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INTRODUCTION 

In this volume we give an exposition of some results and introduce 

some notions which were encountered during attempts to find a good method of 

graph identification. 

Sections of this volume are based mostly on unpublished papers of 

different people. I ask the reader who wishes to refer to papers constituting this 

volume to refer to them by the names given in the Table of Contents. Papers which 

are not followed by any name can be cited as my own. 

The beginning of our work was the research described in [We 3] . It 

was shown in this paper how to put into correspondence with any graph a nice com¬ 

binatorial object. The authors were not conscious at the time of the writing 

[We 3] that this combinatorial object v®s related toother problems. Later it turned 

out that the same object had been independently discovered and studied in detail 

by D. G. Higman [Hi 3], [Hi 5] , [ Hi 6] and that such formations as strongly regular 

graphs, symmetric block designs, centralizer rings of permutations groups are special 

cases of this object (cf. , Section F and L18). 

Although the properties of this object, called here acellular algebra, 

were discussed by D. G. Higman [Hi 3], [Hi 6], we decided to slate here seme assertions 

about them. This is done in the hope that it will help a reader to get acquainted with 

the notions and their use. 

At the same time the main stress is on the description of operations 

and constructions. Some assertions are proved to show how these constructions 

work. 

In an attempt to acquire a new understanding of the nature of our prob¬ 

lems, much practical work was done, mostly with the help of computers. The 
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most interesting outcome in this direction is probably the program which was de¬ 

signed to generate all strongly regular graphs with <_ 32 vertices. This program 

constructed all strongly regular graphs with 25, 26, 28 vertices, but failed, far lack 

of time, to construct such graphs with 29 vertices. This work is described in 

Sections S-V. The strongly regular graphs with 25 and 26 vertices were inten¬ 

sively studied (cf. , e. g. , [Se 5], [Sh 4]). 

Let us give now a brief description of the content of this 

volume. 

We begin with a discussion of certain questions connected with the 

graph isomorphism problem (Section A). Then we show in Section B how the develop¬ 

ment of known and natural approaches leads to our main construction which is 

described in detail in Section C. This construction gives rise to the notion of 

cellular algebras. We discuss properties of cellular algebras in Sections D and 

E. 

We show then that centralizer rings of permutation group theory 

are cellular algebras (Section F) and describe in Section G some general classes 

of cellular algebras. The constructions of Section G are modeled on permu¬ 

tation group theory. 

Sections H-K deal with imprimitivity and primitivity of cellular 

algebras. These classes of cellular algebras arise naturally when one tries to 

describe the structure of general cellular algebras and they are analogous to the 

corresponding notions of permutation group theory. 

In Section L some arithmetical relations between the numerical 

parameters of cellular algebras are obtained with help of algebraic theory. 

This section shows that the algebra structure can be used to get combinatorial 

information. RecentD. G. Higman's results [Hi 5] ,[Hi6] cover most results of 

this Section. 



IX 

In Section M we pass to the more algorithmic point of view. But 

otherwise it is essentially a repetition of Section C. In Section N and O new 

operations on graphs are introduced, and it is shown how the stability with re¬ 

spect to these operations restricts the structure of a cellular algebra. In Section 

P we show that the stability of a cellular algebra under some set of operations can 

be used to prove results which hold for centralizer rings of permutation groups. 

In Section Q we describe our setup and terminology before proceed¬ 

ing to the study of algorithms. These algorithms are described in Sections R-T. 

In Section U the results of the program based on the algorithms of Section T are 

presented and the information based on these results is discussed. 

In the Appendix (Sections AA-AE; the first A stands for "Appendix") 

we discuss different applications of the notions introduced in the main part of 

this volume. 





CONVENTIONS, ASSUMPTIONS, NOTATIONS. 

1. The references in this book are organized in the following manner: Sections are 

numbered by capital Roman letters; references inside one section do not use 

indication of the section; references to other sections begin with the letter (or 

letters) of the section. If several references to one section are written succes¬ 

sively, they are divided by commas and the name of the section is used usually 

once. 

E. g. , in Section L, references 4.1, 3.2; K15, 16; B7.6.15 mean 

that subsections 4.1, 3.2 of Section L, subsections 15, 16 of Section K, subsection 

7. 6. 15 of Section B are referred to. 

References to original papers begin with the firsttwo letters of the 

name of the author. 

2. Assumptions and Peculiarities of Terminology. 

The word "graph" is used in two different senses: one is the usual 

notion of a graph; for the second one, see Cl. 

A simple graph is a graph without loops, multiple or directed 

edges. The valency of a vertex of such a graph is the number of edges incident to 

this vertex. 

In Sections M-O, R a partial order satisfies an additional condition 

of Section M2.1. 

By the composition of a matrix A we mean the list of different 

entries of A together with their multiplicities. E. g. , if A = xl , then A is 
m, n 

composed of x with the multiplicity mn. We say that the compositions of A and 

B are disjoint (or that A and B are disjoint) if A and B have no common 

entries. We say that A and B have the same or equal composition if A and B 
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are composed of the same entries with the same multiplicities. If A and B are 

matrices whose entries belong to a partially ordered set M, we say that (fte compo¬ 

sition of A) is greater than (the composition of B). or simply A > B if this holds for 

compositions. Here the members of the composition of a matrix are ordered correspond¬ 

ingly to the order in M and comparison is understood lexicographically. 

If A = (a..) is an (nXm)-matrix, g € Symn, h e Symm, then 

-1 
Ah = (a 

Capital German letters ffL , 'Jj, JZ usually denote a cellular algebra 

or a normal subcell. 
« 

Letters X, Y, Z usually denote a graph (amatrix whose entries are 

independent variables). Letters U, V, W usually denote a set of points. 

For typing reasons we write sometimes 2 or I I . etc. , for 
’ r ° s S€ T 

2 or | | , etc. 

s S€ T 

3. General Notations. 

E - identity matrix, 
n 

I - (mXn)-matrix all of whose entries are ones, 
m, n 

i = i 
n n, n 

T = I - E . 
n n n 

1 = 1 i- n n, 1 

diag(a , .... a ) - diagonal (n Xn)-matrix with a , . . . , a as diagonal 
In In 

entries. 

L = diag(0, ...,0,1,0,..., 0), with 1 at the position i. 

a B a B 
11 12 

A g) B = | a2][B , where A, B are (possibly) rectangu¬ 

lar matrices and A = (a..) 
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Sp A - trace of A. 

dim A - number of different entries of (mXn)-matrix A, e. g. 

1 2 
dim( ) = 2, dim I = 1. 

i i m, n 

| A | - degree (i. e. , n) of a square (nXn)-matrix A. 

A' - transposed of A. 

S = xE + yl - simplex, 
n n n -c- 

2 
A = R (said: A is split) means that dim A = n , with | A | = n. 

A = const (said: A is constant) denotes that dim A = 1, i. e. , 

A = xIm n for appropriate x,m,n. 

d(C) - the number of ones in any non-zero row of a (0,l)-matrix 

(is applied only when it does not depend on the row). 

A C B means that b.. = b, , implies a. . = a, , where A = (a..), 
- lj kd ij kd i] 

B = (b..). 

If X is an (mXn)-matrix, M a si±>matrix(i. e. , a subset of the set 

of mn positions (i,j)), and e,f are (0, l)-matrices, then 

eCM denotes that all ones of e lie in M; 

efl M ^ 0 denotes that some ones of e lie in M; 

efl M = 0 denotes that M contains only zeros of e; 

eCf (resp. efl f ^ 0, resp. efl f = 0) denotes that all (resp. some, resp. none) 

ones of e are ones of f. 

A(V, W) is the submatrix of A cut out by rows with numbers in V 

and columns with numbers in W, that is, if A = (a..), then A(V,W) = (a ) 
1J V * VV 

X, IN, U, IR, C denote the set of the integers, positive integers, 

rational, real, complex numbers. 

Zf = NU0. 
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[m, n] = {m, m+1, . . . , n}. 

(m,n) = greatest common divisor of m and n. 

| V | - cardinality of a set' V. 

Symn, Sym(n) - symmetric group of all permutations of 

SymV, Sym(V) - group of all permutations of a set V. 

symbols. 



A. SOME REMARKS ABOUT THE PROBLEM 

OF GRAPH IDENTIFICATION. 

An algorithm of graph identification is an algorithm whose 

domain consists of pairs of graphs and whose result on a pair r ,r is +1 if T 
1 Z 1 

is isomorphic to r and -1 if not. Let us associate with A the function 

("speed") f(J? , n), who s e value at n is the maximum number of steps re¬ 

quired by jt, in order to find the result for any pair of graphs F^T^ with n 

vertices. 

The problem of graph identification is to find an algorithm 

of graph identification which for any other such algorithm yields 

f (A , n) <_ f(cS, n) , 

for all sufficiently large n. 

The evident algorithm requires n! steps. It is not clear whether 

the function f(f(, n) for an "optimal" algorithm is polynomial or not. Possibly, 

for any constant b there is no algorithm^ such that f(<$, n) < n for all n » 0. 

But in any case, as far as I know, there is even no algorithm for which it is 

proved that 

f (Jt, n) • 2 Cn -» 0 for c >_ 0. 

For special classes of graphs such as trees or planar graphs, the 

situation is much better. In these cases there exist algorithms which achieve 

theoretical lower bounds on the number f(^,n) ([Ho 3], [Sk 1]). 

In the general case there are at present some results which show 

that the situation in some close problems is almost hopeless (cf. [Ka 1]). 

There are two directions in the history of published approaches to 

the problem of graph identification; let us call them conditionally "local" and 
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' 'global''. 

In the global approach (e. g. , [Va 1], [Li 1], [Li 3], [Tu 1]) Ibe 

tried different algebraic invariants of the adjacency matrices of the given graphs. 

Most common here are the characteristic polynomial, the permanent, et al. There 

is also a lot of literature where these invariants are shown to be insufficient. 

However, there are many invariants (cf. Section AE), and a responsible approach 

should consist of proving that the given invariants distinguish the graphs and could 

themselves be computed sufficiently fast. Related questions are discussed in more 

detail in Section AE. 

In the local approach one tries to construct a sufficient number of 

invariants of every vertex of the given graphs in terms of configurations containing 

fixed (say, 2 or 3) numbers of points and passing through the given vertex. This 

approach is the oldest one (cf. [Na 1], [Un 1], [Mo 1]—all ten years old). These 

authors used configurations with <_ 2 points (i. e. , they used edges). However, a 

recursive application of this approach (cf. [Ba 1], [Sk 1]) can lead to more infor¬ 

mation than at first glance would seem possible (for more details cf. Sections B, C). 

The next step is to consider configurations with 3 points. Here we 

also have many papers (e. g. , [We 3], [Le 2]). A. A. Lehmann and B. Weis- 

feiler' s joint paper [We 3] (cf. also Section R)appearsto present the best algor¬ 

ithm. Then we thought that it was time to stop and think. Indeed, the obj ect which was 

constructed with the help of configurations of size 3 is very nice, which probably 

implies that it is natural and that our approach up to this moment was a correct one. 

However, nothing nice is seen before us or around us which implies (also prob¬ 

ably) that we have to search further for a right road. 

These geometrical approaches are discussed in more detail in the 

next section. Some examples are also given there. The aim of all of them is to 
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construct a partition of the vertices of the given graph into orbits under the 

automorphism group of this graph. 

One more merit of these approaches is that one is forced to study- 

graphs, and even if a good algorithm is notfound, one can still hope to find interest¬ 

ing objects or unconventional results. 

Anyway, now we still have to make an exhaustive search. Whatever 

refinements and improvements we have made only make this search "somewhat" 

shorter, but have not replaced it. In an exhaustive search we fix^ in turn, all 

vertices of the group of vertices having the same number of configurations cf certain 

given types. Then to the resulting graphs with one fixed vertex we again apply our 

local geometrical approach. And so forth. There is no reason to avoid doing this. 

However, if we do it too many times (of order n, say) then this would mean that 

cn 
our algorithm requires 2 steps and in a sense is as good as the usual ex¬ 

haustion. So the question is: What is the depth of our exhaustive search? This 

question has not yet been non-trivially answered in any version of an algorithm 

of graph identification. 

Possibly in the absence of a good algorithm one can prove that this 

algorithm is statistically good in some sense. For example, it would be nice (in 

any case, with or without an estimate) to know the function F(^,n,b), that is, the 

number of pairs of graphs with n vertices for which -/? computes the resultin<n steps. 

In the geometrical approach one tries, de facto, to find a canonical 

numeration of the vertices of the given graph and then to compare the results for two 

of them. This procedure is usually disguised by making comparison after each 

step of canonization. The algorithms we describe in Sections R and S are algor¬ 

ithms of graph canonization. 

This approach is better than the usual graph identification if one 
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has many graphs to compare (as, for example, the algorithm of Section S which 

worked on results of algorithm of Section T). Namely, one has to canonize 

every graph and to keep only different canonical forms. So in place of ( ) appli¬ 

cations of an algorithm of graph identification, one can use n times an algorithm 

of graph canonization and then make (^) (or less) comparisons. Of course, this 

approach is an unworthy one if one has a good algorithm of identification and a bad 

algorithm of canonization. 



B. MOTIVATION. 

We discuss below steps which lead naturally to our main formalism. 

The resulting construction permits us to associate with any finite graph T a matrix 

algebra which is uniquely determined by the graph up to permutation of the ele¬ 

ments of the basis. This construction generalizes and develops different algor¬ 

ithms used to approach the graph isomorphism problem. Here are some examples 

of such algorithms. 

1. Summation of the Weights of Vertices over Neighbours (e. g. , 

[Mo 1]). Suppose we are given a simple graph T. The procedure is iterative. In 

the first step every vertex is given weight 1 and all vertices form one unique class. 

Suppose that in some of the later steps we have some partition V - V(r) =LJv. 

and the vertices of each V. have the same weights. In the next step we take the sum 

of the weights of all vertices adjacentto the given one as the new weight of the given 

vertex. The subsets of the new partition of V are the sets of all vertices 

where the function of weight is a constant. The process stops if we obtain no new 

partitions. 

Vertex 123456 

Step/Weight 

1 111111 

2 2 3 3 2 3 3 

3 6 8 8 6 8 8. 

Therefore, the stabilization occurs at the second step and the partition of vertices 

is (1,4), (2,3,6,5). 

2. Summation of the Weights over j. Partition of the Vertices (’_e. g. , 

In this case one associates with a vertex a vector of weights. The number 
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of coordinates of this vector is the number of subsets into which V - V(r) is 

partitioned. 

In the first step (as in 1 above) every vertex is given weight 1, 

and the partition is trivial (it consists only of V). Suppose now that we have some 

partition V =U V„ Then the weight of a vertex v € V in the next step is the 

vector whose i-th component is the sum of the valencies of all vertices which belong 

to the i-th class V and which are adjacent to v. The subsets of the new parti - 
l 

tion are those subsets where the weight is constant. These subsets are numbered 

according to the (dictionary) order of weights they represent. The process stops 

when there are no new partitions. 

Examples: 

1 

Vertex 

Step/Weight 

1 
2 

3 

6 

2 3 

1 
2 

1 

3 

1 

3 

1 

2 
1 

3 

1 

3 

(0,2) (1,2) (1,2) (0,2) (1,2) (1,2) 

1 

3 

1 

3 

1 

2 
1 

3 

1 

3 

(0,2) (1,2) (1,2) (0,2) (1,2) (1,2) . 

It is not possible to do more with these graphs since the achieved 

partition is a partition into orbits of the automorphism group. 

Note however that for regular graphs these methods will not give a 

partition of vertices. 

3. We can now try to partition the edges of the graphs. As a first 

approximation, we can consider the number of vertices incident to both vertices 

of the edge. In the first example above we have two edges which are contained in 

triangles. In the second example there are no such edges. Therefore, this pair 

of graphs is not isomorphic, although there is no distinction cf Ihe vector weights of 
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the vertices. However, the following graph 

is also immune to this procedure. Nevertheless, it can be seen that the auto¬ 

morphism group of this graph is not transitive. 

4. To further strengthen the procedure for detecting the differences 

of vertices and edges, we can consider not only the edges of the given graph but 

also the edges of its complement F. (Recall that vertices of T are vertices of 

r, and edges of F are non-edges of T. ) In the above example of the graph F 

(with 10 vertices) the use of T permits us to distinguish the pair 1,6 of vertices. 

Namely, any edge of the graph T incident to these vertices is contained in one 

triangle with two sides in F and one (given) side in T. On the other hand, foe edges 

of F incident to remaining vertices are partitioned into three classes according 

to the number of triangles which contain a given edge and whose two sides are in 

r. For instance, for vertex 2 these classes are: 

edge (2, 8) is not contained in a triangle with two sides in Fl 

edges (2,4), (2,5), (2,6), (2,10) are contained in one triangle each; 

edge (2, 9) is contained in two triangles. 

5. Once we began to distinguish edges and vertices, we have to use 

convenient and effective machinery to describe this. We use the following formal¬ 

ization. Instead of the adjacency matrix of a simple graph F we consider the 

matrix X = X(F) whose elements are independent variables. We replace 
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the ones by one variable x, say; the non-diagonal zeros by another variable, 

say y; and the diagonal zeros by a third variable, say z. 

Now the process described in 1 above consists simply of taking the 

sum of the entries of X over its rows. 

The process described in 2 can be described as a reconstruction of 

X. Namelyj first the diagonal elements of X are changed according to the 

respective row-sums. Call the new matrix Y then we have, for X - (x„), 

Y - (y.J, 

yii 

This means that we get a partition of vertices. Now edges joining vertices of 

different classes also belong to different classes. So we require, next, that 

yij = M yii = y kk’ Yjj 

Stabilization in 2 above corresponds to iteration of this construction. 

5.1. Remark. The above description is not an algorithm because for an algor¬ 

ithm one needs to introduce some ordering (cf. Section M). We hope that the 

present discussion is sufficient for introductory purposes. 

5.2. Remark. Another virtue of this approach is that it works equally well for 

graphs with loops, multiple edges, etc. (cf. also Cl, M2). 

6. The same formalism is convenient for a description of step 4, 

designed to distinguish edges. Note that if we consider the square of a matrix X, 

then the (i, j)-entry of this square describes the set of paths of length 2 from the 

vertex i to j. If, moreover, we assume that the variables of X do not 
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commute, this (i, j)-th entry describes the set of ordered paths. So the next step 

2 
is the following. We consider X = (z..), and we construct the matrix Y = (y ) 

H ij 

using the rule 

yij = ykf 
<=> z. . = z, „ 

ij kf 

(Here again one has to use some ordering, cf. Section M, but we disregard this 

for a moment. ) 

7. Let us show how this approach works for the graph F con¬ 

sidered in 4. In the matrices X, Y, Z we shall write the indices of independent 

variables in place of independent variables. 

X Y - ~x2 

1 2 3 3 2 2 3 3 3 3 1 2 3 3 2 2 3 3 3 3 

2 1 2 3 3 3 2 3 3 3 2 1 2 3 3 3 2 4 5 3 

3 2 1 2 3 3 3 3 2 3 3 2 1 2 3 3 5 3 2 4 

3 3 2 1 2 3 3 2 3 3 3 3 2 1 2 3 4 2 3 5 

2 3 3 2 1 3 3 3 3 2 2 3 3 2 1 3 3 5 4 2 

2 3 3 3 3 1 3 2 2 ■3 
-J 2 3 3 3 3 1 3 2 2 3 

3 2 3 3 3 3 1 3 2 2 3 2 5 4 3 3 1 3 2 2 

3 3 3 2 3 2 3 1 3 2 3 4 3 2 5 2 3 1 3 2 

3 3 2 3 3 2 2 3 1 3 3 5 2 3 4 2 2 3 1 3 

3 3 3 3 2 3 2 2 3 1 3 3 4 5 2 3 2 2 3 1 

z *- 
2 

- Y 

1 3 4 4 3 5 4 6 6 4 

7 2 10 11 12 9 10 14 15 11 

8 10 2 13 11 8 16 11 10 17 

8 11 13 2 10 8 17 10 11 16 

7 12 11 10 2 9 11 15 14 10 

5 6 4 4 6 1 4 3 3 4 

8 10 16 17 11 8 2 11 10 13 

9 14 11 10 15 7 11 2 12 10 

9 15 10 11 14 7 10 12 2 11 

8 11 17 16 10 8 13 10 11 2 
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: xx. + 3x,x, , + 6x x 
1 1 1 2 ; l 3 3 

• X X + X X + 2x x + 2x x + 4x x 
2 ' 1 2 2 1 3 2 2 3 3 3 

: x x + X X + x x + 2x x_ + 2x x„ 
3 : ‘ 1 3 3 1 2 2 3 2 2 3 

: x x + X X, + 3x,x + 3x x + 2x x 
4 1 3 3 1 2 3 3 2 3 3 

• x x + X X + 2x x, + x x + XX + 
5 : 1 3 3 1 2 2 2 3 3 2 

Z: 

X1 : Vl + 3X2X2 + 6V3 

x2 : Vl + 3X2X2 4 4XZX3 4 X4X4 + X5X5 

X3 ' X1X2 + X2X1 + 2X3X2 + 2X2X3 4 2x3X3 + V4 4 Vs 

x4 ‘ X1X3 + X2X2 + X3X1 + 2X3X2 + 2x2X3 + X3W4 + V5 

X5 : X1X2 + X2X1 4 2X2X3 4 2X3X2 4 4x3X3 

x6 ; X1X3 4 X3X1 4 X2X4 4 X2X5 4 3X3X3 + 2x3X2 4 Vz 

x7 : xlx2 4 X2X1 4 ZX2X3 4 2X3X2 4 2 V3 4 V3 4 *5*3 

x„ : x x + XX + XX + 2x x, + 2x x, + x,x, + x x, + x x„ 
8 13 31 22 23 32 33 43 53 

X9 ' X1X3 4 X3X1 4 X4XZ 4 X5XZ 4 3X3X3 4 2x2*3 4 Vz 

X10 : xlx2 4 X2X1 4 X2X3 4 X3X2 4 2X3X3 4 Vs 4 Vz 4 V4 4 V3 

xu : xtx3 + x3x3 + x2x3 + X3X2 + x2x2 + x3xa + x2X4 4 x^ + x2x5 + 

X12 ' X1X3 4 X3X1 4 X2X2 4 2X2X3 4 2X3X2 4 X3X3 4 x4*5 4 V4 

X13 : X1X2 4 X2X1 4 2X3X3 4 2X2X3 4 2x3X2 4 V4 4 x4*5 

X14 : X1X4 4 X4X1 4 2X2X3 4 3X3X2 4 X3X5 4 V3 

X15 : X1X5 4 Vl 4 2x2*2 4 2X3X3 4 X2X3 4 X3X2 4 V4 4 X4X3 

X16 : V5 4 X5X1 4 2X2X2 4 “X3X3 4 X2X4 4 Vz 

X17 : X1X4 4 X4X1 4 2X3X3 4 2X2X3 4 2x3X2 4 X2X5 4 Vz 

contains three variables; x^ is for the diagonal entries, x^ is for fee edges of The matrix X 
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the graph r, x^ is for edges of the complementary graph of r. The variables of Y 

correspond to five different polynomials which are the entries of the matrix X^. The 

2 
square Y of Y already contains 17 different polynomials; to each of them there 

corresponds an independent variable of the matrix Z. If, finally, one considers 

2 
Z , one sees that diagonal variables are partitioned into three classes (1,6), 

(2,5, 8, 9) and (3,4,7,10) and further squaring does not lead to new partitions. The 

permutations (written cyclically) (2,5)(3, 4)(7,10)(8, 9) and (3, 7)(4,10) and 

(1,6)(2,9)(5,8) are automorphisms of the graph F . They 

generate a group which acts transitively on the vertices of each 

class (and also on the edges of each class). Thus we have revealed all differences 

of vertices and edges of the graph r. 

Let us note that the application of the described procedure to a 

simple graph can lead to an "orientation" of certain edges. For instance, in 

the graph below 

2 3 

the edge (1,2) can be considered as oriented (in the sense that its vertices are sit¬ 

uated differently with respect to the whole graph). In Sections AA, AB, AC 

examples are given of simple graphs whose edges acquire "orientation" although 

the ends of the edges have no differences. 

The use of matrix X, with independent variables as entries, per¬ 

mits one to employ the described procedure not only for simple graphs but also 

for oriented graphs, for graphs with multiple or coloured edges, etc. Thus, any 

graph is inte rpreted as a complete graph with some coloring c£ fbe edges and the vertices. 

This approach leads to a generalization of the definition of a graph (cf. Cl). 
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Let us also note here that our definition generalizes the definition of A. A. Zykov 

[Zy 1] in the sense that in place of boolean rings we consider arbitrary rings. On 

the other hand, our definition is needed only to facilitate and formalize the exposi¬ 

tion. All considerations might be (and sometimes are) also conducted in geometri¬ 

cal terms. 



C. A CONSTRUCTION OF A STATIONARY GRAPH. 

In this section we systematically describe the procedures introduced in 

the preceding section. The result of these procedures is an invariant of the given 

graph. This invariant is constructed in the same manner for all graphs (simple, 

with coloured, directed, or multiple edges, and with coloured vertices). But even 

if one begins with a simple graph, it can acquire orientation of-edges, colouration 

of vertices, etc. (cf. the preceding section and Sections AA, AB, AC; in these 

sections one can also find examples of the application of the constructions of this 

section ). 

Since we are forced to consider quite different kinds of graphs, it is 

convenient to make the following definition. 

1. Definition. An (nXn)-matrix X = (x..) is called a graph if its entries are 

independent variables z, , k = 1, . . . , N, and if x.. 4 x for s 4 t. The number 
k li ' st ' 

n is called the degree of X and the number N of different variables which are 

entries of X is called the dimension of X. Notations: n = |x|, N = dimX. We 

assume throughout that independent variables do not commute. 

If a geometrical image of a graph is preferred, 

one can consider the complete graph with coloured vertices and 

edges. It can be assumed that at each vertex there is a loop, having the same 

colour as the vertex; this colour is coded in our matrix X by the corresponding 

diagonal entry. For each pair of vertices i and j there is either one undirected 

edge of colour x.. (if x.. =x..), or, if x. . ^x.., there is the directed edge of 
ij U R U R 

colour x from i to j and the directed edge of colour x.. from j to i. 

ij J1 
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2. Definitions. Let X = (x..) and Y = (y. .) be two graphs of degree n. We say 
- ij iJ 

that: 

2.1. A permutation matrix g of degree n is an isomorphism of X and Y if 

gXg"1 = Y. If X = Y, then g is called an automorphism of X. The set of all 

automorphisms of X is denoted Aut X. 

2.2. X is imbedded in Y (denoted X C Y) if y. . = y, „ for all L j. k, i . 
- IJ Kt 

2.3. X is equivalent to Y (denoted X ~ Y) if X C Y and Y C X. 

2.4. An embedding X C Y is canonical if Aut X = Aut Y. 

« 

To get the geometrical meaning of these definitions, suppose that 

equally numbered vertices of X and Y are identified. Then a is an auto¬ 

morphism of X means that the pair of vertices before and after permutation a 

are connected by an edge of the same colour. Further, X is imbedded in Y if 

equally coloured vertices of Y are also equally coloured in X. 

3. Remarks. 

3.1. If X C Y, then dimX < dim Y. 

3.2. If XCY, then Aut Y C Aut X. 

3.3. If XCY, YCZ, then xCz. 

3. 4. If X ~ Y, Y ~ Z, then X Z. So ~ is an equivalence relation. 

3.5. Any graph of degree n contains the simplex S . This is the only graph of 

dimension 2; its matrix is xE^+yl^. In our approach we simultaneously consider 

several ordinary graphs; in the case of these graphs are the complete 

graph and the empty graph. So "simplex!' is the name for the equivalence class of 

these two graphs. 

3. 6. Every graph of degree n is imbedded in a graph of degree n and dimension 

2 
n , which is unique up to equivalence. We call this graph the split graph and denote it 
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by R. 

Definitions. Let X = (x_) and Y = (y_) be two graphs of degree n. We say 

that: 

4.1. The graph Z = (z_) is the superimposition of graphs X and Y (notation 

Z = X V Y) if 

z. . - z, . <=S> x. . = x and y.. = y, „. 
lj kf ij kf ^ij ^k i 

4.2. The graph Z = (z..) is the product of X and Y (notation Z = X ° Y) if 

z. . = z, „ <=> 2x. y . = Ex y . 
ij kf is sj ks si 

(Recall that our variables do not commute. ) 

4. 3. a(X) = (X » X) V (X ° X)' is the extension of X (A1 is the transpose of A). 

4. 4. X is stationary if a(X) ~X. 

These definitions depend only on the equivalence class of X and 

Y, and the resulting graph of 4. 1, 4. 2, 4. 3 is also defined up to equivalence. 

To geometrically understand the meaning of the superimposition, one 

should imagine the colouring of an edge of Xl/Y as the (ordered) mixture of the colour¬ 

ings of edges of X and Y. 

In the case of the product, the colour of the edge between vertices 

i and j depends on the number and colouration of the paths of length 2 between 

vertices i and j such that the first edge of each path is an edge of X and the 

second one is an edge of Y. The polynomial Ex. y . completely describes the 
IS SI 

s 

set of these paths. 

5. Lemma. Let X = (x_), Y = (y.J, Z = (z_) be graphs of degree n and 

Z - X ° Y. Then x.. ^ x.. implies that z f z , Analogously y.. f y.. implies 
ii JJ ik J l ii JJ 

that z. . / z for all k, l. 
ki ' l j 
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Proof. The second assertion is proved in the same way as the first one. So let 

us only prove the first one. We have to compare the set of paths of length 2 

from the i-th to the k-th vertex with the analogous set from the j-th to the 

i-th. Each set contains only one path beginning with a loop, namely, the first 

begins with the loop of the colour x . and then goes through the edge y . The 
11 lk 

second one begins with the loop of colour x .. Since x.. 4 x.., these sets of paths 
JJ ii JJ 

do not coincide, whence the assertion. 

Formally, z corresponds to 2x. y and z corresponds to 
llC IS SK lii 

s J 

2x. y The first sum contains only summands x..y., and x y involving 
js'sf } in lk ik'kk 6 

s 

diagonal variables and the second only x..y. and x. y . Since by assumption 

x.. 4 x.. and variables do not commute and since diagonal variables are 
11 JJ 

different from non-diagonal ones by the definition of a graph, our assertion 

follows once more. 

6. Lemma. Let X and Y be graphs of degree n. 

6.1. XCXVY, YCXVY. 

6.2. XCX ° Y, YCX ° Y. 

Proof. 6. 1 is evident. The second part of 6. 2 is proved similarly to its first 

part. So let us prove the first part. We have to prove that x 4 x implies 
ij r kf F 

SXisysj ^ Sxksysf' The °nly entries in these sums which contain the diagonal 

variables on the right are x y and x y respectively. Since x ^x 
!J JJ kf ft ’ ij ~ kf iJ JJ 

the sums are different, which is our assertion. 

7. Corollaries. Let X and Y be graphs of degree n 

7.1. Aut(XVY) = AutxnAutY. 

7.2. Aut(X ° Y) = AutXPl Aut Y. 
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7. 3. The imbedding X C X ° X is a canonical one. In particular, X is canoni¬ 

cally imbedded in Q(X), Aut X = Aut(X ° X). 

Proof. 7. 1 and 7. 2 follow from 6.1, 6.2 and 3.2; 7.3 follows from 7.1, 7.2. 

8. Stabilization. 

Let X be a graph of degree n. Put X^ = X, X^+^ = a(X^). By 

Lemma 6 we have dimX^ <_ dimX^ \ On the other hand, we have 

dimX(l)<n2 for all i. Since by 6.1, 6.2, X(l)CX(l+1), we have X(l)~X(q) for 

some q and for all i >_q. Let us denote this graph X'^; by X. 

8.1. Lemma. Suppose X is a stationary graph and Y any graph. If yC X, 

A ,— _ /\ 

then Yt_X. In particular, Aut X C Aut Y = AutY. 

This follows directly from Lemma 6 and Corollary 7. 3. 

From the above it follows: 

8. 2. Theorem. For any graph X there exists a unique 

A 
(up to equivalence) stationary graph X such that X is 

A 
canonically imbedded in 

canonically imbedded in 

has (crXcr 
A -1 

■ crXcr 

X . For every stationary graph Y such that X is 

A _ 
Y one has X(_ Y. In particular, for a e Sym(n), one 

9. Elementary Properties of Stationary Graphs. Let X = (x..) be a stationary 

graph. 

9.1. X ° X ~X, that is, 

x.. = x, „ <=> Ex. x . = Ex, x . 
ij k£ is sj ks si 

9. 2. X ~X' , that is, 

x.. 
L kf Ji 
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9. 3. 

9.4. 

x.. = x, implies x.. = x, , , x.. 
ij k l ^ u kk jj 

x.. = x, , implies Ex , = Ex and Ex. 
li kk si sk is 

s s s 

Proof. These properties are evident corollaries of 4. 3, 4.4, 5, 6.1, 6.2. 

Geometrically we interpret them as follows. If we have edges 

(say , x.., x ) of the same colour in X, then the sets of (ordered) paths of 
ij ki 

length 2 from the first vertices of these edges (i. e. , i and k respectively) to 

the other vertices of these edges (i. e. , j and i respectively) contain the same 

number of paths of every colour. This is an interpretation of 9.1. The property 

9. 2 means that if two ordered pairs of vertices are connected by edges of the same 

colour, then the edges, connecting the same pairs of vertices but in opposite 

directions, also have the same colour. 

The property 9. 3 means that edges of the same colour are incident 

to equally coloured vertices. 

The property 9. 4 means that the set of colours (counted with multi¬ 

plicity) of edges incident to equally coloured vertices is the same. 

10. Stability with Respect to Paths of Greater Length. 

Let <i-j> denote the set of the paths of length t from the vertex i 

to the vertex j of X. We say that <i-j>^_ and <k-i have the same composi¬ 

tion if the multiplicities of the set of paths coloured in the same way are the same 

for both sets. 

Theorem. Let X = (x..) be a stationary graph. 

<k-f >^_ have the same composition. 

If x.. = x, „, then <i-j> and 
ij kf J t 

Proof. By induction. For t = 1 there is nothing to prove. For t = 2, it is the 
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definition of a stationary graph. Now remark (as already mentioned in the remarks 

after 4.4) that if Y and Z are graphs, then the (i,j)-th element of Y- Z 

describes paths of length 2 from i to j whose fir.st edge belongs to Y and the 

second to Z. By induction <i-j>^ ^ has the same composition as 

<k-f > that is, the (i,j)-th and (k,f)-th elements of X* ^ coincide. But 

since X is stationary, the (i,j)-th and (k, l )-th elements of X^ X also 

coincide, as required. 

11. The Matrix Algebra and the Basic Elements of a Stationary Graph. 

Let X be a stationary graph. Consider the set CTC(X) of the matrices 

A = (a..) (with entries in some ring) such that 

a. . 
ij kf 

if x.. = x, 
ij k i 

11.1. Lemma. The set (7I(X) is a matrix algebra, stable under transposition. 

This is a direct corollary of 9.1, 9.2. 

11.1.1. The matrix X is a generic point of the algebra CTL(X) (cf. Section L). 

11.2. Again let X be a stationary graph, m = dimX. Let x^, . . . ,x^ be the 

distinct variables which are the entries of X. Let ^ be P,l)-matrices obtained by 

substitution^ x = 1, x. = 0 for i ^ k, in X. The matrices e. form a base of the 
k i x 

algebra 0T(X). We call them the basic elements of X and (TC(X). Since they can 

be considered as adjacency matrices of graphs (directed or not) we sometimes 

call them the basic graphs. We have 

X = Sx.e.. 
i l 

Let us point out some properties of the set of basic elements. 

11 2 1 if e is a basic element, then so is e) (it follows from 9.2). . . . . ! 
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11.2.2. If e. and e. are basic elements, then 
i J 

e.e . = 2, a. ,e, 
i j k ij k 

where a., are non-negative integers. (In fact, according to the remarks after 

k 
4. 4, the number a is the number of triangles of the form 

ij 

>b 

with fixed vertices a, b (connected by an edge of colour k)). 

11. 2. 3. The graphs e. are quasiregular in the sense that any vertex of this 
^ t 

graph lying on an edge has the same number of entering edges and the same num¬ 

ber of exiting edges (this follows from 9. 4). 

12. Example s. 

a. 

r A(r) : x(r) = 

X o X - (p. 
ij 

Pll P22 P33 ~ P44 
= xx1 + 2yy' + zz1 

P12 ~ P14 = P21 = P2 3 = P32 
= 

P34 ; p 41 = 

P13 ~ P24 = P31 P42 
= xz! + 2yy' + zx' 

43 
xy' + yx' + zy' + yz' 

Thus, X ~ a(X), i. e. , X is a stationary graph. 

b. 

r ; 
*.2 

4* 

'0 1 0 ON 

A<r> =1 0 0 0 1° I- x<r> 
M o o o/ 

x o x = (p..) 

pn = p22 = p33 = p44 =xx' + yz' + zz' + zy' 
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’12 : P2 3 ~ v
 

0
0

 II : p 41 : 
= xy' + yx' + 2zz i 

*13 1 

II V
 

ro
 li 

P31 P42 : 
= xz' + yy' + zx1 + zz' 

’14 P21 P32 = P43 : 
= xz' + yz' + zy1 + zx' . 

X y z u 

X o X ~ Y 
u 

z 

X 

u 
y 
X 

z 

y 
It is easy to verify that 

y z u X 

Y. 

c. 

A(D 

0 1110 0 

10 10 10 
1 1 0 0 0 1 
1 0 0 0 1 1 
0 1 0 1 0 1 

0 0 1110 

X(r) : 

x y y y z z 

y x y z y z 

y y x z z y 

y z z x y y 

z y z y x y 

z z y y y x 

X x - (P..) 

P11 P22 
= p 

66 
xx1 + 3yy' + zz1 

P15 P16 P24 P26 P34 P35 P42 P43 

= xz' + yz' + 2yy' + zy' + zx1 

P51 = P53 = P6l = P62 

X ° X ~ Y 

X y y z u u 

y X y u z u 

y y X u u z 

z u u X y y 
u z u y X y 
u u z y y X 

It is easy to check that Y is stationary, Y = a(Y). Thus Y has exactly four 

basic elements: 

() 0 M H 
e (corresponds to x) _ _ . _ , 

1 12 3 4oo 

e^ (corresponds to y) 
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1 2 

e (corresponds to z) 

4 5 

1 

e^ (corresponds to u) 6<1 
d. One more example of stabilization is given in the preceding section. 

