

H 

C 

Ethylene C2H4 

(b) 

Figure 3.27 

the carbon atom has a valence of 4 and each hydrogen atom has a valence of 

1. Sometimes we have so-called double bonds between atoms, as in the com¬ 

pound ethylene C2H4 depicted in Figure 3.27(b). Each carbon atom in ethy¬ 

lene has a valence of 4. The case of ethylene illustrates the fact that in some 

cases the structural diagram of a molecule has multiple edges. Bonds of even 

higher multiplicity may also occur. 

The parallel with our graph theoretic use of the term valence should now 

be clear: When we make a graphic model of a molecule, the chemical 

valence of an atom in that molecule is the same as the graph theoretic valence 

of the vertex representing that atom. 

We shall restrict the rest of our discussion to hydrocarbons, which are 

molecules consisting of only two kinds of atoms, hydrogen and carbon. In 

hydrocarbon molecules each carbon atom has a valence of 4 and each hydro- 
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gen atom has a valence of 1. Our counting theorem now helps us to answer 

questions like this: 

Example 3 

Does there exist a hydrocarbon with five carbon atoms and three hydro¬ 

gen atoms ? 

Solution: If such a molecule exists, there are three vertices with 

valence 1 and five vertices with valence 4. By Theorem 2, 2e = 3(1) + 5(4). 

Since 3(1) + 5(4) = 23, an odd number, such a molecule doesn’t exist. 

We should emphasize that our graphs of molecules are models and that, 

as with all models, there has been some simplification. In our case the three 

dimensionality of the molecule, as well as the angles of the bonds, have been 

ignored. For example, in all water molecules the bonds make an angle of 

about 109 degrees (see Figure 3.28), while in a methane molecule the hydrogen 

Figure 3.28 O 

atoms, rather than lying in a flat plane as suggested by Figure 3.27(a), 

actually form a tetrahedron in three-dimensional space, enclosing the carbon 

atom at the center as shown in Figure 3.29. For some purposes in chemistry 

it is important to know these things but it was not important for our purposes 
so we ignored angles and three dimensionality. 

tf' • % Hydrogen 

Figure 3.29 A methane molecule 
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Another point to bear in mind concerning the relation cf our graphic 

models to real molecules is this: Just because one can draw a structural 

formula (i.e., a graph) that has the right valences does not mean that there 

exists a real molecule exhibiting that structural formula. There exist many 

descriptions and drawings of unicorns but no real-life examples of them. 

EXERCISES 3.2 

1. For each of the following, determine whether the requirements given 

contradict the condition of Theorem 2. If they do not, try to draw a 

graph to fit the requirements. 

(a) Three 1-valent vertices, two 2-valent vertices, one 3-valent vertex. 

(b) Four 2-valent vertices, four 3-valent vertices, two 5-valent vertices. 

(c) Three 1-valent vertices, two 2-valent vertices, two 5-valent vertices. 

(d) One 2-valent vertex, five 3-valent vertices, two 4-valent vertices, 

one 5-valent vertex. 

(e) Two 2-valent vertices, one 6-valent vertex. 

(f) One 2-valent vertex, two 3-valent vertices. 

(g) One 1-valent vertex, one 2-valent vertex, one 3-valent vertex, one 

5-valent vertex. 

2. In the cases of Exercise 1 in which you were able to draw a graph with 

multiple edges, can you also draw a graph with the required properties 

that has no multiple edges? 

3. What is the maximum number of edges in a graph with four vertices 

without multiple edges? What happens if we allow multiple edges? 

Show that [n(n — l)]/2 is the maximum number of edges in a graph with 

n vertices and no multiple edges. 

4. Given the graph G in Figure 3.30: 

Figure 3.30 

(a) List the valences of the vertices. 

(b) Find a graph H, with valences as in part (a), that is not isomorphic 

to G. 

5.* Let G be a graph without multiple edges and x any vertex of G. Show 

that val(x) is less than or equal to the number of remaining vertices in G. 
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6* Let M be a graph and * any vertex of M. Show by an example that val(x) 

may be larger than the total number of remaining vertices in M. 

1* Draw all the graphs without multiple edges that have four vertices and 

for which the valences of all the vertices are the same. 

8. * Can you give a sequence of numbers such that all graphs whose vertices 

have this collection of numbers as their valences are isomorphic? {Hint: 

One such sequence is 1, 1. The graph •-*is the only possible one.) 

9. Determine if there can exist hydrocarbons with the numbers of hydro¬ 

gen (H) and carbon (C) atoms listed below: 

(a) 7 carbon atoms, 13 hydrogen atoms. 

(b) 4 carbon atoms, 7 hydrogen atoms. 

(c) 5 carbon atoms, 6 hydrogen atoms. 

10. What is the largest number of hydrogen atoms that a hydrocarbon with 

(a) one, (b) two, (c) three, (d) four carbon atoms can have? Generalize. 

11. * If a hydrocarbon has four double bonds and six carbon atoms, what is 

the largest number of hydrogen atoms it can have ? 

12. Two hydrocarbons are called isomers of one another if they have the 

same number of hydrogen and carbon atoms but their structural for¬ 

mulas (graphs) are not isomorphic. Figure 3.31 shows two isomers of 

butane, C4H10. 

H H H 

I l 
-c-c 

I I 
H H H 

Butane 

Figure 3.31 

(a) Are there any other isomers of butane? 

(b) How many isomers are there of pentane, C5H12? 

Remark: In general, a hydrocarbon whose formula is C„H2n+2 is called 

a saturated hydrocarbon. For each value of n it is of interest to know what the 

isomers of the compound are since different isomers have different properties. 
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3.3 digraphs 

We have used graphs to model a wide variety of real-world situations from 

chemical molecules to street networks. We can increase the number of situa¬ 

tions we can model still further, however, by allowing each edge of a graph 
to have a direction indicated on it by an arrow. 

DEFINITION 4 

A digraph D is a finite, nonempty set of points, called vertices, together with 

some directed edges joining pairs of these points. These directed edges are 

subject to one restriction: The initial and terminal vertices of a directed edge 
may not be the same. 

Thus, the structures in Figures 3.32(a) and (b) are digraphs, while the struc¬ 

ture in Figure 3.32(c) is not because it violates our definition. 

(a) (b) (c) 

Figure 3.32 

The street network of Figure 3.33, with its one-way streets indicated by 

arrows, is an obvious example where a digraph is called for as a model. If, 

instead of the digraph of Figure 3.34, we use as our model the graph in Figure 

3.35, which results by removing the arrows, we would have a poor model that 

might mislead us. For example, the graph in Figure 3.35, has a Hamilton 

circuit. It turns out, however, that the digraph in Figure 3.34 has no Hamil¬ 

ton circuit that “obeys the arrows.” (To see why, examine the lower right 

vertex.) 

Most of the concepts concerning digraphs are analogous to concepts we 

have studied for graphs. We modify the old concepts to take into account the 



Figure 3.33 

Figure 3.34 

Figure 3.35 
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fact that our edges are now directed. Thus, instead of valence at a vertex, we 

have two kinds of valence at that vertex, the outvalence and the invalence. 

DEFINITION 5 

If x is a vertex of the digraph D, the outvalence of x, denoted outval(x), is the 

number of directed edges which touch x and which are directed away from x. 

The invalence of x, denoted inval(x), is the number of directed edges which 
touch x and which are directed toward x. 

DEFINITION 6 

If we begin at a vertex of D and traverse a sequence of directed edges of D 

in such a way that each edge is traversed in the direction of the arrow, then 

we generate a directed path. If a directed path returns to its starting vertex, 
it is called a directed circuit. 

Example 1 

In the digraph of Figure 3.32(a) outval(x2) = 2, while inval(x2) = 1. 

By beginning at x2 and traversing in turn Eu E2, E3, we obtain a directed 

path, while if we begin at x, and traverse in turn Eu E3, we do not obtain a 

directed path. If we begin at x2 and traverse the sequence of directed edges Ex, 

E2, we obtain a directed circuit. If we begin at x2 and traverse the sequence 

of directed edges E2, Eu however, we do not obtain a directed circuit. 

We shall now give a few more examples to show situations where 

digraphs are the appropriate model. 

Example 2 

A group of residents in a commune are asked which of the persons that 

they are acquainted with in the commune they consider their friends. Since 

Jack may describe Mary as a friend but Mary might not describe Jack as a 

friend, the graph model in Figure 3.36(a) would not be appropriate. Digraphs 

would provide a natural model for these friendship relations. The digraph in 

Figure 3.36(b) would model the situation that Mary is a friend of Jack but 

Jack is not a friend of Mary. The digraph in Figure 3.36(c) would model the 

situation that Jack is a friend of Mary and Mary is Jack’s friend. 

•— 

Mary Jack 

•-«-« 

Mary Jack Mary Jack 

(a) (b) (c) 

Figure 3.36 
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Example 3 

In corporations, universities, and other structures, certain people have 

authority over certain others. This can be illustrated with a digraph in which 

the people in the organization are represented by vertices and a directed edge 

goes from person A to person B, provided A has authority over B. 

Example 4 

Suppose we have a collection of statements that are logically dependent; 

that is, there are implications that exist between them. We can model the 

logical structure of this set of statements with a digraph whose vertices repre¬ 

sent the statements and where a directed edge is drawn from the vertex 

representing statement A to the vertex representing statement B provided 

statement A implies statement B. Here is a specific example: 

(1) The gross national product (GNP) rises. 

(2) Auto sales rise. 

(3) Employment goes up. 

(4) People take more vacations in the country. 

(5) Air pollution in the cities increases. 

(Drawing by Dana Fradon. © 1970 The New Yorker Magazine.) 

“Which came first—the wage hike or the price hike?” 

Naturally there are numerous cause and effect relations that might exist 
between these. Figure 3.37 shows one possibility. 



GNP 

Pollution 

Auto Employment 

Vacations 

Figure 3.37 

Here is an example where logical relations between statements about a 

graph G are modeled with a digraph (Figure 3.38). The digraph makes 

apparent the logical relationship among the three statements. 

(l) 

(3) Figure 3.38 (2) 

(1) G is a complete graph with n (> 2) vertices. 

(2) G contains no vertices of valence 0. 

(3) G has [n(n — l)]/2 edges. 

Example 5 

Biologists have long been aware that living creatures are dependent on 

one another for food and that if one species becomes endangered, any species 

that preys heavily upon it may also be endangered. It is convenient to be able 

to model this situation geometrically with a digraph. The digraph in Figure 

3.39 models the predator relationships among some members of a prairie 

ecosystem. 

A directed edge from species A to another species B indicates that 

species B preys upon A. Thus, in Figure 3.39, the directed edge from gopher 

to coyote means that the gopher is one of the coyote’s sources of food. 

Digraphs such as the one shown in Figure 3.39 are known as food webs. 
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Owl 

EXERCISES 3.3 

1. Draw a reasonable implication digraph whose points represent the 

following propositions: 

(a) Use of atomic energy to generate electricity increases. 

(b) Middle Eastern tensions rise. 

(c) Oil companies go out of business. 

(d) Air pollution declines. 

2. For each of the following situations, decide whether a graph or a 

digraph would be most suitable to model the situation. 

(a) The won and lost record of the teams in a tournament in which 

each pair of teams play against one another once and ties do not 

occur. 

(b) The influence patterns that exist in the U.S. Senate. 

(c) The blood relationships among guests at a wedding feast. 

(d) The best friend relationships in a boy scout troop. 

(e) The power relations among a group of nations. 

Remark: For some of the above, it is not entirely clear whether a 

graph or a digraph would be best. It might depend on the situation. 

3. * Use a digraph to construct a model for the tournament between four 

baseball teams: 

The Chargers beat the Ringers. 

The Chargers beat the Royals. 
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The Royals beat the Ringers. 
The Sleuths beat the Chargers, 
The Royals beat the Sleuths. 
The Ringers beat the Sleuths. 

Figure 3.40 

5. (a) A vertex of a digraph D of invalence 0 is called a transmitter. 
Find all the transmitters of the digraph in Figure 3.41: 

*3 *4 

Figure 3.41 

(b) If the digraph D in part (a) were a model for the way a rumor 
planted with members of a group of seven people (x15. . . , x7) 
would be spread, determine if a rumor told to all the transmitters 
would reach all the people in the group. 

6. Use a digraph to model the authority structure of: 

(a) Your family. 

(b) The United States Government. 
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(c) The government of the state in which you live. 

(d) The government of the city (town) in which you live. 

7. Here is a suggestion for some experiments in social psychology. For 

a number of different groups of people, construct the “does listen to” 

digraphs. A “does listen to” digraph for a group is constructed as 

follows: 

Represent people by vertices and draw a directed edge from A 

to B if B generally listens to A’s suggestions. Call a pair of 

points symmetric if neither listens to the other or each listens 

to the other. Otherwise call them unsymmetric. Measure the 

extent of symmetry in various groups of people and correlate 

this with group morale. 

3.4 critical path method 

We shall now give a more dramatic example of how digraphs can be applied. 

When faced with a complicated job, it is often wise to resist the impulse to 

plunge right in to begin the work. A little analysis beforehand may reveal that 

great savings in time can be achieved by doing things in a certain order. The 

purpose of this section is to discuss CPM (Critical Path Method), a method 

of analyzing jobs that are composed of a number of interdependent smaller 

activities. In what follows, we shall maintain this distinction between the 

words job and activity. Job will refer to the total project at hand, while 

activity will denote one of the constituent tasks. 

The method we present will solve the model home problem of Chapter 

1. For convenience, however, we shall start with a simpler problem. Suppose 

we wish to minimize the time an ocean liner must spend in port. We shall 

simplify matters by assuming that the job of getting under way again involves 

just the four component activities shown in the table and that the times 

required for these activities are as indicated. 

A i. Disembark passengers 3 hr 

a2. Unload cargo 12 hr 

A 3. Take on new passengers 4 hr 

A 4. Load new cargo 15 hr 

How shall we proceed? If we take these activities in serial order, the 

time required to complete the job is 3 + 12 + 4 + 15 = 34 hr. Some of these 

activities can, in theory, be performed simultaneously, however: Cargo 

operations can proceed independently of passenger operations. The only 
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order that must be maintained is A1 must precede A3 and A2 must precede A4. 

A good way to illustrate this is to draw as a model the activity analysis digraph 

as described in the following definition (see also Figure 3.42). 

Figure 3.42 

DEFINITION 7 

Given a series of activities Ax, A2, . . . , An, together with the times required 

for each of these activities and given complete information about which 

activities must precede which and which may be simultaneous, we construct 

the activity analysis digraph in the following way: 

(1) Represent each At by a vertex and label it with the time required for that 

activity. 

(2) Create two additional vertices, each labeled with the number 0, one 

representing the job’s beginning, denoted B, and the other representing 

the job’s end, denoted E. By an abuse of common sense we shall refer to 

B and E as activities also, even though they require no time or effort to 

perform and are really just points in time. 

(3) Draw a directed edge from one activity to a second activity only if the 

first activity precedes the second and if no activity must intervene 

between the end of the first activity and the beginning of the second. 

The digraph in Figure 3.42 results from applying this definition to the 

information concerning the ocean liner problem. 

Can you see that the most efficient execution of the whole project in¬ 

volving the ocean liner would require only 27 hr? We shall shortly discuss a 

method for finding the most efficient time and the optimal scheduling from 

the activity analysis digraph. However let’s first go back to the model home 

problem of Chapter 1, whose precedence relationships are shown in the 

following table, using more suggestive abbreviations than those used in 

Chapter 1. 
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Activity Time (days) Immediate Predecessors 

B (begin) 0 

S (site preparation) 2 Begin 

Fo (building foundation) 3 Site preparation 

M (building main structure) 14 Building foundation 

EW (electric wiring) 5 Building main structure 

P (plumbing) 4 Building main structure 

IF (interior finishing) 7 Electric wiring and plumbing 

EF (exterior finishing) 11 Building main structure 

Fu (furnishing) 2 Interior finishing and exterior 

finishing 

L (landscaping) 4 Exterior finishing 

E (end) 0 Furnishing and landscaping 

The activity analysis digraph for this problem, shown in Figure 3.43, is 

drawn according to the information in column 3 of the table. Can you deter¬ 

mine that the minimum time is only 34 days? 

Now we need to consider the following question: Given an activity 

analysis digraph for a job, how can one determine the shortest time for com¬ 

pletion of the whole job, and how can one find a scheduling that accomplishes 

this shortest time? For the sake of simplicity and custom we shall imagine 

that time, denoted t, will be measured from the starting point B. In other 

words, B is time 0. In symbols, at B, t = 0. Our problem can now be phrased 

this way: Given an activity analysis digraph for a project, what is the smallest 

value of t at which E, the end, may occur and at which values of t should the 

other activities be scheduled to begin in order to achieve this smallest value of 

t for El The answer turns upon the significance of a directed path in the 

activity analysis digraph. Suppose we have a directed path beginning at B and 

ending at some activity Ar All the activities along this path must be performed 
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in the order of their occurrence before one can perform AP If we add the times 

for all the activities on this path up to but not including A,., we arrive at an 

amount of time that must elapse before A, can be performed. There may, 

however, be another directed path from B to A( (see Figure 3.44). We can 

Figure 3.44 

apply the same analysis to this path and arrive at another amount of time that 

must elapse before At can be performed. This amount of time may be different 

from the first. The earliest time at which we can actually begin to perform Ai 

is equal to the time for the longest path (measured in terms of time). In 

particular, the earliest time we can arrive at E (the end) is equal to the time 

for the so-called critical path from B to E, the path of longest time from B 

to E. Thus the answer to our question is as follows: The minimal time for the 

completion of the whole job is determined from the activity analysis digraph 

by calculating the time-length of the longest (in terms of time) directed path 

from B to E, that is, the length of the critical path. The beginning of activity 

At should be scheduled at a time equal to the time-length of the longest (in 

terms of time) directed path from B to Ar In calculating the lengths of the 

paths to Ap we do not count the time for At itself. 

Example 1 

Let us determine the most efficient scheduling of the ocean liner problem 

(Figure 3.42). The critical path is obviously B, A2, A4, F, with a length of 27. 

The minimum time for the whole job is thus 27 hr. To determine when the 

various activities are to be scheduled to begin is quite simple here since, for 

each activity except for E, there is only one directed path leading to it. 

Activities At and A2 can both be scheduled to begin at time 0. Activity A3 

should be scheduled to begin at time 3, right after A, is done, while A4 should 

be scheduled to begin at time 12. Notice that in this scheduling there is a 

great deal of slack time between the end of A3, which occurs at time 7, and the 
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activity E. However we cannot arrive at E until A2 and T4 are done, and 

these are not completed as early as A3 is completed. 

Example 2 

Let us determine the optimal scheduling and the minimal time for the 

slightly more complicated model home problem (see Figure 3.43). There are 

four directed paths from B to E. Together with their time-lengths they are: 

B, S, Fo, M, EW, IF, Fu, E 33 

B, S, Fo, M, P, IF, Fu, E 32 

B, S, Fo, M, EF, Fu, E 32 

B, S, Fo, M, EF, F, E 34 

Consequently, the minimal time is 34 days since the longest path 

(critical path) has time-length 34. An optimal scheduling designed to achieve 

this minimal time is as follows: 

Activity Start Time Reason 

S 0 There is only one directed path from B to S and it 

has length 0. 

Fo 2 There is only one directed path from B to Fo and it 

has length 2. 

M 5 There is only one directed path from B to M and it 

has length 5. 

EW 19 There is only one directed path from B to EW and it 

has length 19. 

IF 24 Of the two directed paths from B to IF, the longer 

has length 24. 

P 19 There is only one directed path from B to P and it has 

length 19. 

EF 19 There is only one directed path from B to EF and it 

has length 19. 

Fu 31 Of the three directed paths from B to Fu, the longest 

has length 31. 

L 30 There is only one directed path from B to L and it 

has length 30. 

E 34 Of the four directed paths from B to E, the longest 

has length 34. 

Example 3 

A large corporation decides on a major sales campaign to promote 

a product yet to be decided upon. The main activities in this project are: 
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M. A series of meetings to determine the product to be promoted (1 week). 

AC. Creation of advertising copy, jingles, and so on (4 weeks). 

ML. Assembling a suitable mailing list for a direct mail campaign (1 week). 

SO. Sending out the direct mail appeals (1 week). 

SP. Shipping an extra supply of the product chosen to retail outlets (3 
weeks). 

BR. Holding briefings for regional sales representatives (1 week). 

Decide upon suitable precedence relationships, draw an activity analysis 
digraph, and then find the optimal scheduling. 

Solution: There may be some debate concerning what the exact 

precedence relationships are, but those shown in the digraph in Figure 3.45 

Figure 3.45 

seem reasonable. The accompanying chart shows the optimal scheduling for 

this digraph. Note that there are two critical paths. 

Activity Starting Time Reason 

M 0 

ML 1 There is one path from B to ML and it has length 1. 

AC 1 There is one path from B to AC and it has length 1. 

SO 5 The two paths from B to SO have lengths 2 and 5. 

SP 1 There is one path from B to SP and it has length 1. 

BR 5 There is one path from B to BR and it has length 5. 

E 6 The four paths from B to fhave lengths 3, 6, 6, and 4. 
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EXERCISES 3.4 

1. A group of girls rooming together decide to cook a special dinner for 

some unsuspecting males. They break down this project into five com¬ 

ponent activities with time estimates as follows: 

K Clean house 

D Decide on menu 

P Purchase food 

C Cook food 

S Set table 

F Place cooked food on table 

30 minutes 

15 minutes 

60 minutes 

50 minutes 

10 minutes 

4 minutes 

Decide upon a reasonable activity analysis for this job. You may 

decide which activities precede others but be prepared to justify your 

choices. Determine the optimal scheduling and the minimum time 

corresponding to the optimum scheduling. 

2. The president of a college has just resigned and decides to move to 

another state. Being a mathematician, he performs an activity analysis 

of the project of moving, centered around the following activities: 

Bo Procure boxes to pack things 1 day 

H Arrange to purchase new home 14 days 

P Pack 5 days 

C Purchase clothing suitable for new surroundings 1 day 

S Send off boxes to new address 1 day 

M Shop around for a moving company 3 days 

An activity analysis digraph is shown in Figure 3.46. Determine an 

optimum scheduling and the associated minimal time for the move. 

B0 P 

Figure 3.46 
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3. The activity analysis in Figure 3.47 represents the job of teaching a 

child to understand and manipulate fractions. The vertices repre¬ 

sent various simpler arithmetic topics, such as addition, subtraction, 

multiplication, equality, and part-whole relationships, that need to be 

mastered first. The directed edges represent, as usual, the immediate 

precedences. Find the optimal scheduling and the minimal time. 

a4 

4. Under the influence of a new administration in Washington, the Peace 

Corps is to be reorganized and revitalized. Participating countries have 

suggested a focus on improving their agricultural technology. The new 

director’s analysis shows that there are nine distinct activities that need 

to be carried out in order to get such a program under way: 

(a) A new Peace Corps administration needs to be appointed. 

(b) A study needs to be made of the current state of agriculture in the 

nations in the participating group. 

(c) Based on the study, goals and methods need to be formulated and 

negotiated with the participating nations’ governments. 

(d) The results of the study and the aims of the Peace Corps need to 

be disseminated and advertised in the United States. 

(e) Recruitment and training of volunteers (preliminary). 

(f) Arranging for local community participation in the projects in the 

host countries and making other administrative and technical 

arrangements. 

(g) Proposing and lobbying for legislation in the United States Con¬ 

gress that would fund the projects. 

(h) Final selection of volunteers, briefing, and sending them off. 

(i) Putting out bids to purchase necessary materials and initiating 

necessary construction. 

Below is a precedence table. Draw the activity analysis digraph from 

these precedences and then find the optimal scheduling to complete the 

whole job in the minimal amount of time. 
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Activity Time Precedences 

0. Begin 0 None 

1. Administration 2 Begin 

2. Study 8 Begin 

3. Negotiation 6 Administration and study 

4. Dissemination 5 Administration and study 

5. Volunteers 8 Dissemination 

6. Arrangements 12 Negotiation 

7. Legislation 10 Negotiation 

8. Send-off 2 Volunteers, arrangements, and legislation 

9. Purchase 4 Legislation 

10. End 0 Purchase and send-off 

5. Here is the precedence table for the job of building a log cabin in the 

woods. 

Activity Time Precedences 

B Begin 0 weeks None 

L Learn how 8 weeks B 
S Purchase building site 12 weeks B 
F Lay foundation 1 week L,S 
T Cut trees and prepare logs 7 weeks L, S 
C Construct cabin 10 weeks F, T 
E End 0 weeks C 

Draw the activity analysis digraph and find the optimal scheduling. 

6.* Explain why, in an activity analysis digraph, one never finds three 
activities connected as in Figure 3.48. 

Figure 3.48 
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4 
paths and connectivity 

4.1 definitions and terminology 

Tourist: 

Local resident: 

“Say, can you tell me how to get to Main Street from 

here?" 
“Sorry, you can't get there from here." 

The main purpose of this chapter is to discuss Euler circuits and related 

matters. Before we start, we need to dispose of two preliminaries: 

(1) We shall elaborate our intuitive notion of a “circuit.” 

(2) We shall develop a notion of connectedness. 

To be specific, suppose a police patrol car needs to patrol all the streets 

represented by edges in the graph of Figure 4.1. Notice we use the singular 

graph instead of graphs. You may think you see two graphs but we can 

regard Figure 4.1 as containing one graph (admittedly, it comes in two 

pieces). This graph G models the streets that must be patrolled, even though 

it consists of two separate mini-routes with no connections between them. It 

seems reasonable to regard the graph G as a disconnected graph, consisting 

of two connected pieces or components. Furthermore, this disconnected¬ 

ness of G results because it is not possible for the patrol car to travel along a 
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Figure 4.1 

route or path in the graph that starts in one component (piece) and ends in 

the other. Doing so would require a jump somewhere from one component 

to another, which would be contrary to the nature of a path. Using the basic 

concept of a path, we shall later define the concept of a circuit. 

DEFINITION 1 

If we have a sequence of vertices in a graph (or a digraph) xu x2, ..., x„ so 

that each vertex x,. together with its successor in the sequence x,+I are end 

points of an edge Et (directed from x,. to xm in the digraph case), then we call 

the sequence of edges Eu E2, . . . , En_x a path in the graph (digraph) from 

*1 t0 

Instead of listing the edges in the path, it is often more convenient to 

list the vertices. Thus the pathFo, Ex in Figure 4.1 might be listed as x7, xl5 x2. 

Listing the vertices to describe a path can sometimes be ambiguous. For 

example, x7, xx, x2, x3 could mean either of these two paths: E0, Ex, E2 or 

E0, Ex, E'2. This ambiguity only arises when the path uses one of a set of 

multiple edges; in such cases we shall stick to the edge listing method. 

Other examples of paths in Figure 4.1 are 

*7, *1, *2, *9, *4, *8 (4-1) 

x6, x8, x4, x9 (4.2) 

X], x2, x9, x4, x8, x9 (4.3) 

x9, 7£T25 X3, X2 (4.4) 

However, x3, x6, x8 is not a path because there is no edge connecting x3 and 

x6. 
In (4.3), notice that xl5 x2, x9, x4, x8, x9 is a path, even though one 

vertex x9 is repeated. It is quite legitimate for a path to repeat one or more 

vertices. Repeating vertices can have advantages since the average police 
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patrol car probably passes through some vertices (intersections) often in one 

tour. Edges may also be repeated, as shown in (4.4), where the edge joining 

xt and x2 is repeated. 
Examples of paths in the digraph of Figure 4.2 are x5, x4, x2 and x2, x3, 

x4, x2, x3, Xj. Elowever, x1? x2, x3 is not a path because there is no directed 

edge from x3 to x2. 

x2 

Figure 4.2 

Intuitively, a graph or digraph is connected, provided that one can walk 

from any vertex to any other (following the arrows in the digraph case). The 

formal definition is as follows: 

DEFINITION 2 

A graph or digraph G is connected if, for any two vertices x and y in G, there is 

a path starting at x and ending at y. 

Since connectedness (or the lack of it) is probably the most obvious 

aspect of a graph’s structure, it is not surprising that when graphs are used 

to model real-world phenomena, the connectedness (or lack of it) reflects 

important facts about the real-world phenomena being modeled. 

Here are some examples: 

Example 1 

Let G (a graph) model the established acquaintanceship relationships 

among a group of people. Vertices represent people and edges represent 

existing acquaintance ties. If G is connected, any two people in G may some 

day come into contact or become acquainted through knowing other people 

who form a path between the two. If G is not connected and has more than 

one component, then these components represent different groups, whose 

individual members will not come into contact through mutual acquaintance. 

For instance, suppose the disconnected graph of Figure 4.1 models the friend¬ 

ship relations of people represented by the vertices. Persons x7 and x8, while 

not directly acquainted, may become so through their mutual contact x3. 
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Because x1 may become acquainted with xs, he may also become acquainted 

with xg, as the latter is directly acquainted with x8. In general, x7 may become 

acquainted with anyone with whom he is connected by a path. He will never 

become acquainted with y because there is no path from x1 to y. 

Conjecture (Kenneth Hoffman): The acquaintanceship graph for the 

adult United States population is connected. 

Example 2 

If the graph G is a model of a molecule, it must be connected. If it were 

not, there would be two or more components, each having no connection with 

the rest of the molecule. Since no chemical bonds hold these components 

together, they could not be regarded as part of the same molecule. 

As we turn to some examples involving digraphs, the concept of con¬ 

nectedness is a bit more subtle, although the definition is the same as for 

graphs. Does the digraph of Figure 4.2 look connected? It does give the 

impression of being in one piece. Unfortunately, while this type of visual 

impression is useful when dealing with graphs, we must be more careful when 

we have a digraph. In fact, according to our definition, the digraph in Figure 

4.2 is not connected because there is no path from x3 to x5 (remember, in a 

digraph a path must “obey the arrows”). If we wish to go in the other direc¬ 

tion, that is, from x5 to jc3, we could use the path x5, x4, x2, x3; however, we 

have to be able to go from x3 to x5 as well. The definition of connectedness 

requires that, no matter at which vertex you wish to start, it should be pos¬ 

sible to reach any other vertex by some path. Figure 4.3 shows an example of 

a connected digraph. 

x4 Figure 4.3 

We have defined a path in such a way that it may repeat edges or 

vertices. You may recall that in our mailman and mail distributor problems 

of Chapters 1 and 2 we wished to avoid repetitions. When we wish to discuss 

paths in which repetitions of one kind or the other are to be ruled out, we 

shall refer to a path without repeated edges or a path without repeated vertices. 
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as the case may be. In Figure 4.1 the path xlt x8, x9, x4, x8 has no repeated 

edges but it has repeated vertices. 

DEFINITION 3 

A circuit is a path whose first and last vertices are the same. 

Example 3 

In Figure 4.1, the path xl5 x8, x9, x4, xs, x9, x2, x1 is a circuit. The path 

JC7, xu x2, x9, x4, x5, x6, x7 is also a circuit. The path x7, xu xa, x9 is not a 

circuit since the first and last vertices are not the same. The sequence of 

vertices x6, xs, x3, x2, xu x2, x6 is not a circuit or even a path since x8 and x3 

are not joined by an edge. 

One place where repeated edges or vertices become annoying is in the 

measurement of the length of a path. How long should we say the path 

x8, x9, x4, x8, x9 (Figure 4.1) is? There are only three distinct edges in this 

path but one of them occurs twice so maybe we should say the length is 4. 

This is exactly what we do: 

DEFINITION 4 

The length of a path is the number of edges that appear, each edge being 

counted once each time it appears as we trace out the path. 

The following theorem will be useful later. 

THEOREM 1 

If G is a connected graph or digraph with n vertices, then between any two 

distinct vertices of G there is a path of length no greater than n — 1. 

Proof: Let xt and x7 be any two vertices of G. Since G is connected, 

there is some path starting at xi and ending at Xj. We shall show that if this 

path has length greater than n — 1, then it can be shortened. The reason is 

as follows: If the length is greater than n — 1, then as we trace out the path, 

we encounter vertices more than n times (counting the starting vertex jc;. and 

the ending vertex xf). The vertices we encounter cannot all be different since 

there are only n different vertices in G. Therefore, some vertex is encountered 

twice, which means that the path has a loop in it (see Figure 4.4). We can take 

a shortcut from xi to x7 (Figure 4.5) by bypassing the loop. If the shortened 

path is still longer than n — 1, we apply our argument again. We can continue 

the shortening process until we reach a path of length no more than n — 1. 



Figure 4.4 

Figure 4.5 

EXERCISES 4.1 

1. For each of the following sequences of vertices, determine, by referring 

to Figure 4.6, which ones are paths, paths that repeat no edges, circuits, 

and circuits that repeat no edges. 

Xj V, X3 X4 

Figure 4.6 
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(a) Xj, x2, x8, x3, x7 

(b) X(, X2, X8, Xjj, Xg 

(c) X2i ^8> Xq, X2 

(d) X4, X9, ^1 0 

(e) •*10> *8> x9i xg, X’n 

o
 

*
 00 

X 

(0 Xu, -^8) X-j, X3, X2, X8, x9 

(g) •^6? *^7? X2> X3, -^7? -^6 

(h) X%i x3, X2, Xj 

(i) X5, X6, X7, Xg, X2, Xj 

2. Referring to the Figure 4.6, list all the circuits that repeat neither vertices 

nor edges. 

Remark: In a graph it is usual to consider two circuits the same if 

they arise from one another by reading off the vertices in cyclic order or 

reverse cyclic order. 

3. What is the length of the longest path not repeating vertices or edges in 

Figure 4.6? How many different paths of this length are there? 

4. Consider the graph in Figure 4.7. 

Figure 4.7 

(a) How many different paths that do not repeat vertices or edges are 

there between x, and x3 ? between x2 and x5 ? or between x3 and 

x5? Can you make a general statement about the number of paths 

without repeated vertices between any given pair of vertices? 

(b) How many circuits that repeat no edges are formed when the 

edge [Xj, x3] is added to the graph? or the edge [x2, x5]? or the 
edge [x3, x8]? Generalize. 

In the graph in Figure 4.3, find 

(a) a path from x, to x3; 

5. 
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(b) a circuit that includes x2, x3, and x5; 

(c) a path from xx to x5 that visits x6. 

6. DEFINITION 

The distance from vertex x to vertex y in a connected graph G or digraph 

D is denoted d{x, y) and is equal to the length of the shortest path joining 
x to y. 

(a) In Figure 4.6, find 

(i) d(xl0,x5) 

(ii) d(x3, Xj () 

(iii) d(xu,x6) 
(b) * For a graph, show that d(x, y) obeys the following rules: 

(i) d(x, y)> 0 

(ii) d(x, y) = d(y, x) 

(iii) d(x, y) = 0 if and only if x = y 

(iv) Given any three vertices x, y, z, d(x, y) + d(y, z) > d(x, z). 

(c) * Do i, ii, iii, and iv of part (b) hold for digraphs? 

7. For the graph of Figure 4.1, list two paths (without repeating vertices), 

each of which connects x6 with xg. Can you find two such paths that 

have no vertices in common except for x6 and x8 ? 

8. Explain why a path in a graph or digraph without repeated vertices must 

also be a path without repeated edges. 

9. In each of the digraphs in Figure 4.8, determine whether or not the 

digraph is connected. 

Figure 4.8 

10. Consider the acquaintance graph of all people in the United States 

(please do not attempt to draw it). It has been suggested that any two 

people in the graph can be connected with a path of length at most 4. 
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Can you find a path of length at most 4 connecting you to the President 

of the United States? (A possible criterion for acquaintanceship is this: 

Two people are acquaintances if it would not be very abnormal for 

either to engage the other in verbal conversation, either personally or on 

the telephone.) Try this game for other prominent persons besides the 

President. 

11. Explain why, in the context of Exercise 10, it is of no interest to consider 

paths with repeated vertices. 

12. Suppose x is a vertex of a digraph D and outval (x) = 0. Can D be 

connected ? If not, say why not. If D can be connected, draw an exam¬ 

ple. 

13. In the context of Exercise 12, suppose inval (x) = 0 instead of outval 

(x) = 0. Answer the same question. 

14. For each of the graphs in Figure 4.9, determine how many components 

(maximal connected pieces) the graph has. 

Figure 4.9 
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15. DEFINITION 

Let G be any graph. G — v will denote the graph obtained from G by 

deleting from G the vertex v together with all the edges at v. Note, 

however, that the end points of these edges remain. 

DEFINITION 

Let G be any graph. G — [x,., xy] (or G — E where E is the edge [x„ xj) 

will denote the graph obtained from G by the deletion of the edge 

[xf, xj. Note that when an edge is deleted, its end points are not to be 

removed. 

For each of the graphs in Figure 4.10, find the graphs G — v for each 

vertex v in the graph. In addition, find the graph G — E for each edge 

E in the graph. State how many components are obtained in each case. 

Figure 4.10 

16. DEFINITION 

Edge E is called a bridge if G — E has more components than G. (See 

Exercise 15). 

(a) Construct a graph with at least seven edges, for which every edge 

is a bridge. 
(b) Construct a graph with no bridges. 

17. Construct a graph with at least five non 1-valent vertices such that each 

vertex that is not 1-valent is a cut vertex. [A cut vertex is one for which 

G — v has more components than G (see Exercise 15).] 

18. Think of several real-world situations where the graphs that model 

these situations might have 

(a) cut points; 

(b) bridges. 
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19. Suppose G is connected and E is an edge of G. What is the largest 

number of components G — E can have ? 

20. Construct a graph G, with a vertex v, such that G — v has 

(a) three components; 

(b) four components; 

(c) five components. 

21. * Let M be any graph. Suppose there is a path in M from xt to xs. Show 

there must be a path that repeats no edges or vertices between xt and 

xr 
22. * Let M be a graph. Suppose [xt, xj] is an edge of some circuit that repeats 

no edges in M. Does [*,., Xj] lie on some circuit that repeats no edges or 

vertices ? What if the circuit repeats only one vertex ? 

23. * Suppose we define the concept of mutual reachability in a graph or 

digraph like this: Vertices A and B are mutually reachable provided 

there is a path starting at A and ending at B and a path starting at B 

and ending at A. Explain why the following is true: If A and B are 

mutually reachable and B and C are mutually reachable, then A and C 

are mutually reachable. 

24. * Define A and B to be simply mutually reachable if they are mutually 

reachable (Exercise 23) using paths that have no repeated vertices. 

Explain why the following is true: If A and B are simply mutually 

reachable and B and C are simply mutually reachable, then A and C 
are simply mutually reachable. 

25. * Show that a graph M, all of whose vertices are 4-valent, cannot have 

any bridges. Show that M may have a cut vertex even though all 

its vertices are 4-valent. Generalize both parts of this problem. (See 
Exercises 16 and 17.) 

26. * Show that if a graph with at least two edges has a bridge, then it 

must also have a cut vertex. Must it have two cut vertices? (See 
Exercise 17.) 

27. * Let G be a graph such that G — E consists of two connected pieces Hx 

and H2. Let xx and x2 belong to Elx and //2, respectively. Show that any 
path in G joining xx and x2 must use edge E. 

28. * Suppose that E is a bridge of the graph G. Show that E cannot be on a 

circuit unless that circuit repeats an edge. (See Exercise 16.) 

29. * Suppose M is a graph with every vertex of valence 2. Show that M has 

neither bridges nor cut vertices. (See Exercises 16 and 17.) 

30. * The paraffin compound C3H8 has only one isomer. There are several 

possible graphs, however, that can be drawn having three vertices of 
valence 4 and eight vertices of valence 1. Explain. 
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4.2 mailmen, Koenigsberg's bridges, 

and Leonhard Euler 

Now that we have methods for describing routes in graphs, we are prepared to 

attempt a graph theoretical solution to the mailman problem raised in 

Chapter 1, for which a model was obtained in Chapter 2. Rephrased in the 

terminology of this chapter, the mailman can solve his problem provided there 

exists a circuit passing through each edge of the graph in Figure 2.3 exactly 

once. 

Although we could now attack this graph theoretical problem directly, 

ft is worthwhile to take a short historical excursion. We shall discuss a puzzle 

which gives rise to the same problem in graph theory as the mailman problem 

and which was the actual problem that motivated the Swiss mathematician 

Leonhard Euler to invent the theory of graphs. 

Figure 4.11 shows a portion of the map of the city of Koenigsberg as it 

Figure 4.11 

appeared in 1735. Koenigsberg was formerly located in Prussia but is now in 

the Union of Soviet Socialist Republics and has been renamed Kalingrad. 

Figure 4.11 displays a portion of the Pregel River including Kneiphof, one of 

the islands in the river. Also depicted are the bridges connecting the island to 

the city itself. 
It was the pastime of some of the citizens of Koenigsberg to attempt the 

following: One was to start at any point on the shore of the river or on 

Kneiphof and walk over all the bridges once and only once, returning to one’s 

starting spot. 
This problem was posed to Leonhard Euler (1707-1783) who, in a 

remarkable paper, solved it and all problems in the same genre in one fell 

swoop. Let us follow in Euler’s footsteps and attempt to recover his thinking. 



Leonhard Euler (1707-1783), though born in 
Switzerland, spent a large portion of his life in St. 
Petersburg, Russia. He was extremely prolific, publishing 
over 500 works during his lifetime His collected works 

are now being published and are expected to exceed 70 
volumes. Euler made major contributions in many areas 
of mathematics, including the theory of functions and 

algebra In 1735 he solved the problem of the 
Koenigsberg bridges and in 1752 expanded Descartes' 
discussion of the fact that for a three-dimensional solid, 

V + F — E = 2, where V, F, and £ denote the number 
of vertices, faces, and edges of the solid, respectively. A 
contemporary claimed that Euler could calculate 
effortlessly "just as men breathe, as eagles sustain 
themselves in the air 
(Courtesy The Wolff-Leavenworth Collection, George 

Arents Research Library at Syracuse University.) 

We begin by trying to find a model for the Koenigsberg bridge problem 

using the theory of graphs. Let us represent Kneiphof by a single vertex and 

each shoreline by a single vertex. This last provision may seem radical but 

since one can walk from any part of the shoreline to any other part without 

crossing a bridge, all points of the shoreline are equivalent as far as the prob¬ 

lem is concerned. We now join two vertices by an edge, provided that there 

is a bridge joining the land blocks they represent. When we do this, we obtain 

the graph shown in Figure 4.12. 

Figure 4.12 

To solve the problem of the Koenigsberg bridges, one must construct a 

circuit which passes exactly once through each edge of the graph. To honor 

Euler and to avoid constant repetition of terms, we give the following defini¬ 
tion. 

82 
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DEFINITION 5 

A circuit that traverses every edge of a graph* exactly once is called an Euler 

circuit of that graph. 

Before we analyze the Koenigsberg bridge problem, one remark about 

circuits is in order. We have spoken of them as beginning and ending at some 

vertex but actually we can begin and end at any vertex on the circuit we like. 

Imagine that we attempt to' construct an Euler circuit starting with 

vertex x, in the graph in Figure 4.12. We first observe that if the graph we 

are dealing with were not connected, there would be some vertices that could 

not be joined by a path to x,. Hence, no Euler circuit could exist. Since the 

graph in Figure 4.12 is connected, there is some hope that it may have an 

Euler circuit. Let us imagine that we try to construct such a circuit starting at 

Xj. We initially leave X! using one edge; each time we enter and leave xt, 

we use up two edges; finally, at the very end we must use one further edge 

to return to x^ This means that if an Euler circuit existed, the valence of Xj 

would have to be even. The valence of Xj is 5, however, implying that the 

Koenigsberg bridge problem has no solution. What is more important, we 

see that for any graph whatsoever, unless the valence of every vertex is even, 

there can be no Euler circuit. On the other hand, a little experimentation 

with graphs that do have vertices all having even valences indicates that such 

graphs do seem to have Euler circuits. In fact, 

THEOREM 2 (Leonhard Euler, 1735) 

A graph G has an Euler circuit if and only if G is connected and the valence 

of each vertex of G is even. 

Proof: There are two facts that are to be established. 

(1) If G is connected and all its vertices have even valence, then G contains 

an Euler circuit. 
(2) If G contains an Euler circuit, then G is connected and all its vertices 

have even valence. 

We begin with a demonstration of part (2) because it is simpler. Suppose 

that G has an Euler circuit. Since this circuit covers all the edges, it must reach 

all the vertices, so G must be connected. Now let x,. be any vertex of the graph 

G. As we have remarked earlier, we can imagine that our Euler circuit begins 

and ends at x,. and that, in between starting and ending there, it revisits x, a 

number of times, say, t times. Each of these t times the circuit revisits x„ it 

goes in and then out, using two previously unused edges. These intermediate 

*To avoid technical complications, for the remainder of this chapter we assume that 

a graph has no vertex of valence zero. 
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visits use up 21 edges at xr Starting and ending use up one edge each so a total 
of 2t + 2 edges at x, are used by the circuit. An Euler circuit uses all edges of 
the graph, however, so these 2t + 2 edges are all the edges at xr Thus, the 
valence of xt is even. Since this argument applies to any vertex, we have com¬ 

pleted the proof of part (2). 
To prove part (1) we proceed as follows. Pick any vertex of G, say xr 

Leave xt along any edge and wander along through the graph in a random 
path, making sure that we never traverse a previously used edge. 

Suppose that we reach a vertex xk by following this procedure and that 
there is no unused edge at xk. We claim that xk is actually the same vertex as 
xt. If this were not the case, we would have entered xk one more time than 
we were able to depart from xk; hence the valence of xk would have to be odd. 
Since this is contrary to the hypothesis, we conclude that xk = xr Two cases 
now arise. 

Case 1 

All the edges of G have appeared in the circuit we constructed above. 

Case 2 

Some edges of G do not appear in the circuit constructed above. 

Clearly, in Case 1, we have constructed an Euler circuit. In Case 2, let 
n1 denote the circuit we have constructed, which is not an Euler circuit. 
Delete the edges of the circuit nl from G, thereby obtaining a new graph H1. 
{Warning: The graph Hx may not be connected.) Since G was connected, some 
vertex of Hx has a vertex xt in common with nx. Furthermore, each vertex of 
Hx has even valence since G had even valence at each vertex and since the 
circuit 7i, used an even number of edges at each vertex it passed through. Start¬ 
ing at the vertex xp we can wander at random, as in the construction of nx, 
until we return to xp obtaining a circuit n2. We now piece nx and n2 together 
as follows: In writing out nx when we first reach xp we insert the edges of the 
circuit 7r2, returning to xp and then continue with the remainder of nx. Thus, 
we obtain a circuit nx + 7r2, which starts at xr If this circuit includes all the 
edges of G, we have the required Euler circuit. If not, we delete nx + 7i2 from 
the edges of G to obtain a new graph H2, and repeat the process above. Since 
G has only a finite number of edges, after a finite number of repetitions of 
this process we would obtain the required Euler circuit. 

Example 1 

By consulting Figure 4.13, one can see how this process proceeds in a 
typical example. Since the valence of each vertex of the graph G in Figure 4.13 



*1 =xl,x2,x3,x4,x5,x6,xl. 

X2 -1*. X3 

Figure 4.13 

is even, we know that there exists an Euler circuit in the graph, by Theorem 2. 

Starting at x, (Figure 4.13), we produce the circuit 

71, = X„X2, X3,X4, X5, X6, X, 

If we delete the edges of 7T, from G, we obtain the graph Hu shown in Figure 

4.14. Starting at vertex x3, we generate the circuit n2: 

u2 — x3, x8, x10, x5, x7, x2, x6, x7, x3 

Piecing together n1 and n2 gives: 

7t, 4“ 7T2 = X,, x2, x3, x8, x10, x5, x7, x2, x6, x7, x3, X4, X5, X6, X, 

Figure 4.14 
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If we delete the edges of nt + n2 from G, we obtain H2, the graph shown in 

Figure 4.15. In H2, we construct the circuit n3 [(4.5)] starting with the vertex 

(4.5) 

Figure 4.1 5 

Inserting n3 into the path n1 + n2 at the first occurrence of x10 (actually any 

occurrence of xlQ will do), we obtain the circuit 

(4.6) 

It is important to note that + n2 + n3 [see (4.6)] is not the only Euler 

circuit for the graph in Figure 4.13. 

In the proof we have developed a mechanical procedure or algorithm, 

which if followed step-by-step can be used to find an Euler circuit in any 

connected graph with even-valent vertices. This algorithm can be briefly sum¬ 

marized: 

(1) Start the construction of the Euler circuit at any vertex. 

(2) From this initial vertex, wander at random using only edges not pre¬ 

viously traversed. When you cannot proceed further in this manner, go 

to instruction 3. 

(3) Now either you have traversed all the edges, in which case you are done, 

or else it will be possible for you to choose an untraversed edge with a 

vertex in common with edges already traversed. 

(4) Using the vertex referred to in instruction 3, wander at random using 

only edges not previously traversed. When you cannot proceed further 

in this manner, take the path just generated and amalgamate it with the 

last path. Then proceed back to instruction 3. 

You may have discovered by now that for the examples we do in this 

book it is rarely necessary to use the formal procedure just described. Gener- 
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ally, one can generate the Euler circuit all in one fell swoop with just a little 

effort. Why, then, did we go through the formal procedure involving stitching 

circuits together? There are at least three reasons: 

(1) The procedure formed part of the proof that such circuits could be 

found under the right conditions. 

(2) For very large and confusing-looking graphs it may be necessary to 

rely on a formal procedure that we know works. 

(3) The formal procedure is well-adapted to computer use since computers 

must be precisely instructed about how to solve problems. One cannot 

ask a computer to proceed by that mixture of trial and error and 

judgment that you would use instead of the formal procedure. 

THE EXPANDING UNICURSE* 

Some citizens of Konigsberg 

Were walking on the strand 

Beside the river Pregel 

With its seven bridges spanned. 

“O Euler, come and walk with us,” 

Those burghers did beseech. 

“We’ll roam the seven bridges o’er, 

And pass but once by each.” 

“It can’t be done,” thus Euler cried. 

“Here comes the Q.E.D. 

Your islands are but vertices 

And four have odd degree.” 

From Konigsberg to Konig’s book 

So runs the graphic tale 

And still it grows more colorful 

In Michigan, and Yale. 

-—Blanche Descartes 

Having discovered precisely what conditions guarantee the existence of 

an Euler circuit, it is tempting to leave the problem of edge traversability in 

a graph and to go to a different problem. But a mathematician is rarely con¬ 

tent when he solves a problem. He always wants to look at his original 

♦Reprinted with the permission of Academic Press and Professor William Tutte. 
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problem and its solution from many directions, with the hope that some 

slightly different perspective will lead him to something new. This is especially 

true if the new problem requires little additional new work. One way to go 

about formulating new problems is to examine some of the attributes of the 

original problem, in this case the Euler circuit problem, and to change some 

of these attributes. 
For example, suppose we can drop the requirement of the mailman 

problem that forces us to return to the starting vertex. Now we have the fol¬ 

lowing intriguing problem: Let A and B be two vertices of a given graph G. 

Can we find a path which covers every edge of G exactly once and which 

starts at vertex A and ends at vertex B1 For the graph in Figure 4.16 such a 
path would be 

A, Xj, x4, B, x5, x8, A, x14, x15, x9, x8, x7, x6, x5, x10, xu, x12, x13, 

x14, xg, x10, x15, x13, Xj, xa, x3, x4, Xj2, x15, xn, B 

X1 x6 

Figure 4.1 6 

We emphasize that for any particular graph we could probably find the 

answer to such a question by using trial and error. What we really are looking 

for, however, is some test (preferably a simple one) that when applied to any 

graph G will tell us whether or not such a path exists. 
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DEFINITION 6 

A graph G has an Euler path between vertex x, and vertex x} (xt xf 

provided that there is a path from xt to Xj which repeats no edge and which 
includes all the edges of G. 

It turns out that the problem of finding Euler paths can be attacked by 
a modification of our earlier work on Euler circuits. 

THEOREM 3 (Leonhard Euler) 

A graph G has an Euler path between the distinct vertices xt and xs if and 

only if G is connected and x,. and Xj are the only vertices of G having odd 
valence. 

Proof: Suppose that G has an Euler path between the vertices xt and 

Xj that are distinct. Since this Euler path exists, G must be connected. 

In the graph G, let us add an extra edge E from xt to x} and let us call 

this new graph G + E. We can extend our Euler path of G to an Euler circuit 

of G + E by tacking the edge E onto the end of the Euler path. Since G + E 

now has an Euler circuit, each vertex has even valence, by Theorem 2. There¬ 

fore, each vertex of G is even-valent except for xt and xjt which are odd- 
valent. 

Now we shall assume that G is connected and that every vertex of G is 

even-valent, except for xt and x]f which are odd-valent. We wish to prove 

that G has an Euler path. Let us join x, and x3 by an edge (an additional edge 

if they are already joined). We obtain a connected graph, whose vertices 

all are even-valent, and can therefore conclude that there is an Euler circuit 

that can be written starting with xr The edge that we added, when removed 

from this Euler circuit, will tell us how to construct an Euler path from x, 

to Xj. 

New mathematical problems are frequently suggested by old ones. Often 

the new problems can be shown to model real-world problems of interest. 

Can you think of a modification of the mailman problem that can be solved 

by using an Euler path? If we can solve new real problems with little addi¬ 

tional work, so much the better. As we shall see in the next section, however, 

this ideal may not always be obtainable. 

EXERCISES 4.2 

1. For each graph in Figure 4.17, determine if it has an Euler circuit, an 

Euler path, or neither. If it has an Euler circuit or Euler path, draw it. 



A’i X2 X3 

x\ x2 x3 

Figure 4.17 

2. The graph in Figure 4.18 has been constructed as a model of the hall¬ 

ways of a building that is to be converted into a museum. Assume that 

the exhibits are to be placed only on one side of the hallway. The 

entrance and exit exhibits are to be located at A. Indicate how it might 

be possible to paint numbered arrows on the hallway walls so that if 
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a person followed the numbered arrows sequentially, he would see all 

the exhibits once and only once. 

Figure 4.18 

3. A highway inspector wishes to save the taxpayers’ money. He hopes to 

find a route starting at Xj and returning to xx that will take him over each 

section of the highways he must inspect once and only once. Can he 

find such a route? If so, draw one such route. (See Figure 4.19.) 

xx x2 x3 x4 x5 x6 

4. Can a person find a route through the floor plan of the house in Figure 

4.20 that will take him through each door exactly once? 

Figure 4.20 

5.* Can you find an Euler circuit for the graph in Figure 4.13 with the 

property that as you traverse the circuit it never cuts across itself? 
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4.3 variations on Euler circuit problems 

A good modeling slogan might be “If at first you don’t succeed, try, try 

again.” Typically, one tries the simplest model one can think of to solve a 

problem and when that proves inadequate (as it often does), one tries again, 

this time using a more sophisticated model. In this section we shall illustrate 

this aspect of modeling. 
Suppose we need to design an efficient route for a street sprinkler truck 

that needs to traverse each street (edge) of Figure 4.21. In our first model we 

G 

Figure 4.21 

shall convert this quest for an efficient route into this question: Can we find 

an Euler circuit in the graph of the street network ? Since there are vertices of 

odd valence, the answer is no; thus, our first modeling attempt produces 

merely the information that the ideal solution is unattainable. 

As our second modeling attempt we shall convert the quest for efficiency 

into this problem: Find a circuit covering every edge in Figure 4.21 at least 

once, but having the minimal number of duplications. 

For example, by trial and error, one can find a circuit 

(4.7) 

that repeats three edges, [jc15 x4], [x2, x4], and [x6, x7]. Is three the minimal 

number of repetitions? This question cannot be answered as easily as the 

Euler circuit problem, but in the spirit of applied mathematics we can make 

enough headway for some practical purposes. First we shall establish a lower 

bound to the number of duplications. This lower bound will serve as a limit 

to our optimism in estimating how small a number of duplications we can get 
away with by designing a circuit cleverly. 

THEOREM 4 

Let G be a graph with vQ being the number of vertices having odd valence. 

Any circuit in this graph that covers every edge at least once must have at 

least vJ2 duplications. 
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Proof: Suppose C is a circuit that covers every edge of G. We shall use 

C to construct a slightly different graph G' and a circuit C' in G'. To form G', 

follow circuit C in G and each time you come to an edge E previously used, 

add another edge to G connecting the end points of E. To form circuit C' in 

G', follow the circuit C except where it duplicates an edge in G. At such an 

edge, there is a newly added edge in G', which we use before continuing on, as 

in C. Figure 4.22 shows how G' is constructed for the circuit (4.7) taken as C. 

Figure 4.22 

The dotted edges are those that have to be added to G in Figure 4.21 to obtain 
G'. 

We add a new edge in G' every time we would be otherwise forced to 

duplicate an edge in G. Consequently, the number of newly added edges to 

form G' equals the number of duplications in C. Therefore, we need to deter¬ 

mine the number of edges that have been added. 

The key fact in determining the number of added edges is that C' is an 

Euler circuit in G'. Therefore, all the vertices of G' have even valence. At 

each of the odd-valent vertices of G we need to raise the valence by at least 

one in order to make the valence even. Consequently the new edges must be 

added in such a way as to touch every odd-valent vertex. Now each edge 

added has only two ends and so can touch at most two vertices. The most 

optimistic possibility is that each edge touches exactly two of the v0 odd- 

valent vertices. In this case v0/2 edges have been added. 

For any particular graph for which we have found a circuit covering all 

the edges, we can use this theorem to give us some notion of how good a 

solution we have found. For example, in the graph of Figure 4.21 there are 

four odd-valent vertices, so v0 — 4. Consequently, any circuit covering all 

the edges needs at least two duplications. The solution shown in (4.7) has 

three duplications. We can conclude that perhaps if we looked harder, we 

could find a better solution. On the other hand, we know enough not to try 

to do better than two because that is not possible. Can you find a circuit 

covering all the edges in Figure 4.21 but with only two duplications? 

We can reverse the idea of the proof of the theorem to help us find a 

circuit covering all edges of a given graph with not too much duplication. In 
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Figure 4.23(b) we have converted some edges of graph G in Figure 4.23(a) 

into multiple edges by adding some dotted edges. These edges have been 

added in a strategic way so as to create a new graph G', all of whose vertices 

have even valence. The reason this is useful is that G' has an Euler circuit, say 

C'. When we try to trace out C' on G (not G'), we find a circuit that duplicates 

some edges. One duplication occurs for each added (dotted) edge. Figure 

4.23(b) gives us a solution using eight duplications. In Figure 4.23(c) we have 

been a bit cleverer and reduced this to four duplications. Can we do still 

better? According to the theorem we cannot, so we can stop trying. 

(a) (b) (c) 

Figure 4.23 

For the graph of Figure 4.24(a) the theorem tells us that a path with 

minimal duplications has at least two duplications. If you look for a solution 

with two duplications, you will have trouble finding one. You will undoubt¬ 

edly be able to find solutions with four duplications. Two such solutions are 

shown in Figures 4.24(b) and (c). Can you find yet another? It turns out that 

four is the best you can do. This is a case where the lower estimate provided 
by the theorem is not exact. 

Figure 4.24 
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In general, it is hard to tell what the minimal duplication is for a given 

graph. Our theorem, while useful, often doesn’t give a good lower estimate. 

It is not unreasonable, if we are concerned with street sprinklers, to restrict 

ourselves to rectangular street networks, that is, networks where every block 

has four corners and every intersection has exactly two streets crossing there. 

In this case, we can obtain some fairly good and sometimes exact notions of 

what the minimal duplication is. Suppose our network is h blocks high and 
m blocks long. (See Figure 4.25.) 

h blocks 

Figure 4.25 

There are 2h + 2m — 4 odd-valent vertices, namely, all those on the 

outer boundary of the network except for the four corners. According to our 

theorem, the minimal duplication for a path that covers all edges is at least 

h + m — 2. We shall show that this is a reasonably good estimate of the 

minimal duplication for rectangular networks, in the sense that we can find 

paths whose duplications come quite close to this figure, even hitting it on 

the nose, depending on whether h and m are even or odd numbers. 

Case 1 

h and m are both odd. Then Figure 4.26 shows how to add (m — l)/2 

Figure 4.26 
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edges along the top and along the bottom and (h — l)/2 edges on each of the 

sides, making an even-valent graph. The number of edges added is h + m — 2, 

and we know that there is a path with this many duplications. Our theorem 

tells us we can’t hope to do better. Therefore, the estimate given by Theorem 4 

is exact when h and m are both odd. 

Case 2 

h and m are both even. Figure 4.27 shows a solution with mil edges 

along the top and bottom and with h/2 edges added on each side, the resulting 

graph having h + m extra edges added. These additions produce a graph with 

all vertices even-valent so we know there is a circuit covering all edges and 

with h + m duplications. Since the best we could possibly do would be 

h m — 2, we know that even if our h + m is not the best, it could be 

improved at most by the removal of two duplications. 

Figure 4.27 

Case 3 

One of h and m is odd and the other is even. We leave this case for you 
to analyze. 

Until now, our model has not taken into account the different lengths 

the streets may have. If this is considered too, our problem would be to 

minimize the total length of duplication. This is not necessarily the same as 

minimizing the number of duplications because it may happen that duplicat¬ 

ing three short streets is better than duplicating two long ones. Since this 

final level of sophistication in our modeling process poses substantial mathe¬ 
matical problems, we shall not discuss it further. 

EXERCISES 4.3 

1. For the graph in Figure 4.28, what is the minimal duplication you can 

find? How does it compare to the lower estimate of our theorem? 



Figure 4.28 

2. Can you supply the analysis for Case 3 ? 

3. For the graphs of the radial street networks in Figure 4.29, what are the 

minimum duplications you can find? Flow do the numbers compare to 

the lower estimate of the theorem ? 

(a) (b) 

(c) 

Figure 4.29 

4. For a general radial street network with n streets radiating from the 

center and r rings around the center [e.g., in Figure 4.29(c), n = 5 and 

r = 3], what is the minimal duplication that can be arranged? (Hint: 

The answer depends on whether n is even or odd.) 
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5. * Show that in any graph v0 the number of odd-valent vertices is even. 

Consequently, v0/2 is a whole number. 

6. * Can you find a circuit in Figure 4.30 that has eight duplications? Can 

you prove that this is the minimum number possible for this graph? 

4.4 variations on Hamilton circuit problems 

In this section we shall continue our study of rectangular street grids but this 

time from the point of view of finding Hamilton circuits in them. Figure 4.31 

—? 

r ■* 1 r ~ i 

—i —t 
Figure 4.31 
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shows a simple and fairly general way of trying to find a Hamilton circuit in 

a rectangular street grid. Unfortunately this method won’t work all the time, 

as illustrated in the grid of Figure 4.32. By comparing these grids you will 

probably conclude that in an m X n grid where one of the dimensions is odd, 

there is always a Hamilton circuit, which can be generated by first orienting 

the grid so its horizontal dimension is odd and then following the pattern of 

Figure 4.31. This conclusion does not, however, tell us whether even-by-even 

grids have Hamilton circuits. It may be that some other method of solution 

might work for even-by-even grids. We shall shortly see that this is not the 

case, but we pause for a biographical refreshment followed by a definition. 

Figure 4.32 

Sir William Rowan Hamilton (1805-1865), born in 

Ireland, showed an early talent for languages. At five, he 
was able to read Greek, Hebrew, and Latin. He showed 
talent in mathematics early, too, and while still a student 
at 22, he was appointed Royal Astronomer of Ireland. 
Hamilton's major contributions to mathematics were in 

algebra. He lends his name to the concept of a Hamilton 
circuit via his invention of the Icosian Game. This game 
requires a route of edges visiting without repetition the 

20 vertices of a dodecahedron (Figure 4.40) which had 

been labeled with the names of European towns. 
Hamilton hoped to become rich by marketing this game, 

but unfortunately the game was not a success. 

(Courtesy The Bettmann Archive) 
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DEFINITION 7 

A graph is bipartite if it is possible to color its vertices with only two colors, 

S and C. 

Figures 4.33 and 4.34 show examples of bipartite graphs, where the ver¬ 

tices colored C are denoted by circles and the vertices colored S are denoted 

by squares. Figure 4.35 shows two graphs that are clearly not bipartite; 

studying them should convince you that no graph having a circuit with an 

odd number of distinct vertices is bipartite. 

Figure 4.33 

Figure 4.34 

It is not hard to see that rectangular grids are always bipartite: Simply 

color the vertices across the top row alternately with circles and squares, 

beginning with a circle at the upper left. Now do the same with the next row 

down but starting with a square at the left. Evidently we can continue this for 

all the other rows, thereby coloring all the vertices suitably. Figure 4.36 shows 

this in an even-by-even grid. In connection with the Hamilton circuit problem, 
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Figure 4.36 

for this grid it will be of particular interest to us to see whether or not the 

number of circle vertices equals the number of square vertices. We note that 

the top row, which has an even number of edges, has an odd number of 

vertices. Consequently, there is one more circle vertex than there are square 

vertices. In the next row there is a reverse imbalance: one more square vertex 

than circle vertices, thus canceling out the imbalance in the first row. As we 

go down the rows, keeping a cumulative record of the imbalance, we discover 

that after counting an even number of rows there is no imbalance, but after 

counting an odd number of rows there is an imbalance of one circle. Since 

we have an odd number of rows, there is an imbalance of one circle. Since we 

have an odd number of rows in an even-by-even grid, we have shown that 

in an even-by-even rectangular grid where the vertices are divided into circle 

and square vertices so as to exhibit the bipartite nature of the graph, the 

number of square vertices is unequal to the number of circle vertices. 

With this in mind, the following theorem shows that an even-by-even 

grid does not have a Hamilton circuit. 

THEOREM 5 

Suppose G is a graph which is bipartite and which has vertices colored C or 

S, with no two vertices joined by an edge having the same color. If G has a 

Hamilton circuit, then the number of vertices colored S is the same as the 

number of vertices colored C. 

Proof: Let us denote the Hamilton circuit in G by 

*i> x2, . . . , x„ . . ■, xt (4.8) 

where every vertex of the graph appears in (4.8) exactly once (except for Xj). 

In the circuit described in (4.8), two vertices that are next to one another 

cannot both be colored C nor both colored S since in a bipartite graph no 

edge can join two vertices, both of which have the same color. Hence in (4.8) 
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the vertices must alternate between the two colors. Since no vertex except x, 

is repeated, this alternation means that there must be equal numbers of ver¬ 

tices colored C and S. 

Unfortunately, Theorem 5 is one of the few simple theoretical tools useful 

in studying Hamilton circuits. Actually, however, it is not very useful since it 

can only be used to demonstrate the non-existence of Hamilton circuits. In 

general, Hamilton circuit theory is much messier than Euler circuit theory, 

which is more or less contained in Theorem 2. It is partly for this reason that 

much more attention is currently being paid to Hamilton circuits and allied 

concepts. The other important reason for the intensive study of these matters 

is the practical importance of closely related concepts. We end the section with 

a brief description of one of these concepts. 

Suppose that we consider a salesman whose job is to visit each of the 

cities A through E shown in Figure 4.37. In order to get from one city to 

B 90 c 

another, the salesman must, of course, pay a certain cost (perhaps the price of 

an airline ticket). The cost of traveling between two cities in Figure 4.37 is 

indicated by the number on the edge joining them. If you choose, you can 

interpret the numbers as being the distances between the cities involved; using 

costs would represent a more general situation. The problem for the salesman 

is to find a minimal cost tour that visits each of the cities. Restated somewhat 

differently, the salesman is seeking a minimal cost Hamilton circuit. This prob¬ 

lem, called the traveling salesman problem, has attracted a tremendous 

amount of attention because of its many applications in this and various 

other formulations. Unfortunately, no simple procedure for solving it exists. 

This may seem surprising since there is a simple method of attempting a 

solution. If the salesman is at a given city, he should travel to a city that has 

not already been visited, for which the cost is cheapest. This seemingly 

reasonable rule gives the route (Figure 4.37) ABCDEA for a salesman whose 
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home is A, yet the route ADCBEA is cheaper. This example illustrates the 

idea that doing the best thing available at a given time may not give an 

optimal solution to a whole problem. Although many fine mathematicians 

have worked on the traveling salesman problem, no solution to the general 

problem has been found. However, there are some good computer-oriented 

methods for finding approximate solutions. 

EXERCISES 4.4 

1. Using Theorem 5, determine whether the graph used to model the 

mail distributor problem from Chapter 1 has a Hamilton circuit. 

2. Suppose G is a connected graph with the property that its vertices can 

be divided into two sets, A and B, with the following properties: 

(a) If x and y are vertices that are both in A or both in B, then there is 

no edge that joins x and y. 

(b) The number of vertices in set A equals the number of vertices in 

set B. 

Must G have a Hamilton circuit? Try some experiments. 

3. For each of the graphs in Figure 4.38, determine if the graph has a 

Hamilton circuit. Can this be proved by Theorem 5? 

Figure 4.38 

4. DEFINITION 

A Hamilton path in a graph G is a path whose beginning and end 

vertices are distinct, and which contains each vertex of G exactly once. 
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(a) Which graphs in Figure 4.39 have Hamilton paths? 

(b) Show that if G has three 1-valent vertices, it cannot have a Hamil¬ 

ton path. 

5. Obtain a solution to Hamilton’s “great icosian” game by determining 

if there is a Hamilton circuit for the graph consisting of the vertices and 

the edges of the solid shown in Figure 4.40. 

Figure 4.40 
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6. Find the minimal cost Hamilton circuit for the graph in Figure 4.37. 

7. Find the solution of the traveling salesman problem, using air distances, 

for the four largest cities in your home state. 

8. Find the solution to the traveling salesman problem, using air distances, 

for the cities of Chicago, San Francisco, Los Angeles, and New York. 

9. Would the answers to Exercises 7 and 8 be considerably changed if air 

distance were replaced by rail or auto distance ? 

10. Solve the traveling salesman problem for the graphs in Figure 4.41. 

Figure 4.41 

11. Imagine you are planning to take an automobile trip in which you visit 

Chicago, Houston, and San Francisco, starting from your hometown. 

Explain how your knowledge of the traveling salesman problem might 

result in a cheaper vacation. 

12. For the model shown in Figure 4.37, find the minimum cost of a sales¬ 

man who is required to start in A, finish in D, and visit B, C, and E. 
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13.* Figure 4.42 shows a portion of a small town where Mrs. Fabricant lives. 

Her home is located at P. Nearly every day she must make stops at the 

bakery (B), the supermarket (S), the laundry (L), the newstand (N), and 

the bank (BK). 

N 

BK 

s B 

L 

p 

Figure 4.42 

(a) What is the length of the shortest route that starts at her home, 

visits each of the required stops, and returns her home? 

(b) Suppose Mrs. Fabricant insists that her first stop be at L? Does 

this affect the length of her shortest route? 

Arthur Cayley (1821-1895) was an English 
mathematician whose most important work was in 
algebra. Cayley worked on the four-color conjecture 
(1878), but his ma|or contribution to graph theory lay In 
his investigations about trees. This work, dating to 
papers written in 1856 and 1874, dealt with 
enumerating various isomers by counting the number of 
non-isomorphic trees with various properties. In 
particular, he calculated the number of isomers of the 
saturated hydrocarbons C„H2n+2 for values of n up to 13. 
Cayley also spent 14 years as a lawyer, but this hardly 
seemed to interfere with his prodigious mathematical 
output, as he published several hundred papers during 
those years. 

(Courtesy The Bettmann Archive.) 
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Computer Used as Guide to Expert Seeking 
Way Out of Labyrinth of Urban Problems 

UJ— Jobs for underemployed 
TC— Tox collections 
UR— Ratio of jobs to underemployed 
UiM— Attractiveness of job market 
UM— Movement of underemployed into labor class 
UAMM—Attractiveness of opportunity to move into labor class 
UHM— Attractiveness of housing to underemployed 
UHR— Ratio of housing to underemployed 
AMM— City's real attractiveness to underemployed migrants 
AMMP-City's attractiveness as perceived by underemployed outsiders 
UA— Arrival of underemployed migrants 
TPCR— Tax per capita 
PEM— Public expenditures 
UHPR— Rate of underemployed housing construction 
UHPM—Attractiveness of housing available 

Jay W. Forrester 

By WILLIAM K. STEVENS 
To Jay W. Forrester, whose 

specialty is grappling with 
complexity, the modern city is 
a diabolically complicated sys¬ 
tem that not only hides its 
real nature but even sets up 
decoys for those who want to 
learn how it functions. 

So he has tried to cut 
through the urban tangle and 
evade the decoys by using a 
computer to keep track of and 
simulate the interaction of 
what he believes to be the ma¬ 
jor factors that cause a city to 
rise, flourish and then decay. 

This model of a functioning 
metropolis, expressed in math¬ 
ematical equations, is a gen¬ 
eral, theoretical one that is not 
designed to apply to any par¬ 
ticular city. But, Mr. For¬ 
rester, a professor at the 
Massachusetts Institute of 
Technology, has used it to test 
the efficacy of such traditional 
urban “cure” policies as job 
training and housing con¬ 
struction for the poor. 

I® 1969 by The New York Times Company, Reprinted by permission.) 
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5.7 introduction 

In this chapter we examine some aspects of computers and the mathematics 
relevant to them. This subject is so vast that we shall be in the position of the 
three blind Indians who examined an elephant by touching him. The Indian 
examining the trunk thought the beast must be long and tubular like a 
snake; the one touching the side figured the elephant was broad and massive 
like a wall; the one investigating the legs concluded he was dealing with a 
round, tall animal in the shape of a tree. Even when their information was 
pooled, it would have been hard to comprehend the nature of the elephant. 

We shall discuss the computer briefly from different vantage points— 
electrical circuits, binary arithmetic, programming, encoding of information 
—and hope that the total picture, while inevitably disjointed, will nevertheless 
be helpful. 

It is sad but true that many practical problems are too long for hand 
computation. Think back to the mailman problem of Chapters 1 and 2 where 
we were led to look for an Euler circuit in a graph with 13 vertices and 32 
edges. This was a small graph, so trial and error did the trick for us. But 
imagine pushing your pencil through a graph with 13,000 vertices and 32,000 
edges in search of a trial and error solution. Here it is perhaps some comfort 
that we found a step-by-step procedure guaranteed to find an Euler circuit in 
a graph that has one. If we use this procedure, it will still take us a long time 
but at least we know we won’t waste time on trials that turn out to be errors. 
Our procedure is even more of a convenience if we attempt to instruct a 
computer to solve this large problem for us. This then is the first thing to 

109 



110 computers and related topics 

know about computers: One of their great virtues is that we use them to 

avoid human drudgery in cases where we can give the computer a specific 

procedure to follow. 

Although everyone is familiar with many uses of computers, a display 

of the tremendous scope of the computer “revolution” may, nevertheless, 

come as a surprise. Considering that this revolution began near the end of 

World War II, a rather short time ago, the computer has already had a vast 

impact on our lives. 

Some of this impact is illustrated by the following list of applications. 

(1) Preparing payroll checks; processing personal checking accounts; and 

being useful in many other situations in the areas of banking, finance, 

and insurance. 

(2) Billing by large retail firms. Credit card accounts. 

(3) Processing subscriptions and large mailings of national organizations 
and magazines. 

(4) Sorting of mail. 

(5) Analyzing and tabulating census data. 

(6) Constructing inventories. 

(7) Airline, train, and hotel reservation systems. 

(8) Traffic and air traffic control. 

(9) Translating materials from foreign languages. 

(10) Diagnostic medicine. Cardiograms and encephalograms (brain wave 

records) are being analyzed by computer. Patient data are computer 
processed. 

(11) Computing orbits for satellites and the launching and guidance of 
rockets and missiles. 

(12) Teaching machines. 

(13) Long- and short-term weather forecasting. 

The list given above could be extended almost indefinitely. Its purpose 

is to remind you of the wide variety of ways in which computers enter our 
daily lives. 



Computer Finds Isaiah Was Written by 2 Men 

Jerusalem, March 30 
(Reuters) —Electronic com¬ 
puters have proved virtually 
beyond doubt that two 
Isaiahs, probably living 100 
years apart, wrote the Bib¬ 
lical book of Isaiah, accord¬ 
ing to a Hebrew University 
doctoral thesis presented 
here. 

Tests analyzing stylistic 
and linguistic details 
showed that Chapters 40 to 
60 of the prophet’s work 
were written by a second 
Isaiah, believed to have 
lived in the sixth century 
B.C. 

Hebrew University pro¬ 

fessors say the probability 
of the first Isaiah’s also hav¬ 
ing written the chapters at¬ 
tributed to the second Isaiah 
is 1 in 100,000. 

If generally accepted, the 
thesis, presented by a 57- 
year-old Biblical scholar, 
Yehuda Radday, would end 
a 150-year-old dispute 
among Biblical scholars. 

Mr. Radday, who is in 
charge of Biblical teaching 
in the department of general 
studies at the Haifa Tech- 
nion, set out on his research 
certain there was only one 
Isaiah. 

(© 1972 by The New York Times Company. Reprinted by permission.) 

EXERCISES 5.1 

1. Add to the list of applications of computers by commenting on the 

uses to which computers have been put in the following situations and 

institutions: 

(a) the stock exchange 

(b) the internal revenue service 

(c) the social security administration 

(d) registration at your college 

(e) dating service companies 

(f) space program 

(g) election returns 

5.2 the major components of a computer 

In Figure 5.1 we show a simplified schematic diagram for the most important 

components of a modern scientific computer. A sketch of the work handled 

by each of the components of such a computer follows. 

ill 



Figure 5.1 

input and output devices: The input device is used for transferring 

information from a human user of the machine into the computer so that it 

can act on or manipulate that information. The output device is the means of 

transferring information contained within the computer back to the human 

operator. At the most basic level the computer carries on its work with 

electrical currents flowing through its complicated circuitry. We cannot con¬ 

trol this electrical activity directly by having our brain or any other organ 

send electrical signals so we need some middlemen between our thoughts and 

the computer’s circuitry. Typically we would first put our instructions on 

paper. This list of instructions would be converted to a deck of IBM cards 

punched with holes whose patterns reflect what we wrote on the paper. This 

deck would then be fed into a piece of equipment called a card reader, where 

a light shines upon the cards and the holes on each card determine pulses of 

electricity in a photoelectric cell stationed on the other side of the card from 

the light. These pulses may be fed directly into the main part of the computer. 

Other input methods that are often used instead of or in conjunction with this 

basic process are special typewriters, magnetic tapes, and cathode-ray tubes. 

The same or similar devices are used for output devices to transform the 

computer’s electrical “information” into something understandable to a 
human being. 

Much of the equipment which we just discussed as well as other equip¬ 

ment which you may have seen in computer installations or in pictures of 

them is so-called peripheral equipment. Peripheral equipment is used in pre¬ 

paring punched cards, sorting such cards, and transferring data either from 

cards to tape or from tape to printed form. To try to appreciate the nature of 

the computer from the peripheral equipment would be like trying to under¬ 

stand the human brain by examining books, phonograph records, television 

sets, and other media by which the brain receives its sensory inputs. If you 
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Some peripheral equipment. (Courtesy of IBM.) 

ever find yourself working with computers, you will need to know more about 

the peripheral equipment but since our goal is a general understanding of 

computers, we shall not discuss this equipment further. 

memory unit: The memory unit of a computer is a device where 

information is stored. The computer memory is divided into cells, each of 

which contains one unit of information. Each cell has an address (or number) 

A Keypunch. (Courtesy of IBM.) 
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attached to it. When a particular unit of information is needed, it can be 

located easily by giving the address (or number) of the cell where it is being 

stored at that moment. Some memory cells will contain input data, others will 

contain the answers to a problem that are waiting to be sent to an output 

device, and still other cells will contain (in numerical form) the instructions 

telling the computer how to go about solving the problem. Often memory 

cells will be used for storing the results of intermediate calculations that come 

up in the course of obtaining the final answer to a problem. The most common 

types of memory units are magnetic disks, magnetic cores, and magnetic 
tapes. The different types of memory vary according to their accuracy and 

their access time. The access time refers to the amount of time required to get 

a piece of information to or from the memory unit. 

arithmetic unit: The arithmetic unit of the computer is that part 

where the computations occur. The additions, subtractions, multiplications, 

divisions, and logical operations that must be done to solve a complicated 

problem are performed in the arithmetic unit. 

As suggested in Figure 5.1, when doing a calculation, there is a transfer 

of information between memory and the arithmetic unit. The situation would 

be similar if your brain were doing a calculation. For example, if you want to 

compare the price per ounce of two different brands of coffee, what you would 
do is: 

(1) Divide the price of the first can by the contents of the can in ounces. 

(2) Shift the answer to your memory, thereby permitting your conscious 

attention to shift to the calculation for the next can. 

(3) Perform the calculation for the second can. 

(4) Recall the first answer from memory and compare it to the second. 

You may be curious about how the computer compares with the human 

brain in such aspects as size, speed, and memory capacity. The results of the 

comparison, using a powerful computer available in 1970, are shown in the 
table below: 

Computer Brain 

Size 2000 cubic feet 

(10 tons) 
jy cubic foot 

Speed 10 to 100 million 1 to 10 seconds 
operations per second for an addition 

Memory 1 million items 10 billion items 
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The brain characteristics apply to almost any brain, say your own. Note that 

the brain wins in two areas, but when the computer wins, it wins big. 

Now that we have outlined the various components of the computer, 

you may be wondering how it solves a problem. Does the computer solve 

problems by thinking out its own solution or must some human being instruct 

the computer how to go about solving the problem? This question, in turn, 

raises the question of what it means for a machine to think. 

Design model fora computer installation, fCourtesy of IBM.) 

A replica of the difference engine of Charles 

Babbage. 
(Courtesy of IBM.) 
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Alan Turing, one of the pioneers of logical design for computers, once 

suggested a test along the following lines to determine whether a computer 

could think. Imagine that there were two identical rooms, one containing a 

computer and the other containing a human being. Imagine that you didn’t 

know which room contained the computer and which contained the human 

being and that you communicated with the occupants of the rooms with a 

teletype. Your task is to send questions to both rooms and to try to determine 

from the answers given by the computer and the human being which room 

contains the computer. If you couldn’t tell, no matter how hard your ques¬ 

tions, Turing would conclude that for all practical purposes the computer 

was thinking. Turing’s test is ingenious but not everyone would accept it. 

For example, suppose you had a computer whose memory was so large it 

could be fed prepared answers to almost any question it could be asked. 

Do you think this is conceivable ? Would you say such a computer was think¬ 

ing? Another problem that could be raised concerning Turing’s test is that it 

doesn’t seem to involve that peculiar capability that humans have of making 

spontaneous connections in their heads without any apparent prodding by 

external stimuli. It seems clear that before we can ask “Do computers think ?” 

we should have to spend a good deal of time discussing what we would 

accept as “thinking.” This is a deep question that we won’t discuss any fur¬ 

ther, but it may cheer you to know that at present there are no computers 

that could pass Turing’s test. 

The inability of the computer to match the human brain is basically due 

to the fact that the computer cannot do anything spontaneously but must be 

specifically instructed by a human programmer in order to solve the simplest 

problem. As a matter of fact it is a well-known observation in computer work 

that “computers never do what you want them to do but only what you tell 

them to do.” This means that computers are ideal for carrying out instructions 

that have been given to them. If the computer is obtaining nonsensical 

answers, more than likely some human being fed in nonsensical instructions. 

As computer programmers sometimes say, GIGO! (garbage in, garbage out!). 

