
INDUSTRIAL ENGINEERING/1

inieka Edward M

Pg ie 1,7, 3,4 (5 abt! ©

3, 499,.9;0,0

'
ae

e
e

o
a

I-

a

Optimization Algorithms
for Networks and Graphs

INDUSTRIAL ENGINEERING

A Series of Reference Books and Textbooks

Editor

WILBUR MEIER, JR.

Head, School of Industrial Engineering

Purdue University

West Lafayette, Indiana

Volume 1: Optimization Algorithms for Networks and Graphs,

Edward Minieka

Additional Volumes in Preparation

Optimization Algorithms
for Networks and Graphs

Edward Minieka

Department of Quantitative Methods

University of Illinois at Chicago Circle

Chicago, Illinois

MARCEL DEKKER, INC. New York and Basel

Library of Congress Cataloging in Publication Data

Minieka, Edward.

Optimization algorithms for networks and graphs.

(Industrial engineering; v.1)

Includes bibliographical references and index.

1. Graph theory. 2. Network analysis (Planning).

3. Algorithms. I. Title. IL. Series.

QA166.M56 Sills 7 77-29166

ISBN 0-8247-6642-3

COPYRIGHT © 1978 by MARCEL DEKKER, INC.

ALL RIGHTS RESERVED

Neither this book nor any part may be reproduced or transmitted

in any form or by any means, electronic or mechanical, including

photocopying, microfilming, and recording, or by any information

storage and retrieval system, without permission in writing from

the publisher.

MARCEL DEKKER, INC.

270 Madison Avenue, New York, New York 10016

Current printing (last digit):
ila) &) 3} 7h Sy A By Pe ak :

PRINTED IN THE UNITED STATES OF AMERICA

To Eva and Stanley,

who would have been pleased

eatee it Ace ava 16

weal —ad ovat &) wee ye

PREFACE

This is not another graph theory text; it is a text about

algorithms--optimization algorithms for problems that can be formu-

lated in a network or graph setting.

As a thesis student studying these algorithms, I became aware

of their variety, elegance, and interconnections and also of the acute

need to collect and integrate them between two covers from their

obscure hiding places in scattered journals and monographs. I hope

that I have been able in the confines of this text to make a stab at

a comprehensive, cohesive, and clear treatment of this body of

knowledge.

This text is self-contained at the level of an advanced under-

graduate or beginning graduate student in any discipline. An opera-

tions research or mathematics background is, of course, helpful but

hardly essential.

The text aims at an intuitive approach to the inner workings,

interdependencies, and applications of the algorithms. Their place

in the hierarchy of advanced mathematics and the details of their

computer coding are not stressed.

Chapter 1 contains background information and definitions.

Aside from Chapter 1, I have tried to make all chapters as independent

of one another as possible, except where one algorithm uses another

as a subroutine. Even in this situation, the reader can continue if

he is willing to accept the subroutine algorithm on faith. This

text can be treated comprehensively in a one-semester course and

less thoroughly, but without significant omissions, in a one-quarter

course.

vi Preface

It takes a lot of ink to go from source to sink. I wish to

thank Randy Brown at Kent State University, Ellis Johnson at IBM,

George Nemhauser at Cornell University, and Douglas Shier at the

National Bureau of Standards for their careful readings and sugges-—

tions. Also, emphatic thanks to my colleague Leonard Kent for his

confidence in this project and for years of encouragement. Lastly,

thanks to my students who graciously endured three years of classroom

testing of the various manuscript stages. Most of all, this book is

for you and for your successors, everywhere.

Edward Minieka

PREFACE

INTRODUCTION TO GRAPHS AND NETWORKS

1.1 Introduction

1.2 Some Concepts and Definitions
1.3 Linear Programming

Exercises

References

TREE ALGORITHMS

2.1 Spanning Tree Algorithms

2.2 Maximum Branching Algorithms

Exercises

References

PATH ALGORITHMS

3.1 Shortest Path Algorithm

-2 All Shortest Path Algorithms

-3 The K-th Shortest Path Algorithm
-4 Other Shortest Paths

Exercises

References

Wo Wo Wo

FLOW ALGORITHMS

4.1 Introduction
Maximum Flow Algorithm

Minimum Cost Flow Algorithm

Out-of-Kilter Algorithm

Dynamic Flow Algorithms

Flows with Gains

Exercises

References

MATCHING AND COVERING ALGORITHMS

5.1 Introduction

Fees Duke WNh

5.2 Maximum Cardinality Matching Algorithm

5.3 Maximum Weight Matching Algorithm

vil

CONTENTS

128

iy
174
iL)

181

181
185
200

Wedel CONTENTS

5.4 Minimum Weight Covering Algorithm 214

Exercises 23

References 233

\.6. POSTMAN PROBLEM 235

6.1 Introduction 235

6.2 Postman Problem for Undirected Graphs 238

6.3 Postman Problem for Directed Graphs 245

6.4 Postman Problem for Mixed Graphs 249
Exercises 258

References 260

7. TRAVELING SALESMAN PROBLEM 261

7.1 Salesman Problems 261

7.2 Existence of a Hamiltonian Circuit 265

7.3 Lower Bounds ie,

7.4 Solution Techniques PUD

Exercises 283

References 286

8. LOCATION PROBLEMS 289

8.1 Introduction 289

8.2 Center Problems 298

8.3 Median Problems 306

8.4 Extensions S15

Exercises 316

References 318

9. PROJECT NETWORKS 319

9.1 Critical Path Method (CPM) 319

9.2 Minimum Cost Activity Times 333

9.3 Generalized Project Networks 342

Exercises 349

References S52

INDEX 353

Optimization Algorithms
for Networks and Graphs

ae 4 ae

é

=A a
¢ ae. ine

~
>

sie

Baapee: 2a ee ‘ ; 4 a
Se acti PORE 4, dy.

= r » ies La: se eriqen) HAG ahoquiest ae

- ' PY hy ‘ et el bee x a

Ms : ; a ja
‘

.
en a

% (Sa OTIS
re : = fat Toman wi ; : SF) Setar Se Are Dp ret theses Pi sdtne | eS aie : a

boas: 7
|

' 7 ‘ol te | Gi talRsty > fay x

a ’
'

2 a
= % me Rs. ot ~ a Jae Apt ahah Sei bebe ae i Le e eee han Ea ty oo. gst 2®. aenretl tin, Oerhent RITE: boon Ms re oe av 7 :

: cienar DD di ear
7 7 One & a aca

c

Chapter 1

INTRODUCTION TO GRAPHS AND NETWORKS

1.1 INTRODUCTION

Graph theory is a branch of mathematics that has wide practical

application. Numerous problems arising in such diverse fields as

psychology, chemistry, electrical engineering, transportation plan-

ning, management, marketing, and education can be posed as problems

in graph theory. Because of this, graph theory is not only an area

of interest in its own right but also a unifying basis from which

the results from other fields can be collected, shared, extended,

and disseminated.

Unlike other scientific fields, graph theory has a definite

birthday. The first paper on graphs was written by the Swiss

mathematician Leonhard Euler (1707-1783) and was published in 1736

by the Academy of Science in St. Petersburg. Euler's study of

graphs was motivated by the so-called Konisberg bridge problem.

The city of Konigsberg (now called Kaliningrad) in East Prussia was

built at the junction of two rivers and the two islands formed by

them (see Fig. 1.1). In all, there were seven bridges connecting

the islands to each other and to the rest of the city. Could a

Konigsberger start from his home and cross each bridge exactly once

and return home? The answer is no, and we will see why later (Chapter

(Chapter 6) when we study a generalized version of this problem

called the postman problem.

2 Introduction to Graphs and Networks

The growth of graph theory continued in the late nineteenth

and early twentiety centuries with advances motivated by molecular

theory and electrical theory. By the 1950s, the field had taken

two essentially different directions: the algebraic aspects of

graph theory and the optimization aspects of graph theory. The

latter was greatly advanced by the advent of the computer and the

discovery of linear programming techniques. This text is concerned

almost exclusively with the optimization aspects of graph theory.

What is a graph? A graph consists of two parts, points and

arrows joining these points. The points can be depicted as points

in a plane or, if you prefer, points without any specific physical

location. The arrows can be depicted as lines (either straight or

curved) joining pairs of points. For example, the points of the

graph shown in Fig. 1.2 are a, b, c, d, and the arrows of this

graph are a, B, y, 5, €, ¢. Notice that there are two arrows a and

8 that go from point a to point b, i.e., with the tail at a and the

head at b. The same graph could be specified without using a

Figure 1.1

Konigsberg in 1736

picture simply by listing its points a, b, c, d and listing its

arrows a = (a,b), 8 = (a,b), y = (¢,a), 5,= (b,c),_ 6 = (bd). t=

(d,c) as ordered pairs of points, where the first point in an ordered

pair denotes the point at the arrow's tail and the second point in

an ordered pair denotes the point at the arrow's head. In keeping

with standard terminology, we shall refer to the points of a graph

as vertices and the arrows of a graph as args. With this as

motivation, we can now state a formal definition for a graph:

1.1 Introduction
3

A graph is a set X whose numbers are called vertices and a

set A of ordered pairs of vertices. The members of A are ¥

called arcs, and the graph is denoted by (X,A).

Throughout, we shall assume that both set X and set _A contain

only a finite number of members. io

In general, vertices will be denoted by small roman letters,

and arcs will be denoted by small Greek letters or as ordered pairs

of vertices. For example, in Fig. 1.2, arc y can be denoted by

(c,a), where vertex c is at the tail of arc Y and vertex a is at

Figure 1.2

the head of arc y. If there is more than one arc going from one

vertex to another vertex, then each of these arcs can be denoted as

a subscripted ordered pair of vertices. For example, in Fig. 1.2,

arc ao could be denoted by (a,b), and arc 8 could be denoted by

(a,b),- When no confusion will develop, we shall omit this subscript

EXAMPLE 1. Let X denote the set of all airports in Illinois. Let

A denote the set of all pairs of airports (x,y) such that there is

a nonstop commercial flight from airport x to airport y. Clearly,

(X,A) is a graph.

EXAMPLE 2. Let X denote the set of all passengers aboard a certain

transatlantic flight. Let A denote the set of all pairs (x,y) of

passengers such that passenger x is older than passenger y and both

speak a common language. Clearly, (X,A) is a graph with vertex set

X and arc set A. Is it possible for this graph to have both an arc

(x,y) and also an arc (y,x)?

4 Introduction to Graphs and Networks

Certain problems in graph theory, like the simple matching

problem that we shall encounter later, require only a knowledge of

the endpoints of each arc. In cases like this, the head and tail

of each arc need not be specified, or in other words, the direction

of each arc need not be specified. A graph whose arc directions

are not specified is called an undirected graph. An undirected arc

is called an edge. For example, if the arrow heads were removed

from the graph in Fig. 1.2, the resulting graph would be an undirected

graph, and the arcs would be called edges.

Throughout this text, we will use the notation (X, E) to denote

an undirected graph with vertex set X and edge set E, and we will

use the notation (X,A) to denote a graph with vertex set X and arc

set A.

A network is merely a graph with one or more numbers associated

with each arc. For example, if the air mileage were associated to

each arc in Example 1, then this graph would be a network.

Each remaining chapter of this text is devoted to a single

type of practical optimization problem on a graph or network. The

procedures that are given for finding numerically optimum solutions

to these problems are called algorithms, hence, the title of this

text. As some of these optimization algorithms build upon others

the order of presentation is restricted, and these considerations

have dictated the sequencing of the chapters of this text.

1.2 SOME CONCEPTS AND DEFINITIONS

To decrease the dependence between chapters, some basic concepts

and definitions that are needed throughout are presented here. The

motivation for these definitions will be reserved to later chapters

where applications are discussed in greater depth.

An arc that has the same vertex for both its head and its tail

is calledja Loop, (In Bigs) 1.3, sare (Baistagloop.

A vertex and an arc are said to be incident to one another if

the vertex is an endpoint (either the head or the tail) of the arc.

In Fig. 1.3, arc a and vertex b are incident to one another.

1.2 Some Concepts and Definitions 5

Figure 1.3

Two arcs are said to be incident to one another if they are

both incident to the same vertex. In Fig. 1.3, ares a and y are

incident to one another since they are both incident to vertex b.

Two vertices are said to be adjacent to one another if there

is an arc joining them. In Fig. 1.3, vertices b and c are adjacent

to one another since there is an arc y that joins them.

Consider any sequence x x ehtaty OX x of vertices A y q epee eel geeeerict=

chain is any sequence of arcs a a such that the end- a ee

points of arc a are x; and Xia PORN. ies ee Chus.ed ther

passe Vertex x, is called the initial

vertex of the chain. Vertex X41 is called the terminal vertex of

the chain. The chain is said to extend from its initial vertex to

a, = ‘ . a. =
a Ces 4) Pe ay ce

its terminal vertex. The length of a chain equals the number of

arcs in the chain. In Fig. 1.3, the sequence a, 8, y, 6; o of arcs

forms a chain of length 5 from vertex a to vertex c.

A path is a chain for which a, = (x, 5 X41) 1g@e GL OES Pe atere

n. The length, initial vertex, and terminal vertex of a path can

be defined similarly. For example, in Fig. 1.3 the arcs 8, «,

¢ form a path of length 3 from vertex b to vertex c.

A cycle is a chain whose initial vertex and terminal vertex

are identical. A circuit is a path whose initial vertex and terminal

vertex are identical. The length of a cycle or a circuit is

defined as the length of the corresponding chain. For example, in

Pie 1.3, ares ¥, ©, S forma cycle of length 3, and arcs Y, ©, ¢

form a circuit of length 3.

A chain, path, cycle, or circuit is called simple if no vertex

is incident to more than two of its arcs (i.e., if the chain, path,

cycle, or circuit properly contains no cycles). In Fig. 1.3, chain

a, Y is simple whereas chain a, 8, y is not; cycle Y, &, 6 is simple

but cycle y, 8, €, 5 is not.

6 Introduction to Graphs and Networks

A graph is called connected if there is a chain joining every

pair of distinct vertices in the graph. For example, the graphs of

Figs. 1.2 and 1.3 are connected, but the graph in Fig. 1.4 is not

connected because there is no chain joining vertices d and e. A

graph may be regarded as consisting of a set of connected graphs.

Each of these connected graph is called a component of the original

graph. The graph in Fig. 1.4 has two components. (What are they?)

Figure 1.4

Let X' be any subset of X, the vertex set of graph G = (X,A).

The graph whose vertex set is X' and whose arc set consists of all

arcs in A with both endpoints in X' is called the subgraph generated

DDG EXou rs

Let A' be any subset of A the arc set of graph G = (X,A). The

graph whose arc set is A' and whose vertex set consists of all

vertices incident to an arc in A' is called the subgraph generated

by A'. For example, in Fig. 1.3 the subgraph generated by the

vertices {a,b,c} is shown in Fig. 1.5. The subgraph generated by

the arcs {y,6,¢} is shown in Fig. 1.6.

Jb Abe

Subgraph Generated by {a,b,c}

1.2 Some Concepts and Definitions Zh

23 waaay
Wales aS

Subgraph Generated by fy, 6, $}

A set of arcs is called a tree if it satisfies two conditions:

1. The arcs generate a connected subgraph

2. The arcs contain no cycles.

In Fig. 1.3, the following sets of arcs each form a tree:

ep eaae id, y,¢}, {a,¢6, 6}, {o,y}, fa,y}, {e}, {y}.

The arcs {¢,y,e} do not form a tree since they contain a cycle.

A forest is any set of arcs that contains no cycles. Thus, a

forest consists of one or more trees. The arcs in Fig. 1.4 forma

forest consisting of two trees.

A spanning tree of a graph is any tree formed from the arcs of

the graph that includes every vertex in the graph. In Fig. 1.3,

the arcs {a,e,¢} form a spanning tree since they includé each vertex

a,b,c,d. Clearly, no spanning tree can exist for a graph with more

than one component, and every connected graph possesses a spanning

tree.

A tree with one arc contains two vertices; a tree with two arcs

contains three vertices; a tree with three arcs contains four ver-

tices, and in general, a tree with n - 1 arcs must contain n vertices.

Hence, each spanning tree of a (connected) graph with n vertices

eonsists of n - 1 arcs.

A set of arcs whose removal from the graph increases the number

of components in the graph is called a cut. A cut that contains as

a proper subset no other cut is called a simple cut. In Fig. 1.3,

arcs {6,c,y,¢} form a cut since their removal from the graph would

yield a graph with 3 components. Also, arcs {6,e,o} form a cut

since their removal from the graph would yield a graph with 3

components. Cut {6,ce,y,¢} is not a simple cut since it contains

another cut {6,e,¢}, which happens to be a simple cut.

8 Introduction to Graphs and Networks

Let G be any loopless graph with m vertices and n arcs. Let G

be a matrix with m rows, one for each vertex, and n columns, one for

each arc. Let oe denote the element in the i-th row and j-th column

and be defined as follows:

+1 if the vertex associated with row i is the head of

the arc associated with column j

= 4-1 if the vertex associated with row i is the tail of

the arc associated with column j

QO otherwise.

Thus, each column of matrix G contains all zeros except for a +1 and

a -l. Matrix G is called the matrix of graph G. The matrix associated

with the graph in Fig. 1.2 is

a, B Y 6 € b

a bat Fis 10> 0... 0.

b +1 +1 O -1 -1 OO

O 0 Si etl | .0.0et

OF Wi Oy Om a = sal

Q

Qa

Obviously, a matrix can be associated to a graph if, and only if,

every column of the matrix contain all zeros except for a +l and a -l.

Matrix representation provides a convenient way to describe a

graph without listing vertices and arcs or drawing pictures. Computer

programs for the optimization algorithms described in this text

invariably use the matrix representation. However, in the interest

of easing the presentation of the material which follows, all graphs

in this text are presented in the more intuitive pictorial form.

1.3 LINEAR PROGRAMMING

Many of the problems considered in subsequent chapters can be

reformulated as linear programming problems. This section gives a

brief review of the linear programming results that will be needed

in subsequent chapters. Although the results given in this section

are sufficient for a formal understanding of the material in subse-

quent chapters, the presentation here is by no means intended to

1.3 Linear Programming
9

produce a profound or intuitive understanding of linear programming.
For an intensive treatment of linear programming results, the reader
is referred to any standard text on linear programming.

Let X1> Koo sees x be decision variables that can assume any

non-negative r g eal value. Let Cy> Cor sees c. b> bos aes bey fay
ah

be real numbers for i = lime ies oneands | t= 1b? Ane a ;

A linear programming problem is any problem that can be fitted

into the following format:

Maximize

j=n

) Cy 5&,
“tal a3 vA

such that

jen
ae a

os Ee) eg] ae:

te (2)
) ae ex Sb

4=1 2) J 2

j= :
i) Uy mP-Gy 0S bo

j=l mj J

x, 2 0, Xo SOR von ay x >0 (3)

Moreover, the < sign in any relation (2) can be replaced by a >

sign or an = sign. Also, the > sign in any relation (3) can be

replaced by a < sign, or the relation can be omitted entirely, in

which case there is no restriction on the decision variable. Lastly,

in expression (1), the '"maximize'' can be changed to "minimize." The

following problem fits into the linear programming format:

Maximize

2x) + 7X5 - 3x,

such that

x < 2x, 2x, aP 1x, 6

Eas 25) 4x, - 6x, = 3x,

10 Introduction to Graphs and Networks

~8. 25x, = 1x, - 0.3x, = 8

<0, x, (unrestricted).
i Pe 2 3

The expression in relation (1) that is to be maximized or

minimized is called the objective function. The objective function

is a linear combination of the decision variables X1> Xo» aisles x

The m expressions of relation (2) that must be satisfied by the d

decision variables are called the constraints of the linear program-

ming problem. Note that the left side of each constraint is a linear

combination of the decision variables. The expressions of (3) are

called the nonnegativity conditions of the linear programming problem.

Given a linear programming problem with n decision variables and

m constraints in the form of (1), (2), and (3), we can generate from

it another linear programming problem called its dual. The dual

linear programming problem has n constraints, one corresponding to

each decision variable in the original problem; and the dual has m

decision variables Yy> Yoo sees Y,» one corresponding to each original

constraint. The dual linear programming problem for the linear

programming problem in (1), (2), and (3) is

Minimize

i=m
’

4 J Gee
such that

i=m

Q 44174 = Sy

i=

i S22 “9

(2)

i=m

a Fini es

Yara Vinee Ving oie eae 0 oo)

If the i-th original constraint in (2) was a > inequality instead

of a < inequality, then the i-th nonnegativity constraint in the dual

1.3 Linear Programming ele

(3). is my <0. If the i-th original constraint in (2) was an

equality instead of an inequality, then the i-th nonnegativity -

constraint in the dual (3') is omitted and ye is not restricted in

sign.

If the j-th original nonnegativity constraint is a < 0, then

the corresponding j-th dual constraint (2') is a < inequality, that

is, ad Sey LE ar is unrestricted in sign, then the j-th dual

constraint is an equality constraint, that is, Perks = ot

Lastly, if the original linear programming problem is a maximize

problem, then its dual is a minimize problem. If the original linear

programming problem is a minimize problem, then its dual is a maximize

problem.

The original linear programming problem is usually denoted as

the primal. Since the dual is also a linear programming problem,

linear programming problems can be regarded as coming in primal-dual

pairs. Moreover, the reader can easily show that the dual of a dual

linear programming problem is the original primal.

The dual to the above linear programming problem is

Minimize a

~6y, os 7.325y5 + 8y 4

such that

2y4 + Ayo - 8.25y., &

-2y, - by. =F ly, < 7.

ly, = 3¥5 = 0.3y, = -3

Vy a0, Yo =05 ¥3 (unrestricted).

How can we determine if a solution Xp> Xoo sree x that satis-

fies all the relations in (2) and (3), optimizes the objective

function (1)? Also, how can we determine if a dual solution Yy> Yo

sees Vp that satisfies all relations (2') and (3'), optimizes the

objective function (1')? In other words, how can we determine when

a feasible linear programming solution is an optimal solution?

NZ Introduction to Graphs and Networks

An answer to these questions is provided by a result from linear

programming theory called the complementary slackness conditions.

Let xy» x reey KX be a set of feasible values for the primal ?

decision ree iebaces Let ed pa as be a set of feasible values

for the dual decision variables. Then, from equations (2) and (2'),

it follows that the primal objective function equals

i=n i=n j=m fr j=m

ap) se yaa vous “Ie ye Lagan ab gh eae)
i=1 i=l =1 j=l i=1 =

which is the dual objective function. Hence the primal objective

function will always take a value less than or equal to the value of

the dual objective function. If values could be found for the primal

and dual decision variables such that equality held throughout equa-

tion (4), then those values would be optimal values for the primal

and dual decision variables. Hence, we must seek conditions under

which relation (4) holds with equality throughout.

The left inequality in relation (4) holds with equality if, and

only if,

Ts Sy te Ol, Zea an) (5)

The right inequality in relation (4) holds with equality if, and

only if;

i=n

(b, = os ai), = 0 C4 vey acum) (6)

Hence, if a set of feasible values for the primal and dual also

satisfy equations (5) and (6), then these values for optimal values

for their respective linear programming problems. Equations (5) and

(6) provide a way to determine whether feasible solutions are optimal

for a primal-dual pair and why they are called the complementary

slackness conditions.

j=m

The difference) a grqmerce in equation (5) is called the
j=1

slack in the i-th dual constraint. Likewise, the difference

1.3 Linear Programming 13

i=n

b, =) Sree in equation (6) is called the slack in the j-th primal
t=], :

constraint,

A linear programming problem in which some of the constraints

are inequalities can be converted into an equivalent linear program-

ming problem with all equality constraints in the following way.

If the i-th constraint is a ak bas add a new decision vari-

able Ss. > 0 to form a new constraint ta, .X, Hs, 0= b,- Let the

coefficient of Ss. in the objective function be zero. This leaves

the objective function unchanged and merely converts the i-th con-

straint into an equality constraint.

If the i-th constraint is fa igss eabis subtract a new decision

variable Ss. > 0 to form a new constraint Bo eS b,- Let

the coefficient of Ss, in the objective function be zero. This

leaves the objective function unchanged and merely converts the i-th

constraint into an equality constraint.

For example, the linear programming problem in the preceding

discussion could be converted into the following equivalent linear

programming problem with all equality constraints:

Maximize

2x) 52 7&5 = 3x, ot Os, + Os,

such that

2x) = 2x, mF 1x, + 1s, a Os, = 6

4x, - 6x, = 3x4 + Os, - 1s, = 7.325

—8.25 + 1x, = -3x, + Os, iF Os, = 8

x, 2 0, Xo 05 Ss) > 0, Ss, = WE X, (unrestricted)

In general, a linear programming problem with all equality con-

straints will have more decision variables than constraints, that is,

n>m. Thus, there will be n - m more variables than constraints.

Suppose that we arbitrarily select n - m of the decision variables

and decree that these variables equal zero. Then, these n - m

variables could be removed from the constraints. The resulting set

14 Introduction to Graphs and Networks

of constraints would consist of m linear equations in m unknowns.

This set of m simultaneous linear equations could be solved by any

standard method such as Cramer's rule or the Gauss-Jordan elimination

method. If a unique solution exists in which all m remaining variables

take values greater than or equal to zero, then this solution is called

a basic solution. Since there can be at most one basic solution for

each choice of n - m variables initially set equal to zero, there

can only be a finite number of distinct basic solutions.

One of the most important results of linear programming theory

is that

If there is at least one optimal solution to a linear programming

problem, there exists an optimal solution that is also a basic

solution.

Hence to find an optimal solution, we need only examine a finite

number of basic solutions.

In practice, linear programming problems are solved by a method

called the simplex algorithm, which starts with one basic solution

and then judiciously generates another basic solution with a better

value for the objective function. This process is repeated until a

basic solution that is recognized as optimal is found. This process

is repeated only a finite number of times since no basic solution

reappears (since at each step a better solution is generated), and

there are only a finite number of distinct solutions.

Some of the graph problems presented in subsequent chapters

will be solved in a similar manner, namely, a basic solution will

be found and then another basic solution that is better will be

generated from the original basic solution. This process will be

repeated a finite number of times until an optimal solution is

discovered.

Exercises 15

EXERCISES

ales
c

Construct a graph whose vertex set is the set of courses you

are required to pass for your degree. Place an arc from vertex

x to vertex y if course x is a prerequisite for course y. Give

an interpretation for each of the following:

(a) Path

(b) Chain

(c) Cycle

(d) Circuit

(e) Connected component

The inner degree d (x) of vertex x is defined as the number of

arcs whose head is vertex x. The outer degree aes of vertex

x is defined as the number of arcs whose tail is vertex x. The

degree d(x) of vertex x is defined as the sum of its inmer and

outer degrees.

Show that for any graph G the number of vertices with odd

degree is even. Show that for any graph G.=—(X,—A)

-~Y a= J a@) ;
x X x X

Is it possible for a cut and a cycle to contain exactly one arc

in common? Why?

Given a spanning tree T for graph G, show there exists a unique

chain consisting exclusively of edges in T such that each edge

joins any two vertices in G.

Consider the following linear programming problem:

Maximize

3x, + 2x, + 1x, = 4x),

such that

2x, + 1x, uF 3x4 ot: 7%, < 10

x, 2 0, xy 20; X4 2205 x) >0

(a) Find an optimal solution. (Hint: Consider only basic

solutions.)

16 Introduction to Graphs and Networks

(b) What is the dual linear programming problem?

(c) Use the complementary slackness conditions to find an

optimal solution to the dual.

6. Is every subset of a tree also a tree? Is every subset of a

forest also a forest?

7. In Fig. 1.3, do the ares 0, y, € form a chain? a path? Do the

arcs a, Y, Y, € form a chain? a path?

8. Suppose forest F consists of t trees and contains v vertices.

How many arcs are in forest F?

9. Many of the Common Market countries share common borders. Con-

struct a graph G whose vertices represent the Common Market

countries. Join two vertices by an arc if the corresponding

countries have a common border. Is G connected? Find the cut

set with the smallest number of arcs. Is there any country whose

withdrawal from the Common Market would sever all land travel

between the remaining countries?

REFERENCES

Graph Theory

Berge, C., 1973. Graphs and Hypergraphs (translated by E. Minieka),
North-Holland, Amsterdam.

Busacker, R., and T. Saaty, 1965. Finite Graphs and Networks, McGraw-
Hill, New York.

Ford, L. R., and D. R. Fulkerson, 1962. Flows in Networks, Princeton
Press, Princeton.

Frank, H., and I. Frisch, 1971. Communication, Transmission, and

Transportation Networks,. Addison-Wesley, Reading.

Harary, F., 1969. Graph Theory, Addison-Wesley, Reading.

Hu, T. C., 1969. Integer Programming and Network Flows, Addison-

Wesley, Reading.

Ore, 0., 1963. Graphs and Their Uses, Random House New Mathematical
Library, Random House, New York.

Potts, R. B., and R. M. Oliver, 1972. Flows in Transportation
Networks, Academic Press, New York.

Wilson, R., 1972. Introduction to Graph Theory, Academic Press,
New York.

References 7,

Linear Programming

Dantzig, G. B., 1963.
Press, Princeton.

Hadley, G., 1962. Linear Programming, Addison-Wesley, Reading.

Simonnard, M., 1966. Linear Programming, (translated by W. S.

Jewell), Prentice-Hall, Englewood.

Linear Programming and Extensions, Princeton

obs

on a agi tad sia nm ne

we
; he : 1. ver a Pre Loe 0 ; me - ey : ° er

a rhe cmk, toe een yet ras “ide dlis ans

Lies
go repe int yea xt

/ ae ew Vin aia. * Me

2 eeeto? > Leelee rend cyl area pate nat, ds asse) .) ye

y - a

ae oe) Sern Peat) ~ hele 1 may i. AP] ry Joan f

Larned sig tin = or iitees) 7

2 , we ae y - } ce -

« am (ae) Ss : pf. « gat ‘arcs \ & acm art

— 4 ae : i ” i

h eet oa +s i» Owe 4 irin¢ £ i> Semen Gis, 7.

y bt, : 2 uy on ie, 8 . eae
, a ed, i a

iow: 269 ayi
a . fat *

_

1s 7 7

Sy al by taakes OM ionigs “aye tire
 te

> oad et THR re
=

e be magn De al ae re =* te 2-9, _
re

a
¥ iD

7 ay PB a s? Reh ae c 2 ery :

=, N 7 Stay bee wb ae sqranent 5 - > he i

tus

ed eoet: ae ee ~Sae sah, a peal
mites APD 5 ga vd neti a a whee:

J _

_

Pa

Chapter 2

TREE ALGORITHMS

A graph may contain many different trees. This chapter studies

several algorithms used to construct trees with certain optimal

properties.

2.1 SPANNING TREE ALGORITHMS

Consider a graph G = (X, E) in which the direction of each arc is

unspecified. Suppose there is a weight a(x,y) assigned to each

edge (x,y) in graph G. Define the weight of a tree as the sum of

the weights of the edges in the tree.

In this section, we shall first consider an algorithm to

construct a spanning tree of graph G. Secondly, we shall consider

an algorithm to construct 4 minimuh weight spanning tree, i.e., a

spanning tree of graph G whose weight is less than or equal to the

weight of every other spanning tree of graph G.

EXAMPLE 1 (Rumor Monger). Consider a small village in which some

of the villagers have a daily chat with one another. Is it possible

for a rumor to pass throughout the entire village?

To answer this question, represent each villager by a vertex.

Join two vertices by an edge if the corresponding two villagers have

a daily chat with one another. If the resulting graph is connected,

then it is possible for a rumor to pass through the entire village.

To determine if the graph is connected, we could see whether the

ae

20 Tree Algorithms

graph possesses a spanning tree. If the graph possesses no spanning

tree, then it-cannot be connected and the rumor cannot—circulate ee ot be connecte e rl

throughout the entire village.
Sa

EXAMPLE 2. The Department of Highways wishes to build enough new

roads so that the five towns in a certain county will all be

connected to one another either directly or via another town. The

cost of constructing a highway between each pair of towns is known

(see Fig. 2.1). Let each town correspond to a vertex, and let each

possible highway to be constructed correspond to an edge joining

x 5; 50~e 80, 90pe
70% 60g 504 sr Pp *

c 50 70 x 8, 203

d 80 60 8 oe Obs

e 90 350 20 elo Se

Figure 2.1

Highway Construction

the vertices that represent the two town joined by the highway.

Associate a weight to each edge that is equal to the cost of con-

structing the corresponding highway. Deciding which highways to

build can be viewed as the problem of constructing a minimum cost

spanning tree for the corresponding graph. This follows since

the edges of any spanning tree will connect each vertex (town) with

every other vertex (town). Moreover, the minimum weight spanning

tree will represent a minimum total cost set of new highways.

2.1 Spanning Tree Algorithms 21

Note that if the highways are allowed to have junctions at

places other than the five towns, then the resulting problem is e

more complicated than a minimum spanning tree problem.

The spanning tree algorithm, given in the following discussion,

is one of the most elegant algorithms that we shall encounter. The

algorithm examines the edges in any arbitrary sequence and decides

whether each edge will be included in the spanning tree. In the

jargon) of the algorithm, examining the edge is called coloring the

edge. Blue is the color for edges included in the spanning tree;

orange is the color for edges excluded from the spanning tree.

When an edge is examined, the algorithm simply checks if the

edge under consideration forms a cycle with the other edges already

assigned to the tree (blue edges). If so, then the edge under

examination is excluded from the tree (colored orange); otherwise,

this edge is assigned to the tree (colored blue).

How does the algorithm determine if the edge under consider-

ation forms a cycle with the edges already assigned to the tree (blue

edges)? As the edges are assigned to the tree they form one or more

connected components. The vertices belonging to a single connected

component are collected together into what the algorithm terms a

"bucket". An edge forms a cycle with the edges already assigned

to the tree if both its endpoints are-in_the same connected component

(bucket). be

The algorithm terminates with a spanning tree when the number-

of-vertices-less-one edges have been colored blue,, or equivalently,

when all vertices are in one bucket, since all spanning trees must_

consist_of the number-of-vertices-less-one edges. If the graph

contains no spanning tree, which is equivalent to being not connected,

pate ees algorithm terminates after coloring all edges without color-

ing. hei be blue edges.

Spanning Tree Algorithm

Initially, all edges are uncolored and all buckets are empty.

Step 1: -Select any edge that is not a\ loop, Color this edge

blue and place both its endpoints into an empty bucket.

22 Tree Algorithms

Step 2: Select any uncolored edge that is not a loop. (If_

no such edge exists, stop the algorithm; no spanning tree-exists.)

One of four different situations must occur:

(a) Both endpoints of this edge are in the same bucket.

(b) One endpoint of this edge is in a bucket, the other endpoint

is not in any bucket.

(c) Neither endpoint is in any bucket.

(d) Each endpoint is in a different bucket.

If item (a) occurs, color the edge orange (not in the tree)

and return to Step 2. If (b) occurs, color the edge blue (in the

tree) and assign the unbucketed endpoint to the same bucket as the

other endpoint. If (c) occurs, color the edge blue and assign both

endpoints to an empty bucket. If (d) occurs, color the edge blue

and combine the contents of both buckets into one bucket, leaving

the other bucket empty. Go to Step 3.

Step 3: If all the vertices of the graph are in one bucket,

stop the algorithm since the blue edges form a spanning tree. Other-

wise, return to Step 2.
=

<—Note that each time a step of the algorithm is performed an

edge is Undelibly) colored. If there are only a finite number of

edges in the graph, then the algorithm must stop after a finite

number of steps.

If the algorithm does not terminate with a spanning tree, then

no spanning tree exists for the graph for the following reason:

The algorithm will terminate with two sets (buckets) of vertices

that have no edge joining a member of one set to a member of the

other set. Otherwise, such an edge would have been colored blue

by the algorithm and the two buckets would have been merged together.

Hence, the algorithm does what it is supposed to do, construct a

spanning tree.

This algorithm has the property that each edge is examined at

most one time. Once the algorithm colors an edge, this edge is

never considered again. Algorithms, like the spanning tree algorithm,

2.1 Spanning Tree Algorithms 23

which examine each entity at most once and decide its fate once and

for all during that examination are called greedy algorithms, The

advantage to performing a greedy algorithm is that you do not have,
to spend your.time-reexamining-entities, and it is easier to deter-

mine the maximum number of operations that will have to be performed
~~ —_

by the algorithm.

will never have to perform more steps than there are edges in the

graph.

—— ee

In the case of the spanning tree algorithm, one.

EXAMPLE 3. Let us construct a spanning tree for the graph in Fig.

2.2. Examine the edges in the following arbitrary order: (a,b),
, c

(d,e), (a,d), (b,e), (e,d),((cb), (a,c), and (c,d). The results

of each step of the algorithm are shown below:

Figure 2.2

Edge Color Bucket No. 1 Bucket No. 2

Initially empty Initially empty

@,b) Blue fle “]o) Empty

(d,e) Blue aeeD d,e

(a,d) Blue Bis lig Gly Empty

(b,e) Orange Big Ing Gly ip Empty

(e,c) Blue Ae Isley tly Bop Empty

Stop since all vertices are in one bucket. The four blue edges

(a,b), (d,e), (a,d), (e,c) forma spanning tree of the graph.

24 Tree Algorithms

i Obviously, the |spanning tree constructed by the algorithm

~ depends upon the order in which the edges are examined by the

algorithm. If the edges in Example 3 had been examined in the

reverse order, then the algorithm would have generated the spanning

tree consisting of edges (c,d), (a,c), (c,b), (e,d).

Now consider the problem of finding a spanning tree with the

smallest possible weight or the largest possible weight, respectively

called a minimum spanning tree and a maximum spanning tree. Obvious-

ly, if a graph possesses a spanning tree, it must have a minimum

spanning tree and also a maximum spanning tree. These spanning

trees can be readily constructed by performing the spanning tree

algorithm with an appropriate ordering of the edges.

Minimum Spanning Tree Algorithm

Perform the spanning tree algorithm examining the edges in order

of ascending weight (smallest first, largest last). If two or more

edges have the same weight, order them arbitrarily.

Maximum Spanning Tree Algorithm woud Au

Perform the spanning tree algorithm examining the edges in order

of descending weight (largest first, smallest last). | L£_two-or

more edges have the same weight, order them arbitrarily.
_——. _ rn _

Proof of the Minimum Spanning Tree Algorithm: We shall prove by

contradiction that the minimum spanning tree algorithm constructs

a minimum spanning tree. Suppose that the algorithm constructs a

tree T and some other tree S is in fact a minimum spanning tree.

Since S and T are not identical trees, they differ by at least one

edge. Denote by Sa (x,y) the first examined edge that is in T

but not in S. Since S is a spanning tree, there exists in S a

unique chain from vertex x to vertex y. Call this chain C(x,y).

If edge e, = (x,y) is added to tree S, then a cycle is formed by

ey and C(x,y). Since tree T contains no cycles, this cycle must

contain at least one edge e, not contained in tree T.
zZ

2.1 Spanning Tree Algorithms
25

Remove edge ey from S and add edge a to S. Call the resulting
set of edges S!. Clearly, S' is also a spanning tree. Since S is
by definition a minimum spanning tree, the weight of S' must be
greater than or equal to the weight of S, and hence

a(e,) 2 a(e,).

Suppose that edge e, was examined before edge ey in the minimum

spanning tree algorithm that generated tree T. Since e, was not

included in tree T, edge ey must form a cycle with the edges of

tree T that were examined before edge e But since ey is defined

as the first edge in T that is not in Ss all other edges in this

cycle must be in tree S. This is a contradiction since edge eo

forms a cycle with these edges. , Therefore, we must conclude that

edge e, was examined before edge eo> and a(e,) > a(e,). Therefore,

trees S and S' have the same total cost, and tree S' has one more

edge in common with tree T than does spanning tree S.

The proof can now be repeated using S' as the minimum cost

spanning tree instead of S. This generates another minimum spanning

tree S'' that has one more edge in common with tree T than did tree

S'. Ultimately, a minimum spanning tree will be generated that is

identical to tree T. Thus, tree T is a minimum spanning tree. Q.E.D.

The proof for the maximum spanning tree algorithm is identical

to the preceding proof except that minimum should everywhere be

replaced by maximum. (‘ee

Construct. a) minimum cost spanning tree for the highway problem

in Example 2. as Geos in os De edad She a in a gee SR AEE

of cost are (a,b), (a ayn Gi. ay (e,e)., ee ae (oe a. (b, cay. (b, ie

(a,d), and (a,e). The results of the minimum spanning tree algorithm
- a2

are:

Edge Color Bucket no. 1 Bucket no. 2

(Initially empty) (Initially empty)

(usin) ee Blue a, b Empty
(e5.) ake Blue 1, [o) Geir

(d,e) 10 Blue a, b curd, ve

tesQoo Orange Bin 1 Qa, @

(a eye Blue ay be c,. d,..e

26 Tree Algorithms

Stop, all vertices are in the same bucket and four edges have been

colored blue. A minimum cost spanning tree is (a,b), (c,d), (d,e),

(a,c). What is the total cost?

The tree (a,b), (c,d), (d,e), (b,e) is also a minimum cost

spanning tree.

2.2 MAXIMUM BRANCHING ALGORITHM

In Section 2.1, we considered tree-generating algorithms that ignore

the direction of the arcs. In this section, we shall study an algo-

rithm, due to Edmonds (1968), called the_maximum branching algorithm

that-considers_the direction of each arc.

Suppose the sales manager of a multinational company has a

message that he wants conveyed to each of his district managers.

What is the best way for him to accomplish this? One solution might

be for him to phone each district manager personally. However, this

might be very costly for the following reason: Suppose the sales

manager is in Chicago and there are district managers in London and

Paris. It would be far more expensive for him to phone each of them

personally than it would be for him to phone London and have the

London manager phone Paris.

Perhaps a better solution would be to have each district manager

know in advance the selected district managers to whom he is to pass

the message after he receives it, i.e., a “grapevine)"

What properties should such a grapevine have? Obviously, each.

person should receive the message exactly once, and the cost of

operating the grapevine should be as small as possible.

Construct a graph in which each vertex corresponds to a person

in the grapevine and each arc represents the way a message may be

transmitted between two people.

_An arborescence is defined as a tree in which no two arcs are

directed into the same vertex (see Fig. 2.3). Note that several

arcs in an arborescence can share a_common tail vertex. An arbores-

cence can be thought of as a directed tree that can be used as a

grapevine. The root of an arborescence is the unique vertex included
—_———

4 .

2.2 Maximum Branching Algorithm Aue

Figure 2.3

An Arborescence

in the arborescence that has no arcs directed into it. A branching
; : i atari ; j } ———— is defined as a forest in which each tree is ah/-arborescencé.
—

A_spanning a is an arborescence that is also a

spanning tree. A spanning branching is any branching that includes

every vertex in the graph.

Associate a weight a(x,y) to each arc (x,y). The weight of

an arborescence (or of a branching) is defined as the sum of the

weights of the arcs in the arborescence (or in the branching).

A maximum branching of graph G is any branching of graph G with

the largest possible weight. A maximum arborescence of graph G is

any arborescence of graph G with the largest possible weight. A

minimum branching and a minimum arborescence are defined similarly.

This section presents an algorithm due to Edmonds (1968) called

the maximum branching algorithm, This algorithm, as its name

suggests, Pountrucrs @ maxtivom branching for any graph G.

As shown in the following, the maximum branching algorithm can

also be used to find (1) a minimum branching, (2) a maximum spanning —

arborescence (if one exists), (3)_a minimum spanning arborescence

(if_one exists), (4) a maximum spanning arborescence rooted-at—a

specified vertex (if one exists), and (5) a minimum spanning arbor-

escence rooted at a specified vertex (if_one exists).

28 Tree Algorithms

1. A minimum branching is found by replacing each arc's weight by

its negative. A maximum branching for the new arc weights

corresponds to a minimum branching for the original arc weights.

2. The algorithm finds a maximum spanning arborescence as follows:

Suppose a positive constant M is added to each arc's weight.

will contain more and more arcs. Since no branching can contain

more arcs than a spanning arborescence, the maximum branching

produced by the algorithm will be a spanning arborescence (if

one exists) for M large enough. Moreover, this spanning arbor-

escence will be a maximum spanning arborescence.

AK Note that even if all arc weights are positive and the graph

possesses a spanning arborescence, a maximum branching need not be

a spanning arborescence (see, e.g., Fig. 2.4).

Figure 2.4

(Maximum branching has weight 5; spanning

arborescence has weight 2.)

3. A minimum spanning arborescence (if one exists) can also be

generated by the algorithm. This is accomplished by replacing

each arc's weight by its negative. Then, a large positive

constant M should be added to each arc's weight. As mentioned

in item 2, the effect of adding M to each arc's weight is to

force the maximum branching algorithm to generate only branchings

with the maximum possible number of arcs. Hence, the algorithm

will generate a spanning arborescence (if one exists). Moreover,

this spanning arborescence will be a minimum spanning arborescence.

~/4. and 5. The maximum-branching algorithm can also be used to find

a maximum (or minimum) spanning arborescence rooted ata.

_Specified vertex, say vertex a. (The sales manager mentioned

at the beginning of this section is seeking a minimum weight

Bato Maximum Branching Algorithm 29

«Spanning arborescence rooted at Chicago.) This is accomplished

by appending to the graph an {additional Rarees a')and_ an arc |

awa) with (a (arbitrary weight. If the appended graph possesses

a spanning arborescence, then this arborescence must be rooted

_at_vertex_a' since no arcs enter vertex a'. Any spanning

arborescence rooted at a' must correspond to a spanning arbor-

excence rooted at a in the original graph. Moreover, this

spanning arborescence rooted at vertex a. As described in

items 2. and 3. the arc weights can be altered so that the

maximum branching algorithm will be forced to find a maximum

(or minimum) spanning arborescence, if one exists.

As described in items 2. and 3. the arc weights can be altered

so that the maximum branching algorithm will be forced to find a

maximum (or minimum) spanning arborescence, if one exists.

We shall now proceed to describe the maximum branching algorithm.

The maximum branching algorithm uses two buckets, the vertex

bucket and the are bucket. The vertex bucket contains only vertices

that have been examined; the arc bucket contains arcs tentatively {p

selected for the maximum branching. At all times, the arcs in the

arc bucket form a branching. Initially both buckets are empty.

The algorithm successively examines the vertices in any

arbitrary order. The examination of a vertex consists entirely

of selecting the arc with the greatest positive weight that is

directed into the vertex under examination (if any). If the addition

_of this arc to the arcs already selected for the arc bucket. main-

tains a branching, then this arc is added to the arc bucket. Other-

wise, this arc | mouidl form a Circuit with some arcs already in the

arc bucket. If this happens, then a new, smaller graph is generated

by Wohrinking” the arcs and vertices in this circuit into a single

es (see Fig. 2.5). Some of the arc costs are judiciously

altered in the new, smaller graph. The vertex and arc buckets are

redefined for the new graph as containing only their previous con-

tents that appear in the new graph. The examination of each vertex

continues as before. The process” stops when are vertices have been
ot a i 2

examined.)
——

30 Tree Algorithms

Figure 2.5

Before and After Shrinking Circuit

(a,b), (b,c), (c,a)

Upon termination, the arc bucket contains a branching for the

final graph. The final graph is expanded back to its predecessor

pby expanding out its "artificial" vertex into a circuits All but

7 one of the arcs in this circuit are added to the arc bucket. The

\ arc that is not added to the arc bucket is carefully selected so.

that the contents of the arc bucket remain a branching. This process

Pe pened until the original graph is regenerated. The arcs in

the arc bucket upon termination turn out to be a maximum _branching.

Denote the original graph for which the maximum tee is

sought by Gos and denote each successive graph generated from G

by G)> Gos ... The vertex and arc buckets used for these graphs

will be denoted by Vo? Vie -, and Ay» Aj>

are now ready to state formally the algorithm.

-., respectively. We

{ Maximum Branching Algorithm)

Initially, all buckets Vo? vs AO or tbavel Ay? Als ++., are empty.

Set i = 0.

Step 1: If all vertices of G, are in bucket V> go to Step 3.

Otherwise, select any vertex v in G, that is not in bucket V;- Place

vertex v into bucket Vi. Select an arc -y.with the greatest positive.

weight that is directed into v. df no such arc exists, 3, repeat Step

4d; otherwise, place are-y—into bucket A; If the arcs in A; still

form a branching repeat Step 1; murat go to Step—2.

2.2 Maximum Branching Algorithm 31

Step 2: Since the addition of arc y to A; no longer causes

Ay to form a branching, arc y forms a circuit with some of the arcs

ina: Call this circuit C,. Shrink all the arcs and vertices in

—

C, into a single vertex called V5: Call this new graph Coa Thus,

any-arc in G, that was incident to exactly one vertex in C, will be
—i i

}

incident to vertex vy in graph igs The vertices of G,
ak

L

and all the vertices of G. not in C,-

aoe
—

Let the weights of each arc in CG, be the same as its weight
+1

that are directed into vj) For n G. except for the arcs in G
a P ; i+l

each arc (x,y) in GC. that transforms into an arc (x,v,) in Cray let
é pt

\a(x,v,) = a(x,y) a3tr 8) mate (1)

where (r,s) is the minimum weight arc in circuit C;> and where (t,y)

is the unique are in circuit Cc, whose head is vertex y. [At this

point, observe that

Ca (75s) 2-0 P

fa(t.y) > a(rys)

and 3x Sie
\

a(t,y) PANG ESD) ary pe z

since arc (t,y) was selected as the arc directed into vertex y~]

Let V. contain all the vertices in G,
itl at

(Thus, V5 iS Vout:

in A;- (Thus, Asay

Increase i by one, and return to Step l.

ents, Wen +1 that ar n il

yj Let Ay, contain all the arcs in Goa that are
1

contains the arcs in A; that are not in C.+)

Step 3: This step is reached only when all vertices of CG, are

in V,and the arcs in A, form a branching for G,. If i = 0, stop

since the arcs in Ag form a maximum branching for Go: Test # 0's

two cases are possible:

(a) Vertex v, 1 is the root of some arborescence in branching A.+
a

(b) Vertex v, 1 is not the root of some arborescence in branching
A=

as
nf

If (a) occurs, then consider the arcs in A, together with the

arcs in circuit C, 1 These arcs contain exactly one circuit in
a

BZ, Tree Algorithms

graph Ce » namely Ce Delete from this set of arcs the arc in
i alt

C, l that has the smallest weight. The resulting set of arcs forms
i-

a branching for graph G4: Redefine As_y to be this set of arcs.

If (b) occurs, then there is a unique arc (x, Neay? in A;

that is directed into vertex Nes This arc (x, v,-)) corresponds L

in graph G; 1 t° another arc, say arc (x,y), where vertex y is one

of the vertices in circuit Cc, that was shrunk to form vertex Fee
al ik

Consider the set of arcs in A, together with the arcs in cirauit

C,_4° This set of arcs contains exactly one circuit in Gp namely

Cy and exactly two arcs directed into vertex y, namely arc (x,y)

and an are in circuit Cet Delete this latter arc from this set of

arcs. The remaining arcs in this set form a branching in graph G4

Redefine Aja to be this set of arcs.

Having redefined A, decrease i by one unit and repeat Step 3. le)

Proof of the Maximum Branching Algorithm: Consider any graph eS

produced by the algorithm and consider the branching A. produced

by Step 3 for graph G,- First, it will be shown that if AY is a

maximum branching for graph Cas then branching ALy is a maximum

branching for graph rai

To prove this, some definitions are needed. Let G' denote the

subgraph consisting of all arcs in Cas not directed into a vertex

inves news t Cia Let G" denote the subgraph consisting of all the

arcs in Ce not in G'. Thus, every arc of G is present in
1 t-1

exactly one of these subgraphs G' and G". Let ie denote the arcs

denote the arcs of A that
al t-l1

are branchings in G' and G",

in A that are in G', and let At
t-1

are in G’. Cllearilly, A' and At
t=1 al

respectively.

If branching Ay is not a maximum branching for graph Gp

then there exists some branching B with greater total weight. Let

B' denote the arcs in B that are in G', and let B" denote the arcs

of B that are in G". Since B is a maximum branching, then it follows

that either

' B' weighs more than Ald

or
B'' weighs more than Ate.

2.2 Maximum Branching Algorithm
SiS

Claim 1: Aly is a maximum weight branching for G’.

Claim 2: Aled weighs as much as B". <

If both Claims 1 and 2 are true, then it follows that AL 1 must

be a maximum branching for graph oe

Note that the branching A, produced by the algorithm for the

terminal graph G,. is a maximum branching since it contains a maximum

positively weighted arc directed into each vertex in G, if such an

arc exists. Since the algorithm produces a maximum Rak for

the terminal graph GC; then if both Claims 1 and 2 are true, the

algorithm must produce a maximum branching Aja for graph G4: By

repeating this reasoning, we can conclude that if Claims 1 and 2 are

true then the branching Ay produced by the algorithm is a maximum

branching for the original graph G..
O

Hence, it remains only to show that Claims 1 and 2 are valid.

Proof of Claim 1: Suppose that circuit C. | contains n vertices.

There is one arc with positive weight directed into each of these n

vertices in graph G'. (Otherwise, the algorithm would not have formed

er, Since there are only n vertices in G' that have arcs

directed into themselves, a maximum branching for G' canfot contain

(ealbeebacea 1

more than n arcs. Moreover, no branching in G' can have weight

exceeding the weight of circuit Cp which consists of the maximum

positive-weight arc directed into each of the n vertices in circuit

C However, at least one of the arcs in or must be absent from ei" =

are neal branching for G' since a branching cannot contain a

circuit. Thus, at least one of these n vertices, say vertex y € Chip

must either have no branching arc directed into it or else have an

are (zy ys x ¢ Cp directed into it.

For each vertex z € Cc. construct a branching B. in G' as =i)?

follows:

(a) Include all arcs in circuit C4 except the arc in circuit

roms that is directed into vertex z

(b) Include any maximum positive-weight arc (x,z), where x ¢ Caer

Select the branching B. with the greatest weight. From equation (1),

* .

branching B is the branching A. l generated by the algorithm.
Zz ad

34 Tree Algorithms

Consider any branching B, in G' that is not of the form B
1

If only one of the arcs of Cet. is not in Bi: then it follows that

By cannot be a maximum branching for G' since it is not of the form

Bae
Zz

If two or more arcs of C are not in B then each of these
t-l1 iy

arcs is either (1) replaced by an arc of smaller weight directed

into the same vertex or (2) no arc is directed into this vertex.

In either case, this results in the decrease of the weight of arcs

in the branching directed into the vertex. Hence, BL cannot be a

maximum branching for G'.

Thus, At 1 is a maximum branching for G', and we can assume,

without loss of generality, that nae is identical to B'. This

concludes the proof of Claim 1.

Proof of Claim 2: Two cases are possible:

(a) Branching A. contains an arc (x,v,_1) directed into eer

(b) Branching A. does not contain an arc directed into vertex Se

Case (a): By hypothesis, A, is a maximum branching for Ge and

contains an arc (x, v) directed into v Brom Claim 1. Beis
t-L t-1°

identical to oe 1 and hence B' contains an arc (x,y), where x € C. 1

and y EC Since B is a branching in G it follows that B"
cals t-1

cannot contain a path of arcs from a vertex in Cia to vertex x.

Thus, B" must be a maximum branching for G" that does not contain

a path of arcs from a vertex in ee to vertex x.
-1

Each arc in G" corresponds to an arc with identical weight in

Gi. Moreover, each branching in G" corresponds to a branching in

Ce with identical weight. Consequently, if Atl is not a maximum

branching in G" that contains no path of arcs from a vertex in Cee

to a vertex x, then A. is not a maximum branching in o that contains

arc (x,v, ,), which is impossible. Hence, ao: has the same weight t-1

as B", which proves the claim for case’ (a).

Case (b): Each arc in G" corresponds to an are with identical

weight in oe By hypothesis A. is a maximum branching for Ge

Since no arc in A. is directed into VD it follows that every

2.2 Maximum Branching Algorithm 35

arc cin A. corresponds to an arc in Ar. Moreover, any branching

in G'" corresponds to a branching in - with the same weight. Hence
athe Ata were not a maximum branching in G", then A. would not be a
maximum branching in Gi which is a contradiction.

Thus, Aa must be a maximum branching in G" and have the same

weight as B", which completes the proof of Claim 2. OnE aD

EXAMPLE (Maximum Branching Algorithm). We shall now perform the

maximum branching algorithm to find a maximum weight branching for

the graph in Fig. 2.6. The weight of each arc is shown next to the

arc. The algorithm will arbitrarily examine the vertices in alpha-

betical order. The result of the examination of the first four

verticesya, b, ¢, d is shown in Fig. 2.6.

Graph Go

oy

y

Vertex examined Vo Ay

a a (d,a)

b a,b (d,a), (c,b)

c abe Gdeia)en Ges b)iawa(a, c)

a,b,e,d Kia), Ceyb)lasc).,
(b,d)

Figure 2.6

Maximum Branching Algorithm

After vertex d has been examined, the arcs in bucket Ay no

longer form a branching since they contain a cycle (axe) (ee bi

(b.d), (d,a). At this point, the algorithm shrinks this cycle into

a vertex v.. Figure 2.7 displays the new graph G, resulting from
O

this shrinking. The calculations of the weights are shown next to

36 Tree Algorithms

bi Graph G, ye

1 , A
a \ WV : 7 ol 4 bf > 2

it ond \S p ? te% ¥ NE Ne

a 4, A Zz

Vertex examined vy Ay > (Me -&

e e CEee)

if e,f (£,e)

Vo e,f,vy (f,e), (e,vo)

Figure 2.7 (Su;

Maximum Branching Algorithm . 4.9.1. ; bh. =}

t Q ron C , (a ») ae pag a

: " =
\ = = 3

each arc in graph CG): Graph G, has only three vertices e, f, and

Yo: The result of the examination of each of these vertices is

shown in Fig. 2.7.

After examining the three vertices in graph G the algorithm >

has generated a maximum branching for graph G) eee nee of arcs

(f,e) and (e,v))- Using this branching, Step 3 expands vertex Vo

back into its original cycle and adds arcs (a,c), (c,b), (b,d), and

(d,a) to the arcs (f,e) and (e,v5) already in the branching. Next,

arc (d,a) is deleted from the branching so that only one branching

arc, namely (e,a), is directed into vertex a. The resulting branch,

ing in graph Go consists of arcs (f,e), (e,a), (a,c), (c,b), and

(b,d). The total weight of this branching equals 1+2+3+2 +

2 = 10, which is the maximum possible weight.

Note that this branching also happens to be a spanning arbor-

escence of graph G rooted at vertex f.

Morin brarseclivg Th wat Yer gord
4)

Exercises a

Figure 2.8

EXERCISES

1. Construct a minimum cost highway system for the five towns in

Example 2.

2. Construct a minimum weight spanning tree for the graph in Fig.

2 Or

3. Construct a minimum weight spanning tree for the graph in Fig.

2.8 that includes arcs (aeib) and (esd).

4. Construct a maximum weight branching for the graph in Fig. 2.8.

Construct a maximum spanning arborescence for the graph in Fig.

2.8 that is rooted at vertex(a;

Suppose that you have just completed the maximum branching

algorithm and discover that all your arc weights were under-

stated by 5 units. Can you salvage your results, or is it

necessary to repeat the algorithm again? Explain.

Consider the following greedy maximum branching algorithm:

"Order the acrs according to their weights with the heaviest

are first. Select the first arc for the branching. Sequential-

ly examine the rest of the arcs, selecting an arc for the

branching if it forms a branching with the other arcs already

selected for the branching."

38

oie

Port

Refinery 1 0 4 10

10.

ike

Tree Algorithms

Show that this algorithm does not always terminate with a

maximum branching. 6

Restate the maximum branching algorithm for the special case

when all arcs have the same weight.

A pipeline system must be built to connect the seven company-

owned refineries with the port facility that receives imported

crude oil. The cost of building the pipeline between any two

points is $1000 per mile plus a $4000 set-up cost for each

segment. The distance between all pairs of points is given

in the following table. Find the least cost pipeline.

P RL R2 R3 R4 R5 R6 R7

0 5) 6 8 2 10

10

10

= Oy Gr & to

oO H =

=) 0

ON GE toa 5 uUunwon ovo

ConA UuU wo Ns

Suppose that the values in Exercise 9 represented the cost of

shipping a year's supply of oil. Find the pipeline that would

minimize the total yearly cost of shipments from the port to

each refinery. *

Each day, every researcher in a laboratory receives his assign-

ment from one of his superiors. The researchers fall into

four categories: senior, associate, assistant, and junior.

There are, respectively, 1, 4, 6, 5, 8 persons currently in

each category. Because of differences in sophistication and

education, the time required to convey an assignment is as

follows:

Exercises 39

s

From To Associate Assistant Junior
*

Senior 5 9 all F

Associate 4 8

Assistant 4

What is the best way to disseminate the daily assignments?
«

a’ >

REFERENCES

Edmonds, J., 1968. Optimum Branchings, Mathematics of the Decision

Sciences, Lectures in Applied Mathematics, Vol. 2, AMS, 1968

(G. Dantzig and A. Veinott, eds.), pp. 346-361.

Kruskal, J. B., 1956. On the Shortest Spanning Subtree of a Graph

and the Traveling Salesman Problem, Proc. AMS, 7, pp. 48-50.

Rosentiehl, P., 1966. L'Arbre Minimum d'un Graphe, International
Seminar on Graph Theory, Rome, July.

a

Chapter 3

PATH ALGORITHMS

This chapter describes several algorithms for finding paths with

certain optimal properties. The first section presents an algorithm

for finding the "shortest" path between two given vertices in a

graph. Section 3.2 presents algorithms for finding the "shortest"

path between every pair of vertices in the graph. Section 3.3

presents algorithms for finding the second, third. etc., shortest

versions of the paths found above. Section 3.4 reconsiders these

algorithms in a more general, algebraic framework.

3.1 SHORTEST PATH ALGORITHM

Associate a number a(x,y) with each arc (x,y) in graph G. If no

arc (x,y) exists in graph G, let a(x,y) = ~. We shall refer to

a(x,y) as the length of arc (x,y), although a(x,y) could also be

regarded as the cost or the weight of arc (x,y). Let the length of

a path be defined as the sum of the lengths of the individual arcs

comprising the path.

For any two vertices s and t in graph G, it is possible that

there exist several paths from s to t in graph G. In this section,

we shall consider an algorithm that generates a path from s tot

that has the smallest possible length. Such a path is called a

shortest path from s to t.

41

42 Path Algorithms

EXAMPLE 1. Suppose that you wish to drive from Boston to Los

Angeles using only interstate highways. What is the shortest route

to take?

Construct a graph whose vertices correspond to the junctions

of the interstate highways. Let the arcs correspond to the inter-

state highways joining their respective vertices. Let the length

of each arc equal the mileage along the highway that it represents.

The routing problem between Boston and Los Angeles can now be

solved by finding a shortest path from the vertex representing the

highway junction in Boston where you would start your journey to

the vertex representing the highway junction in Los Angeles where

you would end your journey.

EXAMPLE 2. An airline is approached by a passenger who wishes to

fly from Springfield, Illinois to Ankara, Turkey spending as little

time as possible in the air since he is afraid of flying. How

should the airline route this passenger?

The airline should construct a graph whose vertices are the

airports between Springfield and Ankara and whose arcs correspodd

to the flights between the corresponding airports. Let the length

of each arc equal the corresponding flight time. The airline should

now read the remainder of this section to learn how to find a short-

est path between the vertices corresponding to Springfield and Ankara.

EXAMPLE 3. You must have an automobile at your disposal for the next

five years until your retirement. There are currently a variety of

automobiles that you may purchase with different expected lifetimes

and costs and there are a variety of leasing arrangements available.

What should you do?

Represent each possible transaction date during the next five

years as a vertex. (To simplify, you might consider only the first

day of each month as a possible transaction date.) Represent each

possible purchase or lease by an arc from its initial transaction

date vertex to its maturity date vertex. Let the length of each arc

equal the cost of the corresponding transaction. The best purchase/

lease combination must correspond to the shortest path from the vertex

representing the current time to the vertex representing your retirement

date.

3.1 Shortest Path Algorithm 43

EXAMPLE 4. Suppose that a salesman in Boston plans to drive to Los

Angeles to visit an important client. He plans to use the interstate

highway system described in Example 1, and he plans to visit other

clients along his route. He knows on the average how much commission

he can earm from each proposed stop along the way from Boston to Los

Angeles. What route should he take from Boston to Los Angeles?

In this situation, the length of each arc inthe graph represent-

ing the highway system should be set equal to the expected net cost

(driving expenses less expected commission) of the corresponding

highway segment. The salesmen should drive along the shortest path

from the Boston vertex to the Los Angeles vertex.

Observe that in this situation arc costs will be negative on

any arc where the salesman expects to make a profit and positive on

any arc where the salesman expects to incur a loss. In Example 1,

all arc costs were nonnegative. As we shall see later, these two

situations require different solution algorithms.

EXAMPLE 5. A small investor must decide how to invest optimally his

funds for the coming year. A variety of investments (passbook savings

account, certificate of deposit, savings bonds, etc.) are available.

For simplicity, suppose that investments can only be made and with-

drawn on the first of each month. Create a vertex corresponding to

the first day of each month. Place an arc from vertex x to vertex

y for each investment that can be made at time x and mature at time

y. Notice that this graph contains no circuits. Let the length of

each arc equal the negative of the profit earned on the corresponding

investment. The best investment plan corresponds to a shortest path

(i.e., path with the most negative total length) from the vertex for

time zero to the vertex for one year from now. This example is

similar to Example 3 except that now arc lengths may be negative.

specified vertices s and t when all arc lengths are nonnegative. _

This algorithm due to|Dijkstra))(1959) is generally acknowledged to

be one of the most efficient algorithms for solving this problem.

The main idea underlying the Dijkstra shortest path algorithm

44 Path Algorithms

total length to vertex.s in the graph.and also a shortest path from

s to each of these vexitoos.’ Color vertex s and these m vertices.

Then, the m+ 1-st closest vertex to s is found as follows:

For each uncolored vertex y, construct n distinct patis from

s to y by joining the shortest path from s to x with arc (x,y) for

all colored vertices x. Select the shortest of these m paths and

let it tentatively be the shortest path from s to y.

Which uncolored vertex is the m + l-st closest vertex to s?

It is the uncolored vertex with the shortest tentative path from s

as calculated above. This follows because the shortest path from s

to the m+ 1-st closest vertex to s must use only colored vertices

as its intermediate vertices since all arc lengths are nonnegative.

So, if the m closest vertices to s are known, the m+ 1-st can

be determined as above. Starting with m = 0, this process can be

repeated until the shortest path from s to t has been found.

With this in mind as motivation, we can now formally state the

Dijkstra shortest path algorithm.

Dijkstra Shortest Path Algorithm

Step 1: Initially, all arcs and vertices are uncolored. Assign

a number d(x) to each vertex x to denote the length of the shortest

path from s to x that uses only colored vertices as intermediate

vertices. Initially, set d(s) = 0 and d(x) = © for all x # s. Ret

y denote the last vertex to be colored.

Color vertex s and let y = s.

Step 2. For each uncolored vertex x, redefine d(x) as follows:

d(x) = min{d(x), d(y) + a(y,x)} (1)

If d(x) = ~ for all uncolored x, then stop because no path

exists from s to any uncolored vertex. Otherwise, color the uncolored

vertex x with the smallest value of d(x). Also color the arc

Ee

+

Of course, a shortest path from vertex s to itself is the null path

(path with no arcs) which has length equal to zero.

th

3.1 Shortest Path Algorithm
45

directed into vertex x from a colored vertex that determined the
value of £ d(x) in the above minimization. Let y=x.