AA, AB, AC can also be considered as examples of stabilization. 

Sections 



D. PROPERTIES OF CELLS. 

In the preceding section it was shown that the procedure of stabiliza¬ 

tion leads naturally to the stationary graph X. It was shown also that a stationary 

A A 
graph X defines the matrix algebra <TC(X). In this section we describe in detail the 

properties of a special class of such algebras. A more general (but also more 

formal) discussion of properties of algebras of this sort will be given in the next 

section. For examples, see Sections F, G. 

The exposition below is based on [We 3], The results are the 

analogues of certain well-known properties of permutation groups ([ Wi 1] , [ Hi 2] ). 

1. We begin by giving an axiomatic definition. 

1. 1. Definitions. A cellular algebra is a matrix algebra (TC paving the following 

properties. 

i) Ob has a basis B = {e., i = 1, 2, . . . , d}, where the e. are (0, l)-matrices. 
1 1 

The basis {e.} is called a standard basis of (Tl; standard bases differ only by the 

order of their elements, 

ii) If e. e B, then e| e B. 

iii) Se = I where n is the degree of matrices of <7t; n is called the degree of OX.. 
in 

iv) There exists an integer-valued function d(ej such that the number of ones 

in any non-zero row of e. is equal to d(ej. In this section (and also rather fre¬ 

quently elsewhere) we use the notation n^ = d(ej. 

The basis {£ } of the underlying space V of the matrices of 
i 

<TL is called the standard basis of V. 

The matrix X = Ex e , where the x. are independent variables is 
ii i 

called the matrix of the cellular algebra CL, written X = X(<TL). If CL is a cellu¬ 

lar algebra with unity, then X(fft) is a stationary graph. On the other hand, if X 
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is a stationary graph, then there exists a cellular algebra <TL with unity such that 

X = X((R); in this case we write (H- = 

1.2. Definition. A cellular algebra (TL is called a cell if the number of ones in 

any row of every e. is not zero. 

1. 3. Definition. A cellular algebra is called a cellular subalgebra of a 

cellular algebra CX. if & is a subalgebra of <Tt. 

In this case the elements of a standard basis of ^ are sums of 

some elements of a standard basis of OL. This follows from 1.1 i), iii). 
4 

2. Remark. The set of elements of the standard basis of a cellular algebra can 

be considered as a set of relations on [1, n] X [l,n], This set of relations forms a 

coherent configuration in the sense of D. G. Higman (cf. [Hi 3]). Conversely, any 

coherent configuration can be obtained in this way. So our cellular algebras and 

D. G. Higman' s coherent configurations are equivalent objects. In [Hi 5], [Hi 6] D.G 

Higman uses the term "adjacency algebra" where we use the term "cellular 

algebra". 

3. Remarks. i) The application of 1.1 iv) to ej^ shows that the number of ones 

in any non-zero column of e. is the same (and equal to d(e! )). 

ii) Geometrically, a cell with unity is a stationary graph X (cf. , C 4. 4) with the 

following properties: 

a) All vertices of X have the same colour (are incident to loops of 

the same colour). 

b) All basic elements of X are regular (cf. C 11.2. 3). 

4. Properties of Cells with Unity. Let 5t be a cell with unity, B its standard 
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basis, B = {e., i = 0,1, . . . ,d-l}, Put e.e. = 2, a. e , e 
l j k ij k i 

e.' , I = 
l 

I . 
n 

cl. s k 
2 a..a 

s ij si 
= 2 a. 

s is 

Proof. This equality expresses the associativity of (Tt. Geometrically, cl has 

the following meaning. Consider the number a^ of paths of length 3 and 

colour (i, j,i) which are cut short by an edge of colour k. (By c 10 this number 

does not depend on the edge of colour k but only on the sequence (i, j, l, k). ) This 

number can be computed in two ways. First, one can consider the paths of colour 

(s,f ) along the given edge, and for each a of such paths, one can consider the 

paths of colour (i, j) along its edge of colour s. The number of the latter is 

s 

k s 
Thus for s fixed, the product a ^a.. is equal to the number of paths of colour 

(i, j, l) along an edge of colour k under the condition that the first and the third 

vertices are connected by an edge of colour s. Summing over s one obtains 

k k s k 
evidently the number a_ Thus a.., = 2 a. .a 

1 ljf ijf s ij sH 

On the other hand, one can consider paths of colour (i, s) along an 

edge of colour k and then paths of colour (j, i) along an edge of colour s. In 

k k s 
this case one obtains a... = 2 a. a. „ (see figure above). Comparing these two 

lji s is jf 

expressions for a_^ we obtain our formula. 

c2. ”i. =”i' 

Proof. In the case of a cell, the basic elements e^ and e^, are regular. 
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Therefore, for each vertex the entering and exiting valencies coincide. 

c3. (2b e.)- I = I- (2b.e.) = (Sb.n.)I. 
11 ii ii 

Proof. By 1.1 iv) and c2, e. • I = I- e. = n.I. Hence our assertion follows by the 
l ii 

distributive law of multiplication. 

c4. 2.a,J . = 2.a?. = n , 2n = n. 
l ki l lk k k 

Proof. By c3, we have, n I = 1- e = (2 .e. )• e = 2.(e.e)-2.2 a. e -2 • 
- 1 k k iik ilk lsiks s 

s s 
(2.a )e =2 n e whence 2.a = n . Applying an analogous s equence of equalities 

i lie s s ie s l lie ie 
g 

to e ’I, we obtain 2 a,. = n . The last equality is evident, 
k . l ki k 

Geometrically, our property has the following interpretation. 

Consider a fixed edge of colour j and the paths of length 2 and colour (k, i) 

along it. If k, i are fixed, the number of these paths is a^.. Summing over i 

we obtain the number of the paths of length 2 along the given edge,which begin 

with an edge of colour k, that is, we obtain the valency n of graph e . 
.K xC 

c5. 2 a. .n = n n .. 
s ij s 1 j 

Proof. (n.n.)I = e. • (e .• I) = (e.e.)-I = (2aS.e )• I = (2aS.n )• I. 
- 1 J i J i J i] s ij s 

Geometrically, n is equal to the number of edges of colour s 

g 

exiting from a vertex, and a_ is equal to the number of paths of colour (i, j) 

g 

along an edge of colour s. Hence, 2a. .n is the number of all paths of colour 
ij s 

(i, j) exiting from a fixed vertex. On the other hand, this number evidently 

equals n.n., since n. edges of colour i leave a vertex, and n edges of 
i J i j 

colour j leave the endpoints of all those edges. 

c6. a° =6 
ij 

... n. ; a = 6.. (where 6.. is the Kronecker symbol), 
i J 1 Oj ij ij y > 
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Proof- Since e = E and e., = e! , we have a.., = n.. On the other hand, 
0 n i' 1 n1 i 

0 0 
by c4 , hence a =0 if j f i' . This proves the first equality. To 

prove the second, one considers the equality e. = e -e. = S.a^.e . 
J 0 j i 0j i 

0 
Geometrically, a_ equals the number of the paths of the 

form (i,j) whose source- and end-points coincide. Evidently, this number is 

zero if i' ^ j, and it is equal to the degree of e. if i = j' . To interpret the 

second equality, let us consider those paths of length 2 along an edge of colour 

which begin with the loop (colour 0) and then continue by an edge of colour j. It 

is evident that the number a^. of those paths is 1 if i = j, and is 0 otherwise. 

c7. 
k k' 

i.. = a 
ij J i 

S S ' 

Proof. 2a e' = (e e )' = e' e' = 2a. e1 . Geometrically, it is sufficient to con 
- ij s i j j i j1 x' s 

sider, together with the paths (i, j) along an edge of colour k, the same paths 

in reverse direction. These latter are paths of the form (j1 , i1 ) along the 

edge of colour k1 . 

c8. 
i1 j1 k1 

n a = n .a, . = n, a. . 
i jk j ki k ij 

Proof. Take cl with £ - 0: 

s 0 Os 
E a. a . = 2 a. a , 

s jk si s js ki 

and use c6: 

i' s „ s 0 „ 0 s E s j' 
n a = 2 3.8 n. — 2 3.,3 . — S 3. 3 —S o n.a — n.3 , 

1 jk s jk si' l s jk si s JS ki s j' s j kx j ki 

The second equality is proved analogously. 

Geometrically, equality c8 has the following meaning. Consider 

all paths of the form (j,k,i) whose source- and end-points coincide. First, 
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fixing the third edge (of colour i) of one of these cycles, one sees that each such 

edge cuts short a cycles (cf. Fig. below). Since from each vertex there 
jk 

i * 
exist n. edges of colour i, one obtains n.a as the number of cycles of the 

i i jk 

form (j,k,i). On the other hand, fixing an edge of colour j one obtains j sets 

j f 
of cycles* and each set contains a; . cycles. 

ki 

c9. 

., max(n.;n.) 

If a1 / 0, then —  V ^ < n . 
jk 7 (n.,n.) “ k 

£1 ^ £1 ,1 p 
Proof. If a., 4 0, c8 implies — = a., = a. > 1. Therefore a., is a multiple 
- jk n jk ik— jk 

n. ., n. 

of  -^—-. Since by c4, n, > a1, , we obtain n > -^ . Similarly, 
(n.,n.) k - jk k - (n., n ) 

n. 

k — (m.n.) 

clO. The following assertions are proved similarly: 

X I 
a) a . is a multiple of 

kj 

L. C. M. 

n.n (n., n., n ) 
J k i J k 

(n.,n ) ’ (n , n ) j (n., n.)(n.,n.)(n.,n ) 
vij ik/ i J i J J k 

In addition, since n^ > a^_. we have: 

(n.,n.)(n.,n )(n.,n ) 

b) 
j 1 k j k 

k~ '■wV 
if a ) . sf 0 

kj r 

and analogous inequalities hold for n and n 
1 j 



E. PROPERTIES OF CELLULAR ALGEBRAS OF RANK GREATER THAN ONE. 

In this section we give short proofs of certain properties of general 

cellular algebras. Thes e properties admit, of course, a similar geometrical interpre¬ 

tation as in the preceding section. After this we introduce some general notions (homo¬ 

morphism, equivalence, etc.) and show how the corresponding properties canbe established. 

The definition of a homomorphism requires reference to Sections H and I. This 

does not lead to a loop. The results in 5.2-5. 5 are used in the study of correct 

cellular algebras (cf. J6) which play an important role in the algorithm of Section 

R. The assertion 5.6 is also used in this algorithm. 

We begin with a proposition which shows that the matrix of a cellu¬ 

lar algebra naturally falls into blocks ("cells"). This is the reason why our alge¬ 

bras are called cellular. 

1. Decomposition of Cellular Algebras with Unity. 

Proposition. Let OZ be a cellular algebra with unity (i. e. , E e <76, where 

n = \cz\), and let {e.}. be its standard basis. Then 
11 1 16 I 

a) E = 2 e , where I is an appropriate set of indices; 
n le Iq i 0 

2 
b) e. = e., e.' = e. for all i e I • 

l i i i 

c) let T(i, j) = {r : e.e^e = er^ for bj 6 IQ» then 

d) for anv i € I , OZ = e.flte. is the cell with a standard basis {e., j e T(i,i)} 
' 1 0 l l l J 

with respect to fee basis {£ : e £ = £ } of the space V. = e.V; e. is the unity of 
r titt ill 

e) dimV. = Spe. for all i e I 
' 11 u 
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Proof. Since {e } is a basis of <TL and E € Ot, one has E = Za.e,. By 
- 1 n n 1 i 

Dl. 1 iii), the matrices e. do not intersect. Thus a. = 0 or 1. Setting 
i i 

L = {i : a. = l}, one obtains a). 
0 i 

It is clear that the matrices e., i e 1^, only have ones at the diagonal; 

this proves b). 

Let us prove c). If e.e e. ^ 0. then e = e.e e. e <JT, hence 
i r j ' i r j 

e = 2a.e.. By b), it is clear that eCe . If e / e . then by Dl. 1 iii). the decom- 
ii — r r 

position e = 2a.e. is impossible, hence e = e . This means that 
ii r 

e.e e. ± 0 implies e e e = e . Q. E. D. 
i r J i r j r 

The assertions d) and e) are now evident. 

2. Corollary. By a simultaneous permutation of rows and columns the matrix 

X = 2x.e. can be brought into a block form: 
ii 

X = (X..). . 
D i. jelr 

11 

tl 

X 
12’ It 

X 
t2' 

X. 
tt 

\ 

/ 
where X.. = 2. m/. ,,x e . 

ij de T(i, j) d d 

If - Sp e^, i e Iq, then X_ is an (N^ XN. )-matrix. A representa¬ 

tion of X in the form will be called a central decomposition, or simply a 

decomposition of X. 

Proof. Let V. = e.V., ie IQ. From {! } =U ({£.} D V.) and from Id) our 

t J 1 

assertion follows. 

3. Assumptions and Notations. 

Let (Tl be a cellular algebra with unity, X = X(fft) its matrix, 
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X - (X_) its decomposition (cf. 2 above). We write, and call 

\ot\ = |x| the degree of Ot and X; 

dim Ot = dimX the dimension of Ot and X; 

11 | the rank of Ot and X; 

X.. the connection block of X with X ; 
ij-u JJ 

V(0t) = V(X) the vertices of X; 

V(X..) = {j : e.|. = 4.} the vertices of the cell X 
ii i J J - ii 

e^t = e' - it is clear that m e T(i, j) implies that m' e T(j,i); 

n. = d(e.) - the number of ones inany non-zero row of e ; 
ii l 

n., = d(e! ) - the number of ones inany non-zero column of e.; 
i' i 1 i 

i 12 
X = R, 0T.= R- X and (TL are split (i. e. , dim X = | X | , dim Ot = 

i |2 M ); 

X = S - X is the simplex, if X = xE +yl . 
n -1- n n 

3.1. Remark. In his study of coherent configurations (cf. D2), D. G. Higman, 

uses the word "rank" where we use the word "dimension". Our "split" case cor¬ 

responds to his "trivial". 

4. General Properties of Structure Constants. 

Z e for Proposition (compare D4). Put N = Sp e for ae I and e = _ 
-2- a a 0 up teT(Q#p) t 

a,(3e I . Let a, P,k,p, P,ae IQt me T(a,p), i« T(X,p), j e T(p,a). Then 

a) n • = n • N ; 
m' P m a 

b) e • e. = 0 if P / 1; 
m i 

g g _J_ 

P -e= S a ,e,a .e^,; 
mi mi s mi 

s€ T(a, n) 

s m rn. s 
c) S a. .• a = S a. • a ; 

; s ij si s is jl 
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d) ( 2 b e )e = ( 2 n b )5 e ; 
m/ m m m m pX ap 

mcT(a,P) me T(a, p) 

e ( 2 b e ) = ( 2 n ,b )6 e ; 
Xu m< m m m m pa Xp 

me T(a, |3) me T(a, P) 

m 
e) 2 a.. = 6 6 6 n.; 

m1 m 
f a.. ., = a.. ; 

I’J1 Ji 

5) 2 a .n = 6 n • n.; 
s mi s p\ m 1 

h) a . = 6. 6 for all p e I : 
' pi im pX 0 

p 
i) a. =8. , 5 • n. for all p e I • 

im im1 pX i 0 

m1 i> 
l) n a. . = n.a. 

m' ij i jm 

Proof. a) is obtained by counting ones in e in two ways: N* n , (resp. 
- m m' 

N" n ) is the number of ones in any non-zero column (resp. row) multiplied by the 

number of non-zero columns (resp. rows). 

b) If 3 / X, then e e. = 0, e e = e , hence (e e )e. = 0. If 
Pi m p m mpi 

P = X, one has e • (e e.)- e = (e e )(e.e ) = e e., whence e e. C e . It 
a mi n am l p mi mi— ap 

follows that 

^ s 
e e. = 2 a .e . 
mi , mi s 

se T(a, p) 

Since e , e., e are matrices with non-negative elements, fromDl.liii) one 
mis ' 

s s 
sees that a.. > 0 and a. . e Z. 

iJ ~ ij 

c) Further, e.(e.e ) = (e.e.)e that is, e.(2 aS.e ) = (2 aS.e )e„, 
i J * i J * l s jf s s ij s i 

whence 2 aS e = 2 aS e Comparing coefficients of e on both sides, one 
ji is t . si t ^ t 

s, t s, t 

d) is evident. 

e) Let us consider e.e =n.6 e, (cf d) ) From 
l pc i pp Xcr ' ’ 

obtains c). 
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P,a 
j« T(p, a 

e. and e.e 
, J i Pct 

£ £ a. .e , one obtains e). 

s6T(a)jU) je T(p , a) 1J 3 

f) follows from the equality (e.e.)1 = e' e' = e e 
1 J J i j' i' 

g) One has n n.6 e = e (n.e^ ) = e (e.e ) = (e e )e = 
m l \v m l \v m i pv m i pv 

s — s — 
= ( £ a .e )e = ( £ a .n )e whence g). 

mi s pv mi s av 
S€ T(a, p) M se T(a, p) 

h) is the property 2 c) of the idempotents written in terms of 

i) becomes evident if we note that the diagonal entries of' e e are ob- 
l m 

tained by multiplication of t-th row of e. by t-th column of e By Dl. lii), 
m 

iii) the product is ^ 0 iff m = i1 . In the latter case it is equal to the number of 

ones in the t-th row of e.. 
l 

s P 
j) Let us use c) with m = (3, H = m. We have £ a. .a 

s ij sm 

= £ af aS . By i) a^ =6 -n , , aP = -6 . n . Substituting this in our 
s is jm sm sm1 m1 is pX si1 i 

m» ^1 £ I 
form of c) we obtain a. . n , = 6„, n.a. . If 6/1. then a. = 0 by b). This 

' ij m1 pi i jm K r jm 7 

proves j). 

5. Weak Isomorphism, Homomorphism and Weak Equivalency. 

5.1. Definitions. Let X, Y be stationary graphs. We say X is weakly isomorphic to 

Y (written X ~Y) if IX I = I Y I and there exists a substitution a such that 
w 

~ Y; o is called a weak isomorphism. We say that Y is a homomorphic image 

of X = (X ) if X contains a normal subcell 'ty. (cf. HI. 1) such that Y is weakly iso- 
ij ii i 

morphic to the factor-graph of X by the system {<1*^} of normal subcells (cf. 14). 

We say that X = £. Tx.e. and Y = £. y.f. are weakly equivalent (written X ~ Y) 
i€ I l l Je 3 j j 

, , , <3P(k) k 
if there exists a one-to-one map <jp : I — J such that b ^j(i)y (j) = aij where 

<= e =£,3^6 ,f f =£b1<e . The map CP is called a weak equivalency. We sometimes 
i j ij k i j ij k 7 

qjj • X -► Y and (j> {e.) = f ^ instead of Cf> : I-» J. We say that this write 
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mapping Cf> is a natural one if dimX = dimY, X = 2L x.e., X = anc* 

Cj)(e.) = f. (that is, the name of the variable is conserved under the mapping). 

A weak equivalency is called natural if the corresponding mapping of I onto J 

is natural. Of course, a natural weak isomorphism is an isomorphism. 

5.2. Proposition. Let X = (X..) be a stationary graph, X.. =2. Tx-e.- If 
-4- 1J IJ 1€ 1 1 1 

d(e ) = d(e ) = 1 for some m e J , then X.. = X.. and there exists a substitu- 
m' m> u JJ 

tion g e Sym( I X,. I )) such that X.. X. .• g. 
1 li li ij 

Proof. Evidently one can assume that rgX = 2, i = 1, j = 2. Since d(e 
m 

d(e , ) = 1 it follows from 4 a) that X„ = X__ = n. Then e is the 
m1 1 111 1 22 1 m'X^ 

matrix of some substitution g. Let us substitute X^ by X^g "^21 ^ gX^, 

X by gX g ^ and X by the same X . Then e | changes into E and 
uu CtLi 11 11 in _ n 

X into an isomorphic graph. Since <TL(X) is an algebra, we have X *X Cx. .. 
11 1^ IJ 

Hence X -E CX , that is, X CX . Analogously, X Cx On the other 
IX n 1 Ui XX \.Li L* Li Xu 

hand, X21-X12CX22 and X19'X9iCXn X19CX99 and x19Cxln- Thus 

X12 ~X11 ~X22‘ Q-E-D- 

5. 3. Proposition. Let X = (X_). . ^ be a stationary graph. Let us write i ~j 

if there exists e C X.. such that d(e ) = d(e' ) = 1. Then this relation ~ is an 
m ij m m 

equivalency relation. In particular, I = Ul (a disjoint union) where i, j e I iff 
1 t 

i ~ j. 

Proof. Let i ~ j, j ~ k. Let us take e C X. ., e C X with d(e ) = d(e 
- m ij n jk m m' 

= d(e ) = d(e ) = 1. Then e e C X.. , and since e I and e I are per- 
n n1 m n lk m'X.. n'X„ ^ 

ij jk 

is also a permutation matrix. There- mutation matrices, the matrix e e I 
m n X 

ik 

fore, e e = e , d(e ) = d(e ) = 1, that is, i ~ k. Since relations i ~i and 
m n t t t 
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i~j (iff j ~i) are evident, we have proved our assertion 

Corollary. In notations of the preceding proposition, the stationary graph 

X is isomorphic to a stationary graph X = (X..) such that X ~X for all 
ij ij mn 

i> jjm. n g I and for any t. 

Proof. Let It = {iy . . . >ir). Chocse from all X^ , j e I^-i^, a matrix 
'm(j) 

with 

d(em^) - d(e^.^) = 1. By permutation of V(X..) we bring e 
m(j) JJ m(j) X. . 

1J 

into E 

where q = lx I 
jj 

Then e e 
m(j) m(k) q 

= E Cx for j,k t I -i By 5. 3 this 
q jk t 1 

implies that X.. ~X for all i, j,m, n e I . Since the I do not intersect, the 
ij mn t t 

operation can be performed independently for all I whence our assertion follows. 

5. 5. Proposition. If cp : ^ is a weak equivalency, then Cp is an iso¬ 

morphism of algebras, CX and oJ?" have the same rank and degrees of a central 

decomposition (cf. 2). 

Proof. Since, by definition, Cj> preserves the structure constants, Cj> clearly is 

an isomorphism of algebras. 

From d(e.) = 2 .a.. (if this sum is not zero (cf. 4e)), it follows that 

d(Cf (e.)) = d(e.). This implies the remaining assertions. 

5.6. Proposition. Let OX. and be split cellular algebras. If Cj : <rX -*• o&" is 

a natural weak equivalency, then (J> is an isomorphism. 

z 
Proof. One has n - lox I = I , dimOt = dim n . Let E = E. _ e. = 
- n «IQ i 

= E f , where e 6 <TL , f. e By the preceding assertion, CP(I ) = J (since 
j€ JQ j i J 0 0 

2 2 
i 6 I iff e = e ). One can assume that I = J = [l,n], I = J = [l,n ]. After an 

0 i i 0 0 

app update permutation of the elements of a standard basis of the underlying space of 
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OX/one can assume that 

ei = diag(0, .... 0,1, 0, .... 0) , i e IQ. 

A permutation of the underlying space of & brings p into the form 

f. = e. for all i e I_ = J_. 
ix U U 

Assume now that the underlying spaces of OX, and & and their standard bases are 

identified and e = f for all i € I . I assert that in this united basis the equality 
i i 0 

e = f holds for all m e I. Indeed, if m e I, there exists a unique pair i, 
m m 

j e L. such that e e e ^ 0. Then since Cf is a natural weak equivalency, we 
0 i m j ' J 

also have f.f f. 4 0. From the above form of matrices e. = f., i « L, one con- 
x m j ' liO 

eludes that e = f for all m e I as asserted, 
m m 

6. Some Numerical Invariants of Cellxxlar Algebras. The numerical invariants 

introduced below are used in Section N. 

6.1. Let X = (X..). . j. be a stationary graph. Let us assume that we are given 

a partition I | of the index set I : I =Ul . If p = (p., p_, . . . , p ) is a vector 
xxx 12 t 

whose components p^ lie in some linearly ordered set, let us denote by p ^ the 

vector (p. , . . . ,p. ) with p. > p. > . . . > p. . If p - (p.), we denote by 
l l l — l — — l 1iSc T J 

1 t 1 2 t 

p , -j-7 the vector whose components are ordered only within each I and com- 
ord.l | ’-m 

ponents numbered by different 1^' s denot mix. When we compare vectors of 

different length, we assume that short vectors are supplemented by zeros. 

6.2. Let X.. = S x e Put 
ii .. k k 

J T(i, J) 

q (X ) = (d(e ),..., d(e )), where {i , . . . , i } = T(i, j); 
x xj i-. i l r 

^(Xij, = (|XiiUXjj|,dimXjj,^(Xi.))ord): 
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W = S'Wr 

“2,n 'V = (|Xiil,dlmXi.,Ul(X..),(72(X..))ord_n); 

d3>TT(X)MrgX,(73,n(X))„rdJT). 

6. 3. Remark. This set of invariants is sufficient for our immediate goals. Let us 

note, however, that one can consider iterations of these invariants. For example, 

one can substitute |X..| in u (X. .) by u t-t(X..), etc., until stabilization. 
11 1 1J Li , J [ 11 

Furthermore, one can consider both matrix and vector 

invariants. For instance, one can consider the matrix (m — (X..)). . . It is a 
^»‘ 1 ij J € I 

matrix with linearly ordered entries. For this matrix one can construct its 

stationary graph (cf. M3) and subsequently compare such graphs. One can also 

put into correspondence with e the matrix (a^nj) anh thereupon compare these 

matrices. One can substitute the latter matrices into the definition of ^(X_). 

This leads to tensors of order 3, etc. 



F. CELLULAR ALGEBRAS ARISING IN THE THEORY OF PERMUTATION GROUPS 

Although cellular algebras arise in different contexts (in our case 

as the result of graph stabilization) (cf. also [Hi 3]), the most important examples 

of cellular algebras are the centralizer rings of finite permutation groups (see below) 

It is known (the graphs of the 26-family of Section U are examples) that there exist 

cellular algebras which are not centralizers. However, centralizer rings provide 

us with a variety of notions and approaches which prove to be useful. Most of 

the constructions of Sections G-Q are based on the corresponding notions in per-. 

. * 
mutation group theory. 

1. Let G be a permutation group on a set M = [1, n], and M^, . . . , M be its 

orbits. Letus consider the vector space V with basis . We define an 
1 n 

action of G on V by 

Let ^,(G,M) be the centralizer ring of G, that is, 

^.(G, M) = {B e 771^ : g Bg = B for all g e G}. Then ^.(G, M) is a cellular alge¬ 

bra (cf. [Hi 2] and 2. 3 below) with respect to the basis {£ }, and {£ } is a 
i i 

standard basis of V. Below we shall construct a standard basis of ^(G, M). 

2. If x e M, then G denotes the stabilizer of a point x. Let us choose a point 

x in each orbit M of G on M. Let D D . . be orbits of G on 
1 1 lxJ r(i,j),i,j x. 

l 

M.. 
3 

2.1. We construct graphs r in the following manner. We connect the point 

gx^ with all points of the set gD^„, f°r g 6 G. This definition does not 

depend on g. Specifically, if gx. = hx., then h-1g e G , and therefore 
ii x. 
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-1 
k ^Dmij ~ Dmij’ 6' ’ SDrnii- = ^et adjacency matrix of mij mij mij 

mij 

As sertion. The matrices e .. form a basis of the centralizer algebra 
mij 6 

Y 
G, M). 

Proof. We shall write 'j.(C) for 4 (G, M). First, all matrices e are in 
0 mij 

S(G). Actually, if h s G, then in T .. the incidence of hgx. to points of 
mij l 

hgD .. implies that h e Aut T ... Hence e .. commutes with all h e G. 
mlJ mij mij 

Take now A e •?. (G). Since D .. are orbits of G , the conditions 
v mil x. 

-1 
hx^ = x., hAh = A imply that in row x^ of A all positions corresponding to 

D .. are occupied by equal elements, say a ... Then the matrix 
mij mij 

B = A - 2 a_,.e .. is in ^_(G), and all elements of row x. of B are equal 

m,i, J 
mij mij 

to zero. Using the transitivity of G on M , and the condition gBg”'*' = B, g e G, 

one establishes that B = 0. Q. E. D. 

2. 3. Corollary. -^(G, M) is a cellular algebra with unity and {e . ,}is its 

standard basis. 

Unity of <? (G, M) is the sum of matrices e ...... where 
J m(i), l, l 

D . = x.. 
m(i), l, l i 

2.4. Remark. There is no inverse correspondence, that is, in general 

^.(G, M) = J,(H, M) does not imply G = H. As a trivial example, one can take the 

case G = Sym M. Then for any doubly transitive group H on M one has 

j>_ (G, M) = ^ (H, M) = S . A less trivial (but nonetheless very special) example is 

given in G 2.6. 
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3. Remark. The purpose of our constructions is the following . If a graph r 

is given, how does one construct the matrix algebra ^.(AutF, V(r)). Every 

stabilization (cf. Sections C, M, N, O) draws the algebras dl(r) and ^(AutF,V(r)) 

more and more together. 

4. Let us once more point out the meaning of the notions of Sections D and E in 

the case when the cellular algebra is the centralizer algebra of some permutation 

group. Let G be a permutation group of a finite set M, <Tt = ^.(G, M), X = X(CV). 

4.1. Graphs e^. If {e.} is a standard basis of dT, then G acts transitively 

on edges of every graph e . This explains our aspiration to find differences be¬ 

tween non-diagonal variables of a graph. 

4.2. If X = (X_) (cf. E2), then V(X..) is an analogue of an orbit of a group. In 

particular, for X the sets V(X„) are orbits of G (and also of AutX), 

4. 3. If e^C X then d(e^) is an analogue of the length of the orbit of the stabi- 

lizer of x e V(X„) on V(X„). For X, this number is equal to the length of an 

orbit of G on V(X..). 
x JJ 



G. SOME CLASSES OF CELLULAR ALGEBRAS. 

Some general classes of cellular algebras are constructed below. 

Most of them are modeled on the corresponding notions of permutation group 

theory or of the theory of algebras. Some of the classes introduced below are 

used in the canonization algorithm of Section R. 

The description of the properties of some classes requires the use of 

results of subsequent sections. We introduce them now in the hope that they 

can be useful as a frame of reference. 

1. Group Rings. 

1.1. To each finite group G there corresponds the cell Z[G\. It is defined in 

the following manner: 

i) V = Z,[G] is the group algebra of G, and the standard basis of V consists of 

elements of G; 

ii) a standard basis of our cell consists of the operators of left multiplication 

e. = L : g -*• g.g, for all g e G. 
X 8i 1 

We call this cell the group algebra (or ring) of G. 

1. 2. Clearly d(e.) = 1, for every element of a standard basis of ZZ[G\. The con¬ 

verse assertion is also true. 

Proposition. Let C~U be a cell. If d(ej = 1 for all e^, then <TL = "Z,[G], where 

G is an appropriate group. 

Proof. Since d(e.) = 1, e. is a permutation matrix. Since <JL is an algebra, 

e e - 0 Therefore, matrices e. form some group G. Clearly, 
i j m(i,j)‘ 1 

<rc = Z.[G]. 
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1. 3. Remark. 7Z\G] is the centralizer algebra (cf. the preceding section) of the 

permutation representation of G on itself by right translations. 

Direct Sum. 

2.1. Let Y = (Y..). . r, ,, Z = (Z..). . ri ■, be disjoint stationary graphs. 
ij l, j e [l,m] ij i, J « [l,n] 

Let us define the graph X = Y © Z = (X..) by the conditions: 

1J i, je [ 1, m+n] 

X = Y for i, j e [1, m]; 

X. = Z. . for i, j e [1, nl; 

X. j = const for i e [l,m], j e [m+1, m+n] 

or for i e [m+1, m+n], j e [1, m]. 

In addition, let the X be all pairwise disjoint*and disjoint from Z and 

Y. The graph Y © Z will be called the direct sum of Z and Y. It is defined 

up to equivalence and depends only on the equivalence classes of Z and Y. 

2.2. Proposition. AutX = Aut Y X Aut Z (direct product of permutation groups, 

cf. 2.6 below). 

Proof. AutX preserves V(Y)CV(X) and V(Z)CV(X) since Y and Z are 

disjoint. Take g € Sym V(Y) C Sym V(X), g e AutY. Then itfollows from the con¬ 

stancy of the blocks X.ie [l,m], je [m+1, m+n], that ge AutX. Q. E. D. 

2. 3. Proposition. If Y and Z are stationary graphs, then X = Y © Z is also 

stationary. 

Proof. Evident. 

2.4. Proposition. Let Y, Z be stationary graphs, 0L= 0L(Y © Z), &= CL(Y), 

J^-CL(Z). Let CL, 2?, £ be ideals in the algebras respectively. 
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complementary to the ideals#! , Jy , jC of L6. Then tTC = Jy 0 £ (direct sum of 

algebras). 

Proof. Evidently follows from definitions of the direct sum of graphs* and of the 

ideals Ot , , £ (cf. L6). 

2. 5. Remark. This assertion shows that the notions of direct sum for algebras and 

for cellular algebras are rather close. 

2.6. Remark. The direct sum of graphs is an analogue of the direct product of 

permutation groups. Namely, let G and H be permutation groups acting on V 

and W respectively. Let X and Y be the stationary graphs of the central¬ 

izer rings J,( G, V) and ^(H,W), respectively. Then G XH acts on V X W, and 

X 0 Y is the stationary graph of ^,(G X H, V X W). 

It is possible, however, for some group G acting on V, that the 

stationary graph of G, V) is a direct sum, but this action is not a direct 

product of actions of two different groups. This happens, e. g. , if G has two 

orbits V, and V on V, and G , x e V , acts transitively on V (since X = 
12 x 1 

const by F4. 3). A more concrete example: Take G = Sym(5), 

Yi = Sym(5)/Sym(4), V2 = Sym(5)/NSym(5)Z5. Then | G | =120, | V][ | =5, |V2|=6. 

For e Cx we have by E4a): 5> d(e ) = 6- d(e' ). Therefore, 6 divides d(e ) 
m 12 mm m 

and since d(e )< 6, we have d(e ) = 6, whence X = const, 
m — m 14 

On the other hand, Aut(X © Y) is the direct product of AutX and 

Aut Y. 

3. Tensor Product. 

3 1 Let Y, Z be graphs. Define the graph X in the following manner: 



44 

X = Y®Z = (x..>kl), 

where x = x iff y = y and z — z . Y ® Z is called the tensor 
ij,kd mn,rt ik mr jd nt 

product of X and Y. 

3. 3. Lemma. If Y and Z are stationary graphs, then Y ® Z is also a sta¬ 

tionary graph and rgX = rgY-rgZ. 

Proof. Evident. 

3. 3. Corollary. If Y and Z are cells, then X = Y ® Z is also a cell. 

4 

3.4. Proposition. If Y and Z are stationary graphs, Xy = OL(Y), Ju = S’L(Z), 

CL = dl(Y ® Z), then dL =&® x1 (tensor product of algebras). 

Proof. Follows evidently from the interpretation of X as a generic point of the 

algebra CL. 

3. 5. Proposition. If Y and Z are cells, X = Y ® Z, then X contains two 

normal subcells Xy and X such that (cf. J5.4). 

a) X/c& = Y, X/X = Z; 

b) X(&) ~Z, X(X) ~Y. 

Proof. Let | Y | ~ m, |z| ~n. As a generic point of Xc (resp. X) ere can lake fre 

matrix E ® Z (resp. Y ® E ). Our assertions are now evident, 
n m 

3.6. Remark. Theorem J5.4 shows that Proposition 3. 5 is close to a charac¬ 

terization of tensor products. 

3. 7. Remark. A tensor product of graphs is analogous to both the tensor 

product of algebras and the direct product of permutation groups acting on 
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the direct product of their domains. Explicitly, if G and H are permutation 

groups acting on and V , respectively, and if X and Y are stationary graphs 

corresponding to ^.(G, V^) and (G, ), respectively, then X ® Y corresponds 

to J,(G XH, Vx X V2). 

4. Wreath Products. We shall define this construction only for cells. 

4.1. Let Y^, Y^, . . . , Y^ be a set of naturally weakly equivalent cells (cf. E 5.1) 

of degree m, and let Z be a cell of degree n disjoint from Y.. Let Z = xE +Z 
in 

where Z has zero diagonal and entries different from those of Y,, . . . , Y . Put 
1 n 

X = (Y,.....Y )wr Z = Eh. 0 Y. + Z 0 I , 
I n ii n 

and let us call X the wreath product of the system {Y.} with Z. (Recall: h. is 

the matrix with 1 only in position (i,i) and 0 in all other positions. ) 

4. 2. Remark. A definition closer to that of group theory would be obtained 

in the case when Y, = Y_ = . . . = Y and Y. are cells (cf. 4. 5 below). In this 
12 n i 

case the cell (cf. 4. 3 below) X would be a subcell of the cell Y^ 0 Z. 

4. 3. Lemma. X is a cell. 

Proof. Evident. 

4# 4_ Lemma. If is the normal subcell of X with the matrix Eh. 0 Y., then 

X/Jy = Z. 

Proof. Evident. 

4.5. Let [l,n]=Ul where Y. is 

that there exists no isomorphism of 

isomorphic to Y. for all i, j 

Y and Y. if i and j do 
i J 

1^. Suppose 



46 

lie in the same 1^. Let G be the subgroup in Aut Z preserving all I^_, and G^_ be 

the restriction of G to I . Let H = ]7.Aut(h. 0 Y.) (the direct product of per- 
t 111 

mutation groups), H^_ = AutY., i e I^_. 

Proposition. AutX = | H | • | G |; Aut X permutes the sets V(lu 0 Y^) in the same 

manner as G acts on I. The restriction of AutX to LJ. V(h. 0 Y.) is H fG 
ult 1 1 tJ t 

(the wreath product of H^_ and G^_). 

Proof. Clearly, AutX preserves the partition of V(X) into the sets 

V(h. Q Y.). By 4.4 it permutes the sets V(h. 0 Y.) as some subgroup of AutZ. 
f 

Let us denote this subgroup by G. If there is no isomorphism of Y^ onto 

Y , then G cannot transfer i in j. Hence G preserves each I 
j t 

If g £ AutX, there existsag' e G such that g1 g preserves all 

V(h. 0 Y.) and induces an automorphism on each of them. Now our assertion 

follows immediately. 