5.3 algorithms with decision points 

and feedback loops 

Perhaps the greatest difference between the human brain and a computer is 

that while the brain can solve many problems in an intuitive way, sometimes 

without appearing to think about what it is doing, a computer can do nothing 

without a painfully logical, step-by-step algorithm. Such an algorithm, when 

written in a form usable by a computer, is called a program. Before looking at 

a program designed for a computer solution to a problem, we shall study some 
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examples from outside the world of the computer. These examples illustrate in 

more familiar settings the way in which simple tasks (washing clothes, fixing 

radios) need to be broken down into constituent operations and decisions 

that must be properly sequenced so that the task can be performed without 

any further exercise of intelligence or judgment. 

In our first example, consider the situation of Hilda, a housewife with 

two bundles of clothes to be laundered. Hilda’s washing machine has controls 

for water temperature and number of rinses and she sets these controls dif¬ 

ferently for the two bundles, as shown in Figure 5.2. When Hilda sets the 

Figure 5.2 

dials to achieve a certain combination of water temperature and number of 

rinses, she is programming her machine. What this means is that she is giving 

the machine advance instructions that will be exactly and precisely followed. 

In Figure 5.3 we show a flow chart for this washing machine that 

illustrates graphically the sequence of operations the machine will perform. 

The square boxes describe operations that the machine performs, while the 

diamond-shaped boxes are so-called decision boxes because they indicate 

places where the machine must consult the dial settings in order to find out 

which of two possible operations to perform next. 

The chart in Figure 5.3 illustrates one of the two important character¬ 

istics of computer programs; namely, it has decision points. The other charac¬ 

teristic, one which is missing in our flow chart, is the feedback loop. We can, 

however, revise our flow chart to contain a feedback loop. As motivation for 

this, notice that the flow chart in Figure 5.3 has three boxes representing the 

same rinse operation. If our machine could rinse up to 50 times, there would 

be many more rinse boxes—too many to fit in a neat diagram. In Figure 5.4 

we revise the last part of our flow chart by “feeding back” the rinse operation 

into the decision point just above it. The decision box concerning the number 



of rinses and the rinse operation box, together with the arrows linking them, 

form what is called a feedback loop. Notice that with this loop we can now 

deal with any number of rinses (if our machine is constructed for them). 

Next we shall examine another process from everyday experience. This 

example involves fixing a radio; decision points and feedback loops are an 

essential part of the process. The radio repair flow chart (Figure 5.5) should 

be self-explanatory except for the role of K, which has nothing to do with 

the radio directly but is merely a counter that keeps track of what tube we are 

working on at any moment. 

To illustrate the operation of this program, we take a particular broken 
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radio, symbolized in Figure 5.6, and show what happens to it at various stages 

of the program. The diagrams are to be interpreted like this. Each circle 

represents a tube, a bad one if there is an “x” in the circle and a good one 

otherwise. The numbers below are labels for the tubes. The x outside the 

tubes represents the fact that in this particular radio there is an additional 

defect present in some component other than a tube. The little box at the 

right of each radio contains the current value of the counter K. 

The value of this kind of testing of hypothetical radios is that it gives us 

a “feel” for how the program works. To some extent, an understanding of 

how the program works can be achieved just by looking at it and reading it. 

Often it is hard to grasp how it will work in all contingencies, however; there 

may also be subtleties about its behavior. For example, did you notice when 

you first examined the flow chart that this program does a silly thing if you 

try it on a radio that has nothing wrong with it? To see what happens, 



Figure 5.5 

try running through the program with such a radio (i.e., no x’s anywhere). 

We can also present the same information given by the flow chart in the 

nonpictorial form of a list. To make this conversion, one goes through the 

flow chart, starting at the beginning and using “go to” statements where there 

are decision points (for example, statement 3 below). The reverse process of 

converting from a list to a flow chart follows similar commonsense rules. 
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Schematic 
radio 

Counter 

o ® * 

1 2 

o ® X 

1 2 
(counter 

increased) 

(tube 1 being 

tested) 

(tube 1 

returned) 

(counter 
increased) 

(tube 2 being 
tested) 

(tube 2 

replaced) 

Radio tested, doesn’t work 

Radio taken to professional. Figure 5.6 

INSTRUCTIONS FOR RETURNING A BROKEN RADIO TO WORKING ORDER 

(The instructions are carried out one after another, unless some instruction 

specifies what instruction to go to next.) 

0. Start. 

1. Set K = 0. 

2. Increase K by 1. 

3. Remove tube K and test it. Is it good? 

Yes—go to 4. 

No—go to 6. 

4. Return tube K to the radio. 
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5. Istf=2? 

Yes—go to 8. 

No—go to 2. 

6. Put a new (good) tube in the K place. 

7. Turn on radio. Does it play? 

Yes—go to 9. 

No—go to 5. 

8. Take radio to a professional repairman. 

9. Stop. 

One final thing needs to be said by way of a caution about feedback 

loops. If one is not careful about constructing a flow chart or list presentation 

for an algorithm, one may inadvertently construct an infinite feedback loop. 

For example, you would be ill-advised to hold your breath waiting to reach 

instruction 4 in the program below: 

0. Start. 

1. Go to 3. 

2. Go to 1. 

3. Go to 2. 

4. Smile. 

5. Stop. 

In our last example we shall finally consider a problem for which com¬ 

puters come in handy, namely, the problem of sorting a list of numbers. 

Suppose that each day 1,349 weather stations across the country report their 

maximum temperatures to a central meteorological agency that publishes the 

highest of all these temperatures. Since the reports from the weather stations 

arrive in no particular numerical order, a computer is used to find the largest 

entry in the list. Here is the flow chart (Figure 5.7) that shows how the com¬ 

puter might go about it. 

You should test this program to see if it really works. When you do so, 

you will doubtless find it inconvenient to work with a list of 1,349 numbers. 

If there is an error in the program, this should become apparent when a 

shorter list of, say, 5 numbers is used. If the flow chart in Figure 5.7 is 

modified so that “Is K = 1,348?” is changed to “Is K — 4?” we can easily 

check the program using lists of 5 numbers. If the new program works for 5 

numbers, then the original one probably will work for 1,349 numbers. 



Figure 5.7 

EXERCISES 5.3 

1. Put the flow chart for Hilda’s washer into list presentation form. 

2. Suppose Hilda’s washer has an agitator speed dial (with a fast and a slow 

position) and suppose the agitator goes into action after the water is 

turned on but before the rinse cycle. Draw a flow chart for the opera¬ 

tions of this improved washer. Put your flow chart into list presentation 

form. 

3. Below are listed three separate algorithms for fixing a radio. In each 

case, make a flow chart to describe the algorithm. For each algorithm, 

decide whether you think it works (use hypothetical radios if neces¬ 

sary). If an algorithm does not work, show a radio for which it does not 

do the correct thing. Show what actually happens to such a radio as one 

applies the steps of the algorithm. 
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(a) 0. Start. 

1. Set K= \. 
2. Test tube K. Is it good ? 

Yes—go to 5. 

No—go to 3. 

3. Replace tube K with a new one. 

4. Go to 1. 

5. Increase K by 1. 

6. Go to 2. 
7. Take radio to professional repairman. 

8. Stop. 

(b) 0. Start. 

1. Set is: =1. 
2. Test tube K. Is it good ? 

Yes—go to 5. 

No—go to 3. 

3. Replace tube K with a new one. 

4. Radio plays now ? 

Yes—go to 7. 

No—go to 5. 

5. Increase K by 1. 

6. Go to 2. 
7. Take radio to a professional repairman. 

8. Stop. 

(c) 0. Start. 

1. Set is: =1. 

2. Test tube K. Is it good? 

Yes—go to 5. 

No—go to 3. 

3. Replace tube K with a new one. 

4. Radio plays now? 

Yes—go to 8. 

No—go to 5. 

5. Increase K by 1. 

6. Go to 2. 

7. Take radio to a professional repairman. 

8. Stop. 

4. Can you modify the radio repair algorithm so that it deals with three- 

tube radios instead of two-tube radios? Use either the flow chart or list 

presentation method. 
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5. Can you modify the radio repair algorithm to do the sensible thing 

when presented with a radio that is working? Use the method of hypo¬ 

thetical radios to check that your modified program works for good or 

bad radios. 

6. The radio repair algorithm works by checking one tube at a time. Can 

you give an algorithm in which all the tubes are checked at once ? 

7. Suppose you found it desirable, in describing the radio repairing pro¬ 

cedure, to give a more detailed algorithm in which “remove the back of 

the radio” and “replace the back of the radio” must appear where 

appropriate. Assume that tubes cannot be removed without the back 

being off and that the radio cannot be turned on with the back off. 

Construct the appropriate algorithm in both flow chart and list pre¬ 

sentation form. 

8. Below is an algorithm that is designed to pick out the largest number 

from a list of four numbers in a vertical column. Does the algorithm do 

what it is supposed to? Test it for each of the following lists. 

(a) 1 (b) 4 (c) 1 
3 1 4 

2 2 3 

4 3 2 

1. Start. 

2. Set K = 0. 

3. Increase K by 1. 
4. Is the number on line K greater than that on line K + 1 ? 

Yes—go to 5. 

No—go to 6. 
5. Interchange the numbers on lines K and K + 1. 

6. Is K =3? 
Yes—go to 7. 

No—go to 3. 

7. Number on line 4 (bottom line) is the answer. 

8. Stop. 

9. Write a flow chart for the algorithm of Exercise 8. 

10. Suppose we change instructions 4 and 7 of Exercise 8 so they now read 
4. Is the number on line K greater than that on line K + 1 ? 

Yes—go to 6. 

No—go to 5. 
7. Number on line 1 (top line) is the answer. 

Does this modified program work? 

11. Make a flow chart for the modified algorithm in Exercise 10. 
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12. The flow chart in Figure 5.8 is designed to do the following: Given any 

list of four numbers in a vertical column, following these instructions is 

supposed to rearrange them into numerical order, largest first. However, 

there is something wrong. Find a column of four numbers for which it 

does not succeed in doing the required rearrangement. Can you fix the 

program ? 

Figure 5.8 

13. Does the flow chart described in Figure 5.7 succeed in putting the 

whole list of numbers in numerical order or does it merely move the 
largest one to the last position? 
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14. In our sorting program, suppose we also wanted to find the smallest 

number on the list. Can you see how to modify the program in the 

text in order to give both the largest and smallest numbers? 

15. Draw a flow chart for the following list presentation of a program 

designed to alphabetize a list of initials (each entry in the list is a pair 

of initials, e.g., C. K. for Clark Kent). They should be alphabetized 

first by last initial and, in case of a tie, by first initial. Does the program 
do its job? Explain. 

0. Start. 

1. Set K = 0. 

2. Increase K by 1. 

3. Does last initial of Kth name on the list come before last 

initial of name in position K + 1? 

Yes—go to 6. 

No—go to 4. 

4. Interchange Kth name with name in K + 1 position. 
5. Go to 7. 

6. Does first initial of Kth name come before first initial of 
name in position K + 1 ? 

Yes—go to 2. 

No—go to 4. 

7. Stop. 

16. * What are some of the items that you must program to take a picture 

with an elaborate camera? (Hint: color film versus black and white, 

shutter speed, etc.) 

17. * What are some of the items that you must program to use a stereo 

system ? 

18. * Copy a recipe from a cookbook. What are the similarities between the 

recipe and a list presentation of a program? When would a recipe have 

a loop? 

19. * Obtain a copy of the federal income tax form. Is it a program in list 

presentation form ? 

machine language 

Up to now we have discussed algorithms at a level where they describe the 

general plan of the calculations or procedures to be carried out. There is a 

more detailed level at which the description of the algorithm can be given 

using machine language, so called because it describes more closely how the 

machine actually operates. For example, in a previous program we had 

occasion to instruct the computer to subtract one number from another. In 
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machine language we would go into more detail about how this is to be done. 

Machine language is thus an additional step toward converting our thoughts 

into a form the computer can use to carry out our wishes. 

Shortly we shall give an example of a payroll program at both levels of 

detail: the programming language level and the machine language level. 

Before doing this it may be instructive to keep an analogy in mind. Suppose 

you are a businessman and you discover that your whole office staff goes to 

lunch at the same time, leaving the office empty and lowering efficiency. As 

a first step toward relieving this problem you flip on your dictaphone and 

dictate a message for your secretary: “Evelyn, figure out a lunch schedule so 

the office is never empty.” This message describes the general plan but it is 

not specific enough to be acted upon by the office staff. Evelyn will now trans¬ 

late this message into a detailed memo containing a schedule. In our analogy, 

her memo corresponds to machine language. 

Here is a program in programming language that calculates the payroll 

for a firm. The basic rule is simple enough: The hourly rate is multiplied by 

hours worked except when there is overtime, in which case an alternate for¬ 

mula involving a time and a half rate for overtime is used. 

PROGRAM TO CALCULATE PAYROLL 

1. Start. 

2. Read data from top card (name, hours, rate) and dispose of card. 

3. Is number of hours greater than 40? 

Yes—go to 6. 

No—go to 4. 

4. Compute PAY by PAY=HOURS*RATE (* = multiplication). 

5. Go to 7. 

6. Compute PAY by PAY=(1.5)*(HOURS-40)*RATE+40*RATE. 

7. Print: NAME, PAY. 

8. Is there another card left? 
Yes—go to 2. 

No—go to 9. 

9. Stop. 

Instead of expanding this whole program into machine language, we 

shall focus on the two formulas that occur in steps 4 and 6. First we work 
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with the formula PAY=HOURS*RATE that occurs in the payroll program 

and show how one person’s pay is computed from this formula, using his 
number of hours and basic rate of pay. 

A basic idea that must be understood is that conceptually the computer 

consists in part of a series of “boxes” (these are actually sections of electronic 

circuitry), some of which are memory boxes (also thought of as storage boxes) 

and one of which is an arithmetic box or unit where arithmetic is performed 
(see Table 5.1). 

For example, to calculate PAY from our formula we would first have 

to have the number of HOURS and the RATE stored in some memory 

boxes (one piece of data to a box). For convenience we shall call these boxes 

by the words HOURS and RATE, respectively. Table 5.1 shows the setup 

schematically. For illustration we have filled in the boxes with an HOURS 

value of 40 and a RATE value of $2.50. The way the calculation will take 
place is this: 

(1) One of the boxes will have its contents copied into the arithmetic unit. 

(2) The second box will have its number sent to the arithmetic unit also, 

but with the instruction to multiply it by what is already there. After 

this multiplication the arithmetic unit will contain only the product 

just calculated. 

(3) This number will be sent to the storage location labeled PAY. 

These steps are described on the left in Table 5.1 in machine language. The 

right-side of the table shows the contents of the various boxes at the various 

stages of the machine language description. This is not itself part of the 

machine language description. The abbreviations used in the machine lan¬ 

guage are explained right after the program. 

Table 5.1 Machine Language Program to Compute HOURS*RATE 

(The Result to be Called PAY). 

Memory 

Arithmetic 

Unit 

Program 

40 2.50 

40 

HOURS RATE PAY 

40 2.50 

1. CLA HOURS 
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Table 5.1 Continued 

2. MPY RATE 

3. STO PAY 

HOURS RATE PAY 

40 2.50 

100 

40 2.50 100 

100 

CLA means clear and add, which in turn means clear the previous 

contents of the arithmetic unit and then put into the arithmetic unit the con¬ 

tents of the box listed after the symbol CLA. Clear and copy might be a better 

description of this process but add is used for technical reasons. (Notice that 

when the 40 is copied from the HOURS box to the arithmetic unit it still 

remains in the HOURS box.) 
MPY means multiply the contents of the arithmetic unit by the contents 

of the box listed after the symbols MPY. The result of this multiplication 

replaces the previous occupant of the arithmetic unit. 

STO means store the number in the arithmetic unit in the box whose name 

follows the symbol STO. In our example we stored in an occupied box labeled 

PAY. We could equally well store in an occupied box, say, HOURS, but 

then the previous contents of the box would be wiped out to make room for 

the number being stored. 

There are a few other operations of a similar nature which are used in 

programs of this type but which are not used in Table 5.1: They are ADD, 

SUB, and DIV, which stand for addition, subtraction and division, respec¬ 

tively, and they are used just like MPY. The next example uses ADD and 

SUB. DIV, which is not illustrated, works like this: The number in the 

arithmetic unit is the one being divided into, while the number coming from 

the memory box is the divisor. 

Our next example (Table 5.2) involves a machine language version of 

the other PAY formula in the payroll program (see p. 128). In addition to 

using the instructions ADD and SUB, there are two other aspects that are 

novel. We need to use the numbers 40 and 1.5 in our computation as well as 

the numbers for HOURS and RATE. These numbers, 40 and 1.5, must 

therefore be stored previously in memory boxes. We’ll call these boxes the 

40—BOX and the 1.5—BOX, respectively. Another complication, which you 

will see as you read the program, is that we need to make use of a storage box, 

TEMP, for an intermediate result of our calculations. Our illustration, to the 

right of the program, uses the values 60 and $2.00 for HOURS and RATE, 

respectively. 



Table 5.2 Machine Language Program for Calculating 

(1.5)*(HOURS-40)-RATE+40*RATE (to be Called PAY). 

40- 1.5- 

HOURS RATE BOX BOX TEMP PAY 

Memory 

Arithmetic 

Program Unit 

60 2 40 1.5 

1. CLA HOURS 60 2 40 1.5 

60 

2. SUB 40-BOX 60 2 40 1.5 

20 

3. MPY 1.5-BOX 60 2 40 1.5 

30 

4. MPY RATE 60 2 40 1.5 

60 

5. STO TEMP 60 2 40 1.5 60 

60 

6. CLA 40-BOX 60 2 40 1.5 60 

40 

7. MPY RATE 60 2 40 1.5 60 

80 

8. ADD TEMP 60 2 40 1.5 60 

140 

9. STO PAY 60 2 40 1.5 60 140 

140 

131 
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In this example we used six memory boxes in all, more than in the 

previous example. For the exercises in this book, we shall assume there are 

as many different locations available as we need so you may draw as many 

as you want when doing problems. We shall restrict ourselves to one arith¬ 

metic box however. 
There is a more basic form of machine language that is also worth 

knowing about. It is exactly like the form we have just presented except 

that the various instructions and storage boxes are referred to by a numerical 

code. For example, storage boxes might be given numbers like 0000, 0001, 

0010, and so on, while the instructions could be coded according to the 

following table. 

Instruction Numerical Code 

CLA 000 

ADD 001 

MPY 010 

SUB 011 

DIV 100 

STO 101 

Suppose now that the boxes labeled HOURS, RATE, and PAY in Table 5.1 

were given numbers 0000, 0001, and 0010, respectively. Then the statement 

“CLA HOURS” would be written in the numerical code as ‘‘000—0000”. 

The sequence of instructions in Table 5.1 would be 

000-0000 
010—0001 

101—0010 

This numerical code is a little closer to the basic operating level of the 

computer because with it both the input data (hours and rates in our example) 

and the instructions are in the same form, namely, in the form of numbers. 

As we shall see in the next section, numbers are readily represented electron¬ 

ically. 

A final question that may deserve an answer is: Why bother with gen¬ 

eral descriptions using flowcharts or list presentations (as in Section 5.3) if 

we ultimately have to translate them into machine language? The reason is 

that it is not “we” who have to translate our program into machine language. 

This task is taken over by the computer itself, leaving us free to think at the 

more comfortable level of the programming language. This is the same divi¬ 

sion of labor that exists between the businessman and his secretary. 
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EXERCISES 5.4 

1. In each of the following cases, complete the entries in the boxes on the 

right of Table 5.1 assuming that the initial contents of the HOURS and 
RATE boxes are 

(a) HOURS=20 RATE=4 

(b) HOURS=30 RATE=2 

(c) HOURS=40 RATE=1.50 

2. In each of the following cases, complete the entries in the boxes on the 

right of Table 5.2 assuming that the initial contents of the HOURS and 
RATE boxes are 

(a) HOURS=70 RATE=30 

(b) HOURS=40 RATE= 2 

(c) HOURS=20 RATE= 4 (Is the program applicable in this 

case ?) 

3. The formula PAY=(1.5)*(HOURS-40)*RATE+40*RATE can be 

rewritten (by simple algebra) PAY=(1.5*HOURS—20)*RATE. Write 

a machine language program for this calculation. Is it more or less 

efficient than the original formula in terms of how many machine lan¬ 

guage instructions are required ? 

4. Write a machine language program for calculating PAY according 

to the formula PAY+(1.5*HOURS-20)*RATE+BONUS-WITH- 
HOLD. 

5. Write a machine language program for calculating PAY according to 

the formula PAY=SALARY—WITHHOLD + BONUS. 

6. Write a machine language program for converting centigrade degrees to 

Fahrenheit degrees using the formula FAHR=(f)*CENT+32. 

Do the problem two ways: In the first solution, suppose that memory 

boxes have been loaded with the numbers 32, 9, and 5 and a value for 

CENT; in the second solution, assume that memory boxes have been 

loaded with the numbers 32 and f and a value for CENT. 

7. For each of the following formulas, write a machine language program 

to calculate the formula. In each case you may change the algebraic 

form of the expression on the right to an equivalent form if you feel it is 

more convenient. 

(a) M=(A + B)*C*D 

(b) M=A*A-B*B+A + B 

(c) M=A*A*A — 2*A*A-\-3*A — 7 

8. For each of the following exercises for this section, do the exercise 

using the numerical code form of machine language. Use the code in 

the text for the various instructions and choose your location codes 

from the numbers 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, and 

so on. 
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(a) Exercise 4 

(b) Exercise 5 

(c) Exercise 6 

(d) Exercise 7. 

5.5 binary notation 

When a human being does arithmetic, he customarily does it using the ten 

symbols 0, 1,2, 3, 4, 5, 6, 7, 8, 9, which make up the decimal system. But the 

electric and magnetic devices that are used to construct a computer do not 

deal easily with ten symbols. Rather, for an electric or magnetic device, there 

are usually only two configurations possible, on or off, plus voltage or nega¬ 

tive voltage, magnetized or not magnetized. Is it possible that one can do all 

ordinary arithmetic using only two states or symbols, say, 0 and 1, which 

would thus constitute a binary system ? 
A good place to start might be to examine the decimal numbers 15 and 

51, which are both formed from the digits 1 and 5. The reader who can 

appreciate that these two numbers are different despite their being formed 

from the same symbols has survived his first lesson in placevalue notation. 

The second lesson, only slightly more difficult, is to discover exactly how the 

difference comes about. The key to the question is the fact that the signifi¬ 

cance of a symbol derives not only from the meaning of the symbol itself but 

also the place that the symbol occupies. For example, in 15, the 1 refers to a 

block of ten units, while the 5 denotes five individual units, making fifteen 

units altogether. In 51, the 5 denotes five blocks of ten units, comprising fifty 

in all, while the 1 designates a single unit. 

51 means 5 x 10 + 1 

Pictorially: 

51 means ' v 
5 

By contrast: 

15 means 1 x 10 + 5 

Pictorially: 

* □ □ □ □ □ 

-H-H- 
+4-H- 

-f-H- 
-H- 

-H-H- 
4+++- -H-H- -H+- 

15 means 
1 v 

5 
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For larger numbers we may need a third or fourth place, or perhaps even 

more. The place in which a symbol appears determines whether it refers to 

units, blocks of tens, blocks of hundreds, blocks of thousands, etc. In general 

the nth place refers to the blocks that contain a number of units equal to ten 
raised to the n — 1 power. Thus 

anan~ 1 ' ’ ' a\ — (an X 10” ') T" (#„-1 X 10"~2) -f- ‘ ‘ ' + Cl \ (5.1) 

Thus, for example, 

3642 = (3 X 103) + (6 X 102) + (4 x 101) + 2 

while 

2463 = (2 x 103) + (4 x 102) + (6 X 101) + 3 

The importance of the number ten in the decimal system derives from 

the fact that we have ten distinct numerical symbols available, 0, 1,2, 3, 4, 5, 

6, 7, 8, 9. Ten is the first number to require the placevalue system for its desig¬ 

nation. There is no reason, in principle, why one could not invent another 

separate symbol, say, A, for the number ten and thus postpone the use of 

placevalue until we reach the number eleven. Were we to do this, eleven would 

be denoted 10(1 block of eleven + no units) and the first twenty-two numbers 

would be denoted 1,2, 3,4, 5, 6, 7, 8, 9, A, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 

1 A, 20. Although all this is perfectly possible, it is of no practical value so we 

shall not consider it further. 

Instead of inventing extra symbols to start our placevalue system later, 

we shall do away with most of the ten customary numerical symbols, leaving 

only 0 and 1, and begin our placevalue system much earlier. The number 

system using only the digits 0 and 1 is called the binary system. Since we have 

only two digits available, we must denote the number two, using the place- 

value notation, as 10. Of course, now this symbol means 1 block of two 

units plus 0 single units. Similarly, three is denoted 11, meaning 1 block 

of two units plus 1 a single unit. Now what about four? We need another 

place that will denote the number of blocks with four units. Thus four will be 

written 100, meaning 1 block of four units, no blocks of two units, and no 

single units. In general, the nth place (counting from right) refers to the 

blocks that contain a number of units equal to two raised to the n — 1 power. 

Thus: 

ana n~ 1 
fl, = (a„ X 2n v) + (a„_! X 2n~2) + •••+«! (5.2) 

Here are the numbers from zero up to ten written in binary notation. 
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zero 0 

one 1 
two 10 
three 11 
four 100 
five 101 
six 110 
seven 111 
eight 1000 
nine 1001 
ten 1010 

Before going on, it is well to point out what we have and have not done. 

In the binary notation, we have not banished numbers like four, five, three 

hundred forty-two, etc. We have, however, found new ways of designating 

them. What has been banished are the symbols 2, 3, 4, . . . , 9. 

On the basis of the discussion above, you may already be able to con¬ 

vert a decimal expression of a number to the binary expression of that same 

number and vice versa. It is useful, however, to have quick mechanical ways 

to do this. Algorithms for these processes are indicated by the following 

examples. 

CONVERTING BINARY NOTATION TO DECIMAL NOTATION: The method is 

a straightforward adaptation of our discussion of placevalue. Each digit in 

the given binary expression denotes a certain power of two, as indicated by 

the scheme in (5.2) and illustrated below: 

... 1 0 1101 

. . . 25(= 32) 24(= 16) 23(= 8) 22(= 4) 2‘(= 2) 2°(= 1) 

The dots on the left indicate that there may be more digits of the number 

farther to the left. As we move to the left, the powers of two on the second 

line increase. Certain of these powers of two are to be added together to give 

the correct decimal expression. The expressions that are added are those for 

which the corresponding place in the binary expression is occupied by the 

symbol 1. The expression corresponding to places occupied by the symbol 0 
are not added into the sum. For the example above, we find 

25 + 23 + 22 + 2° 
or 

32 + 8 + 4 + 1 = 45 

Thus the binary notation 101101 denotes the same number as the decimal 
notation 45. 
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You probably realize that what we have done here simply amounts to 
saying that 

101101 means (1 x 25) + (0 x 24) + (1 x 23) + (1 x 22) + (0 x 2>) 

+ (1 x 2°) (2° = 1) 

CONVERTING DECIMAL NOTATION TO BINARY NOTATION: The essence of 

the method is to try to construct the given number by putting together blocks 

of various standard sizes. For example, 83 can be achieved with one 64 

block, one 16 block, one 2 block, and one 1 block. We use no blocks of 

the other sizes, namely, sizes 4, 8, 32, or anything larger than 64. Thus 83 is 

written 1010011. To do this most efficiently: 

(1) Write the block sizes up to the largest size that does not exceed the given 

number. In the case of the number 83, we have 

64 32 16 8 4 2 1 

(2) Place a 1 over the largest block size that does not exceed the given 

number. 

1 
64 32 16 8 4 2 1 

(3) Subtract this block size from the given number to see how much still 

needs to be built up using the remaining blocks. 

83 - 64 = 19 

(4) Return to step 2, using the number calculated in step 3 in place of 

“the given number.” 

1 1 
64 32 16 8 4 2 1 

(5) Repeat steps 3 and 4 until the calculation in step 3 produces a zero. 

19 _ 16 = 3 

1 1 1 
64 32 16 8 4 2 1 

3 — 2=1 

1 1 11 
64 32 16 8 4 2 1 

1-1=0 
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(6) Fill in the remaining places with zeros. 

1 0 10 0 11 
64 32 16 8 4 2 1 

The answer is 1010011. 

EXERCISES 5.5 

1. Write the numbers from eleven to twenty in binary form. 

2. Convert the numbers below from binary to decimal notation: 

(a) 11101 

(b) 11011101 

(c) 10110111 

(d) 1011011011 

3. Write in English words and in decimal notation what numbers are 

represented by the binary notations 1000000, 1010101, 111100, and 

11011101. 

4. Convert the numbers below from decimal to binary notation: 

(a) 1034 

(b) 1962 

(c) 847 

(d) 1324 

5. What is the largest decimal number that can be represented in the 

binary system using twenty digits? 

6. * Continue the list of numbers in the base eleven system, using the A 

symbol, to the number 30. 

7. * Ternary notation uses three digits, 0, 1, and 2, and placevalue notation 

to designate numbers. What do the ternary notations 211, 102, 222 

mean in decimal notation? Write the numbers from one through ten in 

ternary notation. 

8. * Write the ternary representation of the numbers from eleven to fifteen. 

9. * Suppose we create a tertiary number system with only four digits, 

0, 1,2, 3. Using only these digits and placevalue notation, write the 

representations for the numbers from one through twenty. 

10. Develop a method of converting a number from decimal to a tertiary 

(base four) expression. Use your method on: 

(a) 349 

(b) 273 

(c) 842 

11. * When fractions must be introduced in the decimal system, a decimal 

point is introduced and digits to the right of the decimal point are 
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interpreted with place notation. Thus: 

1-14=1 + [1-(tV)] + [4.(t^)] 

(a) Discuss how the binary point should be used. 

(b) Change the binary number 11.101 to decimal. 

(c) Change the binary number 101.1011 to decimal. 

(d) Change the decimal number 14.75 to binary. 

(e) Change the decimal number 175.125 to binary. 

12.* Here is an alternate way of converting a decimal number to binary 

notation. Divide the given number by two and record the remainder 

(which will be either 0 or 1) as the units digit (rightmost digit) of the 

binary notation. Take the quotient of the last division and divide by 

two, recording the remainder as the next binary digit. Repeat this 

process until a zero occurs as a quotient. When this happens, the re¬ 

mainder that is left at that stage is the last remainder to be recorded. 

Can you show why this process really works ? 

5.6 binary arithmetic 

It is said that our decimal system evolved because we have ten fingers. If so, 

we would perhaps be better off with two fingers—at least as far as arithmetic 

is concerned, for arithmetic operations are a good deal simpler in the binary 
system than in the decimal system, as we shall now discover. 

In the decimal system, in order to do addition we needed to learn one 

hundred addition rules, beginning with 0 + 0 = 0 and going all the way up 

to 9 + 9 = 18. For sums where one or both of the numbers is greater than 9, 

we use the method of “carrying” to reduce everything to our basic addition 

rules. In the binary system there are four addition rules that, together with 

the method of carrying, suffice to do any addition. These addition rules are 

listed in the table below with their meanings next to them in words. We 

supply the linguistic translation to reassure you that it is the same old 

arithmetic we are doing, even if it sometimes seems disguised. 

+
 

o
 o

 

zero 
+ zero 

0 
+ 1 

zero 
+ one 

1 
+ o 

one 
+ zero 

1 
+ 1 

one 
+ one 

= 0 = zero = 1 = one = 1 = one = 10 = two 

The method of carrying is exactly the same as in the decimal system and is 

illustrated in the example below, in which we add the numbers five and seven 

to obtain twelve. 
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(1) Add the rightmost digits to get 10. 
Enter the 0 and carry the 1. 

(2) Add the next digits (including 
what is carried) to get 10. Enter 10 1 
the 0 and carry the 1. Note that + 11111 
here we had to add three numbers, 0 0 
a 0 and two l’s. 

(3) In the final step we have three 
l’s to add. Taking two of them, 10 1 
according to the table, we get 10. + 11111 
Adding the remaining 1 gives 11, 110 0 
which we enter. 

For another example: 10 110 1 
+ D+CM Oil 

1 1 0 0 0 1 0 

Doing multiplication is just as simple. The basic multiplication facts, 

only four in number, are listed in the table below. With these facts and the 

usual carrying process, we can do multiplication following the same procedure 

as with decimal numbers: Do a series of multiplications of the top number by 

the individual digits of the bottom number, indent the results properly, and 

then add the results. 

0 zero 0 zero 1 one 1 one 
X 0 x zero X 1 x one X 0 x zero x 1 x one 
= 0 = zero = 0 = zero = 0 = zero = 1 = one 

Example 5.1 

1 0 1 
x 1 0 
0 0 0 

+ 10 1 
10 10 

1 1 1 
x 1 1 

1 1 1 
+ 111 
10 10 1 

At this point we can hint at the connection between two facts that we 

have stressed but not explained completely: 

(1) The computer is an electronic device that does all its calculating elec¬ 

tronically. 

(2) The binary number system is especially well adapted for doing arith¬ 

metic electrically. 

The fact that in the binary system there are two symbols, 0 and 1, 

corresponds very neatly to the fact that in an electrical network a given cir- 
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cuit may be in one of two states: It may be carrying current or not. We shall 

represent binary numbers in an electrical network by having no current in a 

circuit stand for 0 and having current in a circuit stand for 1. For example, 

in Figure 5.9 if we leave the switch at S open as shown, there will be no current 

flowing from the battery at B. This situation would represent 0. If we close 

the switch, current flows, representing 1. Of course, most binary numbers 

need many places to represent them. Thus, for example, a binary number 

such as 10011 needs a bank of five circuits for its representation, one circuit 
for each of the five places in the number. 

Battery 

Figure 5.9 

We shall now set ourselves the following task. Suppose we have two 

“input circuits” such as in Figure 5.10(a), each circuit having the possibility 

of being in state 0 (no current) or state 1 (current), depending on the position 

of the switches. We want to arrange some electrical hookup (represented for 

the moment by the shaded box in Figure 5.10(a)) involving these circuits so 

that, in another pair of circuits called the output circuits, we get current or no 

current in a pattern that represents the sum of the numbers in the input cir¬ 

cuits. To be specific, if the input circuits are 0 and 0, we want the output 

circuits to represent the sum 0. To do this, each output circuit needs to be 

0 (no current). This will therefore represent the addition rule that 0 + 0 = 0 

or, more precisely 0 + 0 = 00, since we have two output circuits. Figure 

5.10(a) shows the setup we want. Figures 5.10(b), (c), and (d) show how the 

output circuits are supposed to look for the other three input possibilities. 

Be sure to note the pattern of which switches are open and closed. 

What we are asking for is some way of having the positions of the input 

switches determine the positions of the output switches using purely electrical 

and mechanical means and requiring no human intervention. The solution of 

this problem is entirely a matter of electrical engineering rather than mathe¬ 

matics but we offer it here to illustrate that it is possible to do arithmetic 

electrically. The actual solution we shall give, using relays and batteries, 

resembles the way parts of modern computers work but the resemblance is 

in the flavor rather than the details. 
Before explaining the solution, which is depicted in Figure 5.12, we must 

explain the relay symbol (Figure 5.11), which appears a number of times, 



the bar with a wire coiled around it. The bar is an electromagnet and it will 

move when current passes through the coil. We shall suppose that the relays 

we have drawn are set up to give a rightward motion when energized by a 

current in the coil. If the electromagnet is attached to an open switch, this 

movement of the bar will close the switch. The same principle can be used to 

open a switch. Figure 5.11 shows how a relay can be used to have a switch in 
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one circuit control the position of a switch in another circuit. If we close the 

switch in the inner circuit, the relay is energized and the switch in the outer 

circuit closes due to the motion of the bar to the right and current flows in 

the outer circuit. 

One more comment about Figure 5.12 before we see how it works. 

Most of the circuits have been drawn so they don’t seem to be circuits, merely 

to simplify the picture. For example, the line between the two battery symbols 

marked A (near the top of the figure) is really to be thought of as a circuit. 

Symbols marked A represent the same battery. Elsewhere in the diagram 

there are battery symbols with the same label; in such cases, also, battery 

symbols with the same label represent the same battery. 

Now to see that this arrangement really does allow the X and Y 

switches to control the V and W switches in the proper way, it is just a matter 

of checking the various combinations. As Figure 5.12 is set up, the X and Y 

switches are both 0 (no current) and V and W are both 0, which is the way we 

want it (0 + 0 = 00). Suppose we close X and Y so that the inputs are now 

1 and 1. We should find W open and V closed since 1 + 1 = 10. To see this, 

we have to examine what effect closing X and Y has on the various relays and 

circuits. Relays 1 and 3 will close their switches. Thus, current will flow from 

C through relays 8 and 5. Switch 8 closes making the left-hand output circuit 

Fhave the value 1. When 5 closes, current flows from D through relay 7, 

opening switch 7. Now there will be no current flowing from E through 9. 

Hence, output circuit W will be zero. Thus we have verified that our hookup 

adds 1 + 1 correctly, giving 10. We leave it to you to show that the other 

addition rules come out correctly; namely, 1 + 0 = 01 (X closed, Y open 

causes W to close but leaves V open) and 0 + 1 = 01 (X open, Y closed 

causes W to close but leaves V open). 
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EXERCISES 5.6 

1. Perform the following additions and multiplications in binary: 

Add: 

(a) 110 1 (c) 110 11 
10 0 11 10 10 10 

(b) 110 1 (d) 110 1 
1110 1 10 11 
10 110 

Multiply: 

(e) 110 1 (g) 110 1 
1 0 1 1 1 0 

(f) 1 0 1 (h) 1110 1 
1 1 10 11 

2. Add the following column of binary numbers: 

1110 1 
10 111 
10 110 
110 0 0 
110 11 

3. * Multiply 1.1101 by 1.01. Express your answer in decimal. 

4. * Develop an addition table and a multiplication table for a base three 

number system (i.e., the only symbols are 0, 1, 2). Use these tables to 

solve 

(a) 12 1 
+ 10 2 

(b) 112 
+ 210 

(c) 112 
x 1 1 

(d) 121 
x 1 2 

5.* Develop an addition table and a multiplication table for a base four 

number system (i.e., the only symbols are 0, 1,2, 3). Use these tables to 

perform the calculations below: 
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(a) 1 3 2 
+ 213 

(c) 1 0 3 
2 1 0 

(e) 1 0 2 
x 1 1 1 

(b) 1 3 1 
+ 213 

(d) 1 3 0 
X 3 1 2 

(0 1 0 3 
X 2 0 1 

6. * (a) Subtract 101101 (binary) from 10111011 (binary). (Check your 

answer by converting the given numbers to decimals, performing 

the subtraction and changing your decimal answer to binary.) 

(b) Subtract 11011101 (binary) from 1101101111 (binary). 

7. * Construct an electrical circuit that multiplies two one-digit binary 

numbers. 

8. * Devise an arrangement of circuits, relays, batteries, and switches cap¬ 

able of adding a two-digit binary number to a one-digit binary number. 

{Hint: The arrangement of Figure 5.12 can be used to do the addition 

in the units place; then another copy of Figure 5.12, properly hooked 

up to the first, takes care of the “carry” and the remaining digit in the 

two-digit number.) 

5.7 graphs and matrices 

A great deal of practical mathematics is handled by computers today, and 

graph theory is no exception. This raises the question of how one can make 

a computer “see” a graph or digraph and draw conclusions about it without 

the sense of sight upon which we humans rely. For example, let us start with 

the graph in Figure 5.13. We have five vertices and we need to state which 

pairs of vertices are connected and by how many edges. The following table 

will do the trick. 

Xl Xl *3 X 4 X 5 

X\ 0 2 1 1 0 

Xi 2 0 1 0 0 

*3 1 1 0 0 0 

*4 1 0 0 0 0 

*5 0 0 0 0 0 



*1 

Figure 5.13 

In this table, 0 indicates no connecting edge, 1 indicates a connecting edge, 

2 indicates two connecting edges, and so on. For example, the 0 in row x3 and 

column x4 indicates that x3 and x4 are not connected by an edge. The entry 

in the z'th row and theyth column is called the (/,/) entry. A rectangular array 

of numbers, when written without the row and column labels and enclosed 

in brackets, is called a matrix. If G is a graph, its matrix is denoted M(G). 

The matrix for the table above is shown below. 

~0 2 1 10“ 

2 0 10 0 

110 0 0 

1 0 0 0 0 

0 0 0 0 0_ 

What if we have a digraph such as that of Figure 5.14? What we do in 

*i 

“0 10 10“ 

0 0 10 0 

1 0 0 0 0 

1 0 0 0 0 

0 0 0 0 0 
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the case of a digraph is to make the (/, j) entry equal to the number of directed 

edges from xt to x.. Thus, the (1, 2) entry of our matrix will be 1 when we wish 

to describe Figure 5.14 since there is an edge from xx to x2. But the (2, 1) 

entry will be 0 since there is no edge from x2 to xi. The full matrix is shown 

below Figure 5.14. 

Although we have used graphs and computers to introduce the concept 

of matrices, matrices are useful throughout both pure and applied mathe¬ 

matics. We shall use matrices later in Chapters 6, 8, and 9. In some of the 

other applications of matrices, the matrices that come in handy are not 

square in appearance; that is, they may not have as many rows as columns. 

Here are some more examples of matrices 

“3 -1 0 r [1 2 -3 -5] ~ 3~ 

1 -4 2 3 — 1 

2 4 -1 0 -2 

_1 7 9 -1_ 0_ 

The first of these is called a square matrix because it has as many rows as 

columns. The second, consisting of only a single row, is called a row matrix 

(or sometimes a row vector), while the last is a column matrix (or column 
vector). 

If A and B are two matrices of the same size (e.g., both m x n), we can 

define the sum of these two matrices to be a new matrix, denoted A + B, 

whose (/', j) entry is obtained by adding the (i,j) entries of A and B. Here are 
some examples: 

Note that we add only matrices of the same dimensions. 

It should be clear from the definition that some of the usual rules for 
arithmetic hold also for matrices: 

(1) A + B = B + A (Commutative law) 

(2) A + (B + C) = (A + B) + C (Associative law) 

Example 1 

As an illustration of the commutative law (Rule 1), 

~2 3~ 

4 2 

1 

1 
+ 

”2 3 

4 2 
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We can calculate the sums on both sides of the equals sign and see that they 
are equal. 

Example 2 

As an illustration of the associative law (Rule 2), 

r 1 
L-i 

3“ 

0 

r 
i 

Again, we can calculate the sums on both sides of the equals sign and see 
that they are equal. 

In connection with the addition of matrices, certain matrices have the 

special property of not changing a matrix when added to it. For example, if 

we have an m x n matrix A and we add to it an m x n matrix Z, all of whose 

entries are zero, then A-\-Z = Z-\-A = A. For obvious reasons, Z is called 
a zero matrix. For example, 

"1 -1 3~ 

2 1 0 

and 

‘ 1 2" 
+ 

~0 0“ _ ■ 1 T 

1 3 0 0 1 3_ 

By analogy with the addition of matrices, one might imagine that a 

sensible way to multiply two matrices might be to multiply corresponding 

entries. As it happens, a more peculiar form of “multiplication” proves more 

useful. The mechanics of this multiplication are simple enough but rather a 

mouthful to describe so let us start with a very simple case, the multiplication 

+ 
0 0 0 

0 0 0 

1 3" 

1 0 

[1 2 3] 

? 

Moving from left to right in the first matrix, the elements we encounter will 

be multiplied by the elements encountered as we move from top to bottom 

on the second matrix. Thus, we form the products 1 X 1, 2 x 3, 3 x 4. 

Having found these products, we add them to find the end result: 

[1 2 3] 1 

3 

4 

= (1 X 1) + (2 x 3) + (3 x 4) = 19 
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The general process is illustrated below, the arrows indicating which elements 

are to be multiplied together. Notice that in order for this process to make 

sense the first matrix must be as long as the second is tall. That is, they must 

have the same number of entries. 

h a 3 * ’ * C u 
> _

i
 

| 
b2 

— albl + a2b2 + • • • + anbn 

A. 

Now let us look at matrices that are neither row matrices nor column 

matrices. For example, let us multiply the following: 

(5.3) 

To accomplish this, we use the method we have just discussed as a building 

block, performing a number of these simplified multiplications and recording 

the resulting numbers properly into a new matrix. Each row of the first matrix 

will be multiplied, in the manner previously described, by the various columns 

of the second matrix. The results of these multiplications are recorded as 

follows: The product of the zth row of the first matrix by the yth column of 

the second becomes the (i,j) entry of the product matrix. The various simpli¬ 

fied multiplications involved in (5.3) are indicated below, as is the recording 

of these into the product. 

[1 2] ~3~ 
- 7 

[1 2] " r 

_2_ -3 

[-1 [-1 
-13 

“ 1 T '3 r ~7 -5 " 

-1 4 2 —3_ _5 —13_ 

Notice that, just as before (and for reasons that should be clear), the first 

matrix needs to have the same length (number of columns) as the second one 

has height (number of rows). To put it another way, we can only perform the 

multiplication A x B provided A is an i by j matrix while B is a j by k for 
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some values of i, j, and k. Here is another example of matrix multiplication: 

“1 2 -r ' 2 r 9 0 " 

2 3 4 3 

-1 

-2 

—3 

= 9 — 16 

Here are examples of multiplications that cannot be performed: 

"8 3“ 

4 7 

[2 4 19] [3 7] [2 4] 

Can you see why? 

One of the most peculiar aspects of matrix multiplication is the fact that 

the order in which one multiplies them usually makes a great difference. For 

example, let us take the two matrices discussed on p. 149 and multiply them 

in reverse order. [As you check this out, you will notice that all the “building 

block” multiplications are just ordinary numerical multiplications since the 

length (number of columns) of the first matrix and the height of the second 

(number of rows) are equal to 1.] The result is clearly different from the 

earlier one. 

T [1 2 3] "1 2 3" 

3 = 3 6 9 

4 4 8 12_ 

You may recall that numbers obey the commutative laws of both addi¬ 

tion and multiplication. Multiplication of matrices shows that we cannot 

always take commutative laws for granted. Matrices do, however, satisfy 

numerous familiar algebraical laws, some of which we shall mention here. 

For example, if one has three matrices A, B, and C where the multiplications 

AB and BC are both possible, it is possible to multiply all three together. 

We can form the products A(BC) or (AB)C; furthermore, both of these 

products give the same result, which is simply denoted ABC. This is the 

so-called associative law for multiplication. We shall not prove it but the 

example below illustrates it. 

Example 3 

Compute ABC where 

A = 
-1 

B 
0 O' 

2 1 
C = 

-1 3" 

4 1 
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Solution: 

AB = 
“4 

6 

T 

3 

0“ 

7 
A(BC) = (AB)C = 

'4 

6 

14“ 

21 

When we discussed matrix addition, we mentioned the zero matrices, 

which could be added to given matrices without changing the given matrices. 

It makes sense to ask whether there are such matrices with respect to the 

multiplication operation. Here is a specific example: 

1 i 1
_

 

<N
 

1
_

 

i u
>

 
i
_

 

i LO
 

1
_

 

The matrix that works is 

"1 0~ 

_0 1_ 

since 

" 1 2~ “1 0" “ 1 2~ 

_-l 3_ _0 1 _-l 3_ 

This matrix is called an identity matrix. Any n x n square matrix with l’s on 

the main diagonal and 0’s elsewhere is an identity matrix because it behaves 
similarly: 

~an a In 

1 
. 

o
 

0 • 

1 

• 
• 

o
 

_
1

 

*11 • • *1„" 

-°nl 
. . . a„„_ 1 o

 
• 

0 1 _*nl • • am_ 
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EXERCISES 5.7 

1. For each of the graphs in Figure 5.15, find M(G). 

2. Find M(D) for the digraphs in Figure 5.16. 

(a) (b) 

3. The matrix below is M(G) for a graph G. Can you draw G? 

“0 1 0 r 

10 10 

0 10 1 

10 10 

Figure 5.1 6 
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4. Draw the digraph D whose matrix is 

"o i o r 

10 10 

10 0 1 

_o 1 1 o_ 

5. In the matrix below, certain entries have been lost. Assuming that the 

matrix is M(G) for a certain graph G, can you supply the missing 

entries ? 

“0 ? T 

1 0 1 

0 ? ? 

6. How can you tell the valences of G from M(G) ? 

7. Can you explain why the main diagonal of M{G), where G is a graph, 

has only zeros? Is the same true for M(D) where D is a digraph? 

8. Find A + B, B + A, AB, and BA for the matrices below: 

A = 
1 3~ 

1 4 
B 

9. Calculate A + B, AB, BA, and A2B if 

A = 
1 2" 

-1 3 
and B = 

'3 r 

4 -4 

10. Which of the following multiplications are possible ? When a multiplica¬ 
tion is possible, compute the product. 

0 2 -4 

8 2 9 

T 

1 <N 

1
_

 2 0' 

2 .-7 8_ 3 1 

_3_ _-i o_ 

"2 3~ i 3 -r [1 2 1] T 

1 4_ 0 1 1 4 

1 0 1 1 

[1 1 0] 

3 

2 
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11. * Suppose G is a graph whose picture is not given but you are told G is 

connected. If you are given M(G), how can you tell, without drawing 

the graph G, whether G has an Euler circuit? Apply your test to the 
matrix in Exercise 3. 

12. * If 

~0 3 1 0 0 

3 0 6 0 0 

M(G) = 1 6 0 0 0 

0 0 0 0 1 

0 0 0 1 0 

why is G not connected? You should answer without drawing G. 
The dotted lines are a hint. 

13. * Find a pair of 2 x 2 matrices A and B that have no zero entries, yet 

AB — 0. Compute BA for this pair of matrices—is it zero? 

14. * If 

ri oi 
/ = 

_o 1 

show that if A is any 2x2 matrix, then AI — IA = A. 

15. * Prove A(B + C) = AB AC in the case where A, B, and C are 2x2 
matrices. 

an application of matrix arithmetic 

One thread of this chapter still needs to be put in place. We initially intro¬ 

duced matrices so as to be able to describe a graph or digraph to a computer. 

Then we studied matrix multiplication and addition but with no apparent 

connection to graphs or digraphs. We shall now supply such a connection 

as our first (but not only) application of matrix arithmetic. 

Let us consider the problem of contamination of living species by 

pollutants such as mercury or DDT. Typically, one species will become con¬ 

taminated and then others that prey on the contaminated species also become 

contaminated. The process of passing on the pollution continues. We shall 

construct a mathematical model for the diffusion of contamination. 

We shall begin our modeling process by considering a food web digraph 

in which vertices represent species and a directed edge from x to y means that 

species y preys upon species x. In our food web of Figure 5.17, x3 preys upon 

x,. This means that Xj will pass its contamination on to x3. In fact, the con- 
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Figure 5.17 

tamination will be passed on to any species connected to xx with a directed 

path from xx. 

In our example, contamination will spread to x3 and x4. Note that 

there are two ways it can reach x4, directly from xx and indirectly via x3. 

The other species will not become contaminated from xx. This is easy enough 

to determine visually but if we are keeping track of all this with a computer, 

we need another method. One idea involves using the matrix of the digraph 

and the powers of this matrix and is based upon the following theorem. 

THEOREM 1 

If D is a digraph and M is its matrix and if n is a positive integer, then the 

(i,j) entry of M", which we shall denote by c\f, has this significance: c\f is the 

number of directed paths in D that go from xt to x} in exactly n steps. 

We shall give the proof only in the case where n = 2 and where each entry 

of M is 0 or 1. The general case is similar but it is a little more complicated. 

Proof: Let us recall how the (i,j) entry c\f arises. It is the matrix 
product of the z'th row of M with the y'th column of M. 

[an a il au 

J 

^°PJ- 

— r( 2) 

In multiplying this row and column, we have p separate products to add, and 
the sum is the (i,j) entry of M2, c\f: 

c\f — anaXj + • • • + aipapj 

Each of these products is either 0 or 1. The zeros make no contribution to 

the sum so we are only interested in the products alkak], which are equal to 1. 
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What we need to show is that the number of these is equal to the number of 

sequences of length two from v, to vr In order for one of these products, 

say, aikakj, to be 1, the two numbers making up the product aikak] must each 

be 1. When can this happen? If aik = akJ — 1 for some value of k. This means 

that there is an edge from vt to vk (since aik = 1) and an edge from vk to vt 

(since akj — 1). Putting these directed edges together gives a sequence of 

length two from v, to v}. Thus every 1 in the sum corresponds to a sequence 

of length two from vt to vs. Conversely, given a sequence of length two from 

vt to Vj, say, vn vk, Vj, there must then be an edge vtvk and another directed 

edge vkVj. Consequently, the entries aik and ak] in M are both 1 and the 

product aikakj, which is one of the products to be summed in forming c\"\ 

is 1. Thus, there are as many l’s in the sum as there are sequences of length 

two in D from vt to vr This concludes the proof of the theorem. 

Theorem 1 can be interpreted in terms of the food web digraph of 

Figure 5.17 and its matrix. The matrix for this digraph and the various powers 

of this matrix are shown below: 

”0 0 1 1 0 0~ “0 0 0 1 0 (T 

0 0 0 0 0 1 0 0 0 0 1 0 

0 0 0 1 0 0 
M2 = 

0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 1 0 0 0 0 0 0 0 1 

_0 0 0 0 1 0_ _0 1 0 1 0 0_ 

“0 0 0 0 0 0' “0 0 0 0 0 (T 

0 1 0 1 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 
M4 = 

0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 1 0 1 0 0 

_0 0 0 0 0 1_ _0 0 0 0 1 0_ 

-0 0 0 0 0 0“ 

0 0 0 0 1 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 1 

_0 1 0 1 0 0_ 
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The (2, 4) entry of M is 0; this means that there is no 1-step path (i.e., 

an edge) from species 2 to species 4. Similarly, if we examine the (2, 4) entry 

of M2, we note that it is 0, indicating that there is no 2-step path from species 

2 to species 4. Examining species 2 and 4, we see from M and M2 that there 

are no possibilities of contamination reaching species 4 from species 2 in 

one or two steps. However, M3 has 1 as its (2, 4) entry. Thus, there is a 3-step 

path (via jc5 and x6) from species 2 to species 4. Hence, species 4 can be con¬ 

taminated by species 2, but only after 3 steps. Will there be any contamination 

reaching x2 from x1 ? Examination of our matrices (above) shows that it 

cannot happen in 1,2, 3, 4, or 5 steps. But how do we know it won’t happen, 

for example, in 29 steps? Do we need to calculate every possible power of 

M (an impossible task)? If not, how many powers will be sufficient? The 

answer is provided by Theorem 1 of Chapter 4, which can be restated: 

THEOREM 2 

In a digraph (or graph) having ?i vertices, if two distinct vertices can be joined 

by a path, then they can be joined by a path that is no longer than n — 1 

edges, i.e., n — 1 steps. 

Applying this theorem to our case, with n = 6, we can conclude that 

any contaminations that occur will occur in 5 or fewer steps. Hence, we need 

not compute any power of M greater than the fifth. 

A convenient way to keep track of the information contained in these 

matrices is to keep a cumulative sum of the powers as they are calculated. 

Thus, along with M2, M3, M4, etc., we calculate the sums M + M2, M + M2 

+ M3, M + M2 + M3 + Af4,etc. The reason for this is that the (i,j) entry 

of M + M2 + • • • + Mr is the total number of paths of length no greater 

than r from xt to Xj. In particular, when r = n — 1, the matrix M + M2 + 

• • • + Mn~l tells us, for any given pair of vertices, whether one can be reached 

from the other. If the (/, j) entry is 0, then j cannot be reached from i by any 

path, but if the (i,j) entry is different from 0, then j can be reached from i by 
a path. In our example. 

M + M2 + • • • + M5 

0 0 1 2 0 0“ 

0 10 12 2 

0 0 0 1 0 0 

0 0 0 0 0 0 

0 2 0 2 1 2 

0 2 0 2 2 1 

Examining this matrix we can conclude that contamination at x, will 

spread only to x3 and x4. Contamination at x2, however, will spread to x4, x5, 

and x6 (actually, the x2 row also has a nonzero entry in the (2, 2) place indi¬ 

cating that contamination would spread from jc2 back to x2—but this is, 
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to some extent, superfluous information). There is no species that will spread 
contamination to all others because every row has at least two zeros in it. 
Note that a zero on the diagonal in row i means that contamination start¬ 
ing at x,- does not cycle back to xf in five steps or less. Furthurmore, if we 
are interested in learning if contamination at xt returns to xf, we would have 
to consider M6 in addition to the lower powers of M, since Theorem 2 
applies only to paths between distinct vertices. In a six-vertex digraph, it may 
be there is a path of length 6, but no shorter path between a vertex and itself. 

The main theorem we have been working with applies to graphs in 
addition to digraphs. Its applications, therefore, are a good deal wider than we 
shall indicate here. Even with digraphs, there are many other situations 
where we could usefully apply this theorem. As another example, suppose 
Figure 5.17 modeled a rumor network. Each vertex represents a person; a 
directed edge from x to y would indicate that x tells any rumors he hears to 
y (but y does not necessarily reciprocate—if he does, there will have to be 
another directed edge running the other way). It may be of interest to know 
how far a rumor will spread if it is planted with a certain person. In addition, 
one might like to know what is the minimum number of persons who have to 
be given the rumor in order to be sure it will spread to everyone. Examining 
the matrix M + M2 -f M3 + M4 + M5, we can determine that planting the 
rumor with Xj and x2 will suffice to spread it to everyone. 

The model we have created here and the matrix method for dealing 
with it verge on being useful but have the drawback of not being quantitative. 
For our food web, for example, it would be more useful if we knew not only 
whether a certain species would become contaminated but also how much 
contamination would be passed on to it. As another example, suppose one 
were interested in studying the dynamics of public opinion, particularly with 
a view toward determining how various aspects of that public opinion influ¬ 
enced one another. One might isolate the following as the important ingre¬ 
dients in determining public opinion: 

(1) Statements of government leaders. 

(2) Editorial policies and possible biases of the news media. 

(3) Voice of the people, as expressed through election returns. 

(4) Opinions of artists and intellectuals as expressed in art, literature, and 

scholarly works. 

Suppose we construct a digraph model by representing each of these 
opinion sources by a vertex and connecting one vertex to another if the first 
influences the second. The flow of influence in this digraph is analogous to 
the flow of contaminants in our food web digraph. Our model is rather 
shallow, however, since almost certainly each of the opinion sources above 
influences the other directly and so the digraph would be the one in Figure 
5.18. Qualitatively there is nothing to study here, yet it would be useful to 
know how strong the various influences are. If we knew this, we could assign 
weights to the various directed edges and perhaps do some useful modeling. 
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Figure 5.18 

EXERCISES 5.8 

1. For each of the digraphs D in Figure 5.19, 

(a) Write the matrix M for D. 

(b) Compute M2 and M3. 

(c) Compute M + M2 + M3.. 

(d) State by looking at your answer to part c whether or not D is 

connected. 

(i) (ii) 
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2. Given the food web in Figure 5.20, determine entirely by matrix 

methods how many steps it would take to contaminate the various 

species if contaminant is introduced at x2. 

Figure 5.20 

3. For the rumor network in Figure 5.21, determine by matrix methods 

how many persons must be told the rumor if it is to spread to everyone. 

*2 x3 

Figure 5.21 

4. Suppose D is a digraph whose matrix is 

“0 10 0' 

0 0 10 

0 0 0 1 

1 1 o 0_ 

Is it true that from any vertex it is possible to reach any other with a 

path? 

5. * A digraph is called acyclic if it contains no directed circuits. How could 

you tell from the powers of its matrix whether a digraph was acyclic ? 
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6 
functional models 

6.1 functions 

All of us are familiar with statements in books, magazines, and newspapers 

that describe the change in one quantity due to the change in another quan¬ 

tity. We read of the increase of world population with the passage of time, 

the decrease in temperature that a rocket’s instruments measure as it gains 

altitude above the earth, the day-to-day variations of the Dow-Jones stock 

averages, the variation in profits of a major corporation from year to year, 

and the relationship of the volume of a sphere to the size of its radius. 

Sometimes the way one quantity varies with another is known exactly, 

for example, the variation of the area of a circle as the size of its radius 

changes. For other situations it would be of great interest to know the exact 

way two quantities vary with one another. For instance it would be extremely 

valuable to have a formula that would tell us what the world’s population 

will be for each year in the future. If it seems strange that a formula might exist 

that predicts the future behavior of population, recall that it is possible, 

using formulas derived from Newton’s laws, to predict the future locations 

of planets, thereby making it possible to send rockets to Mars or Venus. 

Motivated by the need to examine the relationship between how one 

quantity varies as another quantity (or quantities) varies, mathematicians 

have invented a special type of model known as a function. Before we give 

a formal definition of this type of model, let us consider a few examples. 

163 
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Example 1 

The owner of a parking lot wishes to charge different rates for parking 

different sized cars in his lot. Three categories of size have been set up: 

Small (S) Medium (M) Large (L) 

The rates charged for a car will vary with the size of the car. The lowest rates 

will be charged for small cars since they use less space, cause less congestion, 

and are easier to accommodate. Table 6.1 shows one possible set of rates. 

Each category of car size has a rate assigned to it. 

Table 6.1 

Size Charge Assigne^per Day 

Small $2 

Medium $3 

Large $4 

Example 2 

Every 10 years, as mandated by the United States Constitution and 

implemented by an act of Congress, a census of the United States population 

is taken. The size of the population varies with time. Table 6.2 shows this 

variation for the censuses taken since 1900. 

Table 6.2 

Year Population 

1900 75,994,575 

1910 91,972,266 

1920 105,710,620 

1930 122,775,049 

1940 131,669,275 

1950 150,697,361 

1960 179,323,175 

1970 200,251,326 

Example 3 

A manufacturer of corn plasters wants to decide how many boxes 

of corn plasters to produce next year and what price to set for each box. 

On the basis of past experience, the manufacturer sets up Table 6.3, indicating 
the variation of sales with price per box. 



functional models 165 

Table 6.3 

Price per Box Sales per Month in Boxes 

440 20,000 
460 18,600 
480 18,100 
500 18,000 
520 17,400 

Note that Table 6.3 is not merely of descriptive interest because some practical 

questions can be answered on the basis of the information contained there. 

For example, if a box of corn plasters costs 39^ to produce, then using Table 

6.3 one can compute the price that the manufacturer should set to obtain his 
greatest profit. 

With these examples in mind we make the following definition: 

DEFINITION 1 

Let X and Fbe sets, and suppose that there has been assigned (corresponded) 

to each element of X a single element of Y. The assignment that is used is 

called a function. The sets X and Y are known as the domain and range of 

the function, respectively. 

If we give the function a name, say, the symbol f we can write symbol¬ 

ically f:X —» Y to suggest that there is an assignment of the elements of Y 

to those in X. The element y in Y that is assigned to the element x in X is 

called the image of x under /; we write this y = /(x). The symbol /(x) 

(read / of x) does not mean / times x; rather, the symbolism denotes as a 

whole the element y of Y corresponding to x under the assignment /. To 

repeat, /(x) denotes that element y of the range that we correspond to the 

element x of the domain. Intuitively, we think of the elements of the range 

as depending on or varying with the elements of the domain. 

To illustrate the ideas above, we shall rewrite the first three examples 

using function notation. 

Example 1 (Revisited) 

The domain is the set X = {S, M, L}. 

The range is the set Y = [2, 3, 4}. 

/: W —> Tis given by 
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f(S) = 2 

AM) = 3 

f(L) = 4 

functional models 

Example 2 (Revisited) 

The domain is the set X= {1900, 1910, 1920, 1930, 1940, 1950, 1960, 

1970}. 

The range is the set Y — {75,994,575, 91,972,266, 105,710,620, 

122,775,049, 131,669,275, 150,697,361, 179,323,175, 200,251,326}. 

G: X —> Y is given by 

G(1900) = 75,994,575 

G( 1910) = 91,972,266 

G(1920) = 105,710,620 

G(1930) = 122,775,049 

G(1940) = 131,669,275 

G(1950) = 150,697,361 

G(1960) = 179,323,175 

G(1970) = 200,251,326 

Example 3 (Revisited) 

The domain is the set X = {44, 46, 48, 50, 52}. 

The range is the set Y = {20,000, 18,600, 18,100, 18,000, 17,400}. 
H: X —► Y is given by 

H{44) = 20,000 

H(46) = 18,600 

7/(48) =18,100 

7/(50) = 18,000 

77(52) = 17,400 



functional models 167 

Two things should be emphasized about the definition of a function. 

First, we do not allow a single element of the domain to have two elements 

of the range associated with it. This is motivated by the way quantities vary 

with one another in the real world. For example, at a given time, say, 1940, 

the United States cannot have a population of 131,669,275 and also a popu¬ 

lation of 200 million. Similarly, at a certain age, a child has only one weight. 

Examples such as these make it reasonable to require that to each element 

of the domain there be corresponded exactly one element in the range set. 

Second, we do allow different domain elements to have the same range 

element assigned to them. Again, the reason for permitting several different 

domain elements to be assigned to the same element of the range is motivated 

by the way that quantities vary with one another in the real world. For exam¬ 

ple, if we are relating the altitude of a firework with time, the firework may 

be at the same altitude at two different times (domain elements), once on its 

ascent and once on its descent. Table 6.4 illustrates the function which might 

describe how the height of a firework depends on the number of seconds 

which have elapsed since its launching. 

Table 6.4 

Time (sec) Height (ft) 

0 0 

1 80 

2 128 

3 144 

4 128 

5 80 
6 0 

Although the elements of the domain and range of a function can belong 

to any sets whatsoever, in all our subsequent discussion we shall be concerned 

with functions whose domains and ranges are sets of numbers. 

Often in cases where the domain is very large, it is not convenient to 

describe a function by explicitly stating which element in the range is assigned 

to a given element in the domain. In such cases it is often convenient to 

specify the function under consideration by giving a formula that tells which 

element of the range is assigned to a given domain element. 

Example 4 

The domain is the set X = the set of real numbers. The range is the set 

Y = the set of real numbers. F: X —> T is given by 

F(x) = lx 
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The function given by the formula above assigns to each number in the 

domain the number that is twice as large as that number. Thus, the number 

assigned to 2, F(2), is equal to 4. The number assigned to —10, F(—-10), is 

equal to —20. 

Example 5 

The domain is the set X = the set of real numbers. The range is the set 

Y = the set of positive real numbers together with zero. G: X —>Y is given 

by 

G(x) = x2 

The function given by the formula above assigns to each number in the 

domain the number that is the square of that number. Thus, the number 

assigned to 4, G(4), is equal to 16. The number assigned to —4, G(—4), is 

equal to 16. Note that for this function two different elements of the domain 

often have assigned to them the same number in the range. 

Example 6 

The domain is the set X = the set of real numbers. The range is the set 
Y = the set of positive real numbers. H: X —> Y is given by 

H(x) = 2X 

Example 7 

The domain is the set X = the set of real numbers. The range is the set 

Y = the set of real numbers greater than or equal to —4. L : X —» Y is given 
by 

L(x) — x2 + 4x — 4 

Since it is often inconvenient to specify the domain and range of a func¬ 

tion defined by a formula, the following convention is usually adopted: 

CONVENTION 1 

If/is a function defined by a formula, and if the domain and range are not 

specified, then the domain of the function is the largest set of real numbers 

for which the formula yields a real number, and the range is the set of all 

those real numbers obtained by substituting values from the domain into 
the formula. 
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Example 8 

fix) = 1 
(■x — 1) 

This formula will yield a number for every value of x except 1. Hence, the 

domain is all numbers except 1. The range consists of all numbers except 0. 

Example 9 

g(x) = yy 
This formula yields a real number for every number greater than or equal 

to 0. The range consists of all the real numbers greater than or equal to 0. 

EXERCISES 6.1 

1. For each of the following tables, describe in function notation the func¬ 

tion / that is represented by that table. 

Domain Range (b) Domain Range (c) Domain Range 

A 1.5 0 3 0.1 10 
B 1.7 1 9 0.2 20 
C 1.9 2 11 0.3 20 
D 2.0 0.4 40 

2. If f(x) = (5x + 3)/2, what are /(1), /(2), and /(100)? 

3. Convert each of the following verbal descriptions of functions to for¬ 

mula notation. 

(a) The function / assigns to any given number the number 10. 

(b) The function g assigns to any given number another number that 

is one and a half times that given number. 

(c) The function h assigns to a given number another number that is 

10 more than the square of the given number. 

4. Construct a function / whose domain and range are {1, 2, 3, 4, 5, 6}. 

5. For each bale of cotton delivered to the textile mill, 10 bolts of cloth 

can be produced. If /(x) is the number of bolts that can be produced 

from x bales, describe the function/in formula notation. 

6. A manufacturing company hires three types of employees: machinists 

grade 1, machinists grade 2, and supervisors. Each employee works 

a 40-hr week. Machinists grade 1 are paid $7/hr, machinists grade 2 
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are paid $5/hr, and supervisors are paid $ 10/hr. The company hires 

x, y, and z, respectively, of these types of workers. 

(a) Express the total weekly payroll (p) as a function of x, y, and z. 

(b) Compute the total hourly wage when x = 10, y = 15, and z = 4. 

7. The Public Relations Division of The Anin Manufacturing Company 

has prepared the following chart showing the relation of advertising 

to sales: 

Advertising costs (c) 5 10 15 20 
in 1000's of dollars 

Sales (s) in 12 22 32 42 
10,000’s of dollars 

(a) Express the relationship between 5 and c by a formula. 

(b) Use your answers in part (a) to compute s when c = 12, when 

c = 22, and when c = 40. Which, if any, of the resulting values 

of 6- do you believe are meaningful in the sense that the invest¬ 

ment of the given number of advertising dollars will result in 

approximately the amount of sales “predicted” by the formula? 

8. A large retailer of men’s pants discovers that sales volume S is related 
to sales price P as in the chart below: 

P 10 20 30 40 50 
51 400 300 250 200 171 

(a) Verify that S and P are related by the formula 

e 12,000 
20 + P 

(b) If a single pair of pants costs $20 to produce, find a formula for 
the profit in terms of sales. 

9. Answer the question on p. 165 dealing with the selling price that yields 

maximum profit for the corn plaster manufacturer. 

10. * Construct a function whose domain and range are as in Exercise 4 but 

with the additional property that /(/(x)) = x for all x in the domain. 

11. * Beginning in a certain year all new cars are required by law to be 

outfitted with Cleano, an antipollution device. Since many people keep 

their cars for some years before buying a new one, it will take awhile 

for all cars on the road to have Cleano. Let us take a simple model in 
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which the number of cars on the road is 50 million each year and each 

year 10% of all old cars (i.e., those cars purchased during the previous 

year or earlier) are removed from circulation (junked) and replaced by 

new cars. Describe in functional notation the function with domain 

{1, 2, 3, 4) where f(t) is the number of cars with Cleano on the road at 

the end of t years after Cleano first becomes available. {Hint: During 

the first year all discarded cars are without Cleano, but in succeeding 

years some cars with Cleano are discarded along with cars without 
Cleano, according to our model.) 

12.* Can you describe the following functions in formula notation? 

/(0) = 0 (c) A(0) = -4 
/(l) = 1 h( 1) = -1 
/(2) = 4 h{2) = 2 
/(3) = 9 h{ 3) = 5 

g(0) = 1 (d) k( 0) = 0 
*0) = 3 *(1) = 2 
8i 2) = 5 k( 2) = 6 
*(3) = 7 k( 3) = 12 

[Hint: The answer to part (a) is f(x) = x2.] 

13.* By consulting a world almanac, construct a descriptive functional model 
for each of the following situations: 

(a) The population of the state you live in for the years 1900-1970. 

Use intervals of 10 years. 

(b) The population of the city (town) you live in for the years 1940— 

1970. Use intervals of 10 years. 

6.2 graphing functions 

In the previous section we discussed how functions can be used as models 

for the way that one quantity varies with another. The tables and formulas 

that are used to define a function in principle contain all the information 

about the functional relationship. It is often easier, however, to comprehend 

information in geometric or pictorial form rather than in algebraic form. 

Work of the French philosopher and mathematician Rene Descartes helped 

make it possible to convert the algebraic formulas and tables defining func¬ 

tions into a pictorial diagram. 

As previously stated, for the rest of this chapter we restrict ourselves 

to functions whose domain and range are sets of numbers. For such a func¬ 

tion, the pictorial representation or model that we shall create will be drawn 

in a two-dimensional plane. We consequently need a more precise way of 



Rene Descartes (1596-1650) had a varied career as 

philosopher, soldier, writer, physicist, and 
mathematician. His best known work in mathematics, La 
geometrie, developed algebraic methods for solving 
geometric problems. Although this book represented a 

major step towards the development of analytic 
geometry as we know it, it did not include the use of 
orthogonal axes and points plotted in four quadrants. 
Rather, Descartes used oblique axes and, since negative 
numbers were not completely accepted in his day, he 
restricted his graphs to what we call the first quadrant. 
(Courtesy The Wolff-Leavenworth Collection, George 
Arents Research Library at Syracuse University.) 

thinking about a plane than as a large flat expanse. To arrive at this precision 

we first introduce a pair of perpendicular lines into the plane, a horizontal 

line called the X axis and a vertical line called the Y axis (see Figure 6.1). 

These two axes will provide a frame of reference with respect to which any 

point P in the plane can be described by an ordered pair of numbers [for 

example, (2, 3) or (—1, 4)]. The first number of such a pair is obtained by 

measuring the perpendicular distance from P to the vertical Y axis and 

attaching a minus sign in the event that P is to the left of the vertical Y axis. 

The second number is obtained by measuring the perpendicular distance 

y-axis 

x-axis 

Figure 6.1 

172 
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from P to the horizontal X axis and attaching a minus sign in the event that 

P is below the X axis. The first number is called the x coordinate of P and 

the second is called the y coordinate of P (see Figure 6.2). In this way every 

point of the plane can be represented by an ordered pair of numbers (x, y). 

y-axis 

* (x,y) -^ 
I 
I 

\y 
i 
i 

----i 
x-axis 

Figure 6.2 

Not only can every point be assigned an ordered pair (x, y), but also 

any ordered pair of numbers (x, y) will have a point of the plane correspond¬ 

ing to it. To find this point we simply measure x units from the Y axis, going 

to the right if x is positive and to the left if x is negative, and then measure 

y units from the X axis, going up if y is positive and down if y is negative. 

Figure 6.3 shows how to plot the points (—2, 3), (—2, —3), (0, 0), (1, 2), 
(2, 1), (3, -2), q, -1), (f, 2), and (-$, 2). 

y-axis 

(-2,: S) 

(1.2 ) 

(-5 
l 2’ 2)* ’(|,2) 

1 

2, 1) 

( 0, 0) 
,-D 

x-axis 

(- 2,-3 ) 
( 3,-2 ) 

Figure 6.3 
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The following example describes how we make a pictorial representation 

of a function whose domain and range consist of numbers. We shall refer to 

this diagram as a graph of the function, even though the terminology may 

be confusing because the present usage of graph is different from our earlier 

meaning for the word. 

Example 1 

Suppose / is the function described in function notation by 

/(-2) = 4 /(-1)=1 /(0) = 0 /(1)=1 /(2) = 4 

We make the graph of this function by plotting (marking) all the points in 

the plane that correspond to the ordered pairs in this set: 

{(x,y)\y = fix)} 

For the case of our example, this set of ordered pairs consists of the ordered 

pairs listed in Figure 6.4. Note how these ordered pairs correspond to the five 
parts of the function notation description of/. 

(-2, 4) • • (2, 4) 

(-1, 1) • • (1,1) 

'(0,0) 

Figure 6.4 

In referring to the graph in Figure 6.4, we may describe it, as we have 

thus far, as the graph of the function f(x) or we may refer to it as the graph 

of the equation y = f{x). The reason for the latter terminology is that if 

(x, y) is one of the ordered pairs on the graph, it must be true that y = f(x). 

Given an equation y = f(x) that describes a function, we define the solution 

set of the equation to be the set of ordered pairs fx,,^) such that y, = 
fix,). 
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g (-2) = 5 
S(-l)=2 
g (0) = 1 
g( D = 2 
g (2) = 5 

Figure 6.5 

The method used in Example 1 also applies in the case where the func¬ 

tion is defined by a formula, except that we need to add one small modifica¬ 

tion: Begin by finding the functional notation form for the function; then 
proceed as before. 

Example 2 

Consider a function g defined by the formula gO) = x2 + 1 and defined 

on the domain {—2, —1,0, 1,2}. The description of g in functional notation 

is shown in the left-hand column in Figure 6.5. The next column lists the 

ordered pairs that we need to plot; the graph follows at the right. 

(-2, 5) • *(2,5) 

(-2,5) 
(-1,2) 
(0, 1) 
0,2) 
(2,5) 

(-1,2) • • (1,2) 

<>(0, 1) 

The second column in Figure 6.5 is the solution set of the equation 

y = x1 + 1 for the domain set (—2, —1,0, 1,2}. 

The final and most interesting wrinkle in graphing functions occurs 

when we have a function defined by a formula on a domain which is either 

infinite or so large that it is impractical to deal with all the ordered pairs 

which would have to be plotted. In such a case we make a selection of a 

reasonable number of points from the domain and pretend that this set is 

representative of the whole domain. 

Example 3 

Consider the function f(x) = x2 defined on the domain consisting of 

all numbers between —2 and 2. Graph this function. 
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Solution: Since there are an infinite number of numbers between —2 

and 2 (we are not considering merely the whole numbers but all numbers, 

including fractions such as ^ and ^-|), we cannot list them all. We cannot 

plot all the ordered pairs that would be required if we were to follow the 

method as explained so far. Thus, we shall restrict ourselves to the sampling 

consisting of the numbers —2, —1, 0, 1, and 2. In Figure 6.6(a) we have 

/(-2) = 4 
/(-1) = 1 
/ (0) = 0 
/(D = 1 
/ (2) = 4 

/(—3/2) = 9/4 
/ (— 1 /2) = 1/4 
/d/2) = 1/4 
/ (3/2) = 9/4 

(-3/2, 9/4) 
(-1/2, 1/4) 
(1/2, 1/4) 
(3/2, 9/4) 

Figure 6.6 

listed the values of the function at these points, computed the required 

ordered pairs, and plotted them. We have also drawn a smooth curve through 

these plotted points. This curve represents our prediction of where the remain¬ 

ing ordered pairs would fall if we had the time and patience to plot them. 

The general rule that is usually followed in “connecting the dots” is to do it 

so that the arc which connects adjacent points is a smooth curve. In Figure 

6.6(b) we have taken a slightly larger sampling, adding the numbers — 

—•£, and \ to our sampling. Only the additional ordered pairs that arise 

from these additional numbers are listed in the Figure 6.6(b) but all nine 

points are plotted. 

Note that as x increases from an initial value of 0, the corresponding y 

values increase. As x decreases from an initial value of 0, the corresponding 

y values increase. 



functional models 177 

There are certain dangers associated with this process of taking a sampl¬ 

ing of points to use in plotting ordered pairs. It may turn out that the sample 

may not consist of representative points so we may get a poor diagram, as 
shown by the following example. 

Example 4 

An ecologist makes a theoretical calculation to compute the freshwater 

supply of a certain town under a proposed change in ecology management 

policies. The freshwater supply, IF(t), t years after the beginning of the new 

policy, is given by the following functional model: W(t) = t3 — 5t2 + 41 

+ 7. [W(t) is measured in billions of gallons.] In order to determine whether 

this policy is acceptable or not, the ecologist decides to plot a graph of the 

function. He first takes the following sampling of numbers: 0, 1,4. The cor¬ 

responding ordered pairs are (0,7), (1,7), (4,7); these points are shown 

plotted in Figure 6.7(a). After connecting the dots it seems that there will 

be no change in the water supply. If we add to our sampling the numbers 2 

and 3, however, we get the graph in Figure 6.7(b), which shows a very differ- 

Figure 6.7 

ent picture. This graph shows that 3 years after the new policy takes effect, 

the water supply will be one-seventh of its initial value. 
In this example, we first ignored the numbers 2 and 3 and our picture 

[Figure 6.7(a)] showed the water supply as constant. It turned out that these 

numbers were not of minor importance; when we took them into account, 

the diagram told a different story. The problem of choosing a good sampling 

to use in plotting a function is not an easy one. We shall have to be content 
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with pointing out that it is a problem and that more sophisticated methods 

can be used to overcome the problem. 

What is the value of making the graph of a function? The answer 

seems to be that the human mind finds the visual geometric patterns of the 

graph easier to interpret than formulas or functional notation. Would the 

cartoon of Figure 6.8 have more or less impact if the graph on the wall were 

Figure 6.8 

(Copyright Ranaan Lurie, Life Magazine, © 1973 Time Inc.) 

“Looks better this way” 

replaced with a formula? Another good example is the electrocardiogram. 

As the heart passes through its cycle of contraction and relaxation, electrical 

currents are generated that have different strengths at different times in the 

cycle. If we associate the strength of the current with each time in the cycle, 

this is a function. An electrocardiograph is a machine for plotting this func¬ 

tion and displaying it visually. The electrocardiograph does not attempt to 

describe this function with a formula or by functional notation but directly 

constructs a graph called an electrocardiogram (see Figure 6.9). 

Figure 6.9 
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EXERCISES 6.2 

1. Plot the points (3, 4), (—4, 5), (—3, —2), and (—1, 4). 

2. Plot the points — 1) and (—|, |). 

3. Explain why no portion of the graph of the function y — x2 + 1 can 

appear below the X axis. 

4. Explain why no portion of the graph of the function y = */x2 + 3 
can appear below the X axis. 

5. Draw a sketch of the graphs of the following functions. (Use the con¬ 

vention that the domain of the function is the largest collection of real 

numbers for which the formula is defined.) 

(a) y = x (e) II N
>

 l * 

(b) y = 2x (f) y — x2 — 1 

(c) y = 3x + 1 (g) y = l/jf 
(d) y = 2X (h) y = 1 + x3 

6. A graph of the function y = /(x) is said to be symmetric with respect 

to the 7 axis if, for every pair of numbers a and —a in the domain of 

the function, f(a) = For each of the functions below, deter¬ 

mine if the graph of the function is symmetric with respect to the Y 

axis. For example, consider y — x2. For * = 1 and x = —1, the 

corresponding y value is 1. Similarly, for x — a and x = —a, the 

corresponding value of y is a2. Hence, y = x2 is symmetric with 

respect to Y axis. 

(a) 

H II (d) y = x + 4 

(b) y = x3 — x (e) y = x — 3 

(c) y = x2 — x4 (f) y = -X2 + 10 

7. Suppose that for any real number x, [x] denotes the greatest integer 

less than or equal to x. (Thus, [1.4] = 1 and [1.56] = 1.) Draw a graph 

of the function y = [x]. 

8. Find the domain that the convention given in Exercise 5 imposes on 

the following functions: 

(a) y = l/(x - 7)(x - 3) (e) y = vXx — l)/(x + 3) 

(b) y = 1/x2 (f) y = 3* 

(c) y = x — 4 (g) y 1 (S
 H 

>
 

II 

(d) y = \J X 5 
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9. Consider the function y — (x — l)(x — 2)(x — 3)(x — 4). Explain why 

plotting the graph of this function using as x values the numbers 1, 2, 3, 

4 would give a misleading result. Can you generalize this example ? 

6.3 the linear function 

There is a very special type of function called a linear function that appears 

quite often in applied mathematics. In this section we shall give a number of 

examples where linear functions provide good models for real-world phe¬ 

nomena. 
Examples of linear functions are /(x) = 2x, g(x) = —x + 7, and 

h{x) = \x — f. On the other hand, fix) = x3 is not linear. Here is the 

definition. 