-

Step 3. If vertex t has been colored stop because a shortest

path from s to t has been discovered. This path consists of the

unique_path-of colored—arcs from s to t. If vertex t has not been

colored yet, repeat Step 2.

ote that whenever the algorithm colors a vertex (except vertex

S) the-algorithm also colors an are directed into. this vertex. Thus,

ach vertex has at most one colored arc directed into it, and the

colored arcs cannot contain a cycle since no arc is colored if both

its endpoints have a colored arc incident to it. Therefore, we

can conclude that the colored farcs form < an n_arborescence rooted. at 3).

This arborescence is called q shortest path -arborescence. 7) The unique

path from s to any other wertes x contained in any shortest path

arborescence is a shortest path from s to x.

If the shortest path from s to x in a shortest path arborescence

passes through vertex y, then it follows that the portion of this

path from y to x is a shortest path from y to x. Otherwise, there

exists another, even shorter, path from y to x which contradicts that

we found a shortest path from s to x.

Since the colored arcs at all times form an-arborescence, the

algorithm can be regarded as the.growing of an arborescence rooted
ere

at vertex-s. Once vertex t is reached, the growing process_can_be

terminated.

If you wanted to determine a shortest path from vertex s to

every other vertex in the graph, then the growing process could be

eontinued aged all vertices were included in the shortest path

arborescence, in which case the arborescence would become a spanning

arborescence (if one exists). In this case, Step 3 would read as

follows:

If all vertices have been colored, ‘stop because the unique path

of colored arcs from s to x is a shortest path_ from s to x for all

vertices x. -Otherwise, ~ return to Step 2
——— ——

46 Path Algorithms

EXAMPLE 6. Let us perform the Dijkstra shortest path algorithm to

find a shortest path from vertex s to vertex t in the graph in

Wabiees S\ail

Initially only vertex s is colored, d(s) = 0, and d(x) = © for

allixeysi.s. Ay 1 GX G1: é

Figure 3.1

Step 2: y=s

d(a) = min{d(a), d(s) + a(s,a)} = min{~, 0 + 4} =

d(b) = min{d(b), d(s) + a(s,b)} = min{~, 0 + 7} =

d(c) = min{d(c), d(s) + a(s,c)} = min{~, 0 + 3} =

+

+

oO ie

d(d) = min{d(d), d(s) a(s,d)} = min{~, 0 + ~} = o

d(t) = min{d(t), d(s) a(s,t)} = min{o, 0 + o} =

Since d(c) = 3 = min{d(a), d(b), d(c), d(d), d(t)}, vertex c
/

is colored and arc (s,c), which determined d(c), is colored. The

current shortest path arborescence consists of arc (s,c) [see Fig.

352 Cael.

Step Vertex t has not been colored, return to Step 2.

Step y=zec

d(a) = min{d(a), d(c) + a(c,a)} + min{4, 3 + »} =

d(b) = min{d(b), d(c) + a(c,b)}

+

=f

min{7, 3 + ~}

a(c,d)} = min{~, 3 + 3}

a(c,t)} = min{~, 3 + »} =

4

7

d(d) = min{d(d), d(c) 6

d(t) = min{d(t), d(c)

Since d(a) = 4 = min{d(a), d(b), d(d), d(t)}, vertex a is

colored and arc (s,a), which determined d(a), is colored. The

current shortest path arborescence consists of arcs (s,c) and (s,a)

[see Fig. 3.2(b)].

3.1 Shortest Path Algorithm
47

Figure 3.2

Growing a Shortest Path Arborescence

Step 3: Vertex t has not been colored, return to Step 2.

Sep 22 yo= a

d(b) = min{d(b), d(a) + a(a,b)} = min{7, 4+ 3}=7

d(b) = min{d(d), d(a) + a(a,d)} = min{6, 4 + 2} = 6

d(t) = min{d(t), d(a) + a(a,t)} = min{~, 4 + ~} = ~

Since d(d) = 6 = min{d(b), d(d), d(t)}, vertex d is colored.

Both arcs (c,d) and (a,d) determined d(d), and we can arbitrarily

select one of these two arcs to be colored. Let us arbitrarily

select arc (c,d). Hence, the current shortest path arborescence

becomes arcs (s,c), (s,a), and (c,d) [see Fig. 3.2(c)].

48 Path Algorithms

Step 3: Vertex t has not been colored, return to Step 2.

Step 2: y=d

min{d(b), d(d) + a(d,b)} = min{7, 6 + ~} =

min{d(t), d(d) + a(d,t)} = min{~, 6 + 2} =

d(b)

d(t)

Since d(b) = 7 = min{d(b), d(t)}, vertex b is colored and arc

(s,b), which determined d(b), is colored. The current shortest

path arborescence becomes arcs (s,c), (s,a), (c,d), and (s,b) [see

Bag 3 21(d) Iie

Step 3: Vertex t has not been colored, return to Step Die

Step 2:2 y ="b

d(t) = min{d(t), d(b) + a(b,t)} = min{8, 7 + 2} =

Thus, vertex t is colored at last. Also, are (d,t), which determined

d(t), is colored. The final shortest path arborescence consists of

the arcs (s,c), (s,a), (c,d), (s,b), and (d,t) [see Fig. 3.2(e)].

A shortest path from s to t consists of arcs (s,c), (c,d), and

(d,t) and has length 3 + 3 + 2 = 8.

This path is not the only shortest path from s to t.since the

path (s,a), (a,d), (d,t) has length 4 + 2.+.2.= 8. A shortest.path
Sc 9 = ee

As from s to t will be unique if there is never any choice as to which
a a ee ee ae —~--

arc to color.
a ee

Finally, note e that if there were _a(tie) for the vertex to 0 be

colored, i.e., two different uncolored vertices had the same minimum

value of d(x), then the selection could be made arbitrarily. On the

next iteration of Step 2, the other vertex would be colored.

Initially, we assumed that all arc lengths were nonnegative.

ues would happen in the Dijkstra shortest path algorithm if some of

‘the are lengths were negative? For example, consider the graph in

Figs 3.3. The shortest path from vertex s to vertex t is (s,a), (a,t),

whose length is +2 - 2 = 0. The reader can easily verify that if the

Dijkstra shortest path algorithm were applied to this graph, then the

path (s,t) would erroneously be selected as the shortest path from

vertex s to vertex t. Hence, there is no guarantee that the Dijkstra

3.1 Shortest Path Algorithm
49

Figure 3.3

shortest path algorithm will produce a shortest path when arc lengths

are permitted to be negative as in Examples 4 and 5.

Fortunately, the Dijkstra_shortest path algorithm can be_

generalized to accomodate arcs with negative lengths. This—general-
dzation is due to Ford (1946). This is accomplished by three simple

changes in the Dijkstra algorithm. They are:

< 1. In Step 2, let equation (1) be applied to all vertices, not

| only the uncolored vertices. Hence, a colored as well as an

uncolored vertex can have its vertex number decreased.

2. If a colored vertex has its vertex number decreased, then uncolor

the colored arc incident to it. =

3. Terminate the algorithm only after all vertices are colored and

—~— Step 2 fails to lower any vertex numbers.

Proof: The proof of the Ford algorithm is achieved by contra-

diction. The Ford algorithm cannot terminate unless

d(x) + a(x,y) < d(y) [for all (x,y)] (2)

Otherwise, vertex y would be uncolored during the iteration of Step

2 occurring immediately after vertex x was colored.

Suppose that upon the termination of the algorithm d(y) does

not equal the length of a shortest path from vertex s to vertex y

for some vertex y. (If there is more than one such vertex y, then

take y to be the vertex with the shortest path from s that contains

the fewest arcs.) Whenever, a vertex number d(z) is finite, it equals

the length of some path from vertex s to vertex z. Hence, it follows

upon termination d(y) must equal the length of some path from s to y,

50 Path Algorithms

and consequently, d(y) must exceed the length of a shortest path

from s to y. Let vertex x be the next-to-last vertex on the shortest

path from s to x. (If there is more than one such path, select any

path with the fewest number of arcs.) Thus, d(x) must equal the

length of a shortest path from s to x, and d(y) > d(x) + a(x,y).

This contradicts expression (2). Q.E.D.

EXAMPLE 7. Let us apply the Ford Algorithm to the graph in Fig.

Bio Sin

Step 1: Initially, only vertex s is colored, d(s) = 0, d(a) ==

and d(t) = 2.

Step 2: ye=s

min{d(a), d(s) + a(s,a)} = min{~», 0 + 2}

min{d(t), d(s) + a(s,t)} = minf~, 0 + 1}

d(a)

d(t) 1

Since d(t) = min{d(a), d(t)}, vertex t is colored and are (s,t) is

also colored. The current shortest path arborescence is (s,t).

Step 3: Since not all vertices are colored, return to Step 2.

Step 2: y=t

Since there are no arcs leaving t, all vertex numbers remain

unchanged. Hence, vertex a is colored and arc (s,a) is also colored.

The shortest path arborescence now consists of arcs (s,t) and (s,a).

Step 3: Return to Step 2 to try toj lower vertex numbers.

Step 2: y=a.

d(t)

d(s)

min{d(t), d(a) +.a(a,t) }

min{d(s), d(a) + a(a,s) }

min{l, 2 -— 2}

min{0, 2 + ~}

Since d(t) is reduced from 1 to 0, vertex t and are (s,t) are

uncolored. The shortest path arborescence now consists of only arc

(s,a).

Vertex t is the only uncolored vertex, and hence by default,

vertex t must be colored and arc (a,t) must also be colored. The

shortest path arborescence is now (s,a) and (a,t).

3.1 Shortest Path Algorithm pl

Step 3: Return to Step 2 for y = t.

SecepeZeaey = t& rc

Since there are no arcs leaving vertex t, no vertex numbers can

be lowered. No vertices are uncolored.

Step 3: Since all vertices are colored and no vertex numbers

can be lowered, the algorithm stops. The shortest path from s tot

is (s,a), (a,t) whose length is 2 - 2 = 0.

fan the Ford algorithm fail? Yes, if the graph contains a
circuit whose total length is negative (a negative circuit). In
this case, the circuit might be repeated infinitely many times _yield-

ing-a—nonsimple path whose length is infinitely negative. For the

salesman in Example 4, a negative circuit correseonds to a profitable

circular route that can be repeated infinitely many times yielding th

the salesman an infinite profit. In Example 5, the graph contained

no circuits, so the Ford algorithm could be applied without hesitation.

What should we do if we are not certain if the graph under

consideration contains any negative circuits? Apply the Ford

algorithm anyway, but keep count on the number of times each vertex

is colored. As soon as any vertex is colored for—the-N-th time,

where Nis the number of vertices in the graph, stop because the graph

contains a negative circuit. Otherwise, the Ford algorithm terminates

in a finite number of steps with correct results.

To show this,-suppose that there-are_no negative circuits in

the graph. When any vertex x receives its final vertex number value

(i.e., the length-of-a-shortest_path_from_s_to x), then at worst

.receives_its final vertex number value. Hence, no vertex can be

colored more than-N---1-times.

3.2 ALL SHORTEST PATH ALGORITHMS

The preceding section considered the problem of finding a shortest

path from a specified vertex to every other vertex in the graph. In

this section, we shall consider the problem of finding a shortest

52 Path Algorithms

path between every pair of vertices in the graph. Of course, this

second and more general problem could be solved by repeating the

Dijkstra shortest path algorithm once for each vertex in the graph

taken as the initial vertex s. However, this would require a great

Many computations, and fortunately algorithms exist that are more

efficient than repeating the Dijkstra shortest path algorithm once

for each vertex in the graph. This section presents two similar

algorithms for finding all shortest paths. These algorithms are due

to Floyd (1962) and Dantzig (1967). In both algorithms, arc lengths

are permitted to be negative so long as no circuits haye negative
——

length. Seiegetcteras

EXAMPLE 1. The airline in Example 2 of Sec. 3.1 must daily route

numerous passengers between the various cities in the United States.

The airline for reasons of economy wants to route each passenger so

that he minimizes his total mileage. Hence, the airline would like

to have advance knowledge of the shortest air route between every

pair of cities in the United States.

Before presenting the algorithms, some notation is needed.

Number the vertices 1, 2, ..., N. Let ai denote the length of a

shortest path from vertex i to vertex j, where only the first m

vertices are allowed to be intermediate vertices. (Recall that an

intermediate vertex is any vertex in the path, except the initial or

terminal vertex of the path.) If no such path exists, then let a =

From this definition of at it follows that aj denotes the length

of a shortest path from i to j that uses no intermediate vertices,

i.e., the length of the shortest arc from i to j (if such an are

exists). Let a = 0 for all vertices i. Furthermore, a8
ij represents

the length of a shortest path from i to j.

Let D" denote the N x N matrix whose i,j-th element is dia: EE

we know the length of each arc in the graph, then we can determine

; 0 ; ; ; N
matrix D . Ultimately, we wish to determine D the matrix of shortest

path lengths.

The Floyd shortest path algorithm starts with p? and calculates
il 0

D from D . Next, the Floyd shortest path algorithm calculates p*
HL ; ; = from D . This process is repeated until pN is calculated from pN _

3.2 All Shortest Path Algorithms 53

The basic idea underlying each of these calculations is the

following: Suppose we know

(a) A shortest path from vertex i to vertex m that allows only the

first m - 1 vertices as intermediate vertices.

(b) A shortest path from vertex m to vertex j that allows only the

first m - 1 vertices as intermediate vertices.

(c) A shortest path from vertex i to vertex j that allows only the

first m - 1 vertices as intermediate vertices. Since no circuits

with negative length exist, then, the shorter of the paths given

in items (d) and (e) must be a shortest path from i to j that

allows only the first m vertices as intermediate vertices:

(d) The union of the paths in items (a) and (b)

(e) The path in item (c).

Thus,

met m-1 jest eat
ds; = min{d, | +d mj? ds; . (3)

From equation (3), we can see that only the elements of matrix pa

are needed to calculate the elements of matrix D". Moreover, these

calculations can be done without reference to the underlying graph.

We are now ready to state formally the Floyd shortest path algorithm

for finding a shortest path between each pair of vertices in a graph.

Floyd Shortest Path Algorithm

Step 1: Number the vertices of the graph 1, 2, ..., N. -Determine

the matrix p? whose i,j-th element equals the length of the shortest

arc from vertex i to vertex j, if any. If no such arc exists, let

pO ae One
qj =o, Let diy = 0 for i.

Step 2: Form=1, 2, ..., N, successively determine the

‘elements of D" from the elements of D“ using the following recursive

formula y

ia = m-1 m-1 m-1 ae (3)

di = min{d, + qj 5 di, }

As each element is determined, record the path that it represents.

54 Path Algorithms

Upon termination, the i,j-th element of matrix pN represents the

length of a shortest path from vertex i to vertex j.

The optimality of this algorithm follows inductively from the

fact that the length of a shortest path from i to j that allows only

the first m vertices as intermediate vertices must be the smaller

of (a) the length of a shortest path from i to j that allows only the

first m - 1 vertices as intermediate vertices and (b) the length of

a shortest path from i to j that allows only the first m vertices as

intermediate vertices and uses the m-th vertex once as an intermediate

vertex.

Note that di = 0 for all i and for all m. Hence, the diagonal

elements of the matrices p, no Arcee py need not be calculated.

Moreover, ae = de and a = ae, for al We ea Nemes

follows since vertex m will not be an intermediate vertex in any

shortest path starting or originating at vertex m since no circuits

with negative length exist. Hence, in the computation of matrix Dat

the m-th row and the m-th column need not be calculated. Thus, in

each matrix D™ only the (N - 1)(N - 2) elements that are neither on

the diagonal nor in the m-th row or m-th column need be calculated.

EXAMPLE 2 (Floyd Shortest Path Algorithm). For the graph in Fig. 3.4,

the matrix p° of arc lengths is

day?

Oy,

$01 0102 nat eat
i eo ts 8 j=)

(a)
naires

Figure 3.4

3.2 All Shortest Path Algorithms 55

‘The elements of pt and the corresponding shortest paths are

calculated as follows: .

_ [MI EE EEE TET A

copie ee +3

os aio { (1,2)

ayy = 4q3 7 ? ee oe eS AE Peete?)

Bletecd? pun il i va es esa
14° “14 a. weep ere At)

ao 7 a7 2 ee eh aa (2,1)

as =0

dy 7 min{dy, + 4), a),} = min 2+ 2, 7} = 4 CDs ey)

doy = min{dy, + 4y45 a0} = minf2 +1, =} = 3 (Deen)

a5, = ie = 6
(3,1)

dy = nin(d,, A aes dy) DnaniGetkl cs ieek® (3,2)

a3 =0

ay, 7 min{d?, + 4), ao,} = min(6 +1, 2) = 2 (3,4)

di. 7 “ea
(4,1)

ay, 7 min{d, + ite a0,} = minfl +1, eh = 2 (Hea ee(142)

an 2 min{dy 5 + a8, a’) ening ice. 4 ness (4.1)5 1,3)

1
44

ALS oar Dy 88) 4

In a similar way, matrices D . DD and D and the corresponding

shortest paths can be calculated. The results of these calculations

are

56 Path Algorithms

Olin) a

pee em Oran

Die lGkk Sa 0 2

1603¥ Bis

2
Shortest paths for D:

(1,2) (1,3) (1,4)

(2,1) (251), (153) “2,0, G4)

(3,1) (3,2) (3,4)

(4,1) (4,1), (1,2) (4,1), (1,3)

NO GU ©

Zee

4 3

Omez

3 Fe DA bS OO

Shortest paths for Dee

(ig) (1,3) (1,4)

(2,1) Cdyn Chea) (ls be Gra)

G1) ee) G54)

C452)) 451)5 (52) 451), G53)

Fa Ce NS) (CO [ey ds Ye) ie wo oO fF N OF NS) to

Shortest paths for D:

C2) (1,3) (1,4)

(2,1) C21)... Cis 3)y ek). 1155)

(3,4), (4,1) (3,4), (4,1), (1,2) (3,4)

(4,1) (4,1), (1,2) (4,1), (1,3)

4 Note that since the numbering of the vertices is arbitrary, the _

algorithm will find the shortest paths at earlier iterations if

3.2 All Shortest Path Algorithms 57

vertices with numbers close to one another are in fact vertices that

are "close" to one another.
-

In the preceding numerical example, the actual arcs that comprise

each shortest path were recorded as the Floyd algorithm was perform-

ed. For problems of any realistic size, it is obvious that this

procedure would be impractical. Consequently, we need to develop

a more efficient technique for determining the actual arcs that

constitute the shortest path.

: The next-to-last vertex in a path is called the penultimate,

vertex_ofthat path. Let Pay denote the penultimate vertex of the

shortest path from vertex i to vertex j. (If. there is more than one

shortest path-from-vertex i to vertex j; then there may be more than
rte genie

one distinct—
a

imate vertices. In this case, let Pi; denote

‘the set of all penultimate vertices, If, however, we aa only

interested in determining one shortest path from i to j, then we need

only record one vertex for Piz) at Pi; is known for all vertices

i and j, then all the vertices along a shortest path from i to j can

be found as follows: Suppose that the penultimate vertex on a short-

est path from i to j is vertex k, that is, Pay =k} Then, the

second-to-last vertex on this path is the penultimate vertex on a

shortest path from i to k, that is, Pik? This process can be repeated

until all the vertices on this path from i to j have been traced back.

Hence, we need only know all Pi; to determine the actual shortest

paths.

There are two methods to determine the Piae

1. Tentative Method: Tentatively set Psy equal to i for all j.

Do this for all vertices i. Then, as the Floyd algorithm is

performed, note dee the minimum on the right side of equation

(3) is dpe a tad, 2 Aether than ee sass When this occurs, set p,
ei abies ij

equal ae Otherwise, leave Pi; unchanged. [If there is a

tie in equation (3), then both m and the current value for

Pia may rc recorded.] Upon termination of the Floyd algorithm,

Pay is the true penultimate vertex on the shortest path(s) from

al 4x0). a)e

58 ; Path Algorithms

we Terminal Method: After the Floyd algorithm has terminated,

vertex Pia is found as Zoriows Vertex p,. is any vertex k
Nee ai —. — 4. J a
such that < diet dey cor ~ Only hehe wend pN matrices are

ee value(s) of k.

If the Floyd algorithm has already been performed, then one is

forced to use the terminal method. However, if the Floyd algorithm

is yet to be performed, then it is, of course, better to use the

tentative method since this method requires little extra work when

appended to the Floyd algorithn.

Another algorithm to find a shortest path between each pair

of vertices in a graph was proposed by Dantzig (1967). This algorithm

is similar to the Floyd shortest path algorithm in that the same

calculations are performed. However, the order in-which the

calculations are performed is different~in-the Dantzig-shortest—path

algorithm,

Again, number the vertices 1, 2, bat, N, and let di, denote _

the length of a shortest path from vertex i to vertex j that allows

only the first._m vertices to be intermediate NSTEAGES, Now, in_

contrast to the Floyd’ eeen Gre algorithm, let D™ /be a(m > x m2

matrix whose i,j-th element _is(a™ | PLoOre m= 2 ce Neer AS before,
i}

we wish to calculate a the matrix whose i,j-th element denotes the

length of a shortest path from vertex i to vertex j. As with the

Floyd algorithm, the Dantzig algorithm calculates pt from ps etc.,

until De has been calculated from ier

What rationale(underlies) these calculations? First, note that

each new matrix D™ contains one as row and one more column than

its predecessor Deaoe The (m - Le _ elements of D" that are also
= ee Se — ee

present in De Be __are calculated se Dp" ee Floyd

algorithm. — The new elements doy i= cae j =m, are calculated as

follows: A shortest path from i to m (or fromm to i) that allows

only the first m vertices as intermediate vertices need never use

vertex m as an intermediate vertes since all circuits have nonnegative

length. Hence, a shortest path from i to m that allows only the

first m vertices as intermediate vertices is any shortest path formed

3.2 All Shortest Path Algorithms 59

by taking a shortest path from i to some vertex j <m that uses only

the first m - 1 vertices as intermediate vertices joined with the

shortest arc from j to m (if such an arc exists). Similarly, a

shortest path from m to i that allows only the first m vertices to

be intermediate vertices is the shortest path formed by joining a

shortest arc from m to some vertex j, j <m (if such an arc exists)

to a shortest path from j to i that uses only the first m - 1 vertices

as intermediate vertices. Lastly, let cee = 0)

With these ideas in mind, we can na ae Eee state the Dantzig

shortest path algorithm.

Dantzig Shortest Path Algorithm

Step 1: Number the vertices of the graph 1, 2, ..., N. _Deter—

_mine the matrix p? whose i,j- th element a equals the length of the

shortest arc from vertex i to vertex j. If no such arc exists, let

Cai =o) Let D _be am X m. matrix whose i ois ~th. element is denoted
ij —>—"_ TN

by d.., for m= 1, 2, ..., Ne

Step 2: For m=1, 2, ..., N, successively determine each

element of D" from the elements of qa as follows: - NA)

+ eh.

g

a. = min ta, + ee (eth Qendeny me ek) (4)

BIO Pte 69 pos gm ;
}, a -

qd = min {ary + ay) Giaett SRE, em lS)
cet 2). msl J

d@ = min{a” +d" oy (ij = te oe oe em = 1) (6)
20) im righ alt

and lastly,

d. =0 TT m)) (7)
stat

The paths corresponding to each element a in pN can be deter-

mined as before.

How many operations does the Dantzig algorithm require? To

answer this question, note that the Dantzig algorithm performs

essentially the same operations as the Floyd algorithm except in a

-

60 Path Algorithms

different sequence. Equation (3) of the Floyd algorithm is identical

to equation (6) of the Dantzig algorithm. Equations (4) and (5) of

the Dantzig algorithm are simply m - 1 repetitions of equation (3)

of the Floyd algorithm. Hence, both algorithms require at most the

same number of calculations.

| / EXAMPLE 3 (Dantzig Shortest Path Algorithm). We shall perform the

Dantzig algorithm to find a shortest path between each pair of

vertices in the graph in Fig. 3.4. The matrix of shortest arc lengths

for this graph is

fo 1,2 4
}

el ee
Dat G 5H k0 7 52

L = 4 0

if al
Clearly, D = (45,1 = [0]. The elements of p? are calculated as

follows:

Corresponding
Path

7)
diy = 0

ES abe: ses if Ora ca
di. = min{d), + dj} =O+1=1 (1,2)

a8, d,5 = 0

da = miride ded Meenas Oa 2
21 ah i i ae * (2)

Note that these results are identical to those in the 2 x 2 upper-

2
left corner of D° calculated by the Floyd algorithm. The elements

of p? are calculated as follows:

Corresponding

Path

Sh 2 0 Z 0 ;
d33 = min{d), + di> dy, + do} = min{O + 2, 1+ 7} = 2 (1,3)

(continued)

3.2 All Shortest Path Algorithms 61

ee

Corresponding

Path ~ SS SS ae

Seer tee Or. eee 6 dog = mintd,, + 413, 45, +45.) = min{2+ 2, 0+7}=4 (2,1),(1,3)

Gein) tat 0 andsd 2 q34 = min{d,, + diy d,, + d,4} =min{6 +0, 5+ 2}=6 (3,1)

laa 2 ees0 2 | d35 = min{d,., + dio» do5 + d5,} =min{f5+0,6+1}=5 Gy)

Bape 2 5 3 dio = min{d),, d3 + d35} =min{l, 2+5}=1 Ge)

BA he Don 23 3 doy = min{d5,; d55 + d,,} = min{2, 4 + 6} = 2 (2,1)

ce = a ae = 0

og Il

Oe 2

Dy (Qh

65 0

and the shortest paths corresponding to Dp? are

(1,2) (1,3)

(2,1) (2,1), (1,3)

(3,1)_- (3,2)

Note that the matrix Dp? computed here is identical to the 3 x 3 upper-

left corner of the matrix Dp? computed by the Floyd shortest path

algorithm. It is left to the interested reader to repeat these

calculations for p* and to verify that the matrix pt computed by

Floyd algorithn,

Since the terminal method for constructing the arcs in a

shortest path uses only hetpe and BD bmatr tees the terminal method

is the same for both the Floyd and Wantziewaleorithms.

However, the tentative method for constructing the arcs ina

shortest path for the Dantzig algorithm is slightly different than

62 Path Algorithms

the tentative method for the Floyd algorithm. Specifically, when-

ever equation (4) is performed in the Dantzig algorithm, let Po} be

the vertex that determines the right-side minimization. Whenever

equation (5) is performed in the Dantzig algorithm, let Pam be the

vertex that determines the right-side minimization. Equation (6) of

the Dantzig algorithm is identical to equation (3) of the Floyd

algorithm, and the tentative method remains the same, namely, let

Pij =m if the minimum of the right side is dee ate ay Otherwise,

the minimum of the right side is ve and Pe must remain unchanged.

If we want to find a shortest path between every pair of vertices

in a graph, happily, we have a choice of several algorithms. The

Floyd (or, equivalently Dantzig) algorithm could be used, or the

Dijkstra algorithm could be repeated once for each vertex as the

initial vertex. Consequently, it becomes necessary to compare the

number of arithmetic operations required by the various algorithms.

The study of the number of operations required by an algorithm is

known as \computational complexity)

For a given graph, the computational complexity of some algorithms

is easy to evaluate because the number of operations required by the

algorithm is not subject to any variation. The Dijkstra, Floyd, and

Dantzig algorithms fall into this category. For other algae senna

the exact number of operations cannot be determined in advance. For

example, the exact number of operations required by the Ford algorithm

cannot be determined in advance since there is no way to know how i

many times each vertex will be colored. For algorithms in this

category, it_is customary to. calculate the worst possible number of.

operations required for completion.

As we have seen, all shortest path algorithms consist of

essentially two arithmetic operations, addition and minimization.

To analyze the computational complexity of one of these algorithms,

we need some way of comparing addition operations with minimization

operations. Of course, this comparison varies between computers

(human and mechanical), but for expediency we shall assume that these

two operations require equivalent amounts of computational time.

3.2 All Shortest Path Algorithms 63

The Floyd algorithm must compute N matrices pg pee atoms pls

Each of these matrices consists of n? elements. Hence, a total of

ne elements must be computed by the Floyd algorithm. Each of these

computations requires by equation (3) one addition and one minimiza-—

tion. Hence, the Floyd algorithm requires roughly f additions and

N minimizations. . [Strictly speaking, this is an overstatement since

“some elements of pt can be taken directly from ae without performing

equation (3) as the elements i-th row and i-th column of prt and pt

are identical.] The total amount of computation required by the

Floyd algorithm is proportional to on?, Or, in more technical term-

inology, the Floyd algorithm requires 0(2N>) running time.

Next, let us consider the computational complexity of the Dijkstra

algorithm. At the first iteration of the Dijkstra-algorithm, the

N - 1 uncolored vertices must be examined... From-equation (1), this

requires N - 1 additions, N - 1 minimizations, and the selection of

the smallest of N - 1 numbers, i.e., another N - 1 minimizations.

Thus, (3(N - 1)>operations are required by the first iteration. Sim-

ilarly, 3(N - 2) hoperations are required by the second iteration,

etc. In total, % 3(N - i) = 3N(N - 1)/2 operations are required.

Of course, at meet peat ion one must also determine which vertices

are colored and which are uncolored. This requires additional work,

but a clever programming technique can be used to avoid this. The

det aiveot this are beyond the scope of this text but can be found

in Yen (1973) and Williams and White (1973). Thus, the Dijkstra

algorithm requires 0(1 1/2 N*) running time. From this, it follows

that the Ford algorithm requires at worst O(1 1/2 nN’) running time

since each vertex may be colored as many as N - 1 times, whereas the

Dijkstra algorithm colors each vertex at most once.

To summarize,

2 \ ;
Dijkstra algorithm requires 1 1/2 N’ ,operations. ee Le, 3 :

Ford algorithm requires at worst 1 1/2 N’ operations.

Floyd algorithm requires 2n° operations.
3 ;

Dantzig algorithm requires 2N operations.

64 Path Algorithms

As suggested, the Floyd algorithm could be replaced by repeating

the Dijkstra algorithm N times, once for each vertex as the initial

caer This requires 0(1 1/2 w?) running time which is superior to

the 0(2N°) running time of the Floyd algorithm. If, however, some

arc lengths are negative (but, of course, there are no negative cir-

cuits), then the Ford algorithm must replace the Dijkstra algorithm

and at worst the running time is 0(1 1/2 ni“), which is inferior for

large N to the Floyd algorithm running time of 0(2N°). However, it

must not be forgotten that most likely the Ford algorithm will termi-

nate with far less than the worst possible number of operations.

Computational complexity is a growing area attracting much

research interest. The interested reader is directed to the survey

articles of Karp (1975) and Lawler (1971), and to Knuth (1973), a

valuable reference for those interested in efficient programming

techniques applicable to the algorithm described here.

3.3 THE K-TH SHORTEST PATH ALGORITHM

The two preceding sections considered the problem of finding various

shortest paths. Often, however, knowledge of the second, third,

fourth, etc., shortest path between two vertices is useful. For

example, the airline in Example 2 of Sec. 3.1 might want to know

the runner-up shortest flight routes between Springfield and Ankara

just in case one of its clients cannot take the shortest flight route _

due to visa difficulties, flight cancellations, or airlines strikes _
along the-shortest flight route.

This section first presents an algorithm, called the Double

sweep algorithm, that finds the k shortest path lengths between a

specified vertex and all other vertices in the graph. Next, this

section presents two algorithms, called the Generalized Floyd

algorithm and the Generalized Dantzig algorithm, that find the k

shortest path lengths between every pair of vertices in the graph.

The Dijkstra, Floyd, and Dantzig algorithms of Sec. 3.1 and 3.2

were able to construct various shortest paths. These algorithms

essentially consisted of performing a sequence of two arithmetic

3.3 The K-th Shortest Path Algorithm 65

operations, addition and minimization. These two operations were

performed on single numbers that represented either arc lengths or

path lengths. For example, equation (1), which defines the Dijkstra

algorithm, consists exclusively of addition and minimization. The

same is true for equation (3), which defines the Floyd algorithm,

and equations (4)-(7), which define the Dantzig algorithm.

The algorithms to be presented in this section (double-sweep

algorithm, generalized Floyd algorithm, and generalized Dantzig

algorithm) also consist exclusively of addition and minimization>

-Qperations. However, these operations are performed not on single

numbers (as with the previous algorithms) but on sets of k distinct

numbers that represent the lengths of paths or arcs. With this as

motivation, let zi denote the set of all vectors (d,> d,> ote qd.)

; 1
with the property that d, < d, Se eas di Thus, the components of

a_ member of RX are distinct and arranged in ascending order. For

example, (-3, -1, 0, 4, 27) € =.

Let A = (a,> Ans sees a.) and B = (b, > bo» sas bi) be two

members of R.. Generalized minimization, denoted by +, is defined as

A+B = min, {a,, by: ciel eee? eeu ewerere une a (8)

where min/(X)-means_the k smallest distinct members-of the set_X.

Generalized addition, denoted by x, is defined as
Se ee ———— ———

(A x B)= min, fa, + by: i,j = 1, 2, +k) (9)

For example, if A = (1, 3, 4, 8) and B = (3, 5, 7, 16), then A + B=

min,(1, 3, 4, 8, 3, 5, 7, 16) = (1, 3, 4, 5) and A x B = min, (1 + 3,

Peewee le 80,934 23, 3) +45, 53 67, 39°F Nis APB Boo) =

(4, 6, 7, 8). Note that the components of A+B and A x B can be

arranged so that A + B are and AX BE Rt Moreover, since members

of RX have their components arranged in ascending order, generalized

minimization need not require more than k comparisons and generalized

addition need not require more than k(k - 1) additions and k(k - 1)

comparisons.

Ge

Let © < ©,

66 Path Algorithms

Extending our previous notation ret (4° = (d ae tte ; “ac , ap” Sy? Segoe
; WE R~ denote the lengths of the k shortest arcs from vertex i

to vertex j. If two arcs from vertex i to vertex j_ have the same

length, then thts length appears only once in en If there are

less than k arcs from i to j, then fill up the remaining components

with % For example, if vertex| ‘5 #s joined to n Na agile by three

oe: pee
pee = j)\then Suppose that there is an arc from vertex LCC itself

arcs of lengths 9, 13 and 9, then for k= 4, ae

cwith length zero) Let | (al Diseases thematrix whose i,j- -th_element—is 7) Soaie!

ij’ a k
LS Let! d 14) = CE di 59° PGI; diy © R~ denote the k shortest

distinct path lengths from vertex i to vertex j that use _only

vertices 1, 2, ..., mas intermediate vertices. (Recall that in

Sec. 3.1 the vertices were numbered. As Ze. ee aN eet D" denote

the matrix whose ta3- -th element is am ry
* *

Lastly, let @, = (d, dy
He onic

oe jk? € R- denote the k

shortest distinct Se a lengths from vertex i to vertex i. These

path lengths are called ee eer ath lengths Lec ut tenoea

the matrix whose Ai,j- =th element is ds

Let matrix L as formar from aunts A by replacing every compo-—

nent of every element ai by ~ whenever i 3%. We Let matrix U be

ae from matrix p? by replacing every component of every element

ao by © whenever i > j. Matrices L and U are called the upper

and lower triangular portions of Do For example, for k = 2 and

/
(Opt) C6. LO) amon 9)

Dec | alee o),6 uG aS) rere’ aes) Ls

(=; 2) (2, 4). (0, =)

| dae -

(9) (% 9) (9) tial ~
Lem SCl5e8) (eee) eee)

(=, =) (2, 4) (@, =)
and | \

(95%). (65, LO), (2, 9) | (

eo) ae Cs Ue) eae ee) ;

(S59) (255) Cae)

G i]
= es

3.3 The K-th Shortest Path Algorithm 67

If we wish to know yw only the ke Shortest path lengths from a

specific_vertex (say vertex 1) ‘to. “every other vertex—in the es

then we need only determine the first row (aa as as diy) of

D. Note that this row consists ie N members each belonging to R.

Hence, altogether Nk values and the corresponding paths must be

determined.

The double-sweep algorithm (Shier, 1974; 1976) is an efficient

way of computing Giliers pape The Re _Couble-sweep ogee will

The double-sweep ie aes is EDALAeT es with any estimate ei
*

aa ate) of (aie dio:

than ce corresponding optimal ae and for which oo 0. "For

(0)
walk

zero. The pela then computes new improved (i.e., reduced)

estimates of iy by seeing if any of the k values in ny, x or are

(0)
li of ee

If so, the smallest k values are chosen. This process is repeated

ae a; w in which each value is not less

example, all values could be set equal to ~» except d which equals

less than any of the k values in the current estimate d

*
for all j yielding a new estimate te of dij: The algorithm

Ga, <7 al) ana
terminates when two successive estimates (diy 5 di> he Selene

hee ba ok 5 any are identical in every component for

i >1. The terminal values of the estimates can be shown_to—equal

the optimal_values. See the proof of the double-sweep algorithm.

The double-swee agen has the added efficiency that_whenever

ed SETAE
possible. he EE vector d- ae “ade

ats Te i
-, AD) co the next estimate af") = (ayy*) teh ae)

ae
the values already computed _in_d;——~—are used_in the computation—of

the remaining values in REM This immediate use of updated estimate

values_can accelerate the discovery of the optimal values. With

these ideas in mind, we can now formally state the double-sweep

>

algorithm.

68 Path Algorithms

\DoubTe sweep Algorithm)
0 0 0

Step 1: (Initialization. Let the initial estimate at) af, 4 ee 3

, a) of 4 consist of values_that equal or a the correspond-

ing optimal ee However, let Ae QDsince there is a path_of

zero length (the path without any arcs) from vertex 1 to itself.

*
Step 2: Given an estimate ee of di> calculate new estimates

te nd Ne as follows: ae
\ 2¥ }

(Backward sweep Se ae Sal diheootent acta!

(23h) see (2r+1) (2r) 10

ah Se hp IS, (10)

Forward sweep:

gf2rt2) _ a rae

1

(2r+1) Dae: CEOS te ae (11)

Note that the addition and multiplication operations in the

above matrix multiplications refer to generalized minimization and

generalized addition, respectively, as defined by equations (8) and

(@®))

(t= is
Terminate when two successive estimates dy

(t)
identical for t 2.1. The terminal estimate a

(t)
and dy are

*
equals d.. Stop.

At this point, the reader might wonder how to perform the

computations required by equations (10) and (11) since the vector

to be computed appears on both sides of each equation. For equation

ay (2r+1) :
/Jof d Cie (This

is possible since the N-th column of L oNsIots entirely of infinite

entries, and hence peck ae) Next,

; Ae): a(2r#1) [This i iNet fo) t de is is

possible since the (N-1)th column of L contains infinite entries

except in its last row, and consequently only arty, which_has

(10), first determine the last component, d>

is not needed to compute d

determine the second to last component d

already been calculated, is needed to determine gc2rtl) |] . Next,

(2r+1) : sida ge
l.ne2? ete: Hence, equation (10) computes the components

of qtertl) from last to first and is called the bactward s In
1 Nie tent

a similar way, equation (11) computer the components of ds; 2x42) from
————_ —

determine d

(first) to last) and is called the| forward sweep
a

3.3 The K-th Shortest Path Algorithm 69

The double-sweep algorithm determines path lengths. How can the

actual path (or paths) corresponding to the path length be found?

‘Since the double-sweep algorithm is initialized with arbitrary larger-
than-optimal estimates—that do-not_correspond to any path naire path,
we cannot carry along at each iteration the path (or paths) correspond-

ing to each new estimate as was possible with the Floyd algorithm.and

Dantzi vay ra peste poris
be retrieved as follows: Suppose we wish to find the m-th shortest

path from vertex 1 to vertex j. This path must consist of the th er 6%

(2% <m) shortest path from vertex 1 to some vertex i together with i SG rn = .

an arc from vertex i to vertex i: The length of this path plus the

The path corresponding to each path length can

length of this arc must equal eae Vertex i is called the penulti-

mate vertex on the m-th shortest path from vertex.1.to vertex j..

Vertex i is-determined searching through the arc length matrix ae and

the set of shortest path lengths ac Once vertex i has been located,

this process can be repeated to find the penultimate vertex on the

&th shortest path from vertex 1 to vertex i. Ultimately, the entire

m-th shortest path from vertex 1 to vertex j can -be- traced back by

repeating this process.

It is possible that the penultimate vertex is not unique. In

this case, all penultimate vertices can be recorded and all the paths

of equal length that tie for the m-th shortest path from vertex 1 to

vertex j can be traced back (if desired).

If all paths are to be determined, it is computationally best

to determine first all shortest paths, then all second shortest

paths, etc., since knowledge of the %-th shortest paths is needed to

determine the m-th (% < m) shortest paths.

Proof of the double-sweep algorithm: Equation (10) is a generalized

minimization between corresponding components of ‘ies L and coca

Similarly, equation (11) is a generalized minimization between

corresponding components of bed U and og Hence, no value

is ever replaced with a larger value in the succeeding estimate.

Tous ties av see, aft? from Nk_nonincreasing sequences. More-
over, no value can ever be less than its optimal value (which we
SL eS SI ie we Be seth set

70 Path Algorithms

will assume to be finite or Fo) for the following reason: Suppose

that the first less-than-optimal value to be calculated is for the

m-th shortest path from vertex 1 to vertex j. By equations (10)

and (11), this less-than-optimal path length was computed as the

sum of a number not less than the length of a shortest path from

vertex 1 to some vertex i, plus the length of an arc from vertex i

to vertex j. This implies that this path length is less than optimal

which contradicts our assumption that we are computing the first

less-than-optimal path length to appear.

CO) eth) (t)
i: ds, sikeas hs dy

nonincreasing sequences of path lengths that are always greater than

Thus, the sequence of estimates d forms Nk

or equal to their corresponding optimal values. It remains to show

that each of these Nk sequences converges to its optimal value in a

finite number of steps. This will be accomplished by showing that

each succeeding estimation in this sequence contains at least one more

optimal value than its predecessor.

First, some lemmas are needed.

LEMMA 3.1. If vertex iis the penultimate vertex of some m-th short-

est path from vertex 1 to vertex j, then the portion P' of P from

vertex 1 to vertex i is one of the m shortest paths from vertex 1 to

vertex i.

Proof: If path P' were not among the m shortest paths from

vertex 1 to vertex i, then there would be m paths from vertex 1 to

vertex i with distinct lengths that are shorter than P'. Each of

these paths could be extended to vertex j by the addition of a single

arc. This would result in.m paths from vertex 1 to vertex j that are

shorter than path P, which is a contradiction. Q.E.D.

LEMMA 3.2. If the m shortest path lengths from vertex 1 to every

other vertex are known, then the length of the (m + 1)-st shortest

path length from vertex 1 to itself is determined during the next

double sweep for m > 0.

Proof: Consider any (m + 1)-st shortest path P from vertex 1

to itself. Let i denote the penultimate vertex of path P. From

3.3 The K-th Shortest Path Algorithm ipa

Lemma 1, it follows that the portion P' of P from vertex 1 to vertex
i is among the (m + 1)-st shortest paths from vertex 1 to vertex i.-
Path P' cannot be an (m + 1)-st shortest path otherwise, there would
be m+ 1 shortest paths from vertex 1 to itself that have vertex i
as their penultimate vertex which contradicts the fact that at = 0
and corresponds to a path without arcs.

By assumption, the m shortest path lengths from vertex 1 to

vertex i are known. Also, the lengths of the k shortest arcs from

vertex i to vertex 1 are known. Hence, the length of P will be

determined during the next double sweep. Q.E.D.

We shall now employ these two lemmas to show that at each double-

sweep at least one more optimal value is calculated. Suppose that

prior to the r-th double sweep, the length of the m shortest paths

_ from vertex 1 to every other vertex has been determined for some

m* 0. Let j be any vertex for which the optimal value a ee of

the (m + 1)-st shortest path from vertex 1 to vertex j has not yet

been determined.

Let i denote the penultimate vertex of some (m + 1)-st shortest

path from vertex 1 to vertex j. If the length of the (m + 1)-st

shortest path from vertex 1 to vertex i has already been dec cratned:

then the next double sweep will determine the optimum value of the

length of the (m+ 1)-st shortest path from vertex 1 to vertex j since

this path is the merger of one of the (m + 1)-st shortest paths from

vertex 1 to vertex i and an arc from i to j.

If the length of the (m + 1)-st shortest path from vertex 1 to

vertex i has not yet been determined by the algorithm, then we cannot

be certain that the next double sweep will generate the optimum value

of the length of the (m + 1)-st shortest path from vertex 1 to vertex

j. If the next double sweep does in fact generate this path length,

then the proof is complete. If not, then the (m + 1)-st shortest

path from vertex 1 to vertex j must consist of the (m+ 1)-st shortest

path from 1 to i together with an arc from i to j, by Lemma 3.1.

Repeat the preceding argument replacing vertex i by vertex j.

Successive repetitions of this argument will either lead to a situation

in which an optimum value is calculated during the next double-sweep

YUP) Path Algorithms

iteration of the algorithm or else the (m + 1)-st shortest path from

vertex 1 to vertex j will be traced back to vertex 1. If the latter

occurs, then by Lemma 3.2, the next double sweep determines an optimal

value for the (m + 1)-st shortest path from vertex 1 to itself, which

concludes the proof that the algorithm terminates finitely. Q.E.D.

As a postscript to the proof, note that if the graph contained

no circuits with negative length that are accessible from vertex 1,

then after r > N double sweeps, the first component of each estimate

vector atte ee S54 ne: would no longer decrease. Similarly,

after r > 2N double seeeps the first two components of each estimate

vector ase% Hen dneee would no longer decrease. And in
sa ee eo eee oN

general, after r > cN double sweeps, the first c components of each

(2r) ,(2r) q(2¥)
amen eae ae meer NY

(Note that the superscript 2r is used since each double sweep deter-

estimate vector d would no longer decrease.

mines two estimates.)

Hence, we can detect the existence of a circuit wit h negative

length that is accessible from vertex 1 by noticing any decrease (or

for that matter any change at all) in the first c components of any

(2r) 62h) g(2")
Ht eee 2 oy Se LN

(icc) eukOt canys Cyl Ge? paresis Ne

estimate vector d after the r-th double sweep

Since the double-sweep algorithm calculates at least one

additional optimal value at each double sweep, at most Nk single

sweeps are required. In practice, far. fewer sweeps are required

since more than one optimal value is frequently computed during one

double sweep.

How many generalized additions and generalized minimizations

does a double sweep require? There are n? - N elements off the

diagonal of matrix es Hence, matrices L and U each have 1/2(N- - N)

elements that are possibly finite. Each of these elements requires

one generalized addition and one generalized minimization. Thus,

each double sweep requires roughly Nn? generalized additions and Nn’

generalized minimizations. Hence, at most 1/2kN> generalized additions

and minimizations are required to complete the double-sweep algorithm.

For k = 1, the double-sweep algorithm requires at most 1/2N°

eae Jig eee ;
additions and 1/2N minimizations. Thus, for k = 1, the double-sweep

3.3 The K-th Shortest Path Algorithm 73

a

algorithm requires O(N?) running time which is superior to the worst

running time of O(1 1/2N°) for the Ford algorithm but inferior to the

running time of 0(1 1/2N°) for the Dijkstra algorithm. Of course,

all comparisons must be tempered with the reminder that we are

considering the worst possible running times for the double-sweep

and Ford algorithms.

EXAMPLE 1 (Double-Sweep Algorithm). Let us use the double-sweep

algorithm to find the lengths of the three shortest paths from vertex

1} to every other vertex in the graph in Fig. 3.5. The matrix p? of

path lengths is

Matrix U is

P(e, ©,

©; Ss

=)

=)

=)

*)

=)

=)

=)

(lems.

(0, an)

CASS

Crm

(2, man)

(2, ea

Ce, 5

G; 5

(2, os

(2, aes

Ars

e)

2)

=)

2)

eo)

wy)

3)

(@, =, 9) (*% % =)
(-1, =, =) (*, % %)
(0, = =) (-1,,)
(2,%, *) (0, % 4)

(2, oo, oo) (, ©, ©)

(2, ©, oo) (2, ©, ©)

(@, ~, ~) (, », ©)

(ay Fe ©) oS; os)

Figure 3.5

Double-Sweep Algorithm

74 Path Algorithms

From equation (10), the backward sweep becomes:

ar ee ga

Sasi Sy Ce wee pes ¥, Mee

lee 3° (F's) “ey ie r ae

ACS ane oi aterm Camuae Ong ne rer pe se Uh 3:

From equation (11), the forward sweep becomes

g(2rt2) _ q(2rt))

11 Jk

Wane Soc es) mah cteg i jnne

ae S(T ee eae ee a sae

qe ER ee ee if cee?

The following table gives the results of the first five sweeps.

The results of the fourth and fifth sweeps are identical in every

component and hence represent the optimal path lengths.

(x) (r) (r) (r)
a4, dio one ah

ie = 0 (0, ©, oo) (», 0, ©) (~, oo, oo) (2, 0, ©)

+ (backward)
ig =? JL (0, 0, co) (2, 00, ©) (2, ©, <0) (2, 0, ©)

+ (forward)

ia (0, os, co) qd, ©, oo) (0, 25 oo) Cir Oy ~)

; ; + (backward)

r=3 (0, 2 2) Gaus Zs oo) (0, the oo) Cir ay oo)

+ (forward)

r=4 (0, Zs 3) (1, Be 3) (0, ay za) Cir, 0, 1)

+ (backward)

eS 5 (0, Ze 3) Cig Dp 3) (0, is 2) (Cr; 0, 1)

Note that the double-sweep algorithm terminated after 5 sweeps

or 2 1/2 double sweeps compared to the theoretical maximum off 1/2Nk

In the remainder of this section, we shall consider the more

general problem of finding the k shortest paths from each vertex to

a circuits. The convolution au of dig is defined as the lengths of

3.3 The K-th Shortest Path Algorithm YS

every other vertex. The Floyd algorithm and Dantzig algorithm of

Sec. 3.2 solved this problem for k = 1. These algorithms will now -

be e extended oY aes alr,

Of course, this problem could be solved by performing. the double-.

pueep algorithm once for each vertex as the initial vertex... However,

computationally this is not very efficient since much information

regarding shortest paths from a vertex that is not the initial vertex

would never be utilized. ;

Before proceeding to the generalized Floyd algorithm and the

generalized Dantzig algorithm for finding-the.k.shortest—paths—between

every pair of vertices, an additional definition is needed.

Let: d,,€ RX denote the lengths of any k paths from vertex i to

itself including the—empty wear length zero. These paths_are—

the k distinct shortest paths from vertex. i COmLesed te that. canbe

formed by combining paths represented by a component cad ci Thus,

each member of a0 corresponds to a path formed by repeating one or

more of the circuits in do. Mathematically,

ee ae eg) ee ac Be =="(12)
—=fE- i 44. os 5 os .

(k times)

(Recall that x denotes generalized addition.)

The ideas underlying the generalized Floyd algorithm and the

generalized Dantzig algorithm are identical to those underlying the

Floyd algorithm and the Dantzig algorithm, except that _ addition is

_replaced by generalized addition and minimization is replaced by

generalized minimization. Also, one must consider the possibility

of generating paths that begin with a circuit attached to the initial

vertex or terminate with a circuit attached to the terminal vertex.

The generalized Floyd algorithm is the same as the eg iar

Floyd algorithm except that diy, now rer represents a vector in ak signify-

ing the lengths of the k-shortest paths from vertex i—tovertex J

that use only the first m_vertices as intermediate vertices. Equation

(3) becomes

76 Path Algorithms

a™ = (a™ "YC (13)
Inm mInm

fe aie yu i (14)
6 Say d (for all i # m)
im 1m mm

Se ae We ene ee ees (15)
m1 Im mi

ed de ede aor all sie 7) (16)
iby im mj ij

The generalized Dantzig algorithm is the same as the original

Dantzig algorithm except that diy now represents a vector in RX

signifying the lengths of the k shortest paths from vertex i to

vertex j that use only the first m vertices as intermediate vertices.

Equation (7) becomes

m-l m-l

ae eeiacheak ets aaa” (17)
mm med gy ein af a

Equation (4) becomes

m ee m ,O ,m-l
d. = z Gli Gal GiE=O1t 2 rs oe) (18)
mi 421 mm mj ji

Equation (5) becomes

m Jara m-1,0 ,m doers ame ed cand od (ieee Dee Soa —ed) (19)
1m j=1 1j jm mm

Equation (6) becomes

aa at
ij ee ij Cit TER =e IS OOF ee, oe mands) (20)

Note that in each generalized algorithm lie is the first element

of D" to be calculated. Next, d" is used to calculate Bi and oe
mm on im mi

for all i#m. Lastly, the elements dig (i # m, j # m) are calculated

‘In the generalized Floyd algorithm, de is calculated in equation

(13) by taking the smallest k combinations of all simple circuits

from vertex m to itself that use only the first m vertices as inter-

mediate vertices.

3.3 The K-th Shortest Path Algorithm 77

Then, dla is calculated in equation (14) by taking the smallest

k combinations of paths aris from i to m coupled with circuits dneay

at m. Ina similar way, equation (15) calculates dist Lastly, ae

calculation of a in equation (16) is merely the generalized-operator

restatement of equation (3).

In the generalized Dantzig algorithm, oo is calculated in

equation (17) by taking the smallest k combinations of (a) loops from

vertex m to itself, and (b) circuits that start at vertex m proceed

to some other vertex i (i < m), then proceed to some other vertex j

(j <m, possibly j = 1), and then return to vertex m, that is

aatis, dyn for all i, j <m. Equation (18) is equation (4) restated

in terms of generalized operations and allowing for circuits ds

attached to vertex m. Similarly, equation (19) is equation (5)

_ restated in terms of generalized operations and allowing circuits a"

attached to vertex m. Lastly, equation (20) is equation (6) restated

in terms of generalized operations.

As with the original algorithms, the optimality of the generalized

algorithms can be proved by an induction on N, the number of vertices

in the graph.

: Let us determine how many generalized operations are réquired by

the generalized Floyd algorithm. The algorithm must calculate N

matrices Dp. Dp, sang p Each matrix requires one performance of

equation (13), N - 1 performances of equation (14), N - 1 performances

of equation (15) and (N - ie performances of equation (16).

Equation (13) requires one convolution, which by equation (12)

consists of k generalized additions. Hence, equation (13) requires

a total of k generalized additions.

Equation (14) and (15) each require one generalized addition.

Equation (16) requires one generalized addition and one generalized

minimization.
D :

Thus, each matrix p:, dD’, eters pN requires N +k - 2 generalized

additions and (N - ry" generalized minimizations, or roughly N

generalized additions and n? generalized minimizations. In total,

3 ; aes
the generalized Floyd algorithm requires about N generalized additions

78 Path Algorithms

and N° generalized minimizations. Since the generalized Dantzig

algorithm is essentially a resequencing of the operations performed

by the generalized Floyd algorithm, it requires approximately the

same number of operations. Hence, each has a running time of 0(2N°).

How does this compare with the number of operations required by

the double-sweep algorithm to do the same job? As shown before,

the double-sweep algorithm requires at most a running time of OC

Nk generalized additions and wk generalized minimizations. If the

double-sweep algorithm were performed N times (once for each vertex

as the initial vertex), then at most a running time of 0(kN*) is

required. However, since the double-sweep algorithm usually terminates

early, the actual running time will be much less.

Hence, we can conclude that the choice of algorithm depends

upon (1) the comparison of kn? and on”, (2) our estimates on how

prematurely the double-sweep algorithm will terminate with an optimal

solution, and (3) the observation that fewer operations are required

to perform a generalized operation in the double-sweep algorithm since

the vectors in the double-sweep algorithm usually consists of many

components eugal to infinity. Computational experience with the

double-sweep algorithm has been given by Shier (1974).

ha. OTHER SHORTEST PATHS

All the shortest path algorithms studied thus far can be regarded as

well-defined sequences of addition operations and minimization

operations.

Let us consider a different path problem, namely the bottleneck

problem. The bottleneck of a path is defined as the length of the

shortest arc in the path. The bottleneck problem is the problem of

finding a path between two vertices with the largest possible bottle-

neck.

EXAMPLE 1. Suppose that a bridge collapses when its weight limit is

exceeded. We might wish to know the maximum weight that a vehicle

can carry between points a and b so that it does not exceed the weight

limit of any bridge that it crosses. If we consider the bridges as

3.4 Other Shortest Paths 79

arcs and let the arc lengths equal the corresponding weight limits,

this problem becomes the problem of finding a path from a to b with

the largest bottleneck.

In the shortest path problem, we associate a number to each

path called its length. This number is found by adding together

all arc lengths in this path. In the bottleneck problem, we

associate a number to each path called its bottleneck. This number

is found by taking the minimum of all arc lengths in this path. In

the shortest path problem, one path is preferred to another path if

its length is smaller than the length of the other path. This

requires a minimization operation. In the bottleneck problem, one

path is preferred to another path if its bottleneck is larger than

the bottleneck of the other path. This requires a maximization

operation. Thus, the bottleneck problem can be regarded as similar

to the shortest path problem except that minimization replaces

addition and maximization replaces minimization.

If the Floyd algorithm or Dantzig algorithm or their generaliza-

tions, or the double-sweep algorithm were performed with traditional

minimization as the addition operation and with traditional maximiza-

tion as the minimization operation, then these algorithms would produce

the best bottleneck paths. Moreover, if traditional minimization was

retained as the minimization operation, then these algorithms would

produce the worst bottleneck paths.

However, if any of these algorithms are used to solve the bottle-

neck problem, we must remember that the absence of an arc must be

interpreted as a bottleneck of -~, whereas in the shortest path

problem the absence of an arc was interpreted as a length of +>.

Similarly, the null path (path without any arcs) has a bottleneck of

-~, whereas the null path has a length of zero. Thus, for the bottle-

neck problem, the matrix p° that initialized the Floyd algorithm and

the Dantzig algorithm consists of arc lengths and -~ wherever no arc

appears. Similarly, for the bottleneck problem, the vector ie that

initialized the double-sweep algorithm should consist of entries that

are smaller than the corresponding optimal entries (since now minimiza-

tion has been changed to maximization).

80 Path Algorithms

The Floyd, Dantzig, and double-sweep algorithms can be extended

to even another path problem, the gain problem. Associate a real

number, called the gain factor, with each arc in the graph. Let the

gain of a path be defined as the product of the gain factor of each

arc in the path. (If an arc is repeated in a path, then repeat its

gain factor in the calculation of the path's gain.) The gain problem

is the problem of finding a path with the largest gain between two

vertices.

EXAMPLE 2. The finance officer of a large company has decided to

invest the company's surplus funds in bonds that mature within the

next five years. A variety of bonds that mature within the next

five years are available. Funds released by bonds that mature

early can be reinvested in other bonds so long as the funds are

ultimately released within five years. How should the finance officer

spread his investments over the next five years?

Let the beginning of each investment year be depicted as a vertex.

Let each variety of bond be depicted as an arc from the vertex repre

representing its date of issue to the vertex depicting its maturity

date. Let the gain factor of each arc equal the value at maturity

of one dollar invested in the corresponding bond. When presented in

graph terms, the finance officer's problem can be viewed as the

problem of finding a path from vertex 0 to vertex 5 with the greatest

gain.

EXAMPLE 3. A certain amount of pilferage occurs during each segment

of a cargo's journey from the factory to the sales outlef. How

should the shipment be routed so as to minimize the amount of

pilferage?

This problem can be rephrased as a gain problem if we set the

gain factor of each arc equal to the fraction of the cargo that is

not pilfered during shipment across that arc.

If we replace arc length by arc gain factor, and if we replace

addition by multiplication and if we replace minimization by

maximization, then the Floyd, Dantzig, and double-sweep algorithms

3.4 Other Shortest Paths 81

will calculate the paths with the largest gains instead of the

shortest lengths. However, just as these shortest path algorithms *

failed when circuits with negative length were present, these

algorithms cannot find the path with the greatest gain when there

is a circuit with gain greater than one. This follows since this

circuit may be repeated infinitely often to form a (nonsimple) path

with infinite gain.

Similarly, if we wanted to find a path between two vertices

with the smallest gain, we would retain the minimization operation

in the preceding algorithm instead of replacing it with maximization.

Again, the algorithms will fail if the graph contains a circuit with

gain less than -1. This follows since this circuit could be repeated

_infinitely often to produce a (nonsimple) path whose gain approaches

—2,

In summary, the Floyd, Dantzig, and double-sweep algorithms can

be modified to handle additional problems such as the bottleneck and

gains problems. This is accomplished by substituting different

operations for the addition and minimization operations in these

algorithms and by changing appropriately the arc length matrix.

EXERCISES

1. Use the Dijkstra algorithm to calculate the shortest path from

vertex 1 to every other vertex in the graph in Fig. Shale

~

Figure 3.6

82 Path Algorithms

2,/ Suppose that after completing Exercise 1 you discover that there

9V/

OE

AMibe,

U2

is an arc (4,2) with length 1 missing. Is it possible to salvage

these results or must the Dijkstra algorithm be performed over

again in its entirety?

Calculate the shortest path between every pair of vertices in

the graph in Fig. 3.6 using the Floyd algorithm.

Calculate the shortest path between every pair of vertices in

the graph in Fig. 3.6 using the Dantzig algorithm. Compare these

results with the results from the preceding exercise.

Calculate the three shortest paths between every pair of

vertices in the graph in Fig. 3.6 using the generalized Floyd

algorithm. Repeat using the generalized Dantzig algorithm.

Suppose you are assigned the task of finding the shortest flight

route between all pairs of airports in Europe. However, certain

passengers, due to visa restrictions, cannot take flights that

stop over in airports in Socialist countries. What is the most

efficient way to calculate all the flight routes that are required?

Does the arbitrary numbering of the vertices influence. the

efficiency of the Floyd algorithm? Dantzig algorithm? Double-

sweep algorithm? Why? ae

Calculate the three shortest paths from vertex 1 to each other

vertex in the graph in Fig. 3.6.

Show that a nonoptimal solution may be repeated during two

consecutive sweeps of the double-sweep, algorithm but may not be

repeated for three consecutive sweeps of the double-sweep

algorithm.

Suppose that the generalized Floyd algorithm was used to calculate

the best three bottlenecks between every pair of vertices in a

graph. How can this information be used to determine the path

corresponding to each bottleneck?

In the gains problem, what values should be assigned to the

components of the vector ara?

The spillage rates between the various tanks in a petroleum

refinery are

Exercises Ad ttl ae : a | , \ 83

eerie. Oe as Lint

Tank A B ¢ D

A 0.00 0.13 0.14 0.15 :
B 0.08 0.00 0.13 0.08
C 0.17 O12 0.00 0.18
D 0.10 0.06 0.13 0.00

oe ee ee eee eee ee
Find the two best ways to ship petroleum from tank C to tank D.

13 Upon terminating the double-sweep algorithm, you discover that

one of your arc lengths was incorrect. Under what conditions

can you salvage some of your results from the double-sweep

algorithm?

14. A pharmaceutical firm wishes to develop a new product within

the next 12 months to compete with a similar product recently

marketed by their chief competitors.

The development of a new product requires four stages each of

which can be performed at the slow, normal or fast pace. The

times and costs of these are

Theoretical™ Laboratory~ Government” A

research experiments approval Marketing

Slow 5S) S510 6,1 5,8

Normal a7, 228 41 4,10

Fast 2,110 Bl 253 Siu)

arn F 0
Time in months, cost in thousands.

What is the best way for the firm to have the new product ready

within 12 months without spending more than $25,000? What is

the second best way to achieve this same goal?

15. A hotel manager must make reservations for the bridal suite for

the coming month. He has received a variety of reservation

requests for various combinations of arrival and departure days.

Each reservation would earn a different amount of revenue for

the hotel due to a variety of rates for students, employees,

84 Path Algorithms

airline personnel, etc. How can the Dijkstra algorithm be used

to find the best way to schedule the bridal suite with maximum

profits to the hotel?

(Hint: Represent each reservation request by an arc joining

its arrival date to its departure date. The resulting graph

will contain no circuits. A variation of the Dijkstra algorithm

can be applied to this situation.)

REFERENCES

Dantzig, G. B., 1967. All Shortest Routes in a Graph, Theory of

Graphs, International Symposium, Rome, 1966, Gordon and Breach,

New York, pp. 91-92.

Dijkstra, E. W., 1959. A Note on Two Problems in Connexion with

Graphs, Numer. Math., 1, pp. 269-271.

Dreyfus, S. E., 1969. An Appraisal of Some Shortest Path Algorithms,
Operations Research, 17, pp. 395-412.

Floyd, R. W., 1962. Algorithm 97, Shortest Path, Comm. ACM, 5, p.

345.

Ford, L. R., 1956. Network Flow Theory, Rand Corporation Report,

Do L230

Karp, R. M., 1975. On the Computational Complexity of Combinatorial

Problems, Networks, 5, pp. 45-68.

Knuth, D. E., 1973. The Art of Computer Programming, vol. 3, Sorting

and Searching, Addison-Wesley, Reading.

Lawler, E. L., 1971. The Complexity of Combinatorial Computations:

A Survey, Proc. 1971 Polytechnic Institute of Brooklyn Symposium

on Computers and Automata.

Minieka, E. T., 1974. On Computing Sets of Shortest Paths in a Graph,

Comm. ACM, 17, pp. 351-353.

Minieka, E. T., and D. R.. Shier, 1973. A Note on an Algebra for

the k Best Routes in a Network, J. IMA, 11, pp. 145-149.

Shier, D. R., 1976. Iterative Methods for Determining the k

Shortest Paths in a Network, Networks, 6, pp. 205-230.

Shier, D. R., 1974. Computational Experience with an Algorithm for

Finding the k Shortest Paths in a Network, J. Res. Natl. Bur.
Std., 78B (July-September), pp. 139-165.

Williams, T. A., and G. P. White, 1973. A Note on Yen's Algorithms

for Finding the Length of All Shortest Paths in N-Node Nonnega-

tive Distance Networks, J. ACM, 20, No. 3, pp. 389-390.

References 85

J. Y. Yen, 1970. An Algorithm for Finding Shortest Routes from All

Source Nodes to a Given Destination in General Networks, Q. Appl.

Math., 27, pp. 526-530. £

J. Y. Yen, 1973. Finding the Lengths of All Shortest Paths in N-Node

Nonnegative Distance Complete Networks Using 1/2N3 Additions and

N3 Comparisons, J. ACM, 19, No. 3, pp. 423-424.

ae
aa «@ 7
A yor ina ’ “a \ > 3 ee a

ied 1% ae fl - Dalat Sm “_

; hy a cf. , ’
wa

4. 1 mlstiaey fi toh fas noe’; Sr ine 4

an en io? 2ADAh - wero

» * ; " = J newt _ ae

ke
ohn em | ta) Ba

On epeOieiran ~

ea
oo - Sethy

7 (ni
x - "

ao’ Ieeg
Ho

7 n
ine
Baton

Wayyw

a

a
-¢ +

| i a

be

¥ a eden .*

7) vis

-

Chapter 4

FLOW ALGORITHMS

4.1 INTRODUCTION

Loosely speaking, a flow is a way of sending objects from one place

to another. For example, the shipment of finished goods from a

manufacturer to a distributor, the movement of people from their

homes to places of employment, or the delivery of letters from their

point of posting to their destinations can all be regarded as flows.

Despite the variety of flow situations, there are several fairly

common problems that arise in flow situations. For example, one might

wish to maximize the amount transported from one place to another by

the delivery system, or one might wish to determine the least cost

way to send a given number of objects from one place to another via

the system, or one might wish to determine the quickest way to deliver

a shipment through the system.

In this chapter, a flow will be defined in terms of a graph, and

various flow problems, like those suggested above, will be presented.

If the original flow problem can be modeled in terms of a graph flow

problem with a high degree of accuracy, then results and algorithms

for graph flows can be applied to the original problem. Needless to

say, such results are usually no better than the graph model used to

obtain them.