4.6. Proposition (compare L7). The algebra (7L(X) contains an ideal defined 

over (0> and isomorphic as an algebra to the algebra Ot(Z). 

Proof. The subalgebra with a generic point X defined in H7 far fte normal sub- 

cell 'ty from Lemma 4.4 is, clearly, an ideal. The rest is evident. 

4. 7. Example. Let Y^, . . . , Y^ be all distinct graphs of the 25-family (cf. 

Section U), and let X be the simplex, Z = xE +yl , where x,y j Y , is [1,15]. 

Then 

X = (Yr ...,Y15)wrZ 

is a cell (such a cell is called correct, cf. J6). The group AutX preserves all 

subsets [15j+1,15(j+1)] for j = 0,1, . . . , 14, and it acts on [15j+l, 15(j+l)] as the 
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group AutY. Moreover, Aut X is the direct product of the groups Aut Y.. 
J+l J 

4. 8. Although example 4. 7 shows that the automorphism group of a wreath 

product of graphs can be very small, the notion of the wreath product of graphs is 

an analogue of the wreath product of groups. Indeed, let 

G and H be transitive permutation groups acting on 

V and W. Let us assume that V = [l,n]. Let X and Y be the stationary graphs 

of ^(G, V) and ^,(H, W) respectively. Set X^ = X^ = . . . = X^ = X. Then 

(Xj, . . . ,X^)wr Y corresponds to £ (G/H, VXW) (here G/H is the wreath product 

of G with H, cf. [Ha 2]). 



H. IMPRIMITIVE CELLS AND CONSTRUCTION OF FACTOR-CELLS. 

The notions introduced in this section are modeled on the corres¬ 

ponding notions of the permutation group theory. As in the group theory, they 

serve to reduce the study to the case of "primitive" cells (quotation marks can be 

omitted here). Probably, the passage to the quotient can be used in an algorithm 

of graph identification. Our use of this tool in the algorithm of Section R is in¬ 

direct, and it relates only to correct stationary graphs. 

The analogous situation in the permutation group theory is as follows 

Let G act transitively on V. If V is imprimitive, then 

V = U V. and gV is some V for g e G. This gives the action of G on 

i€ [1>n] 1 1 J 

[l,n]. In the terminology introduced below, ^(G, [l,n]) is said to be the quotient 

of 2(G, V) by the normal subcell (cf. definition below) defined by V = U V . 

' «[l,n] 1 

1. Let 0L be a cell of degree n and {e.} be its standard basis. 

1.1. Definitions. Let be a subcell of CL , f„, £..f. be a standard basis of 
- 0 1 k 

■ We c a 11 a normal subcell if 

i) for every i< k there exists j such that f. = e.; 

ii) fere exists a permutation of a standard basis of V which brings C = £ f 
i< k i 

into block-triangular form 

The property " is a normal subcell of 01, " is denoted by &<Q OL. 

We shall show below (see Lemma 2) that C can be brought into 
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block-diagonal form with diagonal blocks of the same degree, C = E IS I . We 
r m 

shall write | X | = d(C) and call | X | the degree of the normal subcell X . The 

fact mentioned above also implies that £. . .x.f. is of the form £r ,h IS X , 
i< k 1 1 i=l l i’ 

where every X. is the matrix of a cell and h. is the diagonal matrix with fee only 

non-zero entry equal to one at position (i, i). £, ^ , x.f. is called the matrix of 
1 K. 11 "" 

the normal subcell X, or its generic point. If all X. are isomorphic, X(X) 

is simply X.. 

Sometimes, if it does not lead to misunderstanding, we call 

{f. }. . . a standard basis of the normal subcell X. One can assume that f. = e 
l i< k- i i 

for i < k. We sometimes write e^ for matrix C to anphasizeits dependence 

on X . We write e. € X if e.O C = e.. The matrices e. 6 X are called the ele- 
ill l - 

ments of a standard basis of X . We write <jd=l if C=E,n = \dt\. - n 

We say that a normal subcell is contained in a normal subcell 

X (notation & C X) if e^, C e_, . A normal subcell & is trivial if either 
— J9- ~ <C - 

e „ = E or e, = I . 
n n 

A cell which contains no non-trivial normal subcell is called 

primitive; in the contrary case it is called imprimitive. 

If dC! is a normal subcell of ffL and, as above, 

T. x f = £ h 0 X., we call the system of sets V(h. 0 X.) the system of im- 
i< k i i i=l i i ii - 

primitivity in 01 , associated with X ■ Each set V(h^ 0 X ) is called a set of 

imprimitivity in 6L. 

Henceforth, up to the end of the section we assume that k is fixed 

and f = e. for i <- k. 
l l 

1.2. Examples. 

1.2.1. Let us first take the case of ^,(G,V), G an imprimitive transitive 
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permutation group of V. Let V = LJ V. be some imprimitive system for 

ie[l,n] 1 

(G, V). Let G. be the subgroup of G preserving "NL , and Xi be the stationary 

graph of <^(G.,V.). Then £h. ® X. is the matrix of a normal subcell in <^(G, V). 

The corresponding imprimitivity system is, of course, {V^}. 

1.2.2. All graphs of C12 are imprimitive cells. 

1. 2. 3. Simple examples of primitive cells yield oriented cycles with prime 

number of vertices. 

1. 2. 4. Petersen's graph is an example of a primitive cell of degree 10. It has 

three basic graphs: 

eQ : loops, graph; 

e^ : the complementary graph of e^. 

1.2.5. Examples of imprimitive cells are constructed in G3,4. 

2. Lemma. Let be a normal subcell of a cell OZ. If C = £.^,e. (in the 
1 ^ xC 1 

assumptions of 1.1) has a block-triangular form, then it can be brought into 

block-diagonal form,such that diagonal blocks contain no zeros and have pairwise 

equal degrees. 

Proof. Let us consider f, and f,' . They have the following form: 
K K 
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By definition of a cell (cf. D1.2) each row of A contains d ones. Therefore, 

-A = Ij- But since £! Of. ^ 0, we have from Dl. liii) that f = f' . 
K k k k 

Set C = 2 e.. Since f = f' , C = I -f (where n = |<7L|), we have 
^ i' k k n- k 

C' = C, whence the first assertion of our lemma. Let T be the graph whose 

adjacency matrix is C-E , then T is a simple graph. Let T.' , E' . . . , r be its 
n 1 2 r 

connected components. By our assumption, r >_2. Let us renumber ftevertices of 

r in such a way that C is brought to the form 

cl 0 0 . . . 0 

o c2 0 ... 0 

o o c3 . . . 0 

0 0 0 C 
r 

where C.-E, , is the adjacency matrix of F.. 

i 

Let us show that C. = I, ,. We have 2*1 ,Cm = 2 a f . 
i C. m=l i<k i i 

1 l — 

Clearly, a, = 0. Since the T. are connected, we have E*1 , CmDl, .. There 
k l m=l x C. 

fore, by Dl. 1 iii) we have 2. . , f. = 2. , . e. =1. ,, whence C. = I, ,. 
i< k l i< k i C. l C. 

1 l1 1 l1 

Since | C, I = d(C) = 2. . . n. = m does not depend on t, we 
1 t1 i< k l r 

have 

|C I = m for all t, i. e. , C = I , whence the last assertion of the lemma. 
1 t1 t m 

3. Bringing C into a block-diagonal form, we define a partition of the matrix 

X = 2x.e. into (mXm)-blocks X.., 
ii . iJ 

X11 X12 
X 

X = 

X . X ... X / 
rl r2 rr/ 

Proposition. Any two rows (and columns) of blocks of the matrix X = either 

have coinciding composition or have disjoint composition. 
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Proof. Let a. be a row of block X.. and a be a row of X . Suppose that 
- 1 ij 2 Kl 

Z x £ Z x , that is, that our rows have different composition. Then there 

CT1 ij CT2 ij 
evidently exists a variable x such that Z x.. = p.x + . . . ,2 x = p9x + . . . 

’ q o1 ij I q °2 ^ 1 

and Pj^ / P2• Consider then the product e • C. All entries of the row <r^ of this 

matrix are equal to p^ and all entries of row <7^ are equal to p^. By definition 

of a cell, it follows from the above that cr^ and cr^ have no variables in common, 

that is, our assertion holds. 

Let us note that the above proof also holds for two rows of one 

block. 
« 

4. Definition. Blocks X.. and X, , are called similar (notation X.. ~ X, ,) if 
- ij kd - ij kd 

for every row (column) of X.. there exists a row (column) of X, , with equal 
ij kd 

composition and if the same holds for the pair X^, X.j. 

Proposition. All diagonal blocks are pairwise similar (in other words, all cells 

X.. are pairwise naturally weakly equivalent). Every non-diagonal block is not 

similar to a diagonal one. 

Proof. Both assertions follow from 2 and from the definition of a cell. Indeed, 

all variables x., i < k, are in diagonal blocks, and all other variables are outside 

diagonal blocks. 

Proposition. Two non-similar blocks X.. and X,, have no variables in 
-c- ij kl 

common. In other words, if e has ones in X.., then e OX =0. 
q VJ q kl 

Proof. Let X. .p X, Then, by definition, X.. contains a row o such that all 
- ip kl ij 

rows of X have different (from a) composition. By Proposition 3, o and X 
kl kl 

have disjoint composition. For any column r of X.., X,, does not contain the 
ij kl 
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element tOct of this column (since it is an element of a). Therdbre, the composi¬ 

tions of t and X^ are disjoint (by Proposition 3 applied to columns). Since t 

is an arbitrary column of X.., our assertion is proved. 

6. Proposition. Let X. . ~ X. . be similar blocks of X. Then 
- ij kl 

2 x = £ x , 
X.. uv X, , uv' 

ij kl 

that is, similar blocks have the same composition. 

Proof. It is sufficient to show that X.. and X. . have an equal number of rows 
- ij kl 

of any given composition. Let be a row of X_, and suppose that X (resp. 

X ) contains p (resp. p ) rows of the same composition as ct . Note that by 
Kl 1 L 1 

Proposition 3 no variable of the row ct^ lies outside those p^ (resp. p^) rows. 

Therefore, if p. d p. , any two columns of X.. and X, , differ by their com- 
1 ' 2 ij kl 

position. This yields a contradiction to the condition X_ ~X^. 

7. Definition. Let iT be a cell with unity, X = Ex^ graph, a normal 

subcell of ffL, m the degree of diagonal blocks of C, n = m- r. A factor-cell is 

a graph Z (and its algebra 0L(Z)) of degree r defined by the conditions: 

z.. = z iff X.. ~ X . 
ij st ij st 

The notation is Z = X/dC* and Cl(Z) = Ol/x!. The factor-cell <*/£ is also called the 

quotient of by £ . 

Theorem. The factor-cell d/£ is a cell. 

Proof. Let us consider the matrix Xc ~ Z 0 1^ of degree n. (It is obtained 

from X by changing each block X._. into a constant block z^- 1^ in such a man¬ 

ner that non-similar blocks give rise to different variables. ) 
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To begin with, let us note that in the product X^, • X^_, in place of 
C C 

entries of some block X.., there arise equal polynomials. Further, let us show 
ij 

that in place of equal entries of matrix X^, in X • X^, there arise equal poly 

nomials. Suppose it is false for blocks X^ and X , ~ ^pq' 

L g . = 2j e Then one has 

e HX../0 m 
m ij 

g -g OX = al , g,/g. ,PlX = bl 
®ij °kd st m sij skd pq m 

a ^ b, for some i, j, k, d. By definition of a cell, this contradicts our assumption 

that X ~X Q.E. D. 
pq st 

Thus we have just shown that X is a generic point of an algebra 

(i.e. , (Xc).. = (Xc)kd implies (Xc.Xc).. = (X^X^). Since Xc ~ Z ® 1^ we 

have shown that Z is a stationary graph. Since by Proposition 4 the diagonal 

entries of Z are equal, it follows that Z is a cell. 

8.1. Remark. If and <&" are cells, then there exists an imprimitive cell 

(TV with a normal subcell "isomorphic" to %¥ (in the sense that 

2 , ,x e = E ® X(&)) such that ffl/S' ~ . Examples of such cells OX, are given 
i< k l i r ' w ^ 

in G3, 4. 

8.2. Remark. In the case <Tl = Z[G], normal subcells are subcells Z[H], where 

H is a subgroup of G. Factorization corresponds to the construction of the 

algebra of double cosets H\G/H, which is ^ (G, G/H). The sense of factorization 

in the general case of an imprimitive group (G, V) was described in the introduc¬ 

tion to this section. 

9. A Geometrical Interpretation of the Notions of Subsections 4-7. Let us con¬ 

sider a cell with unity <TL and its graph X. Let &V contain a normal subcell, 

and let e„ = E , e,, . . . , e. be its basic elements chosen as in 1.1. Let us con- 
0 n 1 k-1 

sider the matrix A = 2! e. • 
0<i<k l 
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Lemma 2. A is the adjacency matrix of the disjoint union of r complete graphs 

r^, . . . f r having the same number m of vertices. The set of the edges of the 

graph X which connect a e V(r.) with vertices of F., is characterized by a row 
J i 

of the block X .. 
ij 

If a,be V(X), then Proposition 3 as s erts that the sets of the edges from 

a to V(r.) and from b to V/r^) are either the same (as to colouring and multi¬ 

plicity) or have no colour in common. (The cases a = b and/or r = T. are not 
i J 

excluded. ) Finally, Proposition 5 and 6 assert that for any i, j, k, d the sets of 

edges leading from V(r.) to V(r.) and from V(r ) to V(r ) are either the same 
l j k d 

or have no colour in common. 

The factor graph is constructed in the following manner. All 

vertices of each r. are identified,and edges connecting new vertices "inherit" 

the "colour" of the set of edges leading from V(r.) to V(r.). 

10. Definition. An oriented graph r is called strongly connected if there is an 

oriented path from any of its vertices to any other vertex. If, however, for every 

two vertices a and b at least one (and, possibly, only one) path exists from a 

to b or from b to a, F is called connected. 

11. Lemma. Let <TL be a cell and {e.} its standard basis. Let A = £. e. be 
- 1 ie J 1 

the sum of some basic graphs. Let T be the graph whose adjacency matrix is A. 

If F is connected, it is strongly connected. 

Proof. Let a e V(r). Let D(a) be the set of vertices which can be reached 

A = {b e V(D : b / a, a e D(b), b / D(a)} 
a 

B = {b 6 V(F) : b / a, a e D(b), b e D(a)} 
a 

from a. Put 
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C ={bt V(H : b / a, a / D(b), b e D(a)}. 
a. 

It is evident that V(r) = aU A LJ B U C . 
a a a 

Now, in the graph T, from a there exist paths only to the points of 

B U C . Consider b e A . Then from b there exist paths to points of 
a a a 

B LJ C U a and, possibly, to some points of A . If A / <j>, then D(a) and 
a a a a 

D(b), b e A , have unequal cardinality. This contradicts CIO and D3ii). Hence 
a 

A =6. 
a 

Hence B Uc LJ a = V(r). Since by CIO this equality holds for 
a a 

every a e V(F) it follows that T is connected. 

12. Proposition. A cell GZ with unity is imprimitive iff it contains a discon¬ 

nected basic graph e., i > 0. 

Proof. If is a normal subcell of OZ , then every e. e ^ is disconnected. 

Suppose now that e^ is disconnected. Put 

B = 2n e”1 = 2b.e.. 
m=l 1 ix 

It is clear from geometrical considerations that the graphs e. for which b. ^ 0 

are disconnected, and that the vertices of each of their connected components are contained 

in the vertices of some connected component of e.. It may be assumed that b. ^ 0 

for i = 0,1,2,..., k-1, and b. = 0 for i > k. Then L. e. = E ® I for some 
l i< k i r m 

r and m. Therefore, e„,e,.e. , is a standard basis of some non-trivial 
0 1 k-1 

normal subcell. Q. E. D. 

13. Theorem. A cell <TL is imprimitive iff there exists a (proper) subset K of 

indices such that matrix B = 2. , e. has two equal rows and B 4 I 
i€ k l r n' 

Proof. Let /j be a normal subcell of Ct. Then f. (in notations of 1.1) 
- k 
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satisfies our conditions. 

Conversly, let B = 2. T^e. f I contain equal rows. Let 

= = ' ' ' = CTq the ^rst 1 rows of B and suppose that a fa ^ for all 

s > 0. flhis is not restriction of generality since it can be obtained by simultaneous 

permutation of rows and columns. ) Let d(B) = d. Consider the product B- B1 . 

All entries of the principal (qXq)-minor M of the matrix B-B' are equal to d. 

Furthermore, all other entries of the first q rows are < d. By defini¬ 

tion of a cell it follows that B- B' = 2. . de. + 2. a.e., where a. < d for 
16 1 16 11 i 

i 6 K . As follows from the previous discussions, from Dl.liii) and from 

Lemma 11, all e., i e K^, are disconnected. Thus our cell is imprimitive by 

Proposition 12. 



I. CONSTRUCTION OF THE QUOTIENT IN THE CASE 

OF CELLULAR ALGEBRAS OF RANK GREATER THAN ONE. 

Similarly to the definition of factor-cells (i.e., rank one case, see the 

preceding Section), a definition of the quotient can also be given for general 

cellular algebras. Such a definition is needed to complete the picture. 

It is in this generality that the notion of the quotient may be used in the study of 

isomorphisms of graphs. 

Since the extension to the general case of cellulbr algebras does not require any 

new ideas, we give in this Section exact definitions and omit proofs (with the 

exception of the proof of Lemma 2). 

1. Let X = (X_) be a stationary graph. Let JO^ be a normal subcell of X and 

V(X..) = Vt be the corresponding partition of V(X_^) into imprimitivity sets. We 
i=l 

do not exclude the cases |VXI = 1 for all t and IV11 = X. 
li' 

Set N. = X. 

k. 
l ^il> Ci " e£. 

e . The partition of V(X..) into sets V1 
e e m r x n' t 

induces the partition of matrices X.. into (k. X k )-blocks X = XfV1 VJ'). 
ij l J ij,ts v t’ s' 

Definitions. 

1.1. Two rows (columns) 

a « T), if 

CT ^ X and TcX.. are called similar (notation 
ij,ts ij,pq - 

S 
x ecr 

uv 
x 

uv 
E 

x eT 
uv 

x 
uv 

1.2. Two blocks X and X.. are called similar (notation X ^X 
13>zs iJjPq - i j, ts ij,pq 

if for every row (column) OCX there exists a similar row (column) TcX 
1Ets ij,pq 

and the same holds with the roles of X . and X interchanged 
ij,st ij,pq 5 ‘ 

2. Lemma. Let CJ c X and O c X.. be two rows (columns) of blocks of 
■L L J y P4 ^ J y tS 

X„. If then and O^ have no variables in common. 
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X J = 2 x 
' uv 2 x eO„ uv 

uv 2 

a, x + 
1 r 

... , Sr\ a„x 
’2 2 r 

and ^ a^. Consider the matrix er * Cj. This matrix has a^ for each entry of 

row and a^ for each entry of row By the definition of a stationary graph, 

this implies that cr^ and o' have no variables in common. 

3. Proposition 

3.1. If X. . 
ijjpq 

^ x.. 
ij,ts 

3.2. If x.. 
ij,pq 

~ X. . 
lj,tS 

then these blocks have equal composition, that is 

x = Zj x 
x eX. . 

uv ij,pq 
x eX. . 

UV lj,St 

The Proof is exactly the same as for cells (see H5, 6). 

4. Definition. The factor graph Y = (Y^j) of a graph X = (X„)^ ^by a system 

{£.} of normal subcells oC. <fl X is defined in the following manner: 
i i i 

a) The vertices of Y are the sets V^, i G I, t £ [l,iru]; 

b) If y ,y eY.., then y = y if and only if 
'pq' 'st lj pq st 

X.. ~ X. . . 
ij,pq iJ,st 

5. Theorem. The factor-graph of a stationary graph X = (X^j) by a system of 

normal subcells <P . <] X^ is a stationary graph of the same rank as X. 

The Proof is the same as that of H7. 

6. Notations. Keeping notations of 4, we write 

If i = j we abbreviate 

Y. . = <£.\ X. ./ <£ . 
ij 1 ij J 

Y. .= X. ./(£/. . 
11 11 1 

Tf f~ _i (± e. |vi| = l forall t) we write Y..= X.. /JC Y.. = <C X. ., 
If t - i I tl ' 1J lj j’ J1 1 lj 
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J. ON THE STRUCTURE OF CORRECT STATIONARY GRAPHS 

AND CELLS HAVING MORE THAN ONE NORMAL SUBCELL. 

We begin this Section by stating simple properties of factorization and some 

conditions for existence of normal subcells. 

We then pass to the study of cells with two or more normal subcells. The 

results here are analogous to results of Kuhn [Ku 1] about imprimitive permutation 

groups. We give these results to show how some of the notions introduced in the 

preceding Sections can be used to restrict the structure of stationary graphs. The 

annex, described below in 4.3,can be used in algorithms of graph canonization 

(although it is not used in Section R). 

The Section is concluded by the study of correct cellular algebras. These 

algebras form an obvious obstruction to usual algorithms of graph canonization 

(cf. R 9.2). We describe in 6,7 a construction which permits dealing easily with 

these graphs. Other parts of Subsection 6 are dedicated to the proof that the 

approach based on 6.7 can be used and can be used with advantage (its use is 

described in R 5.4.2, R 6.2). A non-trlvial example of a correct cell is given in 

G 4.7. 

1. Elementary properties of factorization 

Let X be a stationary graph and X = (V be its decomposition. 

1.1. Proposition. Let &>. <fl X. 
l n' ii ' 

Then 

Proof. Evident. 

1.2. Proposition - Definition. Let <1 X.., X../A Then there exists 

<11 X. , such that e^ c e ^ , , and the imprimitivity sets for are inverse 
ii 

images in V(X^) °f the imprimitivity sets for & in Xu/2&. is called the 

inverse image of & <1 X..A& in X. 
ii’ 
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Proof. Evident. 

1*3. Proposition. Let & <8 X <£ <1 X and e „ c: e . . 
11 i-1 £ ~ & 

Then 

a) X^/«£ contains a normal subcell & whose inverse image in X.. is £>> ; 

b) Xj./^= (X /«C)/£. 

Proof. Evident. 

1.4. Corollary. A normal subcell & of X.. is maximal (i.e. there does not 
- n ’ 

exist JO <] X. . with e c: e _) if and only if the cell is primitive. 
n £, ~ & ii 

The Proof follows immediately from 1.2. 

2. A condition for the existence of normal subcells 

Proposition (compare H13). Let X = (X.^) be a stationary graph, 

e..e c X. . , e = , e., d(e) < IX. .1 . Assume that the non-zero rows of e with 
1* ’ r ij’ i=l i* 1 j j1 

the indices m^,m-,...,m are equal, and that all other rows are not equal to these t 

rows. Then is a set of imprimitivity for some normal subcell <>2$of X^. 

Proof. Put W = [m , ml, and consider ee' = (a ). Then 
J. t pcj 

a = d(e) if p,q £ W ; 
pq 

a < d(e) if p e W, q £ W 
pq 

or q e W, p i W 

Put ee' = E a.e., I = {i : a^ = d(e)}. By the above discussion 1 £ 6, and the 

graph f = (£ e )| is disconnected. Moreover, f fl X(W,V(Xii>) = (It,0). 
rel r ^ 

Thus our assertion follows. 

Geometrically, our proof shows that if each vertex from a set of vertices W 

in V(X ) is connected by e in the same way to some set of vertices in V(X ), 
v ir 

then this set W is distinguished. The fact that it defines an imprimitivity 

system follows from the properties of cells. 
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3. A condition for the existence of a homomorphism. 

Proposition. Let X = (X_) be a stationary graph, X_ = x1ei- If 

d(e .) = 1 for some m e I, then X.. is a homomorphic image of X . 
m ’ li JJ 

Proof. Put d(e ) = t, 
- m lxitl =n, 

Since d (e .) = 1, d (e ) = t, it follows that t columns of the matrix e I are 

ij 

pairwise equal, and that they are not equal to any other column of e^. Let be the 

normal subcell of Xjj defined (cf. Prop. 3) by equality of the rows of em> Passing 

to the quotient of X by the system {l <fl xpp, P 4 j, £<] Xjj} of normal sub¬ 

cells,we see that X.. / & contains a basic element f (the image of e ) which 
l j mm 

has the property d(f ) = d(f .) = 1. Then by E 5.2, f defines a weak isomorphism 
mm m 

of X and X. . / X>> as desired, 
it JJ 

Geometrically, e serves to paint groups of vertices and edges of X.. in the 
m J J 

color of the vertices of V(X .). If equally painted vertices are identified, we 
ii 

get the graph X. . . 

4. Connection blocks of normal subcells. 

4.1. Definition. Let X be a cell, and let^pand be two normal subcells of X. 

Let Xp, X^, X^, X^ be four graphs which are equivalent to X and have pairwise 

disjoint composition. Then 

(Yij)i,je[1,2] 
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is a stationary graph of rank 2. One takes <] Y^, <C <] Y^- Set 

Cony(^,X) = &\Yu/£ , 

and call this matrix the connection block of & with oC . 

4.2. Proposition. Let X be a cell. X) <U X. J] <1 X. Let Z = (Z ) . . 
J-J i-,3=1,2,- 

be a stationary graph of rank 3 with 

2-q - X/} - X/} - Xj Z1 ^ - Con^(^^,l), Z^^ _ Con^(Jj , 1) . 
22 33 13 x' 23 

Then 

2^2 “ £) • 
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Proof. By definition of Z._ there exists a basic element e c Z., such that 
- 13 m JLJ 

d(e ) = 1, and e defines (cf. Prop. 3) a homomorphism of Z „ into Z. (e is 
m m j o i j. ni 

the image of the identity matrix, cf. Definition 4.1). It can be assumed that 

e =E (x) i , where r = IZ,. I , t = d(e ). Let {v , V„, ..., V } be the imprimi- 
m r ^ t ’ 'll1-’ m 1 l r 

tivity system of . We can consider the similarity of those parts of the rows 

of the matrix Z^ which lie over sets (see the definition of factorization, 14). 

Set (a..) = e • Z„„ c= Z It is clear that a... i e V(Z ) j e V(Z ) depends 
lj m 32 12 lj 7 11 2/ 

only on the similarity class of the part of the row X(j,V^) c ^3 2* This means 

that Conx(,&>,,<£) E z12‘ 

Now consider the first column O - X(V(Z^^),1) of the matrix z2l' 0ne has 
" • 

O • e c Z„„. Moreover, the first column of the matrix O • e is equal to O. 

Thus if the i-th and j-th elements of column O’ are equal, then parts of 

rows X(j,vp and X(i,V^) are similar, which yields the converse inclusion? i.e.? 

Conx(^v*, Jj) E ^12* 

4.3. Annex. 

Since the passage to the quotient simplifies a picture, but also leads to the 

loss of a useful information, we propose the following construction. 

Let X = (X..). . r, , be a stationary graph, be a normal subcell of 
ij i,je[l,m] ’ 

Definition. The following stationary graph X = (X..). . r„ , of rank (m + 1) is 
- tj i,je[0,m] 

called the annexed graph of X with respect to & : 

X.. = X., if i,j e [l,m] 
ij ij 

X00 = X0t = 1) 

= o^\xtj for j 4 t. 

00 
The block X, is called the annex. 



65 

5. Imprimitive cells with several normal subcells 

5.1. Let X be a cell, fv.}. r, . and {v.}. r. be two systems of imprimiti- 
’ ^iJieil,t] l ie[l,t] 

vity for X, and ^ and £> be the corresponding normal subcells of X. 

Proposition. If V. H V. / ^ then X contains a normal subcell of degree 

a = | H V | and c . 

Proof. Let [e^, t e j} be the set of all those basic graphs e^, whose edges 

connect points of the set V . H V ^ . By the definition of normal subcells, and by 

Lemma H2, it is clear that e e & , et G ^ f°r t e J. Hence, any path 

/V . 
along the edges of e^ must remain in both sets and (if it begins inside 

it). Consequently, ^(-gj et defines a normal subcell and the set 0 V 

is contained in some imprimitivity system of Xl> ' • Q.E.D. 

5.2. Corollary. Keeping the notation of 5.1 one has: 

if |V^ fi Vj | = a ^ 0, then a | ( | j£>| , |£>| ) . 

In particular, if (\$t> | > I \ ) = 1* then |V^ H Vj | = 1 or 0 for all i,j. 

5.3. Let us keep the notation of 5.1. 

Proposition. Suppose that Con^( ) = const. Then 

a) There exists a e N such that fl Vj = a for all i,j ; 

b) Iv I = at, IV. | = at, for all i,j, (recall that t = |x/2*>|, t = |X/&|), 
l i i J 

c) There exists a normal subcell & ' <1] X such that | 2^ 1 | = a, 

£ & • 

Proof. Let |V fl V | =a. Since T = Can^(& ,%>) = const, and from the defini¬ 

tion of connection blocks (cf. also 4.2), one concludes that ^ D Vj = a for all 

i. This proves (a) . Since V. fl V. = i and ^00?.= Vp one obtains (b) 
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from (a). (c) coincides with 5.1. 

5.4. Let and be two normal subcells of X? f = e&’ f ~ e£’ 

t = |x/„&|, "t = \x/Z>\. 

Let us assume that Con ) = const, and |V. fl V.| = 1 for all i,j. 
X l j 

(The latter assumption is not restrictive,since in the general case we can pass to 

the quotient of X by the normal subcell of 5.3.) We can assume that 

= [i(t - 1) + 1, it"] and 0 V = {iCt" - 1) + j}. Then 

f ,Et©IT< ?-It®Ey 

Let X = (X„) (resp. X = (X..)) be the partition of X into blocks correspond¬ 

ing to ^ (resp. to V(X. .) = V. (resp. V(1t. .) =V.). 
li l li l 

Theorem. (compare G3). In the above notations 

a) \Z>\ • \Z>\ = txl 
b) The cell x\&, is weakly isomorphic to a subcell of all cells 

(X..), i e [1,t]; 

c) X.. is embedded into the matrix X..V X.. (superimposition of X and 
i-J ii JJ r v ii 

X . ., confer C4.1). 
JJ 

Proof. (a) follows from 5.3b. Set 

X - diag (Xj^, x22’ 

Then from f = It©E^' and from X • f c X, “f • X c X, the assertion 

of (c) follows. 

Let us prove (b). Let e. e 0t(X). Define the t X t-matrix e = (a ) in 
1 i pqi 

a . = 1 if and only if e. n X 4 o , 
pqi 1 pq 

a . = 0 if and only if e. n X = o . pqi 1 pq 

the following manner: 
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It is clear that is a basic graph of the cell X/,£> (the image of e. in 

X/«&). Identify V(X/^) and V^. Namely, V e V(X/^) is identified with 

i(t - 1) + 1 e vp . If e^ connects the points p("t - 1) + 1 and q(t - 1) + 1 

of > then e. 5 ^ and e^ connects blocks V^, e, V(X4&). Hence 

6i = ei I Vi* This yields the embedding of X/& into X . Since 1 can be 

replaced by any re [l,t], without affecting the proof, our assertion is 

established. 

Corollary. (compare [Ku 1]). Suppose that a cell X contains three normal 

subcells ^2> ^*2 anc* Con^(2>i, 2*0 = const for all i ^ j. Suppose 

further that the cardinalities of the intersections of the imprimitivity sets of 

and j and of ^ and , is one. Then 

a) 1^1 = | = | ■& | ; 

b) The cardinality of the intersections of the imprimitivity sets of <2^ and 

A is also one. 

Proof follows immediately from 5.3. 

6. Correct cellular algebras 

6.1. Definitions. Let Y^, ..., Y be arbitrary (m X r)-matrices. The constant 

(nm X nr)-matrices and the matrices (compare G4.1) of the form 

X(Yp V h. © Y. + x T © I 
11 n m, r 

are called fully 

stationary graph 

T of degrees 
ij 

0 X T and 
ij ij ij 

6.2. Proposition. 

normal subcell. 

correct. (Recall that h^ = diag(0, ..., 0, 1, 0 ..., 0).) A 

X = (X. .) is called correct if there exist permutations 0. . and 
ij - ij 

|X..| and |Xjjl’ respectively,such that for i 2 j the matrices 

for i = i the matrices a., X.. a.} are fully correct. 
J ii 11 11 J 

If X is a correct cell, then X contains a unique maximal 

Proof. Let {eQ = E^, e^, ..., e^] be a standard basis of X. One can assume 
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that e = T (3 I , where mt = n. Then e = E e. = I - e = E 0 I . Since 
r m t ’ i<r l n r m t 

the graph e is obviously connected, one concludes that for every normal subcell 

in X, e c e. Thus e defines the unique maximal normal subcell. 
J*> 

Q.E.D. 

6.2.1. Remark. Geometrically, a correct cell is a stationary graph, whose vertices 

are partitioned, V = U V., and any pair of vertices from different is connected 

by an edge of the same fixed color. 

6.3. Corollary. Any factorcell of a correct cell is correct. 

6.4. Theorem. Let X be a correct stationary graph. There exist permutations C?^ 

of degrees IX..I such that O. X.. O.^ is a fully correct matrix,for all i.j. 
1 ll1 1 lj j J • ’ 

Proof. Let us bring the diagonal blocks X into a fully correct form. Now consid¬ 

er non-diagonal blocks. Let X.. = x. e.. We can assume without loss of 
Lj 1=1 i i 

generality that X / const (in the contrary case X is fully correct) and that 

e, = C(T ©I )T for some permutations 0 and T. Then m rows of e, are 
1 n m,r r 1 

pairwise equal. These rows define (Proposition 2) a normal subcell & of X 

Analogously, r equal columns of X.. define a normal subcell of X... 

Consider the factor-graph of X by this system of normal subcells. We have 

&\X. /&' = x f + y f d(f ) = d(f') = 1. Therefore (cf. E5.2) X../2l>= S , 
lj i c. c. ii n 

X. ■!&>' - S . Then 6.2 and 1.4 imply that & (resp. Z>' ) is the unique maximal 

normal subcell of X.. (resp. X..), 
it JJ 

Let be the (unique) maximal normal subcell of X.. (for every i). 

Consider the factor-graph X of the graph X by this system of normal subcells. 

As was shown above, 

(*) X. . = >&.\ X. J%). = x.. f. . + y. . g d (g. .) = d(g'. .) = 1 
rj i ' ij J lj lj & lj' vsij' vsi j' 

if and only if X.. i const, 
tj 

(**) S, x = const if and only if X = const 

Now using Corollary E5.4, one can bring X into a fully correct form. By (*) 
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and (**) the same permutation (mutatis mutandis) also brings X into a fully correct 

form. 

6-5. Corollary. Every correct stationary graph is isomorphic to a fully correct 

graph X = (X„). Moreover, X is decomposable into the direct sum of fully correct 

graphs X^_ having the following property: 

Let A. be the maximal normal subcell of X... Then there exists a natural 
i li 

number n = n(t) , such that X. . c X„ implies that Ax../^. is of the form 
ij t i ' ij J 

xE + y¥ . 
n n 

Proof follows by 6.4(*), 6.4(**) from the proof of Theorem 6.4, from E5.4 and from 

1.4. 

6.6 Corollary, a) A cell £ x. e is correct if and onlv if there exists 
- iel l i 

e c: X such that e = £ e defines a normal subcell, 
m iel-m l 

b) Let X = (X .) be a stationary graph,and let all cells X.. be correct, 
ij ii 

Let be the maximal normal subcells of X^. The graph X is correct if and only 

if,for every X.. i const, there exists e c X., such that 
ij m ij 

d(em} = lXjjl " d (0m'} = lXii I ' l^ilJ 

and such that 2*4 and A are defined by the equality of the non-zero rows and 

columns respectively of the matrix e^. 

6.7. Let X = (X..). be a fully correct stationary graph, which cannot be 
ij iji 

decomposed into a direct sum of graphs (cf. 6.5). Then X_ / const for all i,j, 

and 

X. . 
ij V ®\ij 

+ x r © 
m.m. 

i J 

Definition, Put Yi 
- k 

(Y ) and F(X) = {Y,, ..., Y }. The set F(X) is 
kij l,jel 1 n 

called the disassemblage of X. 
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Lemma. For all k, the graphs Y are stationary graphs of the same rank as X. 

Proof. Evident. 

6.8. Theorem. (compare G4.5). Let X, Y^ and F(X) be as in 6.7. Suppose 

further that [l,n] = U J , and that Y., Y., i, j E J , are isomorphic, but that Y^ 
t i j t 

and Yj are not isomorphic when i, j come from different J^_. Then Aut X 

contains (as a subgroup of the group Sym V(X)) the direct product of permuta¬ 

tion groups Gt which 

a) preserve the partition of V(X) into the sets V(Y^^^); 

b) have the same induced action on J as Sym (Jt); 

c) act on (J V(Y, ..) as the diagonal of some direct product of groups 
kf-J Rl1 

Sym (Jt). 

Proof. Let V. = V(Y.') and let fS.? .1 be those elements of the standard 
— ii Li.* * x. i. 

basis of the underlying space of X which lie in V^. By our conditions, we can 

in addition assume (after an appropriate permutation of bases of V.) that 

Y. = Y. for i,j e J . Then define the action of a e Sym(J ) on } by 
1 J t t mr 

0 5 m,r = § m,CT(r) for all r e J , 

O 5 m,r = 5 m,: for all r i J . 

The a defined in this manner commutes with the matrix Z = (Z where 
ij ’ 

Z. . = Sn h (g) Y . Since X..-Z..=xT(x)l , , 0 al 
ij k=l k kij ij ij n^ m/m.’ 

that is, a e Aut X. 

so commutes with X, 

i J 

Q.E.D. 



K. PROPERTIES OF PRIMITIVE CELLS. 

Sections H-J show the importance of factorization. The question arises: "What 

is the structure of those cells which cannot be factorized?" In particular, how can 

one describe the result of factorization? The properties of these cells (called primi¬ 

tive, cf. H 1.1) are mostly unknown. The results which we give below are of an 

arithmetical nature, that is, they give some restrictions on numbers a^.. Such 

results possibly can be used to estimate the performance of an algorithm of graph 

identification. 

The results of this Section are analogous to the results about primitive per¬ 

mutation groups (cf. [Wi 1, 17.5, 17.4, 18.7], [Hi 1, 4.1, 4.2]). 