DEFINITION 2 

The function /is called linear if /has the form /(x) = ax -f- b where a and b 

are constants. (Instead of x, the variable may be y, z, or anything else and 

this doesn’t change the linearity.) 

Example 1 

The normal systolic blood pressure for an adult varies with age. As 

a rule of thumb, to compute the normal pressure, take one-third of the age 

in years and add 113. In the language of functions, if we let x stand for the 

age and / for the function that associates the corresponding normal blood 

pressure with each age x, then 

/(x) = /x + 113 

Note that/is a linear function. 

Example 2 

John owns an automobile and wants to use it on weekends as a taxi 

to earn money. He wants to charge a flat rate per mile but to determine this 

he needs to know what it costs him to run his car. He figures that gasoline, 

depreciation, and maintenance all together average out to 12^/mi. In addition 

there is $200 insurance per year, which is independent of mileage. If he goes 
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m miles in a year and we denote the total dollar cost by c(m), then 

c(m) = (0.12)w + 200 

Once again, this is a linear function. 

Suppose John expects to be able to use his car as a cab for 20,000 mi 
and wants a clear profit of $2000. What should he charge? 

The cost of going 20,000 miles is 

c(20,000) = (0.12X20,000) + 200 = 2400 + 200 

= $2600 

If he profits $2000, he must take in 

$2000 + $2600 = $4600 

His charge per mile should therefore be 

$4600 _ $23 
20,000 ~ 100 

= $0.23 

Example 3 

A ball is thrown straight upward with an initial velocity of 608 ft/sec. 

If Newton’s laws govern the velocity of the ball, determine how long it takes 

the ball to reach its maximum height. 

Solution: According to Newton’s laws the velocity of an object pro¬ 

jected straight up will lose 32 ft/sec in velocity for each second of flight. 

Hence, we can describe the velocity v of the ball at any instant in time t by 

v = f(t) = -321 + 608 {t > 0) 

Notice that we have used the fact that /(0) = 608; that is, there is an initial 

velocity of 608 ft/sec. The ball reaches its maximum height when its velocity 

is 0. Hence, setting —321 + 608 = 0 and solving the resulting equation 

-32t + 608 = 0 

we discover that 19 sec after the ball is thrown up, it reaches its maximum 

height. 
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EXERCISES 6.3 

1. For each of the linear functions below, compute the required function 

values: 

(a) fit) = 3/ + 8 
Compute /(4), /(-3), /(0). 

(b) g(x) = — Sx - 4 

Compute g(—3), g(-7), g(2). 

(c) h(y) = 3y -9 

Compute h{—4), h{f), h{0). 

2. A company is producing spun aluminum wire. Regardless of the length 

of the wire produced, the initial costs are $15,000. Furthermore, the 

cost of the materials needed to produce 100 ft of wire is $40. 

(a) Construct a function to describe the cost of producing aluminum 

wire in terms of the length of wire produced. 

(b) What is the cost of producing 8000 ft of wire? What is the cost 

of producing 10,500 ft of wire? 

(c) If the company has $135,000 available, how much wire can it 

produce ? 

3. The company of Exercise 2 makes a profit of $30 for every 1000 ft of 

wire it produces. Construct a function that relates the profit of the 

company to the amount of wire it produces. 

4. Current (in amperes) is related to voltage (in volts) and resistance (in 
ohms) by Ohm’s law: 

where / = current, E = voltage, and R = resistance. Write a function 

that relates the current to the voltage, assuming that the resistance is 
^ ohm. 

(a) When the voltage is 3 volts, find the current. 

(b) When the current is 120 amp, find the voltage. 

5. Draw a graph of the function 

fit) = 3t + 8 (1 < t < 3) 

6. Draw a graph of the function 

f(t) = -t + 2 i-l<t<l) 

7. The circumference of a circle is related to the size of its radius by 
a linear function. 

(a) Write the function relating the circumference of a circle to its 
radius. 
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(b) What is the length of the circumference when the radius is 8? 

When the radius is 

8. The length (L) of a rod and its temperature (t) are related by the func¬ 
tion 

L = L0(l + a t) 

where L0 and a are fixed numbers. Suppose L0 = 6 and a = Find 

the function that gives the temperature of the rod in terms of its length. 

When the rod is at 80°C, what is its length? 

9. A bank is giving 6 % annual interest on deposits. Write a function that 

describes the amount of interest at the end of a 1-year period in terms 

of the size of a deposit. 

10.* Suppose that x denotes the amount of sales in dollars for 1 month 

of company Z. Production cost to the company is given by a fixed yearly 

cost of $9936 for rental of factory space and by a variable cost that is 

10% of the amount of sales. The break-even point for the company is 

defined to be the value of sales for which the net profit (before taxes) 

is 0. Net profit is equal to the difference between sales and cost. Find 

the break-even point for company Z. 

linear equations 

We have seen that linear functions are often descriptive models for real- 

world situations; in addition, they are algebraically neat and have simple 

graphs. With this in mind, it is desirable to become familiar with linear 

equations, which are closely related to linear functions. Here and in Section 

6.5, we shall develop the necessary algebraic machinery to discuss an impor¬ 

tant class of applied problems involving linear equations. 

DEFINITION 3 

If A, B, and C are constants, and A and B are not both 0, then Ax + By + C 

= 0 is called a linear equation. 

Example 1 

(1) Choosing A = 1, B = 0, and C = 0, we obtain the linear equation 

x = 0. 

(2) Choosing A = 0, B = 1, and C = 0, we obtain the linear equation 

y = o. 
(3) Choosing A = 1, B = 2, and C = — 1, we obtain the linear equation 

x + 2y — 1 = 0. 
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Notice that except when B = 0, Ax + By + C = 0 defines a linear 
function since we can write y = (—AIB)x—C/A. For any linear equation 
we can plot the ordered pairs (or some of them) (x, y) that satisfy the equation 
and thereby form the graph of the equation. Figure 6.10 shows the graphs 
of the equations listed in Example 1 above. The graphs are shown in boldface. 

x=0 

v = 0 

(a) (b) (c) 

Figure 6.10 

To graph x + 2y — 1 = 0, we pick a few values of x and calculate the 
corresponding values of y. Taking for x the values —2, —1,0, 1, and 2, we 
determine that the corresponding y s are 1, 0, and —^ so we plot these 
ordered pairs: (—2, |), (—1,1), (0, £), (1,0), (2, —£). After connecting 
the points we appear to have a straight line. 

For the skeptic we shall eventually give a proof that any linear equation 
has a graph that is a straight line. We shall begin backward, however, and 
first study how to find the equation of a given straight line. 

Suppose L is a straight line. 

Case 1 

Line L parallel to the Y axis. All points on such a line have the same 
distance, say a units (a > 0), from the Y axis and are on the same side of 
the Y axis. Consequently, these points either all satisfy the equation x = a 
or all satisfy the equation x = —a, depending on which side of the Y axis 
contains the line (see Figure 6.11). 

Case 2 

Line L parallel to the X axis. All points on such a line have a constant 
distance, say, b units (b > 0), from the X axis and are on the same side of 
the X axis. Consequently, these points all satisfy the equation y = b or 



x = -a 

V-axis 

a 

x = a 

x-axis 

Figure 6.11 

y = —b, depending on whether the line is above or below the X axis (see 
Figure 6.12). 

V-axis 

II <3
- 

»{ 
x-axis 

y = —b 

Figure 6.1 2 

Case 3 

Line L not parallel to either axis. Let Pl(x1, yx) and P2(x2, y2) be two 

distinct fixed points on L and let P(x, y) be a variable point on L. We drop 

perpendiculars from P and P2 to the line y = yt, touching the line at points 

Q and R, respectively. These constructions and the coordinates of the points 

Q and R are shown in Figure 6.13. 

Triangles P{PQ and PiP2R are similar, so 

PQ P2R 
P\Q P> P 

(6.1) 

However, the length PQ = y — yt, the length PXQ = x — xx, the length 
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v-axis Line x = x2 

Line y = y 

/’iU1,j'1) Qix,yx) R(x2,y^ 

Figure 6.1 3 

p2R = y2 — yx, and the length PXR = x2 — x2. Hence (6.1) can be written 

y — y i = y 2 - (6.2) 

An algebraic simplification gives the following equation, which is clearly 

linear: 

This shows that any point P(x, y) which lies on the line determined by 

Pfx{, Jh) ar,d P2{x2, y2) satisfies a linear equation. Conversely, it can be 
shown that any point (x, y) that satisfies (6.2) must lie on a line with 

Ti) and P2(x2,y2). 
In all three cases, the equation that we found for a straight line was 

linear. 

The formula (6.2) is called the two-point formula for the equation of 

the line and can be used to find the equation of any line when one knows 

two points that lie on the line, provided the two points do not determine 

a vertical line. (This happens only when the two given points have the same 

x coordinate.) 

Example 2 

Find the equation of the line connecting the points (—1,2) and (2, 4). 

Solution: Since (Xj.y'j) = (—1,2) and (x2,^2) = (2, 4), substituting 

186 
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in (6.2) we obtain 

v - 2 4-2 

*-(-!) 2 — (—1) 

or 

y - 2 = + l) 

or 

Finally this can be written — 2x + 3y = 8, which is a linear equation. 

Example 3 

Find the equation of the line connecting the points (3, 2) and (3, 579). 

Solution: Here the two-point formula is not applicable since the two 

points have the same x coordinate. The equation of the line is simply x = 3 

and the line is a vertical one, three units to the right of the Y axis. 

The constant (y2 — y1)/(x2 — Xj) that appears in (6.2) has a special 

significance. It is called the slope of the line L and is denoted by m. Reference 

to Figure 6.13 shows that m is the tangent of the angle the line L makes with 

the horizontal. The slope m is, therefore, a measure of the inclination of the 

line. The larger the slope of a line, the steeper its inclination is to the horizon¬ 

tal X axis, when the slope is positive. 
In Figure 6.14, line L1 has slope ml = 3, line L2 has slope m2 = 1, 

Figure 6.14 
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and line L3 has slope m3 — —1. Using the symbol m, we can rewrite (6.2) as 

y — y i = m(x — xj (6.3) 

and in this form the equation is called the point-slope form of the line. 

It is most suitable when one is given the slope and a single point on the line 

and is asked to find the equation of the line. Another simple algebraic trans¬ 

formation gives y = mx + (y3 — mxx). If we rename the constant y, — mx, 

as b, we obtain the so-called slope-intercept form: 

y — mx + b (6.4) 

If we substitute 0 for x in (6.4), we find the value b for y. This shows that 

(0, b) is the point on the Y axis at which the line crosses this axis. The con¬ 

stant b is, therefore, called the y intercept. Equation (6.4) is the most con¬ 

venient one to use when one wishes to calculate the equation of a line for 

which the slope and y intercept are given (see Figure 6.15). 

Figure 6.1 5 

Example 4 

(1) Find the equation of the line passing through (1, —3) and having slope 
-2. 

(2) Find the equation of the line with slope 3 and y intercept —2. 

Solution: 

(1) We use (6.3) and find y + 3 = (—2)(x — 1); i.e. y = — 2x — 1 

(2) We use (6.4) and find y = 3x — 2. 

Now let us turn things around and start with a linear equation Ax 

+ By + C = 0 in which A and B are not both 0. If B = 0, then A =£ 0 and 

the equation can be rewritten x = —ClA. We have seen earlier that if we 
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take a vertical line whose distance from the Y axis is — C/A (to the right of 

the axis if —C/A is positive; to the left otherwise), then this line has as its 

equation x = —CIA. Thus, if B = 0, the equation represents a straight line. 

If B ^ 0, we can rewrite this equation as y — (—A/B)x — C/B. If we take 

a line with y intercept —C\B and slope —A/B, this line will have the given 

equation as its equation. Consequently, a linear equation always represents 

a straight line. As a result of this fact, drawing the graph of a linear equation 

is especially easy: We know the graph is a straight line so it is necessary to 

plot only two points and then to connect them with a straight line. 

Example 5 

Draw the graph of the equation 2x + y — 7 = 0. 

Solution: We choose two values for x, say, x = 0 and x — 1, and 

calculate the corresponding y values by substitution: When x = 0, y — 7 

= 0, and y = 7; when x = 1, 2 -j- y — 7 = 0, and y = 5. The'two ordered 

pairs are (0, +7) and (1, +5). These points and their connecting line are 

plotted in Figure 6.16. 

The two points that are especially convenient to choose for drawing 

a line are the points where the line cuts the X and Y axes. Here is an example. 

Example 6 

Graph the line with equation 3x — 4y = 12. 

Solution: When x = 0, y = — 3 and we can locate the point A = 

(0, -3) where the line cuts the Y axis. When y = 0, x = 4, and we can locate 

the point (4, 0) where the line cuts the X axis (see Figure 6.17). 
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EXERCISES 6.4 

1. For each of the following pairs of points, find the equation of the line 

they determine. 

(a) (1,5), (-2,-3) 

(b) (0,0), (3, 7) 

(c) (2, 1), (4, -3) 

(d) (8,-13), (4, 9) 

2. For each of the following, determine the equation of the line with 

the given slope that passes through the given point. 

(a) m = 2, (—2, 3) 

(b) m=- 1,(17, 4) 

(c) m = 0, (-4, —5) 

(d) m = 9, (6, 7) 

3. For each of the following, determine the equation of the line with 

the given slope and y intercept. 

(a) m = 17, b = 0 

(b) m = —7, b = 5 

(c) m = 0, b — 9 

(d) m =»4, b = —18 

4. Plot the graphs of each of the following linear equations. 

(a) 3x + 2y — 7 ^ 0 

(b) — 5x + 4y + 8 — 0 

(c) y-9 = 0 
(d) jjc 12 0 

5. Temperatures on the Fahrenheit and centigrade scales are related by 
the equation 

5F - 9C 160 (*) 

(a) When the temperature is 100°C, what is the temperature in 
Fahrenheit ? 
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(b) When the temperature is 0°C, what is the temperature in Fahr¬ 
enheit? 

(c) When the temperature is 80°F, what is the temperature in centi¬ 
grade ? 

(d) At what temperature will a thermometer read the same number 
on both scales ? 

(e) Draw a graph of the equation (*) above. 

6. * Figure 6.13 is drawn with P between P1 and P2. Would the proof need 

changing to take into account the possibility that P is not so situated? 

7. * Show that if (x, y) is any point satisfying Equation (6.1), then this point 

lies on the line determined by P1 and P2. 

8. * Suppose A and B both equal 0 in the general form of the linear equation. 

What can you say about the set of all ordered pairs that satisfies the 

equation? (Hint: Does it make a difference whether or not C = 0?) 

6.5 simultaneous linear equations 

In this section we study the problem of finding the intersection of two lines. 

Of course, we don't mean this in the most naive sense: We don’t mean to use 

a ruler and find where the lines cross but rather to find the coordinates of 

the point of intersection by manipulating the equations of the two lines. 

Having learned this technique, we shall apply it to a special kind of modeling 

problem. 

Consider Equations (6.5) and (6.6) in the system below; each represents 

a straight line in the plane. If we multiply (6.5) by we obtain another equa¬ 

tion, which has the same solution set. Now our new equation and Equation 

(6.6) are identical, however, showing that we were dealing with two repre¬ 

sentations for the same line all along. Consequently, it makes no sense to 

ask for the intersection of the two lines. Algebraically, any ordered pair of 

real numbers that satisfies one equation also satisfies the other. This situation, 

which we call dual representation of the same line, can be detected as follows: 

Put both equations in the form where either the y coefficients or the x coeffi¬ 

cients are identical. If the equations are now identical, we have the case of 

dual representation. 

x T 2y = 8 (6.5) 

\x + y = 4 (6.6) 

Whenever one is confronted with a pair of linear equations, before looking 

for a common solution one should check whether or not there is a dual 

representation of the same line. 
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Now let us consider a case where we do not have dual representation. 

Within this case we shall subdivide our discussion into two parts. First, we 

consider the possibility that one of the equations does not contain one of the 

letters: 

3x + 2y = 7 

4y = 2 

In such a case, we can use the equation with one variable missing (4y = 2 is 

missing the variable x in the example above) to solve for the other variable. 

Since y = \ in our example, this value is substituted in the other equation 

to solve for the remaining variable. After substitution we have 3x + 1 = 7, 

whence we determine that x = 2. The one exception to these instructions 

occurs when both equations are missing the same variable as in the system: 

2y = l 

Ay — 2 

As in the last system there is a variable missing in the second equation so we 

determine thaty = ^ from this equation. If we substitute in the first equation, 

however, we arrive at the nonsensical statement that 1=7. The explanation 

is that the two equations in this system can never be simultaneously true. 

Geometrically we have two parallel lines (horizontal in this case) that have 

no point in common (see Figure 6.18). 

>>-axis 

y-l 

y-h 

x-axis 

Figure 6.1 8 

The second case to consider is that in which we have no dual repre¬ 

sentation and, in addition, both equations contain both variables. For exam¬ 
ple: 
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3x + 6y — 9 

6x + 4y = 14 
(6.7) 

Our goal here is to reduce this to the previous case in which one equation is 

missing a variable and then to proceed with the previous method. 

We shall use the fact that if (a, b) is a solution of each equation of 

a system, then it is also a solution of any equation obtained by adding (or 

subtracting) the equations of the system. For example, since (1, 3) is a solu¬ 

tion of x — 3y = — 8 and 2x + 4y = 14, it is also a solution of 3x + y — 6, 

obtained by adding the original equations together. 

To solve the system (6.7), we can eliminate the variable x by multiplying 

the second equation by \ and subtracting this new equation from the first, 

obtaining 4y = 2. Taking this equation together with either of the originals, 

we have the sort of system described in the previous example. 

The solution of the system is x — 2, y = 

Example 1 

Solve the system 

(6.8) 

(6.9) 

2x - 4y = 2 

5x — 3y = 12 

Solution: We choose to eliminate x. Multiplying Equation (6.8) by 5 

and Equation (6.9) by —2, we find 

lOx - 20y = 10 

- lOx + 6y = —24 

Adding these equations, we obtain —14y= —14, or y = 1. Substituting 

y = 1 in Equation (6.8) gives x = 3. 

The flow diagram in Figure 6.19 shows the process. 
We shall now apply the foregoing algebraic techniques to modeling 

a certain class of practical problems. The type of modeling will sometimes 

be crude and impractical but will involve simple mathematics. In Sections 

6.6 and 6.7 we shall refine the model and eliminate some of the defects but 

at the price of using somewhat more sophisticated mathematics. 

Example 2 

Espionage reports estimate that an enemy weapon factory received 

shipments of 870 tons of steel and 500 tons of aluminum in the last year. This 
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factory makes two kinds of weapons, the zinger and the zonker. A zinger 

uses 1 ton of steel and ^ ton of aluminum while a zonker uses f ton of steel 

and 2 tons of aluminum. Intelligence agents have been unable to determine 

how many of each type of weapon have been produced but they assume 

that all the aluminum and steel have been incorporated into the weapons. 

How many zingers and how many zonkers were produced ? 

Solution: Let x stand for the number of zingers produced and let y 

stand for the number of zonkers produced. Since each zinger needs 1 ton of 

steel, the amount of steel occurring in the zingers totals (l)(x) tons. Since 

each zonker needs | ton of steel, the total amount of steel used in zonkers 

is (f)(y) tons. Assuming that the total of the steel in the zingers and in the 

zonkers is equal to the amount of steel delivered, namely 870 tons, we can 

write the equation 870 = x + %y. We total the aluminum in the same way: 

x zingers, each using ^ ton of aluminum, account for ^x tons, while the y 

zonkers, each using 2 tons of aluminum, use a total of 2y tons. Consequently, 

500 = jx + 2y. We now have the following system of simultaneous linear 

equations, which we solve as previously described: 

\x + 2y = 500 

x + $y = 870 

Multiplying the first equation by 2 and substracting the second from it gives 

¥y = 130 

or 

y — 40 

Substituting in the equation x + \y = 870 gives 

x + (|)(40) = 870 

or 

x = 840 

Thus, we conclude that 840 zingers and 40 zonkers were produced. 

An important part of the modeling here was the modeling assumption 

that all the steel and aluminum was used. Using this assumption we were 

able to convert our practical problem to the mathematical problem of 

solving a system of two simultaneous equations. In this example this seemed 

reasonable. The next example makes a similar assumption but perhaps with 

less justification. 
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Example 3 

A paper recycling company uses two materials, scrap paper and scrap 

cloth, to make two different grades of recycled paper. A single batch of grade 

A recycled paper is made from 4 tons of cloth and 18 tons of paper, while 

one batch of grade B needs 1 ton of cloth and 15 tons of paper. The company 

has 10 tons of scrap cloth and 66 tons of scrap paper on hand. If it wishes to 

use all its supplies of scrap cloth and scrap paper, how many batches of each 

grade should be produced? 

Solution: If we let * stand for the number of grade A batches and y 

for the number of grade B batches, then Ax is the total number of tons of 

cloth in all the grade A batches, while y is the number of tons of cloth used 

altogether in the grade B batches. Since all the available cloth is used, 

Ax + y — 10. We make a similar analysis with respect to scrap paper. The 

number of tons of scrap paper used altogether in all the grade A batches is 

18x, while 15j> is the total number of tons of scrap paper used altogether 

in all the grade B batches. Since all the scrap paper is to be used, we must 

have 18.x + 15y = 66. Writing these equations in a system, 

Ax + y = 10 

18x + \5y = 66 

To solve this system, multiply the first equation by 15 and subtract the 
second to obtain 

A2x = 84 
or 

x = 2 

Substituting in the first equation gives 8 + y = 10, whence y = 2. 

The last two examples illustrate the kind of problem we have in mind 

to model here. They are problems in which the following assumptions are 
reasonable: 

ASSUMPTION 1 

Fixed amounts of two resources are at hand (aluminum and steel in Example 
1 and scrap cloth and scrap paper in Example 2). 

ASSUMPTION 2 

Two different kinds of things can be produced from these resources by using 

them in different proportions (zingers and zonkers in Example 1, grade A 
and grade B paper in Example 2). 
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ASSUMPTION 3 

All the resources available are used. 

Assumption 3 will be called the no slack assumption. 

ASSUMPTION 4 

It is desired to determine how many of each kind of product must be made in 

order to meet Assumption 3, that is, to avoid having any resources left over. 

Assumption 3 is a modeling assumption that may not always make 

sense. In the last problem, for example, the solution we derived based on 

Assumption 3 would not be practical if the selling price for grade B paper 

were very low. In that case it might be better to have some of the scrap cloth 

and/or scrap paper left over but to make as many grade A batches as possi¬ 

ble. To be specific, suppose a grade A batch sells for $10,000, while a grade B 

batch sells for $2000. If we follow the solution just derived, we take in 

$24,000. Suppose, instead, that we make 2\ batches of grade A paper and 

none of grade B; then we take in $25,000, which is better. Of course, you 

should check that it is possible to make as many as 2\ batches of grade A, 

i.e., that there is enough scrap cloth and scrap paper to go around. How much 

scrap cloth and scrap paper would be left over? The sort of problem we 

raise here as a criticism of modeling assumption 3 will be discussed more 

fully in Section 6.5. 

The procedure for solving problems modeled in this way is this: 

(1) Let x be the number of units of one type of product produced and let 

y be the number of units of the second product produced. 

(2) Corresponding to each resource there is a linear equation involving 

x and y. This equation expresses algebraically the fact that the total 

amount of that resource available equals the amount used in the entire 

batch of the first product plus the amount used in the entire batch of 

the second product. 

(3) Solve the equations simultaneously. 

Our final example illustrates this procedure once more but this time 

with two additional twists. The first twist concerns the resources. The word 

resources usually connotes some kind of commodity such as agricultural 

produce or something mined from the earth. In reality we mean the word 

a bit more generally. In Example 4 resources will be money and manpower. 

We shall discuss the second twist at the end of the example. 

Example 4 

The Mogul Film Company has 45 million dollars and 200,000 man¬ 

hours of staff time with which to make films this year. To make a grade A 
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film requires 3 million dollars and 15,000 man-hours of time, while a grade 

B film requires 1 million dollars and 10,000 man-hours. How many films of 

each type should be made? 

Solution: The example fits Assumptions 1 and 2. We shall make the 

additional assumption (Assumption 3) that the most efficient and profitable 

operating procedure would be to use all the money and manpower. Let x 

denote the number of grade A films and y the number of grade B films. 

The resource equations are the following: 

Money equation: 45,000,000 = 3,000,000x + l,000,000y 

Manpower equation: 200,000 = 15,000x + 10,000y 

Simplifying these equations gives 

45 = 3x + y 

40 = 3x + 2 y 

Subtracting the second from first gives 

5 = — y or — 5 = y 

Substituting —5 for y in the first equation gives 50 = 3x. Hence, x = 16^. 

Thus, the solution is to make 16| grade A films and —5 grade B films, which 

is absurd. For one thing, one can’t make two-thirds of a film. Moreover, 

it is impossible to make a negative number of films. Thus, the second addi¬ 

tional twist in this example is that after the theoretical solution is determined 

on the basis of the model, it is necessary to examine the solution to see if it 

makes sense. In this case we must conclude that our model for determining 

the company’s policy was a bad one. A better model will be developed in 
Section 6.7. 

EXERCISES 6.5 

1. In each of the following cases, find the intersection point of the lines 

represented by the two equations if the lines have an intersection 

point. If there is no intersection, state whether we have a case of dual 

representation or whether the lines are parallel. 

(a) x + 3y = 1 (d) 5x + 2y = 9 
3x — 4y = 4 —x — 3y — -7 

(b) x - 2y = 7 (e) 3x — 5y = 0 
-x + 2y = -7 x +y = 8 

(c) x - 2y = 7 (f) 125x + 500y = 1500 
—x + 2y = 8 50x - 200y = 200 
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2. For each of the cases in Exercise 1, draw the graphs of the two lines 

whose intersection is sought and determine the point of intersection 

as closely as possible by visual inspection of the graph. 

3. Do the following three lines have a single point in common? 

*+ y = 5 

2x — 3y = 10 

4x-ly = 20 

4. The Pony Express Shipping Company ships goods between Chicago, 

Ill., and St. Louis, Mo., using trucks and the railroad. The manpower 

requirements for sending off one truck are 1 man-hour of dispatcher’s 

time and 3 man-hours of loader’s time. The manpower requirements 

for sending off one railroad car are 1 man-hour of dispatcher’s time 

and 5 man-hours of loader’s time. The company has 70 man-hours of 

dispatcher’s time next week and 300 man-hours of loader’s time. It 

wishes to make use of all the man-hours available to it in each category. 

How many truck shipments and train shipments will accomplish this? 

5. A dye company makes two shades of purple for the Easter season. 

A packet of deep purple is made by mixing 1 oz of red dye powder with 

2 oz of blue. Light purple requires 2 oz of red and 3 oz of blue. The 

company has on hand 5000 oz of red and 7000 oz of blue. How much 

of each shade should be produced if the company wishes to use all its 

red and blue powder? 

6. The antitrust division of the Justice Department has 28 tax lawyers 

and 48 antitrust lawyers. It decides to focus in the coming year on two 

types of situations: mergers and companies with a virtual monopoly 

of the market. A team of lawyers is set up for each situation. A team 

to investigate a merger requires 2 tax lawyers and 2 antitrust lawyers, 

while a team to investigate a quasi-monopoly needs one tax lawyer and 

3 antitrust lawyers. If the division wishes to utilize all its lawyers, how 

many teams of each type should it create? 

7. A college has 3200 man-hour units of professorial time and 400,000 

units of floor space suitable for either classrooms or laboratories and 

other kinds of research facilities. The college wishes to determine how 

many professorial man-hours should be devoted to research and how 

many to teaching. For each man-hour devoted to teaching, 75 units of 

floor space are needed. For each man-hour devoted to research, 50 

units of floor space are necessary. If the college wishes to use all man¬ 

hours and all floor space, how many man-hours should be devoted to 

research and how many to teaching? 

8. A furniture firm makes two kinds of coffee tables using two basic 

machines, a planer and a molder. A fancy table requires 15 minutes 
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on the planer and 24 minutes on the molder, while a plain table needs 

10 minutes on the planer and 18 minutes on the molder. In each day 

there are 600 minutes available on the planer and 500 on the molder. 

If all the machine time is to be used, how many tables of each type 

should be made? 

9. The Little Varmint Undergarment Company makes two products, 

children’s undershirts and children’s underpants. Making a shirt 

requires just j yd of cloth, while a pair of underpants needs ^ yd of 

cloth and 18 in. of elastic. If the company has 200 yds of cloth on hand 

and 1440 in. of elastic, and if it wishes to use all the cloth and elastic, 

how many of each item should the company plan to make ? 

10. Camp Carraway has 30 counselors and 400 children. Two kinds of 

activities are planned to celebrate Watersports Day, a canoe trip down 

the river and a sailboat regatta. Camp tradition requires that a canoe 

contain 4 children and 2 counselors and that a sailboat contain 3 coun¬ 

selors and 30 children. If the camp wishes to have everyone participate 

in one of these activities, how many canoes and how many sailboats 

will be needed? 

6.6 general systems of linear equations 

The problems that we solved using a system of two equations in two letters 

lacked realism for several reasons. Problems that arise in the real world, like 

the construction of an armaments system of zonkers and zingers, might 

require hundreds of letters rather than just two letters to represent the raw 

materials needed to construct them. Furthermore, there might be a need to 

construct more than two types of armaments (i.e., zingers, zonkers, zappers, 

... ). As a step toward further realism, in this section we shall show an effi¬ 

cient method for solving systems of equations that involve many unknowns. 

To keep the discussion simple, we shall restrict the examples to easy cases 

but attempt to make clear how one proceeds in the general case. 

Example 1 

An armaments system consists of three types of weapons—zingers, 

zonkers, and zappers. A zinger requires 1 ton of aluminum and 2 tons of 

titanium. Each zonker requires 3 tons of aluminum and 3 tons of titanium. 

One zapper requires 2 tons of aluminum and 4 tons of titanium. If a muni¬ 

tions factory has 31 tons of aluminum and 41 tons of titanium, how many 

zingers, zonkers, and zappers can be produced if all the metallic materials 
available are used ? 
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Solution {Started): Let x stand for the number of zingers, y for the 

number of zonkers, and z for the number of zappers produced. Reasoning 

as in Example 2 on p. 193, we are led to the equations 

x + 3y + 2z = 31 

2x + 3_y + 4z = 41 
(6.10) 

We see that the problem described above leads us to a system of two equations 

in three letters. Before proceding to discuss an algorithmic method for the 

solution of such a system, let us point out that these equations can be given 

a geometric interpretation. Suppose we consider three mutually perpendicular 

lines. These three lines (Figure 6.20) are known as the x, y, and z axes. 

The arrow on the line indicates the direction along the line that is positive. 

Each point in three-dimensional space can be located by giving a triple of 

numbers (x, y, z), which measures the perpendicular distance of that point 

from the plane determined by two of the lines. In Figure 6.20, the points 

Figure 6.20 

(2, 1, 3) and (2, —1, 1) can be located as shown. Just as an equation such as 

JC + y = 3 turned out to be a line when plotted in a two-dimensional system, 

it can be shown using an analysis similar to that in Section 6.4, that an equa¬ 

tion of the form Ax + By + Cz = D when plotted in a three-dimensional 

coordinate system represents a plane. 
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Figure 6.21 shows a graph of the plane x + 2y + 3z = 12. 

Unlike the situation for two equations in two letters, where the geome¬ 

tric patterns which can arise for the lines which represent the system are 

relatively simple, the situation for equations in three letters is much more 

complicated. We could go on to examine the geometry of linear equations in 

Figure 6.21 

as many letters as we like. The equations we would get can be thought of as 

representing “hyperplanes” in higher dimensional spaces. Since we cannot 

draw any useful pictures of such hyperplanes, however, we shall return to 

the main discussion—the algebraic solution of systems of equations. 

I. THE IDEA OF REDUCED ECHELON FORM 

Basically, our methods rely on the same principles of manipulating 

an equation system that we have already used in the case of two equations 

and two unknowns. The three basic acceptable manipulations are: 

Type 1 

Multiply or divide an equation by a nonzero constant. 

Type 2 

Interchange two equations. 

Type 3 

Multiply or divide one equation by a nonzero constant and add to 
another equation. 
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What we mean by calling these manipulations acceptable is that they do not 

alter the solution set of the system. Therefore, if the transformed system is 

easier to solve than the original, we have made progress. As it turns out, it 

is possible to do these manipulations so as to find a system whose solution is 

obvious by inspection. The following example illustrates this. 

Example 2 

Solve the system 

x\ + X2 ~ x3 = 0 (6.11) 

3xj + x2 — x3 = 2 (6.12) 

2xt — x2 + 2x3 = 6 (6.13) 

Solution: First we add —3 times Equation (6.11) to Equation (6.12) 

and then we add —2 times Equation (6.11) to Equation (6.13). These are 

type 3 operations, which produce the following simpler system. 

xi + x2 — x3 = 0 (6.14) 

—2x2 + 2x3 = 2 (6.15) 

— 3x2 + 4x3 = 6 (6.16) 

Now we divide Equation (6.15) by —2, a type 1 operation. 

Xj + x2 — x3 = 0 (6.17) 

x2- x3 = -l (6.18) 

— 3x2 + 4x3 = 6 (6-19) 

Now we add —1 times Equation (6.18) to Equation (6.17) and then add 3 

times Equation (6.18) to Equation (6.19) to simplify further to 

x, = 1 (6-20) 

x2 — x3 = —1 (6.21) 

x3 = 3 (6.22) 

Finally, let us add Equation (6.22) to Equation (6.21) to produce a system 

that is its own solution. 
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= 1 (6.23) 

= 2 (6.24) 

x3 = 3 (6.25) 

You may have noticed that the coefficients of the system are all that 

matters. The choice of multipliers in type 3 manipulations was made so 

that certain unknowns would drop out of certain equations, and this all 

depends on the coefficients. It is conventional to take advantage of this by 

“detaching” the coefficients and keeping track of them in a matrix containing 

no letters. We also put the constants from the right sides of the equations 

into the matrix but we separate them from the coefficients by a vertical line. 

The part of the matrix to the left of the line is called the coefficient matrix. 

The whole matrix is called the augmented matrix. 

In the case of the system in Example 2, we have: 

"1 1 -1 0" 

3 1 -1 2 

_2 -1 2 6^ 

Now we can perform the same kinds of manipulations on the matrix 
as we did on the equations. 

Type 1 

Multiply or divide a row by a nonzero constant. 

Type 2 

Interchange two rows. 

Type 3 

Multiply or divide a row by a nonzero constant and add the result to 
another row. 

Thus, corresponding to the manipulations of our system in Example 

2, we have the following sequence of matrices. Since the original matrix for 
the system is 

"1 1 -1 (T 

3 1 -1 2 

2 — 1 2 6 
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after adding —3 times row 1 to row 2 and adding —2 times row 1 to row 3, 
we find 

'1 1 -1 0~ 

0 -2 2 2 

0 -3 4 6 

Now we divide row 2 by —2. 

'1 1 -1 (T 

0 1 -1 -1 

0 -3 4 6 

Next we add —1 times row 2 to row 1 and we add 3 times row 2 to row 3 
and find 

"1 0 0 r 

0 1 -1 -l 

0 0 1 3_ 

Finally, we add row 3 to row 2: 

'1 0 0 r 

5 = 0 1 0 2 

0 0 1 3_ 

Our general goal is to use manipulations of types 1, 2, and 3 to transform 

a matrix into a format somewhat like that of S. Unfortunately, since we can’t 

always get the exact format of S, we may have to settle for formats like those 

of A, B, E, and F in Example 3. All of these can be subsumed under one 

general category called reduced echelon form (REF), which can be described 

as follows. 

DEFINITION 4 

An augmented matrix is in reduced echelon form (REF) provided the coeffi¬ 

cient matrix part of it has these properties. 

(1) The rows of the coefficient matrix that are all 0 occur consecutively 

at the end of the matrix. 

(2) The leading nonzero coefficient of each row of the coefficient matrix is 

1 unless all coefficients in that row are 0. 
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(3) These “leading l’s” slant down to the right. More precisely, in any row 

the leading 1 occurs to the right of the leading 1 of any preceding row. 

(4) Each leading 1 is the only nonzero entry in its column. 

Example 3 

Of the matrices below, A, B, E, and Fare in REF, but C, D, and G are 

not. Matrix C violates rule 2 above; matrix D violates rules 3 and 4, and 

matrix G violates rule 1. 

"1 0 0 2~ ~1 0 0 r 

0 1 1 4 0 1 0 2 
A 

0 0 0 6 
B = 

0 0 1 4 

_0 0 0 0 0 0 0 3 

'4 0 0 2 —r '1 0 0 2" 

C = 0 0 1 0 2 
D = 

0 1 0 -3 

0 1 0 3 3 0 1 2 1 

_0 0 1 4_ 

1 0 2 3 4~ "1 0 4~ 

0 1 -1 0 1_ F = 0 1 

_0 0 1 
m
 

o
 

'1 0 0 5~ 

G 0 0 0 4 

0 1 3 0 

There remain two important questions: 

(1) How do we transform a matrix to REF? 

(2) How do we interpret an REF matrix to find the solution to the original 
system? 

The answer to question 1 is either to develop a “knack” for it or to study 

subsection III where an algorithm is given. Our next concern is question 2. 
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II. INTERPRETING AN REF MATRIX 

There are four kinds of rows that appear in an REF matrix. Each kind 

is represented by one of the rows of matrix A of Example 3. The inter¬ 

pretations of these show how to proceed in general. 

Row 1: x, = 2. 

Row 2: x2 + x3 = 4; alternatively, x2 = 4 — x3. This may seem ambigu¬ 

ous since x2 is not specified directly but defined in terms of x3, 

which has no definite value. The explanation is that x3 can be 

given any value whatever. For any such value, a corresponding 

value of x2 that is part of a solution of the original system is deter¬ 

mined by the formula x2 = 4 — x3. 

Row 3: 0 = Ox, + 0x2 + 0x3 = 6. This is absurd and indicates that the 

system has no solution. A single row of this type is enough to 

guarantee that there is no solution to the system. 

Row 4: Ox, + 0x2 + 0x3 = 0. This is neither absurd nor informative. It 

is totally irrelevant. Rows like this, consisting entirely of 0’s, can 

always be disregarded. 

Notice that for a matrix in REF form, if a column has no leading 

one among its entries then the letter corresponding to that column can be 

assigned any arbitrary value. 

Example 4 

Interpret the REF matrices B, E, and F of Example 3. 

Solution: 

Matrix B: There is no solution. 

Matrix E: x, = 4 — 2x3 — 3x4 

x2 = 1 T x3 
x3 and x4 can take any values. 

Matrix F: x, = 4, x2 = 3. 

III. AN ALGORITHM FOR REF 

The achievement of the reduced echelon form depends entirely on 

the manipulations of certain elements of the matrix called pivot elements. 

These elements are the ones that eventually become the leading l’s of the 

rows in the REF matrix. In Example 2 the pivots were the entries on the main 
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diagonal. In general, it is a little more difficult to determine the pivots than 

merely to pick the numbers on the main diagonal. Here is a description of 

how we pick the pivots and what we do with them. The algorithm is called 

Gauss-Jordan elimination. 

the first pivot: The first pivot is the entry in the upper left position 

of the matrix. We can use whatever number originally occupies this position 

as long as it is not zero. If it is zero, we use a type 2 operation (interchange of 

rows, p. 204) to fill the upper left position with a nonzero element and use this 

number as a pivot. 

WHAT TO DO WITH A PIVOT: 

(1) If the pivot is not 1, make it so by multiplying or dividing the row of 

the pivot by a suitable constant. 

(2) Use type 3 operations to make all other entries 0 in the pivot column. 

This is called clearing the column. 

finding the next pivot: Suppose the previous pivot is in the /th row 

and /th column. Look for the first column after the y'th column where there 

is a nonzero entry p in a row after the /'th row. This entry p is the next pivot. 

However, it may not be in the i + 1 row. If necessary, use a type 2 operation 

(interchange of rows) to bring p into the i + 1 row. 

Example 5 

Reduce the following matrix to REF by Gauss-Jordan elimination. 

" 0 2 1 4” 

M = -1 3 -2 -4 

4 1 1 15 

Solution: Since M has upper right entry 0, which is unsuitable as 

a pivot, we interchange the first two rows to produce a suitable pivot (circled). 

[0 3 ~2 —4” 

0 2 1 4 

.41 1 15_ 

Multiply the first row by —1 to make the pivot 1. 

'1 -3 2 4~ 

0 2 1 4 

4 1 1 15. 
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Clear the column by adding —4 times the first row to the third row. 

'1 -3 2 4 

0 2 1 4 

_0 13 -7 -1 

The next pivot can be either 2 or 13. The 2 can be used in its present posi¬ 
tion, whereas the 13 would require an interchange, so we use the 2. We divide 
its row by 2 to make the pivot (circled) a 1. 

'1 -3 2 4" 

0 CD l 
i 2 

_0 13 -7 — 1 

Clear the column using the current pivot. 

'I o 1 10" 

0 1 I 2 

.0 o -21 _ 

The next pivot can only be —2j-. Divide its row by (equivalently, 
multiply by —^). Clearing the column gives 

"1 0 0 3" 

0 1 0 1 

0 0 1 2_ 

From this REF matrix we can immediately read off the solution xl = 3, 

x2 = 1, x3 = 2. 

Example 1 (continued) 

We introduced this section with an armaments problem that led to 

solving the system 

x + 2>y + 2z = 31 

2x + 3y + 4z = 41 

Converting to matrix form and applying Gauss-Jordan elimination, we find 

the sequence of matrices 

"1 3 2 31“ 

2 3 4 41 
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"1 3 2 31' 

_0 -3 0 -21. 

"1 3 2 31" 

0 1 0 7_ 

"1 0 2 10" 

0 1 0 7_ 

Thus 

x = 10 — 2z 

y = l 

z = any value 

This system has an infinite number of solutions but since constructing 

fractions of zappers or negative numbers of zappers makes no sense, there 

are, in fact, only six realistic solutions. These six solutions are 

x = 10 y = 7 z = 0 

x = 8 y = 7 z = 1 

x = 6 y = 7 z = 2 

x = 4 y = 7 z = 3 

X = 2 y = 7 z = 4 

X = 0 y = 7 z — 5 

The examples we have considered so far have only three letters but the 

method we described can be used in more general situations. 

Example 6 

Solve the system 

x + y — z + w = 3 

2x + 3y + z — 4w = 1 

x + y + 2z + w = 3 
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3x — y + 4z + w = 3 

5x + 2y + 5z — 3w — 4 

Solution: Writing the system as a matrix and using Gauss-Jordan 

elimination, we find 

"(D 1 -1 1 3“ "1 1 -1 1 3~ 

2 3 1 -4 1 0 (D 3 -6 -5 

1 1 2 1 3 —> 0 0 3 0 0 

3 -1 4 1 3 0 -4 7 -2 -6 

_ 5 2 5 -3 4_ _0 -3 10 -8 -11_ 

(the pivot is circled) 

r i 0 -4 7 8n "1 0 -4 7 8" 

0 1 3 -6 -5 0 1 13 -6 -5 

-> 0 0 CD 0 0 ->- 0 0 0 0 

0 0 19 -26 -26 0 0 19 -26 -26 

_0 0 19 -26 —26_ 0 0 19 -26 —26_ 

n 0 0 7 8~ "1 0 0 7 8" 

0 1 0 -6 -5 0 1 0 -6 -5 

-> 0 0 1 0 0 —> 0 0 1 0 0 

0 0 0 -26 -26 0 0 0 CD 1 

0 0 0 -26 —26_ _0 0 0 -26 —26_ 

"1 0 0 0 r 
0 1 0 0 i 

-> 0 0 1 0 0 

0 0 0 1 i 

0 _ 0 0 0 o_ 

Hence the solution is x = 1, y = 1, z = 0, and w = 1. 

EXERCISES 6.6 

1. Solve the following system of equations: 

(a) x + y — z = 1 

x — 3y + 2z = 0 

2x + y + z = 4 
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(b) 2x + y - - 3z = 3 
x + y — z = 2 
x + 2 z = = 1 

(c) x — y — 5 
x -f z = 7 

y — 2 = 0 

(d) X + y - z + w = 
x — y + 3z — w - 

x — y + z + w = 

x + 2 y + z — w = 

2. Each of the systems of equations below has either 

(a) no solution or 

(b) infinitely many solutions. 
Use your knowledge of Gauss-Jordan elimination to determine if part 

(a) or (b) holds. 
(i) x + y — z = 6 

x — 3y + 4z = 8 

2x — 2y + 3z = 14 

(ii) x — y + 3z = 5 

x + 2y — z = 6 

2x + y + 2z = 10 

(iii) x + y = 7 
x — + z = 8 

2x + z = 15 

(iv) x — j + 3z = 2 

3x — y + 4z = 8 

5x — 3y + 1 Oz = 12 

(v) x — y + z = 6 
x — 3_y + 2z = 3 

3x — 5^ + 4z = 0 

(vi) x — y = 4 

x + z = 3 

2x — y + z = 7 

3. A dietitian is attempting to meet the health needs of an army camp. 

Each soldier needs at least 12 units of vitamins, 8 units of proteins, 

and 8 units of carbohydrates for lunch. Suppose one glass of beverage 

X provides 1 unit of vitamins, 2 units of proteins, and 3 units of carbo¬ 

hydrates; one Zano sandwich provides 4 units of vitamins, 12 units 

of proteins, and 1 unit of carbohydrates; and one piece of cake provides 

3 units of vitamins, 2 units of proteins, and 3 units of carbohydrates. 

What should a lunch consist of if the health needs are to be met exactly ? 

4. There are 52 tables in three rooms. The number of tables in the second 

room is one-half the number in the first. The first room has 48 sq ft of 
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floor space per table. The corresponding figures for the second and 

third rooms are 46 and 45 sq ft, respectively. If there are 2,424 sq ft in 

the three rooms, how many tables are there in each room? 

5. A salesman is allowed 10 jzi/mi for the use of his car, $10/day for meals, 

and $ 15/night for a motel room. On a certain trip he averages 120 

mi/day and his motel bill was $10 more than he spent for meals. His 

total bill was $170. Find the number of days and the number of miles 

he traveled and the number of nights he spent in a motel. 

6. * Show that if (x0, y0, z0) is a solution of a system, and if type 1, 2, or 

3 operations are performed on the system, then the resulting new system 
has (x0, y0, z0) as a solution. 

6.7 inequalities and feasible regions 

We have studied the problem of combining several kinds of resources into 

several kinds of products and we provided a method, based on the no slack 

assumption, which sometimes yields a reasonable solution and sometimes 

does not. It is desirable to have a method that always gives reasonable 

results. In this section we erect part of the scaffolding for an improved method 

that is one of the mainstays of modern applied mathematics, the technique of 

linear programming. 

Our first step is to study linear inequalities and their solution sets. 

We are all familiar with the use of the sign “=” to indicate that two expres¬ 

sions are equal. We now recall the following inequality signs. 

Examples 

a < b means a is less than b. 2 < 3 

a •< b means a is less than or equal to b. 2 <3, or 3 <3 

a > b means a is greater than b. 5 > 4 

a>b means a is greater than or equal to b. 5 > 4, or 5 > 5 

Given an inequality such as 3x — 2y < 5, we shall be interested in 

determining the solution set of the inequality. We say that a point (a, b) 

belongs to the solution set of 3x — 2y < 5 if 3a — 2b < 5. Thus (0, 0) 

belongs to the solution set of 3x — 2y < 5, while (5, 1) does not belong to 

the solution set of 3x — 2y < 5 since 3(5) — 2(1) = 13, which is not less 

than 5. 
We are accustomed to being able to perform certain operations on 

equations, such as multiplying (or dividing) both sides of the equation by 

the same constant. For example, the equation —x + y = —7 can be multi¬ 

plied by —1 to produce x — y =7, which is an equation with the same 
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solution set. We may ask whether some similar manipulation would allow 

us to change the form of an inequality like — x -f- y < 7 into another inequal¬ 

ity with the same solution set. It is also possible to transform an equation 

into an equivalent equation by adding the same constant to both sides of 

the equation. Again we may ask whether corresponding manipulations are 

valid for inequalities. It turns out that similar rules do exist for inequalities 

but they are not quite identical. The proper rules are listed in the chart 

below with examples. To prove these rules would require a careful investiga¬ 

tion of the number system, which we wish to avoid. We shall accept them on 

a commonsense basis. 

Table 6.5 Rules for Transforming an Inequality into Another Inequality 
with the Same Solution Set. 

Examples 

1. Multiply (or divide) both sides by a posi¬ 

tive constant. 

2. Multiply (or divide) both sides by a nega¬ 

tive constant and change the sense of the 

inequality (from > to < and vice versa or 

from > to < and vice versa.) 

3. Add (or subtract) the same constant to 

(from) both sides of the inequality. 

4. Add (or subtract) a multiple of a variable 

to (from) both sides of the inequality. 

Multiply 2 < 3 by 4 to obtain 8 < 12. 

Divide 3x > 9 by 3 to obtain x > 3. 

Multiply —x + y < 7 by —1 to obtain 

x — y > —7. 

Divide — 5x + 25 > 50 by — 5 to obtain 

x — 5 < —10. 

Add 5 to both sides of x — 5 < 10 to 

obtain x < 15. 

Subtract 2 from both sides of x + y > 

2 to obtain x + y — 2 > 0. 

Subtract 2x from both sides of the in¬ 

equality 3x > 2x + 2 to obtain x > 2. 

Add y to both sides of the inequality 

3x — y > y + 4 to obtain 3x > 2y + 4. 

Example 1 

Simplify these inequalities 

(1) 2x < 10 

(2) 2x - 3 > 7 

(3) — 3x + 7 < 2x + 4 

(4) 2x — E>4 + y — 3x 

Solution: 

(1) 2x < 10 

x < 5 by rule 1 

(2) 2x - 3 > 7 

2x > 10 by rule 3 

x > 5 by rule 1 
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(3) — 3x + 7 < 2x + 4 

— 3x < 2x — 3 by rule 3 

— 5x < —3 by rule 4 

x > | by rule 2 

(4) 2x — y > 4 + — 3x 

5x — 2j; > 4 by rule 4 

5x — 2y — 4 > 0 by rule 3. 

We are particularly interested in linear inequalities in two variables, 

that is, inequalities of the form Ax + By + C < 0 where A, B, and C are 

constants and where A and B are not both 0. Such an expression resembles 

the equation Ax By C = 0. Indeed, when we plot the points (x, y) 

that satisfy the inequality Ax + By + C < 0, we shall discover that this 

solution set is closely related to the line that is the solution set of ^4x + By 

+ C = 0. 

Let us take some particular examples. 

(1) Choosing A — —l, B = C = 0, we obtain the inequality — x < 0, 

which can be transformed by rule 2 to x > 0. Clearly, the points 

(x, y) that satisfy x > 0 are those on and to the right of the (vertical) 

Y axis [see Figure 6.22(a)]. Note that the line with equation x = 0 is 

part of the solution set. 

(2) Choosing A — 0, B = — 1, C = 0, we obtain the inequality —y < 0, 

which can be transformed to y>o. Clearly, the points (x, y) that 

satisfy y > 0 are all those on and above the (horizontal) X axis [see 

Figure 6.22(b)]. Note that the line with equation y = 0 is a part of 

the solution set. 

(3) For a more complicated example, consider the inequality 4x + y < 10. 

First notice that any point that satisfies 4x + y — 10 also satisfies 

x>0 

(a) (b) 

Figure 6.22 
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4x + y < 10. Thus, part of the solution set of 4x + y < 10 is the line 

whose equation is Ax + y = 10. But there is more, for suppose (x0, y0) 

is any point on the line 4x + y = 10. That means it satisfies the equa¬ 

tion of the line, that is, 4x0 + y0 = 10. If we decrease y0 by any positive 

amount e to a new value y0 — e, the point (bc0, y0 — e) still satisfies the 

inequality since 4x0 + (y0 — e) = (4x0 + y0) — e = 10 — e < 10. Para¬ 

phrasing this in words, any amount we move in a vertical direction 

downward from any point on the line 4x + y — 10 keeps us in the 

solution set of 4x + y < 10. Similarly, it is easy to check that if we 

move any amount upward to a point (x0, y0 + e), we are no longer in 

the solution set of 4x + y < 10 since 4x0 + (yQ + e) = (4x0 + y0) + 

e — 10 + e > 10. Thus, our solution set consists precisely of those 

points on or below the line 4x + y = 10. As this kind of analysis can 

be provided for any line, we always come to this conclusion: 

The solution set of Ax + By + C < 0 (or Ax + By + C > 0) consists 

of all the points on the line Ax + By + C = 0 together with all points on one 

side of the line, which side needs to be determined by further analysis. 

Because of this principle we refer to the solution set of the inequality 

Ax + By < C as a closed half plane. The word closed signifies that the line 

Ax + By = C is part of the solution set. 

Given the inequality Ax + By < C, the best procedure for determining 

which side of the line Ax + By = C constitutes the solution set is to take 

any point not on the line and test whether or not it satisfies the inequality. 

If it does, shade the side of the line containing that test point. Otherwise, 

shade the side of the line that does not contain the test point. [The point 

(0, 0) makes a good test point if it does not lie on the line.] If we apply this 

test in the case of 4x + y < 10, we find the same result as in our earlier 

analysis involving movement upward and downward from the line, namely, 

that the portion of the plane under the line 4x + y = 10 constitutes the 

remainder of the solution set (see Figure 6.23). To be specific, using (0, 0) as 

a test point (since it doesn’t lie on the line) and substituting it into the inequal¬ 

ity, we obtain 0 < 10. The inequality is satisfied and we shade the side of 

Figure 6.23 
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the line containing (0, 0). It is preferable to use the test-point method rather 

than the downward and upward movement method because it is faster and 
simpler. 

Example 2 

Plot the solution set of 18x + 15y < 66. Our first step is to simplify 

the inequality by dividing by 3 to give 6x + 5y < 22. The second step is to 

plot the equation of the line 6x + 5y = 22 (see Figure 6.24). 

Figure 6.24 

Next we look for a convenient test point not on the line. We choose 

(0, 0) and see whether it satisfies the inequality 6x + 5y < 22 when substi¬ 

tuted into it. Indeed, 6(0) + 5(0) < 22 so the test point satisfies the inequality 

and we shade the side of the line containing (0, 0). 

Now let us consider a system of linear inequalities and attempt to find 

the solution set of the system; that is, given a collection of inequalities, we 

seek the set of points that satisfy each of the inequalities in the collection. 

Take, for example, the system consisting of all the inequalities that we have 

separately analyzed in this section: 

x > 0 

T>0 

4x + y < 10 

6x + $y < 22 

(6.36) 
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The fundamental principle in dealing with a system is this: The solution set 

of the system is the intersection of the solution sets of the individual inequalities. 

Superimposing the various solution sets found for the individual mem¬ 

bers of the system above produces the shaded region in Figure 6.25 as the 

solution set for the system. 

Figure 6.25 

We shall now apply these techniques of dealing with inequalities to the 

resource allocation problems discussed earlier. We illustrate the method by 

reviewing the paper recycling problem and analyzing it from a new point of 

view. 

Example 3 

A paper recycling company uses two materials, scrap paper and scrap 

cloth, to make two different grades of recycled paper. A single batch of grade 

A recycled paper is made from 4 tons of cloth and 18 tons of paper, while 

one batch of grade B needs 1 ton of cloth and 15 tons of scrap paper. The 

company has 10 tons of scrap cloth and 66 tons of scrap paper on hand. 

What possible quantities of the two grades can the company produce? 

Solution: As before, we let x stand for the number of grade A batches 

to be produced and y stand for the number of grade B batches. As before, 
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the number of tons of cloth needed will be 4x + y, while the amount of paper 

needed will be 18.x + 15y. Our first deviation from the no slack assumption 

is that instead of assuming that the amount of scrap cloth or paper used is 

equal to what is available, we assume that it does not exceed what is available. 

In other words, instead of dealing with resource equations, we deal with 
resource inequalities: 

4x + y < 10 

1 Sx + 15j> < 66 

The first inequality states that the amount of scrap cloth to be used is not 

greater than the amount of scrap cloth available. The second inequality says 

that the amount of scrap paper to be used is not greater than the amount of 
scrap paper available. 

In addition, we wish to rule out negative numbers of batches so we 

include these two inequalities: 

* > 0 

y> 0 

We shall refer to these last inequalities as the physical reality inequalities. 

Taking these four inequalities together gives the system [Equation (6.36)], which 

we have already discussed and whose solution set is graphed in Figure 6.25. 

We call the shaded region of Figure 6.25 the feasible region for this allocation 

problem because the points of this region represent production goals for the 

two grades of paper that are feasible, in the sense that no negative quantities 

are called for and the amount of the two resources available are sufficient to 

fulfill the production goals. To be specific, the point (1, 2) is a member of 

the feasible region. To verify this, note that if we produce one batch of grade 

A and two batches of grade B, we can calculate that we shall need 6 tons of 

scrap cloth and 48 tons of scrap paper. Since we have 10 tons of scrap cloth 

and 66 tons of scrap paper, we have enough to fulfill the production goals 

and still have some left over (the so-called slack). It may be intelligently 

objected that (1,2) is feasible but it is not optimal since there is so much 

left over (4 tons of scrap cloth, and 18 tons of scrap paper). In fact, at this 

point the feasible region presents us with an embarrassment of riches since 

it contains an infinity of feasible production goals and we have not found 

any way to pick out a best one. We shall work on this in the next section. 

For the moment, however, it is worth noting that if we wish at this point to 

readopt the no slack assumption (Assumption 3 of Section 6.5) in this prob¬ 

lem, this would be a means of picking one production goal out of the feasible 

region. The point labeled C [= (2, 2)] in Figure 6.25 is the no slack solution 

and it does lie in the feasible region. 
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Example 4 

The Mogul Film Company (see Section 6.5) has 45 million dollars and 

200,000 man-hours of staff time with which to make films this year. To make 

a grade A film requires 3 million dollars and 15,000 man-hours of time, while 

a grade B film requires 1 million dollars and 10,000 man-hours of time. How 

many films of each type should be made? 

Solution: If x is the number of grade A films to be made and y is the 

number of grade B films, then the total amount of money spent will be 

(3,000,000)x + (1,000,000)7 and so our first resource inequality will 

be (3,000,000)x + (1,000,000)7 < 45,000,000. The man-hours needed will be 

(15,000)x + (10,000)7; this gives our second resource inequality, (15,000)x 

+ (10,000)7 < 200,000. Since one cannot make a negative number of films, 

we shall add the physical reality inequalities: x > 0 and 7 > 0. Figure 6.26 
shows the feasible region for this allocation problem. 

As in the last example, the feasible region consists of an infinite number 

of points and we have no way of choosing the best. In this case, however, if 

we fall back upon the no slack assumption to try to narrow the choice down 

to one point, we are unsuccessful. This is because the point determined by 

the no slack assumption is A, which is not in the feasible region since it 

involves a negative number of films. Also, it is worth noting that many 

points in the feasible region correspond to a fractional number of films, 

another reason why choosing a solution from the feasible region is not so 
simple. 
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EXERCISES 6.7 

1. Simplify and then graph each of the following inequalities: 

(a) x + y < —7 + 2x — 4y 

(b) 12x — 4 > 11 — 3* 

(c) —lx + 12 > 13 

(d) —x — y — 3 < 10 

(e) x — 3(x + y) — 4(x — 2>y) < x + y 

(f) x + 3(x - 4) < 8(x - 3) 

(g) 4(x - 3) < 2[x - 3(x - 2)] 

2. (a) Find the feasible region for Exercise 4 of Section 6.5 if the no 

slack assumption is not made. 

(b) Do the same for Exercise 5 of Section 6.5. 

(c) Do the same for Exercise 6 of Section 6.5. 

(d) Do the same for Exercise 7 of Section 6.5. 

(e) Do the same for Exercise 8 of Section 6.5. 

(f) Do the same for Exercise 9 of Section 6.5. 

(g) Do the same for Exercise 10 of Section 6.5. 

3. For each part of Exercise 2, determine if the no slack solution belongs 
to the feasible region. 

linear programming 

One fact that we have not discussed extensively in connection with resource 

allocation problems is the matter of the profits which can be gained from 

the two kinds of products which can be produced. Not surprisingly, it can be 

useful to take this into account. We shall, in fact, use this as the criterion for 

choosing a point out of the feasible region. 

For definiteness, let us return to the paper recycling example whose 

feasible region is shown in Figure 6.25. We shall consider three different 

profit assumptions and see how each leads us to select a point from the 

feasible region as the best production goal. 

PROFIT ASSUMPTION 1 

Suppose there is no profit on grade B batches but $500 profit on each grade 

A batch of recycled paper. 

We naturally wish to make as many grade A batches as we can. In terms 

of the feasible region, we want to select a point with the largest possible x 

coordinate. This point would be B = (2^, 0). The profit would total $1250. 

Notice that we would use all the scrap cloth but only 45 tons of the scrap 

paper, leaving 21 (=66 — 45) tons of scrap paper unused. In estimating the fit 

of this solution, we would need to know whether it is possible to have 

a fraction of a batch of paper. 



George Dantzig is one of the pioneering creators of linear 
programming, which is perhaps the most important devel¬ 

opment in applied mathematics in the last half-century. 
(Photo courtesy of George Dantzig.) 

PROFIT ASSUMPTION 2 

Suppose that the grade A batches are the ones with no profit but that there 

is $1000 profit on each grade B batch. 

In this case, it is apparent that we should simply make as much grade 

B as possible; that is, we want to choose a point (x, y) from the feasible region 

that has as large a y coordinate as possible. This would be the point A, where 

y = 4f and x = 0. The profit here is $4400. Can you calculate how much 

scrap paper or cloth is left as slack if these production goals are instituted? 

Before leaving this simple discussion, let us suppose that for some 

reason we chose the point (0, 3) for our production goal. Now our profit 

would be $3000. It turns out that there are other points in the feasible region 

where we can obtain the same profit, for example, (1, 3). In fact, any point 

(x, y) that is in the feasible region and satisfies the equation y = 3 gives 

the same $3000 profit. This set of points is just the intersection of the feasible 

region and the line y = 3. 

PROFIT ASSUMPTION 3 

Suppose now that there is $1000 profit on grade A batches and $500 on grade 

B. 

In this case, it seems likely that some combination of the two types 

would yield the most profit. But which combination? If x and y denote, as 

usual, the number of batches of grade A and B, respectively, then our profit, 
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denoted P, will be expressed by the equation 

P = lOOOx + 500y (6.37) 

Let us for a moment put the cart before the horse; we shall decide what 

profit we would like and then see if we can get it. If we aim for P = 5000, 

then we have 5000 = lOOOx + 500y, which can be simplified to 

10 = 2 x y 

The graph of this equation is a straight line shown in Figure 6.27. It is called 

the profit line corresponding to the value 5000. The points on this line 

represent production goals that yield a profit of exactly $5000. Unfortunately, 

none of these points is in the feasible region so the profit of $5000 is unattain¬ 

able with the resources at hand. Let us be more modest and ask for a profit 

of $2000. Our profit equation is now 2000 = lOOOx + 500>>, which simplifies 

to 4 = 2x + y. This profit line is also shown on Figure 6.27 and we note 

that it intersects the feasible region in a line segment. Any point on this 

Figure 6.27 
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segment represents a production goal that is feasible and gives $2000 profit. 

Thus, we see that while $5000 was too much to hope for, $2000 can be 

achieved. We can do even better however. As we increase our desired profit, 

our profit lines move in the direction of the arrow in Figure 6.27. These 

profit lines will continue to intersect the feasible region until we reach a 

profit of $3000 at which point the profit line whose equation is 1000.x + 

500y = 3000 touches the feasible region at the corner point C (2, 2). If the 

desired profit is increased further, the profit line will no longer intersect 

the feasible region. Thus $3000 is the largest profit that can be achieved and 

it can be achieved only by using the production goals corresponding to 

the point C (2, 2), namely, two batches of grade A and two batches of grade B. 

Let us abstract from this example those important features that make 

it a linear programming problem. We have a practical problem of deciding 

how much of each of two types of products to produce with fixed resources 

at hand. The possible production goals (x, y), which are thought of as points 

in the plane, form a feasible region that we determine from inequalities that 

are derived from the statement of the problem. This feasible region will be 

an intersection of closed half planes and may be either bounded (see Figure 

6.28) or unbounded (see Figure 6.29). 

In the latter case, when the region “goes off to infinity,” our analysis 

won’t apply. All problems in this book deal with the bounded case. Now we 

have a linear profit function of the form P = ax + by, which we wish to 

Figure 6.28 

Figure 6.29 



functional models 225 

maximize. We can rely on the following principle to produce a point where 

the profit is the largest it can be in the feasible region: 

THEOREM 1 

A linear function ax + by (a and b constant) achieves its maximum value 

over a bounded region that is the intersection of a finite number of closed 

half planes at one or more corner points of the region. (A corner point is 

a point that lies on two of the boundary lines of the region.) 

We shall omit the proof of this theorem. It follows the ideas in the last 

example very closely, where we vary our profit lines in the direction of 

increasing profit until we reach a point where further increase of desired 

profit produces a profit line that completely misses the feasible region. Then 

we show that where further increase of desired profit is impossible, our profit 

line touches the region in a corner point or a boundary edge with corner 

points as end points. 
This theorem suggests the following method of solving linear program¬ 

ming problems: 

(1) Draw the feasible region (as described in the previous section). 

(2) Determine the corner points of the feasible region. Since each corner 

point lies on two boundary lines, its coordinates can be found by 

solving the equations for these two lines simultaneously. 

(3) Calculate the profit at each of the corner points and select as the answer 

a point where the profit is largest. 

In step 3 you may have noticed that we directed you to select “a” 

corner point with largest profit rather than “the” corner point with largest 

profit. The reason for this is that it can happen that there will be a whole 

boundary segment where the largest profit can be obtained. In that case 

there will be two corner points with largest profit, one at each end of the 

segment. This phenomenon can be observed in the recycling problem if we 

take as the profit function P = 600.x + 500y. Here is the result of evaluating 

this profit function at the various corner points. 

(0,0) P = (600)0 + (500)0 - 0 

(0, 4|) P = (600)0 + (500)(4f) = 2200 

(2i, 0) P = (600)(2^) + (500)0 = 1500 

(2, 2) P = (600)(2) + (500)(2) = 2200 

The profit is the same at (0, 4f) as at (2, 2) so either production goal can be 
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chosen; in either case the profit will be 2200. The profit line for 2200 is shown 

in Figure 6.30. 

Example 1 

On a certain day the sanitation department of a city finds itself with 

180 collection trucks in operating condition and 480 men reporting for duty. 

Two types of collection teams can be formed from the two resources of men 

and trucks: a full-strength team consists of 1 truck and 3 men; a half-strength 

team consists of 1 truck and 2 men. It is desired to find out how many 

teams of each type to form if we assume that a full-strength team collects 

10 tons of garbage in a day, while a half-strength team collects 5 tons, and if 

our goal is to maximize the garbage collected. 

Solution: Let x denote the number of full-strength teams and let y 

denote the number of half-strength teams. Then we get resource inequalitites 

corresponding to the resources men and trucks. 

3x + 2y < 480 (Men) 

x + y < 180 (Trucks) 

x > 0 (Physical reality 

inequalities) 
k > 0 

When we go to find the profit function, we may be temporarily dis- 
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mayed to note that the problem says nothing about profit. In place of profit, 

we are interested in maximizing something else, namely, tons of garbage 

collected, which we shall call G. We can work with this exactly as if it were 
a dollars and cents profit and write the equation 

G = lOx + 5y 

The feasible region is shown in Figure 6.31. 

V-axis 

The corner points are computed as follows: 

A: No computation needed. 

B: Solve the following simultaneously. 

C: Solve the following simultaneously. 

D: Solve the following simultaneously. 

A is (0, 0) 

(y = ° 1 
13* + 2 y = 480J 

|3x + 2y = 4801 

bt+ y = 180 | 

\X==0 \ 
\x + y = 180 j 

These calculations produce the coordinates of the points as listed below. We 

then evaluate G at each of these points. 
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A (0, 0) G = (10)0 + (5)0 = 0 

B (160, 0) G = (10)(160) + (5)0 = 1600 

C (120, 60) G = (10)(120) + (5)(60) = 1200 + 300 

D (0, 180) G = (10)0 + (5)(180) = 900 

1500 

The largest amount of garbage collected occurs at B, where we form 160 

full-strength teams and no half-strength teams and collect 1600 tons of 

garbage. In this problem we were lucky that the optimal solution also turned 

out to be an integer solution. When the optimal solution is not integral but 

for physical reasons should be so, different methods must be employed. 

These methods belong to the area known as integer programming, which we 

shall not discuss. 

In our next example we have more than two resource inequalities and, 

consequently, we have more corner points to calculate than in our examples 

thus far. In addition, the corner points are a bit harder to identify. 

Example 2 

Consider once again the paper recycling company, except that this time 

let us suppose that a batch of grade A paper requires, in addition to the 4 

tons of scrap cloth and 18 tons of scrap paper, 3 tons of wood pulp. Similarly 

we suppose that a batch of grade B requires, in addition to 1 ton of scrap 

cloth and 15 tons of scrap paper, 9 tons of wood pulp. As before, we assume 

that we have 10 tons of scrap cloth and 66 tons of scrap paper available but 

we also assume that there are 27 tons of wood pulp. Assuming a profit of 

$700 on each grade A batch and a profit of $500 on each grade B batch, 

how many batches of each grade should be produced in order to maximize 
profit? 

Solution: We have the following inequalities to deal with: 

(These inequalities are the same 

as in Example 3 on p. 219.) 

3x + 9y < 27 

x>\) 

y> 0 

4x + y< 10 

f\ v _L_ 00 

(Wood pulp inequality) 
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The function for the profit is P = 700x + 500>\ As usual, the first task is to 

draw the feasible region. We have already found the feasible region corre¬ 

sponding to the first four inequalities so all we have to do, apparently, is 

graph the line 3x + 9y = 27, pick out the closed half plane determined by 

it that corresponds to the inequality 3x + 9y < 27, and then intersect this 

half plane with the feasible region corresponding to the first four inequalities. 

After this we can find the corner points of the resulting feasible region. This 

is certainly what ought to be done but there is a difficulty not encountered 

before. It is this: Unless we are extremely careful about plotting the line 3x 

+ 9y = 27, we shall not be sure exactly how it cuts the other lines and so we 

shall not be exactly sure of the feasible region or its corner points. For 

example, each of Figures 6.32(a) and (b) looks as if it might represent the true 

Figure 6.32 

state of affairs. (The region enclosed in boldfaced line segments is the feasible 

region for the first four inequalities; the shaded region represents the feasible 

region for all the inequalities.) Which of these figures is correct? It makes 

a difference because in Figure 6.32(a), A, B, C, E, and Fare all corner points, 

while in Figure 6.32(b) only A, B, D, and F are. Extremely careful drawing 

and measurement would overcome this difficulty but mathematicians dislike 

relying upon such methods and prefer the following approach. The question 

revolves around whether the intersection of lines 3x + 9y = 27 and 4x 

+ y = 10, which is labeled D in both figures, is above or below the line 

6x + 5y = 22. Figure 6.32(a) corresponds to the case of D lying above 
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6x + 5y = 22, i.e., where the coordinates of D satisfy 6x + 5y> 22. On 

the other hand, Figure 6.32(b) corresponds to the case where the coordinates 

of D satisfy 6x + 5y < 22. This is a question that is easy to answer by 

explicit calculation. To find the coordinates of D, we solve the equation 

3x + 9y = 27 simultaneously with 4x + y = 10 and arrive at the coordinate 

representation (^, |-f). We substitute into 6x + 5y and find 6(^) + 5(^) 

= = 23.27 (approximately). Since 23.27 > 22, the point D lies above 

the line 6x + 5y — 22 and Figure 6.32(a) is the correct one. Thus we know 

our corner points to be A, B, C, E, and F. Their values turn out to be 

A (0, 0) P= (500)0 + (700)0 = 0 

B(2\,0) P = (500)(2£) + (700)0 = 1250 

C (2, 2) P= (500)(2) + (700)(2) = 2400 

E(Q, f$) P = (500)(f^) + (700)(f|) = 2531 (approximately) 

F (0, 3) P= (500)0 + (700)(3) = 2100 

The largest of these profits occurs at E and is approximately 2531. 

EXERCISES 6.8 

1. Solve Exercise 4 of Section 6.5 as a linear programming problem (do 

not make the no slack assumption), where the profit is $100 for each 

truck dispatched and $500 for each train dispatched. 

2. Solve Exercise 5 of Section 6.5 as a linear programming problem (do 

not make the no slack assumption), where the profit is 5^ for each 

packet of deep purple and 6^ for each packet of light purple. 

3. Solve Exercise 6 of Section 6.5 as a linear programming problem 

(do not make the no slack assumption), where each merger team will 

obtain five convictions and each monopoly team will obtain seven 

and where it is desired to maximize the total number of convictions 

obtained. 

4. Solve Exercise 8 of Section 6.5 as a linear programming problem (do 

not make the no slack assumption), where each fancy table brings 

a profit of $20 and each plain table brings a profit of $15. 

5. Solve Exercise 9 of Section 6.5 as a linear programming problem (do 

not make the no slack assumption), where each shirt brings 12^ profit 

and each pair of underpants brings 10^ profit. 
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6.9 other linear programming problems 

The special nature of the problems we have been discussing (i.e., utilization 

of resources) may have obscured the fact that the principles of linear pro¬ 

gramming allow the solution of a very broad range of realistic problems. 

To illustrate this we give the solution to three problems that give the flavor 

of the many areas in which linear programming is useful. For simplicity, we 

restrict ourselves to the two-variable situations. Notice that one can solve 

either maximization or minimization problems using linear programming. 

Example 1 

A farmer has 400 acres on which he can grow corn or soybeans. Because 

of government regulation he cannot plant more than 300 acres of corn or 

more than 200 acres of soybeans. A further regulation requires that at least 

as much corn as soybeans be planted. If the profit from growing corn is 

$100 an acre and the profit from growing soybeans is $200 an acre, how 

much of each crop should he plant to maximize his profit? 

Solution: Let x and y, respectively, denote the number of acres of corn 

and soybeans planted. 

We have the following: 

x > 01 (The physical reality 

y>o] inequalities) 

x < 300 

y < 200 > (By government regulation) 

y < x 

x + y < 400 (The farmer has a total of 400 acres) 

Figure 6.33 shows the region that results from plotting these inequal¬ 

ities. 
The feasible region is bounded by four lines and has as its vertices 

A = (0, 0), B = (300, 0), C = (300, 100), and D = (200, 200). 

The farmer’s profit is given by 

P = lOOx + 200y 



P evaluated at A is 100(0) + 200(0) = 0 

P evaluated at B is 100(300) + 200(0) = 30,000 

P evaluated at C is 100(300) + 200(100) = 30,000 + 20,000 

= 50,000 

P evaluated at D is 100(200) + 200(200) = 20,000 + 40,000 

= 60,000 

Hence the farmer should grow 200 acres of corn and 200 acres of soybeans. 

Note that if the profit on corn was $100 and the profit on soybeans 

$50, then 300 acres of corn and 100 acres of soybeans should be grown. 

Example 2 

The dietitian of a summer camp for boys wishes to serve each camper 

a healthy lunch every day. She decides that for the entire summer she will 

serve each camper the same lunch, which consists of no more than 10 glasses 

of milk and no more than 10 Zamo sandwiches. Minimum health require¬ 

ments for lunch for young boys are 9 Units of vitamins, 22 units of proteins 

and 8 units of carbohydrates. A food supplier’s manual shows that 1 
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glass of milk provides 3 units of vitamins, 4 units of proteins, and 1 unit of 

carbohydrates, while 1 Zamo sandwich provides 1 unit of vitamins, 3 units 

of proteins, and 2 units of carbohydrates. The dietitian knows that the cheaper 

a lunch is, the more likely it is that she will be hired again next year. How 

many sandwiches and glasses of milk should each lunch contain to satisfy 

the minimum health requirements above and to maximize the dietitian’s 

reemployment prospects if a glass of milk costs 10^ and a Zamo sandwich 

costs 25^? 

Solution: Let z and m denote the number of Zamo sandwiches and 

glasses of milk in a lunch, respectively. Then the amounts of vitamins, 

proteins, and carbohydrates provided by a lunch are 

Vitamins = 3 m + z 

Proteins = 4m + 3z 

Carbohydrates = m + 2z 

In order for the lunch to be healthy we must have, therefore, 

3m + z > 9 (Vitamin requirement) 

4m + 3z > 22 (Protein requirement) 

m + 2z > 8 (Carbohydrate requirement) 

These inequalities, together with 0<m< 10 and 0<z< 10, give the 

feasible region shown in Figure 6.34. The cost C of a lunch of m glasses of 

milk and z sandwiches is 

C = SO.lOrn + $0.25z 

The corner points of the feasible region and their costs are 

U= (0, 10) 

W = (0, 9) 

x= (1,6) 

Y=(4, 2) 

Z = (8, 0) 

C = ($0.10)(0) + ($0.25)(10) = $2.50 

C=(0.10)(0) +( 

C=( 0.10)(1) +( 

C= ( 0.10)(4) + ( 

C = ( 0.10)(8) + ( 

0.25)(9) = $2.25 

0.25)(6) = $1.60 

0.25)(2) = $0.90 

0.25)(0) = $0.80 
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z-axis 

V = (10,0) C= ( 0.10)(10) + ( 0.25)(0) = $1.00 

T= (10, 10) C=( 0.10)(10) + ( 0.25)(10) = $3.50 

Figure 6.34 

-m-axis 

The lowest cost occurs at (8, 0). The dietitian followed this policy but to her 
great wonderment she was not rehired the next year. 

Example 3 

Mrs. Jones has a maximum of $12,000 that she can invest in corporate 
bonds. Bond A returns 6% and bond B returns 10%. Since bond B is riskier, 
investment in bond B is restricted so that it cannot exceed 50% of the invest¬ 
ment in bond A. How much should she invest in each type of bond to maxi¬ 
mize her return ? 

Solution: Let x denote the amount of money invested in bond A and 
y the amount of money invested in bond B. The following inequalities must 
hold: 

(Physical reality 
inequalities) 

(Mrs. Jones has at most 
$12,000 to invest) 
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2y < x (Restriction on investment 
of type B bond.) 

235 

Figure 6.35 shows the graph of the feasible region. 

Mrs. Jones’ return is given by 

R = (.06)x + (.10)>> 

Evaluating R at the three vertices of the feasible region, A = (0, 0), B — 
(12,000, 0) and C = (8000, 4000), we find 

R evaluated at A = 0 

R evaluated at B = (,06)(12,000) + .10(0) = $720 

R evaluated at C = (,06)(8000) + .10(4000) = $480 + $400 = $880 

Hence, Mrs. Jones should invest $8000 in bond A and $4000 in bond B 

to obtain her maximum return of $880. 

EXERCISES 6.9 

1. A company that manufactures animal feed must produce 200-lb pack¬ 

ages of a mixture of two grains, Gx and G2. Gx costs $4/ib and G2 costs 

$6/lb. Since too much C, is undesirable, no more than 80 lb of that 
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grain can be used in a package. Health requirements for the animals 

require that at least 150 lb of G2 be contained in a package. What mix¬ 

ture should the company use to minimize cost? 

2. The maximum daily production of a refinery is 1000 units. The refinery 

produces two kinds of gasoline—A and B. A minimum of 500 units of 

A and 300 units of B is required to meet the demands of a steady 

customer. The profit on A is $2.00 a unit and the profit on B is $4.00 

a unit. What is the maximum profit that can be made? 

3. A manufacturer can produce two types of stoves—5 and T. Stove S 

can be sold for $50 and T can be sold for $80. For marketing, the 

stoves must first be shipped by rail and then by truck. Rail shipping 

rates are $3 for 5 and $2 for T. Truck shipping rates are $5 for S and 

$4 for T. Furthermore, total cost due to rail shipping or to truck 

shipping cannot exceed $40. How many of S and T should be manu¬ 

factured so as to maximize potential gross sales ? 

4. The Pogal Company manufactures nipperkins and pipkins. Govern¬ 

ment contract requires at least 100 nipperkins and at least 300 pipkins 

per month. For each nipperkin produced at least two pipkins must be 

produced. A total of 200 man-hours is required to construct a nip¬ 

perkin and 100 man-hours to construct a pipkin. The company has 

a minimum work force of 600 and a maximum work force of 1000. 

Each worker puts in 150 hr/month. The profit from a nipperkin 

is $1000 and the profit from a pipkin is $2000. How many nipperkins 

and pipkins must be produced each month for maximum profit? 

5. The Custom Clothes Corporation makes dresses and blouses. The 

profit on a dress is $8 and on a blouse, $6. Both dresses and blouses 

require the labor of designers and tailors. There are 60 hr of designer 

time available and 48 hr of tailor time. Designers require 4 hr to process 

a dress and 2 hr to process a blouse. Tailors process a dress in 2 hr 

and a blouse in 4 hr. How many dresses and blouses should be produced 
to maximize profit? 
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It has been suggested that the U. S. Constitution was a 
great influence on computer development in the United 
States because it calls for taking a national census. By 
1890 the task of processing census data and calculating 
statistics from this data was so troublesome that Herman 
Hollerith (1860-1929), an engineer with the Census Office, 
was led to develop tabulating equipment to automate the 
data processing. Although born of German immigrants, 
Hollerith showed classic Yankee ingenuity by using data 
cards the size of dollar bills so that he could borrow pro¬ 
cessing equipment from the Mint. Hollerith later formed a 
commercial organization which ultimately became the pre¬ 
sent International Business Machines Corporation. 
(Courtesy of IBM.) 

Machines such as this one were used by Herman Hollerith to tabulate census data. 
(Courtesy of IBM.) 



facts and figures 

7.1 understanding data 

The American public seems to have an insatiable need for facts and figures. 

We are constantly being assaulted with the high, low, and average tempera¬ 

ture of the day; cost of living indices; the Dow-Jones averages; unemploy¬ 

ment figures; or the number of residents of Phoenix, Arizona who own 

cheetahs as pets. The Constitution of the United States calls for the taking of 

a national census. This operation, now performed every 10 years, provides us 

with a stream of numerical information about ourselves, which seems to dry 

up just prior to the start of the next census. The world of sports generates an 

almost unending torrent of figures and “averages.” But even more important 

than the “informational” aspect of numerical facts and figures has been a 

dramatic increase in the use of numerical information in analyzing and 

developing policy in such areas as health, welfare, education, and war. In 

light of this phenomenon it seems worthwhile to discuss how numerical 

information is gathered, classified, and used in policy making. 

We begin with that increasingly omnipresent phenomenon of the current 

scene, the survey. Imagine that a survey of the students in the senior class in 

a small school has been taken. Two questions are asked on the survey: 

QUESTION 1 

How many children do you wish to have? 

239 
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QUESTION 2 

How much does your father earn from all his jobs? 

The information obtained from the survey is recorded below. 