Loosely speaking, a flow on a graph is a way of sending objects

from one vertex to another by traveling along the arcs in their

87

88 Flow Algorithms

directions. The vertex from which the objects start their travels

is called the source and is usually denoted by s. The vertex at

which the objects end their travels is called the sink and is usually

denoted by t. The objects that travel or flow from the source to

the sink are called flow units or units. As mentioned above, the

flow units can be finished goods, people, letters, or almost anything.

If the number of flow units that can travel across arc (x,y) is

limited, then arc (x,y) is called a capacitated arc. We shall denote

the maximum capacity of arc (x,y) by c(x,y), and we shall denote the

cost of sending one unit across arc (x,y) by a(x,y). A network is a

graph in which each arc has a capacity associated with it.

EXAMPLE 1. A wartime convoy of twelve trucks carrying military

supplies must be dispatched from the depot (source) to the troops

(sink). The roads connecting the supply depot to the troops can be

represented as a graph in which the edges correspond to unprotected

roads and the vertices correspond to road junctions. For security

reasons, a limit is placed on the number of trucks that may travel

each road (arc capacity). From previous experienoe, the dispatcher

knows the amount of pilferage he can expect from a truck along each

road segment (arc cost).

The problem of finding the best routes for each of the 12 supply

trucks can be rephrased as the problem of sending 12 flow units from

the source to the sink in the network corresponding to the roads so

that no arc's capacity is exceeded and so that total expected amount

of pilferage is minimized.

Suppose we are given a graph in which a certain number of units

are traveling from the source to the sink, and suppose that the route

that each unit takes is also known to us. Let the number of units

that traverse arc (x,y) be called the flow in arc (x,y) and be denoted

by f(x,y). Of course, 0 < f(x,y) < c(x,y). The arcs of the graph

can be classified into three categories:

N, the set of arcs that cannot allow any increase or decrease in

their flows

I, the set of arcs whose flow can be increased

R, the set of arcs whose flow can be reduced.

4.1 Introduction 89

For example, an arc with zero capacity or a prohibitive traverse _

cost would belong to set N. Arcs with unused capacity would belong

to set I, and arcs with flow on them already would belong to set R.

Arcs in set I are called increasable; arcs in set R are called

reducable, Clearly, each arc must belong to at least one of these

three sets N, I, R. Possibly, an arc could belong to both sets I

and R; this occurs when the arc already carries flow units but can

have its flow increased or reduced. Such an arc is called inter=

Bediate.
Let i(x,y) denote the maximum amount by which the flow in arc

(x,y) can be increased. Similarly, let _r(x,y) denote the eens

amount by which the flow in arc (x,y) can be decreased. Thus, i(x,y)

= c(x,y) - f(x,y) and r(x,y) = f(x,y).
Suppose we wanted to send some additional units from s to t.

There are several ways to accomplish this (provided, of course, that

it is possible to send more from s to t). First, if you could find

a path P from s to t consisting entirely of increasable arcs, then

_additional flow could be sent from s to t along path P (see Fig. 4.1).

How many additional flow units could_be_sent from-s—to-t along path

age Since i (x,y) denotes the maximum amount by which the flow in arc

(x,y) can be increased, then at most
i:

min{i(x,y)}

ACS oie 5

Eats tonal flow units can be sent from s to t. For the path P in

Fig. 4.1 one additional flow unit can be sent from s to t since

min{i(s,a), i(a,b), i(b,t)} = min{3,2,1} =1

A(La)=Z L(a,4)=X L(bL)=1

Figure 4.1

Flow Augmenting Path with Only Forward Arcs

Secondly,_if we could f: find a path P from t to's consisting

entirely of decreasable arcs, then flow could be decreased in each
—_er es a ell — ———E

arc in this path resulting in less. flow from t to s and Consequently

90 Flow Algorithms

_a greater net flow from s to t (see Fig. 4.2). What—is_the maximum.

.amount by which the flow in this path could be decreased? Since

each arc (x,y) can have its flow decreased by at most r(x,y), the

maximum flow decrease in path P is

min{r(x,y) }

(x,y) Gy P

For the path in Fig. 4.2) one flow unit from t to s can be reversed

since

minir(t,b), r(b,a), r(a,s)} = min{l,2,1} = 1

Is it possible to find yet another way to increase the net flow

from s to t? Yes, we could combine the two methods shown above:

namely, we could find a chain from s to t with the following proper-

ties:

1. The arcs in the direction of s to t, called forward arcs, are

(all members of I

2. The arcs in the direction of t to s, called backward arcs, are

all members of R.

eG)
Alaw)*1 arlba)-2 nlés)=1

Figure 4.2

Flow Augmenting Path with Only Backward Arcs

For example, consider chain C from s to t in Fig. 4.3. The

forward arcs are (s,a), (a,b) and (d,t); the backward arcs are (c;b)

and (d,c). If each forward-~are belongs to I and each backward arc

belongs to R, then_additional flow can be sent from-s-to-t-atong

_this chain by advancing along the forward arcs which are—increasable

oO) +) _©*_@) >) L(Ya)=4 4 (4,4) =3 nlc 4)=5 Ab 2)-2 Ai(dt)=3

Figure 4.3

Flow Augmenting Chain with

Forward and Backward Arcs

2

4.1 Introduction
91

and reversing along the backward arcs which are decreasable. The

maximum amount of additional flow that can be sent along such a chain

from s to t is the minimum of the following two quantities:

minti(x,y): (x,y) is a forward arc}

min{r(x,y): (x,y) is a backward arc}

The minimum of these two quantities is called the maximum flow

augmentation of the chain. imp Fale ss athe amounts by which the

forward arcs can be increased are i(s,a) = 4, i(a,b) = 3 and i(d,t)

= 3, the minimum of which is 3. The amounts by which the backward

arcs can be decreased are r(c,b) = 5 and r(d,c) = 2, the minimum of

which is 2. Hence, the maximum flow augmentation of this chain

equals min (3,2) = 2. Thus, 2 additional flow-units are sent from

s to t_ along this chain by increasing the-flow-in each-of—the three

forward arcs by 2 units and decreasing the-ftow-in-each of the two

backward arcs by 2 units.
Any chain from s to t, like the three different types discussed

above, along which additional flow units can be sent is called a

(#low-augmenting chain.) How can we determine if there exists a flow
—

augmenting chain from s to t? This can be done quite simply using

the following algorithm called the (flow augmenting algorithm.» The

essential idea of this algorithm is to grow out of source s a tree—

of colored arcs along which additional flow units can be sent from

s. The algorithm either colors sink t in which case the unique chain

in the colored tree from s to t is a flow augmenting chain from-s—to

t or the algorithm does not color~sink t in which case no flow aug-

menting-chain exists from s to. t for the current classification of

the arcs into sets R, I, N.

a —

low Augmenting Algorithm .

Step 1: Determine which arcs belong to sets N, I, and R. The arcs

dn_set N can be ignored by the algorithm since there-can~be~no filow™

changes in them. Color vertex s.
—orr ~o a :

92 Flow Algorithms

Step 2: Color the arcs and vertices according to the following

rules until vertex t has been colored or until no further coloring is

possible: . 4

If vertex x is colored and vertex y is not colored, then

vertex y can be colored and the arc (x,y) can be colored if

either

(a) vertex @ and arc (x,y) can be colored if arc (x,y) EI, or

(b) vertex y and arc (y,x) can be colored if arc (y,x) ER

If vertex t has been colored, then there exists a unique chain of

colored arcs from s to t. This chain is a flow augmenting chain.

Otherwise, if t remains uncolored after the algorithm terminates,

then no flow augmenting chain exists from s to t. Stop.

Proof of the flow augmenting algorithm: To prove that the algorithm

locates a flow augmenting chain if one exists, three facts must be

demonstrated:

(1) If t is colored by the algorithm, then there does in fact

exist a flow augmenting chain from s to t

(2) If t cannot be colored by the algorithm, then there does not

exist any flow augmenting chain from s to t.

(3) The algorithm terminates after a finite number of steps.

Proof of (1): Due to the restrictions of the algorithm's

coloring procedure, an arc is colored only if one of its endpoints

is colored and one of its endpoints is not colored. Hence, the

algorithm can never color an are with two already colored endpoints,

and thus ths colored_arcs can_never form a cycle. Since only vertex

s is colored initially, the colored arcs must form a tree that con-

tains vertex s. Thus, if vertex x is colored by the algorithm,

there must exist a unique chain of colored arcs from s to x.

Specifically, if t is colored, there exists a unique chain of

colored arcs from s to t. This chain must be a flow augmenting

chain since the coloring procedure insures that the chain's forward

arcs are increasable and the chain's backward arcs are decreasable.

4.1 Introduction 93

BroofAof (2) Ae there exists a flow augmenting chain C from

s to t, then there exists at least one flow augmenting chain from s

to each vertex in chain C. Thus, each vertex in chain C can be

colored by the algorithm, and hence vertex t must also be colored.

Conversely, if t cannot be colored by the algorithm, then no flow

augmenting chain from s to t exists.

1g f of (3): Finally, the algorithm must terminate after a

finite number of colorings since there are only a finite number of

vertices and arcs that can be colored and no vertex or arc can be

colored more than.once. Q.E.D.
—

EXAMPLE 2 (Flow Augmenting Algorithm). We shall apply the flow

augmenting algorithm to find a flow augmenting chain from s to t in

Fig. 4.4. The letters next to each arc indicate whether it is

increasable and/or decreasable. (In this example, we shall color

every possible vertex adjacent to a given colored vertex before

attempting to color from another vertex.)

“ He-ey Sk a(S5eQ) Sail

i(a,c) = 3)r(a,b)-= 7

Ab at) lee ge cs.d) =) 2
Ale.d) =\5/ r(b,d) = 3
d(s,a) = 6 w(b,c) = 2

Figure 4.4

Example of a Flow Augmenting Algorithm

Initially, vertex s is colored. From vertex s, vertex a and

arc (s,a) can be colored since (s,a) € I. Vertex c and arc (sec)

cannot be colored from vertex s since (s,c) ¢ I. This completes the

coloring out of vertex s.

94 Flow Algorithms

Next, we shall consider coloring out of vertex a. Vertex b and

arc (a,b) cannot be colored since (a,b) ¢ I. Vertex c and arc (a,c)

can be colored since (a,c) € I. Vertex d and arc (d,a) cannot be

colored from vertex a since (d,a) € R. This completes the coloring

out of vertex a.

Next, we shall consider coloring out of vertex c. Since vertices

s and a are already colored, they can be ignored. Vertex b and arc

(b,c) can be colored since (b,c) € R. Also, vertex d and arc (c,d)

can be colored since arc (c,d) € I. This completes the coloring

out of vertex c.

Next, we shall consider coloring out of vertex b. Vertices a,

© and d have already been colored and can be ignored. Vertex t and

arc (b,t) can be colored since are (b,t) € I.

The algorithm stops coloring since t has been colored. The

colored arcs and vertices are shown in Fig. 4.5. The flow augmenting

chain from s to t is

(s,a), (a,c), (b,c), (b,t)

Figure 4.5

Colored Tree

The maximum flow augmentation is

minli(s,a), i(a,c), r(b,c), i(b,t)} = minl4,352,2} (2)

Forward arcs (s,a), (a,c), and (b,t) can have their flows increased

by 2 units; backward arc (b,c) can have its flow decreased by 2 units

which implies that 2 units formerly flowing through (b,c) would be

rerouted along arc (b,t) and be replaced at vertex c by two additional

flow units coming from s via arcs (s,a) and (a,c).

4.1 Introduction
95

As can be seen in Example 2, the flow augmenting algorithm does

not specify completely which arc and vertex is to be colored next.

The algorithm could color as much as possible from a given vertex ‘

(as it did in the above example) or it could color out of the most

recently colored vertex. The most efficient way to color is a matter

of some research and often depends upon the larger problem in which

the flow augmenting algorithm is being used as a subalgorithm.

Once the algorithm has located a flow augmenting chain,

additional flow units not exceeding the maximum flow augmentation

can be sent from s to t along the flow augmenting chain by increasing

the flow in its increasable arcs and decreasing the flow in its

decreasable arcs by the quantity that is being sent.

4.2 MAXIMUM FLOW ALGORITHM

The maximum flow problem is simply the problem of finding a way to

send the maximum number of flow units from the source to the sink in

a capacitated graph so that no arc capacity is violated.
— — =

EXAMPLE 1, A travel agent must arrange for the flights of a group

of ten) tourists from Chicago airport to Istanbul airport on a certain

day. On that day, there are 7 seats left on the Chicago-Istanbul

direct flight; there are 5 seats left on the Chicago-Paris flight,

and there are 4 seats left on the connecting Paris-Istanbul flight.

What should the agent do?

. The travei agents problem can be posed as a maximum flow problem. |

Construct a network in which each arc represents a flight. There &

are three arcs (Chicago, Istanbul), (Chicago, Paris) and (Paris, “ 6

Istanbul). Assign a capacity to each arc that equals the number of

available seats on the corresponding flight, that is, 7,5,4, respec-

tively. If this network admits a flow from Chicago (source) to

Istanbul (sink) of 10 or more units without violating any arc capaci-

ties, then the travel agent can send the entire group on the selected

day.

As mentioned in Sec. 4.1, a flow is any shipment from s to t.

As before, let the number of units traveling through arc (x,y) be

96 Flow Algorithms

\denoted by f(x,y). In any flow from.s to t, the number of units that

leave each vertex x (x #s, x # t) must equal the number of units

that enter vertex x, that is,

z f(x,y) = = f£(y,x) = 0 (for all x JG shee G8) (1)

yEx yEx

(Recall that X is the set of all vertices.) Furthermore, the total

number of flow units that travel across arc (x,y) must not exceed

c(x,y) the capacity of arc Gey) meenaeeuss

Oc EG. orig e nClon alls Ga] rA) (2)

(Recall that A is the set of all arcs.)

Also, the net number v of flow units that leave the source must

equal the net number of flow units that enter the sink, that is,

x £ (x,y) = z E(y,s) PNG (3)

yex ? yex

ceeetyst ache 1a > hts) ee, (4)
yiSex yex

Every flow from s to t must satisfy these four conditions. Moreover,

if a set of values f(x,y), (x,y) € A, can be found that satisfy these

four conditions, then these values correspond to a flow from s tot.

This can be shown by tracing the path that each flow unit takes on

its journey from s to t. The details are left to the reader.

Thus, a set of values f(x,y), (x,y) € A, is a flow if, and only

if, it satisfies relations (1)-(4).

The maximum flow problem is simply to find the maximum value of

v for which a flow exists, i.e., for which relations (1)-(4) are

satisfied. The reader familiar with linear programming will note

that maximizing v subject to the restrictions of relations (1)-(4)

is a linear programming problem. Since the maximum flow problem is

a linear programming problem, it could be solved by the simplex

algorithm for linear programming problems. However, using the simplex

algorithm for this problem is like killing a mouse with a cannon.

A more elegant and far more intuitive approach is available. This

is the Ford and Fulkerson maximum flow algorithm (Ford and Fulkerson,

1962, p. 4), henceforth called the maximum flow algorithm.

4.2 Maximum Flow Algorithm 97

The idea underlying the maximum flow algorithm is quite simple:

Start with any flow from s to t and look for a flow augmenting chain
using the flow augmenting algorithm. If a flow augmenting chain from

s to t is found, then send as many flow units as possible along this

chain. Then, start again to look for another flow augmenting chain,

etc. If no flow augmenting chain is found, then stop because the

current flow from s to t is shown to be a maximum flow from s to t.

With these ideas in mind we can state formally the maximum flow

algorithm for finding a maximum flow from s to t ina network, a

graph with arc capacities.

Maximum Flow Algorithm

Step 1: Let s denote the source vertex, and let t denote the sink

vertex. Select any initial flow from s to t, i.e., any set of values

for f(x,y) that satisfy relations (1)-(4). If no such initial flow

is known, use as the initial flow f(x,y) = 0 for all (x,y).

SEope elit. yi <1c(x,y),) let i(x,y) = e(x,y) — £G,y) and

(Co) micron y eo sO let r(x) = f(x,y), and (x,y) © R.

Step 3: For sets I and R defined in Step 2, perform the flow

augmenting algorithm. If no flow augmenting chain is discovered by

the flow augmenting algorithm, stop; the current flow is a maximum

flow. Otherwise, make the maximum possible flow augmentation along

the flow augmenting chain discovered by the flow augmenting algorithm.

Return to Step 2.

Proof of the maximum flow algorithm: To show that the maximum flow

algorithm constructs a maximum flow from s to t, we must show that

(1) The algorithm constructs a flow
@) This flow is a maximum flow
(3) The algorithm terminates after a finite number of steps

Proof of (1): To show that the algorithm constructs a flow, we

need only note that the algorithm is initialized in Step 1 with a

flow and that during all steps, the algorithm maintains a flow since

98 Flow Algorithms

each flow augmentation maintains a flow. Hence, the algorithm must

terminate with a flow.

Proof of (2): Recall from Chap. 1 that a cut is defined as any

set of arcs whose removal disconnects the graph. Also recall that a

simple cut is a cut that contains no other cut as a proper subset.

In Fig. 4.6, arcs (s,a) and (s,b) form a cut since their removal

would disconnect the graph into two components. This cut is a simple

cut since neither arc is a cut by itself.

Figure 4.6

Example of a Maximum Flow Algorithm

Consider any simple cut that separates the source into one

component and the sink into another component. Let the component

containing the source be denoted by x and let the component contain-

ing the sink be denoted by Xe Each are in this cut must either =

(a) have its head in X, and dts staal in X> or (b) have es head in

x, and its tail in Xoo Let the sum of the capacities of the arcs of

type (b) be called.the capacity of the cut. Since the cut separates

s from t, clearly, it is impossible to send more flow units from s

to t than the capacity of this cut since every flow unit must cross

the cut. In general, the maximum flow possible from s_to t must

surely be less than or equal to the smallest cut capacity of a cut

separating s from t. ‘Simply,

max flow < min cut

In order to demonstrate that the maximum flow algorithm has

indeed produced a maximum flow we need only produce a cut separating

s from t whose capacity equals the value of the terminal flow produced

by the algorithm. This is done as follows:

4.2 Maximum Flow Algorithm
99

The algorithm terminates when no flow augmenting chain can be
found from s to t. After the final application of the flow augmenting
algorithm, vertex t could not be colored. Consider the cut consist-—
ing of all arcs that upon termination of the last application of the
flow augmenting algorithm have one endpoint colored and the other
endpoing not colored. Since s is colored and t is not colored, this

cut separates s from t. The capacity of this cut is the sum of the

capacities of the arcs with colored tails and uncolored heads.

Upon termination of the maximum flow algorithm, each are with

uncolored head and colored tail carries a flow equal to its capacity;

otherwise, the head of this arc could be colored by the flow augment—

ing algorithm. Upon termination of the maximum flow algorithm, each

are with uncolored tail and colored head carries no flow units; other-

wise, the tail of this arc could be colored by the flow augmenting

algorithm.

Clearly, every flow unit must traverse an arc of this cut at

least once. Since all arcs from the sink side to the source side of

the cut carry no flow, no flow unit can traverse this cut more than

once. Thus, the total flow from s to t equals the capacity of this

cut becuase every arc from the source side to the sink side carries

a capacity flow.

Proof of (3):7 To show that the algorithm terminates in a finite

number of steps requires the assumption that all arc capacities are

integers and all initial flow values are integers. Practically

speaking, this is not a drastic assumption since most arc capacities

can usually be rounded off to an integer without affecting the under-

lying physical problem.

The only possible way for the maximum flow algorithm not to

terminate in a finite number of steps would be for the algorithm to

encounter an infinite number of flow augmenting chains. However,

each time a flow augmenting chain is found, the total flow v from s

to t is increased by a positive integer because all flow values and

arc capacities are always integers. Since v is bounded above by the

capacity of any cut separating s from t, there cannot be an infinite

number of flow augmentations. Q.E.D.

100 Flow Algorithms

EXAMPLE 2. Consider the graph in Fig. 4.6. The number adjacent to

each arc denotes the arc capacity.

Step 1: Initialize the algorithm with the zero flow, that is,

ficxjy), = 0) fom allvares| iGayy)ic

Step 2: Since f(x,y) < c(x,y) for all arcs (x,y), every arc is

a member of I, and i(x,y) = c(x,y) - f(x,y) = c(x,y). Furthermore,

since f(x,y) = 0 for all arcs (x,y), no arc is a member of R.

Step 3: The flow augmenting algorithm is now used to find a

flow augmenting chain from s to t. Obviously, by inspection, there

are several flow augmenting chains from s to t. Suppose that the

flow augmenting chain (s,a), (a,b), (b,t) is generated. The maximum

flow augmentation along this chain is min{i(s,a), i(a,b), i(b,t)} =

min{2,3,2} = 2. So, the flow in each of the three arcs in this chain

is increased by two units: f(s,a) = 2, f(a,b) = 2, f(s,b) = 0,

f(b,t) = 2, f(a,c) = 0, and f(c,t) = 0. Return to Step 2.

Step 2: For the new flow generated above,

fa(Sa) ee melise a) mesa) een (s,a) € RR, x(s,a) =

f(a) eee Car by) (arb) em ae ial) (Geib) i Gage mera Geib)

£(b,t) = 2 = ec(,t) (,t) € 1 (2) ER, wMpSse) =

£(s,b) = 0 <e(s,b) (.b) eG 1, i(s,b) = 3 __ GbE R

(anc) =O Gucl(astc) ml Calsi@) ce m mrn(ante) m= (a,c) € Rk

(ese) SWS CGE Tb ea, WEse) = (c,t) FR

Step 3: The flow augmenting algorithm is applied again to find

another flow augmenting chain. The unique flow augmenting chain that

it will generate is (s,b), (a,b), (a,c), (c,t). The maximum flow

augmentation possible along this chain is

mintd(s,b), r(a,b), isc), test) Finis. 4 =

Thus, one additional unit of flow is sent along this chain from s to

t. The flow in each forward are (s,b), (a,¢e), and (c,t) of the chain

is increased by one unit, and the flow in the backward arc (a,b) of

the chain is decreased by one unit. The resulting flow is if (Sia) Sa

f(a,b) = 1, E(b,t) 2, -f(e,b)a =e (ane) =, f({c,t) = 1. The flow

units now travel the following routes:

4.2 Maximum Flow Algorithm 101

1 unit travels from s to t via (aa),0%asb) § (byt)

1 unit travels from s to t via ibs @.e)

1 unit travels from s to t via (Sia) pac) ea caits)ix

Return to Step 2.

For the flow generated above,

f(s,a) = 2 = c(s,a) (s,a) @ I (S58) ER, Fis.a).= 2.

f(a,b) = 1 < c(a,b) (ag b) eps, aCasb) = 2), (GD kee Ree (aeb) a=.

£(b,t) = 2.= c(b,t) (bs t)c¢a2, (j=) Ee Rs ge) =

f£(s,b) = 1 < c(s,b) (sR bye. LP i(s).b).=t 2, (Sib) eGeR ee 2a(seb)e—a le

f(a,c) = 1 < ec(a,c) (ano) Bem lea Care) =). Chic) seiRe (anc)

(cite = l= e(c,t) (Casi) CS SER (cht) earemer. (cet) =e.

Applying the flow augmenting algorithm to the graph with

the above flow as the initial flow, we find that no additional flow

augmenting chains exist. The flow augmenting algorithm could color

vertices s, b, a, c (in that order), but not vertex t. Since no more

flow augmenting chains can be found, the maximum flow algorithm

terminates. The terminal flow (described above) is a maximum flow

from s to t and hence at most three units can be sent from s tot.

Note that the cut formed by the arcs with one endpoint colored

and one endpoint uncolored after the last application of the flow
augmenting algorithm_is_(b,t), (c,t). The capacity of this cut is

e(b,t)-+ c(c,t) = 2 + 1 = 3, which is the number of units sent from

s to t by the maximum flow.

The remainder of this section describes two important modifica-

tions of the maximumflow algorithm. The first modification shows

how_to insure that-the-maximum flow algorithm will terminate in a

finite-number of steps when we cannot assume that all flows and_arc

capacities are integers. The second modification describes how to

solve the maximum flow problem for graphs with more than one source

102 Flow Algorithms

Finite Termination Modification

The proof of the maximum flow algorithm required that all initial

arc flow values were integers and that all arc capacities were also

integers. If some arc capacities are not integers, there is. no_

guarantee that-the-maximum flow algorithm will terminate finitely.

An example of a graph with noninteger arc capacities for which the

maximum flow algorithm requires an infinite number of flow augmenta-

tions can be found in Ford and Fulkerson (1962)). Fortunately, Johnson

(1966) and Edmonds and Karp (1972) have provided two different ways

after only a finite number of flow augmentations. The modification

due to Edmonds and Karp is presented now.

The flow augmenting algorithm may have a choice of arcs to color

next. The finite termination modification specifies the next arc to

be colored as follows: Number the vertices as they are colored. (Of

course, vertex s will receive number one.) First, color all possible

arcs incident to vertex number one. Next, color all possible ares

incident to vertex number two, etc.

Note that if the coloring is performed as described above, then

the chain of colored arcs connecting any vertex to the source will

contain as few arcs as possible. Hence, each flow augmenting chain

generated by this modified coloring method will contain as few arcs

as possible.

Arc (x,y) is calleda—bottleneck arc wheneverarc (x,y) limits

the amount of the flow augmentation. If arc (x,y) is a bottleneck

arc, either f(x,y) increases to c(x,y) or reduces to zero.

Suppose that arc (x,y) is a bottleneck arc in both flow augment-

ing chains Cc, and Cy but not in any flow augmenting chain occurring

between C, and C,. Without loss of generality, suppose that f(x,y)

= c(x,y) after the flow. augmentation along chain Ci. Thus, (x,y)

must be a forward arc in Cy and a backward are in Co: Oke al = ihe 2,

denote the number of arcs from vertex m to vertex n in flow augmenting

chain C; by Cc, (m, n). From the observation that the modified coloring

method always colors the shortest possible flow augmenting chain from

s to any vertex, it follows that

4.2 Maximum Flow Algorithm
103

C,(s,y) < C,(s,y)
C, (x, t) re C, (x,t) +

tl C,(s,t) C, (s,y) + C, (x,t) Sail

iS C,(s,y) + C, (x,t) = it

= C,(s,t) - 2.

Thus, C)(s,t) < C,(s,t) - 2, and each time are (x,y) is a bottleneck

arc, the minimum number of arcs in a shortest flow augmenting chain

has increased by at least two. Since no flow augmenting chain from

s to t can contain more than n —- 1 areaeedeal i that n is the number

of vertices in the graph), it follows that arc (x,y) cannot be a

bottleneck arc more than n/2 times. Since each flow augmenti
—_

chain has at least one bottleneck arc, there can be at mostfn|A| /2,)
’ aa

A similar result follows if the flow in arc (x,y) is reduced to

zero by the flow augmentation in chain on

EXAMPLE 3. Let us use the modified coloring method to find a maximum

flow in the graph shown in Fig. 4.6. Suppose that initially each

arc carries no flow.

First, vertex s is colered, and-vertex s receives number one.

Examining the uncolored arcs ineident to vertex s, we find that arc _

(s,a) and vertex a can be colored. Vertex a receives number two.

Next, arc (s,b) and vertex b can be colored. Vertex b receives ae ee Cee

waumber three. This completes the coloring of ares incident to vertex

sf,
we

a Since vertex a received number 2, we now examine the uncolored

arcs incident to vertex a. This results in the coloring of arc (a,c)

and vertex c. Vertex c receives number four.

Since vertex b receives number three, we next examine the

uncolored arcs incident to vertex b. This results in the coloring

of arc (b,t) and vertex t. The flow augmenting chain (s,b), (b,t)

has been found. _A flow of 2 units is sent from s to t along this

chain.

104 Flow Algorithms

All previous coloring and numbering is erdsed, and the coloring

process is repeated. Vertex s is colored and receives number one.

Examining the uncolored arcs incident to vertex s results in the

coloring of arc (s,a) and vertex a and in the coloring of arc (s,b)

and vertex b. Vertices a and b are respectively numbered two and

three.

Next, the uncolored arcs incident to vertex a are examined. This

results in the coloring of arc (a,c) and vertex c. Vertex c receives

number four.

\AXext, the uncolored arcs incident to vertex b are examined. This

results in no further coloring. Next, the uncolored arcs indident to ~

vertex c are examined. This results in the coloring of are (c,t) and

vertex t. A flow augmenting chain (s,a), (a,c), (c,t) has been

discovered. One additional flow unit is sent from s to t along this

chain. It is left to the reader to verify that no additional flow

is possible.

Modification for Several Sources and Sinks

Lastly, let us consider a graph in which there are possibly more than

one source vertices and more than one sink vertices. Can this

situation be accommodated by the maximum flow algorithm which works

with only one source and one sink? Yes, simply create a new source

vertex S, called the supersource, and a new sink vertex T, called

the supersink. Join the supersource S to each original source Si>

Sox tees by an arc (S,s,), (S,s,), selene walern infinite capacity. Join

each original sink th> tos .-.- to the supersink T by an arc (t,.7),

(t,»T), ---, with infinite—capacity.

Clearly, any flow on the new, enlarged graph from S to T corre-

sponds to a flow on the original graph from the original sources to
— ———

the original sinks, and yieouere a Moreover,(a maximum flow)in the

enlarged graph corresponds tofa maximum flow)in the original graph.

Thus, the maximum flow algorithm can be applied to the enlarged

graph, and the maximum flow generated by the algorithm yields a

maximum flow in the original graph. See Fig. 4.7.

4.3 Minimum Cost Flow Algorithm
105

<= ah

Seen
Figure 4.7

Graph with Several Sources and Sinks:

(a) Original Graph

(b) Expanded Graph

4.3 MINIMUM COST FLOW ALGORITHM

- In the preceding section, we considered the maximum flow problem,

i.e., how to send the maximum possible number of units from the source

to the sink in a capacitated graph. In this section, we shall _

consider the problem of how to send_with minimum cost_a given number a et le ae -6=~- mes =

_v of flow units from the source-to—the-sink_in_a_capacitated graph

EXAMPLE 1. A manufacturer can select from a variety of routes to

ship finished products from his factory to his warehouse. He incurs

a different cost per pound depending upon the shipping route or

routes selected. Each route can accommodate only a limited total

weight. What is the least cost way for the manufacturer_to ship all

his finished products to his warehouse?

Represent the factory by a vertex s and represent the warehouse

by another vertex t. Let each intersection of two or more routes be

represented by a vertex, and let each uninterrupted route segment

be represented by an arc between the appropriate vertices. Let the _

capacity of each arc equal the maximum weight that can be accommodated

by the corresponding route sefment, and let each arc cost equal—the

cost per pound for using the corresponding route segment. eee Ne NS BN SS aa teen SACRE Eo Ae

The manufacturer's problem can now be viewed as the problem of

finding on this graph a minimum cost flow from s to t.
een eesinei Nee

106 Flow Algorithms

EXAMPLE 2. Suppose that a travel agent has been contacted by a

group of 75 people who wish to fly tomorrow (either separately or

together) from Springfield to Istanbul. What is the least cost way

he can route all of them from Springfield to Istanbul tomorrow?

The travel agent's problem can be rephrased as a minimum cost

flow problem on the graph whose vertices are the various airports

between Springfield and Istanbul and whose arcs represent the various

flights between these airports tomorrow. The capacity of each arc _

equals the number of seats available tomorrow on the corresponding

flight, and the cost of each are equals the cost of one seat tomorrow

on the corresponding flight.

The algorithm presented here to solve the minimum cost flow

problem is due to Ford and Fulkerson (1962, p. 113). This algorithm,

mi cost_tlow algorithm] is a generaliza-

tion of the maximum flow algorithm of Sec. 3,2.

_Let a(x,y) denote the cost of sending one flow unit along arc

wees

appropriately called the| mini

(x,y). Initially, we shall assume that_each a(x,y) is a positive

integer. This assumption is not very restrictive since costs_are
usually expressed in dollars and cents which are positive integers,

(At the end of this section, we shall present a method to modify

the minimum cost flow algorithm so that noninteger costs can be

accommodated.)

As before, let f(x,y) denote the number of flow units that

‘travel across arc (x,y). Of course, f(x,y).> 0.) Let v denote the

number of units to be sent-from source to sink. At:

The minimum cost flow problem can be expressed as follows:

f slakl 2 aCe te (5)
a ¥)—__————

such that

~z [f£(s,y) - f(y,s)] =v (6)
y

ELE, ye £(y,x)) = 0) Cor all x # ay ¢ t) 7)
Af

f & (£(t,y) - £(y,0) 1 = =v (8)
We

O'< 1 te5y) ctx y) [forsalietx,y)1 (9)

4.3 Minimum Cost Flow Algorithm 107

Expression (5) represents the total cost of a flow. Equation
(6) states that the net flow out of source s must equal v. Equation
(7) states that the net flow out of any vertex x that is neither the

source nor the sink_must equal—zero. Equation (8) states that the

net flow out of the sink t must equal -v. Condition (9) requires

that the flow in each arc take a value between zero and the are's

capacity.

Like the maximum flow problem, the minimum cost flow problem

isa linear-programming problem. (In fact, the maximum flow problem

—————

are zero and v_is_the value of the maximum possible flow.)

Suppose that expression (5) were replaced by

max{pv - <I a(x,y) £(x,y)} (10)
(x,y)

where p is any large number, e.g., larger than the maximum total cost

a unit could incur by traveling from s to t. If p is interpreted as

the profit received for each unit sent from s to t, then the expression

in (10) can be interpreted as the best possible net profit after

shipping costs have been| deducted) From this interpretation, it

follows that any flow that maximizes (10) will also minimize (5), and

vice-versa.

The minimum cost flow algorithm first sends as many units as

possible from s to t that(incur>a total cost of O each for the entire

journey from s to t. Next, the minimum cost flow algorithm sends as

many units as possible from s to t that incur a total incremental

cost of 1 each for the entire journey from s to t, etc. The algorithm

stops when a total of v units have been sent from s to t, or when no _

more units can be sent from s to t, whichever-happens first. In

other words, the algorithm solves the problem given by (6) - (10)

first for p = 0, then_for_p =1,-then for p = 2, etc. lh

‘Suppose that as many units as possible with a total incremental

cost of p - 1 or less have been sent by the algorithm from s to t.

How does the algorithm determine how to send flow units from s to t

with a total incremental cost of p each? To do this, the algorithm

108 Flow Algorithms

must locate a flow augmenting chain from s to t with the property

that the total incremental cost of sending a unit "along this chain"

equals p. To clarify this idea, consider the graph in Fig. 4.8. The —

ieast expensive way to senda flow unit from_s to t_ lneaints serern

is along _ the path (s,a), (a, bps Gby t). This flow unit incurs ancora:
— ee ———

cost bf 2 2 fetes: 2 eee ie ie 1,) this constitutes a minimum cost flow.

Figure 4.8

Minimum Cost Flow Example

(Arc costs are shown)

Suppose that v = 2. By inspection, the only remaining flow aug-

menting chain is (s,b), (a,b), (a,t) which can accommodate one

additional unit from s to t. If this second flow unit is dispatch atched

from s, the first flow unit will be(diverted at vertex a so that it

takes the path (s,a), (a,t). The pacond fice unit will replace the

first flow unit at vertex b so that it takes the path (s,b), (b,t).

The total cost for these two flow units is a(s,a) + a(a,t) + a(s,b)

+ a(b,t) = 2+ 4+ 4 + 2 = 12, which is an increase of 7. This

increase of 7 arises from the flow augmenting chain (s,b), (a,b),

(a,t) in the following ways:

Cost of +4 for using are (s,b) in the forward direction

Cost of -1 for using arc (a,b) in the backward direction

Cost of +4 for using arc (a,t) in the forward direction

for a total incremental cost of +7.

Thus, the algorithm must find a flow augmenting chain with the

property that the sum of the costs of the forward arcs in the chain

less the arc of the costs of the backward arcs in the chain equals p.

4.3 Minimum Cost Flow Algorithm HO?

The algorithm accomplishes this by assigning an integer p(x) to

each vertex x in the graph. These vertex numbers p(x) have the

properties that p(s) = 0, p(t) = p, 0 < p(x) < p for all vertices

ee fee, Xi 7) ts) The algorithm makes flow changes only along arcs (x,y)
—_—_—

Pa

.

GY = 7G Pe) = = 2G), (11)

if the Walcot shi. etna a flow augmenting chain from s to t consisting

entirely of arcs that satisfy equation (11), then it follows that

the total incremental cost for each unit dispatched from s to t along

this chain equals p.

With this as motivation, we are now prepared to state formally

the minimum cost flow algorithm.

Minimum Cost Flow Algorithm

Step 1 (Initialization): Initially, let the flow f(x,y) in each

arc (x,y) equal zero. Initially, let p(x) = 0 for all vertices x.

Step 2 (Deciding Which Arcs Can Have Flow Changes): Let I be

the set of all arcs (x,y) for which

p(y) - p(x) = a(x,y)

and ¢ £

p(x,y) < c(x,y)

Let R be the set of all arcs for which

p(y) - p(x) = a(x,y)

and

Oe fiGcay)

Let N be the set of all arcs not in I UR. [The arcs in_I_and_R will.

be the only arcs considered for possible flow changes , Hence flow

Step 3 (Flow Change): Perform the maximum. flow algorithm with-

eek, and N as defined above in Step 2. Stop when a total of (Y flow

units have been sent from s to t or when no_more flow from s_ | colt is.

110 Flow Algorithms

possible for the current composition of sets I, R, and N. If the

former occurs first, stop because the terminal flow is a minimum cost

flow that sends v units from s to t.

If the latter occurs first, check to see if the current flow is

a maximum flow from s to t. (This is done by verifying if the cut

generated by the last coloring of the flow augmenting algorithm is

saturated.) If so, then stop because no more flow units can be sent

from s to t and the terminal flow is a minimum cost flow. If not,

then go to Step 4.

Step 4 (Vertex Number Change): Consider the last coloring done

by the flow augmenting algorithm. (Recall that the flow augmenting

algorithm is a subroutine in the maximum flow algorithm which is

used as a subroutine in this algorithm.) Increase by +1 the-vertex-

number p(x) of each_uncolbred vertex x. (Note that p(t) increases.

by +1 since t is uncolored since otherwise a flow augmenting chain

would have been discovered.) Return to Step 2.

Proof of the minimum cost flow algorithm. We shall prove that the

minimum cost flow algorithm does in fact produce a minimum cost flow

of v units from s to t by using the complementary slackness conditions _

of linear programming described in Sec. 1.3.

As mentioned earlier, the minimum cost flow problem can be stated

as the linear programming problem given by relations (6) - (10)_

Let p(x) denote the dual variable associated with conservation of

flow equation (7) for vertex x. Let p(s) denote the dual variable

for—the_conservation of flow equation (6) for the source s. Let

(8) forthe sink t.. (Later-on, we will show that the dual variables

p(x) are the same as the vertex numbers p(x) generated by the

algorithm. So, don't worry about this duplicate notation.) Let _

Y(x,y) denote the dual variable for the capacity constraint, relation

(9), for arc (x,y). Lastly, let \us regard v as a variable rather

than a constant. SERS ;

The dual linear programming problem for the primal linear

programming problem in relations (6) - (10) is

4.3 Minimum Cost Flow Algorithm ALAC

Minimize

z c(x,y) Y(x,y) (12)-
(x,y)

such that

& ~P(s)+ p(t) = p (13)

DilDast py). teiGuy) 2tratx,y).. [for all; (x,y)] (14)

Viele toroall (x.y) J (15)

p(x) unconstrained (for all x) (16)

Equation (13) is the dual constraint corresponding to the

unconstrained primal variable.w. Each relation (14) is a dual

equation corresponding to a primal variable f(x,y).

The complementary slackness conditions for the primal-dual pair

of linear programming problems become

PG ply) + yy). > -a(x,y) > fG,y)) = 0 (17)

and

Vasyier o> £,y) ayc(x5y) (18)

If we let :

p(s) = 0, p(t) = p | (49) » peat Lee
and

¥(x,y) = max{0, p(y) - p(x) - a(x,y)} (20)

for all arcs (x,y), then complementary slackness condition (17)

becomes —

Poy = p(x) say) = i, y) = Oo (21))

since equation (20) implies that y(x,y) = 0. Complementary slackness

ndition (18) becomes

p(y) - p(x) > a(x,y) > f(x,y) = c(x,y) ak)

Hence from the complementary slackness conditions of linear

programming, we need only construct values for p(x) for all vertices

x and values for f(x,y) for all arcs (x,y) that satisfy conditions

(19), (21), and (22). Of course, the values chosen for f(x,y) must
eh? Nie ede

)

ae

aL, Flow Algorithms

form a feasible solution to the minimum cost flow problem of relations

(6) - ony

When the algorithm is initialized, p(x) = 0 for all x and p = 0

= p(t). Hence, the complementary slcakness conditions are satisfied.

We shall now show that the complementary slackness conditions remain

satisfied throughout all iterations of the minimum cost flow algorithm.

This is accomplished in two parts:

(a) By showing that all flow changes made by the algorithm maintain

the complementary slackness conditions

(b) By showing that all vertex number changes maintain the complemen-

tary slackness conditions for p = p(t).
7

[Note that condition (19) is always satisfied by the algorithm and

that the values for f(x,y) always yield a feasible flow that 12

\} The algorithm allows a flow change in arc (x,y) only when

satisfies relations (6) - (9).]

p(y) - p(x) = a(x,y). Hence, flow changes cannot disturb the

complementary slackness conditions which pertain only to arcs for

which p(y) - p(x) # a(x,y). Thus, part (a) is verified.

It remains to show that the vertex number changes made by the

algorithm do not destroy complementary slackness. (Recall that the

algorithm increases a vertex number by +1 only when the vertex could

not be colored. If a vertex cannot be colored, then no additional

flow units can arrive at that vertex from the source.) If both

endpoints of arc (x,y) are colored or if both endpoints of arc (x,y)

are uncolored, then p(y) - p(x) remins unchanged and complementary

slackness is preserved.

If vertex x is colored and vertex y is uncolored, then we know

from the algorithm that one of the following occurs:

(a) pi)” —*p Go)" <al(x;y)

(b= p(y) pt) aay)

(ec) ply) = p() = a(xsy) and f(x,y) = o(x,y)«

Note that the values for p(x), x € X, determine feasible values for
all y(x,y) by condition (20).

4.3 Minimum Cost Flow Algorithm JES}

If (a) occurs, then after increasing p(y) by +1, p(y) - Pixie sha (xey)
and (21) remains satisfied. If (b) occurs, then after increasing -
p(y) by +1, p(y) - p(x) remains > a(x,y) and (22) remains satisfied.
If (c) occurs, then after increasing p(y) by +1, p(y) - p(x) > a(x,y)

and (22) is satisfied.

If vertex x is uncolored and vertex y is colored, then we know

from the algorithm that one of the following occurs:

(a) ply) - p(x) < a(x,y)

(b) p(y) - p(x) > a(x,y)

(c) ply) - p(x) = a(x,y) and ff£(x,y) = 0

If (a) occurs, then after increasing p(x) by +1, p(y) - p(x) remains

< a(x,y), and (21) remains satisfied. If (b) occurs, than after:

increasing p(x) by +1, p(y) - p(x) > a(x,y), and (22) remains satis-

fied. If (c) occurs, then after increasing p(x) by 41, p(y) - p(x)

<a(x,y) and (21) is satisfied. This completes the verification of

part (b).

Hence, the minimum cost flow algorithm constructs a feasible

flow that satisfies all complementary slackness conditions for p =

p(t). When the algorithm terminates after dispatching the last flow

unit from s to t, the terminal value of p(t) will equal the total

incremental cost incurred by the last flow unit. Hence, p = p(t)

will be suitably large enough to insure that expression (10) can

replace expression (5) as the objective function of the minimum cost

flow linear programming problem. Hence, the flow constructed by

the algorithm is a minimum cost flow.

The proof is complete except we must show that the minimum cost

flow algorithm terminates in a finite number of steps. The minimum

cost flow algorithm terminates after the last flow unit has been

dispatched from the source to the sink. When this occurs, p(t)

equals the total incremental cost incurred by this last flow unit.

If all arc costs are finite, positive integers, then at termination

p(t) must be a finite positive integer. Hence only p(t) + 1 applica-

tions of the maximum flow algorithm are required by the minimum cost

flow algorithm. As we know from before, the maximum flow algorithm

114 Flow Algorithms

can be modified to terminate in a finite number of steps. Hence,

the minimum cost flow algorithm also terminates in a finite number

of steps. Q.E.D.

EXAMPLE 3. We shall now apply the minimum cost flow algorithm to

find the minimum cost tlow for the graph in Fig. 4.9. Note that the

first number attached to each arc is the arc cost; the second number

attached to each arc is the arc capacity.

a

Figure 4.9

Minimum Cost Flow Algorithm

Initially, all vertex numbers are zero and all vertices are

uncolored except vertex s, which is always colored. The results of

the algorithm are tabulated below:

Iteration p(s) p(a) p(b) p(t) Colored arcs Colored vertices

0 0 0 0 0 none s

1 0 ult 1 ib (s,a) S,a

2 0 1 2 2 (s,a), (a,b) Seas

3 0 1 z 3 (sea), (a,b) Cb, &) S,2,D,¢

Vertex t has been colored. Send 2 flow units from s to t along path

(s,a), (a,b), (b,t). Hence, f(s,a) = 2, f(a,b) = 2, £(b,t) = 2.

2 9) none s

saoi4 t (s,b) > (a,b) S,a,b

3 5 (s,b), (a,b), (a,t) s,a,b,t

4.3 Minimum Cost Flow Algorithm 115

Vertex t has been colored. Send 1 flow unit from s to t along chain

hesb)s)(a.>), (ast) Hence, £(s,a) = 2,'f(s,b) = 1, (a,b) ='1,

E@,tj2="1. -£(b;,t)°=2.

+

5 0 2 3 5 none s

No additional flow units’ can be sent from s to t since the arcs

from the colored vertices to the uncolored vertices [namely, arcs
ee

(s,a) and (s,b)] aredsatura Hence, the current flow of three

units is a maximum-flowwith-minimum—possible_cost.—

So far, arc costs were assumed to be positive integers. We shall

now describe how to modify the minimum cost flow algorithm to accom—_ :
modate noninteger positive arc “costs.

Where did the minimum cost flow algorithm use the assumption

that arc costs were integers? Since arc costs were assumed to be

positive integers, all flow units sent from s to t incurred a total

incremental cost that was a positive integer. Hence, the algorithm

needed to examine only integer values of p and vertex numbers were

always incremented by the integer amount +1.

When arc costs are not necessarily integer, the total cost of

a flow augmenting path from s to t need not be an integer, and hence,

the algorithm must examine values for p that are not integers. Which

values for p should the algorithm examine? What vertex number incre-

ments should the algorithm make?

Suppose the algorithm has been performed for some value of

p = p(t). Some arcs will have one colored and one uncolored endpoint.

We must consider two cases:

Case 1: If vertex x is colored and vertex y is uncolored, then

arc (x,y) is a candidate for coloring only if (x,y) € I and p(y) can

be altered so that p(y) - p(x) = a(x.y7). Tf (x9), & 1, ‘then p(y) -

p(x) < a(x,y) by condition (22). Hence, p(y) must be increased by

a(x,y) - p(y) + p(x) units before arc (x,y) can be colored. Let

d(x,y) = a(x,y) - ply) + p(x).

116 Flow Algorithms

Case 2: If vertex y is colored and vertex x is uncolored, then

arc (x,y) is a candidate for coloring only if (x,y) € R and p(x) can

be altered so that p(y) - p(x) = a(x,y). If (x,y) € Ry then ply)a—

p(x) > a(x,y) by condition (21). Hence, p(x) must be increased by

p(y) - p(x) - a(x,y) units before arc (x,y) can be colored. Let

S(x,y) = p(y) - p(x) - a(x,y).
If arc (x,y) does not fit Case 1 or Case 2, let 6(x,y) = ~.

Let

6p=) mine sore yi m0 (23)

(x,y)

Hence, if the dual number p(x) of each uncolored vertex x is

increased by 5 then at least one additional arc will be colored,

and perhaps a new flow augmenting chain will be discovered. Thus,

the value of p(t) will be increased by 6. Similarly, each succeeding

vertex number increment can be calculated by determining the smallest

increment needed to insure that at least one additional are can be

colored. If 6 = ~, then no additional arcs can be colored. In this

case, the current flow is a maximum flow.

Thus, by modifying the vertex number increment procedure, the

minimum cost flow algorithm can accommodate noninteger arc costs.

Will the modified algorithm terminate after only a finite number

of steps? Yes; since p(t) must always equal the sum of the costs

along the arcs of some chain from s to t, and since there are only a

finite number of distinct chains from s to t, it follows that p(t)

can take only a finite number of different values in the modified

algorithm. Hence, the modified algorithm must terminate after only

a finite number of steps.

4.4 OUT-OF-KILTER ALGORITHM

The minimum cost flow algorithm has some distinct disadvantages:

1. The algorithm must be initialized with a zero flow and unit by

unit work its way to a maxim unit y um flow

4.4 Out-of-Kilter Algorithm Mhz

2. There is no easy way to salvage the results-of—this-algorithm if

we discover_after termination that an_incorrect arc cost—or-

incorrect arc capacity was used

3. Nonzero lower bounds on the flow in an arc are not permitted, and

negative arc costs are not permitted.

In this section, a second algorithm to solve the minimum cost

flow problem will be presented. This algorithm, called the out-of-

kilter algorithm, due to Ford and Fulkerson (1962, p. 162), has none

of the above disadvantages of the minimum cost flow algorithm. How-

ever, it has certain compensating disadvantages of its own that will

be discussed later.

Let 1(x,y) be a nonnegative number de ing the smallest

of flow units that must traverse arc (x,y). This quantity is called

the lower capacity of arc (x,y) to distinguish it from c(x,y) which

we shall refer to as the upper capacity of arc (x,y).
SSS

EXAMPLE 1. The travel agent encountered earlier learns that there

must be at least 25 tickets sold before a charter flight from city

x to city y can take off. In this situation, the corresponding

arc (x,y) must have a lower capacity 1(x,y) equal to 25.

\ J EXAMPLE 2. Due to local currency restrictions, a multinational com-

pany has various accounts of nonconvertible funds deposited in blocked

accounts in various foreign banks. Since these funds can only be

spent locally, shipment costs within these countries may be regarded

as zero (within limits). Consequently, the costs of the arcs corre-

sponding to shipments through these blocked currency countries may be

set equal to. zero.

EXAMPLE 3. A Zurich based distributor of medical equipment must route

a traveling exhibition of his merchandise through a number of European

cities. Also, a number of cities may optionally be placed on the

itinerary. The cost of sending the exhibit between any two cities

is known and the profit or loss that can be expected from orders

coming from each city is also known. What is the best way to route

the exhibit to meet all obligations with maximum profit?

118 Flow Algorithms

@) (4) @ (4)

Ow) Cee

(©)) | w)
Figure 4.10

Vertex Explosion

[(x,> X,) is a city arc. All other arcs are intercity arcs.]

Let each city be represented by a vertex, and let the route

between any two cities be represented by an arc. Next, explode each

city vertex into two vertices as shown in Fig. 4.10. Let all upper

arc capacities equal one; let the lower capacity of all arcs corre-

sponding to cities that must be visited by the exhibition equal 1;

let all other lower arc capacities equal 0. Let the cost of a city

arc equal the expected profit (positive) or expected loss (negative)

from an exhibition in that city. Let the cost of an intercity arc

equal the cost of moving the exhibit between the two endpoint cities.

A solution to this minimum cost flow problem with nonzero lower arc

capacities and negative arc costs may correspond to an optimum

exhibition routing. (Chapter 7 describes some complications.) The

minimum cost flow for this situation can be found by using the out-

of-kilter algorithm described in the following discussion.

The minimum cost flow algorithm solves the minimum cost flow

problem when 1(x,y) = 0 for all arcs (x,y). The out-of-kilter :

algorithm will solve the minimum cost flow problem for 1(x,y) > 0

for all arcs (x,y). Moreover, the out-of-kilter algorithm allows arc

costs to be negative whereas the minimum cost flow algorithm worked

only when all arc costs were positive. However, the out-of-kilter

algorithm fails if the graph possesses a Circuit with infinite arc
capacity and negative total cost. In Fig. 4.11, the circuit (a,b),

(b,c), (c,a) has infinite capacity and total cost equal to
ep ee i

4.4 Out-of-Kilter Algorithm 119

e(a,b) = c(b,c) = c(c,a) =

a(a,b) = a(b,c) = 1

a(c,a) = -3

Figure 4.11

Negative Cost Circuit

1+1- 3 =-1. Consequently, oe um ccs t flow exists for this

graph since an infinite number of flow units could traverse this

circuit each incurring a total cost of -l.

To ease the presentation of the out-of-kilter algorithm, augment _

the original graph pee a return arc (t, Ss) 3 from the_ sink. to the source.
—S=SX=Xasgaeer«@we™™QYQuw——.
— — "

Det all units that were sent from | s to t return to the source s via

the return arc (t,s). Clearly, any flow in the original graph is

equivalent to a flow in the augmented graph, and viceversa. If we

are seeking a minimum cost flow that ae ant irom s to _t, then

Let 1(t,s) = c(t,s) = v and a(t, LS If we are seeking a minimum.
ee el

cost flow that sends the maximum possible number of flow units from s

tot, then let 1(t,s) = 0, e(t,s)_=.%, and a(t,s) = -p, where (as

before p is a large number greater than the cost of sending flow

from s to t along the most costly route.

With lower arc capacities and a return arc, the linear program-

ming formulation of the minimum cost flow problem becomes

Minimize

X a(x,y) f(x,y) (24)

(x,y)

such that

UeEG yon (yx) = 0 (25) A/

yi) iy)

for all vertices x, and

1{x;y¥)o< £(x,y9)< cx, y) (26)

for all arcs (x,y).

120 Flow Algorithms

As before, let the dual variable corresponding to equation (25)

for vertex x be denoted by p(x). Let the dual variable corresponding

to the lower bound constraint (26) on arc (x,y) be denoted by ¥,(y)-

Let the dual variable corresponding to the upper bound constraint (26)

on arc (x,y) be denoted by Yo (%sy)- With these definitions for the

dual variables, the dual linear programming problem is

Maximize

a f = eG y) Y, (%5y) eoLCx,y) ¥, (%y)] (27)
(x,y)

such that

=sp(x) + ply) + ¥, (sy) - Yo (x,y) < ta(x,y) (28)

for all arcs (x,y), and

¥, &y) 2 Opel foreal ls Gsy)] (29)

Yo (x,y) =g0) -Leortalil® Gx35,) 1 (30)

The quantity ¥, &y) ~ Yo (x,y) appears in each dual constraint

(28). Hence, ey 5 vo Gy) can be replaced by (ay) which is

unconstrained in sign.
» _ a)< Let ptt) =p Ac ¢ D

eyes alas) +) =p) oye. . ghd aes! BAP 31)
“~~

for all arcs (x,y).

Note that equation (31) forces relation (28) to hold with

equality for all arcs (x,y).

Diy Cay gceD abet

¥,@y) = Y (x,y)

and

Y, (xy) = 0.

Tey Gory) en O ne dlet

¥, Oy) = 0

and

Yo Oxy) ea BY Cen)

4.4 Out-of-Kilter Algorithm
121

The complementary slackness conditions of the primal-dual pair
of linear peer top lens given ek es =(26) and by (27)- (30)

y 70 Pigi= Plt) < Avex are a

ee a hKxSy)) = Cx sy) meh
Dvt 2D piyr-Al 27am &) (32)

eee eX y t= ex)

Using equation (31), the complementary slackness conditions for
the above pair of primal and dual linear programming problems become:

PY F= p(x), < a(x,y) => f(x,y) = 1(x,y) (33)
and

P(y) - p(x) > a(x,y) > £(x,y) = c(x,y) (34)

Note the similarity between complementary slackness conditions (21)

and (22) and the above complementary slackness conditions.

For convenience later on, let us define

pee oC) ony) + pale» ERAS PPP 35)
for all arcs (x,y). _ Using (35), conditions (33) and (34) become:

DIy)— Pr <A

a(x, a >o=> any) = 1(x,y) (36)
and

a(x,y) <0 > f(x,y) = c(x,y) C7)

To solve the general minimum cost flow problem described above,

we need only construct a flow that satisfies equation (25) and vertex

numbers that satisfy conditions (36) and (37). (Note that relations

(28)-(30) are always satisfied.)

Suppose that we select any flow f(x,y) that satisfies equations

(25) Thus, the net flow into each vertex is zero. Furthermore,

suppose we arbitrarily select any set of vertex numbers p(x). For

the flow values and vertex numbers specified above, each arc (x,y)

can fall into one of nine different situations:

Situation Kilter Number

te o(x,y) <0 and f(x,y) <¢(x,y) a(x,y) [f (x,y) - c(x,y)]

bbe OGesy) <0 “and f(x,y) = c(x,y) 0

Ditmas ype 0 @and f(x,y) >*e{x,y) ~“f£(x,y) - ¢(x,y)

NAA Flow Algorithms

Situation Kilter Number
ne RE ie BS eee eee ee

TVG y)e=—nOs and “fix y)) <i y) 1l(x,y) - £(x,y)

Vie 1eGeey) S00 wands -L(xsy) Sif, 9) es (ey) 0

VI. a(x,y) = 0 and f(x,y) > c(x,y) f(x,y) - c(x,y)

Waviit<. (a(xpy)> 0 and) sf(x,y) < iexsy) l(x,y) - £(x,y)

\wrIT. OCy)r > WO anda tGcsy)) =e ls yp 0

(DXeeraGaey)) > OM wand fiGcsy) al Gx, y,) a(x,y) [£(x,y) -

1(x,y)]

Next to each of the nine different situations is listed the

kilter number of the situation. The kilter number denotes the amount

by which an arc in that situation is said to be out-of-kilter. Denote

the kilter number of arc (x,y) by k(x,y). Inspection of the above

nine situations will show that k(x,y) > 0. Let K denote the sum.of

the kilter humbers of all the arcs in ‘the graph. Note that the kilter

number of each aye ref: aatistics the complementary slackness condi-

tions is zero. Moreover, if an arc does not satisfy the complementary

slackness conditions then its kilter number is positive.

The basic idea underlying the out-of-kilter algorithm is to

successively reduce to zero the kilter number of each arc without

increasing-the-kilter number of any_other_arc. When this has been

accomplished, then every arc will satisfy the complementary slackness

conditions and the current flow will be a maximum flow with minimum

cost.

How does the out-of-kilter algorithm reduce the kilter number

of an arc to zero? For example, suppose that arc (x,y) is out-of-

kilter, that is, k(x,y) > 0. The algorithm determines if an increase

or a decrease in the flow in arc (x,y) needed to put are (x,y) into

kilter. Ifa flow increase is needed, then the algorithm searches

for a chain from y to x along which flow can be sent without increas-

ing the kilter number of any arc in the graph. If such a chain is

discovered by the algorithm, then this chain along with arc (x,y)

forms a cycle. Flow can be sent around this cycle thereby increasing

the flow in arc (x,y) and not increasing any arc kilter number. If

such a flow change still does not put arc; (x,y) into kilter, then

4.4 Out-of-Kilter Algorithm 123

this process is repeated until arc (x,y) is in kilter or until no

more such chains can be discovered: by the algorithm. When the latter

occurs, the algorithm increases some of the vertex numbers (like in

the minimum cost flow algorithm) and again looks for a flow accepting

chain from y to x. The vertex numbers are increased so that no arc

kilter number increases. Ultimately, arc (x,y) either goes into
ee

kilter or the algorithm shows that no flow exists that simultaneously

satisfies all arc upper and lower capacity requirements.

On the other hand, if a flow decrease is needed to put arc (x,y)

into kilter, then the algorithm repeats the same procedure as des-

cribed above except that now the algorithm searches for a chain from

x to y. This process is repeated until every arc is in kilter.

With this as motivation, we can now present the out-of-kilter

algorithm.

Out-of-Kilter Algorithm

Step 1 (Initialization): Select any set of flow values f(x,y)

such that the net flow into each vertex in the graph is zero, i.e.,

so that equation (25) is satisfied. This flow need not satisfy the

upper and lower capacity requirement, relation (26), on each arc.

Also, select any set of values for the vertex numbers p(x))

Step 2 (Determining Kilter Numbers): For each arc (x,y) in

the graph, calculate a(x,y) and k(x,y) as defined by equations (35)

and (38)<— Stop if all k(x,y) = 0.

Step 3 (Arc Classification): Classify each arc (x,y) as

increasable or decreasable as follows:

Arc (x,y) is decreasable if

(a) a(x,y) > 0 and f(x,y) > 1(x,y) Pi4)- piopgoaix, 4 |

or

(b) a(x,y) = 0 and f(x,y) > c(x,y).- V4 yp X) PAX, 4

Arc (x,y) is increasable if

(a) a(x,y) > 0 and f(x,y) < 1(x,y)

or

124 Flow Algorithm

(b) (x,y) <0 and f(x,y) < c(x,y).

Let R denote the set of reducible arcs; let I denote the set of

increasable arcs.

If arc (x,y) eR, then let

r(x,y) = £Gx,y) — 2Gcy)) if, oG. yee 0

r(x,y) = £(x,y) - c(x,y) if o(x,y) <0

If arc (x,y) € I, then let

i(x,y) = 1(x,y) - f(x,y) if a(x,y) > 0

Gy Se elCepy Ss aeGegiy) abe ClGeany << 0,

Select ny are (x,y) for whieh K(x,y) >) 0.) Leo (xiv uc al then

let vertex y be called s, and let vertex x be caltedete al tacuy)G

R, then let vertex x be called s, and let vertex y be called t. (Note

that since k(x,y) > 0, arc (x,y) cannot belong to both I and R.)

Step 4 (Maximum Flow Subroutine): Using the set I and R and

values for i(x,y) and r(x,y) defined above, perform the maximum flow

algorithm to send flow units from s to t. Balance this flow by

making a compensating flow change in the out-of-kilter are joining

s and t. Do this, until enough flow units have been sent from s to
ee NN

t so that the arc joining s and t is in kilter or until no more

flow units can be sent from s tot.

If the former occurs first, then arc (x,y) has been placed into

kilter. Return to Step 2. If the latter occurs first, then go to

SEepl oD:

Step 5 (Vertex Number Increases): The maximum flow algorithm

subroutine of Step 4 stopped without being able to find a flow aug-

menting chain from s to t. Let C denote the set of vertices colored

during the last iteration of the flow augmenting algorithm subroutine

of the maximum low algorithm. Clearly, s€ C. Let C denote the set

of uncolored vertices. Clearly, t € C. Define two sets of arcs:

A, = (x,y): x EC, y EC, a(x,y) > 0, E(x,y) <.c(x.y)}

A pa (Gaws eC, y GC, uly x) 210. VEG x) Gd

4.4 Out-of-Kilter Algorithm
125

EE AL is empty, let 6, = ~ Otherwise, let 1

ay = min{ta(x,y)} > 0.
(40y

A
1

ane A, is empty, let 8, =», Otherwise, let

5, = min{a(x,y)} >0 (41)
A

72

Let

6 = min{6,, ss Sal0 (43)

If 6 = ~, stop because no feasible flow exists for this graph.

if 6 <™, then replace p(x) by p(x) + 8 for all x © G. Return to

Step 3.

The terminal values of f(x,y) represent a minimum cost flow.

Proof of the out-of-kilter algorithm: To prove the out-of-kilter

algorithm, we must show that

(1) The algorithm terminates with a flow that satisfies (25).

(2) That is a minimum cost flow.

(3) In a finite number of steps.

(4) Or that no feasible flow exists for this graph.

Proof of (1): The algorithm terminates with a flow since it is

initialized with a flow that satisfies (25) and maintains a flow that

satisfies (25) during all flow changes performed by the algorithm.

Proof of (2): There are only two ways that the algorithm can

stop: all arcs are in kilter or 6 = © at some iteration. If all

arcs are in kilter, then the terminal flow values and vertex number

values satisfy the complementary slackness conditions, (36) and (37)

and the terminal flow is a minimum cost flow.

Proof of (4): If the algorithm terminates because § = ~ at some

iteration of Step 5, then it is claimed that it is impossible for any

flow to satisfy simultaneously all upper and lower arc capacities.

126 ; Flow Algorithms

Consider the cut set of arcs with one endpoint in C and the other

endpoing in C. No are from C to C is increasable since otherwise its

endpoint in C could be colored. Likewise, no arc from C to C is de-

creasable since otherwise its endpoint in C could be colored. More-

over, since 6 = ~, both sets A, and Ay as defined in equation (39)

are empty sets.

Since 6 = ~, it follows that any arc (x,y) from C to C must

carry a flow f(x,y) > c(x,y). Also, any arc (x,y) from C to C must

carry a flow f(x,y) < 1(x,y). Furthermore, for the out-of-kilter arc

joining s and t this inequality is a strict inequality.

Add together the equation (25) for each vertex in C. The sum of

these equations can be interpreted as follows: the net flow out of

C must equal zero. The net flow out of C consists of the total flow

from the vertices in C to the vertices in C, denoted by £(C,C), less

the total flow from vertices in C to the vertices in C, denoted by

£(C,C).* Thus,

£(C.€) = £(C, Cc) = 0 (44)

As noted above, £(6.C), <= 1(€,C) and £(C,C) 2 GlG,G) and at least one

of these inequalities is a strict inequality, where 1(X,Y) denotes

the sum of the lower capacities of the arcs from set X to set Y and

c(X,Y) denotes the sum of the upper capacities of the arcs from set

X to set Y. Hence,

e(CeGip ml Cs Cen

and

eC. C)ce(G, Ci.

which implies that the smallest flow 1(C,C) that must flow into C

exceeds the maximum flow c(C,C) that can flow out of C. Hence, no

feasible flow exists for 6 = ~,

Proof of (3): It remains to show that the algorithm terminates

after a finite number of steps.

First, observe that whenever the algorithm makes a change in a

flow value or vertex number that no arc kilter number is increased.

Hence, once an arc is in kilter, this arc remains in kilter. Thus,

4.4 Out-of-Kilter Algorithm NAW

if the algorithm required an infinite number of steps, then there

would be some are that would require an infinite number of steps to

be placed into kilter.

To place a given are into kilter, the algorithm performs a

sequence of flow augmentations and vertex number increases. If all

arc capacities were assumed to be integers, only a finite number of

flow augmentations can occur since each augmentation changes the flow

in the out-of-kilter arc by at least one unit. Hence, if an infinite

number of steps were required to put an arc into kilter, then an

infinite number of consecutive vertex number increases must occur

between two flow augmentations. (If not all arc capacities are

integers, the finite termination modification of the maximum flow

algorithm must be employed. In this case, the number of flow aug-

mentations is again finite by reasoning similar to the reasoning used

in the proof of the finite termination modification. Namely, between

any two flow augmentations in which arc (x,y) is a bottleneck arc,

the minimum number of arcs in a flow augmenting chain from s to t

must increase by at least two in the subgraph consisting of only the

arcs in I U R and cannot decrease in any other subgraph of the

original graph. Since only a finite number of subgraphs can be

derived from the original graph, only a finite number of flow aug-

mentations are possible.)

Observe that a vertex number increase results either in the

coloring of at least one additional vertex or the deletion of at

least one arc from the set Al U Ay: Hence, ultimately since there

are only a finite number of vertices, it follows that ultimately

vertex t must be colored or sets A, and A, become empty resulting in

6 = ©, Thus, the algorithm cannot encounter an infinite number of

consecutive vertex number increases. Hence, the algorithm must

terminate in a finite number of steps. Q.E.D.

In the beginning of this section, we mentioned that the out-of-

kilter algorithm did not have certain disadvantages that the minimum

cost flow algorithm has, but that the out-of-kilter algorithm had

certain disadvantages of its own. What is the main disadvantage

128 Flow Algorithms

of the out-of-kilter algorithm? It is. that one must initialize the

algorithm with a set of vertex number values. In many cases, one

has no idea of initial vertex number values. This could result in

arbitrary choices of the initial vertex number values that would

result in many arcs being heavily out-of-kilter and consequently

requiring many flow augmentations to get into kilter.