Let Ol be a cell with unity, fe.}. T its standard basis, X = X(ffp), e = E . 
' i lel ’ ’ 0 n 

Suppose that OLs is primitive (that is, does not contain nontrivial normal subcells, 

cf. H 1.1). Then all the basic graphs e., i e 1-0, are connected (by H 12). 

1. Proposition. If CV is primitive and n^ = 1 for some i £ 0, then 

0^ ~ Z[Zp], the group algebra of the cyclic group Z^, p a prime. 

Remark. In this case, any basic graph e^, i / 0, is an oriented cycle of length p. 

To prove the Proposition we need the following: 

1.1. Lemma. Let Z>) be a cell of degree n, and suppose that 

n^ = n^ = ... = n^ = 1, m ^ 0, and n^ > 1 for i > m. Then eQ, e^, ..., e^ 

define a normal subcell cC of & . They form a group of order m. In 

particular, m divides n. 

Proof of the lemma. As in Gl, e0,...,em are permutation matrices. Since e.e., 
m t 1' 

i, j < m, is also a permutation matrix, we see that e^ej = eR(i j) wtth 

k(i,j) < m# Therefore, the e^, i < m, form a group of order m. Put e = e^. 

Then e^ = m ~e, whence it follows that e^, ..., e^ define a normal subcell. 

1 2 Proof of Proposition 1. It follows from the assunptions of Proposition 1, and from 

Lemma 1.1, that Oty contains a nontrivial normal subcell. Since Ols is primitive, 



72 

this normal subcell coincides with 00. Therefore, 00 ~ Z[G] for some group G. 

Since normal subcells of 2£[G] correspond to subgroups of G (cf. H 8.2), it 

follows that G contains no proper subgroups. Therefore, G ~ Z , p a prime. 

Q.E.D. 

2. Proposition. If a cell OV is primitive and n^ = 2 for some i, then | ol | = p, 

p a prime, and all basic graphs e., i > 0, are non-oriented cycles of length p. 

Remark. It can be expressed in the form Oty ~ Z[0 + O ^], <7^ = 1, O a permutation. 

Proof. It follows from Lemma 1 and Proposition 1 that n^ > 2 for i i 0. 

Now consider a basic matrix e.,n. = 2. One has e. e= 2e + e , 
l . l l 0 k7 

d(e^) = 2 (since 2 = min d(e^)), e^ = e^. By P. Hall's Theorem [Zy 1], e^ is 

representable as the sum of two permutation matrices 

e, = a + T 
k 

Since e^ = e^, one has T = O . Hence e^ is the matrix of a non-oriented cycle. 

The cell 00(e ) (cf. Section C) has the property that d(f.) = 2 for any basic 
K. 1 

graph f of OL(e^). Since (^(e^) is a subcell of and since = 2, 

one has 00 = OL(e^) . If \cro\ = m . r, m, r e N, one of the basic graphs is the 

disjoint union of m cycles of length r. Hence, if \oo\ is not prime, OO is 

imprimitive, and our assertion is proved. 

jc 
3. Lemma. If n. >1, a..=n.,k^0, then n. > n.. 
- i ij J i J 

v k k 
Proof. We have n. = H a. (by D 4 c 4), whence n. > n = a .. Let us show 
- l s is y ’ i — j 1J 

k 
that n. = n. = a.. contradicts the primitivity of 60. By a simultaneous 

l j ij 

permutation of rows and columns, we can achieve that the first row of e and e, 
i k 

take the form 
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respectively, 

the form 

Consider now the first row of e e.. 
i J 

By definition of a cell, it has 

( * * * ) 

It follows that, if n. = n., all n, columns of e. with numbers 2.(n + 1) 
ij k j ’ ’ k 

have ones only in lower n^ = n. positions. Therefore, they are equal. However, 

if > 1, it is impossible in an imprimitive cell (by H 13). The case n^ = 1 

together with Proposition 1 contradicts our assumption (that ru > 1). Therefore, 

the assumption n. = n. is false. Q.E.D. 
i J 

4. Let us order the numbers n^. Let q^, ..., qg be different values of n^, i ^ 0. 

Suppose that q. < q„ < ... < q . Set I. = [i : n. = q. }. 
12 hn k l k 

Then 1-0 = U I . We have I / 0 V k. 
k k k 

Lemma. For any two indices i,j there exists an s e I such that s ^ j, a^g ^ 0. 

Proof. Since the graph e^ is connected, all entries of the matrix e^ are non¬ 

zero (where p is the maximum length of paths in e^ having no self-intersections, 

p < n). Thus, in the expression 

e P 
l 

e 
t 

all coefficients afc are non-zero. 

Let d be the least exponent such that 

;. = E b e , b . 
i t t’ j 

/ 0 

Then, ed_1 = E c e , c. = 0. 
’ i t t j 

We have 

;(Ec e)=E c aU e = E b e , b. 
iv t V t, u t it u t t’ j 

. / 0. 
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Hence, c a^ / 0, that is, a~! / 0 for some s 
7 TO Is 

Geometrically, our assertion has the following meaning. No path of length 

d - 1 in the graph X consisting of edges of color i can be cut short by an edge 

of color j. However, such paths of length d exist. Consider such a path and 

consider the edge of some color s which cuts short the last d - 1 edges of this 

path. Then the edge of color s satisfies our requirements. 

there exists j i I and k e 1^ such 5. Lemma. For any 1^ and any i i I , 

that a^. ^ 0. 

Proof. In the same manner as above, consider all possible paths consisting of edges 

of color i. There exists the minimal length d such that some of those paths are 

cut short by an edge of the color lying in I . Let an edge of color k, k 6 It, 

cut short one of those paths, and let an edge of color j be the edge which cuts 

short the last d - 1 edges of this path. By the assumption of the minimality of d, 

one has j ^ It» Since a„ / 0, we are done. 

6. Proposition. > 1 for all s 

Proof. Put t = m, take i e Ig, and use the preceding assertion. There exist 

indices i and k such that n. < q 
J j - hn-1’ 

D 4 c 8 one gets 

n, = q , a.. / 0. From the inequality 
k nr lj 

and this is our assertion 

k-log q 

7. Proposition. If q^ = p , p a prime, then p divides all q. 
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®* Proposition. If q = p p a prime then m = 1, that is, all n are 
m 7 7 7 7 i 

pairwise equal. 

Proof °f Propositions 7 and 8 is directly obtained by the application of 

Proposition 6. 

9‘ qk+l^\ql for a11 k= qm - qidm X)"2 

Proof. Consider powers of the graph f = S. e.. We have 
i£ I ^ i 

ffc = S. b e. . 
L it 1 

Put I(t) = {i : 3 s < t (b. £ 0)}, q(t) = max n., that is, q(t) is the great- 
1S iel(t) 1 

est of the valencies of those graphs whose edges shortcut some paths having length 

d < t, and consisting of edges of colors from 1^. Evidently, q(t + 1) < q(t)q1. 

Since f is connected, one has either I(t) = I or I(t + 1) to I(t) and 

I(t + 1) i I(t). Hence, q^ = q(tQ), tQ < (dim X) - |l^ U Oj < (dim X) - 2. 



L. ALGEBRAIC PROPERTIES OF CELLULAR ALGEBRAS. 

We have associated with each graph a matrix algebra, trt(X). This gives rise to the 

question whether this algebra structure can be used to get new combinatorial inform¬ 

ation. In this Section we derive some information of this kind by purely algebraic 

methods. The results of this Section are analogous to some results about permutation groups. 

Most of them (and in a more general fonn) were also obtained by D. G. Higman [Hi 5], [Hi 6], 

We assume some basic facts about the structure and representations of semi¬ 

simple associative algebras (cf., e.g.,[Al 1]). Uninterested readers can skip this 

Section since its results are used in very few places^ 

If A is a matrix, we denote by A the conjugate matrix A' of the matrix A. 

If ffU is a cellular algebra and R is a Z-ring, we denote the set of all 

R-rational points of the algebra OL , by OZi.e., fas is the set of all those 

matrices which can be obtained by substituting elements of the ring R in 

place of variables in X = X((7L). (In algebraic geometry, X would be called 

"the generic point of the matrix algebra OL," and the matrices mentioned above 

would be called "the specializations of X.") Let TfC denote the full matrix 

2 
algebra of dimension r . 

1. Theorem. Let (Hs be a cellular algebra with unity, and let be the 

standard basis of the underlying space V. Then 

a) ©*£ (as an algebra); 

C i=l ri 

b) There exist OV-invariant and OV -irreducible subspaces V., V , ..., V 
lo 1 2.7 TT 

of the space V, and bases Q, .... . of V. (m. = dim V.), such that 
r li* Jt.i li i * 

m r 

V = © V., and the matrix transforming the basis {?.} into {£..} is unitary. 

i=l ij' 

Proof of this theorem is standard and uses the following 

Lemma. Let V be a vector space over C, CV be a set of linear operators on V, 

"k _ 
which contains with every operator A its conjugate A , Let (u,v) = Y, u. v. be 

the hermitian form on V. If W is an ^-invariant subspace in V, then 
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W = tv g V : (v,W) = O] is also an (Jl, -invariant subspace. 

Proof of Lemma. Let w e W , k z &L. Then A W c W and 0 = (w,A W) = (Aw,W), 

that is Aw e W . Q.E.D. 

Proof of Theorem. Let W be an irreducible OL' -invariant subspace in V. Let us 

put W = V . If V, , ... . V , have already been constructed, we take for V, , 
I Id d+1 

d 
any irreducible - invar iant subspace in ( © V.). By the lanma above, this process 

i=l 1 

leads to the construction of pairwise orthogonal subspaces V. cV and V is 

clearly the direct (even orthogonal) sum of these subspaces. We can now choose a 

basis {£..}, i£ [1, dimV.l, in V., such that the vectors {£..} form an orthonormal 
ij j r ij 

basis of V. Then the matrix transforming the orthonormal basis into the ortho¬ 

normal basis {£ } i-s a unftary matrix. This proves (b) . Assertion (a) follows 

from (b) since any irreducible associative matrix algebra over C is isomorphic to 

s ome fax, . 
r 

2. Corollary. dim <70 = .S, r?. 
-i=l 1 

3. Proposition. Let = © ^V. , fi. ~ ftTC . Let us denote by Cp, an 
O . , 1 1 r. » -L 

1—^ * 
isomorphism of at. on ^72^ ? and by O the involution A-> A of Then 

the algebras ICC ^ can be renumbered so that 

yi0 = a 
i+t_ 

i e [1, t-j_] ; 

i e [tL + 1, 21L] , 

i g [2t1 + 1, t] 

Moreover, *7 induces 

on , i e [1, t ], an involution of the second kind; 
i i+t^ l 

on /£., i e [2tl + 1, , an involution A-^ cp± 1 (S ± (Cpi (A) ) ' S ^L) with a 

symmetric matrix S^; and 

on TL., i G [t2 +1, t], an involution A-> ^(^(cp^A)) 'T^) with a 
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skew matrix T . 
i 

Proof, cf. [Wei], 

4. Corollary. Algebras © ^i+t ’ ^ > anc* i S [21 + 1, t] are 

defined over R. 

If i c [2tL + 1, t]. r. = 2m + 
l 

1, then JfL. 
’ l 

~ )YL- over 
ri 

R. 

If i e [2tL + 1, t], r. = 2m, 
l 7 

then over R either /L. ~ 
l — 

Yfl- or 
2m 

)TL . ~ ^4 (x) -vi? , where is the quaternion division algebra. 
v l — m ^ 

5. Corollary. If a is the number of symmetric basic elements e-^ and r = dim CSL} 

then r - a 

♦4«-r 

V1 2 P ri(ri+1) 
a = 2b for some b £ Z and a + b = .Ll r 4- . 4^ , -r- 

1=1 1* i=2t1+l 2 

dn-1) 1 

+ 

Proof. Let 2b be the number of e. with e\ £ e.. Then the equality r = a + 2b 
—- Lit 

is evident. Let us consider the second equality. Its right side gives (by 

Proposition 3) the dimension of the space of ^-symmetric elements in OC-. It is 

evident that its left side equals the same number. 

6. Let Ols be a cellular algebra of rank r with unity, and X = X((JL) = (X„), i, 

j e [1, r], be its matrix. Let CrLs be the cellular algebra with a matrix 

Y = (Y..), i, j E [1, r], such that V(Y..) = V(X..), Y.. = const for all 
lj ’ ’ J ’ ’ 11 n * 1J 

2 
i, j e [1, r] . (In particular, dim (]Ls = r .) Put Ik = X^. Let us define the 

projection : OL-> in the following manner: If e c X. then 

d(e)E m ^ 

f(em) equals -—-J- , where E. . is the matrix with all ones in the 

j 1J 

block X . and zeros otherwise, 
ij 

Proposition, a) OV ~ tTL (over Q). 

b) There 

injection cp ; 

exists a decomposition CrL> ~ oL (±) 

CrL-> 0L- and the projection t : OL ■ 

acts as on some r-dimensional 
r 

i 
trivially on W . 

defined 

-> &L 

subspace 

over Q where the 

are defined as above. 

W in V, and acts 
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Proof. (a) is evident. Let us prove (b). First, Cp evidently is a ring- 

homomorphism. The projection is also a ring-homomorphism since (cf. E4g) 

s' 

d(e • e ) = £ a d(e ) = < 
m k s mk s ' 

0 if e c X.., e c X , j £ p 
m rj 7 k pq7 J r 

d(e ) d(e ) if e c X e c X 
m lr m k m ij’ k jq 

It remains to check that cp \Ji and f cp are identities on So . This is 

evident,, 

Let us prove (c). Let V = © V^, dim = N^, corresponds to X.., cf. El. 

Let . be the standard basis of V . Put = C • (E E ), 
li 7 Nil x i ji 7 

V. = {v e V., v = Hv. • E v . = 0}. Put further V = © V,. Then 
x x7 j ji7 j x7 x 

it is clear that Ol^ V° c V°, V = (V°) , OOq V = 0. Since V = V © V°, dim V°=r, 

we are done. 

7. 

be a 

X = 

the 

for 

Structure of an imprimitive cell 

Let Oo be a cell with unity, let be its normal subcell, let e^ = E , ...,e 

_ r 

standard basis of A and e = .S e. = E (x) I . Put X = X(0O) and let 
i=0 i d w m 

(X. .) be a partition of the X corresponding to XsO . The cell OO contains 

subcell SL with matrix (cf. H7) = (Y..), V(Y..) = V(X..), Y.. = const 
C ij 7 n li 7 ij 

all i.i. Y . = Y if and only if X. . ~ X . Clearly oO is an ideal in 
7J7 ij st ij st 

Proposition, a) The subcell oo is isomorphic as an algebra to the factor-cell 

OO/(the quotient is taken in the class of cells but not of associative algebras); 

b) f = — e is an idempotent of OO; 
m 

c) f • OO • f = So ; 

d) d characteristic numbers of f are equal to 1 and (m - l)d are equal 

to zero. 

Proof. (a) coincides with H7. We have further, e2 = m e, whence (b). If 
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a e f • OV‘ f, then fa = af = a. Hence in every block the rows and columns of 

of the matrix a are constant, i.e., a e ois. It is clear, that for a e 0's we 

have af = fa = a, i.e., a e f • 00 • f. This proves (c). Property (d) follows 

from equality e = E (x) I . 
d m 

8. Lemma. Let OV be a cellular algebra with unity, let {e } be its standard 

basis. Let K be the field of quotients of a principal ideal domain R, = £ Ke^ 

* 
OXs = E Re . Let M be an OO -module. Then M contains 0Z/-module M with 

R i K R 

KM = M. In other words, any K-representation of the algebra OV is K- 
is. 

equivalent to some R-representation. 

^ dim 0c, dim M 

Proof. Let Tip ..., T)t be a K-basis of M. Put ‘M = R e^ry., Let 

k k k 
Up ..., T| be an R-basis of the R-module M (remember, R is a principal ideal 

domain). The elements e^ are written in this basis as matrices with entries 

from R. Q.E.D 

9. Let Gis be a cell with unity, let e. = E , e,, ..., e , be its standard basis, 
0 n7 1’ ’ r-1 

t 
n = |oi-|, r = dim Ols, n. = d(e^). Put OC^ = (J) ~ and let be 

i=l i 

the multiplicity of the nontrivial irreducible (over C) representation of <)L. in 

t Kj 1 
the natural representation of 0V in V. Let V = (?) (+T V, , where V, are 

C , , , dm’ dm 
d=l m=l ’ ’ 

Ots„~ irreducible, /L. V, =6., V, and <31/ -modules V, and V, are iso- 
C 7 j d,m ujd d,m C d,m d,q 

morphic for m,q e [1, M-^] . 

Theorem (Frame [Fr 1], [Wi 1, 30.5], [Hi 5]). In the above notations. 

r-1 

n1 2 I 1 
i=l 1 

t 

n 
i=l 

q e z 
2 

r . 
1 

Moreover, q = a • a, where a is an algebraic integer. 

Proof. By Proposition 1, there exists a unitary transformation U such that 
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U e. U = M. 
1 

t 

= © 

d=l 

.© 
m=l 

M, 
d ,m, l > 

where M, . is (r, X r,)-matrix of a linear transformation of the space V, 
d,m,i d d d,m 

and all matrices M. m e [1, p.,] determine equivalent irreducible representa 
d,m,i d 

tions of the algebra OV. Note that 

(U e. U_1)' = U e! U_1 
l l 

(U U ) , 

that is 

(*) M' 
d,m, l 

= M 
d,m,i' 

Set 

N.. = Sp(M. , M.) . 
ij i J 

We have by (D 4.c 6): 

N . = Sp(e.. e.) = d(e.)n 6., . 
lj l J L iJ 

On the other hand, using (*) and the decomposition of the matrix M , we have 

N.j = Sp(M., M ) = Sp(M^ H.) 

= Sp( © Q M' .)( © ©M, ) 
K j d,m,l , d,m,j 

dm ’ ’ dm 

= S S Sp(M' . M, .) 
d m d,m,j 

Now by the equivalency of representations, it follows that 
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Sp(M 
d,m,i 

M, .) 
d,m, j 

Sp(M' . M, .) for all m, p e [1, H,] 
r d,p,i d,p,j a 

Hence, setting M, . = M, . . we have 
d >■1 d, J., l 

ij 
E u Sp(M' M, 

djJ 

Suppose M . 
d,1 ^ma,d, i"* ’ 

a, P e [1, r ]. Then 

(**) 
ij 

t 

s 
d = l 

rd 
_CC 

^ m 

a,p=i P,d>i . MJ 

t 

Let us number triads (a, j3, d) where a, P e [1, r^], d e [1, t] , r^ = 

numbers of the interval [1, r], Then 

a a 
mn j . = a., o e [ 1, r ] M,i “ i5 

Let R = diagd-^ E^, ^ E_), A = (a.), N = (N..). Then by (**) 

N = A' R A. 

Let a^ = det A. Then 

r-1 _ r. 
nr | | n. = det N = det R • a^ * a^ = (II 

i=l 1 

Let us show that a^ is an algebraic integer. By Lemma 8 in some basis 

T| . .... T1 of V, the transformations e. are written as matrices T, 
1’ ’ rd d,l* l d 

whose entries are algebraic integers. We have T, . = S. M, . S ^ where S, 
dy i d d;i a d 

appropriate matrix. Let us construct for matrices T^ ^ in the same manner, 

above, the matrix A. Since the linear transformation F-> S F S 

, with 

is an 

as 

of the space 
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of matrices has determinant one, we have det A = det A. On the other hand,by the 

foregoing remark, det A is an algebraic integer. Hence a^ is an algebraic 

integer. 

It remains to show that a is a multiple of n. Consider the sum 
r-1 - i 
Y' a 

ai for aH rows of A. Let us assume that 0=1 corresponds to the (one¬ 

dimensional and having multiplicity one) representation of OO, described in 6. Then 

by (D4.c 4), 5 = n 6^. Hence it follows that a^ = n • a, where a is the 

determinant of a (r - 1) X (r - 1)-minor in A. Thus a = a^ • n ^ is an 

algebraic integer. The theorem is proved. 

Remark. If (TU is commutative, then the entries of A are characteristic numbers of the 

basic elements e^. Thus it is possible to obtain information on A and det A in 

this case. 

10. Corollaries 

a) If Ots splits over Q into a direct sum of the full matrix algebras, then 

2 
q = a , a e Z 

b) If Ob is commutative, and the characteristic numbers of all e^ are rational, 

2 
then q = a , a € Z. 

c) If rg = rt, s ^ t, implies |dg ^ , and if (r , |~h) = 1 for all i, 

then 

q a e Z 

Proof. Under the conditions of (a), it follows from 8 that a^ = det A e Z (in the 

_ 2 
notations of the proof of 9). Hence a^ = a^, that is, q = a , a e Z, The conditions 

of (b) coincide with the conditions of (a) in the case of a commutative algebra OL . 

Therefore, (b) follows from (a). Because of the first condition of (c), the simple 

summands of are defined over Q. It follows that they are matrix algebras 

over simple division algebras. By the second condition of (c), those division 
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algebras are fields whence we may use (a) again. 

11. Let OV be a cell with unity. By 6, OV ~ . We shall show that & 

cannot be simple. 

Corollary. The case W-' is a cell, (over C) , m > 1 is 

impossible. In particular, if dim (jh < 5, then &V is commutative. 

Proof. Let (J. be the multiplicity of the irreducible representation of 

m > 1, in the natural representation of OV. By 9 

By 1 and 6, we have m • (4 = n - 1. In particular, (M-, n) = 1. Thus 

1 I"1 n. |J."m e Z. 
i=l 1 

However, n. = n - 1, and 
’ i=l l ’ therefore □ Fr 

i=l 1 m / 

(since the maximum of the product is achieved by equality of multiples). We have in our 

-2 
case (n - l)m = m 

d In. 
-m2 

\ i.e., | lni < (M m '*‘)t whence it follows that 

)(M- ) < m <1 if m > 1. In particular, our q is not an integer. 

This contradiction proves our assertion. 

12. Rank 2. 

Let OV be a cellular algebra of rank 2 with unity 

X = X(0O) = 

/ X x \ 
X11 X12 

X21 X22 / 

let Oh', Oh", 01^2 anc* *^21 t*le matr:'-x algebras whose generic matrices are of the 

form 

11 12 

/ - \ 0 X22 / - \ / ’ \ X 21 “ / 
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respectively. Let 

OL/' = © — ^Xr i 

OC" = 
1 1 <^r„ 

i 

otx = © ^Z., ~ ^ 

Let M-i (resp. U!^ P-V) be the multiplicity of the nontrivial irreducible 

representations of <^X^ (resp. YtV) in the natural representation of OC 

(resp. (}C , OC") • 

For any given YC. , let us define I'(i) = {j : YC' c Yl } and 
1 J i 

I (i) = (j : YCc Since z> ClX'(J) and Yt ' are simple it is 
j l j’ J v ’ 

clear that every Yt- • and ^X'.' are contained in some . 
J J i 

Theorem. 

a) 6V' • OL" = o. OC • «i2£ °\2, oc' II i—1 
\CsJ 

= o, 01" • <\2 = o. 

OC 
12 

OC = 
12 

OC 
21 

. OC 
21 = 0, CN 

*
 <n'21 £ be ’ 0C2l • 0\2 £ d>x" 

b) |I'( i) | < 1, |I "(i)[ < 1 for all i. 

c) If |I'(i) 1 = 0, then Yt. c 
1 

Oh". If |I"(i)| = 0 then Yt. c 
7 1 oC 

d) If 111 (i) 1 = 1, I'(i) = tj3. then 
L “4* 

If |l"(i)| = 1, 

I"(i) = {k}. then K = 1 
1 

U" 
V 

e) If I'(i)={j}, I"(i) = {k}, then r. = r' + r" and YL\ (±) YL" ( c Yt.) 
i j k jk i 

contains a maximal commutative semi-simple subalgebra of /X^. 

Proof. Property (a) is verified directly. Let X (resp. f^, f'p be the central 

idempotent of /X^ (resp. of the algebras YL'^ considered as the subalgebras 

in some YC.) . Then Yt. = f. OL f., /X! = f! at. f' /XV = fV OC f V. By the 
j i i l. i l i J 

definition of I'(i) and I"(i), one has 

= Tj. . . f + s. f. = . X/ N f'. + f'-' = f' + Yv . r jel'(i) j jei (i) j i i 
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Since . ~ >?£. , one has for f\ £ 0 : ?' YL. ?! ~ YfL for some t. 
l — r^/ 1 ixi— t 

It is clear by (a) that f fL ?' c /Jr' and f Yt- ?! is a direct summand of 
I r i ill 

01,'. This implies that ?! YL. ?! = Yt'. for an appropriate j. Therefore, if 
II J 

111(i) | = 0, then |l'(i)| = 1, and (b) is proved. From this (c) and (e) 

follow. Let us prove (d). Since the multiplicity of the irreducible representation 

of f| YL^ f^ (if ^ 0) in the irreducible representation of Yi-^ is equal to 

unity, we see that the multiplicity of the irreducible representation of f| YL^ ?!^ 

in the jd^-fold irreducible representation of YL^ is |-L. This proves (d). 

13. Corollaries. Let X = (X„) be a stationary graph. 

a) dim X. . <-^-(dim X. . + dim X. .) 
ij “ 2 li JJ 

b) If X.. = S , dim X.. = t + 1, then 0/,(X..) contains, as a direct summand, 
n tir ij 3 ^ JJ ’ ’ 

the subalgebra YC'^Q Yl'^, where Jt ~ Yl'^ ~ YYt^, and the natural representa¬ 

tions of and YL"^ have multiplicities 1 and (m - 1), respectively. In 

2 , , 
particular, dim X > 1 + t , |Xj^| > 1 + (m - l)t. If t > 1, these inequalities 

are strict. 

c) If X.. = S , |X..1 = m, dim X.. =2, then X.. = S 
7 11 m7 ! 1 1 ' 7 in 7 \ \ i 11 JJ IJ JJ 

Proof. We can assume that the rank of X is 2, i = 1, j In notations of 12, 

we have dim X, „ = Yj dim f' f". Let us consider some algebra Yv . One has 
12 p, q P q i 

7[1. = f\ fr. f! + f" YL. f" + f! Yt. f" + f." YL. f' where j = I'(i), k = I"(i). 
t j l j kik jik k l j* J v ' 

2 2 
The summands of this decomposition have dimensions r, r" , r \ r", rr", respec- 

J k J k j k 

tively. We assume that some ror r" can be equal to zero. Property (a) 
J k 

now takes the form 

rj < (r'.2 + r”2)/2 , 

which is known to be true. 

To prove (b) and (c), let us first note that in these cases (yC = YTL^ © 

= 1, M-2 = m_ 1, rl==r2== There exists exactly one direct component of &L>, 
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say fc>2, which contains the second summand of W, By (12d), [1 = m 

Remembering that is the subalgebra of OL, defined in 6, and since 

1. 

ff f^ ~ )7ti> ^2 ^2 ^2 — > 

we have dim f| A, f" 

01* 

12 = fl \ £'i®£2 *2 *2 

Hence dim f^ f£ = t, i.e., 

ftl - q Jl2 q~Mt . 

2 
In particular, dim X22 > 1 + t . 

(by 12d) and therefore 

Since ^ = m - I, we have = m - 1 

X22| > 1 + (m - l)t . 

If t > 1, then by 11 

Let us now prove (c). 

Since |X22| ~ 006 has 

dim X22 = 2, i.e., X22 = 

all inequalities are strict. 

In notations of (b), t = 1, i.e., by (b) | 

by foregoing considerations OL" ~ Xtl 

S . 
m 

X 

1 

22 
> m. 

i.e., 

14. Corollary. Let X = (X„) be a stationary graph. 

(7L(X..) and <?L(X..) are commutative. Then 

Suppose that the algebras 

a) dim X.. < min(dim X.., dim X..) 
ij “ it* JJ 

b) If dim X. . = dim X. . then X.. < X . ., dim X. , < dim X. ,. 
ij xi.’ 1 li1 - JJ? 11 - JJ 

Proof. By the commutativity condition of Ob' = OL(X^^) and 01” = d7l(Xjj), we 

have in notations of 12: rj = 1 and r’^ = 1. Hence by (12e), r^ < 2. If r^ = 2, 
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then )m2 ~ ^Zi 3 ft,' Q TC^, where j = I'(i), k = I"(i). The number of tti 

for which r^ = 2 gives exactly the dimension of 01^ (since ~ ^ 

where f' and f" are unities of OV, 0L") . This proves (a). 

In case (b), we see that each is contained in some YL^ ~ YYL^. Hence 

by (a) and by (12c) (d), we have (b). 

15. Let 01s be a cellular algebra of rank 2 with matrix 

X = 

hi X12 
\ 

X21 X22 / 

Let Ot = (+■) XL., XL ~ X/L } and let IT. be the multiplicity of the irreduc- 

i=l 1 1 ri 1 

ible representation of XL. in the natural representation of OV. Finally let 

u. L 
t i 

V = © © V, , where V.. are defined as in 9. 
1 1 

i=l J=1 
ij 

Theorem (compare [Fr 2]). Let n = | X^ | , r = dim e , 

each i e [1, t] set correspondingly to 12: 

X 
12* 

For 

pi -ri 
if i'(i) = i 

pi 
= 0 if I'd) = i 

qi = rk 
if i"d) = k 

qi = 0 if r'd) = i 

Then 

qi 

q e z 

i 
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Moreover, q - a . a, where a is an algebraic integer. 

Proof of this theorem is analogous to the proof of Theorem 9. 

then 

Let 
12 

s . X. 
i=l l 

Sp(ei n • d(e.), i e [1, r] 

Further, we may assume that the matrices M, . = U e. U_1, i £ fl. rl (see the 
d,m, i i L ’ -1 ' 

proof of Theorem 9) are of the form 

M, 
d,m, l 

* \ ] ?d 

° j ] % 

Since S p^ = r, the matrix A = (a^), constructed as in 9, is a square matrix 

and we have the equality 

N = A' R A . 

Taking the determinants we have 

( 

t 

n 
i=i 

p.q. 

I-1. ) a 
l 

a 

where a = det A. 

It remains to show that a is an algebraic integer. Let us show this. Let 

^ be a direct summand of (JV ; be the intersections of J'fc ^ with 

OV and OV' respectively. 

One can assume that JZ ’ / 0, / 0 since otherwise p, q, = 0. Let V, 
d-’d d d d,i 

be a space of the irreducible representation of Then the matrices from 

and 2ft.” can be brought into the form 
d 
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(* 3 pd 
1 0 o\ 

V °i 
and 

0 

\ 
* 

/ 

respectively. When and are of this form, it is evident from (12a) that 

matrices e|, i = 1, 2,..., r, have the form shown on the preceding page. Let 

^ ^ ^ be the corresponding decomposition of ^ into the orthogonal 

direct sum. Let us choose a basis of V1, . such that all matrices e , e C X,, 
d,i s s 11 

are written as matrices whose entries are algebraic integers (Lemma 8). Let the 

A/ 

corresponding R-module be V' . . 
d, i • 

r 

Put V" . = S R e V' . Then by (12a) K V" = V'J . and if U.) is an 
d,i t=l t d,i J ' d,i d,i i 

R-basis of the R-module ^ (±) ^ then in this basis matrices e^, i e [1, r], 

have algebraic integral entries. From this, our Theorem follows. 

16. Corollary. Let 0^ be a cellular algebra of rank 2 with the matrix 

X = 

X11 X12 

\ X21 X22 / 

Let N. = |X..|, r. = dim X±l + dim X^, and let (e^, i = 1, ..., + r2, be 

the standard basis of OL , n. = d(e.). Then 

rl+r2 

rr2 v2 |—| 
N1 * N2 I. ni 

1=1 
q e Z 

n 
i=l 

M. 
l 

Moreover, q = a • a, where a is an algebraic integer. 

Proof. This is the product of the expressions for X , given by Theorem 9 and for 
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X12J X21 Siven by Theorem 15. 

Remark. Conversely, the main part of Theorem 15 follows from this Corollary and 

Theorem 9. The only point which is not evident is that q = a • H in Theorem 15. 

17. Corollary. Let Xn = dim X = r. Then 

f r \ 

| | j (n - 1) r+ e Z 

1=1 1 / 

Froof. By (13b) p^ / 0 for only two values of i, say for i = 1, 2. Then one 

can assume that 

^i = ^2 = n ” ?i = P2 = 9f = ]-> ^2 = r ” ^ 

Since (n, n - 1) = 1, our assertion follows from 15. 

18. Remark. Let 

/ X X \ I Xu x12 

X = 

\ X2! X22 / 

If X = S and e. is an element of a standard basis of X, e. c X10, then 

evidently e *e^ = X.E+|J.I, i.e., e^ is the matrix of some block- 

design. On the other hand, any symmetric block-design with matrix e can be 

considered as an element of a standard basis of some stationary graph X of rank 2, 

where, in addition, X = X = S . 

This shows that cellular algebras can be considered as generalization of some 

popular combinatorial formations. It is plausible that the theory of block-designs 

could be developed in this direction. In [Hi 3] and [Bo 6], this approach is adopted. 

Let us note in this connection that Theorem 10.2.2 from [Ha 3] coincides with 
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our assertion (14b) . 

19. Example. Let Xn = X22 S7, e;L = E? <= X^, e2 = I-, c X^ e3 = E7 c X22, 

e4 = ^7 C X22‘ 

Let e^ be the incidence matrix of the projective plane of order 7, 

= X7 - e7 = eA eR = eA Setting X12 = x5 e5 + xg efi, X^ = *7 e? + xg eg) 
'6 “ 7 5’ 7 “ 5* 8 ~ 6 

we see that 

X = 

X11 X12 

\ X21 X22 / 

is the matrix of a cellular algebra CV of rank 2. Evidently, 

■ — J7X-2> where the multiplicity of the irreducible representation of one of 

these summands (say of the first) is equal to unity,and that of the second is six. 

Let us write the elements a of &U in the form 

a -> 

/ a /b b \ 
11 12 

© 

11 12 

a b b 

\ 21 
22 / 

\ 21 
22 j 

:e the projections of a onto Yl i and 

in an appropriate basis. (That is, the matrices M, . have the above form.) We 
d,m,i ' 

have 

/1 o\ 

61—^ Q 

°l 

o \ 

A 0^ 
/6 

o\ 

, e — -J > 2 

\° °l \° 7 

\° 1 / 

@ 

/ ° 0^ 

\° ll 

© 

o\ 

\° 61 
© 

/-! o\ 

° °/ 

o o\ 

\0 -1/ 
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0 

\ /o 1 
© 

/ 0 

> c6 ^ 

\ 
\ 0 / 

/@ \ * 01 
> e8 ^ 

\ 

4 

0 

0 

0 

\ 

/ 

\ 

/ 

0 

0 

0 

y 

y 

o 

o 

o 

Let C be a primitive 7-th root of unity. Then we can assume 

x = c + c2 + c4 

Since e,_ + e^ e y = -x. In addition x • x = 2. 

Let us construct the matrix Z = (a?) (cf, 9 and 15). 

4 - 4 
We have det A = (-7) • (-7) • (-7x) • (-7x) =7 • x • x = 7 • 2, det = -7, 

det A2 = -7 (cf. 15). 

According to the proofs of Theorem 15, we have 

det A • det A 78 • 4 

= 7 

- - 2 2 
det A• det A^ • det A^ • det A2 7*7 

4 
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I 

Thus (compare 15), 

r 
n 

M. 
1 

ql 

2 € Z 

20. Example. Let CL be a three-dimensional cell, e^ = E , e^, e^ be its 

standard basis. Suppose we have e= e^. We can write 

e2 = a. E + b. e. + c.(I - e,) 
l in li in l 

This shows that e^, i = 1,2 are strongly regular graphs (cf. Section T and 

[Se 3]). Strongly regular graphs and, among other things, their spectral 

properties were intensively studied. The most striking result in this direction 

is contained in [Ca 2], 

A geometric study of strongly regular graphs was strongly influenced by [Bo 2], 

[Bo 5], Strongly regular graphs were also used to construct several sporadic groups 

[Hi 7], [Ti 1]. 

Below we shall consider three-dimensional cells from the point of view of this 

Section (cf. also [Hi 1]). In Section U, one can find examples of such cells. 

Let us write 

el = ni fQ + a fL + b f2 

e2 = n2 f0 + a' fl + b' f2 

where 
£ 

= fi, fi fj = 0 for i 4 j, are orthogonal idempotents of &L, and 

SP f0 = 

|d. = Sp f. 
1 1 

1. Set 
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Then we have |i^ + U = n - 1. 

From e0 + ex + e2 = In v7e conclude that a' = - a - 1, b' = - b - 1. 

Note that a ^ b since otherwise we would have e^ = n^ + a(f^ + f ), 

2 2 2 
whence e, = n, f_ + a (f, + f_) = c, E + c„ I , a contradiction with the assumption 

110 101n2rr 

that dim 0L= 3. We have 

Sp e = 0 = n^ 4- a U + b 

From this equality, and from + j-l = n - 1, we deduce 

n^ + b(n - 1) nt + a^n " ^ 

We have next 

f0 + a2 q + b; 

On the other hand 

el " nl e0 + ail 61 + aH 62 _ ni(f0 + fl + f2) 

+ a^1(n1 fQ + a fx + b f2) + a^O^ fQ - (a + 1)^ - (b + 1) f2> . 

Combining the two preceding expressions for e^, we get the following equation for 

a and b: 

2 
x 

nl + (all 

2 . 
ail)X 

whence 



96 

x 

(a 
11 

- au) ± 
11 

2 2 
- au) + •2u> 

2 

(**) 

This gives us (since a l b): 

ab 

a + b 

a - b 

+ a 
2 

11 

2 ,2 , 

all} + 
4(n, ) 

i 

Substituting this into the expression 

(a - b) 
2 n1 + (a + b)n^(n - 1) + ab(n - 1)' 

(a M- h-i 

obtained by the multiplication of the two right-hand parts of (*), we get 

(a - b)‘ 

n n^ n2 

la li 
1 2 

(***) 

which should be compared with the expression of Theorem 9. 

Let us note that a, b are algebraic integers. If a, b e Z, we must have 

1 2 2 2 2 
(ail " all} + 4(nl " all} = d > d e 

Otherwise, let a, b <t Z. Let a be the nontrivial automorphism of <5J)(a) over 

a 
Q. Since we have e^ = e^, we must have 

^1 = ^2’ b = a 
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Therefore, H = H = —— 
’ 1 2 2 

Therefore, 2|(n - 1) and from (***), we conclude that 

But this implies that n^ = ——^, whence 

(a - b)2 = n . 