RESPONSES TO QUESTION 1 

4,2,0, 5,2, 1, 1,2, 1, 1,3, 2,0, 7, 1, 1,2, 2,0, 1,0,2, 1, 1,2, 0,3, 1,4,2 

RESPONSES TO QUESTION 2 

$10,350, $8470, $9050, $9680, $8480, $10,600, $8900, $8340, $8160, $8050, 

$9220, $8400, $8080, $8550, $8490, $8450, $10,950, $8360, $9970, $9400, 

$8440, $8670, $8600, $10,200, $8180, $9600, $8250, $8780, $9340, $8740 

Clearly the data listed above is not in a form to be of much use. What 

we have in each case is a list of 30 numbers in no particular order. From such 

a disarray of numbers it is not possible to obtain any useful information. As 

a step in the direction of obtaining order and information from this disorder 

of numbers, construct a table for question 1 with the number of children 

desired listed in increasing order from top to bottom, and tally the number 

of the people who wanted the various numbers of children (see Table 7.1). 

Thus, for example, the indication of 2 in line 4 of the frequency column 

means that two students desired families with three children. 

Table 7.1 Table of Responses to Question 1 (Number of Children Desired) 

in a Class of 30 Students 

Number of 
Children Relative 
Desired Tally Frequency Frequency 

0 m 5 TO = 0.17 
1 mm 10 4« = 0.33 
2 mini 9 9 

TO = 0.30 
3 ii 2 2 

TO = 0.07 
4 n 2 TO = 0.07 
5 i 1 fo = 0.03 
6 0 TO = 0.00 
7 i 1 = 0.03 

Total 30 30 1.00 

This procedure goes a long way toward organizing the information contained 

in the raw data above. For example, one can state that more students desired 

one child than any other number. Furthermore, one can state that 17% of 

the students wanted no children. This number, the relative frequency of the 
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response “no children,” was obtained by taking the number of students who 

wanted no children and dividing it by the total number of students surveyed. 

Numerous other conclusions could be drawn from the table. It is often con¬ 

venient, however, to have some visual display of the information contained 

in such a frequency table. There are three methods commonly used for dis¬ 

playing the information in a frequency table visually: the frequency polygon, 

the histogram, and the pie chart. We shall discuss each of these methods 

briefly in turn, using for convenience the example above. The general pro¬ 

cedure should be apparent from the example. 

frequency polygon : To draw a frequency polygon for the data given 

in Table 7.1 we draw two axes at right angles, one vertical and the other hori¬ 

zontal. Equally spaced along the horizontal axis, we list the entries of the 

left-hand column of the frequency table, starting with its top row. In this 

case, we list the various numbers of children. Along the vertical axis we list 

at equally spaced intervals, starting with zero, the frequencies that can occur. 

The largest number appearing would correspond to the largest frequency. 

For each of the numbers along the horizontal axis we plot a point at the 

proper vertical height, as required by the table and according to the scale 

along the vertical axis (see Figure 7.1). To obtain the frequency polygon, we 

join up these plotted points by straight lines. 

Warning: A fairly common error in the reading of frequency poly¬ 

gons can be illustrated from this example. Even though the only significant 

points in the frequency polygon are the end points of the straight line seg¬ 

ments, some persons reading the chart might conclude that 4\ people wanted 

1^ children by interpolating information between the end points of the 

Figure 7.1 



242 facts and figures 

segments. The meaninglessness of this procedure may be less obvious when 

the data being analyzed doesn’t clearly rule out the “information” obtained. 

histogram: The procedure for constructing a histogram from a fre¬ 

quency table is similar to that of constructing a frequency polygon (see 

Figure 7.2). Note that the center of each “bar” of the histogram lies above 

the number on the horizontal line. 

Figure 7.2 

pie chart: To construct a pie chart, we proceed as follows: First, we 

compute the relative frequency of each of the responses to the survey. For 

example, the relative frequency of the response “three children” is ^ (See 

the relative frequency column in Table 7.1.) This number is obtained by 

observing that out of a total of 30 students there were 2 students who want 

three children. We now divide a circle into sectors, apportioned according to 

the relative frequencies (see Figure 7.3). Since a whole circle is made up of 

360 degrees, to find the angle of any particular slice of the pie diagram we 

1 child 

Figure 7.3 
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multiply the relative frequency by 360 degrees. Thus, for example, the fact 

that 9 students wanted two children (relative frequency of .3) is indicated by 

apportioning .3 times 360 degrees, or 108 degrees, of the circle to represent 
this situation. 

Pie charts have certain disadvantages and are used less commonly than 

histograms or frequency polygons. Nevertheless, they are superior to these 

other schemes for showing proportions of a whole taken up by various 

categories. For instance, a glance at Figure 7.3 shows that half of all persons 

surveyed want no more than one child and more than three-quarters of all 

persons surveyed want no more than two children. These facts are much less 
apparent in Figures 7.1 and 7.2. 

Now let us attempt to carry out the same procedure as above for the 

data concerning incomes (i.e., the answers to question 2) as we did for the 

data about numbers of children desired. If we arrange the items in a tally 

chart as before, we discover (Table 7.2) that each income yields only one tally 

and, except for having rearranged the data in increasing order, we have not 

made much progress toward analyzing it. 

Table 7.2 Table of Father's Income for a Class of 30 Students 

Salary Tally Frequency Salary Tally Frequency 

$8,050 1 1 $8,670 1 1 
8,080 1 1 8,740 1 1 
8,160 1 1 8,780 1 1 
8,180 1 1 8,900 1 1 
8,250 1 1 9,050 1 1 

8,340 1 1 9,220 1 1 

8,360 1 1 9,340 1 1 

8,400 1 1 9,400 1 1 

8,440 1 1 9,600 1 1 

8,450 1 1 9,680 1 1 

8,470 1 1 9,970 1 1 

8,480 1 1 10,200 1 1 

8,490 1 1 10,350 1 1 

8,550 1 1 10,600 1 1 

8,600 1 1 10,950 1 1 

Consider the first two lines of the table containing the entries $8050 and 

$8080. Since these entries differ by only $30, while the first and last entries 

differ by $2900, we might agree that for many purposes we could “lump 

together” the first two. This suggests that we agree to group the incomes in 

classes, where people with approximately the same income would be put in 

the same class. This would give us a means of getting more information from 

the data. Noting that the difference between the largest and smallest incomes 

is approximately $3000, let us agree to form six classes, each with a $500 
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range of incomes. When the data is grouped into classes by this procedure, 

we obtain the new table in Table 7.3. On the basis of this table, we can proceed 

to draw a frequency polygon, a bar graph, and a pie chart for the grouped 

data, as shown in Figures 7.4, 7.5, and 7.6. 

Table 7.3 Grouped Income Table 

Class Limits* Number in this Class 

$ 8050-8550 13 
8550-9050 6 
9050-9550 4 
9550-10,050 3 

10,050-10,550 2 
10,550-11,050 2 

Figure 7.4 

A few more remarks on the question of how data can be grouped 

into classes are in order. Recall that we made the somewhat arbitrary decision 

to use 6 classes of $500 “width” for the data in Table7.2. Could we have used 

2, 18, or 9 classes? To answer this question, let us first begin with the follow¬ 
ing definition. 

*We make the convention that if a number falls on the borderline between two classes, 
we put it into the higher class. 



DEFINITION 1 

Given a collection of numbers that are the outcomes of a poll, survey, or 

experiment, the range of the data is the difference between the largest and 

the smallest number in the collection. 

245 
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This use of the word range corresponds with our ordinary use of the 

word range in such expressions as “the temperature range was 40°F,” mean¬ 

ing that the difference between the high and low temperatures was 40°F. 

Example 1 

The weather bureau gives the temperatures for a 12-hr period as 75, 75, 

74, 76, 76, 77, 77, 78, 79, 79, 81, and 83°F. The lowest of the temperatures is 

74° and the highest is 83°. Hence, the range of temperatures is 9°, the dif¬ 

ference between 74 and 83. 

When we decide on a procedure for grouping the data into classes, we 

are choosing a model for our data. Here are two possible alternatives. 

MODELING PROCEDURE 1 

Choose a convenient or desired width for a class, and then use as many 

classes as are needed to cover the whole range of measurements. 

MODELING PROCEDURE 2 

Choose a convenient number of classes, and then determine a convenient 

width for each class by dividing the range by the number of classes and 

rounding off to a convenient number. 

Example 2 

George is attempting to analyze how many miles per gallon he has been 

getting from his new car. Each week he calculates the number of miles per 

gallon he has gotten, and after 18 weeks he has 18 numbers ranging from 

11.4 to 20.7 mi/gal. One possible set of classes would be 11.4 to 14.4, 14.4 to 

17.4, 17.4 to 20.4 and 20.4 to 23.4. To avoid decimals, he decides on the 

alternative set of classes 11 to 14, 14 to 17, and 17 to 20, and 20 to 23. We use 

the convention that if a number falls on the borderline between two classes, 

say at 14, we put it into the higher class. 

Suppose George wanted to model his mileage data using five classes. 

He divides the range, which is 9.3, by 5 to get 1.86. Now he can mark off 

classes, beginning at 11.4. The arithmetic is a little tedious but here is how one 

set of classes might look: 11.4 to 13.26, 13.26 to 15.12, 15.12 to 16.98, 16.98 

to 18.84, 18.84 to 20.70. Recall, however, that George dislikes decimals. 

Consequently, he decides to round off the class size to two units and start 

with 11. Thus he gets 11 to 13, 13 to 15, 15 to 17, 17 to 19, and 19 to 21. 
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The question now arises as to which of the two modeling procedures to 

use. No hard and fast answer can be given. Loosely speaking, the choice is 

governed by whether convenience of class width, or having a prechosen 

number of classes is paramount. Notice that if too few classes are used, then 

much information contained in the data will be destroyed. On the other hand, 

when there are too many classes, there is no gain in information over what 
was present in the ungrouped data itself. 

EXERCISES 7.1 

1. The following numbers are the ages of the signers of the Declaration of 

Independence at the time that document was signed. Group the data in 

5-year classes and construct a frequency polygon. 

40, 53, 46, 39, 38, 35, 40, 37, 48, 41,70, 31, 41, 52, 39, 50, 65, 46, 29, 34, 

71, 38, 45, 33, 44, 41, 63, 60, 26, 42, 34, 50, 42, 41, 37, 45, 36, 42, 48, 46, 

30, 26, 55, 57, 46, 33, 60, 62, 35, 46, 33, 53, 49, 50 

2. The following numbers are the ages of the first 36 United States presi¬ 

dents at the time of taking office. Group the data and construct a 

frequency polygon. 

57, 61, 57, 57, 58, 57, 61, 54, 68, 51, 49, 64, 50, 48, 65, 52, 56, 46, 54, 49, 

50, 47, 55, 54, 42, 51, 56, 55, 51, 54, 51, 60, 62, 43, 55, 55 

3. The distributions of ages in Exercises 1 and 2 are significantly different. 

Prepare groupings of data and frequency polygons designed to high¬ 

light the difference and facilitate comparison. Try to explain historically 

and politically why the difference occurs. 

4. The following are per capita income figures for the nations of South 

and Central America as of 1970. Group the data and make a frequency 

polygon. 

$280, 510, 215, 121, 308, 568, 709, 190, 200, 325, 227, 350, 622, 850, 248, 

426, 284 

5. Take any book, choose 40 words from it at random, and write the 

number of letters in each word as it is chosen. With these word lengths 

as data, make a frequency polygon after suitable grouping. 

6. Here are some test scores for a class of sixth graders. Use 10 data classes 

to group the data and then make a frequency polygon. 

89, 37, 93, 51, 92, 76, 65, 77, 79, 71, 82, 85, 63, 75, 69, 80, 65, 75, 87, 38, 

65, 68, 85, 98, 59, 60, 80, 78, 74, 71, 71, 49, 91, 65, 80, 68, 91, 78 



248 facts and figures 

7. The following is the list of crimes entered on the docket of a criminal 

court for a certain time period. Make a frequency polygon (note that 

no grouping is needed since the data are not numbers.) 

A, A, B, R, A, B, B, F, L, R, R, L, R, B, A, R, F, L, R, B, B, L, L, A, 

R, F, R 

A = assault; B — burglary; L = larceny; F — fraud. 

8-14. For Exercises 1 to 6, draw a histogram. 

15-22. For Exercises 1 to 7, draw a pie chart. 

23. For which of Exercises 1 to 7 is a pie chart especially useful? 

7.2 uses and abuses of statistics 

The words figure and fictitious both derive from the same Latin 

root, fingere, Beware! 

—M. J. MO RONEY* 

One of the most important aspects of the modeling process is to be able to 

use the model, if possible, to predict the course of future events. We shall give 

an example of how a seemingly naive model can be of great assistance to city 

planners. 
Suppose the school board of the town of Candlesville is examining 

census data about its population, with a view toward determining future 

needs for school buildings and teachers. Imagine that in 1975 Candlesville 

had bulk data consisting of the birthdays of its residents. From these very 

exact ages can be calculated (e.g., 2 years and 47 days). Of course this is a 

little more detail than is useful so the data about ages is grouped into classes 

of width equal to 1 year. In addition, the numbers of students have been 

rounded off to the nearest hundred. The result is Table 7.4. It may be worth 

noting in passing that grouping and rounding off, while perfectly natural 

and necessary, does involve destroying or overlooking some of the data. This 

is an example of the fact that sometimes detail stands in the way of insight. 

The numbers in the second column of Table 7.4 can be used to predict 

*Courtesy of M. J. Moroney, Facts from Figures, Middlesex, England: Penguin Book 
Ltd., 1951. 
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Table 7.4 

Ages in 1975 
(years) Number of Children 

Year of Entrance to 
First Grade 

0-1 1800 1981 
1-2 1800 1980 
2-3 1900 1979 
3-4 2100 1978 
4-5 2000 1977 
5-6 1900 1976 
6-7 1800 1975 
7-8 1900 1974 
8-9 1800 1973 

future school populations because for each age group one can determine in 

what year the members of that group (or most of them) will enter first grade. 

These figures are shown in the third column. From similar projections one 

can determine the school population in each grade for any year in the near 

future. For example, in 1980, 5 years after the census, the children who will 

be entering first grade are those in the 1- to 2-year age bracket in 1975; the 

children who will be entering seventh grade are in the 7- to 8-year age bracket 

in 1975; and so on. Therefore, in 1980 classrooms and teachers for 1900 

pupils in the seventh grade will be needed. 

It is especially interesting to note that the largest number of children lie 

in the 3- to 4-year age bracket. Hence, in 1978 the first grade will have to 

absorb the largest number of students and this “bulge” will then go through 

the remaining grades, a grade higher each year. The school board and the 

town will have to decide how to meet the problems associated with the 

bulge. Will new teachers be hired and new classroom space be constructed 

or can this be avoided? 

Suppose that the school board decides to present the information in 

Table 7.4 to the voters in the form of a frequency polygon. Which of the two 

frequency polygons in Figure 7.7 would be better suited to the purpose? 

Perhaps surprisingly, both present the same information; however, Figure 

7.7(b) seems much more dramatic. It makes the population bulge seem quite 

drastic and is likely to suggest to people strong remedies such as building 

another school and hiring more teachers. Figure 7.7(a) is more likely to sug¬ 

gest to people a temporary increase in the size of classes. The dramatic effect 

of Figure 7.7(b) is produced in two ways: The scale for the vertical axis has 

been expanded [in comparison with the vertical scale in Figure 7.7(a)] and 

has been started with the number 17 instead of 0. 

Are both graphs equally good models? They make such different 

impressions that it would be disquieting to think so, even though they both 



Number of students 
(in thousands) 

Age groups 

Number of students 
(in thousands) 

Age groups 

Figure 7.7 

(b) 

present the same data. Perhaps the best way of expressing our disquiet is to 

ask “Which graph is more honest?” People knowledgeable about statistics 

agree that while the scale can be expanded or contracted in good faith, it is 

usually best to start at 0. Thus, Figure 7.7(b) represents an abuse of statistics. 

The reasoning behind this verdict is as follows. In Figure 7.7(b) the number of 
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students in the 0- to 1-year class is represented by height h while the number 

in the 3- to 4-year class is represented by height h'. Since h' is about four 

times the size of h, this suggests to the casual glance that the 3- to 4-year class 

is four times as large as the 0- to 1-year class. Of course this is wrong. We are 

being misled because h and h' are not exactly proportional to the populations 

of the age groups, due to the fact that our scale starts at 17 and not at 0. 

In Figure 7.7(a), where we have started our scale with 0, the heights h and h' 

are in proportion to the sizes of the age groups they represent; hence, the 

fact that A' is 16% higher than h reflects accurately the fact that the 3- to 4- 
year class is 16% larger than the 0- to 1-year class. 

Figure 7.8 shows another example of an abuse in the presentation of 

c 

1975 

Figure 7.8 

/ 7 

Projected 

r 

data. The school board wants to present the projected increase in the expense 

of educating the children of the bulge whether or not new buildings or 

teachers are to be added. These expenses would be for books and supplies, 

school lunches, and other items that are necessary whether or not new build¬ 

ings and teachers are added. The school board calculates that these expenses 

during the bulge will be one and a half times what they were in 1975. It decides 

to represent the 1975 expenses using a single textbook symbol and the pro¬ 

jected expenses by a book whose dimensions are both one and a half times 

those of the first book. 
The reason why such a diagram, often called a pictogram, is misleading 

stems from the fact that the eye responds to the area of the books. If the length 

and the width of a book are multiplied by a factor of k, the area of the book 

increases by a factor of k2. Hence, although costs have gone up by a factor of 

1.5, the area of the second book is (1.5)2 = 2.25 times as large as that of the 

first book. 

EXERCISES 7.2 

1. Using the data from Table 7.4, find how many students will be entering 

the fifth grade in 1978? 

Again using Table7.4, find how many students will enter the ninth grade 

in 1979? 
2. 
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3. If the number of students in a class is to be kept at 17 in grade 8, how 

many classrooms would be necessary in 1978 in grade 8? In 1979? 

In 1980? 

4. Here is some data about percentages of men who wear various shoe 

sizes. Make an honest frequency polygon exhibiting this. Now make a 

dishonest one that exaggerates the discrepancy between the popular and 

the less frequent sizes. Size 8, 7%; size 8^, 10%; size 9, 15%; size 9\, 

20%; size 10, 15%; size 10^, 10%; size 11, 7%. 

5. A new bridge is to be opened shortly in Metropolis and the city planning 

commission wishes to estimate in advance its effect on traffic patterns. 

Thirty-five citizens who cross a bridge on their way to work are asked 

which of the bridges A, B, C, D, and E (the new one) they expect to use 

to reach work. The responses, in the order in which they were received, 

are A, B, B, C, A, D, E, C, C, A, E, C, D, A, B, C, D, B, C, D, C, A, D, 

D, C, B, D, E, E, A, B, E, B, C, E. Draw an honest frequency polygon 

and then a dishonest one designed to exaggerate discrepancies. 

6. * Suppose that 5 % of the students in a given grade fail each year and must 

repeat that grade. How many students would there be in the various 

grades from 1 to 6 in the year 1979? 

7. * If each year, starting in 1975, 300 additional children enter town due 

to new immigration and we assume that there is no departure of 

families, what is the maximal number of students that might enter the 

fourth grade in 1978? Assume that each year one-sixth of the children 

who have moved into town would be fourth graders in 1978. 

averages of various sorts 

The word average is probably the most abused word in the whole field of 

statistics. The source of the confusion is that there are various kinds of 

averages. When one computes an average, the purpose is to find a single 

number that gives a “summary” of the information contained in a collection 

of data. Depending on which average is chosen, one can obtain totally 

different pictures of the same data. We shall examine a few sets of data to 

show how these different types of averages provide models for sets of data. 

Example 1 

An income survey of shopkeepers in a small town produces the numbers 

in Figure 7.9 (this is a modified histogram in which we use dots in place of 

the bars—for example, the three dots over the 11 represent three shopkeepers 

whose incomes are about $11,000). If we wish to find a single representative 

number to model this data, perhaps the most natural procedure would be to 

calculate the mean, that is, to add all the incomes and then divide by the 

number of people. The result is shown in Figure 7.9. 



8 9 10 11 12 13 14 15 

Mean = 9+10+10+11 + 11 + 11 +12+12+13+14 ,. - 
—fO - 113 

Figure 7.9 

DEFINITION 2 

Given a collection of measurements xlt x2,. . ., xn (these need not all be 
distinct numbers), their mean is 

X\ + X2 + • • • + 

n 

This type of calculation is what usually comes to mind when the word 

average is mentioned, say, in a newspaper or on television. People familiar 

with statistics, however, use the word mean so as to avoid confusion with 

other averages. 

Example 2 

Suppose our income data gives rise to the dot diagram of Figure 7.10. 

If we calculate the mean, we find the results shown in Figure 7.10. In this 

case, however, the mean does not produce a realistic picture of the data 

because one very large income skews (shifts) the mean. The mean income 

turns out to be almost twice what most shopkeepers are earning. To over¬ 

come this problem, one can use a different type of average, the median. 

DEFINITION 3 

Given a collection of data arranged in increasing order, if the number of 

measurements in the data set is odd, the median is the number for which equal 

Mean - 8 + 8 + 9+10+11 + 11 +12+12 + 12+100 
= 19.3 thousand 

8 9 10 12 • •» 100 in tens of 
thousands of 
dollars 

Figure 7.10 
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numbers of data lie above and below it. If the number of measurements in 

the data set is even, the median is the mean of the two middle measure¬ 

ments. 

For the data of Figure 7.10 the median is the mean of the fifth and sixth 

measurements, namely, 11. This comes closer to the income that most shop¬ 

keepers enjoy but it doesn’t indicate the existence of one large income. 

The Zero Growth Paycheck 

To the Editor: 
A letter by Prof. Bertram 

Gross, in your issue of March 1, 
suggests that if a zero-economic- 
growth policy were instituted, 
American families could look for¬ 
ward to an average income of over 
$13,000, instead of $10,000 as I 
had suggested earlier. I wish Pro¬ 
fessor Gross were right, but un¬ 
fortunately even my own figure 
probably was much too high if, 
as I had also suggested, a zero- 
growth policy should compel us 
to share part of our income with 
the poor countries. 

That demands for such equali¬ 
zation would be strong becomes 
evident from Robert Reinhold’s 
report in your business issue of 
March 3 of the Smithsonian 
Meeting on Zero Economic 
Growth. Even partial justice 
would probably compel us to re¬ 
duce our family standard well be¬ 
low the $10,000 currently consti¬ 
tuting the median income (which, 
Professor Gross notwithstanding, 
is as defensible an average as the 
mean which he prefers). 

Professor Henry C. Wallich 
Yale University 
New Haven, March 6, 1972 

A dispute about the relative merits of the mean and the median 

lurks in the letter to the New York Times. 

(Courtesy of Henry Wallich and The New York Times. © 1972 by 
The New York Times Company. Reprinted by permission.) 
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Here is the final kind of average that we shall consider. 

DEFINITION 4 

The mode of a set of data is that number that occurs most frequently. If 

there is no such number, that is, if there are two or more numbers that are 
tied for first place, then there is no mode. 

For example, in Figure 7.9, 11 is the mode, while in Figure 7.10 the 

mode is 12. Our next example (Figure 7.11) shows a case where the mode does 
not exist. 

Example 3 

We calculate the mean, median, and mode for the data shown in 
Figure 7.11. 

• • • 

•••••• • 
8 9 To n i! il 25 

Mean = 12.1 

Median = 1 1 

Mode does not exist 

Figure 7.11 

Lest the mode concept seem a useless one, recall that in Section 7.2 the 

future planning of the school board to meet the “bulge” of students depended 

essentially on knowing the mode. 

Table 7.5 shows how the three types of averages come out for the three 

Table 7.5 

Mean Median Mode 

Figure 7.9 11.3 11 11 
Figure 7.10 19.3 11 12 
Figure 7.11 12.1 11 does not 

exist 

sets of income data we have considered. It underscores again the different 

impressions that may be conveyed by the various averages. 

Since averages are often used in formulating policy, these differences are 

more than mere curiosities. If, for example, a governmental agency making 

loans to small businesses decides to earmark money for different towns 
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according to one of these averages, it makes an important difference which 

average is used. If the mean is used, the town corresponding to the data of 

Figure 7.9 will receive the most money, whereas this town would receive the 

same amount as the other towns if the median is used. (See Table 7.5.) 

The problem of representing a mass of data with a single number can 

be thought of as a modeling problem. The mean, median, and mode are 

different solutions to this problem of modeling a set of data with a single 

number—all of them far from perfect solutions. In each case, a good deal of 

criticism of their “goodness of fit”—the extent to which they really represent 

the data—can be offered. We have already illustrated the fact that they give 

different pictures of the same data. Here are some other observations about 
the averages we have discussed. 

First, regardless of which of these averages is used, very different sets 
of data can have the same average. 

Example 4 

The sets of data in Figures 7.12(a) and (b) have the same mode, namely, 

3. Notice that in this example the mode is the largest number in the set of 

data in one case and the smallest in the other. 

3 4 5 6 7 -10 12 3 4 

(a) (b) 

Figure 7.12 

Example 5 

The data collections in Figure 7.13(a) and (b) have the same median 
of 3. 

12 3 4 5 -1,000,000 50,000 

(a) (b) 

Figure 7.13 

Example 6 

The data collections in Figures 7.14(a) and (b) have the same mean. 



0 1000 500 

(a) 

Figure 7.14 

(b) 

A second problem with the mean, the median, and the mode is that they 

give no information about the distribution of the data. Suppose, for example, 

the proprietor of a store that sells nurses’ uniforms reads in a trade journal 

that the mean uniform size for nurses is 12. Should he order all his uniforms of 

this size? Clearly not. But how many should he order of the various possible 

sizes? If he knew the median instead, he would know that half the nurses 

had sizes above the median and half below the median. On the other hand, if 

he knew the mode was 12, he would at least know that he should order more 

size 12’s than any other size but this is still not good enough information on 

which to base an order. 

Averages are particularly inadequate in cases where many measure¬ 

ments that lie at the extremes are deemed particularly significant. Thus, if 

the mean of environmental radiation levels for a group of nuclear power 

plants is low, this does not preclude the possibility that the level may be high 

enough to be dangerous at some plants. 

EXERCISES 7.3 

1. Calculate the mean, median, and mode of the data in Exercise 1 on 

p. 247. Which do you think gives the best model of the data? 

2. Calculate the mean, median, and mode of the data in Exercise 2 on 

p. 247. Which do you think gives the best model of the data? 

3. Calculate the mean, median, and mode of the data in Exercise 4 on 

p. 247. Which do you think gives the best model of the data? 

4. Calculate the mean, median, and mode of the data in Exercise 5 on 

p. 247. Which do you think gives the best model of the data? 

5. Calculate the mean, median, and mode of the data in Exercise 6 on 

p. 247. Which do you think gives the best model of the data? 

6. One often reads statements like “The average American family has 

2.4 children.” In this statement, is 2.4 a mean, a median, or a mode? 

7. Calculate the means, medians, and modes for each of the following dis¬ 

tributions in Figure 7.15. 
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• • • • • • 
• • • • • • • • • 

1 2 3 4 5 -2 0 2 4 

(a) (b) 

• • • 

• • • • • 

• • • • • • • • 

• • • • ♦ • • • • • 

-3 -2 -1 0 1 2 50 60 70 100 

(c) (d) 

Figure 7.1 5 

8. * What is the law of averages, and what, if anything, does it have to do 

with the mean, median, or mode? 

9. * Is the batting average, as used in baseball, an average of a set of data 

in the sense of being a median, mean, or mode? If so, which of the three 

is it, and how would you go about calculating the other two types of 

averages for a player’s batting record? 

10.* A modification of the concept of the mean is often used in situations 

where data are to be assigned weights to emphasize their relative 

importance. For example, suppose a teacher wishes to weight the final 

exam twice as much as the midterm exam. If John received 80 on the 

final and 50 on the midterm, his weighted mean grade would be 

2(80) + 1(50) 210 ™ 
2+1 - 3 

Use the idea from the example to solve the following problems: 

(a) June bought 14 gal of gas at 30^/gal and 20 gal of gas at 34^/gal. 

Compute the weighted mean cost of the gas she bought. 

(b) April got 100, 90, 100, and 70 on hour exams; a 50 on the mid¬ 

term exam; and 80 on the final exam. If the final counts twice as 

much as the midterm, and the midterm counts twice as much as 

an hour exam, and if the hour exams count equally, compute her 
weighted mean grade. 

258 
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estimates of fit 
for various averages 

In the last section we discussed three types of averages as models for a col¬ 
lection of data but we tried to avoid the question of which model was best. 
Actually there is no best model because each has its uses and each is good in 
its own way. In this section we want to perform some estimates of fit for the 
mean, median, and mode as models for a collection of data. We shall set up 
three reasonable definitions of what we might mean by a “good fit” and then 
we’ll see how the mean, median, and mode stack up against these standards. 
What we shall do is to set up three formulas for the error that is incurred when 
we use a particular number to model a certain set of data; then we shall say 
that the lower the error is, the better the fit. We shall let the measurements be 
denoted by jc15 x2, x3,. . ., xn and denote by // the number being used to 
model this set of data. 

ERROR DEFINITION 1 

Count the number of measurements x,. that differ from p. This is the error. 

Example 1 

Let the measurements be 1, 1, 1, 5, 5, 6, 6, 7. We can easily calculate 
that 

Mean = 4 

Mode = 1 

Median = 5 

The number of measurements different from the mean is 8, the number of 
measurements different from the mode is 5, and the number of measurements 
different from the median is 6. Thus, in this case the mode wins by virtue of 

having the least error. 

The outcome of Example 1 is not a quirk dependent on the particular 
data set chosen. In general, for any collection of data, the mode (if it exists) 
does at least as well by this definition of error as either of the other two 
averages. The reason, of course, is that the mode is by its very definition the 
most frequently occurring number in the set of measurements. This means all 
other numbers, in particular the mean or median, occur less often than the 
mode among the data. In turn this means that both the mean and the median, 
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except in the case where either coincides with the mode, differ from more of 

the measurements and so have a higher error. 

ERROR DEFINITION 2 

Subtract // from each measurement in the data set and then add up all these 

differences and take the absolute value. (The absolute value of a number is 

the magnitude of the number without the sign. Thus the absolute value of a 

nonnegative number is the number itself but the absolute value of a negative 

number is the negative of that negative number. The absolute value of x is 

denoted | x |. Thus, 171 = 7, while | —41 = 4.) 

Example 2 

Using the same data as in Example 1, we compute the errors for the 
mean, median, and mode. 

Mean Median Mode 
1 - 4 = -3 l—5 = — -4 1 - 1 = 0 
1 -4 = -3 1 — 5 = — -4 1 - 1 = 0 
1 - 4 = -3 1 — 5 = — -4 1 - 1 = 0 
5 - 4 = 1 5 - 5 = 0 5 - 1 = 4 
5 -4 = 1 5 - 5 = 0 5 - 1 = 4 
6 - 4 = 2 6 - 5 = 1 6 - 1 = 5 
6 - 4 = 2 6 - 5 = 1 6 - 1 = 5 
7 -4 = 3 7 - 5 = 2 7 - 1 = 6 

0 -8 24 
Error = 101 =0 Error = | — 81 =8 Error = 1241 =24 

We observe that for this second type of error, the mean scores best. 

Again, this is not accidental. The mean by the present definition would be 

best for any set of data. This can be demonstrated by an easy algebraic 

calculation. If the data are x1; x2,. . . , x„, the mean is, by definition, 

X| + x2 + • • • -j- x„ 
n 

Therefore. 

n (mean) = x, + x2 + • • • + xn 

Now the calculation of the error goes as follows: 

Error = | (xt — mean) + (x2 - mean) + • • • + (x„ — mean) | 

= I (Xj + X2 + • • • + xn) — n (mean) | 

= | n (mean) — n (mean) | 

= 0 
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Since 0 is the smallest nonnegative number, no other error can be smaller. 

Consequently, this shows that neither the median nor the mode can give a 

smaller type 2 error. We see that the error is least for the mean. 

ERROR DEFINITION 3 

Compute the difference between each measurement and //, and then take the 

absolute value of all these differences. Now add all the nonnegative numbers 
just calculated to find the error. 

Example 3 

Using the same data as in Example 1, we compute the errors for the 
mean, median, and mode. 

Mean 
11 — 4| = 3 |1 

Median 
— 51 = 4 

Mode 
11 — 11 = 0 

11 — 4| = 3 jl — 51 = 4 j 1 — 1 j = 0 
11 — 4| = 3 |1 - 5| = 4 11 — 1 j = 0 
|5 - 4 = 1 | 5 - 5| = 0 15 — 11= 4 
[5 — 41 = 1 15 -51=0 j 5 — 11 = 4 
16 — 4 j = 2 16 -5=1 16 — 11 = 5 
16 — 41 = 2 16 -5=1 16 — 11 = 5 
17 — 41 = 3 17 - 5 = 2 j 7 — 1 j = 6 

18 = Error 16 = Error 24 = Error 

We shall now show that by using Error Definition 3 we shall always 

obtain the least error by using the median. Instead of giving the proof in the 

greatest generality, we shall make a few simplifying assumptions to allow 

the essential ideas of the proof to stand out. First, we shall suppose that the 

measurements in the data set are all different (which was not the case in 

the set used in our examples) and that they are subscripted in the order of 

their magnitude. This means xx < *2 < *3 and so on. Second, we shall 
assume that the median is one of the measurements rather than the midpoint 

of two measurements. Thus, if xk is the median measurement, there are as 

many measurements after it as measurements before it, namely, k — 1. 

Consequently xk+1, xk+2, . . ., x2k_1 are the measurements following xk. With 

these simplifications and notations, we can justify our claim about the median 

giving the lowest type 3 error by proving the following theorem. 

THEOREM 1 

Let xr < x2 < x3 < • • • < x2k-x be a set of measurements with xk as 

median. The expression | xt — y | + | x2 — y | + • • • -f | x2k_ x — y | is a mini¬ 

mum when we take y = xk (i.e., the median). 
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Proof: Each term of the form | xt — y | can best be visualized as the 

distance from xt to y along a number line (see Figure 7.16). If we think of it 

this way and write d(xp y) instead of | xt — y |, then we want to show that the 

y 

Figure 7.1 6 

following expression is a minimum when y = xk: 

d(xlty) + d(x2,y) + ••• + d(x2k_1,y) (7.1) 

We shall proceed by showing that if y moves from the value xk to values 

greater than xk, the size of the expression in (7.1) increases. A similar argu¬ 

ment will handle the case where y moves to smaller values. First let’s imagine 

a small rightward movement of y (see Figure 7.17), by an amount e that is 

New positions of y 

*1 x2 xk xk + 1 xk + 2 x2k - 1 

Figure 7.17 

small enough so that the new position of y is not beyond (although y 

may go as far as being exactly equal to xfc+1). Each of the k terms d(xt, y), 

d(x2, y),, d{xk, >>) will increase by e, while each of the k — 1 terms 

d(xk+1,y), d(xk+2, y),..., d(x2k_1,y) will decrease by e. The total increase is 

therefore ke, while the total decrease is (k — \)e, yielding a net increase of e in 

the value of (7.1). 

This argument has taken care of movement to the right that does not 

go beyond the next measurement jcfc+1. If we continue our movement to the 

right, beginning now at xk+x, we increase (7.1) at an even faster rate because 

a further movement to the right from xfc+1 of magnitude e' decreases the 

distances d(xk+2, y),..., d(x2k_x,y), while it increases the distances d(xj), 

. . . , d(xk+l, y). The number of distances which increase is k + 1 while the 

number which decrease is A: — 2. Consequently, there is a net increase of 

(k + l)e' — (k — 2)e' = 3e'. This type of argument can be continued: No 
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matter how many measurements we pass as y moves to the right from its 

initial value of xk, the value of (7.1) always increases. Since a similar result 

holds if we move to the left, there is no other value of >> that gives as small an 
error of type 3 as 

EXERCISES 7.4 

1. Calculate the minimum error according to each error definition for each 
of the following sets of data. 

(a) 1,2, 2, 4, 5, 5, 6, 8, 8 

(b) -2, -1,-1, 0,0, 5,6 

(c) 3, 3, 3, 4, 5, 6 

2. For each of the data sets of Exercise 1, calculate the error for the mean, 

median, and mode, according to this error definition: 

Error = (xl - /z)2 + (x2 - p)1 + • • ■ + (xn - /z)2 

3. * If xlt x2,. . ., xn is a set of measurements and the function/is defined 

by /O) = 1*1 — y I + | *2 — y I + • • • + I — y I, plot the graph of 
f(y) for values of y lying between —5 and +5 in each of the following 
cases: 

(a) The measurements are: —5, —5, —1, —1, —1, 2, 2, 3 

(b) The measurements xlt...,x„ are: —5, —3, —1, 1, 3, 5 

(c) The measurements xlf..., x„ are: — 1, 0, 0, 0, 1, 2, 2 

4. * Supply the proof of Theorem 1 in the case where the median is not 
itself a data point. 

7.5 modeling data 

with two numbers 

We have seen that the idea of using a single number (i.e., average) to model 

a large collection of data has only limited success. The idea of using a single 

number as a representative of a large collection of data seems to run into 

difficulty because it cannot give any measure of disperson. By dispersion we 

mean the extent to which the numbers are spread out. This suggests that a 

more accurate model of a large collection of data might be obtainable by 

modeling the data with two numbers. One of the two numbers would be one 

of the averages, while the other would measure dispersion of the data (with 

respect to the number used to indicate the average). Because of its important 

theoretical role we shall use the mean as our choice of the average. 

The measure of dispersion that we shall use is called the standard 

deviation and is measured this way: 
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DEFINITION 5 

The standard deviation, o, of a set of data is calculated by subtracting each 

data number from the mean, squaring the result, taking the mean of these 

numbers, and taking the square root of the resulting number. In symbols, 

if the data numbers are xt, x2,. . ., xn and if the mean is jn, then 

a = ^/(x, — m)2 + (x2 — n)2 + • • • + Q„ — fi)2 

Example 1 

Suppose the given data is 

3, 3, 3, 4, 4, 5, 6, 20 

Mean = 6 

Computing the difference of the data from the mean, and squaring, we obtain 

3 - 6 = -3 

3 - 6 = -3 

3 - 6 = -3 
4 — 6 = —2 

4 — 6 = -2 

5 - 6 - -1 

6 - 6 = 0 
20 - 6 = 14 

(—3)2 = 9 

(—3)2 = 9 

(—3)2 = 9 

(-2)2 = 4 

(-2)2 = 4 

(-1)2= 1 
(0)2 = 0 

(14)2 = 196 

Adding together the squares, 9 + 9 + 9 + 4 + 4+ 1 + 0+ 196 = 232. 

Now, taking the number we find and dividing it by the total number of mea¬ 

surements, we obtain ^ = 29. This number, cr2, is called the variance. The 

standard deviation is the square root of the variance. In our example the 

standard deviation o = */29, which is approximately 5.4 (see square root 
table in Appendix 12.2). 

Example 2 

Find the standard deviation of 

1,2, 3, 1,4, 1,3, 1, 1,3 

Solution: The mean equals 

l+2 + 3 + l-|-4-|-l-|-3+l + l+ 3 
~10~ 

2 



facts and figures 265 

Score — mean = Square of difference 
1-2 = 

2-2 = 

3 - 2 = 

1 - 2 = 

4 - 2 = 

1 - 2 = 

3 - 2 = 

1 - 2 = 

1 - 2 = 

3 - 2 = 

Hence, 

-1 1 
0 0 
1 1 

-1 1 
2 4 

-1 1 
1 1 

-1 1 
-1 1 

1 1 

12 

°2 = to ~ 1-2 

o2 = variance = 1.2 

a = 1.10 

Intuitively one feels that if two sets of data have the same mean, then if 

the standard deviation for one set is smaller than for the second, the first set 

is more tightly clustered about the mean than the second. 

How much better is this two-number modeling process involving the 

mean and standard deviation than the various one-number modeling possi¬ 

bilities we dealt with in the last section? In other words, what can one say 

about the goodness of fit, the extent to which the mean and standard devia¬ 

tion give a good picture of the data? It turns out to be a good deal better 

than it was for our one-number models because we can draw conclusions 

about how much of our data lies close to the mean by looking at the standard 

deviation and doing a certain calculation. 

To see how we do this, examine the chart in Figure 7.18. The data have 

g — 3a g — 2a g— a g g + a g + 2a g + 3a 

Figure 7.18 

not been indicated on the chart, but the mean // has been plotted. We have 

also plotted, above and below the mean of the missing data, several intervals 

of width equal to the standard deviation o. Using only arithmetic we can 

obtain some information about how many of the data numbers must lie within 

these intervals. To be specific, we shall be able to determine that at least a 
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certain percentage of the data must lie between n — o and // + er; similarly, 

for the interval from /i — 2a to /z + 2a, we shall be able to determine that a 

certain minimum percentage (and perhaps more) will lie in that interval. In 

general, for any number of standard deviations above and below the mean 

(not necessarily integral), we can determine a minimum percentage such 

that at least that percentage of the data lies within those limits. 

The exact means of establishing these percentages is contained in the 

following theorem of the Russian mathematician Chebyshev. 

THEOREM 2 

Given a collection of measurements, then within h standard deviations of 

the mean (i.e., within the interval from /i — ha to [i + ha) there are at least 

[1 — 11(h)2] x 100% of the measurements. 

Example 3 

Suppose n = 2 and a = 10 and we are interested in knowing how 

many measurements lie between the numbers —18 and 22. These limits are 

2 standard deviations above and below the mean so we take h = 2 in Cheby- 

shev’s theorem. Thus, between —18 and 22 we have at least [1 — l/(22)] 

X 100% = 75% of all measurements. 

Example 4 

Suppose /i — 2 and a — 10 and we want to set limits above and below 

the mean so that at least 40% of the data lies within those two limits. What 

should the limits be? Let h be the distance of these limits above and below the 
mean. We want to choose h so that 

Solving for h. 

0.6 

h2 = 1.67 

The square root of 1.67 is approximately 1.3 (see table in Appendix 12.2) so 

if h is 1.3, we shall have at least approximately 40% of the measurements 

between ju — ha and /i + ha. Since 1 standard deviation is 10 units, 1.3 of 
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them amounts to 13 units. We conclude that at least 40% of the measure¬ 

ments lie between — 11 and 15. Thus, the limits we want are — 11 (i.e., 2—13) 
and 15 (i.e., 2 -f 13). 

There is one subtlety about Chebyshev’s theorem that limits its useful¬ 

ness, however. In the context of the last example we determined that at least 

40% of the measurements lay in a certain interval. Chebyshev’s theorem does 

not guarantee that precisely 40% of the measurements lie in the interval but 

rather that at least that many do. The true number could be a good deal 

more. For example, the data of Figure 7.19 has ju = 2 and o = 10, just as 

-11 -8 2 12 15 

Figure 7.19 

in the last example. Consequently, we can conclude by Chebyshev’s theorem, 

as we did in the last example, that within 1.3 standard deviations of the 

mean we shall have at least 40% of the measurements. Since 1 standard devia¬ 

tion is 10 units, 1.3 of them amounts to 13 units, and we conclude that at 

least 40% of the measurements lie between — 11 and 15. As you can see from 

the figure, this is not a very good estimate because all the measurements 

actually lie within the limits —11 and 15. 

Example 5 

A political party decides to appeal to middle-income voters by suggest¬ 

ing lower tax rates for them. The party concludes that to be effective the 

policy must favor at least three-quarters of all families in the United States. 

What income brackets should be given favorable treatment, assuming that 

mean family income is $11,000 and that a = $2000? 

Solution: As an initial trial, the party experiments with setting the 

limits for favored treatment from $9000 to $ 13,000. These limits are 1 standard 

deviation above and below the mean so we can use an h value of 1 in Cheby¬ 

shev’s theorem to see what percentage of families is guaranteed to lie within 

these limits. However, 1 — 1/(1)2 = 0 and so we are not guaranteed that 

anyone lies within these income brackets. Senator Marble, the party leader, 

snorts that this is ridiculous since there must be many families within these 

limits. His girl Friday, who is a statistical wonder, explains that he is right, 

of course, and that the problem is that the mean and standard deviation do 

not tell the whole story about the data. Unfortunately, Marble’s knowledge 



268 facts and figures 

doesn’t extend to knowing how many families lie within the limits from 

$9000 to $13,000 so it is necessary to find some information from the 

admittedly inadequate mean and standard deviation model. Increasing the 

size of the interval so that its limits are 2 standard deviations from the mean 

will accomplish this. For with h — 2, 1 — 1 /(h)2 — % and so at least 75% of 

all families in the United States have incomes in the range from $7000 to 

$15,000 (assuming still that n = $11,000 and o — $2000). 

EXERCISES 7.5 

1. For each of the following sets of data, calculate the mean /j, and the 

standard deviation o. 
(a) 1,2, 8, 5, 5, 4, 6, 7, 8, 4 

(b) 1.1, 1.3, 1.5, 1.7 
(c) 3, 4, 4, 3, 2, 1,3, 3, 4 

2. For each of the sets of data in Exercise 7 on p. 257, calculate the mean 

H and the standard deviation o. 

3. The week’s low temperatures have been 

40°, 30°, 40°, 40°, 50°, 20°, 60° 

Find the mean and the standard deviation. 

4. Compute the mean n and the standard deviation a of the following set 

of numbers: 

1, 3, 8, 4, 5, 4, 6, 7, 9, 3 

How many measurements actually lie between ju — 2a and // + 2a ? 

What number is predicted by Chebyshev’s theorem? 

5. In a labor-management dispute, management claims that since the mean 

of the workers income is $12,000, they are doing quite well and don’t 

need a wage increase. Labor counters by saying that the mean models 

the situation poorly because there are a great many workers earning 

a great deal less than the mean. Some research turns up the fact that the 

mean figure of $12,000 is correct and that the standard deviation is $500. 

Which side has the better argument ? 

6. A crutch manufacturer wants his product to accommodate 99 % of the 

adult population and so he makes his crutches adjustable. What should 

the maximum and minimum height adjustments be to achieve the 99% 

goal? Assume that the mean height of adults is 66 in. and that the 

standard deviation is 2 in. 

7. A computer file of unemployed job seekers is being set up. It is neces¬ 

sary to set a limit to the length of a surname the computer can handle. 
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Since people do not want to see their names mangled, it is decided that 

the limit should be large enough to handle 99.5% of all surnames 

without cutting them short. If mean surname length is seven letters and 

if the standard deviation is 1.5, what upper limit should be set? 

8. A home developer decides to build homes to accommodate family sizes 

of up to 7 persons. What percentage of all families in the United States 

could be guaranteed to find one of his homes suitable if mean family 

size is 4.5 persons and if the standard deviation is 1.7? 

9. Shelves are being put up for a library and it is necessary to determine 

what vertical distances should be maintained between shelves. The 

librarians want a minimum distance that will accommodate 95 % of the 

books in the library. There is no time to measure all the books so a 

sampling is made that produces these numbers for the heights of the 

books in the sample: 9, 9^, 10, 10, 9, 8, 10, 9, 8, 8^, 8^, 8^. Assuming 

that the collection of all the books in the library would have the same 

mean and standard deviation as this sample, can you determine the 

required distance ? 

10.* In what situations might it occur that a person knew the mean and 

the standard deviation for a collection of data but didn’t have access 

to the data itself? 

SUGGESTED READING 

Freund, J., Statistics, A First Course, Prentice-Hall, Inc., Englewood Cliffs, 

N.J., 1970. A clear development of elementary statistical and probabil¬ 

istic methods. 

Huff, D., How To Lie With Statistics, W. W. Norton & Co., Inc., New 

York, N.Y., 1954. A humorous view of the pitfalls of interpreting 

statistics. 

Moroney, M. J., Facts from Figures, Penguin Books Inc., Baltimore, Md., 

1951. A fine exposition that starts at the beginning and reaches some 

fairly technical subjects almost painlessly. 
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probability 

8.1 The meaning of probability 

All of us have been faced with situations that involve chance and uncertainty. 

Here is a true-false test involving such questions. See how well you can do at 

answering them. The remainder of this chapter will be devoted to developing 

an appropriate mathematical framework for dealing with questions of this 

kind. 

(1) A newly married couple is planning to have four children. Suppose that 

at each birth the chances are even that they will have a boy or a girl. The 

chances are also even that they will have two boys and two girls altogether. 

True False 

(2) A doctor tells you that you have a 50-50 chance of surviving a delicate 

heart operation. This means that if you were to undergo the operation four 

times, you would only die twice. 

True False 

(3) A fair roulette wheel has had a run of 20 reds. There is less than 1 chance 

in 10,000 that the next color to appear will be red again. 

True False 

(4) Any given coin can be determined by an experiment to be fair (having 

even chances of coming up heads or tails) or not. 

True False 

270 
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Extra Credit 

(5) There is a close to one-third chance of getting a score of 75 % or better 

on the exam above (consisting of the first four questions) by merely guessing. 

True False 

Let us consider the fourth question. A first approach might be to exa¬ 

mine the physical construction of the coin to see whether it is well-balanced, 

whether the weight is evenly distributed, and so on. Assuming that no unusual 

irregularities or marked assymetries are discovered, the next step would 

undoubtedly be to flip the coin a number of times and keep track of the 

outcomes. After each flip you might compute the fraction of total flips that 

turned up heads, the so-called relative frequency of heads. In the table 

below, we list the sequence of heads and tails that was recorded in an actual 

experiment of this type. Under each entry of H (head) or T (tail) we list the 

relative frequency of heads up to that point. Figure 8.1 shows how the relative 

frequency of heads varies as the number of tosses increases. 

H T H H T H H T T H T H T 

1 1 2 3 3 4 5 5 5 6 6 7 7 

1 2 3 4 5 6 7 8 9 10 11 12 13 

H H H T T T T T H T T T H 

8 9 10 10 10 10 10 10 11 11 11 11 12 

14 15 16 17 18 19 20 21 22 23 24 25 26 

We can draw two conclusions. First, we notice that the relative fre¬ 

quency is a bit erratic at the outset. For this reason, judging the fairness of 

the coin after just a few tosses would be unreliable. Second, we notice that in 

the long run the relative frequency stops jumping around and stabilizes—in 

this case at around 0.50, which suggests that the coin is fair or tolerably fair. 

This phenomenon of stabilization of the relative frequency is common in 

many other circumstances; for example, 

(1) The relative frequency of correct answers given while guessing one’s 

way through a true-false exam. 

(2) The relative frequency of defective items produced by a machine under 

standard operating conditions. 

(3) The relative frequency of patients suffering from a certain disease who 

show improvement when treated with drug X. 

(4) The relative frequency of male babies born. 

All the examples above where stabilization of relative frequency occurs 

can be conceptualized in a similar way. By the word experiment, we mean 



Rel. Freq. of Heads 

Figure 8.1 Number of Tosses 

a situation which can be repeated many times but the results of which cannot 

be predicted in advance. Each result of an experiment is called an outcome. 

To clarify this use of terminology, we shall show how the terminology applies 

to several of the examples above. In the first example, the experiment consists 

of answering a question on a true-false examination. The experiment can have 

two outcomes—either a correct or an incorrect answer is given. Which result 

will occur is not predictable in advance. In the third example, the experiment 

consists of testing a person with a new drug. One cannot predict which of the 

two outcomes, “improvement” or “no improvement,” will occur. 

In light of the tendency for the relative frequency for many situations 

to stabilize, as in our coin tossing example (see Figure 8.1), we make the 

following empirical assumption: 

EMPIRICAL ASSUMPTION 

Let an experiment be repeated N times. If NA denotes the number of times in 

these N repetitions that the outcome A occurs, then as N increases, NJN 

stabilizes at a definite number pA. 

The number pA, which exists by our empirical assumption, is the prob¬ 

ability that on any performance of the experiment we shall observe that A 

occurs. The number pA represents approximately the fraction of the time that 

A occurs in a large number of repetitions of the experiment. 
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Example 1 

John says that he has a probability of two-thirds of hitting the target 

every time he shoots at it with his bow and arrow. What does he mean? 

Solution: If John were to repeat the experiment of shooting at the 

target many times, then one can compute the relative frequency of getting 

a hit. If the probability of his hitting the target is two-thirds, then the relative 

frequency of getting a hit must stabilize at two-thirds. 

In practice, one can never perform an experiment an infinite number of 

times so we must estimate the probability by using a relative frequency for a 

large number of repetitions of the experiment. But how large? In our coin 

toss experiment, the relative frequency seems to stabilize after 25 tosses so we 

would calculate the relative frequency for 25 or more tosses and use that for 

the probability of heads. In doing this we are only getting an approximate 

result because we can never tell what the coin might do if we continued tossing 

it. This is a weak spot in the theory but as far as anyone can tell, it does not 

affect the practical usefulness of this concept of probability. 

Another shortcoming of the relative frequency concept of probability 

is that there are many experiments that are not repeatable—and so no relative 

frequency can be computed. In such situations however, many people feel a 

strong intuitive urge to assign a subjective probability. For example, if a man 

considers whether to ask a woman to marry him, he will undoubtedly esti¬ 

mate the probability of her accepting the offer. The experiment of asking for 

her hand in marriage is rarely repeated, however, and so his probability has 

little scientific basis. Similarly, a businessman may estimate the probability 

that he will get a certain government contract, even though the situation will 

never recur. A related problem occurs in estimating the probability of sur¬ 

viving a certain operation, as in question 2 of the true-false examination. For 

a given patient, the operation will be performed only once. Since the surgeon 

may have performed the same operation on many patients in the same phy¬ 

sical condition, however, he might calculate the relative frequency for sur¬ 

vival on this basis. 

EXERCISES 8.1 

1. A poll is taken of 481 voters to see whom they favor for dog catcher in 

the upcoming election. If 322 persons polled favor Mr. Galp, estimate 

the probability that any one person will favor Mr. Galp. 

2. An airline’s records show that 643 of its 813 flights from New York to 

Dallas have arrived less than 5 min late. Estimate the probability that a 

given New York to Dallas flight will arrive less than 5 min late. 
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3. A department of motor vehicles has compiled records for the month 

of January indicating that 11,564 out of 23,465 motorists selected the 

upper deck rather than the lower deck of the Gaklic River Bridge. 

Estimate the probability that a motorist making this choice in January 

will select the lower deck. 

4. The weather bureau in Lorainnesville has statistics indicating that it 

has snowed 60 times on the last 80 New Year’s Days. Estimate the 

probability that it will snow in Lorainnesville on New Year’s Day. 

5. A department store makes a survey indicating that of 670 customers 

who entered the store, 340 made at least one purchase. Estimate the 

probability that a person entering the store will make at least one pur¬ 

chase. 

6. Two common phrases used in situations involving chance are odds for 

an outcome and odds against an outcome. The definition of these phrases 

is as follows: 
If the probability of an outcome is p, then the odds for the 

outcome are p to 1 — p. If the probability of an outcome is p, then the 

odds against the event are 1 — p to p. 

(a) Someone claims the odds of winning in the state lottery are 1000 

to 1. What is the probability of winning in the lottery? 

(b) If John is willing to give 5 to 1 odds that he can beat Jake at chess, 

what probability would John attach to his being able to beat Jake ? 

Give an interpretation of this probability in terms of relative fre¬ 

quencies. 

(c) The weatherman says that the odds against snow are 4 to 5. What 

are the odds for snow? What is the probability that it will snow? 

Do you think a weatherman’s use of the word probability falls 

under the frequency definition? If so, explain why. 

(d) The odds against getting a parking ticket when one parks in front 

of a fire hydrant are 9 to 1. What is the probability of getting a 

parking ticket when one parks in front of a hydrant? 

7. In 30 times at bat, Flashy Fred has gotten 18 hits as a pinch hitter. 

Estimate the probability that Flashy Fred will get a hit when he bats. 

Discuss the role of the concept of “hot streak’’ in making a decision such 

as whether or not to use Flashy Fred all the time. 

8. Invent several examples where an experiment would arise only once. 

Are such examples tied to the idea that human beings are unique as 

individuals? 

9. Criticize the legitimacy of using a relative frequency interpretation of 

the word probability in the context of surviving an operation. (Hint: 

How many people of the same age, race, weight, etc., are there who 

have undergone any given operation?) 
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10. Attempt to formulate a framework in which the weatherman’s use of 

the word probability can be interpreted using a frequency definition of 
probability. 

11. Can frequency interpretations be given to the following phrases that 

involve the use of the word probability? 

(a) I'll go to the movies on Friday with a probability of one-half. 

(b) The probability that the sun will rise tomorrow is one. 

(c) The probability that I pass Mathematics 150 is zero. 

(d) The probability that Senator X will win the election is seven- 
tenths. 

(e) The probability of power failures this summer is four-tenths. 

(f) The probability that I shall graduate from college is nine hundred 

ninety nine-thousandths. 

12. * Try to construct an example of an experiment that can be repeated 

arbitrarily often but for which the relative frequency of an occurrence 

will not stabilize. 

13. * Take an ordinary penny and toss it 25 times. Use the data that you 

get to construct a chart like the one in the table on p. 271. Does your 

chart tend to verify the empirical assumption? Continue your chart for 

another 25 tosses. Compare the probability of a head that you would 

estimate on the basis of 25 tosses to that probability that you would 

estimate on the basis of 50 tosses. Which estimate would you tend 

to prefer? Place a wad of gum on or attach a paper clip to one side of 

the coin and repeat the procedure above. How has the presence of the 

gum or paper clip affected the estimates for the probability of a head? 

14. * For each of the situations below, determine empirically (by constructing 

a chart as in the table on p. 271) if the empirical assumption, p. 272, 

appears to be valid. 
(a) Pick two pages of a book and compute the relative frequency of 

the letter e to the total number of letters. 

(b) Toss an ordinary die, and compute the relative frequency that 

the number 6 will occur. 
(c) Using a telephone book, compute for one page of the book the 

relative frequency with which the number 4 appears (at least once) 

in a telephone number. 

8.2 probability assignments 

The determination of probabilities is not in the domain of probability theory 

but is a matter for an applied statistician. Our concern will be to draw con¬ 

clusions from given assumptions about probabilities that can be obtained by 
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manipulating these numbers. However, what is reasonable to assume about 

a probability ? Is it reasonable to say that there is a minus one-third chance of 

winning a bet? Would you feel uneasy if someone said that the probability of 

surviving an operation was one-fourth and the probability of not surviving 

was also one-fourth? 
Before treating these questions, let us first develop some terminology. 

When an experiment has been conducted, the collection of all outcomes 

of the experiment is called the sample space for the experiment. The outcomes 

that make up the sample space are called simple events. 

Example 1 

A large number of students at Ellenville High School are asked their 

ages. Construct a sample space for the experiment of asking a student his 

age. 

Solution: Assuming that the high school is an ordinary one, the stu¬ 

dents for the most part will range in age from 12 to 19. Thus, the sample 

space S will consist of the outcomes 12, 13, 14, 15, 16, 17, 18, and 19. Each 

of these numbers is referred to as a simple event. 

Now suppose we have a sample space S which consist of n outcomes 

which we shall denote by ov o2, . . . , on. Suppose the probabilities assigned 

(by some method not necessarily known to us) are denoted by p{ox), p(o2), 

. . ., p(on), respectively. We can now deduce some restrictions on these num¬ 

bers that must hold in order for them to “make sense” if we were to interpret 

them as stabilized relative frequencies. 

Imagine we were to repeat our experiment (whose sample space is S) 

N times and that o. occurred n. times out of N. Then we would have 0 < n. 

< N. Hence, if we divide by N, we obtain 0 < njN < 1; that is, the relative 

frequency with which ot occurs is a number that is greater than or equal to 

0 but less than or equal to 1. Since as N becomes larger, we want njN to 

stabilize at p(ot), it follows that we want 0 < p{ol) < 1. Therefore, we can 

reasonably make the following assumption about probability numbers: 

ASSUMPTION 1 

For each outcome o. (i taking on values 1 up to n) of an experiment, the 

probability number /?(o() assigned to the outcome oi must satisfy the in¬ 
equality 

0 < P(o,) < 1 

It may be useful to point out the meaning of saying p(ol) = 0. Intui¬ 

tively, it may seem to mean that ot is impossible and that outcome o. can 
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never occur. If we interpret /?(o.) as a stabilized relative frequency, however, 

then we can conclude that o. is extremely unlikely and occurs so rarely that the 

stabilized relative frequency is 0. A similar analysis is given in suggesting that 

the meaning of p(ot) = 1 is that oi almost always happens. 

Example 2 

Consider the sample space S constructed from the outcomes of the 

experiment of asking a woman who was a member of the Zero Population 

Growth Movement how many children she wanted to have. The sample space 

S would consist of the numbers 0, 1, or 2; i.e., S = {0, 1, 2}. The following 

assignments of probabilities would all satisfy assumption 1. 

(1) P{ 0) = 
1 
J P(l) - 

1 
T 

(2) P( 0) = 1 P( 1) = 0 

(3) P( 0) = 
1 
7 P( 0 = 

1 
7 

(4) P( 0) = 
1 

T7 P( D = 
1 
7 

(5) P( 0) = 
1 

T7 P( 1) = 
1 

T7 

P(2) - i 
P( 2) = 0 

P(2) = * 

p( 2) = n 

P(Z) = -nj 

Note that in each case the number assigned to any outcome is between 0 and 1. 

Once again, imagine that when our experiment is repeated N times, ot 

occurs nx times, o2 occurs rt2 times, . . . , on occurs nn times. Thus, we have 

that ni + n2 + - • • + nn = N. If we divide this equation by N, we obtain 

«1 I «2 I 

N + N + ^ N 

The interpretation of this last equation is that the sum of the relative frequen¬ 

cies must add up to 1. Since as N, the number of times we repeat the experi¬ 

ment, becomes larger, we want nJN to stabilize near p(o,.), the probability of 

op the following equation should hold for probability numbers: 

P(o,) + p(o2) + • • • + p(o„) = 1 

This shows the need for the following assumption: 

ASSUMPTION 2 

Given the sample space {ot, , oj, the probability numbers p{ox), . . . , 

p(on) assigned to the outcome o,,. . ., on, respectively, must satisfy 

P(° i) + • • • + P(°„) — 1 



278 probability 

Example 3 

The assignments of probability given in parts 1, 2, and 3 of Example 2 

satisfy Assumption 2 as well as Assumption 1. For the assignments in parts 

4 and 5 however, although Assumption 1 is satisfied, we see that Assumption 

2 is not satisfied since the probabilities do not sum to 1. A sample space S, 

together with an assignment of probability numbers that satisfies Assumptions 

1 and 2, is called a probability model. Below are listed some examples of 

situations where one might be interested in constructing probability models. 

In each example various different models are considered. 

Example 4 

A subject in an experiment in behavioral psychology is asked which of 

the figures below he finds most aesthetically pleasing. 

Circle Square Rectangle Diamond 

We shall use the first letters of the words below the diagrams to indicate 

the outcomes of the experiment. Hence, the sample space is 

S = {c, s, r, d] 

PROBABILITY MODEL 1 

Each of the simple events is assigned a probability of one-quarter. 

P(c) = 1 P(s) = | P(r) = i P(d) = i 

PROBABILITY MODEL 2 

Probability numbers are assigned as shown: 

P{c) = i P(s) = > P(r) = j P{d) = * 

Which of these probability models is correct? The answer is that both are 

correct. Why? Because all that is required of a probability model is that it 

obey the requirements of Assumptions 1 and 2. For some particular collection 
of individuals one model might be more useful than others. 
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Example 5 

An ordinary (six-sided) die is tossed. Construct a probability model 
for this experiment. 

Solution: An ordinary die can show any of six numbers, 1, 2, 3, 4, 5, 
or 6, when it is rolled. The sample space thus consists of 

5 = {1,2, 3,4, 5, 6} 

PROBABILITY MODEL 3: 

m = i P(2) = t P(3) = i P(4) = | P(5)=± P(6) = i 

In this model we have assigned each simple event the same probability num¬ 
ber. 

probability model 4: The following is an acceptable probability 

model since both Assumptions 1 and 2 have been met. 

P(l) = i P( 2) = ! P( 3) =4 P(4) = * P(5) — P(6) = A 

probability model 5: Since the requirements made by Assumptions 1 

and 2 have been met, this is an acceptable probability model: 

P(l) = i P( 2) = 0 P( 3) = 0 P( 4) = 0 P{ 5) = i P{ 6) = i 

Models 4 and 5 correspond to a biased die, while Model 3 corresponds 

to a fair die. 

Example 6 

A drug called hexaglorifane is being tested to determine if it cures the 

common cold. A patient treated with hexaglorifane can improve, die, or show 

no change. Construct probability models for the experiment of treating a 

patient with hexaglorifane. 

Solution: The sample space for the experiment has three outcomes, 

which we shall denote by /, D, N for improve, die, or show no change, 

respectively. 

PROBABILITY MODEL 6\ 

P(I) = | P(D) = \ P{N) = I 

PROBABILITY MODEL 7: 

P(I) = 0 P(D) = 1 P(N) = 0 



Pierre-Simon, Marquis de Laplace (1749-1827), was 
the son of a poor farmer. His most famous work was in 

celestial mechanics. Using and extending Isaac Newton's 
work, he calculated the orbits for the moons of Jupiter, 
as well as the velocity of rotation for Saturn's rings. His 
work in probability, begun in 1774, culminated in the 
book Theorie analytique des probabilities, which 
appeared in 1812. This work deals with the foundations 
of probability theory, geometric probability, least squares 
(a method of fitting empirical data using curves), games 
of chance, and probability functions. Part of his writings 
on probability indicated applications to the theory of 

elections. 
(Courtesy The Bettmann Archive.) 

PROBABILITY MODEL 81 

P(I) = 1 P(D) = 1 P(N) = i 

The choice of model would depend on experimental results concerning 

hexaglorifane’s effectiveness. 

In each of Examples 4 to 6, the first probability model given is the 

kind that is most often encountered. In this kind of probability model all the 

outcomes in the sample space are assumed to have the same probability. 

Thus, if the sample space has n outcomes in it, for each outcome ot we would 

have p{of) = l/n. One reason the equiprobable model arises so often is that it 

corresponds to outcomes to an experiment that occur at random or that occur 

with equal likelihood. This model is especially common in gambling situations. 

Example 7 

What is the probability of drawing the ace of spades from a well- 

shuffled deck of cards in one try? 

Solution: As in all probability problems, the first thing to do is to 

describe the sample space. In this case, the sample space consists of all the 

52 cards in a standard deck. Since the drawn card is selected from a well- 

shuffled deck, it is natural to assume that each card has the same probability 
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of being drawn. Thus, the probability of drawing the ace of spades is In 

terms of relative frequency, this means that over a very long run of repetitions 

of this experiment the ace of spades will be drawn about 1 time out of 52. 

Another argument in favor of the equiprobable model is that it is ap¬ 

pealingly simple. It should be borne in mind, however, that in real problems 

relative frequencies are rarely equal. For example, even if a symmetrical die 

is rolled 600 times, it is not likely that each of the six possible outcomes will 

occur exactly 100 times. 

As a further example, consider the experiment of asking a high school 

student his age. It seems safe to say that the outcomes of this experiment are 

the numbers from 12 to 19. It is also safe to say, however, that the probability 

assignment would not be the equiprobable one—the numbers 12 and 19 

would be much less likely to occur than the others under normal circum¬ 

stances. For the sake of our further discussion, suppose the probability 

assignment is the following: 

P{ 12) = 0.05 
P(13) = 0.16 
P(14) = 0.18 
P(15) = 0.19 
P(16) = 0.19 
P(17) = 0.13 
P(18) = 0.06 
P(19) = 004 

1.00 

Now suppose we change the experiment by selecting a student at ran¬ 

dom and asking him whether he is eligible to vote in the Presidential election 

that is occurring that year. What is the probability that the answer is yes? 

One approach would be to construct a new sample space S = [yes, no). But 

what probability assignment would we use? The equiprobable one is certainly 

no good. One feels instinctively that the probability assignment for the age 

experiment ought to help us out. 
The answer will be yes provided the student is 18 or 19, and we intui¬ 

tively feel that the probability of a yes answer would be P(18) + F(19) = 

0.06 + 0.04 = 0.10. We formalize this type of reasoning, without recourse 

to a new sample space, as follows. 

DEFINITION 1 

If S is a sample space, then any subset E of S is referred to as an event. The 

subset of S consisting of all elements of the sample space not in E is called 

the complement of E and is denoted by E'. The probability of any event is 

the sum of the probabilities of the outcomes constituting that event. 
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In the example concerning the high school students, the event being 

able to vote in the Presidential election is just a wordy way of describing the 

subset [18, 19}. Consequently, according to our definition, P(18, 19) = .P(18) 

+ P( 19) = 0.06 + 0.04 = 0.10. The event {12, 13, 14, 15, 16, 17} is the com¬ 

plementary event to {18, 19} because it contains all the remaining outcomes of 

the sample space. Its probability is 0.05 + 0.16 + 0.18 -j- 0.19 + 0.19 + 

0.13 = 0.90. A simpler way to calculate the probability of the complementary 

event is P(12, 13, 14, 15, 16, 17) = 1 - P(18, 19) = 1 - 0.10 = 0.90. This 

example is a special case of the following: 

THEOREM 1 

If E has probability P{E), then P{E') = 1 — P(E). 

Example 8 

What is the probability of drawing a spade from a well-shuffled standard 

deck of cards? What is the probability of drawing either a spade or an ace? 

Describe the complementary events and their probabilities. 

Solution: The sample space consists of the 52 cards. The event we are 

interested in, described in words as drawing a spade, consists of 13 of these 52 

cards. Using the equiprobable assignment of probabilities, P(spade) = 

= The event spade or ace consists of 16 cards (13 spades, together with 3 

other aces) and so P (spade or ace) = y§ = yy- The complementary event to 

drawing a spade is drawing a heart, club, or diamond and has probability 

1—^ = 1;. The complementary event to drawing a spade or an ace is drawing 

a heart, club or, diamond that is not an ace. Its probability is fa. 

Occasionally the construction of a suitable sample space and probability 

assignment is a bit less routine than in the foregoing examples. Here is an 
illustration. 

Example 9 

A married couple expects to have two children and wants to know the 

probability of the event both children will be of the same sex. 

Solution 1: Take as our sample space B0, Bu B2 (where Bt represents 

the outcome i boys). Assuming the equiprobable model, the event we are 

interested in has probability one-third. 

Solution 2: Take as the sample space BB, BG, GB, GG (where BG, for 

example, means the first child is a boy and the second is a girl) and assume 
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the equiprobable model. Then the event we are interested in is {BB, GG} 
and has probability \ \ 

Both solutions may seem reasonable but only one is useful to model the 

real-world situation. Solution 2 actually fits the real data while Solution 1 

does not. (You can verify this with a coin tossing experiment—interpret 

heads as having a girl.) There are also theoretical reasons for arriving at 

Solution 2 that we shall discuss in Section 8.4. For the moment, we wish 

merely to make the following observations motivated by this example: 

Overly casual use of the equiprobable model may lead to errors. 

EXERCISES 8.2 

1. For the various assignments of probabilities to the sample space below, 

state which assignments would constitute a probability model. If the 

assignment is not a probability model, give a reason. 

John asks his date to select an ice cream flavor from a list of 5 on 

a chart at the restaurant. The sample space S of outcomes uses appro¬ 

priate abbreviations for the flavors. 

S = {C (chocolate), V (vanilla), M (mint), P (pecan) S (strawberry)} 

(a) P(S) = j, P(C) = P(P) = j, P(V) = 0, P(M) = 0 

(b) P(S) = P(C) = P(P) = l P( V) = l P(M) = | 

(c) P(S) = -i, P(C) = 1, P(P) = l P( V) = -i, P(M) = 0 

(d) P(S) = l P(C) = l P(P) - 1 P( V) = P(M) = \ 

(e) P(S) = l P(C) = i, P(P) = P( V) = l P{M) = ^ 

(f) P(S) = l P(C) = i P(P) = l P{V) = Vz* PW = i 

2. The National Energy Commission is planning to permit the building 

of a nuclear power plant at one of these sites: Chicago, Ill.; Los Angeles, 
Calif.; Big River, Mont.; Ogalala, Neb.; Superior, Wis; or Hornitos, 

Calif. At present it seems that all sites are equally likely to be chosen. 

Find the probabilities of the following events: 

(a) The site chosen is adjacent to a major population center. 

(b) The site chosen is near a major body of water. 

(c) The site chosen is in a major earthquake zone. 

3. A student selects a book off the shelf in his library and records the first 

letter of the first word in Chapter 1. Construct a sample space for this 

experiment. 

4. A single card is drawn from a well-shuffled deck. If we assume the 

equiprobable measure is used, what is 
(a) The probability a spade or a heart is drawn? 

(b) The probability a 4 or an 8 is drawn? 

(c) The probability of a 5 or a heart? 
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5. Referring to Example 2 and using Model 1, compute the probabilities 

of the following events: 
(a) The figure chosen has no right angle. 
(b) The figure chosen has curved lines. 
(c) The figure chosen is a quadrilateral. 
Compute the answers for the problem above for Model 2. 

6. Suppose A and B are two events in sample space S. Show that P(A U B) 
= P{A) + P(B) — P(A n B). Consider Example 5, Model 4 and the 

events 

A — an odd number appears 

B = a number greater than 4 appears 

C = 4 appears 

Compute 
(a) P(A') 
(b) P(B') 
(c) P(A U B) 
(d) P(A u C) 
(e) P(B U C) 
(f) P(C') 
(g) P(A’ U B) 

7. A mathematics class has 20 girls and 10 boys. The names of the students 
are written on tags that are then placed in a jar and mixed. One tag is 
drawn. What probability model would you use for the sample space S' 
= {B, G} (B = boy chosen, G — girl chosen)? 

8. Jerry has some socks in the dryer. There are two pairs of brown socks, 
one pair of blue socks, and two pairs of black socks. Suppose a single 
sock is drawn from the dryer, and we assume any individual sock out 
of the ten socks is as likely to be drawn as any other. 
(a) What is the probability a black sock is drawn? 
(b) What is the probability a black or a blue sock is drawn? 
(c) What is the probability a brown sock is not drawn? 
(d) What is the probability a blue sock is not drawn? 

9. A single marble is drawn from a bag containing three red, four green, 
and two blue marbles. If we assume the marbles are all equally likely 
to be chosen, find 
(a) The probability a blue or red marble is chosen. 
(b) The probability a green marble is not chosen. 

10.* Using the four figures of Example 3, ask 40 individuals which shape 
they prefer. Use the relative frequencies you get to construct a prob¬ 
ability model. 
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11. * Using your local phone book, record the last digit of the first 50 tele¬ 

phone numbers. Compute the relative frequencies you obtain. Does 

your data support the use of the equiprobable model for the experi¬ 

ment : record the last digit of a number drawn from the telephone book ? 

12. * For a period of 30 nights, count the number of phone calls your family 

gets between 7 and 10 p.m. Use the data you collect to estimate the 

probability of your getting k (k > 0) phone calls between 7 and 10 p.m. 

13. * A person is chosen at random and is asked in what state he was born. 

A probability of is assigned to each possible outcome. Is the resulting 

probability model reasonable? 

8.3 multistage experiments 

Let us consider again the plight of the couple looking for a suitable sample 

space to describe the experiment of having two children. This experiment 

differs from our earlier examples in that the experiment is really a multi¬ 

stage experiment consisting of two repetitions of the simpler experiment of 

having one child. For this simpler experiment there is only one reasonable 

sample space, {B, G.} The sample space for the multistage experiment can 

be constructed from the simpler experiment by drawing a certain kind of 

graph called a tree. 
The outcomes of the multistage experiment will be built up, one stage at 

a time, from a single vertex called a root. Let us illustrate the procedure by the 

multistage experiment of the couple planning to have two children. Starting 

at the root of the tree (see Figure 8.2) we draw as many edges as there are 

outcomes to the first stage of the multistage experiment. In the case of the 

birth of a child, there are two outcomes, a boy or a girl. Hence, as shown 

in Figure 8.2, we draw two edges from the root. We label the end points of 

these edges by B and G to indicate, respectively, that the first child born was 

a boy and that the first child born was a girl. We now imagine that the second 

stage of the experiment is carried out. If the result at the first stage was a girl, 

there are two possible outcomes for the second child—boy or girl. We indi¬ 

cate this by taking the 1-valent vertex G and drawing from it two edges, one 

for each outcome of the second stage of the experiment. Our tree would 
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now appear as shown in Figure 8.3. The labels of the end points of the new 

edges are designed to accumulate the history of the previous stages. Thus, 

the label GG means the first child was a girl and the second child was a girl. 

Figure 8.3 

The label GB indicates that the first child was a girl and the second child was 

a boy. If the result at the first stage was a boy, we again have two possible 

outcomes for the second child, a boy or a girl. To indicate these outcomes in 

the second stage, we take the 1-valent vertex B (Figure 8.3) and draw two 

edges emanating from the vertex, one for each of the possible outcomes. The 

final result for the two stages, incorporating both cases from the first stage, 

is shown in Figure 8.4. Further stages of this experiment would be depicted 

BB 

BG 

GB 

GG Figure 8.4 

the same way. Thus, Figure 8.5 shows the tree for the experiment of having 
three children. 

Using the procedure developed here, together with your knowledge of 

the equiprobable model, can you answer any of the questions of the true- 

false examination at the start of this chapter? 

It may happen that the simple experiments that constitute the multi¬ 

stage experiment are not identical. For example, consider the two-stage 

experiment of determining environmental conditions at a certain weather 

station and suppose that this consists of two simpler experiments: First we 

determine whether or not it is raining—the sample space obviously being 
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{Rain, Fair]—and then we check air pollution readings, with the sample 

space being {Acceptable, Unacceptable, Hazardous). The tree for this two- 

stage experiment is shown in Figure 8.6. We could also do our classifications 

in the reverse order, checking for pollution before rain. Figure 8.7 shows the 

tree we would get in that case. The two trees look different but the out¬ 

comes at the right-hand end are the same. 

Sometimes it is useful to know the total number of outcomes in the 

sample space of a multistage experiment without listing all these outcomes. 

For example, how many outcomes are there if we flip a coin six times? The 
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outcomes for the first three stages (flips) are shown in Figure 8.8 (H = heads; 

T= tails). If we imagine extending the tree of Figure 8.8 three more stages, 

in each extension doubling the number of outcomes, we obtain 64 possible 

outcomes after six stages. This reasoning is a particular case of the following 

general principle. 

Figure 8.8 

PRINCIPLE OF COUNTING 

Given k experiments whose results do not depend on one another, if there 

are «, outcomes in one experiment, n2 outcomes in a second experiment, . . . , 

nk outcomes in a kth experiment, then the number of different outcomes in the 

multistage experiment built up from the k experiments is n1Xn2X ■ ■ ■ Xnk. 

As an example of where this principle comes in handy, suppose in a 

group of 24 people we ask each person his birthday and we wish to determine 

the probability that there will be some pair of persons with the same birthday. 

This is best thought of as a 24-stage experiment where each stage is the simple 

experiment of asking one person his birthday. We shall ignore leap years and 

suppose that the sample space for each such simple experiment consists of the 

integers from 1 to 365, representing the various days of the year. If we were 

to draw a tree diagram for this 24-stage experiment (an impossible task 

actually), we would have, according to the Principle of Counting, 36524 

different outcomes possible. We can think of these outcomes as being se¬ 

quences with 24 entries, each entry being one of the numbers from 1 to 365. 

The event E we are interested in is the collection of all sequences where at 

least two entries are the same. We shall assume the equiprobable probability 

assignment on the sample space of 36524 outcomes, and so 

P(E) = 
n(E) 
36524 
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where n(E) is the number of elements in E. Alternatively, 

„<£>=!-„(£')= l-gp 

where E' is the complementary event which can be described as the set of all 

sequences in S’ which have no entries the same. 

It turns out that we can easily count n(E') by the Principle of Counting. 

Clearly, the first entry in a typical sequence in E' can occur in any one of 365 

ways. The second entry, however, corresponding to the second person’s birth¬ 

day, must be different from the first entry if the sequence is in E'. Thus, the 

second entry can occur in only 364 different ways. Continuing this way and 

applying the Principle of Counting, we see that the total number of sequences 

in E' is 365 X 364 x • • • X 342. Therefore, 

rqp) _ , _ 365 X 364 X • • • X 342 
PK ’ 365 X 365 X ••• X 365 

The computation of the value of p(E) is tedious but not difficult. The value of 

p(E) is 0.538. Does this surprise you? For some reason it does not seem 

intuitively acceptable that in a group of 24 persons the chances are better 

than even that there will be two or more people with the same birthday. It 

may be of interest to see how the value of p{E) depends on the number of 

people in the group. This is shown in Table 8.1. 

Table 8.1 The Probability P{E) (to two decimals) for at Least Two Persons 
in a Group of n Having the Same Birthday 

n = P(E) = n = P(E) = 

3 0.01 17 0.32 

4 0.02 18 0.35 

5 0.03 19 0.38 

6 0.05 20 0.41 

7 0.06 21 0.45 

8 0.08 22 0.48 

9 0.10 23 0.51 

10 0.12 24 0.54 

11 0.15 25 0.57 

12 0.17 26 0.60 

13 0.20 27 0.63 

14 0.23 28 0.66 

15 0.26 29 0.68 

16 0.29 30 0.70 

31 0.73 

32 0.75 
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To return briefly to the subject of tree diagrams, it should be pointed 

out that there are cases where the Principle of Counting won’t work but 

where a tree diagram can still be an aid in enumerating possibilities. The fol¬ 

lowing examples illustrate this. 

Example 1 

A man has five coins in his pocket, one nickel (N), one dime (D) and 

three pennies (P). He reaches into his pocket and draws out one coin. 

Without replacing it, he then draws another. What outcomes can be ob¬ 

tained? How many outcomes are there? 

Solution: The final result can be built up in two stages. First one coin 

and then another must be drawn from the pocket. However, the types of 

coins available on the second drawing depend on what coin was drawn the 

first time. Thus, if the first coin drawn was a nickel, the second coin drawn 

could not be a nickel but must be either a dime or a penny. On the other hand, 

if the first coin drawn was a penny, the next coin could be of three types, a 

penny, a nickel, or a dime. With these ideas in mind one obtains the tree 

shown in Figure 8.9. There is a total of seven outcomes. This could not have 

been calculated from the Principle of Counting. Do you see why? 

Example 2 

A couple decides to have children until they have a boy and a girl or 

until they have a total of three children, whichever comes first. Describe and 

enumerate the possible outcomes of this multistage experiment. 

Solution: Figure 8.10 shows a tree diagram for the outcomes. As can 
be seen, the six outcomes are BBB, BBG, BG, GB, GGB, GGG. 



BBB 

BBG 

GGB 

GGG Figure 8.10 

EXERCISES 8.3 

1. Mary owns three skirts and four blouses. Use a tree diagram to con¬ 

struct the sample space for the experiment of picking a skirt-blouse 

outfit. 

2. A coin is tossed four times. Use a tree graph to construct the collection 

of possible outcomes. 

3. A student takes a five-question multiple-choice examination. Use a tree 

diagram to construct a sample space for the experiment of taking such 

an examination. 

4. An amateur weatherman classifies December days according to whether 

or not they are clear or cloudy and according to whether they are cool, 

cold, or very cold. Draw a tree diagram to indicate the outcomes of the 

experiment of classifying a December day. 

5. A couple is planning to have four children. Draw a tree diagram to 

indicate the possible outcomes in the sample space. 

(a) What outcomes make up the event that they have an equal number 

of boys and girls ? Call the event E. 
(b) Construct the equiprobable model for the sample space. 

(c) What is the probability of event El Does this result seem unintui¬ 

tive? 