On the other hand, the out-of-kilter algorithm does allow

negative arc costs and lower arc capacities. Moreover, if an arc

cost or capacity changes, the previous optimal solution could be

used to initialize the out-of-kilter algorithm to solve the minimum

cost flow problem with the updated values.

4.5 DYNAMIC FLOW ALGORITHMS

In the preceding four sections, we studied flows that obeyed certain

requirements dictated by the arc capacities and the arc costs. In

this section, we shall consider yet another arc requirement, namely

are traverse time, and we shall study flows in which all the flow

units must make the trip from the source to the sink within a given

amount of time.

Associate each arc (x,y) in graph G = (X, A) a positive integer

a(x,y) that denotes the number of time periods required by a flow

unit to travel across arc (x,y) from x to y. The quantity a(x,y) is

called the traverse time of arc (x,y). (Yes, previously a(x,y) was

used to denote the cost of arc (x,y). As will be seen later, both

are cost and traverse time will fulfill the same role in algorithms,

and hence we have chose to identify them with the same symbol. This

will become clearer later.) Let _c(x,y,T) denote the_maximum number

of flow units that can enter arc (x,y) at the start of time period T,

for T= 0, 1, A dynamic flow from s to t in graph G is any

flow from s to t in graph G that obeys all arc capacity requirements

at_all-times. Thus, a dynamic flow from s to t is any flow from s

to t in which not more than c(x,y,T) flow units enter arc (x,y) at

the start of time period T, for all arcs (x,y) and all T. Note

that in a dynamic flow, units may be departing from the source at

times Oly die a2 ener cree

4.5 Dynamic Flow Algorithms
129

A_maximum dynamic f flow for P time periods from S to t_is—any
dynamic flow from s to t in which the. maximum possible number. of _

flow units arrive at the sink t during the first p time periods.

EXAMPLE 1, Our friend, the travel agent, must send 75 passengers from
Springfield to Istanbul within the next 48 hours. This problem can

be rephrased as a maximum dynamic flow problem as follows: Let

Springfield represent the source, and let Istanbul represent the sink.

Let each airport between Springfield and Istanbul be represented by

a vertex. Join vertices x and y by an arc (x,y) if there is a nonstop

flight from airport x to airport y. Let the traverse time of this arc

be equal to the flight time between these two airports rounded up to

the next hour. (Airport transfer time should also be included in

flight time.) Let the capcaity c(x,y,T) for arc (x,y) at time T

equal the number of seats available on the flight from airport x to

airport y that starts at time T. If no such flight exists, then let

eye) s=10:.

The travel agent's problem is solved if there exists a flow of

75 units from the source to the sink of this graph within 48 time

periods, and if he can construct such a flow.

Obviously, the problem of finding a maximum dynamic flow is

more complex than the problem of finding a maximum flow since the

mic flow problem requires that we keep track of when each unit.

travels through an arc so that no arc's entrance capacity is violated
at any time. Happily, this additional complication can be resolved

by rephrasing.the dynamic flow problem _intoa—static—(nondynamic)

flow probLem—on—a_new-graph called thel|rinacespanded xeplicalof the

original graph.

The time-expanded replica of graph G = (X, A) for p time periods

is a graph eo whose vertex set is

Vx = ees se Sg St0) sh naa (45)
Pp i

and whose arc set is

/

VA = {G¥)): Cy me tO 1.45 De a(x.y) >} (46)
P eo j=it a(x,y)

130 Flow Algorithms

Let

c(x;5¥;) = c(x,y,i) :

Note that the vertex set - of graph cs consists of duplicating

each vertex in X once for each time period. An arc joins vertices

x, and y; only if it takes j - i time periods to travel from vertex

x to vertex y. Thus, a flow unit leaving vertex x along arc (x,y) in

graph G at time 5 and taking 8 time periods to arrive at vertex y is

57713)"
Figure 4.12 shows the time-expanded replica of a graph for 6 time

represented in graph e as a unit flowing along the arc (x

periods.

(a) Original Graph

(All arc capacities equal one. Traverse times

are given next to each arc.)

4)

@)

Us
M/

©) ff) J) Of Te © © ©

(a.

(as

(a.

@

eo

@ &)

©

Se)

(4) (as)
(b)

Figure 4.12

(b) Time-Expanded Replica Graph (All arc capacities are one.)

©) ©

Pp ="6

4.5 Dynamic Flow Algorithms Hh SHL

Clearly, any dynamic flow from s to t in graph G is equivalent

to a flow from the sources to the sinks in G » and viceversa. Figure

4.13 shows a dynamic flow and its static equivalent for the graph in

algae aed 2).

DYNAMIC FLOW STATIC FLOW

Path Departure Time Amount Path Amount

S,a,b,t 0 1 unit <— S924, >b,,t, 1 unit

Seia's Dit: i lunit <«~+ $1945>b,>t, 1 unit

S,a,t 2 1 unit +—> S52a3,t¢ ik Wink we

Figure 4.13

Equivalence Between Dynamic and Static Flows

Since each dynamic flow is equivalent to a static flow in the

time-expanded replica graph, a maximum dynamic flow for time periods

can be found simply by finding a maximum f in the time-expanded

replica for p time periods using the maximum flow algorithm. Thus,

no additional algorithms are required to solve the maximum dynamic

flow problem. However, if p is very large, then the graph g. becomes

very large and the number of calculations required to find a maximum

flow of graph oF becomes prohibitively large.

Happily, Ford and Fulkerson (1962, p- 142) have devised an

algorithm, called the(faximum dynamic flow algorithm) that generates

a maximum dynamic Si omanch more efficiently than the method suggested

above. However, the maximum dynamic flow algorithm-works-only_when

the entrance capacity of eacharc.remains unchanged through time,

\c Guy, T)-=—c. roy) (Sialoy oe ey eo ee om

for all ares (x,y).

The maximum dynamic flow algorithm uses the-minimum~cost-fitow~™

algorithm as_a\ subroutine) Recall that the minimum cost flow algorithm

first sends as many units as possible from s to t that have total

incremental cost of 1 each. Next, the minimum cost flow algorithm

sends as many units as possible from s to t that have total incremental

132 Flow Algorithms

cost of 2 each, etc. until a maximum flow has been attained. Let

Fie Fos ..., F_ denote the resulting sequence of flows generated by

the minimum cost flow algorithm. (The details of how FS is generated

from F, were presented in Section 3.) Each flow F consists of a
He il

set of paths Pa? ho At O ce, from s to t taken by the units

sent from s to t by flow F.- Let n, , denote the number of flow units
>

that would foliow path hes in flow F,- Clearly, no flow path ee

from s to t has a total cost greater than i, since otherwise, the

incremental cost of using this path would be greater than i and this

path could not have been generated by the minimum cost flow algorithm.

Let a denote the total cost of flow path ae

With these definitions in mind, we can now state the maximum

dynamic flow algorithm.

Maximum Dynamic Flow Algorithm

This algorithm generates a maximum dynamic flow for p time units from

the source s’ to the sink t in’ a graph G = (X, A) for which c(x,y,1)

="c(xay)=tor ali f= 0. 1. seep and fon alil™ Gcsy)e Ie

Step 1: Let the cost of using arc (x,y) equal the transit time

a(x,y) for all arcs (x,y). Perform the minimum cost flow algorithm

on graph G stopping after the flow F has been generated.

Flow F_ consists of flow paths f yeas ei se ee from s to
P P»l” ps2 a :

t respectively carrying n flow units from s to
pel” piney ee “Pot,

t. The decomposition of 5 into flow paths is a by-product of the

minimum cost flow algorithm.

Hesig 2S Were sf SS dhe Ba goa = send 8 j flow units from sto
>

t along flow path ae j starting out from s at time periods 0, 1, ...,
>

p- ake ne The resulting flow is a maximum dynamic flow for p time

periods.
>

Thus, the maximum dynamic flow algorithm consists of performing

the minimum cost flow algorithm using the arc traverse times as the

arc costs. The terminal flow generated by the minimum cost flow

4.5 Dynamic Flow Algorithms 33

algorithm is decomposed into paths from s to t. Lastly, flow is

sent along each of these paths starting at time period 0, LE eae

until flow can no longer reach the sink by time period p. Figure

4.14 shows a maximum dynamic flow for p = 4, 5, 6 for the graph in

Pie 4. 12.

The flow generated by the maximum dynamic flow algorithm is

called a temporally repeated flow for the obvious reason that it

consists of repeating shipments along the same flow paths from s to

t. Of course, the maximum dynamic flow for p time periods generated

by the maximum dynamic flow algorithm need not be the only possible

maximum dynamic flow for p time periods. However, as shown by the

algorithm, there is always one maximum dynamic flow for p time periods

that is a temporally repeated flow.

Proof: To prove the maximum dynamic flow algorithm, we must

show

(a) That the algorithm constructs a flow

(b) That this flow is a maximum dynamic flow for p time periods

(c) That the algorithm terminates in a finite number of steps.

Proof of (a): The algorithm sends flow units from s to t along

the paths in ee Except for the source and the sink, the flow into

a vertex equals the flow out of that vertex. Moreover, no flow

units are dispatched unless they can reach the sink before time period

p-

How many flow units enter arc (x,y) during any given time period?

Flow es cannot send more than c(x,y) flow units across arc (x,y), hence

Blais d th total the flow paths Es? es 5 RG. cannot send more an a

of c(x,y) flow units across arc (x,y). Hence, not more than c(x,y)

flow units can enter arc (x,y) during any given time period. Hence,

the dynamic flow constructed by the maximum dynamic flow algorithm

obeys all arc capacities.

Hence, since all flow units start at s and arrive at t before

time period p, violate no arc capacities and do not holdover at any

intermediate vertex, the algorithm produces a dynamic flow.

134 Flow Algorithms

Results of the Minimum Cost Flow Algorithm

F
PD

unit along path s, a, te

unit along path s, a, i

Un ae 16 ow EY GO ES

unit along path s, a,

unit along path s, b,

unit along path s, a, PREeErE FPF OO Oo

b,

b,

unit along path s, b, t

b

1S

c

Maximum Dynamic Flow for p Time Periods

No flow.

No flow.

No flow.

‘Oicie Cae

i]

Re te =) Send one unit along path s, a, b, t starting at time 0 to

arrive at the sink at time 3.

Total flow = 1 unit.

p=4 Send one unit along path s, a, b, t starting at time 0 to

arrive at the sink at time 3.

Send one unit along path s, a, b, t starting at time 1 to

arrive at the sink at time 4.
Total flow = 2 units.

p=5 Send one unit along path s, b, t starting at time 0 to

arrive at the sink at time 4.

Send one unit along path s, b, t starting at time 1 to

arrive at the sink at time 5.

Send one unit along path s, a, t starting at time 0 to

arrive at the sink at time 4.
Send one unit along path s, a, t starting at time 1 to

arrive at the sink at time 5.

Total flow = 4 units.

p= 6 Send one unit along path s, b, t starting at times 0, 1, 2

to arrive at the sink at times 4, 5, 6.

Send one unit along path s, a, t starting at times 0, 1, 2

to arrive at the sink at times 4, 5, 6.
Total flow = 6 units.

Figure 4.14

Example of a Maximum Dynamic Flow Algorithm

4.5 Dynamic Flow Algorithms 5

Proof of (b): To show that the flow generated by the algorithm

is a maximum dynamic flow, we shall consider its equivalent in the

time-expanded replica graph 5 We shall accomplish the proof by

showing that this static flow saturates a cut of arcs separating

the sources from the sinks in graph a

Let p(x) denote the value of the dual variable for vertex x just

before the (p + 1)-th iteration of the minimum cost flow algorithm

begins. Thus, p(t) =p+1. Let

Cc = {x,: x, € xy? Dix) <-4}

Note that since p(s) = 0, all source vertices s Ss are 0°? Sy° cre i

members of set C. Also, since p(t) = p +1, no sink vertex t Oe
preter, SS is a member of set C. The set of all arcs with one endpoint

in C and the other endpoint not in C form a cut K that separates the

sources from the sinks.

Suppose that arc (x, , y,) EK, x, €C, y, ¢C, then a(x,y) =

j - i < p(y) - p(x) from the definition of cut K. It follows from

the complementary slackness conditions of the minimum cost flow

algorithm that f(x,y) = c(x,y). Hence, the flow paths that comprise

F must saturate arc (x,y). Each of these flow paths that uses arc

(x,y) has a total traverse time (equivalently total cost) not greater

than p time periods. Moreover, each of these paths is short enough

so that flow units traveling along them can reach vertex x at time

i and still arrive at the sink before or during the p-th time period,

Thus, arc (x55 y;) is saturated in graph Gs

By a similar argument, if Xs d C and yj € C, then arc (x, 5 y;)

is empty.

Thus, each cut are in graph eS from the source side of the cut

to the sink side of the cut is saturated and each arc from the sink

side of the cut to the source side of the cut is empty. Hence, this

cut K is saturated and the flow produced by the algorithm corresponds

to a maximum flow in graph Gr Thus, the dynamic flow produced by

the algorithm is a maximum dynamic flow for p time periods.

136 Flow Algorithms

Proof of (c): The minimum cost flow algorithm terminates in a

finite number of steps. Hence, the maximum dynamic flow algorithm

must terminate in a finite number of steps since it consists of

one performance of the minimum cost flow algorithm and a temporal

repetition of flow along a finite number of flow paths from s to t.

Q.E.D.

The preceding discussion of dynamic flows did not consider the

possibility of a flow unit stopping to rest or holding over at a

vertex for one or more time periods before continuing its journey to

the sink. For example, some of the passengers from Springfield to

Istanbul might wish to break their journey for a few days at an

intermediate city.

Let Hetdevess (ores permits etss chen ea ee ee
contain arcs of the form_(x,. x; 44) so that flow units holding over X,,,) 80 tha units holding over _

at vertex x can depart from vertex x at a later time period. ee eee

If holdovers are permitted, how does the maximum dynamic flow

for p time periods change? Obviously, the possibility of having
I ar I

holdovers cannot decrease the maximum number of flow units that can as en ial ee eee

be sent from s to t in p time periods. In fact, it is easy to show

that the maximum dynamic flow for p time petiodgeceninevencheageds

Suppose holdovers are permitted and? ecaph 2 is augmented with

additional arcs as described above. Consider the flow generated by

the maximum dynamic flow algorithm and the cut K that this flow

saturates in the original unaugmented graph se This cut K is also

a cut of the augmented graph G_ and is still saturated by the maximum

dynamic flow produced by the ee dynamic flow algorithm, since

each holdover arc in K is directed from ¢ to c and carries no flow.

Thus, the possibility of holdovers does not change the maximum

dynamic flow.

Lexicographic Dynamic Flows

Let V(p) denote the maximum number of flow units that can be sent

from the source to the sink in graph G within p time periods.

Obviously,

4.5 Dynamic Flow Algorithms
137,

ple

Wiel)3 -< WAR see S$ V(p) < V(p + 1)

For the special case when arc transit times remained stationary
(i.e., were the same during all time periods), the maximum dynamic
flow algorithm constructed a maximum dynamic flow for p time periods

b comporatiy.tepeating the flow. F obtained after the p-th iteration
of the minimum cost flow algorithm. Thus,

i=r

V(p) = = Pp
ip = att) , Es . n (47)

oi Pst

since each flow path f , in F_ is repeated p - a(f_ .) times and
Pp,t P P,t

carries a5 " flow units. Let ‘e denote the number of flow units

sent from s to t at the end of the p-th iteration of the minimum

cost flow algorithm. Then, rewriting equation (47) yields

i=r

eV oe aa(f yn = py = S . a(x,y) £ (x,y) pi 2 psi’ p,i panes P

(48)

Thus, we can conclude that

+ i = = = Viper de=iv(p) = (p + ere pV z a(x,y) [£1 Gy)
(x,y)

= . a y)]

V (49)
- Votl = Pp

Note that V(ptl) - V(p) = We if, and only if, flow F tl is identical

to flow ee Consequently, as p increases the maximum dynamic flow

increased by at least es units.

An earliest arrival flow for p time periods is any maximum

dynamic flow for p time periods in which V(i) flow units arrive at

the sink during the first i time periods for i= 0, 1, ..., p. Thus,

an earliest arrival flow (if it exists) if a flow that is simultaneously

a maximum dynamic flow for 0, 1, ..., p time periods. It is logical

to call such a flow an earliest arrival flow since it would be

impossible for any flow units to arrive any earlier at the sink.

EXAMPLE 2. The travel agent of the previous example wishes as many

passengers from Springfield to arrive in Istanbul within the first

hour, within the first two hours, ..., within the first 47 hours,

138 Flow Algorithms

within the first 48 hours. Rephrased in graph terms, the travel

agent is seeking an earliest arrival flow from Springfield to Istan-

bul for 48 time periods.

THEOREM 4.1. An earliest arrival flow for p time periods always

exists for graph G.

Proof: Use the maximum flow algorithm to construct a maximum

flow from the sources to the sink in graph Go for zero time periods.

Call this flow MDF) since it is a maximum dynamic flow for zero time

periods.

Next, starting with MDF, in graph S generate a maximum flow
0

from the sources into sinks to and ty: Clearly, this flow is a

maximum dynamic flow for one time period. Call this flow MDF, . Note

that when the maximum flow algorithm is performed to generate MDF,

from MDF) that no flow unit entering sink to is ever rerouted to

sink ty since the algorithm will never reroute a flow unit already

at a sink. However, the route taken by a unit arriving at sink t
0

might be altered when MDF, is constructed. Consequently, MDF, will

be a maximum dynamic flow for zero time periods as well as for one

time period.

9 can be generated from MDF, and MDF, will

be a maximum dynamic flow for zero, one and two time periods.

In a similar way, MDF

Repeat this process to generate cae which is an earliest arrival

flow. Q.E.D.

The above proof not only demonstrates that an earliest arrival

flow always exists for any graph G and for any p = 0, Sc oer eubne

also shows how to construct an earliest arrival flow. For large

graphs or for large values of p, this construction procedure requires

an excessive and perhaps prohibitive number of calculations. Fortu-

nately, there is an efficient algorithm to construct an earliest

arrival flow for the special case when arc capacities are stationary

through time, i.e., when c(x,y,T) = c(x,y) for all T and all arcs (x,y)

4.5 Dynamic Flow Algorithms
139

This algorithm is called the earliest arrival flow algorithm (Minieka,
1973; Wilkinson, 1971). Fe

Before discussing the earliest arrival flow algorithm, let us

explore conditions under which the maximum dynamic flow algorithm
will and will not construct a maximum dynamic flow that is also an

earliest arrival flow.

Consider the graph in Fig. 4.12 and the maximum dynamic flow

for p = 6 for this graph given in Fig. 4.14. This flow consists of

6 udits. One flow unit is dispatched at time 0, 1, 2 along each of

the two flow paths (s,a,t) and (s,b,t). Thus, two flow units arrive

at the sink at time 4,5,6. This flow cannot be an earliest arrival

flow because no flow units arrive at the sink at time 3. Note that

during the fifth iteration (p = 5) of the minimum cost flow algor-

ithm performed on this graph the flow augmenting chain (s,b,a,t)

was discovered. This chain has total cost (traverse time) equal to

3-1+3 = 5. This augmenting chain transformed flow path (s,a,b,t)

of total cost 1+ 1+ 1 = 3 into path (s,a,t) with total cost 1 + 3

= 4. Hence, the units traveling this path will now be detoured to a

path that costs one unit more.

The key idea behind the earliest arrival flow algorithm is to

channel as many flow units as possible along shorter paths, like

(s,a,b,t), before these paths are superseded by longer paths, like

(s,a,t).

To facilitate the presentation of the earliest arrival algorithm,

we shall assume that all c(x,y) are integers, and replace each arc

(x,y) by c(x,y) replicas of itself each with a capacity of one unit.

Thus, since all arc capacities are one, all flow paths will have a

capacity of one, and each are will be either saturated or empty.

As before, let F denote the flow produced after the i-th

iteration of the minimum cost flow algorithm. Let Ee 2 senate

ie denote the flow paths that constitute flow Fi. By the above

a Seen each of these flow paths carries one flow unit. (Thus,

n = 1 form ald i and=all j:) “Let P. j denote the j-th flow aug-

i,j 2 : : rf s

menting chain from s to t discovered during the i-th iteration of the

140 Flow Algorithms

minimum cost flow algorithm. In the example in Fig. 4.14, evi =

(s,a,b,t), and Poe

With these definitions and motivation, we are now prepared to

=a (cyaipielnite pe

state the earliest arrival flow algorithm.

Earliest Arrival Flow Algorithm

Step 1 (Initialization): Initially, there is no flow in any

arc. Perform the minimum cost flow algorithm for p iterations.

Record each flow Fi > each set of flow paths, Fal? fio2? anerers oe

and each breakthrough path P. j for t=O dS crest Demand jaan

SeaWaves
a

Step 2 (Flow Construction): Repeat the following procedure

ions (Oy dy osen We

Consider the sequence

Md? Sea

At time period 6 - i dispatch one flow unit from s to t along each

chain P. j in the above sequence. Let the flow unit spend a(x,y)
>

time periods in each forward arc (x,y) in chain P. j and -a(x,y)
>

time periods in each backward arc in chain P, .. Label each forward
>

arc in chain rie with the time that this flow unit enters the arc,

and remove for each backward arc the label (if it exists) that denotes

the time that the flow unit would leave the backward arc.

Upon termination of the above procedure, the labels represent

the times that a flow unit enters an arc, and correspond to an ear-

liest arrival flow for p time periods.

EXAMPLE 3. We shall now use the earliest arrival flow algorithm to

construct an earliest arrival flow for the graph in Fig. 4.12 for

p = 6. Recall that when the minimum cost flow algorithm was per-

formed on this graph only two flow augmenting chains were discovered,

= (s,a,b,t) and P namely P et (s,b,a,t). The labeling results
>

Sil

of the earliest arrival flow algorithm are

For 6 Ul 0, no labeling

For 6 = 1, no labeling

4.5 Dynamic Flow Algorithms
141

For 5 = 2, no labeling,

For 9 = 3, dispatch one unit along P, 1 at time 6 - 3
b)

This creates the following labels (see Bale sare)

i] (jo)

0 on arc (s,a)

ionware) (asp)

2 on are (b,t)

For 6 = 4, dispatch one unit along chain P3 z at time 6 - 3 i H

This creates the following labels:

ion-are (sa)

2 on are (a,b)

3 on arc (b,t)

-For 6 = 5, dispatch one unit along chain P, 1 at time 6 - 3
>

I i)

"This creates the following labels;

2 on are (s,a)

Son are (a,b)

4 on arc (b,t)

Dispatch one unit along chain Pe 1 at time 6 -5=0. This creates
>

the following labels:

OZonvare) (sb)

Zeofft are (a,b)

2 on arc (a,t)

i lo For 6 = 6, dispatch one unit along chain P, 1 at time 6 - 3
3

This creates the following labels:

85en arc. (s,a)

4 on arc (a,b)

5 on arc (b,t)

Dispatch one unit along chain Pe l at time 6 -5=1. This creates
>

the following labels:

1 on arc (s,b)

B oft arc (a,b)

3 on arc (a,t)

142 Flow Algorithms

Arrival times

et er 2)

Figure 4.15

Example of a Earliest Arrival Flow Algorithm

[All arc capacities equal 1;

a(s,a) = a(a,b) = a(b,t) = 1,

aS Dm —aal(ai,c) aol

The resulting set of labels corresponds to an earliest arrival flow

the 6 time periods.

Before presenting the proof of the earliest arrival flow

algorithm, three lemmas are needed:

LEMMA 4.1. Consider the sequence of all flow augmenting chains

generated by the minimum cost flow algorithm. Suppose that two

chains P' and P''' both contain arc (x,y) as a forward arc. Then

there exists a flow augmenting chain P" between P' and P''' in this

sequence that contains arc (x,y) as a backward arc.

Proof: Recall that the capacity of arc (x,y) is one unit.

Without loss of generality, assume that P' precedes P''' in the

4.5 Dynamic Flow Algorithms 143

sequence of flow augmenting chains generated by the minimum cost

flow algorithm. Since arc (x,y) is a forward arc in P', arc (x,y) .

is saturated when chain P' augments flow. A similar situation

occurs when P''' augments flow. Hence, between these two flow aug-

mentations, a flow unit must be removed from arc (x,y). Hence, arc

(x,y) must be a backward arc in some flow augmenting chain P''. Q.E.D.

LEMMA 4.2. Suppose a flow unit travels along flow augmenting chain

P. j from s to t spending a(x,y) time periods in each forward arc
>

(x,y) and -a(x,y) time periods in each backward arc (x,y). Then,

the total travel time from s to t is i time periods.

Proof: When flow augmenting chain P, j is generated by the

minimum cost flow algorithm during its i-th iteration p(s) = 0,

p(t) = i and p(y) - p(x) = a(x,y) for all arcs (x,y) in flow augment-

ing chain Ps ; and the lemma follows. Q.E.D.
>

LEMMA 4.3. Let Pp, (x) denote the value assigned to p(x) during the

i-th iteration of the minimum cost flow algorithm. Then, for i < j,

é 2 gL
p, (x) < Pa p,(x) +j-4

Proof: At the beginning of each iteration of the minimum cost

flow algorithm, each vertex number either increases by +1 or remains

unchanged. Hence, P54 = Pp, (x) or P54 = P, (x) + 1, and the

lemma follows. Q.E.D.

Proof: To prove the algorithm, we must prove (a)

(a) That the labels generated by the algorithm correspond to a flow

(b) That this flow is an earliest arrival flow for p time periods

(c) That the algorithm terminates after a finite number of steps.

Proof of (a): To show that the labels produced by the algorithm

correspond to a flow, it suffices to prove two claims:

(1) The algorithm never indicates the removal of a label that does

not exist already

(2) The algorithm never duplicates a label on an arc.

144 Flow Algorithms

To prove the first claim, suppose that arc (x,y) is a backward

arc in chain P n Consequently, arc (x,y) must be a forward arc
>

in some chain that precedes P . Let the last such augmenting chain
>

preceding P be denoted by P, ,.- It follows that i <m.
m,n sal

According to the instructions of the earliest arrival flow

algorithm, chain P. F labels arc (x,y) with Pp, (x), P, (x) ST ot
b)

Pp, (x) +m - i, before chain Pa n removes any Vabellis) from aren Gc
°°

The chain P £ removes the label Py 6*) which is already present on
>

arc (x,y) by Lemma 4.3. Moreover, before chain US Ff is required to
>

remove another label from arc (x,y), chain P. j has placed another
5)

label on arc (x,y). Since the additional labels are successive

integers and since the labels to be removed are successive integers.

it follows that any label to be removed from arc (x,y) has already

been placed on are (x,y). This proves the first claim.

To prove the second claim, suppose that arc (x,y) has received

several identical labels. These labels must have been generated by

distinct flow augmenting chains that contain are (x,y) as a forward

arc. Let P. 5 and P eS denote any two such flow augmenting chains.
? mM,

By Lemma 1, there exists a flow augmenting chain P sequenced
kee

between P. , and Pa that contains arc (x,y) as a backward arc.
> >

Chain a removes labels P(x), Py, (x) s+ il Sass Py, (x) +m-k

from arc (x,y) before chain P 3 adds any labels to arc (x,y). The

first label that chain Be n generates on arc (x,y) is PC) » which
>

by Lemma 3 has already been removed. Similarly during each successive

iteration of the algorithm, chain Py g removes a label before chain
’

ea “ places the same label on arc (x,y). This completes the proof of
>

the second claim.

Proof of (b): We shall now demonstrate that the algorithm does

in fact produce an earliest arrival flow. This is accomplished by

an inductive argument. Clearly, the algorithm constructs an earliest

arrival flow for p = 0. Suppose that the algorithm constructs an

earliest arrival flow for p = Po ~ 1. It remains to show that the

algorithm constructs an earliest arrival flow for p = Po:

4.5 Dynamic Flow Algorithms
145

The flow generated by the algorithm for Po time periods consists
of the flow generated by the algorithm for Po - 1 time periods plus
some additional flow units arriving at the sink at time period Po:

ee “NR “pane
eich Phy sieres:s eo wtf? ap * there is a flow unit arriving

i 0 o” Po

at the sink at time period Po: This follows since each of these flow

By Lemma 2, for each flow augmenting chain P

augmenting chains contributes one flow unit to flow F . Hence, the
0

total number of flow augmenting chains in the above sequence equals

ye

By the induction hypothesis, the flow units arriving at the sink

by time period Po ~ 1 in the flow generated by the algorithm for

P= Po constitute an earliest arrival flow for Py ~ 1 time periods

and hence also a maximum dynamic flow for Po - 1 time periods. By

equation (49), it follows that the flow generated by the algorithm

is not only a maximum dynamic flow for Po time periods but also an

earliest arrival flow for Po time periods since V_ flow units arrive
Po at t at time period Po:

Proof of (c): The algorithm terminates in a finite number of

steps since labels have to be placed or removed along only a finite

number of flow augmenting chains. (There are only a finite number of

flow augmenting chains, otherwise the minimum cost flow algorithm

would not terminate after a finite number of steps.) Q.E.D.

In some situations, it might be preferable to have flow units

arrive at the sink as late as possible rather than as early as possible.

For example, if each flow unit represents a check drawn on your

account, you might prefer that they arrive at the payee (sink) as

late as possible so that your checking balance would be as large as

possible. Or the flow units might represent manufactured goods whose

storage is very expensive in which case you would prefer not to have

them in storage (i.e., at the sink) until as late as possible. For

situations such as these, we would be interested in a maximum dynamic

flow in which the flow units arrive at the sink as late as possible

rather than as early as possible.

146 Flow Algorithms

A latest arrival flow for p time periods is any maximum dynamic

flow for p time periods in which as many flow units as possible

arrive during the last time period, as many flow units as possible

arrive during the last two time periods, etc.

Does there always exist a latest arrival flow for p time periods?

Yes. The existence of a latest arrival flow for p time periods can

be proved by construction in the same way that the existence of an

earliest arrival flow for p time periods was proved by construction.

The only difference in the proof is that now units are first sent

into sink a then into sink ea -

Needless to say, the construction of the latest arrival flow for

p time periods suggested above is hardly efficient when the graph

has many arcs or vertices or when p is large. Even for the special

case when all arc capacities are stationary, there does not appear to

be an efficient algorithm for constructing a latest arrival flow,

unlike the case for the earliest arrival flow which could efficiently

be generated by the earliest arrival flow algorithm. The reason for

this is that a latest arrival flow necessitates that flow units leave

the source and linger or holdover in the network as much as possible

before arriving at the sink.

Up to now, we have discussed only the pattern of arrivals of

flow units at the sink and ignored the pattern of departures of flow

units from the source. There are, of course, many situations in

which the departure pattern at the source is important. For example,

if you are shipping manufactured items out of your warehouse, you

might prefer to dispatch them into the distribution network as soon

as possible in order to minimize the storage costs at your warehouse.

On the other hand, if the flow units represent school boys returning

to school (sink) after a summer holiday at home (source), it might

be preferable for the flow units to remain at the source as long

as possible (if the boys' sentiments are taken into account).

In a similar way, we can define an earliest departure flow for

p time periods and a latest departure flow for p time periods. The

existence of each of these flows can be proved constructively in a

4.5 Dynamic Flow Algorithms 147

way similar to the proof for the earliest arrival flow by substituting

sources for sinks in the proof.
va

As was the case for the earliest (and latest) arrival flow, the

construction suggested by the existence proof is not efficient

computationally but seems to be the best method available.

Fortunately, however, for the special case when arc capacities

are stationary through time, there is an efficient way to construct

a latest departure

Let G = (x, A) be any graph.

flow. This construction is shown below:

Define the inverse graph ear of

graph G as the graph with vertex set X and arc set

oe = {(y,x): Gy) eal

=I) =
Thus graph G = (x, A 4 is simply graph G with its are directions

“reversed. Let the

equal the capacity

Any flow from

t to s in graph oe

by each flow unit.

LEMMA 4.4. Suppose

periods in graph G

during time period

time period i, for

dynamic flow for p

at the sink during

source during time

Proof:

graph G has the desired properties.

-1
graph G

arrival times must

zero. Q.E.D.

The flow in graph (cle

capacity and traverse time of each arc in cle

and traverse time for the corresponding arc inl.

s to t in graph G corresponds to a unique flow from

and viceversa by simply reversing the route taken

there exists a maximum dynamic flow F for p time

in which x; flow units depart from the source

i and 7; flow units arrive at the sink during

i=0,1, eyo De

time periods in graph ou

Then there exists a maximum

in which x, units arrive

time period p - i and be units depart from the

periodup-— i, for ds = 05-1, ap We

that corresponds to flow F in

Note that the flow units in

travel backwards in time, and hence their departure and

be counted downward from p rather than from time

It follows from Lemma 4.4 that an earliest arrival flow in

G for p time periods corresponds to a latest departure flow in graph

gt for p time periods.
-1,-1 ;

Moreover, since (G) = G, an earliest

148 Flow Algorithms

arrival flow in graph on for p time periods corresponds to a latest

al ail , ;
departure flow in graph (G i = G for p time periods.

A latest departure flow for p time periods for graph G can be

constructed as follows:

(1) Construct graph Gu by reversing all arcs in G

(2) Determine an earliest arrival flow for p time periods for

graph Go using the earliest arrival flow algorithm

(3) Determine the corresponding flow in graph G. This flow is a

latest departure flow for p time periods for graph G.

Hence, the earliest arrival flow algorithm can also be used to

generate a latest departure flow.

Now suppose that an earliest arrival flow for graph G for p

time periods has already been found by the earliest arrival flow

algorithm. Is it necessary to perform the earliest arrival flow

algorithm again (this second time on graph ct) to determine the

latest departure flow for graph G for p time periods? The following

theorem answers this question negatively:

THEOREM 4.2. Suppose that the earliest arrival flow for graph G for

p time periods consists of ye flow units arriving at the sink during

time period i, for i= 0, 1, ..., p. Then, the latest departure

flow for graph G for p time periods consists of Ys units departing

from the source during time period p - i, for i= 0, 1, ..., p.

Proof: We shall prove this result by contradiction. Suppose

that in any latest departure flow for graph G for p time periods

that Lar ee V5? flow units depart from the source during the last

i time periods: (This contradicts the theorem.) Then, from Lemma

4.4, there exists a maximum dynamic flow in graph eo for p time

periods in which Z flow units arrive during the first i time periods

at the sink. However, the maximum number of flow units that can be

sent from source to sink in the last i time periods in graph G is

equal to the maximum number of flow units that can be sent from the

source to the sink in the first i time periods in graph Ge Thus,

j=i
ZL = Ys which is a contradiction. Q.E.D.

j=0

4.5 Dynamic Flow Algorithm
149

Hence, we can conclude that the earliest arrival and latest

departure schedules for p time periods are Symmetric, i.e., the

number of flow units arriving at the sink at time period i in an

earliest arrival flow equals the number of flow units leaving the
source at time period p - i in a latest departure flow.

Happily, the earliest arrival flow constructed by the earliest

arrival flow algorithm possesses another important property:

THEOREM 4.3. The earliest arrival flow constructed by the earliest

arrival flow algorithm is also a latest departure flow.

Proof: Let rie denote, as before, the j-th flow augmenting

chain found during the i-th iteration of the minimum cost flow

algorithm. The earliest arrival flow algorithm for p time periods

will send one flow unit along chain Pry from the source to the sink

at times 0, i, ..., p - i by Lemma 2. These flow units arrive at

the sink at times i, i+1, ..., p by Lemma 2. Since this is true

for every flow augmenting chain Foret for each flow unit arriving

at the sink at time p - k there is a flow unit departing from the

source at time k. Hence, the earliest arrival flow constructed by

the earliest arrival flow algorithm has a latest departure schedule.

OnE. D.

For example, consider the earliest arrival flow generated by

the earliest arrival flow algorithm in Fig. 4.15. The departure

schedule of this flow is

Time period 0] 2, 3) 4 5 6

Number of units 2 2 1 i 0 0 0

The arrival schedule for this flow is

Time period 0 1 2 3} 4 5 6

Number of units 0 0 0 1 1 2 2

Notice the reverse symmetry between the arrival schedule and the

departure schedule.

150 Flow Algorithms

Unfortunately, the same reverse symmetry does not hold between

latest arrival flows and earliest departure flows. To demonstrate

this, consider the graph in Fig. 4.16. For p = 5, a maximum of 4

flow units can be sent from the source to the sink. The earliest

departure schedule is by inspection:

Time period 0 dl 2 3 4 5

Number of units il 1 i. it 0 0

The latest arrival schedule is by inspection:

Time period 0 i! 2 3} 4 5

Number of units 0 0 0 ol 1 2

Figure 4.16

Counterexample

(All arc capacities equal 1. Arc transit times are indicated.)

Consider ‘a set S = {a,b,c, ...}. We say that there is a

lexicographic preference a, b, c, ... on set S if one unit of item

a is preferred to any number of units of the remaining items b, c,

--., and one unit of item b is preferred to any number of units of

the remaining items c, ..., etc. An earliest arrival flow is called

a lexicographic flow since it places a lexicographic preference to»

ti» to>

Similarly, the latest arrival flow, earliest departure flow and

ats oS on the sinks to be used by arriving flow units.

latest departure flows are also lexigographic flows since there is

for each of these flows some lexicographic preference on which

sources or sinks the flow units are to use.

We shall conclude this section with a result which shows that

for maximum flows any departure schedule at the source is compatible

with any arrival schedule at the sink.

4.5 Dynamic Flow Algorithm Anil

THEOREM 4.4. Let F' and F'' be any two maximum flows on graph G.

Then, there exists a maximum flow on graph G that simultaneously has

the same departure schedule at the source as flow F' and the same

arrival schedule at the sink as flow F''.

Proof: Select any minimum cut separating the source from the

sink in graph G. Since both F' and F'' are maximum flows, both

saturate this cut. Construct a hybrid maximum flow from F' and F"'

that is identical to flow F' on the source side of this cut and is

identical to flow F'' on the sink side of this cut. This hybrid flow

has the departure schedule identical to flow F' and an arrival schedule

identical to flow F''. Thus, the hybrid flow satisfies the theorem.

Q.E.D.

LEMMA 4.5. The following dynamic flows exist:

Earliest departure and earliest arrival

. Earliest departure and latest arrival

Latest departure and earliest arrival

o) (GOD (ND) . Latest departure and latest arrival

Proof: The proof is achieved by applying Theorem 4.4 to graph

G. a Eire : Q

As shown in Theorem 4.3, the earliest arrival flow algorithm

constructs an earliest arrival and latest departure flow, i.e.,

item 3 in Lemma 4.5. The three remaining flows, items 1, 2, and Ae

could be constructed by splicing together two flows as suggested by

the proof of Theorem 4.4. Unfortunately, finding more efficient

methods of constructing the other three flows seems to be an open

question.

4.6 FLOWS WITH GAINS

Previously, whenever a flow unit entered an arc, the same flow unit

exited from the arc unchanged. Flow units were neither created nor

destroyed as they traveled through an arc. In this section, we shall

no longer assume that flow units are unchanged as they traverse an

LS? Flow Algorithms

arc. Instead, we will allow the number of flow units traveling

through an arc to raeseaee or decrease. Specifically, we shall assume

that if f(x,y) flow units enter arc (x,y) at vertex x, then k(x,y)

£ (x,y) flow units exit arc (x,y) at vertex y, for all arcs (x,y).

Each flow unit traversing arc (x,y) can be regarded as being multiplied

by k(x,y). The quantity k(x,y) is called the gain or gain factor of

are (x,y).

EXAMPLE 1. A plant nursery must dispatch a shipment of plants to

its distributors. On some of these routes, the plants experience a

high fatality rate due to improper climatic conditions. On other

routes, with more suitable climatic conditions, the plants generally

experience a significant growth during shipment.

The routes with plant fatalities can be regarded as arcs with

gain factors that are less-than-one; the routes with plant growth can

be regarded as arcs with gain factors that are greater than one.

EXAMPLE 2. A corporate financial analyst must decide how to ration

the corporation's investment funds between competing investments.

How can he develop a network with gains to aid his investment decision

problem?

The analyst can regard each investment possibility as an arc

going from the vertex corresponding to its starting date to the vertex

corresponding to its termination date. If, say, an investment pays

8%, then a gain of 1.08 can be attached to the arc representing this

investment. The capacity of each arc should equal the maximum amount

that can be placed into the corresponding investment. If each dollar

to be invested represents a flow unit, then the analyst's investment

decision problem can be rephrased as the problem of sending as many

flow units to the sink given a limited supply of flow units at the

source of the graph generated by the investment possibilities. (The

source is the vertex representing the current time and the sink is

the vertex representing the date on which all investments must expire.)

If k(x,y) > 1, then flow is increased along arc (x,y). If k(x,y)

= 1, then flow remains unchanged along arc (x,y). If 0 < k(x,y) <1,

then flow is reduced along arc (x,y). If k(x,y) = 0, then flow is

4.6 Flows with Gains 153

ea i

i by arc (x,y) and arc (x,y) can be regarded as a sink. In

the discussion to follow we shall always assume that all arcs (x,y)

with k(x,y) = 0 have been replaced by sinks. If k(x,y) <0, thant

for each flow unit entering arc (x,y) at vertex x, -k(x,y) flow

units must arrive at vertex y; thus, arc (x,y) can be regarded as

creating a demand for flow units.

The central problem of this section is the minimum cost flow

with gains problem. As you might expect, this problem is the problem

of finding a minimum cost way of dispatching a given number V of

flow units from the source to the sink in a network in which the

arcs have gain factors associated to them. Of course, if V flow

units are es Seee ee into the network at the source, then the number

of flow units arriving at the sink need not equal V because of arc

gains. (Note that in all previous flow problems, the number of units

discharged into the network at the source always equaled the number

that arrived at the sink.)

As before, arc (x,y) has associated with it an upper bound

c(x,y) and a lower bound 1(x,y) on the number of flow units that may

enter it and a cost a(x,y) for each unit that enters the arc. Again,

let f(x,y) denote the number of flow units that enter arc (x,y).

The minimum cost flow with gains problem can be written as follows:

Minimize

> x a(x,y) f(x,y) (50)

(x,y)

such that :
iE =

aes k(y,x) £(y.x) = i See Pe (51)
a u¢+

Gey) = f(x,y) < c(x,y) [forall (x,y)] (52)

Expression (50) represents the total cost of the flow. Equation (51)

states that the net flow out of vertex s must equal V and the net

flow out of every other vertex, except t, must equal zero. Relation

(52) states that each arc flow must lie within the upper and lower

bounds on the arc's capacity.

154 Flow Algorithms

The minimum cost flow with gains problem, specified by relations

(50) - (52) is a linear programming problem. Let p(x) denote the

dual variable corresponding to equation (51) for vertex x. Let

Y, Gy) denote the dual variable corresponding to the upper capacity

constraint in relation (52) for arc (x,y). Let YY) denote the

dual variable corresponding to the lower capacity constraint in

relation (52) for arc (x,y). With these definitions for the dual

variables, the dual linear programming problem for the linear

programming problem of relations (50) - (52) is

Maximize

Vp yee sexy) yy) + 2 &Cx,y) Yo (xy) (53)
(x,y) (x,y)

such that

p(x) — k(x,y) p(y) - ¥,(%y) + Y) (x,y) < a(x,y) (54)

[for all arcs (x,y)]

Y¥, (y) > 0 [for all arcs (x,y)] (55)

Yy (xy) > 0 [for all ares (x,y)] (56)

p(x) unrestricted (for all x) (57)

If the values for the dual variables p(x), x € X, are already

given, then the remaining dual variables Y¥, @y) and Yo (%sy) must

satisfy

“¥, (&.y) + Y, (x,y) < a(x,y) - p(x) + k(x,y) p(y) A o(x,y)

[for all arcs (x,y)] (58)

For convenience, the right side of relation (58) is denoted by iA) 2

The dual objective function (53) is maximized if ¥, (&y) and

Y, (x,y) are chosen as follows:

ee

Ee) 2 0,

set

¥, (y) = 0 Yo (x,y) = tx,y)

4.6 Flows with Gains
755

If

eGy) <0

set

Y,(%.y) = -cG.y) 5 (x,y) = 0 (59)

This follows since ¥, (y) and Yo (x,y) appear in only one dual

constraint (54).

nS, Thus, the values of ¥, &y) and Yq (59) for all arcs (x,y) are

imputed’ by the values of the dual variables p(x). Thus, we need

only seek an optimal set of values for the vertex dual variables

p(x).

The complementary slackness conditions generated by this

primal-dual pair of linear programming problems are

Y, (y) mAUL= SE(xsy) = e(s,9) (60)

NyAzoy) > 0'=> f(x,y) = 1(x,y) (61)

Since the values of Y, &y) and Yo (&5y) are determined by the value

of ¢(x,y), the complementary slackness conditions, (60) and (61),

can be restated in terms of f(x,y) as follows:

S(x,y) <0 > f(x,y) = e(x,y) (62)
BGcyy) 70 E(x y) = Ley) (63)

Hence, to solve the minimum cost flow with gains problem, we

need only find a set of feasible flow values f(x,y) and a set of

dual vertex variable values p(x) such that the complementary slack-

ness conditions, (62) and (63), are satisfied for all arcs (x,y).

Consider the cycle in Fig. 4.17 in isolation from the remainder

of its graph. If one additional flow unit arrives at vertex x and

enters arc (x,y), then during its passage across arc (x,y), it

increases to two flow units at vertex y, and becomes 2/3 of a flow

unit at vertex z, and finally becomes 2 flow units upon its return

to vertex x. Thus, each additional flow unit that travels clockwise

around this cycle becomes two flow units. This cycle is called a

clockwise generating cycle. In general, a cycle C is called a clock-

wise generating cycle if

156 ; ; Flow Algorithms

II k(x,y)

(x,y)
forward

iN eve
Ko J II k(x,y) eth Mee

(x,y)
backward

arc

when cycle C is traversed in the clockwise direction. Similarly,

we can define a counterclockwise generating cycle as any cycle for

which inequality (64) is satisfied when the eyele is traversed in

the counterclockwise direction. The generating cycles (i.e., clock-

wise generating cycles and counterclockwise generating cycles) are

important because they have the ability to create additional flow

units.

Figure 4.17

Clockwise Generating Cycle
tA

[kK@sy) = 2, k@y.e) 3/1/35 kKG@5x) = 3.)

Figure 4.18

Clockwise Absorbing Cycle

[k(x,y) = 1, k(z,y) = -1/2, k(z,x) = 1/4.]

Now, consider the cycle in Fig. 4.18. If an additional flow

unit arrives at vertex x and enters arc (x,y) and traverses this

cycle in the clockwise direction, then an additional 1/2 flow unit

4.6 Flows with Gains
157

will be required at vettex x. This follows from the fact that the
unit traversing arc (x,y) creates an additional unit at vertex y.
This additional flow unit arriving at vertex y requires the flow ie
are (z,y) to increase by 2 units. Hence, because of the increase of
2/dnits in) arc (z,y), ‘an additional (1/2 unit is required at vertex
x. Thus, if 1 1/2 flow unit arrive at vertex x, one flow unit can
be sent clockwise around this cycle and the remaining 1/2 flow unit
can be used to supply the additional need at vertex x. Thus, this

cycle absorbs flow units and is called a clockwise absorbing cycle.

In general a cycle C is called a clockwise absorbing cycle if

T= k(x,y)
(x,y)

F forward

Ko 2 SIRE <1 (65)

(x,y)
backward

are

when cycle is traversed in the clockwise direction. Similarly, we

can define a counterclockwise absorbing cycle as any cycle for which

inequality (65) is satisfied when the cycle is traversed in the

counterclockwise direction.

Because a graph might contain generating and/or absorbing cycles,

we cannot be certain that every flow unit leaving the source ultimately

arrives at the sink (it could be absorbed by an absorbing cycle) or

that every flow unit arriving at the sink initially came from the

source (it could have been generated by a generating cycle).

Note that if ko. is calculated in the clockwise direction, then

1/k, equals the value of ko for the counterclockwise direction.

This follows since changing the direction of travel around the cycle

changes backward arcs to forward arcs and forward arcs to backward

arcs. Hence, the numerator and denominator in ko are switched.

If a graph contains no absorbing or generating cycles, that is,

ko = 1 for all cycles C for both clockwise and counterclockwise

directions, then the minimum cost flow with gains problem can be

converted into a pure (i.e., without gains) minimum cost flow problem

158 Flow Algorithms

which can be solved by the Out-of-Kilter Algorithm. We shall now

show how to convert the minimum cost flow with gains problem into a

minimum cost flow problem.

Consider the conservation of flow requirements (51) and the

flow capacity constraints (52) for the minimum cost flow with gains

problem. Let E denote the coefficient matrix of the left side of

these constraints. If a row of E is multiplied by a nonzero constant,

the set of feasible solutions to this set of simultaneous linear

inequalities remains unchanged.

Suppose that the column of E corresponding to arc (x,y) is

multiplied by a nonzero constant c. Then, in the original set of

inequalities cf(x,y) appears wherever f(x,y) formerly appeared.

If 1(x,y) and c(x,y) are also multiplied by c, then cf(x,y) can be

replaced by a new variable f'(x,y) and the constraints remain those

of the original problen.

Can we find row and column multipliers such that after the

redefinition of variables as defined above, the new flow problem

will be a pure network flow problem? The following theorems due to

Truemper (1976) provide an affirmative answer to this question:

THEOREM 4.5. A flow with gains problem can be converted into a

flow without gains problem if, and only if, there exist a vertex

number m(x) for each vertex x such that

m(x) k(x,y) _
m(y) ao)

for all arcs (x,y) in the graph.

Proof: Suppose there exist vertex numbers m(x) such that

equation (66) is satisfied for all arcs (x,y) in the graph. Multiply

the conservation of flow equation (51) for vertex x by 1/m(x) for

each vertex x. Let f'(x,y) = f(x,y)/m(x). for all arcs (x,y).

Rewrite equations (51) and (52) in terms of the f' variables. After

doing this, the resulting equations in the f' variables are in the

form of relations (24) - (26), which is a minimum cost flow (without

gains) problem.

4.6 Flows with Gains 159

To prove the converse, suppose that the flow with gains problem

can be converted into a flow without gains problem. Then, there

must exist a multiplier for each row in E that converts the corre-

sponding equation into the constraint for a flow without gains

problem. Let 1/m(x) denote the multiplier for constraint (51) for

vertex xX.

In a flow without gains problem, the coefficient of each

variable £'(x,y) in the conservation of flow constraint (25) for

vertex x is +1; consequently, f'(x,y) = £(x,y)/m(x). Ina flow

without gains problem, the coefficient of each variable f'(y,x) in

the conservation of flow constraint (25) for vertex x is -1:

Consequently, -f'(y,x) = -k(y,x) f£(y,x)/m(x) = -k(y,x) m(y) £'(y,x)/

m(x). Hence, 1 = k(y,x) m(y)/m(x) for all arcs (y,x) which is

condition (66). Q.E.D.

Thus, a flow with gains problem can be converted into a pure

flow problem if there exist vertex numbers satisfying the conditions

prescribed in (66). When do such vertex numbers exist? How can

they be calculated? Read on.

THEOREM 4.6. Vertex numbers satisfying Theorem 4.5 exist, if, and

only if, the graph contains no absorbing and no generating cycles,

that is, ko = 1 for all cycles C.

Proof: Suppose that a set of vertex numbers m(x) exist such

that m(x,y) = k(x,y)m(x)/m(y) = 1 for all arcs (x,y). Select any

cycle C. It follows that

Il k(x,y) Il m(x)k(x,y)
(x,y) (x,y) m(y)

_ forward _ forward
Route, Tih (x.y) |) E . om(@) k(x)

(x,y) (x,y) m(y)
backward backward re

II m(x,y)
(x,y)

_ forward =h¥

% Il m(x,y)

(x,y)
backward

160 Flow Algorithms

Hence, if all m(x,y) equal 1, no absorbing or generating cycle can

exist in the graph.

Conversely, suppose that no generating or absorbing cycle exists

in the graph. Select any spanning tree T of the graph. Let m(s) =

1, and let m(x,y) = 1 for all arcs (x,y) in T. Im the obvious way,

fan out along the arcs of the tree calculating a value for m(x) for

each vertex x. These vertex numbers are uniquely determined.

Select any arc (x,y) not in T. This arc forms a unique cycle

C with the arcs in T. By (70), it follows that m(x,y) = 1 since

m(i5 jd =" for allearcs) (Gs4)) ine le)) thus, mx>y))— 1) for allvares

xe y) Snot ink Tse (0. BED:

Thus, if a network possesses no absorbing or generating cycles,

then the minimum cost flow with gains problem can be transformed

into a minimum cost flow without gains problem, which can be solved

optimally by the out-of-kilter algorithm or in the case of all lower

capacities equalling zero by the minimum cost flow algorithm. This

transformation is effected by multiplying the conservation of flow

constraint (51) for vertex x by 1/m(x) where m(x) is determined as

in the proof of Theorem 4.6.

If the network possesses absorbing or generating cycles, the

flow problem becomes more complicated. In this section, we shall

present an algorithm, Jewell (1962), for solving the minimum cost

flow with gains problem. This algorithm is called the flow with

gains algorithm. It consists of three basic steps:

Step 1 (Initialization Step): This step finds flow values

f(x,y) and dual variable vertex number values p(x) such that the

complementary slackness conditions (62) - (63), are satisfied and

that the flow satisfies all feasibility requirements, (51)-(52),

except that possibly less than V flow units are dispatched from the

source. Hence, Step 1 finds a solution that satisfies all primal,

dual and complementary slackness requirements, except the required

output at the source. (As will be seen later, Step 1 will be

expedited by constructing a graph that is a slight enlargement of

the original graph.)

4.6 Flows with Gains 161

Step 2 (Flow Increment Step): In this step, the flow out of

the source is increased while retaining all the primal, dual and va

complementary slackness requirements described in Step 1.

Step 3 (Dual Variable Change Step): This step describes how

to change the values of the dual variables p(x) so that even more

flow units can be discharged out of the source into the network.

The algorithm consists of performing Step 1 to determine an

initial flow. Step 2 is performed next to send more flow units out

of the source, while maintaining all complementary slackness

conditions. Once Step 2 cannot discharge any more flow units from

the source into the network while maintaining all complementary

slackness conditions, Step 3 is performed to change the dual variable

values so that even more flow units can be discharged into the

network. The algorithm returns to Step 2. Once Step 2 ceases to

discharge any more flow units into the network, Step 3 is repeated,

etc., until all V flow units have been discharged into the network

from the source. If no feasible flow that discharges V units into

the network exists, the algorithm will discover this during an

iteration of Step 3 and terminate.

With all this as motivation, we are now prepared to state

formally the flow with gains algorithm.

Flow With Gains Algorithm

Step 1 (Initialization): This step shows how to find a set of

flow values £ (x,y) and dual variable values p(x) for a network

equivalent to our original network such that all feasibility

conditions (51) = (52) and complementary slackness conditions (62) -

(63) are satiefied oda that the net flow out of source s is less

than or equal to_¥, the required flow out of source s.

Arbitrarily select any values for the dual variables p(x),

x € X. Consult the complementary slackness conditions

c(x,y) = a(x,y) — p(x) + k(x,y)p(y) <0 > f(x,y) = c(x,y)

(62)

162 Flow Algorithms

S(x,y) = a(x,y) - p(x) + k(x,y)p(y) > 0 > f(x,y) = 1(x,y)

(63)

to determine which values for f(x,y) are compatible with the

complementary slackness conditions for each arc (x,y). Select any

compatible value for f(x,y) for each arc (x,y).

Next, determine the net surplus flow V(x) out of each vertex x,

where

V(s) = 2 f(x,y) - 2 k(y,x)f(y,x) - V
My yi on)

V(x) = 2 f(x,y) - 2 k(y,x)fly,x)
y y

If V(x) = 0 for all x, then the current solution is an optimal

solution since it is a feasible flow that satisfies all complementary

slackness conditions for the chosen values of p(x). Of course, we

usually are not so fortunate.

Create a new network from the original network by adding a

vertex S and an arc (S,x) from S to each vertex x with V(x) # 0.

Let c(S,x) = V(x) for each arc (S,x).

If F

V(x) < 0 Pe

let Pid

k(S,x) = +1 ey
iba

V(x) > 0 ,

let

k(S,x) = -1

Lastly, let a(S,x) = 0 for all arcs (S,x).

Let the flow in each newly created arc (S,x) equal zero and

let the flow in all other arcs remain as before. Clearly, flow is

not conserved at all intermediate vertices of the new network since

at least one intermediate vertex x has V(x) # 0. However, if enough

flow units can be sent out of vertex S and absorbed into the new

network so that each arc (S,x) is saturated, then this new (non-

feasible) flow in the new network will correspond to a feasible flow

4.6 Flows with Gains 163

in the original network. This follows since arc (S,x) will supply

vertex x with exactly enough flow units to counteract the net

surplus out of vertex x.

Moreover, a minimum cost flow in the new network that saturates

all arcs (S,x) corresponds to a minimum cost flow in the original

network since all a(S,x) = 0. Hence, we can find an optimal solution

for the original network by searching for an optimal solution for

the new network.

The linear programming formulation of this minimum cost flow

with gains problem on the new network is like the linear programming

formulation of the minimum cost flow with gains problem on the original

network, relations (50)-(52), except that now vertex S is the source

vertex and the right side of the conservation of flow equation (51)

for vertex x should now be V(x) instead of zero.

The complementary slackness conditions for the new network are

the same as for the original network.

If we retain the same values as above for p(x) for each vertex

x in the original network and let p(S) be any large negative number,

the complementary slackness conditions will be satisfied for the

new network.

Hence, the original selection of flow values and dual variable

values generates a set of values for the flow variables and dual

variables for the new network that satisfy feasibility and complemen-

tary slackness conditions. All is done, except more units must be

sent into the network from vertex S. Proceed to Step 2.

Step 2 (Flow Augmentation): This step shows how to increase

the flow out of the source S as much as possible without losing

any complementary slackness or changing any dual variable value.

For each arc (x,y), determine if the complementary slackness

conditions (62)-(63) will allow f(x,y) to be increased or decreased.

Let I denote the set of increasable arcs, and let R denote the set

of reducible arcs. Only the arcs in I and R will be considered in

this step.

164 Flow Algorithms

To determine if additional flow units can be dispatched from

S using only arcs in I and R, we shall successively grow a tree of

arcs rooted at the source, just as in the maximum flow algorithm.

These arcs will be called colored arcs. If a vertex is reached by

this tree, then additional flow units can be dispatched from the

source to this vertex via the arcs of the tree. Whenever an arc

incident to a vertex x is added to the tree (colored), vertex x

will receive a label f(x) denoting the number of flow units that

would arrive at vertex x for each flow unit sent to it from the

source.

If the sink is labeled, then a flow augmenting chain from the

source to the sink has been discovered. As much flow as possible

is dispatched from the source along this flow augmenting chain to

the sink.

If an arc that forms a cycle with the colored arcs can also be

colored, then we must check if this cycle can absorb flow units sent

out from the source. If so, we dispatch as much flow as possible

from the source to be absorbed by this cycle. If this cycle cannot

sens flow units dispatched from the source, then some of the colored

arcs in this cycle are uncolored, and the coloring process continues.

Now for the details of the coloring and labeling procedure:

Initially all arcs are uncolored and all vertices are unlabeled.

Label the source S with the label £(S) = +1. Perform the following

coloring and labeling operations:

Uncolored are (x,y) can be colored if one of the following

conditions is met:

i x dis labeled, £(x))> 0; sand Gy) © 2

2. x is labeled, f(x) < 0, and (x,y) ER

3. y is labeled, f(y) > 0, and either (x,y) € R, k(x,y) > 0 or

Gawler kGy)n< 20

4. y is labeled, f(y) < 0, and either (x,y) e€ I, k(x,y) > 0 or

(CxBy EG eRaw (sony) eco

If arc (x,y) is colored because of items 1 or 2 then we say that

arc (x,y) was colored from vertex x. In this case, label y with

f(y) - £(x)k(x,y).

4.6 Flows with Gains
165

If arc (x,y) is colored because of item 3 or 4, then we say
that arc (x,y) was colored from vertex y. In this case, label x Z

with f(x) = f(y)/k(x,y).

Note that a vertex label f(x) denotes the number of flow units

that arrive at vertex x for each unit discharged at S along the
chain of colored arcs that generated the label Ae Sie

Continue this coloring and labeling procedure until

1. The sink is labeled

2. Some vertex receives two distinct labeis

3. No more labeling or coloring is possible.

If item 3 occurs, go to Step 3.

If item 1 occurs, then a unique chain of arcs from the source

to the sink has been colored. This is a flow augmenting chain from

the source to the sink. Send as many units as possible along this

chain, and return to the beginning of Step 2.

If item 2 occurs, then some vertex x has received two distinct

labels, £, (x) and £, (x). Without loss of generality, suppose that

£, (x) < £, (x). Each label corresponds to a distinct (possibly

partially overlapping) flow augmenting chain from S to x. If the

labels £, (x) and £, (x) are of opposite signs, then a flow unit sent

from S along the flow augmenting chain corresponding to the label

£ (x) results in a demand of £, (x) Ne units at vertex x. A flow

unit sent from S along the flow augmenting chain corresponding to

the label £, (x) results in £, (x) flow units arriving at x. Con-

sequently, these two flow augmenting chains contain an absorbing

cycle. Send as many flow units as possible from S along these two

chains so that the flow units required at x by the first chain are

supplied by the flow units arriving at x along the second chain.

Return to the beginning of Step 2.

ie £, (x) and £, (x) have the same sign, then we cannot be certain

that we have discovered an absorbing cycle that can accept flow units

discharged at S. Without loss of generality, suppose that [£, (x) |

< |£, (x). If the label £, (x) is descendent from the label £, Gx)

166 Flow Algorithms

[i.e., involves £, (x) in its computation), then a cycle C has been

labeled from vertex x back to itself. Since, |£, | < lf,Go|, at

follows that ko = £, (x)/£, (x) <1, and hence, cycle C is an absorb-

ing cycle. Send as many flow units as possible from the source to

be absorbed by cycle C, and return to the beginning of Step 2.

If label £, (x) is not descendent from label f(x), then we

have discovered two alternate flow augmenting chains from S to x but

have not discovered any absorbing cycle. In this case, erase label

£, (x) and all coloring and labels descendent from label £, (x).

Continue the coloring and labeling procedure.

Step 3 (Dual Variable Change): This step shows how to define

new values p'(x) for the dual variables p(x) that will satisfy the

complementary slackness conditions. After the values of the dual

variables are redefined, return to Step 2 to try to discharge more

flow units from the source.

The details of redefining the dual variables are as follows:

Let T denote the tree of arcs colored during the last iteration of

Step 2. Let L denote the set of vertices labeled during the last

iteration of Step 2. Set L consists of the endpoints of all arcs

any ANS

For each vertex x, define a variable q(x) as follows:

1
Tee le Se Te,
12 q(x) = 44) (72)
0 Teese ee

Define

ont (x,y) }
: mint a - k(x,y)qy)]

where the minimization is taken over all arcs (x,y) for which the

numerator and denominator have the same sign. If the denominator

is zero for all arcs, then stop the algorithm since no feasible

solution exists for the minimum cost flow with gains problem. Other-

wise, define the new values p'(x) for the dual variables as follows:

p'(x) = p(x) + 6q(x) (for all x) (73)

Return to Step 2.

4.6 Flows with Gains 167

Proof of the Flow with Gains Algorithm: We must show that the

flow with gains algorithm terminates with an optimal solution or _

that no solution exists.

Step 1 transforms the original minimum cost flow with gains

problem to a new network in which each source are must be saturated.

A minimum cost solution in the new network in which every source arc

is saturated is equivalent to an optimal solution to the minimum cost

flow with gains problem in the original network. Hence, we need

only show that (a) the algorithm finds an optimal solution to the

minimum cost flow with gains solution in the new network that saturates

all source arcs, or (b) no feasible solution exists.

(a) To show that the algorithm terminates with an optimal solution

in the new network, we need only show that complementary slackness

is maintained at all times since the algorithm can only terminate

with a flow that saturates all source arcs or else the algorithm

claims no feasible solution exists.

The algorithm is initialized in Step 1 with a solution in which

all complementary slackness conditions are satisfied. Moreover, all

complementary slackness conditions are maintained throughout all flow

changes in Step 2 since the flow changed in an arc are never permitted

to violate any complementary slackness conditions.

Are all complementary slackness conditions maintained by Step

32 Consider any arc (x,y) € A. After the vertex number change of

Step 3, the new value ¢'(x,y) of S(x,y) becomes

a(x,y) - p'(x) + k(x,y)p'(y)

a(x,y) - p(x) - Sq(x) + k(x,y) [p(y) + Sa(y)] (74)

o(x,y) + 6[-q(x) + k(x,y)q(y)]

Case 1. If are (x,y) € T, then q(x) = k(x,y)q(y) and t'(x,y)

= C(x,y) + 6[-q(x) + q(x)] = G(x,y). Since the dual variable

change of Step 3 causes no change in t(x,y), it follows that the

complementary slackness conditions remain satisfied for arc (x,y).

case 2. If arc (x,y)¢ T, x¢ L, y EL, then q(x) = qty) = 0

and t'(x,y) = S(x,y) + 06 = t(x,y). Since the dual variable change

168 Flow Algorithms

of Step 3 causes no change in C(x,y), it follows that the complementary

slackness conditions remain satisfied for arc (x,y).

Three more cases remain:

(x,y) €T, xEL,-y EL

(x,y) €T, x@L, ye L

Gay) 42T, xe Ll, ye L.

It is left to the reader to verify that for each of these cases that

the dual variable change maintains all complementary slackness

conditions for arc (x,y). These verifications follow the same lines

as above.

(b) Suppose that the algorithm términates in Step 3 with 6 undefined.

We shall now show that no feasible flow exists.

Additional flow from the source can reach only the vertices in

set L without violating any complementary slackness conditions imposed

by the current choice of the dual variables p(x). Can the dual

variable values be changed so that set L can be increased by at least

one member, thereby bringing us closer to labeling the sink or color-

ing an absorbing cycle? Disregarding the complementary slackness

conditions, there are five ways an arc (x,y) can be colored:

le x GL, oy € L, £G)ee 105 Geyy)< feesy)

2 EFL says or eS Oy nas y)

Jae REILye yaeaL ye tily ee Out Cay)y > Gey)

4. x€L, ye L, £(y)e< 05) F(xsy) sc(x,y)
5 xEL, ye L, (x,y) ¢ T, and (x,y) forms an absorbing cycle with

the colored arcs.

Careful examination of each of these cases shows that for each

case C(x,y) and q(x) - k(x,y)q(y) must have the same sign. If 6 is

undefined, then it follows that there is no arc (x,y) that is uncolor-

ed and for which ¢(x,y) and q(x) - k(x,y)q(y) have the same sign.

Hence, no are is a candidate for coloring and flow units cannot

reach any further out of the source. Hence, no feasible flow exists.

Q.E.D:

4.6 Flows with Gains
169

The flow with gains algorithm and its proof as stated here

avoided any mention of the number of steps required before termination.
In fact, the algorithm as stated need not terminate in a finite
number of steps. We shal] now describe how to modify the flow with

gains algorithm to insure that it will terminate finitely. First

some definitions are needed.

A flow with gains is called canonical if no connected component

of the set of intermediate arcs (arcs with flow strictly between the

arc's lower and upper capacity) contains any of the following

configurations:

1. A cycle C with ko = 1

2. Two distinct but possibly overlapping cycles

3. The source and a cycle

4. The sink and a cycle

5. The source and the sink

Notice that if a connected component of intermediate arcs con-

tains any of the above configurations, then the flow in the arcs in

the component can be altered so that

(a) One or more arcs in the component becomes nonintermediate

(b) The net flow out of each vertex (except possibly the source and

the sink) remains unchanged.