Hence 

a = m + b = m + 

This,together with the expression for Sp e^, gives us 

m 
2 

that is, 

a 

Now apply the expression 

ab = - n + a 
2 
11 

and get 

- nx + au 

4 
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which gives us 

n - 1 

4|n - 1, a 

11 

Summarizing, we have the following 

Assertion. If 0V is a three-dimensional cell of degree n with the standard basis 

60 “ V V 62 

and if e\ = e., then e 
l i7 ither n = 4q + 1, nL = n2 = 2q, = q. 

i) (aj, - a^)2 + 4(n^ - a^) = d2, d e Z, 

(all “ all) - d 
ii) The eigenvalues of a^ are a^ = -^- , i = 1, 2, and n^ with 

the multiplicities 
lnj + aj(n - 1) 

and 1 respectively. 



M. SOME MODIFICATIONS OF STABILIZATION. 

1. This Section is the first where we are concerned with algorithmic questions. It 

can be considered as a setting of a stage for the treatment of such questions. The 

procedure of stabilization described in Section C is insufficient for a description 

of algorithms (but more convenient for aims of Sections D-L). We describe here a 

modification which makes use of the order of the elements of the adjacency matrix of 

a graph. Some additional modifications are also given. The methods described below 

are used in Sections N, 0, R. 

2. Correspondence: geometrical graph-matrix whose entries are independent variables 

2.1. Definition. Let A = (a_) be a (n X n)-matrix whose elements belong to a 

partially ordered set M. The order in M is denoted by > , < . If, for a,b e M, 

the order is not defined, we write a > b, b > a. If a £ b, a > b, b a, we write 

a > b. We assume that the partial order on M satisfies the following condition: 

If a > b, b > c, c > b, then a > c. (This is, in particular, a justification 

of our notation a > b, b > a for a pair with undefined order.) 

Since this condition is preserved throughout all our actions on graphs, we 

assume henceforth without mentioning that all partially ordered sets satisfy this 

condition. 

Let X(A) = (x..) be a graph (in the sense of Cl) defined by 

a) x. . = x, , if and only if a . . = a ; 
' ii kk n kk 

b) x . > x, , if and only if a.. > a ; 
n ~ kk n kk 

c) x > x , for all i and all k / d; 
ii kd 

d) x = xkd, i / j, k / d, if and only if a_ = a^; 

e) x.j > xkd, i / j, k / d, if and only if a_ > a^; 

f) The variables entering in X(A) are numbered from 1 to dim X(A), and this 

numeration agrees as far as possible with the partial order of the variables, that is, 
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if x = x , x, , = x , x >x, then t > s. 
ij t’ kd s’ t s’ 

2.2. If A , A , ..., A are matrices with entries from M, we set X(At) = (x ) 
12m ^ 

and define 

x(a n ... n a ) = (x ) 
1 m ij 

in the following manner 

a) x . . 
IJ 

T3 

X
 

II if and only if x*". = xf, for all 
ij kd 

b) X . . 
IJ ^\d 

if and only if 
/l m v . / 
(Xy, •••, X^) > <x: 

c) The same as in (2.If). 

m . x, ,); 
kd' 

This construction is used for instance in N 3.3 and in 0 4.9, 4.11. 

2.3. If M is a linearly ordered set, e.g. ft, 2, then the variables of the matrix 

X(A) are linearly ordered. 

If A is the adjacency matrix of a simple geometrical graph, then M = [0, l] 

and M is a linearly ordered set (1 > 0). Thus, the variables of X(A) are 

linearly ordered in this case. 

Such an approach can turn helpful when one uses cellular algebras not only for 

the study of graphs, but also for the study of orbits of Sym(n) on V (^)V , where 

V is a module over a ring (cf. AE 1.2)c 

3. Stabilization 

3.1. Let X be a graph whose variables x^ are partially ordered. Let us define a 

partial order of monomials of degree 2 on in the following manner. (Recall that 

independent variables do not commute, cf., C 1.) Set x. x. > x x if and only if 
l j s t 

x. > x or x. < x , x. > x^. 
l ~ s l — s j — t 

Let us extend this partial order lexicographically to all homogeneous polynomials 

of degree 2. Let us further choose two additional variables X and (_L, and assume 

that \ > |j,, and that both X and |j are strictly greater than all variables x^. 
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3.2. Define the graph X <> X = (y ) 

a) y. . = y, , if and only if 
ij kd 

+ X x + M- x 
kd dk 

b) y. . > y, , if and only if 
ij ~ kd 

+ 1 x + |l x ; 
kd dk 

as follows (compare C 4): 

£ x. x.+X.x..+M-x..=£ x, x, 
r lr rj ij ji r kr rd 

£ x x.+^x..+Hx..>£ x, x, 
r lr rj ij ji ~ r kr rd 

c) the variables of X o X are numbered from 1 to dim X, and this numera¬ 

tion agrees with the order of the variables of X ° X (in the sense of 2. If). 

% 

Set X° = X, X1+1 = X1® X1. If dim X1"1 < dim X1 = dim X1+1, we call X1 

the stabilization of X and write Stab X = X1. 

3.3. Remarks. If the variables of X are linearly ordered, then the variables of 

Stab X are also linearly ordered. The need to use this operation also for partially 

ordered variables arises, for example, in the study of the kernel (cf. next Section). 

3.4. Lemma. One has Stab(0 X a'1) = a(Stab X)0_1 for 0 g Sym V(X). 

Proof. Evident. 

4. Simultaneous stabilization 

4.1. It is possible that the stabilizations Stab X and Stab Y of two graphs X 

and Y contain the same variables which have the same order. For instance, if the 

variables of X and Y are linearly ordered, our assumption implies only that 

dim Stab X = dim Stab Y. In this case, the coincidence of variables of Stab X and 

Stab Y does not imply that those variables have the same origin. In some cases, 

however, it is convenient to secure that the "history" (or "genealogy") of equally 

named variables would be the same. The corresponding definitions are given below. 

4 2 Let [a^, ..., A } be an ordered set of (n X n)-matrices whose entries lie in 

a partially ordered set M, Ag = (a® ) . We shall denote by dimU^ ..., A^ the 

number of different entries of these matrices. Define the set of graphs 

X(A1,...,Am) = where Xg = (xf.) by 
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a) x?. = xf, if and only if aS. = a*" , s, te [1, m] , i, ke [1, n]; 
li kk ii kk 

b) xS. > xf, if and only if aS. > a*" , s, te [1, m] , i, ke [1, n]; 
ii - kk n - kk7 

c) > x^ for all s, t e [1, m], all i, k, d e [1, m], k / d; 

„ s t 
d) x.. = x , 

lj kd’ 

s t 
i ^ j, k / d, if and only if a = a^, s, t e [1, m]; 

e) x® > x^d, i / j, k t d, if and only if a®. > a£d, s, t e [1, m] 
ij - kd* 

f) the variables of XCA^, Am) are numbered from 1 to'dim X(A^, ..., Am), 
* 

and this numeration agrees with the order of the variables (cf. 2.If). 

4 

4.3. Let (x., .... X } be an ordered set of graphs of the same degree n, whose 
1 m 

variables are partially ordered. 

Set {x , .... X } = [X.}° and if [x.}q = {Y.}, Y. = (xt.), then define 
1 m l l i t ij 

{x.}q+1 = {Z.}, Zt = (zj ), by 

a) z^. = zf, if and only if 2 xt x~ . + A. . + |J. xf. = 2 xf 
ij kd y r lr rj ij ji r k 

s s 
x 

r r 

+ x\d + [1 xdk; 

b) zf. > zf if and only if £ xf xfc. + X xfc. + M- xf. > 2 xf xS 
ij — k r lr rj ij ji — r kr rd 

+ X\d + [1 Xdk; 

c) the variables of {X^}^"1’1' are numbered from 1 to dim {X.}^'1", etc. (see 2. If) 
q+l 

If dim{x.}q ^ < dim{x.}q+'*" = dim{x.}q, we say that (x.}q is the simultane 
1 1 1 7 1 - 

stabilization of X and write Stabfx } = [X }q 
- l l i 

4.4. Proposition. Let [X.} be a set of graphs of the same degree and 

Stab{X^} = {x^}. If X^ and X^ have the same composition, X^ = 2.^ ef, 

X^ = xi then the identity map of I into itself is a weak equivalency of 

X, and X,. 
k d 

ous 

Proof. Let et • efc = 2 aCf e1". If a*fs / ads for some triple (s. i. ij then 
- l j s ij s ij ij t- \ > J/ 

by the definition of the simultaneous stabilization, X, and X would have 
k d 

different composition (cf. 4.3a). 
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4.5. Lemma. 

Stab{c. X a' 
1 1 

Proof. 

Let £x_^} be a set of graphs of the same degree n. One has 

1} = [cXCStab X.)0“1} for ... e Sp n. 

Evident. 



N. KERNELS AND STABILITY WITH RESPECT TO KERNELS. 

The constructions of this Section are motivated by permutation group theory. 

Explicitly, consider a permutation group G acting on the set X. Let Y be one 

of the orbits of G. Let Gy be the pointwise stabilizer of the points of Y in G. 

In this situation, the construction of this Section aims at the description of y 

in terms of ^(G, x) (cf. Section F). This shows the importance of taking kernels. 

We do not use this operation in the algorithm of Section R. However, it can be 

used, at least at heuristical level. 

t 

1. Let X be a stationary graph. It is convenient to assume in this Section that 

the variables of X are linearly ordered. For instance, this order can be chosen arbit¬ 

rary. Let us, however, not that the algorithm (cf. M 2) which constructs for a 

geometrical graph T the corresponding stationary graph Stab X(P), leads just to a 

stationary graph with linearly ordered variables. 

2. Definition of the kernel of X on W 

Let X = (X„) = (xmn) = ^ Xi ei be a stationary graph, and let the be 

linearly ordered. Let W = U V(X ). 
igJ ii 

Let X = (x ) be the graph obtained from X by substituting for all x , 
pq qq 

q e W, the new variables y^ where 

a) x / x for all p ^ q e W; 
pp qq 

b) *qr > Xts if and °nly lf Xqr > Xts> t’ s> ^ r G v(x)• 

Thus the variables of X are partially ordered. Let us note (and this is import¬ 

ant) that for the variables x and x , p / qtV(X, , )CW, the order is not defined. 
pp qq ii 

Set 

*W(X) = Stab X 

This matrix is called the kernel of X on W. 



105 

2.1. Proposition. Aut H (X) = {g e Aut X : g|w = l] (whence the name "kernel"). 

Proof. The right-hand side evidently contains the left-hand side. The opposite 

inclusion follows by C 8.2 and by the evident equality: Aut X = {g e Aut X : g|w = 1}. 

2.2. Remark. Xy(X) Is equivalent to the stabilization of the intersection (in the 

sense of M 2.2) of the graphs \^(X), i 6 W, cf. next Section. 

2.3. Remark. Geometrically the construction of the kernel with respect to W means 

that we assign to all vertices from W pairwise different colors (and different 

from the colors already used in X). Clearly in this approach we cannot set any invar¬ 

iant order on the vertices of W. So we are forced to assume that the new colors are 

not ordered. After this repainting, we stabilize the new graph. The next undertaking 

(cf. Subsection 3, below) consists in finding whether some of the vertices or edges 

which were indistinguishable in the original graph behave differently in the kernel. 

If they behave differently, we can invariantly introduce new colors in X itself. 

3. Definition of the stabilization with respect to kernel 

3.1. Let us write X > X^ if the greatest variable of X„ is greater than the 

greatest variable of X^. Let \(X) = Y = (Ypq)p^qeI = S V± V 

Let I = [p : Y cX ,] and denote by n the partition I = (J I• • Let 
i PP i 

^i,n (Yp,q} be the V6Ct0rS defined in E 6* Set Vpq = (M2,n (V> ^2,n (V' Ml(Ypq>)* 

3.2. Let us define a partial order of the blocks Y . The conditions of the 
pq 

ordering are written down in the order of priority. 

cO Y ci X , Y c x, , , i: E X . > X. , then Y > Y ; ° / 
pq ij St kd ij kd pq st 

b) if V > V then Y > Y 
pq St pq st; 

c) if Y > Y then Y > Y for all r. s; 
pp qq Pr qs 

d) if Y > Y then Y > Y for all r, s. 

pp qq rp sq 

If these conditions did not determine an order among Y and Y^g, we shall 

write Y ~ Y . 
pq _ rs 
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3.3. Let us define a partial order of f^'s. The conditions are 

order of priority. 

a) f. cz e , f. c e i 
1 r j t 

if x > x then f. > f.; 
r t i j 

b) f c Y , f. c Y if Y > Y then f. > f.; 
i pq j st pq st i j 

c) let Xt = Stab X(f.. fl X) (cf. L 2.2) if X^ > X^ then 

If these conditions do not determine an order among f^ and f 

f. ~ f.. 

written in the 

f. > f.. 
i J 

, we shall write 

1 ~ J 

Remark. Clearly (c) is stronger than (a). (a) is included here to make references 

more convenient. 

3.4. Let 'l = f.. Let K be a set of indices such that 'f. £ f. for any 
l fj_S fi J i J 

i i- j e K, and such that for every f^ there exists j 6 K such that f^ = fj. It is 

evident that If (~1 If. / 0 implies f\ = ~f.. Hence f. fl f. = 0 for all i / j e K. 
r J 1 J 1 J 

Set X = L xf f and x. > x. if f. > f., i, j e K. Put 
ieK i i i j i 3 

pT7(X) = Stab X 
W 

We shall call this matrix the stabilization of X with respect to the kernel on W. 

By the remarks in the beginning of this section, p^(X) is the matrix with 

linearly ordered variables. 

3.5. Proposition. The graph Py(x) is defined invariantly, i.e., if g e Sym V(X) 

then PgW(g x g 1) = g(Pw(x))g 1. 

Proof. Evident. 

3.6. Proposition. Aut X = Aut p (X). 
w 

Proof. Evident. 

4. Definition and properties of stable graphs 

4.1. We say that X is stable with respect to the kernel on W if 
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dim X = dim PW(X) , (that is, if X and P (X) are equivalent). If m = rt 

and if for all Y ClX.. one has |Y 
PP n 1 pp 

r, then we say that K„ decomposes X 
W -- ii 

into t (equal) parts of degrees r. If t = m, we say that H. splits X . and 
W. - ii' 

if t = 1) we say that K. does not decompose X... 
W -c- It 

4*2. Proposition. Let a stationary graph X be stable with respect to the kernel 

=» w, Y - VX) ■ <V = E V £„* X - <Xlf ■ Z \ V 

a) If Y , Y c X. ., then Y ~ Y . In particular*, |Y I = IY I , 
pp" qq ll’ pp - qq * ■> ' pp1 1 qq1' 

dim Y = dim Y , n(Y ) = U n(Y ); 
pp qq' 2,it pP' 2,nv qq'’ 

b) {v(Y )}„ _ is an imprimitivity system for X : 
pp Y cX. . e ii’ 

PP ii 

c) If f . f c e then f ~ f and e = ”f . 
s tr s t rs 

In particular d(f^) = ^(f^), and natural weak equivalency of Ol*(f H X) and 

0V(f^ H X) is well-defined. 

Proof. (a) and (c) follow directly from the condition of the stability of X and 

from 3.2, 3.3. 

Let us prove (b). Let Y c X.f. c Y . By 3.2a,b, if f. ~ f. then 
r pp n' i pp ' ' j — l 

f c Y , Y ~ Y . Hence, f. c diag (Y )„ .. . In particular, f. is dis 
j qq' qq - pp ' i 6 pp YppCX^ r i 

connected. The set of vertices of the connected components of f. 
fi^PP 1 

coincides with sets V(Y ), whence (b). 
PP 

4.3. Corollary. Let X be as in 4.2. If the cell X is primitive, 

then either H splits X.. or H does not decompose X... 
LJ L i 1 iai * 1 1 W 

Proof. Since in a primitive cell all normal subcells are trivial ones, it follows 

from 4.2b that |Ypp| =1 or |Ypp|=|X..| for any Ypp c X... Q.E.D. 

4.4. Lemma. Let X be as in 4.2, X = (X^).^^. Let I = ^ U I£ where 

splits X i e I., and k does not decompose X.., i e I„. 
*■ -W ll z 

= X1©X2 “he” Xt - <Vl,jel 

Then 
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Proof. We must show that X.. = const, i e I. . i e I„« We may 
- ij > l’ 2 

assume that W = U. 
i£ 

I V(X.t), W = [1, r]. Set Y = (Ypq). Clearly, Y. 
pq 

is a 

row of length |Y I for any p e [1, r]. Let q > r, V(X..) = V(Y ). If 
° 1 qq1 J r ’ ' u qq qq 

p e V(X..), j e I., then it follows by the previous remarks that X„ contains a 
J J J- J 

constant row, namely Y . This means that X.. = const. Q.E.D. 
' pq n 

4.5. Corollary. Let X be as in 4.2. X = (X..). . ,. Suppose that cells X.., 
-*• ’ ij i,jel li 

lei., are primitive and set J = I-I, ,W = U. V(X..), Then either H 
1' 1' i£J n W 

splits X or X = X^© X2 for appropriate X^ and X^. 

Proof is obtained by successive application of 4.3 and 4.4. 

< 

5. Variants 

5.1. Many of the constructions given in this Section can be strengthened. Such 

constructions were not introduced above because we know of no assertion which uses 

their full power. Actually, Proposition 4.2 (which also does not use all given 

constructions) is completely sufficient for our purposes. 

5.2. 'ft(X). It is possible to consider instead of H(X) the matrix (X) 
W W W 

which is defined in the following manner: 

Let W = [i e V(H^(X)) : 3 p, V(Ypp) = In the matrix X, replace the 

submatrix (x„)^ jev(X)-W by the corresPonding sub¬ 

matrix of ^(X). Call the obtained matrix X, and put ^(X) = Stab X. The 

constructions of Subsection 3 are easily carried over to this case. In 

general, ^(X) 8ives more information than ^(X) since the restriction of 

on W may be non-split. 

Vx> 

5.3. Strengthening of 3,2 and 3.3. The methods can be strengthened by repetition up 

to stabilization. It is possible, moreover, to consider stronger invariants (cf., 

e.g., E 6.3) in place of U n(Y ) and U (Y ). 
2,U pq 1 pq 

5.4. Strengthening of PW(X). Instead of stabilization with respect to ^(X), it 

is possible to stabilize with respect to all matrices which arise from X (cf. 2) in 
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the process of its stabilization cf. M 2). This method may lead to stronger 

conditions. 

6. Examples 

6.1. I do not have examples where p^(X) ^ X. 

6.2. Consider the graph 

X y z u u V V w w 

z X y V V w w u u 

y z X w w u u V V 

a b c p q r s m n 

a b c q p s r n m 

b c a m n P q r s 

b c a n m q P s r 

c a b r s m n P q 

c a b s r n m q P 

Take W = [l, 2, 3}. Then 

There is no order relation inside the following groups of the variables (x^, x^, x^), 

(x2, x6, x?), (x3, x4, xg) (yp y6, yg) (y2, y4, yg), (y3, y5, yy), (vp v4, v5>, 

(v2, Vg, Vg), (up u^) > (u2> u3> u6^ > &2’ a3^ ’ ^i» ^2’ ^3^’ ^zl* Z5’ ZS? ’ 

(z2’ Z6’ Zl)’ (Z3’ V Z8)< 
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We have 

VX) = X 

6.3. In this example we use the constructions of G 4 and J 4.3. Let Y^, .■■> Y^ be 

naturally weakly isomorphic cells of degree m, and let Z be a cell of degree n. 

Set 

XU = <V Vwr z 

Then by G 4.4, X^ has a normal subcell & such that ~ Z. Using J 4.3 

we can construct 

X = 

xoo X01 

10 ^ / 

where X, 
00 Z and X0l~x E.Ol^ + yT,©!^. Set W = V(X00) . 

Then k (X) = Kn(xnn) © ©n_, where the Y.'s have disjoint composition but 
w w uu 1=1 i 

Y. ~Y.. Of course. HTT(X._.) is split. We have 
li W 00 

Pw(x> = x 



0. DEEP STABILIZATION. 

1. Examples (cf., e.g., Section U) show that Stab X is a good, but insufficient in¬ 

variant of X. To make this invariant more powerful we apply deep stabilization. 

There are several ways to introduce deep stabilization. We discuss here in more-or- 

less detail one approach (others are briefly discussed at the end of this Section, 

cf. also Section AD). 

The construction described below is modeled on permutation groups. Let G be 

a group of permutations of a set V, and x a point of V. How can one describe 

V) ? Our graphs A. (X) are analogues of X( (G , V)) 
X X 

The construction of this Section is used in the description of the algorithm of 

Section R. This latter algorithm uses stabilization not only with respect to 

{^(X)}, but also with respect to more refined daughter systems (e.g., with respect 

to lX-m(X)} stabilized up to depth k). This forces us to consider general 

daughter systems (cf. 3.1 below). 

2. Invariant algorithms 

2.1. Let be the set of graphs and be an algorithm on graphs, i.e., a 

(computable) function from X. into . 

An algorithm >/T is called invariant if for every substitution 0 of the set 

of vertices of X e ^ one has 

^(O x o"1) = o(j?'(x))a"1. 

^ is called correct on X if OXO^sTXT1 implies 

J=C(a x a-1) = J({t x t'1). 

Lemma. An algorithm J~( is correct on X if and only if it is invariant with 

respect to all O e Aut X, i.e., if 

^(axo'1) = -/f(X) for a e Aut X . 
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Proof. Evident. 

2.2. The algorithm X—> Stab X is invariant, cf. C 8.2, M 3.4. 

2.3. It is possible also to define invariant algorithms from into 

X X % X ... X %. Below, such an algorithm is considered, and it is shown how 

to use it to construct an invariant algorithm from into 36" > which is stronger 

than Stab. 

3. Daughter systems. Systems {X^(X)} 

3.1. Let X = (X..) be a stationary graph, W = V(Xtt). A system of stationary 
ij 

graphs {x ] ^ is called a daughter system of X with respect to W. We write 

{X.} = DW(X). 

Let J-(. be an algorithm which constructs for the pair consisting of the station¬ 

ary graph X = (X„) and the set W = V(Xt(_), a daughter system D^(X) = {X.}itW • 

J~C is called invariant if (O X O 1 = fCT X_-l,., O _ for all 
- ' L c (i) a(i)ea(w) 

a e Sym V(X), 

The corresponding daughter system D (X) is then said to be defined 
w 

invariantly. 

3.2. The principal example of a daughter system which is used below is the system 

l> (X)} . 
m m£W 

Let X = (x..) and take m £ W. Let X = (x .) be the graph defined in 
ij m mij 6 ^ 

the following manner. Let y be a new variable, y > x for all i.i. Set 
ij ’ 

x .. = x.. if i/m or i^m,x =y. 
mij ij J ’ mmm J 

Now set (cf. M 4.2, 4.3) {X- (X)} = Stab[x } (simultaneous stabilization). 
m m meW 

We say that X^(X) is obtained from X by deleting the m-th row (column). 

If JZ is an invariant algorithm on graphs, then [A(\ (X))} also is an 
m mew 

example of an invariantly defined daughter system. 

3.2.1 Let us note that if the variables of X are linearly ordered, then the vari¬ 

ables of all graphs \^(X) are linearly ordered. 

3.2.2. Geometrically, X.(X) is the graph obtained from X in the following way. 
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Choose a new color (which is not used in X), paint the i-th vertex of X in this 

color, and then stabilize. 

3.3. Lemma. Aut X^(X) = (Aut X) ( = the stationary group in Aut X of the point 

m) . 

Proof. The inclusion (Aut X)^ 3 Aut X^(X) follows from the definition of \^(X). 

The reverse inclusion follows by C 10 from the obvious equality 

(Aut X) = Aut X 
m m 

where X is as in 3.2. 
m 

3.4 Theorem, a) Let t £ Sym V(X) be an isomorphism of X (X) on X (X). Then 
t s 

T e Aut X and T t = s. 

b) If T e Aut X, t, s £ W, T t = s, then T is an isomorphism of X^_(x) on 

X (X). 
s 

Proof. (b) is evident. Let us prove (a). We must show that T ^ X T = X. Let 

X = (x..), X (X) = (y..), X (X) = (z..). Note that by the properties of the 
lj t ij s LJ 

simultaneous stabilization, the equality y.. = z, , implies equality x..= x, ,. 
7 lj kl lj kl 

-1 
Since T X (X) T = X (X), we have z . = y. . for all i,j. By the above 

t s ’ Tl,Tj lj 7 

remark, it follows that x_. = x... 
* Tl,Tj lj 

Q.E.D. 

3.5. Theorem. Suppose that a partition W = U W. is such that p, q e W^ if and 

only if X (X) and X^(X) have equal composition. If X^(X) = R f°r all p e W^, 

then W is an orbit of the group Aut X and Aut X acts on W faithfully and 
m m 

fixed-point-free. 

Proof. By 3.4b, Aut X preserves W . By 3.4a and E 5.6, Aut X is transitive on 
- J ’ m 

W . The last assertion follows from 3.3 by the condition X (X) = R for all 
m P 

3.6. Remark. In the case when X = (G, V), G a permutation group of V, I do 
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not know whether X^(X) = X(^j V)) (although one has 3.3). 

4. Stabilization with respect to the system {X (X)} ^ 

4.1. Define X = (x_) in the following manner: 

for i 4 j; 

for i i W; 

for all (k, d) 4 (j, j), j e W; 

for i, j e W if and only if X,(X) and X (X) have equal 

for i, j £ W if and only if X^(X) > X (X) (comparison in the 

sense of composition of matrices); 

f) Cf. M 2.If. 

Set 

a) x.. = x 
iJ iJ 

b) x.. = x. . 
li li 

c) x > x 
li kd 

d) x.. = x . . 
n JJ 

composition; 

e) x . . > x . . 
li JJ 

Gi,w(x) = stab X 

Remark. Even if dim (X) = dim X it is possible that 0 (X) / X. However, 
1,W ’ 

Q_ T7(X) ~ X in this case. 
1 jW 

4.2. Lemma, a) The algorithm X—^ C, (X) is invariant, i.e., 
1,W ’ ’ 

CT1,W(T x T_1) = T(01,W(X))T"1 for T e Sym v(x); 

b) Aut X = Aut 0 (X). 
JL y W 

Proof. (a) is evident; (b) follows from (a). 

4.3. Lemma. If X~0 (X) and X.(X) = E Y. f ^ , then I = I for all 
i J£I1 J J ’ i j 

i, j £ W and the identity map 1^-I is a natural weak equivalency. 

Proof. The first assertion follows directly from 4.ld,e. The second one follows from 

the first and from the fact that the X^(X) are obtained by simultaneous stabiliza- 
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tion (cf. M 4.4). 

4.4. Suppose that the entries of the graph X belong to a linearly ordered set of 
n 

variables. Assume a T7(X) ~.X. Let X, (X) = S y f(k). Put 
k i=l 1 i 

f. 
i 

E 
keW 

Let f. = 

disjoint 

has a. . 
ij 

m. 
l 

^ i a,. ^ S.., where a., e Z, a.. >0. a >a and where g 
j=i ij ij7 lj - ’ lj ij ij+l Bij 

1)-matrices. (That is, g has ones at those positions where 

and g.. has zeroes otherwise.) Set (cf. M 2.2) 

are 

£. 
L 

W(X) = Stab X(gn 
3lm, =nl nmn 

4.5. Lemma. Suppose that the entries of X are linearly ordered and XmC, rl(X). 
1} W 

a) The algorithm X-> O (X) is invariant; 
Z y W 

b) Aut X = Aut a2 W(X). 

Proof. See 4.2. 

4.6. Remark. The stability with respect to O O is usually sufficient 
1 y \a/ Z y Vv 

to prove theorems. Actually we use only Theorem 4.7 below. We give, however, in 

4.9, 4.10, some additional operations. Geometrically, all these operations of 

stabilization can be described as follows. Each set V(X^) and each graph e 

fall into pieces in each ^(X). If there is a difference in the coloration of these 

pieces for different m, then it gives rise to a difference of the corresponding 

vertices. They should, therefore, be repainted in different colors (this is ^). 

If different pieces of e^ behave differently with respect to the family [A^(X)}, 

we can repaint edges of e. (this is 0 ). And so forth. 
J 2, w 

4.7. Theorem. Let X = (X_) be a stationary graph with linearly ordered entries, 
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W = v(xtt), X 
V® ~ °2,W<X> 

X = 

n 

& 
x. 

l 

a) if f° 
l 

Let X = .11 x. e X. (X) = y"* = £ y. ffm) = (Y™ ) . Then 
i=l i i* m 1=1 l i ij 

a) If fl e ^ 0, then £, f^ = a. e where a is the product of 
l r ’ mEW i i r l 

|W | by the number of ones in f^ (for any m) divided by the number of ones in 

b) Let e. <=Xpt, d=d(e.), and let r^, be the numbers of those 

positions of the m-th row of e. where ones stand. Then there exists j such that 

for all m e W one has V(Ym.) = {r. , ..., r }. In particular, 
JJ l,m d,m . 

m \ 
c) rg Y = £ dim X . 

Y-• = d. 
1 JJ 1 

it 

Proof. By the definition of the simultaneous stabilization, f^ ^ H e^_ / 0 implies 

f(q) 
l 

for all q e W. By stability with respect to w, f^ a. e . 
l r 

The equality between a. and the number asserted in Part (a) of the theorem 

is easily verified. 

Let us prove (b). Define s by the condition Y™ = (y ). Take f^m^C Ym. 
r ss mm q sj 

and assume f^ He. / 0. Then £ f^m^ = a e.. 
q l meW q q l 

However, every non-zero entry of every matrix f 
(m) 

is contained in the m-th 

row. By the condition c e_ (which follows from n e. / 0) one has 
q — 1 q i 

d(f(m)) < d(e.) = d. Now (a) implies that a <1, hence a =1. But then 
q — l q ~ ’ q 

d(f(m)) _ that is 
q l ’ 

|Ym.| = d(f(m)) = d(e.) 
1 JJ1 q i 

Let us now deduce (c) from (b). By (b) for any e^ c U X^t, there exists 

j = j(i) satisfying the conditions of (b). In particular, the equality j(i) = j(r) 

implies i = r. Since E|Y.,| = 

6iCl\t 'r 

d(e ) = |X|, (c) follows. 

4.8. Corollary. Under the conditions of 4.7, the blocks Y*!\ of the graph \ (X) 

can be numbered by the numbers of those e. which lie in IJ X, 
i R kt 

Proof follows directly from (b) and (c), cf. also the end of the proof of Theorem 4.7. 

4.9. Suppose that the variables of a stationary graph X are linearly ordered and 
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X~ai,W(X)~G2,W(X)* Let 

f>_(X)} = Stab{X.(X) 0 X X)} 

(.simultaneous stabilization). Define the graph X = (x„) in the following manner. 

a) x. . = X for (i 

b) x . . 
11 

= X 
ii 

for all 

c) x. . V
 

r
t 

if (i-i 

d) x . . II 

rt
 for pair (x.., 

rj 

composition of X (X)) coincides with the pair (x , composition of X (X)). 
kt let 

e) x^j > xkt j f°r i, 3) k, t e W, i i j, k 4 t, if and only if the 

(x_, composition of X_(X)) > the pair (x^, composition of X (X)). 

pair 

Set CT (X) = Stab X. 
i } W 

4.10. Lemma. Suppose that X — O (X) ~ 0 (X). Then 
i,W 2,W 

a) The algorithm X-^(X) is invariant. 

b) Aut x = Aut a3 w(x). 

Proof. Evident. 

4.11. Suppose that the variables of a stationary graph X are linearly ordered and 

(p,q) that X ~ a. TJ(X) ~ a (X) ~ a (X). Let X (X) = Z z. fv 
1,W 2,W 3,W pq li 

(recall W = V(X )). Set 

Take e c X 
r tt 

Y. = , . S f f(P^) 
i,r (p,q) an edge of i 

Let 
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f. 

m(i,r) 

S 
j = l 

a. . 
irj gir j 

where a . . > a 
ir J 

. . .., a . . > 0 g. - 
irj+1’ irj 7 irj 

= stab x(gul n ... n 

(0, 1)-matrix. 

8llm(l,l) 0 *'* 

Set 

^n,d,m(n,d) 

where d = dim X . 

4.12. Lemma. Let X ~ W(X) ~ °2 w® ~ °3 W^X"** 

a) The algorithm X-> O (X) is defined invariantly. 
4 j W 

b) Aut X = Aut ^(X) . 

Proof. Evident. 

4.13. Definitions. Let X be a stationary graph whose variables are linearly 

ordered. We say that X is stable of depth 1 (or simply. X has depth 1) with 

respect to W = V(X ), if 

v® °2,W<X> V(x) V® 

We say that X has depth 1 with respect to W = Wj V(X^) if X has depth 1 

with respect to every V(X ), t e J. We say that X has depth 1 if it has depth 

1 with respect to V(X). 

5. Comments on the definition of stabilization 

5.1. For an arbitrary daughter system Dw(x) = [Y1, ..., Ym], let us set 

DI7 = StabtY1} = {y.}. Then the operations C. „ can be easily defined (one should 
W l l, W 

substitute X (X) by Y1 in the corresponding definitions). The Lemmas 4.2, 4.5, 

4.10, 4.12 hold if the system D^(X) is defined invariantly, 

5.2. The operations cr^ w can be complemented by an operation which is a hybrid of 
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stabilization with respect to the kernel, and of the operation ct^ Namely, for 

every i £ W, one can consider the numerical invariants u, <MX»> <cf- 

E 6.2). Analogously one can consider 

etc. Here are invariantly defined subsets of V(X^(X)). 

6. Depth > 1 and variants of definition of depth 

In this subsection we give only definitions or sketches of definitions. 

6.1. Let us say that X has depth (m + 1) if A. _(X) has depth m for all 

i e v(x). 

6.2. The depth m can be defined via the consideration of the system of graphs 

( "* where |{ i, j, ..., t}| = m, i, j, ..., t lie in 

invariantly defined subsets and where stabilization is simultaneous for all sets of 

those graphs. 

6.3. One can say that X has depth m if the number of graphs belonging to any 

given isomorphism class of graphs of degree < m and containing a given edge x , 

depends only on the isomorphism class and the "color" of x „. 

In this sense a stationary graph has depth 3. A variant of this definition 

and arising properties are discussed in Section AD. 

'P A 
6.4. Let X = A-1 x. e. be a stationary graph. Define the "dual" graph X in the 

iE I i i 

following manner. 

A A 
a) X = (x..). T; 

ij i,jel 

b) V(X ) is the set of the edges of the graph e.; 
' ii x 

c) If a is an edge of e. and b is an edge of e^, then the "color" of 

the edge (a,b) of X is the "color" of the triangle constructed on the vertices of a 

and b have a common vertex and the set of the "colors" of the quad- and b if a 



120 

rangle constructed on the vertices of a and b if they have no common vertex. 

A 

These conditions permit one to fill the entire matrix X by variables depending 

on the type of relation of the edges. 

Now consider Stab X and say that X has depth (or height?) 1 if blocks 

X. do not decompose in the graph Stab X. If, however, they decompose, the dif¬ 

ferences among the edges of graphs e. are revealed, and the dimension of X can 

be invariantly increased (as in 4.1). 

The graph X is perhaps an interesting object. However, no results are known 

to us about this graph, and we, therefore, proceed without stopping. 

7. Examples. It is difficult to give detailed examples, where the procedures de¬ 

scribed above really work. Indeed, such examples would be first encountered among 

graphs with 25 vertices and, therefore, would be very complex. 

We shall give partial examples using the graph from 26-family. Partial means that 

we shall not compute Q. , but we shall only show that the result of O can be 
r l , W 1 TJ l.W 

different from the result of Stab and that it can give a partition into orbits of 

the automorphism group even when X is a cell. 

7.1. A common assumption in the examples given below is that for the neighbor graphs 

r of the 26-family (given by the pictures in Section U), the stationary graphs 

Stab X(P^) are different (have different structure constants a„). We shall not 

check this here. 

7.2. Our approach is as follows. Let e be the matrix #i from the 26-family 

(cf. Section U). Consider the graph 

X = x e26 + y e + z(X26 - e) 

Instead of the graphs X.(X), j = 1, 26, we shall consider only the neighbor 

graph in e of the vertex j. The isomorphism class of this neighbor graph is given 

in the column "TYPE" on the same table as e itself. By the assumption stated in 7.1, 

this information is sufficient to give (with the help of a, ) the partition of 
1, W 
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V(X). We shall refine this partition using some special properties of neighbor 

graphs. Our aim is to achieve partition into orbits of Aut e (this partition is 

given on the same page as e itself). 

7.3 Let us take i = 3 (the 26-family, #3). the vertices according to the 

type of their neighbor graphs fall into the following groups: 

(1,2,3), (4,7,13,18), (5,6,12), (8,9,14,15,21,22,23,24,25), (10,11,16,17,19,20), 

(26). 

In particular, we infer that in 0. TT(X) = (Y..) we have {26} = V(Y..) for 
’ 1,W lj li 

some i. Now consider the neighbor graph of the 26-th vertex. It is of type 2. 

In this graph only vertex 5 (in canonical numeration) is not contained in any 

triangle. Therefore, the fifth vertex of the neighbor graph of the 26-th vertex is 

separated. So we have separated 4-th vertex (that is, V(Yj^) = {4} for some j). 

In the neighbor graph of the 4-th vertex (which is of type 3) only the vertices 

(1,2,3,23,24,25) are contained in triangles. This partition together with the 

partition given above (corresponding to the types of the neighbor graphs) gives us 

(as the intersection) the partition into the orbits of Aut e. 

7.4. Let us now take i = 9 (the 26-family, #9). This case is somewhat more 

difficult because there are only 4 types of neighbors, and because the result we 

to achieve is the split graph. Only vertex 1 has the neighbor graph of type 7. 

in a (X) = (Y..) we have {7} = V(Y..) for some j. Therefore, in addition to 
1,W ij JJ 

partition of the vertices according to the neighbor types, we get the partition 

want 

Hence 

the 

U3, [2,11], [12,26] 

The intersection of this partition with the partition according to neighbor 

types gives us the partition 

(1)> (2,6,7,11), (3,4,5,8,9,10), (12,18,25), (13,15,17,20,22,24,26) 

(*) 
(14,16,19,21,23) 
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Consider the vertices 12, 18, 25. Their neighbor graphs contain the vertices 

2rll with the following multiplicity 

(7,10) -- with multiplicity 0 

(2,4,8,11) -- with multiplicity 1 (**) 

(3,5,6,9) -- with multiplicity 2 

Since fll = V(Y ) for some i, it follows that the three sets above are unions 
jj 

of some V(Y ). 
ss 

* 

Intersecting the sets of (*) and (**), we get the following partition 

(1), (2,11), (3,5,9), (4,8), (6), (7), (10), (12,18,25) 
(***) 

(13,15,17,20,22,24,26), (14,16,19,21,23) 

This shows that the intersection of this partition with the neighbor sets of vertices 

6, 7, 10 is invariantly defined. These sets are respectively 

(1.3.4.10.16.18.19.24.25.26) 

(1.3.4.11.17.20.21.22.23.26) 

(1,6,8, 9,13,14,17,21,24,26) 

The intersection of these sets with (***) gives us the partition 

(1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (11), (12), (13), (14), (15), 

(16,19), (17,20), (18,25), (21), (22), (23), (24), (26) 

To split the remaining three pairs 

(16,19), (17,20), (18,25) 

note that the neighbor graph of the vertex 2 contains vertices 16 and 17 but does not 

contain vertices 19, 20. It splits the first two pairs. The neighbor graph of the 

vertex 4 contains vertex 25 but does not contain vertex 18. This concludes the split¬ 

ting. 



P. EXAMPLES OF RESULTS USING THE STABILITY OF DEPTH 1. 

1. Statements and proofs of theorems given below make use of the notions introduced 

in the preceding Sections. The theorems themselves are analogues of some simple results 

of permutation group theory. This implies that possibly deeper results of that 

theory can also be restated and reproved in the setting of cellular algebras. 

2. Theorem 2.1,below,is used in the algorithm of Section R. In fact, this theorem 

is a justification of the approach taken in that algorithm. 

In this Section, X stands for a stationary graph with linearly ordered 

variables. 

2.1. Theorem. Let X = (X ) be a stationary graph of depth 1 with respect to 

W = V(X^), | W | = n. If X^(X) = R for i e W, then 

a) OC^X^) ~ Z[G], where G is a group of order n; 

b) Aut X ~ G; 

c) the orbits of G are the sets V(X^). 

Proof. Since X (X) = R, one has by Theorem 04.7b, d(e ) = 1 for any e c X . 
- i ' m m li 

Hence (a) follows from G 1. 

Let us now use Theorem 03.5. Note that one has (in the notations of that theorem) 

= W, since X has depth 1 with respect to W. Hence Theorem 0 3.5 and (a) 

above yield (b). 

Let us prove (c) . Again,by condition X.(X) = R, and by Theorem 0 4.7b, one has 

d(e ) = 1 for e c X, . Fix m so that e C X... Then e defines (cf. I 3) 
' m m It m it m 

X as the factorgraph of X^. Let be the imprimitivity system for 

X defined by e . The action of G on V(X ,) induces the transitive action of 
11 m 11 

G on the sets and, consequently, on V(Xtt). By (b), G acts as an automorphism 

group, hence (c) is proved. 

tt 11 Remark. Actually, the fact that X is a factor of X permits one to identify 
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V(Xtt) with G/H for some subgroup H of G, and the action of G on both sets 

coincides. 

2.2. Proposition. Let X be a primitive cell of depth 1, Y = ^ (X) = (Y^). 

Then either IYq I > 1 if V(Y?.) i [q] or CL(X) = Z[Z ], p a prime number, 
ii 11 ” 

Proof. If |Yq I = 1. let e be the corresponding basic graph, according to 
- 1 ii1 ’ i 

0 4.7, 4.8. Then d(ei) = 1. Our assertion now follows from K 1. 

3. Theorem. Let X = (X..) be a stationary graph of depth 1 with respect to 

W = V(Xn). Assume that there exists a basic graph e^ c X1 ? such that d(em> = 2 

Then there exists a non-oriented (i.e., simple) graph et(_ c X^ and a normal 

subcell <&> in Xu, such that contains the basic graphs e ^, j £ J, whose 

sum e. is isomorphic to the edge graph of graph e . In particular, 
je J j t 

|xu/^| = 
22 1 

d(et) 

Proof. Put Y1 = \.(X) = (Y1 ), i £ W. Since e c X , X has depth 1 with 
- l kl ml/ 

respect to W, and d(e ) = 2, it can be assumed (cf. 0 4.7, 4.8) that lY1 I = 2, r m mm1 

Y1 c X„_ and VlY1 ) is defined by e. in the manner described in 0 4.7, 4.8. 
mm 22 mm y l 

We have YL = x E + y I . Then there evidently exists e c X„„ such that 

e fl Y1 = In- It is also clear that e^ is unique and that e' = e.. Since 
t mm 2 t ' n t t 

e PI Y1 = 70, i defines an edge of the graph e . Let D be the set of the edges of 
t mm 2 t 

the graph e^. We defined the map 'll : V(X^)-D. Let us show that it is sur- 

jective. Let Y1 = x + y where = I . Since X has depth 1, 
J mm 1 y 2 9 22 ’ 

y\ ( i ) 
we have lj f^ = a e^ which is equivalent to surjectivity. 

Now let & be the normal subcell of X^ defined by equality of the rows of the 

matrix e (cf. J 2). Note that the corresponding imprimitivity system coincides 
m 

with ['ll ^(d)}, tT Thus we have the equality |x /2L>| = ]D | = |X | • d(e ) • 2 \ 
cl 0 D ^ 22 t 

Consider the factor-graph X = (X„) of X by the system of normal subcells 

U&> <| X,,, 1 c X,,, i > l}, If e is the image of e in X, then d(iT ) = 2. 
11’ n m m 12’ m 

Hence we can assume that X = X, = 1, and e = e . We have 
mm 

V"' k 
e • e’ c: X__, e • e' = 2e + Lj a , e where en is the unity of the cell 

m m 11 mm 1 k£l mm’ k' 1 J 

Qiy (X ,) „ Since & = 1, no pair of the rows of e coincides. Hence a^ , = 0 or 
v 11 m mm' 



125 

1 for all k ^ 1. Put J = [k : . = l}. Let us show that 'e = S e is the 
mm jeJ j 

edge graph of e . Take p, q e W. If tCp) and f(q) have a common vertex, 

then the rows of matrix e with numbers p and q have ones in the same column. 
m 

This means that the edge (p, q) is an edge of the graph el The converse 

assertion is proved identically. 

4. (Compare TWi 1. 17.71. TQu 11). [Ca ll) 

4.1. Let X be a primitive cell of depth 1, X = E x. e., n. = d(e.), 
r > 1 1 ' 1 ’ 

e. e. = E a^, e , Y"' = \.(X) = (Y"* ) = E y. . Suppose that the diagonal blocks of 
l j ij k5 j st Jx l 

Y^ are numbered according to 0 4.7, 4.8 by numbers of those e^ which split them 

off. Let Y,. = S , m > 2. 
11 nr 

4.2. Let Y'' = x E + y I and take q(i) so that e ... f~l Y^ = I . Since X 
11 m m q(jl 11 m 

has depth 1 (and is, in particular, stable under 0^ , one has q(j) = q(k) for 

all j, k e V(X). Hence there exists a unique q such that for all j e W one 

has e 0 y|. =T 
q 11 m 

1 
_ -A— -- 
r 

* 
* 

*• q 
4 

• 
« 

q 

* 

4.3. Theorem. 

q = q’ 

a}' = m - 1, a^ > m - 2 
lq ’ qq ~ 

n divides m(m - 1) 
q 

n > m 
q 

Proof. Since T = Xl, we have e„ = e'„> i>e-J <1 = ^• - mm q q 
From the Figure in 4.2, 
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one has a. = m 
iq 

1, aq > m - 2. 
qq - 

Since (cf. D 4 c 8) 

m(m - 1) = n^ 

we see that n divides m(m -1). If n < m - 1, then aq, > m, that is 
q q — 7 L JL — 

ai'l = m* K3 this implies imprimitivity of X, which contradicts 

our assumptions. Hence n > m. Suppose n = m. 
q “ q 

i 
Let r. be a complete subgraph of e , defined by the condition fl = 1^. 

Then every edge of e^ is contained in a = m(m - l)n ^ graphs I\, and every 

vertex is contained in the m graphs I\. Let = V(Tj). Let V^, ..., 

m 

contain t € V(X). Since a > 1, one has |U V.| = n + 1 (= the neighbors of t 

i=l 1 q 

and t itself). If n = m, then | V. | = m + 1. Since V. ^ V. for i £ j 
q i ^ J 

(primitivity), it follows that e 
q m 

is a complete graph with (m + 1)- 

vertices, that is, it is a connected component of e . A contradiction with H 12. 

5. Theorem (cf. [Wi 1, 10.4]). Let X be a cell of depth 1 and suppose that for 

all i e V(X), the stationary graph \.(X) also has depth 1. Let 

d 1 

X = x. e e = E d(e.) = m for all i 0 [1 d] . Then either X.(X.(x)) is 
i=0 i 1/ 0 n* 1. ’ i j 

split for all i, j e V(X), or X is primitive. 

Proof is given in a series of steps. Suppose that X is imprimitive. Let &> be 

a normal subcell in X, and V^, ..., be the corresponding imprimitivity system. 

Set |V.| = r, X = (X..), V(X..) = V., Let s be the t-th row of X. Let e , 
1 ij 11 1 t i/ 

i e J, define our normal subcell, that is, e,, e L> if and only if i e J. Put 

|j| = a + 1. Evidently, 0 e J. 

We shall show that our assumption leads us into the first case of the alternative. 

5.1. (m, r) = 1. 

Proof, r = IV,I = .Zl d(e.) = 1 + am. 
- 1 l1 1SJ v 1' 
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5.2. | e PI s nil <1 if k/t. 
J q kt1 — 

Proof* If q i V then the intersection is empty. Hence, it may be assumed 

that q e V. . Set s = s fl X. . 
k q, t q kt 

Let 

[ = {i : e. fl s i 0}, T = S e. 
q,t f q,t id i 

4* c 

Let T be the set of neighbors of the vertex q in the graph T. We have 

T = Uv(X ), where the sum is taken over those j for which I . = I 
q,j q,t 

(by similarity of rows, cf. I 1.1). Hence, r divides T. On the other hand 

q,f' 
By 5.1 it follows that r divides 11 

q>f 

have I = r, whence our assertion. 
q, t 

5.3. If p e V^, q e V^, i / j, then 

Since I < r, we 
I q,t' - > 

X (X (X)) ~ K 
P q V Uv <V Vx)) 

f 3 

Proof. Set Y = X^(X^(X)), Z = X^(X^(X)). Since X is imprimitive, it follows 

that the blocks with the numbers from 1 to a of the central decomposition of the 

stationary graph X^(X) all lie in X (we suppose here that they are numbered 

according to 0 4.7, 4.8). The above remark and 5.2 imply that deletion of 

pSV., i/j, splits Y| , that is, Y (Y). Analogously, Z ~ H (Z). 
i vj vi 

Since evidently Y ~ Z, our assertion follows. 

5.4. X (X (X)) = R for all p, q e V(X). 
P q 

Proof. Let q e V.. Set Yq = X (X) = (Y?.) =2 y. ff^. We have 
- i q ij i i 

a 

V. = q U [J V(Yq ). By 0 4.7, we have |Yq | = m for all s ^ 0. Let p e V., 
1 _ SS S S J 

S = 1 

j / i. Then X^ X^ splits V.. 

Let p E V(Y^ ). Since Y^ has depth 1, then by 0 4.7, d(f ) = 1 f°r all 

f c:Yq,l<s<a. Since 
k ts’ — — 

\Yq\ = |Yq 
1 tt1 1 ss 

m, it follows that d(f^) = 1. Consider 
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now Yq • Yq c Y^ . It follows from above that d(f. ) = 1 for all f cz Yq . 
ts st tt k K tt 

i.e., Yq = Z[G]. Now 5.2 and the condition d(f^) = d(f^.) = 1 for all f^ C Yqg, 

s < a, imply that Y^g = Z[G] for all s < a. Since t was taken arbitrary 

from numbers greater than a (to satisfy V(Yq ) fl = 6), we have Yq^ = Z[G] 

for all t i 0 and Yq = Yq for all t ± 0. Therefore, d(f ) = d(f') = 1 for 
tt II k K 

all k. 

Thus our assertion, and the theorem, are proved. 



Q. SOME DEFINITIONS AND EXPLANATIONS ABOUT EXHAUSTIVE 

SEARCH. 

1. Below we give some definitions related to exhaustive search. 

We do this in order to construct a frame of reference for subsequent Sections. 

Descriptions of algorithms are usually omitted; if these algorithms are suf¬ 

ficiently complicated, use very ambiguous or, on the contrary, very formal (e. g, , 

ALGOL) language. We tried to take the middle road. So we stopped at some 

distance from complete strictness (and senselessness). 

It seems that the formalism proposed below is suitable for the description of 

some exhaustive methods. It was used, in particular, by G. M. Adelson-Velsky, 

V. L. Arlazarov and M. V. Donskoy to prove optimality of the branch-and-bound 

method and to describe in a more exact language new developments in their chess 

program (which, it should be reminded, won world chess programs' competition 

in 1975). 

2. Let us first give a very approximate and down-to-earth description of the 

notions involved. 

First of all exhaustive search is a method used to solve problems of the fol¬ 

lowing kind. We are given a finite set V and we are required to find one or several 

elements of V satisfying certain conditions. 

2.1. If elements of V are given explicitly, then one checks every one of them 

in turn for the required property. 

2. 2. But usually the situation is more complicated. Namely, usually we are 

given rules for the construction of some subsets, say V , . . . , of V, and for the 

subset V. we are given rules for the construction of its subsets V^., . . . , V^.^., and 

so forth. The elements of V will appear as one-point subsets somewhere far down 

the line. 
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The rules which are used to construct subsets may depend and, as a matter 

of fact, sometimes do depend on the set to which they are applied. 

2. 3. It is customary to associate with the above sequence of subsets ,an oriented 

graph. The set of vertices of this graph is the set of all subsets of V, which 

were constructed by the application of the rules. So the sets V, V., V. ., etc. ,are vertices. 

Vertex a is joined to vertex b, if the subset corresponding to b is obtained 

from the subset corresponding to a by the application of the given rules. V repre¬ 

sents the root of this graph. 

If every subset is constructed at most once, the resulting graph is a tree. 

This happens for example in the case when the application of the rules so any subset 

generates disjoint subsets. 

2.4. An exhaustive search is described by the order in which we consider the vertices 

of the graph described above. If our search brings us to some vertex of this 

graph, the length of the path from the root to the vertex under consideration is 

called the depth (or the level) of our search at this moment. This definition 

depends on the path which leads from the root to the given vertex. If there 

is only one such path (that is, if the graph is a tree), the depth of the search 

depends only on the vertex. 

2.5. The usual order of the search is called "depth-first search". In this search one 

goes down to the end point, say a^, of some path say a , . . . , a^. If this end point 

is a solution of our problem, the search is finished. If it is not , the search takes 

in turn all successors of a then a new successor of a , say a' and considers 

in turn its successors. Et cetera until a solution is met or its absence is established. 

In this way the required storage space is of the order of the maximal 

length of a path in our graph. (We have to remember the whole sequence of sub¬ 

sets as well as the information about the next successor for every one of these 

subsets. ) 
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An antipode to the depth-first search is "breadth-first search". In this 

search one first constructs all vertices of the first level, then all vertices of the 

second level and so forth. In this case, generally speaking, we have to use 

storage space of the order of the number of vertices of the given level. However 

it is possible that, having that much information,one would be able to establish 

that some of the subsets of the given level do not contain the searched-for points of 

V and therefore can be rejected (cf. 2.7, 3.5). If this does not happen, the 

breadth-first search would fail,owing to the lack of storage (which is even more 

scarce than time). 

The algorithm of R8.1 is a breadth-first search (it is not meant to be 

programmed) and the algorithms of Sections S, T are depth-first searches. 

2. 6. A rough estimate of the "time" to be consumed by an exhaustive search can 

be obtained in the assumption that the application of the rules to every subset uses 

the same amount of time. Then the general amount of time is a multiple of the 

number of vertices we searched through. 

2.7. In many cases there exist (and sometimes they indeed are known) means to 

establish the absence of elements with required properties. The applica¬ 

tion of the corresponding criteria is called variant rejection or cut off. 

2.8. Frequently (cf. , 6.2) there are several ways to associate an exhaustive 

search to a given problem. In this case the choice of an exhaustive search affects the 

possibilities for variant rejections. It is natural to organize an exhaustive search 

in such a way, that the number of vertices searched through would be as small as 

possible. 

In other problems rules are given explicitly (cf. 6.1). 

2. 9. The time required for a search can also be saved by a clever choice of the 

order in which vertices are searched. 

2.10. The sequence of vertices of a search graph is called a forced variant, if the 
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application of the rules to the corresponding sets gives rise to subsets of which at 

most one is not subject to variant rejection. This means that during the search we 

have to move only in one direction from the vertices of the forced variant. 

Examples of forced variants are in T2.4, T3. 4. 

2.11. Speaking about variant rejections and the choice of an order of a search,we 

have to keep in mind that it costs (computer) time and (storage) space to implement 

sophisticated procedures. The price of each verification for a possibility of a 

variant rejection can be high (for example, it can involve some exhaustive search 

in itself),but the number of rejected sets can be small. In this case the use of 
4 

such a variant rejection would be wasteful. Similarly a complicated choice of an 

order of a search ("What will be my next step? ") can be improper. 

Often we do not know the price of an application of the corresponding deci¬ 

sion procedures. In this case the success of their use depends on the ability to do 

a rough experiment, and on good luck. Such procedures, which will hopefully lead 

to a speedup (but one does not know for certain whether they will have this or the 

opposite effect) we call heuristics (examples are T2.5, S3. 4). 

Sometimes considerations leading to powerful variant rejections, but 

possibly to a wrong result (if a child was thrown away along with a bath), are also 

called heuristics. We do not use this word in this latter sense in this volume. 

3. A formalization. 

3.1. A description of a problem. 

For a finite set V let P(V) denote the set of all subsets of V (in 

particular, |P(V)| = 2^1). We identify V with the subset of P(V) consisting 

of all one-element subsets of V. 

Suppose we are given a computable function F : P(V) -*IN. It will be 

called an estimate function. 
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Problem: Find a subset U V such that F is defined on U and attains 

its maximum value on U. 

3.2. Exhaustion. 

Define a function of an exhaustion as a computable map 

f : P(V) -*P(P(V)) 

satisfying the following conditions 

a) If f(U) is defined for U € P(V), then F(U) is defined; 

b) If f(U) is defined for U e P(V), then f(U) e P(P(U)); 

c) At least one subset U, which is a solution of our problem,belongs to the 

image of f (V) for an appropriate i. 

3.3. The graph of an exhaustion. 

The graph T of the mapping f is called the graph of exhaustion f. 

More explicitly 

a) the vertices of T are elements of P(V) where f is defined and 

which belong to \^-^f*(V). 

b) There is an edge from a € V(T) to b e V(T) if and only if a e f(b). 

(Here and below we identify vertices of T with elements of P(V)). 

Then {V} e P(V) is the root of T. Let T(m) be the set of the vertices of T 

which are at a distance m from the root of T. If U f V(T) let 

QU = f(U) 

be the set of all successors of U, and 

Py = {M € P(V) | U € f (M)} 

the set of all predecessors of U. Let T(U) be the graph of exhaustion 

f | P(U) (it is the subgraph hanging at U e V(T)). 

Finally, let End T = End f be the set of all terminal points of T, that 
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is, the set of all U e P(V) such that f(U) is not defined, and Solv T = Solv f 

the set of all U e P(V) which are solutions of our problem. 

3.4. Search on the graph of an exhaustion. A computable function 

cp : IN - V(T) 

is called a search if 

a) \ J , <P(n) contains a point from Solv T; 
ne IN 

b) cp(n+1) e cp{n) 

An exhaustive search is therefore a triple (T,<^, F), where T is the tree 

of a search, f is a search over T, and F is an estimate function. 

3.5. Variant rejections. 

Let (T,cp,F) be an exhaustive search. A computable function 

P = p(<p) : IN -{0,1} 

is called a variant rejection or cut off if 

[V(T) - p^=1 V(T(<jP(n)))]fl Solv T \ 

(which means that we preserve solutions). Here T(^p(n)) is T(U) from 3. 3 b) for U = cp{n). 

Given a variant rejection p for a search (T,<p, F), one can construct a new 

search (T,<jP,F) in the following manner. Set 

cp'(n) = (p(n) if (p{n) V(T(<p(i))) 

i<n 

(p'{n) is not defined otherwise. 

Now construct a monotonic numeration pi : IN — IN of the points n e IN, for 

which <^'(n) is defined,and suppose moreover that if n is in the image of p 

then all i< n are in the image of p. Then set 

cp(n) = <p'(p(n)) 
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4. Mass problems. 

The above notions become somewhat more interesting if one considers them 

in the case of mass problems. 

Suppose we are given a tree T and a family of exhaustions £> = {(T,<p, F)}. 

It is usual to subject the elements of & to conditions of coherence. Namely, we 

require the existence of a computable function 

7T : IN X £ - V(T) 

such that the restriction of ir to the fiber of IN X £ over (T, cp, F)-'e 

n : IN X (T,cp,F) -V(T) 

coincides with cp (and is therefore subject to conditions a), b) of 3.4). Moreover, 

we have to assume that our exhaustive search does not depend on the future, that is, 

if (T,<p,F), (T, , F ) € £ and W <p(i) = <pA i) and F|Wc?(i) = F \\J (pli) 
1 1 i<n i<h 1 i<n 1 i<n 1 

then 7r(n+l, (T, cp, F)) = 7r(n+l, (T, <p^, F^). 

Now we can also define the variant rejection as a computable function 

p : IN X £ -{0, 1} 

such that its restriction to every (T, cp, F) is a variant rejection in the sense of 

3. 5 and which satisfies the additional conditions stated below. 

One is the following. If (T, cp, F) e £ , (T, cp^, F^) e £ and 

S^Jcp(i) = ^(i) and F|V^<p(i) = FjV^ ^(i) then p(n+l, (T, cp, F)) = 

p(n+l, (T.^.F^). 

The second one is the requirement that the new family of searches construct¬ 

ed from £ with the help of the family p of variant rejections (as in 3. 5) forms 

a family of searches, subject to the condition of independence from the future. 

Then one can use variant rejections to construct new searches. 
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5. Some examples of variant rejections. 

5.1. Suppose that F is monotonic in the following sense 

F(U ) > F(U ) implies F(W ) > F(W ) for all W € f(U ) and all 
1 Z 1 Z 

w2< f<u2). 

In this case one can set p(n) = 1, if there exists m < n such that 

F(cp(m)) > F(cp(n)), 

and set p(n) = 0 otherwise. 

5. 2. Suppose a finite group G acts on T in such a way that 

F(ga) = F(a) for a e V(T) , 

(Here we consider F as a function on T). Suppose we have an algorithm of 

canonization,which ascribes to every element t e V(T) a point Canon t on the 

same orbit G-t of G as t, and such that Canon t = Canon s for s e G*t. 

Set 

p(n) = 1 if <p(n) ^ Canon <p(n) 

This approach is used in Section R below. 

It is useful to find some algorithm Canon, or to construct a search <p 

such that if <p(n) = Canon cp(m) then n < m. Otherwise,the use of the above 

variant rejection may make the search less effective. 

6. Examples of some searches. 

6.1. Checkers. 

Let a position A on a board be given. Consider the problem of finding 

a move for black which leads to the best position for white (in some fixed sense) 

among all positions which are at a distance of 3 successive moves from A. 

In this case, V is the set of all positions on the board which can be 

obtained from the given one in 3 steps with the first step made by black. V is 

not given explicitly (cf. 2.2) and the rules to construct subsets (checkers moves) 
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are fixed (cf. 2.8). So the tree is constructed uniquely. However, we are free to 

chose the order in which vertices should be searched (i.e. , function <p). 

6.2. Strongly regular graphs. 

Problem: find all (up to isomorphism) non-empty and non-complete 

graphs on n vertices ,such that every vertex has m neighbor s ,and two vertices 

which are (resp. are not) neighbors have the same number d^ (resp. d ) of 

common neighbors. 

The set V is the set of all graphs on n vertices. The rules for 

constructing subsets are rather arbitrary. Let us describe two possible 

choices. 

6.2.1. Let V(i) be the set of the graphs on n vertices, such that every one of the 

first i vertices is incident to m edges, and there are no edges between the vertices 

n-i+1, . . . , n, and any two vertices which are (resp. , are not) neighbors have < d^ 

(resp., < d^) common neighbors. For a graph F e V(i), the associated subset 

of V consists of all elements of V which coincide with T on all edges from the 

first i vertices. The set Qp = f(r) (cf. 3.3) consists of all graphs from V(i+1) 

whose first i vertices have the same connections as T. 

6.2.2. Let V'(i) be the set of all graphs T on n vertices ,such that there are 

no edges from the first i vertices to the remaining n-i, and at most m 

edges from any one of the first i vertices,and two vertices which are (resp. , 

are not) neighbors have < d^ (resp., < d^) common neighbors. For a graph 

r « V'(i) the associated subset of V consists of all elements of V which 

coincide with T on the first i vertices. The set Qp = f(r) (cf. 3.3) consists 

of all graphs from V'(i+1) which have the same connections between the first 

i vertices as T. 
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1. Below we show how the notions and approaches introduced in this 

volume can be used to describe an algorithm of graph identification. The 

algorithm of this section is not aimed to be programmed^nd therefore it may 

use "breadth first search" (cf. 8.1). The use of this type of search permits 

one to apply stabilization of depth 1 or more. The decisive point is the use 

of Theorem 03. 5 to find some orbits of the automorphism group of the graph 

under consideration. 

Another essential feature is the procedure designed to deal with correct 

graphs (cf. 5.4.2 and 6.2) and direct sums (cf. , 5.4.1 and 6.1). Below in sub¬ 

section 9 it is explained why this case requires special treatment. 

As was mentioned in the introduction, the algorithm of this section is a 

development,of the algorithm of [We 3]. 

2. Definitions. 

2.1. Canonical algorithm 

An algorithm J\, mapping the set JX of graphs into itself, and defined 

everywhere on ^ , is called canonical if 

a) for all X € Dc. and for all g e Sym Y(X) 

^(gxg-1) =J.m 

A canonical algorithm is called a canonization algorithm if 

b) for any X there exists g € Sym V(X) such that 

lA(X) - gXg"1 

2.1.1. Remark. If one has an algorithm of graph canonization, then it gives 

rise to an algorithm of graph identification, say B. Namely B consists of the 

application of J\ to both graphs, and then in the comparison of the results. 

2.2. Semi-invariant algorithm 
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An algorithm A mapping £)G into itself is called semi -invariant if for any 

X e X an<^ f°r any g t Sym V(X) there exists h € Aut X such that 

A (gXg X) = gh^(X)h *g 

(Recall: Aut X = {h e Sym V(X) : hXh"1 = X}.) 

The semi-invariant algorithms lie somewhere between invariant algorithms 

and canonization algorithms. If h is always unity, then AL is invariant. 

3. Below we describe how one can construct canonization algorithms if 

some special kind of semi-invariant algorithms is given. 

3.1. Let A be a semi-invariant algorithm which places a split graph AL(X), 

whose variables are linearly ordered into correspondence with a graph X, Let 

m = m(X) be the permutation such that the diagonal entries of ^ are 

positioned in decreasing order, that is pf nxA.{X.)m = (y ) then 

y.. > y. , . ,• Put 
11 1-1,1-1 

Canon (X) = mXm 
J4 

-1 

l. Now we 

3.2. Assertion. The map X -♦Canon^(X) is a canonization algorithm. 

Proof. The validity of 2.1b) is ensured by construction. Now, if 

Y = gXg ^ then A(Y) = gh^(X)h g f or some h e Aut X, since A is semi- 

invariant. Further, since both ^(X) and gh^(X)h 1g 1 are split, the substitu¬ 

tions m = m(X) and m^ = m(gXg are uniquely defined. Hence the diagonals of 

my4(X)m_1 and m gh^(X)* h^g^m"1 coincide. Therefore m = rr^gh. 

have 

Canon (gXg"1) = mh \gXg Sghm 1 = mh ^hm 1 = mXm = Canon^ (X) 
c/v 

as desired. Note that the third equality used the condition h e AutX. 

4. Our canonization algorithm consists of several parts. 

The following two parts are most important: 

4.1. Splitting algorithm. 
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It is an exhaustive algorithm. The vertice s of the as sociated tree (cf. Q3. 3) 

cor re spond to the stationary graphs. The set Q (cf. Q3.3) is either the set 

{\ (X)} . . or the disassemblage of a correct graph X (cf. J6.7). Inaddition, 
m m€V(X_) 

at a vertex of our tree the disassemblage of direct sums is possible. End 

points of our tree correspond to split graphs with linearly ordered entries. 

4.2. Elevation algorithm. 

This part works on the results of the job done by the preceding algorithm. 

Using either the stabilization of depth 1 or 03.5, the elevation algorithm 

gradually, step by step, decreases the depth of the tree of 4.1. At every moment, 

however, endpoints correspond to split graphs. At thte end of its work the 

elevation algorithm delivers a split graph. Then a canonical form is constructed 

according to 3.1. Note, that the elevation algorithm is invariant only in the case 

Aut X = 1; in the general case it is semi-invariant (cf. 6.1, 6.2, 6.4 below). 

5. Splitting algorithm (denoted Split). 

5.1. Let T be a directed tree, T(k) be its k-th level. If v e T(k) then let Q 
v 

denote those vertices of T(k+1) which are connected with v; let P 'denote the 

vertex from T(k-l) such that (P , v) is an edge of T. Further, let T denote the 
v v 

tree hanging at v. 

5.2. In our case T is the tree of the exhaustive algorithm Split. To every 

vertex v e T there corresponds a stationary graph denoted by X(v). 

5.2. If v f T then X(v) is checked for validity of the following conditions: 

5.3.1. X(v) decomposes into a direct sum (cf. G2); 

5. 3. 2. X(v) is correct (cf. J6. 6). 

5. 4. Q^, v e T, is defined in the following manner: 

5.4.1. If X(v) decomposes into a direct sum, X(v) = © Y (v), 
t(v)>i>l i 

Yi+l(v) > Y.(v), then Qv = { Y^v), . . . , Y (v)}. 

5.4.2. If 5.4.1 is not applicable but X(v) is correct, then Q = F(X(v)), 

cf. J6.7. 
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5. 4. 3. If 5.4.1 and 5. 4. 2 are not applicable, X = (X_) and (composition of 

Xtt) = max (composition of X..) then Q = {\__(X)} 

i: IX.. I >1 
n1 

5. 5. Remarks. 

li m meVfX^)’ 

5. 5.1. Note that for v € T the tree T(v) corresponds to the algorithm Split, 

applied to X(v). 

5. 5. 2. Also note that in the case 5.4.1 there is no branching of the exhaustive 

search at the point under consideration since X = X^ © X^ implies (as we shall 

see below) that Canon X = Canon X^ © Canon X^. 

6. Elevation algorithm (denoted Lift). 

6.1. Assemblage of a direct sum. 

Let cJl be an algorithm on graphs. Let X = © X.. Renumber the 
m>i>l l 

variables of the graphs ^(X.) according to the lexicographical order 

of (X.,x.) for x. e <Jl(X.). Denote the result by i/L' (X ). 
i J i i 3 i 

Denote by Assembly (X) the graph, obtained in the following manner: 

In the matrix X, replace any entry of X. by the corresponding 

entry of (J[(X.). Then Assembly (X) is the stabilization of this latter graph. 

1 A 
Note that if is split for all i, then Assembly . (X) is also split. 

1 A 
If A is semi-invariant then Assembly is also semi-invariant. If A- i 

A 
is semi¬ 

invariant and A(X^) - R for all i, then 

Canon, , , (X) = Assembly., (X). 
Assembly. Canon 

A A 

6.2. Assemblage of correct cellular algebras. 

Let X be a correct stationary graph which can not be decomposed into a 

direct sum. Let F(X) = {x^} be its disassemblage. For any algorithm on graphs 

one can define their assemblage in the same manner as in 6.1. However we shall 

define it only for semi-invariant algorithms cA. which bring a split graph A(X) in 

correspondence with X. In this case let us order the graphs X^ according to the 

(lexicographical) order of the graphs Canon (X). By J6. 8 isomorphic graphs (that 
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is,those for whom Canon- (X.) = Canon (X.)) define some subgroup in Aut X 

Ji 1 Ji 3 

which permutes isomorphic graphs as an appropriate group Sym. Therefore,if 

we define an arbitrary order within the isomorphism class we obtain a semi¬ 

invariant algorithm. 

Explicitly, for ^(X.) = (x^) construct X. = (x^) in the following manner: 

— i . —i i . i 
X > X if X > X 

pq rt pq rt 

x1 >xJ if Canon. (X.) > Canon „(X.) or if 
pq rt ji i Ji 3 

Canon .(X.) = Canon .(X.) but i > j. 
Ji ^ Ji J 

i 

Again let us note that in the latter case the definition is semi-invariant by J6.8. 

If Aut X = 1, then the latter case does not occur and the definition is invariant. 

Now denote by X the matrix obtained by substitution in X of the entries 

of X. for the corresponding entries of X^. Set 

Assembly .(X) = Stab X. 
Ji 

It is a semi-invariant algorithm. 

6.3. Elevation in the case Q = {X..(X)j. 
- v 1 

Let Ji be a semi-invariant algorithm which maps every graph into a split 

graph with linearly ordered entries. Let I be the set of all i such that for all 

j one has Canon (\.(X)) > Canon (\.(X)). In particular, all graphs X..(X), 
Ji 1 Ji J 1 

i e I, are isomorphic. Set 

m= maxi and Change . (X) = Ji(\ (X)). 

iel A m 

This operation is semi-invariant by 03.5. If Aut X = 1 then |l| = 1, 

and our operation is invariant. 

6. 4. Define inductively the elevation algorithm Lift. 

Let T be a subtree of T and denote the graph corresponding to the vertex v 
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of T by X(v). Suppose that X(v) = X(v), and Q^T) = Q (T) if vf End T . 

X(v) is split if vt End T . 

The tree T constructed for algorithm Split satisfies these conditions. 

Eet us construct from T a new tree T in the following manner. Let 

v ^ End T, but Q (T)(^ End T . Then substitute for X(v) a matrix X(v) 

obtained from X(v) by the rules 6,1,6. 2, 6.3, if was obtained from v by the 

rules 5.4.1, 5.4.2, 5.4.3 respectively. If v t End T and Q (t~ End T, put 
v 

~ ~ % ~ ~ % 
X(v) = X(v). Also set V(T) = V(T) - End T. Let us denote the pair: the tree T 

and the map v -*-X(v) by Lift (T,X(v)). Algorithm Lift is evidently semi-invariant 

(cf. 6.1, 6.2, 6.3). Since Lift (T,X(v)) satisfie s the conditions on T.wecanapply 

Lift recursively. 

7. Canonization 

7.1. Let A be an arbitrary matrix. Construct (cf. M2.1) X(A), 

7.2. Let X = Stab X(A). Construct for X the splitting algorithm (cf. 5), its 

tree T, and the correspondence v-»X(v). 

. N 
7.3. Let N be the maximal length of the paths in T. Then |V((Lift) (T)) | =1. 

Let Vq = V((Lift)^(T)), X = (Lift)^(X(vQ)). The correspondence X -»X is a 

semi-invariant algorithm. Denote it by JL. 

7.4. Construct Canon (A) (cf. 3.1). 

8. Variants 

8.1. Simultaneous descent (Breadth-first search). 

It is possible to construct for the tree T of the splitting algorithm the 

entire following level T(k+1). Then one can perform the simultaneous stabilization 

of all graphs at that level and compare the results. Moreover one can in this 

case perform the stabilization of depth (k-fl) (cf. 06.2). In such an approach a 

picture would be more homogeneous and natural (but quite impractical, cf.Q.2.5). 
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8.2. Successive descent (depth first search). 

It is possible to first descend up to the end of the most left branch of the 

tree T, and then move to the right. Such an approach allows one to save memory 

(cf. Q2.5). Besides, with luck, one can find rather early automorphisms,and 

then use them in the same manner as in S3. 3. 

9. Some explanations. 

When one is trying to handle the graph isomorphism problem, he 

first uses the ideas introduced in the stabilization algorithm. Then he applies 

the same ideas for graphs with one, two and so forth fixed vertices (i. e. , an 

analogue of 5.4.3 above). Clearly this leads to a solution of the problem, but 

sometimes it can take too long to get to this solution. The first evident obstacles 

are direct sums and correct graphs. 

9.1. If X = Y © Z then fixation of the vertices of Y does not affect Z, and vice 

versa. So the depth of the corresponding tree of exhaustion is the sum of depth 

of the trees for Y and Z. Then the "time" required for such an approach is 

the product of the "times" required for Y and Z. 

However in the approach we used, we are dealing with Y and Z separately, 

and so the "time" is only the sum of the "times" for Y and Z. 

9.2. Analogously, if X is a correct graph and {xj its disassemblage, then 

our approach again requires only the sum of the "times"for each X., but a "straight¬ 

forward" approach requires a product of "times". The simplest case is when X 

is a simplex, S . Then the straightforward approach requires ml steps. Our 

approach requires one step. 

However in the case of a simplex one can use automorphisms (as described 

in S3. 5) and get the result in les s than m! steps. However, some correct graphs 

have no automorphisms permuting their parts and then once again one gets a factorial. 

9.3. Remark. Since some \.(X) could be direct sums,or correct graphs,even if 

X is neither, 5. 4. 1 and 5. 4. 3 could be used repeatedly by our algorithm. 



S. A PRACTICAL ALGORITHM OF GRAPH CANONIZATION. 

The algorithmfor the construction of strongly regular graphs .which is described 

in the next Section,constructs many (thousands of) graphs. Therefore a program 

was written which canonized graphs constructed by the algorithm of the next 

Section. We describe below the ideas on which this program was based (we 

follow the exposition given in [Ar 1]). Note that strongly regular graphs are 

rather difficult to handle, because they have a highdegree of symmetry. On the 

other hand the algorithm of the preceeding Section is too bulky for practical 

purposes. An interesting feature of the algorithm of this Section is the procedure 

designed to construct and to use automorphisms of the graph, cf. 3. below. 

1. For the nXn (0. l)-matrices A = (a_) and B = (b_) with zero diagonal let us 

write 

A > B 

2 
if the n -dimensional vector (a_.,a ,...,a ) is greater (in lexicographical 

li 1 3 nn 

order) than (b„ , b. b ). Let us then say that 
11 13 nn 

~ —1 
A = max gAg 

g€ Sym (n) 

is the maximal form of A. 

We shall construct an algorithm A (mapping the set of symmetric (0,1)- 

matrices with zero diagonal into itself) such that 

AM = A . 

Such an A will be a canonization algorithm (in the sense of the preceeding 

Section). 

2. For an ordered subset V(k)= (i , . . ., i^) of distinct elements of [1, n] and 

for a matrix A of the same type as in 1 above, put (Min stands for "Minor") 

MinV(k)(A) = (ast\s, t)e V(k)XV(k)‘ 
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Let us say also that V(n) = (i , . . . , i ) is a monotonic sequence for A if for 

every V(k) = (i , . . ., i ) one has 
1 .K. 

Min_ (A) = max _ Min (A) 

V(k+1) V(k+1) | V(k+lpV(k) ' 

The relation of the notions of a monotonic sequence and a maximal form 

is explained by 

2.1. Proposition. Let A be a symmetric (nXn) (0,1)-matrix with zero 

diagonal. If A is a maximal form,then the sequence (1, . . . , n) is monotonic 

for A. 

Proof. Suppose that the assertion is false, lpt k € [1, n] be the smallest 

number such that for V(k+1) = {1, .... k+l) one can find s > k+1 such that for 

V(k+1) = (1, . . . , k, s) one has 

Min_ (A) < Min (A) 

V(k+1) ' ' 

Let m be the first number s with these properties. Then we have for some 

t < k (recall, that A has zero diagonal) that 

a. = a for i = 1, 2, . . . , t (1) 
lm i,k+X 

but 

a > a 
t+l,rci t+l,k+l (2) 

Let g € Sym (n) be the transposition of m and k+1. Then the first t rows of 

gAg 1 coincide with the first t rows of A (it follows from (1)) but the (t+1)-th 

row of gAg 1 is greater than the (t+1)-th row of A (this follows from (2)). There¬ 

fore A is not a maximal form. This is a contradiction. 

2. 2. Proposition 2.1 shows that to find a substitution g € Sym (n) such that gAg"'*' 

is the maximal form of A, one need not consider all g e Sym(n), but only 

those for which the subset V(n) = g (1, . . . , n) is monotonic for A. 
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This can be done rather easily since we have to consider only those V(k) 

which are monotonic for Min^yA). 

More precisely, let A be a n X n symmetric (0,l)-matrix with zero 

diagonal and suppose that V(k) is monotonic for Min ^(A). Let us call 

V(k+1) = (i^, . . . , i^ an extension of V(k) if 

a) V(k) = (iv ..., y 

b) V(k+1) is monotonic for Min .(A). 
V ^.Kt 1) 

Therefore we have to take all extensions of V(0) = (p, then all 

extensions of these extensions,and so forth,until we will get the end points, which 

are monotonic sets for A consisting of n elements. Every such set (i , . . . , i ) 
1 n 

I Z n 
determines the substitution g = (. . . ) and (1,2, . . . , n) is a monotonic 

II VSi 
sequence for gAg . Using Proposition 2. 2 one has only to chose the greatest 

matrix among the matrices gAg ^ described above. 

The algorithm for the construction of extensions of a given set will be 

described in 2.4. 

2. 3. Let us now show how the description of this exhaustive search is interpreted 

in terms of Section Q. 

Let T(k) be the set of V(k) such that V(k) is monotonic for Min .(A). 
V(k) 

Set T =y/T(k). There is an edge from t e T(k) to s e T(k) if s = V(k+1) is 

an extension of t= V(k). Since for monotonic V(k+1) = (i,...,i _) , the 
1 k+1 

sequence V(k) = (i , . . . , i ) is also monotonic, and the tree T is connected. It 
1 K 

is clear that every monotonic sequence V(k) (for Min (A)) has at least one 
V (k) 

extension. Therefore every monotonic sequence for A is represented by an 

end point of T, and every end point represents a monotonic sequence for A. 

2. 4. Let us now describe the exhaustion function of our search, that is the 

algorithm for constructing extensions of sets. This part is repeated many 

times and therefore has to be as effective as possible. 



148 

Let V(k) = (i^, . . . , i^) be a monotonic sequence for Min^.^^(A). If 

V(k+1) = (i .i , r) is an extension of V(k), then it follows from the definition 
J. xC 

of the monotonic sequence that 

, a. ) = max (a. , 

V r te [1, n]-V(k) V t 
) 

Let R = R(Y(k)) be the set of all r which satisfy this condition (then (V(k),r), 

r e R, are all extensions of V(k)). 

To describe R we use the sets W. = (j e [1, n] - V(k) I a.. = l). Put 
x xj 

Rq = {1, 2, . . . , n) - V(k) and 

R =< s 

R 
s -1 

if R , n w. = (p 
s -1 1 

s 

if R ,0W. i (p 
s-1 1 

s 

Proposition. R is the set of j € [1, n] - V(k) such that 

a. . = max (a. , 

VJ te [1, n]-V(k) 11’ 

The proof is straightforward (cf. also [Arl]). 

Using this proposition one can find R by only taking intersections of 

computer words. 

3. For some graphs the above procedure is ineffective. The graphs 

whose automorphism groups are large will have very large tree T. Another case 

is the case of correct graphs. We shall show below how to deal with a large 

automorphism group (cf. , T5.2). 

Here we have two problems. The first one is how to find automorphisms, 

and the second one is how to use them. The following two assertions answer 

these questions. They are evident. 

3.1. Proposition. Suppose that Min^.^^(A) = Min^ (A), V(n) = (i^, . . . , i ) 
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V(n) - (j^, . . . , j ) . Then the permutation 

1 , 1 
1 n 

is an automorphism of A. 

3.2. Proposition. Let g e Aut A and V(k) = (i^ . . . , i) be such that V(k) is 

monotonic for Miny(k)(A) and gi. = i. for j = 1, . . ., k. Let T(U), UC[l,n], 

be the subtree of the tree T from 2. 3, consisting of U G [1, n] such that 

U = {U, j^, . . . , j }. Then for every j e [1, n] - V(k) and every V(n) e T({v(k), j}) 

one has Miny(n)(A) = MingV(n)(A) and gV(n) € T((v(k), gj>). 

3.3. To use the preceeding assertions, we use the "depth first search" over 

the tree T described in 2.3. All sequences V(n) = (i i ), which are mono tonic 
1 n 

for A, are stored together with the matrice s gAg ^ = Min (A), where g = . n ). 
Y(n) !n 

When a new monotonic sequence Y(n) is constructed ,we compare the corresponding 

matrix gAg with the already stored matrices. If it coincides with one of them, 

then we get (by Proposition 3.1) an automorphism. 

For every V(k) belonging to a sequence V(0) = </>G V(l) G • • • of extensions, 

and for every g € Aut A found by the above method and such that 

g|V(k) = 1, let us store the orbits of g in the set of extensions of V(k). Whena 

new such g is found, the intersecting orbits are joined. 

Now Proposition 3.2 says that in the search we can take only one represen¬ 

tative of the extensions of V(k) (compare T5.2). 

3.4. The method described in 3.3 is heuristic (cf. Q2.ll). It is useful when 

the group Aut A is large. If it is small (e.g. , Aut A = {l)) then all our efforts 

(and storage space) will be useless. 

3.5. An example of a situation where 3. 3 essentially reduces our search, 

'X' 

is the case A = I (the complete graph). In this case the heuristic of 3.3 
n 

requires the construction of only n end points of T (but the method of 2.3 
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requires the construction of nl end points of T since every sequence 

g (1, . . . , n) , g e Sym (n) is monotonic for A). 

3. 6. However in the case of correct graphs (cf. , J6) the heuristic of 3. 3 may 

fail for reasons described in 3. 4, and the size of the search would be of order 

(—)!, which is still very large for graphs of G4.7 , for example. 
cl 

4. The algorithm described in this Section (with heuristic 3.3) was 

used to canonize the graphs constructed by the algorithm of the next Section. 

It also found the orbits of the automorphism group. 

For the graph & 7 from the 26-family, the programbased on this algorithm 

constructed 40 endpoints of T and for ^ 9 from the 26-family it constructed 7 56 

end points of T. Note that Aut A is trivial in the second case. 



T. AN ALGORITHM OF CONSTRUCTION OF STRONGLY REGULAR GRAPHS. 

1 2 
A strongly regular graph with parameters n, n^, a^, a^ is a graph with 

n vertices, such that 

a) any vertex is incident to n^, 0 < n^ < n-1, vertices, 

b) any pair of incident vertices is simultaneously incident to aj^ different vertices, 

2 
c) any pair of non-incident vertices is simultaneously incident to a different 

vertices. 

Clearly the adjacency matrix A = (a_) of a strongly regular graph is a 

basic element of a three-dimensional cell (cf. K20). So it is a symmetric n X n- 

matrix with zero diagonal and with elements 0 and 1, and it satisfies the following 

condition: 

If s. = (a.,, . . . , a. ) is the i-th row of A and if I s I denotes the number of 
l ll m 

ones in (0, l)-vector s, then 

for all i 

if a.. = 1 
U 

if a.. = 0 
ij 

(*) 

Below we describe the algorithm which constructs for a given set n, n , 

ail’ ail Parameters a set strongly regular graphs with these parameters 

such that any strongly regular graph with these parameters is isomorphic to at 

least one constructed graph. Interesting features of our algorithm are the use of 

partial canonization, cf. 2.3, 2.5, 2.6, 2.8, and two forced variants (cf. 2.4, 

3.4). 

1. To describe this algorithm we have to introduce some notions. Let us 

fix n Let B = (b ) be a n Xn (0,1)-matrix with zero diagonal. Let D = 
ij 

{i , . . . , i^} be a subset of [1, n]. 

Two numbers r, q « [l,n]\D are said to be D-equivalent if 
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b = b for all i e D 
iq ir 

(clearly this is an equivalence relation). 

1.1. Definition. Set = D and let D., i=l, 2, ...,m, be classes of D- 
- 0 i 

equivalence numbered such that (here inf stands for infimum) 

i > j inf D. > inf D. 
J i J 

The D.'s are called D-sets. 
i - 

1.2. Let B, D, D. be as above. Let s = s (B) be the q-th row of B. For 
i q q 

q j- D and j e [1, m] set 

x . = x .(B) = E b 
qj qj deD. qd' 

(This is the number of ones in s^ which occupy the positions (q, s), s e D^. ) 

1.3. Proposition. Let p = inf D., 

a) For every q e D. there exists g € Sym (DJ such that 

-1 
x^(g Bg) = xqj(B) for a11 J € [l*111]- 

-1 
b) There exists an h e II Sym(D.-p) such that for h Bh = (c ) the following 

i>! 1 aP 

holds: c = 1, s e D, , implies c . = 1 for all j < s, j^p, j e D, . ps k K pj J J r J k* 

These assertions are evident, and show that, when t rows (i^, . . . , i ) of 

B are fixed, we still have some freedom to move the remaining rows. They also show 

how to use this freedom. These assertions, and also their corollary, are used in 

2.3, 2.5, 2.6. 

An easy corollary of 1. 3a) is 

1.4. Corollary. Under assumptions and notations of 1.3 there exists g 6 Sym (D.) 

(Xpl(gBg V • • • . xpt(gBg l)) 

such that the vector 
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is lexicographically greater than or equal to any vector 

(* (1<gBg 1'l> , JgBg'1)), q e D. 

1. 5. Now note that the number b r e D, j e. D , depends only on r and 
rj i 

Let us denote it by b. (r). 

Secondly, if we set s = (b , . . . , b . ), (recallthat D = (i , ,, , , i ) 
K, U K, X, It It 

the number 

then 

Sr, D ^ S j , D ’ r 6 

does not depend on j 6 D. . Let us denote it by c,(r). 

Also let c be the common value of Is | , i e D . 
i 1 J.D1 3 i 

1-6. Proposition. If B is an adjacency matrix of a strongly regular graph,then the 

numbers x^(B), q e D^, satisfy the following equations 

E 
j>0 

x . = n 
qj 1 

c.(r) if b.(r) 

E 
j>0 

b.(r)x . = < 
j qj 

c.(r) if b.(r) 
l i 

1 

0 

(These relations are direct consequences of (*)). 

2. Now we are able to describe the work of our algorithm at a fixed vertex 

(i. e. , to describe its function of an exhaustion). 

There are two somewhat different procedures depending on the situation. In 

all cases at the level t, the data inherited from the level (t-1) contain a subset 

D(t) = { i , . . . , i } of [1, n], a n X n (0, 1)-matrix B and also some additional 
It t 

information to be described later (S, .a list of positions fixed (cf. 2.4) at the 
d, t 

level t-1). 

2.1. For this pair D(t), B^ construct D(t)-sets D , . . . , numbered as in 1. 1. If 
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| D. | = 1 for all i = 1, . . . , m, the second procedure is applied. It is described 

in 3. 

2. 2. For every i = 1, 2, , m, find all solutions of the system 

E x. = n, - c. 

j>l J 

£ b,(r)x. = i 

j>l J J 

- ci(r) if y(r) = 1 

V " c;<r) if bi(r) = 0 • 

The solutions are vectors of length m. Let us denote the set of these solutions by 

S^. The elements of are ordered with respect to dictionary order. 

The search for solutions of the above systems is done by the evident exhaus¬ 

tive search. If the procedure "Fixation" (cf. 2.4) has already determined (that 

is on preceeding levels) the values of some x., those values are not computed 

anew but substituted in the above systems. ("Fixation" reduces our search, 

but does not involve an exhaustive search. Therefore, "Fixation" is a forced 

variant). 

If for at least one i the above system has no solutions, return to the level 

t - 1 and apply 2.6. 

2.3. Now fix in turn all s<t and all ie [l,ml. Let D' . . . , D' be D(s)-sets 
1 a 

constructed for B. Clearly D. is contained in some D'. If none of i .i 
i j s+1’ t 

belongs to D(, pass to 2. 4. Otherwise take the largest among i , i 

which belongs to D', and call it r. For this r, computethe solution of the system 

of 2. 2 which is realized by r-th row of B . Let it be the vector u (of length a). 

For each solution v € S., compute the solution of the system 2. 2 (considered 

for s) to which it corresponds. Denote it by v (the computation is easily perform¬ 

ed for a given matrix B). 

Delete from S^, those v for which v > u. If the resulting S. is empty, 
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return to the level t - 1 (i. e. , put t : = t - 1 and apply 2. 6). 

2.4. "Fixation" (This is an example of a forced variant, cf. ,Q2. 10). If for some 

i» j 6 [1> m] the j-th component of all solutions from S. is 0, then we 

can fill all positions (p,q) e D. X D. of B by zeros, and we do this. 

Analogously, if for some i, j e [1, m], i £ j (resp. , for some j e [1, m]) the 

j-th component of all vectors from (resp., S.) is |D^| (resp., | D ,| — 1)» we 

can fill all positions of (p, q) e X (resp. , (p, q) € D. X D., p ^ q) by ones, 

and we do this. 

2.4.1. Note, that the group Sym D X . . . X Sym D commutes with these fixed 

pieces. 

2.5. Now take the smallest de [1, ml such that I S I < IS, I for all ie [l,m] 
d a. 

and put i , : = inf D . S, : = S 
^ t+1 d d, t d 

2.6. Take the largest vector, say v, from S and put S : = S - v, 
b d) t Q. J t 

D(t+1) = {i , .. . , i _ }. Place the elements in the i -th row of B (they will lie outside 
X It 1 It I 

D) in the following manner. Let D. = ( j± ^ . . . , j. |D|^ (listed in increasing 

order), v= (v , ...,v ). If i £ d, put 

1 for 

b. : = < 
xt+l’J 

0 for 
ji,v.+l’ ‘ 

If i = d put (recall ^ - i^) 

1 for 

Jd-V‘ 

0 for 
1t+l’3d, v,+2’ ' ' 

a 

Then insert the corresponding i -th column (so that B is symmetric). 

Also insert the entries in all positions which were determined in 2. 4 and store the 
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information about these positions. Call the resulting matrix B 

2.7. If t + 1 = n, print B (which is the matrix of a strongly regular graph), 

set t : = t - 1 and apply 2.3. If t + 1 < n, go to the level t + 1, i. e. , set 

t : = t + 1 and apply 2.1. 

2.8. Remark. We have used several search reductions (in 2. 3, 2.5, 2.6). Using 

them we construct a smaller number of graphs. However, at least one 

graph in each isomorphism class will be constructed. This is guaranteed by 1.4 

(for 2.3), 1.3a) (for 2. 5), 1.3b) (for 2.6). (cf. also Q5. 2 where this situation 

is described in a more detached way). 

3. "Break-down". Now suppose that in the situation of 2.1 one has |D | = 1 

for i = 1, . . . , m (then m = n - | D| ). Let t be the first level at which it 

occurred. In this case the solutions of 2. 2 are (0. l)-vectors,and the set of the 

solutions for level t + 1 is easily obtained from the set of the solutions for level t. 

Indeed, the number of variables decreases and the number of equations increases. 

Therefore,it is worth to store the set of solutions. The list of solutions is 

organized as follows: 

All solutions (at level t^) 

admissible forbidden forbidden forbidden 

at the level t at the level t at the level t-1 at the level t-2 .... 

3.1. If t = t^, do the same as in 2.2 and 2. 3. If t > t^, move all solutions 

which were admissible at the level t-1 but contradict the i^_-th row> 1° the 

list: forbidden at the level t. 

3.2. If the list of admissible solutions at the level t is empty, return to the 

level t-1. 

3.3. The same as 2.4. 

3.4. For each solution from the list (if t > t use the list: admissible at the 

level t-1) check whether it contradicts the fixations made in 3. 3 (i. e. , we check 
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to some extent the list of solutions for compatibility). If there are no contradictions 

pass to 3.5. 

If there are contradictions move contradicting solutions to the list of 

solutions forbidden at the level t and apply again 3.2. (In this way one again 

gets a "forced variant".) 

3.5. If the list of admissible solutions at the level t is empty and t > t^, set 

t : = t - 1 and pass to 3. 6. 

If the list of admissible solutions at the level t is empty and t = t^, set 

t : = t - 1 and return to 2.6. 

3.6. If the list of admissible solutions at the level t is not empty, take for the 

i^_^ the least number i 6 D such that the number of solutions for the 

corresponding row is minimal; take from the list of admissible at the level t 

solutions the largest one corresponding to i -th row; move it to the list of 

forbidden at level t + 1, and insert the corresponding column and row in B^. 

Call the resulting matrix B , set t : = t + 1 and return to 3.1. 

4. Let us now describe the tree of our exhaustive search. The vertices of 

level t are pairs (D(t), B^_) consisting (cf. 2) of a subset D(t) = {i^, . . . , i^} of 

[1, n] and a (nXn) (0.1)-matrix with zero diagonal whose rows with numbers 

i , . . . , i satisfy relations (*). (But matrix B can contain ones outside the rows 
It t 

and columns with the numbers i , . . . , i . ) There is an edge from (D(t), B^ to 

(D(t+1), B ) if the latter pair is constructed from the former one with the help 

of the rules described in 2. 5, 2. 6 and 3. 6. 

The search is the "depth first search". 

5. Forced variants are "Fixation" (cf. , 2.4) and "Fixation-Deletion" 

(cf. , 3. 4). They are helpful for constructing part of the matrix B without branching. 

6. The choice of i (cf. 2. 5) is heuristic . We do not know and did not 

know whether it reduces the search or not. 

However, some experiments were done which suggest that it reduces the 
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search. 

In these experiments the choice of i ^ according to 2.5 (heuristic) and 

the choice i : = t + 1 (natural) were compared. 
t+1 

In one case the coefficients of branching were 

level 3 4 5 6 7 8 

heuristical 3 5 20 25 1 1 

natural 3 20 25 5 1 1 ... 

In another case the sizes of the trees hanging at some (not too far) advanced 

vertex of the exhaustion tree were compared. This vertex was fixed and then the 

remaining numbers were exhausted in the natural and heuristic order. In all 

these cases the heuristic approach generated trees which were several times 

smaller than those generated by the natural approach. 

7. Possible modifications. 

7.1. It is possible to use the results of "Fixation" (cf. , 2.4) also before "Break¬ 

down" in the same manner as they were used in 3. 4. We did not experiment 

with this possibility. 

7.2. It is also possible to use the canonization algorithm not only at the end points 

of our tree, but at every vertex. However, it is not clear whether it will make 

the algorithm work faster. Indeed, the canonization algorithm is quite bulky 

and we already have at least partial canonization (cf. , 2.3, 2.5, 2.6, 2.8). There 

1 2 
were experiments with this approach in the case n = 29, n^ = 14, a^ = 7, a = 6. 

But the tree in this case still was too large to be handled by computer (cf. [Ar2]). 

On the' other hand sometimes (when one has a lot of computer time) only the 

storage space matters. 

8. About realizations. Several programs, based on different modifications 

of the above algorithm were written. One of them was written for a computer 

M-20 and all others for a computer ICL, System 4-70. The results coincided. 



u. TABLES OF STRONGLY REGULAR GRAPHS WITH n VERTICES, 10 < n < 28 

All strongly regular graphs constructed by the algorithm described in Section T 

are given in the tables below. Also some information on these graphs is given. 

The information about the graphs is arranged as follows. The upper 

line is 

n = , nj_ = , # 

which shows the number of vertices of the graph ("n"), its degree ("n^") and its 

number among the graphs with the same n and n^. 

Below this line the connection table of the corresponding graph is given. The 

column 

"VER" 

gives the numeration of the vertices of the graph. 

The column 

"TYPE" 

indicates the number of the canonical form of the neighbour graph of the corresponding 

vertex. 

Under the title 

"NEIGHBOURS" 

the canonical numeration of the vertices of the neighbour graph of the corresponding 

vertex is given. 

Below the connection table and after the word 

"ORBITS" 

the nontrivial orbits of the automorphism group of the corresponding graph are given. 

In the case when this group acts transitively, it is written: 

"ORBITS : TRANSITIVE" 

In the case when this group is trivial, it is written; 

ORBITS : n POINTS" 

(where n is the number of vertices of the given graph). 

The next line is 

"NUMBER OF DIFFERENT NEIGHBOUR TYPES = b" 

and this means that our graph has b non-isomorphic neighbour graphs. 
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In the cases when the pictures of the neighbour graphs are not too complicated, 

they are given under the heading 

"NEIGHBOUR GRAPH" 

The 15 graphs with n = 25, n^ = 12 are called the 25-family, and the 10 graphs 

with n = 26, n^ = 10 are called the 26-family. For these families there are tables 

"MULTIPLICITY OF THE NEIGHBOUR TYPES IN n-FAMILY" 

The (i,j)-entry of these tables is the multiplicity of the i-th type of the 

neighbour graphs in the j-th strongly regular graph. 

More heuristical information on the 25- and 26-families is discussed in the 

next Section. 

All graphs with n = 28, n^ = 12 are known (cf. fCh. 2]). All graphs of the 

25- and 26-families were independently constructed by A. J. L. Paulus [Pa l] 

under the guidance of J. J. Seidel (cf.[Se5]). However, his algorithm does not guaran¬ 

tee that the constructed families exhaust all strongly regular graphs with given para¬ 

meters. Our algorithm as it was already indicated constructs complete families. Our 

results were announced in [Ro 1], [Ro 2], [Ar 2], 

All other graphs in our tables have transitive automorphism groups. 
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n = 25, nL = 8, #1 

VER TYPE NEIGHBOURS 

1 1 2 3 4 5 6 7 8 
2 1 1 3 4 5 10 11 12 
3 1 1 2 4 5 14 15 16 
4 1 1 2 3 5 18 19 20 

5 1 1 2 3 4 22 23 24 
6 1 1 7 8 9 10 14 18 

7 1 1 6 8 9 11 15 19 
8 1 1 6 7 9 12 16 20 
9 1 1 6 7 8 13 17 21 

10 1 2 11 12 13 6 14 18 
11 1 2 10 12 13 7 15 19 
12 1 2 10 11 13 8 16 20 
13 1 2 10 11 12 9 17 21 
14 1 3 15 16 17 6 10 18 

15 1 3 14 16 17 7 11 19 
16 1 3 14 15 17 8 12 20 

17 1 3 14 15 16 9 13 21 
18 1 4 19 20 21 6 10 14 
19 1 4 18 20 21 7 11 15 
20 1 4 18 19 21 8 12 16 
21 1 4 18 19 20 9 13 17 
22 1 5 23 24 25 6 10 14 
23 1 5 22 24 25 7 11 15 
24 1 5 22 23 25 8 12 16 

25 1 5 22 23 24 9 13 17 

ORBITS: TRANSITIVE 

NUMBER OF DIFFERENT NEIGHBOUR TYPES = I 

NEIGHBOUR GRAPH 

I 

9 
13 
17 
21 
25 
22 

23 
24 
25 
22 

23 
24 
25 
22 
23 
24 
25 
22 
23 
24 
25 
18 
19 
20 
21 
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n = 27, = 10, #1 

VER TYPE NEIGHBOURS 

1 1 2 3 4 5 6 7 8 9 10 
2 1 1 . 3 12 19 13 18 14 17 15 
3 1 1 2 20 27 21 26 22 25 23 
4 1 1 5 12 23 13 22 14 21 15 
5 1 1 4 16 27 17 26 18 25 19 
6 1 1 7 12 25 13 24 16 21 17 
7 1 1 6 14 27 15 26 18 23 19 
8 1 1 9 12 26 14 24 16 22 18 
9 1 1 8 13 27 15 25 17 23 19 

10 1 1 11 12 27 15 24 17 22 18 
11 1 1 10 13 26 14 25 16 23 19 
12 1 2 19 4 23 6 25 8 26 10 
13 1 2 18 4 22 6 24 9 27 11 
14 1 2 17 4 21 7 27 8 24 11 
15 1 2 16 4 20 7 26 9 25 10 
16 1 2 15 5 27 6 21 8 22 11 
17 1 2 14 5 26 6 20 9 23 10 
18 1 2 13 5 25 7 23 8 20 10 
19 1 2 12 5 24 7 22 9 21 11 
20 1 3 27 4 15 6 17 8 18 11 
21 1 3 26 4 14 6 16 9 19 10 
22 1 3 25 4 13 7 19 8 16 10 

23 1 3 24 4 12 7 18 9 17 11 
24 1 3 23 5 19 6 13 8 14 10 

25 1 3 22 5 18 6 12 9 15 11 
26 1 3 21 5 17 7 15 8 12 11 

27 1 3 20 5 16 7 14 9 13 10 

ORBITS: TRANSITIVE 

NUMBER OF DIFFERENT NEIGHBOUR TYPES = I 

NEIGHBOUR GRAPH 

1 23 45 67 89 10 

11 
16 
24 
20 
24 
20 
22 
20 
21 
21 
20 

27 
26 
25 
24 
23 
22 
21 
20 
19 
18 

17 
16 

15 
14 
13 
12 
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Y. SOME PROPERTIES OF 25- AND 26- FAMILIES. 

Below we expose some results of the computer-aided analysis of the graphs of 

the 25- and 26-families. The numeration is that of the preceeding Section. 

Results of this Section partially overlap with results of [Sh 4], [Sh 3], 

[Sh 5], [Pa 1], [Se 5]. Our results were announced in [Ro 1], [Ar 2], 

1. 26-family and Steiner triple systems on 13 points. 

There exist (cf. , [Ha 3]) 2 non-isomorphic Steiner triple systems on 13 

points. The corresponding graphs (whose vertices are triples) are =£ 7 (corres¬ 

ponding to the cyclic Steiner triple system) and ^ 3 in 26-family. 

In [Sh 4] the authors took two non-coinciding representations of the cyclic 

Steiner triple system and derived from them 5 graphs (^ 1, # 2, 6, ^ 7, 4^ 8) 

of the 26-family and 7 graphs (by descent, cf. , 3 below) of the 25-family. The table 

in subsection 3 below shows that if the authors of the cited paper had not been 

so unlucky, they could have found using descent-ascent all the graphs of the 25- 

and 26-families. However.it is not clear how they would be able to establish 

that they found all graphs with these parameters. 

2. Complement in the 25-family. 

If A is the adjacency matrix of a strongly regular graph belonging to the 

2 5-family then 

is also one. 

given as a 

^ of A 

^ of A 

3. 

Below the number of the class of isomorphism of A is 

function of the number of A 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

13 7 4 3 8 9 2 5 6 12 14 10 1 11 15 

Descent from the 26-family to the 25-family. 

x e V(F). Let Let r be a strongly regular graph with 26 vertices, 
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(resp. V^) be the set of vertices of T which are incident (resp. non-incident) 

to x. Let r be the graph obtained in the following manner: 

a) V(r ) = V(D - x; 

b) the vertices of (resp. , of V^) are incident in T if and only if they 

are incident in T; 

c) the vertices of are incident in T to vertices of if and only if they 

were not incident in I\ 

It is easily checked that T is strongly regular and belongs to the 25-family 

(cf. , e. g. , [Sh 4]). 

In the table below in the position (m, n) stands the multiplicity of the m-th 

graph of the 25-family as a graph T of the n-th graph of the 26-family. 

: 1 2 : 3 : 4 : : 5 : 6 : 7 : : 8 : 9 : 10 

1 3 3 3 3 3 

2 3 3 3 3 3 

3 6 6 6 6 6 

4 6 6 6 6 6 

5 13 13 

6 1 i i 1 1 

7 3 3 3 3 3 

8 13 13 

9 1 1 1 1 1 

10 12 12 

11 1 1 

12 12 12 

13 

14 

15 26 

3.1. Remark. The graphs of the 26-family split into 4 groups: {1,2}, 

{3,4,5,9,10}, {6,7}, {8} and the columns of the above table are the same within 

one group. The 25-family splits accordingly into groups: {10,11,12,14}, 

{1,2,3,4,6,7,9,13}, {5,8}, {15}. 
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It is interesting to compare this partition with the tables of the multiplicity 

of the neighbor types in the corresponding families and also with tables 4. 2.1, 

4.3.1. 

4. Coinciding rows. 

4.1. The matrices A constructed by the algorithm of Section T may be very 

close to each other. The i-th column of the table below contains the number of the 

matrices A, constructed by the algorithm of Section T, such that A and the 

matrix B constructed next to A have i coinciding rows (i.e., for i values 

of q one has s (A) = s (B), where s (C) is q-th row of C). The first row of 
q q q 

the table shows i, the rows marked 25, 26 correspond to the 25- and 26-family. 

NUMBER OF CONSECUTIVE GRAPHS WITH i COINCIDING ROWS 

i 0 1 2 3 4 5 6 7 8 9 10 11 

25 0 0 3 20 300 900 900 1500 750 700 900 500 

26 0 0 1 5 25 100 350 280 450 260 300 400 

Table continued 

i 12 13 14 15 16 17 18 19 20 

25 250 0 0 1750 0 1550 0 0 0 

26 70 120 0 0 800 0 68 0 0 

4.2. The 26-family. 

In 4.1 we pointed out that the matrices succes sively constructed by the algorithm 

may have many common rows. The two tables below point out which isomorphism 

classes are close in that sense. The number "1" which stands at the intersection 

of the i-th column and the j-th row of Table 4.2.1 (resp. 4.2.2) indicates 

that among the matrices constructed by the algorithm there is a pair of successive 

ones which has 18 (resp. 16) common rows and such that the first matrix of the 

pair belongs to the i-th isomorphism class and the second one to the j-th one. 



189 

4.2.1. Table (18 common rows in the 26-family). 

123456789 10 

1 1 

2 1 

3 

4 1 

• 

1 

5 1 1 1 1 1 

6 1 1 
7 

i 

oo 

9 1 1 1 1 
10 1 1 1 

This induces the partition {1,2}, {3}, {4,5,6,9,10}, {7}, {8} of the graphs of 

the 26-family. Compare with Remark 3.1 above and with the remark after Table 

4.3.1 below. 

4. 2.2. Table (16 common rows in the 26-family). 

1 2 3 4 5 6 7 8 9 10 

1 1 1 

2 1 

3 1 1 

4 1 1 1 

5 1 1 1 1 1 1 

6 1 1 1 

7 

8 

9 1 1 1 1 

10 1 1 1 

4. 2. 3. If the n>Si-matrices A and B have m common rows, let us denote by 

A and B the (n-m) X (n-m)-matrices obtained from A and B by deleting 
B A 

m common rows and columns. For the 26-family and for m = 18 or 16, it turns 

out that A and B are (adjacency) matrices of isomorphic graphs. 
B A 

Therefore the operation of transition from A to B can be described in 

the following manner: 

Remove from T(A) some subgraph^ spanned by (n-m) vertices, and replace 
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it by an isomorphic one. Call this operation surgery. 

It turns out that for m = 18 graphs and always belong to the 

class of isomorphism of the graph given below: 

0 11110 0 0 
10 10 0 10 0 
1 1 0 0 0 1 0 0 
1 0 0 0 0 1 1 1 

1 0 0 0 0 1 1 1 

0 11110 0 0 
0 0 0 1 1 0 0 1 
0 0 0 1 1 0 1 0 

1 4 

8 

A program was written which found all (up to isomorphism) strongly regular 

completions of this graph to strongly regular graphs with 26 vertices. All com¬ 

pletions belong to the isomorphism classes 1, 2, 4, 5, 6, 9, 10. This gives rise to the 

hypothesis that only these isomorphism clas ses have representatives which have 

18 common rows. This hypothesis was then checked,and it turned out that it is 

true. 

When m = 16 by random search four isomorphism classes of matrices 

were found. We do not give them here. 

4.3. The 25-family. 

B 

The Tables 4. 3.1 and 4. 3. 2, given below have the same significance and are 

arranged analogously to Tables 4.2.1, 4. 2. 2. 

4.3.1. Table (17 common rows in the 25-family). 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 1 

2 1111 
3 11 1 1 

4 11111111 1 1 

5 11 1 

6 1 1 

7 11 1 

8 1 11 1 

9 1 

10 1 1 
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(Table continued) 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 

11 

12 1 1 
13 1 1 

14 

15 

This table induces the partition {1, 2,3,4, 5, 6, 7, 8, 9,10,12,13}, {11}, {14}, {15>. 

Compare with Remark 3.1 and with the remark after the Table 4. 2.1. 

4* 3.2. Table (15 common rows in the 25-family). 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

11 1 1 

2 11111 

3 11111 1 

4 11111111 1 11 

5 111 1 

6 11 11 
7 111 11 

8 1 11 11 

9 1111 

10 1 11 

11 
12 1 11 

13 1 1 1 1 

14 

15 

4.3.3. Note that table 4.3.2 is not symmetric; this means that our material is 

insufficiently representative. 

In all cases when (for m = 15 or 17) the matrices and B „ were 
BA 

constructed,they proved to be isomorphic. 

The matrices A , constructed for m = 17, are isomorphic to the matrix 
B 

given in 4. 2. 3. Possibly this phenomenon is connected with the operation of 

descent. 

5. Coinciding minors 

Among the matrices constructed by the algorithm there were pairs A 
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and B which had large common minors. 

Systematic research has not yet been performed in that direction. How¬ 

ever, some matrices of the 25-family have common minors of order 19. Such pairs 

are also contained among canonical forms given in the preceding Section. Below 

for matrices with numbers n, m from the preceding Section, those 19 vertices 

are pointed out which span coinciding minors. 

# n : m : numbers of vertices spanning (19 X 19) - minor 

2 

4 

6 
6 
6 
7 

7 

8 

3 1 + 19 

5 1 + 19 

7 1 + 19 
8 1. + 14, 16, 17, 18, 24, 25 

9 1 + 14, 16, 17, 18, 22, 23 

8 1 + 14, 16, 17, 18, 22, 23 

9 1 + 14, 16, 17, 18, 20, 21 

9 1 a 19. 

6. More information on the 25- and 26-families can be found in [Pa 1, Se 5, 

Sh 4]. For example, the clique structure of these graphs and the classes of 

Seidel equivalence (switching) are found there. 

Also note that the tables of the preceding Section are, in principle, 

sufficient to answer some questions, such as, what is the automorphism group of 

the graphs, etc. 



AA. A GRAPHICAL REGULAR REPRESENTATION OF Sym(n). 

The next three sections can be considered as examples of application of the 

stabilization procedures of Sections C and M. On the other hand, the questions 

discussed in Sections AA, AB, AC have attracted the attention of several authors 

(e.g., [Sa 1], [Wa 2], [Wa 3], [im l], [itn 2]). 

!• Let G be a finite group. A graph T is said to be a graphical regular 

representation of G, if G acts simply transitively on vertices of T and 

G ~ Aut r. 

Proposition. If T is a graph and 0V(Y) ~ Z[G] (isomorphism of cellular algebras) 

then r is a graphical regular representation of G. 

Proof. By C 8.2 we have Aut T = Aut OC(r) . Since |V(r) | = |g|, the only thing 

to prove is that Aut r ~ G. But it is well-known that Aut Z[G] ~ G (cf., [Ha 2]). 

2. Let ev = Z[G] be the group algebra of G (cf., G 1). The operators R^, of 

the right multiplication by g e G, form a standard basis of do. We shall 

identify g and R . 
g 

3. Below we use the stabilization procedure of Sections C and M to check that 

<7Z(D Z[Sym(n)J for an explicitly given graph p. Then the above proposition will 

give us the following 

Theorem. There exists a simple graph T (without loops, multiple or directed edges) 

which has nf, n > 3, vertices, and whose automorphism group is isomorphic 

to Sym(n) and acts transitively on its vertices. 

Proof. Set p1= (1,2,3,4), p2= (1,2,3), P;J=(1,4), p.= (i,i+l), i > 4, 

r = Pq + Pq1 + P2 + p2L + ^L=3 pi 

According to our convention (Rg <-> S) , this is an nj X n]-matrix. Since 
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the coefficients of the elements of G in p are 0 or 1, it is a (0, l)-matrix. 