6. In Chapter 9 we shall study the theory of games. A game can be classi¬ 

fied according to whether it has two or more players, whether it is 

zero-sum or not, and whether it permits communication or not. Draw 

a tree diagram to show the different outcomes for classifying a game. 

7. In anthropology a culture can be classified as matrilineal or patrilineal 

(i.e., whether or not you belong to your mother’s clan or your father’s 

clan). A culture can also be classified as matrilocal or patrilocal (i.e., 

whether a married couple lives at the home location of the husband 
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or wife). If you pick a culture to study, draw a tree diagram to show 

the possible outcomes. 

8. A psychologist is interested in studying emotional stability in families 

with one child. The mother, the father, and the child can each be classi¬ 

fied according to whether they are emotionally unstable or not. A one- 

child family is selected and its members tested for emotional stability. 

Draw a tree diagram for the possible outcomes. 

9. A sociologist is making a survey concerning political views. He classi¬ 

fies the persons he interviews by income (low, middle, high), sex, and 

educational level (graduated college, did not graduate college). Draw a 

tree diagram to show the possible outcomes. 

10. The main course of a meal consists of meat with two different kinds of 

vegetables. If there are four kinds of meat available and a choice of six 

possible vegetables, use the Principle of Counting to compute how 

many main courses can be served. 

11. A drug is tested on four patients. The patient either improves (I) or does 

not improve (/'). Draw a tree diagram to construct the sample space for 

the experiment of testing four patients. Let A be the event that all the 

patients improve. Let B be the event that exactly three patients improve. 

If the equiprobable measure is used on the sample space, what is the 

probability of A, and what is the probability of 5? 

12. A coin is tossed five times or until a head appears. Draw a tree diagram 

for the outcomes of the multistage experiment. (Hint: The first toss has 

two outcomes, H and T. At the second stage only T is branched since 

the experiment would terminate at H, had an H occurred.) 

13. A neighborhood health center classifies children in its outpatient clinic 

by age and sex and whether or not they have had vaccinations for 

diphtheria, smallpox, or polio. The center treats children from ages 

3 to 14. A typical category might be 7 year old girls who have been 

vaccinated for diphtheria but not for smallpox or polio. What total 

number of categories is needed? 

14. The Gruenbox Car Manufacturing Company advertises that its cars 

come in four colors; with or without automatic transmission; and with 

a choice of no radio, FM only radio, AM only radio, or FM and AM 

radio. How many models of cars does the company produce? 

15. * Use the Principle of Counting to determine the number of anagrams 

(i.e., rearrangements using the same letters) of your name. (Note: If 

your name has repeated letters, you can’t answer the question in a 

straightforward way. However, you can think of the repeated letters as 

being different at first and then decide how many anagrams you have 

overcounted when the repeated letters are not considered different.) 

16. * Seven people are each asked their horoscope signs (of which there are 
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12 in all). What is the probability that some pair of people will have a 
common horoscope sign? 

17. * An ESP researcher asks each of five people to choose a number between 

1 and 20. After comparing notes, it is determined whether or not any 

two people chose the same number. After doing this experiment 1000 

times, the researcher discovers that 700 times he got two people with the 

same number. Does this tend to substantiate the claim that ESP exists? 

18. * Among a group of n people, compute the probability that at least two 

persons have their birthday in the same month for 

(a) n = 2 (d) n — 5 

(b) n = 3 (e) n = 6 

(c) n =4 (f) n = 7 

Do your answers surprise you? 

8.4 independence 

In the previous section we showed how it was possible to obtain an enumera¬ 

tion of the set of outcomes of a multistage experiment arising from a series 

of experiments or from the repetition of the same experiment several times. 

It would be convenient if we could find a natural way of assigning probability 

numbers to the outcomes of a multistage experiment by knowing how prob¬ 

ability numbers had been assigned to the component experiments that were 

performed to obtain the multistage experiment. 

Let us consider a concrete simple example. Suppose experiment 1 con¬ 

sists of tossing a nonsymmetric coin and experiment 2 consists of another 

toss of the same coin. The multistage experiment will consist of tossing a coin 

twice. Figure 8.11(a), (b) and (c) shows the outcomes of experiments 1 and 2 

and the multistage experiment. 

Suppose statistics compiled over a long period of time show that the 

coin results in heads eight-tenths of the cases in which it was tossed. Knowing 

this, we use the natural assignment of probabilities to the outcomes of 

experiments 1 and 2 shown in Figure 8.12. We now wish to assign probabil¬ 

ities to the outcomes of the multistage experiment [see Figure 8.11(c)] using 

the probability assignments in Figure 8.12. Let us consider the simple event 

HH (heads on the first toss and heads on the second toss) which is a typical 

element in the sample space for the multistage experiment. 

It will be convenient to denote by A that a head occurred on the first 

toss and by B that a head occurred on the second toss. AB will denote that a 

head occurred on the first toss and a head occurred on the second toss. Note 

that AB is equivalent to the outcome HH. 



Experiment 1 Experiment 2 

Multistage experiment 

(c) 

Figure 8.11 

(b) 

H P(H) = 8. 
10 

P(T) = 2_ 
10 

(a) (b) 

Figure 8.1 2 

Suppose that the multistage experiment is repeated N times, where N 

is a large number. Let NAB denote the number of times out of the N repetitions 

of the experiment that A B occurs. Similarly, denote by NA and NB the number 

of times out of N repetitions of the experiment that A and B occur, respec¬ 

tively. We can then start with the algebraic identity, 

Nab^Nab 

N N 
(8.1) 
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Now using the fact that 

1 

we can rewrite Equation (8.1), 

N N Na 
(8.2) 

Next consider the fraction NAB/NA. This represents the fraction of the 

time when the first toss was a head that the second toss was also a head. How¬ 

ever, since we are dealing with two different tosses, there is no reason to believe 

that the fraction of the time that the second toss is a head when the first toss 

is a head is different from the fraction of the time that the second toss is head, 

namely, NJN. Thus, the real-world situation suggests that NAB/NA = NJN. 
Making this substitution into (8.2) we have 

NAB _ bi A . N B 

N N N 

As N gets large, the fractions NAB/N, NJN, and NB/N stabilize at P(AB), 

P(A), and P(B), respectively, so that 

P(AB) = P(A)-P(B) (8.3) 

We have thereby accomplished the task of assigning a probability to 

the event HH in the multistage experiment on the basis of the assignments 

in the component experiments; that is, since P(A) = P (heads on first toss) 

= [see Figure 8.12(a)] and P(B) — P (heads on the second toss) = 

[see Figure 8.12(b)], we assign as P(HH) = P(AB) the value as su§~ 
gested by (8.3). The assignment of probabilities to the remaining outcomes in 

Figure 8.11(c) is shown in Figure 8.13. 

The critical step in deriving the multiplication rule was the observation 

HH P(HH) = .8 8 _ 54 
10 10 100 

HT P(HT) = 8 
10 

2 
10 

- 16 
100 

TH P(TH) = 
2 
10 

8 
10 

_ 16 
100 

TT P(TT) = 
2 

To 
2 
10 

_ 4 
100 

Figure 8.13 
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that, in the real world, whether there is a head on the first toss has no effect 

on whether or not there is a head or a tail on the second toss. This notion of 

the inability of certain occurrences in the real world to affect other occur¬ 

rences can be formulated as follows: 

DEFINITION 2 

Two experiments or two repetitions of the same experiment are said to be 

independent if the results of one of the experiments do not influence the results 

of the other. 
Here are some examples of pairs of experiments which seem to be 

independent: 

(1) An oil company determines whether there is oil far beneath a certain 

parcel of land. The company also has soil fertility tests made to deter¬ 

mine its suitability for agriculture. 

(2) On two successive days you determine whether the temperature reading 

is an even number or an odd number. 

An example of two experiments which are unlikely to be independent is: to 

measure a man’s height and then determine his shoe size. In many cases it is 

unknown or is a matter of opinion whether two experiments are independent 

or not. For instance, consider the experiment of determining whether the 

stock market is “bullish” or “bearish” together with the experiment of deter¬ 

mining whether women’s hemlines are above the knee, at the knee, or below 

the knee. Some people claim to see patterns relating stock market fluctuations 

to hemline fluctuations. If such a pattern exists, it would suggest that these 

experiments are not independent. 

The reasoning used in deriving equation (8.3) in the special case of the 

coin toss experiment can be extended to justify the following general principle. 

PRINCIPLE 

If £j and E2 are two independent experiments and A is an event in the sample 

space of £j, while B is an event in the sample space of E2, then 

P (A occurs in El and B occurs in E2) 

= P (A occurs in EX)‘P (B occurs in E2) 

We will call this the multiplication rule. 

The main importance the multiplication rule has for us is that it allows 

us to assign probabilities to the outcomes of a multistage experiment on the 

basis of the probability assignments of the component experiments. Figure 

8.13 illustrates this for the coin toss experiment. The rest of this section 

consists of more examples of the application of the multiplication rule. 
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Example 1 

Statistics suggest that the drug Hexoglom has a probability of of 

improving a patient suffering from disease X. What is the probability that if 

the drug is tried on two suffers of disease X, Mr. Gold and Mr. Silver, both 
will show improvement? 

Solution: Figure 8.14 shows a tree for the multistage experiment where 

the drug is first tried on Mr. Gold and then tried on Mr. Silver. The letter / 

Figure 8.14 

denotes improvement and /' denotes the complementary event, nonimprove¬ 

ment. II denotes that both Mr. Gold and Mr. Silver improved. Each 

branch of the tree is labeled with its appropriate probability. For example, 

the branch from / to II represents improvement for Mr. Silver and is there¬ 

fore labeled To find the probability of an outcome by the multiplication 

rule, multiply the probabilities along the path leading to that outcome from 

the root. Hence: 

P{II) = P (Mr. Gold improved) -P (Mr. Silver improved) 

= H 
- 4 

— V 

m') = H = i 

fd’n = i-i = i 

p(m = n = i- 

Example 2 

In Example 9 of Section 8.2 we considered a problem concerning a 

married couple planning a family of two children. The second solution 

developed there had a sample space of four elements. We arrived at an 

assignment of probabilities by using the equiprobable measure. We now can 
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give an alternative view which yields the same probability assignment. The 

outcomes can be regarded as belonging to the multistage experiment of one 

birth after another. (See Figure 8.15.) 

i 

BG P(BG) = \ 

BB P(BB) = \ 

GB P(GB) = I 

GG P(GG) = t 

Figure 8.15 

On the basis of current genetic theory, we can assume that the sexes of 

the children are independent. Hence, we can apply the multiplication rule. 

For example, 

P(BG) = P (first child a boy and second child a girl) 

= P (first child is a boy)-P (second child is a girl) 

= H =i 
The other three events are similarly computed to be 

P(BB) = \^ = \ 

P(GG) = W= i 

P(G29 = H= i 

The concept of independent experiments can be extended to more than 

two experiments. If we have n experiments, they are said to be independent 

of one another if none of them is affected by the outcome of any other. One 

can easily justify a multiplication rule analogous to the one we used for two- 

stage experiments. The following example illustrates the use of the extended 
multiplication rule. 

Example 3 

A manufacturer of airplanes is under government contract to provide 

the government with a large number of a standard type of aircraft. The manu¬ 

facturer states that the chance of a plane malfunction is 1 in 1000. The govern¬ 

ment tests three aircraft and finds two defective. What is the probability of 

this happening if the manufacturer’s claim is correct? 
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Solution: Letting D denote defective and D' not defective, we obtain 
as our sample space S, 

S = {DDD, DDD', DD'D, DD'D', D'DD, D'DD', D'D'D, D’D'D'} 

The tree in Figure 8.16 illustrates this multistage experiment. 

D 

0.001 

0.999 

0.001 

D' 0.999 

DD 
o.orn^ • DDD 

0.999* 
• DDD' 

0.001 « DD'D 

DD' 
0.999 

DD'D' 

D'D 
0.001 -• D'DD 

0.999 D'DD' 

) 
0.001 -• D'D'D 

D'D' 
0.999 

D'D'D' 

The event we are investigating, two of three airplanes defective, has 

these elements: 

DDD' DD'D D'DD 

Since we may assume that whether or not a given plane is defective is 

independent of whether or not the other planes are defective, we can employ 

the multiplication rule. Thus, for example, 

P(DDD') = P (first plane is defective, second plane is defective, and third 

plane is not defective) 

= P (first plane is defective) • P (second plane is defective) -P (third 

plane is not defective) 

_ 1.1. 999 
1 000 * 1 000 * 1000 

_ 999 
1,000.000,000* 

PiDD'D) _J__99_9_ #_1_ 
1000 1000 1000 

999 
1,000,000,000 

Similarly, 
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and 

Hence, 

P(D'DD) = 999 
1000 

1 . 1 
1000 * 1000 

999 
1,000,000,000 

P (two defective planes and one not defective) = ^ooV.ooolobo 

This number is so small that the manufacturer’s claim seems most unlikely. 

Our next example emphasizes that it is not necessary to have a repeated 

experiment to apply independence and the multiplication rule. We may apply 

the multiplication rule in cases involving two distinct experiments, provided 

that we are confident they are independent. 

Example 4 

The Eco-Chem Research and Development Corporation is working on 

a filtration process to combat water pollution. There is a ^ chance that this 

process will turn out to be effective. If it is effective, the resulting purchases 

of the process by industrial plants will keep Eco-Chem from imminent 

bankruptcy. Alternatively, if Congress passes a pending bill to supply research 

and development funds to firms like Eco-Chem, then the company will be 

able to avoid bankruptcy by using these funds alone. The chance of congres¬ 

sional passage for this bill is f. Assuming that the fate of the bill and the fate 

of the filtration process are independent, determine the probability that Eco- 

Chem will avoid bankruptcy. 

Solution: The first experiment is to determine whether the filtration 

system is successful(5) or unsuccessful (C). The second experiment is to deter¬ 

mine whether the bill will be passed (P) or not (N). The tree for the multistage 

experiment is shown in Figure 8.17 and has been labeled with the appropriate 

SN P(SN) = jL 

SP P(SP) = 

UN P(UN) = 

UP PiUP) = 
lo 

Figure 8.17 
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probabilities. Since the event “bankruptcy is avoided” is {SN, SP, UP], 

P(SN, SP, UP) = ^ + A+if = if = f 

It is worth noting that this problem can also be solved using the tree 

shown in Figure 8.18. The order in which the experiments are listed has been 

P(NS) = X 

P(NV) = ± 

Figure 8.1 8 

reversed. This procedure is valid because the experiments are independent 

of one another. Using the multiplication rule as usual, we obtain 

P (bankruptcy is avoided) = + + = l 

This is the same answer that was obtained using the tree in Figure 8.17. 

EXERCISES 8.4 

1. A drug is tested on two different sufferers from Parkinson’s disease. 

Extensive testing has shown that the relative frequency of success with 

the drug is 1%. Construct an appropriate model and determine the fol¬ 

lowing: 

(a) What is the probability that the drug works on at least one of the 

two patients ? 

(b) What is the probability that the drug fails on both patients ? 

2. A medium sized city, Middletown, is certain to grow substantially if at 

least two out of three of the following events occur: 

H: a branch of the interstate highway is constructed nearby. 
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G: a government installation is built in the area. 

U: a university in the vicinity expands. 
Assume the probability that H occurs in Middletown is \ and that each 

of the other two events has probability ^ of occurring in Middletown. 

What is the probability that the city will not grow substantially ? Assume 

that independence holds. 

3. Jake is taking courses in French and mathematics on a pass-fail basis. 

If the chance of Jake’s failing a course is and if the grades in the two 

courses are independent, compute: 

(a) The probability of failing both courses. 

(b) The probability of passing both courses. 

(c) The probability of passing at least one course. 

4. A manufacturing concern is pursuing two distinct lines of research to 

try to reduce pollutants in the waste it discharges into local waterways. 

One line of research involves filtering and treating the discharge. There 

is a ^ chance that a practical method will result from this work. The 

other line of research concerns the nature of the production process. 

There is a £ chance that this will lead to success. The two lines of 

research involve totally different scientific principles, so we will assume 

that the results of the two investigations are independent. What is the 

probability that the company will not be able to use either method to 
reduce pollution? 

5. Suppose Mary reaches into her dresser and pulls out a blouse at ran¬ 

dom. She has two blue blouses and one red blouse in the dresser. Now 

Mary grabs a skirt from a closet that contains three green skirts and 

one blue skirt. 

(a) Draw a tree diagram for the multistage experiment of choosing 
a blouse and a skirt. 

(b) Assign probabilities to the component experiments. 

(c) Use the assumption of independence and the multiplication rule 
to find the probability that: 

(i) The skirt-blouse outfit is all blue. 

(ii) A green skirt and a red blouse were chosen. 

6. Mark fires three shots at a target. Past records show that he hits the 

target four out of five times. If his shots are independent, what is the 

probability that all three shots are misses? 

7. In Act III of Shakespeare’s “Romeo and Juliet,” Mercutio says: “I am 

hurt. A plague o’ both your houses.” Assuming that Mercutio has a \ 
chance of calling down a curse on an individual house, what is the 

chance that both houses will be cursed? Assume that independence 
holds. 

8. A survey of three voters is taken in a town where 40% of the voters are 
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Independents (/), 25% of the voters are Republicans (R), and the 

remaining voters are Democrats (D). Construct an appropriate model 
to determine: 

(a) The probability that at least two voters are Independents. 

(b) The probability all three voters are Republicans. 

(c) The probability all three voters are Democrats. 

(d) The probability that at most two voters are Republicans. 

9. A hospital has an emergency generator. The chance of the emergency 

generator working on a given day is The chance of there being a 

general power failure on a given day is 0.0001. If the failure of the 

hospital generator and a general power failure are independent, what 

is the probability that on a given day the hospital will be without power ? 

10. In any given summer there is a \ chance that there will be heavy rains 

and a \ chance that there will be a plague of locusts. Assuming that the 

situations are independent, what is the chance that a farmer will avoid 

both these afflictions ? 

11. Art Wester, the Prentice-Hall mathematics editor, has a remarkable 

family. His greatgrandfather, his grandmother, his father, and his son 

all have their birthdays on the same date. Calculate the probability that 

four given people have the same birthday by thinking of this as a multi¬ 

stage experiment whose component stages are independent. 

12. * A new nuclear attack detection system is under development to supple¬ 

ment two existing systems, the satellite based system and the land based 

radar net. The satellite system has a 0.001 chance of malfunctioning 

while the radar net malfunctions with probability 0.005. It is desired to 

refine the new system to the point where there is no more than a 0.000001 

chance of two out of three systems malfunctioning at the same time. 

What is the highest probability of malfunction that is acceptable in the 

new system, assuming that malfunctions in the three systems will be 

independent? 

8.5 the binomial probability model 

We noticed in Chapter 2 that sometimes there were many real-world problems 

that could be solved simultaneously by using one graph theoretic model. A 

similar situation occurs in probability theory. 

Consider the following problems: 

(1) The tubes that a manufacturer makes can be classified as being defec¬ 

tive or nondefective. If 10 tubes are tested and the probability that a 

given tube is defective is ^, find the probability that exactly 6 of the 

tubes are defective. 
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(2) All babies can be classified as males or females. If 20 babies are born on 

a certain day at Algat Hospital and the probability that any given baby 

will be a boy is find the probability that exactly 9 of the babies are 

boys. 
(3) A basketball player is either successful or unsuccessful when he shoots 

a foul shot. If the player attempts 12 foul shots and the probability that 

any given foul shot is successful is -^j, what is the probability of his 

making 9 or more shots successfully? 

(4) When Hexaglorifane is tested on a patient, the patient either lives or 

dies. If Hexaglorifane is tried on 15 patients and the probability that 

any given patient lives when treated with the drug is what is the 

probability that at least 11 patients die from the treatment? 

The problems above have such strong similarities, that it is possible to 

construct one probability model to assist in solving all of them. The model 

that we shall construct is called the binomial probability model. The problem 

under consideration must satisfy the following conditions for the binomial 

probability model to be applicable: 

(1) The problem involves N repetitions of an experiment that has exactly 

two outcomes. We shall refer to the outcomes as success (S) and failure 

(F). 
(2) The probability of a success, which we denote by p, and the probability 

of a failure, which we denote by q, (p + q = 1) is the same for each 

repetition. 

(3) The outcomes of each repetition of the experiment are independent of 

the outcomes on all the other repetitions. 

We shall be interested in computing the following two probabilities in 

such cases: 

(1) The probability of exactly r successes in N repetitions of the experi¬ 

ment. 

(2) The probability of at least r successes in N repetitions of the experi¬ 

ment. 

Example 1 

A student has not studied for his history quiz, which consists of three 

true-false questions. Suppose the student guesses. 

(1) What is the probability of answering two questions correctly? 

(2) What is the probability of answering at least two questions correctly ? 
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Solution: Let us first investigate why this problem can be treated using 

the binomial model. We have three (N = 3) repetitions of the experiment 

guess an answer to a true-false question. Each repetition of the experiment has 

exactly two outcomes, a correct answer (C) or an incorrect answer (C')- A 

correct answer would correspond, in this example, to a success, while an 

incorrect answer would correspond to a failure. The probability of success 

equals the probability of a failure equals one-half (i.e., p = q = f) because 

the student guesses. Finally, it is reasonable that a correct guess on question 

2, say, will not affect whether or not the answers to questions 1 and 3 are 

correct, i.e., the repetitions are independent. To determine the answers to the 

questions posed we draw the tree diagram in Figure 8.19. The probability of 

ccc PlCCC) = 

CCC' P(CCC') = 

CC'C P(CC'C) = 

CCC' P(CCC') = 

ccc P(C'CC) = 

ccc PIC'CC') = 

ccc PiC'C'O = 

ccc PIC'C'C) = 

1 
8 

i 
8 

1 
8 

1 
8 

i 
8 

I 
8 

1 
8 

Figure 8.19 

the outcomes can be determined by using the multiplication rule. Hence, the 

probability of exactly two correct responses is given by 

P (exactly two correct responses) = P(CCC') + P(CC'C) + P(C'CC) 

= (2*2*2) + (^*2*2) + (i'W)= 1 

The probability of at least two correct answers is given by 

P (exactly two correct answers) + P (exactly three correct answers) 

The probability of exactly three correct responses equals P(CCC), which 

from the tree in Figure 8.19 is Hence, the probability of at least 

two correct responses is Thus, we see that the student has a 

50-50 chance of doing quite well on the quiz merely by guessing. 
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Example 2 

An encyclopedia salesman has found that in one-fifth of the cases where 

he rings a doorbell, he gets the homeowner to let him into the house. If the 

salesman calls at four homes in an evening, what is the probability that he 

enters at least two homes? 

Solution: First we note that the binomial model is applicable. Denot¬ 

ing by E (success) the salesman being able to enter a given home, the only 

other outcome is E', being unable to enter the home. In this problem N = 4, 

P{E) = i, and P(E') = We may also assume his success in entering any 

given home is independent of his success or failure in entering any other home. 

Figure 8.20 shows the outcomes of the experiment and the probability assign¬ 

ment to the edges of the tree. The event the salesman enters at least two 

EE 

EE' 

E'E 

EEE 
5 J 

"4 

EEEE 

4 
^~5 

1^"* 

"4 

EEEE' 

EEE'E 

^5 

l"* 
EEE 'E' 

EE'E 
' 4 

EE'EE 

EE'EE' 
4 1 

lEE'E' 5^* 

4 

EE'E'E 

1 

EE'E'E' 

E'EE 
5 J* 

"4 

E'EEE 

4 1 
E'EEE' 

5^* 

"'4 

E'EE'E 

1 • 
E'EE'E' 

E'E'E E'E'EE 

4 

■-- 
E'E'EE' 

J E'E'E 
4 

— 

E 'E'E'E 

E'E'E'E' 

homes consists of the outcomes, EEEE, EEEE', EEE’E, EEE'E', EE’EE, 
EE'EE', EE'E'E, E'EEE, E EEE', E'EE'E, and E'E'EE. Computing the prob¬ 
ability of this event using the multiplication rule, we obtain 
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P (salesman enters at least two homes) 

= P(EEEE) + P(EEEE') + P(EEE'E) + P(EEE'E') + P(EE'EE) 

+ P(EE’EE') + P(EE'E'E) + P(E'EEE) + P(E'EEE') 

+ P(E'EE’E) + P(E'E'EE) 

+ (H*f f) + (M-H) + (H-W) + (l-l-M) i ty-firiJ 

+(f'f•?*?) 

= FT3 + FT? + 3TF + F^ + FT? + F& + F& + FT? + T$I 

+ WTJ + 

= HI = 0-2 

Thus, the salesman has about a 0.2 chance of entering two or more homes. 

Since the calculations get increasingly complicated as N increases, it 

is customary to use tables for the computations in binomial model problems 

(see Appendix 12.3). For a given value of N and various values of p, the table 

shows the probability b(r, N, p) that there are exactly r successes. 

Example 3 

Find the probability that in 10 tosses of a fair coin 

(1) We obtain exactly eight heads. 

(2) We obtain at least eight heads. 

(3) We obtain at least four heads. 

(4) We obtain exactly five heads. 

Solution: Since N is 10 and p = q = \ (fair coin), we consult the table 

with N = 10 and look in the column with p = 

(1) In the row labeled 8, we read off the probability 

b(8, 10, £) = 0.044 

(2) To obtain the probability of at least 8 heads, we add up the probability 

of exactly 8, 9, and 10 heads: 

P (at least 8 heads) = b(8, 10, £) + b(9, 10, £) + 6(10, 10, £) 

= 0.044 + 0.010 + 0.001 

= 0.055 
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(3) In order to compute the probability of at least 4 heads: 

P (at least 4 heads) = 1 — P (at most 3 heads) 

= 1 — [P (0 heads) + P (I head) + P (2 heads) 

+ P (3 heads)] 

= 1 - [6(0, 10, + 6(1, 10, £) + 6(2, 10, i) 

+ 6(3, 10, >)] 

= 1 - [0.001 + 0.010 + 0.044 + 0.117] 

= 1 - 0.172 

= 0.828 

(4) In the row labeled 5, we find 

6(5, 10, £) = 0.246 

The fact that the probability of obtaining 5 heads and 5 tails in 10 tosses of 

a fair coin is not \ but 0.246 sometimes surprises people. 

Let us illustrate some further examples that can be treated by the bino¬ 

mial probability model with the aid of tables (see Appendix 12.3). 

Example 4 

The ABC Corporation, a manufacturer of transistors, knows that on 

the average 1 out of 10 of its transistors is defective. ABC has a government 

contract to provide the government with a shipment of transistors. The 

government will take a sample of 12 transistors and reject the shipment if 

there are 2 or more defectives. What is the probability the government will 

accept the delivery ? 

Solution: The situation can be analyzed using the binomial model. The 

delivery will be accepted, provided there is 0 or 1 defective. Hence, 

P (delivery accepted) = P (0 defective) + P (1 defective) 

= 6(0,12, tV) + 6(1, 12, TV) 

= 0.282 + 0.377 

= 0.659 

Note that the probability the delivery will be rejected is 0.341 or approxi¬ 
mately one-third. 
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Example 5 

A multiple-choice exam has 10 questions and five choices for each ques¬ 
tion. Each question is worth 10 points, and 50 points is passing. If a student 
merely guesses, what is the probability of passing the exam? 

Solution: The problem can be analyzed in the framework of the 
binomial model. N — 10 and since there is one chance in five of guessing 
the correct answer to a question, p = 0.2. To pass the exam would require 
getting five or more correct answers. Hence, 

P (passing) = P (5 or more correct) 

= P (5 correct) + P (6 correct) + P (7 correct) + P (8 correct) 

+ P (9 correct) + P (10 correct) 

= b(5, 10, 0.2) + 6(6, 10, 0.2) + 6(7, 10, 0.2) + b(8, 10, 0.2) 

+ b(9, 10, 0.2) + 6(10, 10, 0.2) 

= 0.026 + 0.006 + 0.001 + 0.000 + 0.000 + 0.000 

- 0.033 

You may have been surprised that the table gave P (8 correct), P (9 
correct), and P (10 correct), as 0.000. These probabilities are not actually zero 
but when their true values are rounded to three decimal places, their values 
are 0.000. 

Note that the chance of passing by guessing is very small. 

EXERCISES 8.5 

1. Solve the first problem on p. 303. 

2. Solve the second problem on p. 304. 

3. Solve the third problem on p. 304. 

4. Solve the fourth problem on p. 304. 

5. A psychology professor is recruiting a random sample of volunteers for 
an experiment and discovers that the first five of his volunteers are 
science majors. He wonders whether this coincidence means that his 
sample isn’t random. What is the probability of this happening by 
chance in a random sample, assuming that one-fifth of the students at 
this school are science majors? 

6. A key legislative proposal is being voted on. There are only seven 
senators who have not announced how they will vote. Suppose that if at 
least five of these senators vote for the proposal, that will be enough for 
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its approval. If their votes are independent of one another and each key 

senator announces that it is a “toss-up” how he will vote, what is the 

probability the proposal will pass? (Assume that we have ruled out 

abstentions in the voting.) 

7. Use a tree diagram to calculate b{0, 4, £), b( 1,4, -J), b(2, 4, \), b(3, 4, ^), 

and b(4, 4, ^). 

8. A noted gambler, the Chevalier de Mere, was accustomed to winning 

money by betting that a six would occur at least once in 4 throws of 

a die. Then he changed his offer and volunteered to bet that one or more 

double sixes would occur in 24 rolls of a pair of dice. He thought the 

odds would be in his favor to the same degree as in his first bet and he 

was greatly surprised when he began losing money. Can you justify his 

experiences on these two bets through probability theory ? (Hint: (ff)24 

^ 0.509.) 

9. * Why is it true, that for any r, N and p 

b(r, N, p) = b(N — r, N, 1 — p) 

10. * Why do the numbers calculated in Exercise 7 add up to 1 ? Is it an 

accident or must it be so? 

11. * Phil and Kevin are going to settle a dispute in a basketball game by 

taking a series of foul shots to see who makes more of them. Phil’s foul 

shooting percentage is 0.500, while Kevin’s is 0.600. They are undecided 

about whether to shoot three shots apiece or just two shots. Does it 

make any difference and, if so, which setup gives Phil the better chance 

of winning? 

8.6 expected value 

Would you participate in a coin toss experiment in which you win each time 

heads comes up but lose when tails result? Assuming the coin is fair, it seems 

you would win as often as you would lose so there is nothing to be gained 

or lost. Now suppose that we attach different payoffs to the outcomes. Ima¬ 

gine that heads wins you $3 while tails loses you $2. Using v to symbolize 

value (payoff) we write v(H) = 3, v{T) = 2. Now you would undoubtedly 

play since you stand to gain in the long run. For a more problematical case, 

suppose we still have v(H) = 3 and v(T) = 2 but now the coin is unfair and 

the probability of heads is one-third. Is it worth playing? For cases such as 

this, where the elements of a sample space have payoffs as well as probabil¬ 

ities attached to them, it is convenient to have a way of calculating some sort 

of average payoff that you can expect to win. 



probability 311 

To work out the last example, let’s suppose you play the game TV times. 

Then heads comes up about times and each of these times you win $3 for 

a total of \N x 3 dollars. Similarly, there will be a $2 loss about times for 
a net loss of x 2. Combining these, we get 

Total payoff = (|N X 3) — (%N X 2) = —$N 

Thus you lose a total of -\N. On a per game basis the payoff is —We 

call this per game payoff the expected payoff and we note, as motivation 

for the definition we shall give shortly, that it can be calculated without using 
N: 

Expected payoff = (^ x 3) - (| x 2) = 

Before proceeding to our formal definition of expected value, let’s look 

at an example that shows that it need not be money whose expected value 

might interest us. 

Example 1 

The telephone inquiries desk of a large library handles four basic 

types of questions, which we shall symbolize by q3,q2,q3,qA. The records 

of relative frequency suggest the following probabilities for these questions: 

P(gi) = j P(q2) = l P(q3) = > P(q4) = $ 

(e.g., whenever the phone rings, the probability the question is of type q1 is 

one-third, the probability it is of type q2 is one-fourth, etc.). The times 

required to handle these types of inquiries are, respectively, 3, 2, 4, and 10 

minutes; that is, v{qf) — 3, v(q2) = 2, v(q3) = 4, and v(q4) = 10. What is the 

average (expected) time for an inquiry? 

Solution: Out of a large number of calls, say N, we would have about 

calls of type q: 

J-TV calls of type q2 

calls of type q3 

fN calls of type q4 

Total time = (%N X 3) + (fN X 2) + (|?V X 4) + QN X 10) 

= W 
Average (expected) time per call — 4^ minutes 
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Again we note that the last calculations could be performed without using N: 

Average (expected) time = (j X 3) + (| X 2) + (| X 4) + X 10) 

These examples suggest the following definition. 

DEFINITION 3 

Suppose S = {oj, o2, o3, , on] is a sample space, with probabilities p(ot) 

assigned to the outcome o.. Suppose also that there are other numbers, repre¬ 

senting some important quantity, denoted v(ol), assigned to the oi. Then the 

expected value E of the quantity represented by the numbers v(ol) is defined 

E = p{0l)v{ox) + p(o2)v(o2) + • • • + p(o„)v(on) 

Example 2 

In 1972 New York doubled the toll on the Whitestone Bridge from 25^ 

to 50^. In addition to raising the monetary cost to commuters, this action also 

may have imposed a hidden cost in time. The following analysis, using hypo¬ 

thetical figures, shows how this might come about. 

A motorist will either have exact change (E) or need to get change at a 

manned toll booth (C). These two outcomes make a sample space {E, C] that 

will have different probability distributions depending on what the toll is. It is 

much more likely that a motorist will have exact change for 25<jl than for 50jL 

Let Pq and Pf denote the probability assignments for the 25^ and 50jzi tolls, 
respectively. We shall assume that 

P,(E) = | P,(C) = { 
and 

Pf(E) = i Pf(C) = | 

Now we shall assume that for the outcome E the time required to go through 

the toll gate is 5 seconds while the time to go through a toll gate when change 

needs to be made (C) is 7 seconds. Now for each of the two tolls we calculate 

the expected value of the time required to go through the toll gate. 

25^ toll: Expected time = [Pq(E) X 5] + [Pq(C) X 7] 

= (| X 5) + (| x 7) = ^ = 5.5 seconds 

50^ toll: Expected time = [Pf(E) X 5] + [Pf(C) X 7] 

= (^ X 5) + (| x 7) = 2P. — 6.5 seconds 
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Thus, we see that the expected time through the toll gate increases by 1 

second per motorist as we increase the toll to 50^. How significant is this? 

There are a number of points of view that can be taken on this question: 

(1) The increase of 1 second over the previous time of 5.5 seconds is a 

significant increase in time that a car spends at the toll gate. 

(2) One second is an insignificant addition to the total trip time for the 

occupants of one automobile. 

(3) Assuming that approximately 200,000 persons cross this bridge in auto¬ 

mobiles in a day, there will be a significant total of about 55^ man¬ 

hours lost. 

Our remaining examples will involve binomial models and will launch 

us toward some useful theoretical results involving expected values in bino¬ 

mial models. 

Example 3 

Suppose a fair coin is tossed three times. Find the expected number of 

heads. 

Solution: We take as our sample space {HHH, HHT, HTH, HTT 

THH, TTH, THT, TTT}. Each probability is one-eighth. Since we are inter¬ 

ested in the expected number of heads, we associate with each outcome the 

number of heads: 

Expected number of heads = (| X 3) + (| X 2) + (| X 2) -f (| X 1) 

+ (I x 2) + (I X 1) + (i x 1) + (* x 0) 

_ 12 
8 

- 1.5 

This result appeals to our intuition since there are three tosses and 1.5 = 

P (heads) X 3. Indeed it can be shown that: 

THEOREM 2 

Given a binomial probability model involving N repetitions of an experi¬ 

ment where the probability for a success in one trial is p, the expected 

value E of the number of successes is given by 

E = pN 
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Example 4 

A drug is used on 1000 patients. If the probability of improvement is 

2^, what is the expected number of patients who improve? 

Solution: Using Theorem 2, the value of A = 1000, and the value of 

p = the expected number of patients who show improvement is 

^ x 1000 = 50 

When we discussed the concept of a mean for data in Chapter 7, we saw 

that without some measurement of the dispersion of the data we could not 

recover adequate information from the data. A similar problem concerns the 

concept of expectation. We have no idea how much dispersion the v{ol) can 

have about the expected value. This problem can be treated by defining the 

standard deviation o analogously to the way it was defined in Chapter 7. 

Rather than give formal definitions, we shall restrict ourselves to the binomial 

model and state the probability analogue of Chebyshev’s theorem. 

THEOREM 3 

Given a binomial probability model involving A repetitions of an experiment 

where the probability for a success is p, then the standard deviation a (for the 

number of successes) is given by 

<* = VOX* ~ P)(N) 

We shall not be much concerned with the definition or conceptual 

nature of this standard deviation. We are interested in it mainly so that we 

can use it in the calculations discussed in the next theorem, which is a variant 

of Chebyshev’s theorem. It is quite useful and you should master its meaning 
and application. 

THEOREM 4 

Given a binomial model involving A repetitions of an experiment, where the 

expected value and standard deviation for the number of successes are given 

by E and cr, then the probability that the number of successes differs from 

E by more than or equal to k standard deviations ^ 1 Ik2. 

The following three examples suggest the inferential possibilities of 
these theorems. 

Example 5 

A student claims to know 90% of the material in his economics course. 

When a true-false examination consisting of 100 questions is given to the 
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students, he gets 77 questions correct. The student claims that the result is a 
“fluke.” Does probability theory support his claim? 

Solution: We shall assume that if the student knows 90% of the mate¬ 

rial in the course, then his chance of answering any question correctly is 

nine-tenths. Hence, if asked 100 questions, his expected number of correct 
responses would be, by Theorem 2, 3 (100)(0.9) = 90. 
By Theorem 3, 

° — vmmm 
= v^ 

- 3 

Now we can apply Chebyshev’s theorem (Theorem 4). The probability 

that the student does not get between 78 and 102 questions correct (i.e., an 

interval of 4 standard deviations around E = 90) is less than ^ = 0.063. 

The student’s claim that his performance was a fluke seems unlikely. 

Example 6 

A symmetrical coin is tossed 100 times. 

(1) What is the expected number of heads? 

(2) What is the probability that the expected number of heads will occur? 

Solution: Since the coin is symmetrical, we may assume that 

.P(heads) = = /’(tails) 

Hence, in 100 tosses, the expected number of heads is 

^(100) = 50 (by Theorem 2) 

The probability that in 100 tosses of a coin one gets exactly 50 heads can 

be computed on theoretical grounds; it turns out to be 0.08, not a very large 

number. Since the expected value is 50, it may confuse you that/* (exactly 50 

heads) is so small. Perhaps you may get more insight if we apply Chebyshev’s 

theorem. Calculating, a — V(i)(^)( 100) = 5. Hence, for example, the prob¬ 

ability of getting more than 59 or less than 39 heads (we are using 2 standard 

deviations from E = 50) in 100 tosses is less than l/(2)2 = ^ = 0.25. Thus, 

we have little chance of getting exactly 50 heads but a good chance of getting 

close to 50 heads. 



316 probability 

EXERCISES 8.6 

1. In the experiment of rolling a fair die once, what is the expected payoff 

if the payoff for each outcome equals the number showing uppermost 

on the die for that outcome? 

2. In the experiment of rolling a pair of fair dice once, what is the expected 

payoff if the payoff for each outcome equals the difference between the 

larger number showing and the smaller (or 0 if the numbers showing 

on each die are the same) ? 

3. Jack flips a coin three times or until he gets a head, whichever happens 

first. Each time a tail is obtained, Jack gives Jill a kiss; while if a head 

is obtained, he rolls down the hill and bumps his crown. Assuming the 

coin is rigged so that the probability of a head is one-quarter, what is 

the expected number or kisses given by Jack? What is the expected 

number of bumps Jack’s crown sustains? 

4. Do Exercise 3 under the assumption that the coin is flipped three times 

regardless of whether a head appears. 

5. A die is tossed 500 times and the number on the face that appears is 

recorded. Compute the expected number of times that four dots appear 

if the die is loaded so that the probability of four dots appearing is 

(a) i 
(b) i 

(c) Tfj 

6. A fair coin is tossed 10 times. What is the expected number of heads? 

What is the probability of the event that the expected number of heads 

occurs ? 

7. Consider the experiment of determining the sexes of 100 randomly 

selected newborn children. Assuming that the probability that a 

randomly selected newborn child is a boy is one-half, calculate 

(a) the expected number of boys, 

(b) the standard deviation. 

Use Chebyshev’s theorem to give an upper estimate on the probability 

that more than 60 or less than 40 of the 100 newborn children are boys. 

8. Ten thousand mousetraps are tested for proper functioning. Assuming 

that there is a one-tenth probability that any given mousetrap is defec¬ 

tive, determine the expected number of defectives, the standard devia¬ 

tion, and an upper estimate on the probability that the number of 

defectives differs from 1,000 by more than 20. 

9. A political candidate assumes the population is evenly divided pro and 

con on a certain legislative proposal. When he takes a poll of 300 

people to make sure, however, he discovers that 176 of the 300 are 

opposed. Is this result serious grounds for questioning his assumption 
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that the electorate is evenly divided? Suppose 157 of the 300 were 
opposed ? 

8.7 Markov analysis 

If a coin is flipped twice, we have been assuming that the outcome of the 

second experiment is uninfluenced by the first; in technical language, the two 

experiments are independent. In addition to coin tossing, many other repeated 

experiments have been handled with the modeling assumption of indepen¬ 

dence—notably when we studied the binomial model. There are examples, 

however, where it is more reasonable to assume the opposite, that the out¬ 

come of one experiment affects the outcome of the repetition of that experi¬ 

ment. 

Consider, for example, an electric power company that checks its main 

generator once each quarter year to forestall blackouts due to equipment 

failure. For simplicity we shall assume that there are two outcomes for each 

quarterly inspection: W, the generator is in good working order and needs 

no repair; D, the generator is defective and needs repair. If the outcome in 

one quarter is D, repairs will be made and it is extremely likely that the next 

quarter’s outcome will be W. On the other hand, if the outcome in one quarter 

is W, no repairs are made and there is a fair chance that the next quarter’s 

outcome will be D. Thus the outcome in the second quarter is not independent 

of the outcome in the first quarter. 
Let us continue the discussion with some specific numbers: If a given 

quarter’s outcome is W, we assume: 

the probability that the next quarter’s outcome is W is 0.6 

the probability that the next quarter’s outcome is D is 0.4 

If a given quarter’s outcome is D, we assume: 

the probability that the next quarter’s outcome is W is 0.9 

the probability that the next quarter’s outcome is D is 0.1 

With this data we shall try to answer this question: If this quarter’s outcome 

is D, what is the probability of having a D quarter two quarters from now— 

or, to be more general, n quarters from now ? 
Our goal in this section is to find a mechanical method for answering 

this question but as preparation we shall attack the question using a tree 

diagram. Figure 8.21 shows a tree displaying three repetitions of this experi¬ 

ment where the outcome in the first quarter is D. The sample space for this 
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DDD P(DDD) = 0.01 
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stage stage 

Figure 8.21 

multistage experiment is [DDD, DDW, DWD, DWW} and we would now 

like to determine a suitable probability assignment for it. It is tempting to 

try to find the probabilities for the end points of the tree by the multiplication 

rule as we did in Section 8.4 while studying independence. This rule would 

give, for example, 

P(DWD) = (0.9)(0.4) = 0.36 

Since our events are not independent, however, we had better check that it 

makes as much sense to use the multiplication rule here as it did in the case 

where the outcomes in the various stages were independent of one another. 

We shall give an example of the kind of reasoning that justifies the 

multiplication rule under the present circumstances. We shall regard the tree 

of Figure 8.21 as representing the two-stage experiment of checking the 

generator twice after an initial finding of defective (D). We shall imagine that 

this two-stage experiment is repeated ND times. If NDWD is the number of 

times DWD is the result, then the ratio NDWD/ND will be regarded as a good 

approximation to what P(DWD), the probability of DWD, should be. Let us 

further denote by NDW the number of times the outcome in the first stage 

(after the initial D) is W. Clearly, 

P{DWD) = - DWD (8.4) 
N d N DW 

However, NDWjND is approximately the probability that W occurs on the first 

stage of our experiment, namely nine-tenths. The ratio NDWJNDW is approx¬ 

imately the probability that D occurs on the second stage, assuming that W 

has occurred on the first stage, namely four-tenths. Substituting these num- 

318 
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bers in (8.4) gives the multiplication rule we seek: 

P(DWD) = (0.9)(0.4) = 0.36 

In a similar way we can calculate that P{DWW) = 0.54, P(DDW) = 0.09, 

and P(DDD) = 0.01. The event D at the second stage is {DWD, DDD] and 

we can now calculate the probability of this event: 

P(DWD, DDD) = P(DWD) + P(DDD) = 0.36 + 0.01 = 0.37 

The multiplication rule can be used to calculate the probabilities of the 

end points of a tree for any of the problems in this section (the so-called 

Markov processes defined below). Suppose, for example, we wanted the 

probability that three quarters after the initial D we obtain a D quarter again. 

Now we need a tree with three stages and the probability of each end point 

is the product of the three probabilities on the three edges leading to that 

end point. As we calculate further into the future, our tree becomes larger and 

the calculations more difficult to manage. This difficulty will be overcome by 

the mechanical method we shall develop. Before reaching this, it will be useful 

to abstract the main features of the foregoing problem insofar as they typify 

the problems we deal with in this section. 

(1) We have an experiment with sample space {o,,..., or} that is repeated 

a number of times. We often call the oi states instead of outcomes 

and we think of the succession of states as a process, often called a 

Markov process. In our example, the states were W and D. 

(2) In any repetition, the probability of an outcome ot is dependent on which 

outcome came about on the previous experiment. We denote by ptj the 

probability that outcome j will come about assuming that outcome i 

arose in the previous experiment. These numbers, which are generally 

part of the given data of the problem, are often arranged in a transition 

matrix like this: 

01 O 2 ’ ■ • °r 

Pit P12 * ■ ■ Plr 

Pit P 22 • ’ P 2r 

Prl Pr 2 ' • • Prr. 

In our electric generator example, since the states were W and D rather 

than subscripted o’s, we would use the notations Pww> Pwd> Pdw^ Pdd' They 



320 probability 

would be arranged in a matrix like this: 

W D 

W Pww PwD 

D LPdw PdD- 

The particular data given were 

W D 

W T0.6 0.4“ 

D 0.9 0.1 

It is also useful to formalize some notation for our question. We denote 

by p\f the probability that after n steps in time (quarter years in our example) 

a process starting in state o(. winds up in state or In our electric generator 

example, p^D = 0.31. Note that pjf = piJ. We can think of thesep\f as being 

arranged, according to their subsripts, into a matrix that we denote M(n): 

It should be noted that the (n) that appears in the exponent’s place in p\f and 

M(n) is not really an exponent but just another index; it appears in this 

location because there is no other convenient place for it. In the case of MM, 

however, we have this remarkable coincidence: 

THEOREM 5 

If M is a transition matrix for a Markov process, then M(n) = Mn. 

Proof: We give the proof for the case where n — 2 and M is the 2x2 
matrix: 

M = 
Pi 1 P12 

-P 21 Pll- 

By direct calculation we find that 

iPll'Pll) + (Pll'Pll) (Pll-Pll) + (Pll'Pll) 

S\P 11 * P 1 1) f (.P 22 *Pl 1) (P2l'Pl2) iP22’P22)- 
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Now we need to show that 

(Pi 1 'Pi l) "T (P12 "P 2l) = Ph' 

(Pi i 'P\2) T~ (/^12 'Pit) = PiV 

(P21 *Pl l) T" (P22 ’Pl\) = P*2\ 

(8.5) 

(Pzi’Plz) T~ (Pll'Pll) — P^2 2 

To verify the first equality, note that px, •pl t is the probability of the outcome 

whilePn‘Pz\ is the probability of oxo2o l5 so (/>, t .pu) + (p12-p21) = 

°i°2°i)- But °i°2°i} is precisely the event that the process 
starting in state o1 ends in o1 two steps later. Therefore, 

(PirPu) + (P12*P21) = ^(oiOjO,, o,o2o,) 

— n(2) 
Fl 1 

A similar analysis establishes the other three equations in (8.5). 

Example 1 

In our electric generator example, the transition matrix is 

Therefore, 

M 

W D 

W [0.6 0.4“ 

D 0.9 0.1 

Mn) = M2 = 
“0.72 0.28“ 

0.63 0.37 

Thus,p^ = 0.37, which we already knew from our tree analysis. But we now 

also know that p^D = 0.28, p^ = 0.63, and p^]w = 0.72, facts that we did 

not work out using the tree method. 

Example 2 

A sociologist wishes to examine the relationship between education level 

of parents and their children. He classifies the adults into three groups: those 

with no more than a grade school education (G), those with no more than a 

high school education (H), and those who have been to college (C). If a person 

is in one group, then there is, for any of his children, a certain probability 

that the child will belong to group G, a certain probability that the child 

will belong to group H, and a certain probability that the child will belong 



322 probability 

to group C. These probabilities, we shall assume, depend only on the group 

of the parent, as in the transition matrix: 

G 

H 

C 

H C 

0 7 

What is the probability that the great grandson of a high school graduate will 

receive a college education ? 

Solution: Since we are looking for p$, we compute M(3) = M3, which 

is 

ri 3 9 5 1 
T7 77 77 

9 9 9 
77 77 77 

5 9 1 3 
LT7 77 77 J 

„<3) _ 9 _ 1 
Phc — 77 — i 

Example 3 

Suppose that each day the air quality or your hometown is checked to 

see if it is clear (C) or dirty (D). Assume that if a given day is C, the prob¬ 

ability that the next day is C is two-fifths, while if a given day is D, the prob¬ 

ability that the next day is C is one-fifth. What is the probability that the 

fourth day is D, assuming that the first day is D? 

Solution: Only two probabilities are given in the problem and four are 

needed for the transition matrix. For example, the probability that D will 

follow C is not given. D following C is the complementary event to C follow¬ 

ing C, however, so pCD = 1 - pcc = 1 - \ = f Similarly, pDD = 1 -pDC = 

1 — ^ = f. Thus, the transition matrix is 

C D 

c ri f 
D U 1 

Now we calculate M2. 

r 7 1 87 
77 77 

6 1 9 
L-77 77 J 

T).28 0.72 

0.24 0.76 
M2 = 
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Therefore, 

M4 = (M2)2 - 
'0.2512 

0.2496 

0.7488' 

0.7504 

From this matrix we see that p4DD = 0.7504. 

EXERCISES 8.7 

1. Calculate, using matrix multiplication, p$, p[3j, and p[\\ assuming that 

2. Do Exercise 1 using the method of tree diagrams instead of matrix 

multiplication. 

3. Jack’s spending pattern for entertainment is such that he plans two 

kinds of weekends, extravagant and stingy. After an extravagant 

weekend, there is a two-thirds probability of next having a stingy week¬ 

end, while after a stingy weekend the chances are even that the next 

weekend will also be stingy. Describe this Markov process with a 

transition matrix. Assuming that he starts the year with an extravagant 

weekend, what is the probability that four weekends later will also be 

extravagant ? 

4. A certain computer has a 0.0001 probability of recording an input 0 as 

a 1 and a 0.0002 probability of recording a 1 fed into it as a 0. A 0 in 

the machine has a 0.0001 probability of being printed out as a 1, while a 

1 in the machine has a 0.0002 probability of coming out as a 0. If a 1 

is fed in, what is the chance that it will be fed out properly? 

5. A traveling salesman serves three cities, A, B, C. To avoid boredom, he 

doesn’t always cover them in the same order but instead constructs a 

Markov process of transitions from one city to another. His transition 

matrix is 

ABC 

0 A A 
± o i 
ii o _ 

A 

M = B 

C 

Assuming he starts in A, what are the probabilities of being in A, B, or 

C, respectively, after three transitions? 

At the beginning of President A’s term in office, which commences 

with a recession year, he is faced with choosing a set of economic 
6. 
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advisers. There are two competing economic philosophies he can choose 

from: the Reds, whose policies ensure that the probability of a boom 

year following a recession year is two-thirds, while the probability of a 

recession year following a boom year is three-fifths; or the Blues, whose 

policies ensure that the probability of a boom year following a recession 

year is one-half and the probability of a recession year following a boom 

year is one-quarter. Which philosophy, if followed consistently, gives 

the highest chance of a boom after 3 years, during the President’s reelec¬ 

tion campaign? 

7. Commuter trains arriving at Grand Central Station on a certain line of 

the railroad are always either early or late. The probability that the 

train following a late train is also late is three-fourths, while the prob¬ 

ability that the train following an early train is early is one-half. 

Suppose the first train of the morning is early and you are meeting 

someone on the fourth train. What is the probability that your friend 

will be late ? 

8. * Do you think the salesman in Exercise 5 will visit each city equally often 

in the long run? Justify your answer. 

9. * In Exercise 5, why would it make no sense to have 

M = 

i l r 
17 1 

$ OJ 

10. * Express p\\] as a formula involving some or all ofp1i,p12,p21, and p22 
(assuming a Markov process with just two states). 

11. * Whether or not a child grows up emotionally stable often depends on 

the emotional stability of his or her parents. If one or both parents are 

emotionally unstable, the chance that the child will be emotionally 

unstable is four-tenths. If both parents are stable, the probability that 

their child will be too is nine-tenths. Compute the probability that a 

child will be unstable if the chance that his parents are both emotionally 
stable is seven-tenths. 

8.8 long-term behavior 

of Markov processes 

Suppose we are training a rat to run the maze shown in Figure 8.22. Each run 

begins at A and ends at either B or C, depending on the choice the rat makes at 

D. At C there is a piece of cheese as a reward and at B there is a jolt of elec- 
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A Figure 8.22 

tricity as a punishment. The experiment is to determine how soon and how 

reliably the rat learns to make a left turn at D. 
We can build a theoretical model involving a Markov process to try to 

predict and explain the rat’s behavior. We assume that at any try there is a 

definite probability that the rat will choose a left turn (L) and that this prob¬ 

ability depends upon only one thing: whether the last trial was successful 

or not. The idea is that we assume that the rat has an imperfect but functional 

memory that reaches back one trial into the past. Specifically, let’s assume a 

transition matrix 

L R 
-4 in 
j j 

i IJ 
Assuming that the rat starts his career with R, what is the probability 

that after four trials the rat’s choice is L? Suppose instead he starts his career 

with L. What is the probability that after four trials the rat chooses L? These 

questions require us to calculate T4. 

T4 = (T2)2 
“0.76 0.24“ 2 “0.7504 0.2496“ 

0.72 0.28_ 0.7488 0.2512_ 

The matrix T4 has the remarkable property that the top and bottom rows are 

practically identical. They are so close that we might as well round these 

numbers off and imagine that we are dealing with 

J14 _ "0.75 

0.75 

0.25“ 

0.25 

This is interesting because it means that on the fourth trial the chances of 

choosing L or R are 0.75 and 0.25, respectively, regardless of what was done 
on the first trial. Thus, despite our assumption that the rat’s behavior depends 

on the immediate past, it does not, at the fourth trial, depend on the distant 

past. It is reasonable to ask whether this forgetfulness of the distant past 

would be manifested in T5 and the other higher powers of T. 

325 
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At this point, instead of restricting ourselves to this special example, 

let us be more general. Let us suppose Q is any transition matrix for a Markov 

process and that some power of Q, say, Qn, is a matrix whose rows are iden¬ 

tical. We can show that Qn+1 = Q X Qn also has identical rows. Let 

e f 

e /_ 
By calculation we find 

0 = 

a b 

c d 
and Qn = 

Qn+1 Q X Q" 
a b —

1 
TO

 

i—
 

o
 

lL
 

1—
 

TO '"-
s 

ae + be af + bf e(a + b) f{a + b) 

_ce + de cf + df_ e(c + d) f(c + d)_ 

Since Q is a transition matrix, however, a + b = 1 and c + d = 1 so 

Q n+ 1 — f 

e f. 
= Qn 

In the same way, we can conclude that Q"+1 = Qn+1 and that, in general, 

all higher powers of Q will be the same. This means that in all trials beginning 

with the nth trial the rat has the same probability of completing the maze 

successfully. He has reached the peak of his learning. In the specific example 

we started with, after about the fourth trial the rat always has a three-fourths 

probability of completing the maze successfully. We can summarize what we 

have demonstrated by saying as we take powers of a transition matrix, at the 

point when the rows become identical, successive powers give the same matrix 

from then on. Taking this statement from the model and interpreting it in the 

rat’s learning situation, we have this amusing state of affairs: When the rat 

gets to the point where it has “forgotten” its initial choice, it has reached the 

peak of its learning. 

Strictly speaking, the foregoing analysis is not correct. The discrepancy 

from the truth is minor, however, and can be ignored for practical purposes. 

The source of the theoretical difficulty is that the rows of T4 were not exactly 

equal—they were rendered equal by rounding off. If we refrain from rounding 

off and take higher and higher powers of T, we may never reach a power T” 

which has rows which are exactly equal. However, the successive powers 

would have rows which were more and more identical and which would 

approach a certain row vector w, never exactly reaching it but coming closer 

and closer all the time. The mathematical jargon for this is that the powers Tn 

“converge” to a certain “limit” matrix W, whose rows are all equal to a cer¬ 

tain row vector w. A general summary of the situation is contained in the 

following theorem, stated for a general n-state Markov process. 
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THEOREM 6 

If Q is a matrix with the property that either Q or some power of Q has no 
zero entries, then 

(1) The powers Qm converge to a limit matrix W, whose rows are all the 

same vector w = (Wj, w2, . . ., wn). 

(2) w satisfies the following two properties: 

w x w2 • • • + wn = 1 

wQ = w 

We shall not give a proof of the theorem. We have already seen an 

illustration of part (1) of the theorem. We shall now see how part (2) is 

reflected in the trials of our rat. The vector w to which the rows of T" appeared 

to be converging was (|, £). Part (2) states that 

3 + l=| 
4 ' 4 1 

and 

r 
5 

2 
7J 

[f’ ?! 

which are both true statements. Therefore, part (2) holds for our example. 

It is handy to have some terminology to describe the phenomena in 

this theorem. 

DEFINITION 4 

Q is called regular matrix if either Q or some power of Q has no zero entries. 

Example 1 

Determine whether the following matrix is regular: 

ro n 
Q ~ 2 3 

Ly yJ 

Solution: Q itself has zero entries but 

r "o r r 2 3 i 
y y 

3 2 3 6 1 9 
y- Ly y^ Liy yyJ 

Since Q2 has no zero entries, Q is regular. 
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Example 2 

Determine whether the following matrix is regular: 

probability 

ro r 
Q = Li oj 

Solution: Q has zero entries so we calculate Q2: 

'0 r "0 r _i 0“ 
Q2 = 

l 0 i o_ 

— 

_o 1_ 

Q2, which turns out to be the identity matrix, also has zero entries. Higher 

powers of Q now need to be checked but fortunately we don’t actually have to 

do the matrix multiplications since we have determined that Q2 = /. For 

example, Q3 = (Q2)Q = IQ = Q, which has zero entries; Q4 = (Q3)Q = 

QQ — I, which has zero entries; Q5 = (Q4)Q — IQ = Q, which has zero 

entries; Q6 — (Q5)Q = QQ = I, which all have zero entries. 
As you can see, the pattern perpetuates itself and the powers are alter¬ 

nately equal to I and Q. Thus, all powers have zero entries and Q is not 

regular. 

DEFINITION 5 

A vector w with the property that wQ = w for a certain transition matrix Q 

is called a fixed vector for Q. 

The significance of a fixed vector is that its entries give the long-term 

probabilities of the various states of the Markov process. These probabilities 

are independent of the state in which the process began. 

Part (2) of the theorem provides a handy way of calculating the fixed 

vector for a given transition matrix Q. The equation wQ = w is actually a set 

of n equations in the unknowns wu w2,, wn. These equations turn out to 

be linear; when we include in our system the equation wfi + w2 + • • • -f wn 

= 1, we can solve for the variables wr Once the vector w is known, we can 

also determine the limiting matrix toward which the powers Q” converge 

since this matrix has for its rows the vector w. 

Example 3 

What is the limiting matrix toward which Qn tends if 

Q = 
r* f] 

4 
yJ 
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Solution: Each row vector w = [w,, w2] of the limit matrix must 
satisfy 

K, w2] 

and wl + w2 — 1. However, 

1 f 

i i 
= K, w2] (8.6) 

ki, w2] 
1 F 2 w, . w2 w, , 4w0 

1 
Ly 4 

yJ _T + f’ f+ yj 

According to (8.6) we must have 

which means 

[Wj, w2] - 2w± ■ w2 
. 3 ^ 5 ’ 

| 4w2 
3 + 5 

“’■ = ?r + !? 

Wo Hh + 
3 + 

4w2 
5 

Simplifying these equations, we discover they are really the same equation: 

^ - 0 
3 5 

Solving this simultaneously with w1 + w2 = 1 gives the solution 

^1=1 

W2 ~ ¥ 

Thus, the limit matrix toward which the powers Q" converge is 

¥ I 
3 5 

L ¥ ¥J 

If this problem had arisen in connection with our rat trials, we would conclude 

that, in the long run, the rat would choose the left turn three-eighths of the 

time. 

Example 4 

Suppose we have an intelligent rat with a two-trial memory in the maze 

of Figure 8.22. He runs the first two trials at random but after that his behav- 
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ior depends on the last two trials. Now let us regard a state as being not the 

outcome of one trial but rather the outcomes of a consecutive pair of trials. 

Thus, we have three states: two successes on the last two trials (LL); one 

success out of the last two trials (LR or RL); and no successes on the last two 

trials (RR). We symbolize these by S2, Su and S0, respectively. For example, 

let’s suppose the series of choices actually made by the rat is LRRLRLLLR. 
After the first two choices we are in state St. When the rat makes his third 

choice R, he is in state S0 since his last two choices were both R. The succes¬ 

sion of states corresponding to his series of choices is S1S0S1S1S1S2S2S1. Let 

us assume the transition matrix 

So Sj *S*2 

So 

s, 
S2 

i 0^ 

7 i 
1 3 

Determine whether or not the matrix is regular. If it is, find the fixed vector 

of long-term probabilities for the rat to be in states S0, S1} or S2. 

Solution: Denoting the transition matrix by T, we calculate 

7 7 0 "i i 0- 
J2 — 

7 7 7 • 7 i i 

-0 i A o
 

■H—
 

1
_

 

i + i i + i 

— b “t- 7 j + -^ + A ^ ^ 

-A A + TS A + T5- 

We have left some arithmetic undone because it is enough to observe that all 
entries are nonzero, and therefore T is regular, 

To calculate the fixed vector, 

[Wj, w 2> w3] 

i i n 
1 7 u 

7 7 i 

0 i l 

[wu w2, w3] 

This yields the first three equations in the system below. 
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w2 3 w3 
3^4 

w3 

wi ~F vv2 -f- w3 = 1 

The solution of the system is (w1; w2, w3) = (|, £). Therefore, in the long 

run, the rat is in state S2 (two consecutive successes) four-ninths of the 

time, in Sj (one success in last two tries) one-third of the time, and in S0 

(no successes in last two tries) two-ninths of the time. 

EXERCISES 8.8 

1. State why each of the following matrices is regular. 

(a) i i (b) '0 r 

i i 
l 

L7 
4 
7J 

2 2 i Lj 7 7- 

(c) "0 0 r (d) '0 1 0“ 

l 
7 0 i 

i 0 0 1 

l 
Li 

1 
1 0 1 

LJ 1 0_ 

(e) -0 1 
1 n i 

l 1 i 
1 

A T i- 

2. For each of the following nonregular transition matrices, calculate the 

first few powers and see if you can find a pattern that shows that all 

powers have zero entries. 

(a) ri 
7 f (b) '1 0 Cf 

_0 1 0 1 
7 

1 
7 

_0 1 
7 

1 
7J 

(c) 0 ¥ 

0 1 0 

1 
-7 

1 1 
JJ 

3. For each of the following matrices, determine whether or not it is 

regular. If it is, find the fixed vector. 
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(a) “1 O' (b) '1 0 O' 

1 
-1 

i 
i- 0 1 0 

A i i- 

(c) '0 i 
i i (d) '0.6 0.4“ 

0 0 1 0.3 0.7_ 

l 
L1 

i 
i 0 

4. (a)-(d) For each of the matrices of Exercise 1, determine the fixed vector. 

5. Would you regard the intelligent rat of Example 4 as more intelligent 

or less intelligent if his transition matrix, instead of being as given in 

the example, has the \ and the £ entries in the last row of the matrix 

interchanged ? 

6-10. For Exercises 5 through 9 on pp. 323-324, determine whether or not 

the transition matrix of those exercises is regular. If it is, determine, 

through the fixed vector, the long-term probabilities of the various 

states. Is it reasonable to suppose that the Markov process goes on for 

a long time? 

11. Describe in simple nonmathematical language what is going on in the 

case of a rat whose transition matrix is 

'0 r 

_1 o_ 

12. * Show, in the case of a 3 x 3 matrix Q, that if Qn has equal rows, then 

Qn = Qn+X. 
13. * For the intelligent rat of Example 4, find the long-run probability of 

taking a single left turn. 

8.9* probability and genetics 

Genetics is the branch of biology that deals with the mechanisms by which 

offspring inherit traits such as hair color or eye color from their parents. No 

area within biology depends as heavily on probability models as does genetics. 

After a brief discussion of some basic principles, we shall pose some simple 

genetic questions which can be answered using probabilistic methods. 

The inheritance of a trait (e.g. albinism, some kinds of dwarfism, and 

short fingeredness) generally is governed by a pair of genes. An individual 

gets one gene of the pair from his (or her) father and the other from his 

(or her) mother. We shall discuss the simplest situation, where each gene for 

a certain trait X comes in two varieties, A and a. Using the genes A and a. 
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there are three possible gene pairs, AA, aa, and Aa (= aA). The various pos¬ 

sible gene pairs with A and a are known as genotypes. 

The only traits we shall discuss are those where the individual either has 

the trait or does not have it. For example, one is either a dwarf oris not. These 

two physical manifestations, dwarfism and ordinary stature, are called the two 

phenotypes for this trait. Many traits do not satisfy our assumptions that 

there are just two phenotypes. For instance, eye color comes in various phe¬ 

notypes: blue, brown, green, hazel, and shades in between. 

When persons with genotype AA or Aa have the same phenotype but 

have a different phenotype from persons with genotype aa, then the gene A 

is called a dominant gene and the gene a is called a recessive gene. Individuals 

with genotype A a are called hydrids or carriers for the a gene. 

Example 1 

Albinism is a trait characterized by milky skin color, very light hair 

color, and pinkish eye color. The relative frequency of albinos in the United 

States is 1 person in 20,000. Whether a person is an albino or a non-albino 

depends on a single pair of genes which we will denote by A and a. Persons 

who are non-albino can have genotype AA or Aa. Albinos always have 

genotype aa. Using the dominant-recessive terminology, A is a dominant gene 

and a is a recessive gene. For convenience, we shall refer to A as the non¬ 

albino gene and to a as the albino gene in future discussion. 

Here are some of the questions we shall answer in this section. Try to 

guess or deduce some of the answers yourself. 

QUESTION 1 

Can albino children be born to non-albino parents? 

QUESTION 2 

In view of the dominance of the non-albino gene, A, will the proportion of 

albinos in the population become smaller as time goes on? 

QUESTION 3 

If 1 person out of 20,000 is an albino (aa), what is the relative frequency of 

carriers (A a) ? 

Let’s begin with Question 1, which is comparatively easy to answer. 

Consider a mating between two hybrids (Aa). Determining the genotypes of 

the offspring is a multistage experiment in which the first stage is to deter¬ 

mine the gene contributed by the father and the second stage is to determine 

the gene contributed by the mother. In each experiment we assume the equi- 
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probable model and we also assume that the two experiments are independent. 
Figure 8.23 shows the possibilities for the various outcomes of this multi¬ 
stage experiment. We see, for example, that there is a \ chance that the child 
will be an albino. Thus, Question 1 is answered affirmatively. 

AA 

Aa 

Aa 

aa 

i 
4 

i 
4 

4 Figure 8.23 

In pursuit of the answer to Question 2, for convenience we shall do 
calculations for other types of matings analogous to those done in Figure 
8.23. The results are shown in the following table. 

(Conditional) Probability of Child’s Being 
Father Mother AA Aa (= aA) aa 

AA AA 1 0 0 
AA Aa i i 0 
AA aa 0 1 0 
Aa AA i i 0 
Aa Aa 4 i 

1 
4 

Aa aa 0 i 
1 
2 

aa AA 0 1 0 
aa A a 0 1 

2 i 
aa aa 0 0 1 

Before using this table to answer Question 2, we need to make some fur¬ 
ther assumptions. We are going to imagine that we have a population with the 
following characteristics: 

HW1. The only matings possible are within the group (i.e. no migration). 
HW2. Mating partners are chosen at random. 

HW3. No mutations occur. (A mutation is the appearance of a new gene 
other than A or a which affects the trait in question.) 

HW4. No “selection” occurs, that is, persons of all genotypes have equal 
chances to survive, to mate, and to have fertile offspring. 
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HW5. On the average there are as many males as females in each generation 

and each sex has the same distribution of genotypes. 

Now we can answer Question 2 on the basis of the following theorem. 

THEOREM 7 

If the relative frequency of AA, Aa, and aa individuals in the population is 

equal to u, v, and w, respectively, then in the next generation the relative fre¬ 

quency of AA, Aa, and aa individuals is (u + v/2)2, 2(u + v/2)(w + v/2), and 

(w + v/2)2, respectively (see the table below). 

Original Generation Next Generation 

AA u (u + v/2)2 

Aa V 2 (u + v/2)(w + v/2) 

aa w (w + v/2)2 

Proof: We imagine a random mating of man and a woman and we wish 

to determine the probabilities of various genotypes in the offspring. We con¬ 

ceive of this as the multistage experiment shown in Figure 8.24. The first 

stage of the experiment is to select a man at random; the second stage is to 

select a woman at random. The probabilities that the man (or the woman) is 

AA, Aa, or aa can be regarded as equal to the respective relative frequencies 

of these genotypes, namely u, v, and w. This accounts for the labelings on the 

branches in the first two stages of the tree. The branches and labelings of the 

third stage are determined by reference to the table on p. 324. 

The probabilities of the various outcomes Ol} 02,..., 015 in the tree 

are calculated by the multiplication rule. Note that each genotype can occur 

in a number of different ways and so is represented by several outcomes in 

the multistage experiment. We calculate the probabilities of the various geno¬ 

types by adding the probabilities of the appropriate outcomes (see Figure 

8.24): 

P(AA) = P(Ol) + P(02) + P(Os) + P(07) 

= u2 + -juv + -2UV + ~4v2 

= u2 + uv + ~v2 



Woman’s 
genotype Child’s genotype 

AA 1 

MV 

MW 

i uv 

UV 

I v>2 
4 

1 y2 
2 

i. 
4 

-k VW 

■ vw 

ww 

>vv 

w 

Figure 8.24 

Oi 

02 

0, 

o4 

Os 

Oe 

07 

0S 

09 

0\Q 

On 

0\2 

Ox 3 

0,4 

0.5 

P{Aa) = P(03) + P(04) + P(p6) + P(08) + P(0lo) + P(Ol2) + P(Ol,) 

~2UV + ww + y-wi> + -y^2 + -y vw + wu + ywt; 

= 2(“” + t + t + » 

= 2(" + t)(w + t) 
336 
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P(aa) = Pi09) + PiOn) + P(014) + P(Oi5) 

Example 2 

Suppose that 0.5 of a population is AA, 0.2 is Aa, and the remaining 

0.3 of the population is aa. What will be the proportions of the genotypes in 
the next generation? 

Solution: We have u = 0.5, v = 0.2, and w = 0.3. Therefore, (u + v/2)2 

flg 0.36; 2(u + v/2)(w + v/2) = 2(0.6)(0.4) = 0.48; and (w + v/2)2 = 0.16. 

Notice that the distribution of genotypes is quite different in the two 
generations. 

Example 3 

Let us carry Example 2 a generation further and calculate the distribu¬ 

tion of genotypes in the third generation. Thus, we take u = 0.36, v = 0.48, 
and w = 0.16. Hence: 

2(u + y)(w + y) = 2(0.36 + 0.24)(0.16 + 0.24) = 0.48 

The distribution of genotypes in the second and third generations is identical. 

Furthermore, it is clear that there will be no further change in the distribution 

in subsequent generations. 

Example 3 gives a partial answer to Question 2 by showing a case where 

the recessive albino genotype does not die out or decrease. The next theorem 

will give a more complete answer to Question 2. 
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THEOREM 8 

Suppose that genotypes AA, Aa, and aa constitute the fractions u, v, and w 

of the population respectively. 

(1) Ifv2 = 4ww, then the distribution of genotypes in all subsequent 

generations will be the same. 

(2) Conversely, if the distribution of genotypes is the same in all subse¬ 

quent generations, then v2 — 4uw. 

Proof: The population in the next generation will have the same dis¬ 

tribution of genotypes, provided that the following equations hold. 

(8.7) 

” = 2(" + t){w + t) 
(8.8) 

(8.9) 

It can be shown by straightforward algebra that if v2 = 4uw, then all these 

equations hold. Conversely, if any of these equations holds, then v2 = 4uw. 
Here is one of the verifications required: 

If v2 = 4uw, then 

(w + y) =u2 + uv + ~ 

= u2 + uv + uw 

= u(u + V + w) = u( 1) = u 

Conversely, if 

then 

? i * V U2 + UV + -r- = U 

and 

~ = u{\-u v) 

= m(w) 
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Example 4 

If u — 0.5, v — 0.2, and w = 0.3, then v2 = 0.04 and 4uw = 0.6. Since 

0.04 0.6, our theorem tells us that the distribution in the next generation 

will be different. We have already found this to be true in Example 2. 

Example 5 

If u = 0.36, v = 0.48, and w = 0.16, then v2 = 0.2304 and 4uw = 

0.2304 also. Theorem 8 tells us that subsequent generations will have the 

same distribution of genotypes. This was verified in Example 3. 

What happens to a population for which 4uw ^ v2 and whose distri¬ 

bution consequently is going to change in the next generation? Will it con¬ 

tinue to change in the third, fourth, and fifth generations? Will it ever reach 

an equilibrium? The next theorem provides the startling answer. 

THEOREM 9 

Suppose a population consists of A A's, /la’s, and aa s in proportions u, v, 

and w, respectively. Regardless of the values of u, v, and w, the population 

will reach an equilibrium distribution in one generation (after one mating). 

Proof: After one generation the proportions are u' = (u + v/2)2, 

v' = 2{u + v/2)(w + v/2), and w' = (w + v/2)2. We only need to calculate 

4u'w' and v'2 to see that they are equal and then to apply Theorem 8. 

The three theorems we have proved, based on assumptions HW1- 

HW5, are referred to as the Hardy-Weinberg Law in honor of the mathemati¬ 

cian G. H. Hardy and the geneticist L. Weinberg, who both discovered it 

independently in 1908. 
We now show how Theorem 9 can be used to answer Question 3. Since 

1 in every 20,000 Americans is an albino, we can take w = 2o,6oo- Theorem 
9 implies that for all practical purposes we can assume that the distribution 

of genotypes is in equilibrium. Thus: 

Auw = v2 

or 

4U 2 
20,000 

or 
u = 5,000 v2 (8.10) 

Also: 

u + v + w = 1 
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whence 

u + v + 20,000 

and 
, 1 

20,000 

Hence, 
u s=s (is approximately equal to) 1 — v 

Comparing (8.10) and (8.11): 

5,000 v2 = 1 — v 

5,000 v2 + v — 1 = 0 

Applying the quadratic formula: 

r _ -1 + VI + 4(5,000) 
2(5,000) 

V^O^OO 100^2" _ 1.414 
~ 10,000 10,000 ~~ 100 

= .01414^ Jr 

(8.11) 

Thus, there is a 1 in 71 chance that you are a carrier for albinism. To put it 

another way, in each randomly selected group of 71 people in the population, 

on the average one is a carrier for the albinism gene. This seems surprisingly 

high; so high that one might think that the number of albinos should be larger 

than 1 in 20,000. However, the multiplication rule implies that the chances 

of two carriers’ mating would be 

1 
5,000 

Furthermore, only \ of these matings between Aa’s would produce an albino 

(aa). Since ^-37^00 = 2o,ooo> and since 20,(Too is the actual incidence of 
albinism, the ^ incidence of carriers doesn’t really contradict the 1 in 

20,000 incidence of albinos. 

Example 6 

Suppose a physical trait X occurs in individuals with genotype rr but 

not in individuals with genotypes RR or Rr. Suppose that the fraction of the 

population with this trait is \. Assuming that the conditions for the Hardy- 

Weinberg Law hold, find the number of carriers (Rr). 
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Solution: Assuming equilibrium and using the notation u = fraction 
of RR, v = fraction of Rr, and w = fraction of rr: 

Also 

and so 

w = ~ = 0.25 
4 

v2 = 4uw = ~ = u. 
4 

1 = U + V + w 

= u + v + 0.25 

0.75 — v = u. 

(8.12) 

(8.13) 

Comparing (8.12) and (8.13): 

4v2 + 4v — 3 = 0 

t,_ -4 + yi6 +4.4.3 

8 

_ —4 + ^/64 
8 

_4 
- 8 

_ 2 ‘ 

One-half of the population consists of carriers. 

EXERCISES 8.9 

1. Using a tree as in Figure 8.23, verify that each line in the table on p. 334 

is correct. 

2. State which of the following populations would be in equilibrium if 

the assumptions of the Hardy-Weinberg Law are valid: 

(a) 100% of the population is AA. 

(b) 100% of the population is Aa. 

(c) 100% of the population is aa. 

(d) 1 % of the population is A A, 98 % of the population is Aa, and 1 % 

of the population is aa. 
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(e) 64% of the population is A A, 32% of the population is Aa, and 

4% of the population is aa. 

(f) 1% of the population is A A, 16% of the population is Aa, and 

83 % of the population is aa. 

3. For what values of x, if any, is a population with x% of the population 

A A, (100 — 2x)% of the population Aa, and x% of the population aa, 

in an equilibrium, assuming the conditions HW1 through HW5 hold? 

4. For a group of 300 people, it is determined that 150 are A A, 120 are 

Aa, and 30 are aa. 

(a) What proportion of genotypes will the first generation of children 

have? 

(b) Is the original population in equilibrium? 

5. Is a population of 500 individuals in which 40 are A A, 150 are Aa, and 

310 are aa in equilibrium? 

6. A trait X is governed by a single pair of genes, each of which can be R 

or r. Suppose that R is dominant and r is recessive and that only rr indi¬ 

viduals show trait X. State which of the following situations are possible: 

(a) The great grandchild of two parents who do not have trait A has 

this trait. 

(b) The child of two parents, each of whom has trait X, does not have 
this trait. 

(c) All the children of parents who do not have trait X have the trait. 

(d) All the children of a man who has trait X and a woman who does 

not have the trait have trait X. 

(e) All the children of a man who has trait X and a woman who does 

not have trait X do not have this trait. 

7. * Given the relative frequencies of the genotypes AA, Aa, and aa as u, v, 

and w, respectively, one can compute the relative frequency of gene A 
and of gene a as follows: 

p = relative frequency of gene A = u + -y 

q = relative frequency of gene a = y + w 

(a) If there are 30 individuals of genotype AA, 50 individuals of 

genotype Aa, and 20 individuals of genotype aa, what are the rela¬ 
tive frequencies of A and a ? 

(b) Show by constructing an example that the same gene frequencies 

could arise from two populations having different relative fre¬ 
quencies for the genotypes. 

(c) Using the numbers in part (a) of this exercise, find the proportions 

of the genotypes for the first generation. What are the gene fre- 
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quencies for this generation ? Have the gene frequencies changed 

from one generation to another? Does the answer surprise you? 

SUGGESTED READING 

Bartos, O. J., Simple Models of Group Behavior, Columbia University Press, 

New York, New York, 1967. Discusses the use of Markov models in 
sociology. 

Goldberg, S., Probability: An Introduction, Prentice-Hall, Inc., Englewood 

Cliffs, N.J., 1960. A solid and readable introduction to the theory of 

probability. 

Kline, M. (ed.), Mathematics in the Modern World, W. H. Freeman and 

Company, San Francisco, Calif., 1968. Available in paperback. This 

book contains many provocative articles about probability. 

Messick, D. (ed), Mathematical Thinking in Behavioral Sciences, W. H. Free¬ 

man and Company, San Francisco, Calif., 1968. Available in paperback. 

This book also contains many provocative expository articles about 

probability. 

Nivin, I., Mathematics of Choice, Random House, New York, N.Y., 1965. 

Elaborate discussion of counting principles and their use in probabil¬ 

istic arguments. 



9 
games and decisions 

9.1 decisions 

Throughout history philosophers have argued vigorously about whether or 

not man has free will—the power to influence the course of events by con¬ 

scious decisions. Regardless of the answer, we generally behave as if we do 

have this power. Recently, a mathematical theory of decisions has been 

developed to help people make important decisions. 

As we shall use the word, a decision situation is one where a person has 

two or more courses of action (called strategies) available and where the 

consequences of his action depend not only on the act itself but on contin¬ 

gencies in the outside world. We think of these contingencies as future states 

of nature. We assume that we cannot predict the future state of nature with 

any confidence. 

Example 1 

A recently created duplicating and printing service is thinking of leasing 

an additional photocopy machine for the next year as a means of increasing 

its income. The value of leasing an additional machine will depend on the 

general economic climate, that is, whether the next year is a prosperous year 

or a recession year. Thus, the company's prospects depend on a situation 

beyond its control. We indicate this by stating that nature’s future state is 

either prosperity or recession. The firm has two choices (strategies)—to 

lease a new machine or not to lease a new machine. 

Table 9.1 shows a matrix that gives the firm’s estimates of the payoff’s, 

344 
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i.e., business gains (or losses) for the various combinations of choices made 

by the decision maker (firm) and of the future states of nature. 

Table 9.1 

Decision Maker’s 
Choice 

Nature’s Future States 
Prosperity Recession 

Lease machine 

Don’t lease it 

$20,000 $16,000 

$17,000 $15,000 

What should the firm do? It is not hard to see that it should lease the addi¬ 

tional machine because, regardless of the state of the economy, the firm 

will be better off with the extra machine than without it. In technical language 

we would say that the strategy of leasing the extra machine dominates the 
strategy of not leasing it. 

Example 1 is typical of the decision problems we shall deal with. 

The decision maker has various choices available, each of which yields 

a certain payoff depending on the future state of nature. The payoff, 

positive when the decision maker makes gains and negative when he loses, is 

entered in a matrix, the rows of which correspond to the decision maker’s 

choices and the columns of which are the future states of nature. 

DEFINITION 1 

In a matrix for a decision problem, one row dominates another if each entry 

in the dominating row is greater than or equal to the corresponding (same 

column) entry of the dominated row. 