For example, if the intermediate arcs contain two cycles that over-

lap or are connected to each other via intermediate arcs (configuration

2), then flow could be increased around one of the cycles, and the

surplus (or deficiency) created by the flow change around this cycle

could be absorbed into the second cycle.

It is left to the reader to verify for himself that this flow

change can always be made so that the net flow out of the source

remains unchanged or is increased.

Hence, if a flow with gains is not canonical, it contains one

of the above configurations and a flow change can be made to decrease

the number of intermediate arcs without decreasing the net flow out

of the source. If the new flow resulting from this flow change is

170 Flow Algorithms

also not canoncial, then this process can be repeated. After

successive repetitions of this process a canonical flow will be

generated without decreasing the net flow out of the source. Hence,

any noncanonical flow can be converted into a canonical flow without

decreasing the net flow out of the source.

THEOREM 4.7. There exist only a finite number of distinct canonical

flows in graph G.

Proof: The number of distinct possibilities for the set M of

intermediate arcs is finite since M is a subset of the finite arc

set of graph G. The flow in each arc (x,y) ¢ M is either 1(x,y) or

c(x,y). Hence, there are only a finite number of possible sets of

values for the flows of the arcs not in M.

For a given set M and a given set of flow values for the arcs

not in M, we shall show that if an infinite number of distinct flows

exist, then none of them are canonical. This will prove the theoren.

Some of the flow values of the arcs in M are uniquely determined

by the conservation of flow requirements. Let M' denote the subset

of M whose flow values are not uniquely determined by the conservation

of flow requirements. Set M', if it is not empty, must contain a

cycle or a chain from s to t. (Otherwise, the flow values of all

members of M' could be successively determined starting at some

vertex incident to only one member of M"'.)

If set M' contains a chain from s to t, then none of the possible

flows is canonical. If set M' contains a cycle C with ko = 1 then

none of the possible flows is canonical. Hence, if set M' is not

empty, it must contain a cycle C with ko #1.

If an infinite number of different flows are possible, then an

infinite number of different flows are possible around cycle C.

Since ko # 1, it follows that the surplus or deficiency caused by

each of these flows in cycle C must be compensated for either by

flow from the source or flow into the sink or by flow in some other

cycle. Hence, the set I' must contain configuration 2, 3, or 4.

Hence, none of the possible flows is canonical. Q.E.D.

4.6 Flows with Gains ALAM

With the above results in mind, we are now able to state formally

the finite termination modification for the flow with gains algorithm.

Finite Termination Modification

Convert the initial flow generated by Step 1 of the flow with gains

algorithm to a canonical flow without decreasing the net flow out

of the source.

In Step 2 of the flow with gains algorithm, never color a non-

intermediate arc if you can instead color an intermediate arc.

Proof: First we shall show that if Step 2 is started with a

canonical flow, then the flow resulting from a flow change in Step

2 is also a canonical flow. Suppose that the new flow is not

canonical. Then, the intermediate arcs of the new flow would contain

at least one of the five configurations. Denote the (intermediate)

arcs in this configuration by J. Let J' denote the arcs in J that

were intermediate in the original flow. Let J" denote the arcs in

J that were not intermediate in the original flow. When the original

flow was changed to the new flow, Step 2 must have colored the arcs

in J". This implies that, if the finite termination modification

were used, that no arcs in J' were available for coloring each time

an arc in J"’ was colored. However, careful examination of each of

the five possible configurations will show that this nonavailability

of the arcs in J' for coloring is impossible. This contradicts the

instructions of the finite termination modification.

Hence, Step 2 of the algorithm will produce only a canonical

flow from a canonical flow. Since each successive flow produced by

Step 2 increases the net flow out of the source, and since there

are by Theorem 3 only a finite number of distinct canonical flows,

Step 2 will never generate the same canonical flow twice. Hence,

Step 2 cannot be performed an infinite number of times, and the

only possible way for the flow with gains algorithm not to terminate

finitely is for Step 3 to be performed an infinite number of times.

If Step 3 were performed an infinite number of times, then there

must be an infinite number of successive iterations of Step 3 between

172 Flow Algorithms

two flow changes since there are only a finite number of flow changes.

However, after each iteration of Step 3 at least one more arc is

colored, or 6 is undefined and the algorithm terminates with the

discovery that no feasible flow exists. Since there are only a

finite number of arcs in the graph, Step 3 can be performed only a

finite number of successive times on the same flow. Hence, the

algorithm must terminate after a finite number of steps. Q.E.D.

Other Flows With Gains

So far, we have considered only the problem of finding a minimum

cost flow with gains that discharges a given number of flow units

from the source. Suppose that instead we were interested in finding

a minimum cost flow that conveyed a given number of flow units to the

sink. Could the flow with gains algorithm be used to solve this

problem? The answer is yes. This is accomplished by using the

inverse graph.

Recall that the inverse graph de of graph G = (x, A) was

defined as the graph with vertex set X and arc set

aA? = {(y,x): (x,y) € A}

Let the cost of arc (y,x) € fa equal a(x,y)/k(x,y). Let the gain

of arc (y,x) € ee equal 1/k(x,y). Let 1(y,x) = 1(x,y)/|k(x,y) |

and c(y,x) = e(x,y)/|k(x,y) |. Note that the inverse of ca is G.

Given any flow f(x,y) for graph G, we can define the inverse

flow eco (y,x) € ea as follows:

Lak@y., ec Ole then ree =ShGhy kite yore

If k(y,x) < 0, let c(x,y) units be supplied at vertex x,

let k(x,y)c(x,y) units be supplied at vertex y,

and let eC = [c(x,y) - £(x,y)](-k(x,y)).

Let b(x) denote the total number of flow units supplied at vertex x.

Why this particular definition of the inverse flow? If in graph

G, f(x,y) flow units are removed from vertex x by arc (x,y) and

k(x,y)f£(x,y) flow units are delivered to vertex Ye bysareu (x,y) ethen

4.6 Flows with Gains
7s

in the inverse graph, f(x,y) flow units are delivered to vertex x

and k(x,y)f(x,y) flow units are removed from vertex 7 by arc (y,x).

(Verify this for yourself using the definitions of the inverse flow.)

Thus, the inverse flow has exactly the opposite effect of the original

flow. Moreover, the source s in graph G becomes a sink in graph eur:

and the sink t in graph G becomes a source in graph Cut

Suppose a flow f(x,y) in graph G satisfies all arc capacities

and supplies b(x) flow units at each vertex x. Then, the correspond-

ing flow fas) in graph et satisfies all arc capacities and

supplies -b(x) flow units at each vertex x. Moreover, these two

flows have the same total cost.

Hence, a minimum cost flow of V units from the source in graph

ere corresponds to a minimum cost flow of V units into the sink in

graph G. Hence, the problem of finding a minimum cost flow with

gains that delivers a given number of flow units into the sink can

be solved by using the flow with gains algorithm on the inverse

graph to dispatch the same number of flow units from the source of

the inverse graph.

When the flow with gains algorithm is used to find a minimum

cost flow that discharges V flow units from the source, there is no

way to predict how many flow units ultimately arrive at the sink,

since these V flow units may either arrive at the sink or be absorbed

into the network. Is there any way to insure that the algorithm

generates a minimum cost flow with gains in which at least W flow

units arrive at the sink? Yes, simply append the original network

with a new vertex T and an arc (t,T) from the original sink to

vertex T. Let 1(t,T) = W, c(t,T) = ~, k(t,T) = 1, and a(t,T) = 0.

Let vertex T be the sink in the appended network. Every feasible

flow in the appended network corresponds to a flow in the original

network that sends at least W flow units into the sink. Of course,

this requirement that at least W flow units enter the sink may

possibly increase the total cost of the minimum cost flow.

Suppose that no requirement is placed on how many flow units

arrive at the sink. There is possibly more than one minimum cost

174 Flow Algorithms

flow that discharge V flow units from the source. Can we find the

minimum cost flow that discharges V flow units from the source and

simultaneously sends as many flow units as possible into the sink?

This flow is generated by appending the network, as above, with a

vertex: Land an are (tT). Het 1(t,1) = 0 e(t,D= —) kes?) =1;5

and let a(t,T) = €, a very small negative number.

If e¢ is very, very small, the minimum cost flow generated by

the flow with gains algorithm for the appended network corresponds

to a minimum cost flow for the original network. If there is more

than one minimum cost flow, the flow with gains algorithm when applied

to the appended network will choose the minimum cost flow that sends

as many flow “ad te as possible into the sink in order to incur the

small negative cost e€ for each unit flowing along arc (t,T).

Conversely, to minimize the number of flow units arriving at

the sink, let ¢€ be a vets ee small positive number.

. For the special case when all arc traverse costs are zero, see

Grinold (1973).

EXERCISES

1. List all possible flow augmenting chains from s to t in the

following graph:

Current flow, capacity

2. Starting with the given flow, construct a maximum flow from s

to t in the graph of Exercise 1. Find a minimum cut that

separates s from t. Does the maximum flow saturate all arcs

in this cut?

3. Describe conditions under which there exists a flow augmenting

chain from the source to the sink that consists entirely of

backward arcs, entirely of forward arcs.

Exercises
we

4. A shipping agent must decide how to maximize the total weight

shipped from his warehouse to the various retail outlets he

supplies. After studying Chap. 4, he is able to rephrase his

problem as a maximum flow problem between a vertex representing

the warehouse and the vertices representing the retail outlets.

One of the intermediate vertices in the graph he has

constructed represents a city at the junction of three highways.

Due to pollution controls, this city has passed legislation

limiting the tonnage that the agent can ship through the city.

How can this additional restriction be incorporated into

the graph so that the agent can use the maximum flow algorithm

to solve his problem?

5. If the maximum flow algorithm discovers a flow augmenting chain

that contains a_backward arc, then some flow units will be

removed from this backward are and rerouted in their journey to

the sink.

(a) Is it possible for the maximum flow algorithm never to

reroute any flow units? If so, what conditions generate

such a situation? eae

(b) Under what conditions can you be certain that the flow units

assigned to a specific arc will not be rerouted during a

subsequent iteration of the maximum flow algorithm.

6. Construct a minimum cost flow from s to t in the following

graph using

», (a) The minimum cost flow algorithm

(b) The out-of-kilter algorithm

Arc costs are indicated above. All upper capacities equal
ce 608 SS APT

one and all lower capacitiesequal zero.

N

176

Ibs

10.

1l.

v2.

Flow Algorithms

Suppose that we have already calculated a minimum cost flow for

a very large graph. When reviewing the final results, we notice

that

(1) An arc was omitted from the graph

(2) The capacity of arc (x,y) was overstated by 5 units

(3) The cost of arc (m,n) was understated by 2 units.

(a) How can we determine which of these errors individually had

an effect on the optimal solution?

(b) Is it possible to correct individually for each of these

errors without scrapping all our results? Is it possible

to correct for all these errors without scrapping all our

results?

Construct a maximum dynamic flow for 10 time periods for the

graph given below. The numbers adjacent to each are respectively

denote the arc capacity and arc transit time.

Suppose that the transit time of arc (a,c) in Exercise 8 changes

from 2 time periods to 1 time period at the end of time period

x. For which values of x, would this traverse time change leave

the result of Exercise 8 unaltered?

Prove that a flow unit cannot travel backwards in time in a

dynamic flow. Can the time expanded replica of a graph contain

a circuit?

Generalize the maximum dynamic flow algorithm to the case when

arc transit times are not necessarily integers.

Under what conditions will the maximum dynamic flow algorithm

produce an earliest arrival flow? latest departure flow?

Exercises

\/13.

14.

INS hc

\/ 16.

AF

718.

ead,

20.

\“(3) Minimum cost flow algorithm

V(1) Flow augmenting algorithm.

V2) Maximum flow algorithm - ad

177

rs

Under what conditions will the number of flow units arriving

at the sink during each time period remain a constant? r

Construct a counterexample to disprove the following conjecture:

Theorem 4.4 of Sect. 4.5 is valid for nonmaximum flows F' and

Bis

For the graph in Fig. 4.15, construct the four lexicographic

flows described in Lemma 4.5.

List all absorbing and generating cycles in the following graph.

All lower arc capacities equal zero, all upper arc capacities

equal one. The arc gain and arc cost are indicated next to

each arc.

Use the flow with gains algorithm to find a minimum cost way to

discharge 5 units from the source in the graph in Exercise 16.

How can the flow with gains algorithm be used to find generating

cycles that can transmit flow units to the sink?

Prove in detail that the complementary slackness conditions

remain satisfied after the vertex number change in Step 3 of

the flow with gains algorithm.

In this chapter, we studied seven algorithms:

©

o«

\MA4) Out-of-kilter algorithm

(5) Maximum dynamic flow algorithm

(6) Earliest arrival flow algorithm

(7) Flow with gains algorithm

(a) Which of these algorithms can substitute for another?

178 Flow Algorithms

(b) Which of these algorithms is a special case of another

algorithm?

(c) Which of these algorithms are subroutines of another

algorithm?

21. A large number of people travel by car from city A in Mexico

to city B in the United States. The possible routes are shown

in the following graph. The border patrol wishes to construct

enough inspection stations so that every car must pass at least

one inspection station. The cost of constructing an inspection

station varies with location. The cost associated with each

road segment is given below. What is the least cost solution

to the border patrol's problem?

22. A management training program may be completed in a variety of

different ways as shown below. Each are represents a subprogram.

Each trainee must start at s and pursue subprograms until he

graduates at t. The number of trainees allowed in each subpro-

gram is limited. Although each subprogram takes exactly one

month to complete, the.cost per,Student varies. Maximum enroll-

ment and cost is shown in the following graph for each subpro-

gram. What is the maximum number of students who may complete

the program within the next five| months so that not more than
4 '

$1000 is spent on the odlege any one student?

References
179

enrollment, cost

(Maximum enrollment, cost in hundreds)

REFERENCES

___Edmonds, J., and R. M. Karp, 1972. Theoretical Improvements in Algo-
rithm Efficiency for Network Flow Problems, J. ACM, vol. 19,
no. 2, pp. 218-264.

Ford, L. R., and D. R. Fulkerson, 1962. Flows in Networks, Princeton
Press, Princeton.

Grinold, R. C., 1973. Calculating Maximal Flows in a Network with

Positive Gains, Operations Research, 21, pp. 528-541.

Jewell, W. S., 1962. Optimal Flow through a Network with Gains,

Operations Research, 10, pp. 476-499.

Johnson, E. L., 1966. Networks and Basic Solutions, Operations
Research, 14, pp. 619-623.

Maurras, J. F., 1972. Optimization of the Flow through Networks

with Gains, Math. Programming, 3, pp. 135-144.

Minieka, E. T., 1973. Maximum, Lexicographic and Dynamic Network

Flows, Operations Research, 21, pp. 517-527.

Minieka, E. T., 1972. Optimal Flow in a Network with Gains, INFOR,

105; pp. 171-178.

Truemper, K., 1973. Optimum Flow in Networks with Positive Gains,

Ph.D. Thssis, Case-Western Reserve University.

Truemper, K., 1976. An Efficient Scaling Procedure for Gains Net-

works, Networks, 6, pp. 151-160.

Wilkinson, W. L., 1971. An Algorithm for Universal Maximal Dynamic

Flows in a Network, ORSA, 19, pp. 1602-1612.

c

Chapter 5

MATCHING AND COVERING ALGORITHMS

5.1 INTRODUCTION

A matching is_any.set of. édgesy in a_graph.such that..each.vertex en

of the graph - is _incdient _to\at most ot one edge. \in this. set. t. WA

covering is any set of edges in a graph such that each vertex of

oe ‘graph is incident to at least one edge in this_set, For example,

in n Fig. 5.1 each of the sets {o,y}, {8, el, {6, B}, fat, {8} forms

agmatching. Each of ‘tthe sets {o, e; 7), {a0,. 8, 6, et, 16, 6, ef

forms a covering. Obviously, any subset of a matching is also a

matching, and any set of edges that contains a covering is also a

covering.

el

Figure 5.1

Matching and coverings have many practical applications:

EXAMPLE 1. During World War II, many airplane pilots from overrun

countries fled to Britain to enlist in the Royal Air Force. Each

plane sent aloft by the RAF required two pilots whose navigational)
eee” SE

: 2
Q.—

181

182 Matching and Covering Algorithms

skills and language skills were complementary. The RAF was interested

in sending as many planes aloft at one time as possible.

Construct a graph in which each vertex represents a RAF pilot.

Join together by an edge any two vertices representing pilots who

can fly together. Any matching of this graph represents a possible

set of planes that can simultaneously be sent aloft. Thus, the RAF

was interested in finding the matching in this graph that contained

the greatest possible number of edges, in other words, a maximum.

Sou EZ MR teat
EXAMPLE 2. A real estate agency has for sale a variety of homes

and a number of prospective buyers. Each prospective buyer is

interested in possibly more than one of the available homes for sale.

The real estate agent can estimate fairly accurately just how much

each buyer would pay for each of the homes he is interested in.

Since the real estate agent makes a 7% commission on each transac-

tions he is interested in maximizing the total dollar volume of his

sales. How can he accomplish this?

Let each buyer be represented by a vertex, and let each home be

represented by a vertex. Join two vertices by an edge if the buyer

would be willing to buy the home. Thus, each edge represents a

possible transaction. Place a weight on each edge equal to the

commission the real estate agent would receive for the corresponding

transaction.

The real estate agent can maximize his earnings by effecting

the transaction corresponding to a matching with the greatest total

weight, in other words by effecting a maximum weight matching.
CR

EXAMPLE 3. A committee is to be selected so that there is at least

one member from each of the 50 states and at least one member from

each of the 65 major ethnic groups in the United States. One hundred-

seventy persons nationwide have volunteered to serve on the committee.

What is the smallest committee that can be constructed from these

volunteers so that all requirements are met?

Construct a graph in which each state is represented by a vertex

and each ethnic group is represented by a vertex. Thus, there will

5.1 Introduction 183

be 50 + 65 = 115 vertices. Let each volunteer be represented by an

edge joining his state to his ethnic group. Any committee that

satisfies all geographic and ethnic requirements corresponds to a

covering of this graph. The committee with the smallest possible

membership corresponds to a covering with the smallest possible

number of edges in it, in other words to 4 minimum cardinality covering)
— i

EXAMPLE 4. A lonely hearts service permits each applicant a date

with at least one other lonely heart with whom he would be compatible.

Each date cost the service a different amount depending upon the

specific arrangements required for it (time, place, preferences of

the daters, etc.). How can the lonely hearts service meet all its

obligations to its subscribers at minimum cost?

Construct a graph in which each lonely heart is represented by

a vertex and each compatible couple is represented by an edge. Place

a weight on each edge equal to the cost of the corresponding date.

Each covering of this graph represents a way to arrange at least one

acceptable date for each subscriber to the lonely hearts service.

The service must find the covering with the least total cost, in

other words a_minimum weight covering.

Examples 1 to 4 have illustrated four types of useful matching

and covering problems:

1. Maximum cardinality matching =

2. Maximum weight matching

3. Minimum cardinality covering
—

4. Minimum weight covering.

Are there others?

Minimum cardinality matching. Clearly, the -nuli-matching (matching

without any edges in it) is a minimum cardinality matching.

Minimum weight matching. If all edge weights are non-negative, then

the null matching is a minimum weight matching. If some edge weights

are negative, simply (a) delete all edges with nonnegative weight,

(b) reverse the sign of the remaining edges, and (c) find a maximum

184 Matching and Covering Algorithms

weight matching on the resulting graph. The edges in this matching

are clearly a minimum weight matching for the original graph. Thus,

the minimum weight matching problem and the maximum weight matching

problem are equivalent problems.

Maximum cardinality covering. Clearly, the entire edge set forms a

maximum cardinality covering (when the graph has no isolated vertices).

Maximum weight covering. A maximum weight covering must, of course,

include all edges with positive weight. If the edges with positive

positive weight do not form a covering, then some edges with

nonpositive weights must be included in the maximum weight covering.

Which? These edges must cover the remaining uncovered vertices.

These edges can be selected by finding a minimum-weight-eovering of

the remaining uncovered-vertices after_reyersing the-sign of the

edge weights (i.e., making all the weights of the edges under

consideration nonnegative). Thus, the minimum weight covering problem

solves the maximum weight covering problem.

Happily, the maximum cardinality matching problem solves the
tet

minimum cardinality covering problem, and vice-versa. If a maximum
ee Mom gt ee eae . - — - WL —~_-

cardinality matching M* is known, a minimum cardinality covering Ce

nl * . = F
can be generated easily from M , and if a minimum cardinality

*
covering c* is known, a maximum cardinality matching M can be

*
generated easily from C . How is this done?

Construction 1 (Matching to Covering): Let M be any matching.

Select any exposed (unmatched) vertex v. Add to the matching any

edge incident to v. Repeat this procedure until there are no more
: f

exposed vertices. The resulting set C of edges is a covering.

Construction 2 (Covering to Matching): Let C be any covering.

Let v be any overcovered (i.e. incident to more than one edge) vertex

in C. Remove from C any edge incident to vertex v. Repeat this

procedure until there are no more overcovered vertices. The result-

ing set M' of edges is a matching.

THEOREM 5.1. If M is a maximum cardinality matching, then C' is a

minimum cardinality covering. If C isa minimum cardinality covering,

then M' is a maximum cardinality matching.

5.2 Maximum Cardinality Matching Algorithm 185

Proof: Since Mis a maximum cardinality matching >

le'] = IM} + (|x| - 2[m]) = [x] - fo ,

where |x| denotes the number of vertices in the graph. Since C is
a minimum cardinality covering,

iw"] = |e] - @lcl - xp = [x] - Je!
Thus,

t
i] el

C IMP + le] = |X] nye contr rath, md ws | i.

d
7

‘\ el p . Ine, { :

Caeeiaie ee eS (2)

Consequently, if C' is not a minimum cardinality covering, then

there exists a matching generated from C' by Construction 2 that has

larger cardinality than M from equation (2), which contradicts that

M is a maximum cardinality matching. Also, if M' is not a maximum

cardinality matching, then there exists a covering generated from

M' by Construction 1 that has smaller cardinality than C from

equation (1), which contradicts that C is a minimum cardinality

covering. Q.E.D.

Thus, the maximum cardinality matching and minimum cardinality

covering problems-are—equivalent. Unfortunately,—no similar rela-

tionship seems to hold between the maximum weight matching problem

and the minimum weight covering problem.

Section 5.2 presents an algorithm for findi imum_

cardinality matching. Section 5.3 presents.an algorithm for finding

_a maximum weight matching. Section 5.4 presents an algorithm for

finding a minimum weight covering.

5.2 MAXIMUM CARDINALITY MATCHING ALGORITHM

A bipartite graph is a graph whose vertex set X can be parti-

tioned into two subsets_X' and X" such that no edge in the graph _

joins two vertices in the same subset. Thus, each edge in a bipartite

a ae has Bie end in X' and the other end in X". For example, the

graph in Fig. 5.2 is a bipartite graph with X' = {a,b,c} and x" =

Maceshe? Note that every edge has one endpoint in X' and the other.
aE ES

endpoint in X".

186 Matching and Covering Algorithms

Figure 5.2

Bipartite Graph

Every cycle in a bipartite graph must contain an even number
of edges (an even cycle). This follows since each edge joins
eet Oe eae

vertices in different subsets and the cycle must return to the subset

in which it originated.

When graph G = (X,E) is a bipartite graph, the maximum cardina-

lity matching problem can be solved easily by the maximum_flow

algorithm found in Sec. 4.2.\ This is accomplished as follows:

1. Direct all edges from X" to X"

Create a source vertex s and an arc (s,x) from the source to

each vertex xe X'

3. Create a sink vertex t and an arc (x,t) from each x € X" to the

sink

4. Let each arc capacity equal 1 (see Fig. 5.3).

Call this graph G'. Since all arc capacities in G' equal 1,

all flow augmenting chains will carry 1 flow unit if the maximum

flow algorithm is started with a*xero flow. Thus, the maximum flow

algorithm will terminate with a maximum flow in which each arc

carries either one flow unit or no flow units. The arcs from X'

to X"in-G’that carry one flow unit correspond toa matching in G.
Moreover, each matching in G corresponds to a flow in G' in which

the edges in the matching correspond to arcs in G' that carry one 2 ie

flow unit. Consequently, the matching in G corr ding toa

5.2 Maximum Cardinality Matching Algorithm 187

Figure 5.3

Flow Network

maximum _flow-in—G'-must_be a maximum cardinality matching in G'..

Otherwise, if this matching were not a maximum cardinality matching,

then there would be an even larger flow in G' corresponding to the

maximum cardinality matching,—which is a contradiction. So, for _

bipartite graphs, the maximum cardinality matching-problem.can.be i ee :

solved _by_using the maximum flow algorithm.

ce £ graph G is not bipartite, then G must contain a cycle with

an_odd_ number of edges in it (an odd cycle). Otherwise, the vertices

_of G-could_be partitioned into subsets-X' and-X!' as described above.

The—-presence of odd cycles complicates matters sinee—now there is

no obvious way to convert the matching problem into a flow problem.

How about trying to solve the maximum cardinality matching

problem using linear programming? Consider the following linear

programming problem:

Maximize

Nyee=(i.5) (3)
(1,5)

such that ae

© TieG.t) + 8 ae! \(for_ all vertices ij (4)

ip ee

Co < x(i,3) < dD [for all edges (i,j)] (5)

where _x (4,4) denotes the number of times edge (i,j) is used in the

_matching. Each constraint (4) requires that the number of matching

188 Matching and Covering Algorithms

edges incident to vertex i not exceed one. ' Each constraint (5)

requires that each edge (i,j) not be used in the matching more than

once.

Clearly, every matching satisfies constraints (4) and (5) when

not in othe matchings Thoneear.) LAER Bice for the paeietiee

x(i,j) may also satisfy constraints (4) and (5). For example,

consider the graph in Fig. 5.4. The solution

x! SONoE = x(b, c) = aleca) = = 25

satisfies constraints (4) and (5). For this solution the objective

function (3) equals 1/2 + 1/2 + 1/2 =1 1/2. By inspection, the

Figure 5.4

largest possible value for the objection for a solution that is a

matching is 1. For example, for the matching

x(a,b) = 1, x(b,c) = x(c,a) = 0

the objective function (3) equals 1+0+0O=1. Consequently, we

cannot always be sure that an optimal solution to the linear pro-

gramming | problem (3) = =(5) will J be : a matching. (In Sec. 5.3, additional _

constraints will-be-added—to_this linear programming problem so that

the optimal_solution willbe a matching. However, so many additional

constraints will_be-needed that the linear programming problem would

become too large to solve-efficiently.) 3 os

Alas, not being able to use either flow algorithms—or_linear

programming-te-solve the maximum cardinality matching problem for a aaa
ee nn

tRecall that an edge joining vertices i and j is denoted either

by (oa) or Gis).

5.2 Maximum Cardinality Matching Algorithm 189

_non-bipartite graphs, we must study an algorithm specifically

designed for the maximum cardinality matching-problem. The.remainder

of this section presents the maximum cardinality matching~algorithm

due_to{Edmonds (1965).
Given a matching M in graph G, an alternating chain is a simple _

chain in which the edges are alternately in and_out—of—matehing-—M.—
For example, for the matching in Fig. 5.5(a), the chain (a,b), (b,c),

(c,£) is.an alternating chain since the first and third edges (a,b)

and (c,f) are not in M and the second edge (b,c) is in M. Also,

the chain (d,a), (a,b), (b,c), (c,f) is an alternating chain since

its first and third edges are in M and its second and fourth edges

are not in M.

A vertex-is_called exposed if it is not incident to any matching

edge. A vertex is called matched if it is incident to a matching _

edge. ~An.augmenting chain is an alternating chain whose first and _

iate i sed. For example, in Fig. 5.5(a) the chain

(e,b), (b,c), (c,f) is an augmenting chain.

pa ae)

Figure 5.5

Example of (a) Augmenting Chains and (b) Alternating Tree

E = exposed, I = inner, O = outer, M = matching edge

//

SA

\ Se a

190 | Matching and Covering Algorithms

If the edges in an augmenting chain have their roles in the

matching-reversed. (i.e-, matching edges are removed from the match-

ing, edges not in the matching are placed in the matching), then

cuecrerul rine matching contains one more-edge than did the original

matching. Consequently, if a matching possesses..an.augmenting chain,

then the matching cannot be a maximum cardinality matching. More-

over, the converse of this result is also true.

THEOREM 5.2 If matching M is not a maximum cardinality matching,

then_matching M possesses..an..augmenting..chain.

Proof: Let M* denote the maximum cardinality matching that

has the most edges in common with M. Let G' denote the subgraph

consisting of all edges that are in exactly one of these two match-

ings M and M*.

_ No_vertex of G' can have more than two edges: incident to it.
a. SS

Otherwise, two edges in the same matching would be incident to the
Se

SE fale

same vertex, | which is impossible. For this reason, each connected

component_of G' must bi be either a simple chain or a simple cycle.

A connected component of G' cannot be an odd cycle. Otherwise,

one vertex in this odd cycle would be incident to two edges in the

same matching, which is impossible. Moreover, a connected component

of G' cannot be an even cycle. If a connected component of G' were

an even cycle, then the role of each edge in this even cycle in M*

could be reversed. This new matching would contain the same number

of edges as M* but would have more edges in common with M, which is

impossible. Consequently, no connected component of G' can be a

cycle.

Thus, each connected component of G' is a simple chain. Con-

sider the first and last edges in such a chain. If both of these

edges are in M, then this chain is an augmenting chain in M*, which

contradicts the assumption that M* is a maximum cardinality matching.

If one of these edges is in M and the other is in M*, then the roles

of the edges in this chain can be reversed in matching M*. This

creates a new matching with the same number of edges as M* and with

more edges in common with M, which is a contradiction.

~~

5.2 Maximum Cardinality Matching Algorithm 191

Consequently, both the first and last edges of the chain must

be in Me, which implies that this chain is an augmenting chain in.

Moa OED:

A matching isa maximum cardinality matching DE and OnLy) 15,

it does not contain an _augmenting _ chain. The maximum cardinality

algorithm is based on this result. The algorithm selects an exposed

vertex and searches for .an augmenting chain from.this_ vertex to some

other exposed vertex. “If an augmenting chain is found, then the

roles in the matching of the edges in this chain are reversed. This

creates a matching with greater cardinality, If no augmenting chain

is found, then another exposed vertex is similarly examined. The

algorithm stops when all exposed vertices have been examined.

The maximum cardinality matching algorithm searches for an

augmenting chain rooted at an exposed vertex by growing a tree rooted

at this exposed vertex. This tree is called an alternating tree

because every chain in the tree that starts at the root (exposed

vertex) is an alternating chain. (The first edge in such a chain

is not in the matching since the chain begins at an exposed vertex.)

The vertices in an_alternating tree are called outer or inner.

Consider the unique chain in the tree from the root to vertex x. If

the.last edge in this chain is a matching edge, then vertex x is

called outer. If the last edge in this chain is not a matching edge,

then vertex x is called inner. The root is called an outer vertex.

See Fig. 5.5(b).

The following procedure describes how to generate an alteraating

tree.

Alternating Tree Subroutine

Step 1 (Initialization): Select a vertex v that is exposed in—

matching M. Designate vertex v as the root and label v_as_an outer

vertex. All other vertices are unlabeled, and all edges are uncolored.

(Orange edges denote the edges in the alternating tree.)

Step 2 (Growing the Tree): Select any uncolored edge (x,y)

incident to any outer vertex x. (If no such edge exists, go to Step

4.) Three cases are possible:

192 Matching and Covering Algorithms

(a) Vertex y is an inner vertex

(b) Vertex y is an outer vertex

(c) _is not labeled. Vertex

If item (a) occurs, then color (x,y) blue (i.e., not in the

tree) and repeat Step 2.

If item (b) occurs, then color (x,y) orange and go to Step 3.

If item (c) occurs, color (x,y) orange. If y is an exposed

vertex, stop because an augmenting chain of orange edges from v to

y has been found. If y is a matched vertex, then color orange the

unique matching edge (y,z) incident to y. Label vertex y as an inner

vertex and label vertex z as an outer vertex. Return to Step 2.

Step 3 (Odd Cycle): This step is reached only after an edge.

(x,y) with two outer endpoints has been colored orange. This

creates a cycle of orange edges. This cycle C must be an odd

cycle since the vertices in C from x to y alternate between outer

and inner vertices. Stop, because an odd cycle has been discovered.

Step 4 (Hungarian Tree): This step is reached only after no

further coloring is possible. The orange edges form an alternating

tree called a Hungarian tree. Stop.

Note that the alternating tree subroutine stops with (a) an

augmenting chain, (b) an odd cycle, or (c) a Hungarian tree.

EXAMPLE 1, Let us generate an alternating tree rooted at exposed

vertex a in Fig. 5.6.

Step 1: Vertex a is labeled outer.

Step 2:

Edge under

examination Outer vertices Inner vertices Orange edges

Initial a none none

(a,h) a,g h (a,h), (h,g)

(g,d) a,g,e h,d (a,h), (h,g)

(g,d),(d,e)

(continued)

5.2 Maximum Cardinality Matching Algorithm 193

Edge under

examination Outer vertices Inner vertices Orange edges

(a,b) a,g8,e,c h,d,b (a,h), (h,g)

(gd), (d,e)

(a,b), (b,c)
(e,f) 4,8,e,c,f h,d,b (a,h), (h,g)

(gd), (d,e)

(a,b), (b,c)

(e,f)

Figure 5.6

(M = matching edge)

Stop, an augmenting chain (a,h), (h,g), (g,d), (d,e), (e,f) has

been found.

Note that often in Step 2 there are several edges that can be

examined. The choice is arbitrary. If edge (g,f) had been examined

instead of edge (g,d), the augmenting chain (a,h), (h,g), (g,f)

would have been discovered. Hence, the result of the subroutine

may depend upon the arbitrary choice of which edge to examine next.

Lastly, note that if Step 2 colors a pair of edges orange, one of

these edges is a matching edge; the other is not a matching edge.

The maximum cardinality matching algorithm can be initialized

with any matching. The algorithm selects an exposed vertex and

194 Matching and Covering Algorithms

grows an alternating tree rooted at this vertex using the alternating

tree subroutine. If an augmenting chain is discovered, the roles

of the edges in this chain are reversed. This generates a new

matching with greater cardinality and matches the exposed root of

the alternating tree.

If the alternating tree turns out to be a Hungarian tree, then

no augmenting chain exists from this root. (See the proof of the

algorithm to verify this.) If an odd cycle is discovered, then this

cycle is shrunk into a single vertex. The algorithm is continued

on the new smaller graph resulting from shrinking this odd cycle.

After each exposed vertex has been examined by the alternating

tree subroutine, the resulting matching is a maximum cardinality

matching for the terminal graph. Next, the algorithm judiciously

expands out all shrunken cycles inducing a matching on the edges of

each of these cycles. After all shrunken cycles have been expanded

out, the resulting matching can be shown to be a maximum cardinality

matching for the original graph.

With this as motivation, we can now formally state the maximum

cardinality matching algorithm.

Maximum Cardinality Matching Algorithm

Step 1 (Initialization): Denote the graph under consideration

by Go: Select any matching My for graph G All exposed vertices

are called unexamined. Let i = 0.

0°

Step 2 (Examination of an Exposed Vertex): If graph G, has only

one unexamined exposed vertex, to to Step 6. Otherwise, select any

unexamined exposed vertex ve Use the alternating tree subroutine to

grow an alternating tree rooted at vertex v.

If the alternating tree subroutine terminates with an augmenting

chain, go to Step 3. If the alternating tree subroutine terminates

with an odd cycle, go to Step 4. If the alternating tree subroutine

terminates with a Hungarian tree, go to Step 5.

5.2 Maximum Cardinality Matching Algorithm 195

Step 3 (Augmenting Chain): This step is reached only after

the alternating tree subroutine discovers an augmenting chain.

Reverse the roles in matching M, of the edges in the augmenting

chain. This increases by one the cardinality of matching M, and

Matches vertex v. Return to Step 2.

Step 4 (Odd Cycle): This step is reached only after the alter-

nating tree subroutine discovers an odd cycle. Let i= i+41. Denote

the odd cycle by C,. Shrink Cc, into an artificial vertex a,- (Recall

from Chap. 2 that each edge incident to a single vertex in Cc, now

becomes incident to a,-) Call the new graph G,- Let matching M,

consist of all edges in M,_ that are in G,. (Note that all but
it

one of the vertices in c, are matched by edges in C Hence, after

Cc, is shrunk into vertex ay> at most one matching Eins is incident

to a,-) Return to Step 2 selecting as the exposed vertex for

examination the image of vertex v in graph G,- Note that most of

the labeling and coloring from the previous iteration of the alter-

nating tree subroutine can be reused in the coming iteration of the

alternating tree subroutine in Step 2.

Step 5 (Hungarian tree): This step is reached only after the

alternating tree subroutine discovers a Hungarian tree rooted at

exposed vertex v. Vertex v is now called examined. Return to Step 2.

Step 6 (Exploding Shrunken Odd Cycles): This step is reached

only after all but one of the exposed vertices has been examined or

matched. During the repetitions of Step 4, a sequence G)> Gy» rere.

G. of graphs was generated, and a sequence Ay> Ane sees ay of

artificial vertices was generated. Also, a sequence M, M, > 2608 M.

of matching in G,> Gy, eae, CG. respectively was generated.

Matching M. is a maximum cardinality matching for graph oe Let

Mé = M.- re)

For j =t, t-1, ..., 1, generate from matching Mi in graph o

a matching Mey in graph oar as follows: ’ |

(a) If vertex ee is matched in matching Mt then let Mey consist

of all edges in ca together with the unique set of edges in odd cycle

Cc, that match all the exposed vertices in Cc, (see Fie. 5.7).

196 Matching and Covering Algorithms

Figure 5.7

Sm

Selecting Matching Edges in Odd Cycle Cc,

[Add the two edges (b,c) and (d,e) to My]

(b) If vertex a, is exposed in matching Mes then let Mey consist

of all edges in Mt together with any set of edges in Cc, that match

all but one of the vertices in C,. The vertex in Cc, that remains
i

exposed is chosen arbitrarily, (see Fig. 5.8).

Figure 5.8

Selecting Matching Edges in Odd Cycle Cc,

[Add any two nonadjacent edges to Mi for example, if vertex b is

to remain exposed, add the two edges (a,e) and (c,d) to the match-

ing. All vertices in C. are exposed in M*.]
1 J

Matching “a is a maximum cardinality matching for the original

raph G.. grap. O

Proof: To prove that matching MO is a maximum cardinality

matching for graph G requires two parts:

1. Proof that matching Me is a maximum cardinality matching for

graph oe

2. Proof that if matching MS is a maximum cardinality matching for

graph G,> then matching H is a maximum cardinality matching
aL

for graph Gea

5.2 Maximum Cardinality Matching Algorithm 197

Once these proofs have been accomplished, then it follows by
applying item (2) successively to matchings, Me Me poop MG that +

-
My is a maximum cardinality matching for Go:

Part (1): To show that Me is a maximum cardinality matching

for graph G tr we need only show that there is no augmenting chain

rooted at any exposed vertex in Pe to another exposed vertex in Ge 5

Suppose that in matching Me there is an augmenting chain C

joining two exposed vertices v ae w in Gk At least one of these

two vertices, say vertex v, must have been examined by Step 2 of

the maximum cardinality matching algorithm. This examination must

have terminated at Step 5 with a Hungarian tree rooted at vertex v.

Traverse chain C from v to w. Let (x,y) denote the first edge in

C that is not in the Hungarian tree. Thus, vertex x must be an

outer vertex of the tree. Vertex y can be (a) exposed, (b) unlabeled

and matched, (c) labeled outer, or (d) labeled inner.

(a) Vertex y cannot be exposed; if so, Step 2 would have terminated

with an augmenting chain from v to y rather than with a Hungarian

tree rooted at v.

(b) Vertex y cannot be unlabeled and matched; if so the alternating

tree subroutine would have labeled vertex y as an inner vertex.

(c) Vertex y cannot be an outer vertex; if so, edge (x,y) would

have been colored by the alternating tree subroutine creating an odd

cycle.

(d) If vertex y is an inner vertex, then the alternating chain from

root v to vertex y forms part of another augmenting chain C' from v

to w. Augmenting chain C' consists of the alternating chain from v

to y in the Hungarian tree together with the portion of C from y to w.

Repeat the above analysis for augmenting chain C'. This leads

either to a contradiction as in cases (a), (b), and (c), or to another

augmenting chain C". Each augmenting chain generated by this process

must have fewer edges not in the Hungarian tree than did the preced-

ing augmenting chain. Thus, we ultimately reach a contradiction or

show that an augmenting chain has been colored by the alternating

198 Matching and Covering Algorithms

tree subroutine instead of a Hungarian tree. Consequently, if an

augmenting chain exists, then the examination of vertex v cannot have

terminated with a Hungarian tree, which proves Part (1).

*
i-1

Then, there is an augmenting chain

Part (2): Suppose that matching M is not a maximum cardina-

lity matching in graph G,_4°

between two exposed vertices in Gy It is easily seen that the 1

image of this chain in G. is an augmenting chain with respect to

‘ é ; * A
matching MP. This contradicts the assumption that M, is a maximum

cardinality matching for graph G,, which proves Part (2). Q.E.D.

EXAMPLE 2, Let us find a maximum cardinality matching for the graph

in Fig. 5.9(a). Note that this graph possesses nine vertices, and

consequently, no matching can contain more than four edges.

Step 1: Start with the matching shown in Fig. 5.9(a).

Step 2: Exposed vertex a is selected for examination. Alter-

nating tree subroutine: Label vertex a outer. Color edges (a,d)

and (d,b). Label vertex d inner and label vertex b outer. Color

edge (a,b) between outer vertices a and b. An odd eycle (a,d),

(d,b), (b,a) has been found. Go to Step 4.

Step 4: Shrink the odd cycle into an artificial vertex ay:

The new graph G, is shown in Fig. 5.9(b). Return to Step 2.
1

Step 2: Exposed vertex ay (the image of a in G,) is selected

for examination. Alternating tree subroutine: Label vertex ay outer.

Color edge (a)>¢). An augmenting chain (a,.0) has been found. Go

to Step 3.

Step 3: Add edge (a, 5) to the matching. See Fig. 5.9(c).

Return to Step 2.

Step 2: Exposed vertex g is selected for examination. Alter-

nating tree subroutine: Label vertex g outer. Color edges (g,h)

and (h,f). Label vertex h inner and label vertex f outer. Color

edge (f,i). An augmenting chain (g,h), (h,f), (f,i) has been found.

Go to Step 3.

5.2 Maximum Cardinality Matching Algorithm

Figure 5.9

Example of the Alternating Tree Subroutine

200 Matching and Covering Algorithms

Step 3: Remove edge (h,f) from the matching. Add edges (g,h)

and (f,i) to the matching. See Fig. 5.9(d). Go to Step 2.

Step 2: Only vertex e is exposed. Go to Step 6.

Step 6: Expand vertex % back into its original odd cycle.

(a,d), (d,b), (b,a). Since b is matched, add edge (a,d) to the

matching. The final matching is shown in Fig. 5.9(e).

Note that neither of the edges in the original matching appear

in the terminal matching. Also, note that other maximum cardinality

matching are possible. For example, {(a,b), (c,f), (i,h), (d,g)} is

also a maximum cardinality matching.

The terminal matching depends heavily upon the choice of which

exposed vertex is examined and upon the arbitrary choices of edges

colored in the alternating tree subroutine.

5.3 Maximum Weight Matching Algorithm

This section presents an algorithm due to Edmonds and Johnson

(1970) for finding a maximum weight matching of a graph G=—(X,E).

Like the maximum cardinality matching algorithm of Sec. 5.2, the

basic operation of this algorithm is the generation of an alternating

tree.

As we saw in Sec. 5.2, the key issue in finding a maximum

cardinality matching was the existence of augmenting chains. A

Similar result holds for maximum weight matchings:

A weighted augmenting chain is_an_alternating chain in which:

1. The total weight of the nonmatching edges exceeds the total

weight of the matching edges

2. The first vertex in the chain is exposed if the first edge in

the chain is not a matching edge

3. The last vertex in the chain is exposed if the last edge in the

chain is not a matching edge.

Observe that if the roles in the matching of the edges in a

weighted augmenting chain are reversed, then the resulting matching

-has_greater weight than the original matching. For example, in Fig.

5.10, chains C)> Co» and C, are alternating chains. In each chain,

5.3 Maximum Weight Matching Algorithm 201

s tk Z, Chain Cy
M M £

Weak Augmenting Chain

6 & 6 Chain C5

M M

Neutral Augmenting Chain

6 8 6 Chain C3
M

Strong Augmenting Chain

Figure 5.10

Weighted Augmenting Chains

the nonmatching edge(s) weigh 12 units_and the matching edge(s) weigh

8 units. All are weighted augmenting chains. Chain c,-is called a

weak augmenting chain because it contains more matching edges than

onmatching edges. Chain Cc, is called a neutral augmenting chain _

because it contains an equal number of matching and nonmatching

edges. Chain C, is called_a strong augmenting chain because it

contains more nonmatching edges than matching edges.
aa

Analogous to Theorem 5.2, we now show:

EOREM 5.3 A matching M is a maximum weight matching if, and

only if, M possesses no weighted augmenting chains.

Proof: If matching M possesses a weighted augmenting chain C,

then M cannot be a maximum weight matching since the matching M'

generated by reversing the roles of the edges in C has greater

weight than matching M.

202 Matching and Covering Algorithms

To prove the rest of the theorem, let M* be any matching with

greater weight than M. As in Theorem 5.2, consider the set of all

edges that are in exactly one of these two matchings M and M*. We

know from the proof of Theorem 5.2 that each connected component

of these edges must be either an even cycle or a chain. Since all

cycles are chains, we can regard each connected component as a chain.

Since M* weight more than M, in one of these chains the edges in M* ;

must weigh more than the edges in M. This chain is a weighted aug-

menting chain for matching M. Q.E.D.

Let V = {V,, Vo> ae ee denote the set of all odd cardinality

vertex subsets. Let T. denote the set of all edges with both endpoints

in vertex set V.. Let T = {T,, T), 2 FESS TI. Let the number of

vertices in bes be denoted by 2n #1)

No matching can contain more than n, members of set T.

Let a(i,j) denote the weight of edge (i,j). Let_xG@., joel te

edge (i,j) is in the matching; otherwise, let x(i,j) =.0.

To understand the maximum weight matching algorithm, we must

first examine the following linear programming formulation of the

maximum weight matching problem:

Maximize

yee a(t, 4)x(54) (6)
Ce
bix(4,j) + xGj,i)] <1 (for all ie X) (7)
j

xis) sen (forngmi=el. 92, ee. sez 8
(,5)4e 4k ges i = m

Op sox (154) [fortal ds: (254) (9)

[Note that an edge joining vertices i and j is denoted either by

(155) om 54).]

Constraint (7) requires that no more than one matching edge be~

incident to each vertex a _Constraint (8) requires that no_more _

than a edges from Th be present in the matching. The objective

function (6) equals the total weight of the matching edges.

5.3 Maximum Weight Matching Algorithm 203

Every matching satisfies constraints (7)-(9). However, it is

virtually impossible to enumerate-all these constraints for graphs-
of even(moderate size. Fortunately, the maximum weight matching

algorithm produces a matching that is an optimal solution for the

linear programming problem (6)-(9). How do we know that this solution

is an optimal solution to the linear programming problem (6)-(9)?

This is accomplished by constructing a feasible solution to the dual

linear programming problem that together with the solution for the

primal satisfy all complementary slackness conditions.

The dual linear programming problem for the primal linear pro-

gramming problem (6)-(9) is

Minimize

m=Z

bee yi 2) a (10)
oi

such that

wae yy ar) coz a(i,j) Lioe “all, 4194 ay

m:(i,j) € Th

¥,20 (for all i€x) (12)

ated OpeClonealleme—l, 2S os s55 2) (13)

The dual variable associated with the primal constraint (7) for

vertex i is denoted by Ys: The dual variable associated with the

primal constraint (8) for Zs is denoted by zo

The complementary slackness conditions for this pair of primal-

dual linear programming problems are

od er Oe ys ti Y4et) z= ai, j) [for all G,§)]

m:(i, j)€ T, (14)

Wa Oe partes) 5101 = 19 Ae (fortallire sz)

ex (15)

Ze Oe i) Stroy) an. (forse = 1, 25006 3)

= (54) ete a
(16)

How does the maximum weight matching algorithm work? The

algorithm starts with a null matching [all x(i,j) = 0] and feasible

values for the dual variables Vy? ice X, and zy me hs ths. ogre

204 : Matching and Covering Algorithms

that satisfy complementary slackness conditions (14) and (16). Only

conditions (15) remain unsatisfied.

At each iteration of the algorithm, the matching and/or the

values of the dual variables are changed so that all the conditions

(7)-(9), (11)-(13), (14), and (16) remain satisfied and so that

condition (15) is satisfied for at least one more dual variable Ys:

Since there are only |X| dual variables Vy after not more than |X|

iterations all conditions (15) become satisfied. By complementary

slackness, the resulting matching must be a maximum weight matching.

Let us examine condition (15) more closely. Condition (15)

states that if the dual variable Ys for vertex i is positive, then

vertex i must be matched. Thus, only exposed vertices with positive

dual variables violate condition (15).

The algorithm identifies an exposed vertex v with Thy > 0 and

uses the alternating tree subroutine to grow an alternating tree

rooted at vertex v. As we have seen in Sec. 5.2, the subroutine

terminates with (a) an augmenting chain, (b) an odd cycle, or (c) a

Hungarian tree. If the subroutine finds an augmenting chain, then

this chain is a strong augmenting chain. The roles of the edges

in this chain are reversed. This increases the total weight of the

matching and matches vertex v. Consequently, vertex v satisfies

condition (15). If the subroutine finds an odd cycle, this cycle

is shrunk into an artificial vertex, and the algorithm is continued

on the resulting graph. If the subroutine finds a Hungarian tree,

the dual variables are changed so that all primal, dual and comple-

mentary slackness conditions, except possibly condition (15), remain

satisfied and so that another edge can be added to the alternating

tree. Ultimately, either vo is reduced to zero so that condition

(15) becomes satisfied or else vertex v is matched.

During the course of the algorithm, odd cycles are shrunk into

artificial vertices. Eventually, all artificial vertices are expanded

out into their original odd cycles. However, the vertices need not

be expanded out in the same order in which they were generated. Due

to these shrinkings and expansions, the algorithm will produce a

sequence of graphs, Go G)> eieitets ec

5.3 Maximum Weight Matching Algorithm 205

With this as background, we are now prepared to state formally
the maximum weight matching algorithm:

-

Maximum Weight Matching Algorithm

Step 1 (Initialization): Initially, let matching My contain

no edges, and let all dual variables (aia OS m= Se ei oz

Choose any initial values for the dual variables y,+» ie X, such

that Ys 4s es a(i,j) for all edges (i,j). (For instance, you

could let each yy equal half the maximum edge weight.) Let k = 0.

Denote th igi = note the original graph by G. (XE).

Step 2 (Examination of an Exposed Vertex): Select any non-

artificial, exposed vertex v in graph G, with y >0O. If no such
Vv

vertex exists, go to Step 6. Otherwise, let E* consist of all edges

CL, j) in GC. such that

eames tae E 2 =a (1,4) (17) ee m
Gea Ss Th

Using the alternating tree subroutine, grow an alternating tree

rooted at v using only edges in E*.

If the subroutine finds an augmenting chain, go to Step 3.

If the subroutine finds an odd cycle, go to Step 4. If the subrou-

tine finds a Hungarian tree, go to Step 5.

Step 3 (Augmenting Chain): This step is reached only after

the alternating tree subroutine finds an augmenting chain. Reverse

the roles in matching M. of the edges in this chain. Vertex v is

no longer exposed. Return to Step 2.

Step 4 (Odd Cycle): This step is reached only after the alter-

nating tree subroutine finds an odd cycle. et k=k+1. Denote

this odd cycle by Cy. Shrink the odd cycle Cy into an artificial

kK’ Denote the new graph by G. = (X, .E,). Let M. be the

matching in Gy consisting of all edges in Med that are in Gee

In all future labeling, let all vertices subsumed into artificial

vertex a

vertex a, carry the same label as ay:

206 : Matching and Covering Algorithms

Return to Step 2 and continue to grow an alternating tree rooted

at the image of vertex v in Ge even if this vertex is artificial.

Note that the labeling and coloring of the last iteration of the

alternating tree subroutine can be salvaged for the next iteration.

Step 5 (Hungarian Tree): This step is reached only after the

alternating tree subroutine finds a Hungarian tree.

Let

d, = minty, + y, - a(i,j)} (18)

where the minimization is taken over all (i,j), where i € Xo is an

outer vertex and j © Xp is unlabeled.

Let

d= 1/2 minfy, + yaa a(i,4)} (19)

where the minimization is taken over all (i,j), where i © X, is an
i —~Q

outer vertexand_j € X, is an outer vertex, and i and j are not.

inside the same_artificial vertex.

Let

d, = 1/2 min{z } (20)

where the minimization is taken over all odd cardinality vertex sets ©

V, that are shrunk into an artificial vertex a

Let

(4, = minty, } (21)

that is labeled inner.
k

where the minimization is taken over all vertices 9 a i. eae

labeled outer. * aS aa

Lastly, let

d = min{d),d,,d,,d/} (22)

Adjust the dual variables as follows:

(a) Outer vertex variables y, are decreased by d

(b) Inner vertex variables y, are increased by d

5.3 Maximum Weight Matching Algorithm 207

Ge) For each outer artificial vertex in Gee increase its dual

variable z— by 2d.

(d) For each inner artificial vertex ing, decrease its dual

variable Za by 2d.

If d= d)> then the edge (i,j) that determined dq, enters E*,

This edge can now be colored by the alternating tree subroutine.

Return to Step 2 and continue to grow an alternating tree rooted at v.

If d= d,s then the edge (i,j) that determined d, enters E*.
2

This edge can now be colored by the alternating tree subroutine creat-

ing an odd cycle. Return to Step 2 and continue to grow an alter-

nating tree rooted at v.

Ifd=d then some dual variable z, becomes zero. Expand the 2, i
artificial vertex corresponding to this dual variable back to its

original odd cycle. Let k=k+41. Call the resulting graph G. =

(X,.E,). Let matching M. consist of all edges in Mey together

with the n, edges of T, that match the 2n, exposed vertices of Vi:

(The remaining vertex of V is matched in M. since all inner

artificial vertices in G are matched in M.1-)
k-1

Return to Step 2 and continue to grow an alternating tree rooted

at v.

If d= d)>

becomes zero. The chain in the alternating tree froom root v to

then the dual variable 5 of some outer vertex i

vertex i is a neutral augmenting chain. Reverse the roles in matching

M,. of the edges in this chain. Vertex v becomes matched and vertex

i becomes exposed, which is all right since ae 0. Return to Step 2.

Step 6 (Expansion of Artificial Vertices): This step is reached

only after all vertices violating condition (15) have been examined

by Step 2. Consider all artificial vertices remaining in the terminal

graph. Expand out each artificial vertex in reverse order (the last

to be generated is expanded first, etc.) and induce a maximum matching

on the resulting odd cycle.

The terminal matching is a maximum weight matching for the

original graph Go: Stop.

208 Matching and Covering Algorithms

Proof of the Maximum Weight Matching Algorithm: The algorithm

starts with a matching with no edges and maintains a matching through-

out all iterations. We need only prove that the terminal matching

is a maximum weight matching. This is accomplished by showing that

the terminal values for the dual variables Ya? Cex ean zy me 1,

2, ..-, Zz, satisfy dual feasibility (11)-(13) and complementary

slackness (14)-(16).

Since equations (18)-(22) assure that no dual variable is ever

reduced to a negative value, and since Step 1 selects initial dual

variable values that are nonnegative, conditions (12) and (13) are

‘satisfied at all times by the algorithm.

To verify that condition (11) is satisfied at all times by the

algorithm, note that

1. Initially, condition (11) is satisfied

2. Edge (i,j) must be (a) in an artificial vertex, (b) not in an

artificial vertex and in E*, or (c) not in an artificial vertex

and not in E*.,

If (a) occurs, then a dual variable change does not change the

left. side of condition (11) since both V5 and y5 change by d and the

dual variable for the artificial vertex containing (i,j) changes by

-2d.

If (b) occurs, then a dual variable change increases the inner

vertex dual variable and decreases the outer vertex dual variable.

Hence, the left side of (11) remains unchanged

If (c) occurs, then

NEE Stes aes ae > z 7 a(i,j)

7 m

If both i and j are not labeled, or if i and j have different labels,

then the dual variable change preserves the above inequality. If

one of the vertices i,j is labeled inner and the other is unlabeled,

or if both vertices i and j are labeled inner, then the left side

of (11) increases after a dual variable change. If one of the vertices

i and j is labeled outer and the other is unlabeled, then by equation

5.3 Maximum Weight Matching Algorithm 209

(18) the dual variable will not reverse the above inequality. If

both vertices i and j are outer vertices, then by equation (19) the

dual variable change will not reverse the preceding inequality.

Thus, under all dual variable changes condition (11) remains

satisfied.

To verify condition (14), we must consider two cases: (a)

matching edge (i,j) is not in an artificial vertex at the beginning

of Step 6, or (b) matching edge (i,j) is contained in an artificial

vertex at the beginning of Step 6.

If (a) occurs, then edge (i,j) € E* and condition (14) is

satisfied. If (b) occurs, then edge (i,j) is contained in some

artificial vertex after the last dual variable change has been made,

and condition (11) holds with equality. Hence, condition (14) is

satisfied by the terminal dual variable values.

Condition (15) is satisfied for all vertices at the end of the

algorithm; otherwise, Step 2 would have been repeated for any

vertex violating condition (15).

Lastly, it remains to show that condition (16) is satisfied.

The only way that a dual variable z, can become positive is to shrink

the vertices in ae into an artificial vertex. In Step 6, each

artificial vertex is expanded and a maximum matching is induced on

the corresponding odd cycle. Thus, condition (16) is satisfied. Q.E.D.

EXAMPLE 3. Let us find a maximum weight matching for the graph in

ab senso alR

x» |

Figure 5 ott.

Maximum Weight Matching Algorithm

210 Matching and Covering Algorithms

Step 1: Since the largest edge weight equals 6, let va 6/2

= 3 for all vertices i. Let all CF pe 0. Initially, no edges are

in the matching.

Step 2: Exposed vertex d is selected for examination. Alter-

nating tree subroutine: E* = {(d,b)}. Vertex d is labeled outer.

Vertex b is labeled, and an augmenting chain (d,b) has been discovered.

Go to Step 3.

Step 3: Add edge (d,b) to the matching.

Step 2: Exposed vertex e is selected for examination. Alter-

nating tree subroutine: E* = {(d,b)}. Vertex e is labeled outer.

No further labeling is possible. The alternating tree consisting

entirely of vertex e is Hungarian. Go to Step 5.

Step 5: Perform a dual variable change.

d 1 my, ny die a(d,e), ee es a(b,e), vet. - a(f,e)}

min{f3 +3 -5,3+3-3}=1

docs teadgim{e

dji="y, 513

d= min{d,, d d d, 3 = min{l, , ~, 3} =1 ye 3°

Thus, ee decreases by 1. (See Fig. 5.12.)

Ja bloc daene faa es Matching

Initialization 3 = 3 3 3 3 0 Empty

Examine d 3) 3 3 3 3 8 0 (d,b)

Examine e Shir} 3 3 (2) 30 (d,b)

Examine g 3 2 3 2 1 3 Pee A Gel (2))

Examine c 350022 2 a2 eee eee (a,g)

Zee eee 1 3 2 8 Ole (ard) ane. b)

Examine f Se VI he es he MO) GES Ee)

(b,c)

Figure 5.12

Dual Variable Changes

Maximum Weight Matching Algorithm

5.3 Maximum Weight Matching Algorithm 2a]

Step 2: Continued examination of exposed vertex e. Alternating

tree subroutine: E* = {(d,b), (d,e), (e,b)}. Vertex e is labeled -

outer. Vertex b is labeled inner, vertex d is labeled outer, and

edges (e,b) and (d,b) are colored. Next, edge (d,e) joining outer

vertices d and e is colored. An odd cycle has been discovered. Go

to Step 4.

Step 4: Shrink the odd cycle (e,b), (d,b), (d,e) into an

artificial vertex g.- Denote the dual variable for the odd vettex

set e, b, d by Z5° The new graph resulting from this shrinking is

shown in Fig. 5.13.

Figure 5.13

Graph Resulting from Shrinking an Odd Cycle

Step 2: Examination of exposed artificial vertex g. Alter-

nating tree subroutine: E* = {(d,b), (d,e), (e,b)}. Vertex g is

labeled outer. (Hence, vertices d, b, e are also labeled outer.)

No further labeling is possible. The tree consisting entirely of

vertex g is Hungarian. Go to Step Ds

Step 5: Perform a dual variable change.

dy = minty, + ie a(b,¢), Ye + ata a(a,d), ve + Vays a(e,f)}

eomshts to. Gaal +H Olas, (2h 3"= 3)-= min{2,1,2} =1

oe

d, =o (there are no inner artificial vertices)

: = mi erpinisece2 ss d), minty, »¥qrVo} min{ }

| d = min{l, ~, », 2} =1

peewee ees eee ty, 2 g

212 Matching and Covering Algorithms

Note that for each edge in E*, condition (11) is satisfied with

equality, e.g., for edge (d,e),

Yq + sie + as =2+1+ 2 = 5 = a(d,e)

Step 2: Continued examination of exposed artificial vertex g.

Alternating tree subroutine: E* = {(d,e), (e,b), (b,d), (a,d)}.

Vertex g is labeled outer. Thus, vertices b, e, d are also labeled

outer. Edge (a,g) is colored, and an augmenting chain has been found.

Go.to Step 3.

Step 3: Add edge (a,g) to the matching.

Step 2: Examination of exposed vertex c. Alternating tree

subroutine: E* = {(d,e), (e,b), (b,d), (a,d)}. Vertex c is labeled

outer. No further labeling. The tree consisting entirely of vertex

c is Hungarian. Go to Step 5.

Step 5: Perform a dual variable change.

dy sae + Ye ale, d)y="3) 44 2) = 4 =!

Sate

Gacmae

on ae? al Z

Step 2: Continued examination of exposed vertex c. Alternating

tree subroutine: E* = {(d,e), (e,b), (b,d), (a,d), (c,b)}. Vertex

c is labeled outer. Vertex g is labeled inner, and vertex a is

labeled outer. Edges (c,g) and (g,a) are colored. (Since g is an

inner vertex, vertices b, e, d are also labeled inner.) No further

labeling is possible. The tree is Hungarian. Go to Step 5.

Step 5: Perform a dual variable change.

“an is

Oita

5.3 Maximum Weight Matching Algorithm 213

d,

q,

12) 25 =1

min{y ,y,} = min{2,3} = 2

d = minf~, ~, 1, 2} =1

a
Yous l= 2. and a SP PG) ae

Thus, pode eee Ye cs el Ais Po so Me = Gh aS Zao = 33

e

Since as has returned to zero, artificial vertex g must be

expanded. Expanding vertex g yields the original graph in Bigs.

Now, we must induce a maximum matching on the odd cycle corre-

sponding to vertex g. Since edge (d,a) is a matching edge, only

vertices e and b are left exposed. Thus, edge (e,b) is added to

the matching.

Step 2: Examination of exposed vertex f. Alternating tree

subroutine: E* = {(d,e), (e,b), (b,d), (a,d), (b,c)}. Vertex f is

labeled outer. No further labeling is possible. The tree consist-

ing entirely of vertex f is Hungarian. Go to Step 5.

Step 5: Perform a dual variable change.

d, ey ciat ye a(f,e) =3+2-3=2

d, = ©

de =

qd), at ae 3)

min{2, ~, ~, 3} = 2.

Thus, Ves 3 - 2=1. All other dual variables remain unchanged.

Step 2: Continued examination of exposed vertex f. Alternating

tree subroutine: E* consists of all edges in graph G. Vertex f is

labeled outer. Vertex e is labeled inner, and vertex b is labeled

outer. Edges (f,e) and (e,b) are colored. Edge (b,c) is colored

next. An augmenting chain (f,e), (e,b), (b,c) has been found. Go

to Step 3.

Step 3: Reverse the roles of the edges in chain (f,e), (e,b),

(b,c). Thus, edge (e,b) leaves the matching, and edges (f,e) and

214 Matching and Covering Algorithms

(b,c) enter the matching. The matching now consists of edges (a,d),

(,e)> and (bic):

Step 2: There are no more unexamined, exposed vertices. Go to

Step 6.

Step 6: No artificial vertices remain in the final graph. Stop.

The maximum weight matching is (a,d), (f,e), (b,c) with a total

weight 5+3+4=12.

Notice that at termination all dual variables Za 0, and

} Me iee 2+3+1+3+2+12=12. (Thus, the value of the primal

objective function (6) is 12, and the value of the dual objective

function (10) is also 12. Consequently, by equation (4) of Chap. 1,

both primal and dual solution must be optimal.

5.4 Minimum Weight Covering Algorithm

This section presents an algorithm (White, 1967) that finds a

minimum weight covering of graph G = (X,E). Like the matching

algorithms in Secs. 5.2 and 5.3, the basic operation of this

algorithm is the growing of an alternating tree using the alternating

tree subroutine.

As before, let V = {V,> V eieneis vo} denote the set of all odd ?

cardinality subsets of X. Lat da + 1 denote the number of vertices

in subset ee Let UL denote the set of all edges with one or both

endpoints in x

Every covering must contain at least ntl edges in Un As

before; let a(i,j) denote the weight of edge (i,j). Let x(i,j) =1

if edge (i,j) is in the covering; otherwise, let x(i,j) = 0.

For the present, assume that all edge weights are positive.

Consider the following linear programming problem:

Minimize

PeeG. ix.) (23)
(i,j)

such that

Y [x(4,5) + x(j,i)] > 1 (for all 4 € x) (24)
J

5.4 Minimum Weight Covering Algorithm PRINS)

x@.J)>nf 1 (é ila oe deta Cok u, j an (for m Zz) (25)

x(i,j) > 0 [for all (i,4)] (26)

Constraint (24) requires that at least one edge in the covering
be incident to vertex i. Constraint (25) requires that at least n ne
edges from set v be present in the covering. Expression (23) Suit
the total rat thee of the covering.

Clearly, any covering satisfies constraints (24)-(26). The dual
linear programming problem to (23)-(26) is:

Maximize

; m=z
y,+ } (+z (27)

Seeeg Fy Spey ko =

such that

Boas ee ee for tec)y (28)
m: G,jyeu,

Ys aOR Chor alla ex) (29)

Ei cs OAC Cor mem, 2504 35 'e) (30)

The complementary slackness conditions for the primal-dual pair

of linear programming problems are

Be Tintr ee tok ar eettnd) sffor allies)
m(i,j)e UL (31)

y. >0> ») EG Gel) l=" Gore ali te x)
i: helix

that is, vertex i is covered only once,

z> 0 > 5 (ELSA) = uel KGxepe nen Ps eanon 7)
m igvEeu m

(i,j m (33)

That is, the an. + 1 vertices in x are covered by ns edges with both

endpoints in x and one edge with only one endpoint in xo

Note that the dual variable Ys corresponds to constraint (24)

for vertex i, and hence, 5 can be regarded as the dual variable

for vertex i. Also, note that the dual variable Za corresponds to

constraint (25) for odd vertex subset ve and can be regarded as the

216 Matching and Covering Algorithms

dual variable for vertex subset hk Thus, there is a dual variable

associated with each vertex and with each odd cardinality subset of

vertices.