Since P contains g ^ together with g, it is symmetric. So it remains (by 

Proposition 1) to show that 

OL(D = Z[G] 

Consider One has 

r2 = (n - 2) • 1 + 2 • (1,3,2,4) + (1,2,3,4) + 2 • (1,4,2,3) + (1,4,3,2) + (1,2,4,3) 

+ (1,3,4,2) + 2 . (1,2,3) + 2 • (1,3,2) + (2,3,4) + (2,4,3) + 2 . (1,3)(2,4) 

+ 2 • (3,4) + 2 • (1,4) + (terms, containing 5,6, ..., n). 

2 -1 

The summands of P which appear in p are p = p2 + P2 + P3 (with 

coefficient 2) and b = p^ + p^ (with coefficient 1). By definition of the 

product (X° X, cf., C 4.2), we have p, b, v = p^ e <X(T). 

2 

Now consider p . One has 

P2 = 3 - 1 + (1,2,3) + (1,3,2) + (1,2,3,4) + (1,4,3,2) + (1,3,2,4) + (1,4,2,3). 

-1 2 
Since p2 + P2 and p^ enter in p with different coefficients and since 

2 -1 

p e dt'CO, we have p2 + p2 , P3 e 0LCO. 

Now p^(p2 + = (1,4,2,3) + (1,4,3,2). Since of these two substitutions 

only (1,4,3,2) = p^ enters in we have p e Ot^(r), whence p^ e 0C(P). 

It is easy to verify that p , p^ generate Sym(n) acting on [1,2,3,4], Therefore, 

d = (3,4) e ov(T). Consider 

P,.) d = (3,5) + p. 

It follows that (3,5) e 0l(P) • Therefore, (4,5) e 0L(P). 

Suppose now that a = (q,q + 1) e dt(P) and v = p^ e fft(P) . Then 

a v a (q,q + 2) + 2?"* p. 

This is the inductive step which concludes our proof. Namely, it shows that 

Sym(n) c 0L(T) . 



AB. A GRAPHICAL REGULAR REPRESENTATION OF SL (F ). 
n q 

!• Let F be the finite field with 
q 

be the group of unimodular (n + 1) X 

H = SWV- 

q elements, q = pm, p a prime. Let 

(n + 1)-matrices with entries in F 

H 

Theorem. Suppose that p > 5. Then there exists a simple graph F such that 

Aut r ~ h, |r| = |H| . 

Remark. This assertion and its proof can be generalized to rational 

points over F^ of semi-simple algebraic groups defined and split over F^ (cf., 

[Bo 1]). 

2. To prove the theorem we shall construct, as in the preceding section a graph F 

such that ot*(T) = Z[H]. Also,as in the preceding section, we shall write the 

elements of the group ring instead of the operators of right multiplication. Let 

us introduce some notations. 

3. For 

A SL „(F' ) 
2 q 

set 

if j > i 

1 
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-1 

with zeros in all other places, and cp_ (A) = Cf\„(A ) if j < i. 

Set 

n = 
a (i 0 - (-? o)’d = (I '«) ' V1 

v = t + t 1 + d + d 1+n^+ n_^ 

Take c / + 2, a generator of the multiplicative group of F^, (there exists 

such c since p > 5) and set 

u = n t1+tn1,v=v + u 
c c ’ • 

Next set for n = 1 

w = w = 0 

and for n > 2 

w = cp23(t) cp34(t) ... cpn n+1(t) 

w = cp12(nx) w + w'1 Cp12(n_1) + <P12(n4> w + w 1 cp12(n_4) 

Now set m=v if p = q and m = v if p < q. Also put n = n^ + n4. 

n , + n .. Next set 
-1 -4 

r = cp12(m) + w 

4. As in the preceding section, let us consider T . We have (for n > 1) 

2 2 
r = cp12(m) + 4 • 1 + CP12(n1) w cp12^nl^ w + Cp12('nl^ w cpl2^n4^ w + cpi2^n-3^ 

+ w 1 cp12(n_1> w 1 cp12(n_1) + w 1 cP12(n3) w + w 1 cp12(n_1) w 1 cp12(n_4) 

+ CP12^n4) W Cpi2(nl) W + Cp12(n3) + Cp12^n4) w Cpi2(n4) w + w 1 cPi2(n-3) w 

+ w 1 cP12(n_4) w 1 cp12(n p + w 1 <P12(n_4) w"1 cp12<n_4> + cp12(m) cp^O^) w 
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+ cp12(m) w'1 cp12(n_1) + cp12(m) cp12(n4) w + cp12(m) w'1 cpi2(n_4) 

+ cP12(nl) W cPi2(m) + w 1 cPi2(n-l) cP(m) + cPi2(n4) w cP12(m> 

+ w 1 cp12(n_4) cpi2(m) = . 

= cP12(m)2 + 4 * 1 + <P12<ni> cPl3(n-i^ w2 + ^12cPl3(n-4^ w2 + cpi2(n-3) 

+ W W'2 + Cpin+l(n3) + 'Pln+l^-P W’2 

+ =P12(n4) ^(n.!) ^ + <P12(n3) + cp12(n4) cp13(n_4) w2 + cpin+1(n_3) 

+ Cpln+l(n-4) 'Pln<nl) W’2 + Cpln+l(n-4) Cpln(n4) W"2 + cPl2(tnnl) w 

+ cpi2(m) cpin+1(n p w’1 + cpi2(mn4) w + cp12(m) cpln+1(n_4) w'1 

+ cP12(nl) ^13w + Cpin+l(n-lm-) w 1 + cPi2(n4) ^13w + cPin+i(n-4m) w"1 = 

(here m is defined by w Cp^On) w ^ = cp^(m)) 

2 2 
= 4.1 + cp12(tn + n_3 + r>3) + cpln+1(n3 + n_3) cp^O^+n^ <¥>13(n_x + n_4> w 

-2 ~ 
+ 'Pln+1(n_1 + n_4) cpln(ni + n4) w + [cp12(m(n1 + n4)) + Cp12(n1+ n4) <P13(m)] w 

+ [Cpin+l((n-l + n-4)m) + cp12(m) Cpln+l(n-l + n-4) ] w_1- 

2 2 
For n = 1 we have F = Cp^2(m ). 

We want to choose from this sum the terms which have coefficient > 2. 

It follows from the unicity properties of the Bruhat decomposition (cf., [Bo 1]) 

that only the following cases can occur: 

2 
a) n = 1, only summands of cp^2(m ) can have coefficient > 2; 

2 
b) n = 2, only summands of cp32(m + n_3 + n3) 

+ 2[Cp (n + n4) cpi3(n_1 + n_4> ] cp23(-1) can have coefficient > 2 (since 

w2 = w”2 = cp23(-l) and <P12(na) cP13(nb) = cp13(«b) ^12^"a^ in thiS case; 

2 
c) n > 3, only summands of cpl2(m + n 3 + n3) can have coefficients > 2. 

Thus the following holds. 

4.1. Assertion. The terms with coefficients > 2 are contained in 

cp12(m2) if n = 1; 
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cpl2(m + n_3 + n3) + 2[cpi2(n;L H- n^) cP13(n_1 + n_4) 1 CP23('"1') if n = 2> 

cp12(m + n_3 + n3) if n > 2. 

To compute Cp^2(m ), put a = 1 + + n^, b = 1 + n^, c = + n_^, 

a' = L + n . + n ,b'=l+n. 
-1 -c’ -1 

v = bt ^ + tb' + c 

v^at^+ta'+c 

v2 = bt "''bt ^ + bb' + bt ^c + tb'bt ^ 4- tb' tb1 + tb'c + cbt ^ + ctb' + c2. 

—2-1-1 _1 -i -1 2 
v = at at + aa1 + at c + ta'at + ta1ta' + ta'c + cat + eta' + c . 

2 —2 
Note first that n^3 does not enter in v or v , since c ^ + 2. 

We are going next to use the uniqueness of the Bpuhat decomposition in SL(2). 

To this end note that for d ^ 0, one has 

It follows from this equality that we have 

4.2 Assertion. The terms with coefficient 2 

2 

in m + n3 + n 3 are all contained 

m v . 

(Indeed if d above is not + 1, then we get nontrivial diagonal element, 

which cannot be obtained in any other way.) 

2 
Let us now compute v . We have 

2 . . 2 -2 -1-1 -12 
v = 6 • 1 + t + t + nxt n]. t + tn_1tn_1 + n2 + n_2 + t^t + t n x + tn 

+ tn_L + t ^t 1 + n_1 + t"1n1 + t"1n_1 + nx + n^"2 + n^'1^ + n^^n 

+ tn_1t 4- tn_1t_1 + t + tn_2 + n^ + n^"1 + n^"1 4- n^n^ + n^t + n t"1 

+ t ^ 4- n ^tn 

tn^t nl*- ni? tn ^t n ^tn 

Using the relations 
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which we already used above, and also the equality y ^ o) = " (l o) ’ 

connects t and t we get 

2 
6 

2 
• 1 + (t + t" -2) + n t ^n + n .tn „ + n„ + n „+ n, tn. 

2 
+ t n , + tn, + tn 

2 1 -1 -2 2 -2 1 1 -1 1 

-1 -1 -1 -2 ‘ - 1 -1 
+ 

nit nl + 
n 

1 
+ t n^ + t n 3 + n^ + n^t + n^t 

"l + 
n^t n ^ + n ^tn 

-1 -1 -1 -1 -1 + 
n-lt n-l 

+ t + tn_2 + n^t + n^t + n2t 4- n^tn 
1 + n- 

_3t + n_Lt + t 

+ n ^tn 

It is seen from this expression that the coefficient 2 has only the following 

expression: 

2 -1 
d = t + n^t n^ + n ^tn ^ 

Therefore, it follows from 4.1 and from the computations above that the assertion 

below holds: 

, 4. 3. Assertion. i) If n ^ 2, then f = Cp^2(d) £ dz,(D. 

ii) If n = 2, then f = cp12(d) + ^2 (ni+ ^ cp13(n_ j+ n_^) cp23(-1) e 0t.(r) . 

We have 

1 + n^tn^ + n ^t 1n_1 + n^tn^ + ^r^t ^n^ + 1 + n_^t 1n_1 + 1 + n^tn^tn^ 

-1 
= 3 • 1 + 2[n1tn1 + n^t n_1] + n_3 

Further 

0 2 
2 0 

-1 

n-3 + n3 

0 -2 
2 0 

-1 

V 

Cp12(d)[CP12(d) + CP12(nl + V Cp13(n-1 + n-4) cp23(“1)1 

= cpl2(d2) + Cp12(dn1 + dn4) cp13(n_1 + n_4) Cp23(-1) and 

[<P12(d) + ^12^nl + n4^ ^13^n-l + n-4^ C(323('":L') ^12^ 

= cp12(d2) + cp12(nlt2 + n4t2) cpl3(n1 + n4) qp23(-l) + cp12(x) cp13(y) cp23(z) where 

z + 1, z / o. 

Next 

CP12(nl + V <Pi3<»_i + n-4) ^23 ^ CP12(nl + V *13(n-l + n-4) CP23('"1) 

= cP12((ni + n4)(:n-l + n-4)) ^^"-l + n-4)(nl + n4^ 

= cp12(2 • 1 + n_3 + n3) cp13(2 • 1 + n_3 + n3) 
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= 2-1 + 2Cp12(n3 + n_3) + 2cp13(n3 + n_3> + <P12(n3 + n_3) cp13(n3 + n_3) . 

It follows that 

2 
4.4. Assertion. The coefficient 2 in f has 

g = cPi2^nltnl + n-ifc ln_i) if n ^ 2 

g = cpi2(n1tn1 + n_^t 1n_1 + n3 + n_3) + Cp13 (n^ + n_3> if n = 2. 

Therefore g e oxXT). 

Now, if n = 2, then compare g with 

2 
cpi2(m + n3 + n_3) + 2[cp12(n3 + n^) cp13(n_3 + n_^) ] cp23(-1) (which belongs to 

&L(£) by 4.1). It follows that 

g' = Cp12(n1tn1 + n_1t 1n_1 + n3 + n_3> G fft(r) . 

Now for n J 2 consider 

s = fg D f e 0V(T) , 

and for n = 2 

s = fg' fl f e dL(r>. 

We see that in both cases 

s = CP12(n1t'1n1 + n^tn^) 

which implies the following: 

4.5. Assertion. s = + n^tn ) e OV (r) and 

Cp12(t2) = Cp12(d) ‘ S G 

2 
Now consider t • m + m. The coefficient 2 in this expression has only 

whence 
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4.6. Assertion. cp12(t + t"1) e OV(r). 

-1 2 
Note that Cp^2(t ) ’ s and ^ have only one common term, namely 

cp^2^n-itn_2^ (cf*> expression for v). Therefore, 

4.7. Assertion. cpi2(n_xtn_2) e OtCO • 

Next we have 

(nj^tn + n_^t 1n_1) n ^tn 

Since this latter expression has only one common term with P > namely 

2 2 
t n we have cp (t n p > and 4.4 also CP-L2 j_) belongs to 0L(X)- 

4.8. Assertion. cp^2(n p e • 

From 4.7 and 4.8 it follows that Cp^2(t) <= (7l(D. Since t and n generate 

SL(2,F^), we have 

4.9. Assertion. cp^2(SL(2,F))) c 0U(T) . 

Now note that T • cp^2(t) and ^12^nl^^ " ^12^n-l^ ^ave only 

the following part in common: 

cpl2(1 + nc + np. 

Since 1, qj (nL) e Ot (T), we have cpi2(nc) e 0U(T). By Dixon's theorem 

(SL(2,F ) is generated by ^ and n£) and we have 

4.10. Proposition. cp^2(SL(2, F^) ) <= Ots(T). 

There fore 

w e ol(T) 

Note that w is the only term common to cP12(n.1) w and Cpi2<-n-4') W’ whence 

4.11. Assertion, w e Ot-(T). 
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To get our theorem, note that 

W ^12^SL2^Fq^ w 1 = cPq2+i^SL2^Fq^ for * = 2? ..., n - 1, and that these 

groups cp^SL (F )), j = 2, n + 1, generate SLn+1(Fq). 



AC. ONE MORE EXAMPLE OF A CELL WITH ONE GENERATOR. 

The two preceding sections were, in fact, dedicated to a proof that in some 

cases a cellular algebra (it was Z[g]) has one generator (as a cellular algebra) and 

that one can take a simple graph as such a generator. In this section, we consider 

one more example of this kind. 

1. Again let F^ be the finite field with q elements, G an absolutely almost 

simple connected and simply connected algebraic group, defined and split over F 

(cf., e.g., [Bo 1]). Let T be a maximal torus of G, defined and split over F , 
q 

B a Borel subgroup of G containing T. Further let G(F ) be the set of the F - 
q q 

rational points of G, N_._ . (T(F )) the normalizer of T(F ) in G(F ), 
G(.Fq; q q q 

W = N . .T(F ))/T(F) the Weyl group of G with respect to T. 
q q 

As an example one can take G = SL . Then G(F ) = SL (F ) is the group 
n+1 q n+1 q 

of the preceding section, T is the set of diagonal matrices in G, N \(T(F )) 

1V q 
is the set of monomial matrices with entries in F . Then W is isomorphic to the 

q 

symmetric group Sym(n + 1). 

We want to show that the centralizer ring 

OU = ^(G(Fq), G(F)/B(Fq)) 

has one generator T which is a simple graph: OV = . 

Remark. If it were known that Aut Cl. = G(F^), we would have the stronger 

assertion, that there exists a simple graph T such that Aut IT G(F^), 

|r| = |G(F )/B(Fq) I, <n,(T) = oi,. 

2. It is known that <*-' is isomorphic as an algebra to Z[W], where W is the 

Weyl group of G (see [Bo 1], [Iw 1], [Yo 1]). 

It is also known that double cosets S = B(F ) wB(F ), w e W, form a standard 
"44 

basis of CUs and for fundamental reflections w^ ..., w^, one has the following 

relations (see [Iw 1], [Yo 1]): 
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S S 
w. w 

1 

S S 
w w. 

1 

S S 
w w. 

1 

S 
w 

S 
. w 
l 

S if 4(w.w) > i-(w) 
w.w i 

i 

S if Ji(ww ) > J2/(w) 
WW. 1 

1 

qS + (q - 1) S if 4(ww.) < 4(w) 
n w.w w l 

l 

qS + (q - 1) S if Mw.w) < £(w) 
WW . W 1 

1 

Here Jl(w) is the length of a shortest expression of w through w^. 

Remark. The following considerations are easily extendable to the case of quasi¬ 

split groups and Ree groups of type F . Such generalization influences only the 

structure constants in the expressions of S S in the basic elements. 
w w. 

l 

3. Theorem. Let = 2 (G(F ), (G/B)(F )), q > 2 and rg G > 2. Then there 
0 T q 

exists a simple graph 

F e AL, such that At. (F) = tft. 

Proof. Let A be a system of simple roots of G. To begin with, 

the case IAI >3. Let us choose two roots Ct , ct e A such that 

generate a subsystem of type Ain the root system of G. Let 

suppose that w. is the reflection in a.. Put S = S and 
i i i w. 

r 

r=s+s +s + z. . s.. 
r w w w w i/r ,m i 

r m m r ’ 

S2 = q • 1 + (q - 1) S. 
l n l 

One has 

S.S = S ,S S. = S 
lr w.w'ri w w 7 

l r r i 

S.S = S 
1 W W WWW 

r m l r m 

if i ^ r,m. 

S.S = S if 
1 w w WWW 

m r i r m 

i 4 r,m, 

S S = S 
W W 1 WWW 

m r m r i 
if i ^ r,m, 

let us consider 

Ct and a 
r m 

A = {a^} and 
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S S. = S i^rm 
WWl WWW 1 * r>mj 

r ni r m i 

SrSw_w_ = qSm + <q - !) Sw w 
r m r m 

S S = S 
r w w www 

® r r m r 

S S = S 
w w r www 
r m r m r 

S S = qS + (q - l-) s 
w w r 4 m ^4 ; w w 

(S w ^ = (SmS S ) S = SSSS = qS S +(q-l) 
w" mrm r rmrr 4 r m ’ s s s 

r m r 

(here we used the relation srsmsr = smsrsm which follows from the corresponding 

relation in W). 

(S„ „ > =(SSS)S =(SSS)S 
w w rmr m mrnvn 

= qS S + (q - 1) S S S = 
m r mrm 

qS S + (q - 1) S S S 
m r ^ ' rmr 

s s = s s s s 
ww ww rmmr 

r m m r 

qS^ + (q - 1) SrSmSr = q2 • 1 + q(q - 1) S + (q - 1) S S S 

S S = q . 1 + q(q - 1) S + (q - 1) S S S 
w w w w n n ^ m ^ rmr 

m r r m 

Therefore we have 

r = (q + 2q ) • 1 + (q - 1) S + (q + q) S + (2q - 1) S S 

+ (4q - 2) S S S + (q - 1) E. . S. + (...)• 
n rmr i#r,m l 

All summands in the parentheses have coefficient 1 or 2 (namely, if 

w w = w w , then S , i, j / m, r, has coefficient 2). 
i j ji’ w w ’ 

J 2 2 
Since q > 2, we see that q - 1, q + q, 2q - 1, 4q - 2, q - 1 are all 

2 2 
distinct. Also q - 1, q + q, 2q - 1, 4q - 2 are greater than 2 (if q > 2) . 

Therefore S , S , S , S S S e Ol^F) . But then S e 0C(F) whence 
’ r m mr r m r rm 

E S e 0V(T). Next we can apply the same reasoning as in the case of 
i*r,m i 

Z[Sym(n)]. Namely, we can take one of the S or Sm such that (denote our 

choice by S): 
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S(E. . S.)S=SS.S+ E., . s 
i#r,m 1 J iAr,m,j 1 

whence S. e <rc- (F) and so forth. 
J 

Let us now consider the case |A| = 2, A = {ctpCX^}. If G has type A2, then 

all preceding computations without any alteration or new comment lead us to our 

assertion. When G is not of type (that is, it is of type or G^), we put 

r - h + sts2 + s2Sj 

Since G is not of type A^, one has 

(s1s2)(s1s2) = S 

(S2Si)(S2Si) = S 

W1W2W1W2 

W2W1W2W1 

Therefore 

r2 = q • 1 + (q - 1) S1 + qS2 + (q - 1) 

+ S1S2S1 + S1S2S1 + qS2 + (q - 1) S2S1 

+ + S2S1S2S1 + q2l + q(q - 1) Sx 

+ (q - 1) S1S2S1 + q2l + q(q - 1) S2 + (q - 1) 

This again implies that S2 e (since these summands have the greatest 

and unequal coefficients). Thus in the case |a| = 2, our assertion also follows. 



AD. DEEP CONSTANTS 

1. We consider here formations which arise in one of the possible definitions of depth 

compare, 0 6.3. The discussions of this section are rather fragmentary and their 

aim is to point out relations which one obtains with the strengthening of a 

definition of a stationary graph. Analogous relations are considered in [He l]. 

We examine here only the case of a cell; the extension to general stationary 

graphs can be obtained without difficulty but leads to a much more complex 

exposition, compare Section D with E 4. 

2. Let X = (x„) be a stationary graph, X = x^e^. We say that the edge 

x is of type k if x , = x, . 
ab ab k 

Let (V(X))m be the set of all ordered m-tuples of vertices. Let 

(a, b, c^, c ) e (VCX))111^. We say that this set is of type 

(k; i , ..., i ; j , ..., j ; A) where k, i , j e I, A = (s ) is (mxm)-matrix, 
I m 1 m p p pq 

s e I, s = s' , if x , = x, , x - v 
pq pq qp ab k’ a,c 

x. , x = x 
l ’ c ,c s 

p p p q pq 

We shall write i 

in place of (i^, .i ) and j in place of (j^, ..., j ). Let us note that it 

would be more convenient to consider i as a row-vector and j as a column vector. 

In this section we use the following notation; If i = (i^, ..., i ), then 

-» 

i i' - Up •••, ijJ,) > 

-ft 
is the column-vector with the same coordinates. If A is 

a matrix, then A is its transpose. 

3. Let us consider the class of stationary graphs such that for any edge (a,b) of 

type k and for any m e [I,n] the number of all sets (a,b; c^, ..., c ) of any 

given type (k; ~i; j; A) is the same (and does not depend on the choice of the edge 

(a,b) of type k). (Note that these are ordered sets, possibly with repetitions.) 

. , k 
We denote this number by a^ 

1 J,A 
If G is a permutation group on V(X) and X = X(^. (G,V(X))), then G acts 

transitively on edges of a given type (cf., F 4.1). Therefore, such graphs X 

satisfy the above condition. 

4. Let us state some relations for the numbers 
i, j,A 

in the case of a cell. Let 
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= E . 
n 

Put A = (s ). 
pq 

We shall sometimes write A in the form 

where B is (r X r)-matrix, C is (m - r X m - r)-matrix, s^ is a vector of 

length m - r, r < m. « 

Furthermore, we write: 

A 

A^ for the matrix obtained from A by deleting the r-th row and r-th column, 

A 

(ip ..., ip . .., i ) for the vector with deleted r-th component, 

-X —> —X 

ip i^ for the vector whose components are components of i^ followed by those 

If g e Sym(m), then 

-x 
gi = 

(ig(l)’ ^g(2)’ 1g(m)') 

Theorem. The following relations hold. 

. , k k’ 
4.1. a_^ _ a_^ 

i,j,A j',i’,A 

Ic Ic 
4.2. a =a_>_y,ge Sym(m). 

gi,gj,g Ag 

4.3. a > 4 

= (nm 8 
k=l kJk r ^l> 

• , i. 
m’ rl5 

A 
S 
rr 

A 
A 

for 

all r e [l,m]. 

k 

‘U,A 

0 

a* -x 

j,j ,A 

4.4. 
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4.5. Z ak _ k -? -*• -»■ “ a - 
J2,s2>*--,sr i1i2;j1J2;A i2,Sl’C 

4.6. Z^ 12 
•* -* -* -+ 

12,-,2’S3, " * ,sr ilt2’-’l^2;A si,s2,C 

4.7. -» _»2 
S'. ,7 • 

—-r-~ Q£s • They are elementary and analogous to the geometrical proofs of properties 

of the numbers a„, compare D 4 c 1 - c 8„ 

Let (a,b) be an edge of type k and (a,b; c,, .... c ) a set of type 
i m 

(k; i, j,A). 

Then the set (b,a; c^, ..., c^) is of type (k1; i',"j',A). This proves 4.1. 

If g e Sym(m) then (a,b; c^^, . .., is a set °f type 

(k; gr, gf, g 1Ag) whence 4.2. 

To prove 4.3, consider the case a = b. Then (since a = b) the number 

0 
a is zero unless i = j' for all k. Suppose that i, = j' for all k. 
■f . k k rr k k 

J 

Then (a,cr; c±, ..., . .., cj is a set of type (ir; ip . .., ..., i^; 

A A 

s s , .... s ,A). On the other hand, let d , ..., d be vertices 
rl* ^ rrJ > rm r l ’ n. 

1r 

of X such that (a,d^) is of type i . Then by the assumption stated in the 

beginning of 3, there exists the same number 

a . 
. • • • . i « • • • • i> , S .■•••■ s . • • • . s .A 

’ r’ ’ m rl’ ’ rr’ 9 rm; i 

of sets of type (^r’ • • • > •••> -*-m> sr^ • ’ • > srr> •••> srm' Ar^ on eack °f 

the n. edges (a,d.). Each such set can be considered as a set of type 

(0; i,i',A) on (a,a) and each set of type (0;i,i',A) gives rise to a set of new 

type in the manner described above. Therefore, 4.3 is proved. 

The summation in 4.4 means that we have to consider all sets 

(a,b; -c. ..., c ) such that the types of edges (a,cr) are arbitrary. It is the 

same as to consider all sets (a,b;Cl,...,cm) for which only the types of the edges 
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(b.c ) and (c ,c ) are fixed. This is the same as to consider the sets 
’ r s’ t 

(b,b; c,, .... c ). Since the number of these sets is a , 4.4 is proved. 
1 m 7 71 a 

J > J 

The summation in 4.5 means that we have to consider all sets (a,b; c^, • ••> cm) 

such that the types of edges (b.c ), . .., (l>,c ); (c ,c ), s e [2,r], t > r + 1, 

are arbitrary; (a,cg), s e [l,r], are of type ig; (h,Cg), s e [l,r], are of type 

jg, (c ,ct), q i [2,r] or t < r, are of type s^ fc. This means that we have to 

consider all configurations (there are a^ ^ of them) (a,b; c^, ..., c^) of 

WB 

type (k; and on the edge (a,c^) of each of them all configurations of 

-* •* H 
type (i^; i2,s^,C) (there are a_^ ^ of them). So the entire number is the 

^2’sl’^ 

product of these numbers, which proves 4.5. , 

The summation in 4.6 means that we have to consider all sets (a,b; c^, ..., c^) 

ly types of (a,c.), i < r; (b,c.), i < r;(c c ), s i [3,r] or t < r, 
1 1 S L 

such that on 

are fixed. This means that we have to consider all configurations of type 

■) ■> 
(k; ipj^,B) (there are a^ of them) (a,b; c^,..., c^) on the edge (a,b) 

L1 

and on the edge (c^,c2) of them all configurations of type (s^2,s^,s2,C) (there 

’12 
are a_^ of them). So the entire number is the product of these numbers, 

s ^ >S2 >^ 

which proves 4.6. 

The summation in 4.7 means that we have to consider all sets (a,b; c^,..., c ) 

such that only types of (a,c^), i e [l,m]; (b,c^), i e [l,m]; (c^c^), q < r, 

t > r + 1, are fixed. This means that we have to consider all configurations of 

4 Ic 
type (k; i^,j^,B) on the edge (a,b) (there are a_^ ^ of them) and all 

configurations of type (k; i2,j2,C) on the edge (a,b) (there are a^ of 

i"2’ 'j 2 ’ ^ 
/ . - 

them). So the entire number is the product of these numbers, which proves 4.7. 

5. If m = 1, the constants of this section are the structure constants a.. of the 
’ ij 

]£ 
algebra c?L(X). It is interesting to note that all relations D4cl-c6 on a 

ij 

are corollaries of the relations 4.1 - 4.6 for m = 1 and/or m = 2. 

i- i * 
E.g., n.a., = n.atJ., follows from 4.3 and 4.1: 

i jk j ki' 
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;i j (° k) 
Vk' O] 

i j i' 
= n.a = n .a. = n .a,J . 

i jk j ik' j ki' 

One more example: 

follows from 4.5 and 4.2: 

V „S k V k s 
2. a . .a = L, a. a. 

s ij si s is ji 

:’"ait'si (r o) 
y k s , k k 

= L a . a = L a..a, 
s is t ij tl 

6. (Compare D4 c 9, c 10). Let 

'» f 

1' A, 

6.1. Lemma. a = n av 

k,!;k',i',B k 

Proof follows directly from 4.3. 

k r 
6.2. Corollary. n. a . . = n. a, . 
-L k -f -f . l k, i. , 

i,j,A r ’ 1' 

Proof follows from 6.1 and 4.3. 

1 J J j J ° -if m r’ r,l* 

A 
S 

rm r 

6.3. Theorem. Let N be the least common multiple of all numbers 

i >3,a 

n. ,n. ,n . Then N divides n a 

p jp pq 

Proof. By 6.2, n a_^ is a multiple of all n^ . By 6.2 and 6.1 it is also a 

i,j,A Xr 

multiple of all n. . Applying the same reasoning to the right side of 6.2, we see 

-*r 

that our number is a multiple of all n , as required. 

spq 

6.4. Remark. It follows from 6.3 that a^ is a multiple of all numbers 

1 J,A 

w
>
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n >(n,N ) . Applying this consideration to the right side of 6.2, one can 
k k “t —t A 

strengthen Theorem 6.3. Specifically, one can define recursively as the 

i ,3,A 
least common multiple of all numbers 

2 -1 

°i ^ni ’ Nk,i,,...,i ,...,i ; j' s ,,...,s ,...,s ;B ^ ' This strengthening of 
r r ’l* ’ r’ ’ m r’ rl’ ’ rr’ ’ rm r & & 

6.3 also is not final since one can iterate this consideration. 



AE. ALGEBRAIC INVARIANTS OF FINITE GRAPHS 

1. Many mathematicians, myself included, who have an algebraic background, say, when 

told about the problem of graph isomorphism: "What is the question? Invariant 

polynomials surely distinguish graphs up to isomorphism." 

1.1. They allude to the following result from the algebraic geometry (cf., [Se 4]): 

Let M be an affine algebraic manifold over a field k, k[M] be the ring of 

regular functions on M. Suppose that a finite group G acts on M (and preserves 

G 
the algebraic structure). Let R = k[M] be the ring of invariants under G regular 

functions. Then R distinguishes orbits of G on M and M/G is the affine 

manifold whose ring of regular functions is R. 

This means that two points of M lie on the same orbit of G if and only if 

the values of any function from R are the same at those two points. 

1.2. In our case, M is the space of all matrices of order n (or of all symmetric 

matrices, or of all symmetric matrices with zero diagonal) and G = Sym n acts on M 

in the following manner: 

According to the Hilbert's Theorem, the ring of invariants has a finite 

generator set. Hence the approach stated above is not infinite. 

should compute all functions f± to establish the isomorphism or non-isomorphism. 

But f. can be rather complicated and the number N can be large. 
1 

1.4. The aim of the present section is to exhibit and to interpret some of the 

complications which were encountered during an atuempt to use the invariants. It 

seems that these complications are of the same nature as those of Sections M, AD. 

2. We shall show below how the values of the invariants of simple graphs (that is, 

of its adjacency matrix) are interpreted in geometrical terms. 
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2.1. To every monomial m of the form 

in the matrix entries we associate a graph r(tn) in the following manner: 

r(m) has the edge (i,j) if and only if a^j enters in m. 

Then the number of edges of T(m) is the degree of m; the number of vertices 

of r(m) is the number of distinct indices of a„ entering in m. 

If r is a simple graph, then the value of m on A(T) is 1 if F(m) (with 

the given numeration of vertices) is a subgraph of and is 0 if 

2.2. Now let f be an invariant polynomial for the group Sym n on the space of the 

symmetric n X n-matrices with zero diagonal. It is easy to see that f is a linear 

combination of invariants of the form 

f(m) = Z m® 

where g runs over a set of coset representatives of Sym n by a subgroup, fixing m. 

Therefore, it can be assumed that f has the above form, i.e., f = f(m). 

Then the value of f on A(P) is evidently equal to the number of 

embeddings of (the abstract graph) r(m) in p considered up to isomorphism. 

2.3. Remark. It can be seen from the above argument that the Theorem 1.1 is 

evident in our case, since to the whole graph P there corresponds some monomial of 

degree equal to the number of edges of T, and to this monomial there corresponds the 

invariant which itself completely determines the isomorphism class of P. 

2.4. By 2.3 to distinguish graphs with n vertices,it is sufficient to consider 

2 
only invariants of degrees < n . However, all those invariants should not be 

considered. It is sufficient to construct a basis of invariants. But this basis 

contains perhaps too many invariants and many of them have (also perhaps) a high 

degree (e.g., degree n). Computation of an invariant of degree t requires, a 

priori. actions. This shows that the possibility to use algebraic 
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invariants requires further research. 

2.5. Remark. Note that the values of some invariants of high degree on A(r) can 

be determined from values of simpler ones without use of algebraic relations. Define 

for every monomial m another monomial m in the following manner: 

ra is the product of the matrix entries entering in m and taken in the first 

power, that is, if m(A) 

m. . 

= [I a • . ! then 
lj ' 

m(A) = |“| 
t(m. .) 

... 1J where 

r—
l 

II 

/—
s 

B
 

4-J if m. . 
ij 

> 0 and t(m..) = 0 
1J 

if m. . 
ij 

= 0. 

If A = A(T), then evidently m(A) = m(A) . If f => f(m), f = f(m), then 

f(A) = d • f(A), where d is the index of the group fixing m in the group 

fixing m. 

This shows that in order to study isomorphisms of simple graphs (or more gener¬ 

ally of graphs without multiple edges) it is sufficient to consider the invariants f. 

3. Remarks of the preceding subsection are easily extended to the general case. 

Indeed, suppose that we have to establish whether two n X n-matrices A and B 

belong to the same orbit of Sym n. Replace the pair [A,B] by X({a,b})= [x,Y] 

(simultaneous stabilization, cf. M 4). 

Let us now indicate some analogues of the considerations of the preceding 

subsection. 

3.1. To every monomial in the variables entering in X and Y, let us associate a 

graph (in the sense of Section C) in the same manner as in 2.1. Then the monomial 

m in the matrix entries determines an equivalence class of graphs (cf., C 2). 

The value of f(m) on X determines the number of embeddings (up to isomorphism) 

of every representative (up to isomorphism) of that equivalency class into X (an 

analogue of 2.2). 

3.2. As an analogue of 2.5, the following schema is proposed. 

In place of the invariants of degree r we shall consider elements of the tensor 

product of d distinct copies of the space of matrices (recall that invariants of 

degree r are elements of the r-th symmetric power of the dual space of the space 

of matrices). It frees us from the necessity to substitute m by m but leads to 
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difficulties, one of which is the fact that our new object is not a ring 

4. Let us finally give a few examples. 

Let A = (a..) be a matrix, 
ij 

4.1. A basis of invariants of degree 1. 

a) 2. ,. a. . 
1AJ lj 

b) 2. a . 
i n 

4.2. A basis of invariants of degree 2. 

a) 2. a.. a . . 
i>J n JJ 

b) v 2 L a , 
l n 

c) 2, . a . . a . . 
li lj 

d) 
^i^j,jA,i/k aii 3jk 

e) v 2 
lj 

f) 2. ,. a . . a . . 
1AJ lj Ji 

g) ^i^j,j^k,i^k aij ajk 

h) 
> jA, i^k aij aik 

i) 
^i^j, j^k,k^l,i^k,i/l, j^l 3ij \l 



ag. conjectures. 

Below we state some conjectures and indicate directions of research which are 

now of interest for us. 

1. Conjecture. (Arlazarov). Let T be a graph, n = |r|. The algorithm of Section 

R finishes its work in n° los n steps. 

It is interesting to note that usually when an algorithm is given, the estimates 

of its speed are obtained relatively easily. In the case under consideration for 

many examples the algorithm finishes its work "momentarily;" however, no good estim¬ 

ate is obtained. Hypothesis 1 is close and, possibly, equivalent to the assumption: 

If X = (X ) is a stationary graph of depth (log |x|) in some sense 

(cf., 0 6), then the sets V(X ) are orbits of Aut X. 

One of the obstructions to the proof of the estimate is the necessity to pay 

special attention to correct graphs. 

2. Question. Construct a lower bound on the number of steps required to establish 

isomorphism or non-isomorphism of graphs. 

Perhaps, in order to find such bounds one should be able to compute the number of 

stationary graphs of the given depth k which have the same "structure constants" 

for every depth < k. 

It is interesting to note that all algorithms for establishing isomorphism 

known to us are algorithms of canonization; that is, they reorder vertices of the first 

graph and of the second graph,and then compare results. The use of algebraic 

invariants (cf.. Section AE) just solves the isomorphism problem (without canonizing). 

Difficulties arising in that direction were indicated in Section AE. 

3. Question. Find an algorithm of construction of cells (or of strongly regular 

graphs) which will construct exactly one representative of each isomorphism class. 

Such an algorithm, if it exists, has to use deep structural properties of cells. 

Seidel equivalence, descent-ascent (cf., Section V) are examples of the existence of 

large common parts of strongly regular graphs. Some other cases of closeness are 

pointed out in Section V. 
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4. Question. Does the center (as algebra) of a cell form a cell? 

k 
If it were true, more information on a . and on the existence would be obtained. 

ij 

Besides, such an assertion would have an independent interest. For some centralizer 

rings it was proved in [Ta 3], Possibly by the method of [Ta 3] at least a proper sub¬ 

cell of a cell can be constructed. If such a process would stop, the cells where it 

does not give proper subalgebra are of special interest,, 

5. Question. Extend the results of R. E. Block [B1 1], [B1 2] to cellular algebras. 

Those results have formulations which also make sense for cellular algebras. 

Their proof would give ample information about the structure of cellular algebras. 

6. Question. Extend the Chowla-Bruck-Ryser theorem [Ha 3] to cellular algebras. 
< 

A Hermitian form may be associated to every basic element (it is quadratic if that 

element is symmetric). Therefore, results of Hasse-Minkowski are applicable, in 

principle. The question is how to express the invariants of our forms in terms 

of the structure constants. In particular, the question arises whether they are 

expressible or not. Note, however, that if they are not expressible, a new 

invariant of a cellular algebra would be obtained. 
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