In Example 1, the first row dominated the second because 20,000 > 

17,000 and 16,000 > 15,000. The significance of this concept of domination 

is that a dominated row should never be considered as a possible course of 

action. This narrows the choices, sometimes to one row, as for the duplicat¬ 

ing company, or sometimes to more than one, as in Example 2, which follows 

shortly. 
Before going on to Example 2 it is worth observing that our analysis 

involves an assumption that the future state of nature is independent of the 

choice made by the decision maker. Suppose independence does not hold 

and, for example, leasing the machine would cause nature’s future state 

to be recession while not leasing would have the inevitable effect of bringing 

about prosperity (never mind that this is absurd). Now the only outcomes 

are the lower left and upper right corners of the matrix and the decision 

maker’s best choice is not to lease. This conclusion is exactly opposite to 
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the one we reached with our dominant strategy analysis because our dominant 

strategy analysis is actually based on the assumption of independence. In 

Section 9.3 we shall discuss decision problems where independence does not 

apply but in Sections 9.1 and 9.2 we assume that the choice of the decision 

maker does not influence the future state of nature. 

Example 2 

Simplify the matrix for the decision problem in Table 9.2. 

Table 9.2 

Decision Maker’s Choices 

Future States of Nature 

A B c 

$1 $2 $0 

$0 $2 $-1 

$3 $1 $1 

$0 $0 $1 

Solution: The first row dominates the second (1 > 0, 2 > 2, 0 > — 1), 

while the third dominates the fourth (3 > 0, 1 > 0, 1 > 1). Therefore, we 

strike the second and fourth rows from the matrix. The remaining two rows 

(see the matrix below) have no dominance relationships so we have simplified 

the problem as much as possible. In the next section we shall study a method 

for choosing between the remaining rows. 

Table 9.3 

Decision Maker’s Choices 

Future States of Nature 

ABC 

$1 $2 $0 

$3 $1 $1 

Notice that there is no need for us to consider the notion of dominance 

for columns. After all, nature does not actually make decisions and certainly 

has no motivation to frustrate the ambitions of particular decision makers. 

One characteristic of both of our examples thus far is that the payoffs 

have been in money. One could equally well imagine decision situations in 

which the payoffs come in more subjective and less measurable forms, such 
as emotional reactions. 
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Example 3 

Jack wants to marry Jill but is afraid to ask for fear that she would not 

say yes. Here is a payoff matrix modeling Jack’s predicament. (Note that in 

this example, since Jack does not know how Jill will react to his proposal, 
Jill’s role is that of “nature.”) 

Table 9.4 

Jill Would Say Yes Jill Would Say No 

Jack Asks 

Jack Doesn’t Ask 

Joy Hurt 

Neutral Neutral 

Mathematicians have suggested ways in which the feelings in the matrix 

could be gauged and replaced by numbers called utilities, as in the matrix 

in Table 9.5. The manner of doing this is complicated and controversial and 

we won’t go into further detail. However, we shall sometimes present exam¬ 

ples where the payoffs are utilities. In interpreting these numbers, one should 

keep in mind that the higher the utility, the better the decision maker likes 

that payoff. 

Table 9.5 

Jill Would Say Yes Jill Would Say No 

Jack Asks 

Jack Doesn’t Ask 

1 -1 

0 0 

Example 4 (Pascal's Wager) 

The philosopher and mathematician Blaise Pascal gives the following 

argument in the Pensees for believing in God. God exists or does not exist. 

Reason cannot tell us the answer so we are playing a game against nature, 

as shown in the matrix in Table 9.6. Pascal makes some attempt to evaluate 

the payoffs numerically. One interpretation of his writings suggests that he 

conceives of the payoffs as shown in Table 9.7. In this case, believing in God 

is the dominant strategy. Some people would argue that the payoffs “religious 

life” and “poisonous pleasures” don’t have equal value if God does not 

exist. They believe the latter is more valuable than the former; therefore, 

a better matrix would be Table 9.8. Pascal seems to feel that the difference 

between these payoffs is an illusion but he concedes that some people may 

perceive the values of the payoffs to be as they are in this last matrix. There 



Blaise Pascal (1623-1662) was a child prodigy who 
made important discoveries about geometry while still a 

teenager. Atthe age of eighteen he developed the plans 
fora calculating machine, which he built and marketed 

over the next few years. In 1654 between 10:30 and 

12: 30 at night, Pascal underwent a religious ecstasy 
which made him abandon mathematics for philosophy 

and theology. He returned to mathematics briefly once 

before his death at age 39. Apparently he was able to 
ease the pain of a toothache by thinking about 
mathematics, and he took this as a sign from God that 

He approved of mathematics. 

(Courtesy The Wolff-Leavenworth Collection, George 
Arents Research Library at Syracuse University.) 

Table 9.6 

God Exists God Doesn’t Exist 

Believe A religious life and an 

eternity of happiness 

A religious life 

Don’t Believe 

A life of “poisonous 

pleasures” of the flesh 

and an eternity of 

suffering 

A life of “poisonous 

pleasures” of the flesh 

Table 9.7 

God Exists God Doesn’t Exist 

Believe OO 1 

Don’t Believe -CO 1 

Table 9.8 

God Exists God Doesn’t Exist 

Believe OO 1 

Don’t Believe -OO 2 

The symbol °° stands for infinity. 

is no dominant strategy for this matrix. Pascal has a separate argument for 

this case, which we shall touch on in the next section. 

Find an atheist and ask him what he thinks of Pascal’s wager. 

348 
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EXERCISES 9.1 

1. For each of the following decision situations, eliminate as many rows 
as possible using dominant strategy analysis. 

1 -3 

0 -4 

(b) 
2 1 

-1 3 

1 0 -3 

2 1 4 

3 1 2 

1 -1 3 

0 -2 1 

-1 -1 0 

4 2 2 

2. Suppose that in matrix (a) of Exercise 1 the column choices were being 

made not by an impersonal outside world but by a human opponent 

who was motivated to keep your payoff to a minimum and who would 

make his column choice according to this motivation. Would you 

change your decision ? Answer the same question for matrix (b). 

3. In which of the examples in this section is it reasonable to challenge the 

modeling assumption that the decision maker’s choice has no effect 

on the future state of nature? 

9.2 decisions and probabilities 

In this section we shall study a method of making decisions when dominant 

strategy analysis is inapplicable. 
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Example 1 

A farmer has the choice of growing wheat or corn on his land. The 

profits for these crops depend on rainfall levels during the coming year, 

as shown by the matrix in Table 9.9 (payoffs in thousands of dollars). 

Table 9.9 

Wheat 

Corn 

Level I Level II 

10 12 

13 11 

Since neither row dominates the other, it is not obvious which choice to 

make. To analyze the situation, let us add two new assumptions to our model: 

(1) Repeatability—we assume that the farmer is confronted with exactly 

this decision situation year after year. 

(2) Probabilities for nature’s future states—we assume that we can estimate 

the probability that nature will be in a given state. 

In our example, suppose level I occurs three-fourths of the time. First 

we shall determine how much profit there will be if the farmer always chooses 

wheat, for example, over a 20-year period. The probability three-fourths 

gives the relative frequency of level I’s occurrence. Hence, over a period of 

20 years, level I can be expected to occur 15 times X 20), while level II 

can be expected to occur 5 times. The total profits expected from level 

I years come to 15 x 10, while the total profits expected from level II years 

will be 5 x 12, giving a total profit (in all years) of 210. Schematically, 

Wheat 

Level I Level II 

| X 20 l X 20 

Wheat profit = (J X 20 X 10) + (£ X 20 X 12) = 210 

Doing the same calculation under the assumption the farmer always plants 
corn, 

Corn 

Level I Level II 

| x 20 l x 20 

13 11 

Corn profit = (| X 20 X 13) + Q X 20 X 11) = 250 

The best strategy is, therefore, always to plant corn. 
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If we wish to find the average (mean) profit per year, instead of the total 
profit over 20 years, we could divide by 20 and find 

Mean wheat profit = =10.5 

Mean corn profit = = 12.5 

A glance at our earlier calculations shows that the 20 could have been divided 

out earlier or, even more conveniently, never multiplied in at all. For example, 
we could simplify the calculations by doing them this way: 

Level I 
3 
? 

Level II 
i 
3 

Wheat 10 12 

Expected wheat profit = (f X 10) + Q X 12) = 10.5 

Level I Level II 
3 
3 

1 
3 

Corn 13 li 

Expected corn profit = (f x 13) + (| x 11) = 12.5 

One question we have not considered in connection with decision 

problems without dominant strategies is this: Might it not be better to mix 

our strategies rather than to play one strategy all the time? For example, 

could the farmer in Example 1 do better by sometimes planting corn and 

sometimes wheat rather than always planting corn? The answer is no because 

we calculated that however many times we plant wheat, the expected payoff 

in each wheat year is 10.5 and however many times we plant corn, the expect¬ 

ed payoff is 12.5 in each corn year. Clearly it is better to expect 12.5 each 

year by always planting corn than to expect 12.5 some of the time (during 

corn years) and 10.5 the rest of the time (during wheat years). This argument 

can be formalized and applied to any decision-making problem of the sort 

we are discussing here. 

Experiment 

See how an experimental subject unfamiliar with decision theory makes 

his decisions in the situation of Example 1 (in order to simulate the states 

of nature with the proper probabilities, use the table of random numbers 

as described in Appendix 12.4). Does your subject mix his strategies or does 

he stick to one and play it all the time? Does he behave differently for other 

matrices? Try a matrix, for example, where the numerical entries are more 

dramatically different. 



352 games and decisions 

Example 2 

Workers in an industrial firm are faced with the choice of renewing 

the existing wage contract, aiming for one with a modest increase or aiming 

for one with a large increase. The firm’s economists claim that a wage increase 

would lead to a price increase for the product, which would, in turn, lead to 

a decrease in demand. The consequent decrease in production would neces¬ 

sitate curtailing overtime and firing some workers. The union has an econo¬ 

mist whose figures tell a different story. The workers are engaged in a decision 

against nature where nature’s choices are either that the company economist 

is right or that the union economist is right. The payoffs in this problem, 

shown in the matrix in Table 9.10 are in total dollars paid out to workers. 

Suppose this situation happens repeatedly and the union’s economist is 

right two-thirds of the time. What should the union do to maximize total 

dollars paid to workers? 

Table 9.10 

No Increase 

Modest Increase 

Large Increase 

Solution: The second row can be immediately disregarded because it is 

dominated by the third. The expected payoffs for each of the remaining two 
rows are shown in Table 9.11. 

Company Economist Union Economist 

Correct Correct 

1 1 

0.75 0.9 

0.8 1.2 

(Payoffs in millions of dollars) 

Table 9.11 

No Increase 

Company Economist 

Correct 
i 
3 

Union Economist 

Correct 

Expected payoff = () X 1) + (| X 1) = 1 

Large increase 

Company Economist 

Correct 

Union Economist 

Correct 

0.8 1.2 

Expected payoff = (^ X 0.8) + (f X 1.2) = 1.067 
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Thus, our calculations show that the best strategy is to aim for the large 
increase. 

Although we have focused in our examples so far on decision situations 

that are repeatable, many theorists believe that this type of calculation is also 

applicable for situations occurring only once. The next example illustrates 
this. 

Example 3 

An automobile company is thinking about making syncopated steering 

an optional feature on next year’s models. Sales prospects will depend not 

only on the outcome of this decision but also on what other manufacturers 

decide to do with respect to syncopated steering. The decisions of other 

manufacturers are not known at the time the decision must be made. The 

payoffs in the matrix in Table 9.12 represent percentage change from current 

Table 9.12 

Syncopated Steering 

No Syncopated Steering 

Few About Flalf Many 

-5 4 2 

0 -3 -10 

sales. Nature’s future states are abbreviations with this significance: few 

means few other manufacturers adopt syncopated steering; about half means 

that about half adopt it; and many means that many do. The company 

realizes that this situation will not occur again and again so the probabilities 

for few, about half and many cannot be estimated from relative frequencies. 

On subjective grounds (hunches), however, the company decides to assign 

probabilities of 1/4, 3/8, and 3/8 to these choices, respectively. What should 

the company do? 

Using the same techniques as before, we calculate that the expected 

payoff for syncopated steering is 

(-5 X i) + (4 X {) + (2 X |) = 1 

while the expected payoff in the other case is 

(0xi) + (-3x|) + (-10xJ) = -^ 

Thus, the company should develop syncopated steering. 

Since the situation described will never occur again, a “subjective” 

interpretation of expected value must be used. 
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Example 4 (Pascal's Wager Again) 

Suppose we conceive of the payoffs in Pascal’s wager as in the matrix 

that follows (see the discussion in Example 4 of Section 9.1). Since we have 

no dominant strategy, a probability approach is warranted. Note once again 

that our decision situation is not a repeatable one: We do not over and over 

again decide on whether or not to believe and then have the answer revealed to 

us. In fact, some might assert that although we may decide, the answer never 

becomes clear. Nevertheless, Pascal proceeds with a verbal argument very 

close to the kind of numerical analysis we have been doing in this section. 

He assumes “there is an equal risk of gain and loss,” which suggests that we 

take the probability of the existence of God to be 1/2. We now carry out our 

probability analysis, assuming some plausible rules for manipulating infinite 

quantities. 

Believe 

Don’t Believe 

God Exists God Doesn’t Exist 

00 1 

— 00 2 

Expected value of believing = (o°X|) + (lx|) = oo 

Expected value of not believing = (—°° x |) + (2 x j) = —00 

EXERCISES 9.2 

1. For each of the matrices below, determine the best choice of row for 

the decision maker. The probabilities of the various columns are indi¬ 
cated above the columns. 

(c) 

2. For the matrix of part (a) of Exercise 1, determine what probabilities 

on the columns (replacing the ones given) would make either of the last 

two rows equally advantageous for the decision maker. Do the same for 
matrices (b) and (c). 

i I 
5 
7 

2 

-1 1 

2 -3 

1 
1 

1 
1 i 

(a) 1 
1 

1 
1 

1 2 

2 -3 

(b) 
t 

-1 1 

2 -3 
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3. If a tornado is sighted 20 mi from town, there is a probability of 0.05 

that it will touch down in town and do damage. The problem is to 

determine whether to sound the alarm each time a tornado is sighted 

at the 20-mi limit or whether to wait until it is sighted closer to town. 

Suppose the utilities are as in the matrix below: 

Alarm 

No Alarm 

What should the policy be ? 

4. In which of the examples and exercises in this section is it reasonable 

to challenge the modeling assumption that the decision maker’s choice 

has no effect on nature’s future state? 

5. You are a widget manufacturer and need to decide whether or not to 

invest in new equipment. If the next year is a booming one, a decision 

to invest will be worth $100,000 but postponing investment costs you 

$10,000. If it is a recession year and you don’t invest, you come out 

even but if you do invest in the equipment, you lose $20,000. Model this 

in a matrix for a decision against nature. If the probability of a boom 

is 3/4, what should you do? 

6. You are entrusted with the problem of making a suitable investment 

with a large sum of money. You decide to buy either common stocks 

or bonds. Which of these will turn out to be more sensible depends on 

which of two possible economic situations will prevail in the next year. 

Let us call these two economic situations A and B. Suppose that under 

A a commitment to bonds will yield 5%, while stock purchases will 

lose 1 %. Under situation B the bond and stock gain percentages are 

4% and 8%, respectively. Model this as a decision problem against 

nature by drawing a matrix. If each economic situation is equally 

likely, what should you do? 

7. You are appealing a $10 traffic ticket in traffic court. Since you do not 

know which judge you will receive, you are unsure of whether the judge 

will be a stern or lenient one. You figure you have two strategies: You 

can be apologetic and plead guilty with an excuse or you can claim inno¬ 

cence aggressively. If you are apologetic, either judge will cut the fine 

in half. But if you are aggressive, a stern judge will leave the fine at $10, 

while a lenient one will cancel it all. Draw the decision matrix, using 

Touch Down Won’t Touch Down 

0.05 0.95 

-20 -1 

-50 0 

(Payoffs in utility numbers) 
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the fines as payoff's. If the probability of getting a lenient judge is 1/3, 

what should you do? 

8.* Suppose, in reference to Exercise 3, that town officials want to determine 

the exact mileage limit so that tornados sighted at that distance from 

town would sound the alarm but nothing sighted farther away would 

sound the alarm. Suppose it has been determined that a tornado sighted 

r (r> 5) miles from the center of town has a probability of 20//-2 of 

touching down in town. What mileage limit should be set? 

decision trees 

Two roads diverged in a yellow wood 

And sorry I could not travel both .... 

—ROBERT FROST* 

There are two respects in which real decision problems are more complicated 

than the ones we discussed in the last two sections. First, the decision maker’s 

decision may influence the future state of nature. Second, the decision maker 

may be faced with a sequence of related decisions. The following examples 

illustrate these phenomena and show how we can use graphs called decision 

trees to deal with them. 
The first example is adapted directly from a 1972 study of hurricane 

control (“The Decision to Seed Hurricanes,” by Howard, Matheson, and 

North, in Science, June 16, 1972). 

Example 1 

The government is faced with the decision of whether or not to seed 

a severe hurricane threatening a coastal area. Seeding refers to the use of 

silver iodide crystals dropped from planes to break up a hurricane. Seeding 

often reduces the wind speed of the hurricane and may consequently reduce 

property damage. However, sometimes hurricanes react to seeding by increas¬ 

ing rather than diminishing their wind speed. Of course, wind speed may either 

increase, decrease, or stay the same even if there is no seeding. The situation is 

illustrated in Figure 9.1. The square vertex at the left represents the point at 

which the government needs to make its decision to seed or not to seed, each 

of these choices being represented by an edge branching to the right. At 

*From “The Road Not Taken,” from The Poetry of Robert Frost, edited by Edward 

Connery Lathem. Copyright 1916, © 1969 by Holt, Rinehart and Winston, Inc. Copyright 

1944 by Robert Frost. Reprinted by permission of Holt, Rinehart and Winston, Inc. and 

the Estate of Robert Frost. 



Change in Property damage 
wind speed (millions of dollars) 

+32% 

+ 16% 

0 

-16% 

-32% 

+32% 

+16% 

0 

-16% 

-32% 

335.8 

191.1 

100.0 

46.7 

16.3 

335.8 

191.1 

100.0 

46.7 

16.3 

Figure 9.1 

the ends of these edges there are circular vertices representing places where 

there will be a choice regarding nature’s future state. (In general, we always use 

circular vertices to indicate decision points for nature’s state and reserve square 

vertices for decision points of the decision maker.) These circular vertices 

branch out into five edges representing a sample of possible changes in wind 

speed. The numerical labels on these edges are the probabilities for the various 

changes in wind speed. For example, following the top path in Figure 9.1 

would mean the hurricane was seeded and the wind speed of the hurricane 

increased by 32%, thereby causing 335.8 million dollars in property damage. 

The fact that the distribution of probabilities on the edges branching from A 

is different from the distribution on the edges branching from B is a reflection 

of the fact that the decision about seeding has an effect on nature’s future 

state. 
To decide whether or not to seed we need to compare the expected 

property damage at A with the expected property damage at B. For each of 

A and B we need to do an expectation calculation of the same sort as we did 

when we dealt with decision matrices: 
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Expected property damage with seeding 

= 0.038(335.8) + 0.143(191.1) + 0.392(100.0) 

+ 0.255(46.7) + 0.172(16.3) 

= $94.00 

Expected property damage without seeding 

= 0.054(335.8) + 0.206(191.1) + 0.480(100.0) 

+ 0.206(46.7) + 0.054(16.3) 

= $116.00 

At each of A and B we “pinch off” the branches, leaving the vertex and label¬ 

ing the vertex with the expected property damage. In this way we reduce our 

tree to that of Figure 9.2. Now the decision is clear—we choose to seed 

because the expected property damage is 22.00 million dollars less. 

B Figure 9.2 

Example 2 

Figure 9.3 shows a map of part of the state college campus where the 

mathematician Linus Meander teaches. Each morning he enters campus at 

A and is immediately faced with the choice of driving to X where there is 

a 1/5 chance of getting a parking space right in front of the math building 

or of driving to parking lot Siberia where there is always space available. 

If he goes to Siberia, he takes the bus back along the diagonal road and his 

total trip is 13 min, as opposed to the 4 min needed to go directly to X. 

Another alternative is to park illegally in the loading zone behind the mathe¬ 

matics building where there is always space available. The fine for parking 

there is $10 and there is a 3/10 chance of incurring this fine any given time 

one parks there. Meander estimates that his time is worth $ 10/hr to him. 

What is his best strategy, assuming that being at L or X is equally desirable to 

him? 

Figure 9.4 shows how we build the tree for this problem in a step-by- 



I min. 

Figure 9.3 

step way. When Meander is at A, he has to decide between proceeding to X 
or to Siberia. If he chooses Siberia, there are no further decisions to be made 
by him or by nature so we can label that endpoint with the time cost of 13 
min. If Meander chooses to go to X, we have a decision by nature [see 
Figure 9.4(b)]: There is a space or there is not. If there is, we label that end 
point with 4 min. Otherwise, Meander must now decide between driving to 
Siberia (which makes the time cost a sure thing of 18 min) and parking at L. 
This decision is shown in Figure 9.4(c). In the latter case there is a final deci¬ 
sion of nature, regarding whether or not Meander gets a ticket. This brings 
us to Figure 9.4(d) as our final tree. Unfortunately, the outcomes are not 
directly comparable since one involves money as well as time. We can convert 
the $10 to a time equivalent of 60 min, however, and get a total time cost of 
65 min for this outcome. 

We begin the analysis by pinching off at D. If Meander finds himself 
at D, his expected time for the trip is (-j^)(65) + (ttj)(5) = 23.0 min. Thus, 
we produce the tree of Figure 9.5. 

Clearly if Meander finds himself at C, he will choose the lower branch, 
to go to Siberia, so we get the further simplifications shown in Figure 9.6. 
To pinch off at B we calculate the expected time for the trip at B as (y)(4) 
+ (y)(l 8) = ly = 15.2. Thus, we produce the final tree in Figure 9.7 and this 
shows that Meander should choose Siberia immediately. 

The preceding example illustrates two important principles in decision 
problems: the sequencing of decisions and the principle of conversion between 
different measures of cost (or benefit). The sequencing of decisions in the tree 
is not necessarily in the order in which they occur in reality. For example, 
whether or not Meander gets a parking ticket if he parks at L may have 
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4 min. 

Figure 9.6 

Figure 9.7 

been effectively determined the day before Meander’s trip when the campus 

parking patrol fixed its route and schedule for the next day. This is of no 

consequence to Meander because he doesn’t find out whether or not he will 

be ticketed unless he first parks illegally. In general, decisions in the decision 

tree are sequenced in the order in which they would be encountered by the deci¬ 

sion maker. 

In this problem it was necessary to reduce time and money to a com¬ 

mon denominator in order to compare outcomes and do expectation calcu¬ 

lations. This necessity for conversion of costs or benefits to common units is 
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frequent in decision problems. Unless such conversion is possible, the pinch¬ 

ing off process based on calculations of expected values is inapplicable. 

Both of the previous examples involved minimizing losses and contained 

no possibilities for gain. The following short example shows the more com¬ 

mon situation where losses and gains occur in the same problem and need 

to be combined in the calculations. 

Example 3 

A business man is contemplating a trip to try to arrange a business deal. 

If he doesn’t make the trip, there is no chance for the deal; while if he does, 

there is a 1/4 chance of concluding the deal. The deal is worth $2000 and 

the cost of the trip is $400. What should he do ? 

Solution: There are two ways we can solve this decision problem, as 

shown in Figure 9.8(a) and (b). The trees are the same but the labelings are 

different. In Figure 9.8(a) we combine the cost of the trip with the profits of 

the outcomes involving the trip to find the total values of these outcomes. 

In Figure 9.8(b) we place the cost of the trip (as a negative number) on the 

edge where that cost is incurred but we do not combine that cost with the 

profits from the deal at the outset. Then we pinch off at B and only then do 

we amalgamate the cost of the trip with the expected profit. It is not accidental 

that the results turn out the same, namely, that the trip offers an expected 

profit of $100. We can use either method for combining costs and benefits. 

EXERCISES 9.3 

1. The Kobalevsky Tool Company has a contract to produce 50,000 ding- 

a-ling pins in 4 months time for a payment of 1 million dollars. If the 

pins are delivered in 3 months, there is a bonus of $100,000. The 

Kobalevsky Company doesn’t have a crucial machine that is needed in 

the manufacture of the pins. It has the option of buying one or two of 

them at $75,000 a piece or remodeling a related machine in its posses¬ 

sion at essentially no cost. There is a one-quarter chance that the 

remodeled machine might not work at all and there is a | chance that 

the remodeled machine will get the job done in 4 months. If it does not 

work, either the company can withdraw from the contract by paying a 

penalty clause of $100,000 or it can pay $85,000 a piece for quick delivery 

of two machines that will just complete the work by the end of the 4- 

month period. If the company buys one new machine immediately, 

there is a three-fourths probability that it will get the job done in 3 

months. Two machines will certainly get the job done in 3 months. 

What should the company do? If remodeling is the answer, what 
should be done if the machine doesn’t work? 
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2. The head of the Hibernian Import Company is considering a business 

trip to try to sell his stock of plastic shamrocks to various novelty chain 

stores. His trip would cost only $400 and there is a probability of one- 

half of unloading his shamrocks at a profit of $3000. Unfortunately, 

if he goes on his trip, there is a probability of one-fourth he will miss the 

long awaited novelty item auction, which is presently unscheduled. Being 

at this auction is worth $2000 to him. If he does not sell his shamrocks 

on a trip, he can sell them at a $1000 profit to a pop art manufacturer 

who will melt them down to form figurines. Should he go on the trip 

or not? 

3. A regional planning commission must decide whether or not to spend 

a year and $100,000 for a study planning an expanded water supply 

system for the county. At the end of 1 year there will be county elec¬ 

tions in which there is a three-fifths chance that DeSicca will be elected 

county executive. DeSicca is strongly opposed to expanding the water 

supply system and, if elected, he will block expansion for the full 5 

years of his term. If DeSicca is elected, by the end of his term the 

population may have increased (with probability of one-third), neces¬ 

sitating expansion that would cost 1.7 million dollars plus $120,000 for 

a rush study, if a study hasn’t already been done. If the population does 

not increase during his term, no expansion will be needed. If DeSicca 

loses, his opponent will order a rush study costing $120,000 if a study 

has not already been done, followed by immediate construction costing 

1.5 million dollars, or his opponent will simply order immediate con¬ 

struction costing 1.5 million dollars if the study has been done. What 

should the planning commission do to minimize total expected cost to 
the county? 

4. The gimcrack industry is trying to decide whether or not to lobby on 

behalf of protective tariff's aimed at reducing the influx of cheaper 

foreign gimcracks. A lobbying effort sufficient to produce a one-tenth 

chance of ensuring protective legislation would entail a one-shot lobby¬ 

ing cost of $500,000. Protective legislation would ensure annual profits 

of 10 million dollars. The industry feels that present estimates and 

calculations are reliable only for about 4 years into the future so total 

profit calculations should be done on this basis. Assume that without 

lobbying there is no chance that protective legislation will be passed. 

Even without protective legislation, however, there is only a one-quarter 

chance that foreign gimcracks can crack the fiercely loyal United 

States market. If they do crack the market, however, foreign gimcracks 

will cut United States gimcrack profits in half. What should the gim¬ 
crack industry do to maximize its net profits? 

5. You are considering whether or not to look for a new salesman’s job. 

You are presently unhappy about the nonfinancial aspects of your 
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position and you decide that being happy in your job is worth $2000 

a year to you. You feel that there is a three-fourths chance of getting 

a new position but you will have to spend $100 for resumes and travel 

and put in 80 hr of your time to ensure this probability. You estimate 

that your time is worth $5/hr. If you receive an offer, you will definitely 

take it, but you estimate that there is only a one-third chance you will 

be happy in the new job. Assume that you would expect to hold the new 

job for 3 years, no matter how things work out. Draw a decision tree 

and decide what your decision should be. 

6. The ABC Advertising Agency is interested in the potentially profitable 

Milky Chocolate Company account. It realizes that it has no chance to 

land the account unless it prepares a substantial sample of advertising 

copy for the perusal of Milky Chocolate executives. Such an effort 

would cost $20,000 but would ensure a one-fourth chance of obtaining 

the account. If the agency gets the account, it can then develop the rest 

of the ad campaign immediately or proceed first with an in-depth 

market survey of customer responses to the sample material. This 

survey would cost $10,000. There is a one-fourth chance that the 

sample material has shortcomings. A survey would reveal these short¬ 

comings, but if no survey is taken they will not be discovered. 

If there are shortcomings, eliminating them would cost another 

$10,000. The company must decide whether or not this is worth doing. 

The way ABC will be paid for its efforts is as follows: There will be 

a flat fee of $30,000 if ABC gets the account and this fee will be tripled 

if Milky Chocolate sales double. The chances of sales doubling in 

response to the advertising are as follows: a three-fifths chance if the 

advertising campaign has no shortcomings and a two-fifths chance if 

there are shortcomings. Should ABC prepare the sample copy to try 

for the Milky Chocolate account? If it gets the account, should it do 

the survey and, if so, should it act upon the changes suggested by the 

survey ? 

7. The Ferro-Hippus Auto Company is considering whether or not to 

make a syncopated steering option in the next model change. An engi¬ 

neering study would cost one million dollars. By the time the engineer¬ 

ing study is completed the company can determine how many other 

companies are fully committed to produce the syncopated steering 

option: few, some, or many. These outcomes have probabilities f, 

and | respectively. The anticipated profits for various combinations of 

decisions by Ferro-Hippus and its competitiors are listed in Table 9.13. 

These profits assume that the engineering study is performed. 

It is possible for Ferro-Hippus to make its decision without first 

doing the engineering study, and without knowing what the competi¬ 

tors will do. In this case, the profit figures are the same as in the table 
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except that those in the right-hand column need to be increased by one 

million dollars each. 

Table 9.13 

Few 

Competitors Some 

Many 

There is a final complication. Congress is currently discussing 

making currently optional safety equipment mandatory in the next 

model change. If this is done, and there is a probability that it will 

be done, there will be little demand for syncopated steering and the 

starred profit should be cut in half. 

Should Ferro-Hippus make the engineering study or not? If not, 

should it decide to produce the syncopated steering option or not? 

If it makes the engineering study, how should it react to the three 

possible actions of the competitors ? 

8. Suppose in Example 1 that seeding a hurricane costs 25 million dollars. 

Incorporate this cost into the calculations and redo the example so as 

to minimize total cost rather than just property damage cost. 

9. Do Example 2 of the text by converting all time estimates to monetary 

equivalents. 

10. Many of the uncertainties in the problems of this section concern 

situations that seem unrepeatable. Therefore, the probabilities must be 

thought of as subjective estimates. If this is the case, does it seem reason¬ 

able to reason and calculate so precisely on the basis of these num¬ 

bers? Would an intuitive approach be better? Can you conceive of any 

experiments that would shed light on these questions? 

9.4 games 

Ferro-Hippus 
Syncopated Steering No Syncopated 

Option Steering Option 

$10 million* $8 million 

$12 million $6 million 

$5 million $3 million 

We now turn our attention to decision problems where the decision maker 

has another human being, or a group of them, to contend with rather than 
blind fate. 

Example 1 

Pat and Mike play a game in which Pat chooses a row in the matrix 

shown in Table 9.14 and Mike chooses a column without knowing Pat’s 
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choice. Mike then pays Pat the sum listed in the intersection of the chosen 

row and column if this sum is positive and receives a payment of the indicated 

magnitude if the sign is negative. For example, if the first row and the first 

column are chosen, Mike pays Pat $2; while if the first row and second 

column are chosen, Pat pays Mike $100. 

Table 9.14 

Pat’s Choices 

Mike’s Choices 

2 -100 

3 50 

We call such situations matrix games. This game undoubtedly seems 

simple to you in comparison to more complex games such as checkers, 

chess, or poker, which are more familiar to you. Unfortunately, the mathe¬ 

matical theory of games is not yet powerful enough to give much insight 

into chess, checkers, or poker so we shall have to content ourselves with 

simpler situations, such as that of Example 1. Even though our examples 

will be simpler, however, they share aspects with more complicated games: 

conflict between two opponents with conflicting goals, intellectual challenge, 

and payoffs involving something of value. 

Occasionally matrix games occur in a slightly disguised form, as in 

the following example. 

Example 2 

The offensive side in a crucial play of a football game has the option of 

planning a passing play or a running play, while the defense can choose 

a “pass rush” or a normal defense. If the pass rush is chosen and the play is 

a passing play, the offensive side loses 7 yards, but if the play is a running 

play, the pass rush gains 5 yards for the offense. A normal defense against 

a running play results in a 1-yard gain for the offense, while a normal defense 

against a pass play yields a gain of 15 yards for the offense. 

We can think of the teams as two players engaged in the matrix game 

shown in Table 9.15, where the offensive team chooses a row and the defense 

Table 9.15 

Run 

Offense 

Pass 

Defense 

Pass Rush Normal 

5 1 

-7 15 
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chooses a column. The payoffs are in yards gained by the offense, negative 

payoffs signifying losses. 
Both of these examples illustrate the general pattern of games we shall 

study in this section and the next: 

(1) There are two players, each intelligently seeking his own self-interest. 

(2) Each player has two or more courses of action to choose from. The 

choices are made secretly and revealed simultaneously. 

(3) For any pair of choices by the players, there is a numerical payoff that 

is gained by one player and lost by the other. The payoffs listed in 

the matrix are, by convention, always the row player’s payoffs. Thus, 

a positive payoff means a gain for the row player but a loss for the 

column player. If we wish to list the payoffs for both players, we 

might use a matrix like the one in Table 9.16, which describes Example 

2, where the first entry in each box refers to the row player, while the 

second entry gives the payoff for the column player. Since we are at 

first only considering games where one player’s gain is the other’s loss, 

the payoffs in each box would always be negatives of one another and, 

therefore, add up to zero. Consequently, for these so-called zero-sum 

games, it is customary to enter just the row player’s payoff. 

Table 9.16 

Run 
Offense 

Pass 

Defense 

Pass Rush Normal 

(5, -5) (1, -1) 

(-7, 7) (15, -15) 

In the analysis of matrix games, we begin with some very simple con¬ 

siderations which you may already have discovered if you thought about 

Example 1. In that game, it makes no sense for Pat to play the first row 

because, no matter what column Mike picks, Pat is better off with the second 

row (by contrast, this situation does not exist in Example 2). We say that 

the second row dominates the first. This is really the same concept of domi¬ 

nation we used in decision problems against nature. The difference here is 

that we also must perform a similar analysis for the other player. From 

Mike’s point of view, neither column is uniformly better than the other. 

Column 2 is better than column 1, provided Pat chooses row 1, but if Pat 

chooses the second row, then Mike would be better off with the first column. 

We are going to assume that Mike is clever enough not to restrict his analysis 

to these observations, however, but that he will realize that the row player 

will never play the first row. Consequently, we are effectively playing a game 

in which there is only one choice for the row player, while the column player 
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has his choice between losing 3 and losing 50. Clearly the column player 

would rather lose only 3 so he should play column 1. This type of analysis 
leads us to make the following definitions. 

DEFINITION 2 

(1) A row of a matrix game is said to dominate another row if each entry 

of the dominatmg row is greater than or equal to the corresponding 
(i.e., same column) entry of the dominated row. 

(2) A column of a matrix game is said to dominate another column if each 

entry of the dominat/Vzg column is smaller than or equal to the corre¬ 

sponding (i.e., same row) entry of the dominated column. 

The value of dominating rows or columns in analyzing matrix games 
lies in the following principle: If a row (or column) dominates another row 

(column), then a rational player will always prefer the dominating row (col¬ 
umn) to the dominated row (column). 

Consequently the dominated row (column) can be stricken from the 
matrix, thus simplifying the analysis. 

Example 3 

In this example we show the simplification of a matrix game using 

dominant strategy analysis. Consider the game matrix on the left below. 

Under each transition we list the inequalities that justify the striking out of 

the row or column in question. In each stage, the two rows or columns 

involved in a dominance relationship are indicated with an asterisk. 

* * 

1 -3 14 

2 5 3 

1 -3 

2 5 

* * 

1 < 14 2 > 1 2 < 5 

2<3 5 > —3 

At the outset there is no dominance among the rows but we can strike 

column 3 out because it is dominated by column 1. Once we have done this, 

we have checked once for row dominance and once for column dominance; 

one might think we had gone as far as one could with dominance analysis. 

That, however, is not so in this example. Even though we have checked both 

kinds of dominance, we should check again. As a result of striking out column 

3, a row dominance has appeared that did not exist earlier. Thus, we strike 

the first row, producing the third matrix. In this third matrix it is clear that 

the first column dominates the second. Our conclusion is that with intelligent 
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play on both sides, each time this game is played the row player will choose 

the second row and the column player will choose the first column, producing 

a payoff of 2 for the row player and, thus, a loss of 2 for the column player. 

Since we have narrowed the possible payoffs down to a single one, we call 

this payoff of 2 the value of the game. 

The algorithm for simplifying a matrix game by using dominant strategy 

analysis is shown in the flow chart in Figure 9.9. 

Figure 9.9 

Example 4 

Smith and Jones each intends to buy a new car. If they were guided by 

practical consideration, each would buy the well-engineered, inexpensive 

Cheapmobile. However, the American folk custom of keeping up with the 

Joneses (Smiths) brings the more expensive Sleekmobile and the outrageously 

expensive Delux into consideration for each family. Each family makes its 

decision independently, without knowledge of the other family’s delibera- 
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tions. The payoffs to Jones, the row player, for the various combinations of 

choices that can occur are given in the matrix below. The matrix in Table 
9.16 can be simplified as in Table 9.17. 

Table 9.16 

Smith’s Choice 

Cheap Sleek Delux 

Cheap 0 -1 +2 

Jones’ Choice Sleek + 1 0 -2 

Delux +2 +2 0 

Table 9.17 

* * 

0 -1 2 

2 2 0 

0 -1 2 

1 0 -2 

2 2 0 

-1 2 

2 0 

In this example, dominant strategy analysis has not narrowed things 

down to a single value. Nevertheless, we can say that with intelligent play 

the only reasonable outcomes are 2, — 1, or 0. In effect, the players are really 

playing the game represented by the last matrix above. 

It is worthwhile to examine the modeling aspects of this matrix game 

to see whether the game satisfies the three criteria we set up as assumptions 

about the kinds of situations we are going to deal with in this section. As for 

the first criterion, since it is possible that Smith and Jones are only dimly 

aware that they are playing this game, it is questionable whether each is 

intelligently seeking to obtain the best payoff in the matrix that he possibly 

can. The second criterion, about secret decisions simultaneously announced, 

may also be debatable. Smith and Jones may discuss their plans or one may 

wait for the other to make a purchase and then make his own decision with 

this information in mind. A final important question, relevant to the third 

criterion, concerns the payoffs in this game. In what units are the payoffs 

measured? Clearly no money changes hands in this game. Status points 

perhaps? This is a suggestive name, but merely giving something a name 

doesn’t tell us much about it. Moreover, if we do not know what a status 

point is, we can hardly hope to measure it to fill in our table. This is, of 

course, the same problem of utilities that we touched upon in discussing 

decision problems against nature. 
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All in all, there are many reasons to regard Example 4 as more fantasy 

than practical modeling. Do you think the same is true of Example 2? 

EXERCISES 9.4 

1. If possible, simplify each of the following matrix games by using the 

algorithm for eliminating dominated strategies. Indicate matrices for 

which no simplification is possible. 

-1 0 2 

-2 -3 4 

-1 0 -2 

2 -4 3 2 

-7 3 3 0 

0 -4 2 1 

1 -5 3 0 

(0 -3 2 7 

1 -2 0 

0 5 -4 

2. In a crucial baseball game, team I has pitchers 1, and I2 available, 

while team II has pitchers II, and II2 available. The team managers 

are hard pressed to announce pitcher choices for the following reason: 
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I, generally beats IIj but loses to II2 

I2 generally beats II2 but loses to IIX 

If either manager announces a choice, the other can counter with 

a pitcher who will beat that choice. Therefore both managers hit upon 

the following device: No previous announcement will be made and 

the pitcher choice will be apparent only when the lineup card is handed 

to the umpire, at which point the lineup is official. Since the lineups 

are handed in simultaneously, neither manager can react to the other’s 

choice. Represent this as a matrix game between the two managers. 

Use a pay-off of 1 to indicate a win and — 1 to indicate a loss. If there 

is any simplification possible through dominant strategy analysis, do it. 

3. Discuss the effect on Exercise 2 of taking into account baseball’s sub¬ 

stitution rule: At any time in the game any player may be replaced by 

another but with the provision that once a player is removed from 

the game, he may not return to that game. 

4. Tony and Dominic play the following game. Simultaneously each 

shows either one or two fingers. If the sum of fingers shown is even, 

Tony pays that amount to Dominic whereas if the sum is odd, Dominic 

pays that amount to Tony. Represent this situation as a matrix game. 

(Remember that the payoffs in your matrix should be to the row player, 

whomever you choose him to be.) If there is any simplification possible 

through dominant strategy analysis, do it. 

5. A defending army has the choice of two important locations to defend, 

locations I and II. The attacking army must decide whether to attack 

I or to attack II without knowing which is being defended. If I is 

defended and is attacked, the pay-off is +2 for defenders (Z>); 

if I is defended but not attacked, the payoff is +3 for the attackers 

(A). If, instead, II is defended and attacked, A wins +3, while if II is 

defended but I is attacked, D wins 4. Devise a matrix to represent this 

game. (Remember, payoffs must all be from the row player’s point of 

view.) If dominant strategy analysis applies, use it to simplify the game 

matrix. 

6. * Find a cooperative student not taking this course who is willing to play 

some of the games in Exercise 1 with you. See whether he uses dominant 

strategy reasoning to secure the best result for himself. Does it help to 

play one game over and over again? Compare results for a number of 

subjects. Discuss your results with someone in the Psychology Depart¬ 

ment. 

7. * Prove that if row Ij dominates row I2, and row I2 dominates row I3, 

then row I, dominates row I3. Is there an analogous result for columns? 
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8. * Is the following situation a zero-sum game? Explain your answer. 

Two competing widget stores, A and B, have sales at the same times 

of year. Each of A and B has the option of using either newspaper (TV) 
or television (TV) for advertising, but not both. We suppose that: 

(a) A and B are the only widget stores in town. 
(b) The total demand for widgets in this town is constant from week 

to week and is unaffected by sales or advertising. 

9. * Explain why dominant strategy analysis might not be relevant in a 

situation where criteria 1 and 2 (listed after Example 2) are not 

satisfied. 

mixed strategies 

Here is a game where analysis seems hopeless: 

Ii 

h 

It seems apparent that neither row is better than the other for the row player 

and that neither column has any claim to preference over the other. Games 

such as this, in which there are no dominant strategies for either player, are 

quite common. This very game arose in the context of choosing pitchers for 

a baseball game (Exercise 2, p. 372). It also arises in a time-honored method 

of choosing sides and settling disputes in street games: An evens player 

and odds player each simultaneously displays either one or two fingers. 

If the total of fingers displayed is even, the evens player wins; if the total is 

odd, then the odds player wins. If we think of the first row and the first 

column (I, and II,) as both representing one finger, while the second row 

and second column (I2 and II2) represent displaying two fingers, then the 

matrix above is the payoff matrix for the evens player as the row player. 

Let us return to the question of how one ought to play this game. 

You may feel that one may as well make the choices randomly and forget 

about further analysis. We shall soon see that not only is this approach 

tempting but there is also a certain wisdom to it. 

Let us make things a bit more interesting by supposing that you will 

play this game against the same opponent 15 times. Is it then reasonable to 

pick one row and stick with it all 15 times? Clearly this is not sensible unless 

you assume your opponent is a fool who cannot detect patterns in your play. 

(For example, if the row player always plays row 1, the column player can 

II, II2 

1 -1 

-1 1 
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always win by playing column 2.) Is it reasonable to alternate your rows 

like this: Ix, I2, Il512, Ix, I2, . . . ? Once again, we must assume your opponent 

will catch on and anticipate your moves. He can then select his column 

choices so as to win all the time. Thus, we seem forced to the conclusion 

that you should make your choices with no pattern. However, this is not all 

there is to it. Here are two patternless series of choices for a series of 15 

repetitions of the game. Do you think they would be equally effective? 

119 f i s ^2’ f 2? ^2> Id ^2’ I2; Id Id Id l2> Id l2> I2 

I2’ Id I2? Id I2’ I25 I2’ I2’ Id I2; 12; Id l2> I2; Ii 

If you want to try an experiment, use each of these series of choices in turn 

against a column player who plays 1IX every third play. The results are not 

identical. The difference between the two series is that in one series about 

half of the choices were Ix, while in the second series only one-third of the 

choices were I,. The question that we have been trying to motivate is this one: 

QUESTION 1 

Granting the necessity of avoiding any pattern to your row choices, is it also 

necessary to maintain a certain numerical ratio between the two possible row 

choices ? 

375 
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Here is an algebraic argument that suggests that the answer is yes 

(which you discovered if you tried the experiment). In the first matrix below 

we have labeled each row and column with a fraction that represents the 

proportion of times out of 15 in which that row or column is chosen (we are 

actually doing a “theoretical” study of part of the experiment earlier sug¬ 

gested). In the next matrix, each box is divided into two parts by a diagonal 

line. The upper part of the box contains the payoff, while the lower part 

contains the portion of times out of 15 that that particular box is actually 

the outcome of the row and column choices. We illustrate how these numbers 

are calculated by doing it for the upper left box. This box is determined as 

the outcome when you, the row player, choose I, and the column player 

chooses II,. Now you choose I, one-third of the 15 plays of the game. Since 

your opponent plays II, one-third of the time overall, we shall also assume 

that approximately one-third of the (4 X 15) times you played I, he will 

play II,. Thus, the upper left box is the outcome a total of approximately 

(4)(i)(15) times. The other boxes are filled in similarly. 

1 -1 

-1 1 

15(4) -15(4) 

-15(f) 15(4) 

To determine the winnings for the row player from any particular box, 

multiply the number of times that outcome comes about (determined as 

previously described) by the payoff for that box. The results of this calculation 

are shown in the third matrix, in which each box is filled in with the total 

winnings that can be expected from that box over 15 plays. To determine 
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the total winnings (overall boxes) over 15 plays for the row player, simply 

add the expected winnings from each box to obtain 

150 - 15(|) - 15(|) + 15(f) 

= 15(* -$-$ + *) 

= 150 

To compute the expected winning for the row player in a single play, we 

must divide by 15. Taking | and dividing by 15 we obtain as the expected 
payoff. 

Let us do the same type of calculation for the second series of choices 

on p. 375, keeping the column player’s play exactly as it was. We make one 

modification of the basic method. We are really interested in the mean payoff 

of the game. In the last example this caused us to divide the final figure of 

■f by 15. We could have accomplished the same objective by never multiplying 

by the 15 to start with. For example, the entry in the upper left box in the 

second matrix on p. 376 would be 00 instead of 00(15). We do the 

example involving the second series this way. 

Computing the expected payoff, we obtain 

Expected payoff = \ ^ — i + -j 

= 0 

Thus, we see that the expected payoff of the game for the row player is 

less with the second series than the expected payoff for the first series. Pre¬ 

sumably you are now convinced that not only is it necessary to avoid pat¬ 

terns in your play but also that in any given matrix game each player has 

an optimal ratio that should be maintained between the two choices (strate¬ 

gies). It is important to remember that if a player—say, the column player— 

chooses any fixed ratio of times that he plays his strategies, then the expected 

payoff to the row player will vary according to what ratio he chooses for 
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playing his strategies. How does one find the exact optimal ratio ? The follow¬ 

ing example shows how. We have done it in detail so that you should be 

able to follow the pattern for other matrices as well. 

Example 1 

For the matrix in Table 9.18 determine the best ratio p of I, choices to 

total choices for the row player. Determine the best ratio q of II, choices 

to total choices for the column player. Notice that the ratio of I2 choices to 

the total must be 1 — p and the ratio of II2 choices to the total must be 1 — q. 

Table 9.18 

II, IIa 

1 -2 

-1 3 

Solution: Using the same procedure as in the previous example, 

q 1 - q 

1 -2 

-1 3 

l 1 

—q(\ — p) 

1 1 

Expected payoff = pq — 2p(\ — q) — q{ 1 — p) + 3(1 — p)(l — q) 

= Ipq — 5p — 4q + 3 
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This expression doesn’t seem very enlightening, involving as it does two 

unknowns, p and q. To make sense out of it we need to transform the form 

of the algebraic expression. This is done in the left column below. The right 

column contains a step-by-step description of the method to follow when 
doing this transformation. 

Ipq - 5p — 4q + 3 

= - 5) - 4q + 3 

= 7p(? - 4) - 4(tf) + 3 

= 7p(q 4) 4(<7 7) + 3 

+ (—4)(4) 

= Mq - 4) - 4(q - 4) + 4 
- 7(p - 4)(g - 4) + 4 

R 

1. Factor out p from the terms 

that include it. 

2. By factoring constants, arrange 

the q terms to have coefficient 1. 

3. By adding or subtracting a 

constant, arrange second q term 

to be the same as first q term. 

4. Factor the q term to get the 

expression into the form 

k(p - o)(q — b) + c. 

Notice that if the row player, who controls the choice of p, chooses p = 4, 

then the expression 7(p — f)(q — 4)> which we denote by R, is zero, and the 

expected payoff is one-seventh. The column player can ensure the same 

expected payoff of one-seventh by picking q = 4. 

We claim that both players have good reason to make exactly these 

choices, for if the row player makes p ^ 4> then p — 4 is not equal to zero 

and hence either positive or negative. Suppose, for example, p — 4 < 0. 

What if the row player is a pessimist? He might fear that the column player 

will choose q so as to make q — 4 > 0 (picking q = for example). R 

would then be a product of a positive and negative number and hence nega¬ 

tive. Combining this negative value of R with one-seventh, the average payoff 

to the row player would be worse than the one-seventh that could have been 

guaranteed by picking p — f If, on the other hand, p — 4 > 0, a pessimistic 

row player would worry that perhaps q was chosen so that q — 4 is negative 

whence R would once again be negative, leading once more to an outcome 

for the row player that is worse than one-seventh. Thus, the row player, if 

he wants to be safe, should pick p = 4 and settle for the small average gain 

of one-seventh. The column player can reason the same way and conclude 

that he should pick q = 4 in order to ensure an average loss of one-seventh. 

The general rule is: in a matrix game without dominant strategies, once the 

expected payoff is determined from the matrix and transformed using the four 

steps listed above, each player's strategy is to pick his fraction so as to make 

R = 0. The expected payoff that comes about by making R = 0 is called the 

value of the game and is denoted V. We use the term mixed strategy to describe 
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the strategy of alternating one's choices in a patternless way but with a certain 

fraction (determined as above) devoted to each choice. 

Example 2 

Here is an example, done concisely in the matrix below with the reason 

for the steps omitted. This example illustrates the fact that before doing 

a mixed strategy analysis we should eliminate as many rows and columns as 

possible using dominant strategy analysis. Indeed, in this example we could 

not immediately attempt a mixed strategy analysis because we have not 

learned to do this for a 3 X 3 matrix game (it would be theoretically possible, 

however.) 

-3 1 2 

4 -1 0 

3 -2 0 

-3 1 2 

4 -1 0 

q 1 —q 

-3 1 

4 -1 

-3 pq p(\ - q) 

4?(1 — p) -0 -/>)(! -q) 

Average payoff = —3pq + p(l — q) + Aq{\ — p) — (1 — p)( 1 - q) 

= —9pq + 2p + 5q — 1 

= P(~9q + 2) + 5q - 1 

= ~9p(q - f) + 5(q) - I 
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= ~9p(q - |) + 5+ l 

= (-?p + 5){q - l) + * 
= — 9(P - iXq ~i) + i 

R 

The value of the game is one-ninth. The optimal mixed strategy for 

the row player is to play the first row five-ninths of the time. The optimal 

mixed strategy for the column player is to play the first column two-ninths 
of the time. 

EXERCISES 9.5 

1. Determine the optimal mixed strategies for the players and the values 

of the games in each of the following cases. 

2 1 

0 3 

(b) 
-4 2 

2 -1 

1 3 -2 

0 2 -3 

-4 0 -1 

0 -1 2 

1 0 -2 

2 2 0 

2. Determine the optimal mixed strategies and the value of the game of 

Exercise 4 or p. 373. 

3. Determine the optimal mixed strategies and the value of the game of 

Exercise 5 on p. 373. 

4. * Discuss what happens when mixed strategy analysis is applied to a game 

in which there is a dominant row or column. Can one determine the 

value of the game from this mixed strategy analysis ? 

5. * Determine the formula, in terms of a, b, c, and d, for the value of the 

following game, assuming that there are no dominant rows or columns: 

a b 

c d 
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6.* Use Appendix 12.4 (random number table) to play the first game in the 

text of this section twenty times using the following mixed strategies for 

the players: 
(a) I, two-thirds of the time; II2 one-third of the time. 

(b) I, one-half the time; II, one-half the time. 

(c) I, one-fifth of the time; II, one-sixth of the time. 

How do your experimental results compare with the theory we have 

developed ? 

nonzero sum games 

Until now we have considered games where the amount won by one player 

is lost by the other. There are games, however, where both players may gain 

simultaneously or both players may lose simultaneously. 

Example 1 

Consider an arms race involving two countries (players), each of which 

has the option of developing a new missile system in the next year. Further¬ 

more, suppose it is possible for each side to keep its decision secret from 

the other for a long period of time. Consequently each side feels it must 

decide immediately whether to develop the system (the hawk position) or not 

to develop it (the dove position) rather than waiting for intelligence estimates 

of the intentions of the other side. Each side can be either a hawk or a dove 

so the four possible situations are (hawk, hawk), (hawk, dove), (dove, hawk), 

and (dove, dove). In the first and last cases the military situation is a standoff. 

It is certainly not true, however, that the situations are identical, for in (dove, 

dove) both sides hav& more money available for nonmilitary domestic uses. 

Now it is reasonable to suppose that if each country is left to itself, it will 

choose the hawk position just to be “safe” and so (hawk, hawk) will come 

about. Clearly both countries will profit if they can cooperate and negotiate 

an agreement whereby both will take the dove position. Of course cooperation 

takes communication, which may not always be possible. Although it is 

difficult to measure with numbers the advantages and disadvantages of these 

situations, we can attempt to illustrate the principles in the payoff matrix in 

Table 9.19. Instead of having one number in each box as we did with zero- 

sum games, we need to enter both players’ payoffs in the cells of the matrix. 

We do so according to the convention that the first number in a cell is the 

payoff to the row player. 

Notice that this game is not a zero-sum game. Although in three of 

the outcomes (cells) the sum of the two payoffs is zero, in the fourth cell 
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Table 9.19 

Hawk 

Dove 

Hawk Dove 

0,0 10, -10 

-10,10 5,5 

both players simultaneously gain five because they have money for peaceful 
domestic use. 

Example 2 

Two manufacturers compete to sell the most toasters. Each manufac¬ 

turer can set his price at $10 or $15. The profits obtained by a manufacturer 

depend on the prices he charges and on the price of the competitor’s toaster, 

as indicated in the matrix shown in Table 9.20. The first entry in a cell is 
the payoff to the row player. 

Table 9.20 

$15 
Price for Company I 

$10 

(Profits in thousands of dollars per year) 

If there is no communication for the purpose of cooperation, presum¬ 

ably both companies will inevitably wind up setting the price at $10. Suppose 

that both start by setting the price at $15. At this point both get $100 as 

payoff. However, one of the companies is likely to notice that it can get 

120, which is a greater profit, if it lowers the price. Hence, this company is 

likely to lower its price. Now the other company, which is still selling at $15, 

is getting a diminished profit of 20. To improve its position, the second com¬ 

pany must also lower its price to $10, at which time both companies will 

make a profit of 50. This 50, 50 payoff is worse for both companies than 

the 100, 100 with which they started. Consequently, the companies might find 

it in their best interests to agree between themselves to fix the price at $15 

for each toaster; that is, they will agree that neither will lower the 

price to $10. This kind of cooperative behavior, referred to as price-fixing, 

has usually been frowned upon and regarded as illegal. The reason is 

that the benefit to the companies is achieved at the expense of the public 

interest, a factor that does not appear in the original model. This illustrates 

Price for Company II 

$15 $10 

100,100 20,120 

120, 20 50, 50 
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that if a model is to be useful, it must reflect all the important factors in 
a situation. From the companies’ points of view the model may be adequate 
but this position may not be shared by the man in the street. If we try to 
expand the present model to include a third “player,” the public interest, 
we will be dealing with a three-person game. Games with more than two 
players will not be considered. 

The previous examples suggest that cooperation between players is 
a crucial factor in nonzero-sum game theory. We can get a better under¬ 
standing of this by first examining these games under the assumption that 
there is no cooperation between the players. 

For example, if we examine the matrix in Example 1 under the hypothe¬ 
sis of total competition, we can show that if both players play rationally, 
there is good reason to believe that the outcome will be (hawk, hawk), which 
is clearly not the most desirable condition for the world. The row player will 
reason like this: If my opponent, the column player, plays hawk, I am better 
off with my hawk row than with my dove row because zero is better than 
— 10; but even if my opponent plays dove, I am better off with hawk than 
with dove since 10 is better than 5. Consequently, I will play hawk since this is 
the best course of action for me, regardless of how my opponent plays. Using 
the same reasoning, the column player discovers that hawk is a better position 
for him, no matter what the row player does. Thus, both sides will develop 
the new weapon if they reason rationally and are unable to cooperate. 

You may have noticed that our analysis of the matrix from Example 1 
in the noncooperative case was essentially a dominant strategy analysis of 
the sort that we studied when we investigated zero-sum games. Here are 
definitions of dominance, adapted to the case in hand, nonzero-sum games. 

DEFINITION 3 

One row in the matrix of a nonzero-sum game dominates another if each 
first entry of the dominat//jg row is greater than or equal to the correspond¬ 
ing (i.e., same column of the matrix) entry of the dominated row. 

One column dominates another if each second entry of the dominating 
column is greater than or equal to the corresponding (i.e., same row of the 
matrix) entry of the dominated column. 

As an illustration of the definition, consider the following example: 

Example 3 

In the matrix shown below, row 1 dominates row 3 because 1 > — 1 
and 2 > 1. There is no row that dominates the second row nor does the 
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second row dominate another row. Column 1 dominates column 2 because 
3 > 1, 5 > 2, and 3 > —3. 

1,3 2, 1 

4,5 0,2 

-1,3 1, -3 

The significance of dominance is this: If a row (or column) is dominated 

by another row (or column), that dominated row (or column) is not likely 

to be played if the players do not communicate and cooperate. Consequently, 

we can simplify the analysis of a nonzero-sum, noncooperative game by 

the following procedure: 

(1) Strike out all dominated rows from the game matrix and go to the next 

step. 

(2) In the new matrix, strike out all dominated columns and return to step 1. 

(3) If at some stage there are neither dominated rows nor dominated 

columns, then stop. The flow chart for this algorithm is the same as 

that shown in Figure 9.9. 

If this technique is applied to the matrix in Example 3, we have the sequence 

of simplifications shown below. 

1,3 2,1 

4,5 0,2 

-1,3 1, -3 

1,3 

4,5 

1,3 2,1 

4,5 0,2 

Hence, in Example 3, we may expect the row player to play row 2 and the 

column player to play column 1. The outcome would be a gain of 5 for the 

column player and a gain of 4 for the row player. 

Sometimes the simplification obtained by this procedure will not reduce 

the game to a single best outcome but will only narrow the choices somewhat. 
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This is illustrated in Example 4 which shows the simplification of such 

a noncooperative nonzero-sum game. 

Example 4 

1,1 -4,2 

0,1 3,0 

1,1 -4,2 3,2 

0,1 3,0 -2,-1 

We reiterate that dominant strategy analysis is reasonable only where 

there is no cooperation between the players. It is possible that after eliminat¬ 

ing some choices by this method, we may have ruled out an outcome that 

would be no worse than the remaining alternatives for both players and actu¬ 

ally better for at least one player. Such an outcome is called a cooperative 

improvement over the remaining outcomes. It is called a cooperative improve¬ 

ment because it can be achieved only if the players cooperate instead of each 

separately applying the self-centered dominant strategy analysis. 

To illustrate the idea of cooperative improvement, we shall reconsider 

the arms race problem of Example 1. Dominant strategy analysis leads both 

players to choose the hawk position, which leads to the outcome 0,0. However, 

5, 5, the outcome from both players’ selection of the dove strategy, is a co¬ 

operative improvement over 0, 0 since both players would have a greater 

playoff. As another example, consider the matrix of Example 4. The out¬ 

come 3, 2 is a cooperative improvement over all the outcomes that remain 

after applying dominant strategy analysis, namely, 1, 1; —4, 2; 0, 1; and 3, 0. 

The outcome 3, 2 is better for both players when compared with 1, 1 or 0, 1. 

Compared to —1,2 and 3, 0, the outcome 3, 2 is better for one player and 
no worse for the other. 

There are a number of other contexts in which cooperation in a game¬ 

like situation is crucial. Since these examples involve more than two players, 

they do not fit conveniently into our discussion but some of them are quite 
striking and deserve mention. 

(1) Suppose you decide not to have a polio vaccination and thereby avoid 

the trouble, minor pain, and risk of allergic reaction. You reason that 

since almost everyone else is vaccinated, there will be nobody from 

whom you could catch the disease. Suppose, though, that everyone were 

to come to this conclusion. Since there are still occasional cases of polio 

reported, there would be some risk of a polio epidemic in the event 

that a substantial part of the population fails to acquire immunity 
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through vaccination. Interestingly, the situation with smallpox is some¬ 

what different. There has not been a case of smallpox reported in the 

United States since 1949 but ironically there have been deaths due to 

smallpox vaccination. Consequently, starting in 1972 it has not been 

routine procedure to give smallpox vaccinations. 

(2) It is highly unlikely that any individual vote in a national election will 

be the deciding vote. An individual may, therefore, decide to save 

himself the trouble of voting. If everyone reasoned this way, however, 

our political institutions would be very different. 

(3) An individual may feel it is wise to save 20% of his income because 

this would put him ahead of the typical United States family, which 

saves about 7% of its after-tax income. (See Understanding Macro¬ 

economics by Robert Heilbroner, Prentice-Hall, Inc., Englewood 

Cliffs, N.J.) It is an economic fact, however, that if everyone suddenly 

switched to saving 20 percent of his income, there would be a quick 

decline in demand for consumer goods, leading to unemployment and 

economic chaos. 

The common thread of these examples is that a large number of people 

must and do act cooperatively to secure certain benefits (the suppression of 

polio, the maintenance of democratic institutions, the maintenance of eco¬ 

nomic stability). What mechanism induces such large-scale cooperative 

behavior? Are sociological principles at work? Emil Durkheim, the French 

sociologist, thought that division of labor brought about a type of coopera¬ 

tion he referred to as “mechanical solidarity.” Are biological principles at 

work? Have we inherited a “herd instinct” as part of our biological makeup? 

Are ethical principles at work? The Golden Rule (“Do unto others as you 

would have others do unto you”) certainly suggests cooperation. An interest¬ 

ing example to consider is the very different reactions to police strikes in two 

major North American cities. During a police strike one might hypothesize 

that many persons would be tempted to further their self-interest by looting 

stores and indulging in other criminal activities. To an extent this is the 

behavior that occurred during the 1969 police strike in Montreal, Canada. 

New Yorkers, on the other hand, seem to have opted for cooperative behavior 

during a police strike in 1971. Which of the considerations raised above 

might have been operative is difficult to assess. 

EXERCISES 9.6 

1. For each of the following matrices, determine whether or not there is 

a cooperative improvement over the outcomes that remain after a domi¬ 

nant strategy analysis. 
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2* Give an algorithm for deciding when there is cooperative improvement 

over outcomes that remain after a dominant strategy analysis. Phrase 

your algorithm to deal with a matrix whose entries are as below. 

a, a' b, b' 

c, c d,d' 

3. * Give examples, in addition to those in the text, where an individual 

might gain in the short run by refusing to cooperate with a group of 

other people but benefit himself as well as others in the long run by 
cooperating. 

4. * Discuss the structure of the tax laws of the United States in connection 
with group cooperation. 

9.7 the credibility of cooperation 

In the last section we discovered that in some nonzero-sum games the best 

results were often obtained if the players cooperatively agreed to play certain 

choices that they might otherwise avoid. Under some circumstances, however, 

this cooperation might be hard to bring about, as the following example 
illustrates. 

Example 1 (Prisoner's Dilemma) 

The district attorney suspects two persons of having committed a crime 

together but he does not have conclusive proof. In the presence of both, he 

announces the following offer. In the morning he will separately visit each 

suspect in his cell and give him an opportunity to confess or remain silent. 

In the interview with the second suspect, the district attorney will not reveal 

the results of the first interview. If both suspects confess, they each get 8-year 

jail terms. If neither confesses, each will get 1 year on a minor charge for 
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which evidence exists. If only one confesses, he will go free for turning state’s 

evidence, while the one who doesn’t confess gets 10 years. The matrix for this 
game is 

C D 

-8, -8 0, -10 

-10,0 -1,-1 

C = confess 

D = don’t confess 

If cooperation is not allowed, both players will probably confess, in 

accordance with dominant strategy analysis. Suppose, however, that the 

suspects are allowed a brief conference before being led to their separate 

cells. It seems likely that they will agree to cooperate and both not confess, 

producing the outcome —1, — 1. 

The new aspect of the analysis is this: Neither will know whether the 

other will abide by the agreement. Would you abide by it? A glance at the 

matrix shows that a player will gain if he does not abide by the agreement 

while the other player does. Of course, if both are treacherous, we are back 

at —8, —8, the worst set of payoffs. 

Unfortunately, game theory can shed no light on what would or should 

happen. It is entirely a matter of the ethics of the players. However, we can 

isolate and define the problem. 

DEFINITION 4 

A pair of strategies is called an equilibrium pair if the payoff pr to the row 

player and the payoff pc to the column player corresponding to these strategies 

have these properties: 

(1) If the column player changes his strategy but the row player does not, 

then the new payoff for the column player is less than or equal to pc. 

(2) If the row player changes his strategy but the column player does not, 

then the new payoff for the row player is less than or equal to pr. 

In other words, a pair of strategies is an equilibrium pair if neither player 

gains if he alone changes his strategy. It should be noted that this concept 

of an equilibrium pair applies to both zero-sum and nonzero-sum games. 

Example 1 (continued) 

In the Prisoner’s Dilemma game the pair of strategies (C, C), leading 

to the outcome —8, —8, is an equilibrium pair. There is no gain for either 

player if he alone switches strategies. We have seen, however, that if both 
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cooperate and simultaneously switch strategies to (D, D), this is a cooperative 

improvement. If we examine (D, D), we see that it is not an equilibrium pair. 

Example 2 

Kenneth Clark Asks New 
Drugs to Curb Hostility 

of Leaders 

By BRUCE RENSBERGER 
special to the New York Times 

Washington, Sept. 4 —The Presi¬ 
dent of the American Psychologi¬ 
cal Association proposed today 
the creation of new drugs that 
could routinely be given to peo¬ 
ple, especially leaders holding 
great power, to subdue hostility 
and aggression and, thereby, allow 
more humane and intelligent be¬ 
havior to emerge 

This example is motivated by a suggestion by a noted psychologist that 

scientists develop a drug that could be taken by world leaders to reduce their 

aggressive tendencies and to stimulate cooperative ones instead. Suppose 

two leaders have arranged a summit conference between them to negotiate 

a way out of a potentially explosive international situation. That morning 

each leader has two strategies: to take the pill (P) or not to take the pill (D). 

It is reasonable to suppose that if one leader chooses P while the other selects 

D, then the one who chose D and skipped the pill has an advantage. The 

matrix below could conceivably be a payoff matrix for this situation. 

P 

D 

P D 

0,0 -4,4 

4,-4 -2,-2 

*© 1971 by The New York Times Company. Reprinted by permission. 
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Unfortunately, (P, P) is not an equilibrium pair and each player may be 

tempted to play D. If, however, both play D, we obtain an unpleasant out¬ 

come, even though (D, D) is an equilibrium pair. 

Does this example demolish the psychologist’s suggestion? 

The question of whether to cooperate with or double-cross one’s 

opponent in a game with a matrix such as in Example 1 or Example 2 

is influenced by how many times the game will be repeated. If there are many 

plays of the game, it is conceivable that the players may communicate or 

interact through the medium of the pattern of choices made. For example, 

we might decide to play only the cooperative strategy (C in Example 1 

or P in Example 2) every single time in the hope that our opponent will 

read this as a signal that says “I want to cooperate.” This approach was 

called the Ghondi approach by Lester Lave (“Factors Affecting Cooperation 

in Prisoner’s Dilemma,” Behavioral Science, 1965. p. 26-38.) who discovered 

that when this is used against an opponent, he will initially cooperate but 

then pick the double-cross strategy (D) all the time, thus making Ghandi 

a perpetual sucker. Lave also studied the opposite approach, called Stalin, 

in which one always plays D. Oddly enough, when the Stalin approach is 

used against an opponent, most opponents occasionally play the cooperative 

strategy (thus becoming a sucker) in the hope of inducing cooperation. 

Somewhat more effective in tricking opponents was the Krushchev strategy, 

in which one plays the uncooperative D strategy most of the time but 

occasionally chooses the cooperative strategy to rouse the hopes of the 

opponent and to induce him to become a sucker. 

Try to verify these results by experimentation. 

EXERCISES 9.7 

1. In each matrix below, identify all equilibrium strategy pairs. Are there 

cooperative improvements over any of these equilibrium pairs? 

(a) 

(b) 
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ii, n2 

i2 

2* In the zero-sum game below, suppose that every one of the four strategy 

pairs is an equilibrium pair. Show that a = b = c = d. 

I, 
h 

3* In the zero-sum game of Exercise 2, suppose (Ils II,) and (I2, II2) are 

equilibrium pairs and a = d. Show that a = b = c = d. 

4. * Answer the question at the end of Example 2 in Section 9.7. 

5. * Get two friends to play the Prisoner’s Dilemma game 25 times with 

no spoken or written communication allowed. See whether cooperation 

occurs. Does the tendency to double-cross die out? 

II, II2 

a b 

c d 

1,-1 -3,3 

2,-2 0,0 

6.* Suppose in a 2 x 2 game, row 1 dominates row 2 and column 1 domi¬ 

nates column 2. 
(a) Show that (row 1, column 1) is an equilibrium pair. 

(b) Suppose, in addition, that (row 2, column 2) is a cooperative 

improvement over (row 1, column 1). Is it possible that (row 2, 

column 2) is an equilibrium pair? If so, give an example. If your 

answer is no, back it up with reasons. 
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10 
the theory 

of elections 

10.1 the board of elections problem 

With a clocklike regularity, each November the United States voting public 

goes to the polls to elect its numerous public officials at the many levels of 

government. It is characteristic of the voters that though (hopefully) they give 

much thought to which candidate they will vote for, they give little attention 

to the mechanics of how the election officials will decide who the winner of 

the election is on the basis of the votes cast. The purpose of this chapter is to 

discuss the problems faced by a hypothetical board of elections. 

Suppose Mr. Ax and Mr. A2 are running for the office of district 

attorney in Springfield. Also up for grabs is the post of mayor of Springfield. 

Mr. Bx, Mr. B2, and Mr. B3 are seeking this post. Furthermore, there are 

972 voters in Springfield. Election day arrives, 451 voters go to the polls, and 

the Board of Elections of Springfield duly count the votes. The results of the 

count for district attorney is shown in Table 10.1 and for mayor in Table 10.2. 

On the basis of the election results, the Board of Elections must declare a 

winner in the elections. Being believers in democracy, the members of the 

board know that one of the important principles of democratic elections is 

Table 10.1 Vote for District Attorney 

Mr. Ax Mr. A2 

225 votes 226 votes 

395 
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Table 10.2 Vote for Mayor 

Mr. Bi Mr. B2 Mr. j93 

152 votes 151 votes 148 votes 

the majority rules. The board is aware that majority rule may not guarantee 

that the “best man” will be elected. After all, what it takes to be “best man” 

is unclear but surely the winner of the election must represent the “choice of 

the people.” After consulting the numbers in Table 10.1, the Board of Elec¬ 

tions unanimously decide to declare Mr. Az the winner in the race for district 

attorney. Admittedly, he received only one more vote than his opponent but 

he did have a majority of the votes cast; that is, he had at least one more than 

half the total votes cast. Majority rule requires that he be declared the winner. 

When it came to decide the winner of the mayoralty race, a huge argument 

broke out. Let us eavesdrop on the argument. The members of the Board of 

Elections are Mr. Plurality, Mr. Borda, Mr. Runoff, Mr. Condorcet, and 

Mr. Socrates. 

Mr. P: Mr. Bx received a plurality of the votes; that is, he received the 

largest number of votes. I admit he did not receive a majority 

but I still think he must be declared the winner. 

Mr. R: But Mr. Bx received only a little more than one-third of the 

vote. To elect him would make a mockery of majority rule. I 

think we should eliminate Mr. B3 since he received the fewest 

votes. Then we could hold an election between Mr. Bx and 

Mr. B2. Such a procedure is known as a runojf election. In the 

runoff election someone would get a majority and he would be 
declared the winner. 

Mr. B: No. I have a better plan for selecting a winner. We should give 

points to each candidate according to how many voters rate him 

as their first choice, second choice, and so on. The candidate 

who received the greatest number of points would win. 

Mr. P: Too complicated! 

Mr. C: In that case you probably won’t like my scheme either. I think 

we should determine if there is one candidate who can beat 

each of the other candidates in a two-man election. If there is 

such a person, he would be declared the winner. 

Mr. S: It seems we are rather sharply divided on how to decide who 

should win. I think you will all agree, however, that because of 

the closeness of the vote, and the fact that no candidate has a 

majority, we must take unusual action. We should hold another 
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election and, instead of merely asking a voter who is his choice 

for mayor, we should ask him to rank the candidates in order of 

his preference. For example, if a voter felt B2 were his first 

choice, B3 his second choice, and Bx his third choice, he might 

indicate this as shown on the blackboard (see Figure 10.1). 

B2 

b3 

By 
Figure 10.1 

Mr. C, 

Mr. R, 

Mr. P,. 

{in unison): Good idea! 

Mr. B: That sounds like a good idea but all this does is improve the 

information we shall have available. It doesn’t tell us which of 

the schemes for deciding the election will be used after we 

receive the improved information from the new election. 

Mr. S: That’s true. Let’s construct a mathematical model for the 

process of conducting an election. On the basis of our model, 

perhaps we may be able to see more clearly how to proceed. 

All: Fine. Let’s get down to business. 

EXERCISES 10.1 

1. Suppose there are four candidates for office and 401 voters. Arrange the 

votes among the candidates so that if the person with the highest num¬ 

ber of votes is called the winner, he will have the smallest possible 

percentage of the total vote. What is this percentage? 

2. Suppose the plurality system is being used to decide an election. (A 

candidate wins with a plurality if he has more votes than any other 

candidate, though not necessarily a majority of the votes.) Compare 

the minimal percentage of the vote necessary to win the election if 

there are 
(a) two candidates, 

(b) three candidates, 

(c) five candidates. 

Generalize. 

3. * Discuss the implications of plurality voting in primary elections with 
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many candidates. Obtain some information about the size of the field 

of candidates for presidental primary elections in recent years. (Among 

the states that conduct presidential primaries are Wisconsin, Oregon, 

and New Hampshire.) 

4. * Has a President of the United States ever been elected without receiving 

a majority of the popular votes cast? (Recall that the President is not 

directly elected. A complicated Constitutional procedure is followed 

that involves the so-called Electoral College.) What percentages of the 

popular vote did the plurality Presidents receive? 

5. * Can you think of any recent elections in which there were more than 

three candidates? Obtain the election results and see if the candidate 

elected received a majority. 

6. * Discuss the implications for majority rule if a strong third party were 

to achieve national strength and regularly run candidates for the pres¬ 

idency. 

7. * Investigate the constitutional procedure for election of the President. 

Do you think plurality voting on the basis of popular vote would be an 

improvement? 

8. * Investigate the election laws in your state and hometown to see if they 

provide for runoff elections in primaries or regular elections. 

9. * The Australian and Irish electoral systems are unusual by United States 

standards. Investigate how these systems work. 

10.2 a model for the board of elections: 

the candidates and the voter 

Mr. P: In order to construct a model for an election, we must first 

isolate the essential features of the electoral process. 

Mr. B: Clearly, we have three considerations in an election. There are 

candidates, voters, and a procedure for deciding how to select 

the winner on the basis of the votes cast. Let us call the last an 
election procedure. 

Mr. C: Let us begin with the candidates. If there are only two candi¬ 

dates, we have seen that there is no difficulty. Whichever can¬ 

didate receives the largest number of votes wins, and majority 

rule is in effect. As soon as there are as many as three candidates, 
we get into difficulty. 

Mr. P: Correct. Let us denote the various candidates by B2,... , 

Bn, where n is at least 3. We would then have an election with 
n candidates. 
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Mr. S: 

Mr. B: 

Mr. C: 

Mr. B: 

I suggest for simplicity that for the moment we limit ourselves 

to the case where n is 3 and there are only the three candidates, 

2?,, B2, and B3. 

We have handled the candidates. Now we must model our 

voters. 

Certainly all of us except Mr. P agree that the voter has not 

given us enough information by merely telling us who the 

candidate of his first choice is. What we need is more precise 

information from him; that is, we need to know who he 

thinks is the best candidate, the next best candidate, and so on. 

Let us use the notation that Mr. S showed us earlier. Thus, a 

voter might indicate his ranking of candidates as shown in 

Figure 10.1. This would mean B2 was his first choice, B3 his 

second choice, and Bx his third choice. Let us call such a dia¬ 

gram a preference schedule. 

In that case if there were three candidates, each voter might 

have one of six possible preference schedules. Here, I’ll write 

them on the board (see Figure 10.2). When a voter comes to 

the polls, instead of merely voting for his favorite, he would 

vote for that one of the six preference schedules that repre¬ 

sented his views. 

Name of 
preference 
schedule 

-Bx -Bx -B2 -b2 -b3 

-b2 -b3 -Bx -f?3 
-*i 

-f?3 -B2 -B3 -B, -b2 

© ® © © © © 

Figure 10.2 

(Each candidate is atop precisely two schedules) 

Mr. P: I object! The voters are too stupid to get it straight. Besides, it 

requires a lot more thinking to decide which preference sche¬ 

dule one likes rather than merely to vote for the person one 

likes best. 

Mr. R: It really does not require too much of the voter. Consider a 

voter making up his mind whether to vote for 2?,, B2, or B3. 
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First he must decide if he prefers Bx to B2. Say he likes Bx 

better. Then he would have to decide whom he liked better 

between Bx and B3. Say he prefers B3. Ordinarily, he would now 

vote for B3. But surely he is capable of deciding between Bx 

and B2 whom he would rank in the second position (B3 was 

first). If he selected Bx over B2, he then would vote for pre¬ 

ference schedule E; if he selected B2 over Bx, he would vote 

for schedule F (see Figure 10.2). 

Mr. C: But is it not possible that a voter might feel the following way ? 

I prefer Bx to B2. I prefer B2 to B3. But I prefer B3 to Bx! 

Mr. P: I think we would all agree that if a person ranked candidates 

this way, then his thinking would not be consistent. I think the 

typical voter will be consistent in his preferences. But I see 

another difficulty. Suppose some voter says, “I like B2, and a 

plague on both B3 and Bx.” In that case he would be unable 

to chose one of the six schedules in Figure 10.2. 

Mr. B: That seems a reasonable objection. Some voters may be indif¬ 

ferent to two or more candidates. It would mean that we 

would have to add the schedules I am writing on the black¬ 

board to the six we already have (Figure 10.3). For example, 

schedule G would be interpreted that the voter preferred Bx to 

B2 and B3 but was indifferent to both B2 and B3. Voting for 

schedule K would mean that the voter thought Bx and B2 were 

equally good and that both were better than B3. 

Bx —b2 

b2,b3 —bx.b3 

b3 

Bx, B2 

B\, B2, B3 

-Bx,B2 - -Bx.B3 - 

-B3 -B2 

© © ® 
Figure 10.3 
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Mr. C: Yes. That does seem more accurate. 

Mr. S: You are quite right. Technically we should add these additional 

schedules but, for simplicity, we shall avoid the more compli¬ 

cated situation. Perhaps you will agree to the following: 

MODELING ASSUMPTION 1 

Given n candidates, each voter can arrange the candidates in a vertical column 

so that if one candidate Bt lies above another candidate B}, then Bt is pre¬ 

ferred to Bj. Furthermore, the voter will not be indifferent between candidates. 

Mr. R: What other assumptions about the voters are necessary? 

Mr. S: I think we need one other assumption. Suppose that a voter has 

chosen a preference schedule and suddenly one candidate dies 

or withdraws from the race. I think we must assume that the 

ranking of the remaining candidates remains unchanged and 

that the voter doesn’t alter the relative positions of the remain¬ 

ing candidates. Thus, if a voter likes preference schedule A 

and Bt withdraws from the race, the voter still prefers B2 to 

B3 and doesn’t suddenly discover with Bx gone that he prefers 

B3 to B2. Had he preferred them in the order Bu B3 (second), 

B2 (third), he would have voted for schedule B originally (see 

Figure 10.2). 

MODELING ASSUMPTION 2 

If a candidate is removed from consideration, the voters would vote their 

preference schedules with that name removed and would not reshuffle the 

relative positions of the remaining candidates. 

EXERCISES 10.2 

1. If there are four candidates, how many different preference schedules 

satisfying Modeling Assumption 1 are there? 

2. Determine for an arbitrary number n the number of preference sche¬ 

dules that satisfy Modeling Assumption 1. (Hint: Use the Principle of 

Counting, Section 8.3.) 

3. If there are four candidates, how many schedules satisfying Modeling 

Assumption 1 have Bx in first position? Bl in second position? Bl in the 

last position? 

4. Given that there are three candidates, if Modeling Assumption 1 is 

satisfied, how many schedules have B3 above 53? Bx above 52? B2 

above B3? 
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5. Repeat Exercise 4 using four candidates. 

6. * If there are four candidates but indifference between candidates is 

allowed, how many schedules will there be in addition to those that 

arise under Modeling Assumption 1. 

7. * Suppose that instead of thinking of candidates and voters in elections, 

we think of alternative bills before a legislative committee whose mem¬ 

bers must decide which bill to accept. For example, we might have a 

committee that was trying to decide among alternative school budgets: 

B{ = a budget of $10 million, B2 = a budget of $12 million, and B3 — 

a budget of $15 million. Examine the assumptions about candidates 

and voters to see whether they might apply to this situation of bills and 

committee decision makers. 

8. * Discuss further decision situations where the model we are developing 

might be of importance. Discuss the validity of the assumptions that 

have been made for these situations. 

9. * Can you think of any additional assumptions that should be made about 

voter behavior that should be taken into account in our models? 

10.* How valid is Modeling Assumption 1 ? 

10.3 a model for the election 

decision procedure 

Mr. P: At long last we reach the election decision procedure. Let me 

describe my method as it applies to our current framework. 

Suppose we have counted the number of votes that have been 

recorded for each of the preference schedules in Figure 10.2. 

Here, look at this example (Figure 10.4). For convenience I 

have indicated the schedule name again and below each sche¬ 

dule the number of voters who voted for it. Now we add 

together the total number of voters who put a given candidate 

in first place. B1 gets 28 votes, namely, the 4 people who voted 

B2 

b3 

4 votes 

© 
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-b3 -b3 

~b2 
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schedule A rank him first as do the 24 people who voted 

for schedule B. Candidate B2 gets 16 + 24 = 40 votes and B3 

gets 21 votes. Notice that schedule F does not enter into the 

procedure since no voters chose this schedule. Now to decide 

the winner, we choose the candidate who received the largest 

number of first-place votes. In this case B2 wins with 40 votes. 