The minimum weight covering algorithm will shrink odd cycles

into artificial vertices as did the previous algorithms in this

chapter. Thus, each artificial vertex a, will contain an odd

cardinality subset x, of vertices. The dual variable Za associated

with x can be regarded as the dual variable for artificial vertex ay:

From constraints (28)-(30),

SF < min{a(i,j), a(j,i)}
J

Vertex y is called saturated if equality holds, i.e., if V3 is as

large as possible. Otherwise, vertex i is called unsaturated. If

View 0, then vertex i is called empty. Note that condition (32)

does not apply to empty vertices, and hence, only empty vertices can

have more than one edge in the covering incident to them. Also,

note that each saturated vertex must be joined by an edge to an

empty vertex.

The minimum weight covering algorithm consists of two phases:

Phase 1 generates a matching; Phase 2 converts this matching into a

covering, which is a minimum weight covering.

Phase 1 is initialized with all primal variables x(i,j) = 0,

i.e., a null matching, with all dual variables Z, = 0, and with any

values for the dual variables Ys that satisfy (28) and (29). Each

iteration of Phase 1 examines an exposed, unsaturated vertex v.

Vertex v becomes matched, or the dual variables are altered so that

vertex v becomes saturated.~ Conditions (28)-(31) and (33) remain

satisfied throughout. The algorithm moves to Phase 2 after all

exposed, unsaturated vertices have been eliminated.

Phase 2 converts the terminal matching generated by Phase 1 into

a covering by adding to the matching each edge joining an exposed

saturated vertex to its empty vertex. The resulting covering

satisfies all primal, dual and complementary slackness conditions,

and hence, this covering is a minimum weight covering.

5.4 Minimum Weight Covering Algorithm Z2INI

How does Phase 1 alter the matching and/or dual variables so

that vertex v is no longer exposed or no longer unsaturated? This

is accomplished by using the alternating tree subroutine to grow ie

alternating Presi rooted at vertex v. As before, the subroutine

terminates with (a) an augmenting chain, (b) an odd cycle, or (c) a

Hungarian tree. If (a) occurs, the roles of the edges in the matching

are reversed along this augmenting chain, and vertex v becomes matched.

If (b) occurs, then the odd cycle is shrunk into an artificial vertex,

and the algorithm is continued on the shrunken replica of the original

graph. If (c) occurs, the dual variables are altered so that (cl)

a new edge can be added to the alternating tree, or (c2) an outer

vertex j becomes saturated. If (cl) occurs, the subroutine continues

to grow an alternating tree rooted at v. If (c2) occurs, the alter-

nating chain from v to j forms a neutral augmenting chain. The

roles in the matching of the edges in this chain are reversed.

Vertex v becomes matched, and vertex j becomes an exposed, saturated

vertex.

Ultimately, vertex v is either matched or saturated.

The algorithm shrinks odd cycles into artificial vertices.

Eventually, the algorithm expands back all artificial vertices into

their original odd cycles. However, the artificial vertices are

expanded back in an order only somewhat related to the order in

which they were formed. Consequently, the algorithm works on a

sequence Go» Gi> eketiers G. of graphs.

With this as background, we are now ready to state formally

the minimum weight covering algorithm.

Minimum Weight Covering Algorithm

Phase 1 (Matching).

Step 1 (Initialization): Let k= 70." “Let CG. = (XE,) denote

the graph under consideration. Let matching M. contain no edges.

The alternating tree uses only edges that satisfy (28) with

equality.

218 Matching and Covering Algorithms

To save writing, define

= 4 eae es + .) ZO (for allie Xo) (34)

eM
n

Let all dual variables z, = O, m= ly 2yusnes te Choose any avalucs

for the dual variables ye such that

Woot wy Salted) whtorsall. (135).¢ Ey] (35)

w, > 0 (for all i ¢€ Xo) (36)

For example, Yoes O for all i will meet all requirements.

Step 2 (Examination of an Exposed, Unsaturated Vertex):

Let E*={(1,j): W, + w. = a(i,}), Le Xo» 7 € Xp}.

Select any exposed, unsaturated vertex v € x, that is not an

artificial vertex. If no such vertex exists, go to Phase 2. Other-

wise, use the alternating tree subroutine to grow an alternating tree

rooted at v using only the edges of E* present in graph G,.

If the alternating tree subroutine terminates with an augmenting

chain, go to Step 3. If the alternating tree subroutine terminates

with an odd cycle, go to Step 4. If the alternating tree subroutine

terminates with a Hungarian tree, go to Step 5.

Step 3 (Augmenting Chain): This step is reached only after the

alternating tree subroutine finds an augmenting chain. Reverse the

roles in matching M. of the edges in this chain. The exposed root

vertex v is no longer exposed. Return to Step 2 to examine another

exposed, unsaturated vertex.

Step 4 (Odd Cycle): This step is reached only after the alter-

nating tree subroutine finds an odd cycle. Let k=k+1. Shrink

this odd cycle into an artificial vertex ay:

resulting from this shrinking by Gee Let M. be the matching consist-—-

Denote the new graph

ing of all edges in matching Mey that appear in graph Gee

In all future labelings in the alternating tree subroutine, let

all vertices subsumed into artificial vertex a, carry the same label

as a kK:

5.4 Minimum Weight Covering Algorithm 219

Return to Step 2 and continue to grow an alternating tree

rooted at the image of vertex v in ce In this case, the labeling

and coloring of the last iteration of the alternating tree subroutine

can be salvaged for the next .iteration of this subroutine.

Step 5 (Hungarian Tree): This step is reached only after the

alternating tree subroutine terminates with a Hungarian tree. Let

dy = minfa(i,j) - Wo ws} (37)

where the minimization is taken over all outer vertices i in Xo and

all unlabeled vertices j in Xo:

Let

dy = 1/2 min{a(i,j) - Wala w,;} (38)

where the minimization is taken over all outer vertices i © Xy and

outer vertices j € X, such that (i,j) ¢ E*. Let
0

d = Ay min{z,} (39)

where the minimization is taken over all m, where the vertices Vig

constitute an inner artificial vertex. Let

qd) =mainia(di,j) — w,} (40)

where the minimization is taken over all nonartificial outer vertices

ie xX, and all inner vertices j € Xo» where (i,j) € E*. Let

d. = mintw, - } zt (41)
5 m €V.

m

where vertex i€ Xo is contained in an outer artificial vertex.

Lastly, let

d= min{d,,d,,
42

d,,d,,d,}.
()

Adjust the following dual variable as follows:

1. Outer vertex variables w,; are increased by d.

2. Inner vertex variables w, are decreased by d.

this is the only time when an artificial vertex is the root

of the alternating tree.

220 Matching and Covering Algorithms

3. Increase the dual variable Zn corresponding to each outer arti-

ficial vertex in G by 2d.

4. Decrease the dual variable z, corresponding to each inner

artificial vertex in GC. by 2d.

If d= d,> then an additional edge is added to E* and the alter-

nating tree can be grown further. Return to Step 2 to continue

growing an alternating tree rooted at v.

Lisds= d,, then an additional edge is added to E*. This edge

forms an odd cycle in E*. Return to Step 2 to continue growing an

alternating tree rooted at v.

If d= d,,

vertex returns to zero value. Let k=k+1. Expand this artificial

then the dual variable Z for some inner artificial

vertex back into its original odd cycle. Since the artificial vertex

was an inner vertex, one matching edge is incident to it. Add edges

in the odd cycle to the matching so that the remaining vertices in

the odd cycle are all matched. Call the new graph G. and the new

matching M.. Return to Step 2 to continue growing an alternating

tree rooted at v.

If d = d,> then some outer vertex j becomes saturated. The

alternating chain in the alternating tree from root v to vertex j is

a neutral augmenting chain. Reverse the roles in matching M. of the

edges in this chain from v to j. Vertex j becomes an exposed, satu-

rated vertex. Vertex v is no longer exposed. Return to Step 2 to

examine another exposed, unsaturated vertex.

If d= d,, then Ys becomes zero for some vertex i contained in

an outer artificial vertex an The alternating chain from root

vertex v to an forms a neutral augmenting chain. Reverse the roles

in the matching of the edges in this chain from v to an Vertex v

becomes matched, and artificial vertex an becomes exposed. Return

to Step 2 to examine another exposed, unsaturated vertex.

Phase 2 (Converting the Matching into a Covering) :

Step 7 (Exposed Nonartificial Vertices): This step is reached

only after Step 2 has eliminated all exposed, unsaturated nonartificial

vertices in graph Gee Add to M. the edge joining each exposed,

5.4 Minimum Weight Covering Algorithm Zou

saturated, nonartificial vertex in GC. to its empty vertex. (The

empty vertex is not contained in any matched artificial vertex. See

Lemma 5.2.) Now, the only exposed vertices in G ie are artificial

vertices. Go to Step 8.

Step 8 (Expansion of Artificial Vertices): If graph G contains

no artificial vertices, stop because M. is a minimum weight covering

for graph Go: Otherwise, expand the last remaining artificial vertex

an to be formed back into its original odd cycle. Let k=k+1.

Call the new graph resulting from this expansion Gy.

Two cases are possible: (a) vertex an was covered at the end

of Phase 1, or (b) vertex a, was exposed at the end of Phase 1.

If case (a) occurs, then one vertex in the odd cycle correspond-

ing to an is matched, and the other vertices in the odd cycle corre-

sponding to an are exposed. Let M. consist of all the edges in Med

together with edges from the odd cycle corresponding to an that match

the exposed vertices in this cycle. Repeat Step 8.

If case (b) occurs, then vie 0, for some vertex i in the odd

cycle corresponding to an (See Lemma 5.1.) Let M. consist of all

edges in Mey together with both edges in the odd cycle incident to

vertex i and a matching of the remaining vertices in the odd cycle.

Repeat Step 8.

Before proving the algorithm, two lemmas are needed.

LEMMA 5.1 At the end of Phase 1, each exposed artificial vertex

contains an empty vertex.

Proof: Let an denote any exposed artificial vertex present at

the end of Phase 1. When a, was first generated, it was either

exposed or matched. If a, was exposed, then it was the root of the

current alternating tree. This alternating tree was not discarded

until after a, was matched or until an contained an empty vertex.

See Step 5 for d = d,.

IGE an was matched, the only time that an could become exposed

was when a_ contained an empty vertex. See Stepe. for d= d,.
m

222 Matching and Covering Algorithms

Lastly, if a_ is shrunk into another artificial vertex aye then
™m

a must have been expanded out before the end of Phase 1. After ay
n

is expanded out, an is again matched. See Step 5 for d=d Q.E.D. 3°

LEMMA 5.2 At the end of Phase 1, the empty vertex corresponding to

a saturated, exposed vertex is not contained in a matched artificial

vertex.

Proof: At the end of Phase 1, suppose that vertex i is a

saturated, exposed vertex and vertex j is its empty vertex. We must

show that vertex j is not contained in any matched artificial vertex.

Since Nia git oleae Y; = 0, and } Za 0, it follows from

m:i € V m

from (28) and (34) that ” a = 0. Thus, the dual variable for any

m:j € hs,

artificial vertex an that contains vertex j must equal zero.

Consider the last time that artificial vertex a, was labeled.

If a, was labeled inner, then an would have been expanded out since

Step 5 expands out all inner artificial vertices with dual varaible

equal to zero. If a, was labeled outer, then the chain from the root

to a, was a neutral augmenting chain and an would have been left

exposed. See Step 5 for d=d Either way, artificial vertex an

cannot be matched. Q.E.D. ‘

Proof of the Minimum Weight Covering Algorithm: Phase 1 generates

a matching; Phase 2 converts the matching to a covering for graph

Go: We need only show that this terminal covering is a minimum weight

covering. This is accomplished by showing that the terminal values

for the dual variables oF and Zn together with the x(i,j) values

for the terminal covering satisfy dual feasibility (28)-(30) and

complementary slackness (31)-(33).

Proof for (28): Condition (28) can be rewritten as

Y uty 2 ot 2 ts ae } Ze , eo i Zz Ne ; k , m 4 m 3 ~ J (154) Ee UL ; mi€ V mj EV, m:i,j € vee x

MN HeGah Gee ES CRS Cele
Babe iS pa

5.4 Minimum Weight Covering Algorithm 223

Initially, all Zon O and Ww; + Ws < a(i,j). Condition (28"') is

satisfied with strict inequality until edge (i,j) becomes a member-

of set E*. After edge (i,j) joins E*, vertices i and j have (a)

different labels, (b) are in the same artificial vertex, or (c) have

no labels.

If (a) occurs, then at each dual variable change, the change in

the yy is offset by the opposite change in 4? and Ze Oetor all nm

for which i € ve and j7 € vn If (b) occurs, then Wy changes by d,

ae changes by d and the dual variable z of the artificial vertex

containing i and j has an offsetting change GOL 2d elt) (Cc) occurs,

then w,, w. and all Zu? IS Miao j € Vien remain unchanged. Hence,

condition (28') always remains satisfied.

Proof of (29): From the definition of d_. in equation (41), the
3)

algorithm always maintains

iy aly Se oe
mi¢€c V

m

Hence, ee 0 at all iterations of the algorithm.

Proof of (30): From the definition if d, in equation (39), Zz

never is reduced below zero.

Proof of (31): Edge (i,j) is placed into the final covering

in (a) Phase 1, (b) Step 7, or (c) Step 8.

If (a) occurs, then edge (i,j) is in E* and vertices i and j

are not in the same artificial vertex when Phase 1 ends. Thus,

> Zo 0, and from (28'), it follows that condition (31) is

m:i,j€ ‘<

satisfied.

If (b) occurs, then vertex i is saturated and vertex j is

empty, and both vertices are nonartificial at the end of Phase l.

Hence, se a(i,j), and y, = 0, and condition (31) is satisfied.

If (c) occurs, then edge (i,j) is contained in an artificial

vertex at the end of Phase 1. Hence, at the end of Phase 1, edge

(i,j) © E*, and condition (31) is satisfied.

224 Matching and Covering Algorithms

Proof for (32): At the end of Phase 1, all vertices are matched

or saturated. In Step 7, the only vertices that are covered a second

time are empty vertices. In Step 8, the only vertices that are

covered a second time are empty vertices. Hence, only empty vertices

are covered more than once, and all other vertices are covered exactly

once.

Proof for (33): If Zn > 0 at the end of phase 1, then the

vertices in V,, are shrunk into an artificial vertex a, at the end

of Phase 1. The vertices in Ve are covered in Step 8 by n. edges

from the odd cycle plus an additional edge. Thus, ny + 1 edges of

U, are present in the final covering and condition (33) follows. Q.E.D.

EXAMPLE 4. Let us find a minimum weight covering for the graph in

Fig. 5.14. The weight of each edge appears next to the edge.

Figure 5.14

Minimum Weight Covering Algorithm

Step 1 (Initialization): Let all Zr Os 2 asa Se Lee

all Vea 1/2 minfa(i,j)} = 1. Initially, no edges are in the matching.

Step 2 (Examination of Exposed, Unsaturated Vertex d):

Alternating tree subroutine: E* = {(d,b)}. Vertex d is labeled

outer. Edge (d,b) is colored. An augmenting chain has been found.

Step 3: Reverse the roles of the edges in the augmenting

chain (d,b). Edge (d,b) is added to the matching.

Step 2 (Examination of Exposed, Unsaturated Vertex e): Alter-

nating tree subroutine: E* = {(d,b)}. Vertex e is labeled outer.

No further labeling is possible. The tree is Hungarian. Go to

Step 5.

5.4 Minimum Weight Covering Algorithm 225

Step 5: Perform a dual variable change.

d i minf{a(e,b) - Ws a(e,d) - We ws ale.£) = sige wer

miniou= = 15.5)=1 = 1, 10 =f - 1} = 3

A I
zs min{d,,d,,d,,d,,4,} = 3

Now, A 1+ 3 = 4. No other dual variables change value. (See

Bilt Peierls.)

we “, We Wy Wa We 27 Edges

Initialization 1 1 i i il 0 Empty

Examine d i. a, 1 ik al ii 0 (d,b)

Examine e 1 i Al 1 4 1 0 Empty

Examine ay 1 2 i 2 5 1 2 Empty

Examine a 3 2 1 2 5 il 2 (a,a,)

Examine c 3 vy 19) 2 5 il! 2 (a,a,)

Examine c again 4 Eee al. 4 1 0 Cad) (bee)

Examine c again 5 aly 0 5) i 0) (a,d), (b,e)

Examine f 5 Oat2 0 5 5 0 (asd), be)

(e,f)

Phase 2 5 O12 0 5 8) (rd)ee (bec)

(e,f)
eee ee SS

Figure 5.15

Dual Variable Changes

Minimum Weight Covering Algorithm

Step 2: (Continued Examination of Vertex e): Alternating

tree subroutine: E* = {(d,b), (e,b), (d,e)}. Vertex e is labeled

outer. Edges (e,b) and (b,d) are colored, vertex b is labeled inner,

and vertex d is labeled outer. Edge (d,e) is colored. An odd cycle

(e,b), (b,d), (d,e) has been found. Go to Step 4.

Step 4: Shrink the odd cycle (e,b).40b. 4), (de) into. an

artificial vertex ay: See Fig. 5.16. Let Zz, = 0 denote the dual

variable for ay: Now, the matching is empty.

226 Matching and Covering Algorithm

Figure 5.16

Graph Resulting from Shrinking an Odd Cycle

Step 2: Examination of exposed artificial vertex a Alter- L

nating tree subroutine: E* = {(e,b), (b,d), (d,e)}. Vertex ay is

labeled outer, and consequently, vertices e, b, d must also be labeled

outer. No further labeling is possible. The tree consisting entirely

of vertex ay is Hungarian. Go to Step 5.

Step 5: Perform a dual variable change.

ga min{a(e,f) - We 7 Wee a(b,c) - — Wo. a(a,d) - ve }
ia

mint lOc he V1 2a ee SAS ed eS
d, = d, = d, = ©

d_ = min{w., Ws, ; wat = min{4, 1, 4} =1

a I = min{d_,d 1°4924g2d,.d5t = 1

The dual variables become

w =4+1=5
e

i ee ap dpe 2

ete ad = 2

z= (oar CX) a 2

Since d = d,, vertex a, can be left exposed. Note that Lp Phe 24

= 2-2 = 0, and BP Pane fu 2-2 a= Oly

Step 2: Examination of exposed, unsaturated vertex a. Alter-

nating tree subroutine: E* = {(e,b), (b,d), (d,e)}. Vertex a is

labeled outer. No further labeling is possible. The tree consisting

entirely of vertex a is a Hungarian tree. Go to Step 5.

5.4 Minimum Weight Covering Algorithm 227

Step 5: Perform a dual variable change.

Qu i} min{a(a,d) - Pee Maes 1 2 =) 2 r “a

Dual variable Ci 1 +2 = 3. Return to Step 2.

Step 2: Continued examination of exposed, unsaturated vertex

a. Alternating tree subroutine: E* = {(d,b), (e,b), (d,e), (a,d)}.

Vertex a is labeled outer. Vertex ay is colored. The edge (a,a,)

is an augmenting chain. Add this edge to the matching.

Step 2: Examination of exposed, unsaturated vertex c. Alter-

nating tree subroutine: E* is as in preceding Step 2. Vertex c is

labeled outer. No further labeling is possible. The tree consist-

ing entirely of vertex c is a Hungarian tree. Go to Step 5.

Step 5: Perform a dual variable change.

Qa Wt min{fa(c,b) -w -w,} =12-1-2=9
e b

d = d, = 9

Dual variable WS 1+9 = 10. Return to Step 2.

Step 2: Continued examination of exposed, unsaturated vertex

c. Alternating tree subroutine. E* = {(d,b), (e,b), (deer eGisd),

(c,b)}. Vertex c is labeled outer. Vertex ay is labeled inner,

vertex a is labeled outer, and edges (c,b) and (a) a) are colored.

No further labeling is possible. The tree consisting of (c,b),

(a, >a) is Hungarian. Go to Step 5.

Step 5: Perform a dual variable change.

d, S yp mint z, } = 1/2(2) = 1

d, = min{a(c,b) - wo a(a,d) - wt = min{l2 - 10, 5 - 3} = 2

d=de=1
3

228 Matching and Covering Algorithm

The dual variables become

z i] bo fe Re
I >

a

wy = 2-1=1

w =10+1=11
c

wa = 25 =. Gel

w =5-1==4
e

We = alt

2 eo 2 - 2(1) =0

Since d = d., Z4 becomes zero, and inner artificial vertex ay can be

expanded back to its original odd cycle. The graph resulting from

the expansion of a, is the original graph of Fig. 5.14. Let the
i

matching consist of the previous matching edge (a,d) together with

edge (b,e) that matches the remaining two exposed vertices d and e

of the odd cycle (b,d), (d,e), (e,b). Return to Step 2.

Step 2: Continued examination of exposed, unsaturated vertex c.

Alternating tree subroutine: E* consists of all edges in the graph

except (e,f). Vertex c is labeled outer. Vertex b is labeled inner,

vertex e is labeled outer, and edges (c,b) and (b,e) are colored.

Next, vertex d is labeled inner, vertex a is labeled outer, and edges

(e,d) and (a,d) are colored. No further labeling is possible. The

current tree consisting of edges (c,d), (b,e), (e,d), (d,a) is

Hungarian. Go to Step 5.

Step 5: Perform a dual variable change.

di = minfa(e,f) - Woe we} =10-4-12=5

dg =d,=d,= ©

d) = minfa(c,b) - Woe a(e,b) - wo? a(e,d) - wo? a(a,d) - wi}

mintl2 -"11, 5 — 4, 5=4,)5 — 4) =. 1

qd) = 3 Qu. il

The dual variables become

5.4 Minimum Weight Covering Algorithm 229

is ct ih

= z i} i] bh I
he Il i) jo) wu

= l ji + lol
nN a2

= i} ae ! pa I jo)

= I PS + b i Nn

Vertex c is now saturated and need not be examined further.

Step 2: Examination of exposed, unsaturated vertex f. Alter-

nating tree subroutine: E* = {(a,d), (d,e), (e,b), (b,c)}. Vertex

f is labeled outer. No further labeling is possible. The tree

consisting entirely of vertex f is Hungarian. Go to Step 5.

Step 5: Perform a dual variable change.

Qu i] a(f,e) - Be iaae os 10 -1-5=4
e

Boe ager dj t= dba te

d= d, = 24

Dual variable We Slee Gea 25.

Step 2: Continued examination of exposed, unsaturated vertex f.

Alternating tree subroutine: E* = {(a,d), (d,e), (e,b), (b,c), (e,f)}.

Vertex f is labeled outer. Next, vertex e is labeled inner and

vertex b is labeled outer, and edges (f,e), and (e,b) are colored.

Next vertex c is labeled and edge (b,c) is colored. An augmenting

chain (f,e), (e,b), (b,c) has been discovered. Go to Step 3.

Step 3: Reverse the roles in the matching of the edges in the

augmenting chain. Edges (f,e) and (b,c) are added to the matching,

and edge (e,b) is removed from the matching. Now, the matching con-

sists of edges (a,d), (f,e), (b,c).

230 Matching and Covering Algorithm

Step 2: There are no more exposed vertices. Go to Phase 2.

Phase 2: There are no more artificial vertices. Stop, the

current set of edges is a minimum weight covering.

The weight of the covering consisting of edges (a,d), (f,e),

(b,c) is 5+ 10+ 12. The value of the dual objective function (27)

at termination is ae = lw, =5+0+12+0+5+5= 27. Thus,

the terminal objective function values of the primal and dual linear

progaramming problems are both 27, and the by equation (4) in Chapter

1, the primal and dual solutions must be optimal for their respective

problems.

Negative Edge Weights

The minimum weight covering algorithm assumed that all edge weights

are nonnegative. [Otherwise, the linear programming problem (23)-

(26) from which the algorithm was derived would achieve an optimal

solution whenever x(i,j) = ~ when a(i,j) < 0.]

Obviously, every edge with negative weight must be present in

a minimum weight covering. Moreover, every edge with zero weight

may also be present in a minimum weight covering.

How can we find a minimum weight covering when edges with

negative weight are present in the graph? Simply change each negative

edge weight to zero. Next, perform the minimum weight covering

algorithm using these new nonnegative edge weights. Add to the

terminal covering all edges not present in the terminal solution that

originally had negative weight. The resulting covering is a minimum

weight covering.

Note that if a(i,j) = 0, then at all times Wee 0, Me = 0,

W, =P te = 0 = a(i,j) and hence (i,j) © E* at all times. Moreover,

vertices i and j are always saturated and need never be examined by

Step 2 of the algorithm.

$m fb
Exercises a \ : PR mera 231

EXERCISES

1. Construct a graph in which a maximum cardinality matching is mot

a maximum weight matching. Construct a graph in which a minimum

cardinality covering is not a minimum weight covering.

2. For the bipartite graph in Fig. 5.17, construct

(a) A maximum cardinality matching

os A maximum weight matching

(c) A minimum cardinality covering

(d) A minimum weight covering

7

Figure 5.17

ee For the graph in Fig. 5.18, construct

(a) A maximum cardinality matching

(b) A maximum weight matching

(c) A minimum cardinality covering

(d) A minimum weight covering

232

\6

Matching and Covering Algorithms

Figure 5.18

How does the maximum cardinality matching algorithm remove an

edge that has incorrectly been placed into solution? How does

the maximum weight matching algorithm accomplish this? How

does the minimum weight covering algorithm accomplish this?

A tour group of thirty persons has just arrived at a hotel. Each

room in the hotel has two twin beds. The hotel manager wishes

to assign the guests to as few rooms as possible without placing

two unrelated persons of the opposite sex in the same-roon.

Combinations of roommates such as husband-wife, father-—daughter,

brother-sister are acceptable. How can the hotel manager solve

his problem?

What are the chief similarities and differences between the max-

imum weight matching algorithm and Phase 1 of the minimum weight

covering algorithm?

A machine shop possesses six different drilling machines. On

a certain day, five jobs that need drilling arrived. The

number of man-hours required to perform each job on each of the

machines is given in the following. Find the best way to assign

each job to a different machine.

Exercises

Job

A B Cc D E

Machine 1 5 7 6 4 9 d

2 8 10 3 4 7)

3 6 11 5 4 7

4 5 8 7 3 9

5 3 6 4 2 7

6 3 7 5 3 7

The United Nations sponsors a sister-cities program in which

cities are paired off for cultural and educational exchange

programs. This year 10 new cities have applied. What is the

best way to pair them off so that the total distance between

all sister cities is minimized? The intercity distances are

eC tee toe Omg ae 8 9.5 LO

Beomecity | 10) 80> 70 70° 60 45 90'210,,85 £155

2 Oy Dao eo OmroO mn On LOO ma7.0 45

3 0 65 70 60100 80 80 55

4 0 80 80 70170 200 250

5 OFTLO} 17.05 1905 2707 300

6 0 100 150 110 200

i! OR /> a9 5 LOO

8 0 90 100

9 0 50

REFERENCES

Balinski, M., 1969. Labelling to Obtain a Maximum Matching,

Combinatorial Mathematics and Its Applications (Bose and

Dowling, eds.), University of North Carolina Press, Chapel

Hill, pp. 585-602.

Berge, C., 1957. Two Theorems in Graph Theory, Proc. Natl. Acad.

Sci. U.S.A., Vol. 43, pp. 842-844.

Brown, J. R., Maximum Cardinality Matching, Kent State University,

unpublished manuscript.

233

234 : Matching and Covering Algorithms

Edmonds, J., 1965. Paths, Trees, and Flowers, Can. J. Math., Vol.

17, pp. 449-467.

Edmonds, J., 1965. Maximum Matching and Polyhedra with 0-1 Vertices,

J. Res. N.B:S., vol. 69B, no. 1, 2, pp. 125-130.

Edmonds, J., and Ellis Johnson, 1970. Matching: A Well Solved Class

of Integer Linear Programs, Combinatorial Structures and Their

Applications, Gordon and Breach, New York, pp. 89-92.

White, L. J., 1967. A Parametric Study of Matchings and Coverings

in Weighted Graphs, Ph.D. Thesis, University of Michigan.

Chapter 6

POSTMAN PROBLEM

6.1 INTRODUCTION

Before starting his route, a postman must pick up his letters at

the post office, then he must deliver letters along each block in

his route, and finally he must return to the post office to return

all undelivered letters. Wishing to conserve energy, every postman

would like to cover his route with as little walking as possible.

In nongraph terms, the postman problem is the problem of how to

cover all the streets in the route and return back to the starting

point with as little traveling as possible. Obviously, not only

postmen, but many kinds of carriers encounter such a problem. For

example, a policeman wants to know the most efficient way to patrol

all the streets on his beat, a farmer wants to know the best route

for seeding his fields, and a track repair crew needs to know the

best way to cover all the tracks. The first work on this problem

appeared in a Chinese journal which called the problem the postman

problem. Sometimes, it is referred to as the Chinese postman problen.

The postman problem can be restated in graph terms. Construct

a graph G = (X,E) in which each edge represents a street in the post-

man's route and each vertex represents a junction between two streets.

The postman problem is the problem of finding the shortest route

for the postman so that he traverses each edge at least once and

returns to his starting vertex.

235

236 Postman Problem

Let s denote the starting vertex, and let a(i,j) > 0 denote

the length of edge (i,j).

There are several ways that the postman can traverse all the

edges in the graph in Fig. 6.1 and return back to vertex s. For

example, each of the following four routes will do this:

Route 1: (s,a), (a,b), (b,c), (c,d), (d,b), (b,s)

Route 2: (s,a), (a,b), (b,d), (d,c), (c,b), (b,s)

Route 3: (S,b), (b,c), (c,d), (d,b), (b,a), (a,s)

Route 4: (s,b), (b,d), (d,c), (c,b), -(b,a), (a,s)

Each of these four routes traverses each edge exactly once; thus,

the total length of each route is 3+2+1+3+7+6= 22. The

postman cannot.do any better than this.

Figure 6.1

Graph with an Euler Tour

_A route in which each edge is traversed exactly once is.called

an Euler tour after the mathematician Leonhard Euler, mentioned in

Chap. 1 in connection with the Konigsberg bridge problem.

Figure 6.2

Graph with No Euler Tour

6.1 Introduction 237

Consider the graph in Fig. 6.2. Obviously, there is no way

for the postman to traverse edge (b,c) only once. No euler tour is

possible for this graph. An optimal (i.e., shortest total length)

routertor this graphy is (s7a)s(a;b), (b,c), (e,d)y (d,é), (e,c),

(c,b), (b,;8). The total length of this tour is 3+2+5+1+3+

7 +5 +6 = 32. Are there any other optimal routes?

Obviously, no postman route, let alone an Euler tour, exists

when the graph is disconnected (i.e., has several components).

Consequently, for the remainder of this chapter, we shall always

assume that the graph under consideration is a connected graph.

The number of times that a postman arrives at a vertex must

equal -the_number _ of times_that the postman departs from that vertex.

‘If _the postman_ does not repeat any edges incident to a vertex, then

this vertex must have an even number of edges incident to it. Let

the Pooh estar of _edges _ incident to vertex x be called the degree

of vertex x and be denoted_by-d(x). If all vertices in graph G have

-even degree, then graph G is called even.

In a directed graph, let the number of arcs directed into vertex

x be called the inner degree of vertex x and be denoted by d (x).

Let the number of arcs directed away from vertex x be called the

outer degree of verter x_and be denoted by d" (x). In Fig. 6.8,d (a)=

Paes al (a) =O). sf ae fc) d= (x) for all vertices x in graph G, then

graph G is called eee ee

: Suppose we know an optimal postman route in graph G that starts

and ends at vertex s. How can we find an optimal postman route

for a different starting vertex, say vertex t? This is accomplished

as follows: Any optimal route R that starts at vertex s eventually

_encounters vertex t for the first time. Call this part of the route

R.. Call the remainder of the route R,- Note that Ry starts at s

and ends at t, and R, starts at t and ends at s. Form a new route

R' consisting of Ry followed by Rj: Route R' starts at t and ends

at t and has the same total length as R. Consequently, R' must be

an optimal route starting from vertex t. Thus, we can conclude:

238 ; Postman Problem

THEOREM 6.1 The total length of an optimal postman route is the

same for every starting vertex.

Section 2 describes how to find an optimal postman route when

the graph is undirected (the edges are like two-way streets since

they can be traversed in either direction). Section 3 describes

how to find an optimal postman route when the graph is directed

(the edges are like one-way streets since they can only be traversed

in a specified direction). Section 4 considers the postman problem

in a graph in which some arcs are directed and others are undirected

(both one-way streets and two-way streets).

6.2 Postman Problem for Undirected Graphs

This section describes how to solve the postman problem for any

undirected graph G = (X,E), in which the edges can be traversed in

either direction.

Two cases must be considered separately:

Case A: Graph G is even.

Case B: Graph G is not even.

Case A: Ifgraph G is even, then-an_optimal solution to the

postman _problemis_an Euler tour. The postman does not have to
es een San’

repeat _any edge.

How can we find an Euler tour of graph G that starts at the

starting vertex s? Traverse any edge (s,x) Te tkee to vertex s.

eae traverse any unused edge incident to vertex S$. Repeat this

process of traversing unused edges until you return to vertex s.

(The process must return to. vertex s since every vertex_has even
degree and every visit EOma vertex leaves an even number of unused

edges _ incident—to—that vertex, Hence, every time a vertex is entered 32>

there is an unused edge for departing from that t vertex. .) The ee

traversed edges constitute a cyetesc i: If all edges er) used in_

eyes ae then stop because Cc, is an Euler tour of graph G. Other-

gee ‘generate another cycle Cc, of unused edges starting with any

unused edge. Continue generating cycles Cz, C yew from the unused

edges until all edges have been used.

6.2 Postman Problem for Undirected Graphs 239

Next, splice together all these cycles Cy Cys sietels LN COROne

cycle C that contains all the edges in G. Cycle C contains each

edge exactly once and is an optimal solution to the postman nrebten:

More specifically, two cycles Cc, and Cc, can be spliced together

to form one cycle only if they share a common vertex x. This is

accomplished as follows: Start at any edge of cycle C, and travel

along Cc, until vertex x is encountered. Then detour NS traverse

all the edges of Cc, returning to vertex x. Lastly, continue travel-

ing the edges of Cy until you arrive back at the initial edge. The

route traveled is the cycle formed by splicing Cy and Cc, together.

This procedure can be extended in the obvious way to splice together

any number of cycles into one cycle as long as the cycles cannot be

split into two subsets that have no vertices in common.

EXAMPLE 1. Let us find an optimal postman route for the even graph

in Fig. 6.3. Starting at vertex s, let us travel the perimeter of

the graph until we return to vertex s. This generates the cycle

C, = (e,b)5 dsc) vac, £), (e521), Xin) o th, g), Ce,d)y, (4,8)

Consider the edges in Cy as used edges. Next, starting with unused

edge (d,b), let us travel the unused upper triangular cycle C, =

(d,b), (b,e), (e,d). Consider the edges in C, as used edges. Next,

starting with the unused edge (e,f) let us travel the lower triangular

cycle C, = (e,f), (£,h), (h,e). Now all edges have been used

Splice together these cycles as follows:

Insert Cc, between (g,d) and (d,s) in Cc).

Insert ,C, between (b,e) and (e,d) in C,-
3

Paeteesult ia C.==(s,b), (bse); (c.f), (£,1), Gh), (he). Ceed))5

(dob), (b,e), (e,£), ‘(f,h), (h,e)% (e,d), (d,s). Clearly, C is an

optimal solution to the postman problem for this graph since C

contains each edge exactly once and begins and ends at vertex s.

Note that the edge lengths were not considered.

Case B: Graph G is not even. In any postman route, the number

of times that the postman enters a vertex equals the number of times

240 Postman Problem

Original Graph

©)
Cy
W—H)—eo) og

PR
in eye ee Cee

)—_4)—©)
Figure 6.3

Splicing Cycles Together

that the postman leaves that vertex. Consequently, if vertex x does

not have even degree, then at least one edge incident to vertex x

must be repeated by the postman.

Let £(i,j) denote the number of times that edge (i,j) is

repeated by the postman. Edge (i,j) is traversed f(i,j) + 1 times

by the postman. Of course, f(i,j) must be a nonnegative integer

Note that f(i,j) contains no information about the direction of travel

across edge (i,j).

Construct a new graph G* = (X,E*) that contains f(i,j) +1

copies of each edge (i,j) in graph G. Clearly, an Euler tour of

graph G* corresponds to a postman route in graph G.

6.2 Postman Problem for Undirected Graphs 241

The postman wishes to select values for the £(i,j) variables
so that

(a) Graph G* is an even graph ee ‘
(b)istiraiys) £44 the total length of repeated edges, is minimized.

If vertex x is an odd degree vertex in graph G, then an odd

number of edges incident to vertex x must be repeated by the postman,

so that in graph G* vertex x has even degree. Similarly, if vertex

x is an even degree vertex in graph G, than an even number of edges

(zero is an even number) incident to vertex x must be repeated by

the postman, so that in graph G* vertex x has even degree. Recall

from Chap. 1, Exercise 2, that graph G contains an even number of

vertices with odd degree.

If we trace out as far as possible a chain of repeated edges

starting from an odd-degree vertex, this chain must necessarily end

at another odd-degree vertex. Thus, the repeated edges form chains

whose initial and terminal vertices are odd-degree vertices. Of

course, any such chain may contain an even-degree vertex as one of

its intermediate vertices. Consequently, the postman must decide

(a)- which odd-degree vertices will be joined together by a chain

of repeated edges, and (b) the precise composition of each“ such chain.

By performing either the Floyd or Dantzig shortest path

algorithm of Sec. 3.2, the postman can determine al shortest chain

.between each pair of odd-degree-vertices in-graph—G>

The postman can determine which pairs of odd-degree vertices

are to be joined by a chain of repeated edges as follows: Construct

a graph G' = (X',E') whose vertex set consists of all odd-degree

vertices in ¢ and whose edge set contains an edge joining each pair

Ciivectices. Let the weight of each edge equal a very large number

minis the length of a shortest path between the corresponding two

vertices in graph G as found by the Floyd or Dantzig algorithm.

a. Next, the postman should find a maximum weight matching for

graph G' using the maximum weight matching algorithm found in Sec.

5.4. Since graph G' has an even number of vertices and each pair of

vertices in G' is joined by an edge, the maximum weight matching will

242 Postman Problem

cover each vertex exactly once. This matching matches together odd-

degree vertices in graph G. The edges in a shortest chain joining

a matched pair of odd-degree vertices should be repeated by the

postman. Since this matching has maximum total weight, the result-

ing postman route must have minimum total length.

Thus, we can solve the postman problem for an undirected graph

by using the Floyd or Dantzig algorithm and the maximum weight match-

ing algorithm. No new algorithm is needed.

EXAMPLE 2. Let us find an optimal postman route for the undirected

graph in Fig. 6.4. Notice that vertices a, c, d, and f have odd

degree. The length of a shortest chain between all pairs of odd

vertices is shown in Fig. 6.5. The reader should verify these

values using either the Floyd or Dantzig algorithm.

Figure 6.4

Form the graph G'’ shown in Fig. 6.6. The vertices of G' are

the odd-degree vertices a, c, d, and f of graph G. All possible

_ edges are present in G'. Happily, since G' does not have many

vertices, we can find a minimum weight matching of all the edges in

G' by enumeration rather than by using the maximum weight matching

algorithm. Three matchings are possible:

6.2 Postman Problem for Undirected Graphs 243

Matching Weight

(a,2),0.(d,£) 4+3=7

(a,d), (c,f) 2+4=6 i
(a,f), (c,d) 3+2=5

a De tea ING 8

b Oe ee St oe)

c epee Or FT

d Zoe 5 2 10 16:1 3

; e feria et 6 0. 3

ci Seu eae F372 3 0

re Figure 6.5

Shortest Path Length Matrix

Figure 6.6

Graph G'

Consequently, the minimum weight matching is @,£), (c,d). Thus,

the postman should repeat the shortest path frsite to f, which is

edge (a,f) and should repeat the shortest path from c to d, which

is edge (c,d). Figure 6.7 shows graph G* in which edges (a,f) and

(c,d) have each been duplicated once. _All vertices in G* have even_

degree, and an optimal postman route for the original graph in Fig.

6.4 corresponds to an Euler tour of graph G* in Fig. 6.7. The tech-

nique described in Case A for even graphs can be applied-to_graph

_G*. An optimal route is (a,b), (b,f), (f,e), (e,a), (a,c), (c,f),

244
Postman Problem

UN
|

Figure 6.7

Graph G*

(£,d), (d,c), (c,d), (d,a), (a,f), (£,a) which traverses each edge

in G* exactly once and traverses each edge in G at least once. Only

iedze (a,f) and (c,d) are repeated in graph G. The total length of

this route is 34 units, which is 5 units more than the sum of the

edge lengths.

Note that if the maximum weight matching algorithm had been

used, then each edge weight in graph G' would have been set equal

to a large number, say M, minus the length of a shortest path between

the corresponding two endpoints in G. Thus, the matching (a,c),

(d,£) would have a total weight equal to (M - 4) + (M - 3) = 2M - 7.

Matching (a,d), (c,f) would have total weight equal to (M - 2) +

(M - 4) = 2M- 6. Matching (a,f), (c,d) would have total weight

equal to (M - 3) + (M - 2) = 2M - 5, and would be selected as the

maximum weight matching.

The large M values can be viewed simply as a device for convert-

ing the problem of finding a minimum weight matching that covers all

vertices into a maximum weight matching problem.

6.3 Postman Problem for Directed Graphs 245

6.3 POSTMAN PROBLEM FOR DIRECTED GRAPHS

In this section we shall study the postman problem for a directed

graph G = (X,A). A directed graph corresponds to a physical 4

situation in which all streets are one-way streets. The direction

of an arc specifies the direction in which the corresponding street

must be traversed.

Unlike the postman problem for undirected graphs, the postman

problem may have no solution for a directed graph. For example,

consider the graph in Fig. 6.8. Once the postman arrives at either

vertex a or vertex b he cannot return to vertex s because no arcs

leave set {a,b} for a vertex not in this set. In general, no solution

exists for the postman problem whenever there is a set S of vertices

with the property that no ares go from a vertex in S to a vertex

not in S. If no such set S exists, then it is always possible for

the postman to complete his route, no matter how long it takes,

since he cannot be\trapped anywhere.

Figure 6.8

No Postman Route Exists

As before, the number of times that a postman enters a vertex

must equal the number of times that the postman leaves that vertex.

Consequently, if vertex x has more arcs entering it than leaving it

[that is, @ (x) > d*(x)), then the postman must repeat some of the_

arcs leaving x. Similarly, if vertex x has more arcs leaving it than

Ae ee Jee lenae ws} Aes > d (x)]} the postman must repeat some
+ o>

arcs entering x. Thus, if for some vertex x, d (x) # d (x), then no
a Se ae

Euler tour is possible.

246 Postman Problem

Two cases must be considered separately:

+ a

Case A: Graph G is symmetric [that is, d (x) =d (x) for all x].

Case B: Graph G is not symmetric.

Case A: If graph G is symmetric, then it is possible for the

postman to perform his route without repeating any arcs, i.e., the

optimal solution to the postman problem is an Euler tour.

An Euler tour of graph G = (X,A) can be found by using a

technique similar to the technique for finding an Euler tour of an

even undirected graph. Starting at the starting vertex s, traverse

the arcs along their direction without (reusingyany arc until you

return to vertex s. ~This traces out a circuit C,._ Next, starting

at_any unused arc, trace out another circuit C, using only unused
aa 2

arcs. Repeat this procedure until-all_arcs have been used. Lastly,

splice together all the circuits into one large.circuit C as done

in Fig. 6.3. Circuit C contains each arc exactly once and constitutes

an optimal solution to the postman problem for Case A.

Case B: As before, let f(i,j) denote the number of times that

the postman repeats arc (i,j). The postman wants to select non-

negative integer values for the f(i,j) variables so as to minimize

pratt, 3) £0.) (1)

the total length of repeated arcs such that he enters and leaves

each vertex x the same number of times, that is,

d-(4) + } £G,4) = aa) + J £04,3) (2)
j j

Rewriting equation (2) yields

Dle(i,5) - £G,4)] = a (4) - a4) = DU) (3)
J

Thus, the postman wishes to minimize expression (1) such that equation

(3) is satisfied for all vertices i in graph G. This minimization

problem is merely a_minimum cost flow problem in-disguise. The

vertices with D(i) < 0 are sinks with demand ecu) to -D(i). The

vertices with D(i) > 0 are sources with supply equal to D(i). The

6.3 Postman Problem for Directed Graphs 247

vertices with D(i) = 0 are intermediate vertices. All arc capacities

are infinite.

This (minimum cost flow problem) can be solved by appending a*

supersource and a supers ink to the graph, connecting the supersource

~to_all sources, connecting the supersink to all sinks. Let the

capacity of each arc leaving the supersource equal the supply at

its terminal vertex. Let the capacity of each arc into the supersink

equal the demand of its initial vertex. Then solve for a minimum

cost flow that satisfies all source and sink requirements by using

the minimum cost flow algorithm of Sec. 4.3.

peruse Mia yishteide values) in equations (2) are integers,
we know that the minimum cost flow algorithm will produce optimal

values for the e(G@laaD) that are{nonnegative\integers. _

After Pindiag che ontinal integer values for the f(i,j) variables,

create a graph G* with f(i,j) + 1 copies of arc (i,j) for all (i,j)

ee eemmegea sent aeraph Gt isrsympetric., the Crctutque, des.
cribed for Case A can now be applied to find an Euler tour of graph

G*. An Euler tour of graph G* corresponds to a postman route in

graph G that traverses each arc (i,j) f(i,j) + 1 times. Since the

optimal values of f(i,j) minimize expression (1), this Euler tour in

graph G* must correspond to an optimal postman route in graph G.

Arc lengths

are shown

Figure 6.9

Postman Problem in a Directed Graph

EXAMPLE 1. Let us find an optimal postman route for the directed

graph in Fig. 6.9. Examining the inner and outer degrees, we find that

248 Postman Problem

d (a) =1=2 dn(aye vertex a is an intermediate vertex.

d-(b) = 3 > d'(b) 1; vertex b is a(source With 3 - 1 = 2 units

supply.

2; vertex c is a sink with 2 - 1 = 1 unit demand. dateyemndee, diitc)

de (d)aeelacid (4)
- AF ‘ ;

d (e) = 2 =d (e); vertex e is an intermediate vertex.

2; vertex d is a sink with 2 - 1 = 1 unit demand.

Create a supersource S and join S to source vertex b by an arc

(S,b) with capacity equal to the supply at source b, namely 2 units.

Create a supersink T and join the sink vertices c and d to T by

arcs (c,T) and (d,T). Let the capacity of arc (c,T) equal the demand

at sink c, namely 1 unit. Let the capacity of arc (d,T) equal the

demand at sink d, namely 1 unit. All other arc capacities are

infinite. The resulting graph is shown in Fig. 6.10.

Arc capacities
are shown.

Graph G*

Figure 6.10

6.3 Postman Problem for Directed Graphs 249

At most two flow units can be sent from S to T, and all flow
units must leave S by way of vertex b. At most one flow unit can
arrive at T by way of vertex ¢c, and at most one flow unit can arrive
at T by way of vertex d. The paths taken by these flow units as
they travel from S to T correspond to the arcs that the postman must

repeat.

By performing the minimum cost flow algorithm or by close

inspection, we can find that a minimum cost flow is 1 unit along

(S5p)(bsd)s (dsT), cost = 0 +95 4.0 = 35 1 unit along (S,b),1(b,d),

(dvc)s (c,0), cost = 0 + 5.41 +0 = + 6. Consequently, f(b,d) = 2,

f(d,c) = 1, and all other f£(i,j) = 0. Thus, the postman must repeat

arc (b,d) twice and arc (d,c) once, adding an additional 5+ 5 +1

~<= its to his route.
Figure 6.10 shows graph G* which consists of all arcs in G

together with two replicas of (b,d) and one replica of (d,c). Observe

that graph G* is a symmetric graph, and as we know from Case A, eraph

G* possesses an Euler tour. For example, an Euler tour of graph G*

and an optimal postman route of graph G is (a,b), (b,d), (d,c), (c,b),

(b,d), (d,c), (c,e), (e,b), (b,d), (dye), (e,a). The total length

of this tour is 44 units, which is 33 units (the total length of all

arcs in this graph) plus 11 units (which is the total length of all

repeated arcs)»
Ss

6.4 POSTMAN PROBLEM FOR MIXED GRAPHS

In this section, we shall consider the postman problem in a graph G

in which some arcs are directed and some arcs are not directed (a

mixed graph). If an arc is directed, then the postman must traverse

this arc only along its direction (a one-way street). If an arc is

not directed, then the postman may traverse this arc in either (or

if necessary, both) directions (a two-way street). An undirected

arc_is not considered when calculating the inner and outer degrees

of the vertices. :

Can the postman-always find a route in a mixed graph? Not/

always. It might happen that the graph contains a set Sof vertices

250 Postman Problem

with the property that all arcs joining a_vertex in S to a vertex

not in S are directed towards the vertex in S. In this case, once
ries abih Etech A aes bates =

the postman reaches a vertex in S he can never reach a vertex outside
en —

of S. He is trapped, and no solution exists for the postman problem.

If no set $ with this property exists, then the postman can keep on

traveling, no matter how long it takes, until he has traversed all

arcs and returned to his starting vertex.

For a mixed graph G = (X,A), three cases must be treated sepa-

rately:

~) case A: Graph G is even and symmetric.

Case B: Graph G is even but not symmetric.

Case C: Graph G is neither even nor symmetric.

Case A: This is the easiest case to analyze since the solution

technique for this case is a composite of the solution techniques

for even directed and even undirected graphs presented in Sec. 6.3

and 6.2, respectively.

Starting with any directed arc in graph G, generate a circuit

of directed arcs as done in Sec. 6.3 for even directed graphs. (Since

G is symmetric, this is possible.) Repeat this procedure until all

directed arcs have been used. (This is possible since the unused

arcs always form an even, symmetric graph.)

Next, repeat this procedure using only the undirected arcs in

graph G. (Again, this is always possible, since the unused arcs

form an even graph.) After all the arcs in graph G have been used,

splice together all the circuits generated above into one circuit C.

Circuit C forms an Euler tour of graph G and is an optimal solution

to the postman problem for Case A.

Case B: Graph G is even but not symmetric. In this case, it

is not easy to know in advance if the postman must repeat any arcs.

For example, an Euler tour is an optimal solution for the even,

nonsymmetric graph in Fig. 6.11, with undirected arc (a,b) traversed

from a to b and undirected arc (c,a) traversed from c to a. On the

other hand, no Euler tour can be optimal for the even, nonsymmetric

6.4 Postman Problem for Mixed Graphs 251

graph in Fig. 6.12 since arc (f,a) must be repeated twice so that
the postman can exit vertex a along arcs (a,b) and (a,d), and also
Cane)e ad

Figure 6.11

Mixed Graph with an Euler Tour

Figure 6.12

Mixed Graph with No Euler Tour

The mixed postman algorithm arbitrarily selects a direction for

each undirected arc in graph G. This transforms graph G into an

even directed graph Gye and the solution technique for even, directed

graphs given in Sec. 6.3 can be applied to graph Gy: However, due

to the arbitrary choice of arc directions, some modifications are

needed to correct some arc directions.

Mixed Postman Algorithm

Let G = (X,A) be any even, mixed graph. An optimal postman route

(if one exists) can be found as follows.

Let U denote the set of all undirected arcs in graph G; let V

denote the set of all directed arcs in graph G. Tentatively, select

a direction for each arc in U. Call the resulting directed graph

Gy: For each vertex i in Gp» calculate

252 Postman Problem

D(i) = d7(4) - dt(4) (4)

If D(i) < 0, then vertex i is a sink with demand equal to -D(i). If

D(i) > 0, then vertex i is a source with supply equal to WE), Ike

D(i) = 0, then vertex i is an intermediate vertex.

If all vertices in Gy are intermediate, graph G) is an_eyen,

symmetric directed graph, and the solution technique of Sec. 6.3

can be Bot ied te graph Gp: This technique yields an Euler tour of

Gy which corresponds to an optimal postman route of graph G.

Otherwise, construct a graph G' = (X,A") as follows:

(a) For each arc (i,j) EV, place an arc (i,j) in A' with infinite

capacity and cost equal to the length of (i,j).

(b) For each are (i,j) € U, create two directed arcs (i,j) and

(j,i) in A'. Let each of these arcs have infinite capacity

and cost equal to the length of (i,j).

(c) _For- each arc (i,j)-€ U,—ereate a directed are (j,i), in A' whose

direction is the reverse of the direction assigned this arc in

Gp: These arcs are called artificial arcs. Assign each artifi-

cial arc a zero cost and a capacity equal to two.

Using the source supplies and sink demands defined above for

graph Gy apply the minimum cost flow algorithm to find a minimum

cost flow in graph G' that satisfies all sink demands.

If no such flow exists, then no postman route exists. Other-

wise, let f(i,j) denote the number of flow units sent through arc

(i,j) in G' in the minimum cost flow produced by the minimum cost

flow algorithm. Recall from the minimum cost flow algorithm that

each optimal flow value is a nonnegative integer. In the proof of

this algorithm, it will be shown that each artificial are carries

either(zerd-br ‘two flow units»

Grease a graph G* as follows:

(a) For each nonartificial are (i,j) in G' place f£(i,j) +1 copies

of arc (i,j) in graph G*

(b) If the flow in an artificial arc is two units, then place one

copy of this arc in graph G*

6.4 Postman Problem for Mixed Graphs 253

(c) If the flow in an artificial arc is zero, then reverse the

direction of this arc and place one copy of this arc in graph

G*. (Thus, if no units traverse an artificial arc, the tenta-

tive direction assigned to this arc in Gy is retained; if two

flow units traverse an artificial arc, then the tentative

direction assigned to this arc in Gy is reversed.)

Graph G* is an even, symmetric, directed graph. The solution

technique for even, symmetric, directed graphs presented in Sec. 6.3

can now be applied to find an Euler tour of graph G*. This Euler

tour of graph G* corresponds to an optimal postman route of the

original graph G.

Proof: Since graph G is not necessarily symmetric, some vertices

may have a surplus of incoming arcs; other vertices may have a sur-

plus of outgoing arcs. Ideally, we would like to assign a direction

to all the undirected arcs in G so that the resulting directed graph

is symmetric. Then the solution technique for even, symmetric,

directed graphs presented in Sec. 6.3 could be applied to find an

Euler tour of graph G.

However, it can happen that there is no way to direct the undi-

rected graphs so that the resulting graph is symmetric. In this

case, some of the arcs (directed or undirected) must be repeated by

the postman. Of course, the postman wants to select the repeated

arcs so that their total length is as small as possible.

The algorithm selects a tentative direction for each undirected

arc in G. The resulting directed graph is called G The solution

technique of Sec. 6.3 for even directed graph Bers be applied to

graph Gy: However, the solution generated by this technique depends

upon the tentative directions, and it is always possible that the

tentative directions in graph Gy will lead to a nonoptimal solution

to the postman problem.

The algorithm generates a graph G' and using the same source

supplies and sink demands as in graph Gp finds a minimum cost flow

that satisfies all these sink demands.

254 Postman Problem

There are three kinds of arcs in graph G':

(a) Arcs corresponding to directed arcs in G (these arcs have-non-

zero cost and infinite capacity).

(b) Nonartificial arcs corresponding to undirected arcs in G (these

arcs also have nonzero cost and infinite capacity).

(c) Artificial arcs corresponding to undirected arcs in G (these

arcs have zero cost and a capacity equal to two).

The number f(i,j) carried by an arc of type (a) or (b) in

the minimum cost flow equals the number of times the corresponding

directed arc is repeated by the postman. Thus, the postman will

traverse each arc (i,j) © V f£(i,j) + 1 times, and the postman will

traverse each arc (i,j) € U a total of f(i,j) + £(j,i) + 1 times.

As shown later, each artificial arc [type (c)] carries either

zero or two flow units. If an artificial arc (j,i), carries two

flow units in the minimum cost flow, this arc decreases the supply

at j by two units and increases the supply at i by two units. This

same effect could have been achieved by selecting the reverse tenta-

tive direction for this are in graph G Hence, the algorithm

reverses the tentative direction of ae arc.

If an artificial arc (j,i), carries no flow units in the minimum

cost flow, then this arc has no effect on the supplies at vertices

i and j. This is equivalent to retaining the tentative direction

given this arc in graph G Hence, the algorithm retains the tenta- D’

tive direction given this arc.

From the minimum cost flow values f(i,j) for the arcs_in graph

G', the algorithm generates a directed graph G*. It remains to show

that

(a) Graph G* is even and symmetric

(b) An Euler tour of graph G* corresponds to an optimal postman

route of graph G

</ (c) If the minimum cost flow algorithm can not find any flow that

satisfied all sink demands in graph G', then no postman route

exists for graph G.

6.4 Postman Problem for Mixed Graphs 255

Proof of (a): Since graph Gy is an even graph, eae +d (i)

is an even number, for all vertices i in Gh: Thus, a a) and d (i)

are both odd or are both even. In either case, D(i) must be even.

Consequently, all supplies and demands in graph G' are even numbers

(zero is an even number). Also all arc capacities are even numbers.

Hence, the minimum cost flow algorithm will produce an optimal flow

in which all flow values are even numbers. Thus, flow units in a

minimum cost flow will travel in pairs.

The value of d(i) in G* equals the value of d(i) in G plus the

number of flow units that enter or leave vertex i along nonartificial

arcs. Since all flow units travel in pairs, it follows that d(i)

is even in graph G*. Thus, graph G* is even.

A pair of flow units arriving at vertex i via a nonartificial

arc increase d (i) in G* by two units. A pair of flow units leaving

vertex i along a nonartificial arc increase d* (4) by two units. A

pair of flow units arriving at vertex i via an artificial arc cause

the tentative direction of this arc to be reversed which has the

effect of increasing d (i) by two units. A pair of flow units leaving

vertex i along an artificial arc cause the tentative direction of

this arc to be reversed which has the effect of increasing 4°t4) by

two units. Thus, each flow unit arriving at vertex i increases d (i)

by one unit, and each flow unit leaving vertex i increases d* (4) by

one unit. Since the minimum cost flow satisfies equation (3) for

all vertices in graph G, it follows that graph G* is symmetric.

Proof of (b): Suppose that the postman route produced by the

mixed postman algorithm is not optimal. Then, there exists another

postman route whose duplicated arcs have an even smaller total length.

This route must correspond to a flow in graph G' with even lower cost

than the flow generated by the minimum cost flow algorithm, which is

a contradiction.

Proof of (c): Since) d (i) = i) act) in any graph Cy? the

i sl i

total of the source supplies in graph Gy must equal the total of

the sink demands in graph Gy: Thus, all source supplies must be

shipped out in order to satisfy all sink demands.

256 Postman Problem

If graph G' contains an arc from i to j, then graph G' must

contain an arc with infinite capacity from ito j. Suppose that the

minimum cost flow algorithm terminates without satisfying all sink

demands. Let S denote the set of all vertices that were colored

after the last iteration of the minimum cost flow algorithm. From

the flow augmenting algorithm, which is a subroutine of the minimum

cost flow algorithm, we know that all arcs from a vertex in S toa

vertex not in S must carry a full capacity flow. This is impossible

since some of these arc capacities are infinite. Thus, no such arcs

can exist, and all arcs with one colored endpoint and one uncolored

endpoint are directed into set S. Consequently, once the postman

reaches set S he cannot leave set S and no postman route is possible.

Q.E.D.

EXAMPLE. Let us find an optimal postman route for the even, non-

symmetric, mixed graph G shown in Fig. 6.12. First, directions are

arbitrarily selected for each undirected arc in graph G. The

resulting graph Gy is shown in Fig. 6.13. In graph Gy

d*(a) = 3, d (a) = 1, D(a) = -2; vertex a is a sink with demand 2

Auth) = 2, d (b) = 2, D(b) = 0; vertex b is an intermediate vertex

a (2) = 0, .do(e).= 2, D(c) = 2; vertex c is a source with

supply 2

riney =1,d (d) = 1, D(d) = 0; vertex d is an intermediate vertex

de) = 2,d (e) = 2, D(e) = 0; vertex e is an intermediate vertex

d(£) =? ediC£ ore? D(f) = 0; vertex f is an intermediate vertex.

Figure 6.13

Graph G

6.4 Postman Problem for Mixed Graphs 257,

Figure 6.14

Graph G'

Graph G' is shown in Fig. 6.14. The first number next to each

arc denotes its cost. If the arc capacity is finite, it is denoted

by the second number next to the arc.

The minimum cost flow algorithm is now required to find a minimum

cost way of sending 2 flow units from source c to sink.a. (Notice

that all supplies and demands are even numbers and that the total

supply at the sources equals the total demand at the sinks.) By

inspection, we can see that the minimum cost flow consists of

piatbst),
(f£,a). The total cost is 0} 4/4 6 = 10 units for each flow unit,

sending both flow units from c to a along the path (c,b)

or 20 units. Thus, the optimal flow values are £(c,b), = £byi)—=

£(f£,a) = 2, and all other flow values equal’ zero. Since f(c,b), = 2.

we must reverse the tentative direction of this arc so that it is

directed from c to b. All other arbitrary directions are retained.

Moreover, arcs (b,f) and (f,a) must be repeated twice since f(b,f) =

£(f,a) = 2.

Figure 6.15

Graph G*

258 Postman Problem

Graph G* is shown in Fig. 6.15. Note that graph G* is an even,

symmetric directed graph. The solution technique for even, symmetric

directed graphs given in Sec. 6.3 can now be applied to find an

Euler tour of graph G*. This tour corresponds to an optimal postman

route in graph G. Since the minimum cost flow in G' cost 20 units,

the optimal postman route in graph G will repeat arcs with a total

length of 20 units.

Case C: Graph G is neither even nor symmetric.

As far as the author knows, no optimal solution technique is

currently available for this case.

This problem could be approached as a two-stage problem: First

make the graph even in an optimal way; second make the even graph

symmetric using the optimal procedure given in Sec. 6.4, Case B.

However, there is no guarantee that optimally solving each stage

will lead to an optimum solution for the overall problem.

EXERCISES

1. The city administration has declared that from now on a certain

two-way street shall be a one-way street. Will this necessarily

increase the length of the optimal route of the postman who must

serve this street? Describe conditions under which this change

will increase the length of the postman's optimal route.

2. The city administration has declared that from now on a certain

one-way street shall be a two-way street. Will this necessarily

decrease the length of the optimal route of the postman who must

serve this street? Describe conditions under which this change

will decrease the length of the postman's optimal route.

3. Find an optimal postman route for the graph shown in Fig. 6.16.

4. Prove that the postman need never repeat an are in an undirect

graph more than once. Is this also true for directed graphs?

5. When solving the postman problem for an undirected graph, show

that at most k iterations of the Floyd or Dantzig algorithm are

ever needed, where k is the number of even degree vertices in the

graph. (Hint: an odd-degree vertex will never be an intermediate

vertex in any path of repeated edges.)

Exercises 259

NA.

fle

10.

es

Wee

Figure 6.16

Find an optimal postman route for the directed graph shown in

Pigs) 6.13).

How much walking can the postman save by changing starting

points?

Suppose that the postman wishes to start his route at one vertex

and finish at a different vertex. How can this be incorporated

into the postman problem?

Suppose that the postman must traverse street A before traversing

street B. How can this be incorporated into the postman problem

for : \>

(a) An undirected graph 5 #2

(b) A directed graph

(c) A mixed graph

Solve the postman problem for the mixed graph shown in Fig. 6.12

using tentative directions different from those selected for

the example that used this graph.

In the minimum cost flow produced by the minimum cost flow

algorithm to solve the mixed postman problem, all flow units

travel alah pairs. Suppose that another minimum cost flow exists

and in this flow not all flow units travel in pairs. How should

you treat an artificial arc with only one flow unit on it?

(Answer: Let this arc be undirected in graph G*.)

Can the Konigsberg bridge problem described in Sec. 1.1 be solved

without repeating any bridges?

260 Postman Problem

13. A newsboy must deliver papers on both sides of both Campbell

Avenue and Maplewood Avenue between 63rd Street and 66th Street.

The number of papers to be delivered on each side of each

street is in the following diagram. It takes the newsboy 1

minute to pedal one block plus 6 seconds for each paper he

tosses on a porches He must start and finish his route at the

corner of 63rd and Maplewood. What is the best route for the

newsboy?

0 8 -

Campbell Avenue

3 0 6
6 0

Maplewood Avenue (a/2'Bieck)
then adlien! ne

Station x 0 Q

2 é ° a z E 5 : a) + a Ns Ne) \o Se —

|<(1 Block)>|

REFERENCES

Edmonds, J., and Ellis L. Johnson, 1973, Matching, Euler Tours
and the Chinese Postman, Math. Prog., vol. 5, pp. 88-124.
(This paper provides an excellent treatment of postman
results, additional methods for generating Euler tours and a
long bibliography: for this problem.)

o

Chapter 7

TRAVELING SALESMAN PROBLEM

7.1 SALESMAN PROBLEMS

A traveling salesman is required to call at each town in his district

before returning home. Needless to say, the salesman would like to

route his calls so as to travel as little as possible. Thus, the

salesman encounters the problem of finding a route that minimizes. the

total distance (or time or cost) needed to visit all the towns in his

Sa
The traveling salesman problem can be rephrased in terms of a

graph: Construct a graph G = (X,A) whose vertices correspond to the

towns in the salesman's district and whose arcs correspond to the

roads joining two towns. Let the length a(x,y) > 0 of each arc

(x,y) € A equal the length (or time or cost) of the corresponding

journey along arc (x,y). A circuit that includes each vertex in

graph G at least once is called a salesman.circuit. A circuit that

includes each vertex in graph G exactly once is called a Hamiltonian.

circuit after the Irish mathematician Sir William Rowan Hamiltonian

Whesirec studied these problems in 1859. The general salesman

problem is the problem of finding a salesman circuit with the smallest

possible total length. The salesman problem is the problem of finding

a Hamiltonian circuit with the smallest possible total length.

EXAMPLE 1. A bank courier must deliver letters from his home branch

to every other branch bank every day. Usually, when he is delivering

261

262 5 Traveling Salesman Problem

at a branch bank, he is imposed upon to carry some additional letters

to his next stop. Being adverse to additional work, the courier would

like to know how he should arrange his stops so as to minimize the

total number of additional letters he must carry.

The bank courier solves his problem by solving the general

salesman problem on the graph whose vertices correspond to the branch

banks and whose arcs correspond to the possible trips between branch

banks. Let the length of an arc (x,y) in this graph equal the pre-

dicted number of additional letters that the courier would be asked

to carry from branch x to branch y.

Suppose the bank courier is desirous of promotion and wishes to

maximize the total number of additional letters carried. The courier

could, of course, circulate between the banks forever and ultimately

carry an infinite number of letters. However, suppose that he is

permitted to visit each bank only once. Let M equal some very large

number, and let each arc length now equal M less its original length.

If there are n banks in the system, each Hamiltonian circuit of the

graph consists of n arcs. Now, the courier's problem is solved by

finding a smallest total length Hamiltonian circuit.

EXAMPLE 2. In a machine shop, a job must be run through each of n

different machines in no particular sequence. However, a set-up time

of a(x,y) is required whenever a job goes from machine x to machine y.

What is the fastest way to route a job through each of the n machines?

This problem is solved by solving the salesman problem on the

following graph G. Let each vertex correspond to a machine. Let

each pair (x,y) of vertices in graph G be joined by an arc with length

a(x,y) .

A salesman circuit with least total length is called an optimum

salesman circuit and is an optimum solution for the general salesman

problem. A Hamiltonian circuit with least total length is called an

optimum Hamiltonian circuit and is an optimum solution to the sales-

man problem.