Mr. B: But we already saw one problem with your system. A candidate 

may not have a majority and thus, as the number of candidates 

goes up, the person who wins may have an extremely small 

percentage of the total first-place votes. For example, in the 

situation you have just described, the winner has only 45% of 
the total vote of 89. 

Mr. R: I believe my method will be an improvement. Here is what one 

does. We start off as Mr. P did, determining the number of 

first-place votes of each of the candidates. Then we hold a 

runoff election between the two candidates who received the 

highest number of first-place votes; that is, we eliminate from 

the running all the lower vote getters except the top two. 

Mr. P: But that requires a lot of time and money since a new election 

will have to be held. 

Mr. R: No. That will not be necessary since we have the complete 

preference schedule for each voter. Furthermore, Modeling 

Assumption 2 means that we can eliminate the lower vote 

getters and still determine the winner of the election from the 

schedules already in our possession. Let us go to the example 

in Figure 10.4. We have already seen, using Mr. P’s analysis, 

that Bx received 28 first-place votes, B2 received 40 first-place 

votes, and B3 received 21 first-place votes. Thus we eliminate 

B3 and hold a runoff between 5, andi?2. Now we must compute 

the number of votes for Bx and B2 in the runoff election. Look 

back at Figure 10.4. Let us compute Bx s vote. Candidate Bx 

gets 4 + 24 + 21 votes. 

The 4 votes arise from voters for schedule A since they 

prefer Bx to B2. Twenty-four votes come from the fact that the 

24 voters who voted for schedule B prefer Bx to B2. The 21 votes 

come from the fact that the 21 voters who voted for schedule 

E prefer Bx to B2. (Note that we disregard B3 on schedule E 

since he was eliminated.) B2 gets 16 + 24 votes, from the votes 

for schedules C and D, respectively. Thus B2 loses the runoff 

since B2 gets 40 votes to Bx s 49. Notice that we have a differ¬ 

ent winner by my method. Bx wins rather than B2\ 
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Mr. P: But Bl received only 31 % of the first-place votes of all the 

voters. That’s even less than what B2 did. He seems a poor 

choice of a winner to me. Perhaps someone has a better 

method. 

EXERCISES 10.3 

1. For each of the election results listed in Figure 10.5, determine the 

winner of the election using plurality voting and the system of a runoff 

election. Compute the percentage of the first-place vote that the winner 

receives in each case. 

- - b3 

(a) - - b2 - b3 - Bx 

-b3 - b2 - b2 

12 voters 10 voters 10 voters 10 voters 

- B, - b3 - b3 - b2 

(b) - - b2 -b2 ~ Bx -b3 

- b3 - *1 ~b2 - Bx 

15 voters 10 voters 10 voters 16 voters 

- Bl - *3 - b3 - Bi 

(c) - - b2 - b2 - Bx - b3 

- b3 - Bx - b2 -Bx 

16 voters 10 voters 10 voters 1 5 voters 

Figure 10.5 

2. If in the example of Figure 10.4 the 21 voters for schedule E had decided 

to lie about their preferences for B{ and B2 and interchange the two, 

would this have affected the results of the election using plurality 

voting? the runoff system? {Note: Lying about Bx and B2 amounts to 

voting for schedule F instead of for E.) 

3. Suppose there are four candidates for election. Could the following two 

procedures result in different candidates being elected? 

(a) Hold a runoff between the two candidates with the most first place 

votes. 
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(b) Eliminate the candidate with the fewest first place votes. Hold a 

runoff among the remaining three candidates. Now eliminate the 

lowest candidate again and hold a runoff between the remaining 
two candidates. 

If you think the answer is yes, construct an example to show this. 

Discuss which of the procedures (a) or (b) you think is more “demo¬ 
cratic.” 

4.* In a four-candidate election, if no candidate receives a majority, could 

one decide the election by pairing the winners of first and third place and 

the second and fourth place in a new election? Can you name some 

sports where a related procedure is used to decide the winner of a 
tournament? 

10.4 the Borda count 

Mr. B: I think I can clear matters up. Let me show you my system. 

It is based on the idea of giving a candidate “credit” not only 

for the number of first-place votes he receives but also for the 

number of his second-, third-, etc. place votes as well. The 

number of points a candidate receives will be called the Borda 

count. The person with the highest count wins the election. 

Suppose we consider a given preference schedule. The 

number of points a candidate receives will be equal to the num¬ 

ber of candidates who lie below him on this schedule. Of 

course if many voters vote for the same schedule, we multiply 

the number of points a candidate gets from the schedule by the 

number of voters who voted for that schedule. 

Mr. P: Sounds awfully complicated. 

Mr. B: Let me use the example from Ligure 10.4 again as an illustra¬ 

tion. 
Mr. Bx gets a Borda count of 4(2) + 24(2) + 16(1) 

+ 24(0) + 21(1) = 93. Lrom schedule A there are 2 people 

below 2?i so he gets 2 points, which is multiplied by 4 since 4 

voters voted for schedule A. Lrom schedule B there are 2 persons 

below B{ so he gets 2 points, which is multiplied by 24 since 24 

voters selected schedule 5,. Lrom schedule C he gets 1 point 

since there is one person below him; this is then multiplied by 

16 since 16 persons voted for schedule C. He gets no points 

from schedule D since there are no candidates below B{. Of 

course 24 X 0 = 0. Linally from schedule E he gets 1 point 

since there is 1 person below him. This is multiplied by 21, for 
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the 21 persons selecting schedule E. Similarly, we can compute 

the Borda count of B2 and B3. 
Mr. B2 s Borda count is 4(1) + 24(0) -f 16(2) -f 24(2) 

+ 21(0) = 84. 
Mr. B3 s Borda count is 4(0) + 24(1) + 16(0) + 24(1) 

+ 21(2) = 90. 
Under my scheme, the winner of the election would be 

B1. I would support Mr. R's conclusion that B1 should win this 

election. However, my method will not always yield the same 

winner as Mr. R’s. 

EXERCISES 10.4 

1. Prove Mr. Borda’s assertion that the Borda count and the runoff system 

do not always yield the same winner by deciding the winner of the elec¬ 

tions shown in Figure 10.6 on the basis of the Borda count and the run¬ 

off system. Compare these results with those given by the plurality 

system. 

2. Suppose that the system of assigning points in the Borda count for a 

four-candidate election is altered in the ways described below: 

(a) 3 points for a first place, 2 points for a second place, 1 point for a 

third place, and 0 points for a fourth place. 

(b) 6 points for a first place, 3 points for a second place, 2 points for 

a third place, and 1 point for a fourth place. 

(c) 8 points for a first place, 2 points for a second place, —3 points 

for a third place, and —4 points for a fourth place; 

(d) 4 points for a first place, 5 points for a second place, 6 points for 

a third place, and 3 points for a fourth place. 

For elections (d) and (e) in Exercise 1, compute the counts of the can¬ 

didates using the systems just described. Does the final relative position 

of the candidates differ from system to system? Can you guess what 

conditions on the points assigned will guarantee that the result will 

always be the same winner as for the system Mr. Borda used? 

3. Suppose points are assigned in a four-candidate election according to 

the following system: 1 point for a first place, 2 points for a second 

place, three points for a third place, and 4 points for a fourth place. 

Suppose the winner is the person with the lowest point total. Apply this 

system to the elections (d) and (e) in Figure 10.6. How does this affect 

the election? Can you generalize your conclusion to other ways of 

assigning points where the lowest total yields the winner? 

4. Give an example where the Borda count yields the same winner as 

plurality voting but not the same winner as the runoff system. 
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13 voters 
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(c) - - b2 - By 
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- Bx - B1 - b3 

- b4 - b2 - Bx 

- b2 ~ Bj - b4 

~ B3 - b4 - b2 

3 voters 14 voters 
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5, 
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5, 
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5. Give an example using three candidates where plurality voting, the 

runoff system, and the Borda count give different winners! 

10.5 Condorcet's method 

Mr. C: I regret that I cannot subscribe to any of the three methods 

given so far. Let me describe what I consider a far more demo¬ 

cratic scheme. Suppose that we can find one candidate who can 

beat each of the other candidates in a two-man election. Then 

I believe he should be the winner. Let me illustrate my method 

for the example in Figure 10.4. First, let us see who is the 

winner of the election between Bx and B2. If we disregard B3, 

we discover that Bx gets 4 + 24 + 21 = 49 votes. He gets the 

4 votes of the voters who voted for schedule A since Bx lies 

above B2 on this schedule. He gets the 24 votes of the voters 

who voted for schedule B since Bx lies above B2 on that sche¬ 

dule, and he gets the 21 votes from the voters for schedule E 

since after disregarding B3, Bx lies above B2. Since B2 gets only 

16 + 24 or 40 votes, B{ can beat B2. Now let us see how Bx 

fares against B3. 

In such an election, B2 is disregarded and we discover 

that Bx gets 4 + 24 + 16 votes (from schedules A, B, C, 

respectively) for a total of 44, while B3 gets 24 + 21 =45 

votes (from the voters for schedules D and E). Thus B3 can 

beat flj in a two-way race by the margin of 45 to 44. But, 

furthermore, B3 can also beat B2 in a two-way election. For if 

we disregard Bx, we discover that B2 gets 4 + 16 + 24 = 44 

votes (from the persons who voted schedules A, C, and D, 

respectively), while B3 gets 24 + 21 = 45 votes (from the votes 

for schedules B and E, respectively.) Thus, this two-way race 
is won by B3, 45 to 44 over B2. 

* Cartoon “Freddy” by Rupe, courtesy of Publishers-Hall Syndicate. 
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It seems to me that since B3 can beat both Bx and B2 in 
a two-way race, majority rule requires that he be declared the 
winner, despite the fact that he was a loser under the other 
three systems described! 

Mr. P: I can indeed see the logic of Mr. C’s claim. I believe his method 
is best. 

Mr. R 
and Mmmmmmm, what do you say Socrates ? 

Mr. B: 

Mr. S: I would have to agree with Mr. C that when there is a candidate 
who can beat every other candidate in a two-way race, he 
should be the winner of the election. However, Mr. C has 
pulled the wool over your eyes, gentlemen. There may not 
always be such a candidate! For example, take the election 
shown in Figure 10.7. Let us apply Condorcet’s method. In the 
election B1 versus B2, B1 gets 152 + 148 votes = 300 (from 
schedules A and E), while B2 gets 151 votes (from schedule D). 
Thus Bl beats B2. 

' © - b3 - b2 

- b2 - Bx -b3 

- B, - b2 - Bx 

15 2 voters 148 voters 15 1 voters 

© © © 
Figure 1 0.7 

In the election between B2 and B3, B2 gets 152 + 151 
= 303 votes (from schedules A and D), while B3 gets 148 votes 
(from schedule E). Thus B2 beats B3. 

But in the contest between Bx and B3, Bx gets 152 votes 
(from schedule A), while B3 gets 148 + 151 = 299 votes (from 
schedules E and D). 

Hence B3 beats Bx. The Condorcet scheme breaks down 
and his system is unable to decide a winner. Take a look at 
the digraph in Figure 10.8; it shows the situation. 

Mr. P: But your example shows B, beating B2 (in a two-way race), 
B2 beating B3 in a two-way race, and B3 beating Bx in a two- 
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Beats Figure 10.8 

way race. Something must be wrong. We ruled out that hap¬ 

pening in Modeling Assumption 1. 

Mr. S: Unfortunately not. We ruled out this happening for individuals 

in Modeling Assumption 1 but this example shows, in fact, that 

Modeling Assumption 1 does not rule out the situationin Figure 

10.8 for groups of voters. This situation is sometimes called the 

voter paradox. 
This voter paradox is not just a curiosity but has some 

significance in political science. Consider a committee voting 

on three bills by deciding between pairs of them in some order. 

For example, the committee might first choose between Bx and 

B2 and then match the winner against B 3. Alternatively, B3 

and B2 might be compared first and the winner matched against 

Bx. The voter paradox shows that there will be situations 

in which the bill that becomes a law will depend on the order 

in which the votes are taken! Going back to the example just 

mentioned (Figure 10.7), if we think of B^ B2, and B3 as bills, 

Bx becomes law if the order of the voting is B2 versus B3 with 

the winner pitted against Bt. 

B2 becomes law if Bl and B3 are voted against one an¬ 

other first, and the winner pitted against B2. 

B3 becomes law if B x and B2 are voted on first, and then 
the winner is voted on against B3. 

It seems as if such situations may have actually occurred 

in the United States Congress (see William Riker, “The Para¬ 

dox of Voting and Congressional Rules for Voting on Amend¬ 

ments,v The American Political Science Review, 52, 1958, pp. 

349-356). It turns out that in situations involving bills that are 

voted on in pairs until a winner is found, the later a bill is voted 

on, the greater the likelihood of its passing. As nice as it would 

be to avoid the voter paradox, I’m afraid that we are stuck with 

the possibility that it may occur. 

Mr. P: But this seems to put us right back where we were before. How 

are we going to decide which system to use to decide our 
election? 
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EXERCISES 10.5 

1. Apply the four different systems of deciding an election on each of the 

three sets of schedules shown in Figure 10.9. 

_ B3 _ _ By 

(a) _ _53 -B> 

-By -B2 -B3 

10 voters 11 voters 10 voters 21 voters 

h 

b2 

By 

B4 

By 

B, 

B, 

b2 

By 

B\ 

B, 

b2 

1 voter 7 voters 5 voters 

2_ B2 

— B< 

— By 

— B3 

1 1 voters 

_ _ B2 

— By 

— ba 

— b2 

3 voters 

(c) 

__ Bx 

— B3 

— B2 

5 voters 

__ b2 

— By 

— B3 

11 voters 

__ b3 

__ b2 

__ B{ 

7 voters 

Figure 10.9 

2. For each of the following properties, construct a collection of schedules 

with four candidates having the property noted: 

(a) The Borda count winner is different from the Plurality winner. 

(b) The Condorcet winner is different from the Borda count winner. 

(c) There is no Condorcet winner but all three other methods yield 

the same winner. 

(d) All four methods yield different winners! 

(e) The Borda count and the plurality vote yield the same winner and 

the Condorcet and runoff methods yield the same winner. 

(f) The plurality vote yields one winner and the other three methods 

yield the same winner. 
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3. Construct a voter paradox collection of schedules for four candidates; 

i.e., B1 beats B2, B2 beats B3, B3 beats B4, but B4 beats B{, where all 

elections are considered to be 2 X 2 elections. Can you see how to 

generalize your example to n candidates? 

4. Give an example to show that the following could occur in a four- 

candidate election. There is some candidate Bx who can beat the other 

three in two-way races; but B2 beats B3 and B3 beats B4, while B4 beats 

B2 in two-way races. 

5. A digraph is drawn to show the results of the various two-way elections 

in a 4-candidate race. (The vertices represent the candidates, two vertices 

being joined by a directed edge to show who beats whom in a two-way 

race.) If there is no Condorcet winner, what can you say about this 

digraph? If there is a Condorcet winner, can the digraph have a directed 

circuit? 

6. * Construct an example to show that a person who prefers Ax and A2 

first and second in a three-candidate election can improve the chances 

of Ax winning by ranking A2 last, assuming the election will be decided 

by a Borda count. 

7. * Discuss how the Borda count could be used to decide elections where 

all the schedules in Figure 10.3 as well as those in 10.2 are allowed. 

8. * Decide if the following system could be used when there is no Condorcet 

winner: Count for each candidate the number of persons he can beat in 

a two-way race. The candidate who gets the largest number wins. 

10.6 Arrow's theorem 

Mr. S: Perhaps I can shed some further light on the problem of what 

system to use, by discussing some of the work of Kenneth 

Arrow, the Nobel prize winning economist. 

Up until now we have studied several electoral systems 

and seen flaws and virtues in all of them. Suppose we take a 

different tack and attempt to answer the following question: 

What conditions would we like a democratic election decision 
procedure to obey ? 

Kenneth Arrow attempted to answer this question in a 

quite general setting. Imagine we have n voters who have pro¬ 

vided a statement of their preferences on three or more alter¬ 

natives or candidates. In the case of three candidates this means 

that each voter chooses one of the preference schedules in 

Figures 10.2 and 10.3. Now, the schedules of these individuals 

are submitted to a board of elections whose job is to use some 
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previously defined system S to choose a ranking of the alter¬ 

natives (candidates) for society. Note that rather than S select¬ 

ing a “best” alternative for society, S ranks all the alternatives. 

This is equivalent to saying that system S chooses one of the 

13 schedules in Figures 10.2 and 10.3 as society’s ranking of 

the three alternatives (candidates). 

Now Arrow listed four simple rules he wanted the 

system S to obey: 

admissibility of all schedules: The system S should 

work (provide a ranking) for any collection of schedules that 

the voters submitted to the board of elections. 

pure optimality : If every voter preferred some alterna¬ 

tive X to alternative Y, then the system S should choose for 

society a ranking in which alternative X was preferred to 

alternative Y. 

nondictatorship: There is no person P such that in 

every election the system S chooses as society’s ranking of the 

alternatives the schedule which P submitted. (If this condition 

is violated, P is a dictator.) 

INDEPENDENCE OF IRRELEVANT ALTERNATIVES.- The 

relative position of any alternatives X and Y in society’s ranking 

should depend only on the relative rankings of the two alter¬ 

natives by the individuals. 

The only one of these four conditions whose meaning 

may not be immediately apparent is the fourth. Here is a simple 

example illustrating the main idea. Imagine there are four 

candidates and six voters, whose schedules are shown in 

Figure 10.10a. 

Suppose that when system S is used on these schedules, 

Ax is ranked above A2. (This may or may not seem reasonable 

but it will illustrate the idea nevertheless.) Now suppose instead 

of the six schedules in Figure 10.10a, S had to be used on the 

schedules in Figure 10.10b. When you compare these schedules 

with the original set (Figure 10.10a), you will see that the relative 

positions of At and A2 have not been altered, although A3 and 

A4 have been ranked differently. Rule 4 would require At still 

to be ranked above A2. Thus A3 and A4 were “irrelevant” for 

the ranking of Ax and A2. 

All four of these conditions seem extremely reasonable. 

What decision procedures 5 satisfy these four conditions? The 



2 voters 1 voter 3 voters 

2 voters 1 voter 3 voters 

(b) 

Figure 10.10 

somewhat startling answer, proved by Arrow in 1953, is that 

there is no such procedure! In other words, any decision pro¬ 

cedure S violates at least one of the four conditions. 

Arrow’s work has been a jumping off point for much 

research in an area now known as the theory of social choice. 

As regards resolving the mayoralty election, the best we 

can do in the opinion of many experts on social choice is to use 

the Condorcet procedure applied to the voters’ complete 

preference schedules. In the case that there is no Condorcet 

winner, resolve the election using the Borda count. In a small 

town such as ours it is not unreasonable to use a more sophis¬ 

ticated voting method than we could expect to see instituted at 

the state or national level. Other situations where the Condorcet 

method or Borda count might be used are in elections for 

officers of clubs, in student elections, and in school board 

elections. 

EXERCISES 10.6 

1. Suppose society must rank the four alternatives Ax, . . ., A4. The 

Borda count will be used: Society ranks highest the alternative get- 
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__ A4 

-/43 

-A2 

11 voters 

ting the highest count and society ranks the lowest the alternative getting 
the lowest count, etc. 

(a) For the set of schedules in Figure 10.11, how would the society 

rank the alternatives if the Borda count were used? 

(b) Show that the fourth Arrow condition is violated by producing a 

set of schedules where everyone’s relative ranking of Al and A2 

is as in Figure 10.11 but where the Borda count gives a different 

ranking than that produced by applying the Borda count to 
Figure 10.11. 

a2 

7 voters 5 voters 8 voters 9 voters 

Figure 10.11 

(c) Show that the Borda count will obey conditions 1, 2, and 3. 

2. Suppose the plurality system (first-place votes only) is used to pick first 

through fourth ranking for society for the schedules in Figure 10.12. 

8 voters 10 voters 5 voters 4 voters 

Figure 10.12 

(a) Show that condition 4 is violated by this system. 

(b) Can you produce a set of schedules that show that the plurality 

system violates condition 2? 

(c) Show that the plurality system satisfies conditions 1 and 3. 

3. Show that if the Condorcet system is used to decide society’s first-place 

winner and the Borda count is used to decide the ranking of the other 

alternatives, then this “hybrid” system may not satisfy condition 1. 
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11 
difference equations 
and 

limits to growth 

11.1 simple difference equations 

In Chapter 6 and elsewhere where we have dealt with functions, we have 

assumed them to be given either as a table of values or in terms of an 

algebraic expression. As a practical matter, one is often interested in a 

function for which one does not have a complete description, either as a 

table of values or an algebraic expression. Under certain circumstances we 

can find an algebraic description if we are willing to make some assumptions. 
Here is an example. 

Example 1 

You have recently purchased a house and are trying to predict your 

fuel consumption for the coming winter. You have kept careful statistics for 

the month of October, recording the mean temperature and your burner’s 

oil consumption each day. As it happens, the lowest temperature encountered 

so far has been 53°F and you would like to be able to predict what the oil 

consumption would be on days with temperatures 52°, 51°, 50°F, and so on. 

One way to think about the problem is that we want to fill in the blanks in 

the table below. Alternatively, we would like to find an algebraic description 

of the function that relates oil consumption to mean temperature. 

One approach to the problem begins by plotting the existing values, as in 

Figure 11.1, and then asking what points should be plotted for the lower 

temperature values (indicated with a question mark). 

417 



F
u

el
 

418 difference equations and limits to growth 

Temperature Fuel Consumption (gal/day) 

60°F 2 

59 4 

58 6 

57 8 

56 10 

55 12 

54 14 

53 16 

52 ? 

51 7 

50 ? 

49 7 

25 

20 

15 

10 

5 

I I I I I_I_I_I_I_I_1_L. 

0 49 50 51 52 53 54 55 56 57 58 59 60 

Temp. 

Figure 11.1 

Solution 1 (Geometric): The points that have been plotted suggest 

that the function is linear, that is, that its graph is a straight line. By extend¬ 

ing this line with a ruler we can get an idea of the values of the function for 

lower temperatures. For example, 24 seems a reasonable prediction for the fuel 

consumption when the temperature is 49°F. This type of analysis is called 

linear extrapolation. It should be clearly understood that it involves the fol¬ 

lowing assumption: Because the function was linear between 60° and 53°F, 

we can assume that it is linear throughout the whole range of temperatures. 

Solution 2 (Algebraic): Let /(/) denote the fuel consumption on a day 

when the mean temperature is t. Thus, for example, /(60) = 2, /(59) = 4, 
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etc. We proceed to calculate the so-called first-order differences /(60) — 

/(59), /(59) — /(58), /(58) — /(57), etc. These numbers represent the addi¬ 

tional fuU needed to take care of a 1° decrease in the temperature from 

various base level temperatures. 

/(60) - /(59) = -2 

/(59) - /(58) = -2 

/(58) - /(57) = -2 

/(54) - /(53) = -2 

The fact that all the differences are equal down to /(54) — /(53) suggests 

that perhaps all the differences are equal, even those for which we have no 

data. Of course, this is an assumption that may or may not be true, and it is 

the mark of a good model maker to avoid bad assumptions. We can formu¬ 

late this assumption in the equation 

fit) — f{t + 1) = +2 for all values off (11.1) 

Using this assumption, we can obtain a formula for fit) by writing 

fit) as a telescoping sum: 

fit) = fit) - fit + 1) i.e., fit) = 2 

+ fit + 1) - fit + 2) +2 

+ fit + 2) - fit + 3) +2 

+ 2 

+ /(52) - /(53) + 2 

+ /(53) + /(53) 

From the form of the equation on the right, we see that 

fit) = (53 - t)i+2) + /(53) 

because there are (53 — t) differences, each equal to 2, that appear in the 

telescoping sum in addition to the term /(53). Replacing /(53) by its value 

of 16 and simplifying the equation, we obtain 

fit) = -It + 122 (11.2) 

From this equation we can find the fuel consumption for any particular value 

of t by substitution. For example, /(49) = 24. 
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Equation (11.1) is called a difference equation and Equation (11.2) is 

the solution of the difference equation. Difference equations are usually used 

when one is dealing with a function/that is defined for positive integer values. 

In symbols,/:/—>/?, where / stands for the set of positive integers and R 

stands for the collection of all real numbers. In some situations fit) may be 

defined for all real numbers. Generally, by a difference equation involving 

a function f we mean an equation of the form 

f(t + \) - f(t) = g(t) (11.3) 

which is assumed to hold for all values of t. In our example, (11.1) was a differ¬ 

ence equation in which g(r) — —2. Note that it is necessary to multiply both 

sides of (11.1) by —1 in order to get it exactly into the form of (11.3). Other 

examples of difference equations might be 

fit + 1) - fit) = 31 

f{t + 1) - fit) = t2 + 1 

If you reread our solution of Example 1, you will note that it depended 

heavily on the fact that g{t) was constant and didn’t depend on t. Difference 

equations for which g(t) is a constant always have linear functions as their 

solutions. In this section we consider only difference equations where g(t) 

is a fixed number. 

In order for a difference equation to be solved, we need to know the 

value of the function at some particular known value of the variable. This 

information is known as the initial condition. In Example 1 the initial condi¬ 

tion was the fact that /(53) = 16. The following theorem tells us how to find 

the solution to a difference equation, provided that we are given an initial 

condition. 

THEOREM 1 

Suppose / is a function that satisfies the difference equation and initial 
condition 

fit + 1) - fit) = k 

f(t0) = a0 

(11.4) 

Then for all integral values of t, 

fit) = kit - t0) + a0 (11.5) 
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Proof: First consider the case where t> t0. Then 

fit) =f(t) -f(t - 1) 

+ /(* - 1) ~Rt - 2) 

+ f(t - 2) -fit - 3) 

t — t0 terms each equal to k 

+ fit 0 + 1) — fit o) 

+ fit o) 

Consequently, 

fit) = Kt ~ t0) + ffo) = kit - 10) + a0 

Unfortunately, if t < t0, this proof won’t work because we can never 

reach t0 by starting with t and successively subtracting 1. By starting with t0 

and successively subtracting 1, however, we can reach t. Consequently, we 

can carry out the previous argument with t and t0 interchanged, yielding 

fit0) = k(t0 — t) + fit). However, this equation is equivalent to fit) = 

kf — t0) + ffo)- Since fit0) = a0, this is Equation (11.5), which we wished 
to derive. 

In Example 1 our difference equation was inferred from existing data. 

It sometimes happens that a difference equation can be assumed to exist on 

theoretical grounds. In the following example, a linear difference equation 

forms a very simplified model for a country’s economic system. 

Example 2 

Investment is the term used by economists to describe goods such as 

machine tools, tractors, and other farm equipment, which are used to produce 

other goods, as opposed to goods which are consumed such as food, safety 

razors, automobiles, and plastic bags. If one is willing to simplify a bit, one 

can take it as an economic law that the increase in the gross national product 

of a country from year t to year t + 1 is proportional to the dollar value of 

investment at year t. If we denote by Pf) the value of the gross national 

product at year t and by If) the value of investment at year t, then an example 

of this law can be expressed 

Pf + 1) - Pf) = i\)if) 

(We have taken the factor of proportionality to be one-fourth.) Suppose 

that the country establishes a policy of investing a constant sum of 8 billion 
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dollars per year over the next 20 years. Suppose further that at the start of 

this plan (t = 0) P is 20 billion dollars. We therefore have the following 

difference equation and initial condition: 

P(t + 1) - P(t) = 2 

P( 0) = 20 

According to Theorem 1 the formula for P is 

Pit) = 2t + 20 

If this model is valid, we can predict that in 6 years after the start of the 

program the gross national product will be 32 billion dollars, while in 10 

years the gross national product will be 40 billion dollars. One method of 

testing the validity of the assumptions going into the model is to test the 

actual values of the gross national product against those predicted by the 

model. It is important to note that even if the model and the actual gross 

national product agree for a few values of t, there is no assurance that the 

actual and predicted values will always agree. 

In dealing with the solution of difference equations, it is worthwhile 

keeping in mind how much they differ from the equations with which you 
are familiar. Thus, in solving the equation 

3x - 2 + 4 = 8 

the solution is the number x = 2. However, in solving the difference equation 

fit + 1) - fit) = 2 

we are looking not for a number but a function. 

EXERCISES 11.1 

1. For each of the following problems, find the algebraic expression for 

fit). 
(a) f(t + 1) - f(t) = 2, /(7) = 10 

(b) /(*+ 1)-/(/)=-3,/(3) = 0 
(c) f(t + 1) - fit) = 0, /(4) = 4 

(d) fit + 1) — f{t) = 1, /(—1) = -1 

2. Suppose one has the difference equation fit + 1) — y(/) = 2. Solve 

this for each of the following initial conditions. Graph each of the func- 



difference equations and limits to growth 423 

tions you obtain on the same set of axes. What do the solutions have 
in common? 

(a) /(0) = 0 

(b) /(0) = 1 

(c) /(1) = 3 

3. In Example 2 of the text, suppose we consider the following three invest¬ 
ment policies: 

(a) I(t) = 4 for each t 

(b) I(t) = 10 for each t 

(c) I(t) = 12 for each t 

Using the initial condition P(0) = 20 in all three cases, find P(t) in each 

of three cases. Plot the graphs of the functions on the same set of axes. 

Evaluate P at the end of 20 years for each of the three investment 
policies. 

4. Using the initial condition shown, draw a graph of the function values 

generated from the difference equation for the given values of t. (The 
graphs you get will not be straight lines.) 

(a) fit + 1) = [/(OP + 4 
/(0) = 1; t = 0,1,2,3 

(b) f(t + 1) - fit) - 4t2 

fi0) = 20; t = 0,1, 2, 3, 4 
(c) fit + 1) = fit) + At 

/(0)=1; t = 0, 1, 2, 3, 4, 5, 6 

(d) fit + 1) = 2/(0 - [/(OP 
/(0)=1; t = 0,1, 2,..., 6 

(e) fit + 1) = 3/(0 - [/(OP 
/ (0) = 1; t = 0, 1,2,3 

5. A family on a camping trip covers the mileages below in the first few 

days. Using the type of modeling used in Example 11.1 of the text, 

determine how far they will have gone at the end of the fiftieth day. 

(Note that the first few differences are not exactly constant but you 

may choose a constant that approximates them.) Do you think your 

solution is likely to be reliable? 

Day Mileage 

1 198 

2 403 

3 600 

4 801 

6. A factory normally produces 20 silk purses from 1 lot of 100 sows’ 

ears. From each additional lot of sows’ ears, 25 additional purses can 
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be made. How many silk purses can be made from 10,000 sows’ ears? 

7. * Suppose fit + 2) — f{t) = 3 for all integer values of t and suppose 

/(0) = 0. Can you find /(10)? Can you find /(ll)? 

8. * In Exercise 3 policy (c) involves a yearly investment three times as 

great as that of policy (a). But policy (c) doesn’t lead to a gross national 

product three times as great as that which arises from policy (a) after 

20 years. Is this reasonable? Would the gross national product under 

policy (c) be three times that under policy (a) if we waited longer, say 

100 years? Would it make a difference if we changed the initial condi¬ 

tion? 

7 7.2 difference equations 

and exponential growth 

In recent years society has been giving increased attention to the pattern of 

growth in population, garbage, and gross national product. Many people 

feel that growth of some of these quantities is so rapid as to spell danger for 

society. In this section we shall discuss a special type of growth. Exponential 

growth is what population, epidemics, chain letters, rumors and many other 

growth phenomena all have in common. Each of these phenomena can be 

modeled with the following difference equation: 

fit + 1) - fit) = kf(t) 

where k 0) is some constant factor of proportionality. After algebraic 
simplification this equation can also be written 

fit + 1) = (k + 1 )f{t) 

The following examples show how this equation arises naturally in some of 
the situations just mentioned. 

Example 1 

During a political demonstration someone starts a rumor that a group 

of counter-demonstrators is on its way, seeking a confrontation. We wish 

to model the spread of the rumor with a view toward predicting how quickly 

it will reach everyone. For example, will everyone hear the rumor in 15 min 

if there are 1000 demonstrators? How about 10 min? How about 5 min? 

Solution: Our model will be based on the assumption that every 

person who hears the rumor manages to communicate it in 1 min to three 
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other persons who have not heard it before. In practice, these three people 

are likely to be contacted at various times during the 1-min interval. For 

the purposes of the model we assume that they are contacted at the instant 

the interval ends. Furthermore, an individual does not stop spreading the 

rumor after 1 min but continues spreading it at the same rate. If we let t 

denote minutes and let fit) denote the number of people exposed to the 

rumor at the end of t minutes, we may assert that 

fit + 1) - fit) = 3/(0 (11.6) 

Indeed, this equation is merely a notational shorthand for the assertion that 

the number of new people exposed to the rumor in the period from time t 

to time t + 1 [i. e.,/(t + 1) — /(/)] is three times the number of people who 

had heard the rumor up to time t. This is a direct consequence of our assump¬ 

tion that each person who has heard the rumor will thereafter tell it to three 

new people in each 1-min time period. 

We assume that at time 0 one person (the creator of the rumor) knows 

the rumor. This gives the initial condition: 

/(0) = 1 (11.7) 

To solve the difference equation (11.6) with the given initial condition, 

we write (11.6) in the form fit + 1) = 4fit). Now taking t in turn to be 

0, 1,2, etc., we have the following equations: 

/(l) = 4/(0) = 4x1=4 

/(2) = 4/(1) = 4 x 4 = 42 

/(3) = 4/(2) = 4x42 = 4J 

/(4) = 4/(3) = 4 x 43 = 44 

(Use (11.7) for /(0)) 

(substituting the value of /(1) from 

above) 

(substituting from the previous line) 

(substituting from the previous line) 

Clearly we can continue like this forever and at the ?th stage we will have 

the equation 

fit) = 4' 

Thus, we know how to calculate how many people have heard the 

rumor at any given time. After 15 min, 413 people have heard it. The number 
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415 is an enormous number, somewhat larger than 1 billion (1 billion = 

1,000,000,000). As we can see from Figure 11.2, 5 min will be sufficient for 

everyone to hear the rumor. 

4° = 1 

41 =4 

42 =16 

43 = 64 

44 = 256 

4s = 1,024 

46 = 4,096 

47 = 16,384 

48 = 64,536 

49 = 262,144 

410 = 1,048,576 

Time axis 

Figure 11.2 

The function 4' in Example 1 is called an exponential function because 

the variable appears in the exponent. Processes that can be modeled by an 

exponential function a‘, where a is a constant greater than 1, are said to 

exhibit exponential growth. 

Example 2 

An astronaut returning from Mars brings an extraterrestial virus with 

him and starts an epidemic. Let us suppose that the disease is communicable 

by a person for an indefinite period after he has contracted the disease. This 

is unrealistic but makes a convenient model. Let us assume that the number 

of healthy people infected by a single carrier has a mean (average) value of 
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one-half a person per day. We wish to find a model that will tell us how many 

people have had the disease at any time t. If we let t be measured in days and 

tet fit) denote the number of people who have had the disease at time t, then 

fit + 1) — fit) = (i)/(0 (11.8) 

Alternatively, f(t -j- 1) = (1.5)/(r). By taking values of t equal to 0, 1, 2, 
etc., we obtain the following series of equations: 

/(l) = 1.5/(0) 

/(2) = 1.5/(1) 

/(3) - 1.5/(2) 

etc. 

But at time 0 there is only one person infected, namely, the returning astro¬ 

naut, so /(0) = 1. We can make this substitution in the first equation and 

get /(l) — (1 -5)(1) = 1.5. This value of /(l) can then be substituted in 
the second equation to get 

/(2) = (1 -5)(1.5) = (1.5)2 

We can repeat this cycle of calculation and substitution indefinitely and 
generate the following equations: 

/(1) = 1.5 

/(2) = (1.5)2 

/(3) = (1-5)3 

/(4) = (1-5)4 

etc. 

From the pattern of these equations we can easily deduce that for every 

value of t, f{t) = (1.5)'. The graph of this function along with a table of 

approximate values for the function is shown in Figure 11.3. Notice that it 

has the same general shape as the function in the last example, getting larger 

without limit as time increases. 

THEOREM 2 

The difference equation f(t + 1) — fit) = kf{t), where A; is a constant, 

together with the initial condition /(0) = a, has the following solution: 

fit) — aik + iy 



60 

55 

50 

45 

(1.5)° = 1 
40 

(1.5)1 = 1.5 35 

(1.5)2 = 2.25 
30 

(1.5)3 = 3.38 

(1 -5 )4 = 5.06 25 

(1.5)s = 7.60 20 

(1.5)6 = i 1.39 
15 

(1.5)7 = 17.09 

10 
(1.5)8 = 25.63 

(1 - 5)9 = 38.45 5 

(1.5)10 = 57.66 
O1 

0 1 2 

Figure 11.3 

34567 8 9 10 

Time axis 

Proof: All we need to do is to substitute this function into the differ¬ 

ence equation to see whether it satisfies the difference equation. To do this, 

note that 

fit + 1) — a(k + l)t+1 

and so 

fit + 1) - fit) = a(k + 1- a(k + 1 

We need to check whether this equals kf{t), which is ka(k + 1)'. But 

a{k + 1)'+1 - a{k + 1)' = aik + 1)'[(A: + 1) - 1] 

= a(k + 1 )‘ik) = ka{k + l)r 

Thus, we see that a{k + l)r satisfies the difference equation and is, therefore, 

a solution of it. 

Having proved this result, we are now in a position to write the solution 

immediately to any difference equation of the form fit + 1) — fit) = kff) 

428 
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with the initial condition /(0) = a. Then we can, if we wish, make a table of 

values and a graph of the function/ that we find as the solution, as we did in 

the last two examples. It would be convenient, however, if we could find out 

something about the function even without graphing it. For example, does 

it become larger without limit as time increases, or does it level off somewhere 

and not become larger than a certain number? The next theorem gives some 

information about this. 

THEOREM 3 

Let / be the function that satisfies the difference equation f(t+ 1) — fit) 

= kf(t) with initial condition /(0) = a (a > 0). Suppose further that k > 0. 

Then no matter how large a number we choose, fit) will be larger than that 

number if t is large enough. On the other hand, if k = 0, then f(t) = a for 

every value of t. 

Proof: First we examine the case where k — 0. In this case, fit + 1) 

— fit) = 0 for all values of t, which means that in each time period there 

is no change in the value of fit). This means that fit) is constant. 

Next we consider the case where k > 0 and /(0) > 0. We begin by 

substituting 0, 1, 2, . . . , n — 1 as values for t in the difference equation. 

/(I) —/(0) = kfiO) 

/(2) — /(l) = kfi\) 

/(3) ~ f (2) = kfi2) 

fin)-fin- 1 ) = kf(n- 1) 

Examining these equations in turn, we can make the following observations. 

k > 0 and /(0) > 0 so /(l) - /(0) > 0 so /(l) > /(0) > 0 

k > 0 and /(l) > 0 so /(2) - /(l) > 0 so /(2) > /(l) > /(0) > 0 

k > 0 and /(2) > 0 so /(3) - /(2) > 0 so /(3) > /(2) > /(1) > /(0) > 0 

k > 0 and fin — 1) > 0 so /(/?) — fin — 1) > 0 

so /(«)>/(«— 1) >•••> /(l) > /(0) > 0 

Consequently, for each value of t which is greater than 0, fit) > /(0). Since 

k > 0, this means kfit) > kfi0) for each such t. This fact allows us to 
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replace all but the first equation above by inequalities: 

m - m = */(°) 
/(2) —/(l) > kf(0) 

/(3) — f (2) > kf(0) 

fin) - fin - 1) > /c/(0) 

Adding these inequalities gives fin) —/(0) > nkf(0), which can be rewrit¬ 

ten: 
f(n) > ink + l)/(0) 

The expression on the right is made up of two positive constants k and /(0) 

and a variable quantity n. Clearly we can make ink -f 1) as large as we like 

just by taking n to be large enough. Consequently, /(«) can be made as large 

as we like simply by taking n large enough. Therefore, fit) becomes larger 

without limit as t increases. 

We shall apply the results of the previous theorems to a simple model 

for the population explosion. 

Example 3 

During the twentieth century, up until 1970 the rate of population increase 

in the United States has been about 0.0146 persons per capita per year, begin¬ 

ning with an initial condition of 76 million in the year 1900. This rate is an 

amalgam of average birth rate, average death rate, and average immigration 

rate. It can be interpreted as meaning that in this century for every person 

residing in the United States at the end of year t, there are 1.0146 persons at 

the end of the next year t + 1. More sensibly, perhaps, for every 10,000 United 

States residents at time t there will be 10,146 at time t + 1. If this rate main¬ 

tains itself, will the population level off? How many people will be alive in 

the year 2000 ? 

Solution: Let fit) denote the population at time t, where we measure 

t in years beginning with t = 0 in 1900. Then 

f{t+ 1) — fit) = 0.0146/0) 

m = 76 
(11.9) 

Using Theorem 2 we immediately write the population function as 

fit) = 76(1.0146)' 



Thomas Malthus (1766-1834), although not generally 
regarded as a mathematician, provided the first 
mathematical theory of population growth. He held that 
population grows exponentially and has a "natural 
tendency" to double in about 25 years. He also felt that 
food supplies could not expand to match this pace and 
that the inevitable result would be that misery and vice 
would intervene to lower the population. Malthus' ideas 
seem oversimplified today, but they have been and still are 
quite influential. Among other things, he is credited by 
Charles Darwin and Alfred Wallace, codiscoverers of the 
Theory of Evolution, with inspiring part of that theory. The 
essentially pessimistic theories of Malthus were largely a 
response to the philosophic optimism of writers such as 
Condorcet whose ideas were much in vogue during and 
after the French Revolution. 
(Courtesy The Bettmann Archive.) 

Since k = 0.0146 > 0, Theorem 3 tells us that the population will increase 

without limit as t increases. Theorem 3 also tells us that the only way to 

achieve a limit to the population would be to have k, the rate of increase, 

be exactly 0 (zero population growth). A table of values and graph for the 

function f(t) = 76(1.0146)' is shown in Figure 11.4. The actual population 

figures are also shown and you can see that our model, based on the function 

fit) = 76(1.0146)', gives a reasonable but not exact fit for the actual figures. 

A better model would take into account fluctuations in the rate of increase 

from decade to decade and might try to relate these to social and economic 

conditions. 

We have concerned ourselves in this section with the phenomenon of 

exponential growth in which a quantity increases at each time step by an 

amount that is proportional (by a fixed constant of proportionality) to the 

value of the quantity at the previous time step. Many growth processes in 

the real world tend to behave this way, and we have given three examples 

in which the exponential model applies to some extent. As with most models, 

however, it doesn’t apply perfectly. Here are a few specific criticisms of the 

goodness of fit. These criticisms are not mere quibbles but are really quite 

serious. An applied mathematician would certainly not ignore them but 

would use them as guides to building a better model. 
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• Actual population 

-Graph of/(?) = 76 (1 0146)r 

year t m 

actual 
population 

1900 0 76 76 

1910 10 87 92 

1920 20 100 106 

1930 30 116 123 

1940 40 134 132 

1950 50 155 151 

1960 60 179 179 

1970 70 207 203 

1980 80 239 

1990 90 277 

2000 100 320 

Population figures to the 
nearest million 

Figure 11.4 

THE RUMOR MODEL 

There comes a time when so many people have heard the rumor that a person 

who wishes to communicate it discovers that all those in his immediate 

vicinity have heard it. At this point it may become impossible for him to 

spread the rumor to three people in a minute as assumed by the model. 

432 
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QUESTION 1 

A similar type of criticism applies to the epidemic model. Can you state it? 

THE POPULATION MODEL 

The equation // + 1)—//) = 0.0146/(7) presents only the current tend¬ 

ency of population growth. If the population continues to grow according 

to this law, then, as we have seen, it grows larger without limit. There would 

come a time, however, when pressures of food shortage, overcrowding, etc., 

would change the equation. 

EXERCISES 11.2 

1. Solve the following difference equations subject to the initial condition 

shown. Draw a graph of your solution function. 

(a) /(* + i)- fit) = 2fit) 
/(0) = = 4 

(b) f(t + 1)- fit) = 1/(0 
m = = 5 

(c) f(t + 1)- AO = if it) 
m = = 800 

(d) /(t + 1)- fit) = if it) 
/(0) = = 20 

Solve the difference equation 

subject to 

(a) /(0)=1 

(b) /(0) = 3 
(c) /(0) = 6 
Compare the graphs of the solutions to parts (a), (b), and (c). 

3. Suppose one has the difference equation f(t + 1) — fit) = (0.5)//) 
as in Example 2. Solve this for each of the following initial conditions 

(changing the initial conditions merely corresponds to changing the 

number of astronauts who return with the virus). 

(a) /(0) = 0 

(b) /(0) = 3 

(c) /(0) = 4 
4. In Example 1 consider each of the following two rates of spread for 

the rumor. 
(a) One person per minute, 

(b) Two persons per minute. 
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Using the initial condition /(0) = 1, find f(t) in each case. Plot these 
graphs on the same set of axes. Evaluate / at the end of 5 min in each 

case. 
5. Bacterial cells of a certain type divide into two identical but smaller 

cells once every hour. In a culture that starts with 150 cells, how many 
will there be at the end of 10 hr? 

6. An important part of a country’s capital is its stock of machine tools. 
These tools are used to produce consumable goods such as bicycles, 
belt buckles, and candy bars. Some machine tools, however, can be used 
to make other tools. Suppose that in any 1-year period the number of 
new machine tools made is equal to 5% of the existing quantity at the 
beginning of the year. Assuming that machine tools are good forever 
and don’t need to be discarded, write the difference equation governing 
f(t), the number of machine tools after t years. 

7. In Exercise 6, assume now that 3 % of all machine tools are discarded 
in each 1-year period. How does that change the difference equation? 
What discard rate would be necessary in Exercise 6 in order to avoid 
having the number of machine tools increase without limit? 

8. In the Middle Ages, crafts such as woodworking were learned by 
apprenticing oneself to a master craftsman. In time one could become 
a master craftsman and train others. Suppose each master can train 
two other master craftsman in the space of 10 years, or a mean value of 

per year. Assume that on the average a master craftsman works for 
30 years and then retires or dies. This means that on the average the 
number of master craftsmen who cease working between times t and 
t + 1 is y[j/(0- Suppose we set t = 0 at the beginning of the period 
that interests us and suppose at that time there are 25 master wood¬ 
workers. Write the difference equation governing the function f(t) 
that gives the number of master woodworkers at time t, and write 
the initial condition. Solve the difference equation. 

9. * Discuss the solution of the difference equation 

/(*+ 1)-/(*)= -2/(0 

where /(0) = 10,000. 
(a) How does the graph of the solution differ from the graphs of 

the solutions for Exercise 1 ? 
(b) Do the function values grow without limit as t (> 0) increases? 

10.* Consider the difference equation /(/ + 1) — f(t) = 2f(t), where /(0) 
= -1. 

(a) Find the solution function. 
(b) Does the solution function exhibit growth? 
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(c) For any given negative constant, can one find a t such that f(t) 
is less than that constant? 

11.* John receives the following chain letter: 

Dear John, 

If you follow the instructions below, you will participate in a 
scheme to earn yourself and many others $40. 

(a) Send $10 to the person from whom you received this letter. 

(b) Send an exact copy of this letter to five other people, each of 
whom will send you $10. 

Sincerely, 

Suppose that everyone who receives such a letter complies with it. 

Let f(t) be the number of people in the chain (i.e. people contacted 

plus the originator) at time or stage t. Assuming that /(0) = 1 (i.e., 

at time 0 one person started the chain letter), can you write a difference 

equation for f{t)1 (Bear in mind that this process differs from the text 

examples in that once a person writes his five letters, he stops writing 

letters and no longer contributes to the growth of the number of letters. 

Thus, the difference equation fit + 1) — fit) = 5fit) is incorrect.) 

For the equation you determine, find /(l), /(2), /(3), and /(4). Can 

you explain why chain letters are illegal in most states? 

11.3 the limits to growth 

In this section we want to discuss some better models for population growth. 

The underlying notion is, as in Section 11.2, exponential growth but with 

this novelty: We build into the model the commonsense assumption that 

growth cannot go on forever before other forces intervene to provide a limit 

to growth. Thus, if we place a small number of bacteria into a nutrient 

medium containing no competing organisms, the growth will at first be 

exponential. There will come a point, however, where the test tube will not 

support more growth either because the nutrients have been used up or for 

other reasons. It seems to be a fact that a given environment has a maximum 
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carrying capacity for any organism. We shall now try to incorporate this 

notion into a difference equation model. 

Under optimal growth conditions our organism will have a constant 

intrinsic rate of natural increase, r (> 0). If this growth rate could continue, 

we would have a difference equation like this: 

x(t + 1) — x(t) = rx(t) 

where x(t) is the function that gives the population of the species at time t. 

Let us denote by L the largest population of our organism that the environ¬ 

ment can support. Then the fraction [L — x(t)\/L can be thought of as a resis¬ 

tance factor to the possibilities for further growth at time t because when 

x(t) is small compared to L, this fraction is about equal to 1, whereas when 

x(t) approaches the limit L, the fraction approaches 0. Consequently, we shall 

use it as a factor to scale down r and write the following difference equation 

with a variable growth rate as our model: 

x(t + 1) - x(t) = '~L X^x(t) (11.10) 

We note that this can be written, after algebraic simplification, in the form 

x(t + 1) = r + 1 — x(t) (11.11) 

For future reference we note that we can write (11.11) in the form 

x{t + 1) = [a — bx(t)\x(t) (11-12) 

where a and b are positive constants. 

Example 1 

Assuming that a bacteria population starts with 29 organisms and that 

L and r have values of 665 and 1.6, respectively, calculate and plot the func¬ 
tion x(t) at these time values for t: 0, 1,2, ..., 10. 

Solution: The equation governing the growth of the bacteria is obtain¬ 
ed by substituting L = 665 and r = 1.6 in Equation (11.10): 

x(l + 1) - x(,) = -16[665 ~ *(,)1*<0 
665 

This equation can now be written in the form of (11.12): 

(11.10') 

x(t + 1) -— 2.6 - ^\x(,) x(t) (11.12') 

At the start of the process, when t = 0, there are 29 organisms so we 
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set 40) in (11.12') equal to 29 and calculate jc(1) = [2.6 - 1,6(29)/665] (29) 

= 73 (approximately). We can now put t = 1 in Equation (11.12'), substitute 
73 as the value ofx(l), and thereby calculate that x(2) = 178. With much 

patience or a calculating machine, we can produce the table of values listed 

in column (a) of the following table. Column (b) gives empirically observed 

population levels in a yeast culture that begins with 29 organisms. In Figure 

11.5 the theoretical and observed population curves are plotted. As you can 

Time Population Predicted by Model Observed Population 

0 29 29 
1 73 71 
2 178 175 
3 386 351 

4 645 513 

5 676 594 

6 658 641 

7 669 656 

8 663 662 

(a) (b) 

(Data in column (b) adapted from The Biology of Population Growth, 
by Raymond Pearl, Alfred A. Knopf, Inc., New York, N.Y., 1925.) 

see, the model fits the reality well at the beginning and end but at t = 4 

the discrepancy is about 25 % of the actual value. 
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This model for growth has the pleasing feature that it forecasts an 

equilibrium for the size of the population. By an equilibrium we mean a situ¬ 

ation in which the population is approximately stable in size for a long period 

of time. Algebraically, we have equilibrium at time t if 

x(t + 1) — x(t) = 0 

In a growth process obeying Equation (11.10) this means 

r[L — x(t)\x(t) = 0 
Z/ 

One solution to this equation is x(t) — 0, that is, if there are no members of 

species x alive. The other solution occurs when x(t) = L, the limiting value 

of the population size. In Example 1 the nonzero equilibrium occurs at 

665. This equilibrium is immediately visually apparent from the graph of 

x{t) shown in Figure 11.5. Of course, this limiting value of 665 is rarely actu¬ 

ally reached and, usually, the population continues to move slowly toward 

665. Nevertheless, once one gets close enough to 665, the change is so small 

that the population is in equilibrium for all practical purposes. 

It is interesting to note that difference equations of the form given in 

(11.12) can serve as a model for other phenomena with no apparent connec¬ 

tion with the growth of populations. For example, it has recently been dis¬ 

covered that difference equation (11.12) describes the process by which 

a technological substitute like synthetic fiber replaces a natural product like 

wool and cotton fiber. If x(r) denotes the fraction of the total market for 

fiber that has been captured by the synthetic substitute at time t, then Equa¬ 

tion (11.12), with appropriate numbers filled in for a and b, describes the 
replacement of natural fiber by synthetic fiber. 

In the case of population growth we deduced Equation (11.12) on 

logical grounds. By contrast, it is harder to see why Equation (11.12) should 

be a good model for technological substitution. The proof of a model is 

partly in how well it fits the data, however, and Equation (11.12) does lit 

the data for many replacement processes that have actually taken place: 

synthetic rubber replacing natural rubber, margarine replacing butter, 
detergent replacing soap, and other examples. 

Now let us return to the dynamics of population growth for a biological 

organism. We are going to complicate things by imagining that we have not 

just one species using up environmental resources but two competing species. 

Now possibilities arise that would not have been conceivable in our earlier 

situation. There is, for instance, the possibility that one species might be 

wiped out by the other. To study this situation, let us call our two species 

X and Y, and let x(/) and y(r) be the functions that give the number of indi¬ 

viduals of each of these species at time t. To describe the growth of X we 
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assume again that there is an intrinsic rate of natural increase which must 

be modified by a resistance factor which depends on the carrying capacity 

of the environment for the species X and on the amount of X already present. 

But we further assume that the resistance factor depends on how many 

individuals of species Y are present. The more T’s present, the harder it is to 

increase the population of species X. Therefore, we shall take as our difference 

equation an expression of this form [note the analogy with Equation (11.12)]: 

x{t + 1) — x(t) = [a — bx(t) — cy{t)\ x(t) (11.13) 

where a, b, and c are positive constants. Specifically, a is the intrinsic rate of 

natural increase; b measures the resistance provided by species X to its own 

further increase; and c measures the resistance provided by species Y to 

the further increase of species X. Note that when x(t) and y(t) are close enough 

to 0, the right-hand side is approximately ax{t) and we have simple exponen¬ 

tial growth. But as x(t) and y(t) grow larger, the growth rate a — bx(t) — 

cy(t) becomes small and perhaps even negative. Using analogous assumptions 

about Y, we obtain a similar equation as our model for species Y: 

y(t + 1) — y(t) = [k- mx(t) - ny(t)]y(t) (11.14) 

where k, m, and n are positive constants. 

What does this model tell us about the possibility of the two species 

reaching an equilibrium? By an equilibrium for two species we mean a situ¬ 

ation in which both populations are stable in size, that is, they neither increase 

nor decrease. In symbols, we have reached an equilibrium at time t provided 

that 

x(t + 1) — x(t) = 0 

and 

y(t+ D-y(t) = 0 

Intuitively, these equations say there has been no change in the number of 

organisms in each species during one time period. Making these substitutions 

in (11.13) and (11.14) we have this requirement for equilibrium: 

[a — bx(t) — cy(t)\x(t) = 0 

[k — mx(t) — ny{t)]y(t) = 0 

Examining the first equation, we see that either x(t) = 0 or a — bx(t) — 

cy(t) = 0. If x(t) = 0, species X has been wiped out. This is an equilibrium 

for species X. Furthermore, the absence of species X allows the other species 

to seek an equilibrium according to the model we discussed at the outset of 



440 difference equations and limits to growth 

this section. We shall reject this possibility, however, and seek an equilibrium 

achieved under less drastic circumstances. Similarly, in the second equation, 

we reject the possibility that y(t) = 0. This leaves the following conditions 

for equlibrium: 

bx(t) + cy(t) = a 

mx(t) + ny{t) = k 

Now a, b, c, k, m, and n are constants and x(t) and y(r) are variables so what 

we have here is a pair of linear equations that can be graphed as a pair of 

straight lines. Perhaps this will seem more familiar if we write, as we often 

shall, x and y instead of x(t) and y(t). It is also a routine matter to solve 

these equations simultaneously, as we have shown in Chapter 6. 

Example 2 

Find the equilibrium values for x(t) and y(t) if these functions satisfy 

the difference equations 

x(t + 1) - x(t) = [6.80 - 0.02*0) - 0.05X0]*0) 

y(t + 1) - X0 = [8.00 - 0.04x0) - 0.03XOM) 

Solution: We need to solve the following system simultaneously: 

[6.80 - 0.02x0) - 0.05X0] X0 = 0 

[8.00 - 0.04x0) - 0.03X0M0 = 0 

One solution is that x0) and X0 are both zero. To find another solution set, 

take x0) = 0 but assume that y(t) ^ 0. Now cancel X0 and substitute 0 for 

x(t) in the last equation, finding 8.00 = 0.03X0- This gives X0 = 267 

(approximately). Similarly, if we assume thatXO = 0 but x(0 ^ 0, we obtain 

x(0 = 340. To find the fourth and final solution, which is also the most 

interesting one, we assume that both x(t) and y(t) ^ 0. After cancellation of 
x(t) and y(t) we are left with the following system to solve: 

6.80 = 0.02x + 0.05y 

8.00 = 0.04x + 0.03y 

The solution is x = 140 and y = 80. This is shown graphically in Figure 

11.6, where the lines correspond to the two equations. It should be noted 

that it is unfortunately not possible with this analysis to determine when 

(i.e., at what value of t) any of these equilibrium points will be reached or 
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even whether any of them will be reached at all. If we had some information 
about the initial values of x and y and if we did a little more analysis, we could 
find this information too. 

EXERCISES 11.3 

1. Find the equilibrium points for the following sets of equations: 

(a) x(t + 1) — x(t) — [6.2 — 0.03x0) — 0.04X01X0 
y(t + 1) - XO = [7.6 - 0.06x0) - 0.02y(t)\y(t) 

(b) x(t + 1) - x(t) = [5.0 - 0.002x0) - 0.0006XOWO 
y(t + 1) — y(t) = [5.5 — 0.001x0) — 0.0009XOMO 

(c) x(t + 1) — x(t) = [8.04 — 0.1x0) — 0.06X01*0) 
y(t + 1) — X0 = [4.66 — 0.05x0) — 0.04XOMO 

2* Suppose there are three species whose growth functions are x0), X0> 
and z(t), which satisfy the following set of difference equations. What 
are the possibilities for equilibrium? 

x(t + 1) - x0) = [3.840 - 0.02x0) - 0.003X0 - 0.008zO)]XO 

y(t +1) — X0 = [6-465 - 0.0003x0) - 0.05X0 - 0.007zO)]XO 

z(t + 1) - z0) = [5.472 - 0.004x0) - 0.0006XO - 0.08z0)]z0) 

3.* Formulate a difference equation model for two species, X and Y, where 
Y inhibits the growth of X but X doesn’t inhibit or promote the growth 

441 
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of Y and where each species inhibits its own further growth. Can you 

deduce from your model that an equilibrium exists (with neither species 

dwindling to zero) if and only if the inhibiting effect of Y on itself is 

greater than the inhibiting effect of Y on X. 

4.* In our examples thus far we have had only positive values for the con¬ 

stants a, b, c, k, m, and n. 

(a) Can you explain why a, b, k, and n would never be negative? 

(b) Can you conceive of a situation in which c or m would be negative ? 

Explain the significance of negative values for c or m or both. 

11.4 stable and unstable equilibrium 

Wherever the word equilibrium is used, it is usually relevant to distinguish 

between stable equilibrium and unstable equilibrium. For example, both 

bottles in Figure 11.7 are in equilibrium but this doesn’t tell the whole story. 

(a) (b) 

Figure 11.7 

The bottle standing on its neck is in unstable equilibrium because a slight 

touch will upset the equilibrium; the other bottle is in stable equilibrium 

because if it is disturbed slightly, it will return back to its equilibrium position. 

We are interested in asking a similar question about the equilibrium of 

a species or a pair of competing species. First, however, let us begin with 

the simpler one-species model in Example 1 of the last section: 

x(t + 1) - x(t) = I.61665 - *(<))*(') 
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As we have already observed, the equilibrium values of x{t) occur when 

x(r) = 0 or when x = 665. It makes little sense to ask whether x(t) = 0 is 

stable or unstable so let’s consider the other case, namely, where x(t) — 665. 

Suppose by some accidental fluctuation the population should fall below 665. 

Then the rate of increase, 1.6 — [1.6x(t)/665], would change from 0 to a posi¬ 

tive value. Thus, the population would begin to increase, correcting the 
initial fluctuation. 

If, on the other hand, the initial accidental fluctuation makes x(t) rise 

above 665, then the rate of increase 1.6 — [1.6x(?)/665] becomes negative, 

and the population decreases toward its equilibrium at 665. 

All in all, our species behaves like the bottle in Figure 11.7(a)—small 

disturbances tend to be corrected rather than magnified. It is possible to show 

that there is nothing special about the numbers in this particular example 

that makes the equilibrium stable. If 665 is replaced by any other positive 

number and 1.6 is replaced by any other growth rate which is not too large, 

we would discover that the equilibrium at L is stable. 

Let us go on to the more interesting case of two competing species. 

As before, we start with a particular example with particular numbers, name¬ 

ly, Example 2 of Section 11.3. 

x(t + 1) — x(t) = [6.80 — 0.02x(r) — 0.05y(0]*(/) 

(11.15) 

y(t + 1) - yit) = [8.00 - 0.04x(r) - 0.03y(r)]y(r) 

Recall that the equilibrium in which both species survived was x = 140 and 

y — 80 because this is the point where both rates, 6.80 — 0.02x — 0.05y 

and 8.00 — 0.04x — 0.03y, are zero. Suppose this equilibrium is in existence 

but at time t0, say, there is a disturbance in this equilibrium due to some 

outside force (e.g., an especially dry summer) not represented in this model. 

To be specific, suppose x increases to 145 while y decreases to 75. What 

happens now? Will x and y return to their equilibrium values or will one 

or both species disappear? We can calculate the adjustment made by the 

species in the next time interval by substituting in (11.15). We obtain 

x(t0 + 1) - 145 = [6.80 - 0.02(145) - 0.05(75)] 145 

y(t0 + 1) - 75 = [8.00 - 0.04(145) - 0.03(75)]75 

Simplifying these expressions, we obtain 

x(t0 + 1) = 145 + (.15)145 

y(to + 1) = 75 - (0.05)75 
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Thus X increases but Y decreases. These changes, however, are in the 

same direction as the changes in the original disturbance. Therefore, they will 

not tend to restore the original equilibrium but will instead reinforce the 

disturbance. The situation is analogous to the bottle standing on its neck 

that has been given a slight push. The natural dynamics of the situation 

reinforce the disturbance rather than oppose it. Figure 11.8 shows the state 

300 

Figure 11.8 

of affairs graphically. Point A represents the population levels (140, 80). 

Point B, (145, 75), shows the population levels after the disturbance. The 

arrow indicates the direction of change of the populations after the distur¬ 

bance: X increases and Y decreases. 

It can be shown that at any point in Sector 1, the direction of change is 

the same, namely, down and to the right. Thus, if the equilibrium A is 

disturbed into this sector, the disturbance will be continued until we reach 

a point on the X axis where Y has become extinct. Disturbances into the 

other sectors produce these results: 

Sector 2 

The disturbance will be opposed and in the next time interval the change 

will be in the general direction of the equilibrium (although possibly over¬ 

shooting it). 
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Sector 3 

The disturbance will be continued until X is wiped out. 

Sector 4 

The disturbance will be opposed and in the next time interval the change 

will be in the general direction of the equilibrium (although possibly over¬ 
shooting it). 

Assuming the validity of this instability analysis, we can conclude that 

one of the two species will disappear. The reason is that at the equilibrium 

A it is only a matter of time before a small disturbance appears that sends 

the population levels into either Sector 1 or Sector 3. 

We shall now try to justify the stability analysis in a theoretical way. 

Our theorizing in this model will lead us to a principle well-known in ecology, 

called Gause's principle. 

For theoretical purposes we replace the particular numbers of our 

previous discussion with general positive constants: 

x(t + 1) — x(r) = [a — bx(t) — cy{t)\x{t) 

y(t + 1) - y{t) = [k — mx(t) - ny{t)\y(t) 

With this much generality, we don’t know how to plot the lines so we shall 

distinguish cases concerning the relationships between the intercepts of 

the two lines. The x and y intercepts of a = bx + cy are alb and ale, respec¬ 

tively: the x and y intercepts of k = mx + ny are k/m and k/n, respectively. 

Case I 

a/b > k/m and a/c > kin. 
Here the lines don’t cross in the positive quadrant so there is no equi¬ 

librium without the disappearance of one species (see Figure 11.9). 

Case II 

a/b < kfm and ale < k/n. 
This case (see Figure 11.10) is similar to the last. Because the lines don’t 

cross in the positive quadrant, the only equilibrium involves the extinction 

of one species. 

Case III 

a/b > k/m and a/c < k/n. 
The lines do intersect in the positive quadrant (see Figure 11.11) so 
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Figure 11.9: Case I 

y-axis 

Figure 11.10: Case II 

there is an equilibrium point where both species survive. To determine 

whether a disturbance will be opposed or continued, we analyze individually 

the two lines and the half-spaces they determine. All points under the line 

labeled X satisfy the inequality a — bx — cy > 0, while those above line X 

satisfy the inequality a — bx — cy < 0. Similarly, underneath the Y line 

we have k — mx — ny > 0, while above that line the opposite inequality, 

'k — mx — ny < 0, holds. Sector 1 consists of points under the X line but 

above the Y line. Consequently, Sector 1 can be described as the set of points 

446 
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where the following two inequalities hold: 

a — bx — cy > 0 

k — mx — ny < 0 

Putting this information into (11.5) we can say that Sector 1 consists precisely 

of those points where 

x(t + 1) — x(t) > 0 

and 

y(t + 1) - XO < 0 

These inequalities show that species X increases while species Y decreases 

in Sector 1. The arrow in Sector 1 in Figure 11.11 points in the direction of 

increasing X and decreasing Y. As in our numerical problem, this indicates 

an unstable equilibrium. If we took the trouble to work out the state of 

affairs in the other sectors, we would determine that the proper directions 

for the arrows are as shown in Figure 11.11. 

y-axis 

Figure 11.11 : Case III 

Case IV 

alb < k/m and ale > kin. 
Again, the lines cross at an equilibrium point in the positive quadrant 

(see Figure 11.12). Our sector-by-sector analysis, following the pattern laid 

down in the last case, gives the following results: 
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Figure 11.12: Case IV 

Sector 1 

a — bx — cy < 0 j (x(t + 1) — x(r) < 0 
> therefore j 

k — mx — ny > Oj (>>(? +1) — y(r) > 0 

Since x decreases and y increases in this sector, the arrow points up and to 

the left—in other words, back in the direction of the equilibrium. Conse¬ 

quently, a disturbance into this sector will be opposed and in the next time 

interval the change will be in the general direction of the equilibrium 

(although possibly overshooting it). 

Sector 2 

a — bx — cy > Oj fx(r + 1) — x{t) > 0 
\ therefore j 

k — mx — ny > OJ (_y(* + 1) — k(0 > 0 

Since x increases and y increases, the arrow points up and to the right. 

Consequently, a disturbance into this sector will be opposed and in the next 

time interval the change will be in the general direction of the equilibrium 

(although possibly overshooting it). 

Sector 3 

448 

a — bx — cy > Oj tx(r + 1) — x(t) > 0 

( therefore | 

k — mx — ny < OJ (y(t + 1) — y(t) < 0 
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Since x increases while y decreases, the arrow points down and to the right. 

Consequently, a disturbance into this sector will be opposed and in the next 

time interval the change will be in the general direction of the equilibrium 
(although possibly overshooting it). 

Sector 4 

therefore 

Since x and y both decrease, the arrow points down and to the left. Conse¬ 

quently, a disturbance into this sector will be opposed and in the next time 

interval the change will be in the general direction of the equilibrium 

(although possibly overshooting it). 

We have now concluded that the condition that must hold for stable 

equilibrium is a/b < k/m and ale > kin. We shall now try to provide a bio¬ 

logical interpretation for this. The numbers a and k are environmental carry¬ 

ing capacities for X and Y, respectively; for simplicity we shall assume that 

they are about equal. This simplifies our inequalities to c < n and b > m. 

These constants have the following significances: 

(1) b measures the resistance provided by species X to the increase of 

species X 

(2) m measures the resistance provided by species X to the increase of 

species Y 

(3) c measures the resistance provided by species Y to the increase of 

species X 

(4) n measures the resistance provided by species Y to the increase of 

species Y 

Therefore, c < n and b > m means that each species has a greater inhibiting 

effect on itself than it has on the other species. This would be the case, for 

example, if X and Y have overlapping but not identical food requirements. 

On the other hand, if X and Y have the same food requirements, it is less 

likely that c < n and b > m; therefore the equilibrium is unlikely to be stable. 

This analysis gives some theoretical justification for an observed phenomenon 

known as Gause's principle of competitive exclusion: no two species with 

identical niche requirements (food, territory, etc.) can coexist. 
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EXERCISES 11.4 

1. Find the equilibrium for the following system. 

x(t + 1) - x(t) = [0.3 - 0.002*0) - 0.001XOW') 

y(t + 1) - y(t) = [0.25 - 0.0012x(t) - 0.0013X01X0 

Consider disturbances from the equilibrium to each of the following 

points and determine whether the disturbance will be continued or 

opposed. Indicate the state of affairs with a diagram and arrows: 

(a) disturbance to (95, 95), 

(b) disturbance to (105, 105), 

(c) disturbance to (95, 105), 

(d) disturbance to (105, 95). 

2. * In case IV (where alb < k/m and a/c > k/n) we neglected to analyze 

the state of affairs when there is a disturbance of the equilibrium point 

to a point that lies on one of the boundary lines between sectors. Do 

this analysis. 

3. * In addition to the four cases analyzed in the text, one really should 

consider the possibility that one or more pairs of intercepts are exactly 

equal. In each of those possible cases, determine whether there is 

an equilibrium. What can you say about whether disturbances are 

continued or opposed? 

4. * Explain the following remark that appears in the text: “It makes little 

sense to ask whether x(t) = 0 is stable or unstable. . . .” 

SUGGESTED READING 

Goldberg, S., Introduction to Difference Equations, John Wiley & Sons, 

Inc., New York, N.Y., 1958. The mathematical theory of difference 

equations is developed. In addition, many examples from economics, 

psychology, and sociology where difference equations can be used as 
models are given. 

Smith, J. M., Mathematical Ideas in Biology, Cambridge University Press, 

London, 1968. Chapter 2 uses difference equations to model the rela¬ 

tionship between predator and prey. 



appendices 

12.1 set theory 

DEFINITION 1 

A set is any collection of objects. 

Example 1 

Here are some examples of sets: 

(1) The set of integer numbers. 

(2) The set of real numbers greater than or equal to 4. 

(3) The set of English vowels. 

(4) The set of primary colors. 

The following notation is often useful in defining a set: 

A = {x | x has property P} 

This is read “A is the set of x such that x has property P.” The braces stand 

for “set” and the vertical line stands for “such that.” In general, braces around 

a collection of symbols will denote the set consisting of those symbols. 

DEFINITION 2 

If a set A and a set B are such that every element in set A is also in set B, 

then A is called a subset of B, and this is denoted A cz B. 
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Example 2 

(1) {1,3} <={1,4, 7, 3} 

(2) The set of integers is a subset of the set of real numbers. 

(3) {x | x > 5} <= {x | x > 0} 

Often it is convenient to generate new sets from old sets. 

DEFINITION 3 

Let A and B be subsets of set S. The set A', read the complement of A, is the 

set of all those elements in S that are not in A. The set A U B, read A union B, 

is the set of all those elements in A or in B or in both. The set A n B, read 

A intersect B, is the set of elements in both A and B. 

Example 3 

Suppose that S = {1, 2, 3, 4} and A = {1,2], B = {1, 4}. Then 

A U B = {1,2, 4} 

A n B = {1} 

A' = {3, 4} 

B' = {2, 3} 

(AuB)nB' = {1, 2, 4} n {2, 3} = {2} 

Example 4 

Let S be the set of cards in an ordinary deck. Let A be the set of spades 

and B be the set of fours. Then A n B is the four of spades and A U B 

the spades together with the fours of clubs, diamonds, and hearts. 

In some situations it is useful to have a notation to represent the mem¬ 

bers of a set. If we wish to state that element a is a member of set A, we shall 

write a e A. 

Example 5 

If X is the set of real numbers, we can write OeI, — 1 e X, n e X, 
and e X. 
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12.2 table of square roots 

Table 12.2 Square roots(1 > 

n \/n y/ 10n n \/ n \Z~\A}n 

1.0 1.00000 3.16228 3.5 1.87083 5.91608 
1.1 1.04881 3.31662 3.6 1.89737 6.00000 
1.2 1.09545 3.46410 3.7 1.92354 6.08276 
1.3 1.14018 3.60555 3.8 1.94936 6.16441 
1.4 1.18322 3.74166 3.9 1.97484 6.24500 

1.5 1.22474 3.87298 4.0 2.00000 6.32456 
1.6 1.26491 4.00000 4.1 2.02485 6.40312 
1.7 1.30384 4.12311 4.2 2.04939 6.48074 
1.8 1.34164 4.24264 4.3 2.07364 6.55744 
1.9 1.37840 4.35890 4.4 2.09762 6.63325 

2.0 1.41421 4.47214 4.5 2.12132 6.70820 
2.1 1.44914 4.58258 4.6 2.14476 6.78233 
2.2 1.48324 4.69042 4.7 2.16795 6.85565 
2.3 1.51658 4.79583 4.8 2.19089 6.92820 
2.4 1.54919 4.89898 4.9 2.21359 7.00000 

2.5 1.58114 5.00000 5.0 2.23607 7.07107 
2.6 1.61245 5.09902 5.1 2.25832 7.14143 
2.7 1.64317 5.19615 5.2 2.28035 7.21110 
2.8 1.67332 5.29150 5.3 2.30217 7.28011 
2.9 1.70294 5.38516 5.4 2.32379 7.34847 

3.0 1.73205 5.47723 5.5 2.34521 7.41620 
3.1 1.76068 5.56776 5.6 2.36643 7.48331 
3.2 1.78885 5.65685 5.7 2.38747 7.54983 

3.3 1.81659 5.74456 5.8 2.40832 7.61577 

3.4 1.84391 5.83095 5.9 2.42899 7.68115 

(1,From John Freund, Statistics: A First Course, Englewood Cliffs, New Jersey: Prentice- 

Hall, Inc., 1970, pp. 317-318. 
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Table 12.2 Square roots (cont) 

n y/n y/ lOn n y/n y/ 10n 

6.0 2.44949 7.74597 8.0 2.82843 8.94427 

6.1 2.46982 7.81025 8.1 2.84605 9.00000 
6.2 2.48998 7.87401 8.2 2.86356 9.05539 

6.3 2.50998 7.93725 8.3 2.88097 9.11043 
6.4 2.52982 8.00000 8.4 2.89828 9.16515 

6.5 2.54951 8.06226 8.5 2.91548 9.21954 

6.6 2.56905 8.12404 8.6 2.93258 9.27362 
6.7 2.58844 8.18535 8.7 2.94958 9.32738 
6.8 2.60768 8.24621 8.8 2.96648 9.38083 
6.9 2.62679 8.30662 8.9 2.98329 9.43398 

7.0 2.64575 8.36660 9.0 3.00000 9.48683 
7.1 2.66458 8.42615 9.1 3.01662 9.53939 
7.2 2.68328 8.48528 9.2 3.03315 9.59166 
7.3 2.70185 8.54400 9.3 3.04959 9.64365 
7.4 2.72029 8.60233 9.4 3.06594 9.69536 

7.5 2.73861 8.66025 9.5 3.08221 9.74679 
7.6 2.75681 8.71780 9.6 3.09839 9.79796 
7.7 2.77489 8.77496 9.7 3.11448 9.84886 
7.8 2.79285 8.83176 9.8 3.13050 9.89949 
7.9 2.81069 8.88819 9.9 3.14643 9.94987 
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12.3 binomial probability model table 

Table 12.3 Binomial model probabilities'2) 

p 

N r 0.05 0.1 ( 9.2 0.3 0.4 ( 9.5 0.6 1 0.7 0.8 0.9 0.95 

2 0 0. 902 0. 810 0 640 0. 490 0. 360 0. 250 0. 160 0. 090 0. 040 0. 010 0 002 
i 0. 095 0. 180 0. 320 0. 420 0. 480 0. 500 0. 480 0. .420 0 .320 0 . 180 0 095 
2 0. 002 0. 010 0. 040 0. 090 0 160 0. 250 0. 360 0. 490 0. 640 0. 810 0. 902 

3 0 0. 857 0 729 0 .512 0 343 0. 216 0. 125 0. 064 0. .027 0. 008 0. 001 
1 0 135 0 243 0. 384 0 441 0. 432 0. 375 0. 288 0. 189 0. 096 0. 027 0. 007 
2 0 007 0 027 0. 096 0 189 0. 288 0. 375 0. 432 0. 441 0. 384 0. 243 0. 135 
3 0. 001 0. 008 0. 027 0. 064 0. 125 0. 216 0. 343 0. 512 0. 729 0. 857 

4 0 0. 815 0. 656 0 410 0 .240 0 . 130 0 .062 0 .026 0 .008 0 002 
1 0. 171 0 292 0. 410 0. 412 0 346 0 250 0 . 154 0 .076 0 .026 0 004 
2 0. 014 0. 049 0 154 0 265 0. 346 0 .375 0 .346 0 .265 0 . 154 0. 049 0. 014 
3 0 004 0. 026 0 .076 0 .154 0 .250 0 .346 0 .412 0 .410 0 .292 0 171 

4 0. 002 0 008 0. 026 0. .062 0 . 130 0 .240 0 .410 0 .656 0 .815 

5 0 0. 774 0. 590 0. 328 0. 168 0. 078 0. 031 0. 010 0. 002 
1 0 204 0 .328 0 .410 0 .360 0 .259 0 . 156 0 .077 0 .028 0 .006 

2 0 021 0 .073 0 .205 0 .309 0 .346 0 .312 0 .230 0 .132 0 .051 0 .008 0 001 

3 0. 001 0 .008 0 .051 0 . 132 0 .230 0 .312 0 .346 0 .309 0 .205 0 .073 0 .021 

4 0 .006 0 .028 0 .077 0 .156 0 .259 0 .360 0 .410 0. .328 0 .204 

5 0 .002 0 .010 0 .031 0 .078 0 .168 0 .328 0 .590 0 .774 

6 0 0 .735 0 .531 0 262 0 .118 0 047 0 .016 0. .004 0 001 

1 0 .232 0 .354 0 393 0 .303 0 187 0 094 0 037 0 .010 0 .002 

2 0 .031 0 098 0 .246 0 .324 0 311 0. 234 0 .138 0 .060 0 .015 0 001 

3 0 .002 0 .015 0 082 0 .185 0 .276 0 .312 0 .276 0 .185 0 .082 0 .015 0 .002 

4 0 .001 0 .015 0 .060 0 .138 0 .234 0 .311 0 .324 0 .246 0 .098 0 .031 

5 0 .002 0 .010 0 .037 0 .094 0 .187 0 .303 0 .393 0 .354 0 .232 

6 0 .001 0 .004 0 .016 0 .047 0 .118 0 .262 0 .531 0 .735 

7 0 0 .698 0 .478 0 .210 0 .082 0. 028 0 008 0 002 

1 0 .257 0 .372 0 .367 0 .247 0. .131 0 .055 0 .017 0 .004 

2 0 .041 0 . 124 0 .275 0 .318 0 .261 0 164 0 .077 0 .025 0 .004 

3 0 .004 0 .023 0 115 0 .227 0 .290 0 273 0 . 194 0 .097 0 .029 0 .003 

4 0 .003 0 .029 0 .097 0 . 194 0 .273 0 .290 0 .227 0 .115 0 .023 0 .004 

(2,From John hreuna, oiausucs. n xn*i 

Hall, Inc., 1970, pp 319-322. 
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Table 12.3 Binomial model probabilities (cont.) 

p 

r 0 1.05 ( ).l 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 .95 

5 0. 004 0.025 0. 077 0. 164 0. 261 0. 318 0. 275 0. 124 0. 041 

6 0.004 0 017 0. 055 0. 131 0 247 0 367 0 372 0. 257 

7 0. 002 0. 008 0 028 0. 082 0. 210 0. 478 0. 698 

0 0. 663 0. 430 0. 168 0.058 0. 017 0. 004 0. 001 

1 0. 279 0. 383 0. 336 0.198 0. 090 0. 031 0. 008 0. 001 

2 0. 051 0. 149 0. 294 0.296 0. 209 0. 109 0. 041 0. 010 0. 001 

3 0. 005 0 033 0. 147 0.254 0. 279 0. 219 0. 124 0. 047 0. 009 

4 0. 005 0. 046 0.136 0 232 0. 273 0. 232 0. 136 0. 046 0. 005 

5 0. 009 0.047 0. 124 0. 219 0. 279 0 254 0. 147 0. 033 0. 005 

6 0 001 0.010 0 041 0. .109 0 209 0 296 0 294 0. 149 0. 051 

7 0.001 0 .008 0 .031 0 .090 0, .198 0 .336 0. 383 0. 279 

8 0 .001 0 .004 0 .017 0 .058 0 .168 0. 430 0. 663 

0 0. 630 0. 387 0. 134 0.040 0. 010 0. 002 

1 0. 299 0. 387 0. 302 0.156 0. 060 0. 018 0. 004 

2 0. 063 0. 172 0. 302 0.267 0. 161 0. 070 0. 021 0. 004 

3 0 008 0. 045 0. 176 0.267 0. 251 0 164 0. 074 0. 021 0. 003 

4 0 .001 0 .007 0 066 0.172 0. 251 0 246 0. 167 0 074 0. 017 0. 001 

5 0 .001 0 ,017 0.074 0 167 0 .246 0 .251 0 .172 0, .066 0 007 0 001 

6 0 .003 0.021 0 .074 0 .164 0 .251 0 .267 0 .176 0 045 0 008 

7 0.004 0 .021 0 .070 0 .161 0 .267 0 .302 0 .172 0 .063 

8 0 .004 0 .018 0 .060 0 .156 0 .302 0 .387 0 .299 

9 0 .002 0 .010 0 .040 0 .134 0 .387 0 .630 

0 0 .599 0 .349 0. 107 0.028 0. 006 0. 001 

1 0 .315 0 .387 0 268 0.121 0 040 0 010 0 .002 

2 0 .075 0 . 194 0. 302 0.233 0 121 0 044 0 Oil 0 001 

3 0 .010 0 .057 0. 201 0.267 0. 215 0 .117 0 .042 0 .009 0 .001 

4 0 .001 0 Oil 0 .088 0.200 0 .251 0 .205 0 111 0 .037 0 .006 
5 0 .001 0 .026 0.103 0 .201 0 .246 0 .201 0 .103 0 .026 0 .001 
6 0 .006 0.037 0 111 0 .205 0 .251 0 .200 0 .088 0 Oil 0 .001 
7 0 .001 0.009 0 .042 0 .117 0 .215 0 .267 0 .201 0 .057 0 .010 
8 0.001 0 Oil 0 .044 0 . 121 0 .233 0 .302 0 . 194 0 .075 
9 0 .002 0 .010 0 .040 0 . 121 0 .268 0 .387 0 .315 

10 0 .001 0 .006 0 .028 0 .107 0 .349 0 .599 
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Table 12.3 Binomial model probabilities (cont) 

p 

r 0 .05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 

0 0. 569 0. 314 0. 086 0 .020 0 004 
i 0 329 0. 384 0 .236 0 .093 0. 027 0. 005 0. .001 
2 0. 087 0 213 0 .295 0 .200 0 .089 0 .027 0 .005 0 .001 
3 0 014 0 .071 0 .221 0 .257 0 .177 0 .081 0 .023 0 .004 
4 0 .001 0 .016 0 .111 0 .220 0 .236 0 .161 0 .070 0 .017 0 .002 
5 0 .002 0 .039 0 .132 0 .221 0 .226 0 .147 0 .057 0 .010 
6 0 .010 0 .057 0 .147 0 .226 0 .221 0 .132 0 .039 0 .002 
7 0 .002 0 .017 0 .070 0 .161 0 .236 0 .220 0 111 0 .016 0 .001 
8 0 .004 0 .023 0 .081 0 .177 0 .257 0 .221 0 .071 0 014 
9 0 .001 0 .005 0 .027 0 .089 0 .200 0 .295 0 .213 0 .087 

10 0 .001 0 .005 0 .027 0 .093 0 .236 0 .384 0 .329 
11 0 004 0 .020 0 .086 0 .314 0 .569 

0 0. .540 0 282 0 069 0 014 0. 002 
1 0 .341 0 377 0. .206 0 071 0 017 0. 003 
2 0 099 0 230 0 .283 0 .168 0 064 0. 016 0 002 
3 0 .017 0. 085 0 .236 0 .240 0. 142 0 054 0 012 0 001 
4 0 002 0. 021 0 .133 0. 231 0. 213 0 121 0. 042 0. 008 0 .001 
5 0. 004 0 .053 0 . 158 0 227 0. 193 0 .101 0. 029 0 .003 
6 0 016 0. 079 0 177 0. 226 0 177 0. 079 0. 016 
7 0 003 0. 029 0 101 0 193 0 227 0 .158 0 .053 0 .004 
8 0 001 0. 008 0 042 0. 121 0. 213 0 .231 0 .133 0 .021 0. 002 
9 0. 001 0 012 0 054 0 .142 0 .240 0 236 0 .085 0. 017 

10 0. 002 0 016 0 064 0 .168 0 .283 0. .230 0. 099 
11 0. 003 0 .017 0 .071 0 206 0 .377 0 341 
12 0 .002 0 .014 0 .069 0 .282 0. 540 

0 0 .513 0. 254 0 055 0. 010 0 001 
1 0 .351 0 .367 0 .179 0 054 0 Oil 0 002 

2 0 111 0 245 0 .268 0. 139 0 .045 0 010 0 001 

3 0 .021 0 . 100 0 .246 c. 218 0. 111 0 035 0 006 0. 001 

4 0 .003 0. 028 0 . 154 0 234 0. 184 0 087 0. 024 0 003 

6 0 .006 0 .069 0 . 180 0. 221 0 157 0 066 0. .014 0 001 

6 0 .001 0 .023 0 .103 0. .197 0. 209 0 .131 0 .044 0 .006 

7 0. .006 0 044 0 .131 0 .209 0 . 197 0 .103 0 .023 0 .001 
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Table 12.3 Binomial model probabilities (cont) 

p 

N r C >.05 I 0.1 1 0.2 0.3 0.4 1 0.5 0.6 1 0.7 0.8 0.9 0.95 

13 8 0 .001 0 .014 0 .066 0 .157 0 .221 0 .180 0 .069 0 .006 
9 0 .003 0 .024 0 .087 0 .184 0 .234 0 . 154 0 .028 0 .003 

10 0 001 0 .006 0 .035 0 111 0 .218 0 .246 0 . 100 0 .021 
11 0 .001 0 .010 0 .045 0 .139 0 .268 0 .245 0 111 
12 0 002 0 Oil 0 .054 0 .179 0 .367 0 .351 
13 0 .001 0 .010 0 .055 0 254 0 .513 

14 0 0. 488 0 .229 0 .044 0 007 0 .001 
1 0. 359 0 .356 0 .154 0 041 0 007 0 001 
2 0 123 0 .257 0 .250 0 113 0 032 0 006 0 001 
3 0 026 0 .114 0 250 0 194 0 .085 0 .022 0 003 
4 0 .004 0 .035 0 . 172 0 .229 0 .155 0 .061 0 .014 0 .001 
5 0 .008 0 .086 0 .196 0 .207 0, .122 0 .041 0 .007 
6 0 .001 0 .032 0 . 126 0 .207 0 .183 0 .092 0 .023 0 .002 
7 0 .009 0 .062 0 .157 0 .209 0 .157 0 .062 0 009 
8 0 .002 0 .023 0 .092 0 .183 0 .207 0 .126 0 032 0 .001 
9 0 .007 0 .041 0 .122 0 .207 0 .196 0 .086 0 008 

10 0 .001 0 .014 0 .061 0 .155 0 .229 0 .172 0 .035 0 004 
11 0 .003 0 .022 0 .085 0 .194 0. .250 0 .114 0. 026 
12 0 .001 0 .006 0 032 0 .113 0. .250 0 .257 0 123 
13 0 .001 0 .007 0 .041 0 . 154 0 .356 0 .359 
14 0. 001 0 .007 0 .044 0 .229 0 .488 

15 0 0 463 0 .206 0, .035 0. 005 
1 0 366 0 343 0 .132 0 .031 0 005 
2 0 .135 0 .267 0 231 0. 092 0. 022 0. 003 
3 0 .031 0 . 129 0 .250 0. 170 0. 063 0. 014 0 002 
4 0 .005 0 .043 0 .188 0 .219 0. 127 0 042 0 .007 0 .001 
5 0. 001 0 010 0. 103 0. 206 0. 186 0. 092 0 .024 0 .003 
6 0 .002 0 043 0 147 0. 207 0. 153 0 061 0, 012 0. 001 
7 0 .014 0 081 0. 177 0 196 0 .118 0. 035 0. 003 
8 0 .003 0 035 0. 118 0 .196 0 .177 0 081 0. 014 
9 0 .001 0 .012 0 061 0 .153 0 207 0 .147 0 043 0 002 

10 0 .003 0 .024 0 .092 0 .186 0 .206 0 .103 0 .010 0 .001 
11 0 .001 0 .007 0 .042 0 .127 0 .219 0 . 188 0 .043 0. .005 
12 0 .002 0 .014 0 .063 0 .170 0 .250 0 . 129 0 .031 
13 0 .003 0 .022 0 .092 0 .231 0 267 0 .135 
14 0 .005 0 .031 0 .132 0 .343 0 366 
15 0. .005 0 .035 0 .206 0 463 
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12.4 table of random numbers 

On the following pages the digits 0, \,2, ... ,9 are listed in a random order, 
50 rows and 35 columns per page. These digits and their arrangement were 
generated by computer using a method which is designed to produce the same 
effect as if we had spun a perfectly fair 10 digit spinner (see Figure 12.1) 
many times and recorded the outcomes. 

Figure 1 2.1 : Spinner 

If one wishes to find a random sequence of one-digit numbers, this may 
be done by choosing at random a starting position in the table and reading 
successive digits from left to right. For example, suppose we begin with 
the entry 6 which occurs in the eighth column and third row. Reading from 
left to right produces the sequence 

65167533681231773095862 

Perhaps you have noticed that this sequence contains many 6’s but not 
a single 4. Actually, if one chooses a long enough list, each number should 
occur about equally often. Sometimes one needs a fairly long list for this 
property of the random number table to manifest itself. 

One can also find a random sequence of two-digit numbers by choosing 
a starting position at random and reading successive two-digit numbers from 
left to right. This technique is useful for generating a random alternation of 
two strategies, Jx and /2 (see Section 9.4) where each strategy must occur 
with a specified probability. For example suppose we want Ix to occur | of 
the time and I2 to occur \ of the time. Begin at a randomly chosen position 
in the table, say the second row and fifth column, and begin reading two- 
digit numbers from left to right. Under each two-digit number on the list, 
write a lx or /2 according to this rule: under any of the 25 numbers from 00 
to 24 write a Ix; under any of the 75 numbers from 25 to 99 write a I2. This 
gives: 

26, 53, 01, 89, 51, 25, 06, 88, 53, 53, 65, 53, 23, 75, 73, 42, 09 

12 I2 A 12 I2 12 11 12 12 A A A A A A A A 
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Table 12.4 Random numbers^* 

04433 80674 24520 18222 10610 05794 37515 
60298 47829 72648 37414 75755 04717 29899 
67884 59651 67533 68123 17730 95862 08034 
89512 32155 51906 61662 64130 16688 37275 
32653 01895 12506 88535 36553 23757 34209 

95913 15405 13772 76638 48423 25018 99041 
55864 21694 13122 44115 01601 50541 00147 
35334 49810 91601 40617 72876 33967 73830 
57729 32196 76487 11622 96297 24160 09903 
86648 13697 63677 70119 94739 25875 38829 

30574 47609 07967 32422 76791 39725 53711 
81307 43694 83580 79974 45929 85113 72268 
02410 54905 79007 54939 21410 86980 91772 
18969 75274 52233 62319 08598 09066 95288 
87863 82384 6686Q 62297 80198 19347 73234 

68397 71708 15438 62311 72844 60203 46412 
28529 54447 58729 10854 99058 18260 38765 
44285 06372 15867 70418 57012 72122 36634 
86299 83430 33571 23309 57040 29285 67870 
84842 68668 90894 61658 15001 94055 36308 

56970 83609 52098 04184 54967 72938 56834 
83125 71257 60490 44369 66130 72936 69848 
55503 52423 02464 26141 68779 66388 75242 
47019 76273 33203 29608 54553 25971 69573 
84828 32592 79526 29554 84580 37859 28504 

68921 08141 79227 05748 51276 57143 31926 
36458 96045 30424 98420 72925 40729 22337 
95752 59445 36847 87729 81679 59126 59437 
26768 47323 58454 56958 20575 76746 49878 
42613 37056 43636 58085 06766 60227 96414 

95457 30566 65482 25596 02678 54592 63607 
95276 17894 63564 95958 39750 64379 46059 
66954 52324 64776 92345 95110 59448 77249 
17457 18481 14113 62462 02798 54977 48349 
03704 36872 83214 59337 01695 60666 97410 

21538 86497 33210 60337 27976 70661 08250 
57178 67619 98310 70348 11317 71623 55510 
31048 97558 94953 55866 96283 46620 52087 
69799 55380 16498 80733 96422 58078 99643 
90595 61867 59231 17772 67831 33317 00520 

33570 04981 98939 78784 09977 29398 93896 
15340 93460 57477 13898 48431 72936 78160 
64079 42483 36512 56186 99098 48850 72527 
63491 05546 67118 62063 74958 20946 28147 
92003 63868 41034 28260 79708 00770 88643 

52360 46658 66511 04172 73085 11795 52594 
74622 12142 68355 65635 21828 39539 18988 
04157 50079 61343 64315 70836 82857 35335 
86003 60070 66241 32836 27573 11479 94114 
41268 80187 20351 09636 84668 42486 71303 

<3)From John Freund, Modem Elementary Statitics, Englewood Cliffs, New Jersey: 
Prentice-Hall, Inc., 1967, pp. 393-396. 
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Table 12.4 Random numbers (cont.) 

48611 62866 33963 14045 79451 04934 45576 
78812 03509 78673 73181 29973 18664 04555 
19472 63971 37271 31445 49019 49405 46925 
61266 11569 08697 91120 64156 40365 74297 
56806 96275 26130 47949 14877 69594 83041 

77527 81360 18180 97421 55541 90275 18213 
77680 58788 33016 61173 93049 04694 43534 
15404 96554 88265 34537 38526 67924 40474 
14045 22917 60718 66487 46346 30949 03173 
68376 43918 77653 04127 69930 43283 35766 

93385 13421 67957 20384 58731 53396 59723 
09858 52104 32014 53115 03727 98624 84616 
93307 34116 49516 42148 57740 31198 70336 
04794 01534 92058 03157 91758 80611 45357 
86265 49096 97021 92582 61422 75890 86442 

65943 79232 45702 67055 39024 57383 44424 
90038 94209 04055 27393 61517 23002 96560 
97283 95943 78363 36498 40662 94188 18202 
21913 72958 75637 99936 58715 07943 23748 
41161 37341 81838 19389 80336 46346 91895 

23777 98392 31417 98547 92058 02277 50315 
59973 08144 61070 73094 27059 69181 55623 
82690 74099 77885 23813 10054 11900 44653 
83854 24715 48866 65745 31131 47636 45137 
61980 34997 41825 11623 07320 15003 56774 

99915 45821 97702 87125 44488 77613 56823 
48293 86847 43186 42951 37804 85129 28993 
33225 31280 41232 34750 91097 60752 69783 
06846 32828 24425 30249 78801 26977 92074 
32671 45587 79620 84831 38156 74211 82752 

82096 21913 75544 55228 89796 05694 91552 
51666 10433 10945 55306 78562 89630 41230 
54044 67942 24145 42294 27427 84875 37022 
66738 60184 75679 38120 17640 36242 99357 
55064 17427 89180 74018 44865 53197 74810 

69599 60264 84549 78007 88450 06488 72274 
64756 87759 92354 78694 63638 80939 98644 
80817 74533 68407 55862 32476 19326 95558 
39847 96884 84657 33697 39578 90197 80532 
90401 41700 95510 61166 33757 23279 85523 

78227 90110 81378 96659 37008 04050 04228 
87240 52716 87697 79433 16336 52862 69149 
08486 10951 26832 39763 02485 71688 90936 
39338 32169 03713 93510 61244 73774 01245 
21188 01850 69689 49426 49128 14660 14143 

13287 82531 04388 64693 11934 35051 68576 
53609 04001 19648 14053 49623 10840 31915 
87900 36194 31567 53506 34304 39910 79630 
81641 00496 36058 75899 46620 70024 88753 
19512 50277 71508 20116 79520 06269 74173 
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Table 12.4 Random numbers (cont.) 

24418 23508 91507 76455 54941 72711 39406 
67404 73678 08272 62941 02349 71389 45605 
77644 98489 86268 73652 98210 44546 27174 
68366 65614 01443 07607 11826 91326 29664 
64472 72294 95432 63555 96810 17100 35066 

88205 37913 98633 81009 81060 33449 68055 
98455 78685 71250 10329 56135 80647 51404 
48977 36794 56054 59243 57361 65304 93258 
93077 72941 92779 23581 24548 56415 61927 
84533 26564 91583 83411 66504 02036 02922 

11338 12903 14514 27585 45068 05520 56321 
23853 68500 92274 87026 99717 01542 72990 
94096 74920 25822 98026 05394 61840 83089 
83160 82302 00350 98536 38155 42061 02363 
97425 47335 69709 01386 74319 04318 99387 

83951 11954 24317 20345 18134 90062 10761 
93085 35203 05740 03206 92012 42710 34650 
33762 83193 58045 89880 78101 44392 53767 
49665 85397 85137 30496 23409 42846 94810 
37541 82627 80051 72521 35342 56119 97190 

22145 85304 35348 82854 65846 18076 12415 
27153 08662 61078 62433 22184 33998 87436 
00301 49425 66682 25442 83068 66236 79655 
43815 43272 73778 63469 50083 70696 13558 
14689 86482 74157 46012 97765 27552 49617 

16680 55936 82453 19532 49988 13176 94219 
86938 60429 01137 86168 78257 86249 46134 
33944 29219 73161 46061 30946 22210 79302 
16045 67736 18608 18198 19468 76358 69203 
37044 52523 25627 63107 30806 80857 84383 

61471 45322 35340 35132 42163 69332 98851 
47422 21296 16785 66393 39249 51463 95963 
24133 39719 14484 58013 88717 29289 77360 
67253 67064 10748 16006 10767 57345 42285 
62382 70941 01635 35829 77516 08408 51686 

98011 16503 09201 03523 87192 66483 65649 
37366 24386 20654 85117 74078 64120 04643 
73587 83993 64176 05221 94119 20108 78101 
33583 68291 60547 90085 62180 27453 18567 
02878 33223 39109 49536 56199 05993 71201 

91498 41673 17195 33175 04994 09879 70337 
91127 19815 30219 56591 21725 43S27 78862 
12997 55013 18662 81724 24305 37061 18956 
96098 13651 15393 69996 14702 69734 89150 
97627 17837 10472 18983 28387 99781 52977 

40064 47981 31484 76603 64088 91095 00010 
16239 68743 71374 65863 22672 91609 51514 
58354 24913 20435 30965 17453 65623 93058 
52567 65085 60220 84641 18273 49604 47418 
06236 29052 91392 07551 83632 68130 56970 
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Table 12.4 Random numbers (cont.) 

94620 27963 96478 21559 19246 88097 44926 
60947 60775 73181 43264 56895 04232 59604 
27499 53523 63110 57106 20865 91683 80688 
01603 23156 89223 43429 95353 44662 59433 
00815 01552 06392 31437 70385 45863 75971 

83844 90942 74857 52419 68723 47830 63010 
06626 10042 93629 37609 57215 08409 81906 
56760 63348 24949 11859 29793 37457 59377 
64416 29934 00755 09418 14230 62887 92683 
63569 17906 38076 32135 19096 96970 75917 

22693 35089 72994 04252 23791 60249 83010 
43413 59744 01275 71326 91382 45114 20245 
09224 78530 50566 49965 04851 18280 14039 
67625 34683 03142 74733 63558 09665 22610 
86874 12549 98699 54952 91579 26023 81076 

54548 49505 62515 63903 13193 33905 66936 
73236 66167 49728 03581 40699 10396 81827 
15220 66319 13543 14071 59148 95154 72852 
16151 08029 36954 03891 38313 34016 18671 
43635 84249 88984 80993 55431 90793 62603 

30193 42776 85611 57635 51362 79907 77364 
37430 45246 11400 20986 43996 73122 88474 
88312 93047 12088 86937 70794 01041 74867 
98995 58159 04700 90443 13168 31553 67891 
51734 20849 70198 67906 00880 82899 66065 

88698 41755 56216 66852 17748 04963 54859 
51865 09836 73966 65711 41699 11732 17173 
40300 08852 27528 84648 79589 95295 72895 
02760 28625 70476 76410 32988 10194 94917 
78450 26245 91763 73117 33047 03577 62599 

50252 56911 62693 73817 98693 18728 94741 
07929 66728 47761 81472 44806 15592 71357 
09030 39605 87507 85446 51257 89555 75520 
56670 88445 85799 76200 21795 38894 58070 
48140 13583 94911 13318 64741 64336 95103 

36764 86132 12463 28385 94242 32063 45233 
14351 71381 28133 68269 65145 28152 39087 
81276 00835 63835 87174 42446 08882 27067 
55524 86088 00069 59254 24654 77371 26409 
78852 65889 32719 13758 23937 90740 16866 

11861 69032 51915 23510 32050 52052 24004 

67699 01009 07050 73324 06732 27510 33761 

50064 39500 17450 18030 63124 48061 59412 

93126 17700 94400 76075 08317 27324 72723 

01657 92602 41043 05686 15650 29970 95877 

13800 76690 75133 60456 28491 03845 11507 

98135 42870 48578 29036 69876 86563 61729 

08313 99293 00990 13595 77457 79969 11339 

90974 83965 62732 85161 54330 22406 86253 

33273 61993 88407 69399 17301 70975 99129 
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Chapter 2 

2.1 pp. 8-9 

1. Mention of falling rock zones or other potentially hazardous areas; location 
of gasoline and service stations; in each of these cases, the interest to the 
motorist is obvious. 

2. (a) Transport network—blood system. 
(b) Pump—heart. 
(c) Energy storage cell—liver. 
(d) Computer—brain. 
(e) Electric wires—nerves. 
(f) Camera—eye. 
(g) Baby’s bottle—female breast. 

4. A globe is a better model of the earth than a flat map when one wants to 
estimate air distances between widely separated cities. A flat map is a better 
model than a globe if one wants to carry the map in one’s pocket. 

6. Model airplanes, model boats, toy trucks, toy cars, doll houses, train sets, toy 
dishes, and rockets. 

8. One reason might be that mice seem willing to run through mazes an endless 
number of times. On the other hand a monkey might get bored after running 
through a maze just a few times, so the psychologist would get nothing of 
value out of the experiment. 

465 
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2.3 pp. 14-15. 

2. Removing one edge between B and C would result in having an odd number 
of edges (streets) meeting at B and C, and therefore there would be no Euler 
circuit (one of the edges would have to be repeated). Removing two edges 
between B and C would result in having an even number of edges (streets) 
meeting at B and C, so there would still be an Euler circuit and a shorter 
distance to travel. 

2.4 p. 16. 

3. There is no route which duplicates only one intersection. The minimum 
number of duplications is three. 

4. We assumed that the time and distance required to traverse the intersections 
was negligible. Also, the length of the various streets wasn’t taken into con¬ 
sideration. Other neglected factors include the problem of parking the truck 
while mail is dropped at the special box. 

2.5 pp. 18-19. 

2. The minimum number is two. 

The minimum number is four. 

c a 
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3. The minimum number is four. 

a 

The minimum number is three. 

a c 

4. The minimum number is three. 

c a 

5. Choose any vertex of the graph and look at all the other vertices connected 

to it by an edge. The worst that can happen is that each of these vertices is 

connected to all of the others, in which case we must use k + 1 colors to 

color these vertices and the original vertex; otherwise we can clearly still use 

< k + 1 colors. Now look at any vertex which hasn’t yet been colored. It can 

be connected to at most k of the vertices which have already been colored, 

so in coloring this new vertex we can still get away with having < k + 1 

colors. Keep repeating this argument until all vertices are colored. 
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2.6 pp. 24-30. 

answers to selected exercises 

2. The graph is already drawn. The problem is to find the appropriate coloring 

for this graph. Such a coloring might be: 

The facilities should be assigned as indicated (other solutions are also pos¬ 

sible). 

4. Let vertices represent the students. Connect two vertices provided the students 

they represent are friendly. This produces the following graph: 

Abe 

Tom 

Dave 

The problem can be converted to finding a Hamilton circuit on this graph. 

Such a Hamilton circuit might be Abe—Lee—John—Gerry—Dave—Ren—- 

Tom—Abe, so the message can be passed in this order. 

6. Let vertices represent numbers. Connect two vertices if there is a domino 

containing the two numbers. This produces the following graph: 

1 2 3 
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The problem now consists of finding an Euler circuit for this graph. There is 

no such circuit, since there are an odd number of edges emanating from each 

vertex, so the dominoes cannot be arranged in the required form. 

8. Let vertices represent the cities. Connect two vertices provided the cities they 

represent are within 80 miles of each other. The problem can be converted to 

coloring the graph using four colors. Such a coloring might be: 

The channels could be assigned in the indicated manner. 

9. Let vertices represent the species. Connect two vertices provided the species 

they represent are incompatible. The problem can be converted to coloring 

the graph with the minimum number of colors. This minimum number is two 

(A and B). 

Hence the minimum number of enclosures is two. 

Chapter 3 

3.1 pp. 42-46. 

1. (a) There is an edge connecting a vertex to itself. 

(b) There are infinitely many vertices (and infinitely many edges). 

(c) There is an edge connecting a vertex to itself. 

(d) There is an edge which doesn’t culminate with a vertex. 

(e) There are two edges which don’t culminate with a vertex. 
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2. (a) There are 15 edges. 

2 

3. In the first graph, val(x,) = 2, val(x2) = 3, val(x3) = 4, val(x4) = 5, 

val(xj) = 1, val(x6) = 4, val(x7) = 5, val(x8) = 4. In the second graph, 

valCxj) = 2, val(x2) = 4, val(x3) = 5, val(x4) = 3, val(x5) = 4, val(x6) = 4, 

val(x7) = 4, val(x8) = 1, val(x9) = 4, val(x10) = 1. 

4. (b) They aren’t isomorphic. The first graph has a circuit of length three 

starting and ending at the top vertex, while the second graph has no 

circuits of length three. 

(d) They aren’t isomorphic. The first graph has a circuit of length three 

starting and ending at the top vertex, while the second graph has no 

circuits of length three. 

(e) They are isomorphic. 

(g) They aren’t isomorphic. The first graph has five vertices, while the 

second graph has four. 

6. (a) 

*1 X2 *3 

This is not a planar graph. The fewest number of accidental crossings 
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it can be redrawn with is one: 

X\ x4 x2 

9. 

• • •-• *-• 

4 • 

3.2 pp. 51-52. 

471 

1. (a) 3-1 +2-2 + 1-3 = 10, and there exists such a graph: 

(c) 3-1 4- 2-2 + 2-5 = 19, so there is no such graph. 

(e) 2-2 + 1-6 = 10, but there is no such graph. 

(f) 1-2 + 2*3 = 8, and there is such a graph: 
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(g) 1*1 +1-2 + 1 • 3 + 1- 5 = 11, so there is no such graph. 

3. The maximum number of edges in a graph with four vertices without multiple 

edges is six. If we allow multiple edges, we can have an arbitrary number of 

edges. If a graph has n vertices and no multiple edges then each vertex has 

valence at most n — 1; since there are n vertices, we therefore have at most 

n(n — l)/2 edges (we must divide by 2 since each edge has been counted twice). 

5. Since G has no multiple edges, x can be connected by an edge to at most all 

of the remaining vertices of G. 

9. (a) 7-4 + 13 -1 = 41, so there exists no such hydrocarbon. 

(b) 4-4 + 7 -1 = 23, so there exists no such hydrocarbon. 

10. (a) 4. (b) 6. (c) 8. (d) 10. If a hydrocarbon has n carbon atoms it can 

have at most 2n + 2 hydrogen atoms. 

11. Six. 

3.3 pp. 58-60. 

2. (a) A digraph, (b) A digraph, (c) A graph, (d) A digraph (if A considers B 
his best friend, B might not necessarily consider A his best friend). 

3. There is an edge directed from team A to team B if A beats B. The digraph is: 

4. (a) inval (x0 = 0j 

inval (x3) = 1, 

(b) inval (x,) = 1, 

inval (x3) = 2, 

(c) inval (xx) = 2, 

inval (x3) = 1, 

5. (a) Xu x5. 

(b) Yes. 

outval (x:) = 1, inval 

outval (x3) = 1, inval 

outval (xj) = 2, inval 

outval (x3) = 1, inval 

outval (xx) = 1, inval 

outval (x3) = 1, inval 

(x2) = 1, outval (x2) = 2, 

(x4) = 2, outval (x4) = 0. 

(x2) = 1, outval (x2) = 1, 

(x4) = 1, outval (x4) = 1. 

(x2) = 1, outval (x2) = 2, 

(x4) = 2, outval (x4) = 2. 
5. 
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3.4 pp. 66-68. 

2. 

Activity 

Starting 

Time Reason 

Bo 0 There is only one path from B 

to Bo, and it has length 0. 

H 0 There is only one path from B 

to H, and it has length 0. 

C 14 There is only one path from B 

to C, and it has length 14. 

P 15 The two paths from B to P have 

lengths 1 and 15. 

s 20 The three paths from B to S have 

lengths 14, 20, and 6. 

M 20 The three paths from B to M have 

lengths 14, 20, and 6. 

E 23 The five paths from B to E have 

lengths 9, 7, 15, 17, and 23. 

The minimum time is 23 days. 

4. 

Admin. 
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Activity 

Starting 

Time Reason 

Admin. 0 There is one path from B to 

Admin., and it has length 0. 

Study 0 There is one path from B to 

Study, and it has length 0. 

Negot. 8 There are two paths from B to 

Negot., and they have lengths 

2 and 8. 

Dissem. 8 There are two paths from B to 

Dissem., and they have lengths 

2 and 8. 

Volunteers 13 There are two paths from B to 

Volunteers, and they have 

lengths 7 and 13. 

Arr. 14 There are two paths from B to 

Arr., and they have lengths 8 

and 14. 

Legis. 14 There are two paths from B to 

Legis., and they have lengths 14 

and 8. 

Send-off 26 There are six paths from B to 

Send-off, and they have lengths 

15, 24, 21, 20, 18, and 26. 

Purchase 24 There are two paths from B to 

Purchase, and they have lengths 

18 and 24. 

E 28 There are eight paths from B to 

E, and they have lengths 22, 

28, 17, 23, 26, 20, 22, and 28. 

The minimum time is 28. Note that there are two 

critical paths. 

Chapter 4 

4.1 pp. 75-80. 

1. (a) 
(b) 

(c) 

(d) 
(e) 

(f) 

(g) 

(h) 
(i) 

A path which repeats no edges. 

A path. 

A circuit which repeats no edges 

Not a path. 

A circuit. 

A path which repeats no edges. 

Not a path. 

A path which repeats no edges. 

A path which repeats no edges. 
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3. 

4. 

5. 

8. 

12. 

(a) 

(b) 

(c) 

14. (a) 

(b) 

(c) 

(d) 

(e) 

(0 
16. (a) 

• • 

• • 

The longest such path has length 7. There are four such paths: x10, xg, xs, 

x2, X3, X7, X$, X5 ; X5,X6,X7,X3,X2,Xg,Xg,X10‘, Xg,Xio,Xg,X2,X3,X7,Xs, x5; 

x5, x6, x7, x3, x2, x8> x10, Xg. (One might choose to consider the first and 

second and third and fourth paths identical). 

(a) One between Xj and x3; one between x2 and x5; one between x3 and x5. 

In fact there is precisely one path without repeated vertices between any 

pair of vertices. 

xu x6, x3. 

x2, xu x6, x3, xt, x5, x6, x3, x2. 

XU X6, X3, Xu x5. 

If a path has a repeated edge, then this path must have repeated one of the 

two vertices joined by that edge. 

No; there can be no path directed from x to any other vertex of the digraph. 

2. 
3. 

4. 

2. 
1. 
3. 

Or 

(b) 

18. Acquaintance graphs might work in both cases. 

19. Two. 

4.2 pp. 89-91. 

3. YCS I X\, X2, Xj, X1 X3> X7> X1 0 5 x2y X3i X4n X8> X13> X5y X8> X12j X4-> X5> X6'> X14> 

X13i *12, *11, *10, *9, *!• 
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96-98. 

1. There are ten odd-valent vertices, so the theorem says that there are at least 

five duplications. The minimum number of duplications is seven, which is two 

more than the estimate of the theorem. We can get these seven duplications by 

adding the indicated dotted edges: 

3. (a) Lower estimate supplied by theorem is f = 4. The minimum number 

is 4; 

(b) Lower estimate supplied by theorem is § = 4. The minimum number 

is actually five; 

(c) Lower estimate supplied by theorem is f = 3. The minimum number 

is actually five. 

4. If n is even the minimum number is n\2. If n is odd, the minimum number is 

O - l)/2 + r. 

5. If we had an odd number of odd-valent vertices, then the sum of all the 

valences = sum of all valences of even-valent vertices + sum of all valences 

of odd-valent vertices = even number + odd number = odd number, which 

is impossible. See Theorem 2, Section 3.2. 

103-106. 

2. No. Look at the following example: 
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6. The route ABECDA, is the cheapest ($399). 

9. Probably not, since relative distances would remain about the same, but it is 

not difficult to find examples where all three solutions are not the same. 

11. A knowledge of the traveling salesman problem will help in figuring out the 

shortest route, thereby spending as little money for gas as possible. 

12. $313 (provided by the path ABECD). 

13. (a) 10 blocks (the route P, S, B, N, BK, L, P is such a route). 

(b) No—there is a route P, L, BK, B, N, S, P of 10 blocks. 

Chapter 5 

5.1 p.111. 

1. (a) Keeping records of the date and number of shares of certain stocks or 

bonds which have been bought or sold. 

(b) Checking tax returns. 

(c) Computing the monthly pension which is due to a retired person. 

(d) Keeping track of the names and number of persons who have registered 

for a certain section of a certain course. 

(e) Matching compatible personalities. 

(f) Keeping track of heartbeat, respiration rate, etc. of astronauts in space. 

(g) Analysis and tabulation of votes in election districts. 

5.3 pp. 123-127. 

4. The modification in the list presentation form can be made in the following 

way: change instruction 5 from “Is K = 2" ? to “Is K = 3” ? Exactly the same 
thing can be done to modify the flow chart. (Note: This program still 

would not work for a radio with nothing wrong with it.) 
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5. Modified flow chart: 

answers to selected exercises 

Start 

Set K = 0 

Increase K 
by 1 

Return tube Put new tube 
K to its where tube K 

place was originally 

Yes 

Stop Take radio 

to professional 

Schematic 

Good Radio 

o 
o 
c 
3 

o 
1 

o 
2 

o 
1 

o 
2 ( 

1 
o 
2 ( 

o 1 o 
2 

o 
1 

o 
2 < 

o 
1 2 ( 

o 
1 

o 
2 

Schematic 
s 

Bad Radio 

<s> 
1 

0 
2 

X 

<g> 
1 

0 
2 x ( 

1 
0 
2 0 

o 
1 

0 
2 

X 

o 
1 

0 
2 x ( 

o 
1 

o 
2 x( 

o 
1 

o 
2 X 

Counter 
increased 

Tube 
returned 

Tube 2 
being tested 

Tube 2 

returned 

0 
)□ 

sted)| 1 | 

-)□ 

)0 

')□ 

)0 
n 
o 
c 
3 

Counter 
increased 

0 
)0 

V Tubei TT\ 
^being tested/|_ 

)0 Tube 1 
replaced 

Counter \ ^ I 
increased / | z | 

Tube 2 
lbeing tested 

Tube 2 
replaced 

0 
)0 

Radio tested, doesn’t work 

Radio taken to professional 
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8. (a) 

List 
1 
3 
2 
4 

1 
3 
2 
4 

1 
3 
2 
4 

1 
2 
3 
4 

1 
2 
3 
4 

Counter 

m 

□ (counter increased by 1) 

\2\ (counter increased by 1) 

[2j (numbers on lines 2 + 3 interchanged) 

[3] (counter increased by 1) 

10. 
Number on line 4 is the answer—algorithm works in this case. 

No—look at the following list of numbers: 

List 
1 
3 
2 
4 

1 
3 
2 
4 

3 
1 
2 
4 

3 
1 
2 
4 

3 
2 
1 
4 

3 
2 
1 
4 

Counter 

BS 

m (counter increased by 1) 

(numbers on lines 1+2 interchanged) 

(counter increased by 1) 

(numbers on lines 2 + 3 interchanged) 

(counter increased by 1) 
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List Counter (cont'd) 

3 
2 

[3] (numbers on lines 3+4 interchanged) 

1 

Number on line 1 is not the answer—algorithm doesn’t work. 

13. It merely moves the largest one to the last position. Look at the list 

N
) 

W
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BK 
This program doesn’t do its job—look at the list CK. If two last initials are the 

same, the program doesn’t take first initials into account. 

16. Distance from photographer to object being photographed must be taken 

into account; also, whether to use a flash cube or not. 

17. Speed of record being played (e.g. 33 j or 45), degree of loudness, treble and 
bass levels. 

133-134. 

1. (a) 

Memory 

Arithmetic 

1. CLA HOURS 

2. MPY RATE 

3. STO PAY 

2. (a) 

HOURS RATE PAY 

Memory 

Arithmetic 

1. CLA HOURS 

HOURS RATE 40-BOX 1.5-BOX TEMP. PAY 

70 30 40 1.5 

70 30 40 1.5 

70 
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HOURS RATE 40-BOX 1.5-BOX TEMP. PAY (cont’d) 

2. SUB 40-BOX 70 30 40 1.5 

30 

3. MPY 1.5-BOX 70 30 40 1.5 

45 

4. MPY RATE 70 30 40 1.5 

1350 

5. STO TEMP 70 30 40 1.5 1350 

1350 

6. CLA 40-BOX 70 30 40 1.5 1350 

40 

7. MPY RATE 70 30 40 1.5 1350 

1200 

8. ADD TEMP 70 30 40 1.5 1350 

2550 

9. STO PAY 70 30 40 1.5 1350 2550 

2550 

3. 1. CLA HOURS 

2. MPY 1.5-BOX 

3. SUB 20-BOX 

4. MPY RATE 

5. STO PAY 
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This program has four fewer instructions than the program for the original 
formula. 

6. First solution: 

1. CLA 9-BOX 

2. MPY CENT 

3. DIV 5-BOX 

4. ADD 32-BOX 

5. STO FAHR 

Second Solution: 

1. CLA f-BOX 

2. MPY CENT 

3. ADD 32-BOX 

4. STO FAHR 

7. (a) 

1. CLA A-BOX 

2. ADD B-BOX 

3. MPY C-BOX 

4. MPY D-BOX 

5. STO M-BOX 

5.5 pp. 138-139. 

1. 11—1011, 12—1100, 13—1101, 14—1110, 15—1111, 16—10000, 17—10001, 

18—10010, 19—10011, 20—10100. 

3. 64,85,60,221. 

5. 1048575. 

7. 211 is 22, 102 is 11, 222 is 26. 1, 2, 10, 11, 12, 20, 21, 22, 100, 101. 

8. 102,110,111,112,120. 
9. 1,2, 3, 10, 11, 12, 13, 20, 21, 22,23, 30, 31, 32, 33, 100, 101, 102, 103, 110. 

5.6 pp. 145-146. 

1. (a) 100000. (b) 1000000. (c) 1000101. (d) 11000. (f) 1111. 

(g) 1001110. (h) 100111111. 

2. 1111101. 

6. (a) 10001110 (187 - 45 = 142). 
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5.7 pp. 153-155. 

1. (a) “o i i r 
10 11 

110 1 

_ 1 1 l o_ 

(b) “0 1 0 0 0“ 

10 110 

0 10 0 0 

0 10 0 1 

0 0 0 1 0 

(C) “0 1 0 0 0“ 

10 110 

0 10 0 1 

0 10 0 1 

0 0 110 

“0 0 0 0 0“ (b) “0 1 1 0 0“ 

1 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 

0 0 1 0 0 1 0 0 0 0 

_0 1 0 1 0_ _0 1 0 1 0_ 
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5. The whole matrix is 

1 

0 

1 

0 

1 

0" 

1 

0_ 

6. The valence of x,- is the sum of the entries in the ith row (or /th column). 

7. No edge can connect a vertex to itself, by definition of a graph. The same is 

true for a digraph. 

8. 
A + B = 

'3 2' 

_4 8. 
B + A, AB 

'll 

_14 

"1 2" 

1 25_ 

9. '4 3~ 'll - T '2 9' '29 -33" 
A + B = , AB = , BA = , A2B = 

.3 -1_ _ 9 -13. 00
 

1 1_
 

_16 -32. 

13. ' 1 -1" -r 
Let A = 

_-l 1_ 
, B = 

-l. 

5.8 pp. 160-161. 

1. (0 (a) '0 0 10' 

10 0 0 

0 10 1 

_1 1 0 0_ 

(b) '0 1 0 1" '2 1 0 O' 

M2 = 
0 0 1 0 

, M3 = 
0 1 0 1 

2 1 0 0 1 0 2 0 

.1 0 1 0_ .0 1 1 \_ 

(c) '2211' 

1111 

3 2 2 1 

_2 1 2 1 _ 

(d) Yes. 

(ii) (a) '0 0 10' 

10 10 

0 0 0 0 

_1 1 1 0_ 
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(iii) 

(iv) 

(b) "0 0 0 O' "0 0 0 O' 
0 0 1 0 0 0 0 0 

M2 — 
0 0 0 0 

, M3 = 
0 0 0 0 

_1 0 2 0_ _0 0 1 0_ 

(c) '0 0 1 0" (d) No. 

1 0 2 0 
0 0 0 0 

_2 1 4 0_ 

(a) '0 1 1 r 
0 0 1 l 
0 0 0 0 

_0 0 1 o_ 

(b) '0 0 2 r '0 0 1 O' 

M2 
0 0 1 0 0 0 0 0 = , M3 = 
0 0 0 0 0 0 0 0 

_0 0 0 o_ _0 0 0 0_ 

(c) “0 1 4 2' (d). No. 

0 0 2 1 
0 0 0 0 

_0 0 1 0_ 

(a) "0 1 0 0~ 

0 0 1 0 
1 0 0 0 

_1 1 1 0_ 

(b) '0 0 1 O' '1 0 0 O' 
1 0 0 0 0 1 0 0 = 
0 

M3 = 
1 0 0 0 0 1 0 

.1 1 1 0_ .1 1 1 0_ 

(c) “1 1 1 O' (d) No. 

1 1 1 0 
1 1 1 0 

_3 3 3 0_ 
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Chapter 6 

6.1 pp. 169-171. 

2. 4, 13/2, and 503/2. 

4. /(1) = 2, /(2) = 4, /(3) = 5, /(4) = 1, /(5) = 6, /(6) = 3. 

6. (a) p(x, y, z) = 280x + 200y + 400z. 

(b) 10-7 + 15-5 + 4-10 = 185. 

9. 52^. 

10. /(I) = 2, /(2) = 1, /(3) = 4, /(4) = 3, /(5) = 4, /(6) = 5. 

12. (b) ^(x) = 2x + 1. (c) h{x) = 3* - 4. 

(d) £(x) = x(x + 1) = x2 + x. 

6.2 pp. 178-180. 

3. x2 + 1 is always a positive number. 

4. \/*2 + 3 is always a positive number. 

6. (a) Yes. (b) No. (c) Yes. (d) No. (e) No. (f) Yes. 

8. (a) All real numbers except x = 7, x = 3. 

(b) All real numbers except x = 0. 

(c) All real numbers x > 4. 

(d) All real numbers x > —5. 

(e) All real numbers x except those x with — 3 < x < 1, 

(f) All real numbers. 

(g) All real numbers x except those with — 1 < x < 1. 

9. /(I) = /(2) = /(3) = /(4) = 0, yet the function is certainly not identically 

zero. In general one should look at values other than a, b, c, or d when plotting 

a function of the form (x — a)(x — b)(x — c)(x — d). 

6.3 pp. 182-183. 

1. (a) 20,-1, 8. (b) 20, 52, -20. (c) -21, -8, -9. 

P = 
4. I = 10is. (a) 30 amps. (b) 12 volts. 

7. (a) C = 2nr. (b) 1671;^- 

8. t = \L — 2. 246. 

9. / = .06 D. 
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6.4 pp. 189-191. 

1. (a) -8* + 3y = 7. (b) -7x + 3y = 0. (c) 2x + y = 5. 

(d) llx + 2y = 62. 

2. (a) y = 2x + l. (b) y*=-x + 21. (c) y = -5. 

(d) y = 9x — 47. 

3. (a) y = 17x. (b) 7 = -lx + 5. (c) y = 9. (d) y = 4x - 18. 

5. (a) 212°F. (b) 32°F. (c) 26f°C. (d) -40°. 

6.5 pp. 198-200. 

l. 

3. 

4. 

(a) The intersection 

(b) Dual representation. 

(c) No intersection; lines are parallel. 

(d) The intersection point is (1, 2). 

(e) The intersection point is (5, 3) 

(f) The intersection point is (8, 1). 

Yes; working with the first two equations, we find that (5, 0) is an intersection 

point of the first two lines. This ordered pair also satisfies the third equation. 

Let x = number of truck shipments, y = number of train shipments. The 

data of the problem yield the following equations: 

x + y = 70 

3x + 5y = 300 

The solution to these equations is x = 25, y = 45, so there should be 25 

truck shipments and 45 train shipments. 

5. Let x = number of packets of deep purple, y = number of packets of light 

purple. The data of the problem yield the following equations: 

x T 2y = 5000 

2x + 3y = 7000 

These equations have the solution x = —1000, y = 3000. The no slack 

assumption yields a useless model. 

6. Let x = number of teams to investigate mergers; y = number of teams to 

investigate quasimonopolies. The data of the problem yield the following 

equations: 

2x + y = 28 

2x + 3 y = 48 

The solution to these equations is x = 9, y = 10, so there should be 9 teams 

to investigate mergers and 10 teams to investigate quasimonopolies. 



answers to selected exercises 489 

8. Let x = number of fancy tables, y = number of plain tables. The data of the 

problem yield the following equations: 

15x + 10y = 600 

24x + 18 y = 500 

580 
These equations have the solution x = -j- > y = —230, so some modifica¬ 

tion of the model must be made. 

9. Let x = number of undershirts, y = number of underpants. The data of the 

problem yield the following equations; 

-jx + \y = 200 

18_y = 1440 

The solution to these equations is x = 370, y = 60, so 370 undershirts and 

60 underpants should be made. 

6.6 pp. 211-212. 

1. (a) x = y = z = 1. (b) x = 1, y = 1, z = 0. 

(c) x = 6, y = 1, z = 1. (d) x = 1, y = 1, w = 0, z = 0. 

2. (i)(b); (ii)(a); (iii)(b); (iv)(b); (v)(a); (vi)(b). 

5. Let x = number of days, y = number of miles, z = number of nights. The 

data of the problem yield the following equations: 

120x — y =0 

— lOx + 15z = 10 

lOx + 0.1 y + 15z = 170 

The solution to these equations is x = 5, y = 600, z = 4, so the salesman 

travelled 5 days, 600 miles, and spent 4 nights in a motel. 

6.7 p. 221. 

(a) —x + 5y < —1. 

(b) x > 1. 

(c) x < 

(d) —x — y < 13. 

(e) -lx + Sy < 0. 

(f) x > 3. 

1. 
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p. 230. 

4. The resource inequalities are: 

15x + 10y 

VI 600 

24x + 

oo 

VI 500 

X > 0 

y > 0 

20x + Uy 

The corner points are A = (0, 0), B = 0^, C = ^0, The analysis 

will tell us nothing, since the points where an optimal solution occur do not 

have integral coordinates. 

pp. 235-236. 

1. Let x = number of pounds of G i per package, 

y = number of pounds of G2 per package. 

The resource inequalities are: 

x + y< 2001 
x + y > 200 J 

(These two inequalities imply x + y — 200.) 

0 < x < 80 

y> 150 

C = 4x + 6 y. 

The corner points of the feasible region are: 

A = (50, 150) and B = (0, 200) 

Since at: 

A(50, 150) C = 4(50) + 6(150) = 1100 

5(0, 200) C = 4(0) + 6(200) = 1200 

The optimal solution is to have 50 pounds of Gt per package and 150 pounds 

of G 2 per package. 

3. Let x = number of stoves S, y = number of stoves T. The resource inequal¬ 

ities are: 

3x + 2y< 40 

5x + 4y < 40 

x>0 

y > 0 

PGS = 50x + 80y 

The corner points of the feasible region are A = (0, 0) B = (8, 0), C = (0, 10). 
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At these points, potential gross sales (PGS) are: 

A (0, 0) PGS = 50(0) + 80(0) = 0 

B (8, 0) PGS = 50(8) + 80(0) = 400 

C (0, 10) PGS = 50(0) + 80(10) = 800 

To maximize potential gross sales, no stoves of type S and 10 stoves of type 

T should be produced. 

5. Let x = number of dresses, y = number of blouses. The resource inequalities 

are: 

4x + 2y < 60 

2x + 4y < 48 

x > 0 

y > 0 

p = 8x + 6y 

The corner points of the feasible region are A = (0, 0), B = (15, 0), C = 

(12, 6), D = (0, 12). 

A (0, 0) p = 8(0) + 6(0) = 0 

B (15, 0) p = 8(15) + 6(0) = 120 

C (12, 6) p = 8(12) + 6(6) = 132 

D (0, 12) p = 8(0) + 6(12) = 72 

Twelve dresses and six blouses should be made to maximize profit. 

Chapter 7 

7.1 pp. 247-248. 

2. 

Age 

25-30 

30-35 

35-40 
40-45 

45-50 

50-55 

55-60 

60-65 

65-70 

70-75 

Age 

40-45 

45-50 

50-55 

55-60 

60-65 

65-70 

Frequency 

3 

7 

9 

10 
10 
6 
2 
4 

1 
2 

Frequency 

2 
5 

11 
11 

5 

2 

-45 -50 -55 -60 -65 -70 



492 answers to selected exercises 

6. Score 

0-10 

10-20 

20-30 

30-40 

40-50 

50-60 

60-70 

70-80 

80-90 

90-100 

9. 

Frequency 

0 
0 
0 
2 
1 
2 
9 

11 
8 
5 
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7.2 pp. 251-252. 

1. 1900 

2. Can’t be estimated from Table 7.4. 

3. Approximately 106 in 1980. 

7.3 pp. 257-258. 

l. 

3. 

5. 

6. 
7. 

10. 

Mean = 44.3, median = 42, mode = 46. The mean or median is a better 

model of the data. 

Mean = 378.4, median = 308, mode does not exist. The median is a better 

model of the data. 

Mean = 73.2, median = 75, mode = 65. The median is a better model of 

the data. 

A mean. 

(a) Mean = 3.33, median = 4, mode = 4. 

(b) Mean = 0, median = 0, mode = —2. 

(c) Mean = —.875, median = —1.5, mode does not exist. 

(d) Mean = 66, median = 65, mode = 70. 

(a) 14-30 + 20-34 
34 

(b) 100 + 90 + 100 + 70 + 2(50) + 4(80) 780 
1 + 1 + 1 + 1 + 2 + 4 10 

7.4 p. 263. 

l- (a) 

Mean = 4f, median = 5, mode doesn’t exist. 

Error Def. I: error = 9 for mean, 7 for median. 

Error Def. II: error = |(1 — 4f) + (2 — 4|) + (2 — 4|) + (4 — 4|) 

+ (5 - 4|) + (5 — 4|) + (6 - 4f) + (8 - 4|) + (8 - 4|)| = 0 for 

mean, |(1 - 5) + (2 - 5) + (2 - 5) + (4 - 5) + (5 - 5) 

+ (5 — 5) + (6 — 5) + (8 — 5) + (8 — 5) | = 4 for median. 

Error Def. Ill: error = |1 — 4^| + 12 — 4f| + 12 — 4|| + 14 — 4f 

+ |5 — 4f| + |5 — 4f| +|6-4|| + |8 -4§| + |8 — 4f| = 18| ' 

for mean, |1 —5| + |2 — 5| + |2 — 5|+|4 — 5| + |5 — 5] 

+ |5 — 5| + |6 — 5| + |8 — 51 + )8 — 51 = 18 for median. 

7.5 pp. 268-269. 

1. (a) 

(c) 

p = 5, o = 

p = 3, a = 
3 

(b) p = 1.4, a = V^05- 
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2. 

4. 

6. 

8. 

9. 

(a) n = 3f g = If (b) /i =0,cr = 2. 

(C) ^ = -fa = (d) jW = 66, a = \/l84. 

// = 5, o = yy = \/5l6 = 2.37. 

1 — i lh2 = .99, l//*2 = .01, h2 = 100, h = 10. The minimum height should 

be adjusted to 66 — 2(10) = 46 inches. The maximum height should be 

adjusted to 66 -f 2(10) = 86 inches. 

4.5 + 1.7A = 7, 1.7/z = 2.5, h = 1.47. 

Percentage = [1 - 1/(1.47)2] x 100% = 53.7% (approximately). 

1-1 /h2 = .95, h2 =20, h = 4.5. p = 9, a = l/«/J = .707 (approxi¬ 

mately). Required distance = 9 + (4.5)(.707) = 12.2 (approximately). 

Chapter 8 

8.1 pp. 273-275. 

8.2 

1. 
322 
481 

= .669. 

3. 
23465-11564 11901 

23465 23465 ’ 

5. 
340 
670 

= .507. 

6. (a) 
1000 

p 1001 

(b) p = |. The stabilized value relative frequency of John’s beating Jake at 

chess is f. 

11. (a) Yes. (b) Yes. (c) No. (d) No. (e) No. (f) No. 

pp. 283-285. 

l. (a) Yes. 

(b) No—the sum of all the probabilities ^ 1. 

(c) No—P(S) < 0. 

(d) No—P(M) > 1. 

(e) No—the sum of all the probabilities ^ 1. 

(f) No—the sum of all the probabilities ^ 1. 

2. (a) 
2 1 ... 3 1 , , 2 1 
6 ~ 3 (b) 6 “ 2 (c) 6 ~ 3 

3. {A, B, C, D, E, F, G, H, /, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z). 

4. (a) 13 4 13 1 (M 4 4 4 2 ( \ 13 4- 3 4 
52 ' 52 2' U’ 52 52 13' W 52 + 52 “ 13' 

1. = j 
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8. (a) 
4 2 
10 5 ‘ 

(b) | + 2. = A. 
^ 10 5 

o 1 

o
l II 

(d) i_A = A 
10 5 

• 

9. (a) 
2 + 3 5 

9 9 
(b) i _ A = A. 

9 9 

13. No, because the states don’t have equal populations. 

8.3 pp. 291-293. 

2. 

HHHH 

HHHT 

HHTH 

HHTT 

HTHH 

HTHT 

HTTH 

HTTT 

THHH 

THHT 

THTH 

THTT 

TTHH 

TTHT 

TTTH 

TTTT 

7. 

Matrilineal Matrilineal, matrilocal 

Matrilineal, patrilocal 

Patrilineal, matrilocal 

Patrilineal Patrilineal, patrilocal 
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10. 60. 

12. 

// 

13. 

14. 

16. 

18. 

12-2-2-2-2 = 192. 

4-2-4 = 32. 

12-11•10-9-8-7-6 

(a) 1 

127 

12-11 
122 

.89. 

.083. 

8.4 pp. 301-303. 

3. 

4. 

6. 

7. 

9. 

10. 

11. 

(a) 10 ‘ 10 100' (b) 10 ‘ 10 

JL A = A 
2 ’ 3 3 " 

111 1 
5 ' 5 ‘ 5 ~ 125 

_1_ J_ J_ 
4 ' 4 16' 

9 1 9 
10 ' 10,000 100,000' 

A A = A 
4 ' 4 16' 

365 1 1 
3654 “ 3653 " 48,627,125 ' 

81 
100' 

1 99 
100 ~ 100' 

8.5 pp. 309-310. 

l- b(e, 10, A)- 

6(9,20.1). 2. 
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3. 

5. 

6. 

9. 

10. 

K9’ 12, lo) K19’ io) ^ K”’ 1 ’’ 10) + K12,12, io) 

6(5,7.i)+i(6,7.±)+4(7,7.i-). 

6(r, TV, p) = probability of r successes in N attempts = probability of TV — r 
failures in N attempts = b(N — r, N, 1 — p). 

The sum of these probabilities represents the probability of the whole sample 

space, which = 1. 

8.6 pp. 316-317. 

l. 

3. 

5. 

6. 

1(1 + 2 + 3 + 4 + 5 + 6) = A = 31- 

The possible outcomes are H, TH, TTH, TTT. 
Expected number of kisses = 0- P(H) + 1 • P(TH) + 2• P(TTH) 

+ 3-P(TTT) = 1 

0 -P(TTT) = 1 

1 ,. 3 3 3 111 
4+3’4'4'4~64' 

3 1 . , 3 3 
4 • 4 + 2 • 4 ‘ 4 

Expected number of bumps = 1 • /’(//) + 1 • P(TH) + 1 • P(TTH) 
J_ , _3_ _3_ J_ _ 37 
4 + ' 4 ' 4 * 4 64' 

1 

l + i.A 
4 ' 1 4 

(a> T 
500 = 250- (b) 500 = 166y- (c) 

1 
Expected number of heads = -y • 10 = 5. 

P(5 heads appear) = 6^5, 10, 1) = .246. 

10 
500 = 50. 

8.7 pp. 323-324. 

1. 

s
; to

 

II 

1 
v
o
M

 

_
1

 

, M3 = 

rl 3 
X7 

1 4“| 
X7 

4 
L7 

5 
7J 

14 
LX7 

1 3 
X7J 

3. 

4. 

5. 

M = 

„(2) = A 
5 7,22 Q ) 

E 
rl 

S 
21 rl 39 18 5 t 

7 7 A II 7X4 7X4 

1 
LX 

1 
I- 

1 85 
L47T 

247 
47XJ 

„<3) 
.Pl2 

14 
27’ 

... 139 
Pn 324 

n(3) = 11. 
Pxx 27 

(.9998)(.9998) + (,0002)(.0001) 

The entries in the first row of M3 are j££, respectively. Hence, 

17 
/’(being in A after 3 transitions) = ^ 

385 
P(being in B after 3 transitions) = 

/’(being in C after 3 transitions) = ^ 
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8.8 

7. E L h? II 

ri in r 43 85 n 
2 2 , M4 = 

T28 ITS 
L 1 

-i -TTS 
171 
XT7J 

9. The probability that the salesman goes from A to A is -j, which is nonsense. 

pp. 331-332. 

(a) M has no zero entries 

(b) M2 = 

1 
1 1 

1 

1 

r 3 
7 

3 
7 

1 -1 
4 

(c) M4 = 5 
TZ 

3 
T7 

1 
2 

5 
L-T7 

1 
7 

9 
T7-I 

r 3 
T5 

9 
tz 1 "I 4 

(d) M5 = 1 
T5 

3 
"S' 

9 
TZ 

9 
-zz 

31 
Z4 

3 
-J 

- 7 
24 

5 
TZ 

7 -1 

24 

(e) M1 = 5 
24 

1 1 
24 

1 
7 

7 
-77 

4 
V 

1 3 
77-1 

(a) M is not regular 5 
(b) M is not regular 

(c) M is regular 

no zero entries. 

no zero entries. 

no zero entries. 

no zero entries. 

[wu w2, w3] 

i r 
1 2 0 

0 0 1 

0 1 
'-z 

1 
I 

= [Wu wz, w>3] 

\w3 = Wi 

+ 7^3 = 

%Wl + W2 = W3 

H>i “b W2 4" tTj = 1 

Hence wx = y, w2 = ], W3 = so the fixed vector is [§, |], 
(d) Mis regular: 

[*>], W2] 
“.6 

_.3 

.4 

.7. 
= [wi, w2] 

.6wi -f- .3h>2 = Wi 

Aw 1 + ,7>v2 = w 2 

Wi + IV2 = 1 
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Hence w j = 4> w2 = 4> so the fixed vector is [7, 4]. 

5. Less intelligent. 

341-342. 

2. (a) 

(b) 

(c) 

(d) 

(e) 

(f) 

4. (a) 

(b) 

6. (a) 

(b) 

(c) 
(d) 

(e) 

u = \,v = w = 0, t>2 = 4mw, so the population is in equilibrium. 
m = 0, v = 1, w = 0, v2 ^ 4uw, so the population is not in equilibrium. 
u = v = 0, w = 1, v2 = 4uw, so the population is in equilibrium. 

1 98 1 
u = jqq, v = jqq, w = jQp, v2 4uw, so the population is not in 

equilibrium. 
_ 16 _ 8 1 , 64 

u 25’ v 25’ w 25’ v (25)2’ 

4uw, so the population is in equilibrium. 

1 16 83 256 

4 uw = 4' 
16.1 64 

u 100’ v 100’ w 100’ “ (100)2’ " (100)2 “ (100)2’ 

v2 ^ 4uw, so the population is not in equilibrium. 

150 1 = ±22 = A 30 1 
2’ V 300 ~ 5 ’ W ~ 300 — 10 

Proportion of first generation having AA — ^ 

i)2 — 4 uw = 4 

(25)2 (25)2’ 

83.1 332 

U 300 

4(D)1 

= 2 

j_ n2 _ (i_\2 _ 49_ 
.2 + 5/ vioj 100' 

Proportion of first generation having Aa 
42 
100' 

Proportion of first generation having aa = to + t(t 
_3_\2 

10/ 
9 

100' 

No. 

This is possible. Both father and mother can have genes Rr. 
Not possible. Both parents must have genes rr. 
This is possible. See (a). 

This is possible. The father’s genes are rr, the mother’s genes could be 

Rr. 
This is possible. The father’s genes are rr, the mother’s genes could be 

Rr (or RR). 
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Chapter 9 

9.1 p. 349. 

(b) No row can be eliminated. 

9.2 pp. 354-356. 

1. (a) The second row dominates the first, so the first row can be eliminated. 

1 1 3 
Expected payoff for second row = yO) + y(2) = y 

Expected payoff for third row = y(2) + y(—3) = —~ 

Hence, the best row is the second. 

2. (a) Let p denote the probability on the first column. Then the probability 

on the second column is 1 — p. We want 1 • p + 2(1 — p) = 2p — 

3(1 - p), i.e. 

p + 2 - 2p = 2p — 3 + 3p, 

< . 5 . 1 
5 = 6p, p = y, 1 - p = — 

3. Expected payoff if alarm is sounded = — 20(.05) + — 1 (.95) = -1.95. 

Expected payoff if alarm isn’t sounded = — 50(.05) + 0(.95) = -2.5. 

Hence the alarm should always be sounded. 

Buy Stock -.01 .08 

.05 .04 Buy Bonds 
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Expected payoff- if stock is bought = -y(—.01) + y(-08) 

Expected payoff- if bonds are bought = -y (.05) + (.04) = 

Hence, you should buy bonds. 
2 1 
7 7 

Judge Stern Judge Lenient 

Plead Guilty 

Plead Innocent 

Expected fine if you plead guilty = -y(5) + -y (5) = 5 = y 

? 1 70 
Expected fine if you plead innocent = y(10) + y(0) = y 

Hence, you should plead guilty. 

5 5 

10 0 

= .035. 

= .045. 

9.3 pp. 362-366. 

2. Expected profit if he goes on the trip = 4'K1)(4>600) + (^)(2,600)] 

+ *[(1X2,600) + ({X-600)] = 3,100. 

Expected profit if he doesn’t go on the trip = 3,000. 

Therefore, he should go on the trip. 

4. 
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Projected 4-year profit if the industry lobbies = ^(40,000,000) 

+ A . -L(20,000,000) + JQ • \(40,000,000) - 500,000 = 35,000,000. 

Projected 4-year profit if the industry doesn’t lobby = -^-(20,000,000) 

+ -^-(40,000,000) = 35,000,000. 

Therefore, it doesn’t matter what the industry does. 

8. Total cost if hurricane is seeded = 25 + 94.00 = 119.00 million. 

Total cost if hurricane isn’t seeded = 116 million. 

Therefore, the hurricane shouldn’t be seeded. 

9. The cost to Meander is 4- dollar per minute. 

~ , ., .. . , , 3 65 7 5 230 
Cost if Meander goes toL = iQ--g-+yQ’-g- = 

18 180 
Cost if Meander goes to Siberia = -g- = — hence, Meander should go 

to Siberia if he goes to x and there is no space at x. 

Expected cost if Meander goes tox = -j---g- + -y*-^ = ^- 

Expected cost if Meander goes to Siberia = ^ = 

Therefore, Meander should go to Siberia right away. 

9.4 pp. 372-374. 

l. (b) 
1 -1 

-1 1 

In (e) and (f), no further simplification is possible. 



answers to selected exercises 503 

2. 

5. 

2 -1 

0 6 

Ill II2 

II 

h 

1 -1 

-1 1 
No further simplification is possible 

Attack I Attack II 

8. 

Defend I 

Defend II 

This matrix can be simplified to i.e., the situation where II is 

defended and attacked (resulting in a payoff of +3 to the attackers). 

If it were a zero-sum game, then if A sold 2 widgets in a particular week 

(for example), B would have to sell —2 widgets that week, which is absurd. 

381-382. 

l. 

2pq +/>( 1 ~q) + 0-(l - p)q + 3(1 - p)( 1 - q) 

= 2pq + p — pq + 3 — 3q — 3p + 3pq 

= 4pq — 2p — 3q + 3 = 4 p[q-— 2q + 3 

- - t) - 3(? -1)+ 3 “ T 
= (4p - 3)(q - ±) + 4 

3_ 
2 

Value of the game = f. The optimal mixed strategy for the row player is to 

play the first row \ of the time, the second row | of the time. The optimal 

mixed strategy for the column player is to play the first column \ the time, 

the second column j the time. 
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4. The analysis will not work. For example, consider the matrix 

3 2 

1 -1 

The first row dominates the second and the second column dominates the 

first. The value of the game is 2. Applying mixed strategy analysis to the 

matrix, we get 3pq + 2p(l — q) + (1 — p)q — (1 — p)( 1 — q) = 3pq + 2p 

— 2 pq + q — pq — 1 +p+q — pq = —pq + 3p + 2q — 1 = —p(q — 3) + 2 q 

- 1 = -p(q - 3) + 2(<? - 3) + 6 - 1 = - (p - 2)(q - 3) + 5, which 

implies that the value of the game is 5 (also, thep and q values are impossible). 

9.6 pp. 387-388. 

l. (a) The matrix can be simplified to 3, 1 

improvement. 

(b) The matrix can be simplified to 3,2 

improvement. 

(c) The matrix can be simplified to 1,2 

improvement. 

There is no cooperative 

4, 3 is a cooperative 

4, 3 is a cooperative 

9.7 pp. 391-392. 

1. (a) 0, 0 is the only equilibrium pair. 10, 9 is a cooperative improvement 
over this pair. 

(b) 4, —1 is the only equilibrium pair. There is no cooperative improve¬ 
ment over this pair. 

(c) 0, 0 is the only equilibrium pair. There is no cooperative improvement 
over this pair. 

Chapter 10 

10.1 pp. 397-398. 

1. The winner gets 101 votes; the other three candidates get 100 votes apiece. 
The winner gets 25.2 percent of the vote. 
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10.2 pp. 401-402. 

1. 24 

2. n(n — 1)(« — 2)... 3*2* 1 = n\ 
3. 6; 6; 6. 

5. 12; 12; 12. 

6. 51. Together with the 24 schedules satisfying Modeling Assumption 1, there 
are 75 schedules. 

10.3 pp. 404-405. 

1. (b) B3 is the plurality winner; B2 is the run-off winner, 

(c) B3 is the plurality winner; B3 is the run-off winner. 

2. No; yes. B2 would win the run-off instead of Bx 

10.4 pp. 406-408. 

2. For the election (d) in Exercise 1, system (b) gives Bx 120 points, B2 139 

points, B3 169 points, and B4 136 points, while system (d) gives R, 192 points, 

B2 211 points, B3 233 points, and B4 210 points. 

4. Use election (c) in Figure 10.9. 

5. Use an election with 10 votes for schedule B (see Figure 10.2), 9 votes for 

schedules D, and 8 votes for schedule F. 

10.5 pp. 411-412. 

1. For the election (b) the plurality winner is B2, the run-off winner is B2, the 

Borda Count winner is B{ and the Condorcet winner is B2. For the election 

(c), the plurality winner is B2, the run-off winner is B3, the Borda Count 

winner is B2, and there is no Condorcet winner 

2. (a) Use the election in Figure 10.9 (b). 

(b) Modify the schedules in Figure 10.9 (a), by placing B4 in the fourth 

position on each. 

(c) Refer to Figure 10.2. Use 7 votes for schedule A, 3 votes for schedule 

B, 6 votes for schedule D, and 5 votes for schedule E, modified by 

placing Z?4 at the bottom of each of these schedules. 

5. The invalence of every vertex of the digraph is greater than zero. No. 

7. The number of points a candidate receives from a preference schedule equals 

the number of candidates below him on that schedule. 
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8. Provided the system has a means of breaking a tie, when two or more 

candidates can beat equal numbers of opponents in two-way races, then 

this system could be used. Whether it would represent a superior system to 

the Borda Count is unclear. 

Chapter 17 

11.1 pp.422-424. 

l. 

3. 

(a) f(t) = lit - 7) + 10. 

(b) fit) = -3it - 3). 

(c) fit) = 4. 

(d) fit) = t. 
(a) pit) = t + 20; when t = 20, pit) = 40. 

(c) pit) = 3t + 20; when t = 20, pit) = 80. 

4. (a) t fit) 

0 1 
1 5 
2 29 
3 845 

(b) t fit) 

0 20 
1 20 
2 16 
3 0 
4 -36 

(c) t fit) 

0 1 
1 1 
2 5 
3 13 
4 25 
5 41 
6 61 

(d) t fit) 

0 1 
1 1 
2 1 
3 1 
4 1 
5 1 
6 1 
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t fit) 

0 1 
1 2 
2 2 
3 2 

5. Let M(t) be the mileage gone after t days. The table suggests that M(t + 1) — 

M(t) = 200 and M(1) = 200 (approximately). Thus M(t) = 200r. When 

t = 50, M(t) = 10,000. This will not be reliable if the 200 mi/day average 

doesn’t persist. If the terrain changes it may not persist. 

1* We can find /(10) this way: 

/(io) - m = 3 

m - m = 3 

m - m = 3 

m - f(2) = 3 

/(2) - /(0) = 3 

Adding gives /(10) — /(0) = 15. Since /(0) = 0, /(10) = 15. We can’t find 

/(11), but we could if we knew fit) for some odd integer value of t. 

11.2 pp. 433-435. 

1. (a) fit) = 4(3)' 

(b) 

(c) 

t fit) 

0 4 
1 12 
2 36 

fit) = = 5(2)' 

t fit) 

0 5 
1 10 
2 20 

/(0 = = 800(1.25) 

t fit) 

0 800 
l 1000 
2 1250 
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(d) f(t) = 20(2.5 y 

t fit) 

0 20 
1 50 
2 125 

3. (a) f(t) = 0. 

(b) fit) = 3(1.5)'. 

(c) fit) = 4(1.5)'. 

5. /(0 = 150(2)'. 

/(10) = (150)(1024) = 153,600. 

6. fit + 1) - fit) = .05 fit). 

7. fit+ 1)- fit) = .02 fit). 
5 % discard rate prevents growth. 

9.* f(j) = 10,000(—1)' 

t fit) 

0 10,000 
1 -10,000 
2 10,000 
3 -10,000 

(a) The graph oscillates. 

(b) The only values ever assumed by fit) are +10,000 and —10,000. Thus 

it does not grow without limit. 

11.* 

i.e. 

fit + 2) - fit + 1) = 5 [fit + 1) - fit)] 

fit + 2) = 6fit + 1) - 5fit). 

This equation allows us to compute /(2) (take t = 0), /(3), . . . using /(0) 
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and /(l). /(0) is given as 1 by the initial condition. /(1) cannot be determined 
from our equation but clearly equals 6. 

t m 

0 1 
1 6 
2 31 
3 156 
4 781 

f(t) grows larger without limit, but since there are only a finite number of 
people available to participate, something has got to give. What usually hap¬ 
pens is that after a few stages the letter writers have difficulty finding any 
new participants and so they can’t collect any money. 

11.3 pp. 441-442. 

1. (a) x = 100, y = 80. 

(b) x = 1000, y = 5000. 

(c) x = 42, y = 64. 

2. x = 150, y = 120, z = 60. 

11.4 p. 450. 

1. Equilibrium is at x = 100, y = 100. 

(a) Let x(t) = 95, y(t) = 95. 

x{t + 1) - 95 = (.3 - .190 - .095)95 = 1.425 

y(t + 1) - 95 = (.25 - .114 - .1235)95 = 1.1875 

(b) Let x(t) = 105, y(t) = 105. 

x(t + 1) - 105 = (.300 - .210 - .105)105 = -1.575 

y(t + 1) - 105 = (.2500 - .1260 - .1365)105 = -1.3125 

(c) Let x(t) = 95, y(t) = 105. 

x(t + 1) - 95 = (.300 - .190 - .105)95 = .475 

y(t + 1) - 105 = (.2500 - .114 - .1365)105 = -.0525 
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(d) Let x(t) = 105, y{t) = 95. 

x{t + 1) - 105 = (.300 - .210 - .095)105 = -.525 

y(t + 1) - 95 = (.2500 - .1260 - .1235)95 = .0475 

4.* If *(/) = 0, it is impossible for there to be a “disturbance” making x{t) > 0 

(an extinct species will not reappear spontaneously) or x{t) < 0 (when count¬ 

ing members of a species you can’t have less than nothing). 
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Accidental crossing, 35, 44 
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Air pollution problem, 322 
Albino, 333 
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Gauss-Jordan elimination, 208 
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Armaments problem, 209 
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Arrow’s theorem, 412 

Associative law, 148-149, 151 

Augmented matrix, 204 

Authority digraph, 56 
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Mode) 

as a model, 256 

estimate of fit, 259 

Axes, 172-173 

Bacteria growth, 436 

Binary arithmetic, 139-140 

Binary system, 27, 134-135 

Binomial probability model, 304, 314 

expected value, 313 

table, 455 

use of, 307 

Bipartite graph, 100 

Biplanar graph, 46 

Birthday surprise, 289, 293 

Blood pressure, 180 

Board of elections problem, 395 

Borda, Jean-Charles de, 394 

Borda count, 405-406, 414 

Brain, 114 

Bridge, 79, 80 

Card reader, 112 

Carrier, 333, 340 

Carroll, Lewis, 394 

Cayley, Arthur, 107 

Census, 164, 167 , 239 

Centigrade scale, 190 

Chain letter, 435 

Chebyshev, 266 

Chebyshev’s theorem, 267,314-316 

Chemistry, 73 

valence, 48-49 

Chicken, 56 
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Chicken (cont.) 

see also Egg 

Circuit, 74 

Circuit adders, 141, 143-144 

CLA, 130 

Clan, 291 

Clearing the column, 208 

Closed half-plane, 216 

Coefficient matrix, 204 

Coloring, 17, 100 

problems, 2, 17, 19, 22 

Column domination, 369, 384 

Column matrix, 148 

Column vector, 148 

Commutative law, 148 

Complement, 281,452 

Complementary event, 282 

Complete graph, 32, 42 

Component, 70, 78, 80 

Computer, 109, 323 

compared with brain, 114 

revolution, 110 
simulation, 108 

Condorcet, Marquis de, 394 

Condorcet’s method, 408,414 
Connected, 72, 74, 80, 160 

Contamination model, 155, 157-158 

Cooperation, 384 

Cooperative improvement, 386 

Coordinates, 173 

Corner point, 225 

CPM, 60 

see also Critical path method 

Critical path, 63 

Critical path method, 4, 60 

Curve, 176 

Darwin, Charles, 431 

Data modeling with one number, 252, 265 

Decimal system, 134 

Decision trees, 356 

De Mere, Chevalier, 310 

Descartes, Blanche, 87 

Descartes, Rene, 82, 171-172 

Dietician problem, 212, 232 

Difference equation, 417, 420 

solution, 420 

Digraph, 53, 147 

Digraph model, 56-57 

Directed circuit, 55 

Directed path, 55 

Disconnected, 70 

Distarice, 77 

Distributive law, 155 

DIV, 130 

Dodgson, Charles, 394 

Domain, 165, 167 

convention for finding, 168 

Dominant gene, 333 

Dominant strategy analysis, 369 

Dominating strategy, 345 

Dual representation, 191 

Edge, 10, 32 

Egg, 56 

see also Chicken 

Election decision procedure, 402 

Election procedure, 398 

Electoral College, 398 

Electric generator problem, 317, 321 

Electrocardiogram, 178 

Elementary row operations, 202 

Emotional stability, 292 

Empirical assumption, 272 

Encyclopedia salesman problem, 306 

End point, 33 

Epidemic problem, 426 

Equal liklihood, 280 

Equation, 174 

Equilibrium, 438^-39, 442 

genetic, 339 

Equilibrium pair, 389 

Equiprobable model, 280 

Estimate of fit. 13-14, 16, 18, 259 

Euler, Leonhard, 81-82, 89 

Euler circuit, 10-11, 14, 24, 83-84, 87, 92, 

109, 155 

variations on, 92 

Euler path, 88-89 

Event, 281 

Expected payoff, 311, 378 

Expected value, 310, 312, 350, 353 

Experiment, 271 

Exponential function, 426 

Exponential growth, 424, 426 

Fahrenheit scale, 190 

Feasible region, 219 

Feedback loop, 117-118 

Film company problem, 220 

First order differences, 419 

Fixed vector, 328 

Flow chart, 117-118 

Food web, 57, 155, 157, 161 

Forrester, Jay W., 108 

Four-color conjecture, 22 

Frequency polygon, 241, 243 

Fuel consumption problem, 417 
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Function, 163, 422 

Function notation, 165 

Games, 366 

nonzero-sum, 382 

zero-sum, 368 

Gause’s principle, 445, 449 

Gauss-Jordan Elimination, 208, 212 

Gene, 333-334 

frequency, 342 

Genetics, 332 

Genotype, 333, 337 

Goodness of fit, 431M-32 

Graph, 9, 32 

function, 171, 174-175 

linear function, 184 

model, 51, 72 

Greatest integer function, 179 

Guessing on examination problem, 314 

Half plane, 216 

Hamilton, William Rowan, 99 

Hamilton circuit, 16, 23-24, 53, 98, 101-102, 

105 

Hamilton path, 103-104 

Hardy, G. H., 339 

Hardy-Weinberg Law, 339-341 

Histogram, 242-244 

Hurricane seeding problem, 356 

Hybrid, 333 

Hydrocarbon, 49-50, 52 

Hyperplane, 202 

Icosian game, 104 

Identity matrix, 152 

Image, 165 

Immediate precedence, 4, 61 

Implication digraph, 56, 58 

Inclination, 187 

Independence, 293-296 

Inequality, 213-214 

Infinite loop, 122 

see also Chicken, Egg 

Influence digraph, 159 

Initial condition, 420 

Input device, 112 

Integer programming, 228 

Intersect, 452 

Invalence, 55, 78 

Investment, 421 

Isomers, 52, 80 

Isomorphic graphs, 35-36 

Isomorphism, 36 

i-valent, 34 

Job, 60 

Keypunch, 113 

Koenigsberg Bridge problem, 82 

Laplace, P., 280 

Learning model, 325 

Length of a path, 74 

Library problem, 311 

Limits to growth, 417, 435 

Line, 184 

point-slope form, 188 

slope-intercept form, 188 

two-point form, 186 

Linear equation, 183,,188-189 

Linear extrapolation, 418 

Linear function, 180 

Linear programming, 3, 213, 221, 231 

profit assumption, 221-222 

Machine language, 128 

Machine language instructions, 130 

Magnetic core, 114 

Magnetic drum, 114 

Magnetic tape, 114 

Mail distributor problem, 2, 15 

Mailman problem, 1, 9, 13, 20, 109 

variations on, 92 

Majority rule, 396 

Malthus, Thomas, 431 

Markov analysis, 317 

Markov process, 332 

long term behavior, 324 

regular matrix, 327 

state, 319-320 

Mathematical idealization, 8 

Matrilineal, 291 

Matrilocal, 291 

Matrix, 146-147 

addition, 149 

augmented, 204 

coefficient, 204 

games, 367 

multiplication, 149-151 

of a digraph, 161 

of a graph, 147, 156 

regular, 327, 330 

Mean, 252-254 , 259 

Median, 253-254, 259 

Mercutio, 302 

Methane molecule, 7 

Mixed strategies, 374 

Mixed strategy analysis, 380 

Mode, 255, 259 
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Model, modeling, 6, 9, 12, 19, 34, 50 

binomial probability, 304 

conversion, 12-13, 15, 17 

estimation of fit, 13-14, 16, 18 

graph, 19 

linear programming, 221 

organizing data, 246 

predictive, 248 

probability, 278 

reinterpretation, 13, 16-17 

use of average, 256 

Model home problem, 4, 61-62, 64 

MPY, 130 

Multiple edges, 33-34, 51 

Multiplication rule, 296 

Multistage experiment, 285, 290 

Mutation, 334 

Mutual reachability, 80 

Newton’s laws, 181 

Nonzero-sum games, 382 

No slack assumption, 197 

Null graphs, 32, 42 

Numerical code program, 132 

Ocean liner problem, 60-61 

Odds, 274 

Ohm’s law, 182 

Operations research, I -4,23,64,92,102,358 

Outcome, 272 

Output device, 112 

Outvalence, 55, 78 

Paper recycling problem, 3, 196, 218, 228 

Paraffin, 80 

Parallel lines, 192 

Pascal, Blaise, 347-348 

Pascal's wager, 347-348, 354 

Path, 71 

without repeated edges, 73 

without repeated vertices, 73 

Patrilineal, 291 

Patrilocal, 291 

Payroll algorithm, 128, 131 

Peripheral equipment, 112-113 

Physical reality inequalities, 219 

Pictogram, 251 

Pie chart, 242-243 

Pivot, 207-208 

Placevalue notation, 134 

Planar graph, 45 

Plane, 201 

Plurality, 396 

Plurality voting, 396-397 

Police strike, 387 

Polio, 386 # 

Population growth, 430, 433, 436 

Precedence table, 61-62 

Predator-prey problem, 443, 449 

Preference schedule, 399 

Principle of counting, 288-290, 401 

Prisoner’s dilemma game, 388-389, 391 

Probability, 270, 272 

assignments, 275 

assumptions, 276-277 

model, 278-280 

quiz, 270 

relative frequency concept, 273 

subjective concept, 273 

Program, 116, 119 

Quality control, 298, 308 

Radial street networks, 97 

Radio tube algorithm, 119-120 

Random, 280 

numbers, 357 

number table, 459 

Range, 165, 245-246 

Rat, 325, 332 

Raw data, 240 

Recessive gene, 333 

Rectangular street network (grid), 95, 

99-100 

Reduced echelon form, 202, 205 

REF, 205 

Regular matrix, 327, 330 

Relative frequency, 240, 271, 273 

Relay, 141 

Representation, 6, 8 

see also Model 

Resource allocation problem, 196, 199 

Return on investment problem, 234 

Road map, 7 

Root of tree, 285 

Row domination, 345, 369, 384 

Row vector, 148 

Rumor model, 432 

Rumor network, 161 

Rumor problem, 424 

Runoff election, 396 

Sample space, 276, 281 

Sanitation collection problem, 226 

Saturated hydrocarbon, 52, 80 

Scheduling problem, 2, 17 

School children projection problem, 248 

Set theory, 451 
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Shakespeare, 302 

Simple events, 276 

Simply mutually reachable, 80 

Simultaneous linear equations, 191 

Slope, 187-188 

Smallpox, 387 

Social mobility problem, 321 

Solution of 2 x 2 zero sum game, 379 

Solution set, 174, 216, 218 

Square matrix, 148, 152 

Square roots, table of, 453 

Stabilized relative frequency, 271, 276-277 

Stable equilibrium, 442 

Standard deviation, 263-264, 314 

Statistics, 239, 248 

abuse, 249-251 

STO, 130 

Straight line, 184, 189 

Strategies, 344 

Structural formulas, 48, 51 

SUB, 130 

Subjective probability, 273 

System of linear equations, 195, 200 

Table of Binomial Model Probabilities, 455 

Table of Random Numbers, 459 

Table of Square Roots, 453 

Technological substitution, 438 

Ternary system, 138 

Tertiary system, 138 

Thalidomide, 9 

Theory of elections, 395 

Theory of games, 291 

Theory of social choice, 414 

Thinking, 115-116 

Toll gate problem, 312 

Tournament, 58 

Transition matrix, 319, 326 

Transmitter, 59 

Traveling salesman problem, 102 

Tree, 107, 285, 356 

Trial and error, 14, 18, 24, 87, 109 

Turing, Alan, 116 

Union, 452 

Unstable equilibrium, 442, 447 

Utility, 347 

Vaccination, 386 

Valence, 34, 47-19, 51, 83 

Value of a game, 370 

Variance, 264-265 

Vertex, 10, 32, 53 

von Neumann, John, 375 

Voter paradox, 410 

Wallace, Alfred, 431 

Weighted mean, 258 

Weinberg, W., 339 

Wester, Art, 303 

Windtunnel, 10 

x-coordinate, 173 

x-intercept, 445 

y-coordinate, 173 

y-intercept, 188, 445 

Zero matrix, 149 

Zero-sum game, 368 



. . 

- 

♦ 







RE NT UN VERS T 

64 0281 199 