An optimum salesman circuit need not be an optimum Hamiltonian

circuit. For example, consider the graph shown in Fig. 7.1. The

7.1 Salesman Problems
263

Figure 7.1

Optimum Salesman Route

only Hamiltonian circuit in this graph is (a,b), (b,c), (c,a) which

has a total length equal to 1 + 20 + 1 = 22 units. The (optimum)

salesman circuit (a,b), (b,a), (a,c), (c,a) that passes through vertex

a twice has total length equal tol +1+1+1=4 units. Thus, an

optimum salesman circuit need not be an optimum Hamiltonian circuit.

When is the solution to the general salesman problem a Hamiltonian

circuit?
i eS

\ THEOREM 7.1 If for each pair x,y of vertices in graph G,

 atx,y) < a(x,2) + alziy)) (for ali 2ofix, 2 $y) (1)

then a Hamiltonian circuit is an optimum solution (if a solution

exists) to the general salesman problem for graph G.

Condition (1) merely says that the direct distance from x to y

is never more than the distance via any other vertex z. Condition

(1) is called the triangle inequality.

Proof: Suppose that no optimum solution to the general salesman

problem is a Hamiltonian circuit. Let C be any optimum salesman ‘

circuit. Since C is not a Hamiltonian circuit, then some vertex, say

vertex Z, appears at least twice in circuit C. Suppose that the first

time the salesman arrives at vertex z he arrives from vertex x and

departs to vertex y. Alter circuit C so that the salesman travels

from x directly to y bypassing z. The resulting route C' is also a

circuit since it visits every vettex at least once. Moreover, by

(1), the total length of C'’ does not exceed the length of C. Replacing

C by C' and repeating this argument, we generate another salesman

circuit C", etc. Eventually, this process leads us to an optimum

circuit that is Hamiltonian since each successive circuit has one

less arc than its predecessor. Q.E.D.

264 Traveling Salesman Problem

From Theorem 7.1, it follows that if graph G satisfies the

triangle inequality, then the optimum solutions for the salesman

problem for graph G are optimum solutions for the general salesman

problem in graph G.

There is a simple way to spare outselves the needless trouble

of developing two solution techniques, one for the general salesman

problem and one for the salesman problem. “If graph G does not satisfy

the triangle inequality then replace each arc length a(x,y) that

fails the triangle inequality with the length of a shortest path from

x to y. Record that the arc from x to y no longer represents a direct

journey from x to y but now represents a journey along a shortest

path from x to y. Now, a(x,y) just satisfy the triangle inequality.

If an optimum solution to the salesman problem for graph G con-

tains an arc (x,y) whose length was shortened as specified above,

then replace arc (x,y) by a shortest path from x to y in the optimum

solution. Thus, we need solution techniques for only the salesman.

problem.

For example, in Fig. 7.1, a(b,c) = 20 > a(b,a) + a(a,c) =1+1.

Thus, (1) fails for arc (b,c). If the length of arc (b,c) is reduced

to 2, the length of a shortest path from b to c, then the only

Hamiltonian circuit in the resulting graph is (a,b), (b,c), (c,a)

whose length is 1+ 2+1= 4. Replacing (b,c) by (b,a), (a,c) yields

the circuit (a,b), (b,a), (a,c), (c,a) which is an optimum salesman

circuit for the original graph.

Suppose that instead of wishing to find a Hamiltonian circuit

with the smallest total length, we wanted to find a Hamiltonian

circuit with the largest total length. For example, the bank courier

might want to maximize Patnes than minimize the total number of

additional letters that he carries. Can this problem also be solved

as a salesman problem?

Let M denote the largest arc length in graph.G. Let

a'(x,y) = M - a(x,y) > 0 [for all (x,y)] (2)

Every Hamiltonian circuit in graph G = (X,A), contains exactly |x|

arcs. An optimum (shortest) Hamiltonian circuit C based on the primed

7.1 Salesman Problems
265

arc lengths has total length equal to

i]) a' (x,y) | Pie ax.)
(x,y) EC (Sy) © C E

Ix IM -) a(x,y)
(x,y) Ee ¢

Thus, it follows that a minimum length Hamiltonian circuit based on

the primed arc lengths corresponds to a maximum length Hamiltonian

circuit based on the original unprimed arc lengths.

Thus, to find a maximum length Hamiltonian circuit, we need only

solve the salesman problem using arc lengths transformed as in (2).

Not all graphs possess a Hamiltonian circuit. For example, the

graph consisting solely of two vertices x and y and a single arc

(x,y) does not contain a Hamiltonian circuit. Section 7.2 describes

conditions that insure that a graph possesses a Hamiltonian circuit.

Section 7.3 presents methods for calculating a lower bound on the

length of an optimum Hamiltonian circuit. Section 7.4 describes

techniques for finding an optimum Hamiltonian circuit.

7.2 EXISTENCE OF A HAMILTONIAN CIRCUIT

As shown in Sec. 7.1, the salesman problem is solved by finding an

optimum Hamiltonian circuit. Unfortunately, not all graphs contain

a Hamiltonian circuit. Consequently, before proceeding to look for

an optimum Hamiltonian circuit, we should at least try to establish

if the graph possesses any Hamiltonian circuits. This section des-

cribes several conditions under which a graph possesses a Hamiltonian

circuit. A very extensive treatment of existence conditions for

Hamiltonian circuits can be found in Berge (1973).

A graph is called strongly connected if for any two vertices x

and y in the graph, there is a path from x to y. A subset Xx of

vertices is called a strongly connected vertex subset if for any two

vertices x € x, and y € Xx, there is a path from x to y in the graph

and Xx, is contained in no other set with the same property. The sub-

_graph generated by a strongly connected vertex subset is called a

strongly connected component of the original graph.

266 Traveling Salesman Problem

For example, the graph in Fig. 7.1 is strongly connected since

there is a path from every vertex to every other vertex. The reader

should verify this. Next, consider the graph in Fig. ees Winks)

graph is not strongly connected because there is no path from vertex

-d to vertex b, although there is a chain from d to b, namely arc

(d,b). The vertices {a,b,c} form a strongly connected vertex subset

since there is a path from each of these vertices to every other

vertex in this set. Moreover, no other vertex can be added to this

set without losing this property. For example, vertex d cannot be

added to the set since there is no path from d to a. The subgraph

generated by {a,b,c} is shown in Fig. 7.2. This subgraph is a

strongly connected component of the original graph.

There is_a path from d to e anda path from e to d. However,

{d,e} is not a strongly connected vertex subset because vertex f can

be added to this set without losing the strongly connected property.

No other vertices can be added without losing this property. Hence

{d,e,f} is a strongly connected vertex subset. The strongly connected

component generated by {d,e,f} is also shown in Fig. 7.2.

Figure 7.2

Graph and its Strongly Connected Components

7.2 Existence of a Hamiltonian Circuit 267

If graph G is not strongly connected, then graph G does not

possess a Hamiltonian circuit. This follows since a Hamiltonian

circuit contains a path between each pair of vertices in the graph.

Thus,.a necessary condition for the existence of a Hamiltonian cir-

_cuit is that graph G be strongly connected.

Recall that a loop is any arc whose head and tail are the same

vertex, i.e., an arc of the form (x,x). No Hamiltonian circuit can

contain a loop, and consequently, the existence of a Hamiltonian

circuit is not affected by adding or deleting loops from graph G,

If two vertices, say x and y, are joined by more than one arc

(sy) 45 (X,Y) 55 ..., with the same direction, then the deletion of

all of these arcs, except the shortest one, does not effect the

existence of a Hamiltonian circuit in the graph or the length of an

optimum Hamiltonian circuit, (if one exists).

Poeethens reasons, we shall henceforth assume that graph G con-

tains no loops and not more than one arc from x to y for all x and y.

Let D (x) denote the set of all vertices y in graph G = (X,A)

such that _(y,x) € A, i.e., the set of all vertices "incident into"

vertex x. Let D* (x) denote the set of all vertices y such that (x,y)

ere the set of all vertices "incident from" vertex x.. The

vertices in D (x) and Batter are respectively called the predecessors

_and successors of vertex x. Let D(x) = D (x) U Dx). As before,

let d (x) = ID (x) | and a) = |D* (x) | and d(x) = |D(x) . Lastly,

let n denote the number of vertices in graph G.

With these definitions in mind, we can now state the following

very general theorem due to Ghouila-Houri (1960):

\ 7HEOREM.7.2 If graph G = (X,A) satisfies the following conditions,

“then graph G possesses a Hamiltonian circuit:

a

(I) Graph G is strongly connected

i (II) d(x) > n, for all x€ X.

Proof: The proof is achieved by induction on n, the number of

vertices in graph G. Trivially, the theorem is true for n = 2 and

n = 3. We shall assume that the theorem is true for all graphs with

268 Traveling Salesman Problem

less than n (n > 3) vertices and use this assumption to show that

the theorem is also valid for all graphs with n vertices.

Let G be any graph with n vertices that satisfies conditions

(1) and (II). Let C denote a simple circuit in G with the largest

possible number of arcs. Let Xj> x tees XK denote the sequence in Ox

which C visits the vertices of G. If m =n, the theorem is true.

Otherwise, m < n and C is not a Hamiltonian circuit. Let Xo = {x >»

Koo sees x Let X a6 05 x denote the strongly connected Aig? Xo»

components of the subgraph generated by X - Xo:

Claim (a): Each strongly connected component X)> Xo» Sistas

contains a Hamiltonian circuit.

To prove Claim (a), we need only show that the degree in x, of

each vertex x € x, is at least Ix, | EOreaddecl = l= Zoe cle su > ome LLer

component Xx, will satisfy both conditions (I) and (11), and by the

induction hypothesis contain a Hamiltonian circuit.

We know that d(x) >n. Consider any vertex y € X 5, 4) # a= Both

arcs (x,y) and (y,x) cannot be present in A; otherwise, X; and Xj

would form one strongly connected component. For k = 1, 2; ..., m, both

(x, 2x) and (x,x,) cannot exist, otherwise circuit C could be extended

to include vertex x. Consequently, the number of arcs joining x to

a vertex not in Xx, cannot exceed |x| - [X, |- Thus, the degree of x

in Xx, is not less than Xi5 and Claim (a) is true.

EGlavma(D) isa BOG. dais 2 aun esis

bx, | = be!
Otherwise, there would exist a Hamiltonian circuit in X, that contains

i
more arcs than circuit C.

Claim (c): At least 2 + IXo| = x, | > 2 arcs join each vertex

eS Xx, to vertices in Xo:

As mentioned in Claim (a), not more than IX, | arcs join vertex

x and vertices in X, for all j # i, j # 0. Also, not more than

2(1x, | - 1) arcs can join vertex x to vertices in X,- Sinicesd (x) ny

it follows that at least 2 + [Xo = Lx, | arcs join vertex x to vertices

in Xo and (c) follows.

7.2 Existence of a Hamiltonian Circuit 269

Claim (d): There exists a component Xx, Such that there is an

arc from a vertex in Xx. to a vertex in Xp and an arc from a vertex

in Xp to a vertex in X,.
ae

For p = 1, Claim (d) must be true since G is strongly connected.
For p > 1, suppose that all arcs joining x and Xo are directed

from xX) to Xo: Consider the subgraph generated by x U Xo: Since

a vertex in eT is joined at most once to each vertex not in Xx) U Xo3

the vertices in x satisfy condition (II) in this subgraph. It

follows from Claim (a) that the vertices in Xo also satisfy condition

‘((II) in this subgraph.

Since G is strongly connected, there is a path P from vertex

xE Xo to a vertex y € XK, such that the intermediate vertices of this

path are not in x) U Xo: Path P must contain at least two arcs.

If arc (x,y) were added to the subgraph generated by - U oe

then this subgraph would be strongly connected. Consequently, this

subgraph together with arc (x,y) would satisfy the induction hypo-

thesis, and there would exist a Hamiltonian circuit of this subgraph

that contains arc (x,y). Replace arc (x,y) with path P. The

resulting circuit contains more arcs than circuit C, which is

impossible. Hence, each component X> Xo 5 SO +5 must be joined

to Xo by arcs in both directions. This proves Claim (d).

Claim (e): Let x, be a component satisfying Claim (d). For

each vertex ye X> there is an are from y to a vertex in Xo and

there is an arc from a vertex in Xo to vertex y.

Let C, be a Hamiltonian circuit of x: Let Vase lon ceo J,
Al q

denote the order in which Cc, visits the vertices of x: (Circuit

C, exists from Claim (a).) Suppose that there is no arc from any

vertex in Xo to vertex Ys: Follow circuit Cc, through the vertices

neue ntil a vertex y. is encountered such that there Vaan? 7542? ae Vett
is an arc C654) originating in Xo: Consider vertex aecets No

arc can be directed from Weert to Xa? X49? edenets San Other-

wise, circuit C would be merged with the q - 1 arcs from Vist to

Yee] to create a circuit with more than m arcs, which is impossible.
jtt- ,

Consequently, no arcs are directed from Xp into Yate and at most

270 Traveling Salesman Problem

m—- q arcs are directed from Yor; to vertices in Xo: Since m =

Ix, | and q = Ix, |, this contradicts Claim (c), and Claim (e) must be

valid.

Claim (f) (Conclusion): As before, let Kyo Xo vers KX denote

the order of the vertices visited by C, and let Varavoz- <8 y
q

denote the order of the vertices visited by C): Let

PUSC MCS Tyee mae.
att.) = z J

0 Otherwise

bial ok hel pole aeaes G'S cow al it
ve -1 Fils b(i, i) ;

Otherwise

Since there are at least q(m - q + 2) arcs joining Xo and x, from

Claim (c), it follows that

) a(i,j) + bGi,j) > q(m - q + 2)
os

For some ig: it follows that

ba(t,4g) +b (4,46) 2 met aati (3)
ah

From Claim (e), there is at least one arc (x, ; y,) directed from

0

Xo into vertex Yio: Consequently, since no circuits with more than

m arcs exist, it follows that b(ip» jg) = 0, bap +1, jg) = 0, eeu

b(ig + iq — 1, jo) = 0. Thus, there are at most m - q + 1 arcs from

%5572 to vertices in Xo: If a(ip + 1, jg) = 1, then blip +q, jq)

="OwaL£ a(ig + 2, jo) = 1, then b(iy + q+ 1; jq) = 0, etc. Thus,

the existence of each additional arc directed from Xo to y. prohibits

0
the existence of at least one more arc from Y; loco.

0 0

Consequently,

) a(i,jg) + bGi,i9) <m-q+1

which contradicts inequality (3). Thus, circuit C cannot contain

only m < n arcs, which is a contradiction. Q.E.D.

7.2 Existence of a Hamiltonian Circuit 271

It is easy to verify that a graph satisfies conditions (I) and
(II) required by Theorem 7.2. Condition (I) is verified by applying
either the Floyd or Dantzig shortest path algorithm (see Chap. 3) to
ascertain if there is a path with finite length joining every pair
of vertices in the graph. Condition (IL) is verified simply by
counting the number of arcs incident to each vertex in the graph.

If graph G is an undirected graph, then no direction is specified

on each are and the salesman is allowed to traverse an arc in either

direction. In this case, the salesman problem is solved by finding

an optimum Hamiltonian cycle, i.e., a shortest simply cycle that

contains all the vertices of the graph. The following result due to

Chvatal (1972) describes a sufficient condition for an undirected
graph to possess a Hamiltonian cycle.

. Again, let n denote the number of vertices in the graph. Name

th i ats oe e vertices Xo x » X, so that d(x,) < d(x,) < < d(x,) 9.2.

THEOREM 7.3 If n > 3, and if
\

d@,) eek ie te d(x~1) > nk (4)

then graph G = (X,E) contains a Hamiltonian cycle.

Proof: Supeose that the theorem is false, i.e., graph G satis-

fies condition (4) but contains no Hamiltonian cycle. Consider any

edge (x5 5) not present in G. If the addition of this edge does

not create a Hamiltonian cycle, add this edge to graph G. Repeat

this process until no more edges can be added to graph G. Note

that condition (4) remains satisfied after the addition of each new

edge to graph G since the additional edge does not lower the degree

of any vertex. Call the final graph G* = (X,E*). We shall now use

graph G* to obtain a contradiction.

Let u and v be any two nonadjacent vertices such that d(u) +

d(v) is as large as possible. Without loss of generality, assume

that d(u) < d(v). Let C denote the longest simple chain from u to v.

Since no additional edges can be added to G* without creating a

Hamiltonian cycle, it follows that C contains all the vertices in X.

u = v denote the order in which C visits Let u = uy» Uy» revels ui? by

the vertices of X.

.

272 Traveling Salesman Problem

Let S denote the set of all vertices u, such that Usa is

adjacent to u. Let T denote the set of all vertices adjacent to v.

No vertex u, can be a member of both S and T since otherwise, the

cycle ue ais ress Uys aie Ys40° veey Us a would be a Hamiltonian

cycle. Also, S UT = {u,> Uys ses ui-1: Therefore, d(u) + d(v) =

|s| + |T| <n. Consequently, d(u) < 1/2 n.

Since no vertex a, is a member of both S and T, if ae S, then

my is not adjacent to v. By the maximality of d(u) + d(v) it follows

that ey) < d(u). Thus, there are at least |S| vertices whose degree

do not exceed the degree of u. Set k = d(u). Thus, d(x,) <iky< By

condition (4), it follows that d(x) > mn - k. Thus; there must) be

at least k + 1 vertices whose degree is at least n - k. Since d(u)

= k, vertex u is not adjacent to all of these k + 1 vertices. Thus,

there is a vertex w that is not adjacent to u and d(w) > n - k.

Consequently, d(u) + d(w) > d(u) + d(v), which is a contradiction.

Consequently, graph G* must contain a Hamiltonian cycle. Q.E.D.

Condition (4) is easy to verify. Merely, order the vertices

according to ascending degree and check if condition (4) is satisfied

for the first 1/2 n vertices.

7.3 LOWER BOUNDS

This section presents methods for calculating lower bounds on the

length of an optimum Hamiltonian circuit in graph G = (X,A). hive

lower bound is subtracted from the length of any Hamiltonian circuit,

the difference equals the maximum amount by which this Hamiltonian

circuit can exceed optimality. This is useful when evaluating non-

optimum Hamiltonian circuits.

The arcs of a Hamiltonian circuit must satisfy two properties:

1. Each vertex must have one arc incident to it and one arc incident

out of it

2. The arcs are connected.

Any set of disjoint circuits that contain all vertices satisfy

item 1. Any connected set of arcs satisfy item 2. Only Hamiltonian

circuits satisfy both items 1 and 2.

7.3 Lower Bounds 273

Consider the family F of all subsets of arc set A that satisfy
property 1. (We shall assume that Fis not empty.) Clearly, every
Hamiltonian circuit is a member of F. Thus, the length of the short-
est member of F is a lower bound on the length of an optimum Hamil-

tonian circuit. Denote this lower bound by Lie

Lower bound Ly can be calculated as follows:

Step 1: Construct a graph G' = (X',A") as follows: For each

vertex x € X, create two vertices x) € X' and x, € X'. For each

arc (x,y) € A, create a "middle" arc (x1 V9) € A'. Let each middle

arc have capacity equal to one and cost equal to the length of the

corresponding arc in A. Create a source vertex s and a sink vertex

t. Create a source arc (s,x,) from s to each vertex x € A'. Create

a sink arc (x, >t) from each vertex x,€ A' to t. Let each source Zz
arc and sink arc have capacity equal to one and cost equal to zero.

(see Fig. 7.3).

Step 2: Send as many flow units from s to t in G' as possible

with minimum total cost. This is accomplished by using the minimum

cost flow algorithm (see Sect. 4.3). Let Ly equal the cost of the

resulting flow.

Since all arc capacities in G' equal one, the resulting flow

consists of flow units traveling alone from s to t. Moreover, no

intermediate vertex (i.e., no vertex except s and t) comes in con-

tact with more than one flow unit.

Each middle arc in A' corresponds to an arc in A. Consider the

set of all middle arcs that carry one flow unit. Let M denote the

corresponding set of arcs in A. The arcs in set M form disjoint

circuits in G that contain all the vertices of G. If this were not

the case, then some vertex x © X would have no arc of M incident

into it or no one arc of M incident out of it. The former implies

that no flow unit enters vertex X55 the latter implies that no flow

unit leaves vertex x,. In either case, the total flow from s to t

would consist of less than |x| flow units. But this is impossible

since each member of F corresponds to a flow in G' of |x| units

and set F is not empty.

274 Traveling Salesman Problem

Arc costs
are shown.

All capacities
equal 1.

Figure 7.3

Calculating Lower Bounds

Since only middle arcs have nonzero costs, the total cost of

the resulting flow equals the total length of the corresponding

member of F. Since the resulting flow has minimum total cost, the

corresponding member of F must be the minimum member of F. Thus,

Ly is a lower bound on the length of the optimum Hamiltonian circuit

in G.

If graph G contains undirected arcs, each undirected arc can be

replaced by two oppositely directed arcs joining the same vertices.

Let each of these directed arcs have length equal to the length of

the original undirected arc. The resulting graph will contain only

directed arcs, and the technique described above for finding Ly can

be applied to the resulting graph.

If set M corresponds to a Hamiltonian circuit, then we have

not only generated a lower bound on the length of an optimum

7.3 Lower Bounds 275

Hamiltonian circuit, but we have also generated an optimum Hamiltonian

circuit. 3

The reader familiar with linear programming techniques will note

that bound Ly could have also been found by using the assignment

algorithm. A technique for improving bound L_ has been developed by

Christofides (1972). This technique uses a oe el algorithm.

EXAMPLE 1. Compute a lower bound on the length of an optimum

Hamiltonian circuit for the graph G shown in Fig. 7.3. Graph G' is

also shown in Fig. 7.3. Obviously, not more than four units can flow

_from s to t in graph G' since the capacity of all the arcs directed

into sink t equals 4. Each middle arc costs at least one unit.

Since graph G' is small, we can find the minimum cost flow by

inspection rather than by using the minimum cost flow algorithm.

The minimum cost flow is

Quantity Path Cost

1 unit (sa) (a, >d,);5 (d, >t) O+1+0==1

1 unit (s,b,); (b, »Co)> (cyt) O+1+0=1

1 unit (s,c,), (c,,b,), (bt) 0+1+0=2=1

1 unit (s,d,), (d,»a,)> (ay,t) O+t1+0-=1

The total cost of this flow is 4; consequently, Ly a 4. The arcs in

G that correspond to the middle arcs in G' that carry flow are (a,d),

(d,a), (b,c), (c,b). These arcs form two circuits (a,d), (d,a), and

(b,c), (c,b). Observe that these circuits satisfy property 1 but not

property 2. This set of arcs is a member of F. The unique Hamil-

Pani circuit in graph G is (a,b), (b,c), (c,d), (d,a) with total

length of 34+ 14+3 +1 = 8.

Now, let us compute another lower bound Ly on the length of an

optimum Hamiltonian circuit in graph G. This lower bound is calcu-

lated by relaxing property 1 and not specifying how many arcs leave

more than_one arc is directed into any vertex. The unique vertex
nore ti ne arc 1S di!

in an arborescence that has no arc directed into it is called the

276 Traveling Salesman Problem

root of the arborescence. Consider any set of arcs that is a span-

ning arborescence. of graph G rooted at sqme vertex, say vertex x,

together with an arc directed into vertex x. Let H denote the family

of all such sets of arcs (Assume set H is not empty.) Each member

of H satisfies property 2 but not necessarily property 1. Every

Hamiltonian cireuit-of G is a member of H.

The maximum branching) algorithm of Chap. 2 can be applied to

find a minimum total length spanning arborescence of graph G rooted

at vertex.x. Add to this arborescence the shortest arc directed

into root. x. Call the resulting set of arcs T. Set T must be a

minimum length member of H; consequently, the total length of the

arcs in set T generates a lower bound on the length of an optimum

Hamiltonian circuit in graph G. Call this lower bound Lo.

If set T forms a Hamiltonian circuit, then this circuit is an

optimum Hamiltonian circuit.

EXAMPLE 2. Let us generate the lower bound L, for the length of an

optimum Hamiltonian circuit for the graph in a 7.3. Since the

graph is small, we can find by inspection rather than by resorting

to the maximum branching algorithm a minimum spanning arborescence

rooted at vertex a. It is (a,b), (b,c) and (a,d) with total length

3+1+1:= 5. The shortest arc incident into vertex a is are (d,a)

with length 1. Thus, set T consists of the four arcs (a,b), (b,c),

(a,d), (d,a), whose total length is 3+1+1+1= 6. Thus, L, = 6.
2

Note that T does not form a Hamiltonian circuit.

Recall from the previous example that Ly = 4 # L,- Thus, L,

and Ly are not always equal.

If graph G is undirected, then the procedure for calculating

Ly can be simplified: simply remove any vertex x from the graph.

Use the maximum spanning tree algorithm of Chap. 2 to find a minimum

spanning tree of the remaining graph. Select the two shortest arcs

incident to vertex x, and add these two arcs to the spanning tree.

Call the resulting set of edges U.

Set U satisfies property 2 but not necessarily property 1.

The total length of the edges in U provides a lower bound Ly on the

7.3 Lower Bounds
277

length of an optimum Hamiltonian cycle in undirected graph G. Hence,
for undirected graphs the maximum branching algorithm can be replaced
by the less complicated maximum spanning tree algorithm.

Associate a number u(x) with each vertex x. Let

a'(x,y) = a(x,y) + u(x) + u(y) (5)

for ali (x,y). Under this transformation, the length of every

Hamiltonian cycle is changed by the same amount. Thus, the shortest

Hamiltonian cycle for the original edge lengths a(x,y) will also be

the shortest Hamiltonian cvcle for the new edge lengths a'(x,y).

Held and Karp (1970, 1971) have devised methods to search for values

u(x), x.€ X, such that the set U produced above is a Hamiltonian

cycle. These methods use nonlinear programming techniques and any

further discussion of them would take us too far afield.

7.4 SOLUTION TECHNIQUES

Many solution techniques are available for the traveling salesman

problem (Bellmore and Nemhauser, 1968; Garfinkel and Nemhauser.

1972; Held and Karp, 1970; 1971; Steckman, 1970). All of these

techniques fall into one of two categories:

(a) Techniques that are certain to find an optimum solution but

at worst require a prohibitive number of calculations

(b) Techniques that are not always certain to find an optimum

solution but require a reasonable number of calculations.

A large number of the solution techniques rely heavily upon

advanced results in integer linear programming, nonlinear programming,

and dynamic programming, and a description of these techniques would

take us too far afield. In this section, we shall confine ourselves

to two solution techniques that require only results developed in

earlier chapters. The first technique is the "branch and bound"

technique which falls into category (a). The second technique is

the "successive improvement" technique which falls into category (b).

278 Traveling Salesman Problem

Branch and Bound Solution Technique

Let G = (X,A) denote the graph under consideration. As shown in

Sec. 7.4, the minimum cost flow algorithm of Sec. 4.3 can be used to

generate a lower bound L,)on the length of a shortest Hamiltonian

circuit in graph G. If ae flow generated by the minimum cost flow

algorithm corresponds to a circuit in graph G, then this circuit is

an optimum Hamiltonian circuit, and the salesman problem has been

solved. However, chances are that for any graph of realistic propor-

tions, the resulting flow will correspond to several disjoint cir-

cuits. Select any one of these circuits and denote the vertices

contained in this circuit by x. = {x,, Kor sees x}.

In an optimum solution, fe sethantes upon leaving vertex xy

either travels to a vertex not in x. or to a vertex in xX: If the

latter happens, then when the salesman leaves vertex x, he goes either
2

to a vertex not in Xx. or to a vertex in Xs etc. Thus, an optimum

solution must be present in at least one of the following graphs:

1. Graph G with all arcs (x) >.¥)> ye Xo» deleted

Graph G with all arcs (x.y), y¢ Xo deleted and arcs (X52),

Zz E Xe deleted

3. Graph G with all arcs (x,y) (x5 99)» y XxX, deleted, and all

arcs (x,,2), Ze Xo» deleted

oF ele | ere Piet eh ere Pret 6 eer =e) e- te! ee a 7. e ee e e @ or et Sar te oh ae .

eo e -e 8 e «# e@ oo © (ee © 16 oe aie. (eos ee 7. e e @ ee

k. Graph G with all arcs (x,y), (x55), pane (xy ¥)> ny dX;

deleted, and all arcs (x52) 5 Za Xo deleted.

(Note that deleting an arc is equivalent to giving it an infinite

length.) Call the above graphs G)> Cos meres GL» respectively.

Since an arc length in a subscripted graph G, is never less than the

length of the corresponding arc in graph G, ene length of an optimum

Hamiltonian circuit in G, cannot be less than the length of an

optimum Hamiltonian circuit in G. Moreover, an optimum solution for

graph G is also an optimum solution for at least one of the sub-

G scripted graphs G)> Go» rey G.

7.4 Solution Techniques
279

Next, use the minimum cost flow algorithm to find a lower bound a
 a het

L, on the length of an optimum Hamiltonian circui ~graph

Gy» Gos nieiera G Call these lower bounds L,(G)), L (G,), L,(G,),
aves Lj (G,), respectively. (The reader familiar with linear program-

ming techniques may replace the minimum cost flow algorithm with

the assignment algorithm.)

If the minimum cost flow in some subscripted graph G. corresponds

to a Hamiltonian circuit, then we need not give any further considera-.

tion to any subscripted graph G, for which Lj (G;) 2 L(G.) since

Ly (G,) is an achievable lower bound. In this way, some of the

,subscripted graphs can be eliminated from further consideration.

For each remaining, noneliminated, subscripted graph G, repeat

the above procedure by replacing it with graphs G, 5 G. Ae oid 6
1 2

Calculate a lower bound L(G,) on the length of an optimum Hamil-

tonian circuit for each graph G, and proceed as above to eliminate

as many double-subscripted graphs as possible from further

consideration.

Ultimately, one graph in which a shortest Hamiltonian circuit

has been found will eliminate all other graphs. This Hamiltonian

circuit must be a shortest Hamiltonian circuit of the original

graph G.

This technique is called the branch and bound solution technique

because it branches from the original graph to other graphs and

generates a bound on the optimal solution along each branch.

EXAMPLE. Let us use the branch and bound solution technique to find

an optimum Hamiltonian circuit for graph G shown in Fig. 7.4. Since

graph G is small, we can see immediately that the minimum cost flow

pigeetthn agel ied to graph G (see Sec. 7.3 for details) would yield

two circuits (a,b), (b,c), (c,a) and (f,e), (e,d), (d,f). The

total length of these two circuits is 11. Thus, L(G) = 11. Using

the vertices X = {a,b,c} in the first circuit, we can generate

three amie 6 G.» shown TEC neti Gkap G, is graph G

without any arcs from a to b or c, i.e., without arc (a,b). Graph

280 Traveling Salesman Problem

Minimum cost

circuits of G

L,(G)=1

Figure 7.4 (continued)

G. is graph G with all arcs from a to d, e, f deleted and all arcs

from b to a and c deleted. Thus, G, is G without arcs (a,d) and

(b,c). Graph G. is graph G with ce arcs from a and b to d, e, f

deleted and all arcs from c to a and b deleted. Thus, ce is G

without arcs (a,d), (b,e), and (c,a).

Since G Ges and Ge are small, we can see immediately that

the minimum cost flow algorithm would yield the following circuits:

Graph Circuit {io Lower bound Ly

(a yd) sak.) ((£.c)2,. (eb). (bc) sca) L(G.) = 21

(a,b), (b,e), (e,d), (d,f), Cane) iy (c,a) L, (G,) = 12

(a,b), (b,c), (cf), (fe), (e,d), (da) ~1,(G_) = 16

7.4 Solution Techniques

' Minimum at ee ie a Minimum cost circuit is a,bed,f,c,a
r lies phi i L,(Gg)= 12

Graph G,

Minimum cost circuit is a,bc,f,e,d,a

L4(G,) =16

Example of Branch and Bound Solution Technique

The minimum cost flow in CG. generates a Hamiltonian circuit

with length equal to 12. Consequently, graphs ee and G, can be

eliminated from further consideration since their lower bounds both

_exceed L,(G,) = 12. Consequently, the Hamiltonian circuit (a,b),

(b,e), (e,d), (d,f), (£,c), (c,a) is an optimum Hamiltonian circuit

for the original graph G.

Successive Improvement Technique

The successive improvement technique for finding a short (and some-

times shortest) Hamiltonian circuit in graph G is as follows:

282 Traveling Salesman Problem

Start with any Hamiltonian circuit. Let Xy> Xo > dite x denote

the order in which this circuit visits the vertices of graph G. For

{y= 15 2 oe, ne— Ieand je="2 4,4 2 an determines taswi ten

ing vertices x, and a in the preceding ordering generates a shorter

Hamiltonian circuit. If so, make this switch in the order in which

the vertices are visited. Repeat this process until no more switch-

ing is possible.

Switching vertices i and j in effect means replacing arcs

CoD x,)> (x, > xe (x15 x), (x; X41) by arcs (20 ad

pr eer ats ree
The switching process must eventually stop since (a) there are

only a finite number of different ways to order the n vertices, and

(b) no ordering is repeated since each switch generates a Hamiltonian

circuit that is shorter than the preceeding Hamiltonian circuit.

Figure 7.5

Example of Successive Improvement Technique

The final Hamiltonian circuit depends upon the initial Hamil-

tonian circuit. For example, consider graph G in Fig. 7.5. This

graph contains five vertices; consequently, each Hamiltonian circuit

must contain five arcs. Since all arcs are at least one unit long,

no Hamiltonian circuit is less than five units long. The Hamiltonian

circuit traversing the vertices in the order a, b, c, d, e is five

units long and consequently must be an optimum Hamiltonian circuit.

7.4 Solution Techniques 283

Suppose that the successive improvement technique were initialized

with the Hamiltonian circuit that traverses the vertices in the order

a, e, d, c, b. The reader can verify that no two vertices in this

sequence can be switched so that the resulting sequence corresponds

to a Hamiltonian circuit in G. (For example, a and e cannot be

switched since the sequence e, a, d, c, b does not represent a cir-

cuit because there is no arc from a to d.) Thus, if the successive

improvement technique is initialized with a, e, d, c, b, it terminates

with a, e, d, c, b. The corresponding Hamiltonian circuit has length

equal to 3 +3 + 3+ 3+ 3 = 15, which clearly is not optimun.

On the other hand, suppose we started with a, b, d, c, e. The

corresponding Hamiltonian circuit has length equal to 1+6+3+6

+1+= 17. If vertices c and d are switched, then the resulting

sequence a, b, c, d, e corresponds to an optimum Hamiltonian circuit

witbelrensth i) + 1 +51 ++ 1 = 5.

Observe in the above example that the length of the initial

Hamiltonian circuit is not necessarily a good indicator of the

length of the final Hamiltonian circuit. When the technique was

initialized with a Hamiltonian circuit of length 15, it terminated

with a circuit with length 15. When the technique was initialized

with a circuit with length 17, it terminated with a circuit with

length 5.

In this example, it was easy to verify the optimality of a

circuit. In general, we cannot be certain about the optimality of

the terminal circuit produced by the successive improvement technique.

In this situation, lower bounds Ly and L, can be used to determine

the maximum amount by which the terminal circuit exceeds optimality.

Methods for improving the successive improvement technique can

be found in Steckman (1970) and Lin and Kernighan (1973).

EXERCISES

1. Show that the set of all optimum solutions to the salesman

problems is the same for all starting vertices.

284 Traveling Salesman Problem

2. Suppose that the salesman must visit vertex b immediately after

visiting vertex a. How can this be incorporated into the

salesman problem?

3. Suppose that the salesman must visit vertex b after (not

necessarily, immediately after) visiting vertex a. How can

this be incorporated into the salesman problem?

4. Use the results of Sec. 7.3 to verify that the graphs shown in

Fig. 7.6 and 7.7 possess Hamiltonian circuits.

Figure 7.7

Exercises

Die

285

For the graph in Fig. 7.3, we found that Ly < L,. Construct a
graph for which Ly > L,- Construct a graph for which L, =-L,.
Use the branch and bound solution technique to find an optimum
solution to the salesman problem for the graph shown in Fig. 7.8.

Figure 7.8

Use the successive improvement technique to find a short sales-

man route for the graph shown in Fig. 7.8. Start this technique

with the Hamiltonian circuits that visits the vertices in the

OTe riediomeie sbi ecli Clue ters

Suppose that two salesmen initialize the successive improvement

technique with the same nonoptimum Hamiltonian circuit. The

sequence of vertex switches used by the first salesman is

different than that used by the second salesman. Show that

their terminal circuits may be different.

In the past, all announcements for general circulation around

the Operations Research Department of a large firm were mimeo-

graphed and one copy was given to each person in the department.

In the interest of economy, the department has decided that

only one copy of the announcement would be made and that it

would be routed throughout the department along some predeter-

mined route. The distance between the desks of each of the six

people in the department are given in the following table. What

is the best routing for an announcement? (The announcement must

always return to its sender so that he can be certain that it

was not lost somewhere along the route.)

286 Traveling Salesman Problem

From To Employee

1 2 3 4 5) 6

Employee 1 0 8 7h (ce aK)

2 10 op alsy AY

3 0 Be aly 5)

4 0 20 §

5 OmeZ0

(Distance in yards.)

10. Four machine operations must be performed on every job entering

a machine shop. These operations may be performed in any

sequence; however, the set-up time on a machine depends upon

the previous operation performed on the job. The set up times

are given in the following table. What is the best sequence

of operations?

From To Machine

A B C D

Machine A x 15 20 5}

B 30 x 30 AUB

C 25 25 x 15

D 20 55 10 x

REFERENCES

Bellmore, M., and G. L. Nemhauser, 1968. The Traveling Salesman

Problem: A Survey, ORSA, vol. 16, pp. 538-558.

Berge, C., 1973. Graphs and Hypergraphs, (English translation by

E. Minieka), North-Holland, Amsterdam, Chap. 10, pp. 186-227.

Christofides, N., 1972. Bounds for the Travelling-Salesman Problem,

ORSA, vol. 20, no. 6, pp. 1044-1056.

Chvatal, V., 1972. On Hamilton Ideals, J. Combinatorial Theory,

Series B, vol. 12, no. 2, pp. 163-168.

Garfinkel, R., and G. L. Namhauser, 1972. Integer Programming,

John Wiley, Inc., New York, pp. 354-360.

References 287

Ghouila-Houri, A., 1960. Une condition suffisante d'existence d'un
circuit hamiltonien, Cahiers du Research Acad. Sci., vol. 251,

pp- 494-497. a

Held, M., and R. Karp, 1970. The Traveling-Salesman Problem and

Minimum Spanning Trees, ORSA, vol. 18, pp. 1138-1162.

Held, M., and R. Karp, 1971. The Traveling-Salesman Problem and
Minimum Spanning Trees, Part II, Math. Programming, vol. 1, no.

1, pp. 6-25.

Steckhan, H., 1970. A Theorem on Symmetric Traveling Salesman

Problems, ORSA, vol. 18, pp. 1163-1167.

Lin, S., and B. W. Kernighan, 1973. An Effective Heuristic Algorithm

for the Traveling-Salesman Problem, ORSA, vol. 21, no. 2,

‘ pp. 498-516.

-

Chapter 8

LOCATION PROBLEMS

8.1 INTRODUCTION

Location theory is concerned with the problem of selecting the best

location in a specified region for a service facility such as a

shopping center, fire station, factory, airport, warehouse, etc.

The mathematical structure of a location problem depends upon the

region available for the location and upon how we judge the quality

of a location. Consequently, there are a large variety of different

kinds of location problems, and the literature is filled with a

variety of solution techniques.

In this chapter, we shall confine ourselves to location problems

in which the region in which the facility is to be located is a graph,

i.e., the facility must be located somewhere on an arc or at a vertex

of a graph. Moreover, we shall confine ourselves to location problems

that do not take us too far afield mathematically.

EXAMPLE 1. A county has decided to build a new fire station which

must serve all six townships in the county. The fire station is to

be located somewhere along one of the highways in the county so as

to minimize the distance to the township farthest from the fire

station. Wee Wwe bh Ls De te: phyte UAEL

If the highways of the county are depicted as the edges of a

graph, this fire station location problem becomes the problem of

locating the point on an edge with the property that the distance

289

290 Location Problems

along the edges (highways) from this point to the farthest vertex

(township) is as small as possible.

Consider the graph in Fig. 8.1. If vertex 3 were selected as

the location, the most distant vertex from 3 is 6, which is 3 units

away. Better still is vertex 2 which is at most two units away from

any vertex. Even better is the midpoint of edge (2,5) which is 1 1/2

units away from vertices 1, 3, 4, and 6.

Figure 8.1

(All arc lengths equal 1.)

EXAMPLE 2. Suppose that the same county must locate a post office

so that the total distance from the post office to all the townships

is minimized. In this case, locating the post office at the midpoint

of edge (2,5) would give a total distance of 1 1/2 + 1/2 +11/2 +

1 1/2 + 1/2 + 1 1/2 = 7 units since the distance from the midpoint

of edge (2,5) to vertices 1, 2, 3, 4, 5, 6 is respectively 1 1/2,

WM, al SYD, SU yey 1 W/E

_Note that Examples 1 _and-2are essentially the same problem

except that the criterion for judging locations 6 oe
Example 1, the maximum distance is minimized; in Example 2, the sum

of the distances is minimized. A location selected according to the

criterion, i.e., minimizing the maximum distance, is called a center.

A location selected according to the latter criterion, i.e., minimiz-

_ing the sum of the distances, is called a fnedi any More rigorous

definitions will be given later.
i

\/ EXAMPLE 3. Suppose that the same county must locate a station for

tow-trucks to (Fescue|notorists) who have become (stranded) somewhere on

the county's highways. Suppose, also, that each potential location

8.1 Introduction
291

is judged according to the maximum distance that a towtruck must
travel to rescue a motorist.

©

In this situation, the maximum distance to all points on all

edges must be considered instead of the maximum distance to a vertex,

as in Example 1.

EXAMPLE 4. Suppose that the same county must select a location for

a telephone switching station somewhere in a town or along a highway.

_The switching station must_be located so_as to minimize the total

length of all telephone lines that must be laid between itself and

the six townships. To complicate matters, the townships have varying

population sizes and require anywhere between one and five lines-

from themselves to the switching station.
———$—$—$—$—$$—— ———

Observe that if each township required only one line connecting

itself with the switching station, then the problem posed. in Example

4 would have a mathematical structure identical to the problem posed

in Example 2. However, now certain townships must be considered more

heavily and the location of the switching station must be influenced

by the juxtaposition of the more populous townships.

Before making more rigorous definitions for the various types

of locations to be considered, some definitions to describe the

points on arcs and the various distances in a graph are needed.

Number the vertices of the graph G that is under consideration

1 through n. Consider any arc (i,j) whose length is given by

a(i,j) > 0. Let the f-point of arc (i,j) denote the point on arc

(i,j) that is f a(i,j) units from vertex i and (1 - f) a(i,j) units

from vertex j for all f, 0 < f <1. Thus, the 1/4-point of arc (i,j)

is 1/4 of the way along arc (i,j) from vertex i towards vertex j.

The O-point of arc (i,j) is vertex i, and the 1-point of arc

(i,j) is vertex j. Thus, the vertices may also be regarded as points.

Points that are not vertices are called interior points. A point

must be either an interior point or a vertex. As before, let X denote

the set of all vertices. Let P denote the set of all points. Thus,

P - X is the set of all interior points.

292 Location Problems

Let d(i,j) denote the length of'a shortest path from vertex i

to vertex j. Let D denote the n x n matrix whose i,j-th element is

d(i,j). The elements in matrix D are called vertex-vertex distances.

Recall from Sec. 3.2, that either the Floyd or Dantzig algorithms

can be used to calculate matrix D.

Let d(f - (r,s),j) denote the length of a shortest path from

the f-point on arc (r,s) to vertex j. This is called a point vertex

distance. If arc (r,s) is undirected, i.e., allows travel in both

directions, then this distance must be the smaller of the two follow-

ing distances:

(a) The distance from the f-point to vertex r plus the distance from

vertex r to vertex j

(b) The distance from the f-point to vertex s plus the distance from

vertex s to vertex j.

Thus,

d(£ - (r,s), j) = min{fa(r,s) + d(r,j), (1 - £)a(z,s) + d(s,j)}

(la)

If (r,s) is a directed arc, i.e., travel is allowed only from r to

s, then the first term in the above minimization is eliminated, and

d{foea. (re), i) 0= (1 =. f)a(r os) d(s,j). (1b)

Observe that only the arc lengths and the D matrix_are_needed to_

compute all the point-vertex distances. ee ee i

When plotted as a function of f, the point-vertex distance for

a given arc (r,s) and given vertex j must take one of the three

forms shown in Fig. 8.2. Note that the slope of this piecewise

linear curve is either t+a(r,s) or -a(r,s), and the slope makes-at

_Most one change from +a(r,s) to--a(r,s). , er.

Next, consider the shortest distance from vertex j to each point

on arc (r,s). For some point on arc (r,s), this distance takes its

maximum value. This maximum distance from vertex j to any point on

arc (r,s) is denoted by d'(j,(r,s)) and is called a vertex-arc

distance.

8.1 Introduction
293

A f-t0),f) d(f-rs), 4)

slope=+a(z,4) slope=-a2i1,2) oe
A La, 4)

slope =+a(4, 2)

Lr, 4)

-

ype 1 Type 2

Any
P slope=-acr, 4)

Ala 4)

Type 3

Figure 8.2

Plots of Point-Vertex Distances

If arc (r,s) is undirected, there are two ways to travel from

vertex j to the f-point on (r,s): via vertex r or via vertex s.

Naturally, we select the shorter of the two routes. If these two

routes have unequal distances, then some neighboring points of the

f-point of arc (r,s) are even further away from vertex j. For

example, in Fig. 8.1, the 0.25-point of edge (3,4) is 1.25 units or

2.75 units away from vertex 2 depending if you travel via vertex

3 or via vertex 4. If f is increased from 0.25 to 0.26, then the

294 Location Problems

shortest distance from vertex 2 to the 0.26-point of edge (3,4) is

min{1,26,2.74} = 1.26. These two distances are equal at the most

distant point. Observe that these two distances always sum to

always sum to

a(j,r) + fa(r,s) + d(r,s) + (1 - f)a(r,s) =d(j,r) + dQ, s) + a(z,8)

Thus, it follows that

: : j + : re
d'(j,(r,s)) = dGsy) Ati8) a(r,s) (2a)

If, on the other hand, arc (r,s) is directed, then a point on

arc (r,s) can be reached only via vertex r. Consequently, the most

distant points on (r,s) from any vertex are those points closest to

vertex s, i.e., the f-points for which f approaches 1. In this case

dis, 8) = odiG@,r) + a(r,s) (2b)

Number the arcs in graph G one through m. Let D' denote the

n x m matrix whose j,k-th elements is the vertex-arc distance from

vertex j to arc k. Observe that the vertex-arc distance matrix D'

can be computed from the vertex-vertex distance matrix D and the

arc lengths by using equations (2a) and (2b).

Let d'(£ - (r,s), (t,u)) denote the maximum distance from the

f-point of arc (r,s) to the points on are (t,u). This distance is

called a point-arc distance.

If arc (r,s) is undirected and if (r,s) # (t,u), then the route

from the f-point on (r,s) to the most distant point on (t,u) must be

either via vertex r or via vertex s. Thus, it follows that

d'(f - (r,s), (t,u)) =‘min{fa(r,s) + d'(r,(t,u)),

(lesof)alrys) +id)(s,(e, a) (3a)

If arc (r,s) is directed and (r,s) # (t,u), then the first

term in the above minimization can be eliminated, and

d!(£) =. (r,5)5(t,u)) = Ces £)a(e,6).+ 45(s.(t.u)) (3b)

If (r,s) = (t,u), and if arc (r,s) is directed, then the most

distant points on arc (r,s) from the f-point on (r,s) are the g-

points where g approaches f from values less than f. Thus, in this

case,

8.1 Introduction 295

dE Py (r56), (e538) =z (1-f£) a(r,s) a6 d(s,r) (3c)

lf-{r,s) = (t,u), and if arc (r,s) is undirected, then the

maximum distance from the f-point on (r,s) to any g-point on (e5s)

(where g < f) cannot exceed

Ap=aminitaCnes)l/2 ades)ptad(s.r)

The first term in this minimization accounts for routes from the f-

point to the g-point restricted to are (r,s). The second term in

the minimization accounts for routes from the f-point on (r,s) to

the g-point on (r,s) that traverse vertex s.

Similarly, the maximum distance from the f-point on (r,s) to

any g-point on (r,s) (where g > f) cannot exceed

B = min{(1 - f)a(r,s), 1/2[a(r,s) + d(r,s)]}

The first term in the preceding minimization accounts for routes

from the f-point to the g-point restricted to arc (r,s). The second

term in the preceding minimization accounts for routes from the f-

point on (r,s) to the g-point on (r,s) that traverse vertex r.

Consequently, if arc (r,s) is undirected,

d"(£ — (r,s), (,s)) = max{A,B}

or, equivalently,

duGe=— (,s),@,s)) = nax{min(fa(r,s), 1/2[a(@z,s) + d(s,r)]},

min{(i = f)a(r,s), 1/2[a(r,s) + d(r,s)]

(3d)

When d'(f£ - (r,s), (t,u)) is plotted as a function of f for all

(r,s) # (t,u), the curve takes the same form as the point-vertex

distances shown in Fig. 8.2, since equation (3a) has the same form

as equation (la) and equation (3b) has the same form as equation

(1b). Only the constants are different, the equational forms are

the same.

On the other hand, when -d'(f - (r,s),(r,s)) is plotted as a

function of £ for any undirected arc (r,s), the curve takes the form

shown in Fig. 8.3. This follows from equation (3d).

296 Location Problems

dh (fa), ro)

Alar, o)+dl4a)

4 [alr s)+dhina Slope=+alr,)

slope=-41y,4)

42 A(L,b

fe ty fie a

Figure 8.3

Plot of Point-Arce Distance

[dikCiven(@,'s)5 (essa

Symbol Name Equation

(al. 9})} Arc length Given

dd Gicei)) Vertex-vertex distance VV Floyd or Dantzig

algorithm

d(£ - (r,s),j) Point-vertex distance PV (la), (1b)

diGetcss)) Vertex-arc distance VA (2a), (2b)

du¢e= (res). (Ct, u))) Point-are distance PA (3a), (3b), (3c), (3d)

Let

MVV(i) = max{d(i,j)} (4)

j

denote the maximum distance of any vertex from vertex i.

Let

SVV (i=) d(1,4) (5)
j

denote the total distance of all vertices from vertex i.

8.1 Introduction 297

Similarly, let

MPV(f - (r,s)) = max{d(f - (r,s), j)} (6)
j

denote the maximum distance of any vertex from the f-point on arc

(x38)

Similarly, let

SPV(f - (r,s)) = } d(f - (r,s),3) (7)
j

denote the total distance of all vertices from the f-point on arc

(r,s). In a similar manner we can define MVA(i), SVA(i), MPA(f£ -

(r,s)), SPA(f - (r,s)) by taking maximums or sums over all arcs,

rather than over all vertices as in equations (4)-(7).

With all these definitions for distances, maximums and sums,

we are now ready to state rigorously the definitions of the various

types of locations that we shall consider.

1. A center of graph G is any vertex x of graph G such that

MVV(x) = min {MVV(i) } (8)
st

Thus, a center is any vertex whose furthest vertex is as close

as possible.

2. A general center of graph G is any vertex x of graph G such that

MVA(x) = min{MVA(i) } (9)

i

Thus, a general center is any vertex whose furthest point is as

close as possible.

3. An absolute center of graph G is any f-point on any arc (r,s)

of graph G such that

MPV(f - (r,s)) = min {MPV(f - (t,u))} (10)

f-(t,u) Car

Thus, an absolute center is any point whose furthest vertex is

as close as possible.

4, A general absolute center of graph G is any f-point on any arc

(r,s) of G such that

298 Location Problems

MPA(f = (r,s)) = min {MPA(£ - (t,u))} am)
f-(t,u) € P

Thus, a general absolute center is any point whose furthest

point is as close as possible.

Analogous to each of the four kinds of locations defined here,

we can define a (5) median, (6) general median, (7) absolute median,

and (8) a general absolute median. The definitions are analogous

to the preceding definitions except that everywhere the maximization

operation [that is, MVV(i), MVA(i), MPV(f - (t,u))} MPA(f - (t,u))]

is replaced by the summation operation [that is, SVV(i), SVA(i),

SPV(£ - (t,u)), SPA(f£ - (t,u))].

Observe that Example 1 calls for an absolute center; Example 2

calls for an absolute median; Example 3 calls for a general absolute

center, and Example 4 calls for a "weighted absolute median", which

is discussed in Sec. 8.4.

In Sec. 8.2, methods are developed for finding the four kinds

of centers defined above. In Sec. 8.3, methods are developed for

finding the four kinds of medians defined in the preceding discussion.

8.2 CENTER PROBLEMS

This section presents a method for finding each of the four types

of centers described in Sec. 8.1.

Center

Recall that a center is any vertex x with the smallest possible value

of MVV(x), i.e., a center is any vertex x with the property that the

most distant vertex from x is as close as possible.

The Floyd algorithm or the Dantzig algorithm of Sec. 3.2 can

be used to calculate the vertex-vertex distance matrix D whose i,j-th

element is d(i,j) the length of a shortest path from vertex i to

vertex j. The maximum distance MVV(i) of any vertex from vertex i

is the largest entry in the i-th row of matrix D. A center is any

vertex x with the smallest possible value of MVV(x), i.e., a center

is any vertex whose row in the D matrix has the smallest maximum entry.

8.2 Center Problems
299

1 (1,2)
= (1,3)
oe (1,4)
4. (2,4)
Bis (258)
6. (3,4)

Figure 8.4

Computational Example

EXAMPLE 1. Let us find a center for the graph shown in Fig. 8.4.

It is left to the reader to verify by using either the Floyd or

Dantzig algorithm that

Ome? eS 3

see aa ae aa
Ot 2 40 233

tne ae

Thus,

MVV(1) = max{0,2,3,3} =

MVV(2) = max{4,0,2,1} =

MVV(3) = max{6,2,0,3}

3

4

6

MVV(4) = max{3,5,4,0} = 5

Thus, min MVV(i) = min{3,4,6,5} = 3 = MVV(1). Consequently, vertex
i

1 is a center of this graph. The farthest vertex from vertex 1 is

three units away. No other vertex can do better than 3 units.

GENERAL CENTER

Recall that a general center is any vertex x with the smallest

possible value of MVA(x), i.e. a general center is any vertex such

that the most distant point from vertex x is as close as possible.

300 Location Problems

A general center can be found by finding the row of D' with

the smallest maximum entry. This row corresponds to a vertex that

is a general center. This follows since MVA(i) equals the largest

entry in the i-th row of the vertex-arc distance matrix D'.

EXAMPLE 2. Let us find a general center for the graph in Fig. 8.4.

The arcs of this graph are numbered 1 through 6 in Fig. 8.4. Using

the vertex-vertex distance matrix D given in the preceeding example

and the arc lengths given in Fig. 8.4, we can use equations (2) to

calculate

£2 5.3 a2 5 mA

6 7 4 2 3.1/2
t=

D a eroin GUMS 34/2

5 AG 36 MoE 2 ae

For example, from equation (2a),

d'(1, (3,4)) T/2[d(l53). dC 4): £a(354) |

P24 3044) =>

From equation (2b),

d'(1,(2,4)) = d(1,2) + a(2,4) = 2+1 = 3

Thus,

MVA(1) = max{2,3,3,3,3 1/2,5) = 5

MVA(2) = max{6,7,4,1.2,3 WylAh Ss 7

MVA(3) = max{8,9,6,3,2,3 1/2} =9

MVA(4) = max{5,6,3,6,5 L/f2ea—26

Thus, min MVA(i) = min{5,7;9,6} = 5 = MVA(1). Hence, vertex 1 is a

general center of the graph. The most distant point from vertex 1

is 5 units away from vertex 1 and lies on arc (3,4).

ABSOLUTE CENTER

Recall that an absolute center is any point whose most distant vertex

is as close as possible. To find an absolute center, we must find

the point f- (r,s) such that MPV(f - (r,s)) = min MPV(f - (t,u)).
f-(t,u) € P

8.2 Center Problems
301

4

The absolute center problem is more difficult than the center
problem or general center problem because all points, not only the
vertices, must be considered.

First, an observation: No interior point of a directed arc can
be an absolute center. Since all travel ona directed arc is in one
direction, it follows that the terminal vertex of a directed arc is

closer each vertex in the graph than is any interior point of the

directed arc. Consequently, we need consider only vertices and

interior points of undirected arcs in our search for an absolute center.

Consider any undirected arc (r,s). The distance d(f = (r,s) ,4)

from the f-point on (r,s) to vertex j is given by equation (la) and

plotted in Fig. 8.2. This distance is easy to plot as a function of

f since its plot is a piecewise-linear curve with at most two pieces.

Plot d(f - (r,s),j)} for all f; 0 << 1, for all vertices j.

The uppermost portion of all these plots represents max d(f = (r,s),j).

The value £* of £ at which this uppermost portion of aq these plots

takes its minimum value is the best candidate for absolute center on

edge (r,s).

The best candidate on each undirected arc must be located by

this method. The absolute center is any candidate f* - (r,s)* with

the minimum distance to its furthest vertex, i.e.

max{d(f£* - (r,s)*,j)} = min {max d(£* - (t,u),j)}
j (t,u) j

To summarize, a candidate for absolute center is found by select-

ing the point on each undirected arc whose most distant vertex is as

close as possible. The candidate with smallest distance between

itself and its most distant vertex is selected as an absolute center.

The selection of the candidate on each edge requires the plotting

of all point-vertex distances as a function of the points on the

edge. This is relatively uncomplicated since these distance functions

are piecewise linear curves with at most two pieces. Unfortunately,

there seems to be no way to avoid the plotting of the point-vertex

distances. This method is due to Hakimi (1964).

302 Location Problems

EXAMPLE 3. Let us find an absolute. center for the graph in Fig. 8.4.

We know that all absolute centers (there may be ties, and consequently,

more than one absolute center) must be either vertices or interior

points of undirected arcs. The best vertex candidate for absolute

center would be the vertex selected as center. In the example for

calculating the center of this graph, we found that vertex 1 was the

center and all vertices were within 3 units of vertex 1. Thus,

vertex 1 is the best vertex candidate with a range of 3 units.

It remains to examine the interiors of the three undirected

arcsa(1,.4)=5 (2,3) peanda (24).

First, let us examine edge (3,4). From equation (la),

d(f - (3,4),1) = min{fa(3,4) + d(3,1), (1 - £)a(3,4) + d(4,1)}

= min{4f + 6, 4(1 - f£) + 3}

ie Ome P Oe fans

7 = 4F For f >
Co] co]

d(f - (3,4),2) = minffa(3,4) + d(3,2), (1 - £)a(3,4) + d(4,2)}

= min{4f + 2, 4(1 - £) + 5}

JA

Co|~1 cCo|N

(ie ce ch inteye 38

oA fey Foret a

d(f (3,4),3) = min{fa(3,4) + d(3,3), (1 - £)a(3,4) + d(4,3)}

= min{4f, 4(1 - £) + 4}

=4f (for all f, 0 < £ <1)
(3,4),4) = min{fa(3,4) + d(3,4), (1 - £)a(3,4) + d(4,4)}

= min{4f + 3, 4(1 - £) + 0}

d(f

JA

Co|FH col

fe +) 3, For ct

Av 4f For £7>

These point-vertex distances are plotted in Fig. 8.5. The lowest

value taken by the uppermost portion of these curves occurs when

d(e0 =" (Bsa youl) = dk = (3,4),02) 6 Thus.

7 - 4£* = 4£% +2, £% = 5/8

8.2 Center Problems 303

Af), 4)

Upper Portion

Figure 8.5

Plot of Point-Vertex Distances d(f - (3,4), j)

Consequently, the 5/8-point is the best candidate for absolute center

on edge (3,4), and no vertex is more than 4 1/2 units away from the

5/8-point of edge (3,4).

Figure 8.6 shows the same result for edge (1,4). Note that the

best candidate for absolute center on edge (1,4) is the O-point which

is vertex 1. From before, we know that every vertex is within 3

units of vertex l.

Figure 8.7 shows the same result for edge (2,3). Note that the

best candidate for absolute center on edge (2,3) is the O-point which

is vertex 2. From before, we know that every vertex is within 4 units

of vertex 2.

Consequently, the best interior point candidate is the 5/8-point

on edge (3,4) with a maximum distance of 4 1/2 units. The best

vertex dandidate is vertex 1 with a maximum distance of 3 units.

Hence, vertex 1 is the absolute center of this graph.

304 Location Problems

Upper Portion

Figure 8.6

Plot of Point-Vertex Distances d(f - (1,4), j)

dl f-,3) p)

Upper Portion

Figure 8.7

Plot of Point-Vertex Distances d(f - (2,3), j)

8.2 Center Problems
305

General Absolute Center

Recall that a general absolute center is any point x such that fhe
furthest point from point x is as close as possible. To find a
general absolute center we must find a point f - (r,s) such that

MPA(f - (r,s)) = min {MPA(f - (t,u)) }
f - (t,u) € P

No interior point of a directed arc can be a general absolute

center. Since all travel on a directed arc is in one direction, the

terminal vertex of a directed arc is a better candidate for general

absolute center than is any interior point of this arc since the

terminal vertex is closer to every arc in the graph. Consequently,

we need only consider vertices and the interior points of undirected

arcs in our search for a general absolute center.

Observe that the problem of finding a general absolute center

is identical to the problem for finding an absolute center, except

we must now consider point-are distances in place of point-vertex

distances. As noted in Sec. 8.1, all the point-are distance functions

have the same form as the point-vertex distance functions, except

the point-arc distance function d'(f - (r,s), (r,s)). The former

have the form shown in Fig. 8.2; the latter has the form shown in

Fig. 8.3.

In most realistic problems, the most distant point from the f-

point on edge (r,s) will not lie on edge (r,s). In this case, we

can simply omit from further consideration the point-arc distance

function d'(f - (r,s), (r,s)). The problem of finding a general

absolute center can now be solved by the technique used for finding

an absolute center given above. The only difference is that the

point-are distance functions must replace the point-vertex distance

functions. As there are more arcs than vertices, more plotting is

required to find the general absolute center.

However, if there is a possibility that the most distant point

from the f-point on edge (r,s) lies also on edge (r,s), then the

plot of the point-are distance function d'(f - (r,s), (r,s)) must be

included in the calculations for the best candidate on edge (r,s).

306 Location Problems

Equation (3d) can be used to construct this plot. Happily, this

plot is also piecewise linear with at most four pieces. See Fig. 8.3.

In summary, the technique for finding a general absolute center

is the same as the technique for finding an absolute center except

that the point-vertex distances are replaced by the point-arc distances.

8.3 MEDIAN PROBLEMS

This section presents methods for finding the four types of medians

described in Sec. 8.1.

Median

Recall that a median is any vertex x with the smallest possible total

distance from x to all other vertices. Thus, a median is any vertex

x such that

SVV(x) = min{Svv(i) }
a

The sum of the entries in the i-th row of the vertex-vertex

distance matrix D equals the sum of the distances from vertex i to

all other vertices, that is, SSV(i). Hence, a median corresponds to

any row of D with the smallest sum.

EXAMPLE 1. Find a median of the graph in Fig. 8.4. From the

previous examples, we know that the vertex-vertex distance matrix

for this graph is

OO). Se2 ees Be)

ne 4% Ope2) bl:

oa 29 Oaas

, 3a Baud On

Thus,

SW(1) =0+2+3+4+3= 8

SW(2) =4+0+2+1=7

SW(3) =6+2+0+3==11

SW(4) =3+5+4+0=2=12

8.3 Median Problems 307

Hence, min{SVV(i)} = min{8,7,11,12} = 7 = SVV(2), and vertex 2 is

the median of this graph. The total distance from vertex 2 to all

other vertices is 7 units.

General Median

A general median is any vertex x with the smallest total distance to

each arc, where the distance from a vertex to an arc is taken to

be the maximum distance from the vertex to the points on the arc.

Thus, a general median is any vertex x such that

SVA(x) = min{SVA(i) }
i

The sum of the entries in the i-th row of the vertex-arc dis-

tance matrix D' equals the sum of the distances from vertex i to

all arcs, that is, SVA(i). Hence, a median corresponds to any row

of D' with the smallest sum.

EXAMPLE 2. Find a general median for the graph in Fig. 8.4. From

previous examples, we know that the vertex-arc distance matrix for

this graph is

ESS, ee Pee ee

Cie eee Sule

Le VG an TR 34/2
nC ahOen ehh 2 4 be

Thus,

SVACLy = 2°93 493 453 +B 21/245 = 19

SVA(2) =6+7+4+1+2 +43 1/2 = 23 1/2

SVA(3) = 8+9+6+342+4+3 1/2 = 31 1/2

SVA(4) =5+6+3+6+51/2 +4 = 29 1/2

Henson mini GUACt) i= mintl9- 1/2, 23 1/2, 31 1/2, 29 1/2) = 19 1/2=

i

2

SVA(1). Thus, vertex 1 is the general median of this graph. The

total distance from vertex 1 to all arcs ts) 19) 1/2 units.

308 Location Problems

Absolute Median

An absolute median is any point whose total distance to all vertices

is as small as possible.

THEOREM 8.1 There is always a vertex that is an absolute median.

Proof: Consider each point-vertex distance d(f - (r,s), j) as

a function of f. When plotted, this function takes the forms shown

in Fig. 8.2. Observe that each function of this form has the property

that if any two points on the curve are connected by a straight line

see Fig. 8.8, then this straight line always lies on or below the

curve. Any function with this property is called a concave function.

Moreover, the minimum value of a concave function always occurs at

one of its boundary points, i.e., either at f = 0 or at f=1.

Function is above Function is above

dotted line. dotted line.

£

O af O oi t

Piecewise Linear Distance Function Non-linear Distance Function

Figure 8.8

Concave Distance Functions

Next, consider SPV(f~- (r,s)) =) d(f - (r,s), j), as a function

J
of f. Since this function is the sum of concave functions, it too

Must be concave. Thus, SPV(f - (r,s)) is minimized at either f = 0

or at f = 1. Consequently, no interior point of edge (r,s) is a

better candidate for absolute median than one of its end vertices.

G.E-D:

Observe that the proof of Theorem 8.1 remains valid not only

for the point-vertex distances defined by equations (1) but also

for any concave point-vertex distance function of f.

8.3 Median Problems 309

As a consequence of Theorem 8.1, we need consider only the

vertices in our search for an absolute median. Thus, any median is

also an absolute median, and no new solution techniques are needed.

General Absolute Median

A general absolute median is any point with the property that the

total distance from it to all arcs is as small as possible. Again,

the distance from a point to an arc is taken as the maximum distance

from the point to all points on the arc. Thus, a general absolute

median is any point f - (r,s) such that

SPA(f - (r,s)) = min {SPA(f - (t,u))}
f-(t,u) € P

Theorem 8.1 stated that there always is a vertex that is an

absolute median. The proof of Theorem 8.1 rested upon the fact that

all the point-vertex distance functions were concave. If all the

point-are distance functions were also concave, then an analogous

theorem could be proved for the general absolute median. Unfortu-

nately, this is not the case since the point-arc distance function

d'(f£ - (r,s), (r,s)) is not concave as can be seen in Fig. 8.3.

Otherwise, all point-arc distance functions are concave as seen from

Fig. 8.2. Consequently, it is possible all general absolute medians

are interior points. (An example of this is given later.) It is

possible to eliminate from consideration the interiors of some arcs.

First, observe that no interior point of a directed arc can be a

general absolute median. This follows since the terminal vertex of

a directed arc is a better candidate for general absolute median

than any interior point of this directed arc. Moreover,

THEOREM 8.2 No interior point of undirected arc (r,s) is a general

absolute median if

|sVA(r) - SVA(s)| > 1/2[d(r,s) + d(s,r)] (12)

Proof: The total distance from vertex r to all arcs is

SVA(r) = d'(r,(r,s)) +) d'(r,(x,y)) (13)
(x,y): (x,y) # (r,s)

310 Location Problems

Likewise,

SVA(s) = d'(s,(r,s)) +) d'(s,(x,y)) (14)
(x,y):(x,y) # (r,s)

Without loss of generality, suppose that SVA(r) < SVA(s).

Since d'(f - (r,s), (t,u)) is concave for all (r,s) - (E30),

it follows that) d'(£ - (r,s),(x,y)) lies above

Cys x.y) Fe, 8)
the straight line connecting its dndpoints which are

) d'(0 - (r,s), (x,y)) =
(x,y): (x,y) # (r,s)

= b d'(r, (x,y))
(zy trl y Pe (Ess)

and

) d’ (1. —- (ris)e (ey)
(x,y): (x,y) # (r,s)

“) d'(s,(x,y))
(sey) eGgyy) tutes)

Thus, when f = 1/2, it follows that

ih a" (1/2 a (r,s), (x,y))

Cc y)atxsy) Ff (r,s)

a is2) [d'(s, (x,y))
(x,y): (x,y) # (r,s)

+ dite, (=, 9)]

Hence, as f increases from zero to 1/2, the quantity)
(x,y): (x,y)#(r,s)

d'(£ - (r,s), (x,y)) increases by at least 1/2

Kee V a (xs) or Urs)
[d'(s,(x,y)) - d'(r, (x,y))].

Next, let us examine d'(f - (r,s), (r,s)). This function takes

its minimum value at f = 1/2, which is d'(1/2 - (r,s), (r,s)). See

equation (3d) and Fig. 8.3. As f goes from zero to 1/2, d'(f - (r,s),

(r,s)) experiences a decrease equal to d'(r,(r,s)) - 1/2a(r,s).

If) d'(f - (r,s), (x,y)) < SVA(r) for some value of f,

OP SS 22 5S Le then it is necessary that the maximum decrease of d'(f -

(r,s), (r,s)) at £ = 1/2 equal or exceed the minimum increase of

) d'(f - (r,s), (x,y)) at f = 1/2. In other words,

xy ct Gy er eo)

8.3 Median Problems
311

if an interior point of edge (r,s) is to be a better candidate for
general absolute median than vertex r, it is necessary that “”

di@,(x,s)) — 1/2 a(r,s) > 1/2)
(x,y): (x,y) # (r,s)

PaSS5e,¥) dom=nd (rs (a.y))) (15)

Equivalently, it is necessary that

a™\(s.(rjfs)) + dr, (8)) = a(r,s) > SVA(s) - SVA(r) (16)

Substituting equation (2a) into inequality (16) yields

1/2(d(s,r) + a(r,s)) + 1/2(d(r,s) + a(r,s)) - a(x,s)

> SVA(s) - SVA(r) (17)

Simplifying inequality (17) yields

1/2(d(r,s) + d(s,r)) > SVA(s) - SVA(r) (18)

If we had initially assumed that SVA(s) < SVA(r), then inequality

(18) would become

1/2(d(r,s) + d(s,r)) > SVA(r) - SVA(s) (19)

Combining inequalities (18) and‘(19) yields inequality (12). Q.E.D.

Theorem 8.2 is useful because it provides an easy way to elimi-

nate edges from further consideration in our search for a general

absolute median. To check condition (12), only the vertex-vertex

distance matrix D and the vertex-arc distance matrix D' are needed.

If not all edges are eliminated by Theorem 2, are some further

eliminations possible? Yes:

LEMMA 8.1 For any interior point f on any edge (r,s),

SPA(f - (r,s)) > SVA(r) - 1/2 d(r,s) (20)

and

SPA(f - (r,s)) > SVA(s) - 1/2 d(s,r) (21)

Proof: From the proof of Theorem 8.2, we know that as f .

increases from zero to 1/2, the distance d'(f - (r,s), (r,s)) de-

creases by d'(r,(r,s)) - 1/2 a(r,s), which by equation (2a) equals

1/2 d(r,s). Thus, condition (20) follows.

Buz, Location Problems

If f is decreased from 1 to 1/2, then d'(f - (r,s), (r,s))

decreases by d'(s,(r,s) - 1/2 a(r,s) = 1/2 d(s,r), and condition

(21) follows. Q.E:D.

Lemma 8.1 can be used to generate a lower bound on the total

distance for every interior point on any edge that was not eliminated

by Theorem 8.2. Each of these edge lower bounds can be compared to

the least total distance from a vertex, namely PEN ie If the

lower found for an edge is greater the least total distance from a

vertex, this edge can be eliminated.

Each remaining, noneliminated edge (r,s) must then be examined

completely by evaluating SPA(f - (r,s)) for all f. Hopefully, the

best candidate for general absolute median on the interior of the

examined edge (r,s) will have a total distance that will be less

then the lower bound of some nonexamined edges. In this case, these

nonexamined edges can also be eliminated.

Ultimately, all edges must be either eliminated or completely

examined. A general absolute median is selected from the set of

vertices and interior point candidates.

EXAMPLE 3. Find a general absolute median for the graph in Fig.

8.1. Using either the Floyd algorithm or the Dantzig algorithm of

Sec. 3.2, the vertex-vertex distance matrix D is found to be

om OS Eo NFP NM FO wnr OFF WN NF OF N Ww FOF N FN OF N WD DWI

Next, order the edges as follows:

(1,2)

nee ee)

(3,4)

(4,5)

(5,6)

an 255) Dn wn fF Ww NY F

sees Ue

8.3 Median Problems
313

From equation (2a), the vertex-arc distance matrix d' can be

calculated yielding
Ps

alee See oy 3) 2

Lal 2 Vien

2 AY alk hea” Sys
D' =

Bip 74 TL IR)

Zh apa) OPN Sn ily tI

oh) Ooh eae

Thus,

SVA(1) =1+24+3+3+4+3+22=14

SVA(2) =1+1+2+2+2+12= 9

SVA(3) =2+1+1+2+3+4+22=11

SVA(4) =3+2+1+1+2+2=2=11

SVA(5) =24+2+2+1+1+12= 9

SVA(6) =3+34+34+2+1+2=14

Consequently, vertices 2 and 5 are the best vertex candidates for

general absolute median since each of these vertices has a total

distance to all arcs equal to 9 units.

Next, try to eliminate the interiors of some of the edges by

applying condition (12) of Theorem 8.2. Observe that in this graph

all arcs are undirected, and consequently, the right side of condition

(12) becomes d(r,s).

1. Edge (1,2) is eliminated because

IsvVA(1) = SVA(2)| = [14 - 9| = 5 > 1 = a(1,2)

2. Edge (2,3) is eliminated because

|svA(2) - svA(3)| = |9 = 11] = 2 > 1 = d(2,3)

3. Edge (3,4) is not eliminated because

|svA(3) - svA(4)| = |11 - 11] = 0 < 1 = d(3,4)

4. Edge (4,5) is eliminated because

|svA(4) - svA(5)| = |11 - 9| = 2 > 1 = d(4,5)

314 Location Problems

5. Edge (5,6) is eliminated because

|[sva(5) - svA(6)| = |9 - 14| = 5 > 1 = d(5,6)

6. Edge (2,5) is not eliminated because

|svA(2) - sva(5)| = |0 - 0| = 0 < 1 = d(2,5)

Thus, only edges (3,4) and (2,5) remain under consideration. Next,

let us apply conditions (20) and (21) of Lemma 8.1 to see if any

further edge eliminations are possible.

1. Edge (3,4) can be eliminated by condition (20) because

SPA(£ - (3,4)) > SVA(3) - 1/2 d(3,4) = 11 - 1/2 = 10 1/2

which is greater than the 9 units achieved by selecting a vertex

as general absolute median.

2. Edge (2,5) cannot be eliminated by conditions (20) or (21) because

SPA(£ - (2,5)) > SPA(2) - 1/2 d(2,5) = 9 - 1/2 < 9

and

SPACE = (2,5)) > SPA(5) = 1/2 d(5,2) = 9 -— 1/2 < 9

Only edge (2,5) remains under consideration. Equations (3a) and

(3d) can be used to generate the point-arc distances for edge (2,5):

ACE mn (259) 5 (ls2) =k eae

a(t —"@;5);,@;3)) = b+ et

d'(£ - (2,5),(3,4)) = 2

d! (f= (255), 4.5)) = bias)

a (£6292 55). 05 ,6)) = lr le)

cl (@e = (C275) es (Zia) p) ie max{f, (1 ge £)}

Adding these point-arc distances yields

SPA(£ —9(2,5))° = (+f) + GE) +24 (2 = €) 4 Oe Foe

max{f, (1 - £)}

= 8 + max{f, (1 - f)}

Since min max {f, (1 - f)} occurs at f = 1/2, the best candidate
OpnCEe <a

for general absolute median on edge (2,5) is the 1/2-point, since

8.3 Median Problems S15

SPA(1/2 - (2,5)) = 81/2. Since 9 is the best possible total distance

of a vertex, we conclude that the 1/2-point of edge (2,5) is the

general absolute median of this graph with a total distance to all

ares equal to 8 1/2 units.

8.4 EXTENSIONS

Weighted Locations

In the preceeding sections, every vertex carried the same weight in

the selection of a location. Every arc carried the same weight in

the selection of a location. However, as shown in Sec. 8.1, Example

4, there are practical reasons for associating a different weight to

each vertex and multiplying the distance to a vertex by the vertex's

weight. Similarly, there are situations in which the distance to an

arc should be multiplied by the arc'’s weight. For example, if the

arcs represent highway segments that must be served from a central

emergency station, each segment should be weighted with regard to

the amount of traffic it carries.

The methods of Secs. 8.2 and 8.3 can be easily extended to find

the various weighted locations, i.e., weighted center, weighted

general center, weighted absolute center, etc. Merely, multiply each

distance (i.e., each vertex-vertex distance, each vertex-are distance,

each point-vertex distance, each point-arce distance) by the weight

associated with its destination vertex or destination arc. If these

weighted distances replace the original non-weighted distances, the

various methods of Secs. 8.2 and 8.3 will generate the corresponding

weighted locations.

Multicenters and Multimedians

Secs. 8.2 and 8.3 were concerned with the problem of selecting exactly

one location to serve as a center or median. Suppose, instaed, that

we are allowed to select several facility locations. Each vertex

(or arc) would then be associated with the location closest to it.

316 Location Problems

These multilocation problems are. very complicated in that they

consist of two stages: (a) the partition of the vertices (or arcs),

and (b) the selection of the best location to serve all members of

each subset of vertices (or arcs). Unfortunately, the techniques

(Christofides and Viola, 1971; Marsten, 1972; Minieka, 1970; ReVelle

and Swain, 1970; Toregas, et al., 1971) that are available for these

problems ultimately rely upon integer programming for a final solution.

Any detailed discussion of these techniques would take us too far

afield and would best be treated in a text on integer programming.

However, one result concerning multi-absolute medians is worth

noting (Hakimi, 1965; Goldman, 1969). Suppose we are searching for

a set of p locations, p > 1, such that each vertex is associated

with the location closest to it and the total distance from each

location to the vertices associated with it is minimized. Such a

set of points is called a p-absolute median.

THEOREM 8.3. There is a p-absolute median that consists entirely of

vertices.

Proof: Theorem 8.1 proved this result for p=1. For p>1l,

the vertices are partitioned in p sets such that each set of vertices

is served by the same median. Since any sum of point-vertex distance

functions is a concave function, we know that each vertex set is

optimally served by a median that is a vertex. Q.E.D.

EXERCISES

1. The four towns a, b, c, d in our county are connected by roads

as shown in Fig. 8.9. Construct the D and D' matrices for this

graph. Next, calculate a

(a) Y Center

(b) Absolute center

(c) General center

(d) General absolute center

(e) \ Median

(£) Absolute mean

Exercises 0

Figure 8.9

(g) General median

(h) General absolute median

Suppose that an additional road is built connecting cities b and

d in Exercise 1. This road has length equal to 1 1/2. Repeat

Exercise 1. (Assume the new road is a two-way road.)

Suppose that edge can be traveled in both directions, but that

due to wind direction, the distance from x to y is 5 and the

distance from y to x is 7. How can an edge such as (x,y) be

incorporated into our models for finding centers and medians.

(Note that you cannot replace this edge with two arcs (x,y) and

(y,x) in median problems. Why?)

Suppose that town a has twice the population of town b which has

twice the population of town c which has the same population

as town d. Repeat Exercise 1 using the weights described.

Simplify the method of Section 2 for finding an absolute center

for the special case when the graph under consideration is a tree.

Show that the interior of a directed arc can never contain an

absolute center or an absolute median.

How much can the length of edge (1,4) in Fig. 8.4 increase with-

out changing the location of the center of this graph? Median?

How much can the length of edge (2,3) increase without changing

the location of the absolute canter of this graph? Absolute

median?

318 Location Problems

REFERENCES

Christofides, N. and P. Viola, 1971. The Optimum Location of Multi-

centres of a Graph, O. R. Quart., 22, pp. 45-54.

Goldman, A. J., 1969. Optimum Locations for Centers in a Network,

Transp. Sci., 4, pp. 352-360.

Hakimi, S. L., 1964. Optimum Locations of Switching Centers and the

Absolute Centers and Medians of a Graph, ORSA, 12, pp. 450-459.

Hakimi, S. L., 1965. Optimum Distribution of Switching Centers in

a Communications Network and Some Graph Theoretic Problems,

ORSA, 13, pp. 462-475.

Levy, J., 1967. An Extended Theorem for Location in a Network,

O.R. Quart... 18, pp. 433-442.

Marsten, R., 1972. An Algorithm for Finding Almost All of the

Medians of a Network, DP #23, Center for Mathematical Studies

in Economics and Management Science, Northwestern University,

Evanston, November 1972

Minieka, E., 1970. The m-Center Problem, SIAM Rev., 12, pp. 138-139.

Minieka, E., 1977. The General Centers and Medians of a Graph, ORSA,

25, pp. 641-650.

ReVelle, G., and R. Swain, 1970. Central Facility Location,

Geographical Analysis, 2, no. 1, 30-42.

Toregas, C., C. ReVelle, R. Swain, and L. Bergman, 1971. The

Location of Emergency Facilities, ORSA, 19, pp. 1363-1373.

Wendell, R. E., and A. P. Hurter, Jr., 1973. Optimal Locations on

a Network, Transp. Sci., 7, pp. 18-33.

4

Chapter 9

PROJECT NETWORKS

9.1 CRITICAL PATH METHOD (CPM)

Large projects such as the construction of a building, development

of an accounting information system, graduating from college in four

years, or even preparation of a dinner party, involve a large number

of different activities. Some of these activities can be performed

at the same time; others can be performed only after certain other

activities have been completed. For example, the landscaping and

interior plastering of a building under construction can be performed

simultaneously; however, the walls cannot be erected until after the

foundation has been laid. In a four-year college program, each

course may be regarded as an activity. Some courses may be taken

concurrently with others while other courses serve as prerequisites

to more advanced courses. When preparing a dinner, you can set the

table while the roast is in the oven. However, you cannot cook the

potatoes until after they have been washed.

Since we must contend with precedence relations between activi-

ties, as described above, and since each activity in a project

requires a certain amount of time, the project manager is confronted

with the dilemma of carrying out the activities in the best possible

way so that the project finishes on time. For example, if a con-

tractor delays too long in laying the building foundation, he will

fail to meet the construction deadline. If a student delays taking

SLI

320 Project Networks

basic courses, he will not graduate on time. If you spend all your

time setting the table and forget to put the roast in the oven, din-

ner will be late. In other words, the project manager must deter-

mine which activities are critical to the on-time completion of the

project.

A project may be represented by a graph, called a project

network, as follows:

uh List each activity in the project

2 List the time required to perform each activity

3. List the immediate prerequisite activities of each activity

4 Represent each activity by an are. Arrange the arcs into network

so that only the activities that immediately precede the activity

represented by arc (x,y) are incident into vertex x. If necessary,

create dummy arcs that represent no activity to achieve this.

EXAMPLE 1. Suppose that the construction of a new home requires the

following activities:

Activity Time Prerequisites Arc

1. Clear land ah None (a,b)

2. Lay foundation 4 Clear land (b,c)

3. Erect walls 4 Lay foundation (c,d)

4 Wire 3 Erect walls (d,e),

5. Plaster 4 Wire roof (e,f)

6. Landscape 6 Lay foundation (d,g)

7. Interior work 4 Plaster roof (f£,2)

8. Roof 5) Erect walls (d,e),

Observe that the interior work activity requires as prerequisite

activities both plastering and roofing. However, roofing is also

a prerequisite activity for plastering. Hence, it is redundant to

list roofing as a prerequisite activity for interior work. To ease

the analysis of this project, roofing should be removed as a pre-

requisite activity for interior work.

9.1 Cricital Path Method (CPM)
321

landscape

clear lay erect plaster interior
land — foundation walls eae

Figure 9.1

Project Network for Building a House

The project network is shown in Fig. 9.1. Observe that there

are two parallel activities joining vertices d and e. In practice,

parallel arcs are discouraged and often replaced by either a composite

arc representing a compositive activity (in this case, wiring and

roofing) or by replacing one of the parallel arcs by two arcs in

series. To ease the ensuing presentations, we shall not follow these

conventions.

EXAMPLE 2. Consider the following abstract project:

Activity Prerequisites

A None

A

B,C

B,C,D

E,F Q 2A FO Aa

Observe that the prerequisites of activity E are a proper sub-

set of the prerequisites of activity F. In this situation, we need

a dummy activity to depict these precedence relationships (see Fig.

9.2). Arce (c,d) is a dummy arc; it is needed to insure that

activities B and C precede activity F. Dummy activities are always

assigned zero time.

EXAMPLE 3. A student must complete courses in (a) calculus (2 terms),

(b) statistics (3 terms), (c) linear programming (1 term), (d) non-

linear programming (1 term), and (e) stochastic programming (1 term),

322 Project Networks

Figure 9.2

Project Network with Dummy Arc

before he can graduate in operations research. Needless to say, he

cannot enroll in Calculus II until he has successfully completed

Calculus I; he cannot enroll in Statistics III until he has completed

Statistics II and Calculus II, and he cannot enroll in Statistics II

until he has successfully completed Statistics I which requires

Calculus I. There are no prerequisites for linear programming; how-

ever, the prerequisites for nonlinear programming are Calculus II

and linear programming. The prerequisites for stochastic programming

are Calculus II, Statistics III, and linear programming.

The project network for this study program is shown in Fig. 9.3.

Note that a dummy arc (c,d) is required since Statistics II requires

both Statistics I and Calculus II, but nonlinear programming requires

Calculus II and linear programming.

D=dummy arc

STAT 1

Figure 9.3

Project Network for Operations Research

Course Program

9.1 Critical Path Method (CPM) 323

The student can complete this program in as little as 5 terms

if he passes Calculus I, Statistics I, Statistics II, Statistics III

and Stochastic Programming in 5 successive terms. Any delay in this

sequence will delay the completion of his program by an equal amount

of time.

Any graph depicting the relationships between the activities of

a project is called a project network. The arcs of a project net-

work are always directed and represent either real or dummy activities.

The vertices of a project network are called events. An event is

said to have been completed when all the activities directed into it

have been completely performed.

A project network cannot contain a circuit. Otherwise, if there

were a circuit, say (a,b), (b,c), ..., (r,s), (s,a), then event a

could not be completed until event s had been completed, and event s

could not be completed until event r had been completed, etc., which

implies that the project can never be completed. Any real project

must be capable of being completed, and hence, its project network

cannot contain any circuits.

Consider any project network G = (X,A) with event set X and

activity set A. To simplify all future developments, assume that

network G has exactly one event with no activities directed into it

and exactly one event with no activities directed out of it. These

two events can be regarded respectfully as the start and finish

events analogous to the source and sink in a flow flow.

Since there are no circuits in G, the events can be numbered

J. 2¢-.>., 60 that for any activity (i,j), we have i< j. This is

achieved as follows.

Event Numbering Algorithm

Step 1: Give the start event number 1.

Step 2: Give the next number to any unnumbered event whose

predecessor events are each already numbered. (Such an event exists

since there are no circuits in the network.) Repeat Step 2 until

324 Project Networks

all events have been numbered. [Note that the finish event will

always receive the last (highest) number.]

EXAMPLE 2 (Event Numbering Algqrithm). Number the events in the

project network in Fig. 9.2. Event a is the start event and accord-

ing to Step 1 of the algorithm is given number 1. Proceeding to

Step 2, event b has only numbered preceding events (i.e., event a);

hence, event b is given number 2. Next, event c is given number 3;

event d is given number 4; event e is given number 5, and finally

finish event f is given number 6. Observe that in this example there

was no choice as to which event would receive the next number.

The events in the project network in Fig. 9.4 can be numbered

in a variety of different ways:

Event First numbering Second numbering Third numbering

a i 1 i

b 3 2 2

c 4 4 3

d 2 3 4

e 5 5 5

Figure 9.4

Project Network with Three Possible

Event Numberings

Denote the amount of time requires to perform activity (x,y)

by t(x,y) > 0. If activity (x,y) is a dummy activity, then let

t(x,y) = 0.

Next, let us analyze a project network to determine how early

the project can be completed and which activities are critical to

the on-time completion of the project.

9.1 Critical Path Method (CPM) 325

For each event x € X, let E(x) denote the earliest time that

event x can possibly be completed. Let L(x) denote the latest time

at which event x can be completed such that the project will still

be completed on time.

For example, in Fig. 9.3, E(b) = 1 since event b can be completed

as easly as the end of the first term. If the completion deadline

for this project is the end of the fifth term, L(b) = 1 since the

latest that event b can be completed is the end of the first term;

otherwise, Statistics I, II and III and stochastic programming could

not be completed by the end of the fifth term.

As another example, suppose that event 14 has only three immediate

predecessor events, namely events 5, 8, and 9, where E(5) = 4, E(8)

= 7 and E(9) = 6 (see Fig. 9.5). Event 14 cannot be completed earlier

than time 10 since E(5) + t(5,14) = 4+62= 10. Also, event 14 cannot

be completed earlier than time 11 since E(8) + t(8,14) =7+4= 11.

Moreover, event 14 cannot be completed earlier than time 9 since

E(9) + t(9,14) =6+3 = 9. Thus, E(14) = max{10,11,9} = 11.

E(5)=4 (5)

E(#)=7 ey : (14) E(14)-11
&

£(9)-6 (4)
Figure 9.5

Calculating Earliest Event Times

In general, we see that

E(j) = max EC) «+ 6153) 4 (1)

inf. 4) SA

With equation (1) as motivation, we may now state the earliest event

time algorithm.

326 Project Networks

Earliest Event Time Algorithm

Step 1: Number the events 1, 2, ..., n= |x| so that all

activities (i,j) have i < j. Use the event numbering algorithm to

accomplish this. Let E(1) = 0.

StepeZ us fOr =) 25 oem eile tel et

E(j) = max {E(i) + t(i,j)}
i:(i,j)E A

EXAMPLE 5 (Earliest Event Time Algorithm). Calculate the earliest

event times for the project network shown in Fig. 9.6. The events

are already numbered 1 through 7.

0 Step 1: E(1)

Step 2: E(2) = E(1) + t(1,2) =O0+4=4

E(3) = max[E(1) + t(1,3), E(2) + t(2,3)]

= max[4 +1, 0+ 3] =5

E(4) = E(1l) + t(1,4) =0+4 =

E(5) = max[E(2) + t(2,5), E(3) + t(3,5)]

= max[4 + 7, 5 + 4] = 11

E(6) = max[E(4) + t(4,6), E(5) + t(5,6)]

= max[4 + 2, 11 + 1] = 12

E(7) = max[E(2) + t(2,7), E(5) + t(5,7), E(6) + t(6,7)]

= max(4 +8, 11 + 3, 12 +4] = 16

>

ti tk Ela), Lia)

Figure 9.6

Example of Event Time Algorithms

9.1 Critical Path Method (CPM) 327

Consequently, the project cannot be completed any earlier than

time 16. °

Next, let us calculate the latest event times. For example,

consider event 17 in Fig. 9.7. Event 17 is a predecessor to exactly

three events, namely events 20, 24 and 29. Event 17 cannot be

completed later than time 11; otherwise, event 20 would be delayed

past its latest time which is 16. Similarly, event 17 cannot be

completed later than time 15 since L(24) - t(17,24) = 19 - 4 = 15.

Also, event 17 cannot be completed later than time 14 since L(29) -

t(17,29) = 22 - 8 = 14.

x

(20) L20)=16
a

Lan-1t (47) : (24) Ll2=19

(27) L(29-22
Figure 9.7

Calculating Latest Event Times

In general, we see that

i) = min an) =e) (2)

si ta Sa

With equation (2) as motivation, we may now state the latest event

time algorithm.

Latest Event Time Algorithm

Step 1: Number the events eee megetoyers il |x| so that all

activities (i,j) have i < j. Use the event numbering algorithm to

accomplish this.

Let L(n) equal the time at which the project must be completed.

[In any realistic situation L(n) > E(n).]

328 Project Networks

Step’2:) For 1 =n - 1,on - 25 s.6, 1, let

L(i) = min <LGjeat@, 15
fj eesA

EXAMPLE 6 (Latest Event Time Algorithm). Compute the latest event

times for the project network shown in Fig. 9.6. Let L(7) = E(7) =

16 which indicates that the project must be finished as early as

possible, i.e., time 16.

L(7) = 16

L(6) = L(7) - t(6,7) = 16 - 4 = 12

EC5)-= min{L(7) = (557) 40L(6) — €(6,5)5

= min{16 - 3, 12 - 1} = 11

L(4) = L(6) - t(4,6) = 12 - 2 = 10

L(3) = L(5) - (3,5) = 11-427

L(2)<=.min{L(7) —t(237),_1L(5) = t(255), LG) = t@33)3

= min{1l6 - 8, 11-7, 7-1} =4

1). = min Lee: tC) A LG)eore3), 12) — fC
min{10-4, 7-3, 4-4} = 0

Consequently, the project must begin at time 0 in order to finish at

time 16.

It follows directly from the latest event time algorithm that

if the latest completion time of the entire project L(n) is increased

by t time units, then the latest time of every event will also be

increased by t units.

The earliest time E(x) of event x can be interpreted as the

length of the longest path from the start event to event x. Similar-

ly, L(n) - L(x) can be interpreted as the length of the longest path

from event x to the finish event. Lastly, observe that if L(n) >

E(n), then L(x) > E(x) for all events x.

The earliest event time algorithm requires only one addition

for each activity in the project and one maximization for each

event in the project, except event 1. Similarly, the latest event

time algorithm requires only one subtraction for each activity in

the project and one minimization for each event in the project, except

for event n.

9.1 Critical Path Method (CPM) 329

Consider any activity (x,y). What is the maximum amount of

time that can be allotted to activity (x,y) without delaying the

on-time completion of the entire project? Activity (x,y) may start

as early as time E(x) and may finish as late as time L(y). Hence,

at most L(y) - E(x) time periods may be allotted to the performance

of activity (x,y) without delaying the on-time completion of the

entire project. Consequently, the maximum delay that can be tolerated

in activity (x,y) is L(y) - E(x) - t(x,y) > 0. The quantity

Dy re (x)a— tx. y) (3)

is called the total float of activity (x,y). Obviously, if the total

float of an activity equals zero, then any delay in the performance

of this activity will delay the on-time completion of the entire

project by an equal amount.

How much time can be allotted to the performance of activity

(x,y) without imposing any additional time constraints on the

activities that are performed after (x,y)? In this case, activity

(x,y) must be completed by time E(y). Since activity (x,y) may

begin as early as time E(x), it follows that at most E(y) - E(x)

time periods may be allotted to the performance of activity (x,y)

without imposing any additional time constraints on the activities

that follow (x,y). The quantity

E(y) ~- E(x) —.tG,y) (4)

is called the free float of activity (x,y). The free float of

activity (x,y) equals the maximum delay that can occur in the

performance of activity (x,y) without effecting any activity that

follows (x,y). From equation (1), it follows that the free float is

always nonnegative.

How much time can be allotted to the performance of activity

(x,y) without imposing any additional time constraint on any other

activity in the project? In order not to impose any additional

requirements on any other activity in the project, activity (x,y)

must begin as late as possible and be completed as easly as possible.

Thus, activity (x,y) would have to begin at time L(x) and end at

330 Project Networks

time E(y). Thus, at most E(y) - L(x). time periods can be allotted

to the performance of activity (x,y). The quantity

E(y) = LG) = t(xsy) (5)

is called the independent float of activity (x,y). The independent

float of activity (x,y) can be interpreted as the maximum delay that

can occur in the performance of activity (x,y) without imposing any

additional time restriction on any other activity in the project.

A negative value for an independent float indicates that any delay

will effect the flexibility of other activities in the project.

How are the three kinds of floats related? Since L(x) > E(x)

for all events x, it follows from statements (3)-(5) that for each

activity (x,y)

Total float > Free float > Independent float (6)

The following table gives the three floats for each activity

in the project network in Fig. 9.6.

Activity Total Float Free Float Independent Float

Gle2)) 4-0-4=0 4-0-4=0 4-0-42=0 (critical)

(1,3) i — Ohm = se Sa Oa oa —a2 5-0-3=2

(1,4) 10-0-4=6 4-0-4=0 4-0-4=0

(2/53) 7-4-1=2=2 S5=-4=1=0 5-4-]1=0

(2,5) 1-4-7 =0 i1=4-7=0 18-=%4 —7 = 0 “(Ceritical)

(2,7) 146-4-8=4 16-4-8=4 16-4-8=4

(35) bBo) en a) ETS 5) A 7 ala a yf Yas 10)

(4,6) 12-4-2=6 12-4-2+=6 12-10-2=0

(5,6) I2o- JL — 1 = 0.12.11. = 1 = 0 12 .— 11-1 = 0 (erttical)

(5,7) LO c=\ b= 30s 12) l6s— Dea Shee 6 re ta eae?

(6,7) 146-12 -4=016-12-4=0 16 - 12 - 4 = 0 (critical)

An activity is called critical if any delay in the performance

of the activity delays the on-time completion of the entire project.

In other words, a critical activity is any activity whose total

float equals zero.

9.1 Critical Path Method (CPM) 33

It is vital for the project manager to identify all critical

activities so that he can guard against any delays in these activities

as these delays would delay the on-time completion of the entire

project. Delays less than the total float may occur in noncritical

activities without delaying the on-time completion of the entire

project.

Recall that E(n) equals the length of a longest path from the

start event to the finish event of the project. If E(n) = L(n),

then every activity on a longest path from the start event to the

finish event is critical. A path consisting entirely of critical

activities is called a critical path.

For example in the project network shown in Fig. 9.6, activities

(1,2), (2,5), (5,6), and (6,7) each have total float equal to zero.

Thus, each of these activities is a critical activity. Notice that

these activities form a path from 1 to 7 whose total length is

4+7+1+4= 16. This is the longest path in the project network.

Any delays along the activities of this path will result in an equal

delay in the on-time completion of the entire project.

As a further example, consider the project network shown in

Fic. 9.8. Notice that path (1,2), (2,5) and path (173), (3,5) each

have total length equal to 8 time units. Thus, both of these paths

are critical.

Figure 9.8

Project with Multiple Critical Paths

332 Project Networks

Activities (1,4) and (4,5) are not critical as limited delays

in both of these activities can be tolerated without delaying the

completion of the entire project by time 8. How much can activity

(1,4) be delayed without delaying the completion of the project

beyond time period 8?

Up to now, we have assumed that t(x,y) is known with certainty

for all activities (x,y). Obviously, this is hardly realistic. Can

we ever be certain how much time a machine shop job will require?

Can we be certain that we shall complete a course in one term? Can

we be certain how long the landscaping will require? Can we be

certain how long a 5 1b. roast will require?

To deal with the problem of uncertainty in activity times, a

technique known as Program Evaluation Review Technique (PERT) was

developed. In essence, PERT is the same as the critical path method

(CPM) described except activity times are replaced with expected

activity times in PERT. To calculate the expected time of an activity,

PERT requires that three time estimates be made. They are

A, the optimistic activity time

B, the realistic. activity time

C, the pessimistic activity time

The expected activity time is estimated to be

A ,4 Cc pt tae (7)

In other words, a weighted average of the three time estimates

is taken, where A and C have 1/6 weights and B has weight 4/6.

The variance of each activity time is taken as

eS) | (8)

The critical path method (CPM) can now be applied to the project

network with activity times replaced by expected activity times as

computed in expression (7). Now E(x) denotes the expected earliest

time of event x, and L(x) denotes the expected latest time of event

x. Hence, E(n) denotes the expected earliest completion time of the

entire project.

9.1 Critical Path Method (CPM) 333

The actual earliest completion time of the entire project is
assumed to be a normally distributed random variable whose méan
equals E(n) and whose variance equals the sum of the variances of
the activities in the longest path from event 1 to event n in the

project network. (If there is more than one such path as in Fig.

9.8, then the largest variance of any such path is used.) This

assumption about the mean, variance and normal distribution of the

actual completion time permits us to make probability statements

about the actual completion time. See any introductory statistics

text for the details of how to make probability statements about

a normally distributed random variable.

The PERT user should bear in mind that this normal assumption

is weak if the activity times tend not to be statistically independent

of one another. Moreover, the theoretical justifications for

expressions (7) and (8) rest on some tenuous connections between

activity times and the beta distribution. Nonetheless, PERT has

received widespread industrial acceptance.

9.2 MINIMUM COST ACTIVITY TIMES

If a project must be completed at the earliest possible time, then

the amount of time that can be allotted to the performance of each

activity in the project is quite inflexible. In fact, critical

activities, as we saw in Sec. 9.1, cannot tolerate any delays. A

noncritical activity (x,y) may be delayed only so long as it finishes

no later than time L(y). Consequently, a project manager is faced

with the decision of how to schedule optimally the delays among the

noncritical activities. This section is devoted to a model developed

by Fulkerson (Ford and Fulkerson, 1962) for solving such a problem

at minimum cost.

Suppose that the time t(x,y) allotted to the performance of

activity (x,y) must satisfy the following upper and lower bound

requirements:

O < r(xsy) < t(x,y) < s(x,y) (9)

Also, suppose the total cost incurred for activity (x,y) is

334 Project Networks

K(x,y) - k(x,y)t(x,y) (10)

where K(x,y) is any constant, and k(x,y) is a positive constant. In

other words, it costs k(x,y) to decrease the performance time by one

unit. For many situations, a linear cost function (10) is fairly

realistic. For example, activity time might be decreased by adding

additional workers paid at the same rate.

How can we assign a performance time t(x,y) to each activity

(x,y) so that the project will be completed by time T (i.e., on time)

with the smallest possible total cost?

A solution to this minimum cost activity time problem consists

of selecting an optimum completion time p(x) for each event x such

that

p(l) = 0 pf) =T (11)

pO) p(z)ea riG.y)s [for alis(x;y)) (12)

Then, the performance time for each activity (x,y) is made as large

as possible, i.e., t(x,y) is set equal to

min{p(y) - p(x), s(x,y)} (13)

Hence, to solve the minimum cost activity time problem, we need

only locate optimum event numbers p(x) that satisfy conditions (11)

and (G2)

The minimum cost activity time problem is represented by the

following linear programming problem:

Minimize

Y ([KGx,y) - kGx,y) t(x,y)] (14)
(x,y)

such that

p(x) + t(x,y) < p(y) [for all (x,y)] (15)

rx sy)esat (xy) > [for alli Gy)] (16)

t(x,y) < s(x;y) [for all (x,y)] (17)

pio) PQ) 1 (18)

From the project network G = (X,A), construct the graph G' =

(X,A') as follows. Replace each activity (x,y) € A by two arcs

9.2 Minimum Cost Activity Times S35

(xy), € A' and (x,y), € A'. Also create a "return" arc (n,1) € A’.
Let a(x,y); denote the cost of sending one flow unit across arc

(xy) ,, i= 1, 2, where

a(x,y), = -s(x,y)

19
a(x,y), =v) ae

and

a(n,1) = T

Let c(x,y), denote the capacity on arc (x,y), > is=) 1 2eowhere

c(x,y), = k(x,y)

(x,y), = = (20)

e(n,1) ==

THEOREM 9.1 Apply the out-of-kilter algorithm of Sec. 4.4, to find

a minimum cost flow in graph G'. Let P, (x) denote the value of the

dual variable for vertex x at the termination of the out-of-kilter

algorithm.

Then, p(x) = ~(p, Gd) - Pp, (1)) for all x € X are optimal values

for the event completion times.

Proof: Since i K(x,y) is a constant, expression (14) can

(x,y)

be replaced by

Minimize

Lb k(x, y)t(x,y) (21)
(x,y)

Observe that expressions (15)-(18), (21) form a linear programming

problem whose decision variables are t(x,y), (x,y) € A, and p(x),

x € X. Write the dual to this linear programming problem. Let

f(x,y) be the dual variable corresponding to constraint (15) for

activity (x,y). Let h(x,y) be the dual variable corresponding

to constraint (16) for activity (x,y). Let g(x,y) be the dual

variable corresponding to constraint (17) for activity (x,y). Let

v denote the dual variable for constraint (18).

336 Project Networks

The dual linear programming problem is

Minimize

Tw -) x(x,y)h(x,y) + 2 s(x,y)g(x,y) (22)
(x,y) (x,y)

such that

0 Forx#1,n

} [£(x,y) - f(y,)] = 4 v For x=1 (23)

y -v For x =n

f(x,y) + g(x,y) - h(x,y) = k(x,y) [for all (x,y)] (24)

£(x;y) 02.0 [for<all Cxyy)) (25)

e(xsyeotO efferallndxsy)] (26)

hixyy)) >) 0 [for all (x;y) (27)

Since g(x,y) - h(x,y) = k(x,y) - f(x,y), and since r(x,y) <

s(x,y), it follows that in any optimal solution to the dual linear

programming problem

max{0, k(x,y) - f£(x,y)} (28)

max{0, f(x,y) - k(x,y)} (29)

g(x,y)

h(x,y)

Using equations (28)-(29), the dual objective function (22) becomes

Minimize

Tv +){s(x,y) max{0, k(x,y) - f£(x,y)}]
(30)

- }[r(x,y) max{0, f(x,y) - k(x,y)}]

Observe that as f(x,y) increases from 0 to k(x,y), objective

function (30) decreases at a rate of s(x,y). As f(x,y) increases

above k(x,y), objective function (30) decreases at a rate of r(x,y).

Since objective function (30) is to be minimized, increases of f(x,y)

from 0 to k(x,y) have a more beneficial effect on the objective

function than do increases of f(x,y) beyond k(x,y), since r(x,y) <

s(x,y).

Hence, we may regard activity (x,y) as an arc with the property

that the first k(x,y) flow units using this are cost s(x,y) apiece

and the remaining flow units to use this are cost r(x,y) apiece.

9.2 Minimum Cost Activity Times 337

Consequently, replace each activity (x,y) by two arcs (xy),
and (x,y) 5. Let

-

f(x,y) = f(x,y), + f(x,y). (31)

Define the costs and capacity of each arc (x,y), and (x,y), as in

equations (19) and (20).

The dual linear programming problem can now be rewritten as

Minimize

Tv =~) a(x,y) f(x,y); (32)
(x,y),

such that

O For x # 1l,n

Veet EGY)) =el Gy ed. = 4 veFor-xt= 1 (33) R ak i
y i=1,2

-v For x=n

OF< f(x,y); < c(x,y) , [for all (x,y) ,] (34)

The dual linear programming problem (32)-(34) can be transformed

into an even more recognizable form as follows: Add a "return"

arc fromn tol. Let the cost and capacity of arc (n,i) be defined

in equations (19)-(20). Expressions (31)-(34) become

Minimize

 a(x,y) f(x,y) (35)
(x,y)

such that

) [£(x,y) - £(y,x)] = 0 (for all x) (36)
y

On<et (xsy) <ce(xzy). [forsall (x;y)] (37)

where the are subscripts have been suppressed for brevity. Linear

programming problem (35)-(37) is none other than the minimum cost

flow problem found in Chap. 4, expressions (24)-(26) for graph G'.

Every flow unit must travel from vertex 1 to vertex n and return

to vertex 1 via the return arc (n,1). A flow unit incurs a cost +T

on the return arc and incurs only negative costs on the arcs it

338 Project Networks

travels from 1 to n [see equation (19)]. Since the objective function

(35) is to be minimized, it follows that a flow unit is dispatched

to make the round trip only if it incurs a total cost not exceeding

-T on its travels from vertex 1] to vertex n.

Problem (35)-(37) can be solved by applying the out-of-kilter

algorithm to graph G'. See Sec. 4.4. Upon termination, the out-of-

kilter algorithm will produce a feasible flow for graph G' that

satisfies conditions (36)-(37) above and will also produce dual

vertex values P(x) x € X that satisfy the complementary slackness

conditions

P, (y) = P, (x) < a(x,y) > f(x,y) = 0 (38)

Py) = P, (x) > a(x,y) > f(x,y) = c(x,y) (39)

for all (x,y) € A'. [See Chap. 4, conditions (33)-(34), where

1(x,y) = 0 for all (x,y).]

If each activity (x,y) were assigned its maximum possible time

s(x,y), then the total time required by the project would exceed T.

[Otherwise, the original problem is trivial since an optimum solution

is t(x,y) = s(x,y) for all (x,y).] Since a(x,y) = -s(x,y) for all

(x,y) it follows that at least some flow units travel from vertex 1

to vertex n and return along arc (n,1l) in every optimum solution

to problem (35)-(37). Thus, f(n,1) > 0, and from (38)-(39) it follows

that

p, (1) = P, (a) = a(n,l) =T (40)

Without loss of generality, we may assume that p, (1) = 0% fiethis

is not the case, subtract p, (1) from every P, (x). This will not

alter the validity of conditions (38)-(39). Hence, Pp, (™) = -T.

Since equation (36) is the negative of equation (25) in Chap. 4,

the dual vertex variable values produced by the out-of-kilter

algorithm are the negative of the dual vertex variables required by

problem (35)-(37). Hence, the optimum dual vertex values produced

by the out-of-kilter algorithm must be multiplied by -1.

9.2 Minimum Cost Activity Times 339

Clearly, any optimum flow for problem (35)-(37) corresponds to

an optimum flow for problem (22)-(27) where f(x,y) = £ (x,y), +

E(x,y).- To complete the proof, we need only show that the values

p(x) = ~([p, - p,@)] are feasible for the original problem (15)-

(18) and (21). Secondly, we must show that the values p(x) satisfy

the complementary slackness conditions existing between the original

problem (15)-(18) and (21) and its dual (22)-(27). These complemen-

tary slackness conditions are

ply) - p(x) - t(x,y) > 0 > f(x,y) = 0 (41)

r(x,y) < t(x,y) > htx,y) = (42)

ty) << s(xaye= s(z,y) = (43)

To show feasibility, note that arc (x59) 5 can never have a

capacity flow since its capacity is ~. Hence,

pyle, Ge) «S a(x,y), = -r(x,y)

Thus,

p(y) - p(x) > r(x,y)

Consequently, the values p(x) provide a feasible solution for the

original problem where

t(x,y) = min{p(y) - p(x), s(x,y)}

Next, let us verify complementary slackness condition (41).

Note from expression (13) that

p(y) - p(x) - t(x,y) > 0 > t(x,y) = s(x,y)

Thus,

a = > P,(y) + p. G&) a(x,y), 7 0

and by (38), it follows that £ (x,y), = OL, WHotiey, f(x,y) = 0, and

f(x,y) = 0, and condition (41) is satisfied.

To verify complementary slackness condition (42), note that

r(x,y) < t(x,y) > r(x,y) < p(y) - p(x)

as P, (y) Gs P, Gx) > r(x,y) = -a(x,y),

Thus, from (38), it follows that £(x,y)5 = 0. Hence,

340 Project Networks

f(x;y) = f(x,y), < k(x,y)

and from conditions (27) and (29), it follows that h(x,y) = 0.

Thus, condition (42) is verified.

Complementary slackness condition (43) follows in a similar

way. Q.E.D.

EXAMPLE. Use Theorem 1 to calculate the optimum times to assign to

each activity in the project network G shown in Fig. 9.9. The

corresponding graph G' is shown in Fig. 9.10. Observe that G' is

merely G with all its arcs repeated and, in addition, a return arc.

Times Costs

Graph G (3) 2acme Gli? <5 8 k¢@is2) = 1

5 ¥<it(iy3) echo k(1,3) = 8

ly es I< t (2,3) e<%4 k(2,3) = 6

Uy Sten) kK 54) = 7,

(2) 6 < t(3,4) < 8 k(3,4) = 5
Te= ss

Figure 9.9

Project Network G with Variable Activity Times

cost, capacity

Figure 9.10

Graph G'

9.2 Minimum Cost Activity Times

Figure 9.11

Optimum Results of the Out-of-Kilter Algorithm

341

(Flow values and vertex numbers are given.)

The results of the out-of-kilter algorithm are given in Fig.

9.11. It is left to the reader that the vertex numbers p(x) and

the flow resulting from the out-of-kilter algorithm satisfy the

complementary slackness conditions (38)-(39).

The optimum event completion times are

p(1)

p(2)

p(3) = -(P,.@)

-(p, (4) - p,(D) p(4)

-(p,(1) - pd)
-(p, (2) - p,(2))

p, (1))

The optimum activity times are

t(1,2) =

(1,3). =

t(2,3) =

t(2,4)

t(3,4) =

min{s(1,2), p(2)

min{s(1,3), p(3)

min{s(2,3), p(3)

min{s(2,4), p(4)

min{s(3,4), p(4)

0

(=55—-70)

(9; =) 0)

i wn

ll \o .

(-15 - 0) = 15

p())}. =

p(1)} =

p(2)} =

p(Z) =

p(3)} =

min{8, 5 - 0} = 5

min{10, 9 - O} = 9

minf4, 9 - 5} =4

min{8, 15 - 5}

min{8, 15 - 9}

Observe that if a cost or capacity changes (i.e., if a time or

cost in the original problem changes), the out-of-kilter algorithm

can be initiated with the previous optimum solution as a starting

342 Project Networks

solution. Often, for only small value changes,this initialization

is more efficient than initializing the problem with a zero flow.

For example, the project manager may be instructed to finish

the project two days earlier than previously planned. In this case,

he must decrease T by two units. If the previous optimum solution

from the out-of-kilter algorithm is used as the initial solution,

then the return arc will be out of kilter by two units and all other

arcs will be in kilter.

A detailed exposition of this method for finding optimum activity

times can be found in Moder and Phillips (1970), Chap. 9.

9.3 GENERALIZED PROJECT NETWORKS

Up to now, we assumed that (a) all activities preceeding an event

must be completed before any activities emanating from the event

could be performed, and (b) all activities in the project must be

performed.

For example, assumption (a) would be unnecessary when any one

of several courses are the prerequisite for another course. Also,

the arrival of any one of a number of checks would be sufficient

for you to begin your shopping activity. Similarly, the success of

any one of several grant proposals would suffice to finance a research

project.

Assumption (b) would be unnecessary in a university program

that allowed elective courses. Or, a milling job may have to undergo

one, two, or three drillings depending upon the result of quality

control tests. The results of a market survey may determine which

type of advertising policy should be pursued.

Thus, we can see that many projects cannot be realistically

described in terms of the confines of the project network defined

in Sec. 9.1. For this reason, generalized project networks that

avoid the above assumptions have been developed. A detailed descrip-

tion is available in Eisner (1962), Elmaghraby (1964), Pritsker and

Happ (1966), Pritsker and Whitehouse (1966), and Pritsker (1977).

9.3 Generalized Project Networks 343

Unlike project networks which have only one kind of vertex

called an event, generalized project networks have a variety of

vertices, all commonly called decision boxes. A decision box or db

is characterized by the conditions placed on the activities entering

it and by the condition placed on the activities emanating from it.

Three different conditions can be placed on the activities

entering a db

(a) "And input": All activities entering the db must be performed

before the db is considered completed

(b) "Inclusive input": At least one activity entering the db must

be performed before the db is considered completed

(c) "Exclusive input": Exactly one of the activities entering the

db must be performed before the db is considered completed.

Two different conditions can be placed on the activities

emanating from a db.

(a) "Deterministic output": All activities emanating from the db

are to be performed once the db has been completed.

(b) “Probabilistic output": Exactly one of the activities emanating

from the db is performed after the db has been completed.

Consequently, there are 3 x 2 = 6 different types of db's. Their

pictorial representations are given in Fig. 9.12.

Input

Output And Inclusive Exclusive

Deterministic

Probabilistic

Figure 9.12
Six Types of Decision Boxes

344 Project Networks

In a project network, a time t(x,y) was specified for each

activity (x,y). In a generalized activity network, both a time

t(x,y) and a probability p(x,y) must be specifies for each activity

(x,y). Probability p(x,y) denotes the chance that activity (x,y)

will actually be performed once db x has been reached. If db x has

a deterministic output, then p(x,y) must equal one and activity (x,y)

is certainly performed. Moreover, the sum of the probabilities of

‘the activities emanating from a probabilistic output db cannot exceed

one.

Figure 9.13

Generalized Project Network

(Activity numbers are probabilities.)

EXAMPLE 1. Consider the project whose generalized project network

is shown in Fig. 9.13. Decision box 1 has a deterministic output;

hence, both activities (1,2) and (1,3) will be performed. Thus,

p(1,2) = 1 and p(1,3) = 1. Decision box 2 has an "and" input and is

completed as soon as activity (1,2) has been performed. After db 2

has been completed, activity (2,5) will be performed with 60% prob-

ability, and activity (2,4) will be performed with 40% probability.

Only one of the two activities (2,4) and (2,5) will occur. Decision

box 4 is reached only if activity (2,4) or activity (3,4) is completed

but not if both are completed. If neither (2,4) nor (3,4) are per-

formed, then decision box 4 is never reached.

Moreover, it is possible that both activities (2,5) and (3,5)

will be performed. In this case, db 5 is never reached.

9.3 Generalized Project Networks 345

EXAMPLE 2. A magazine welcomes contributions from would-be authors.

Upon receipt of a manuscript, the magazine simultaneously submits

it to two referees. A referee may reply in one of three different

ways (reject, accept, or undecided) with respective probabilities

ORD neU ect eerandaO cal

If the magazine receives at least one rejection recommendation,

it rejects the manuscript. If the magazine receives acceptance

recommendations from both referees, then it accepts the manuscript

for publication. Otherwise, the magazine sends the manuscript to

a third referee.

The generalized project network for this operation is shown in

Fig. 9.14. The activities without names are dummy activities needed

for the proper construction of all possible situations. Notice that

all three possible db input types are present and that both possible

db output types are present in the network.

Receive 1st Ref.

3rd Ref.

Figure 9.14

Generalized Project Network for Simultaneous Referees

(R = reject, A = accept, U = undecided)

Next, let us alter the situation. Suppose, instead, that the

editor does not send the manuscript to the second referee unless

the first referee returns an acceptance or undecided verdict. For

this situation, the generalized project network is shown in Fig. 9.15.

In a project network, all events are eventually reached; it is

merely a matter of time. The same is not necessarily true for a

346 Project Networks

Receive {st : Ms st Ref.

3rd Ref.

Figure 9.15

Generalized Project Network for Sequential Referees

(R = reject, A = accept, U = undecided)

generalized project network. Since not all activities need be per-

formed, not all db's need be reached. For example, in Fig. 9.14, the

project will eventually terminate at either db 9, 10, or ll.

Also, it can happen that the project will terminate, not with

a db, but with an activity. For example, in Fig. 9.13, if both

activities (2,4) and (3,4) are performed, then the project terminates

without reaching db 4. However, this can occur only if exclusive

input db's are present in the network.

Before proceeding into further analysis of generalized activity

networks, let us note that it is often possible to simplify a network

into an equivalent network with fewer activities. Such simplifica-

tions are possible for activities that occur in series or parallel

combinations. These simplifications are shown in Fig. 9.16.

Because of the variety of possibilities for termination of a

generalized project network, the project manager understandably

wishes to know the probability that any db will in fact be reached

and that any particular activity will in fact be performed. Moreover,

it is important to know the expected time at which a db will be

reached (supposing it is reached at all). (Note that in PERT, the

actual time required to perform an activity was random, but we were

certain that the activity would sooner or later be performed. In

generalized activity networks the opposite case occurs: the time

9.3 Generalized Project Networks
347

im Simplified

elooolo
p(1,3) = 2> 2)p(2,3)

p(l.2) 1 = p(1,2) i

EC153) = 6 (152) +. €(2,3)

(b)

aa)
(4,2),

pci. 2))= 1

G2) a= max{t(1,2),,t(1,2),}

as

1

min{t(1,2),,t(1,2),}

p(1,2)

t(1,2)

Figure 9.16

Network Simplifications

required to perform an activity is assumed to be nonrandom, but the

activities that are performed are randomly selected.)

These probabilities and expected times are not easy to calcu-

late. The difficulties in these calculations arise from the presence

of probabilistic output db's. Only one of the set of activities

emanating from a probabilistic output db may occur. Hence, the

probabilities of the actually completing activities and db's following

348 Project Networks

a probabilistic output db are not statistically independent, and

consequently, we cannot use the convenient traditional probability

rules which assume statistical independence.

For example, in Fig. 9.17, both activities (2,4) and (3,4) must

be performed before db 4 is reached. There is a 0.6 x 0.5 = 0.3

probability that activity (2,4) is performed, There is a 0.4 x 0.4

= 0.16 probability that activity (3,4) is performed. Hence, we

might hastily conclude that there is a 0.3 x 0.16 probability that

db 4 is reached. However, upon closer inspection, we see that

activities (2,4) and (3,4) are not statistically independent of one

another. Both (2,4) and (3,4) cannot occur since, otherwise, both

(1,2) and (1,3) must occur which is impossible. (Recall that only

one activity emanating from a probabilistic output db may occur.)

Thus, db 4 can never be reached.

Figure 9.17

Statistical Dependence

Thus, the lack of statistical independence between activity

probabilities leaves large networks virtually intractable. Even

if the definition of the probabilistic output db were changed so

that any number of activities could emanate from it (each with its

own probability of occurrence), the same computational difficulties

would arise. For example, several activities may all be descendents

of one particular activity emanating from a probabilistic output db.

Then, the occurrence of all these descendent activities would be

9.3 Generalized Project Networks 349

statistically dependent on one another, and we would encounter the

same computationa] difficulties as shown above. a

As if the computational situation is not bad enough, many

projects generate generalized project networks that contain circuits.

For example, there might be an activity in the project that must be

repeated until it is performed correctly, such as a required course

in a university program. The presence of circuits complicates the

calculations even further. Some methods for simplifying circuits

into equivalent circuitless configurations can be found in Elmaghraby

(1964), Pritsker and Happ (1966), and Pritsker and Whitehouse (1966).

EXERCISES

1. Your company has decided to install a new, more efficient computer

system. This will involve not only the phase in of the new

system but also the phase out of the old system. All this must

be accomplished so that at all times at least one system is

operating. Moreover, canned programs must be converted to the

new system's language and personnel must be trained to run the

new system.

Construct a detailed project network to represent this

operation.

2. For the project network in Fig. 9.18

(a) Calculate the earliest event times

(b) Calculate the latest event times so that the project

finished as early as possible

(c) Find the critical path

(d) Calculate the total float of each activity

(e) Calculate the free float of each activity

(£) Calculate the independent float of each activity

3. You discover that the time given for activity (3,5) in Fig.

9.18 should have been 5. Update the results of Exercise 2 with-

out repeating all calculations. How much can the performance

time of activity (3,5) increase without altering the earliest

completion time of this project?

350 Project Networks

Figure 9.18

Exercise 9.2

(Numbers indicate activity times.)

4. In Fig. 9.19, the three numbers next to each activity are,

respectively, the activity's optimistic time, realistic time,

and pessimistic time. Use PERT to calculate

(a) The expected time for each activity

(b) The variance of each activity time

(c) The earliest expected event times

(d) The latest expected event times so that the project finishes

at the earliest expected time

(e) The critical path

(f) The variance of the earliest completion time of the entire

project

Figure 9.19

Exercise 9.4

Exercises 351

In Fig. 9.20, the numbers next to each activity indicate, respec-
tively, the minimum time required to perform the activity,” the

maximum time required to perform the activity, and the cost in

dollars incurred when the activity time is decreased by one time

period.

Calculate the optimum amount of time to be allotted to each

activity so that the entire project is completed within 25 time

periods.

Figure 9.20

Exercise 9.5

Show that the earliest event time algorithm and the latest event

time algorithm both fail when the network contain a circuit.

A drilling machine must drill two holes into an automobile part.

If both holes are of the standard size, the part is considered

finished. If the first hole drilled is below standard size,

the second hole is drilled with extreme care on a special setting

of the drilling machine. If the first hole is above standard

size, then the driller must check if any of the pistons in his

stock fit this hole. If so, the second hole is drilled at the

usual setting. If not, there is a 60% chance that the quality

control engineer will decide to discard the part; there is a

40% chance that the quality control engineer will decide to have

the second hole drilled on the special setting.

Construct a generalized project network for this operation.

352 Project Networks

8. A project consists of seven activities called A through G. The

precedence relationships between these activities are

Activity Predecessors

A None

A

None

B

AC

AD

ED Qa ymeo a w

Construct the network corresponding to this project.

9. Construct a project network in which some activity has an

independent float that has a negative value.

Interpret this value.

REFERENCES

Eisner, H., 1962. A Generalized Network Approach to the Planning

and Scheduling of a Research Project, ORSA, 10, pp. 115-125.

Elmaghraby, S., 1964. An Algebra for the Analysis of Generalized

Activity Networks, Mgmt. Sci., 10, no. 3, pp. 494-514.

Ford, L. R., and D. R. Fulkerson, 1962. Flows in Networks, Princeton

Press, Princeton, pp. 151-161.

Kelley, Jr., J. E., 1969. Critical-Path Planning and Scheduling:

Mathematical Basis, ORSA, 9, pp. 296-320.

Moder, J., and C. Phillips, 1970. Project Management with CPM. and

PERT, Van Nostrand Reinhold Company, New York, 2nd ed. (This

is an excellent comprehensive introductory treatment of project

networks.)

Pritsker, A. B., 1977. Modeling and Analysis Using Q-GERT Networks,

Halsted Press, New York.

Pritsker, A. B., and W. W. Happ, 1966. GERT: Graphical Evaluation

Review Technique; Part 1. Fundamentals, J. of Ind. Eng., 17,
pp. 267-274.

Pritsker, A. B., and G. Whitehouse, 1966. GERT: Graphical Evaluation

Review Technique, Part II, Probabilistic and Industrial Engi-

neering Applications, J. of Ind. Eng., 17, pp. 293-301.

INDEX

Activity

enitical,— 3520" 330

defined, 319-320

dummy, 321
time, 332

Algorithm

assignment, 275

Dantzig shortest path, 58-60,

79-81, 241, 258, 298
generalized, 64, 75-78

defined, 4

Dijkstra shortest path, 43-45

double-sweep, 67-72

earliest arrival flow, 139-142

earliest event time, 323-324

flow augmenting, 91-93, 97

Floyd shortest path, 52-54,
79-81, 241, 258, 298

generalized, 64, 75-78

Ford shortest path, 49-51, 96,

117
greedy, 23

K-th shortest path, 64-78
latest event time, 327-328

maximum branching 22-35

maximum cardinality matching,

185-196
maximum flow, 95-99, 109, 124
maximum weight matching, 200-

209
minimum cost flow, 105-116,

132-133, 140, 246-247,
SP 27/8

minimum weight covering, 214-

224.

mixed postman, 251-253

other shortest path, 78-81

out-of-kilter, 116-126, 335

[Algorithm]

simplex, 14

spanning tree, 19-26
Arborescence

defined, 26

FOOL sors 26.276

in salesman problem, 275
shortest path, 45

spanning, 27

weight of, 27
Arc

353

backward, 90

capacity, 88, 117
defined, 2

forward, 90

increasable, 88

length, 41

multiple, 48
reduceable, 88

undirected, 4
weight, 27

Basic solution, 14

Bottleneck, 78

Branch and bound technique, 278-
AUS)

Branching

algorithm, 29-35
defined, 27

spanning, 27
weight of, 27

Center

absolute, 297, 305-306

defined, 290, 291, 298
general, 297, 299-300

general absolute, 297, 300-301

multi-, 315-316

354

Chain

alternating, 189
augmenting, 189, 200-201

defined, 5

flow augmenting, 89-90

length of, 5

simple, 5

Chinese postman (see Postman

problem)
Christofides, N., 275

Chyatal, Va, 271

Circuit

defined, 5

Euler, 236, 238

Hamiltonian, 261

existence of, 265-267

negative weight, 51

salesman, 261

shrinking of, 29-31

simple, 5
Complementary slackness condi-

tions

defined, 12

in flow with gains algorithm,

155, 161-162
in maximum weight matching al-

gorithm, 203
in minimum cost activity times,

330
in minimum cost flow algorithm,

110-113 .

in minimum weight covering al-

gorithm, 215

in out-of-kilter algorithm,

120-121
Component

connected, 6, 15, 19-20

strongly, 265
Computational complexity

of double-sweep algorithm, 72-
73

of generalized shortest path

algorithms, 77-78

of shortest path algorithms,
62-64

Constraint

linear programming, 10, 11
Convolution, 75

Covering

defined, 181

matching generated by, 184

INDEX

[Covering]
maximum cardinality, 184

maximum weight, 184
minimum cardinality, 183

minimum weight, 183

Cramer's Rule, 14
Critical Path Method, 318-331

Cut

capacity of, 98

defined, 7

proofs using, 98, 126, 135

simple, 7
Cycle

absorbing, 156

defined, 5

even, 186

generating, 155

odd, 187

shrinking of, 195, 9205, 218

simple, 5

Dantzige Ga. 52

Decision box, 343

Degree, 15, 237

inner, 11549237

outer, 15, 237

Dijkstra, E., 43
Distance

point-arc, 294

point-vertex, 292

vertex-arc, 292

vertex-vertex, 292

Dual linear programming problem,

10, 110-111, 124, 166, 206-
207i 21. 937,

Edge, 4, 19

Edmonds, J., 26, 102, 189

Euler, L., 1, 235-236
Euler tour, 236, 238
Event, 323

algorithm for numbering, 323-
324

Finite termination
of double-sweep algorithm, 71-

72

of flow with gains algorithm,

169-172
of maximum flow algorithm, 102-

104

INDEX

[Finite termination]

of minimum cost flow algorithn,
113

of out-of-kilter algorithm,

126-127
Float

free, 329

independent, 330
total, 329

Flow

augmentation, 89-91

canonical, 169-172

defined, 87

dynamic, 128-129

earliest arrival, 137-138, 149

earliest departure, 146-150

latest arrival, 146, 150

latest departure, 146, 149

lexicographic, 150

maximum, 95

minimum cost, 105

units of, 88

with gains, 151-153

without gains, 159
BLOydsn Reel 2
Hoxd,ei. 5 49, 102), 106

Fulkerson, D., 96, 102, 106,

17. 333.

Forest, 7

Gain, gain factor, 80, 152

Gauss-Jordan elimination, 14

Generalized addition, 65

Generalized minimization, 65

Ghouila-Houri, A., 267

Graph
bipartite, 185-187
connected, 6

strongly, 265

defined, 2

even, 237
inverse, 147-148, 172-173

matrix of, 8

mixed, 249

symmetric, 237
time expanded replica, 129

undirected, 4

Hakimi, S., 301

Hamilton, Sir W.R., 261

Independence, 333, 348

Input, 343

Interior point, 291

Jewell, W. S., 160

Johnson, E., 102

Karpoeh..nLoZ

Kilter number, 122

Konigsberg bridge problem, 1,

236, 259

Lexicographic preference, 150

Linear programming, 8-14
flow with gains as, 153-155

maximum cardinality matching

as, 187-188
maximum weight matching as,

202

minimum cost activity times

as, 324

minimum cost flow as, 106-107

minimum weight covering as,

214-215
out-of-kilter problem as, 119-

120
primal, 11

Location theory, 289

Loop, 4

Matching

covering generated by, 184
defined, 181

maximum cardinality, 182

maximum weight, 182, 241
minimum cardinality, 183

minimum weight, 183

Matrix

of a graph, 8
lower triangular, 66
shortest path length, 52, 58

upper triangular, 66

Median

absolute, 298, 308-309

defined, 290, 306
general, 298, 307
general absolute, 298, 309-312

multi-, 316
weighted absolute, 298

Network
defined, 4, 88, 97

generalized project, 342

356

[Network]

project, 320

Nonnegativity conditions, 10

Objective function, 10

Output, 343

Path

critical, 331

defined, 5

flow augmenting, 89

K-th shortest, 64-78

length of, 41
optimum, 66

shortest, 41

simple, 5

Point,» 291

Postman problem, 235-258

Program evaluation review tech-

nique, 332-333

Salesman problem, 261-287
Sink, 88

multi-, 104

Slack variable, 12, 13

Source, 88

multi-, 104

Subgraph, 6

Successive improvement tech-

nique, 281-282

Traveling salesman problem

(see Salesman problem)

INDEX

Tree

alternating, 191-192

defined, 5

Hungarian, 192, 195, 206

spanning, 5, 19-26

Triangle inequality, 263

Truemper, K., 158

Variance, 333

Vertex

adjacent, 5

artificial, 30, 195-196, 205-

207, 216-218
defined, 2

empty, 216
explosion of, 118

exposed, 189

indicence, 4
init ade
inner, 191
matched, 189

outer, 191

penultimate, 57-58

saturated, 216

strongly connected subset of,

265

terminal, 5

Weight

arborescence, 27

arc, 19

branching, 27
covering, 183
matching, 182

Ni

a
a
 f
A
e

w
e

a
 i

if

7 .

about the textbook...

Optimization Algorithms for Networks and Graphs presents a unified, comprehensive

treatment of the algorithms developed for solving problems that can be formulated in a

network or graph setting. Until now, such material could only be found scattered

throughout diverse books, journal articles, and several unpublished manuscripts.

The book aims at an intuitive approach to the inner workings, interdependencies, and

applications of these algorithms, and the material is presented in a mature but introduc-

tory manner. Chapter 1 contains background information and definitions. Aside from

Chapter 1, each of the nine chapters can be read independently, except where one

algorithm uses another as a subroutine. Even in this situation, the reader can continue if

he is willing to accept the subroutine algorithm on faith. This text may be treated com-

prehensively in a one-semester course and less thoroughly, but without significant

omissions, in a one-quarter course.

Optimization Algorithms for Networks and Graphs is an ideal textbook for an advanced

undergraduate or beginning graduate -course in operations research. It is also of tremen-

dous value to individuals in engineering and transportation science whose technical

problems can be translated into graph and network problems.

about the author...

EDWARD MINIEKA is Associate Professor in the Quantitative Methods Department of the _

University of Illinois in Chicago. He received his B.S. (1965) in industrial engineering. s

from the Illinois Institute of Technology, his M.S. (1966) in industrial engineering/
operations research from Stanford University, and his M.Phil. (196%) and Ph.D. (1970)
in administrative sciences from Yale University. He has been on the faculty of Trinity
College, Dublin, Ireland; Dalhousie University, Halifax, Canada; and the University of
Louvain in Belgium. He has published articles on optimization algorithms for networks
and graphs in various professional journals,and was responsible for the English edition
of a major French work on graphs and hypergraphs. Dr. Minieka is a member of the
Operations Research Society of America.

Printed in the United States of America ISBN: 0—8247—6642—3

marcel dekker, inc./new york:

