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Preface 

The theory of random graphs originated in a series of papers published in the 

period 1959-1968 by two outstanding Hungarian mathematicians, Paul Erdés 

and Alfred Rényi. Over the forty years that have passed since then, the 

theory has developed into an independent and fast-growing branch of discrete 

mathematics, located at the intersection of graph theory, combinatorics and 

probability theory, with applications to theoretical computer science, reliabi- 

lity of transportation and communication networks, natural and social sciences 

and to discrete mathematics itself. Aside from applications, random graphs 

continue to serve as nontrivial, but simple enough models for other, more 

complex random structures, paving the road for more advanced theories. 

In the early days, the literature on the subject was scattered around se- 

veral probabilistic, combinatorial and general mathematics journals. In the 

late seventies, Béla Bollobas became the leading scientist in the field and 

contributed dozens of papers, which gradually made up a framework for his 

excellent, deep and extensive monograph Random Graphs, printed in 1985. 

The appearance of that book stimulated the research even further, shaping 

up a new theory. 

Two other ingredients that added to this trend were the ongoing series 

of international conferences on random graphs and probabilistic methods in 

combinatorics held biennially in Poznan, Poland, since 1983, and the journal, 

Random Structures and Algorithms, launched by Wiley in 1990. Both have 

established a forum for the exchange of ideas and cooperation in the theory 

of random graphs and related fields. 
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It is not accidental then that tremendous progress has been made since 

1985. Over the last decade several new, beautiful results have been proved and 

numerous fine techniques and methods have been introduced. Our goal is to 

present many of these new developments, including results on threshold func- 

tions (Ch. 1), small subgraphs (Ch. 3), generalized matchings (Ch. 4), phase 

transition (Ch. 5), limit distributions (Ch. 6), chromatic number (Ch. 7), par- 

tition and extremal properties (Ch. 8), Hamiltonian cycles in random regular 

graphs (Ch. 9), and zero-one laws (Ch. 10). We emphasize new techniques and 

tools such as the martingale, Talagrand and correlation inequalities (Ch. 2), 

the orthogonal decomposition (Ch. 6), the Regularity Lemma of Szemerédi 

(Ch. 8), the Contiguity Theorem (Ch. 9), and the analysis of variance (Ch. 9). 

In a sense, our book can be viewed as an update on Bollobas’s 1985 book. 

However, the topics selected for the book reflect the interest of its authors and 

do not pretend to exhaust the entire field. In fact, in order not to duplicate 

Bollobas’s work, we do not include subjects which are covered there, on which 

only a little progress has been made. In particular, we have no sections on 

degree sequences, long paths and cycles, automorphisms, and the diameter. 

Moreover, we restrict ourselves to the main core of the theory and focus 

on the basic models of random graphs, making no attempt to present such 

rapidly developing areas as random walks on graphs, randomized algorithms or 

complexity of Boolean functions. Likewise, we exclude random cubes, directed 

graphs and percolation. 

It has been our goal to make the book accessible to graduate students in 

mathematics and computer science. This has led to simplifications of some 

statements and proofs, which, we hope, result in better clarity of exposi- 

tion. The book may be used as a textbook for a graduate course or an 

honors course for undergraduate senior mathematics and computer science 

majors. Although we do not provide problems and exercises separately, we 

often leave to the reader to complete parts of proofs or to provide proofs of re- 

sults analogous to those proven. These instances, marked by the parenthetic 
phrase “(Exercise!)”, can easily be picked up by the instructor and turned 
into homework assignments. The prerequisites are limited to basic courses 
in graph theory or combinatorics, elementary probability and calculus. We 
believe that the book will also be used by scientists working in the broad 
area of discrete mathematics and theoretical computer science. It is both an 
introduction for newcomers and a source of the most recent developments for 
those working in the field for many years. 

We would like to thank several friends and colleagues, without whom this 
book would be a.a.s. worse than it is. Among those whose insightful remarks 
and suggestions led to improvements of earlier drafts are: Andrzej Czygrinow, 
Dwight Duffus, Ehud Friedgut, Johan Jonasson, Michat Karonski, Yoshiharu 
Kohayakawa, Michael Krivelevich, Justyna Kurkowiak, Jiri MatouSek, Bren- 
dan Nagle, Yuejian Peng, Joanna Polcyn, Vojtéch Rodl, Jozef Skokan, Joel 
Spencer, Edyta Szymariska, Michelle Wagner, and Julie White. 
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several days correcting our English. Without her tedious work the text would 

probably need subtitles to be understood by an American reader. Izolda 
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Preluminaries 

1.1 MODELS OF RANDOM GRAPHS 

The notion of a random graph originated in a paper of Erdés (1947), which 

is considered by some as the first conscious application of the probabilistic 

method. It was used there to prove the existence of a graph with a specific 

Ramsey property. 

The model introduced by Erdos is very natural and can be described as 

choosing a graph at random, with equal probabilities, from the set of all 2(2) 

graphs whose vertex set is [n] = {1,2,...,n}. In other words, it can be 
described as the probability space (2, 7, P), where 2 is the set of all graphs 

with vertex set [n], F is the family of all subsets of 2, and for every w € 2 

P(w) = 27 (). 

This probability space can also be viewed as the product of () binary 

spaces. In simple words, it is a result of (5) independent tosses of a fair coin, 
where “turning up heads” means “drawing an edge”. 

Generally speaking, a random graph is a graph constructed by a random 

procedure. In accordance with standard definitions in probability theory, this 

is formalized by representing the “random procedure” by a probability space 

(Q, F, P) and the “construction” by a function from the probability space into 

a suitable family of graphs. The distribution of a random graph is the induced 

probability distribution on the family of graphs; for many purposes this is the 

only relevant feature of the construction and we usually do not distinguish 

between different random graphs with the same distribution. Indeed, it is 

i 



2 PRELIMINARIES 

often convenient to define a random graph by specifying its distribution; that 

is, we specify a family of graphs and a probability distribution on it. Note, 

however, that it is not sufficient to formally define a random graph as a prob- 

ability distribution only, as is sometimes done in the literature; an important 

case in which this would not do is when several random graphs are considered 

at once, for example, in the two-round exposure described at the end of this 

section. 

The word “model” is used rather loosely in the theory of random graphs. 

It may refer to a specific class of random graphs, defined as above, or perhaps 

to a specific distribution. Usually, however, there is also a parameter involved 

which measures the size of the graphs and typically it tends to infinity; there 

may also be other parameters. Needless to say, the whole theory of random 

graphs is thus asymptotic in its nature. 

Two basic models 

Nowadays, among several models of random graphs, there are two basic ones, 

the binomial model and the uniform model, both originating in the simple 

model introduced by Erdés (1947). In this book we will mainly restrict our- 
selves to studying these two models. 

Given a real number p, 0 < p < 1, the binomial random graph, denoted by 

G(n,p), is defined by taking as (2) the set of all graphs on vertex set [n] and 
setting 

P(G) = p°e(1 — p)(2)-ee , 

where eg = |E(G)| stands for the number of edges of G. It can be viewed as a 
result of i} independent coin flippings, one for each pair of vertices, with the 

probability of success (i.e., drawing an edge) equal to p. For p = 1/2 this is 

the model of 1947. However, most of the random graph literature is devoted 

to cases in which p = p(n) + 0 as n > co. 
The binomial model is a special case of a reliability network. In this more 

general model, 2 is the family of all spanning subgraphs of a given graph F 
and P(G) = p°¢(1 — p)*F-*¢. By a spanning subgraph we mean a graph G 
such that V(G) = V(F) and E(G) C E(F). Thus, in a reliability network, 
the edges of a given graph (network) are independently destroyed, each with 
failure probability 1 — jp. One can generalize this model even further, by 
allowing different probabilities of failure at different edges. (Binomial models 
are sometimes called Bernoulli.) 

Taking F = K,, the complete graph on n vertices, we obtain the model 
G(n,p). Taking F = Kym, the complete bipartite graph (here either m 
is a function of n, or they are two independent parameters, typically both 
tending to infinity), we obtain the bipartite random graph G(m,n, p). Other 
popular models, not discussed here, are those in which the initial graph F 
is the hypercube or the n x n square lattice. The reliability network based 
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on the infinite square lattice belongs to percolation theory (Grimmett 1992a) 
which too, as all infinite models, is beyond the scope of this book. 

The main advantage of the binomial model G(n,p) is the independence 
of presence of edges, but the drawback is that the number of edges is not 
fixed; it varies according to a binomial distribution with expectation (5 )p. If 
one conditions on the event that |E(G(n,p))| = M, then a uniform space is 
obtained. This space can be defined directly. 

Given an integer M, 0 < M < (‘), the uniform random graph, denoted by 
G(n, M), is defined by taking as 2 the family of all graphs on the vertex set 

[n] with exactly M edges, and as P the uniform probability on 2, 

This model, closely related to enumerative combinatorics, was apparently 

considered already in 1939 in an unpublished work of Erdés and Whitney on 

the connectedness of almost all graphs with n vertices and about M = zn logn 

edges. This was the model used throughout by Erdés and Rényi in their series 

of papers between 1959 and 1968, which gave rise to the theory of random 

graphs. (For an account of the contents of these eight fundamental papers, 

see Karonski and Rucinski (1997).) 
The two basic models are in many cases asymptotically equivalent, provided 

(5)p is close to M (see Section 1.4). 
The uniform random graph G(n, M) belongs to a broad family of uniform 

random graphs defined by taking the uniform distribution over a family of 

graphs F. The pioneering model from Erdés (1947) belongs here too, with 
F being the family of all graphs on a given set of vertices. Other popular 

models of this type are random trees (not studied in this book), where F 
is the family of all n”~? trees on n labeled vertices, and random r-regular 

graphs (see Chapter 9), where F is the family of all graphs on n vertices of 
equal degree r, provided nr is even. We will use G(n,r) to denote a uniform 

random r-regular graph. It may look dangerous to use the notation G(n, p), 

G(n, M) and G(n,r) for three different things: What is G(n,1)? In practice, 

however, the correct meaning is always clear from the context. (As for the 

three models: G(n,p) with p = 1, G(n,M) with M = 1, and G(n,r) with 

r = 1, each one is rather dull.) 
Both the binomial and the uniform model have their counterparts for di- 

rected graphs. Besides these, there are interesting, natural random directed 

graphs which do not have analogues in the undirected case. Let us mention 

the k-out model, in which every vertex independently chooses k out-neighbors 

(including or excluding itself); the case of random mappings (i-e., k = 1) is 

well studied (Kolchin 1986, Aldous and Pitman 1994). Random tournaments, 

in which every edge of a complete graph assumes randomly one of the two pos- 

sible orientations, have a broad literature too (Moon 1968, Gruszka, Luczak 

and Ruciriski 1996, Andersson 1998). 
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There are still other random graphs which do not fall into either category 

(binomial or uniform). For instance, in some reliability networks the vertices 

but not the edges are destroyed. Furthermore, some random graphs result 

from more complex probabilistic experiments, and here the sky is the limit. 

Restricted random graph processes constitute an interesting class of such ex- 

periments, but we should better define the unrestricted case first. 

Random graph processes 

In general, a random graph process is a stochastic process that describes a 

random graph evolving in time. In other words, it is a family {G(t)}, of 

random graphs (defined on a common probability space) where the parameter 

t is interpreted as time; the time can be either discrete or continuous. The 

processes studied here will have a fixed vertex set (typically [n]), and they will 

start without any edges and grow monotonically by adding edges according 

to some rule but never deleting any. 

A simple and important random graph process {G(n,M)}m (sometimes 

called the random graph process) was introduced by Erdés and Rényi (1959) 

and has been well studied since then. It begins with no edges at time 0 and 

adds new edges, one at a time; each new edge is selected at random, uniformly 

among all edges not already present. Hence this random graph process is a 

Markov process, with time running through the set {0,1,..., Cie The M-th 

stage of this process can be identified with the uniform random graph G(n, M). 

The process, however, allows one to study the random graph G(n, M) as it 

evolves with M growing from 0 to (). For example, a typical result, meaning- 
ful only for random graph processes, says that, with probability approaching 

1 as n — oo, the very edge which links the last isolated vertex with another 

vertex makes the graph connected (Bollobas and Thomason (1985); see also 
Bollobas (1985)). 

A related continuous time random graph process can be defined by assign- 

ing a random variable T, to each edge e of the complete graph K,, such 

that the () variables T. are independent with a common continuous dis- 
tribution, and then defining the edge set of {G(t)}; to consist of all e with 
Te <t. Clearly, the resulting random graph {G(t)}:, at a fixed time to can 
be identified with the binomial random graph G(n, p), where p = P(Te < to). 
Furthermore, since almost surely no two values of the random variables T. co- 
incide, we may define T(;) as the random time at which the i-th edge is added. 
Then, by symmetry, G(7(;)) is the uniform random graph G(n,i), and the 
sequence {G(T(,))} for i =1,..., (5), equals the ordinary random graph pro- 
cess {G(n,M)}m defined above. Hence, this continuous time random graph 
process is a joint generalization of the binomial random graph, the uniform 
random graph and the standard discrete time random graph process. 

Clearly, different choices of the distribution of T, affect the model only 
trivially, by a change in the time variable. The continuous time evolving 
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model was introduced by Stepanov (1970) with T. exponentially distributed; 
we prefer the uniform distribution over the interval [0,1], in which case p = 
P(T. < t) =t,0<t< 1. Thus, we may unambiguously use the notation 

{G(n, t) he : 

Recently, a number of restricted random graph processes have been stud- 
ied. In general, such a process can be defined as a random graph process 
in which edges are chosen one by one uniformly from a dynamically mod- 
ified set of available pairs of vertices until this set becomes empty. More 

formally, consider a Markov chain of random edge sets Ey = 0, E),..., Es, 

where E; = {e1,...,e;} and e; is chosen uniformly from a set A; which de- 
pends only on the set Fj_,. 

In one of these restricted models, studied by Ruciriski and Wormald (1992), 
the maximum degree is bounded from above by a given integer d. Thus, the 

set A; contains only those pairs whose addition to the set E;_; does not create 

a vertex of degree d+ 1. The graph at the end of the process may not be 

d-regular, though it is shown to be so with probability approaching 1. See 

also Wormald (1999a), where, moreover, further related processes are defined 

and studied. 

Another restricted process is studied by Erdés, Suen and Winkler (1995), 

in which it is not allowed to create a triangle. In this model it is even an open 

problem to determine the length of a typical process, measured by the number 

of edges in the final graph. It is only known that with high probability the 

process takes more than c,n°/? but fewer than con°/? logn steps, where cy 
and cz are positive constants. Recently, this result was generalized to a wide 

class of forbidden subgraphs by Osthus and Taraz (2000+). 
By forbidding cycles, one obtains a process which creates a non-uniform 

random tree (Aldous 1990), while forbidding components with more than one 
cycle leads to a random graph which still is to be studied. 

Random subsets 

The two basic models of random graphs fall into the framework of random 

subsets of a set. Monotonicity, equivalence and threshold behavior of the 

probabilities of properties of random graphs can often be proved at no extra 

cost in this general setting. Other principal examples of random subsets of a 

set include random sets of integers and random hypergraphs. In the remaining 

sections of this chapter (as well as in parts of Chapter 2) we will mainly study 

this more general random set framework. For an arbitrary set X and an 

integer k, let [X]* stand for the family of all k-element subsets of X. If 

X = [nl], we will simplify this notation to [n]*. 
Let [ be a finite set, |T| = N, let 0<p<landO<M<WN. Then 

the random subset [, of I is obtained by flipping a coin, with probability 

p of success, for each element of [ to determine whether the element is to 

be included in T,; the distribution of [, is the probability distribution on 

Q = 2° given by P(F) = pl¥l(1 — p)ITI-IF! for F CT. Similarly, let Py be 
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a randomly chosen element of [[']™; that is, [yy has the uniform distribution 

P(F) = (N)~ for F € (r]™. 
Taking [ = [n]? we obtain the two basic models of random graphs defined 

above, G(n,p) and G(n, M). 
The binomial model Tp, can be generalized to T',,....p,y, where the element 

2 is included with probability p;, independently for allz = 1,...,N. 

Two-round exposure 

The two-round exposure is a successful proof technique applicable to the bi- 

nomial model. It relies on viewing I’, as a union of two independent random 

subsets [,, and [,,, where p; and p2 are such that p = p; + po — pipe. (It 

is easy to see that this union indeed is distributed as , — Exercise!) In the 

special case of random graphs we first generate a random graph G(n, p; ) and 
then, independently, another random graph G(n, po) on the same vertex set. 

By replacing double edges by single ones, we obtain G(n, p). 

An argument typically used in applications of the two-round exposure can 

be expressed in the following general form. Let P; be the probability distri- 

bution associated with T,,, and let Pr be the conditional probability in T, 
under the condition [,, = F. Then for any two families A and B of subsets 
of [ 

P(A) > > P(A) Pi(F) > Pr (A) Pi(B), (1.1) 
FEB 

where Fo minimizes the probability Pp(A) over all F € B. Thus, knowing 
that P,(B) — 1, in order to prove that also P(A) — 1, it is enough to 
show that Pr(A) — 1, for every F € B. In practice, computing the last 
probability means fixing an instance of [,, € B and throwing in new elements 
independently with probability pz (the second round of exposure). 

1.2 NOTES ON NOTATION AND MORE 

Graph theory 

All graphs are simple and undirected, unless otherwise stated. We use stan- 
dard notation for graphs. For example, V(G) is the vertex set of a graph G, 
E(G) is the edge set, vg = |V(G)| is the number of vertices and eg = |E(G)| 
is the number of edges; for typographical reasons we sometimes write the 
latter two as v(G) and e(G). In this book the size of G always means u(G) 
(and not e(G) as sometimes used by other authors). However, we also will 
call v(G) the order of G. 

Moreover, let d(G) = eg/vg be the density and m(G) = maxyccg d(H) 
the mazimum density of G. (Note that d(G) equals half the average degree 
of G, and that some authors define d(G) as the average degree, which is twice 



NOTES ON NOTATION AND MORE i 

our value.) Another measure of the density of a graph G, ranging between 0 

and 1, is defined as p(G) = BGC), (It is sometimes called the relative 
density of G.) 

Furthermore, 6(G) is the minimum degree, A(G) is the maximum degree, 
x(G) is the chromatic number, D(G) = maxycg 6(H) is the degeneracy num- 
ber, a(G) is the stability number (the size of the largest stable, or independent, 
set of vertices), and aut(G) is the number of automorphisms of G. 

We let N(v) = Ng(v) denote the neighborhood of a vertex v in G, that 
is, the set {w € V(G) : vw € E(G)}. Its size is called the degree of v and 
is denoted by deg(v) = degg(v). Similarly, if S C V(G), its neighborhood 
Ne(S) = Ures Ne(v) \ S is the set of all vertices outside S adjacent to at 
least one vertex in S. Moreover, we let Ng(v) = Ng(v) U {v} and Ng(S) = 
Ne(S) US denote the corresponding closed neighborhoods, which include v 
and S, respectively. 

Any graph without edges will be called empty, while the graph with no 

vertices (and thus no edges) will be called the null graph and denoted by @. 

Some special graphs are: the complete graph K, on n vertices, the complete 

bipartite graph K,,,, on m+n vertices, the cycle C;, with k vertices, and the 

path Py with k edges and thus k+ 1 vertices. A star is any graph K),,, n > 0. 

We let 7G denote the union of j vertex-disjoint copies of G. A matching is a 

forest consisting of isolated edges only (i.e., a graph of the form jK2, j > 0). 
If G is a graph and V C V(G), then G[V] denotes the restriction of G to 

V, defined as the graph with vertex set V and edge set E(G) N[V]?; similarly, 
if E C [V(G)]?, G[E] denotes the graph with vertex set V(G) and edge set 
E(G)M £. A subgraph of G of the type G[V] is called induced or spanned 

by V, while a subgraph of the type G[E] is called spanning. The number of 

edges in the subgraph G[V] is sometimes denoted by eg(V) = e(V), while for 
two disjoint subsets A,B C V(G), the quantity eg(A, B) counts the number 

of edges of G with one endpoint in A and the other in B. 

By a copy of a given graph G inside another graph F' we mean any, not 

necessarily induced, subgraph of F' which is isomorphic to G. If the subgraph 

happens to be induced, we call it an induced copy of G. 

Although we define our random graphs as labelled, we are mainly inter- 

ested in properties that are independent of the labelling, that is, properties 

that depend on the isomorphism type only. Such properties are called graph 

properties. (In contrast, “vertex 1 is isolated” is not a graph property; such 

properties will occasionally be studied too.) 

Probability 

We use Bi(n, p), Be(p) = Bi(1,p), Po(A) and N(p, 07) to denote the binomial, 
Bernoulli, Poisson and normal distributions, respectively. We further write 

X € L, meaning that X is a random variable with distribution CL (e.g., X € 
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N(0,1)). The distribution of a random variable X is occasionally denoted by 

LAK) 

We denote by 1[€] the indicator function of the event €, which equals 1 

if € occurs and 0 otherwise. We will often consider random variables that 

are the indicator functions of some events; such random variables will be 

called indicator or zero-one random variables. They clearly have Bernoulli 

distributions with p = P(€), where € is the corresponding event. 

The expected value and the variance of a random variable X (if they ex- 

ist) will be denoted by EX and Var X, respectively. Thus, the well-known 

Chebyshev’s inequality, which will be frequently used throughout the book, 

can be stated in the following, standard form. If Var X exists, then 

Var X P(|X-EX|>)<—,—, t>0. (1.2) 

Similarly, Markov’s inequality states that, if X > 0 a.s., then 

P(X >t) < —, t> 0. (1.3) 

We denote the covariance of two random variables X and Y by Cov(X,Y). 

Recall that the variance of a (finite) sum of random variables is given by 
Var(); Xi) = Ly Ve; Cov( 4a, Xj). 

The conditional expectation of X given an event € is denoted by E(X | €). 
We similarly write E(X | Y1,..., Y,) for the conditional expectation of X given 
some random variables Yj,...,Y,%; note that this conditional expectation is 

a function of (Y;,...,¥,) and thus itself a random variable. When using 
martingales (Section 2.4), we will more generally denote by E(X | G) the 
conditional expectation of X given a sub-o-algebra G of F. 

Quite frequently our proofs will rely on the elementary law of total probabil- 

ity which states that for any partition of the probability space Q = €;U&.... 
and any random variable X defined on 2, 

EX =) E(X | &)P(&) . 

In particular, if X = 1[€], then P(E) = >>; P(E | €;) P(E). 
If X,,X2,... are random variables and a is a constant, we say that X,, 

converges in probability to a as n —> co, and write X, + a, if P(|X, — al > 

€) — 0 for every € > 0; see, for example, Gut (1995, Chapter VI). 

One similarly defines X, > Y, where Y is another random variable, but 
then Y and every X,, have to be defined on the same probability space; this 
can be reduced to the preceding case, since Xn +. Y if and only ii Ay scY — 

Let X,,X2,... and Z be random variables. We say that X,, converges in 

distribution to Z as n + 00, and write Xp 4 Z, if P(X, < x) 3 P(Z < 2) for 
every real x that is a continuity point of P(Z < =) (Billingsley 1968, Gut 1995). 
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If X,, X2,... and Z are integer-valued then, equivalently, X, 4, Z if and only 
if P(X, = k) > P(Z =k) for every integer k. 

Note that convergence in distribution is really a property of the distribu- 
tions of the random variables and does not require the variables to be defined 
on the same probability space. Nevertheless, it is customary (and convenient) 

to talk about convergence of random variables. We also use hybrid notation 

such as Xn zat N(0,1), which means X,, 4, Z for some (and thus every) 

random variable Z € N(0, 1). 

An important special case is one in which Z is a (non-random) real con- 

stant. It is easily shown that convergence in distribution to a constant is the 

same as convergence in probability, that is, X, 4, aif and only if X, 4 a for 

aeéR. A useful fact is that if X, 4, Z and Y, — a, where a is a constant, 

then X,+Y, 4, Z+aand bee Es a. (Cramér’s theorem), see, for example, 

Gut (1995, Theorem VI.7.5). 

The definition of convergence in distribution extends to random vectors 

with values in R* for every fixed k; this is also expressed as joint convergence 

in distribution of the components of the vectors. A powerful method for 

extending results on the real random variables to the vector-valued ones is 

known as the Cramér—Wold device (Billingsley 1968, Theorem 7.7). It states 

Ree ee ae 2 eg) ie and only if 0) eX ay Yt aicler 
every sequence of real numbers f;,...,t,. For more details, as well as for the 

convergence of random variables with values in even more general spaces, see 

Billingsley (1968). 

Remark 1.1. Convergence in distribution does not, in general, imply con- 

vergence of the sequence of means or variances. However, in many specific 

applications we find that these sequences do, in fact, converge to the mean 

and variance of the limit distribution. 

Asymptotics 

We will often use the following standard notation for the asymptotic behavior 

of the relative order of magnitude of two sequences of numbers a, and bn, 

depending on a parameter n — oo. The same notation is also used in other 

situations, for example, for functions of a variable € that tends to 0. We will 

often omit the phrase “as n — oo” when there is no risk of confusion. For 

simplicity we assume b, > 0 for all sufficiently large n. 

© Gn = O(bn) as n > oo if there exist constants C and no such that 

lan| < Cbn for n > no, ie., if the sequence an/b, is bounded, except 

possibly for some small values of n for which the ratio may be undefined. 

© an = 2(bn) as n > oo if there exist constants c > 0 and no such that 

Gn > chy for n > no. If an > 0, this is equivalent to b, = OLae)t 
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© Gn = O(bn) as n — oo if there exist constants C,c > 0 and no such that 

cha < a, < Cb, for'n > no} vessifage OO, and wp Eis 

sometimes expressed by saying that a, and b, are of the same order of 

magnitude. 

1d py it ass O(0,): 

© An ~ bn if an/bp > 1. 

© Gn = 0(bn) as n — 00 if an/bn — O, i.e., if for every € > O there exists 

n- such that |a,| < eb, for n > ne. 

© Gri boride a,ifa,, ] Olanhdia,, =10(b),)5 

Since most results in this book are asymptotic, we will be frequently as- 

suming in the proofs that n is sufficiently large, sometimes without explicitly 

saying so. 

Probability asymptotics 

We say that an event €,, describing a property of a random structure depend- 

ing on a parameter n, holds asymptotically almost surely (abbreviated a.a.s.), 
if P(€,) 3 1 asn—- oo. 

Remark 1.2. In many publications on random structures the phrase “almost 

surely” or a.s. is used. However, we wish to reserve that phrase for what it 

normally means in probability theory, i.e. that the probability of an event 

equals exactly 1. It seems that the first paper where the phrase a.a.s. and 
not a.s. was used is Shamir and Upfal (1981). (Some authors use the phrase 
“almost every” or a.e. which we reject for the same reason as “almost surely”. 
Others write “with high probability”, or whp.) 

When discussing asymptotics of random variables, we avoid expressions like 
“Xn = O(1) a.a.s.” or “Xp = (1) a.a.s.”, which may be ambiguous, since 
they combine two asymptotic notions. As a substitute we give probabilistic 
versions of some of the symbols above, denoting them with a subscript p or C. 
Let X, be random variables and a, positive real numbers. We then define: 

e X, = O,(an) as n > ov if for every 6 > 0 there exist constants Cs and 
no such that P(|X,| < Csan) > 1—6 for every n > no. 

e Xn = Oc(an) as n > oo if there exists a constant C such that a.a.s. 
Xn Gay: 

e Xn = O,(an) as n > oo if for every 5 > 0 there exist constants cr > 0, 
C5 > 0 and no such that P(csan < Xn < Csan) > 1—6 for every n > no. 

e¢ Xn = Oc(an) as n + oo if there exist positive constants c and C such 
thatraca:s) caneeaXy <iCare 
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e Xn = 0p(an) as n — oo if for every € > 0, a.a.s. |Xn| < Ean. 

Note that X, = Oc(an) implies X, = O,(an), but not conversely; indeed, 
Xn = Oc(an) if and only if the constant Cs in the definition of 07 can 
be chosen independently of 6. For example, any sequence X,, of identically 
distributed random variables is O,(1), but such a sequence is Oc(1) only if 
the common distribution has support in a finite interval. 

Similarly, X, = Oc(an) implies X, = O,(an), but not conversely. On the 

other hand, X, = 0,(a,) implies X, = Oc(an). 

Remark 1.3. It is easy to verify (Exercise!) that X, = Op(an) if and only if 
for every function w(n) > 00, |Xn| < w(n)an a.a.s. Similarly, X, = op(an) if 

and only if for some function w(n) > 00, |Xn| < an/w(n) aas. 
Such notation with an unspecified sequence w(n) is common in publications 

on random structures, but we believe that the equivalent notation O, and op 
is clearer. 

It is an immediate consequence of the definitions (Exercise!) that X, = 

Op(an) if and only if X,/ap, 0); Conversely, X, +, a if and only if Xx, = 

a+o,(1) (and X, 5 Y if and only if X, = Y + 0,(1)). 

Remark 1.4. The symbol O, can also be expressed by equivalent standard 

probabilistic concepts. In fact, a sequence X, is bounded in probability, or 

tight, if X, = O,(1). Hence, X, = Op(an) if and only if the sequence X,,/an 
is bounded in probability (or tight). 

Dependency graphs 

Let {X;}iez be a family of random variables (defined on a common probability 

space). A dependency graph for {X;} is any graph L with vertex set V(L) = Z 

such that if A and B are two disjoint subsets of Z with e,(A, B) = 0, then 
the families {X;i}ice4 and {X;}ieR are mutually independent. 

Dependency graphs will be used several times in this book. They are partic- 

ularly useful when they are sparse, meaning that there is a lot of independence 

in the family {X;}. 

Example 1.5. In a standard situation, there is an underlying family of inde- 

pendent random variables {Y.}ae.4, and each X; is a function of the variables 

{Ya}aca, for some subset A; C A. Let S = {A; :i € TZ}. Then the graph 
L = L(S) with vertex set Z and edge set {ij : A; M A; # 0} is a dependency 
graph for the family {X;}icez (Exercise!). 

Example 1.6. As a special case of the preceding example, let {Hi}icz be 

given subgraphs of the complete graph Ky, and let X; be the indicator that 

H; appears as a subgraph in G(n,p), that is, X; = 1[H; C G(n,p)], 7 € TZ. 

Then L(S), with S = {E(H;) : 1 € T}, is a natural dependency graph with 

edge set {ij : E(Hi)N E(H;) 4 9} (Exercise!). 
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Remark 1.7. In particular, if Z is a dependency graph for {X;}, then two 

variables X; and Xj; are independent unless there is an edge in L between 1 
and 7. Note, however, that this is only a necessary condition, and does not 

imply that L is a dependency graph (Exercise!). 

Remark 1.8. Another context, outside the scope of this book, in which de- 

pendency graphs are used is the Lovasz Local Lemma (Erdés and Lovasz 

(1975); see also Alon and Spencer (1992)). There it actually suffices to use 
a slightly weaker definition, considering only singletons B in the definition 

above. 

Remark 1.9. In our applications, there exists a natural dependency graph, 

but it should be observed that, in general, there is no canonical choice and 

the dependency graph is not unique, even if it is required to be minimal 
(Exercise!). 

The subsubsequence principle 

It is often convenient to use the well-known subsubsequence principle, which 
states that if for every subsequence of a sequence there is a subsubsequence 
converging to a limit a, then the entire sequence must converge to the same 
limit. This holds for sequences of real numbers, vectors, random variables 
(both for convergence in probability and for convergence in distribution) and, 
in general, for sequences in any topological space. 

For example, this means that if we want to prove a limit theorem for 
G(n,p), we may without loss of generality assume that an expression such as 
n°p? converges to some c < oo (provided, of course, that the result we want 
to prove does not depend on the limit c). 

We will be using this principle throughout the book (see, e.g., the proof of 
Proposition 1.15), sometimes without explicitly mentioning it. 

And finally ... 

The base of all logarithms is e, unless specified otherwise. 

1.3 MONOTONICITY 

A family of subsets Q C 2° is called increasing if A C B and A € Q imply that 
Be Q. A family of subsets is decreasing if its complement in 2! is increasing, 
or, equivalently, if the family of the complements in I is increasing. A family 
which is either increasing or decreasing is called monotone. A family Q is 
conver if AC BC Cand A,C € O imply BE QO. We identify properties of 
subsets of I’ with the corresponding families of all subsets having the property; 
we thus use the same notation and terminology for properties. 
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In the special case in which [ = [n]?, any family Q C 2" is a family 
of graphs and, if it is closed under isomorphism, it can be identified with 

a graph property. Some examples of increasing graph properties are “being 

connected”, “containing a triangle” and “having a perfect matching”. Au- 

tomatically, the negations of all of them are decreasing. Natural decreasing 

graph properties include “having at least k isolated vertices”, “having at most 

k edges” and “being planar”. The property of “having exactly k isolated ver- 

tices” is an example of a convex but not monotone property, whereas “the 

largest component is a tree” is not even convex (Exercise!). 

It is reasonable to expect that the probability of a random set falling into 

an increasing family of sets gets larger when the (expected) size of the random 

set does. This is indeed the case. Lemma 1.10 below appeared first in Bollobas 

(1979). 

Lemma 1.10. Let QO be an increasing property of subsets of [, 0 < py < po < 

landO0<M, < M2. <WN. Then 

P(T,, € QO) < P(T,, € Q) 

and 

P(Tm, € Q) < Pm, € Q). 

Proof. To prove the first inequality we employ a simple version of the two- 

round exposure technique (see Section 1.1). Let pp = (pz —pi)/(1—pi). Then 

[’,, can be viewed as a union of two independent random subsets, 'p, and I',,. 
As then ,, CT,, and Q is increasing, the event “Ip, € Q” implies the event 

‘T,, € Q”, completing the proof of first inequality. 

For the second inequality, we construct a random subset process {(m}m, 

similar to the random graph process defined in Section 1.1, by selecting the 

elements of I one by one in random order. Clearly, [yg can be taken as the M- 

th subset in the process. Then [y, C I'm,, and, as in the first part, the event 

‘Ty, € Q” implies the event “[yy, € Q”, which completes the proof. & 

Trivially, each monotone property is convex. In a special case this can 

be, in a sense, reversed: if Q is convex, and for some M we have (ae 

then, for M’ < M, Q behaves like an increasing property, and in particular 

P(Pa € Q) < P(Um € Q) for all M’ < M" < M (Exercise!). Similarly, 

for M" > M, Q can be treated as decreasing. A probabilistic version of this 

simple observation is stated in the next lemma. 

Lemma 1.11. Let Q be a convex property of subsets of , and let M,,M, M2 

be three integer functions of N satisfying0 <M, <M <M2<N. Then 

Hence, if P(Tu, € Q) + 1asN > o, thenP(m, € Q) < Pm € Q)+0(1). 

In particular, if P(T um, € Q) +1 as N > co, i=1,2, then P(Pm € Q) 1. 
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Proof. The following simple proof was observed by Johan Jonasson (personal 

communication). It is easily seen that a convex property @ is the intersection 

of an increasing property Q’ and a decreasing property Q’’. (Exercise! — Note 

that the converse is obvious.) Thus 

> P(u € O')+P(Iu € Q”)-1 

> P([m, € O')+P(m, € Q”)-1 

> P(Tm, € Q)+ P(T mu, € Q)-1. gz 

P(C my € Q) 

1.4 ASYMPTOTIC EQUIVALENCE 

In this section we examine the asymptotic equivalence of the two models I, 

and ['y;; recall that this includes the random graphs G(n, p) and G(n, M) as 
a special case. Our goal is to establish conditions under which convergence of 

P(T', € Q) implies convergence of P([' yy € Q) to the same limit and vice versa. 

One expects such equivalence when M is near Np. Since I, is a mixture of 

I'yy’s for different M, the above implication is more straightforward in the 

direction from the uniform to the binomial model and then does not require 

any restriction on Q. The only tools we use are the elementary law of total 
probability and Chebyshev’s inequality. Most results in this section are based 
on Luczak (1990a); in the case in which the limit is one they already appeared 
in Bollobas (1979, 1985). 

Let I'(n) be a sequence of sets of size N(n) = |'(n)| — oo. (In the example 
of main concern to us, viz. random graphs, ['(n) = [n]? and thus N(n) = 
(3)-) We further consider a property Q of subsets of these sets; formally the 
property corresponds to a sequence Q(n) C 2! ”) of families of subsets of 
['(n), n = 1,2,.... Finally, p(m) is a given sequence of real numbers with 
0 < p(n) < 1, and M(n) is a sequence of integers with 0 < M(n) < N(n). 
We usually omit the argument n and write rl, N, Q, p and M; moreover, we 
letg=1-p. 

Proposition 1.12. Let Q be an arbitrary property of subsets of [ =IT(n) as 
above, p = p(n) € [0,1] and0 <a< 1. If for every sequence M = M(n) such 
that M = Np+O(V/Npa) it holds that Pm € Q) + a asn > ov, then also 
P(Tp € Q) 9a asn>o. 

Proof. Let C' be a large constant and define (for each n) 

M(C) = {M :|M — Np| < C\/Npq}. 
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Furthermore, let M, be the element M of M(C) that minimizes P([ yy € Q). 

By the law of total probability, 

Pip ue Qh erP (Dy 610 (\|0,| = 4) PUT = M4) 
M= 

z Pm, € Q)P(\Pp| = M) 
MeM(C) 

=P(lasce Q) P(|L>| € M(C)). 

By assumption, P([y, € Q) > a, and using Chebyshev’s inequality (1.2), we 

also have P(|['p| ¢ M(C)) < Var |P'p|/(C-/Npq) = 1/C*. Consequently, 

lim inf P(T, € Q) > aliminf P(|Tp| € M(C)) > a(1-C~?). 

Similarly, if M* maximizes P([ yy € Q) among M € M(C), 

P(T, € Q) < P(m- € Q)+ P(IT,| ¢ M(C)) < PP € Q)+C™%, 

and 
lim sup P(T, € Q) <a+C?. 
n— co 

The result follows by letting C' — oo. | | 

In the other direction no asymptotic equivalence can be true in such gener- 

ality. The property of containing exactly M edges serves as a simplest coun- 

terexample (Exercise!). However, the additional assumption of monotonicity 

of O suffices. 

Proposition 1.13. Let Q be a monotone property of subsets of T =[T(n) as 

above, 0< M < N and0 <a<1. Jf for every sequence p = p(n) € [0,1] 

such that p = M/N + O(.,/M(N — M)/N3) it holds that P(T, € Q) — a, 

then P(Ty € Q) 9a asn— oo. 

Proof. We consider only the case in which Q is increasing (the decreasing case 

is similar). Let C be a large constant, pp = M/N, qo = 1 — Po, and define 

p+ = min(po + Cy/pogo/N, 1) and p_ = max(po — C\/pogo/N,0). Arguing 

as in the proof of Proposition 1.12 and using Lemma 1.10, we have 

Pp, €9)> D> Pm € Q)P(ITp,| = M’) 
M'>M 

> P(Pm € 2) P(IFp,| >) 
> P(Pm € Q) — P(IFp,4| <M) (1.4) 
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and similarly 

PT, € Q)< Pm € Q)+P(\lp_| > ). (1.5) 

The cases M = 0 and M = N are trivial (Exercise!), so we may further 
assume 1 < M < N —1, and thus Npogo = M(N — M)/N > 1/2. Since |Tp_| 

has the binomial distribution with mean Np_ and variance 

Np_(1—p_) < M(1— po + Cy/pogo/N) < Npogo + CV Npo4, 

Chebyshev’s inequality (1.2) yields, with 6(C) = C~? + V2C7™!, 

pe lip) ’ Npogo + CVNpoqo < 6(C 
PUSS | Seti (IP p_| es (Npo — Np_)2 — C? Npogo 

), 

and similarly P(|[,,| <M) < 6(C). Since 

Jim, HOR se 59)) == Jim. Pip. <oOj—a 

by assumption, the inequalities (1.4) and (1.5) yield 

a —0(C) < liminf Pm € Q) < limsup P(P'y € Q) <a +4(C), 
Wades N—-+0o 

and the result follows by letting C — oo, which implies 6(C) > 0. EB 

Remark 1.14. In the above proof one can relax the monotonicity of Q and 
instead require only that in the range M' = M + O(\/M(N — M)/N) 

P(Pm € Q) < Pm € Q) + o(1) 

for M' < M, and 

P(Uy € Q) > P(Tm € Q) + 0(1) 

for M' > M. By Lemma 1.11, these conditions are satisfied whenever Q is 
convex and for some M’ with M'’— M > \/M(N—M)/N, it holds that 
limn—oo P(Py € Q) = 1 (Exercise!). 

The next result simplifies Proposition 1.13 for a = 1 by showing that for 
convex properties Q, we have a.a.s. [yy € Q provided a.a.s. Pun € Q. 

Proposition 1.15. Let Q be a convex property of subsets of T and let 0 < 
M<N. If PUuyn € Q) 91 asn- 0, then P(Py € Q) 4 1. 

Proof. We assume for simplicity that M(N — M)/N = oo, leaving the cases 
in which M or N — M is bounded to the reader (Exercise!). (Note that the 
subsubsequence principle implies that it suffices to consider these three cases 
— Exercise!) 
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Let M,; and My maximize P(Ty € Q) among M' < M and M' > M, 

respectively. Arguing as in the proof of Proposition 1.12, we then have 

PU mjn € Q) < Pm, € Q) P(E ayn| < M) + P(\Puyn| > M) 

and thus, since P(|Pyy;~| < M) > 1/2 by the central limit theorem, 

1= lim Pn € Q) < zliminf (Tm, € Q) + 5, 

which implies that limp. P(['m, € Q) = 1. Similarly, limp... Pm, € 

Q) = 1. Since M, < M < Mp, Lemma 1.11 yields P(Ty € Q) 9 1. fd 

If the convergence of P([, € Q) to 1 is reasonably fast, then the passage 

from the binomial to the uniform model can be made without any restriction 

on Q. Indeed, by the law of total probability, for any M, 

N 

P(lp ¢ 2) = P(r ¢ 2)(7 ha - 2)" 
k=0 

N f 
>P(Em ¢ 9) (sea he 

from which it easily follows (Exercise!) that, taking p = M/N, 

Pu ¢ Q) < 3VM PT myn ¢ Q). (1.6) 

This inequality (Bollobds 1985, p. 35) is a slight sharpening of a result by 

Pittel (1982), and is therefore known as Pittel’s inequality. 
The following simple corollary of Propositions 1.15 and 1.12 (Exercise!) is 

stated here for future reference. 

Corollary 1.16. Let Q be an increasing property of subsets of T, and let 

M = M(n) — oo. Assume further that 6 > 0 ts fired and 0 < (1+6)M/N <1. 

(i) If PU myn € Q) > 1, then P(Tmu € Q) > 1. 

(ii) If Puy € Q) 30, then P(Py € Q) 30. 

(ii) If PP € QO). ly then Pagan € OQ) 71: 

(iv) If Pm € Q) 0, then P(Ta_s)myjn € Q) 7 0. 6 

Remark 1.17. The results of this section indicate that in a vast majority of 

cases the properties of random graphs G(n,p) and G(n, M), where M ~ (3)p, 

are very similar to each other. Even if the equivalence statements do not 

apply directly, typically repeating a proof step by step leads to an analogous 

result for the other model. Thus, in this book we very often state and prove 

theorems only in one of the two basic models. However, one should bear in 

mind that there are exceptions to this “equivalence rule of thumb” (compare, 

e.g., Theorem 3.9 with Theorem 3.11, or Theorem 6.52 with Theorem 6.58). 
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1.5 THRESHOLDS 

The most intriguing discovery made by Erdés and Rényi in the course of 

investigating random graphs is the phenomenon of thresholds. For many 

graph properties the limiting probability that a random graph possesses them 

jumps from 0 to 1 (or vice versa) very rapidly, that is, with a rather small 

increase in the (expected) number of edges. This behavior is not just a feature 

of random graphs; as shown by Bollobds and Thomason (1987), it holds for 
monotone properties of arbitrary random subsets (Theorem 1.24 below). 

We consider in this section, as in the previous one, a property Q of random 

subsets of a sequence I'(n) of sets, with N(n) = |['(n)|. Throughout we 
assume that we exclusively deal with properties that are neither always true 

nor always false. 

For an increasing property Q, a sequence p = p(n) is called a threshold if 

Oil” op <ap. 
; Fal fies) 

tit aep > p: 
PT, Or 

Thresholds M = M (n) for the uniform model are defined analogously by 

0 if M<M, 
= (1.8) 

te WE SS Ve 
Fw €Q) >| 

There is really no need to insist that M is an integer, but we can always 

replace M by [M ]. In order to avoid trivial complications we assume M > 1, 

or at least inf M(n Je> 03 

Thresholds for decreasing families are defined as the thresholds of their 
complements. 

Throughout the book we will often refer to the first line of (1.7) or (1.8) 
as the 0-statement and to the second line as the 1-statement of the respective 
threshold result. 

Remark 1.18. Corollary 1.16 implies that p is a threshold for a monotone 
property if and only if M = pjI| is (Exercise!). Hence it does not matter 
which of the two basic models for random subsets we use. 

Remark 1.19. Strictly speaking, a threshold is not uniquely determined 
since if p is a threshold and p’ = p, then p’ is a threshold too (and simi- 
larly for M). Nevertheless, it is customary to talk about the threshold; this is 
convenient but it should be remembered that the threshold really is defined 
only within constant factors. 

Example 1.20. If f = [n] then I, and ['y are random subsets of integers. 
Let QO be the property of containing a 3-term arithmetic progression. We will 
show in Example 3.2 that p = n~?/8 is the threshold for Q in T p» and so 
M =n1/3 is the threshold for Qin Fie 
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Example 1.21. In the case in which [ = [n]? we deal with random graphs. 
We will soon learn (Theorem 3.4) that the threshold for containing a triangle 

is p = 1/n in G(n,p), and thus M = n in G(n, M). 

Remark 1.22. Suppose that we construct a random subset sequentially by 

adding random elements one by one; in other words, we consider the random 

subset process {[u}q’ as in the proof of Lemma 1.10. Define a random 

variable M as the number of elements selected when the random set first 

satisfies a given increasing property Q; M is often called the hitting time of 

QO. Then M < M if and only if [yy € Q, and thus 

P(M < M)=P(l'mu € Q). (1.9) 

Hence M is a threshold if and only if M = 0,(M) (Exercise!). 

In order to investigate thresholds further, we introduce some more notation. 

For a given increasing property Q and 0 < a < 1, we define p(a) as the number 

n (0,1) for which 

P(T'p(a) € Q) =a. 

(The existence and uniqueness of this number follow because p++ P(T, € Q) 
is a continuous, strictly increasing function; cf. Lemma 1.10. — Exercise!) We 

similarly define 

M(a) = min{M : P(['m € Q) > a} 

(in this case, of course, we should not expect to have P(T ya) € Q) = a); it 

follows that 

P(Tmjay-1 € Q) <a < P(Pm(a) € Q). (1.10) 

Since Q and [ depend on a parameter n, we also write p(a;n) and M(a;n). 

Proposition 1.23. Suppose that Q is an increasing property of subsets of 

T =[(n). Then p(n) is a threshold if and only if p(a;n) X p(n) asn > 00, for 

every a € (0,1). Similarly, M(n) is a threshold if and only if M(a;n) X M(n) 

for every a € (0,1). 

Proof. Suppose first that M is a threshold. If0 <a <1 but M (a) ¥ M, then 

there exists a subsequence s = (n,,n2,...), along which either M(a)/M +0 

or M(a)/M — oo. In the first case, by (1.8), P(Paya) € Q) > O along 

s, which contradicts (1.10). In the second case, along s, M(a) —1 > M 

and thus (1.8) yields P(Py(ay-1 € Q) > 1, which again contradicts (1.10). 

Consequently, M(a) <x <M holds for every a € (0, 1). 

Conversely, suppose that Mis nota threshold. Then there exists a sequence 

M = M(n) such that either M/M -> 0 and liminfP(0y € Q) > 0, or 

M/M — and limsupP(I'y € Q) <1. 
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In the first case, there exist a > 0 and a subsequence along which P([yy € 

Q) >a, and thus M(a)< M< M; in the second case, similarly there exist 

a < 1 and a subsequence along which M(a) > M > M. In both cases 

M(a) XM. 
The proof for p is almost identical so we omit it here. | 

Theorem 1.24. Every monotone property has a threshold. 

Proof. Without loss of generality assume that Q is increasing. Let 0 < e < 1, 

and let m be an integer such that (l—e)™ < ¢. Consider m independent copies 

POR of [',(c). Their union is T, with p'’ = 1—(1—p(e))” < mp(e), 

and hence by Lemma 1.10 

PTY) u---UP™ € Q) < PI mp € Q). 

On the other hand, since Q is increasing, if any P) € Q, then TU---UIP(™ € 
Q, and thus 

Pr) U---UP™ ¢ Q) < PIT ¢ Q for every i) = (1— P(T ye) € Q))”™ 
=({1—2)" <€: 

Consequently, 

PU nee) © OQ) > PT USN 60) >i-e 

and thus p(1 — ¢) < mp(e). Hence, if 0 < € < 1/2, 

P(e) < p(1/2) < p(1 —€) < mp(e), 

with m depending on € but not on the parameter n; this implies that p(e) x 
p(1/2) = p(1—), and Proposition 1.23 shows that, for example, p(1/2) is a 
threshold. si 

The existence of a threshold M for G(n,M) can be proved similarly; it 
follows also by Remark 1.18. Eg 

For non-monotone properties one adopts a “local” version of the definition 
of a threshold, with (1.7) being satisfied only in the vicinity of p. Observe 
that a property may have no threshold at all or it may have countably many 
thresholds (see Spencer (1991) for more on this). Convex properties have at 
most two thresholds, one of the 0-1 form and one in reverse. 

1.6 SHARP THRESHOLDS 

We end this chapter with a discussion of some recent general results on the 
widths of thresholds. We continue with the assumptions of the preceding 
section, and let d(€) = p(1—e) —p(e), 0 < e < 1/2. We should think here of € 
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as fixed and very small; then 6(€) is a measure of the width of the threshold. 

We may similarly define dyy7(€) = M(1—e€)—M(e) for the uniform model; note 

that by (1.9), d,7 also measures the concentration of the random variable M 

(Exercise!). 
Theorem 1.24 shows that for every fixed €, d(€) = O(p). More precisely, 

the proof of Theorem 1.24 implies that, for any increasing property Q and 

0<e< 1/2, 

1 < p(1 —e)/p(e) < fe~* loge"), 

and hence p(¢)/p(1/2) is bounded from above and below by universal con- 

stants for every fixed e € (0,1). (For the uniform model [y we similarly have 

1< M(1—€«)/M(e) < [e~* loge~].) 
However, certain monotone properties enjoy sharper thresholds than those 

guaranteed by Theorem 1.24. Sometimes 

PIT, € 2) 4 fi a ee 
mite ai(leny)p 

for every 7 > 0; in this case p is called a sharp threshold. Note that while 

thresholds in general are defined up to the asymptotic relation = (see Re- 

mark 1.19), we have defined sharp thresholds up to ~. The existence of a 

sharp threshold is equivalent to p(é;n)/p(1/2;n) — 1 as n — oo for every € 

with 0 << < 1, and further to d(€) = o(p) for every fixed e (Exercise!). 
In contrast, if there exists ¢ > 0 such that 6(¢) = O(p), then the threshold 

is called coarse. 

Similarly, we define sharp and coarse thresholds for Ty; it is easily seen 

by Corollary 1.16 that if p and M = p|I| are corresponding thresholds for I’, 

and Ty, and moreover M +o (to rule out some trivial counterexamples), 

then p is a sharp threshold if and only if Mis. Moreover, using the notation of 

Remark 1.22, M is a sharp threshold if and only if M/M(1/2) *, 1 (Exercise!). 

Let us now restrict attention to random graphs G(n, p) and graph proper- 

ties. 

Example 1.25. A classic example of a sharp threshold is the threshold p = 

logn/n for disappearence of isolated vertices; in this case d(€) = O(1/n), see 

Corollary 3.31. This coincides with the thresholds for connectivity and for 

the existence of a perfect matching (for n even); see Chapter 4. 

Example 1.26. The property of containing a given graph as a subgraph, 

studied in detail in Chapter 3, has a coarse threshold; see, e.g., Theorem 3.9. 

Remark 1.27. There are quite natural properties with (coarse) thresholds 

which are sharp on one side but not on the other; for example “G(n, p) contains 

a cycle”. Another example can be seen in Theorem 8.1. We abstain from 

giving a formal definition of such “semi-sharp” thresholds. 
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Friedgut and Kalai (1996) showed that 6(€) = O(1/logn) for every mono- 
tone graph property; this was improved by Bourgain and Kalai (1997) to 

O(1/log?~° n) for every 5 > 0, and it is conjectured that the absolute width 

is actually O(1/log* n), which is achieved by simple examples. (In view of 

6(€) = O(p), this result is of interest mainly for thresholds that are constant 
or tend to 0 very slowly.) 

Friedgut and Kalai (1996) gave also the following version, which implies 

the O(1/logn) estimate for arbitrary p and improves it for p > 0. 

Theorem 1.28. For every € with0 <e <1, there exists a constant C- such 
that for every monotone graph property 

;7) log(2/p(e; 
pl. ~ ein) < plein) + 0, PEMICBE/ En) (1.11) 

Fs 

In particular, it follows that a threshold p such that log1/p = o(logn) 
is always sharp. However, if p decreases as some power of n, as for most 
properties treated in this book, Theorem 1.28 yields only an O(p) estimate, 
just as the simpler and more general Theorem 1.24. (The assertion in Friedgut 
and Kalai (1996) that C. in (1.11) can be taken as C log 1/e for some universal 
constant C’ is not correct; there are counterexamples with rapidly decreasing 
€ = €(n) and p(e;n).) 

A recent result by Friedgut (1999) shows that Examples 1.25 and 1.26 are 
typical, in the sense that, roughly speaking, graph properties that depend on 
containing a large subgraph have sharp thresholds. (This is not literally true, 
as is seen by the example “a random graph contains a triangle and has at least 
log n edges” ; this property is essentially the same as “contains a triangle”, and 
has the same coarse threshold, since the probability of obtaining a triangle in 
a random graph with fewer than logn edges is very small.) More precisely, 
Friedgut’s result says that a monotone graph property with a coarse threshold 
may be approximated by the property of containing at least one of a certain 
(finite) family of small graphs as a subgraph. A precise formulation (slightly 
different from Friedgut’s) is as follows. 

Theorem 1.29. Suppose that «,n > 0 andc > 1. Then there erists kos 
k(€,n,c) such that for every monotone graph property Q and every n for 
which p(1—e;n)/p(e;n) > c, there exists some p with p(e;n) <p < p(1—e;n) 
and a family G),...,Gm of graphs with at most k vertices, such that if Q' is 
the property “contains a subgraph isomorphic to some G;”, then 

P(G(n, p) € QAQ’) <n. a 

Remark 1.30. Note that the theorem is stated for a fixed n rather than as 
an asymptotic result; this is because, in general, the approximating property 
Q’ may depend on n, unless we restrict attention to a subsequence. Indeed, 
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nothing prevents us from defining graph properties that depend on, say, the 

parity of n in some trivial explicit way. 

Moreover, the theorem claims only that Q’ is a good approximation for 

some p € [p(e;n), p(1—e; n)]; it is easy to construct (artificial) examples where 

different approximations are required for different p, and good approximations 

are absent for some choices of p. 

For a “natural” property, these complications are not to be expected, and 

it is reasonable to hope that the same Q’ works for all n and p. 

A related result (indeed, a corollary of Theorem 1.29) by Friedgut (1999) 
shows that a coarse threshold for a monotone graph property may only be of 

the type n-® for some rational a, except that again it may be necessary to 

consider subsequences. 

Theorem 1.31. Suppose that a monotone graph property has a coarse thresh- 

old p(n). Then there exists a partition of N = {1,2,...} into a finite num- 

ber of sequences N,,...,Nm and rational numbers a1,...,%m > 0 such that 

p(n) = n-* for n EN; a 

Theorems 1.29 and 1.31 and related results (Friedgut 1999, Bourgain 1999) 

can be used to show that certain properties have sharp thresholds, by showing 

that otherwise the conclusion of these results would yield a contradiction; see, 

for example, Achlioptas and Friedgut (1999) (the property of having at least 

a given chromatic number) and Friedgut and Krivelevich (2000) (Ramsey 

properties). 

We emphasize that while Theorem 1.24 holds for arbitrary monotone prop- 

erties of general random subsets, the more refined results discussed here re- 

quire some symmetry assumptions; we have for simplicity stated them for 

random graphs and graph properties, that is, for properties that are invari- 

ant under permutations of the vertices. We consider the random graphs as 

random sets of edges, so the graph properties are properties of subsets of [n]? 

that are invariant under the permutations induced by the permutations of [n]. 

The same or similar results have been shown for other cases of random sub- 

sets with certain symmetry assumptions, including random hypergraphs; see 

Friedgut and Kalai (1996), Bourgain and Kalai (1997), Friedgut (1999). The 

results depend on the type of symmetry assumed (Bourgain and Kalai 1997). 

Related results without symmetry assumptions are given by Talagrand (1994) 

and Bourgain (1999). 
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Exponentially Small 
Probabilities 

A common feature in many probabilistic arguments is the need to show that 

a random variable with large probability is not too far from its mean. One 

simple, but very useful, result of this type is Chebyshev’s inequality (1.2), 

which holds for any random variable with finite variance. In this chapter we 

give several stronger inequalities valid under more restrictive assumptions, 

which for suitable random variables X and (positive) real numbers t yield 

estimates of the probability P(X > EX +t) that decrease exponentially as 

tL oo. 

In most cases we use the method, going back at least to Bernstein (1924), 

of applying Markov’s inequality (1.3) to Ee"*. Thus, for every u > 0, 

P(X >EX +t) =P(e** > et®*+9) < e tEXO Be, (2.1) 

and similarly, for every u < 0, 

PE et eo he (9) 

Then the moment generating function (or Laplace transform) Ee"~ is esti- 

mated in some way, and an optimal or near-optimal u is chosen. 

An estimate of P(|X — EX| > t) may obviously be obtained by adding 

estimates of P(X > EX +t) and P(X < EX —t). We will often give only 

one-sided estimates below, leaving the corresponding two-sided estimates to 

the reader. 

An important special case is estimating P(X = 0), which can be done by 

taking t = EX in (2.2) (assuming EX > 0). We give several such results 

explicitly. 

25) 
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In the first section we consider random variables X that can be written as 

sums of independent terms. In the following sections we give extensions in 

various directions, covering cases with dependent summands. 

2.1 INDEPENDENT SUMMANDS 

An important case is that in which the random variable X can be expressed 

as asum )\; X; of independent random variables. Then (2.1) can be written 

P(X > EX t) S e UE X +t) Eet* = e VEX +t) [lee (2.3) 

at 

and it remains to estimate the individual factors Ee“*‘. Here we will be 

mainly interested in the case in which each X; is a random indicator variable; 

thus X; € Be(p;) where pj = P(X; = 1) = E.X;. Let A= EX = OP pi. 

The binomial case 

Consider first the case of a binomially distributed random variable X € 
Bi(n,p); this is of the type above with all p; = p. (Thus \ = np.) Then 
(2.3) yields 

P(X >A+t) Se “Ot (1—ptpe")", u>0. 
The right-hand side attains its minimum at e“ = (A + t)(1 — p)/(n — \ — t)p, 
assuming (+t <n. This yields 

O<t<n—A_ (24) P(X >EX +t) < ( Z el tae ee 
A+t n—-A-t 

for t > n — \ the probability is 0. This bound is implicit in Chernoff (1952) 
and is often called the Chernoff bound. (It appears explicitly in Okamoto 
(1958).) 

For applications, it is usually convenient to replace the right-hand side of 
(2.4) by a larger but simpler bound. Two such consequences of (2.4) are 
presented in the next theorem, together with their lower tail counterparts. 
Any of these bounds or their numerous consequences contained in Corollaries 
2.2 — 2.4 will be referred to as to Chernoff’s inequality. 

Theorem 2.1. If X € Bi(n,p) and \ = np, then, with p(x) = (1+ 2) log(1+ 
&)—2, x > —1, (and y(z) = 00 for'x < 1) 

P(X >EX +t)< exp(—o(+)) < en (-syS7): cen) 

P(X <EX -2) < exp(-do(+)) <exp(-4), t>0. (26) 
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Proof. We can rewrite (2.4) as 

P(X > EX +t) <exp(—r(5) - (rn ~re(—5)), ee eee 

Replacing X by n — X, or by a similar argument using (2.2), we obtain also 

P(X <EX -t) <exp(-o(+) - (r~»o(—,)), ore 

Since y(z) > 0 for every x, we immediately obtain the first inequalities in (2.5) 
and (2.6). (These inequalities are trivial for t > n— and t > A, respectively.) 

Since y(0) = 0 and y'(x) = log(1 + x) < z, we have y(z) > 27/2 for 
—1< 2x <0; hence the second inequality in (2.6) follows. 

Similarly, y(0) = y’(0) = 0 and 

4 1 ] og a 

oS 1+2 = (1.4+-24/3)3 © Greer : 

whence v(x) > x?/(2(1+2/3)). Thus the second inequality in (2.5) follows. 
| 

Note that the exponents in the estimates in (2.5) are O(t?) for small t, say 

t < X, but for larger t only O(tlogt) (the first estimate) and O(t) (the second 

estimate). 
For small ratio t/X, the exponent in (2.5) is almost t?/2A. The follow- 

ing corollary is sometimes convenient (cf. Alon and Spencer (1992, Theorem 

A.11)). 

Corollary 2.2. If X € Bi(n,p) and \ = np, then 

Lot vints - +o). (2.7) P(X > EX +t) <exp( 

Proof. The bound follows from (2.5), since (A + t/3)7! > (A—t/3)/”. 

Another immediate corollary is the following two-sided estimate. 

Corollary 2.3. If X € Bi(n,p) and e > 0, then 

P(X —EX|>eEX) < 2exp(-y(e)EX), (2.8) 

where y(e) = (1 +e) log(1 +e) —e. In particular, if € < 3/2, then 

2 

P(|X —EX|>eEX) < 2exp(-[ EX). (2.9) 
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Proof. The first estimate is immediate by Theorem 2.1, since y(—e) > ye) 
(Exercise!). The second one follows because y(e) > €?/[2(1+e/3)] > e?/3. Ef 

For larger deviations, we state another handy version of (2.5). Note that 

X does not appear explicitly in the estimate. 

Corollary 2.4. If X € Bi(n,p), X= np and c> 1, then 

P(X > 2x) < exp(—c’'z), peek: (2.10) 

where c' = logc—1+1/c>0. In particular, 

P(X > 2) < exp(—z), cee, (2.11) 

Proof. Apply (2.5) with t = z — \ and note that Ay(x/X — 1) = ry(z/d), 

where #(y) = logy — 1+ 1/y is increasing for y > 1. Finally, note that 

wl) = Le E 

Remark 2.5. Another simple bound is, still assuming X € Bi(n,p), 

2 
P(X >EX +?) < exp(-—}, t > 0: (2.12) 

the same bound holds for P(X < EX —t) by symmetry. For p = 1/2 these 

bounds are better than (2.5) and (2.6), but they are worse for small p (note 

that the denominator of the exponent is n, not A). Inequality (2.12) can be 
derived from (2.4) (Exercise!). It is also a special case of Azuma’s inequality 
in the version given in Remark 2.28 below (Exercise!). 

Remark 2.6. As a limiting case, obtained by taking p = \/n for any fixed 
A > 0 and letting n > oo, (2.5)—(2.12) hold for a Poisson distributed random 
variable X € Po(A) too. 

Remark 2.7. The estimate (2.5) would not hold without the term t/3 in the 
denominator; this can be seen by considering a limiting Poisson distribution 
as in Remark 2.6, in which case P(X > EX +t) = exp(—O(tlog t)) ast 4 00 
(Exercise!). 

The general case 

Now we return to the general case in which X; € Be(p;) with (possibly) 
different p;. Let Y € Bi(n, p) with p = A/n = >> pi/n. It is easily seen, taking 
the logarithm and using Jensen’s inequality, that for every real u, 

Eet* = I[a + pie" —1)) < (1+ p(e* — 1))” = Ee”. 

Consequently, every bound for P(Y — EY > t) derived from (2.1) applies to 
X too; since \ = EX = EY, the following theorem holds. 
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Theorem 2.8. If X; € Belp;), 1 = 1,...,, are-independent and X = 

> 1 Xa, then (2.5)-(2.12) hold, withX =EX. a 

Remark 2.9. By the proof above, also (2.4) holds under the conditions of 

Theorem 2.8, and yields sharper bounds than (2.5) and (2.6). Further similar 

bounds under the same conditions and, even more generally, for any indepen- 

dent random variables X; such that 0 < X; < 1, are given, for example, by 

Bennett (1962), Hoeffding (1963) and Alon and Spencer (1992, Appendix A). 

We mention the following which use the variance of X rather than the mean. 

Let o? = Var X = )7j pi(1 — pi), and let p(x) = (14+ 2) log(1 +z) — 2 as 

above. Then (Bennett 1962, Hoeffding 1963), 

P(X >EX +t) < exp(—o’ y(t/o’)), t > 0; (233) 

2 i 
P(X >EX + t) < on(-aay5)° t > 0; (2.14) 

and, by symmetry, 

P(X <EX —t) < exp(-o’y(t/o’)), ber): (2.15) 
2 

P(X <EX-1t)< eal t>0. (2.16) 

The bound (2.14) is due to Bernstein, while the sharper (2.13) is due to 

Bennett (1962). Note that these are sharper than (2.5) because o? < A, but 

for small p;, the difference is small and often negligible. For fairly small ¢, 

these bounds are quite sharp and not far from what might be hoped for, based 

on the asymptotics given by the central limit theorem (for t x a). However, 

for large t, they can be substantially improved. 

The hypergeometric distribution 

Let m,n and N be positive integers with max(m,n) < N. The hypergeometric 

distribution with parameters N, n and m is the distribution of the random 

variable X defined by taking a set I with |[] = N and a subset I’ CT with 

\[’| = m, and letting X = |[, NI” |, where T’,, is a random subset of P with n 

elements as in Chapter 1. (E.g., we can take [ = [N] and I’ = [m].) 

In other words, we draw n elements of [ without replacement, and count the 

number of them that belong to I’. Note that drawing with replacement would 

yield a binomial random variable; it seems reasonable that drawing without 

replacement tends to produce smaller random fluctuations, and indeed the 

bounds obtained above still hold (Hoeffding 1963). 

Theorem 2.10. Let X have the hypergeometric distribution with parameters 

N,n and m. Then (2.5)-(2.12) hold, with =EX =mn/N. 

Proof. Let Y € Bi(n,m/N). It is not difficult to show that eet Rabe) 

(Hoeffding 1963) for any real u, which yields (2.5) and (2.6), and thus (2.7)— 

(2.12) too, by the argument above (Exercise!). 
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Alternatively, as a special case of a result by Vatutin and Mikhailov (1982), 

X has the same distribution as a certain sum of n independent indicator ran- 

dom variables. (The proof is algebraic, and based on showing that the proba- 

bility generating function has only real roots; there is no (known) probabilistic 

interpretation of these random indicators, which, in general, have irrational 

expectations.) Consequently we can apply Theorem 2.8. a 

Remark 2.11. The second proof shows that, in fact, all bounds (2.4)-(2.16) 

hold with A= EX = mn/N and o? = Var X = nm(N—n)(N—m)/N?(N-1). 

(The first proof yields all the bounds involving \, but it only gives weaker 
versions of (2.13)-(2.16) with o? = VarY > Var X.) 

2.2. BINOMIAL RANDOM SUBSETS 

The FKG inequality 

We begin by quoting a celebrated correlation inequality known as the FKG 
inequality (Fortuin, Kasteleyn and Ginibre 1971). (For a simple proof, see 
Grimmett and Stirzaker (1992, Problem 3.11.18(b)); for a powerful combi- 
natorial generalization, see Ahlswede and Daykin (1978) or Bollobds (1986).) 
Consider a binomial random subset Tp as in Chapter 1, or more generally 
[,,,...ev> Which is defined by including the element i with probability p;, 
independently of all other elements, i = 1,...,N (assuming [ = [N] for no- 
tational convenience). We say that a function f : 2° > R is tncreasing if for 
ACB, f(A) < f(B), and decreasing if f(A) > f(B). 

Theorem 2.12. If the random variables X, and Xz are two increasing or 
two decreasing functions ofp, py, then 

E(X1X2) > E(X,) E(X2). 

In particular, if Q; and Q» are two increasing or two decreasing families of 
subsets of T, then 

kane ee iS Qi N Q>) = ACh ee = Q1) P(Tp, 

of I’ and for each A € S let I4 = 1[A C Tp,,...pw]- Note that every I, is 

Corollary 2.13. For X = Dowres I4 of the form just described, 
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Proof. By Theorem 2.12 and induction we immediately obtain 

P(X =0)> ][(Q-Ed,). 
AES 

Now, using the inequalities 1 — 2 > e~*/('~*) and EI, < max p; we conclude 
that 

EX KX 
IP(cXe= 0) ex =i > OX) 4 
( __ xp { mee pO? 4 ef ~ 

We will soon give some similar exponential upper bounds on P(X = 0). First, 

however, we show a more general large deviation result. 

Upper bounds for lower tails 

We continue to study random variables of the form X = }°4¢5 a as in the 
preceding subsection. For the lower tail of the distribution of X, the following 

analogue of Theorem 2.1 holds (Janson 1990b). 

Theorem 2.14. Let X = YoycsIa as above, and let X =EX = >), EI¢ 

and A= Yo anpyo E(lalp). Then, with p(x) = (1+ 2) log(1 +z) — 2, for 

O<t<EX, 

Bienen (Net (5) 
Remark 2.15. Note that the definition of A includes the diagonal terms 

with A = B. It is often convenient to treat them separately, and we define 

A=} SOS) E(lals). 
A¢B, ANB#O 

(The factor 4 reflects the fact that A is the sum of E(I4Jz) over all unordered 

pairs {A, B} € [S]}? with ANB #0.) Thus A=2+4 2A. 

Remark 2.16. Clearly, A > 0 and thus A > 4, with equality if and only if 

the sets A are disjoint and thus the random indicators I, are independent. 

In the independent case, the bounds in Theorem 2.14 are the same as (2.6); 

Theorem 2.14 is thus an extension of (the lower tail part of) Theorem 2.1. 

More importantly, in a weakly dependent case with, say, A = o(\) and thus 

A ~ 4, we get almost the same bounds as in the independent case. 

Remark 2.17. There can be no corresponding general exponential bound 

for the upper tail probabilities P(X > EX +t), as is seen by the following 

example (for another counterexample, see Remark 2.50). Let A be an integer, 

let = 1052.0, 2A7} with po t= AR*,pi7= 1 EA acatorale< te rand 
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pi =A71 = dr74 +47? for A? +1 <2 <2)7, and: consider the family’S of the 
subsets A; = {0,i} for 1 <i < A? and A; = {i} for A427 +1 <1 < 2\?. Then 
EX = and A < 1. Nevertheless, for any c < co and e > 0, if X is large 

enough, 

P(X tach) aa ee eee 

Some partial results for the upper tail are given in Section 2.6. 

Proof of Theorem 2.14. Let (s) = E(e~°*), s > 0. We will show first that 

~(log U(s)\’ > Ne "4A, gS 0; (2.17) 

which implies 

s nis 2. 7 

— log U(s) > if re “4 du = =(1 eye oy (2.18) 
0 

In order to do this, we represent —W’(s) in the form 

—W'(s) = E(Xe**) = 5 E(Ine7**) (2.19) 
A 

and for every A € S we split X = Y4 + Z,4, where Y4 = BnA¥O Ig. Then, 
by the FKG inequality (applied toT,,,», conditioned of I4 = 1, which isa 
random subset of the same type) and by the independence of Z4 and I, we 
get, setting pa = E(I,), 

E(I4e~**) = pa E(e~**4e-924|I4 = 1) > pa E(e~**4|I4 = 1) E(e~*74) 

> paE(e~**4|I4 = 1)¥(s). 
(2.20) 

Recall that A = >), pa. From (2.19) and (2.20), by applying Jensen’s in- 
equality twice, first to the conditional expectation and then to the sum, we 
obtain 

A 
Y(s) 

1 
> = FADS 

A 

1 
> Aexp {- 5 PA E(sYa|Ia = o} 

—(log ¥(s))! = > >) paE(e-*¥4|14 = 1) 
A 

pa exp{—E(sYa|I4 = 1)} 

A 

Ss — 

Aexp ) = 5 Devato} = hem, 
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We have shown (2.17) and thus (2.18). Now, by Markov’s inequality (2.2) 

together with (2.18), 

2 
log P(X < A= 't) Slop Ele*) + s(\— t)'< = 

The right-hand side is minimized by choosing s = — log(1 — t/A)A/A, which 

yields the first bound (for t = A, let s — oo); the second follows because 

(x) > x? /2 for x < 0 as shown in the proof of Theorem 2.1. | 

(lis emtAtihaes(\=1)) 

The probability of nonexistence 

Taking t = EX in Theorem 2.14, we obtain an estimate for the probability 

of no set in S occuring, which we state separately as part of the following 

theorem (Janson, Luczak and Rucinski 1990). 

Theorem 2.18. With X = Siycs la, A=EX and A as above, 

(i) P(X =0) <exp(-A+A); 

a ee aay “ ( SF naeEtay} | 
Remark 2.19. Both parts are valid for any \ and A, but (i) is uninteresting 
unless A < X. In fact, (i) gives the better bound when A < A/2, while (ii) is 
better for larger A (Exercise!). 

Proof. Taking t = in Theorem 2.14, or directly letting s > oo in (2.18) and 

observing that lim,_,.. V(s) = P(X = 0), we immediately obtain (ii). 
For (i), we obtain from the proof of Theorem 2.14, with Y4 = Ya — Ia, 

—log P(X =0)=- [oe 4189) ds > fe Ditna E(e~**4 | I, = 1)ds 
A 

= Drak(y | i =i 

When I, = 1, we find 1/Y4 = 1/(1+Y4) > 1-4Y4 (since Y4 is an integer), 

and thus 

—log P(X =0) > >) pa E(1— $Y4 | Ia = 1) 
A 

= So (pa — $E(MAY4)) =A-A. ~ 
A 

Remark 2.20. Boppana and Spencer (1989) gave another proof, resembling 

the proof of the Lovdsz Local Lemma, of a version of Theorem 2.18(i), namely, 

P(X = 0) < exp{A/(1—¢)} ][Q — Ela) < exp{-A + A/(1—e)}, (2.21) 
A 
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where € = maxp,. See also Spencer (1990) for another proof of Theo- 

rem 2.18(ii), but with an extra factor 5 in the exponent. Finally, note that 

a slightly weaker version of Theorem 2.18(i) with the bound exp(—A + 24) 

follows directly from (ii), because A? > (A — 2A)(A + 2A). 

Remark 2.21. Although the bound in Theorem 2.18 and the first bound in 

(2.21) are quite close when € = max pg is small, neither of them dominates 

the other. It is intriguing to note that the conceivable common improvement 

exp{A}]],(1—E/J,) fails to be an upper bound for P(X = 0); this is seen by 
the simple example where X = J, + Iz with I, = Iz € Be(p), for which A= p 

and P(X = 0) =1-—p>e?(1—>p)?, see Janson (1998) for further discussion. 

The quantity A is a measure of the pairwise dependence between the [,4’s 

(cf. Remark 2.16). If A = o(A), then the exponents in Theorem 2.18 are 
—EX(1+ 0(1)), matching asymptotically the lower bound Corollary 2.13, 
provided further max p; > 0. 

The development of the exponential bounds in this section were stimulated 

by the application in which X counts copies of a given graph in the random 

graph G(n, p). This will be presented in detail in Chapter 3 (cf. Theorem 3.9). 

For a generalization of Theorem 2.14 see Roos (1996). 

2.3 SUEN’S INEQUALITY 

A drawback of the inequalities in Section 2.2 is that they apply only to the sum 

of random indicator variables with a very special structure. For example, they 
apply, as stated above, to the number of copies of a given graph in G(n, p), 
but they do not apply to the number of induced copies. 

An inequality much more general than Theorem 2.18(i), and only slightly 
weaker, was given by Suen (1990). We do not give Suen’s original inequality 
here, but rather the following related results, proved by Suen’s method. For 
further similar results, see Janson (1998) and Spencer (1998). 

The Suen inequalities use the concept of a dependency graph, defined in 
Section 1.2. Although formally valid for the sum of any family of random 
indicator variables, the inequalities are useful in cases in which there exists 
a sparse dependency graph. (No assumption is made on the type of the 
dependencies.) 

Theorem 2.22. Let I; € Be(p;), i € TZ, be a finite family of Bernoulli random 
variables having a dependency graph L. Let X = Didi andA=EX = >>. my. 
Moreover, write i ~ j if ij € E(L), and let A = 1 Ding EUil;) and 
6 = max; )>,.;Pk- Then 

(i) P(X =0)< exp{—A + Ae?*}; 

(Toe =.) < exp {-min(F3,4)}, & 



SUEN’S INEQUALITY 315) 

Theorem 2.23. Let I; € Be(p;), i € T, be a finite family of Bernoulli random 

variables having a dependency graph L. Let X = andy ond x = Xan 

let also A and 6 be as in Theorem 2.22. Moreover, let A = \+2A = 

A+ Ving BU). If Ot <A, then 

P(X <\-t)< exp(- min( =)): (2.22) 

For simplicity, we give only the proof of Theorem 2.23 here; the proof of 

Theorem 2.22 is similar (Janson 1998). Note that taking ¢ = \ in Theo- 

rem 2.23 we obtain an inequality which is only slightly weaker than Theo- 

rem 2.22(ii). 

Remark 2.24. We have given results similar to Theorems 2.14 and 2.18, 

but with somewhat worse constants, and extra terms (typically negligible) 

involving 6. It is not known whether the terms with 6 really are needed; in 

fact, it is conceivable that the estimates in Section 2.2 hold also under the 

weaker assumptions in this section. 

Proof of Theorem 2.23. Define, for real s, the random function 

F(s) es ese Ss 

and, for each subset A CZ, X4 = Die, 1; and Fa(s) = exp(s(EX,4 — Xa)). 

We differentiate and obtain 

F'(s) = \F(s) — fino .F(s (2.23) 

For each index 7 € 7, let Ni = {i}U{j €Z:i~ j} and U; =Z\ N;; then 
X = Xn, + Xu, and 

Teste 9,6 4 (Tp Spe aT, Sp) (1 = Oe ere.  (2.24) 

Now assume that s > 0. Then, for any set A C Z, 

Om [oes 4 OX 4 

and thus, considering the cases J; = 0 and J; = 1 separately, 

(I; — pi)(1—e7°*4) < IisXa. (2.25) 

Choosing A = Nj, (2.23), (2.24) and (2.25) imply 

F'(s) < \F(s) es Sy ea ee ean \ee a Ds 21; Ay. 6 

a 

= =e Sie — pie 8*4i + e% >i sI;Xn,e oo. 

i i 
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Since, by the definition of a dependency graph, J; and Xy, are independent, 

E((1; — pie **¥) = 0. Moreover, Xu, > Xu,nu,, which is independent of 
LEE and 

A-EXu.nv;= >> pes > pe+ > me < 26. 
k¢U:NU; kev knj 

Hence, 

Ee ee oc RE o" accra. pe HE aA) 
ene i JEN; 

= se S> > B(i1j) Bet Xenns 
a jEN;: 

< se*”* S ss E(1I,1;) E Fu;nu;(s), s>0. 
at gEN; 

(2.26) 

We claim that 

EE(s) <e2Se a 2 > 0: (2.27) 
In fact, using induction over |Z|, the number of random indicator variables, 
we may assume that the corresponding inequality holds for E F'4(s) for every 
proper subset A of Z (and all s > 0). Since the corresponding values A.4 and 
6a for a subset A satisfy A, < A and 5,4 < 6, it then follows from (2.26) that 

2X 268 a= 2x 25s 

E F'(s) 2 seria > E(I;I;)e?° Neg se295Ae2s Re 

t jENi 

cA (eteB"), 430 
y ds = 

Hence (2.27) follows by integration, since it obviously holds for s = 0. 
Markov’s inequality (2.2) and (2.27) yield, for any s > 0, 

P(X <A-t) <P(F(s) >e%) <e"* EF(s) <e7*t 38S" (9. 9) 

We choose here s = min(t/2A, 1/36); then e?5* < e?/3 < 2, and thus 

457 Aes SA st /2. 

Consequently, (2.28) yields 

P(X) ES tee 

which is (2.22). E 
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2.4 MARTINGALES 

Martingales were first applied to random graphs by Shamir and Spencer 

(1987), followed by the spectacular success of Bollobds’s (1988a) solution of 

the chromatic number problem. (These results are presented in Chapter 7.) 

We begin by recalling the definition of a martingale. Note, however, that 

for applications to random subsets, and to random graphs in particular, one 

usually uses Corollary 2.27 below, where martingales are not explicitly men- 

tioned. 

Given a probability space (2,*,P) and an increasing sequence of sub-o- 

fields Fo = {0,2} C Fy C--- C F, = F, a sequence of random variables 
Xo, X1,.--;Xn (with finite expectations) is called a martingale if for each 

k=0,...,n—1, E(Xx41 | Fx) = Xx. In this case (with a finite sequence), 

every martingale is obtained from a random variable X by taking X;, = E(X | 

wr) koe Oee.,2. Chen An = EX and_X,, = Xx. Also, we always have 

E(Xp41) = E(X;). 
In combinatorial applications, often 2) is a finite space and F is the family 

of all subsets; each F; then corresponds to a partition P, of 2, with coarser 

partitions for smaller k. If P is the uniform probability measure on (2, then 

a sequence (X;) is a martingale if and only if each X, is a function 2 — R 

that is constant on the blocks of the partition P,, with the value on each 

block being the average value of X, on that block. If P is another probability 

measure, then this still holds if we use suitably weighted averages. 

Azuma’s inequality 

The following result appears in Azuma (1967) and is often called Azuma’s 

inequality, although it also appears in Hoeffding (1963). 

Theorem 2.25. If (Xx)? is a martingale with X, = X and Xo = EX, and 

there exist constants cz, > 0 such that 

[Xz — Xp-i| < ce 

for each k <n, then, for every t > 0, 

t?2 

1k 
t? 

P(X <EX-t)< exp(-ssrg): (2.30) 
1 “k 

Proof. Set Y, = X~ — Xx-1 and S; = Se Y; = X; — Xo. For any u > 0, by 

Markov’s inequality (2.1), we have 

P(X -EX >t) =P(S, >t) <e-“ E(e""”). (2.31) 
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Because S,_; is a F,_,-measurable function we also have 

Bigwes) Rese | Fale ena lec tal a. 

Now we need the following fact: If a random variable Y satisfies EY = 0 
and —a< Y <a for some a > 0, then, for any u, 

Rie ye eu (2.32) 

To prove (2.32), note that by the convexity of e%, 

euY < a : ¥ pua a = Y cue. 

a a 

Hence, 

2a E(e%” ) < Leue 4 le-va & eu a a 
Nir 

where the last inequality follows by comparing the Taylor expansions (see 

Alon and Spencer (1992, Lemma A.6) for another proof). 

Coming back to the proof of Theorem 2.25, we conclude that E(et™> | 

ent eat ev ¢n/2 and thus 

E(e%) < eu cs /2 E(e“9"-1). 

Iterating this inequality n times, we find E(e*S") < e“ ©°t/2, and thus by 
(2.31) 

PX Xt) e~uteu” D cf/2. 

substituting u = t/ >> c? we find (2.29). 
The inequality (2.30) follows by symmetry. fee 

Remark 2.26. After a minor modification, (2.29) extends to supermartin- 
gales and (2.30) to submartingales; see Wormald (1999a). 

Combinatorial setting 

In the applications to random graphs, we will use the following consequence 
of Theorem 2.25. Note that the notion of a martingale has disappeared from 
the statement. In most applications, one simply has cx, = 1. (We tacitly 
assume that the function f is measurable; in the case of finite sets, this holds 
trivially.) 

Corollary 2.27. Let Z,,...,Zn be independent random variables, with Z, 
taking values in a set Ax. Assume that a function f : Ay x Ap X <-> x An >R 
satisfies the following Lipschitz condition for some numbers CES 
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(L) If two vectors z,z' € We A; differ only in the kth coordinate, then 

lf(z) — f(z')| < ex. 

Then, the random variable X = f(Z,,...,Zn) satisfies, for any t > 0, 

t2 

( 20 2) 
t? 

Pee EX Sy) ep ey (2.34) (aErq) 
Proof. Let us define F; to be the o-field generated by Z,,..., Z, and consider 

the corresponding martingale defined by X, = E(f(Z21,...,Zn) | Fx), k = 
0,...,N. The assumption about f implies that X, and X,_, differ by at 

most c, (Exercise!). The corollary now follows from Theorem 2.25. B 

Remark 2.28. A more careful proof along the same lines shows that (2.33) 

and (2.34) hold with exp{—2t?/ }>/’ c2} on the right-hand side, that is, the 
exponents in the estimates may be multiplied by a factor 4 (McDiarmid 1989). 

Returning to the random set Tp, one typically defines the random variables 

Zz via the random indicators I, = 1[y € Ty], y € I. Given a partition 

A,,...,An of [, each Z, is then taken as the random vector (1, : 7 € Ax) € 

{0,1}4*, and for a given function f : 2' — R, the Lipschitz condition (L) 
in Corollary 2.27 is equivalent to saying that for any two subsets A,B CT, 

| f(A) — f(B)| < cx whenever the symmetric difference of the sets A and B is 

contained in Ax. (We identify the set of subsets 2 and the set of sequences 

{0,1}".) 
When IL = [n]? and so T, = G(n,p), there are two common choices of the 

partition [n]? = A,;U---UAn. The vertex exposure martingale (used by Shamir 

and Spencer (1987)) corresponds to the choice N = n and Ax = [k]? \[k— 1% 

The edge exposure martingale (used by Bollobds (1988a)) is one in which 

N = (3) and |A,| = 1 for each k. Note that vertex exposure requires a 

stronger condition on the function f than edge exposure, but it also gives a 

stronger result when applicable. (With cy, = 1, edge exposure is applicable 

provided the random variable X changes by at most 1 if a single edge is added 

or deleted, while vertex exposure is applicable provided the random variable 

changes by at most 1 if any number of edges incident to a single vertex are 

added and/or deleted.) 

For further similar results (and applications), see the surveys by Bollobas 

(1988b) and McDiarmid (1989). 

2.5 TALAGRAND’S INEQUALITY 

Talagrand (1995) has given several inequalities yielding exponential estimates 

under various conditions. In particular, one of his results leads to estimates 
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that are similar to those obtained by Azuma’s inequality in the preceding 

section, but often much stronger. 

Here we will treat only one of Talagrand’s inequalities. Moreover, the 

general version (Theorem 2.37, below) is rather technical; we thus begin with 

a special case which is easily applied in a number of combinatorial settings. 

For further results and many applications, see Talagrand (1995). Other proofs 

of Theorems 2.37 and Theorem 2.39 (and of further related inequalities) are 

given by Marton (1996) and Dembo (1997). 

Combinatorial setting 

In the sequel we assume, as for Corollary 2.27, that N > 1 is an integer and 
that Z,,..., Zy are some independent random variables, taking values in some 
sets A,,..., An, respectively. (In many applications, A; = --- = Ay and the 
Z; are identically distributed, but that is not necessary.) We write z = (ze 
for an element of the product space A = ge A;. (To be precise, the sets A; 
are measurable spaces, that is, sets equipped with o-fields of subsets, and 
the function f is tacitly assumed to be measurable; in the case of finite sets, 
this assumption is trivially true.) The two common choices of Z, and A, in 
random graph theory are given by vertex exposure and edge exposure, just as 
discussed for martingales at the end of the preceding section. 

Recall that a median of a (real valued) random variable X is a number m 
such that P(X <m) < 1/2 and P(X > m) < 1/2. A median always exists, 
but it is not always unique. 

Theorem 2.29. Suppose that Z,,...,Zn are independent random variables 
taking their values in some sets Ay,...,An, respectively. Suppose further that 
Nusa f(Zi eet; Gy )jutohere feriAgexooe Age 3. Rusa function such that, 
for some constants cx, k = 1,...,N, and some function w, the following two 
conditions hold: 

nee ee ia. A; differ only in the kth coordinate, then |f(z) - 
F(z‘) < ce. 

(C) If z€ A andr € R with f(z) >, then there exists a set J C eras 
with rics Ci] < V(r), such that for all y € A with y; = z; whenie€ Je 
we have f(y) >r. 

Then, for every r € R andt > 0, 

P(X <r—t)P(X >r) <e-P/4¥0). (2.35) 

In particular, if m is a median of X, then for every t > 0, 

P(X <m-—t) < 2e-t7/4¥(m) (2.36) 
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and 

P(X >m+t) < 2e~P /A¥(m+t) (2.37) 

Remark 2.30. The Lipschitz condition (L) is the same as the condition in 
Corollary 2.27. 

Remark 2.31. Note that the set J in (C) generally depends on z and r. The 
vector (2i)iey, which forces f >, is called a certificate (of f >). 

We postpone the proof of the theorem until the end of this section and 

first discuss some consequences and applications. Note that the function * 

formally may be chosen arbitrarily such that (C) holds; however, we want to 

find a small w since the bounds the theorem yields are better the smaller w 
is. 

Remark 2.32. In most applications, c, = 1 for all k. In this case, the first 

condition on J in (C) is |J| < ¥(r); thus, ~(r) = N will always do, but smaller 

bounds on |.J| give better estimates. 

Comparison with Azuma’s inequality 

Every function f trivially satisfies (C) with u(r) = ae for all r; just take 
J = {1,...,N}. Thus Theorem 2.29 yields, for example, the estimate 

Bu Gecarlent) ctlen./42-% 4. £ >.0, (2.38) 

for any function f satisfying (L). This is very similar to Corollary 2.27. The 

conditions are the same and the conclusions differ only in that here we get 

worse constants and that the median is used instead of the mean. These 

differences are typically not important; note that Corollary 2.27 implies that 

ifa>EX + (2log 23> c2)'””, then P(X > a) < 1/2 and thus m < a, which, 
together with a similar lower bound, yields 

|EX —m|< (210g2 Set)”. 

(This, with another constant, follows also from (2.38), using arguments as in 

Example 2.33 below. — Exercise!) The constant may be improved by using 

Remark 2.28.) 
In many applications, (C) holds with a much smaller yw; this leads to 

stronger estimates that significantly surpass Azuma’s inequality. 

Example 2.33. In several interesting cases, X assumes non-negative integer 

values only, (L) holds with c, = 1, and (C) holds with ~(r) = r for integers 

r > 1. (Equivalently, (C) holds with ~(r) = [r] for r > 0.) In this case, 

(2.35) yields 

P(X <a) P(X >r) <e "9 /* (2.39) 
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for every integer r > 1 and real a < r. Since (r — a)*/r is an increasing 

function of r > a and P(X >r) = P(X > [r]), (2.39), in fact, holds for any 

real a and r with a < r. (The case a < 0 is trivial.) 

Consequently, if m is a median of X, then 

P(X <m-—-t)< Qe /4m LU, (2.40) 

and 

2 Qe /8™  O<t<m 
—t~/4(m+t) < b) — = b] 2.41 

pipe dis ek oz a i>m. ( ) 

Hence, 

4e-*/8m  O<t<m 
= ab ; Stes 200. 2.42 

RAS tallied es er (2 > TDs ( ) 

In particular, it follows that 

fo) 

|EX —m| <E|X —ml =4h P(|X — m| > 2) dt 
0 
™m co 

< [ 4e—t/8™ gt +/ 2e*/8 dt < 2/8mm + 16 
0 ™m 

(the constants can be improved). Hence, using also 5m <mP(X >m) < 
EX, 

|EX —m| = O(VEX), 

which implies estimates similar to (2.40)—(2.42) for X — EX; for example, for 
some universal constant y > 0, 

P(X —EX|>t)<4e7"/EXt+), tg > 0, (2.43) 

We see that if m (or, equivalently, EX) is much smaller than N, then Theo- 
rem 2.29 yields much stronger estimates than Corollary 2.27. 

Example 2.34. A simple instance of the situation in Example 2.33 is a bi- 
nomial random variable, or, more generally, a sum of independent Bernoulli 
random variables. In this case, we let the sets A; equal {0,1} and let X = 
f(Z1,...,Zn) = 2, +--+ + Zy. It is easy to see that (L) and (C) hold with 
c; = 1 and y(r) =r when r is a non-negative integer, and thus (2.39)—(2.43) 
hold. This yields estimates similar to those given in Theorem 2.1 (although 
with inferior constants). 

This example shows that it is not possible to improve the estimate (2.41) to 
P(Z >m+t) < Je 4m or something similar with other constants; consider 
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for example the limiting case of a random variable with distribution Po(1) (or 
the family Bi(n,1/n)) and large t; compare with Remark 2.7. 

Example 2.35. A more interesting application is obtained by letting X be 
the stability number a(G(n,p)) of the random graph G(n,p), that is, the 
order of the largest independent set of vertices. It is easily seen that, using 
vertex exposure, the conditions in Example 2.33 are satisfied (Exercise!); a 

certificate of a > r (for an integer r > 1) is just any independent set of 

order r. Consequently (2.39)—(2.43) hold. We will return to this application 
in Theorem 7.4. 

The same applies to the clique number of G(n,p), that is, the order of 

the largest complete subgraph (which is just the independence number of the 

complement of the graph). 

Remark 2.36. In general, say that a function f : 1g Np 40,1 cnn} isa 
configuration function if for each J C [N] there exists a set Ay C Lees OE 

“configurations” such that: 

(i) If Pe yecd = Ay and J’ C J then (rjer Gc Ayr; 

(ii) f(z) = max{|J| : (z;)jey € Au}. 

In other words, the configurations are certain sequences (z;,,..-.,2Zj,), a sub- 

sequence of a configuration is a configuration and f is the size of the largest 
configuration included in (z1,...,2y). The independence and clique numbers 

in Example 2.35 above are obvious examples. 

Every configuration function satisfies (L) and (C) with c, = land w(r) =r 
for integers r > 0, so the conclusions in Example 2.33 hold. (Conversely, it 

may be shown that every such f with values in {0,...,N} is a configuration 

function. See also Talagrand (1995, (7.1.7)) for yet another characterization.) 
Moreover, Boucheron, Lugosi and Massart (2000+) have recently shown 

that for configuration functions, the inequalities (2.5) and (2.6) hold, which 

yield somewhat sharper (and simpler) estimates than the inequalities above. 

General form of Talagrand’s inequality 

In order to state the general form of Talagrand’s inequality, we need more 

notation. 
Assume, as above, that A,,..., Ay aresets. Assume further that j1,..., un 

are probability measures on Aj,..., An, respectively, and let P be the product 

measure py X--: X pn ON A= Ay x:-- X Ay. 

We define a kind of distance between a point x € A and a subset A C A in 

the following way. We first define two subsets Ua(r) and Va(z) of RY: 

Ua(x) = {(si)¥ € {0,1}% : ay € A such that 2; = y; for all i with s; = 0} 
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and V(x) is the convex hull of Ua(z). Thus U,(z) contains the vectors 

(1[z; 4 y:])%, y € A, but also vectors with more 1’s. We then define 

d(A,z) = inf{||v|l2:v € Va(z)}, 

where ||v|]o = (D> v?)!/? is the usual Euclidean norm in R%; thus d(A, 2) is 

the Euclidean distance from 0 to Va(z). (If A = 0, then U4(x) = Va(x) = 9 
and we set d(A, x) = oo. On the other hand, if A is non-empty, then d(A, x) is 

finite for every x because at least (1,...,1) € Ua(z). Moreover, the infimum 

in the definition of d(A,z) is attained, since U,4(z) is a finite set and thus 

Va(ax) is compact.) 
Note that 

Avs )i=0) <> 0 6 Vat) <> Deval —— 2 es 

With this notation, we may give the general form of Talagrand’s inequality. 

Theorem 2.37. For every (measurable) subset A of A, 

1q?(A,z) 1 
e4 dP(xr) < ——. (2.44) I ) Sp 

Remark 2.38. We assume that the set A is measurable, but even so the 

function d(A, x) is, in general, not measurable, so the integral in (2.44) is 

not always defined as an ordinary Lebesgue integral. Of course, there is no 

problem for finite sets, and it is easy to give further sufficient conditions 

for d(A,x) to be measurable, but a simpler and more general approach is 

to allow d(A,z) to be non-measurable and interpret the integral in (2.44) 
as an iterated upper integral [*---f*. The theorem is then valid without 
any further assumptions (by the proof given below and simple properties of 
the upper integral). Moreover, there is no problem in using this version in 
applications such as the proof of Theorem 2.39, below. (Recall that the upper 
integral [” g of a non-negative function g is defined to be the infimum of fh 
over all measurable functions h with h > g; this infimum is always attained.) 

Before proving Theorem 2.37, we use it to prove Theorem 2.29. We begin 
with a simple corollary of Theorem 2.37 (Talagrand 1995). 

Theorem 2.39. Suppose that A and B are two (measurable) subsets of A 
such that for some t > 0 the following separation condition holds: 

(S) For every z € B, there exists a non-zero vector a = (ai)N € RY such 
that for every y € A, 

a 2e(d08)"” 
Lyi Fz; 
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Then 

P(A) P(B) < e7?/4, 

Remark 2.40. Note that Condition (S) is not symmetric in A and B; the 
vector a may depend on z but not on y. 

Proof. Suppose that z € B and let a be as in Condition (S). We may assume 
that a; > 0 for every i; otherwise we replace a; by |a;|. Then, denoting the 
scalar product in R” by (.,-), 

(a, s) > tllal|2 

for every s € U4(z). Since a ++ (a,8) is a linear functional, this extends to 

all s in the convex hull V4(z), and thus, by the Cauchy—Schwarz inequality, 
for every s € V4(z), 

tlla|l2 < (a, 8) < ||sllallalle 

and hence ¢ < ||s|/2. Consequently d(A,z) > t, for every z € B, which, 

together with Theorem 2.37, yields 

t?/4 < 1d?(A,z) < vidas B ev PER ye fe dP(z)< P(A)’ 

Next, we use Theorem 2.39 to prove Theorem 2.29. 

Proof of Theorem 2.29. Let A= {ze A: f(z) <r—t}andB={zead: 
f(z) >r}. For z € B, let J be as in (C) and define 

fo 11e J, 
aj = 

Od 16rd 

thus, by (C), |lall2 < /w(r). If, furthermore, y € A, define y’ € A by 

1 ) is 1€ J, 

ail Yi, 1 ¢ Ak 

Then f(y’) > r by (C), and thus f(y’) — f(y) > t, while (L) implies 

fM-fHs DO a= » eert 
1€JS:YiFZi Oe a4 

Consequently, 

do a > t> ty(r)"™ llalle. 
BGR ae Fe 
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If t > 0, this also shows that a # 0, and (2.35) follows by applying Theo- 

rem 2.39 with t replaced by t/,/W~(r). The case t = 0 is trivial. 
Finally (2.36) and (2.37) follow by taking r = m andr = m-+tin (2.35). 

Remark 2.41. The conclusion of Theorem 2.39 can be improved to 

log(1/ P(A)) + /log(1/ P(B)) > t/V2 

(Talagrand 1995, Corollary 4.2.5), which, by the argument above, implies, for 

example, that (2.36) can be improved to the smaller, but more complicated, 

bound 

t 2 
P(X <m-—t) < exp( —(| ——— — vVlog2) }, t > /2log2y(m). (= (saey > vive?) ) 
It remains to prove Theorem 2.37. We follow Talagrand (1995), and begin 

with a simple lemma. 

Lemma 2.42. Suppose thatO <r<1. Then 

ihewe */4p eS i eee 
O0<r<l 

Proof. Taking tr = min(2log(1/r), 1), it suffices to show that if e~!/? <r <1, 
then 

clos” 7 p—2 log r—1 < arn 

Substituting r = e~' and taking logarithms, we have to show that 

A(t) = log(2 —e—*) +t? —t >0 

for 0 < ¢t < 1/2. But this, in fact, holds for all t > 0 because elementary 
calculations yield h(0) = h’(0) = 0 and h(t) = 2 — 2e-*/(2 — e—*)? > 0 for 
t>0: & 

Proof of Theorem 2.37. We use induction in N, starting with the simple case 
N = 1. (The bold reader may start with the really trivial case N = 0 instead.) 

If N = 1, and A is any non-empty subset of A = Aj, then, as is easily seen 
from the Anne d(A,z) = 0 when z € A and d(A,z) = 1 when z ¢ A. 
Consequently, using e!/4 < 2 and t(2 — t) < 1 for real t, 

14?(A,x) =. 1/4 (7 1 e4 Qe) Rea A)) <2-P(A i ( ) ( ) € (l- P( )) ( y= on P(A)’ 

Now assume that the result holds for some N > 1. Let us write A‘*) = 
Th and P, = ink yi, and denote elements in A(V+) by (z,A), with x € 

) and X e An41- 
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Let A be a (measurable) subset of A‘Yt!), and define, for every A € Anyi, 
A(A) = {2 € A) : (x, X) € A} (a section of A). Define also B = U)A(A) (the 
projection of A on A\)). Each A(A) is measurable, but, in general, B is not; 
thus we also select a measurable subset By C B of maximal Py measure. Note 

that thus Py(Bo) > Px(A(A)) for every \. We may assume that Py(Bo) > 0, 
since otherwise Py4;(A) = 0 and the result is trivial. 

The basic observation is that, for any x € A‘) and \ € Ani, 

SE Uaca)(z) a (s,0) € CA A 

te pla) a> i(t,1) -€ Us ((x, A)). 

It follows that if s € Vai,)(z), t € Va,(x) C Ve(x) and 0 < 7 < 1, then 

(s,0) € Va((a,A)) and (t,1) € Va((x,)), and thus also ((1 —7)s +7t,T) € 
Va((x,A)), which yields, using the convexity of the function u + wu?, 

N 
a? (A, (x, A)) x (a —T)s+ Tt, T)|l3 = ake —T)s,+ Thi) +7? 

1 

< (1—7)||s||3 + rlellg +77. 
Taking the infimum over s and t, we thus obtain, for every A € An4 and 

r € (0, 1], 

d?(A,(x,)) < (1—7)d?(A()), 2) + Td? (Bo, 2) + tT. 

Holder’s inequality and the induction hypothesis now yield 

/ ek (AC)) d Pry (x) 
AW) 

< ei”? ( eat (A(A),2) aPy(2)) | (| eat (Boz) dPy(2)) aoe ACN) 
” l-r r 

Se oe tan 
ye Pe(AQ) 
~ Py(Bo) ( Py (Bo) ) 

By Lemma 2.42 with r = Py(A(A))/Px(Bo) < 1, we obtain by taking the 

infimum over T 

1 Py (A(A)) Luademngp yay wt (pet . 
fhe ‘ n(z) S Ppa Pv (Bo) ) 

Finally, we integrate this over A, using Fubini’s theorem and the inequality 

2—t<1/t for t > 0, to obtain 

1 Py4i(A) 
4@°(A,z) gp sige 212% -( Dene 2A 

fino 7 n+i(2) S AEA Py (Bo) ) 
1 ' 

< ——_. 
~ Pw+i(A) 
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2.6 THE UPPER TAIL 

As remarked above (Remark 2.17), the upper tail counterpart of Theorem 2.14 

is not true, in general. As an exponential bound is often needed also for the 

upper tail, we present here briefly a few simple ideas on how to cope with this 

problem in certain situations. For a more thorough account see Janson and 

Ruciriski (2000+). 

Recall that in a random set I',, each element of T is included with the same 

probability p. Furthermore, as in Section 2.2, let S be a family of subsets of T. 

For the sake of clarity, we confine ourselves here to the slightly simplified case 

in which all members of S are of the same size s. 

One possible idea is to convert an upper tail probability into a lower tail 

and then to apply Theorem 2.14. This can be done by setting Z = |T5l, 

& = US and Ae) ee (7) - X. As this approach is limited in 

applications only to large families S, we will not pursue it any further. 

The first result we do present was stimulated by the following problem 

(Rédl and Ruciriski 1994) on a random graph obtained by a random deletion 

of vertices (cf. Section 1.1). 

Example 2.43. Let G = (V,E) be a graph with |V| = n and |E| < n(5), 

0 <7 <1, and let R = V, be a binomial random subset of the vertex set V, 

Or p <1) Using Pidnontce 2.44 below one can show that with probability 

1 — e~ %("”) we have |[R]? 9 E| < 2n('2!) (Exercise!). 

The underlying idea is to break the family S into disjoint subfamilies of 

disjoint sets, and apply Theorem 2.1 to one subfamily. Set L = L(S) for the 

standard dependency graph of the family of indicators {14 : A € S}, where 

an edge joins A and B if and only if AN B # 9 (see Example 1.5). Note that 
the maximum degree A(L) can be as large as |S|—1. The following result has 
appeared in a slightly more complicated form in Rédl and Ruciriski (1994). 

Proposition 2.44. With the notation of Section 2.2, for every t > 0, 

Proof. A matching in S is a subfamily M C S consisting of pairwise disjoint 

sets. We claim that the family S can be partitioned into A(L) + 1 disjoint 
matchings, each of size equal to either [|S|/(A(L) + 1)] or [|S|/(A(Z) + 1)]. 
Indeed, by the well known Hajnal—Szemerédi Theorem (Hajnal and Szemerédi 

1970, Bollobas 1978), the vertex set of the graph L can be partitioned into 

A(L) +1 independent sets of the above order, which correspond to matchings 

M;,i=1,...,A(L) +1, in S. Note that for each 7, |Mij| > |S|/2(A(L) +1). 
If X > +1, then, by simple averaging, there exists a matching M; such 

that |[[,}?AMi| > p*|Mi|+t]M;|/|S|. Since |[[,]AM,| is a random variable 
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with the binomial distribution Bi(|M,|,p°), we conclude by Theorem 2.1 that 

> P1M4I AG So )\ a5 yay << 5 me aL 

2 )< Lex ( saareme al 

Bh Naa y=: (- E ) a = P\ a(A(D) + 1A 64/3) 

As our next example shows, Proposition 2.44 can be applied to quite sparse 
families S. 

Example 2.45. Let S be the family of all edge sets of triangles in the com- 
plete graph [n]?. Then A(L(S)) = 3(n—3), and by Proposition 2.44, for fixed 
p> 0 and with X = Xx, denoting the number of triangles in G(n, p), 

P(X > (1+ p)EX) = O(n) exp (—@(n?p*)) , 

which is a fair bound provided p > n-2/3 log!/? n. 

The next idea also uses disjoint sets to force independence, and is based on 

Spencer (1990) (see also Alon and Spencer (1992) and Janson (1990b)). Let 
Sp be the subfamily of S consisting of those sets which are entirely contained 
in [,. Consider also the intersection graph L, = L(S,) of Sp, in which each 
vertex represents one set and the edges join pairs of vertices representing pairs 

of intersecting sets. (Clearly, Lp is an induced subgraph of L defined above.) 

Let Xo count the largest number of disjoint sets of S which are present in 

I,. So, X is the number of vertices and Xo is the independence number of 

Ly. Furthermore, set T = A(L,) and X, for the size of the largest induced 
matching in Ly. Then it follows by an elementary graph theory argument 

that X < X9+2TX, (Exercise!). Hence, if ad hoc estimates can be found for 

both T and X, then it remains only to bound the upper tail of Xo. 

Lemma 2.46. [ft > 0, then, with p(x) = (1+ x) log(1+z)—z andA=EX, 

P(Xy > EX +t) <exp (-(5)) < exp (-ataa) 

Proof. Let k be an integer (0 < k < [A + ¢]) and consider the number Z of 

k-element sequences of disjoint sets of S,. Clearly, we have 

Me cei siins® ivbs 

If Xo > A+t, then Z > (A+t)e = []e2p (A +t —3), and thus, by Markov’s 
inequality (1.3), 

k k-1 

P(Xo >A+t) <SP(Z> (Att) Sea sll 
wilde, 
OR come ke 
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If we increase k by 1, the right-hand side is multiplied by A/(A+t— k), which 

is less than 1 for k < t. Hence, the right-hand side is minimized by choosing 

k = [t]. Consequently, 

ft]-1 t 

log P(Xo > A +t) < S log(A/(A+t—i)) < i! log(A/(A +t — «)) da, 
i=0 2 

which implies the first inequality of Lemma 2.46 by a straight-forward inte- 

gration. The second inequality follows by the lower bound on v(x) established 

at the end of the proof of Theorem 2.1. ct 

Remark 2.47. By choosing k = \ +t (assumed to be an integer) in the 

above proof, we obtain the weaker estimate (Erdds and Tetali 1990, Alon and 

Spencer 1992), valid for any integer k > 0, 

ARE Bene t 
logP(Xo 2k) STS (S) = EXD (4-2%(5)). 

Remark 2.48. Note that Xo satisfies the Lipschitz condition (L) of Corollary 

2.27 with all c; = 1, as well as the condition (C) of Theorem 2.29 with 

w(r) = s[r|. Therefore, similar but weaker versions of Lemma 2.46 can be 
derived from these results (cf. Theorem 3.29 in Section 3.5). 

Example 2.49. Let X = Xx, be the number of triangles in G(n,p), np > 

oo. Then X, is the maximum number of edge disjoint copies of the diamond 

graph K, (see Figure 4.7), and Lemma 2.46 can be applied to it. The random 

variable T can easily be bounded by using Theorem 2.1. For example, if p > 0 

is fixed and np? —> 0, one can prove (Exercise!) that 

P(X > (1+p)EX) < Der SP acemte ae Udnr 

This bound is meaningful if n4p® > oo, and better than that of Example 2.45 
if p = o(n—3/5) (Exercise!). 

Remark 2.50. Using a variant of the martingale approach, very recently Vu 

(2000+) has proved that for a class of graphs G on k vertices, the inequalities 

exp {-0 ((e Xq)?/ logn) } < P(Xq > (1+ p)EXc) 

< exp {-9 ((EXe)/"-)) } 

hold in a wide range of p = p(n). Here Xg is the number of copies of G in 
G(n, p). 

The lower bound provides another counterexample to the existence of an 
upper tail analogue of Theorem 2.14 (cf. Remark 2.17). The upper bound 
competes well against the results of this section. In particular, when G = Ks, 
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Vu’s bound is better than that in Example 2.49, but for p > n7}/3 it is not 
as good as the bound presented in Example 2.45. 

Our final idea for establishing a bound on the upper tail of X incorporates 
some kind of cheating. We allow ourselves to delete some elements of iy 
and claim the concentration of X in the remainder. Surprisingly, such results 
turned out to be useful and even crucial in the context of partition properties 
of random graphs. This approach was developed in Rédl and Rucinski (1995) 
and is based on two elementary lemmas. We conclude this section with these 
technical lemmas. The first of them can easily be proved by a method similar 
to that used in the proof of Lemma 2.46 (Exercise!). 

Lemma 2.51. Let S C [I]* and0 <p< 1. Then, for every pair of integers 

k and t, with probability at least 1— exp (-xtts), there exists a set Eg CT y 

of size k such that T, \ Eo contains at most \+t sets from S. ) 

Hence, substantially exceeding the expectation is exponentially unlikely, 
provided we are allowed to destroy some of the subsets in the count, by deleting 
a certain number of elements from the random set. Then, of course, there is 
the danger of losing other properties held by the random set. It turns out, 
however, that monotone properties held with exponential probabilities survive 
the deletion. The next lemma, also from Rédl and Ruciriski (1995), makes 
this precise. 

For an increasing family Q of subsets of a set [ and for a nonnegative 
integer k, let 

Q, ={ACT: VBCA, if |B] <k, then A\ Be Q}. 

In other words, given a property Q, the property Q; assures that Q holds 

even after deleting up to k arbitrary elements from the set. For instance, if 

Q is the graph property of being connected, then Q, is the property of being 

(k + 1)-edge-connected. 

Lemma 2.52. Let c and 6 <1 satisfy 

6(3 — logé) <c. (2.45) 

Then, for every increasing family Q = Q(N) of subsets of an N-element 

set I’, and for every k, 0 < k < 6Np/2, if P(Ti—s)p ¢ Q) < e-°N? then 

P(T, ¢ Ox) < 3/Npe7\¢/2
)Np ae e— (67/8) Np. 

= 

Thus, if a random binomial subset has an increasing property with proba- 

bility extremely close to 1, then a slightly enlarged random subset will enjoy 

the same property, and with similar probability, even after a small fraction 

of its elements are arbitrarily destroyed. The elementary proof is left to the 

reader (Exercise!). 
In Chapter 8, in the outline of the proof of Theorem 8.23, we indicate 

how Lemmas 2.51 and 2.52 were utilized to establish thresholds for Ramsey 

properties of G(n,p). In the same proof, Lemma 2.52 alone is also applied. 
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Small Subgraphs 

3.1 THE CONTAINMENT PROBLEM 

In 1960 Erdos and Rényi published the most fundamental of their random 

graphs papers (Erdés and Rényi 1960). The first problem studied there was 

that of the existence in G(n, M) of at least one copy of a given graph G. Since 

the graph G is fixed and the random graph G(n, M) grows with n > oo, copies 

of G in G(n, M) are called small subgraphs, regardless whether G is a triangle 
or a graph with one billion vertices, as opposed to subgraphs of G(n, M) which 

grow with n like, say, a Hamilton cycle. 

Erdés and Rényi (1960) found the threshold for the property of containing 
G only in the special case in which G is a balanced graph (see Section 3.2 for 

the definition). Twenty-one years later Bollobas (1981b) settled the problem 
in full generality. Still later a simpler proof was found by Rucirski and Vince 

(1985) and we will present it here. It is a classical example of an application of 

the commonly used methods of the first and the second moment. This problem 

is also instructive in that it shows that the behavior of the expectation alone 

can be sometimes misleading. 
To better comprehend this feature and to have a gentle start, we will con- 

sider first the somewhat simpler problem of finding the threshold for the 

containment of at least one arithmetic progression of length k in a random 

subset of integers [n],, where, recall, [n] = {1,2,...,n} and p = p(n) is the 

probability of including each element of [n], independently of the others, in 

the random subset [n]p. 

53 
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The first and second moment methods 

Before presenting the applications, let us describe the first and the second 

moment methods. As a special instance of the Markov inequality (1.3), for 

every non-negative, integer valued random variable X, the inequality 

P(X >0)<EX (3.1) 

holds. The first moment method relies on showing that EX, = o(1), and 

thus concluding by (3.1) that X, = 0 a.a.s. The second moment method is 

based on Chebyshev’s inequality (1.2), which implies (Exercise!) that for every 

random variable X with EX > 0 

Var X P( xt Oa ST arae (3.2) 

Hence, by showing that the right-hand side of (3.2) (with X replaced by X,) 

converges to 0, one concludes that X, > 0 a.a.s. By the same token one 

obtains a stronger statement, which also follows from Chebyshev’s inequal- 

ity: If Var X,/(EX,)* = o(1) then X, = EX, + 0,(EX,) or, equivalently, 

Xn/EXn > 1. In particular then, X, = Oc(EX,). 

Remark 3.1. Inequality (3.2) may be improved. The Cauchy—Schwarz in- 

equality applied to X = X1[X F 0] yields (EX)? < EX?P(X ¢ 0), that 
is, 

EX)? Be Dee (3.3) 
and thus 

Bae ee eee oe ee ee Var X (3.4) 
a EX). yo BX2> (EB X)3i Vax 

For the purpose of showing X, > 0 a.a.s., (3.2) is just as good as the improve- 
ment (3.4), but in Chapter 7 we will see a situation where the improvement 
is essential. 

Example 3.2 (arithmetic progressions). Let X; be the number of arith- 
metic progressions of length k in [n],, where k > 2 is a fixed integer. (We 
suppress the subscript n here.) To compute E(X;) we need to know the num- 
ber f(n,k) of all arithmetic progressions of length k in [n]. In fact, we only 
care about the order of magnitude of f(n,k) which equals n2, since every 
arithmetic progression is uniquely determined by its first two elements. Let 
us number the arithmetic progressions of length k in [n] by 1,..., f(n,k) and, 
for each i = 1,..., f(n,k), define a zero-one random variable (indicator) J; 
equal to 1 if the 7-th arithmetic progression of length k is entirely present in 
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[n], and equal to 0 otherwise. With this notation, X, = Tel ts te I; and, by 
the linearity of expectation, 

E(X;,) = f(n,k)p* = O(n?p*). 

Hence, if p < n~?/* then E(X;) — 0 as n > o and, by the first moment 

method, Ue. by (3.1)),.PUX..> 0) =o(1). 

If, on the other hand, p > n~?/*, then E(X;,) — ov, but this fact alone 

is not sufficient to claim that P(X; > 0) — 1. One has to work for it, using 
the second moment method. Observe that J; and J; are independent if the 

i-th and j-th arithmetic progressions have no element in common; in that 

case the covariance Cov(J;, J;) equals zero. In the remaining cases, we use the 

inequality Cov(J;,I;) < E(/jI;). There are O(n?) pairs (J;,1;) which share 
one element and then E(J;J;) = p?*—!, and only O(n?) pairs which share two 
or more elements, in ich case E(I;J;) < p*. We thus can estimate the 

variance of X, as follows: 

f(n,k) f(n,k) 

Var(X;,) = SS = Cov(I;, I;) = O(n? p**-! + n?p*). 
2=1 

Consequently, by the second moment method, (i.e., by (3.2)), if p >> n7?/*, 

then 
1 1 

np np 

Together, these results show that the threshold for existence of a k-term arith- 

metic progression in [n], is n~?/*. 

Thresholds for subgraph containment 

Returning to small subgraphs of random graphs, we let XG stand for the 

number of copies of a given graph G that can be found in the binomial random 

graph G(n,p). Let v = vg and e = eg stand for the number of vertices and 

edges of G, respectively. There are exactly f(n,G) = (”)v!/aut(G) copies 

of G in the complete graph Ky, where, recall, aut(G) denotes the number 

of automorphisms of G. For each copy G’ of G in K,, define the indicator 

random variable Ig: = 1{G(n, p) D G']. Then 

Opell pane 
— | hee Y n~€ 

E(Xq) = f(n,G)p® = O(n*p*) > it Teenie 

and, by the first moment method, 

P(Xg>0)=0(1) ifp<n’*. (3.5) 

Is it then true that P(Xg > 0) = 1-0(1) ifp > n~’/e? Consider first an 

example. 
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Example 3.3. Let Ho be the graph with 4 vertices and 5 edges and let Go 

be a graph obtained by adding one vertex to Hp and connecting it to just one 

vertex of Hp. (There are two nonisomorphic ways to do so, and it does not 

matter which one we choose — see Figure 3.1 for one version of Go.) Take 

any sequence p = p(n) such that n-5/6§ <p <n~4", say, p=n-*/1!. Then 
E Xq, = O(n°p*) — oo, but by (3.5) applied to Ho, a.a.s. there is no copy of 
Ho in G(n,p), and therefore there is no copy of Go either. 

Hence, things are more complicated for graphs than for arithmetic progres- 

sions. It should be clear at this point that the behavior of the expectation 

is deceptive in case of Go, because Go contains a subgraph (viz. Ho) denser 

than itself, and that the right threshold should be n~*/>. Indeed, this was 
confirmed by Bollobads (1981b) in the following, general result. 

Recall that m(G) is the ratio of the number of edges to the number of 

vertices in the densest subgraph of G, that is, 

m(G) = max {2s CG, UH >o}. (3.6) 
H 

Theorem 3.4. For an arbitrary graph G with at least one edge, 

: Dea pce 
plinetG pip) 2G) = i He > n-/m(6), 

Proof. There are two statements to be proved, the 0-statement, and the 1- 
statement. To prove the former one, assume that p < n~!/™(@) and let H’ 
be a subgraph of G for which e(H')/v(H’) = m(G). Then, by (3.5), a.a.s. 
there is no copy of H’, and thus, no copy of G in G(n, p). 

To prove the 1-statement we use the second moment method; we then need 
to bound the variance of Xg from above. For future reference, we state the 
result as a lemma. We define 

Pc = ®c(n, p) = min{E(X7) HG, en > 0} (3.7) 

and note that 

Y- ®g x a Cupar. (3.8) mi 
HCG,en>0 

this quantity will be useful on several occasions in the sequel. 

Lemma 3.5. Let G be a graph with at least one edge. Then 

Var( XG) = (1 — p) Ds n2%G —0H prec —eH 

HCG,exH>0 

(E XG)? (EXg)? xU- ————— = (] — p)———* 
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where the implicit constants depend on G but not on n or p. In particular, 
Var Xg = O((EXG)*/®c), and if p = p(n) is bounded away from 1, then 
Var XG = (EXG)?/og. 

Proof. Using the fact that Ig and Ig are independent if E(G’)N E(G") = 9, 
and that for each H C G there are O(n’#n2("e-"H)) = Q(n2%¢-¥4) pairs 

(G’,G") of copies of G in the complete graph K, with G’ MG" isomorphic 
to H, we have 

Var(Xg) = > Cov(Ier, Ign) = a [E(Ig: Ian) — E(Igr) E(Ia)] 
G’',G" E(G')NE(G")#0 

= Ss n2vG UH (prea ee — p*°e) 

HCG,en>0 

2 ys n20G—vH prec—eH (1 = Dp). (3.10) 

HCG,enH>0 

| 

The simple observation below is often useful. 

Lemma 3.6. The following are equivalent, for any graph G with eg > 0. 

(i) np™® —+ oo. 

(ii) n’* p** > oo for every H CG with vy > 0. 

(iii) E(Xq) > co for every H CG with vq > 0. 

(iv) 6g > o0. 

Proof. By (3.6) (and p < 1), (i) holds if and only if np*#/"* — oo for every 

H CG with vy > 0; since 

EXy x n°™ ph = (np es), 

this is equivalent to both (ii) and (iii). Finally, by the definition (3.7), Con- 
dition (iv) is equivalent to E(X#) — oo for every H C G with ey > 0; this is 

equivalent to (iii) since the case vy > 0 and ey = 0 is trivial. g 

To complete the proof of Theorem 3.4, we observe that if p > n—1/ m(G) | 

then by Lemma 3.6 ®g — oo. Consequently, (3.2) and Lemma 3.5 yield 

Var(XcG) Exar = O/#e) = (0). g P(G(n,p) DG) = P(Xa=0)< 

Remark 3.7. It follows from the above proof that if g(n,p) — oo, then 

not only P(G(n,p) Z G) — 1 but further X¢/E(Xca) ey 
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Ze 
Go Fo 

Fig. 3.1 A non-balanced graph and a balanced extension of it. 

Remark 3.8. As we mentioned before, Erdds and Rényi proved Theorem 3.4 

already in 1960, but only in the special case of balanced graphs, that is, graphs 

G with m(G) = eg/vc, while the general case was proved much later by 
Bollobas (1981b). Another approach to the general case was suggested by 

Karonski and Rucinski (1983b), who proposed a “deterministic” argument to 

derive Theorem 3.4 from the Erdés and Rényi result for balanced graphs. It 

was based on a conjecture proved a few years later (Gy6éri, Rothschild and 

Rucinski 1985, Payan 1986) that every graph G is a subgraph of a graph F, 

called a balanced extension of G, which is balanced and, what is crucial here, 

is not denser than the densest subgraph of G, that is, m(F’) = er/ur = m(G). 

The validity of the 1-statement of Theorem 3.4 for F' implies its validity for 

G, since, trivially, P(X¢ > 0) > P(Xr > 0). 

An example of a balanced extension Fo of the graph Gp is presented in 

Figure 3.1. (The smallest balanced extension of a graph G can be much 
larger than G; see Rucinski and Vince (1993).) 

An exponential rate of decay 

Analyzing the proof of Theorem 3.4, one comes to the conclusion that a de- 
cisive role is played by the quantity ®g. Indeed, the two parts of the above 
proof can be combined into one pair of inequalities 

1— Gq < P(G(n,p) BG) < O(1/%e), (3.11) 

which together imply Theorem 3.4, since ®g — oo if and only if np™®) + oo 
by Lemma 3.6, and by a similar argument @g > 0 if and only if np™®) = 0. 
What is especially nice about the inequalities (3.11) is that both sides can be 
strengthened to an exponential rate of decay. 

Theorem 3.9. Let G be a graph with at least one edge. Then, for every 
sequence p = p(n) <1, 

ae {paste} < P(G(n,p)  G) < exp{-0(&,)}. 
Proof. The left-hand inequality follows immediately from Corollary 2.13, a 
consequence of the FKG inequality, with X replaced by Xq-, where E(Xy) = 
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®c. The other inequality is implied by Theorem 2.18(ii) with S = Xq@ and 

the I4’s replaced by I[g’s. Indeed, the denominator of the exponent there 

becomes 

igi yectica wel Xe) tc) (3.12) 
HCG,ew>0 G’ G'NG'=H 

and the right-hand inequality in Theorem 3.9 follows. & 

Note that Theorem 3.9 implies Theorem 3.4. 

Remark 3.10 (Martingale approach). There are at least two other ways 

to deduce the right-hand inequality of Theorem 3.9; they are based, respec- 

tively, on the martingale and Talagrand inequalities given in Chapter 2. Here 

we present the martingale approach and the other one will be given in Sec- 
tion 3.5. 

We confine ourselves to the special case in which for every proper subgraph 

H of G with ey > 0, E(Xy) > &g. In particular, 6g = E(XG). (The 
general case is quite involved and we refer the reader to Janson, Luczak and 

Rucinski (1990).) Let f = c®g for a suitably chosen constant c > 0, and 
let m = (Aj,..., Ay) be an arbitrary partition of the set [n]? into sets of size 
|A;| < n?/f, i =1,...,f. Two copies of G are called z-disjoint if for each 

index 7 at most one of them has an edge in A;. Let D, g be the maximum 

number of z-disjoint copies of G in G(n,p). Then, by Corollary 2.27, 

P(X¢ = 0) = P(Dz,¢ = 0) < P(|Dz,¢ — t| > t) < 2exp{—t?/2f}, 

where t = E(D,,g) < ®g. Now we need to bound t from below. Let Y;,g be 

the number of non-7-disjoint pairs of copies of G. Clearly, D;.g > Xq—Ynr,a, 

and so t > ®g — E(Y;,cg). When computing E(Y,,¢) asymptotically, we may 

ignore all pairs of G sharing at least one edge, as their expectation is o(®q). 

The expected number of the other non-7-disjoint pairs is 

0(4(" 17) nttoo- pte ) = 0828/1) 
Hence, for sufficiently large c, t = 2(®c) and the right-hand inequality of 

Theorem 3.9 follows. 

The uniform model G(n, M) 

In this section we consider the containment problem for the uniform ran- 

dom graph G(n, M). We note first that by Corollary 1.16 (or Remark 1.18), 

Theorem 3.4 immediately implies the corresponding result for G(n, M): the 

threshold is n2~1!/™(@)_ (This can also be shown directly by the first and 

second moment methods.) 

For the exponential bounds in Theorem 3.9, the situation is somewhat 

more complicated. Not only do neither part of the proof of Theorem 3.9 carry 
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over to G(n, M), but the result cannot be true in general. Indeed, for dense 

graphs Turdn’s theorem (see, e.g., Bollobas (1998)) shows, for example, that 

if G = K3 and M > in? ~ $(5), then G(n, M) always contains a copy of 
G, so P(G(n, M) Z G) = 0. More generally, by the Erdés-Stone-Simonovits 

Theorem (Erdés and Stone 1946, Erddés and Simonovits 1966, Diestel 1996, 

Bollobas 1998), the same holds for any graph G and for M > c(}), provided 
c > 1—1/(x(G) — 1) is fixed and n is large enough. However, if M is not too 
large, both inequalities in Theorem 3.9 have counterparts for G(n, M). 

For a sequence M = M(n) < (°), define @g by (3.7) with p = M/($), and 

note that (if G is non-empty) ®g < E(Xx,) = (j)p=M. 

Theorem 3.11. Let G be a graph with at least one edge. 

(i) If M > eg, then 

P(G(n, M) BG) < exp{-O(8a)}. 

(ii) If, in addition, either 6g < cM, where c is some small positive constant 

depending on G, or G is not bipartite and M < cine wherec < 1— 

1/(x(G) — 1) is fixed, then 

P(G(n, M) D G) = exp{—O(a)}. 

Proof. We will give several arguments which are valid for different ranges 
of M and together yield the results. We let c),co,... denote some positive 
constants depending on G only. Note that we may assume that n is large, 
since the results are trivial for any finite number of small n. 

(i) For 6g > logn, the estimate in (i) follows immediately from the upper 
bound in Theorem 3.9 and Pittel’s inequality (1.6). 

Alternatively and more generally, we find by monotonicity and the law of 
total probability, as in (1.5), 

P(G(n, p/2) > G) < P(G(n, M) D G) + P(e(G(n, p/2)) > M) 

and thus, using the Chernoff bound (2.7) (or (2.5)), Theorem 3.9 and the fact 
that &g¢(n, p/2) > 2-9) Be(n, p), we get 

P(G(n, M) BG) < P(G(n, p/2) BG) +e-™”/® 
< e 61 Pa (n,p/2) as e M/6 

eters. een (3.13) 

Since M > gq as remarked above, (3.13) yields the upper bound 2e7°3®¢ , 
which yields the sought bound e~®'®¢) | provided Po'> Cy = 173; say: 

For ®g < cq, (3.13) implies further 

P(G(n, M) BG) <1-csbg + e7M/6, 
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which implies the result provided M > log? n and thus e~™/® < e5 0G for 

large n; note that @g > n~7°¢ for M > 1. 
Finally, in the rather uninteresting case in which eg < M < log’ n, we 

assume for simplicity that every component of G has at least three vertices. 

(The general case follows easily by treating isolated edges and vertices sepa- 

rately. — Exercise!) It is then easy to see that if we let Ven be the number of 

copies of G in G(n, M), then E(Xc) wo pe = De and E(X2) ~ E(Xg), 

and thus, by (3.3), 

P(G(n, M) 2 G) = P(Xg = 0) < 1—c6Sq < exp{—ceGg}. 

(ii) To obtain a lower bound, we argue similarly. By monotonicity, 

P(G(n, 2p) BG) < P(Gin, M) DG) + Ple(G(n, 2p)) < M) 

and thus, using Theorem 3.9 and the Chernoff bound (2.6), 

PIG A DG) 22 77? — eM /4. 

If 1/2 < g < cgM, say, this yields the desired lower bound e~°9?¢. 
If 6g < 1/2, let Ho be a subgraph of G with EXy, = ®g (in G(n,p)), 

and observe that then EXy, < @g (in G(n, M)). Hence, 

P(G(n, M) » G) < P(G(n, M) > Ho) <EXu, < Po < 1 — e086. 

For the remaining case in which @g > cgM, and thus @g = O(M), the 
above approach may be useless. Note that in this case, the lower bound 

e-9("’P) in Theorem 3.9 can be obtained by just considering the event that 

G(n,p) is empty, which, of course, does not happen in G(n,M), M > 1. 

Fortunately, a simple and entirely different argument still yields the desired 

lower bound for graphs which are not bipartite. Let k = x(G) > 3, where 

x(G) is the chromatic number of G. Clearly, if G(n, M) is (k — 1)-partite, 

then there is no room for a copy of G. Let us fix a partition of the vertex 

set [n] into k — 1 sets of size |n/(k —1)] or [n/(k — 1)]. It is easy to show 

(Exercise!) that, as long as M < c($), the probability of no edge of G(n, M ) 

falling within any of the sets is at least (1 — 1/(k — 1) — ry be 

For non-bipartite graphs G, we thus have an almost complete description: 

P(G(n, M) % G) = exp(—O(®q)) almost all the way up to the point where 

the probability becomes zero by the Erdés-Stone-Simonovits Theorem. 

For bipartite graphs, the result is less satisfactory. Clearly, the final ar- 

gument in the proof above does not work. The condition @®@c < cM in the 

theorem is equivalent (Exercise!) to M < cln2-1/m(G)_ where m'?)(G) is 

defined in (3.18) in the next section, and for larger M we have no precise 

description of P(G(n, M) Z G). Indeed, for a general bipartite G, it is not 

even known when this probability vanishes. 
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(2) ’ 

In fact, it is conjectured that if G is bipartite and M >> n2-1/™ '(), then 
the probability that G(n, M) contains no copy of G tends to 0 with n faster 

than in the binomial case, and we have 

— log P(G(n, M) DB G) =o(M). (3.14) 

This conjecture has been verified for cycles Cy by Fiiredi (1994) (see also 

Kleitman and Winston (1982)) and for all even cycles Co,, k > 2, by Haxell, 

Kohayakawa and Luczak (1995). For further results in this direction see Ko- 

hayakawa, Kreuter and Steger (1998) and Luczak (2000), where it is shown, 
using a slightly generalized version of the Szemerédi Regularity Lemma (cf. 

Section 8.3), that (3.14) holds for all bipartite graphs G for which Conjec- 
ture 8.35 of Chapter 8 holds. 

3.2 LEADING OVERLAPS AND THE SUBGRAPH PLOT 

Leading overlaps 

When p = p(n) > 0, the logarithm of the lower bound in Theorem 3.9 becomes 
asymptotically equal to —@g. When can the same be concluded about the 
upper bound? To answer this question we introduce a related concept. 

A subgraph H' of G with eq > 0 is called a leading overlap of G (for a given 
sequence p(n)) if liminf E(Xy)/@g < oo. In other words, H’ is a leading 
overlap if and only if E(Xq:) >> ®g does not hold. If we, for simplicity, 
assume that the sequence p(n) is sufficiently regular, so that lim E(X7)/®c¢ 
exists in [1,00] for every H C G, this is equivalent to E(Xx) = O(&g); in 
other words, a leading overlap is a subgraph of G, which, up to a constant, 
achieves the minimum in $g = miny EXy. (For general p(n), this holds at 
least along a suitable subsequence.) 

Leading overlaps owe their name to the fact that they correspond to the 
leading terms of the asymptotic expression (3.9) for the variance of X¢ as 
well as in (3.12). 

Returning to Theorem 3.9, a detailed analysis of expression (3.12) reveals 
that the coefficient hidden in the © term in the upper bound in Theorem 3.9 
becomes 1—o(1) if there is just one leading overlap H’ of G , and the uniqueness 
holds in the strong form, that is, there is just one copy of H’ in G. (The 
converse holds if we assume that p(n) is regular as above.) 

Thus, we arrive at the following corollary. 

Corollary 3.12. If p = p(n) > 0 in such a way that H is a unique leading 
overlap of G then 

log P(G(n,p) BG) ~ —E(H) . (3.15) 
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1 i. 3 | 5 i 

Fig. 3.2 A graph and its subgraph plot. 

Subgraph plot 

The leading overlaps vary with p = p(n), but there is an easy geometrical way 

to detect them all at once, by plotting in the ry-plane points that represent 

subgraphs of G and focusing on the upper boundary of the convex hull of the 

obtained set of points. 

Formally, the subgraph plot of a graph G is defined as the set of points in 

the ry-plane 

iG) = 1 Wwuyen)* BiG, va > Dh 

Remark 3.13. Note that we do not include (0,0) or (1,0); for other purposes 

it might be convenient to define versions of the subgraph plot containing one 

or both these points. Similarly, it may be natural to consider only induced 

subgraphs H in the definition; for our purposes this makes no difference. 

We call the upper boundary 5(G) of the convex hull of ©(G) the roof, and 

we say that a subgraph H lies on the roof if the point (vy,e#) does. Observe 

that ©(G) is a piecewise linear curve, with endpoints in (2,1) and (vg, ea). 

An example of a graph and its subgraph plot is presented in Figure 3.2. 

Elementary calculations yield a full description of the entire spectrum of 

leading overlaps of G. If, for simplicity, G lacks isolated vertices, then a 

subgraph H of G is a leading overlap of G for some range of p = p(n) if and 

only if it lies on the roof ¥(G) of the subgraph plot £(G). Moreover, the 

range of p = p(n) in which H is a leading overlap is determined by the slopes 

ay, and ary of the straight line segments to the left and to the right from 

(uy,eH). (Note that aj > aj; we set ax, = oo and at, = 0 for convenience.) 

Indeed, H is a leading overlap as long as np*# = O(1) and, at the same time, 

npn = (1); this condition is necessary too if p(n) is regular as above. (If 

G has isolated vertices, and Go is the subgraph obtained by removing them, 

then the possible leading overlaps are the subgraphs on the roof &(Go), which 

equals 5(G) without its final, flat part where aj, = 0.) 
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As one can see in Figure 3.2, the points (s, maxy,,=s €H), $ = 3,...,vg —l, 

do not necessarily lie on the roof. In fact, there are graphs with only two roof 

subgraphs, K2 and G. They are easily characterized, assuming vg > 3, by 

the condition that for all H C G with 2 < vy < vg the inequality 

ej = 1 Zz Ge = | (3.16) 

vH — 2 vg —2 

holds. On the other extreme, there are graphs G with as many as about 

2ug of their subgraphs being leading overlaps for various (mutually distinct) 
ranges of p. For this and other related results, see Rucinski (1991) and Luczak 
and Rucinski (1992). 

Measures of graph density 

The subgraph plot can also be used to visualize several other useful concepts. 

First, the density d(G) = eg/vug of G (with vg > 0) equals the slope of the 
line Lg from (0,0) to the top point (vg, ec). 

The mazimum density m(G) = max{d(H) : H C G, vy > 0} equals the 
slope of the least steep line L,, from (0,0), such that the entire subgraph plot 
lies below or on Lyn; in other words, L,, is the tangent from (0,0) to the roof. 

A graph G is called balanced if m(G) = d(G), that is, if d(H) < d(G) for 
every H CG. (In words: G does not contain a subgraph denser than itself.) 
This is equivalent to Lg = Lm, and thus G is balanced if and only if the 
subgraph plot lies below or on La. In Example 3.3, Ho is balanced and Gg is 
not. 

A graph G is called strictly balanced if d(H) < d(G) whenever H CTic- 
which is to say that every proper subgraph of G is strictly less dense than the 
graph itself; equivalently, the subgraph plot lies strictly below Lg, except for 
the top point. Trees, regular connected graphs as well as the graph Hp from 
Example 3.3 are all strictly balanced. An example of a balanced graph that is 
not strictly balanced is the union of a cycle and a path (of length > 1) which 
are disjoint except that one endpoint of the path lies on the cycle. Another 
example is given by the disjoint union of two copies of any balanced graph, 
or by any balanced extension of a non-balanced graph (cf. the graph Fo in 
Figure 3.1). 

We will further use some related notions, which are natural, for example, 
when considering graphs with a distinguished vertex or edge. For a graph G 
with ug > 2, define d“)(G) = eg/(vg — 1); let d“)(K,) = 0. Then define 

m)(G) = max{d") (H) : H C G}. fe lig 

When vg > 2, d“)(G) and m')(G) are the slopes of the line LY from (1,0) 
to the top point, and of LY) the tangent from (1,0) to the roof. 
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Similarly, for a graph G with vg > 3, define d'?)(G) = (eg — 1)/(vg — 2); 

let. d'?) (A) = d)(2K,) = 0 and d®@)(K,) = 1/2. Then define 

m)(G) = max{d®)(H) : H C G}. (3.18) 

The definition of d'?)(K2) may look artificial but turns out to be convenient 

(cf. Remark 3.14 below). Note that if eg > 2, then m'?)(G) = max{d?)(H) : 
H CG, vy > 3}, so the special case does not matter. 

When eg > 2, d'?)(G) and m'?)(G) are the slopes of the line L'’ from 

(2,1) to the top point, and of fie the tangent from (2,1) to the roof. 

In analogy with the above, a graph G is called K,-balanced if m“)(G) = 
d\) (G), or equivalently, d“)(H) < d@)(G) for all H C G; furthermore, graphs 
with d\)(H) < d‘)(G) for all H ¢ G are called strictly K,-balanced. Anal- 
ogously, we define K»2-balanced and strictly K2-balanced graphs. These no- 

tions have applications in the study of solitary subgraphs (see Section 3.6), 
G-factors (see Chapter 4), and Ramsey properties of random graphs (see Sec- 

tion 7.6 and Chapter 8). 

Remark 3.14. Below we collect some simple but useful facts about the pa- 

rameters m(G), m)(G) and m'?)(G). The proofs are left to the reader (Ex- 
ercise!). 

For convenience, let m'°)(G) = m(G). Let Gi,...,G, be the connected 
components of G. Then m‘)(G) = max; m(G;) for i = 0, 1,2. This implies 
that strictly balanced, strictly Ky-balanced, and strictly K2-balanced graphs 

are all connected. 
We have m(G) = 0 if and only if G is empty, that is, eg = 0, for every 

i. Moreover, m(G) < 1 if and only if G is a forest (and then m(G) = 1—1/s, 

where s is the order of the largest component), and m(G) = 1 if and only if 
the densest component of G is unicyclic. For all other graphs, m(G) > 1. 

As far as m)(G) is concerned, m“)(G) = 1 if G is a non-empty forest, 

and m)(G) > 1 if G is not a forest. 
Finally, m?)(G) = 1/2 when the maximum degree A(G) = 1 (i-e., when G 

consists of isolated edges and possibly some isolated vertices), m'2)(G) = Lif 

G is a forest with A(G) > 2, and m()(G) > 1 if G is not a forest. 

In Chapter 6, we will use the following observation. 

Lemma 3.15. If np™©) — oo, then every leading overlap is connected. 

Proof. Suppose that H C G with ey > 0. If H is the disjoint union of two 

proper subgraphs H, and Hp», where, say, e(H1) > 0, then Lemma 3.6 yields 

n?(H2) ne(H2) 5 o9 and thus 

net pet = (Hr) ne Hi) (He) eH) > nv(Fr) pe(Fr) = E(Xu,) > bg. 

Consequently, H is not a leading overlap. i] 
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Remark 3.16. For eg > 2, the slope ax, defined above equals m')(G). 

Hence, under this condition, K is a leading overlap when np™”’(@) = Q(1), 

and the only leading overlap when npm”(G) — oo. 

Remark 3.17. Assume vg > 3. Then the condition (3.16) characterizing 

graphs G with only two roof subgraphs (viz. K2 and G) may be expressed as 

d?)(H) < d®)(G) for all H € G with vy > 3; this is equivalent (Exercise!) 
to G' being strictly K-balanced, except for the two cases G = 2K» and G 

being a union of an edge and an isolated vertex. Consequently, if G lacks 

isolated vertices, then G has only two possible leading overlaps if and only if 

G is strictly K2-balanced or G = 2Ko. 

Remark 3.18. The arboricity of a graph is defined as the least number of 

forests that together cover the edge set of the graph. This seemingly unrelated 

notion is, in fact, closely connected to the quantities just defined; by a theorem 

of Nash-Williams (1964) (see e.g. Diestel (1996)), the arboricity of G equals 

[mY (G)]. 

3.3 SUBGRAPH COUNT AT THE THRESHOLD 

When p = O(n7!/™@)) we have ®g = ©(1) and, by Theorem 3.9, 

0< lim inf P(G(n, p) D G) < limsup P(G(n, p) > G) < 1. 
n co 

n—- co 

This ensures that the threshold in Theorem 3.4 cannot be sharpened. For this 
range of p = p(n) the derivation of lim,_,.. P(G(n, p) D G) may not be easy. 
However, for the class of strictly balanced graphs defined in the preceding 
section, not only the precise value of limp... P(G(n, p) > G), but the entire 
limiting distribution of Xg can be computed. 

The following result was proved independently in Bollobas (1981b) and 
Karonski and Rucirski (1983a), and generalizes earlier results about trees 
(Erdés and Rényi 1960) and complete graphs (Schtirger 1979). 

Theorem 3.19. If G is a strictly balanced graph and np™&) + e@>0, then 
ges, Po(A), the Poisson distribution with expectation \ = c¢ / aut(G). 

Proof. This proof exemplifies the technique called the method of moments, 
which is presented in detail in Chapter 6; we use here the version given in 
Corollary 6.8. 

Consider the factorial moments of Xg, defined as E(X¢)zk = E[X¢(Xg - 
1)---(Xg —k+1)]. We have, for k = 1,2,..., 

E(Xe)e= > P(ic,-+-Ig, =1)= EL +E", 
GieGer 
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where the summation extends over all ordered k-tuples of distinct copies of G 
in K,, and EF; is the partial sum where the copies in a k-tuple are mutually 

vertex disjoint. It is easy to verify (Exercise!) that 

EX ~ (EXg)* ~ (c°? / aut(G))*. 

This implies that Xg is asymptotically Poisson if Ej’ = o(1), and it remains 

to be proved that Ey’ = o(1). Let e, be the minimum number of edges in a 

t-vertex union of k not mutually vertex disjoint copies of G. 

Claim. For every k > 2 andk <t < kuvg, we have e; > tm(G). 

Proof of Claim. For a graph F define fr = m(G)ur — er. Note that fo = 0 

and, since G is strictly balanced, fy > 0 for every proper subgraph H of G. 

We are to prove that for every graph F' which is a union of k not mutually 

vertex disjoint copies of G, fr <0. We will do it by induction on k, relying 

heavily on the modularity of f, that is, on the equality 

frur =frht+fr—- fram (3.19) 

valid for any two graphs F, and Fp. Let F = [ae G;, where each G; is a 

copy of G, and the copies are numbered so that G; 1 G2 # @. For k = 2, 

(3.19) yields fe,uc, = —feinc, < 0, because Gj N G2 is a proper subgraph 

of G. For arbitrary k > 3 we let F’ = Utz) G; and H = F'NG,. Then H 
may be any subgraph of G including G itself and the null graph, but in any 

case fy > 0. Moreover, fr < 0 by the induction assumption. Thus 

fe =frt+fe, —fx <0. a 

Having proven the claim, we easily complete the proof of Theorem 3.19 

with one line. Indeed 

kv—-1 

Euas ds O(n'p*) = o(1). @ 
t=k 

Remark 3.20. Using Theorem 6.10, Theorem 3.19 can be extended to joint 

convergence of several subgraph counts, with the limit variables independent 

(Exercise!). 

Still assuming that p = O(n-!/™)), consider graphs other than strictly 

balanced graphs. If G is nonbalanced, then the expectation of Xg tends to 

infinity. It turns out that there is a nonrandom sequence an(G) — co, such 

that the asymptotic distribution of Xg/an(G) coincides with that of Xx, 

where H is the largest subgraph of G for which d(H) = m(G). Clearly, H is 

balanced and we are back to the balanced case. The sequence an(G) is equal 

to the expected number of extensions of a given copy of H to a copy of G in 

the random graph G(n,p). For details, see Ruciriski (1990). 
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If a graph G is balanced but not strictly balanced, then the limiting dis- 

tribution of Xq is no longer Poisson. Although, in principle, as shown by 

Bollobés and Wierman (1989), the limiting distribution can be computed, 

there is no compact formula. We give only three simple examples, illustrating 

typical phenomena. 

Example 3.21. We consider three balanced but not strictly balanced graphs. 

All three have m(G) = 1, and thus we assume p = c/n for some c > 0. 
First, if G = 2C3, a union of two disjoint triangles, then a.a.s. Xg = 

1 Xc,(Xc,—1) (Exercise!). Since Xc, 4, Z, € Po(c?/6) by Theorem 3.19, and 
continuous functions preserve convergence of distribution (Billingsley 1968, 

Section 5), we obtain XG ZN $23(Z3 — 1). In particular, for the probability 

of no copy of G, P(Xg = 0) > (14+ c?/6) exp(—c? /6). 
Second, if G is a disjoint union of a C3 and a C4, then a.a.s. Xg = Xo,Xc,- 

By Remark 3.20, (Xc,,Xc,) > (Z3,Z4), with Z; € Po(c?/6) and Z, € 
Po(c*/8) independent. Consequently, XG oa Z3Z4. In particular, P(X¢ = 

0) + 1— (1 — exp(—c?/6)) (1 — exp(—c*/8)). 

Third, if G is the whisk graph Kj, that is, a triangle with a pendant edge 

(see Figure 3.3), then XG 4, we W;, where W; € Po(3c) are independent 
of Z3 € Po(c?/6) and of each other. In particular, P(X¢g = 0) > exp(—(1 — 

e~*°)c3/6). The idea behind this is that, asymptotically, there is a Po(c?/6) 
distributed number of triangles, and each triangle has a Po(3c) distributed 

number of pendant edges, each creating one copy of Kj. For details, see 

Bollobas and Wierman (1989) or Janson (1987). 

Finally, let us mention that for p > n~'/™(@), Xo has an asymptotic 

normal distribution (Theorem 6.5). 

3.4 THE COVERING PROBLEM 

The next topic covered in this chapter deals with covering every vertex of a 

random graph by a copy of a given graph G. The graph property that every 

vertex belongs to a copy of G will be denoted throughout this chapter and 

Chapter 4 by COVg. If G contains an isolated vertex (and n > vg), then, 
trivially, the property COVg coincides with the presence of a copy of H, where 
H is obtained from G by removing one isolated vertex. Since this property 
has been discussed before, throughout this section we will be assuming that 
the minimum degree of G is at least 1. 

For a particular vertex i € [n], there are possibly several positions it may 
take in a copy of G which covers it. For the purpose of classifying them, 
let us introduce the notion of a rooted graph (v,G), where G is a graph and 
v € V(G) is the root. For example, there is only one (up to isomorphism) 
rooted version of K3, while the whisk graph Ke enjoys three nonisomorphic 
rooted versions (see Figure 3.3). 
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Fig. 3.3 Three rooted versions of the whisk graph; the roots are indicated by open 

circles. 

For a rooted graph (v,G), with vg > 1, let d(v,G) = eg/(vg — 1) and let 

m(v,G) = 1X d(v, H). 

(Thus, d(v,G) = d“)(G) does not depend on v, but m(v, G) does, in general.) 
A rooted graph (v,G) is called balanced if d(v,G) = m(v,G) and strictly 

balanced if d(v,H) < d(v,G) for every proper subgraph H of G containing 
the vertex v. For instance, among the three rooted versions of 4 only one is 

strictly balanced, while the other two are not balanced (Exercise!). Note that 

a graph is strictly K,-balanced if and only if all its rooted versions are strictly 

balanced (Exercise!). In particular, all cycles and complete graphs have only 

one rooted version, and that is strictly balanced. 

For i € [n] and v € V(G), let U;(v) be the number of copies of (v, G) 
contained in the random graph G(n,p), in which vertex i takes the role of 

the root v, and let U; be the total number of copies of G containing 7. Then, 

similarly to the problem of containment of ordinary subgraphs, p = Te a) 

is the threshold for the property “U;(v) > 0” (Ruciniski and Vince 1986) and 
consequently, p = n7!/Minvec m(v,G) is the threshold for the property “U; > 0” 

(Exercise!). 
For instance, as soon as p > n~°/4, a fixed vertex, say vertex 1, a.a.s. 

belongs to a copy of K}, but only when p > n—2/3, does it belong to a 

triangle. 

However, we are mainly interested in the random variable 

We = {i € [n] :U; = 0}| = >> 1 = 9, 
1 

which counts the vertices of G(n,p) not covered by copies of G; hence COVe 

is equivalent to “Wg = 0”. Theorem 3.22 below provides thresholds for the 

events COVg which, of course, depend on the structure of G. 

For a graph G, let m. = minyegm(v,G) and M(G) = {uv € V(G) : 

m(v,G) = m,}. For a vertex v € M(G) let C, be the family of all subgraphs H 

of G which contain v and satisfy the conditions d(v, H) =m, and Nx(v) # 9, 
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the latter condition just saying that v is not an isolated vertex in H. Further, 

let sy = minyec, e(H), with sy = oo if C, = @, and s = maxyen(a) Sv- 

Finally, set a = |M(G)|/ aut(G). 

Theorem 3.22. Let G be a graph with minimum degree at least 1. 

(i) If for every v € M(G) the rooted graph (v,G) is strictly balanced, then 

lim P(G(n,p) € COVg) = 
noo 

0 if an’¢—p’e —logn > —oo 

1 ifan’é—!p’e —logn > co. 

Moreover, if an’¢—+p®¢ — logn > c, —o0 < c < oo, then 

We is Po(e~°), and hence P(G(n,p) € COVg) > exp(—e~°). 

(ii) If s < oo, then there exist constants c,C > 0 such that 

lim P(G(n,p) € COVe) = 
n—- co 

0 ifp<c(logn)/*n-V™, 
1 ifp>C(logn)/8n-V/™-, 

(iii) If s = oo, then 

O ips 
Pig CRE (Sa = . if p> nm, 

It is easy to check that the assumption in (i) is a special case of that 

in (ii), with m, = d@)(G) and s = eg (Exercise!). In Case (iii), which is 
the complement of (ii), the parameter m, coincides with m(G) appearing 
in Theorem 3.4 (Exercise!); hence the threshold for covering by copies of G 
coincides with the threshold for existence of any copy at all. 

Remark 3.23. Note that the nicer the structure of G, the sharper thresh- 

old one can prove. Indeed, in Case (i), a~!/°¢ (logn)!/e¢n-'/™ is a sharp 
threshold. In Case (ii), it follows from Theorem 1.31 that there exists a sharp 
threshold, although we do not know it exactly. By (ii) above, the sharp thresh- 
old is of the form b(n)(logn)!/8n-1/™- for some b(n) with c < b(n) < C; it 
is reasonable to conjecture that b(n) is a constant, but at present we cannot 
rule out the possibility that it oscillates somehow. 

In Case (iii), in contrast, the threshold is coarse. In fact, if p = cn~1/™+ for 
any fixed c > 0, and H is a minimal subgraph of G such that d(H) = m(G), 
then Theorem 3.19 shows that Xy ie Po(A) for some A < oo, and thus 
P(Xg = 0) > P(Xy = 0) 3 e~* > 0,80 P(G(n, p) E COVc) f 1. 

Part (i) was proved independently by Ruciriski (1992a) and, in a slightly 
disguised form, by Spencer (1990). We will present the proof of part (i) only. 
The proofs of the other two parts follow from more general results by Spencer 
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Ly Lo L3 

Fig. 3.4 The lollipop graphs. 

(1990) on extension statements; see the end of this section. Before presenting 

the proof of (i), we give a few examples. 

Example 3.24. The graphs K3 and Kj have strictly balanced rooted ver- 

sions and, by Case (i) of Theorem 3.22, the respective thresholds for the 

properties COVx, and COV,+ are (logn)!/3n-2/3 and (logn)!/4n-3/4, re- 

spectively. In particular, for (logn)!/4n-3/4 < p(n) « n-?/3 a.a.s. every 

vertex belongs to a copy of Kj, but since there are only o(n) triangles, most 

vertices take the “off-triangle” position. 

Example 3.25. The threshold for COVx, equals n~?/>log!/!°n by Theo- 
rem 3.22(i). Consider now the lollipop graphs L, obtained from a clique Ks 

by attaching to it a path P, (see Figure 3.4). 
Let t denote the vertex of degree one (the tail vertex). The lollipop L; has 

m = 11/5 and M = {t}, and the rooted graph (t, Lj) is strictly balanced; 
thus Case (i) applies. For L2, we have m = 2 and again M = {t}, but this 
time the rooted graph (t, Lz) is balanced, but not strictly balanced. Moreover, 

C, = {L2}, so s = 5; = e(L2), and thus Case (ii) applies. Hence, the thresholds 
for covering every vertex of G(n,p) by copies of L; and Lz are, respectively, 

n—*/11 (log n)!/1! and n—1/? (log n)1/??. 
Finally, consider lollipops with r > 3. We have m = 2 and t € M, but this 

time the only pair (t, H) which achieves d(v,H) = m is such that H is the 

clique Ks, together with the tail vertex t, which is isolated in H. Thus C; = 0, 

8, = 00, Case (iii) applies, and the threshold for COV, coincides with that 

for the existence of Ks, that is, n~!/2. In other words, as soon as copies of Ks 

begin to appear in G(n,p), every vertex is at distance at most three from one 

of them. This particular observation follows also from the known fact that 

the threshold for diameter three is n~2/3 log!/*.n (Bollobds 1985, Chapter X), 

which is well below the threshold for existence of Ks. 
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Proof of Theorem 3.22(i). We use a mixture of the second moment method 

and the correlation inequality of Theorem 2.18(i). By the monotonicity of the 

property COVG we may assume that n’¢~!p*¢ = O(logn). Since for every 

v ¢ M(G), P(U;(v) > 0) = o(1), the decisive role in covering the vertices of 

G(n,p) is played by the rooted versions (v,G), where v € M(G). Let {v;}, 

1 =1,...,l, be a maximal collection of vertices of M(G) for which the rooted 

eraphs (v;,G) are pairwise nonisomorphic. Set U; = ee U;(v;) and observe 

that 

S00; =|M|Xe. 
(alt 

Hence, by symmetry, E(U;) = Let E(Xc) = an’¢—!p°%¢ + o(1). 
Further, for each v ¢ M(G), choose a minimal subgraph H, C G containing 

v such that d(v, H,) = m(v,G) > m,, let U(v) be the number of copies of 

(v, Hy) in G(n, p) rooted at i, and let U7 = ))gmqy U7 (v). Then EUS = 

o(1). 

Since E(Wg) = n P(U; = 0), we need a sensitive asymptotic for P(U; = 0). 
Note that U,; + U7 = 0 implies U,; = 0. Thus, by Corollary 2.13 we have 

P(U;, = 0) > P(O + Ux = 0) > e~ MAtUI)/A-P) — e- E(Oi) +0(1)_ 

For an upper bound, let S be the family of all edge sets of rooted copies of 

(v;,G), 7 =1,...,1, in the complete graph K, with vertex 1 as the root. For 

each A € S, we set 

I, = 1[{A C Gn, p)]. 

We then have 

Ds »s E(I4Ip) = O xs n2ve-s—l pect 

A B#A, BNA#0 (s,t) 

—-O n2vG—2p2eG SS n—(s-1) pt 

(s,t) 

where s and t represent, respectively, the number of common vertices and 
edges of a pair of two copies of G, each rooted at a vertex of M(G) and both 
containing vertex 1 as the root. Such an intersection is a proper subgraph of 
G containing a vertex v € M(G) and hence, by the fact that (v, G) is strictly 
balanced, we always have 

t eg 
<< : 

s—-l vug-1 

Thus, in our range of p(n), n°—!p* > n® for some € > 0. This together with 
Theorem 2.18(i) implies that 
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Hence, 

E(We)=nP(U; =0)\= ne~ E(U1)+0(1) — e-an"e—*p*e +0(1)._ (3.20) 

If an*¢~*p* — logn — oo, then E(Wg) = o(1) and, by the first moment 
method, P(We > 0) = o(1). On the other hand, if an’@~1p%¢ — logn + —o0, 
then E(Wg) > oo and we apply the second moment method to Wg. To this 
end, as Wg is a sum of mutually dependent indicators, it is convenient to 
express the variance of Wg in the form 

Var(We) = E(We(We — 1)) + E(We) — (E(We))?. 

We have 

E(We(We —1))= n(n =T) PU, = U2'= 0) <n(n —1) P(U, ae U2 = 0) 

and, by another application of Theorem 2.18(i) (this time to the family of all 
edge sets of copies of (v;,G), j = 1,...,1, rooted at 1 or 2), 

P(Ty = Uz = 0) < e772 FU1) +01), 

Altogether, 

= Var(We) _ E(We(We —1)) 4 Ae 
PW =< EWe)?—«(E(We))?—«* EWa) 

Similarly one can prove that when an’¢~!p*s — logn — c, and thus 

E(Wc) — e~* by (3.20), the k-th factorial moment E[WG(We —1)---(We - 

k + 1)] of We converges to e~°** for every k > 1. This proves, by Corol- 

lary 6.8, that We converges to the Poisson distribution with expectation e~°. 

Alternatively, one could apply here Stein’s method (cf. Theorem 6.24). x 

Extension statements 

Spencer (1990) considers a related problem with some applications to the 

zero-one laws for random graphs discussed in Chapter 10. 

Let R = {v1,...,v,} be an independent set of vertices in a graph G. The 

pair (R,G) will be dubbed a rooted graph. For |R| = 1 this is the notion 
introduced at the beginning of this section. We say that a graph F satisfies 

the extension statement Ext(R,G), or briefly, F € Ext(R,G), if for every r- 

tuple R’ = {vj,...,v/} of vertices of F there is a copy of G in F with v; 

mapped onto v;, 7 = 1,...,r. 

Example 3.26. If G = K2 and |R| = 1, then F € Ext(R, G) means that there 
are no isolated vertices in F. If G = K3 and |R| = 1, then F € Ext(R,G) 
is equivalent to F € COVg. The same is true for every vertex-transitive 
graph G; more generally, if R = {v}, then F € Ext(R,G) means that every 
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vertex in F belongs to a copy of G where it corresponds to v. If G = PF and 

R is the set of the endpoints of P,, then F € Ext(R,G) says that every pair 

of vertices of F is connected by a path of length k. 

We will now define notions which are straightforward generalizations of 

the case (v,G) treated above. For a rooted graph (R,G), with r = |RI, let 

d(R,G) = eg/(vg — Tr) and let 

m(R,G) = mas wd i ay 
H:RCHCG 

The rooted graph (R,G) is called balanced if for every subgraph H of G, such 

that V(H) D R, we have d(R,H) < d(R,G), and strictly balanced if this 

inequality is strict for all proper subgraphs H of G, such that V(H) 2 R. 

As a generalization of the families C, appearing before Theorem 3.22 we 

now define a subgraph H containing R to be primal if d(R, H) = m(R,G) 

and grounded if at least one of v),...,v, is not isolated in H. We let sR be 

the smallest number of edges in a grounded primal subgraph H, with sr = oo 

if no such subgraph exists. Finally, let b; be the number of automorphisms 

of G that fix every element of R, and let bz be the number of permutations 

of R that can be extended to some automorphism of G. Then, the following 

results hold; for the proof we refer to Spencer (1990). 

Theorem 3.27. Let G be a graph with minimum degree at least 1, and let 

RQ be an independent set of vertices in G. 

(i) If the rooted graph (R,G) is strictly balanced, then 

lim P(G(n,p) € Ext(R,G)) = 
n—->Cco 

0 if n’e—"pfs — birlogn 4 —co 

1 if n’e-"ps — bir logn > oo. 

Moreover, if n°°—"p°? — bir logn — c, —0o < ¢ < 00, then P(G(n,p) € 

Ext(R,G)) — exp(—e~°/?" /b2). 

(ii) If sp < 00, then there exist constants c,C > 0 such that 

0 ifp<c(logn)/*rn-Vm2,G) lim P(G(n,p) € Ext(R,G)) = 

(iii) If sk = 00, in which case m(R,G) = m(G), then 

0 ifp<n-V/m) 
lim P(G(n,p) € Ext(R,G)) = 
n—0o ( ( P) ( )) ‘ if p> n/m), = 
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The 1-statements in parts (ii) and (iii) (with |R| = 1) immediately imply 
the corresponding statements in Theorem 3.22. This is not so for the 0- 

proofs as for the corresponding 0-statements in Theorem 3.27 given in Spencer 
(1990). (For the 0-statement in (iii), this is just applying Theorem 3.4.) 

Example 3.28. For a graph G, one may ask what the threshold is for the 
property that for every vertex of G(n,p) the subgraph induced by its neigh- 
borhood contains a copy of G. Let G + K, be the graph obtained by joining 
a new vertex w to every vertex of G. Then this property is equivalent to 
Ext({w},G + K,). For a strictly balanced (in the ordinary, unrooted sense) 
graph G, the rooted graph (w,G + Kj) is strictly balanced and, by The- 
orem 3.27(i), the desired threshold is (logn)!/(e+ee)n-ve/(ve+ec) (which 
coincides with the threshold for COVg4x,) (Exercise!). 

3.5 DISJOINT COPIES 

In this section we consider a problem which will be further developed in Sec- 

tion 4.2. The question we address here is: How many disjoint copies of a given 

graph G are there in a random graph G(n,p)? As the disjointness may be 

meant with respect to vertices or with respect to edges, we define two ran- 

dom variables D2, and D@ equal to the cardinality of the largest collection of 

vertex- and edge-disjoint copies of G, respectively. Trivially, DZ < Dé < Xa, 

_ but also D@ < D%, for every non-empty subgraph H of G and D@ < D4, for 

every non-null subgraph H of G. Define 

®2(n,p) = &6 def min{E(Xq): H CG, vq > 0} = min(%e,n), 

denote $4 = ®g, where ®g was defined in Section 3.1, and observe that 

2% — oo if and only if ®& — oo (cf. Lemma 3.6). We know from Section 3.1 
that when ®&4 — oo, then Xy = Oc(EXy) for H C G (since 66 — oo 
implies ®§, — oo) and thus Dé = Oc(®%) and Dé = Oc(#G@). In fact, the 
above quantities provide the correct orders of magnitude for the two random 

variables in question. 

Theorem 3.29. If ®g — oo, then Dt, = Oc(®Z) and Dg = 9a(%G). 

Proof. The proof below is a slight modification of that from Kreuter (1996) 

and relies on the second moment method. 
Consider first the vertex case and define an auxiliary graph I’ with vertices 

being the copies of G in G(n,p) and edges connecting pairs of copies with 
at least one vertex in common. Thus, vp = Xg and er = )> rp XF, where 

the sum is taken over all unions F' = G; U G2 of two copies of G sharing at 

least one vertex. Also, any independent set of vertices in I corresponds to a 

vertex-disjoint collection of copies of G in G(n,p). Hence, it follows from the 
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Turdn Theorem (see, e.g., Berge (1973, p. 282)) that 

XG (3.21) D2 > >=. ; 
Oe Ae aan, 

In view of this, all we need to show is that 

EXc) 
Xr=Oc (Sse) (3:22) 

2% 

for every union F' of two vertex-intersecting copies of G. 

For convenience, set Vp = n°’? p*F and note that EXp = O(Vp). The 

reason we prefer to use Vp rather than E Xy is the log-modularity property 

UrunVvAarM = Ur, Vr, 

holding for arbitrary graphs F, and F2. Note also that Vy = O(EXy) = 

Q(¢) if H CG and vq > 0. 
Now assume that F = G,; UG2, where G; and G2 are two copies of G, and 

let H = G,NGp2 have vy > 0. Then 

reheat tbe BXp = (Ur) =0 (2) = 05) 

In order to bound Xp by the same quantity as E Xr we will apply Cheby- 

shev’s inequality. For this we need to estimate the variance of X, which, by 

Lemma 3.5, is of the order U2 /®%. To bound, in turn, ®§ from below, as- 

sume that DCF with e, > Oand let £7 =2NGj37=1,2.. Then D=L,ULs, 

LUH = (L,UA)U(L2UA), and (ZL; VUH)N(L2UH) = H. Two applications 
of the log-modularity of W yield 

v,= VruaV¥ing — Vin Vi.HYLAH 
Wr U2, 

Here L; UH, L2 UH and LN 2H are all subgraphs of G. Thus, if vzqy > 0, 
then Wz = 2 ((6%)3/03,). 

In the special case utjH = 0, the graphs L, and Ly are disjoint and at least 

one of them is non-empty. Assume that ez, > 0. Then, taking into account 

that Vp, > $4 > 00 if vz, > 0 and VU; = 1 otherwise, we obtain 

v \3 

We = Bir, > ws, = 0 (F8 ty 

Consequently, 
v\3 

&% = minEX,; =2 (PG) 
eyp>0 U7, 

and, using the log-modularity of V again, 

vets =0(5E) =0( test) = Caag) 
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Hence, by Chebyshev’s inequality and the assumption that ®2, > 00, 

: : V2, 
P (xr = E Xp = # = O(1/®2) = o(1), 

G 

which proves (3.22) and completes the proof of Theorem 3.29 in the vertex 
case. 

The proof for D¢@ follows along the same lines. But instead of repeating the 

same argument for the edge case, we present an alternative approach involving 

Markov’s and Talagrand’s inequalities. 

Building the auxiliary graph T in a similar way with the obvious modifi- 

cation that now the edges of I join edge-intersecting copies of G in G(n, p), 
we have, by Markov’s inequality (1.3), that with probability at least 3, eri 

4E(er). We have 4E(er) < c)(EXG)?/%, for some c; > 0, and thus, by 

(3.21) modified to the edge case, and by the fact that Xg = Oc(E Xa), there 
is another constant c2 > 0 such that D& > co@& with probability at least, 

say, >. 
Now, using Talagrand’s inequality, we will convert 4 to 1—0(1) as required. 

As we are heading toward an application of Theorem 2.29, let us define Z; to 

be the indicator of the presence of the i-th edge of the random graph G(n, p), 

i=1,2,...,N = (5). Then Dé = f(Z1,..., Zn), where the function f clearly 
satisfies the Lipschitz condition (L) with all c; = 1. The other assumption of 
Theorem 2.29, Condition (C), holds with the function 7)(r) = egr for integer 

r > 0 (and thus with ~(r) = eg[r] for any real r > 0). Indeed, for any 
integer r, and for any graph F containing r edge-disjoint copies of G, choose 

_ J to be the index set of all egr edges belonging to these copies. Then any 

other graph coinciding with F on the given edges contains r edge-disjoint 

copies of G too. Therefore, by (2.35) (cf. Example 2.33), for 0 < cz < cz and 
with t = (C2 —; c3)®G, 

P(Dg < c3B%) < 2P(D% < c36%) P(D& > [e2]) 

este = exp{—O0(®c)} = o(1). | <2 {- 
peri 4egc2®G 

Note that the last bound in the proof provides yet another proof of the 

right-hand inequality of Theorem 3.9. Indeed, 

P(Xg = 0) = P(DZ = 0) < P(DG < c3@). 

3.6 VARIATIONS ON THE THEME 

There are several other properties related to that of containing a copy of G. 

One such property is the containment of at least one induced copy of G in 

the random graph G(n,p). Another variation is counting only those copies of 

G which are vertex disjoint from all other copies of G contained in G(n, p). 



78 SMALL SUBGRAPHS 

Fig. 3.5 The only solitary triangle in this graph is drawn in bold. 

Below we call them solitary (see Figure 3.5). Finally, we consider a special 

case of solitary.subgraphs: the isolated copies of G. 

Induced subgraphs 

Let us denote by Yg the number of induced copies of G in G(n, p). As we will 

see in Chapter 6, for p constant, the behavior of Yg¢ may significantly differ 

from that of Xg. However, for p = 0(1) they are asymptotically the same. 

Here we only explain why the event “Yg > 0” has the same threshold as the 
event “Xg > 0”. The 0-statement of Theorem 3.4 holds for induced copies 
simply because Yg < Xq. Let Jg be a zero—one random variable equal to 1 
if G’, a copy of G in K,, actually becomes an induced copy of G in G(n, p). 
For an application of the second moment method, observe that, assuming 

p=o(1), 

E(Jor) = p®¢(1 - p)(#)-*9 ~ E(Ie) 
and, consequently, 

E(YcG) ~ E(Xe). 

Moreover, for any two copies G’ and G” of G which share at least one edge 

Cov(Jg, Jen) < E( Jag: Jen) < E(Ig: Ign) ~ Cov(Ig:, Ign), 

while for any two copies with at most one vertex in common, Cov(Jg@, Jen) = 
0. Finally, for any two edge-disjoint copies sharing t vertices, where t > 2, 
Cov(Jar, Jen) < p**¢, and the number of such pairs is O(n2"¢-*). Hence, as 
in the case of ordinary subgraphs, we have (Exercise!) 

Var(Ye) 
P(Yg = 0) < —~~ = ; 

There is another way of deducing the above fact. Assume again that p = 
o(1). By Markov’s inequality, P(Xg —Y¢ > 3 E(Xc)) = o(1) and so a.a.s. 
Ye > Xq — }E(Xc). On the other hand, we know that when Bg — ov, 
XG¢/E(Xg) 4 1 and, in particular, a.a.s. Xg > 2 E(Xq). Hence, a.a.s. 
Yo > 3 E(X dre10; 
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The presence of an induced copy of G is not a monotone property (except 
in the trivial cases in which G is either complete or empty). It is not even 
convex (Exercise!), however, it has a second (disappearence) threshold toward 
the end of the evolution of G(n,p). In terms of gq = 1 — p, it corresponds to 
the threshold for “Xg- > 0” in the complementary random graph G(n,q), 
where G° is the complement of G. Hence, the second threshold is roughly 
1 — O(n-1/™G")) (Exercise!). 

Solitary subgraphs 

Let us denote by Z< the number of solitary copies of G. Clearly, Zg < D¥, 

where DZ has been defined in the previous section. Observe that E(Zg) = 
E(Xq)IIg, where Ig is the conditional probability that a fixed copy of G is 

solitary, given that it is present in G(n, p). 

For a nonbalanced G, limn-,.~. P(Zg > 0) = 0, since as soon as copies of G 

emerge, it can be seen by Theorem 2.18 that Ig is exponentially small with 

a power of n in the exponent, and hence P(Zg > 0) < E(Zc¢) = E(XG) Ig = 

o(1) (Exercise!). With some additional effort one can prove that for a balanced 

but not strictly balanced G, we have P(Zg > 0) = o(1) as soon as P(Xg > 
0) + 1 and thus lim sup P(Z@ > 0) is never equal to 1 (Exercise!). 

Let us assume now that G is strictly balanced. If p = O(n—1/4%9)), then, as 

we showed in the proof of Theorem 3.19, a.a.s. there are no intersecting pairs 

of G at all, and so Zg = Xg. In other words, when copies of a strictly balanced 

graph G first emerge, they are all solitary. This holds true even beyond the 

threshold, when np*(9) -+ oo sufficiently slowly. But the containment of a 

solitary copy is not monotone either, and with more and more edges in the 

random graph, the solitary copies of G become rarer until complete extinction 

occurs. The second (disappearence) threshold was detected for strictly K1- 

balanced graphs by Suen (1990), and for a slightly larger subclass of strictly 

balanced graphs (including trees) by Kurkowiak and Ruciriski (2000). It is 

determined, roughly, by the equation EXg = O(nlogn). 
The difficulty we are facing here is that the probablity Hg depends on all 

pairs in [n]? and, rather than finding an exact expression, one can only bound 
it, using results like Theorem 2.18 and Theorem 2.12. We remark that this 

problem was a motivation for Suen to develop his correlation inequality, some 

versions of which were discussed in Section 2.3. 

Isolated subgraphs 

A much simpler situation takes place when one counts the isolated copies of 

G, that is, assuming G is connected, the connected components of G(n, p) 

which are isomorphic to G. Let Tg count the isolated copies of G. This time 

E(Tg) = E(Yg)(1 — p)’e'"-"6) = O(n’ p*¢e-*e"?); hence, if eg > vg, we 

have P(Tg > 0) < E(Tg) = o(1), and there are a.a.s. no isolated copies of G. 
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The same is true if eg = vg and further p < 1/n or p > 1/n. We urge the 

reader (Exercise!) to show that Tg has a limiting Poisson distribution when G 

is connected with eg = vg and p~ c/n, 0 < c < oo (Erdés and Rényi 1960); 

see Example 6.29. 

It remains to consider connected graphs G such that eg < ug, that is, 

trees. These are the only small graphs which a.a.s. become components of a 

random graph. Instead of focusing on a single tree, we will count all trees of 

a given order at once. Let T,, denote the number of all v-vertex isolated trees 

in G(n,p), v =1,2,.... Then, provided np” — 0, 

v—2 
v VU E(T,) = (Boe = pyro PE yee tone 

This quantity converges to a constant if either n’p’~! > c > 0 or unp— 

logn — (v — 1) loglogn —> c € (—0oo,00). The following result, proved al- 

ready by Erdos and Rényi (1960), asserts that these two conditions determine 

two thresholds for the property T,, > 0. (See also Theorem 6.38 and Exam- 
ple 6.29.) 

Theorem 3.30. Let c, = unp — logn — (v — 1) loglogn. Then 

v,u—1 P(T, >0) 3 0 Oey Waar 

1 ifn’p’—* + co and cn > —-@. 

Moreover, if n’p’-! + c € (—00,00) or cn > c > 0, then T, 4 Po(A), 

where A = limn-4o0 E(Ty) € (0, 00). & 

The case v = 1 is special here. The random variable T; is the number 

of isolated vertices in G(n,p) and n’p’-! = n. Hence there is only one 
threshold. Furthermore, the loglogn term drops out and we arrive at the 
following corollary. 

Corollary 3.31. Let cn = np —logn and let T; be the number of isolated 
vertices in G(n,p). Then 

0 ifcnr 40, 
P(T; >0)- ‘ 

1 tf cn > —oo. 

Moreover, if cn + c € (—00, 00), then T, a Pele"). & 

The proof of Theorem 3.30 follows the lines of those of Theorems 3.4, 3.19 
and 3.22 (Exercise!). Another proof will be given in Example 6.28. 



Matchings 

Perfect matchings play an important role in graph theory. On the one hand, 

they find a broad spectrum of applications. On the other hand, they are the 

subject of elegant theorems. The two results which characterize their exis- 

tence — Hall’s and Tutte’s theorems — are truly beautiful pearls of the theory. 

No wonder that Erdds and Rényi, after settling the question of connectivity 

(Erdés and Rényi 1959, 1961), turned their attention to the problem of find- 

ing the thresholds for existence of perfect matchings in random graphs (Erdés 

and Rényi 1964, 1966, 1968). 
The results they obtained reveal a special feature of random graphs one 

could call “the minimum degree phenomenon.” Namely, it is frequently true 

that if a minimum degree condition is necessary for a property to hold, then 

a.a.s. the property holds in a random graph as soon as the condition is sat- 

isfied. This phenomenon is discussed to larger extent in Section 5.1. Here 

we just mention that as soon as the last isolated vertex disappears, the ran- 

dom graph becomes connected (Erdés and Rényi (1959) and, for the hitting 
version, Bollobés and Thomason (1985)). Moreover, as we will learn later in 

this chapter (Corollary 4.5 and Theorem 4.6), provided n is even, from that 

very moment the random graph also contains a perfect matching (Erdés and 

Rényi 1966, Bollobés and Thomason 1985). 
In the first section of this chapter we present a new proof of the threshold 

theorem for perfect matchings, which is based on Hall’s rather than Tutte’s 

theorem. This approach was originally designed to solve the problem of perfect 

tree-matchings (Luczak and Ruciriski 1991), a special instance of G-factors, 

where one looks for a vertex-disjoint union of copies of a given graph G which 

covers all vertices of G(n,p). Ordinary matchings correspond to the case 

81 
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G = Ky. Section 4.2 collects results on G-factors and partial G-factors in 

random graphs. Finally, in Section 4.3 we present recent advances on two long- 

standing open problems: finding the threshold for triangle-factors in G(n, p) 

and for perfect matchings in random 3-uniform hypergraphs, the latter known 

as the Shamir problem. 

4.1 PERFECT MATCHINGS 

A matching in a graph can be identified with a set of disjoint edges. A perfect 

matching is one which covers every vertex of the graph. Sometimes a perfect 

matching is called a 1-factor, because it is, in fact, a l-regular spanning 

subgraph. A necessary condition for the existence of a perfect matching in 

a graph is the absence of isolated vertices. It turned out that in a random 

graph this is a.a.s. sufficient. Because of the simplicity of Hall’s condition, it 

is quite straightforward to prove this result for random bipartite graphs. 

Random bipartite graphs 

Recall that a random bipartite graph, denoted here by G(n,n,p), is the relia- 

bility network with the initial graph being the complete bipartite graph Ky,n 

with bipartition (Vi, V2), |Vil = |V2] = n. In other words, G(n,n,p) is ob- 
tained from K,,,, by independent removal of each edge with probability 1 — p. 

Assume that logn — loglogn < np < 2logn and suppose that the random 

graph G(n,n,p) does not have a perfect matching. Then, by the Hall Theo- 

rem, there is a set S C V; for some 7 = 1,2, which violates Hall’s condition, 

that is, |S| > |N(S)|, where N(S) is the set of all vertices adjacent to at least 
one vertex from S. Let S be a minimal such set. Then (Exercise!), 

(i) |S] =|N(S)| +1, 

(ii) |S] < [n/2], 

(iii) every vertex in N(S) is adjacent to at least two vertices of S. 

Set s =|S|. If s=1, then S is an isolated vertex. If s = 2, then S consists 
of two vertices of degree 1 adjacent to the same vertex. Let us call such a 
structure a cherry (see Figure 4.1)) and let X count cherries in G(n, n, p). 

Then 

E(X) = O(n3p2e-2"P) = O (« (“2") os) = 0(1), (4.1) 
n n2 

meaning that a.a.s. there are no cherries in G(n, n, p). 
Let A denote the event that there is a minimal set S of size s > 3 which 

violates Hall’s condition. Then, using (i)-(iii), and bounding by (2) ae the 
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Fig. 4.1 A cherry in a graph marked with bold lines. 

number of choices to realize (iii), we obtain 

iS) s—1 

P(A) & SS (") (, is :) (3) gia =a pywait)) 

s=3 

s—1 

lS ia fae 2(s—1) 
» ( Ss ) (. - :) : 

21 2(s—1) 
= ogn es BORE if loglogn | 

n 2 7 

n 4e? log®/? n on log!/? n = 

<a (oe) -0(O ma ta 
In conclusion, the threshold for having a perfect matching coincides with that 

for the disappearance of isolated vertices. The latter can be routinely found 

(Exercise!) by the method of moments (see Corollary 3.31 and Example 6.28). 
Thus, we obtain the result of Erdés and Rényi (1964). 

Theorem 4.1. 

0 if np — logn + —oo, 

P(G(n,n,p) has a perfect matching) > <e—2* °  ifnp—logn >, 

1 ifnp—logn—oo. 

Remark 4.2. Consider a random bipartite graph process {G(n,n, M Wiens 
defined in analogy with the standard random graph process (Section 1.1) and 

define the hitting times 7; = min{M : 6(G(n,n, M)) > 1} and mm = min{M : 
G(n,n, M) has a perfect matching}. (Thus, trivially, 7 < Tpm-) 

The proof of Theorem 4.1 above yields also the stronger result that a.a.s. 

Tpm = 71. Indeed, if for convenience we instead consider the corresponding 

continuous time random graph process {G(n,n,t)}o<t<1, the same calcula- 
tions as in (4.1) and (4.2) show that a.a.s. there is no minimal subset S of 
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size s > 2 violating Hall’s condition for any t € [(logn—loglogn)/n, 2logn/n], 

and the result follows easily (Exercise!). 

Remark 4.3. For future reference we explicitly state the error probability 

estimate 

P(G(n,n,p) has no perfect matching) = O(ne~”?), (4.3) 

which is valid for all n and p. This too follows by the argument above; the 

probabilities of having an isolated vertex or a cherry are easily seen to be of this 

order (Exercise!), while a minor modification of (4.2) shows that, assuming, 

as we may, np > logn, 

P(A) < Sate in errem ne = Obrp es? ?) = O(ne~"?). 

s>3 

Ordinary random graphs 

Let us return now to the ordinary random graph G(n,p), n even. Fixing an 
n/2 by n/2 bipartition of the vertex set and ignoring the edges within each of 
the two sets, we immediately see that Theorem 4.1 implies that G(n,p) has 

a perfect matching a.a.s. as soon as np — 2logn — co. We will show how to 

reduce the above value of p by half so that, again, the threshold is the same 

as for the disappearance of isolated vertices (cf. Corollary 3.31). 

In fact, we will show an even stronger result due to Bollobas and Thomason 

(1985). But first let us extend the notion of a perfect matching by saying that 
a graph satisfies property PM if there is a matching covering all but at most 

one of the nonisolated vertices. It can be routinely checked (Exercise!) that 
as soon as 2np— logn —loglogn — oo, there are only isolated vertices outside 

the giant component (cf. Chapter 5). Note that this holds already when the 

number of edges in G(n, p) is only about zn log n — roughly half the threshold 
for the disappearance of isolated vertices. 

However, the main obstacle for PM is now the presence of cherries. Two 

or more of them make it impossible. If there is exactly one cherry, PM is 

still possible, provided the number of nonisolated vertices (as well as isolated 

vertices) is odd. The expected number of cherries is 

3(5 era = De cn pe eh 

if 2np — logn — 2loglogn — ov, which also holds already when there are 
about inlogn edges in G(n,p). Again, as proved by Bollobds and Thomason 
(1985), this trivial necessary condition becomes a.a.s. sufficient. 

Theorem 4.4. Let y, = 2np —logn —2loglogn. Then 

0 if Yn — —OO, 

P(G(n,p) € PM) > ¢ (14+ de “)e7 se if Yn > C, 

1 af Yn —> 00. 



PERFECT MATCHINGS 85 

Consequently we obtain a result of Erdés and Rényi (1966). 

Corollary 4.5. 

0 if np — logn + —oo, 

P(G(n,p) has a perfect matching) > ¢e-© © if np— logn > ¢, 

1 of np — logn > oo. | 

The proof below is easily modified to give the corresponding hitting time 
result too (Exercise!). 

Theorem 4.6. The random graph process {G(n,M)} 4 is a.a.s. such that 
the hitting times | = min{M : 6(G(n,M)) > 1} and tm = min{M : 
G(n, M) has a perfect matching} coincide. et 

The original proofs of the 1-statements of Theorem 4.4 and Corollary 4.5 

were both based on Tutte’s theorem. Here we propose an alternative approach, 

via Hall’s theorem, by Luczak and Rucinski (1991). This approach relies on 

the following technical lemma. Given two disjoint sets of vertices in a graph, 

the bipartite subgraph induced by them consists of all edges with one endpoint 

in each set. 

Lemma 4.7. Let np = O(logn). For every c > 0, a.a.s. every bipartite 

subgraph, induced in G(n,p) by two sets of equal size and with minimum 
degree at least clogn, contains a perfect matching. 

Proof. Set u = iA ke By the first moment method it is easy to check 
gn 

(Exercise!) that a.a.s. 

(i) for every pair of disjoint subsets of vertices of size bigger than u 

there is in G(n,p) an edge between them, 

(ii) every set S of at most 2u vertices induces in G(n,p) fewer than 

(log log n)?|S| edges. 

The rest of the proof of Lemma 4.7 is purely deterministic. Suppose G is 

an n-vertex graph satisfying (i) and (ii), and B is a bipartite subgraph of G 
induced by the bipartition (W,, W2), |Wi| = |W2| = w, 6(B) > clogn, but 

without a perfect matching. Then, by Hall’s theorem there is S C W, such 

that |Np(S)| < |S]. 

Case J: 1S] < wu. 
Then |S U Np(S)| < 2u, but since all the edges with one endpoint in S 
have the other endpoint in Ng(S), there are at least clog n|S| such edges ~ a 

contradiction with (ii). 

Case 2: |Np(S)| > w—u. 
Then |W; \ S| < |W2 \ Ng(S)| < u and all the edges with one endpoint in 

W2\ Nzp(S) have the other endpoint in W; \.S — again a contradiction with (ii). 
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Case 3: |S| > u,|Np(S)| < w=. 
Now |W2 \ Ng(S)| > u, but there is no edge between S and W2 \ Ng(S)-—a 
contradiction with (i). a 

Proof of Theorem 4.4. Throughout the proof we assume that 5 logn<np< 

2logn and n is even. 

If y, —> —oo, the second moment method yields that a.a.s. there are many 

cherries in G(n,p) (Exercise!). Since already the presence of two cherries 
makes PM impossible, the 0-statement follows. 

If y» — c, the number of cherries has asymptotically the Poisson distribu- 

tion with expectation eer It can also be proved that the probability that 

there is Gary one cherry and the number of isolated vertices is odd, con- 

verges to ne" “exp(—Fe°). (Advanced Exercise! Hint: Apply the two-round 

exposure — ae Section 1.1 — with pz so small that during the second round a 

fixed cherry cannot be destroyed.) 
If yn — oo, then, as was shown above, a.a.s. there are no cherries at all. 

Thus, in order to prove the two latter parts of the theorem, we have to show 

that the only obstruction for PM is the presence of either at least two cherries 

or one cherry while the number of isolated vertices is even. 

The idea of the proof is as follows: Suppose that we have a graph on n 

vertices which has either no cherries at all or exactly one cherry, but then 

the number of isolated vertices is odd. Fix an arbitrary bipartition of the 

vertex set into two halves called sides. Call a vertex bad if i has either fewer 

than x0 log n neighbors within its own side or fewer than 55 log n neighbors 

on the other side. Assume that the graph satisfies the hypothesis of Lemma 

4.7 (say, with c = 34,) and some other properties held a.a.s. by G(n,p) (viz. 
Claim below). 

Match the bad vertices first (except for the isolated vertices, of course). If 
there is an odd number of them, leave one out. If the graph has a cherry, the 
left-out vertex must be a degree one vertex of that cherry. Remove all bad 
vertices and their partners (which do not need to be bad) from the graph. 
Then adjust the bipartition so that it becomes even again, but so that the 
minimum degree of the induced bipartite subgraph has not dropped much. 
Finally, apply Lemma 4.7 and obtain a matching covering all but at most one 
of the nonisolated vertices. 

Now we turn to the details. Let X be the number of bad vertices in G(n, p), 
and let Y € Bi(},p). Then E(X) = nP(vertex 1 is bad) and, by (2.6), for 
sufficiently large n, 

P(vertex 1 is bad) < 2P(Y < stlogn) < n~°}, 

Hence, by Markov’s inequality (1.3), a.a.s. X < n4/5. 
We still need to distinguish another class of vertices of low degree. Call a 

vertex small if its degree in G(n, p) is at most three. We claim that neither 
small nor bad vertices can cling together too much. 
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Claim. For every fixed integer k, a.a.s. there is no k-vertex tree in G(n, p) 
which contains more than two small vertices or more than four bad vertices. 

Proof. Let Z € Bi(n—k+1,p). It is straightforward to show (Exercise!) that 
for every fixed z 

«ee log* n 
P(Z < z) = O((np)*e—"”) =O ae AN | ((mp)*e-") = 0 (REP) = (n>) 

The expected number of k-vertex trees containing three or more small vertices 
can now be bounded from above by 

Similarly, the expected number of k-vertex trees with more than four bad 
vertices is 

(7) Kea? pts" (3) (2 P(Y’ < slog n)]° ao O(nzp a (nz?")>) = o(1), 

wheresY” <'Bi(= —k-+-1;p): a 

As a final preparatory step, it can be easily checked that a.a.s. the maximum 

degree of our random graph is at most 8logn (Exercise!). 
We are now ready to complete the proof of Theorem 4.4. Consider a graph 

on n vertices which has either no cherries at all or exactly one cherry, but then 

the number of isolated vertices is odd. Suppose further that this graph satisfies 

the hypothesis of Lemma 4.7 (with c = 300) and, for a fixed bipartition, the 

hypothesis of the above claim for k up to 11. Furthermore, assume that 

there are fewer than n‘/® bad vertices and that the maximum degree A is at 
most 8logn. Note that all these properties hold a.a.s. for the random graph 

G(n, p). We will show that each such a graph satisfies property PM. 

Remove the isolated vertices and, if there is an odd number of them, remove 

one additional vertex of degree one, destroying the cherry if there is any. Order 

the remaining bad vertices by degrees, from low to high: 

deg(v,) < deg(ve) < ...deg(v). 

We will match them one by one with some vertices wu, u2, -.. , uw, always 

choosing as u; a vertex of a smallest possible degree. We begin with isolated 

edges as their endpoints are matched naturally. 

Suppose v1,...,Vj-1 are already matched with w,...,ui—1 (some v; may 

be matched with some v,, but then, clearly, u; = vs and us = v;). Let Vi-1 

denote the set {v1,u1,-.-,Vi-1,Ui-1}. If vj € Vi-1, it is already matched to 

some vertex; otherwise we choose u; as follows. 

If deg(v;) = 1, then take as u; the neighbor of v;. It is available, since we 

follow the degrees from low to high, and since there are no cherries left in the 

graph. 
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Ui 

Vy u2 
U3 UZ 

(a) (b) 

Fig. 4.2 Scenes from the proof of Theorem 4.4. 

If 2 < deg(v;) < 3, then v; has at most one neighbor within the set V;_,, 

since otherwise there would be three small vertices on a small tree (Exercise!). 
Thus we may choose u; as one of the neighbors of v; outside V;_1. 

If deg(v;) > 4, then v; has at most three neighbors within the set V;_;, 
since otherwise there would be five bad vertices on a small tree (Exercise! — 
see Figure 4.2(a)). Again, we may choose u; as one of the neighbors of v; 
outside V;_;. 

Hence, a.a.s. all nonisolated bad vertices can be matched. The removal of 
bad vertices and their partners does not affect the degrees of other vertices 
by more than eight (Exercise! — see Figure 4.2(b)). However, the remaining 
vertices may no longer form an even bipartition. In order to apply Lemma 4.7 
we have to balance them back by moving across up to n4/> carefully chosen 
vertices. To minimize the effect on degrees in the induced bipartite graph, we 
use for this purpose a 2-independent set of vertices, that is, an independent 
set of vertices no two of which have a common neighbor (thus, the degree of 
a vertex may drop further by at most one). Trivially, there is always such a 
set of size at least n/(A* + 1) (Exercise!), which is more than is needed. The 



G-FACTORS 89 

obtained bipartite subgraph has, therefore, minimum degree at least 

It 1 
—— logn —9 > —— log: 200 °° 00.08 a! 

and, by Lemma 4.7, it contains a perfect matching, which together with the 

previously constructed matching {v,,u;},...,{u,u:} forms a matching cov- 
ering all but at most one of the nonisolated vertices. This completes the proof 

of Theorem 4.4. a 

Disjoint 1-factors 

Erdos and Rényi, after establishing a threshold for the existence of at least one 

perfect matching in the bipartite random graph G(n,n, p), went on and gener- 

alized their result to the existence of at least r disjoint 1-factors in G(n, n, p) 

(Erdés and Rényi 1966). Trivially, if a graph possesses fewer than r disjoint 

1-factors, then the removal of all the edges of a maximal family of disjoint 

1-factors results in a graph with no 1-factor at all and with all the degrees 

decreased by at most r — 1. Thus, if the original graph had minimum degree 

at least r, then, after the removal, there would be no isolated vertices left, 

and Hall’s condition would have to be violated in a nontrivial way. By an 

argument similar to that used in the proof of Theorem 4.1 this can be shown 

to be unlikely for G(n,n,p) (Exercise!), and it follows that the threshold for 

containing at least r disjoint 1-factors in G(n,n,p) coincides with that for 

minimum degree r. The latter can easily be found by the method of moments 

(Exercise!). The respective hitting time result holds too. 

The corresponding problem for an ordinary random graph G(n,p) was 

solved much later by Shamir and Upfal (1981) via an algorithmic approach. 

Since every even Hamilton cycle is a union of two disjoint 1-factors, the so- 

lution also follows, together with the hitting time version, from a result of 

Bollobds and Frieze (1985) (see Section 5.1). However, the proof of Theo- 

rem 4.4 presented above can easily be adapted to yield the threshold for r 

disjoint 1-factors as well. It boils down to showing that a.a.s. after removing 

the edges of an arbitrary subgraph of maximum degree at most r — 1, the 

remainder of G(n,p) will contain a perfect matching. The definition of a bad 

vertex remains unchanged, while a small vertex is now one with degree at 

most r+2. The details are left to the reader (Exercise!). It follows that a.a.s. 

the hitting time for having r disjoint 1-factors coincides with the hitting time 

for having minimum degree at least r. 

4.2 G-FACTORS 

In this section we study thresholds for containment of spanning (or almost 

spanning) subgraphs in G(n,p) which are unions of vertex disjoint copies of 

a given graph. For a graph G, every disjoint union of copies of G is called 
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Fig. 4.3 A graph with a P2-factor marked with bold lines. 

a partial G-factor. If G = Ko, this is the notion of a matching. A partial 

G-factor which is a spanning subgraph of a graph F is called a G-factor in F 

(see Figure 4.3). Our main objective is to find a threshold for the property 

of containing a G-factor by the random graph G(n,p). Observe that when 

G = Ko, this is just the property of containing a perfect matching. Note 

further that using the notation of Section 3.5, G(n, p) contains a G-factor if 
and only if D2, = n/vg. 

Luczak and Rucinski (1991) have shown that for every nontrivial tree T, the 

threshold for possessing a T-factor is the same as that for the disappearance 

of isolated vertices. (Again, the corresponding hitting time result holds too.) 

Theorem 4.8. For every tree T with t > 2 vertices, assuming n is divisible 
by t, 

0 if np — logn 4 —o, 

P(G(n,p) has a T-factor) > (e-* °  ifnp—logn—-c, 

1 if np — logn > oo. Eg 

The proof, which we omit (Advanced Exercise!), is very similar to that 
of Theorem 4.4. Instead of a bipartition, we now take a t-partition, and 
construct a T-factor from t — 1 perfect matchings between the appropriate 
sets of the partition. The existence of these perfect matchings follows by the 
same argument as in the case T = Ko. 

Clearly, Theorem 4.8 remains true for forests without isolated vertices. In 
general, the threshold for the property of having a G-factor is not known and 
the triangle G = K is the smallest unknown case. But already for the whisk 
graph K+} (see Figure 3.3), the problem becomes relatively easy. It seems that 
the structural asymmetry of K. my helps here. In fact, there is a broad family 
of graphs G for which the threshold has been found. 
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Partial G-factors 

Before we prove this result, we will consider the related, weaker property Fg(é) 

of having a partial G-factor covering all but at most en vertices of G(n, p). For 

this property we can pinpoint the threshold very precisely (Rucinski 1992a). 

By Theorem 3.29, for Fg(e) to hold, one needs to have ®g = 2Q(n). Recall 

that the condition 6g — oo a.a.s. guarantees the existence of at least one 

copy of G in G(n,p), and is equivalent to assuming that n~!/™(@) = o(p) (see 
Theorem 3.4 and Lemma 3.6). Similarly, one can show that @g = 22(n) if and 

only if p= Q(n71/™"(@)), where m()(G) is defined in (3.17). This is indeed 
the right threshold. 

Theorem 4.9. For every graph G with at least one edge and for every € > 0 

there are positive constants c and C' such that 

eee lim_P(G(n,p) € Fe(e)) = i Bs audi eens 

Proof. By the monotonicity of Fg(€) we may assume that @g¢ — oo. If p< 
1 

en /m(G) then &g < c'n, where c’ can be made arbitrarily small by picking 

c small enough. Let H achieve the minimum in @g. Then $g = ®y = E(Xqy) 

and, by Chebyshev’s inequality and by Lemma 3.5 (see Remark 3.7), 

100 Var(Xyr) _ 1 a\aw 
P(|Xu —E(Xu)| > 4 E(Xu)) < Ta O (s-) ity 

Hence a.a.s. Xq < ise n= wan for c small enough, and it is impossible 

to cover all but at most en vertices of G(n, p) by vertex disjoint copies of G. 

Let p > Cn-1/m™(G) and suppose that G(n,p) ¢ Fc(e). Then there exists 

a subset of at least en vertices which does not contain any copy of G. The 

probability that this happens is, by Theorem 3.9, at most 

(,2,) POGCTemlsp) BG) <2rere"tetlenlm, 

where c’ > 0 depends on G only. By choosing C large enough, ®c([en],p) 2 

(c'')~!n, and we conclude that the above quantity, and thus also P(G(n,p) ¢ 

Fo(e)), converges to 0. 
a 

Thresholds for G-factors 

Based on the last result, one can find the threshold for the property of contain- 

ing a G-factor for a broad class of graphs G. Let 6(G) stand for the minimum 

degree of G. The following result was proved independently by Alon and 

Yuster (1993) and Ruciriski (1992a). 
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Theorem 4.10. Let G be a graph with v vertices, satisfying 6(G) <m“)(G). 

There are positive constants c and C’ such that 

th if p< en"), lim P(G(un,p) has a G-factor) = 1 ears Cn —/m(G), 
n—-co 

Proof. The 0-statement follows immediately from the 0-statement in Theo- 

rem 4.9, so we only have to prove the 1l-statement. In this proof we utilize 

the “two-round exposure” technique described in Section 1.1. 

For clarity we will demonstrate the proof in the smallest case G = ke : 

Here m‘)(G) = 3/2. By Theorem 4.9 (with « = 1/4), there are a.as. n 

disjoint triangles in G(4n, p;), where p; = p/2. This is our property B. Now, 

fix one graph F' satisfying B and choose one vertex from each triangle of a 

collection of n vertex disjoint triangles in F’. 

Let A be the set of chosen vertices, and let B denote the set of vertices not 

belonging to any of these triangles. If there is a matching M of n edges, each 

with one endpoint in A and the other one in B, then these edges, together with 

the triangles, constitute a Nee -factor. To prove the existence of M, consider 

the random bipartite graph G(n,n, po) with vertex classes A and B. As 

] 
po > p/2 =2(n-2/3) > = 

by Theorem 4.1 there is a.a.s. a perfect matching in G(n, n, po). 

When 6(G) = h > 1, we treat h-tuples of vertices as single vertices of the 
bipartite graph (side A) and require that p” > er This argument remains 
valid for any G as long as 0 < 6(G)/m)(G) < 1 (Exercise!). When 5(G) = 0, 
we are done already after the first round. g 

Remark 4.11. The same technique can be extended to spanning subgraphs 
other than G-factors. For example, the proof of Theorem 4.10 presented 
above, gives for free the existence of a “triangle necklace” of length n, that 
is, a cycle of length n with every vertex adjacent to one vertex of a triangle, 
the triangles mutually disjoint and also disjoint from the cycle (see Figure 
4.4). The reason is that the random graph on the set B has the edge proba- 
bility p2 large enough to ensure (a.a.s.) the existence of a Hamilton cycle (ef. 
Section 5.1). 

Remark 4.12. Alon and Yuster (1993) observed that the technique from 
the above proof can be used to enlarge the family of graphs G for which 
n-1/m(G) is a threshold for the property of possessing a G-factor. Indeed, 
such a family can be recursively constructed by first including all graphs G 
for which dg < m()(G), and then producing new members by splitting an 
existing member into two unions of its components, and inserting fewer than 
m() (H) edges between them. The proof of this statement is by induction on 
the number of applications of the above recursive rule (Exercise!). Both sets 
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Fig. 4.4 The triangle necklace. 

Fig. 4.5 A cubic graph obtained from graphs satisfying 6(G) < m)(G) by the proce- 

dure described in Remark 4.12; the added edges are numbered in the order of addition. 

of vertices of the auxiliary bipartite graph, A and B, appearing in the proof 

of Theorem 4.10, can now consist of sets of the original vertices. Surprisingly, 

some highly regular graphs can be obtained this way (see Figure 4.5). 

Despite all these efforts, there are still many graphs for which the threshold 

for containing a G-factor is not known. Theorem 4.9 provides a lower bound. 

A better lower bound can sometimes be obtained by looking at the threshold 

for the property COVg that every vertex belongs to a copy of G (cf. Theo- 

rem 3.22), which is a natural necessary condition. Although the conjecture 

that these two thresholds must always coincide (as is the case of trees) turned 

out to be false (e.g., the case G = Kj; see Example 3.24 and Theorem 4.10), 

it is still plausible to hope that it is so at least for complete graphs. If G = K3, 

the threshold for the property COVg is, by Example 3.24, (log payne? wa 

logarithmic improvement over the lower bound given by Theorem 4.9. 

General spanning subgraphs 

A general upper bound on the threshold for the existence of a spanning sub- 

graph in terms of its maximum degree is provided by the following argument 
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from Alon and Fiiredi (1992). Let H, be a sequence of n-vertex graphs with 

maximum degree A = A, n = 1,2,.... We are interested in the increasing 

property “G(n,p) > H,,”. The result below says that the threshold does not 

exceed (287)1/4. 

Theorem 4.13. If x#;p* —logn — oo, then 

hm (Gor, p)H,,) = 1: 
T1—+ CO. 

In particular, this holds for p > 3(PE2)U/A, 

Proof. Recall that the Hajnal-Szemerédi Theorem (Hajnal and Szemerédi 

1970) (cf. Bollobds (1978)) asserts that the vertex set of every graph G can 
be partitioned into D independent sets of size ||V(G)|/D] or [|V(G)|/D}, for 
each integer D satisfying A(G) < D < |V(G)|. Recall also that in a graph 
an independent set is 2-independent if the neighborhoods of its members are 
mutually disjoint, and that the square of a graph G is a graph on the same 
vertex set with edges between those pairs of vertices which are at distance 
at most two in G. Now, let u = |[n/(A? + 1)]. By applying the Hajnal- 
Szemerédi Theorem to the square of H, one can split V(H,,) into D = A?+1 
2-independent sets U;,...,Up, of size u or u+ 1 (Exercise!). 

Let us make a corresponding split [n] = Vj U--- UVp with |V;| = |Uil, 
1 = 1,...,D. We will show by induction on i that with probability at least 
1-(7—1)Q, where Q = O(uexp(—up*)), the subgraph G(n, p)[Vi U---U Vi] 
contains a copy of the subgraph Hw = H,,[U; U---UU;] (property A;). This 
is trivial for i = 1, and for i = D it implies Theorem 4.13, as (D — 1)Q = 
O(nexp(—up4)) = o(1) by assumption. 

We expose the edges of G(n, p) in rounds, first the edges in [V,]?, then the 
edges in [V; U V2]? \ [Vi]’, and so forth. Assume that i > 2 and that A;_, 
holds. Set V = Vj U---UVj_1 and fix a copy of HS) on V. (The choice of 
this copy should depend only on the edges exposed so far.) Let Nz be the set 
of vertices of V corresponding to the neighbors of x € U; in the graph HY. 

Consider the auxiliary bipartite random graph with bipartition (U;, Vj), 
where an edge is drawn between x € U; and y € V; if and only if y is adjacent 
in G(n, p) to all vertices in Nz (see Figure 4.6). It should be clear now that 
we are after a perfect matching in this bipartite graph. 

Due to the 2-independence of U;, the appearances of the edges in the aux- 
iliary graph are independent events with probabilities bounded from below 
by p*. Hence we may look at the random bipartite graph G(u;, ui, p*) in- 
stead, where uj; = |Ui| € {u,u+1}. By Remark 4.3, we conclude that 
with probability at least 1 — O(u exp(—up4)) = 1—Q there is a perfect 
matching in the auxiliary bipartite graph, and thus A; holds. Consequently, 
P(A;) 2 (1—Q) P(Aj-1) and, by induction, P(A;) > Gis O) eae 1): 
which completes the proof. | 
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H G(ui, ui, P) G(n, p) 

Fig. 4.6 The battleground of the proof of Theorem 4.13. 
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Example 4.14. The above result is so general that it can be applied to span- 

ning d-cubes. It follows that a.a.s. there exists such a d-cube in G(n,p), 

n = 2%, if p > 1/2 is fixed (Exercise!). Estimates of the expectation have 
suggested (cf. Alon and Fiiredi (1992)) that the threshold should be around 

p = 1/4 (Exercise!). This has been recently confirmed by Riordan (2000), 
who applied the second moment method supported by a detailed analysis of 
variance. 

Remark 4.15. In the case in which H, is a union of disjoint copies of G, 

that is, when we are after a G-factor, the above bound can be easily improved 

to O(logn/n)!/P(@), where D(G) = maxycc Oy is the degeneracy number of 
G. Indeed, for any graph G one can order its vertices so that each vertex has 
at_ most D(G) neighbors among its predecessors (Exercise!). Now, provided 
np?(9) — o(G) log n —> oo, one can repeat the above proof with U; being the 
set of the 2-th vertices taken from all the copies of G which make up H,,. The 
sets U; are clearly 2-independent. 

This, however, does not improve the bounds for the threshold for the exis- 
tence of a K3-factor. The above results yield only that, ignoring some loga- 
rithmic terms, the threshold lies somewhere between n~?/? and n~1/2. Real 
progress on this problem has been made recently by Krivelevich (1996a). In 
the last section of this chapter we outline his ingenious approach. 

4.3. TWO OPEN PROBLEMS 

Triangles in graphs and triples in 3-uniform hypergraphs are, undoubtedly, 
related combinatorial objects. One can build a 3-uniform hypergraph, the 
edges of which are the triangles of a graph and, conversely, the triples of a 
3-uniform hypergraph can be replaced by triangles to form a graph. Two of 
the most challenging, unsolved problems in the theory of random structures 
are finding the thresholds for the existence of a K3-factor in the random 
graph G(n,p) and for the existence of a perfect matching (a collection of n/3 
disjoint triples) in a random 3-uniform hypergraph. The latter, known as 
the Shamir problem, goes back to at least Schmidt and Shamir (1983). The 
former, discussed in greater generality in the previous section, was probably 
first stated in Ruciriski (1992b). 

Some believe that these two problems are immanently related and a solu- 
tion of one of them will yield a solution of the other one. Let us point out, 
however, that in the hypergraph case the triples are (in the binomial model) 
independent from each other, while the triangles of G(n,p) are not. What 
certainly links these two problems is that, after a quiet period, recently sig- 
nificant progress was made with respect to both of them. In this section an 
account on this progress is given. 
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Fig. 4.7 Two diamonds and a vertex, linked by a triangle, contain a K3-factor (des- 

ignated by bold lines). 

Triangle-factors 

We begin with the result of Krivelevich (1996a). Throughout, it is assumed 

that n is divisible by three. 

Theorem 4.16. There exists a constant C > 0 such that if p= Cn °/°, then 

a.a.s. the random graph G(n,p) contains a K3-factor. 

Proof (Outline). Let us explain the mysterious fraction 3/5 right away. It 

is simply the reciprocal of the parameter m")(K,) = 5/3 of the graph Ky 

obtained from the complete graph K4 by removing one edge. This graph, 

called here the diamond, is the ‘building block’ of a K3-factor in the proof. 

The removal of a vertex of degree two from it leaves a triangle. Therefore, 

the two vertices of degree two are called removable. 

The key observation is that two diamonds, D; and Dz, and one vertex v, 

linked together by a triangle with one vertex being v and the other two being 

removable vertices of, respectively, D; and D2, form a subgraph that contains 

a K3-factor (see Figure 4.7). 

A naive strategy for proving Theorem 4.16 could thus be as follows (for 

simplicity we assume that n is divisible by nine). Apply the two-round expo- 

sure. In round one, by the 1-statement of Theorem 4.9, with € = 1/9, a.a.s. 

there is a partial diamond-factor of G(n, p) consisting of 2n/9 diamonds. All 

we need in the second round is to link each of the outstanding n/9 vertices, 

via a triangle, with two diamonds as described above. It seems that we are 

on the right track, because, for a fixed vertex v, the expected number of such 

triangles is O(n2p*) = O(n®?), and by Theorem 2.18(i), a.a.s. there is at least 

one for each vertex v (Exercise!). 

Unfortunately, the n/9 pairs of diamonds must be disjoint, so we have to 

proceed greedily one by one. The problem we immediately face is that toward 

the end of this procedure the expected number of available triangles drops 

dramatically. At the very extreme, it is only 4p® for the last vertex. And 

here comes a second crucial idea. At this late phase we need to use something 

bigger than diamonds. This bigger structure should have many removable 
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Fig. 4.8 A diamond tree; the removable vertices are designated by open circles. 

vertices and be likely to occur frequently in G(n, p). Both these requirements 

are provided by diamond trees, which we now define recursively. 

We call a vertex in a graph removable if the removal of this vertex leaves 

a graph with a K3-factor. The diamond itself is the smallest diamond tree. 

Given any diamond tree T and a removable vertex v in it, a new diamond 

tree is obtained by taking the union of T and a copy of the diamond in which 

v is a vertex of degree two and the other three vertices do not belong to T. 

Each time a diamond is added in this way to a diamond tree, the number of 

vertices increases by three, while the number of removable ones increases by 

one (the other vertex of degree two in the diamond). Hence, in every diamond 
tree more than 1/3 of the vertices are removable (Exercise! - see Figure 4.8). 

Note that, given two disjoint diamond trees T,, T>, and a vertex v, the 

expected number of triangles with one vertex at uv and the other two being 

removable vertices of, respectively, T; and T>, is at least (Exercise!) 

alV (Ti)IIV (Ta) |p* = O(|\V (Ti) |IV (Ta) In~°*). 
Thus, both diamond trees should be large enough to guarantee the presence 
of the desired triangle. And we would need many of them. 

Since, obviously, one cannot fit too many large, vertex-disjoint subgraphs 
within the frame of n vertices, we will build the desired K3-factor in rounds, 
using originally more, but smaller diamond trees, and gradually turning to 
the bigger ones. In any case, we need to have many disjoint diamond trees 
at hand. As the expected number of diamonds is linear in n, on average 
each vertex belongs to a (large) constant number of them, which allows the 
diamond trees to grow without any bound. This is specified in the following 
technical lemma. We refer the reader to Krivelevich (1996a) for the proof. 

Lemma 4.17. If p= Cn~*/5, C > 6, then for every integer k = k(n) satis- 
fying 4< k <n/6 and k = 1 mod 8, the random graph G(n,p) contains a.a.s. 
[n/(6k)| vertex disjoint diamond trees, each of order k. Ls 

Equipped with this lemma, we can now furnish the proof of Theorem 4.16 
in just twenty steps. Except for the first, simple step, and for the last one, all 
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these steps are quite similar and, therefore, we organize them into an inductive 

statement, with the first step serving as a kick-off. 

Lemma 4.18. For every i = 1,2,...,19, there is a constant C; such that if 

p = Cin~*/® then a.a.s. the random graph G(n, p) contains a partial K3-factor 

covering all but at most n!~‘/?° vertices. 

Before we outline the proof of Lemma 4.18, let us show the last step of the 

proof of Theorem 4.16. Apply the two-round exposure. After round one with 

p = Cn-3/>, C > 6, by Lemma 4.17 there are a.a.s. 2n°- vertex disjoint 
diamond trees, each of order n°:°°/12 (we ignore floors here). These diamond 
trees occupy together a vertex set V of size n/6. 

Round two is generated in two subrounds, as in the proof of Theorem 4.13. 

First, expose the pairs of [n] \ V with p = Cy9(5n/6)~3/> and conclude by 

Lemma 4.18 (2 = 19) applied to G({n] \ V,p), that there is a partial K3-factor 

T covering all but n!/?° vertices of [n] \V. (We assume for simplicity that 
n'/20 is an integer divisible by three.) 

In the second subround expose the pairs with at least one element in V and 

repeatedly connect each of the uncovered vertices of [n]\V with two diamond 
trees, by a triangle linking that vertex with one removable vertex in each of 

the two trees. The probability of failure, by an application of Theorem 2.18(i), 

is smaller than n!/2°e-©("") (Exercise!). Thus, a.a.s. all remaining vertices 

are included to 7, creating a K3-factor of G(n, p). Ef 

The proof of Lemma 4.18 is quite similar to the above argument, although 

a little bit more involved. 

Proof of Lemma 4.18. We use induction on i. The case 7 = 1 follows, as in the 

proof of the 1-statement of Theorem 4.9, by using Theorem 3.9 (Exercise!). 

Assume that the lemma is true for some 7, 1 < i < 19. Apply the two- 

round exposure. In round one, with p = Cn~%/°, C > 6, apply Lemma 4.17 

to have a.a.s. 2n!~*/20 + n1—(+1)/20 vertex disjoint diamond trees of order 

k ~ ni/20/12 each. Let us denote the union of the vertex sets of these diamond 

trees by V. Notice that |V| ~ n/6. 

In round two take p = C;(n — |V|))~°/® and first conclude, by the induc- 

tion assumption, that a.a.s. there is a partial K3-factor T covering all but 

n!-i/20 vertices of [n]\\V. Then, reduce the number of uncovered vertices by 

incorporating them, together with some diamond trees, into T at a rave of 

two diamond trees per vertex. Since the diamond trees are smaller now, we 

seek the linking triangles among all triangles with one vertex being a fixed 

uncovered vertex of {n] \ V and the other two vertices belonging to any two 

diamond trees which are available at this stage. 

During this procedure the number of available diamond trees decreases 

steadily by two, but, owing to the excess we have, even at the end there are 

still at least n1~(*+1)/2° disjoint diamond trees around. Thus, at any given 
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time, the expected number of such triangles is at least of the order 

O(n2—(241)/10 77/1073) ee O(n}/1°) : 

and the probability of failure is as small as before (Exercise!). The procedure 

ends when all vertices of [n] \ V are covered by 7, leaving at that point 
n!—(++1)/20 vertex disjoint diamond trees. Each of the diamond trees can be 
broken into a subgraph with a K3-factor and a single vertex. Summarizing, 

a.a.s. there is a partial K3-factor covering all but at most n!—(*+1)/?0 vertices 

of G(n, p). & 

It is worthwhile to notice that the above proof can be applied to K,-factors 

as well as to the Shamir problem; however, in the latter case, it yields a result 

only slightly stronger than that of Schmidt and Shamir (1983) (cf. Krivelevich 
(1996a)). 

Perfect matchings in random hypergraphs 

Let Hg(n,M) be the random hypergraph ({n]*), defined as the uniform 

model of a random subset, where the initial set is the set of all triples of [n]. 
Schmidt and Shamir (1983) showed that if M/n3/? > oo then a.a.s. there 
is a perfect matching in Hs(n, M). This was improved by Frieze and Janson 
(1995). 

Theorem 4.19. If M/n‘/* + oo then a.as. there is a perfect matching in 
Hs (n, M). 

Proof (Outline). Let us begin by introducing an interim model of a random 
hypergraph, simpler to analyze than Hg (n, M), but sufficient for our task. It is 
based on a random sequence x = (2,...,%3.), chosen uniformly at random 
from the set Q(n, M) of all 3M-element sequences of integers from [n]. Then 
we define a random hypergraph H(x) as the hypergraph on vertex set [n] 
with the edges being consecutive triples of elements of x, that is, {@1, 22,23}, 
{casera} Testes {x3m-—2,23m-1,t3m}. Observe that the hypergraph H(x) 
may have repeated edges as well as deficient edges with less than three vertices. 
Therefore, let Hx) be the hypergraph obtained from H(x) by deleting both 
repeated and deficient edges. 

For M' < M, conditioning on the event that |H(x)| = M’, H(z) is dis- 
tributed exactly as Hg(n, M'), because each hypergraph with M’ triples and 
vertex set [n] arises from the same number of sequences x in this way (Exer- 
cise!). Moreover, if H(x) has a perfect matching then H(a) does (Exercise!). 
The above two facts, together with the monotonicity of the property of con- 
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taining a perfect matching, imply that 

P(H(x) has a perfect matching) = P(H(x) has a perfect matching) 

= py P(H(z) has a perfect matching | |HI(x)| = M‘) P(|H(x)| = M’) 
M'<M 

= Sty P(H3 (n, M') has a perfect matching) P(|H(z)| = M’) 
M'<M 

< (Hk (n, M) has a perfect matching). 

Thus, our goal is to show that 

P(H(x) has a perfect matching) + 1 

as M/n4/3 -+ oo. This will be achieved by breaking the space 2(n, M) ac- 
cording to the degree sequence. 

The degree of an element v € [n] in a sequence x is defined as d, = 
deg,.(v) = |{i : x; = v}|. For € > 0, a degree sequence d = (d),...,d,n) is 
called e-smooth if the degrees d;,...,d,, do not fluctuate too much, in a precise 

technical sense for which we refer the reader to Frieze and Janson (1995). It 

can be routinely proved that a.a.s. the sequence deg, (v) is n*/3/M-smooth. 
Hence, to complete the proof it suffices to show that given for each n an 

é-smooth sequence d, where € = e(n) — 0, a random sequence x chosen 

uniformly from the family ¥(d) = {x € NQ(n, M) : deg, = d} yields a.a.s. 

a random hypergraph H(x) which contains a perfect matching. (Here the 

probability of failure should be o(1) uniformly for all e-smooth sequences d.) 

This can be shown using a configuration model similar to that discussed in 

detail in Chapter 9. In this model, surprisingly, the second moment method 

works! Indeed, after some tedious calculations, it was shown in Frieze and Jan- 

son (1995) that if Y denotes the number of perfect matchings in the random 

hypergraph H(x) with x chosen uniformly from ¥(d), then E(Y)?/E(Y?) > 1 

as n — oo and thus, by (3.2), P(Y > 0) > 1. | 

Remark 4.20. The idea of the proof of Theorem 4.19 relies on the observa- 

tion that although the second moment method does not apply directly to the 

unconditional number of perfect matchings (the right-hand side of (3.2) does 

not tend to zero unless M/n3/? - oo), it can be used if we first condition on 

a suitable variable (in this case the degree sequence) which is responsible for 

most of the variance. A previous instance of combining the second moment 

method with conditioning was given by Robinson and Wormald (1992), see 

Chapter 9 of this book. 

It is believed that the actual threshold for the existence of a perfect match- 

ing in Hg (n, M) coincides with that for the disappearance of isolated vertices, 

that is, it occurs around znlog n. 
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Remark 4.21. The fractional version of Shamir’s problem asks for the exis- 

tence of a nonnegative function, defined on the triples of a hypergraph, which 

totals n/3, and which for every vertex totals 1 on all the triples containing that 

vertex. The existence of a perfect matching is easily seen to be equivalent to 

the existence of such a function taking the values 0 and 1 only. It was proved 

by Krivelevich (1996b) that the threshold for the presence of a perfect frac- 

tional matching in Hg (n, M) is roughly en logn. Moreover, Krivelevich also 

provided the expected hitting time version: in the naturally defined random 

hypergraph process (see Remark 1.22), a.a.s. a perfect fractional matching 

exists as soon as the last isolated vertex disappears. 



The Phase Transition 

Undoubtedly, the most important and by far the most influential paper about 

random graphs which has ever appeared was the article of Erdés and Rényi 

(1960), where the authors studied the changes in the structure of G(n, M) 

as M grows from 0 to (‘), identifying main features of the evolution of the 

random graph. A large part of their impressive work was devoted to the 

phase transition, the spectacular period of the random graph evolution when 

the size of the largest component of G(n, M) rapidly grows from Oc (log n) 

to Oc(n). In this chapter we try to describe and understand this intriguing 

phenomenon. We begin with some highlights of the evolution of the random 

graph and make a “historic” journey reproving, at least partly, Erdds and 

Rényi’s result on the sudden “jump” of the size of the largest component. 

Then we ourselves jump over twenty years ahead to Bollobas’s paper (1984a), 

which opened a new era of study of the phase transition in G(n, M). Finally, 

in the last four sections of the chapter, we present more recent developments 

concerning various features of the random graph process in this fascinating 

period. 

5.1 THE EVOLUTION OF THE RANDOM GRAPH 

The tale of G(n, M) 

Let us consider how the properties of G(n, M) vary when n is fixed but large, 

and M grows from 0 to (oe Clearly, when the random graph becomes denser 

its properties change; the moment when a new property appears (or disap- 
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pears) can often be characterized by the threshold function (see Sections 1.5 

and 1.6 for a more elaborate treatment of this subject and the proof that 

for every monotone property the threshold function exists). Since the pub- 

lication of Erdos and Rényi (1960), identifying the threshold functions for 

different properties has been a major task in the theory of random graphs. 

Nowadays, the threshold functions for most (but by no means all) impor- 

tant graph properties have been found and the picture of the evolution of the 

random graph is fairly complete. 

The beginning stages of the random graph process are easy to study and 

describe. It is an immediate consequence of Theorem 3.4 that for a fixed k > 2 

and every sequence M = M(n) such that n{*¥-2)/4-) < M < nlk-1)/k, 
a.a.s. G(n, M) is a forest, which contains copies of all trees of size at most 

k and no trees with more than k vertices. If M <n but M = n!~°) then 
a.a.s. G(n, M) has no cycles (Exercise! — Note that this fact does not follow 

from Theorem 3.4), and the size of the largest component, although clearly 
unbounded, is 0, (log 7). 

The evolution of G(n, M) for M = O(n) is far more interesting. Let M = 
cn/2 where c is a positive constant. If ¢ is small, a.a.s. all components of 
G(n, M) are trees or unicyclic, the largest of them having @g(log n) vertices. 
As the process evolves the components increase their size, however, as long 
as c < 1, the largest components of G(n, M) merge mainly with small trees 
of size Oc(1); thus they grow slowly and quite smoothly. Nonetheless, at 
some point of the process, the largest components become so large that it 
is likely for a new edge to connect two of them. Note that the addition 
of such an edge can increase the size of the largest component significantly; 
furthermore, a new component resulting from such a fusion has greater chances 
to be joined to another component of a similar size. Thus, fairly quickly, all 
the largest components of G(n, M) merge into one giant component, much 
larger than any of the remaining ones. This spectacular phenomenon, now 
called “the phase transition”, is the main theme of the following sections of 
this chapter. In particular, we will learn that the giant component is formed 
from smaller ones during the so called critical period, or the critical phase, 
where M = n/2+O(n?/). The critical period separates the subcritical phase, 
where M —n/2 < —n?/3, from the supercritical phase, where M—n/2> n?/3, 
We will also soon see (Theorem 5.4) that the random graphs G(n,0.49n) and 
G(n,0.51n) are dramatically different: G(n, 0.49n) has no components larger 
than Oc(logn), while the giant component of G(n, 0.51n) already has Oc(n) 
vertices. 

As M increases, the giant component of G(n, M) grows, catching other 
components of the graph. Because larger components are easier game and 
they are less frequent than smaller ones, they disappear from the graph earlier, 
merging with the giant. In particular, if M is about nlogn/4, then a.a.s. 
G(n, M) consists only of the giant component and some number of isolated 
vertices. Finally, when the last isolated vertex joins the giant, which occurs 
when M = nlogn/2 + O,(n), the graph becomes connected. At the very 
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same moment a perfect matching a.a.s. can be found in G(n, M) (provided, 

of course, that the number of vertices n is even). All these results were already 

shown by Erdos and Rényi (1959, 1966), but their strongest “hitting time” 

versions (see Theorem 4.6) were proved much later by Bollobas and Thomason 

(1985) (see also Bollobds (1985, Chapter VII)). 

Soon after the random graph becomes connected, for M = 2(logn + (k — 

1) loglogn + O,(1)), where k > 2 is a fixed natural number, the last vertex of 
degree k — 1 vanishes and a.a.s. at the very same time G(n, MW) becomes k- 

connected (see Erdés and Rényi (1961) and Bollobas and Thomason (1985)). 

The question of whether the thresholds for 2-connectivity and Hamiltonicity 

coincide remained for a long time the major open problem of the theory of 

random graphs and, finally, was settled in the affirmative by Komldés and 

Szeméredi (1983) and Bollobas (1984b). (Later, Luczak (199le) proved that 
at this threshold G(n, M) becomes pancyclic, i.e. contains cycles of all lengths 

é = 3,4,...,n.) More generally, let M, denote the property that a graph G 

on n vertices contains |k/2| edge-disjoint Hamilton cycles and, if k is odd, 
a matching of size |n/2], disjoint from the cycles. Then, a.a.s. the random 
graph G(2n, M) has Mx at the very moment when the last vertex of degree 

smaller than k disappears (Bollobds and Frieze 1985). 

As the process evolves, G(n, M) becomes denser and denser. Its minimum 

degree and the connectivity grow, and dense subgraphs gradually appear (see 

Chapter 3). When M4n-4-! = 2!~4logn + O,(1) and d > 2, its diameter 
drops from d +1 to d (Burtin (1973), Bollobds (1981a); see also Bollobas 
(1985, Chapter X)). For M ~ a(5), where 0 < a < 1 is a constant, any two 
vertices share O¢(n) neighbors and the largest complete subgraph of G(n, M) 

has Oc (log n) vertices (Theorem 7.1). Finally, for M = (5), G(n, M) becomes 

a complete graph. 

The k-core of G(n, M) 

Note that for the connectivity, the existence of a perfect matching, and the 

existence of a Hamilton cycle, an obvious necessary condition that the mini- 

mum degree is large enough turns out to be a.a.s. sufficient for the random 

graph G(n, M). How deep is this “probabilistic equivalence” of, say, the prop- 

erty My and the property that a graph has minimum degree at least k? This 

problem can be addressed in two ways. Bollobas, Fenner and Frieze (1990) 

studied the structure of G(n, M)|s5>% — a graph chosen at random from the 

family of all graphs with vertex set {1,2,...,n} and M edges which have min- 

imum degree at least k. In particular, they proved that for a fixed k > 1, the 

threshold for the property that G(n, M)|s5>x% has Mx is M = Oc(nlog n) and 

is related to the fact that at this moment some “local” obstruction for My, dis- 

appears from G(n, M)|s5>x%. However, G(n, M)|s5>x is typically very different 

from G(n, M); moreover, there is no obvious way to obtain G(n, M + 1)|5>x 

from G(n, M)|s>x. An alternative, more natural approach was proposed by 

Bollobds (1984b). It is based on the elementary observation that if a graph G 
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contains a subgraph H of minimum degree k, then the maximal subgraph of G 

with this property is unique (Exercise!). We call such a maximal subgraph 

the k-core of G and denote it by cr,(G). (If G contains no subgraph with 

minimum degree k we say that the k-core of G is empty.) Thus, in partic- 

ular, cr;(G) is obtained from G by removing all its isolated vertices, while 

cr2(G) consists of all cycles of G and the paths joining them. Now, instead 

of G(n, M), consider the behavior of cr,(G(n, M)) as M grows from 0 to (5). 
Is it a.a.s. k-connected? When does the l-core of G(n, M) a.a.s. contain a 

matching saturating all but at most one of its vertices? For which M is the 

2-core of G(n, M) a.a.s. Hamiltonian? 

The study of the evolution of the k-core cr;,(G(n,M)) was initiated by 

Bollobas (1984b), who noticed that if k > 3 is fixed then a.a.s. crz,(G(n, M)) 
is k-connected even at very early stages of the evolution, when M = O(n). 

This result was strengthened by Luczak (1991d), who proved that for some 

constant a > 0, which depends neither on n nor on k, a.a.s. the random graph 

process is such that for every M,0 < M < (5), and every k, 3 < k < n—1, the 
k-core of G(n, M) is either empty, or larger than an and k-connected. Note 

that, in particular, this result implies that the k-core emerges very rapidly: 

for almost every graph process one can find a critical moment Mf" such that 

the k-core of the graph at the Mf'-th stage of the process is empty, while 

at the very next stage the size of the k-core “jumps” to Oc(n). The proof 

that M,* exists is not very hard, especially for large k; the reader is invited to 

show that for every €¢ > 0 there exists k- such that for k > k- we have a.a.s. 

|My" — kn/2| < en (Exercise!). On the other hand, determining M§" for a 
given k > 3 up to a factor of 1+ 0)(1) is a challenging task accomplished only 
recently by Pittel, Spencer and Wormald (1996), who also provided precise 
bounds for the size of the k-core at the moment it emerges. 

Unlike in the case of k-connectivity, replacing G(n, M) by its k-core does 
not help very much with respect to the property M,. The threshold for 
cr;(G(n, M)) to have a matching which covers all except at most one of its 
vertices occurs only when M ~ nlogn/4 and is related to the existence of pairs 
of vertices of degree one adjacent to the same vertex (see Theorem 4.4). More 
generally, for arbitrary k, the k-core of G(n, M) has property Mg when M is of 
the order nlogn (Luczak 1987) — as in the case of G(n, M)|ss%, at this point 
a certain local obstruction disappears from cr; (G(n, M)). The property that 
the chromatic number of G(n, M) is at least k + 1, for some k > 3, does not 
seem to be related to the existence of any “local” substructure of G(n, M) 
at all. Clearly, the k-core of a graph with such a chromatic number must 
be non-empty (see Lemma 7.6), but the fact that cr,(G(n, M)) 4 @ is not 
a.a.s. sufficient for x(G(n, M)) > k+ 1. For large k this follows immediately 
from the fact that Mf" is close to kn/2, and thus x(G(n, M§f")) is about 
k/2logk (see Theorem 7.16). However, for small k, especially for k = 3, the 
problem whether a.a.s. the thresholds for the properties cr,(G(n, M)) # 0 
and x(G(n, M)) > k +1 coincide is more involved and was settled (in the 
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negative) only recently by Molloy (1996) and Achlioptas and Molloy (1997) 

for details see Section 7.5. 

5.2 THE EMERGENCE OF THE GIANT COMPONENT 

In this section we reprove a part of Erdés and Rényi’s theorem on the (un)ex- 

pected “jump” of the size of the largest component which occurs in the random 

graph when it has about n/2 edges. Although soon we will give a much more 

precise description of this phenomenon, we feel that the branching process 

argument used here can provide a better understanding of this feature and, 

most importantly, it explains why the abrupt change of the structure of the 

random graph takes place when the average degree of its vertices approaches 

one. 

Branching processes 

Since our approach is based on branching processes let us first recall some 

elementary definitions and facts concerning them. (For proofs and a more 

elaborate treatment of this topic see Athreya and Ney (1972), or any textbook 

on probability theory.) Let X be a random variable which takes values in the 

non-negative integers. The Galton—Watson branching process defined by X 

starts with a single particle, which produces Z, other particles, where the 

number Z, of first-generation particles has the same distribution as X. Each 

of the offspring particles produces, in turn, its own children, whose number 

has distribution X, independently for each particle, and so on. If by Z; we 

denote the number of offspring in the 7-th generation, then Zp = 1, while for 

i > 1 the variable Z; is the sum of Z;-; independent copies of X; clearly, 

this observation can also be used as an equivalent definition of the random 

variables Z;. Note that if Z, = 0 for some n, then Z,, = 0 for all m > n. 

The most basic fact about branching processes states that if the expectation 

of X is larger than one, then with positive probability the process will continue 

forever, while otherwise, except for the degenerate case, with probability one 

the process will die out, that is, for some n we have Z, = 0. More precisely, 

let f : [0,1] > R denote the probability generating function of X, defined as 

x(x ofa) = eth P(X 
i>0 

Moreover, let Z = }>;5, Zi be the total number of offspring in the branching 

process. The probability p = px of extinction of the branching process is 

defined as 
p=P(Z < 00) = lim P(Z, = 0). 

noo 

Then the following holds. 
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Theorem 5.1. For EX < 1 we have px = 1, unless P(X = 1) = 1. If 

EX >1 and P(X =0) > 0, then px = 20, where zo is the unique solution of 

the equation f(x) =x which belongs to the interval (0,1). a 

Example 5.2. Let X € Po(c). Then 

pe ye ee = exp(c(x — 1)). 

t=O 

Thus, if c > 1, the probability px that the branching process defined by X 

dies out is equal to 1 — B(c), where B = B(c) € (0,1) is uniquely determined 
by the equation 

Bre? =. (5.1) 

Example 5.3. Let Y, € Bi(n,p), where np > c > 1 as n > co. Since 

fy, (x) = Ne (") a'p*(1 —p)"-* = ( —pt+ xp)” 

7=0 

for every real number zx we have 

lim fy, (t) = exp(c(x — 1)) = fx(z), 
n—->oo 

that is, the probability generating function of Y,, tends pointwise to the prob- 
ability generating function of X € Po(c), precisely as one might expect. Thus, 
as n —> oo, the probability of extinction p(n,c) of the branching process de- 
fined by Y, converges to 1 — G(c), where G(c) is defined as in (5.1). 

The giant component 

We will use branching processes to study the rapid growth of the size of the 
largest component in G(n,p) — the analysis of the behavior of G(n,M) is 
similar, but the fact that in G(n,p) edges appear independently from each 
other makes the argument simpler. Thus, let p = p(n) = c/n, where c is 
a positive constant. We reveal the component structure of G(n,p) step by 
step, using the following procedure. Choose a vertex v in G(n,p), find all 
neighbors v),...,v, of v, and mark v as saturated. Then, generate all vertices 
{vi1,---, Vis} from [n] \ {v,u1,...,v-} which are adjacent to v; in G(n,p), 
sO v,; becomes saturated, and continue this process until all vertices in the 
component of G(n, p) containing v are saturated. 

If during the above procedure we saturate first the vertices which lie closer 
to v, the process resembles very much the branching process. However, in 
our case, the number X; = X;(n,m,p) of new vertices we add to the com- 
ponent in the i-th step, provided m of its elements have already been found, 
has binomial distribution Bi(n — m,p), whereas in the branching process the 
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distribution of the immediate offspring of a particle does not depend on the 

previous history of the process. Nonetheless, while m is not very large, the 

process of generating the component containing a given vertex can be closely 

approximated by the branching process defined by a variable with binomial 

distribution Bi(n, p). Thus, one may expect that the probability that a vertex 

is contained in a “small” component is roughly given by the probability that 

the process dies out, which happens with probability 1 for c < 1. On the 

other hand, if c > 1, then with some positive probability 1 — p, the process 

continues for a long time and thus we may expect that (1—,.+o(1))n vertices 

of G(n, p) belong to one giant component. 

Theorem 5.4. Let np =c, where c > 0 ts a constant. 

(i) If c < 1, then a.a.s. the largest component of G(n,p) has at most 

aaa logn vertices. 

(ii) Let c > 1 and let B = B(c) € (0,1) be defined as in (5.1). Then G(n, p) 
contains a giant component of (1+0,(1))Bn vertices. Furthermore, a.a.s. 

the size of the second largest component of G(n, p) 1s at most Calne log n. 

Proof. Let us assume first that pn = c and c < 1. Note that the probability 

that a given vertex v belongs to a component of size at least k = k(n) is 
bounded from above by the probability that the sum of k = k(n) random 

variables X; is at least k — 1. Furthermore, X; can be bounded from above 

by X % , where all feo have the same binomial distribution Bi(n,p) and the 

random variables X;',...,X;* are independent; note that for such random 

variables we have eit X; € Bi(kn,p). Thus, from (2.5) we infer that for 

n large enough the probability that G(n,p) contains a component of size at 

least k > 3logn/(1 — cc)? is bounded from above by 

k k 

nP( Xx} > k-1) =nP( > x? > ck +(1-dk-1) 

i=1 t=1 

((1- ¢)k - 1)? ae) Nee, ee a < nexp(- 5 ApS (aye 

Now let c > 1. Set k_ = et logn and ky = n?/3. First we will show 

that a.a.s. for every k, k. < k < ky, and all vertices v of G(n,p), either 

the process described above which starts at v terminates after fewer than 

k_ steps, or at the k-th step there are at least (c — 1)k/2 vertices in the 

component containing v that have been generated in the process but which 

are not yet saturated. In particular, no component of G(n,p) has k vertices, 

with k_ <k <k,. Note first that in order to check if the process which starts 

at v produces after each k step at least (c — 1)k/2 unsaturated vertices in the 

component containing v, we need only to identify at most k+(c—1)k/2 = 

(c+ 1)k/2 vertices of this component. Hence, as in the previous case, for each 
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1, where 1 <i < k, we can bound X; from below by X; € Bi(n — ciikt,p), 

where all variables X; are independent. Furthermore, the probability that 

either after the k first steps we produce fewer than (c — 1)k/2 saturated 

vertices, or that the process dies out after the first k steps, is smaller than the 

probability that 

k k 

ee 
t=) 7=1 

Thus, from the large deviation inequality (2.6) the probability that it happens 

for some vertex uv of G(n, M) and for some k, k_ < k < ky, is, for n large 

enough, bounded from above by 

k+ k K+ _ 4)222 
nS P( xy <k-14 SS*) <n D op(—"SD*) 

k=k_  i=1 k=k_ 
[2 

< nk exp(—S a k_) Ota as 

Now let us consider a pair of vertices v’ and v" which belong to components 

of size at least k,. What is the probability that they belong to different 

components? Let us run the process of identifying vertices of the component 

of G(n, M) containing v’ for the first k, steps. According to the fact we 
have just proved, at the end of this procedure we are left with some set V’ 

of vertices of the component containing v’, such that at least (c — 1)k,/2 
vertices from V’ are unsaturated. Let us now run a similar process starting 
at the vertex uv’. Then, either we join v” to some of the vertices which belong 
to V', or end up with some set of vertices V” of the component containing 
v", among which at least (c — 1)k;/2 have yet to be saturated. Now the 
probability that there are no edges between as yet unsaturated vertices of V’ 
and V" is bounded from above by 

(1- p)ite-2)k+/2)° < exp(—(e— 1)?cn'/3/4) =o(1/n*)3 

Consequently, the probability that G(n, M) contains two vertices v’ and v" 
which belong to two different components both of size at least ki tends to 0 
as N —> Oo. 

Thus, we have shown that a.a.s. the vertices of G(n, p) can be divided into 
two classes: “small” ones, which belong to components of size at most k_, and 
“large” ones, contained in one large component of size at least k,. Now to 
complete the proof we need to estimate the number of small vertices. Observe 
that the probability p(n,p) that a vertex is small is bounded from above by 
the extinction probability p; = p;(n,p) of the branching process, in which 
the distribution of the immediate offspring of a particle is given by the bino- 
mial distribution Bi(n — k_,p). On the other hand, p(n, p) is bounded from 
below by p_ + o(1), where p_ = p_(n,p) is the probability of extinction for 
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the branching process with distribution Bi(n,p) (the term o(1) bounds the 
probability that the branching process dies after more than k_ steps.) We 
know (Example 5.3) that if np = c and n — oo, then both p_ and p, converge 
to 1 — GB, with 6 = B(c) < 1 defined as in (5.1). Hence the expectation of the 

number Y of small vertices is (1 — 6+ 0(1))n. Furthermore, 

E(Y(Y —1)) <np(n,p)(k_ + np(n — O(k_),p)) = (1 + 0(1))(EY)”. 
Hence from Chebyshev’s inequality (1.2), G(n,p) contains (1 — 8 + 0,(1))n 

small vertices and the assertion follows. a 

The double jump 

Although Theorem 5.4 tells about the behavior of G(n,p), from the equiva- 

lence of G(n, p) and G(n, M) (Proposition 1.13) we infer that a similar sudden 

change of the size of the largest component occurs also for G(n, M), the model 

of the random graph used by Erdés and Rényi (1960). Hence, it remains to 

study the structure of G(n, M) when the expected degree of each of its ver- 
tices is close to 1, that is, for M ~ n/2. Erdés and Rényi suggested that 

in this case a “double jump” occurs: the largest component of G(n, M) has 
@,(n?/%) vertices and near the point M ~ n/2 the largest component changes 
its size twice — first from Oc(logn) to @,(n?/*), and then from @,(n?/*) to 
Oc(n). (Note that, as was mentioned in the previous section, in the evolu- 

tion of the k-core of G(n, M) for k > 3, a somewhat similar “single jump” 

can be observed). Thus, in particular, Erdds and Rényi expected that what- 

ever function M = M(n) we choose, the number of vertices Li(n, M) in the 
largest component of G(n,p) can only be either Oc(logn), or @,(n?/*), or 
maybe Oc(n). However, it seems that the proof of Theorem 5.4 works also 

for c= 1+ e(n), provided that e(n) > 0 tends to 0 with n slowly enough. As 
can be easily checked expanding G(c) = B(1 +) in a Taylor’s series, in this 

case the largest component should a.a.s. have about 2en vertices (Exercise!). 

Let us mention yet another piece of evidence against such an abrupt change 

in the size of the largest component. Choose any function r = r(n), say 

r = n4/5. Now, for every n and each of the (5)! increasing sequences of 

graphs G = (Go,Gi,...,Gn), where N = (5) and the graph Gj has i edges for 

0 <i < N, choose the maximum value M(G) such that the largest component 

in G has at most r vertices. Finally, let M, = M,(n) be a median of all N! 

values of M(G). Then, by the choice of M,, 

P(L1(n, M,) <r) > 1/2, 
but at the same time we have also 

P(Li(n, M,) > 7/2) > P(Li(n, M, + 1) 27) 21/2, 

because by adding one edge to a graph we can at most double the number of 

vertices in the largest component. Hence, Li(n,M) must grow more or less 
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“smoothly” with n. (Note, by the way, that this argument cannot be applied 

to the evolution of the k-core, when k > 2; in this case the addition of one 

edge can immensely increase the size of the k-core of a graph.) It is somewhat 

surprising that the fact that near the point M ~ n/2 the size of the largest 

component must grow gradually with M was not noticed, or at least was not 

studied, for over twenty years. It was addressed only by Bollobas (1984a), 

who first described in detail the behavior of G(n, M) for M ~ n/2. 

Let us also mention that the size of the largest component of G(n, M) is 

indeed ©,(n?/*) when M = n/2 (see Theorem 5.20 below); thus, if M = cn 
and c is required to be a constant independent of n, as the value of c grows from 

zero to infinity, at c = 1 a “double jump” does occur, precisely as described 

by Erdos and Rényi. 

5.3. THE EMERGENCE OF THE GIANT: A CLOSER LOOK 

Theorem 5.4 stated that if M = cn/2 andc < 1 then a.a.s. G(n, M) consists of 
small components, while for c > 1 a.a.s. the structure of G(n, M) is dominated 

by one giant component which contains a positive fraction of all vertices. 

The aim of this section is to study to what extent this description remains 

true when 2M/n — 1. Thus, we show that in the subcritical phase, when 

M =n/2-—s and s > n?/3, no component of G(n, M) is significantly larger 
than the remaining ones. More precisely, if by L,(n, M) we denote the number 

of vertices in the r-th largest component of G(n, M), then in the subcritical 
phase we have L2(n,M) > (1+ 0,(1))Li(n,M) — 1 (Theorem 5.6). On the 
other hand, in the supercritical phase when M = n/2+ 5s and s > n?2/3, 
the largest component exceeds by far all its competitors, that is, I2(n,M) = 
Op(Li(n, M)) (Theorems 5.7 and 5.12). Finally, it should be mentioned that 
a systematic study of the phase transition was started by a remarkable paper 
of Bollobds (1984a) which described the most characteristic features of this 
phenomenon. 

The subcritical phase 

Let us first introduce some notation. A component H of a graph is an é- 
component if it has k vertices and k + ¢ edges for some k > 1; in such a case 
we call £ the excess of H. Note that we always have £ > —1. Furthermore, 
£ = —1 only for tree components while each 0-component is unicyclic. We 
call an é-component complez if its excess @ is positive, that is, if it contains at 
least. two cycles. Our first result states that if M is much smaller than n/2, 
then a.a.s. G(n, M) contains no complex components. 

Theorem 5.5. Let M = n/2—s, where s = s(n) > 0. Then, the probabil- 
ity that G(n,M) contains a complex component is smaller than n*/4s3. In 
particular, if s > n?/°, then a.a.s. G(n, M) contains no complex components. 
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Proof. If a graph contains a component with at least two cycles, it must 

contain a subgraph which either consists of two cycles joined by a path (or 

sharing a vertex), or is a cycle with a “diagonal path”. Let X be the number 

of such subgraphs in G(n, M). Since on k given vertices one can build no 

more than kk! of them (Exercise!), we have 

nix a0 <5 (p)en(@ =A) (@)" 

In the proof of the above result we estimated the number of complex com- 

ponents very crudely; in order to study the phase transition phenomenon, we 

will need more precise information on the number of é-components at different 

stages of the random graph process. Thus, let Y(k, 2) = Yn,m(k, €) denote the 

random variable which counts é-components of G(n, M) on k vertices. Then, 
for the expectation of Y,,1(k,@), we have 

EYn.u(k, 0) = (J )e4 (age ,) (@). (5.2) 

where C(k, £) is the number of connected labelled graphs with k + ¢ edges on 

a given set of k vertices. We estimate the value of EY(k, @) using Stirling’s 

formula 

n! = (14+ O(1/n))V2rn(n/e)” , (5:3) 

the expansion of the logarithm which for 0 < z < 1/2 gives 

1 — 2 = exp(—2z — 27/2 — 2°/3 — O(z*)), (5.4) 

and the asymptotic formula for the falling factorial which follows from them 

ke k? ke ake oS k oe, gly a) (eek 5.0 
OP at exp( 2n 6n? ofa) C.) 

In order to simplify our further calculations, let us assume that é>-1 

does not depend on n, k = O(n?/*) and M = n/2+ s, where k < |s| = o(n). 

Then, using (5.5), from (5.2) we get 

C(k, £) (2 - Bhilai (M) +e 

k! n Mktt 
2 3 

24) Ceo E- 8), 60 n 

EYn,m(k, @) ~ 
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while (5.4) and (5.5) give 

é : iwaey Lees. Le * a ee rn 7) 

2 3 
Ue be el er pr (Ee memanism 

2 3 (21) wa ( 224 0( 2). 
Hence, (5.6) becomes 

CO ked) Zeke . Sk =e Ke s°k 
EY,,m(k, @) ~ an exp(—k - a aaa of) (5.8) 

Finally, let us.recall that the number of forests with vertex set {1,2,...,k} 

which consist of 7 trees such that vertices 1,2,...,7 belong to different trees 

is given by ik*-*-!. Thus, in particular, C(k, 1) = k*-?, while for C(k, 0) 
we have (Exercise!) 

Vet) eae k—-1/2 CED) Ee (5) eis tS) = (+ O0/v k)) s/n / Bika le) 
i=3 

Although (5.8) applies only for k = O(n?/), it is not hard to show that 
if |s| >> n?/3 the expected number of isolated trees and unicyclic components 
larger than n?/* quickly tends to 0 as n > oo. 

Note also that for any given 

EY,,m(k, £)(Yn,u(k,£) — 1) =E Yn. (k, £2) EYn—z,m—z—e(k, 2), 

while for ky # ko 

EYn,m (ki, £)Y¥n,m (ko, £) = EYn, (ki, ) EYn—z,,m—z,—e(ko, 2). 

Hence, for any k_ < ky = O(n?/8), the variance of the number of trees or 
unicyclic components of size k, where k_ < k < k,, can be estimated using 
calculations similar to the ones above. Using a somewhat more precise version 
of (5.8), the first moment method and Chebyshev’s inequality, one can, after 
some work, arrive at the following result. 

Theorem 5.6. Let M =n/2—s, where s = s(n) is such that n2/2?<s <n. 
Moreover, let r be a fixed natural number, which does not depend on n, and 
finally, let a = a(n) < 1/3 but a > max {s/n,log~'/?(s3/n?)}. Then, for n 
large enough, with probability at least 1 — (n?/s*)* the r-th largest component 
of G(n, M) is a tree and 

2 33 

he Saying Anleararey Moe en} E 
POF By i eae PS 5 ane: 

Thus, for M = n/2—s,n2/2? <s <n, ther largest components of G(n, M) 
are all trees with (1/2+0)(1))(n?s~*) log(s?n-?) vertices. As a matter of fact, 
one can use (5.8) to show a much more precise result on the limit distribution 
of L,(n, M) (see Luczak (1990c, 1996)). 
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The supercritical phase 

As we have just proved, in the subcritical phase, when M = n/2 — s and 

s > n?/3, a.a.s. G(n, M) consists of small trees and unicyclic components 
(Theorems 5.5 and 5.6), and thus its structure is rather easy to study. The 

properties of G(n, M) in the supercritical phase, when M = n/2+ 8s and 

s > n?/3, are much harder to investigate. 

Let us start with a simple but profound observation on the formula (5.8): 

if k = O(n?/3), then the leading factor containing s, exp(—2s?k/n?), does 
not depend on the sign of s. Thus, all estimates of the moments of Y (k, ¢) 

for k = O(n?/%) which are true for the subcritical phase are expected to hold 
also in the supercritical phase and the behavior of the components of size 

k = O(n?/8) in both G(n,n/2 + s) and G(n,n/2 — s) should be similar. We 
will soon see that this is indeed the case and this vague remark can be stated 

in a rigorous way as a symmetry rule (Theorem 5.24). Here we only mention 

that estimates of the moments of Y,,7(k, @), similar to those which led us to 

Theorem 5.6, give the following result. 

Theorem 5.7. Let M = n/2+ 5, where s = s(n) is such thatn’/?<s « 
n. Furthermore, let r > 1 be fixed and let a = a(n) < 1/3 be such that 

a> max {s/n,log*/?(s3/n?)}. Then, for n large enough, with probability 
at least 1 — (n?/s*)* among all trees and unicyclic components of G(n, M) 
the r-th largest is a tree, of size contained between (1/2 — a)n?s~? log(s3n~?) 
and (1/2 + a)n*s~? log(s?n~*). Si 

Now it is time to look at the behavior of complex components of G(n, M) in 

the supercritical case. Note that our sketchy proof of Theorem 5.6 is implicitly 

based on the fact that in the subcritical phase there are many components of 

sizes close to L,;(n,M). Thus, we can count them, show that their expected 

number tends to infinity, and then use Chebyshev’s inequality to show that 

their number is close to its expected value. Theorem 5.4 suggests that in 

the supercritical phase, if M = n/2-+ o(n) and the term o(n) is positive 

and tends to zero slowly enough, then a.a.s. G(n, M) contains precisely one 

large complex component and so computing moments of Yn, m(k, £) does not 

seem to be of much use. Hence, instead of counting complex components of 

G(n, M) at one value of M, we look at the stages of the random graph process 

{G(n, M)}m when such components have been created. 

Let G be a graph and {v,w} be a pair of its vertices which is not an 

edge of G. We call {v,w} a k-internal juncture if both v and w belong 

to the same unicyclic component of G of k vertices. Similarly, we call a 

pair {v,w} a (k1,k2)-proper juncture if v belongs to a unicyclic component 

on k, vertices and w is a vertex of a different unicyclic component on ko 

vertices. Let Z!, (M1, Mo;k) [Z!"(M1, M2; k1, k2)] denote the number of M’s, 

M, < M < Mp, such that the edge added to the graph at the M-th step 

of the random graph process {G(n, M)}m is a k-internal juncture [(k1, k2)- 
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proper juncture] of G(n, M — 1). Furthermore, let 

k/2 

Zn(Mi, M2;k) = Z),(Mi, Mo;k) + a Zn(M1, Mo; ki, k — ky) 
ky=3 

and 

Zn(M,, M2) = a Zn( M1, M2;k). 

k=4 

Note that adding a juncture to a graph is the only way of creating a “new” 

complex component. Thus, at each moment of the random graph process, 

the number of complex components is bounded from above by the number of 

junctures added to the graph so far, and for every M,1< M < (9), we have 

Yin MM j= SoS OY, alk 2) ia) - (5.10) 
k €>1 

We use this fact to investigate the behavior of the complex components in 

G(n, M). Observe first that 

B2'(M+1,M+1;k)=(7\c (k, nN )® eal ate ) 
which looks very much like the formula for EY(k,0) given in (5.2). Thus, 

after calculations similar to those given at the beginning of this section, for 

k = O(n?/3) and M = n/2 +s, where s = o(n), we arrive at the following 
analog of (5.8): 

2 

EZ'(M+1,M+1;k)~ pl all 
nk 

237k. 4 sk? k8 a ee | 

_ Se 4k Game, a eae 
lesk 287k sk? k§ 1 sk®  s*k 

cas aes SMnseri Ga o/c4 ascaatanad) 

Similarly, for k; and k2 such that k; + ky =k, and M = n/2+ s, we get 

1 n n—k EZ"(M +1,M 4+ 1;k1,ke) =—————— 1 
; ee 1+ dk ke (i) ( ke 

n—k,—k2 n 
kik (5) x C(k1,0)C (ke, 0 ae 1.) ea 2 (1,60, 0)(0 fb in) @) —M * 

a 1 Hebe eae sk? sk 
Meee) ea Sy ee n? nm 6n2 

| 1 sk? 3k 
+ O( —— + — 

(Fz “f Vk pi n3 n3 )) 
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Hence, for such k and M, 

2 a Bs} 

WAC ene eee ee a — sp EO 
6n? n2 n? 6n2 

1 sk? sk 
+0(T 4 as ane (5.11) 

We will use (5.11) to prove the following result on complex components 

(Janson 1993). 

Theorem 5.8. Let w = w(n) > 1 be a function of n. 

(i) ; n 57 Jim EZ(I, (3) = gm Ms... (5.12) 

In particular, 

lim inf P(Z(1, (3) = 1) SS ae = 865 ae (5.13) 

and, for n large enough, 

P(Z(1, (3) > w) < =. (5.14) 

(ii) The probability that during the random graph process {G(n,M)}m for 

someM,0<M< ‘i the graph G(n, M) contains a complex compo- 

nent with fewer than n2/3/w vertices is, for large n, smaller than 1/w. 

(iii) If Mz =n/2+wn?/3, then, for large n, 

p(Z(1,/_) es Z(M4, (3) > 0) <1fw. (5.15) 

Remark 5.9. Janson (1993) used the method of moments (Section 6.1) to 

show that the random variable Z(1, (3)) converges in distribution and so the 

limit in (5.13) exists (for its value see Theorem 5.29, below). 

Proof. Elementary but somewhat tedious calculations, which we omit here, 

show that the main contribution to 

EZ(1, (3) = 3° EZ(M +1,M+1h) 
k M 

comes from the terms for which k = O(n?/3) and M =n/2+ O(n?/?). Thus, 

using (5.11) and replacing the sums over k and s with integrals over x = 

sn-2/3 and y = kn~?/3 one arrives at 



118 THE PHASE TRANSITION 

= (1S. o(1)) = a i y exp(—2y(zxr — y/4)? — y° /24) dz dy , 

which, after elementary calculations, gives (5.12). Note that the random graph 

process ends with a complete graph, so Z,(1,(%)) > 1. This fact, together 
with (5.12), implies (5.13), while (5.14) is an immediate consequence of (5.12) 

and Markov’s inequality (3.1). Furthermore, (ii) follows using the estimate 

5 1/w CO : 

af ‘i y exp(—2r7y + zy* — y*/6) dx dy < 1/w. 
16 0 —oo 

Finally, in order to show (iii) we observe that 

5 co 

af / y exp(—22°y + zy” — y?/6) drdy < L/w. a 
LO ommdielee 

Let us note an important consequence of the above statement. 

Theorem 5.10. Let M >n/2+s, where s > n?/3. Then with probability at 
least 1 — 6n2/9 31/8 the random graph G(n, M) contains exactly one complex 
component. 

Proof. Let M_ = n/2+ |s/2] and set w = s1/3n-?/9_ Theorem 5.8(i,ii) 
implies that with probability at least 1 — 3/w, G(n, M _) contains at most w 
complex components, each of at least n?/3 /w vertices. On the other hand, 
Theorem 5.8(iii) states that with probability at least 1—2 /w no new complex 
components appears in the random graph process after the moment M_. 
Thus, since the final stage of the random graph process, the complete graph 
on n vertices, has a positive excess (provided n > 4), there must be at least 
one complex component in G(n, M_). 

Now consider the graphs G(n, M_) and G(n, M) as two stages of the same 
random graph process. Given that G(n, M_) is as in the preceding paragraph, 
the probability that some pair of complex components of G(n, M_) is not 
joined in G(n, M) by at least one edge is bounded from above by 

Ie ae) / ae) 
< jutexn(—Jntltu? / (2)) < dutexp(—w) < fu. 

Since, as we have already observed, with probability at least 1 — 2/w, no 
new complex component is created during the process after M_ step, the 
component obtained from merging all complex components of G(n, M_) is 
the only complex component of G(n, M). a 
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Theorems 5.7, 5.8, and 5.10 tell us that in the supercritical case G(n, M) 

consists of some number of small trees and unicyclic components of size 

Op(n?/%) each, and one complex component of size 2,(n?/%). Thus, it re- 
mains to estimate the size of the largest component more precisely. In order 

to do it we follow the original argument of Bollobds (1984a), who used the 

formula (5.6) to compute the number of vertices which are contained in small 

components; this, in turn, will give us a precise estimate of the size of the 

giant complex component. The proof of Bollobas’s result, stated below as 

Theorem 5.11, is very ingenious and quite complicated; thus, instead of pre- 

senting it here in full detail, we just say a few words on the main idea behind 

rt. 
One can easily check that in the subcritical phase, where M_ = n/2 — §, 

and § > n?/3, only a negligible number of vertices (more precisely, Op(n”/3”) 
of them) are contained in unicyclic components and most of the vertices of 

G(n, M) belong to isolated trees. Hence, for such an M_, the value of 

[n?/9] 
f(n, M-)= > KEYn,m_(k, 1) 

K=1 

is very close to n. Now suppose that we would like to estimate the value of 

f(n,M,) for M, =n/2+s. If follows from (5.6)—(5.8) that the leading terms 

which contain s are: exp(—2sk/n), which comes from (1 — Kinyet? 2" and 

(2M /n)* = (1+2s/n)*. Thus, let us choose 5 > 0 in such a way that 

(0 4)oo(#)=(+B)eo(-2). 9 
Then the terms of f(n, M,) become very similar to those of f(n, M_), which, 

as we know, is roughly equal to n. As a matter of fact, the main difference 

comes from the factor (2M/n)* in (5.6); now, when ¢ = —1, we may expect 

that 
n/2 te ae Me ae f(n, My) ARs f(n, M+) 

nize Me ti M_) a n ; 

where here by ay, ~ bn we mean that a, and bp, agree up to the second-order 

term, in our case 1 — an ~ 1 — bn. Bollobds (1984a) (see also Bollobas (1985, 

Chapter VI)) showed that, indeed, the value of the three fractions above are 

very close to each other; furthermore, he used Chebyshev’s inequality to prove 

that the expectation f(n, M4) closely approximates the number of vertices 

contained in small trees of G(n, M, ). 

Theorem 5.11. Let M =n/2+ 5s, where s = s(n) > n?/3 and let 5 be the 

function defined in (5.16). Then, for any w = w(n) —> co and large enough 

n, with probability at least 1 — 1/w 

[n?!?) <y) 

ye kYn,m(k, 0) < ae 2. 

k=3 
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and 

[n2/3) _ 

nm — 25 n 
259 == <2 & 

| » Rin Rice | acer cae 8) Siar 

Let us remark that, roughly, the first part of Theorem 5.11 says that the 

total number of vertices contained in small unicyclic components is O,(n?/*) 
and thus negligible. Furthermore, since from the Taylor expansion we get 

2 2 3 
<= 2-25 +0(5), (5.17) 

Theorem 5.11 implies that if s > n?/%, then, up to an error of 0,(n?/*), 

2 s 2 
n— Bay = At _ 45 40(=) (5.18) 

nm + 2s n+ 2s n 

vertices belong to components which are either larger than n?/? or contain 
more than one cycle. 

From Theorems 5.7, 5.10, and 5.11 we immediately get the main result of 
this section characterizing the structure of G(n, M) for M = n/2 +s, where 
n?/3 < s <n. The theorem below was proved by Bollobds (1984a), under 
the somewhat stronger assumption that M —n/2 > n?/3,/logn/2, which was 
later replaced by M —n/2 > n?/? by Luczak (1990c). (Although Theorem 5.7 
is valid only for s < n, we state the result for all s > n2/ 3. so it covers the 
whole supercritical phase of the evolution of the random graph.) 

Theorem 5.12. Let M = n/2+s, where s = s(n) > n?/3 and let 5 be defined 
as in (5.16). Then, for large enough n, with probability at least 1—7n?/9s—1/3, 

2(s+3)n| _ n?/3 
Ly(n, M) — ————] < —— WO e Gries hand 

and the largest component is complez, while all other components are either 
trees or unicyclic components, smaller than n2/3. E 

Let us mention that the proof of Theorem 5.12 presented in Bollobds 
(1984a) (and Luczak (1990c)) was slightly different and relied strongly on 
estimates for the expected number of complex components in the supercrit- 
ical phase. In order to evaluate EY; .4(k, 2), Bollobds had to find a way to 
deal with C(k,@), which appears in the formula (5.2). In Bollobds (1984a) 
he obtained a particularly useful upper bound for C(k, €), showing that, for 
some absolute constant A, and k,é> 1, 

t/ A 2 

C(k, 0) < (5) KR+(3-1)/2 | (5.19) 

Luczak (1990b) observed that the right-hand side of the above inequality with 
A = e/12 approximates the value of C (k, €) quite precisely, as long as @ is large 
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but & = o(k); at the same time, Bender, Canfield and McKay (1990) found a 

fairly complicated asymptotic formula for C(k, ¢) for every function @ = &(k) 

as k —> oo. One can use their powerful result to provide a description of the 

asymptotic distribution of L;(n, M) better than that given by Theorem 5.12. 

For instance, one can show that for M = n/2+s, where n?/? < s = O(n), 

the distribution of the random variable L,(n,M) is asymptotically normal. 

The idea of the proof is very simple. For a constant r, 0 < r < 1, choose a 

function k, = k,(n, M) such that for the random variable 

ACH See DO Arun, 
@>1 k<k, 

we have EY, — r, and for each i > 2 the factorial moment E(Y,); tends to 0 

as n — oo. Then, from a special (and, in fact, obvious) case of the method of 

moments (see Theorem 6.7) we infer that 

P(Y, = 1) ~ P(Li(n,M) < ky) > r 

as n —> co. We should remark, however, that, because the formula for C(k, ) 

is quite involved, finding k,(n, M) in this way is a long and not very exciting 

task (see Pittel (1990) for another approach to this problem). 

5.4 THE STRUCTURE OF THE GIANT COMPONENT 

In this section we consider the behavior of G(n, M) in the “early supercritical 

phase”, when M = n/2+5 and n?/? < s < n. In particular, we study 

the structure of the giant component soon after it emerges. Unfortunately, 

most of the results given here have lengthy and complicated proofs; thus, this 

part of the chapter consists mainly of heuristic arguments which, hopefully, 

shed some light on the nature of this intriguing period of the evolution of the 

random graph. 

We already know that in the supercritical phase the largest component is 

complex, but what we can say about its excess k(n, M)? Note that a.a.s. no 

new complex component can emerge in the supercritical phase (Theorem 5.8). 

Thus, an edge added to G(n, M) in the supercritical stage can increase the 

value of «(n, M) only by one, if it either connects two vertices of the largest 

component, or joins the giant to one of the unicyclic components. We first 

estimate the number «/(n, M) of edges which, at the moment they are added to 

the graph, have both ends in the largest component of the graph. It is not hard 

to check (Exercise!) that for My = n/2+ O(n?/*) we have Ex’(n, Mo) = O(1) 

and thus «!(n, Mo) = O,(1). Hence, it is enough to study the evolution of 

G(n, M) for M —n/2 > n?/3. 
Let M; = n/2+i. Clearly, «'(n,M) is the sum of the random variables 

X;, where X; = 1 if the edge added at the M;,-th stage of the random process 

is contained in the largest component of G(n, M; — 1), and X; = 0 otherwise. 
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Since we restrict ourselves to the supercritical period of the random graph 

process, when, by Theorem 5.12 and (5.18), the size of the largest component 

of G(n, M;) is close to 47, we have 

and thus 

= SiGe alike 
Ex(n,M)~ So EXi~ SO =~ 

v=|n2/3 | i=|n2/3 | 

Furthermore, itis easy to check that if M; = n/2+i and i > n?/%, then 
©,(n?/i”) vertices of G(n, M; — 1) belong to unicyclic components. Thus, 
arguing as before, the expected number of edges added to the process before 

the moment M = n/2+ s, which joined the largest component of the graph 

with one of the unicyclic components can be bounded from above by 

Yo AED = O(log s/n?!) «38/0? 
i=|n2/3 | 2 

Thus, we expect that if M = n/2+s and n?/3 < s < n, then the value of 
k(n, M) should be about 16s?/3n?. The following theorem by Luczak (1990c) 
states that this is indeed the case. (See also Janson, Knuth, Luczak and Pittel 
(1993, Lemma 5) for a sharper concentration result when s < 0.5n3/4.) 

Theorem 5.13. Let w =w(n) > co and M =n/2+s, where s > n?/3w but 
s<n/w. Then, with probability at least 1 — w~°1, 

3 
n(n, My <u mere re 

Remark 5.14. The random variable x(n, M), appropriately normalized, has 
asymptotically normal distribution (see Janson, Knuth, Luczak and Pittel 
(1993, Theorem 13); one can also show this fact using the “straightforward 
approach” described at the end of the previous section). Then, for the stan- 
dardization of «(n, M), instead of 16s*/3n? one should use the more precise 
expression 2(s* — 5”) /(n + 2s) with § defined by (5.16), which closely approx- 
imates the value of «(n, M) for all M = n/2+ s, where n?/3 < 5 = O(n). 

Before we describe the internal structure of the giant component let us 
recall that the 2-core or simply the core of a graph G, denoted by cr(G), is 
the maximal subgraph of G with minimum degree two. By the kernel ker(G) of 
a graph G whose components are all complex we mean a multigraph, possibly 
with loops, obtained from the core of G by replacing each path whose internal 
vertices are all of degree two by a single edge (see Figure 5.1). Note that the 
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Fig. 5.1 A graph, its core and its kernel. 

minimum degree of a kernel is at least three and both the core and the kernel 

of G have the same excess as the graph itself. 

Let us consider first the behavior of | cr’(n, M)|, the random variable which 
counts vertices in the core of the largest component of G(n, M) for M = 

n/2+ s, where n?/? < s <n. Theorems 5.12 and 5.13 state that for such 
an M the largest component of G(n, M) has k = (4 + 0,(1))s vertices and 
k + € edges, where @ = (16 + 0,(1))s?/3n?. Furthermore, once we condition 
on the event that the largest component L(n, M) of G(n, M) has vertex set 

V’ and k + £ edges, all connected graphs with vertex set V’ and k + @ edges 

are equally likely to appear as L(n,M). Thus, the size and structure of 

|cr’(n, M)| should be similar to that of the core of C(k, é), the graph chosen 

uniformly at random from the family of all connected graphs with vertex set 

[k] and k + £ edges, provided k ~ 4s and £ ~ 16s?/3n?. One can show that 

if 2 = &(k) tends to infinity as k — oo, then with probability tending to 1 

as k —> 00, all except a negligible fraction of edges in the core of C(k, é) lie 

on cycles. Hence, since there are no cycles outside the core, the number of 

edges in the core of C(k, @) should be roughly the same as the number of edges 

of C(k, 2) whose removal does not disconnect the graph. Note that deleting 

such an edge from a connected graph on k vertices and k + é edges results 

in a connected graph on the same number of vertices and k + £ — 1 edges. 

Furthermore, each such graph can be obtained as the result of this deletion 

procedure from precisely ) —k—£+1 connected graphs with k + @ edges. 

Hence, the average size of the core of C(k, ¢) should be close to 

k\ C(k, £— 1) 

Di CRD) ee 

which, because of (5.19) and the comment following it, is roughly equal to 

V3ké. Consequently, as long as €(k) = o(k), we may expect that the core of 

C(k, 2) contains about V3k£ — £ ~ v3ké vertices, which, in turn, gives 8s*/n 
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as an estimate for |cr’(n, M)|, for M = n/2+5s and n?/*<s «n. As we 
will soon see this is indeed the case. 

Since so far our intuitive argument works quite well, let us proceed further 

and estimate the number of vertices of degree three and four in cr’(n, M). 

Recall that «(n, M) = (1+0,)(1))16s*/3n?, so the number of vertices of degree 
at least three in the core (and thus in the kernel) is at most 2K(n,M) ~ 

3253/3n*. Furthermore, if the core of the largest component has roughly 
8s”/n vertices, the average size of a tree rooted at any vertex of the core 

is about n/2s. A moment of reflection reveals that the most probable way 

to obtain a vertex of degree four in the core of the largest component is to 

connect a vertex from a tree rooted at a vertex of degree three in the core 

with some other vertex of the giant. The probability that it happens at the 

M-th stage of the process, where M = n/2 +s, should be close to 

32s? n n 12853 doen al ee 
3n? 25 2 an? 

Thus, the expected number of vertices of degree at least four in the core 
created in the process in the first M = n/2 +s stages can be approximated 

by 
a 128t 3284 

ree 
2 3n3 3n 

Note that the number of vertices of degree at least four in the core is, for 
s = o(n), much smaller than the number of vertices of degree at least three. 
Thus, we should expect that the core contains roughly 32s? /3n? vertices of 
degree three in it. Observe also that the expectation of the number of vertices 
of degree at least four tends to 0 for s < n°/; thus, they do not appear in the 
process until the moment when M = n/2 + Q(n3/*). The same heuristic can 
be used to guess the number of vertices of degree i in the core. Nonetheless, we 
should mention that the following result from Luczak (1991a), which confirms 
our speculations, has been proved by somewhat different techniques. 

Theorem 5.15. Let M =n/2+4+s, wheren?B<s< n, and, fori > 2, let 
D; = Di(n,M) denote the random variable which counts vertices of degree i 
in the core of G(n,M). Then 

8s? 
Dz = (1+ op(1))— 

Sos" 

ont) 

Moreover, for a giveni > 4, D; = Op(s*/n*1). Ifs « ni-1/i, aas, 
no verter of G(n,M) has i neighbors (or more) in cr(G(n, M)), while for 
n/t <5 <n, we have 

D3 = (1+ 0,(1)) 

92% st 

D; = (1 + 0(1))—— a 
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Remark 5.16. Since in the supercritical phase a.a.s. G(n, M) contains no 

complex components except the giant one, a.a.s. all vertices which have more 

than three neighbors in the core belong to the largest component of the ran- 

dom graph. Furthermore, the expected number of vertices that belong to the 

cycles in the unicyclic components is of the order n/s (Exercise!). Thus, in 

the supercritical phase | cr(G(n, M))| = (1+ 0,(1))|cr’(n, M)|, and the vast 
majority of the vertices of G(n, M) which have two neighbors in the core of 

G(n, M) is contained in its largest component. 

The above result implies that in the supercritical phase, as long as n?/3 < 

s <n, most of the vertices of the kernel of the largest component of G(n,n/2+ 
s) are of degree three. A stronger 3-regularity principle was shown by Luczak 

(1991a). It states, roughly speaking, that if M =n/2+s and n?/?<s <n, 
then G(n, M) contains an induced topological copy of a random cubic graph on 

(32 + 0,(1))s*/3n? vertices, where, clearly, all vertices of this copy of degree 

three must belong to ker(G(n, M)). On the other hand, as was proved by 
Robinson and Wormald (1992) (see Theorem 9.20) a.a.s. the random cubic 
graph contains a Hamilton cycle. Thus, a.a.s. there exists a cycle that goes 

through nearly all vertices of the kernel, and thus contains roughly two-thirds 

of its edges. However, vertices of degree two in the core are placed on the edges 

of the kernel in a random manner. Thus, roughly two-thirds of all vertices 

of cr’(n,M), that is, about 16s?/3n of them, should lie on the cycle which 

corresponds to a Hamilton cycle of the kernel. On the other hand, each cycle 

must be contained in the core, so it cannot have more than |cr’(n, M)| = 

(8 + 0p(1))s?/n vertices. In fact, we can slightly improve this bound, since at 

least one-third of the paths which connect vertices of degree at least three in 

the core do not belong to such a cycle. Thus, after some computations, one 

can arrive at the following result (Luczak 1991a). 

Theorem 5.17. Let M = n/2+ 5, where n?/3> <s <n. Then the length 

of the longest cycle in G(n, M) lies between (16 + Op(1))s?/3n and (7.496 + 

Op(1))s?/n. a 

The above theorem estimates the length of the longest cycle contained in 

the giant component; we conclude this section with a few words about other 

cycles that emerge in G(n, M). As one can expect, the subcritical case is easy 

to study. If M =n/2—s and n2/3 < s <n the largest unicyclic component 

of G(n, M) is of size ©,(n?/s*), and the longest cycle has length 0,(n/s). 

(Exercise! Hint: use (5.9). See also Remark 5.16.) It is not much harder 

to check that in the supercritical phase, when M = n/2+s and s > n?/3 

the size of the largest cycle of G(n, M) which is not contained in its largest 

component is O,(n/s) as well (Exercise!). Hence, in the supercritical phase, 

typically the size of the largest cycle outside the largest component decreases 

when the process evolves; thus we infer that the unicyclic components with 

long cycles must merge with the largest components quite quickly and, con- 

sequently, the shortest cycle inside the giant must be of length O,(n/s). It is 
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somewhat surprising at first sight that at the same time the largest compo- 

nent of G(n, M) contains no cycles that are much shorter than n/s. Hence, 

in the supercritical phase, basically all long cycles are contained in the giant 

component, while all short ones lie outside it (Luczak 1991a). 

Theorem 5.18. Let s = s(n) be a function such that n?/37 <s <n. 

(i) If M = n/2—s, then the length of the longest cycle in G(n,M) is 
O,(n/s). 

(ii) If M = n/2+-, then the length of the longest cycle not contained in 

the largest component of G(n, M) is O,(n/s). Furthermore, the same is 
true for the length of the shortest cycle contained in the giant component 

of G(n, M). a 

5.5 NEAR THE CRITICAL PERIOD 

Now (at last!) we have a quick look at the critical phase, crucial for the 
phase transition phenomenon, when the giant component is just about to 
emerge. From Theorems 5.8 and 5.12 we know that this is the only time of the 
evolution when more than one complex component may simultaneously appear 
in G(n, M). Theorem 5.8 tells us also that all complex components created 
in the critical period must be quite large and they are not very numerous. 
Let us first show that all of them are of size O,(n?/*) (in fact, O,(n?/%) — see 
Theorem 5.8) and their total excess is bounded in probability. 

Theorem 5.19. Let M = n/2 + O(n?/9) and and let ry denote the num- 
ber of €-components in G(n,M). Then 3,53 re = Op(1) and all complex 
components of G(n, M) have O,(n?/*) vertices combined. 

Proof. Let w = w(n) be any function such that w — oo as n + oo but, 
say, W = o(logn), and let My = n/2+w'/4n?/3_ Consider G(n, M,) as 
the M4-th stage of the random graph process {G(n, M)}xy. Theorem 5.12 
states that a.a.s. G(n, M,) contains only one complex component of at most 
wn*/3 vertices and Theorem 5.13 says that a.a.s. the excess of this component 
k(n, M) is less than w. Since all complex components that appear at the earlier 
stages of the process {G(n, M)}. are vertex-disjoint subgraphs of the giant 
component of G(n, M,), the assertion follows. is 

Somewhat surprisingly, not much beyond what follows from Theorems 5.8 
and 5.19 can be said with probability tending to 1 as n + oo about the 
component structure of G(n, M) in the critical period. It turns out that with 
probability bounded away from both 0 and 1, every possible configuration 
not excluded by the above results can appear in G(n, M), provided we do 
not restrict the sizes of largest components up to a factor of 1 + o(1). In 
order to make this vague statement precise, let us consider a family of triples 
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T = (€;a,b), where @ > —1 is an integer and 0 < a < b < w. We call such 

a triple reguiarat (> 1) ‘or’ l="1,0, but a°>'0. Two triples T= (£; a; b) 

and T’ = (¢';a',b’) are non-intersecting if either € # @’, or the intervals 

{a, b] and [a’,b’] are disjoint. For a positive constant d, a family of regular 
pairwise non-intersecting triples T = ((€1; a1, bi), (€2; a2, bz)... , (mj @m, bm)) 

and a sequence of natural numbers t = (t;, t2,...,tm), let A(d, 7, t) denote the 

event that G(n, M) contains precisely t; €;-components whose sizes lie between 

ayn?/3 and bjn?/3, for i = 1,2,...,m, in G(n, M) there are no other complex 
components and, finally, no other isolated trees and unicyclic components of 

size at least dn?/> appear in G(n, M). The following result has been proved 

by Luczak, Pittel and Wierman (1994) and Luczak (1996). 

Theorem 5.20. Let c, d be constants such that —co < c < co andd > 0, 

and M = n/2+cn?/3. Then for every family of regular pairwise non- 

intersecting triples T = (T,,T2,...,Im) and every sequence of natural num- 

beret Salts fences), Laeuamih 

p(cid,T,t) = lim P(A(d,T, 8) 
exists and 0 < p(c;d,7,t) < 1. |_| 

The proof of Theorem 5.20 relies on precise estimates of the moments of an 

appropriate multidimensional random variable, and since it is long and quite 

technical we omit it here. 
A consequence of Theorem 5.20 (almost equivalent to it) is that if we denote 

the components of G(n, M), arranged in decreasing order, by C), C2, ... , and 

X(n) is the sequence of pairs (n~?/3|C,|,e(Ci) — v(C1)), (n~?/3|C2|, e(C2) — 

v(C2)),..., then the random sequence X(n) converges in distribution, as 

n — oo, to some random sequence X = (Ee COP SSE Aldous 

(1997) gave a proof of this form of the result (for G(n,p)) by a quite different 

method, which furthermore identifies the limit in terms of the excursions of 

a certain modified Brownian motion. Aldous’s argument is based on expos- 

ing the component structure vertex by vertex (as in the branching process 

argument in Section 5.2) together with martingale convergence techniques. 

It follows immediately from Theorems 5.17 and 5.18 that for M = n/2+ 

O(n?/3) each cycle contained in the largest component of G(n, M) has length 

©,(n/ 3). As a matter of fact, since the core of a complex component is 

obtained from its kernel by randomly placing vertices of degree two on its 

edges, it is not hard to see that the following slightly stronger statement 

holds (Luczak, Pittel and Wierman 1994). 

Theorem 5.21. Let M = n/2+ O(n?/*). Then any two vertices of degree 

three in the core of G(n, M) lie at distance @,(n!/3) from each other. a 

In particular, in the critical period a.a.s. G(n, M) contains no cycles with 

diagonals. We challenge the reader to find a heuristic argument that shows 

that such cycles appear in the process when M = n/2 + ©(n3/*) (Exercise), 
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well before M = n/2+0(n‘/*) as the very first look at Theorems 5.15 and 5.17 
may suggest (for the limit probability of this property see Luczak (1991a)). 

Finally, let us say few words about the threshold for the property that 

a graph is planar, which was addressed already by Erdés and Rényi (1960) 

(see the comments on their result by Luczak and Wierman (1989)). Since for 
M = n/2 + O(n?/*), a.a.s. all vertices of the core have degree two or three 
(Theorem 5.15), a.a.s. G(n, M) contains no topological copy of Ks. Does 

it contain a copy of K33? Certainly not with probability 1 — o0(1), since 

from Theorem 5.20 it follows that at any moment of the critical period, with 

probability bounded away from 0, G(n, M) consists only of trees and unicyclic 

components. However, for a given £, once an é-component appears in G(n, M), 

with a non-vanishing probability its kernel can be any 3-regular multigraph 

with excess £. (Although it is not true that all such multigraphs are equally 

likely to appear as the kernel of such a component, for a small @ the corre- 

sponding limit probabilities are easy to work out.) Thus, since Theorem 5.20 

implies that the probability that G(n, M) contains an é-component with @ > 3 

is larger than some positive constant, the probability that G(n, M) is planar 

is also bounded away from zero. With some more work, one can prove the 

following, somewhat stronger result (Luczak, Pittel and Wierman 1994). 

Theorem 5.22. Let M = n/2+cn?/> for some constant c. Then the prob- 
ability that G(n, M) ts planar tends to a limit ppi(c), where 0 < ppi(c) < 1. 
Furthermore, 

lim ppi(c)=1 while lim ppi(c) =0. a 
c—oo c=>-—co 

Unfortunately, we do not know how to find the value of pp)(c), although, in 
principle, we can approximate it with arbitrary precision. For instance, the 
best known bounds for ppi(0) are given by Janson, Knuth, Luczak and Pittel 
(1993, Theorem 8), who showed that 

0.987074 < ppi(0) < 0.999771. 

5.6 GLOBAL PROPERTIES AND THE SYMMETRY RULE 

So far we have dealt mainly with properties that hold a.a.s. for the random 
graph G(n, M); in this section we will be interested in properties of the random 
graph process {G(n,M)}m. Thus, for instance, instead of approximating 
some random variable X,,,, defined for G(n, M), for a given function M = 
M(n), we will try to obtain uniform bounds for Xn,m Which a.a.s. remain 
valid at many or all stages of the process {G(n, M)}ar. 

Let us start with a simple example of one such global statement. 
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Theorem 5.23. Let w = w(n) + co as n > 00, with w < n!/®, Moreover, 
for M=n/2+s, let 

k*(n, M) = (a + ase el E 
log log w/ 2s? eps (5.20) 

Then a.a.s. for the random graph process {G(n, M)}_ the following hold: 

(i) if —n/w <s < —wn?/8, then 

k~(n, M) < Ii (n, M) < kt (n, M); 

(ii) if —wn?/3 < s < wn?/3, then 

2/3 Ju? < Iy(n,M) < 5wn?/8 . 

(iii) if wn?/? <s<n/w, then 

|Li(n, M) — 4s| < w7"/45. 

Proof. Let s; = wn?/3(1+1/logw)', where i = 0,1,...,t and t is the smallest 
natural number for which s; > n/w. Furthermore, let M; = n/2-— s; and 

1 Z 

\= eel (5.21) 
4 bet 

2 log log w 

Then, Theorem 5.6 implies that with probability at least 

Benz, 1/4 log! n g1l0ogw 
1->(5) ied) 

Ea!) 

for alli =0,1,...,t, we have k~(n, M;) < Li(n,M,-) < k+(n,M;). Now it 
is enough to observe that for every M = n/2-— ss, for which s;_, < s < 8;, we 

have k~(n,M~-) < k-(n,M;) and kt+(n,M) > k+(n,M;_,). Hence, a.a.s. 
for each such M 

k(n, M) Ss I,(n, M; ) < Iy(n, M) < I, (n, M;_) < k*(n, M) : 

In the very same way one can deduce (iii) from Theorem 5.12 and (5.18). 

Finally, the statement (ii) follows immediately from (i) and (iii), applied with 

s = +wn?/3, a 

The above argument strongly relies on the fact that the value of the ran- 

dom variable L;(n, M) cannot decrease during the random process. Suppose, 

however, that we would like to show a similar uniform bound for the size of the 

second or, more generally, the r-th largest component of G(n, M) for a fixed 

r > 2. The subcritical phase is rather easy to deal with. Clearly, the uniform 
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upper bound for L,(n, M) given in Theorem 5.23 is at the same time the up- 

per bound for L,(n,M). On the other hand, Theorem 5.6 and Theorem 5.23 

imply that a.a.s. the random graph process is such that for all M = n/2—s 

for which s > n?/3 we have L,(n, M) < L,(n, M +1). It is in the supercritical 
phase that the problem of studying L,(n,M) becomes interesting: now the 

size of L,(n,M) can increase when the r-th largest component merges with 

some small component, but the value of L,(n, M) can also drop significantly, 

when one of the largest components is joined to the giant one. In this section 

we learn one method of dealing with such non-monotone random variables: 

the symmetry rule. 

Suppose that M = n/2+s, where n?/3 < s <n, and let G’ (n, M) denote 
the graph obtained from G(n, M) by deleting all vertices of the largest compo- 

nent. (In the unlikely case in which there are several components of maximum 

size we pick one of them uniformly at random.) Then, from Theorem 5.12 

and (5.18), G“(n, M) has n' = n — (4+ 0,(1))s vertices. Furthermore, due to 
Theorem 5.13, it has 

M' = n/2+s—(4+0,(1))s — op(s) = n/2 —(3+0)(1))s = n'/2—(1+0,(1))s 

edges. Thus, properties of G’(n, M) should be roughly the same as those of 

G(n', M'), where n’ = (1+0(1))n and M’ = n'/2—s. The following symmetry 
rule states this fact in a rigorous way. 

Theorem 5.24. Let A be any graph property. If M = n/2+s, where wn?/3 < 
s <n/w for some function w = w(n) > oo, then for n large enough 

P(G" (n, M) has A) < max{P(G(n', M’) has A) : 

In’ — (n —4s)| <w~*s, |M' — (n'/2— s)| < ws} + 8n?/9 5-1/3. 

Proof. Let n' and M' denote the number of vertices and edges in G" (n, M), 
respectively. Theorem 5.12 implies that, except for an event with probability 
at most 7n?/9 / 31/3, 

[n2/3] [n2/*} 
n= $0 k¥a,m(k,-1) + > k¥n,ar(k, 0), 

k=1 k=1 cae be (5.22) 
M'= S© (k-1)¥a.m(k,—-1) + >> Yn, (k, 0). 

k=1 k=1 

Assuming this, Theorem 5.11, with w replaced by s°/?/nw, and (5.18) show 
that, except with probability at most nw/s?/? < n1/3/g1/2, 

In’ — (n —4s)| < © +47 +00(£) = 0c(=). 
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Moreover, by estimates as in Section 5.3, it can be shown that if M = n/2-5, 
then 

| Yn,m(k, —1) - ap ah = O(n), 

where 

ee M) a : Set s +0(5) = =3+0(—), 

which, in fact, implies Theorem 5.13 when s is large, s > wn®/® (Exercise!). 
Thus by Chebyshev’s inequality, again assuming (5.22), 

2/3 

P(e mi — (5—s)|>Z)=0(Fr) = 01m") =0(=). 
Observe that the graph G’(n, M), once we condition on the number n’ 

of its vertices and the number M’ of its edges, can be viewed as a graph 

chosen uniformly at random among all graphs with n’ vertices and M' edges 
in which the largest component is not larger than n—n’ (a negligible additional 

weighting factor emerges in the case when the largest component of G” (n, M) 
has precisely n—n' vertices). Moreover, the values of n’ and M' we are dealing 

with ensure that G(n’, M’) is in the subcritical phase of the evolution of the 
random graph. Therefore, we can use Theorem 5.6 with a = 1/3 to infer that, 

with probability at least 

He Sil tn /3 > IW 05n7/2s- 1/5, 1— [(n')?/@'/2-—-M")"] 

G(n', M') contains no component larger than n?/%, and the result follows. 

Thus, as we have already anticipated by looking at the formula (5.8), for 
n?/3 < s <n the graph G4(n,n/2 +s) behaves roughly like G(n,n/2 — s) 
with respect to any property A not vulnerable to small changes in size of the 

random graph (see also Theorem 5.18). It can be shown that an analogous 

relation between the structures of G4 (n,n/2+) and G(n’,n’/2—s') remains 
true also for s = Q(n). (However, in this case the dependence of n’ and s’ 
on n and s is more involved and the “mirror symmetry rule” is not valid any 

more.) Thus, the evolution of G’(n,M) in the supercritical phase is simi- 

lar to the evolution of G(n, M) in the subcritical phase running backwards: 

for M/n > oo all cycles in G’(n, M) disappear, the size of the largest com- 

ponent of G’(n, M) decreases and, just before G(n, M) becomes connected, 
a.a.s. G’ (n, M) consists of isolated vertices. However, the importance of the 
symmetry rule goes beyond the fact that it could give us better insight into 

the nature of the evolution of the random graph; it can be also a useful tool 

in studying global properties of the random graph process. 
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Theorem 5.25. Let r > 2 be a natural number which does not depend on n 

and let w = w(n) > co asn oo. Moreover, for M =n/2+5, let 

1 n? |s|? 
= = ———_}—~ log —. 2s 

a (1 a eae 252 8 7? ( 

Then a.a.s. the random graph process {G(n, M)}m is such that for all M = 

n/2+ 8, where wn?/? < |s| <n/w, we have 

k(n, M) < L,(n,M)< k*(n,M). 

Proof. As in the proof of Theorem 5.23, set s; = wn?/3(1+1/logw)', where 
i = 0,1,...,t and t is the smallest natural number for which s; > n/w. 

Furthermore, let M; = n/2-— ss; and k+(n, M) be defined as in (5.21). Using 

Theorem 5.6 as before, a.a.s. for all 1 = 0,1,...,t we have k~(n,M;) < 

Vim) ee k+(n, M;). Then, using the upper bound for L;(n, M;_) given 

by Theorem 5.23, and the “a.a.s. monotonicity” of L,(n, M) in the subcritical 

phase discussed above, we infer that a.a.s. for every i= 1,2,...,t, and every 

M =n/2 —s for which s;_1 < s < 8;, 

k-(n, M) < k-(n, M7) < L,(n, Mz) 

< L,(n,M) < L,(n, M;_;) < k*(n, Mz.) = k*(n,M). 

Now set M;+ = n/2 +; for i = 0,1,...,t. Then, arguing as before but 
now using Theorem 5.7, one can show that a.a.s. for alli = 0,1,...,¢ we have 

k7(n, M#) < L,(n, M}*) < b+ (n, Mp). 
Nonetheless, as we have already observed, this fact does not imply that 
k-(n,M) < L,(n,M) < k+(n,M) for all Mo < M < Mj, since dur- 
ing the random graph process the largest components merge with the giant 
component and so the value of L,(n,M) can go up and down. Thus, for 
2 =0,1,...,¢—1, let Aj be the following property of a graph G: if we add 
to G si+1 — s; edges, chosen uniformly at random from all pairs of vertices 
of G which have not yet become edges of G, then the probability that the 
largest component of such a graph is larger than kt (n, My) = k(n, M; ) is 
smaller than (n?s;°)1/20leslog Similarly, for i = 1,2,...,t, let At! denote 
the property that a graph G is such that if we delete from it s; — s;_; ran- 
domly chosen edges then the probability that the r-th largest component of 
the graph obtained in this way is smaller than k~(n, M3‘) = k-(n, M; ) is at 
most (n?s;°)1/20leglog~ (We define A! and A” false if there is not room in 
G to add or delete this number of edges.) Let us emphasize that, although 
probability is involved in the definition of A! and A’, they are purely “de- 
terministic” graph properties; for instance, A’! says, roughly, that G contains 
a lot of large trees whose sizes do not drop rapidly when we delete from the 
graph a moderate number of randomly chosen edges. 
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Now suppose that (1—5/w)n < n’ < nand |s'—s;| < w~°°s;. We will show 
first that the probability that the property A‘ does not hold for G(n’ , n’/2—s') 

is bounded from above by 

2.3 1/20 log log w 2\ 1/20 log log w 

$o-Vele AR <—o) a 
' eae 6 = 3 7 

(s + 85 $i41) 3; 

Indeed, otherwise the probability that the largest component of G(n',n’/2 — 

s’ — s; + $i41) is larger than k*(n, M; ) would be bounded from below by 

( n23 eG a lei 

(s' + 8; — 5i41)® eo 
ey) 1/10 log log w 

Cs ea) 

contradicting Theorem 5.6. Similarly, the probability that G(n’,n'/2—‘’) has 

Al’ is at least 
2\ 1/20 log log w 

T= (5) : 
sy 

since otherwise the graph G(n, n/2—s' —s;+s;-1) obtained from G(n',n’/2— 

s') by deleting s;—s;-1 randomly chosen edges, would contradict Theorem 5.6. 

Now apply the symmetry rule (Theorem 5.24) to infer that for each « = 

0,1,...,¢—1, with probability at least 

2\ 1/20 log log w 2/9 2\ 1/20 log log w (9) et ay ey 1/3 3 
3; sy! 3; 

G" (n, M;*) has property Aj, and for each i = 1,2,...,t, with probability at 

least 
Ae 1/20 log log w 

1-3 (=) | 
8; 

the property A’! holds for G” (n, Mi). 
Now, in the evolution of G(n, M) for M = Mj to Mji,, we add si41 — 83 

edges. Some of them may have one or two endpoints in the largest component 

of G(n, M;), which only may decrease the size of the largest component of 

G"(n, M), and since the property that a graph contains a component larger 

than kt (n, M+ ) is monotone, it follows that the probability that the largest 

component of G!(n, M) is larger than k+(n, M) > kt (n, M;*) for some M = 

n/2+ 8s with 8; < s < s;41 is bounded from above by the probability that 

we create a component larger than k+(n, Mj‘) if we add s;41 — s; randomly 

chosen edges to G!(n, M;*). Thus, from the definition of A; it follows that 

this probability is at most 

ne 1/20 log log w n2 1/20 log log w 

P(G(n, Mit) At) + (%) <4(") | 
a 3; 



134 THE PHASE TRANSITION 

Consequently, the probability that for some M = n/2+~s, where so < s < 54, 

the largest component of G’ (n, M) is larger than k*(n, M) is bounded from 

above by 
t—1 2\ 1/20 log log w 

n 
) = O( 1 ye All 

For the lower bound, we instead for Mj, > M > M;* regard G(n, M) as 
obtained from G(n, M;4, ) by randomly deleting edges one by one. Some of the 

removed edges may have belonged to the largest component of G(n, Mj,,), 

but we continue and delete edges until s;,; — s; of them have been removed 

from G* (n, Mj), and denote the resulting subgraph of G* (n, Mj) by Hj. 

Let V = V(G(n, Mz, )) = V(Ri). 

If for some such M the r-th largest component of G(n, M) is smaller than 

k(n, M) < k(n, Mj41), so that G(n, M) has less than r components of order 
A 

at least k~(n, Mj+1), then the same holds for the subgraph G(n, M)[V], and if 

we continue to delete edges, and assume that all components of G* (n, Mj.) 

have orders less than 2k-(n, M41), we see that also H; has less than r com- 

ponents of order at least k~(n,Mj41). By the definition of Ajj,,, and ob- 

serving that 2k~(n, Mi,1) > kt (n, Mj41), it follows that the probability that 
L,(n,M) < k(n, M) for some M = n/2+8, 8; < s < si41, is at most 

P(G" (n, Mz) ¢ Alg,) + P(G! (n, Mt) ¢ AY.) + CS 
2 

2\ 1/20 log log w 

a log log w 

3 
si 

Summing over all i < t, we see that the the probability that L,(n,M) < 
k~(n, M) for some M = n/2+5, so < s < s is 0o(1) aan 3 00. & 

5.7 DYNAMIC PROPERTIES 

In the previous section we showed how to use the symmetry rule to extend 
results about G(n, M) to theorems about the behavior of the random graph 
process {G(n,M)}m. Now we mention a few “genuine” properties of the 
random graph process which do not correspond to any property of G(n, M). 

The first problem we will consider is Erdés’s question about the length €, 
of the first cycle which appears during the random graph process. The limit 
distribution of €, is given by the following result of Janson (1987) (see also 
Bollobas (1988b)). 

Theorem 5.26. For every j > 3 

1 

lim P(é, = 7) = 5 f til t/2+07/4,/7 FE ae. 
n—->co 0 
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Proof. We just give the idea of the proof, omitting all technical details and 

computations which can be easily filled in by the reader (Exercise!). Thus, 

let 7 > 0. Choose 7 > 3 and a large constant A. For i = 0,1,...,[(1—17)A] 

set M; = tin/2, where t; = i/A. One can apply the method of moments 

(Section 6.1) to show that for every such M; the probability that G(n, M;) 

contains no cycle tends to 

io.) 

exp (- Yt 2k) & ghyattiye, Aap Fat 

k=3 

Furthermore, one can use Chebyshev’s inequality to verify that for every 2 the 

number of pairs of vertices of G(n, M;) connected by a path of length 7 — 1 is 

equal to (1/2+ 0p(1))t2-*n. Note that the property that a graph contains no 

cycle is decreasing and that the number of pairs of vertices joined by a path of 

length j — 1 can only increase when a new edge is added to the graph. Thus, 

since A can be chosen arbitrarily large, we infer that for every € > 0 a.a.s. 

for every M = tn/2, where 0 < t < 1-7, the number of pairs of vertices of 

G(n, M) connected by paths of length j—1 is contained between (1/2—e)t?~!n 
and (1/2 + e)t?—!n. Moreover, if M = tn/2, where 0 < t < 1—7, then the 
probability that G(n, M) contains no cycle is (1 +0(1))et/2+#/4,/T —t. Hence 
the probability that in the first (l1—n)n/2 stages of the process a cycle of length 

j appears as the first one is given by 

(1—n)n/2 j-1 

(1 + o(1)) ie (2M Jn) 2/2 a jnt(M/n)?, /1—2M/n 

M=0 (3) 

1 aa 2 
= (5 +o(1)) | i-Vet/2tt /4,/] — ¢ dt. 

0 

Thus, letting 7 — 0, for each 7 > 3 we get 

n—>co 

Sh oae 
lim inf P(E, = j) > p; = a ti-het/240°/4,/1 — Ft dt. (5.24) 

0 

However, it is easy to check that }> 723 P5 = 1, thus (5.24) implies that 

lim P(E, = J) = pj 
n—-oco 

for every j > 3. a 

Let us remark that the limit distribution of €, has infinite expectation; 

thus Eé, — oo and, since E€, <n, one can ask about the order of E&p. 

Flajolet, Knuth and Pittel (1989) computed all the moments of the length of 

the first cycle and of the size of the component containing it; in particular, 

they showed that 

m/T(1/3). 46 
Een ~ 91/6 32/3 
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The proof, based on the study of the behavior of a certain generating function, 

is much harder than that of Theorem 5.26, thus we do not give it here, but refer 

the interested reader to the original paper (see also Janson, Knuth, Luczak 

and Pittel (1993, Section 26)). 

Two other problems we would like to mention in this chapter concern the 

way the giant component emerges. Erdés proposed that we view the evolving 

graph as a “race of components”. In order to express his idea in a rigorous 

way, we define recursively the leader of this race. For a graph with only one 

edge, the leader is the only component with two vertices. Now suppose that 

we add a new edge e to a graph G, in which one of the largest components, 

say, H, has been chosen as the leader. Then, e may miss the leader and 

connect two other components whose combined size is larger than |H]|; in 

this case we say. that a change of leader occurred and nominate the newly 

created largest component to be the leader of the graph. In all other cases 

the leader of G+e is the component that contains all the vertices of the “old” 

leader H. Erdés asked when in the random graph process the last change of 

leader takes place. Note that Theorems 5.23 and 5.25 imply that a.a.s. no 

changes of the leader occur when n?/3 < M — n/2 < n, and the reader is 
invited to check that the same remains true for all M = n/2+(n) (Exercise!). 
However, it is, in principle, possible that already in the subcritical phase one 
component starts to dominate, although its superiority becomes evident only 
later. The following result by Luczak (1990c), which we give without proof, 
shows that this is not the case, and that the last change of leader occurs at 
M =n/2+0,(n?/%). 

Theorem 5.27. Let Lead(n,M) denote the largest number r such that the 
leader of G(n,M) does not change in the next r stages of the random graph 
process {G(n, M)}y. 

(i) Ifn?/? <s <n, then 

n S 
Lead(n, 2 —- s) = Ate = 

(ii) If s >> n?/, then a.a.s. Lead(n,n/2+s) = (5) —n/2-—s, in other words, 
the largest component of G(n,n/2 +s) will remain the leader until the 
very end of the random graph process {G(n, M)} a4. a 

Finally, let us look once again at the number of complex components cre- 
ated during the process {G(n, M)}x4. Theorem 5.8 says that a.a.s. all complex 
components are created in the critical phase when M = n/2+O(n2/3). What 
is the probability that only one complex component appears in the process 
{G(n, M)}m and no other complex component ever emerges? Theorem 5.8, 
the remark following it, and Theorem 5.20 imply that this probability tends 
to a limit v, where 0 < vy < 1. In order to find the value of v, we describe the 
changes of the structure of G(n, M) during the critical period in yet another 
way, as a Markov chain whose stages are “graph configurations” . 



DYNAMIC PROPERTIES 137 

Thus, we say that [r1,r2,...,rg] is the configuration of a graph G, if G 
contains precisely ry ¢-components for € = 1,2,...,q and no ¢-components 
with £ > q appear in G. It is not hard to see that if we add a new edge to 
a graph the value of 5°, ére increases by at most one; for instance, adding a 
juncture as an edge to a graph changes its configuration [r,,72,... ire \inte 
[ri + l,re,...,rg]. The following “switching theorem”, proved in Janson, 
Knuth, Luczak and Pittel (1993) by a careful analysis of an appropriate gener- 
ating function, describes quite precisely the way the configuration of G(n, M) 
evolves during the random graph process. 

Theorem 5.28. Let r; + 2r2 +---+qrg =r and 6; + 269 +---=1. Then 

the limit probability that in the random graph process {G(n, M)}_ the config- 

uration [r1,T2,...,Tq] is followed by [ry + 51, r2 + b9,... Wiig tOgaOgttyeer | 48 
equal to 

fiers ara eye by 1 
99(9 + 1)r;/(8r+ ee + 2) el Ose 1 

97? r3(r3 — 1)/(38r + 5)(3r + 2) if 05 = 2007 =) 

18jkrjre/(8r+5)(8r+3) if 6; =—-1, 6 =—-1, Oj4ng1 =1, 5 <k 

and there are no other possibilities. Moreover, asymptotically these probabili- 

ties are independent of the history of previous configurations. & 

Note that, in a way, the above theorem nicely supplements Theorem 5.20. 

Theorem 5.20 implies that, in particular, for any sequence rj,...,7Tq (e.g., 

0,2,1) of natural numbers, with probability bounded away from zero, for 

some M the graph G(n, M) has configuration [ri,..., 7g] (e-g., [0, 2, 1]). The- 
orem 5.28 states that we may choose not only such a configuration but also 

the way it was created (e.g., {1] — [0,1] > [1,1] > [0,2] > [0,1,1] > [1,1, 1] 
—> [0, 2, 1]); still the probability that the configurations of G(n, M) during the 
random graph process followed such an “evolutionary path” tends to po > 0 

as n —> oo, where po = fo(T1,---,7%q) can be explicitly computed. 

Now the question about the limit probability that during the random graph 

process no two complex components appear at the same time, finds its sur- 

prisingly simple answer. 

Theorem 5.29. The probability v(n) that in the process {G(n,M)}m for 
every M,0 < M < (5), G(n,M) contains at most one complex component 

tends to 

=== 0.872... 
pe, (36 + 1/2)(3€ + 5/2) ts 

mah 9é(£ +1) _ 5a 

asn— oO. 

Proof. Theorems 5.8, 5.10 and 5.13 imply that for every « > 0 there exists 

a constant C = C(e) such that the following holds: with probability at least 
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1—e, the random graph process is such that if in G(n, M) an &-component with 

£ > C appears, it will remain the only complex component of the graph until 

the very end of the random graph process. Thus, the probability v(n) can be 

approximated up to € by the probability that the first C steps of the evolution- 

ary path are [1] > [0,1] > [0,0,1] >---— [0,...,0,1]. From Theorem 5.28 

the probability of this event tends to []/_, 9£(€ + 1)/(3é + 1/2)(32 + 5/2). 
Now, to complete the proof, it is enough to let C — oo. | 



Asymptotic Distributions 

Many questions for random combinatorial structures are qualitative; we ask 

whether some property is satisfied, for example, the existence of a certain 

substructure. Other questions are quantitative; we study some numerical 

characteristic of the random structure, for example, the number of copies of a 

certain substructure. Since the structure is random, this becomes a random 

variable and we may ask about its distribution. 

Exact formulas for the distributions of interesting combinatorial variables 

are rare, and even when they exist, they are often too complicated to be of 

much use. The main interest, therefore, centers on asymptotics and limit 

theorems. We will in this chapter describe several methods that have been 

used to prove such results, and illustrate their use with applications to random 

graphs. We concentrate on presenting the methods rather than presenting new 

results; thus we prove some results several times by different methods. 

The appropriate probabilistic notion is convergence in distribution, as de- 

fined in Section 1.2. We will mainly state results on convergence in distribu- 

tion of single random variables, but most of the results extend easily to joint 

convergence of several variables. For example, the Cramér—Wold device (see 

Section 1.2) applies with ease to extend all results in this chapter on normal 

convergence (Exercise!). 
Typically, random variables converge only after rescaling. We use special 

notation for the most natural and common choice: For a random variable X 

with finite non-zero variance, we define 

X =(X -EX)/(Var X))/?; 

thus X is standardized to have EX =0 and Var X =1. 

139 
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6.1 THE METHOD OF MOMENTS 

The method of moments is one of the oldest methods to prove convergence in 

distribution, but it is still widely used, both because it is conceptually simple 

and because it is powerful and well adapted to combinatorial problems. The 

drawback is that it usually requires long and messy estimates. As a result, 

many theorems have first been proved by the method of moments but later 

reproved in more elegant ways by other methods. 

The moments of a random variable X are the numbers EX*, k > 1. We 

consider here only variables such that all moments exist, that is, E|X|* < co 

for every k > 0; we say that such random variables have finite moments. 

It is clear that the moments of a random variable are determined by the 

distribution. The converse does not always hold (see, e.g., Chung (1974)), 

but it holds in many important cases. We thus say that the distribution of 

X is determined by its moments if X has finite moments and every random 

variable with the same moments as X has the same distribution. A sufficient 

condition for the distribution of X to be determined by its moments is that 

the moment generating function Ee‘™ is finite for t in some interval around 0; 
in particular, this holds if X has a normal or Poisson distribution. 

The standard version of the method of moments can be stated as follows; 

see Chung (1974, Theorem 4.5.5) for a proof. 

Theorem 6.1. Let Z be a random variable with a distribution that is de- 

termined by its moments. If X,,X2,... are random variables with finite 

moments such that EX* + EZ* as n > oo for every integer k > 1, then 
d 

Ager oe aN 

The method of moments thus requires estimation of all moments of X,, 

which often leads to long calculations. Two versions of the method, which are 

formally equivalent but often more convenient for applications, are given in 

separate subsections below. 

The method of moments also applies to vector-valued variables, or, in other 

words, to joint convergence in distribution of several random variables; we now 

have to consider all mixed moments. We write Z* = Zy" --- Z¢* for vectors 
LEN OAT NENG Me $8 (an FEF) 

Theorem 6.2. Let Z = (Z1,...,Za) be a random vector with a distribution 
that is determined by its moments. If X, = (Xni,---,Xna) are random 
vectors with finite moments such that EX° + EZ as n + oo for every 

multi-index a = (a4,...,Qa), then Xp a cs & 

A particularly important case is convergence to a normal distribution. We 
recall that the semi-factorial n!! is defined to be n(n—2) ---3-1 = (2m)!/2™m!, 
when n = 2m — 1 is odd. 
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Corollary 6.3. [f X,,X2,... are random variables with finite moments and 
Qn are positive numbers such that, as n — ov, 

F(X, —EX,)* = (k —1)!!a% + o(a*), when k > 2 is even, 

Hae a o(ak), when k > 3 is odd, 

then az1(X» —E Xn) 4 N(0,1) and X, 4 N(0,1). 

Proof. Let X € N(0,1) be a standard normal variable and let m, = E X*, 

k = 1,2,..., be its moments. Then, as is well known, m, = (k — 1)!! when k 

is even and m,; = 0 when k is odd. 

Let Y, = a, '(X, —EX,). Then EY, = 0 = m and, by the assumption, 

EY,* + m, as n — oo for every k > 2. Consequently, Y, i N(0,1) by 
Theorem 6.1. 

Finally, by the assumption with k = 2, Var(X,)/a2 — 1 and, thus, using 

Cramér’s theorem (Section 1.2), Xn = (a2/ Var Xn)!/?¥, 4 N(0,1) too. & 

Example 6.4. Consider the subgraph count Xg in G(n,p), where n — oo 

and p = p(n) is a function of n. Asymptotic normality under various condi- 

tions has been shown by several authors. The complete result (Rucinski 1988) 

is as follows; as is shown after the proof, the conditions on p are necessary 

too. 

Theorem 6.5. Let G be a fired graph with eg > 0. If n 4 c and p= p(n) 

is such that np™ ©) — oo and n?(1 — p) > ov, then Xa = N(0, 1). 

Proof. There are (")v!/aut(G) copies of G in the complete graph K7,; for 
each such copy G’ we define, as in Chapter 3, the random indicator variable 

Ig: = 1[G’ C Gn, p)]; note that EIg = p**. Then Xg = )og, Ic: and thus, 

for every m > 1, 

(6.1) 

summing over all m-tuples G),...,Gm of copies of G in K,,. Let us write 

T(G},. .21Gm) = E((Ie, = E Ig,) gar hd ce, a Rilo) Je 

and for each such term in the sum, define a graph L = L(Gj,...,Gm) with 

vertex set {1,...,m} and an edge ij whenever G; and Gj; have at least one 

edge in common. Thus L is a dependency graph for the variables Ig,,...,[G,,, 

see Example 1.6. 

We now group the terms in the sum in (6.1) according to the structure 

of the graph L. Consider first the case when m is even and L consists of 

m/2 disjoint edges. There are (m — 1)!! such graphs L, and each gives the 
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same contribution to the sum in (6.1); moreover it is easy to see that each 

contribution is (Var Xg)"/?(1 + O(1/n)). We claim that every other graph 

L with m (even or odd) vertices contributes o( Var Xq)™/?; since there are 

finitely many possible L for each m, the result then follows by summing over 

L and applying Corollary 6.3, with a2 = Var Xc. 

In order to verify the claim, observe first that if L has an isolated vertex 1, 

then every term T(G),...,Gm) yielding the graph L vanishes, because then 

Ig, — EIc, is independent of the product of the other factors. Consequently, 

such L give no contribution at all. 

In the remaining cases, every component of L has at least two vertices, 

and some component has at least three. We let c = c(L) be the number of 

components; it follows that c(L) < m/2. Moreover, we may, for convenience, 

assume that the indices are reordered in such a way that the components of 

I haververtex. setsi imme ar psi rectal, seo}; ee Ae Dee ee re 

and that if 7 ¢ {1,71 + 1,re +1,.--,rc-1 + 1}, then L contains an edge 77 

withita<7: 

Consider a term T(G1,...,Gm) in (6.1) with such an L, let GS) =U} Gi, 
and let F; be the (possibly empty) subgraph of G which corresponds to 

G9-!) 4G; under an isomorphism G; = G. Note that by our assumption 
on L, e(F;) = 0 exactly when 7 € {1,71 +1,r2 +1,...,r¢e-1 + 1}. 

If p < 1/2, we estimate the term T(G,,...,Gm) by taking absolute values: 

[T(Gi,...,Gm)| < E(Ue, + Ele,)--- Ue, + Elc,,))- 

The product can be expanded as a sum of 2” terms, and it is easily seen that 

among them, Ig, ---Ig,, has the largest expectation, namely, pe). Thus 

|IN(Gi5s265Gm)| < 2™ Ee, - Ig.) = Opto). 

If 1/2 < p< 1, we instead use the estimate 

c(L) 

IT(Gi,-.-,;Gm)| SE] We, -Elc,,|, 
k= 

keeping only one factor for each component of L. These c(L) factors are 
independent, and each has the expectation 

E\Ig,— Ele, |= 2p°4 (1 = p°*) < 2(1— p**) < 2ecg(1 — p). 

Consequently, 

NGL se wGmy Olly). 

We may combine the two cases by introducing redundant factors in each 
of the estimates; thus, for all p € (0, 1], 

T(Gi, sae IGA — O((1 = py) pea)
, 
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Now, as is easily seen, e(GY)) = jeg — >3 e(F), so, in particular, e(G’™) = 

meg — dy e(F;). Similarly, o(G’")) = mug — 17" u(F;) and thus there are 
at most O(n™e-2L7 “(Fi)) possible choices of G;,...,Gm yielding L and a 
particular sequence F\,..., Fm. Consequently, fixing L and F\,..., Fin gives 

a contribution to the sum in (6.1) of the order 

O(n™ve-Zr (Fi) (4 es py) pmec - LT a), (6.2) 

We next recall that c(L) of the F; have no edges, and thus n?(Fi) p(s) 
n(Fi) > 1, while the m — c(L) others have e(F;) > 1 and thus n?(Fi) pe(¥) 

E(Xpf,) > 8g, cf. (3.7). Hence, using Lemma 3.5, 
IV Il 

nmre-Ly FE) Soo po) pmes- Lr e(F;) 

=(1- p)°) (n° pee)™ [fer pe™) > 

$= 

Se) eto) tee py (EX) Oe 7” 
c(L)—m x (Var Xg)™/?((1 — p)Bg)”. (6.3) 

Now the assumptions np™®) — oo and n?(1—p) > oo imply (l1—p)®g > 
co. Indeed, as remarked in Chapter 3, np™() — 00 is equivalent to ®g — ov, 

which implies (1 — p)®g — co provided p < 1/2. On the other hand, when 

p> 1/2, ®g xn’, and thus (1 — p)®@g < n?(1— p) > ©. 
Moreover, as observed above, c(L) < m/2. Consequently, by (6.2) and 

(6.3), the contribution to the sum in (6.1) by terms corresponding to L 
and Fi,..., Fim is o((Var Xg)™/*). Summing over the finitely many possi- 
ble sequences F,,..., Fyn, this verifies our claim that the contribution by L is 

o((Var cer *), which completes the proof as shown above. be 

To see that the conditions np™@) —+ oo and n?(1—p) > oo are necessary for 

the conclusion, we observe that if they are violated, then for some subsequence 

either np™©) + a < co or n?(1—p) > b < oo. In the first case (along the 

subsequence) sup g < oo and thus, by Theorem 3.9, inf PX ey = 0) "0; 

in the second case P(G(n,p) = Kn) > e~°/? > 0, and thus infP(Xg = 

f(n,G)) > 0, where f(n,G) is the number of copies of G in the complete 

graph K,. In both cases Xq thus assumes a single value with probability 

not tending to zero, which obviously rules out asymptotic normality (for any 

normalization). 

Remark 6.6. It is easily seen by the argument above that the conditions 

np™®) — oo and n?(1 — p) > oo are together equivalent to (1-—p)®g 7 w. 
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Factorial moments 

The factorial moments of a random variable X (with finite moments) are the 

numbers 

E(X)p SRIX(X 1) (Xe kD 

(with E(X)o = 1). Since the monomials ope and the (descending) facto- 

rials {(x); jee form two bases of the vector space of polynomials of degree at 

most k, there exist numbers a,j and b,; (independent of X), such that 

k 

E(X)x = aay Ex) 

j=0 

and 

k 

EX* = 5° bj E(X); 
j=0 

for every random variable X with finite moments. (The coefficients a,; and 

b,; are the Stirling numbers, see, e.g., Graham, Knuth and Patashnik (1989), 

but their values do not matter here.) It follows that if X,,X2,... and X are 

random variables, then EX* — EX* for every k if and only if E(X,), > 
E(X ), for every k. Consequently, Theorem 6.1 can be reformulated as follows. 

Theorem 6.7. Let X be a random variable with a distribution that is de- 

termined by its moments. If X,,X2,... are random variables with finite 

moments such that E(X,), + E(X), as n — co for every integer k > 1, then 
d 

Xn > X. = 

This form of the theorem is particularly convenient for proving convergence 
to a Poisson distribution, since the factorial moments of X € Po(A) have the 
simple form E(X), = A*, k > 0. (In contrast, the moments of a Poisson 
variable have a more complicated form.) 

The method of moments is often applied to counting variables of the form 
S = aca ta, where I, are indicator variables; in this case (S), counts the 
number of (ordered) k-tuples of objects with I, = 1, that is, 

AZ yong Qk 

where )>* denotes summation over all sequences of distinct indices aj,..., ax, 
and thus the factorial moments have the useful expression 

E(S)k= S> Ella, -*+Io,) = NS? eP(Ige hese, hh, Aearygsd) 
1 ,++-, Ak (oO Wore 45 
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Corollary 6.8. Let S,, = ea Ina be sums of indicator variables Inq. If 
A > 0 is such that, as n > oo, 

Roe ee = = iyo 1) (6.5) 
OL] y-0ry Ak 

for every k > 1, then S, 4 Po(A). a 

Example 6.9. In Theorem 3.19, we studied the subgraph count XG of a 
strictly balanced graph G at the threshold (np™(°) - c > 0), and showed 
that then (6.5) is satisfied and thus Xg 4 Po(A), with \ = c’¢ / aut(G). 

With only minor modifications in the computation of the expectations, the 
same argument applies to the random graph G(n, M), with n(M/(3))™@ > 
Cc. 

Theorem 6.7 extends easily to multivariate limits. In particular, for Poisson 

limits we have the following result. 

Theorem 6.10. Let oes Spd ah tag) be vectors of random variables, where 

m > 1 is fired. If 1,...,Am > 0 are such that, as n + 00, 

BCX )e, --- (KL )ag] PAP ay 
for every ky,...,km > 0, then (Oly Fax”) ee (215. 22) fp where Z; € 

Po(A;) are ifilesendent, a 

We leave the corresponding extension of Corollary 6.8 to the reader (Exer- 

cise!). 

Cumulants 

Suppose that X is a random variable with finite moments. Then the charac- 

teristic function yx (t) = Ee*~* is infinitely differentiable, and 

EX* =i-* pa (0). = dt* Shy le.4 

Similarly, log yx (t) is infinitely differentiable in an interval around 0, and we 
define the cumulants (also known as semi-invariants) of X by 

par 
=z log yx (0). Oa an ond i 

foe) it)® 

In other words, yx (t) and log yx (t) have the Taylor 
series 7° E.X* “2 and 

doo *%e(X) (ee respectively. 
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Remark 6.11. In general, these Taylor series do not have to converge for 

any t # 0. However, we are mainly interested in random variables such that 

Ee!l*! exists for some t > 0, and then 

foe) we as - ae ee DEX a= aN xX) ) 

with sums converging at least for all complex z with |z| sufficiently small. 

Example 6.12. If X has the normal distribution N(y,07), then yx(t) = 
exp(ipit ~'07#?/2), and thus 3 = p, #2 = 07 and x, =0, k > 3. 

Example 6.13. If X has the Poisson distribution Po(A), we have yx (t) = 
4 co it)* exp(A(e# — 1)),'so log yx (t) = A(e* — 1) = NASH and +, =A, k > 1. 

It is obvious by successive differentiations of logyx and yx = exp(log yx) 

that there are simple algebraic relations between the moments and cumulants: 

x, = o(EX,...,EX*) and EX* = qi,(mn,...,%%), where gq, and q, are 

some polynomials not depending on X. Explicit expressions are easily given 

(cf. Proposition 6.16(vi, vii) below), but are not important for us, with the 

exception of 

HAL = EX, (6.6) 

Wes GX ee) = Van Ae (6.7) 

It follows that if X,,X2,... and X are random variables, then EX* > 

E X* for every k if and only if 2(Xn) + +%(X) for every k. Consequently, 

Theorem 6.1 can be reformulated as follows. 

Theorem 6.14. Let X be a random variable with a distribution that is de- 

termined by its moments. If X 1,X2,... are random variables with finite 

moments such that 24(Xn) 7% 2%(X) as n > oo for every integer k > 1, then 
d 

Xn 7X. B 

Cumulants are particularly convenient for proving convergence to a normal 

distribution. It follows easily from the definition that if X is a random variable 

and a and 0 are real numbers, then 

ax,(X) + b, K Sl, XLS 
aa wees k>2. 

Hence, Theorem 6.14 and Example 6.12 yield the following result for normal 
convergence. 

Corollary 6.15. If X,,X2,... are random variables with finite moments 
and an are positive numbers such that, as n + 00, %2(Xn)/a2 + 0? > 0 and 

x (Xn) = o(ak) when k > 3, then az}(X, — EX) S, N(0,07) and, provided 
o? >0, X, 4 N(0,1). 
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Mixed cumulants 

For the results in the last subsection to be useful, we have to be able to 
compute, or at least estimate, the cumulants %(X,,). This can often be done 
using mixed cumulants as follows. 

If X,,...,X,%, k > 1, are random variables defined on the same probability 
space, then their joint characteristic function is 

COX ee ia, FR E(exp()>it)x;)). 

j 

If further X,,..., X, have finite moments, this function is infinitely differen- 
tiable on R* and we define the mized cumulants by 

ok 

3 (0 CR na, ee ie — i a bE; OB PX: we x, (0): 

Some basic properties of the mixed cumulants are collected in the next propo- 

sition. We omit the simple proofs (Leonov and Shiryaev 1959). 

Proposition 6.16. For any random variables X, X,,... with finite moments 

(defined on the same probability space), the following holds: 

(i) 2% (X) = x(X,...,X), where X is repeated k times. 

(ii) 2¢(X1,...,X_) is symmetric, t.e., 2(X1,...,Xz) = TAO Gh ope DP 4) 

for every permutation o of {1,...,k}. 

(iii) 2¢(a.X1, Xo,...,X~) = ax(X1, Xo,...,Xx), for any real a. 

(iv) (Xy + X4, 425% A ae E) = #(Xj, Xo,. aE) + 3¢(X1', X2,. ox PE) 

(v) (X,...,X~) = 0 if {X,...,X~K} can be partitioned into two (or 
more) non-empty sets of random variables which are independent of 

each other. 

(yi) 2(Xy,..., Xk). = 307, 27, (-1)) “0 -— DUT j, Summing 
over all partitions of {1,...,k} into non- CT sae Lastits ad al eae 

(vii) E(X1---X%) = Do, =; x({X;:i € I,}), summing asin (vi). @ 

By Hélder’s inequality, |E]],<; Xj| < Ter (E1X5|*)** when |J| < k, and 
thus (vi) implies the useful estimate 

k 

|2e(X1,...,Xe)| < Ce [[E1xsl*), 
1 
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where C, depends on k only. We will use a more refined estimate, which we 

state as a lemma (Mikhailov 1991); recall the definition of dependency graph 

in Section 1.2 and let 

Nz (a,...,ar) = |J{6 € V(L) : B = a or af € E(L)} (6.8) 
a 

denote the closed neighborhood of {a;,...,a,} in L. 

Lemma 6.17. Suppose that S = oye, Xa, where {Xa}aea 18 a family of 

random variables with dependency graph L. Suppose, moreover, that r > 2 

and that M and T are numbers such that 

>> E|Xal < M 
acA 

and, for every @),...,Q@r—1 € A, 

ie E.(| Xie Kings Aan) kT 
a€N 1 (a1,...,4r-1) 

Then 

|x(S)| <C.MT™, 

where C’, 1s a constant that depends on r only. 

Proof. By Proposition 6.16(i, ii, iv) 

a(S) US, hs) eae >. War eee WC 
QL yeery ar 

where, by Proposition 6.16(v), every term in the sum for which {a,,...,a;} 
forms a disconnected subgraph of L vanishes. In each of the remaining terms, 
the indices a,,...,a@, may be reordered such that a, € N1(Q4,.--,Qs-1) 
when 2<s<r. Hence 

|>,(S)| <r! Be |2(Xar5---,Xe,)I; (6.9) 
1 ,---,Ap 

where )>* denotes the sum over a; € A, a2 € Nz (aj), a3 € Nz(a1, 02), ... , 
OG NG (01 Pero, 1). 

Define, for every sequence a1,...,@5 in A, s > 1, 

k 

Varteet => DS [[= II Xa; 

tC isonca! Ope post 267; 
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summing over all partitions {1,,..., 1} of {1,...,s}; by Proposition 6.16(vi), 

24 Avrsole <toing Nuk Cy Vary cniags (6.10) 

Now consider a sequence @1,...,@s—, in A, with2 <s <r. Let {h,...,J,} 

be a partition of {1,...,s}. We may assume that s € [,; then let Jj = 4 \{s}. 
By assumption (since we may define a; = a,_; for s <j <1), 

E( » | eee ae 
GIN 7 ((Ci5---3% 31) 

and thus 

e( TT 1xa AS [Xai ae ass) elf eer 

vel; @EN 1 (a1,.-.,0s~1) iel} 

Taking the expectation of both sides, we see that 

S Blfiel=elf[ el al] 
Q@eENz(015-:,%-1) th ier; a,€N1(a1,.--,%s—1) 

<TE][ |Xail- 
i€l| 

Multiplying this inequality by Hees Ellie 1, |X a,| and summing over all par- 

titions {),...,1,}, we obtain on the right-hand side T times a sum, whose 

terms coincide with the terms in Yq,,...a,_,, each repeated at most s times. 

Consequently, 

: My 03 < Dera res a 

as€Nz(a1,...,%5-1) 

We next sum this inequality over a1,...,@s—1 and obtain 

* * 

, LE dlane ip <A ey ) i aaa ers 2 < s < Tr. 

11 ,---,Hs 1 ,-++,%s—1 

Since 04, Yo. = a E|Xa| < M by assumption, induction now yields 

3: Vala se! MRE ti < Sr (6.11) 

The result follows by (6.9), (6.10), and (6.11). & 

Applications to asymptotic normality 

The lemma above leads to the following sufficient condition for asymptotic 

normality (Mikhailov 1991). 
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Theorem 6.18. Suppose that (S,,)7° is a sequence of random variables such 

tite one ere Xa; where sfor each nya Ke }a0ssea family of random 

variables with dependency graph L,. Suppose further that there exist numbers 

Mn, Qn and B, such that 

55d cee (6.12) 
ae Ay 

and, for everyn andr > 1, and q,...,a- € An, 

PE ea vee eet eee ata hee: Brak) (6.13) 
a€N1, (Coneees a,) 

Let 02 = VariSq. If, as =) Oy 

=O (6.14) 

then boy Be 

Sn — N(O, 1). 

Prooj. By Lemma 6.1/, with & =*2,.4@),,, 

lace (S eee he) ace 7? (6.15) 

and thus, with C1 = C,B"_}, 

Se Wee M. Oe r—2 co ros 
f? nen = ! nen n 

pC Ge ae ree 
Since o2 = 32(Sp) < ClMnQn, by (6.15), 

MaQ? 
o3 - n 

r—2 

|xr(Sin)| = cuca *( ) > 0, rs. 

The result follows by Theorem 6.14. (Note that 4(S,) = 0 and (Sn) = 
ves BR 

Example 6.19. Consider again the subgraph count X¢ in G(n,p), where 
n — co and p = p(n) is a function of n. We will use Theorem 6.18 to give a 
new proof of Theorem 6.5. 

This time we denote the family of subgraphs of K, that are isomorphic 
to G by {Ga}aca,- We let I, = 1[/Ga C G(n, p)] and X,. = Iy — Elg, for 
simplicity omitting subscripts n. (If we assume that p(n) is bounded away 
from 1 (for example, p < 1/2), we can also apply the theorem with X, = I,. 
We leave this slightly simpler version to the reader. — Exercise!) Define the 
graph L, with vertex set A, by connecting every pair of indices a and 3 
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such that the corresponding graphs Gg and Gg have a common edge; this is 

evidently a dependency graph for {X,.} (Example 1.6). 
We verify the conditions of the theorem. First, observe that E|X,| = 

2EI,(1—EJ,) < 2vg(1—p) EJ, and thus } 4. E|Xa| < 2ue(1—p) EXe, 

that is, (6.12) holds with M, = 2vc(1—p)EXc._ 
Next, suppose that r > 1 and qj,...,a,; € A, are given. Define F = Ga, U 

---UGa,. and, for every a € An, Fy = GaNF. Note that a € Nix, (an, eos Oley 

if and only if e(F,) #4 0. There are fewer than 2°" < 2™’¢ such subgraphs of 

F,, and for each subgraph H C F there are O(n’¢~”*) choices of a such that 

Fy = H, each with 

E(|Xq| | eheious ue if Sane < E(Ia | Joan te . 5, ee | + Dh << 2 eee 

Since, further, each F, is isomorphic to a subgraph of G, it follows that 

EX EX 
Ms E(|Xa| | Xais---)Xa-1) < Br sup) =a ty eee 

iad HeG eno MAY ®c 
aENrz,, (a1,.---; a) 

for a suitable B,, depending on r and G. Consequently, (6.13) holds with 

Qn = EXe/f8a. 
Finally, by Lemma 3.5, 02 = Var(Xg) =< (1 — p)(EXa)*/®a. It follows 

that 

MnQ?, _ 2ve(1 —p)(EXc)? be" s “5 = O((1— p)71/?6g"”). (6.16) 

This verifies (6.14), since, as shown in the proof of Theorem 6.5, the conditions 

imply (1 — p)®g > o. 

Theorem 6.18 thus applies; since Xg = >>, Ja, and thus Xg — EXg = 

yg Xa, the result follows. 

Remark 6.20. The results above may be improved by weakening the as- 

sumptions; in fact, we know of two such improvements in different directions. 

(We do not know whether they can be combined.) 

First, as will be shown later by a different method (Theorem 6:33) eit 

suffices to verify condition (6.13) in Theorem 6.18 for r = 2. 

Second, by using a theorem by Marcinkiewicz (1939), which states that the 

normal distributions are the only ones with all but a finite number of cumu- 

lants vanishing, it follows (Janson 1988) that in Theorem 6.14 it is enough to 

assume that the condition »%(Xn) — %(X) holds for k > m, for any fixed 

m < oo. (See also Grimmett (1992b).) This improvement is useful in cases 

where there is a general method to obtain desired estimates for all cumu- 

lants of sufficiently large order, although the method fails for a few low-order 

ones. In particular, it leads to the following strengthening of Theorem 6.18 

(Mikhailov 1991). For an application to random graphs, see Janson (1988). 
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Theorem 6.21. Suppose that the assumptions of Theorem 6.18 hold, except 

that (6.14) is replaced by 

MnQn (6.17) 

for some real s > 2. Then the conclusion still holds, that 1s, 

Co Net 

Proof. If r > s, then 

r= ‘hes r=2 WO ag SOREN Fes ein WE pact Rie ym 
——_—_—— + | —_*- Ca. ies cal 

oy on MnQn n 

by (6.15) (with r = 2) and, thus, by (6.15) and (6.17), x,(S,) > 0. The 
result follows by the improvement of Theorem 6.14 just mentioned. & 

Note that the proof shows that the assumption (6.17) becomes weaker as s 
increases. It can be reformulated as 

sats a =k 
On On 

6.2 STEIN’S METHOD: THE POISSON CASE 

A method to show convergence to the normal distribution was given by Stein 

(1972). The method has later been extended to several other limit distri- 

butions; we will here only consider the simplest and most important cases, 
namely, Stein’s original normal case (which is treated in the next section) 
and Chen’s (1975) version for the Poisson case (which is treated below). The 
method was introduced in the theory of random graphs by Barbour (1982). 

Stein’s method is well adapted to the type of sums of random variables that 
appear in many combinatorial applications; it then often leads to calculations 
very similar to those needed for estimating the second and (for the normal 
case) third moments when applying the method of moments. Consequently, 
Stein’s method often requires less effort and simpler combinatorial arguments 
than the method of moments, where we have to estimate moments of arbitrary 
order. 

An important feature of Stein’s method is that it does not only give con- 
vergence; it actually gives an explicit upper bound for the distance between 
the distribution of a given random variable and a suitable normal or Poisson 
distribution. In other words, it is really a method to prove normal or Poisson 
approximation rather than convergence. Hence it leads to estimates of the 
rate of convergence, which, in practice, often turn out to be of the right order 
of magnitude. 



STEIN’S METHOD: THE POISSON CASE 153 

Here we have talked about the ‘distance’ between two distributions without 

explaining what it is. In fact, several possible distances can be defined; for 

Poisson approximation the most useful is the following. 

The total variation distance between the distributions of two random vari- 

ables X and Y is, in general, defined by 

dry (X,Y) =sup|P(X € A) —P(Y € A), 
A 

taking the supremum over all Borel sets A. If X and Y are integer valued, as 

in the cases we consider below, this is equivalent to 

dry(X,Y) =} > |P(X =k) -P(Y =&)]. 
k 

We also use hybrid notation, such as dry(X, Po())). 
It is easily seen that if (X,,)f° is a sequence of random variables, and (An) f° 

is a sequence of positive numbers with \,, > A, then dry (Xn, Po(An)) > 0 if 

and only if X, + Po(A). Moreover, if dry(Xn,Po(An)) —> 0 and An > 00, 
the central limit theorem for Po(\,,) implies that (X, — eye 4, N(0, 1). 

In particular, if further A, = EX, and Var(X,) ~ An, then oes s N(0, 1). 

Hence estimates of the total variation distance to a Poisson distribution can 

imply convergence to both Poisson distributions and normal distributions. 

(Not all cases of normal convergence are obtained in this way, however; typi- 

cally we may obtain the cases when the mean and variance are asymptotically 

equal.) 
For the theoretical background for the Stein—Chen method for Poisson ap- 

proximation we refer to Chen (1975), Stein (1986) and Barbour, Holst and 

Janson (1992). These references also show how the method leads to explicit 
results such as the ones below (as well as others). A useful and rather general 

result obtained by the Stein—Chen method is the following (Barbour, Holst 

and Janson 1992). 

Theorem 6.22. Suppose that X = >) ,c4la, where the Iq are random in- 

dicator variables, and suppose that, for each a € A, there exists a family of 

random indicator variables Jga, 8 € A\ {a}, such that 

L({Igahe) = L({Ie}e | Io = 1), (6.18) 

that is, the joint distribution of {Jga}g equals the conditional distribution of 

{Ig} given Iy =1. Then, with m, =EIg andX=EX =} ye, Ta; 

dry (X,Po(A)) < min(A7?, 1) S> ta (7 + S>ElJpa - Il). (6.19) 
acA BHa 
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One way to apply Theorem 6.22 without explicit construction of the vari- 

ables Jgq is via a dependency graph. In fact, if the family {I,} has a de- 

pendency graph L, then there exist random variables Jgq with the right 

distribution (6.18) such that Jgqg = Ig when aZ ¢ E(L), so in (6.19) it 
suffices to consider @ that are adjacent to a. For such @ we may crudely use 

\Jga — Ie| < Jaa + 1g together with the general relation 

ta E Ja = Ta E(Ig | In = 1) = PUg = In = 1) = E(IoIg), (6.20) 

which yields 

Ta Me lJBa — Ig| < E(I.Ig) + Tag. 

This leads to the following result. 

Theorem 6.23. Suppose that X = ey I, where the I, are random 1n- 

dicator variables with a dependency graph L. Then, with tg = El, and 

A=EX = Vaca Ta (and with summation over ordered pairs (a, 3)), 

dry(X,Po(A)) < min(A7?, 1) 6s m+ >) (EUalg) + Elo E1,)) 
acA a3: aBEE(L) 

Samin(\ at) (vax -BX +2 Sa rama +2 m2). 

a,b: aBEE(L) acA 

& 

A simple case of Theorem 6.22 is when Jgq — Ig has constant sign. We say 

that the random indicator variables (Ia)ae, are positively related if, for each 
a € A, there exist random variables Jgg with the distribution (6.18), such 

that Jga > Ig for every 8 # a; similarly, the variables are negatively related 

if, for each a € A, there exist such Jgq with Jgq < Ig for every B 4 a. 
For positively related variables, (6.20) yields 

Ta E |Jga = Ip| = Ta E(Jga = Ig) = E(IqJp) — TaTB, (6.21) 

which leads to the following consequence of Theorem 6.22; note that the 
variables Jgq, do not appear explicitly (although their existence is essential). 
See further Barbour, Holst and Janson (1992), where also a corresponding 
result for negatively related variables and other similar results are given. 

Theorem 6.24. Suppose that X = perea I,, where the I, are positively 
related random indicator variables. Then, with t, = EI, and \ = EX = 

Berg Nas 

dry (X,Po(A)) < min(A7!, 1) (var x -EX+2)> r2) 
acA 

Var X 
< _ : 
ve = 
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Returning to asymptotics, with variables depending on a parameter n > 

oo, we thus see that for sums of positively related variables, a sufficient con- 

dition for Poisson approximation (with an error tending to 0 as n — oo) is 

that the individual probabilities tend to 0 (uniformly) and that the variance 

is asymptotic to the mean. Since any Poisson distribution has the variance 

equal to the mean, the latter condition is very natural. 

Remark 6.25. Indicator variables that are positively (negatively) related are 

positively (negatively) correlated, but the converse does not hold. Correlation 

is only a pairwise property, whereas being positively or negatively related 

depends on the joint distribution of the whole family. 

Example 6.26. Consider again Xg, the number of copies of a fixed graph 

G in G(n,p), and suppose that G is strictly balanced. We proved in Theo- 

rem 3.19, using the method of moments, that if np™°) > c > 0, then XG es 
Po(A) with A = c’¢/aut(G). Here we show how this result follows by the 

Stein—Chen method. The method further gives an explicit estimate O(n~*) 
of the rate of convergence, with 6 = min{vy—ey/d(G): H € G, en > 0} >0, 
which we, however, leave to the reader (Exercise!). 

We write Xc = cr Ig: as in the proof of Theorem 6.5 and observe that 

the sum has (1 + 0(1))n’¢ / aut(G) terms, each having expectation p°¢. Thus 

EXg ~ ne p® / aut(G) = (np) / aut(G) > A. (6.22) 

Moreover, since G is strictly balanced, a similar calculation yields E Xq — oo 

for every proper subgraph H of G. It follows as in (3.10), considering the 
terms with G’ = G” and thus H = G separately, 

2 

vara) vos 06, HGG,en>0 

=i(epl 8) Big 4 (1). 

Hence Var X¢/EXcG — 1 and, since further max E Ig = p°° > 0, the result 

follows by Theorem 6.24, provided we can show that the variables Ig are 

positively related. This can be verified as follows. 

Fix a copy G’ of G in Ky. The conditional distribution of G(n,p) given 

Ig: = 1 is the same as the distribution of the union G(n, p) UG’, obtained 

by adding the edges in G’ to G(n,p). Consequently, we may define Jeng: = 

1[G" Cc G(n,p) UG'] with G” ranging over the copies of G in Ky; these 

variables have the correct joint distribution (6.18) and evidently Jeng 2 Iav. 

In this example we may alternatively apply Theorem 6.23 with L as in the 

proof of Theorem 6.5; this yields the same result (without having to verify 

that the variables are positively related), with only a slightly worse bound for 

dry (XG : Po(A)) : 

In the preceding example, as in many others, it is easy to construct ex- 

plicitly variables Jgq to show that the variables J, are positively related. An 
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alternative is to deduce the existence of suitable Jgq by the following abstract 

result. (Recall that we do not really care what the variables Jgq are, once we 
know that they exist with (6.18) and Jg, > Ig.) For a proof, using the FKG 

inequality (Theorem 2.12), see Barbour, Holst and Janson (1992, Section 2.2) 

and the references given there. 

Theorem 6.27. Suppose that the indicator variables {Ia}aea all are increas- 

ing functions of some underlying independent random variables {Y;}. Then 

the variables {In}aca are positively related; in particular, Theorem 6.24 ap- 

plies to their sum. a 

For example, the subgraph counts in Example 6.26 are increasing funcions 

of the edge indicators, and we see immediately that they are positively related. 

Example 6.28. Let X be the number of isolated vertices in G(n, p). Clearly, 

X = >i Ji, where J; = 1 [vertex 7 is isolated]. In this case, the indicator 
variables I; are decreasing functions of the edge indicators in G(n,p), but 

that is just as good; we can apply Theorem 6.27 with Y; being the edge 

indicators in the complement of G(n, p), or use the explicit construction J;; = 
1{j is isolated in G;], where G; equals G(n,p) with all edges from vertex i 

removed. Either way, it follows that the J; are positively related. (In this 

example, Theorem 6.23 is not useful.) 

For example, if p = logn/n + c/n for some fixed real constant c, then 

EX =n(lop)y Aner rae" 

and 

Val > WS dep) oo pk ental) (1 Sp) aa po) 
=EX +o(1), 

and Theorem 6.24 shows that ¥ % Po(e~°). In particular, 

P(G(n, p) has no isolated vertices) P( ce 0)" s est. 

(This yields another proof of Corollary 3.31.) 

The number of vertices of degree at most a given number d > 0 can be 
treated in the same way. A similar argument works also for the number Sa 
of vertices of degree exactly d, but this time the corresponding indicators J; 
are not positively related, and we use Theorem 6.22. This yields the result, 
first proved by Erdés and Rényi (1960) by the method of moments, that 
Sa Ze Po(c) if ESy — ¢ < oo (which, for d > 1, happens in two ranges of p). 
For details, see Karoriski and Ruciriski (1987) and Barbour, Holst and Janson 
(1992), where also further examples are given. 



STEIN'S METHOD: THE NORMAL CASE 157 

Example 6.29. Let, as in Section 3.6, Tg be the number of isolated copies 

of G in G(n,p). Then Xg = }0q, Ig, where, as in Example 6.26, G’ ranges 

over the copies of G in K,,, but now J: is the indicator that G’ is an isolated 

subgraph of G(n, p). 

In order to define suitable random variables Jg”q’, we first define, for a 

given G’, a modification G of G(n, p) by adding all edges in G’ and deleting 

every other edge in G(n, p) incident with a vertex in G’. We then define Jang: 

to be the indicator that G” is an isolated subgraph of G. Then G is a random 

graph distributed as G(n,p) conditioned on Ig, = 1, and thus the variables 

Jenq have the correct joint distribution (6.18). Moreover, Jang = 0 if 

G' NG" £9, but G’ 4 G", while Jeng > Ign if G'NG"” = 0. 

It is easily seen that if G is connected and unicyclic and np > c > 0, 

or if G is a tree of order v and either n’p’-! + c > 0 or unp — logn — 

(v — 1)loglogn — c € (—o0,0o), then ETg — XA < oo. In these cases, 

Theorem 6.22 yields Tg aN Po(A) by straightforward calculations (Exercise!). 

(Compare with Section 3.6.) 
The same argument applies also to the random varible T, counting all 

isolated trees of order v (and not just copies of a specific trees), which proves 

the final part of Theorem 3.30. 

(These results were originally proved by Erdés and Rényi (1960) by the 

method of moments.) 

Example 6.30. We have so far applied the Stein—-Chen method to the ran- 

dom graph G(n,p), but it applies also to G(n,M). For example, consider 

the subgraph count Xg as in Example 6.26, but now for G(n, M). The main 

difference from the G(n, p) case is that for G(n, M), we can use neither The- 

orem 6.23 (because there does not exist a sparse dependency graph) nor The- 

orem 6.24 (because the indicator variables JG are not positively related); 

instead we use Theorem 6.22 with the following construction. 

The conditional distribution of G(n, M) given Ig = 1 is the same as the 

distribution of the random graph G obtained from G(n, M) by first adding all 

edges in G’ that are not already present, and then deleting the same number 

of edges, randomly chosen among the edges outside G’. We may thus define 

Jana: = 1[G" C G and Vqr = Gn ¢G! Jana: 

It is straightforward to estimate E|JenG — Ig:|, which, by (6.19), yields 

an estimate of dry (Xa, Po(E Xa)) for G(n, M), but we omit the details (Ex- 

ercise!). 

Similar constructions apply to the other examples above. 

6.3 STEIN’S METHOD: THE NORMAL CASE 

The original version of Stein’s method yields normal approximation; see Stein 

(1972, 1986) for a general description. The method was applied to random 

graphs by Barbour (1982) and Barbour, Karonski and Ruciriski (1989), to 
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which we refer for further details. In particular, Stein’s method yields the 

following rather general result (Barbour, Karonski and Rucinski 1989), based 
on constructing a suitable decomposition of the studied random variable. We 

let d,; denote the distance between distributions defined by 

ah (X,Y) = sup{|Eh(X) —E(Y)| : sup|h(~)| + sup |h'(a)] <1} 

note that d;(X,,Y) — 0 implies X, LTS (This distance is well adapted to 

Stein’s method, although other distances are more commonly used in other 

contexts; cf. Barbour, Karorski and Rucinski (1989).) 

Theorem 6.31. Suppose that W is a random variable which can be decom- 

posed as follows: For some finite index sets A and B,, a € A, and square 

integrable random variables Xqy, Wa, Za, Zap, Wag and Vag,a€ A, BE By: 

ADS Se 
acA 

W=WatZa, GGA, 

Zara) Zap ave tA: 
BEBa 

where, further, EX. =0, Wa is independent of X. and Wag is independent 

of the pair (Xq,Zag). Then, for some universal constant C, 0? = VarW and 

Wo WwW. 

d, (W,N(0,1)) < eon OS E(|Xa|Z2) 
acA 

+> SO (ElXeZepVae| + E|XoZae|E|Za + Vas|) ). (6.23) 
ac€A BEB, 

In applications, one has to construct decompositions as above of a given 
variable, keeping the right-hand side of (6.23) small. For sums of random 
variables with a lot of independence, as measured by a suitably sparse de- 
pendency graph, there is a straightforward construction, which leads to the 
following result. 

Theorem 6.32. Suppose that W = Daca +a, where {Xahaca is a family 
of random variables with dependency graph L and, further, EX, =0, a€ A. 
Let o? = VarW and assume that 0 < a2 < oc. Then, for some universal 
constant C' and with Ny(a) the closed neighborhood of a as in (6.8), 

di(W N(0,1)) < Co * Soe Sm: MR Xexeoete E|X.X,|E|X,|). 
a€A B,yENP (a) 

(6.24) 
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Moe We apply Theorem 6.31 with B, = Nr(a), Wa = Dope) XB; 

Za = 2peNr(a) *B: Zap = Xp, Wap = diyeNr(a)UNr(a) 7 and Vas = 
ye yeNr(8)\Nrla) +7: It is then easily seen that 

> E(\XalZ2) + > So (E|XaZapVap| + E|XaZap|E|Za + Vasl) 
aceA ae€A BEB, 

> 2) De (E|XoXpX¥| + E|XoXa\E|X,|) 

a€A ByENL(a) 

and the result follows. (We may assume that E X2 < oo, since otherwise the 

right-hand side of (6.24) is infinite.) pa 

In particular, this yields an improvement of Theorem 6.18. 

Theorem 6.33. Suppose that (Sp)? is a sequence of random variables such 

that Sn = Yiaca, Xna, where for each n, {Xna}a is a family of random 

variables with dependency graph Lj. Suppose further that there exist numbers 

M, and Q, such that 

>> ElXnal $ Mn (6.25) 
acAn 

and for every a1,Q2 € An, 

SS E(|Xnal | PG eas | < a 3 (6.26) 

a€N i, (01,02) 

Let o2:=VarS,. Then 

= M,Q?, 
ds (Sn,N(0, 1)) = O(—2*) 

In particular, of 

2 
Mn@n _, 9, (6.27) 
on 

then ats 
Sn — N(0,1). 

Proof. By replacing Xna by Xna — EXna (and S, by S, — ES,), we may 

assume that EXnq = 0; note that (6.25) and (6.26) still hold if we replace 

M,, and Qn by 2M, and 2Qn. 

It follows, arguing as in Lemma 6.17, that 

SD (ElKeXpXq] + E|XaXp|E|Xql) S$ 2MnQ, 
a€A B,yENzL (a) 
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and the result follows by Theorem 6.32. & 

Example 6.34. Consider again the subgraph count Xg in G(n,p), where 

n — co and p= p(n) is a function of n. 

We have Xg — EXg = yy. Xq, where A, and Xq, are as in Exam- 

ple 6.19. As already shown in Example 6.19, with the dependency graph 

L,, defined there, (6.25) and (6.26) hold with M, = O((1— p)EXq)) and 

Qn = O(E XG/®a), which yields, as in (6.16), 

M,Q2/o3 = O((1—p)7/765'”). 

Consequently, Theorem 6.33 yields a new proof of Theorem 6.5, with the 

additional information that 

d, (Xg,N(0,1)) = O((1 — p)71/765"””). 

Theorem 6.31 is more flexible than Theorem 6.32 and can be applied also to 

sums where all summands X, are dependent. One such case is when counting 

the number of subsets of (the vertex set of) G(n, p) that satisfy a given semi- 
induced property, that is, a property that depends only on the edges with at 
least one endpoint in the set. We begin with an example. 

Example 6.35. Denote the number of vertices of degree d in G(n,p) by Sq. 
We consider a fixed d > 0 and let n > oo with p = p(n). Then (assuming for 
simplicity np? = o(1); for larger p, ESq > 0 rapidly), 

ES) = n(" y ‘eta — pr i-4 ntti pde—nv 

Consequently, 

ESg— oo => n*+1p4 -5 00 and np— logn — dloglogn —+ —oo. 

Let J; = 1[i has degree d in G(n,p)], and X; = I; — E],; then Sy —ESy = 
>; Xi. In this case, there is (in general) no independence between any two 
X; and X;, and we use the following construction. 

Let, for a set F C [n] and i € [nl], 

_ J Ai has degree d in G(n,p) \ F], i¢ F, 

0, re? 

and let X/* = If — EI. Moreover, for i,j € [n], let B; = A = [n] and 
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Fol tare 

Ze = ei Ziss 

gi 

Wi => xX}? -EZ,, 
j=1 

eee ale) 
k=1 

Wi; = So xf EV,; —EZ;. 
k=1 

The conditions of Theorem 6.31 then are satisfied, and it is not difficult 

to show that both sums in (6.23) are O(E Sq); see Barbour, Karorski and 

Ruciriski (1989) for details. Consequently, 

d, (Sz,N(0,1)) = O((Var Sa)~?/* E Sz). 

Moreover, a simple calculation yields 

at 
Var Sa = an (" P ) ((n—1)p—d)p*4 Ap)" 22 Sa—n 1 (E SNe 

and it is easily seen that if d > 1 or d= 0 and np = {(1), then 

Var Sq =< Ea, 

and consequently _ 

d, (Sa, N(0, 1) = O((E Sa)~
/?); 

in particular, Z N(0, 1) if furthermore E Sg — oo. 

In the remaining case d = 0 (isolated vertices) and np — 0, we have E Sp ~ 

n and Var So ~ Ase whence we only obtain d; (So, N(0, 1)) = O(n-?p-8/?); 

this proves So + N(0,1), provided n~4/3 < p < n7!. This result can be 

screnged to the full range where Var Sp — oo, that is, when E.So — oo and 

n?p — oo. In fact, when np > 0, Var So ~ Var Si ~ — Cov(So, S1) ~ 2n?p, 

and thus Var(So +.S;) = o(n?p) = o(Var So); eT ETN: Sp = —S1 + 0,1), 

al the result follows since, as just shown, S A N(0, 1) provided furthermore 

n*p — oo. (See, further, Barbour, Karoriski and Rucinski (1989) and Kordecki 

(1990).) 
Since Var Sy — 00 is necessary for asymptotic normality, we have proved 

the following result. 

Theorem 6.36. If d > 0, then Sa 4, N(0, 1) af and only if Var Sq — co. For 

d > 1, this is equivalent to ESq — ©0, 1.e., ntt1n4 -, 00 and np — logn — 
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dloglogn —» —co; for d = 0 it is equivalent to n*p > co and np — logn > 

a —O0n 

Remark 6.37. As remarked in Section 6.2, Sg has an asymptotic Poisson 

distribution when ESg — c < co. In fact (Karoniski and Rucinski 1987), 

the Stein-Chen method yields Poisson approximation also when E.Sqg — ov, 

provided np > 0 and d > 2, or np — oo (in these cases Var Sg ~ ESq), which 

gives another proof (historically the first) of Theorem 6.36 in these cases. 

For a general semi-induced property P, we similarly construct a decompo- 

sition of W = )> I,, where a ranges over the subsets of [n] of a given size and 
I, is the indicator that @ has the property P, by defining 

[Fe 1[a has the property P in G(n,p) \F], anF=9, 

. 0, aNnkF FO, 

and then proceeding as above. Another example of this is the following 

(Barbour 1982, Barbour, Karoriski and Ruciriski 1989). 

Theorem 6.38. Let T, be the number of isolated trees of order k in G(n, p), 

where k > 2 is fixed. Then Ty sf N(0,1) if and only if ET, — ov, that is, 
when n*p*-! + 00 and knp — logn — (k — 1) loglogn + —oo. 

Sketch of proof. We apply Theorem 6.31 with the construction just indicated. 

The sums in (6.23) are both O(ET;) and Var 7; =x ET;; thus 

d (T;,N(0,1)) = O((ET,)71/?). EB 

Again, as stated in Theorem 3.30 and Example 6.29, Erdés and Rényi 

(1960) proved that T, 4 Po(c) when ET, — c < co (in both ranges of p). 
Note further that the first (threshold) part of Theorem 3.30 follows easily 
from Theorem 6.38. 

6.4 PROJECTIONS AND DECOMPOSITIONS 

A standard method when studying asymptotic distributions is to approximate 
the studied random variable by another one, which is simpler in some sense. 
Indeed, by Cramér’s theorem (see Section 1.2), if X, — Y, % 0 and ves 7, : 

d 
then X, — Z too. 

The first projection 

Consider a random variable X which is a graph functional, that is, a (real- 
valued) variable that depends only on the isomorphism type of G(n, p). Then, 
the simplest choice of an approximating variable is a linear function aL + } 
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of the number of edges L = e(G(n,p)) = Xx.,. (Here a and b are constants 

that may depend on n and p= p(n).) Since L € Bilt) ep), the central limit 

theorem yields L 4 N(0, 1), provided that n*p > oo and n?(1 — p) > ©9, so 
it remains only to study the error X — aL — b. 

We choose the coefficients a and 6 such as to minimize the L?-norm of 

the error, that is, Y = al + b is the projection in L?(P) of X onto the 

two-dimensional subspace of linear functions of L. This is the usual linear 

regression, and as is well known, then X — Y is orthogonal to 1 and L, which 

leads to 

_ Cov(X,L) — Cov(X,L) 

Var L (5)p( — p)’ 

b=EX —-aEL. 

Moreover, 

E(X —Y)? = Var(X — Y) = Var(X — aL) = Var X — a? Var L. 

Now L = 5~, I-, summing over all edges e in Ky, where I, is the indicator 

1[e € G(n,p)]. By symmetry, Cov(X, J.) is independent of e and thus, for 

any edge e, 

a = Cov(X,L)/(3)p(1 — p) = Cov(X, I.) /p(1 — p) 
= (E(XI.) — pEX) / p(1 — p) 
= (E(X | e € G(n,p)) EX) / (1-p). 

The approximating variable aL + b is known as the first projection of X, 

and this approach to proving normality is called the first projection method. 

It can be summarized as the following theorem. 

Theorem 6.39. Suppose that X,, is a graph functional of G(n,p), with p= 

p(n), and let 
eS E(X, |e € G(n,p)) -EXn 

for an edge e € Kn. If n?p > 00, n?(1—p) > 6 and 

Var Xn ~ (;,)ea Ol, (€.28) 
2 

then Xn “> N(0,1). 

Proof. By the discussion above, we let Yn = GnLy+b,, with a, = (l=p)T*ap, 

and b, = EX, — anE Ln, and find 

E(X, — Yn)? = Var Xn — 07,(5)p(1 — p) = o( Var v. Gay) 
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Hence, if 02 = Var Xn, then E|(X, — Y;)/on|? — 0 and, furthermore, 

Var Y, ~ Var X,. Consequently, 

Xn —-EX, Nn pene Te 

On on On 
’ 

where (Yn—EYp)/on = (Var Yn / Var Xn)!/2L, + N(0,1) and (Xn—Yn)/on & 
0. The result follows by Cramér’s theorem (Section 1.2). | 

Example 6.40. Consider again the subgraph count Xg. Given an edge e € 
Kp, there are eg(n)y,/(5) aut(G) copies of G in K,, that contain e, and thus 

On = E(X | ke = 1) - EX = ec(n)yq (3) aut(G))' (p*e-? — p*?) 
~ 2egn’?—? (aut(G))~“p®e-!(1 = p). 

It is easily seen that (5)p(1—p)~ ‘a2, asymptotically equals the contribution 
to Var(Xq) from the terms in (3.10) corresponding to two copies of G that 
intersect in a single edge (Exercise!). Consequently, the condition (6.28) is 

equivalent to Ke being the only leading overlap of G, that is, to np™”(G) > 
co; see Section 3.2. 

This example is typical; the method of the first projection is (usually) very 
easy to apply, but it works only sometimes and often does not give the full 
result. 

Higher projections 

It is natural to try to extend the range of the first projection method by 
projecting onto a larger space of variables, thus reducing the error in the 
approximation. 

The first projection uses only information on subgraphs of G(n,p) with 
two vertices; the next step (sometimes called the second projection) is to use 
information on the subgraphs with three vertices. Each such subgraph has 0, 
1, 2 or 3 edges, and is determined up to isomorphism by its number of edges, 
so the second projection is a linear combination of the random variables To; 
T1, T2 and 73, where 7; counts the number of triples of vertices in G(n, p) with 
j edges between them. Equivalently, by simple algebra, the second projection 
can be expressed as a linear combination of the constant 1 and the three 
subgraph counts Xx, = L, Xp, and X Ks, Where P» is the path of length 2. 

In neither of these representations, however, are the four basis variables 
orthogonal, so it will be more convenient to use a third representation. It can 
be constructed from the subgraph counts above by the usual orthogonalization 
procedure, but we prefer to define it directly in the next subsection, at the 
same time generalizing it to larger subgraphs. 
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A general decomposition 

Let H be a graph. Consider the (n)»,, different injective mappings from the 

vertices of H into {1,...,n}. Each such mapping y maps H onto a copy y(H) 

of H in K,,, and we define 

SH sem t=) || | Ue=p) (6.29) 
~p e€y(H) 

where, as above, I, = 1[e € G(n, p)]. 

In other words, we sum [],¢q/(Je — p) over all copies H' of H in Kn, 

counted with multiplicities aut(H). Note that if we replace (J, — p) by I in 

(6.29), we obtain aut(H)Xy. 

It is obvious that S,(H) depends only on the isomorphism type of H. 

Hence we may regard {S,(H)}# as a family of random variables, indexed by 

unlabelled graphs H. 

The simplest examples are 

Sn(0) =1 (trivial but useful) 

Seis) =m (trivial and less useful) 

Sn(K2) =2 > (Ie — p) = 2(e(G(n,p)) — (3)p). 
e€K, 

It is easily seen that if H has any isolated vertices, removing them changes 

Sn(H) only by a non-random factor (depending on n). Hence we may restrict 

attention to H without isolated vertices. 

Since the variables J, — p are independent and have mean 0, two products 

[|e — p) are orthogonal unless they coincide, and the following results are 

easily obtained. 

Lemma 6.41. Suppose that H and K are graphs without isolated vertices. 

(i) If H #0, thenES,(H) =0. 

(ii) If H #9, then 

Var Sn(H) = ES,(H)* = aut(H)(n)vy(p(1 — Pp). 

(iii) If H and K are non-isomorphic, then Sn(H) and S,;,(K) are orthogonal: 

Cov(Sn(H), Sn(K)) = E[Sn(H)Sn(K)] = 0. a 

We next show that the variables S,(H) can be used to decompose any 

graph functional. 

Lemma 6.42. Every graph functional X of G(n,p) has a unique expansion 

X = >> Xn(H)Sn(A) (6.30) 
dal 
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for some real coefficients X,(H) = Xn), where H ranges over the unla- 
belled graphs with no isolated vertices and at most n vertices. Furthermore, 

the terms in (6.30) are orthogonal and 

Var X = }> Xn(H)? Var Sn(H) = S~ aut(H)(n)vy (p(1 — p))°* Xn(H)?. 
HAO HHO 

(6.31) 

Proof. Trivially, 

xX yy Xie) ie) oe 
G eeG e¢G 

where we sum over all graphs G with vertex set {1,...,n}. If we substitute 

I, = (Ie — p) + p and expand, X will be expressed as a linear combination of 

terms [[.¢7(Ie —p), H C Kn, and (6.30) is obtained by collecting terms with 
isomorphic H together. 

Lemma 6.41 implies that the terms in (6.30) are orthogonal, and that (6.31) 
holds. Moreover, Lemma 6.41 and (6.30) yield also 

X,(H) = E(XSn(H))/ES,(H)?, 

and thus the term X,(H) is uniquely determined. & 

Here X,(0)Sn(0) = Xn(0) = EX, so the randomness enters through the 
terms in (6.30) with H non-null. 

The first projection equals Xn(0)Sn(0) + Xp(K2)Sn(K2), and is thus ob- 
tained by ignoring all terms in (6.30) with vy = 3. Similarly, the second pro- 
jection equals X,(0)Sn(0)+Xn(K2)Sn(K2)+Xn(P2)Sn(P2)+Xn(K3)Sn(K3), 
that is, the sum of the four terms with vy < 3. More generally, we can select 
any set of graphs H and consider only the sum of the corresponding terms in 
(6.30) as an approximation of X. 

In order to use this idea to obtain asymptotic distributions from the de- 
composition (6.30), we have to know asymptotic distributions of the basis 
variables S,(H). We already know that S,(K2) = 2(L — EL) is asymptoti- 
cally normal, provided p is not too close to 0 or 1; this extends to every S,(H) 
with H connected, while disconnented H give other limits. More precisely, we 
have the following theorem, proved using a continuous time martingale limit 
theorem in Janson (1994a). (For fixed p, it was earlier proved by the method 
of moments (Janson 1990a, Janson and Nowicki 1991).) 

Theorem 6.43. Suppose that p = p(n) > po asn > oo, with O < po < 
1. Then there exist random variables U(H), where H ranges over unlabelled 
graphs, such that if H is any graph without isolated vertices for which 

np™#) + o0, (6.32) 
then, as n + 00, 

nH /2p-en/2G, (ET) a U(H). (6.33) 
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The convergence in (6.33) holds jointly for any finite number of graphs H 

that satisfy (6.32). The limit variables U(H) are determined by the following 

properties: 

(i) If H is connected and ey > 0, then U(H) has a normal distribution 

with mean EU(H) = 0 and variance 

EU(H)* = aut(H)(1 — po)**. (6.34) 

(ii) If Hy,...,Hm are different (t.e., non-isomorphic) connected unlabelled 

graphs, then U(H,),...,U(Hm) are independent. 

(iii) If H has connected components H,,...,Hm, each having at least one 
edge, then U(H) is a polynomial in U(H,),...,U(Hm), known as the 

Wick product :U(H,)---U(Hm):, see, e.g., Janson (1997) for a defini- 

tion. In particular, for m = 2, 

U(H) = :U(H,)U(H2): = U(Hy)U(H2) — E(U(Ai)U(H2)). (6.35) 

Furthermore, (6.34) holds for every H, and EU(H,)U(H2) = 0 tf Hi and Hz 

are two different unlabelled graphs without isolated vertices. a 

We return to the study of a general graph functional X, or more formally, 

a sequence X,, of functionals of G(n,p), where p = p(n) is a given sequence. 

Then X, has a (unique) expansion (6.30). 

The simplest case is when only a finite set of graphs H, independent of n, 

is needed in the expansion (6.30). Assume further that (6.32) holds for these 

graphs H. The asymptotic behavior of X, then follows from Theorem 6.43, 

provided we know the asymptotic behavior of the coefficients XG (Ep aBotn 

normal and non-normal limits may be obtained by this procedure. In fact, Xn 

is asymptotically normal if and only if the terms with H connected dominate 

the decomposition (6.30). 

Even if no finite set of graphs suffices for the expansion of every Xn, it is 

frequently the case that a finite set gives a good approximation. In general, 

let H. be a family of non-null unlabelled graphs without isolated vertices. We 

say that X, is dominated by H (for the given sequence p(n)) if, as n + 00, 

Var X,~ SY) Xn(H)? Var Sn(H). 
HEH 

In this case, X,, has the same asymptotic distribution (if any) as the projection 

HEH Xn(H)Spn(H). In particular, if there exists a finite dominating family 

H, we may apply Theorem 6.43 to this projection and obtain limit results just 

as for the case of a finite expansion. 

Remark 6.44. The first and second projection methods can now be rec- 

ognized as the special cases of this procedure with the dominating families 
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H = {Ke} and H = {K2, P2, K3}, respectively. Note that in these cases, all 

graphs H € H are connected, and thus X,, is always asymptotically normal 

when these methods apply. 

The method extends through a truncation argument to a more general 

situation, called here asymptotically finitely dominated, where H is infinite, 

but for every € > 0 a finite subset (independent of n) of H suffices to yield at 

least (1 — €) Var X, in (6.31). 

This method yields the following rather general result, where we define 

X*(H) = n?#/2°8/2 X,, (H). 

Note that by Lemma 6.41 we have, for H # 9, 

Var(Xn(H)Sn(H)) ~ (1 — p)&* aut(H)X*(H)?. (6.36) 

Theorem 6.45. Let X, be a graph functional of G(n,p), where p = p(n). 

Suppose that p > po € [0,1], that By is a sequence of positive numbers, and 

that H is a family of non-null graphs without isolated vertices such that, for 

every H EH, 

np™ A) + 0 (6.37) 

and 

a(H) = lim X7(H)/Bn exists. (6.38) 

Suppose further that 

Var(Xn)/8, +> >> a(H)? aut(H)(1— po)’ < oo. (6.39) 
HEH 

Then, 

Xn —-EX, 
aE RPaLE 4+ S> a(H)U(A), (6.40) 

# HEH 

ghee U(H) is as in Theorem 6.43. (If H is infinite, the sum is interpreted 
in L*.) 

Sketch of proof. The case po = 1 is trivial (and is better handled by studying 
the complementary graph, which is G(n, 1 — p)). 

Thus assume 0 < pop < 1. Given € > 0, we may choose a finite subset H, 
of H such that 0 y,¢,, a(H)” aut(H)(1 — po)®* > Hey O(H)? aut(H)(1 — 
Po)°* —e. It follows by Lemma 6.41, (6.36) and (6.38) that if YF is the pro- 
jection }) ey, Xn(H)Sn(H), then Var(Y£/8n) 3 Hen, a(H)? aut(H)(1— 
po)** and, consequently, by (6.39), for n large, i 

A WiX Yee Xi Ye 
E{ ——_——- - —") = ih 9 2 iO 
( Br a) ‘a Bn so Br aes 
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Since further Theorem 6.43 implies that Y° /3, & Hen, A)U(A) asn > 
co, (6.40) follows by Billingsley (1968, Theorem 4.2). a 

Corollary 6.46. Under the assumptions of Theorem 6.45, if further, every 

graph H € H is connected and at least one a(H) #0, then X,, is asymptoti- 

cally normal, 

ne N(Oal), (6.41) 

Proof. If every H is connected, then each U(H) is normal and so is the sum 

>> a(H)U(H); (6.41) follows by (6.34) and (6.39). a 

Corollary 6.47. Under the assumptions of Theorem 6.45, if further, po < 1, 

H 1s finite and a(H) # 0 for some disconnected H € H, then Xn has a 

non-normal asymptotic distribution. 

Proof. If some H is disconnected (and po # 1), then U(#) is a polynomial of 

degree > 2 in normal variables and it is easily seen that the sum in (6.40) is 
such a polynomial too. Such a polynomial has a distribution with too large 

tails to be normal, see, for example, Janson (1997, Theorem 6.12). | 

Remark 6.48. Suppose that po < 1 and that not all a(H) = 0. If H is finite, 

then (6.39) is, by (6.38) and Lemma 6.41, equivalent to the condition that Xy, 
is dominated by H. If H is infinite, (6.39) is stronger and, in fact, equivalent 

to X, being asymptotically finitely dominated by H. 

In the normal case, we may replace the assumption (6.38) on convergence 

of the coefficients by a suitable upper bound. 

Theorem 6.49. Let X, be a graph functional of G(n,p), where p = p(n). 

Suppose that p + po € [0,1], and that X, is dominated by a family H of 

connected graphs such that, for every H € H, np™) —» oo and the numbers 

b(H) = sup X*(H)/(Var X,)!/? (6.42) 

are finite and satisfy 

S> b(H)? aut(H) < 00. (6.43) 
HEH 

Then, 

XN (On), 

Proof. Let Bn = (Var Xp)'/?. Then, since X, is dominated by H, 

ic— War Xn /.0- ‘od »S Var (Xn(H)Sn(H)/Bn) 

HEH 

sig ie n°! p-°# X*(H)? Var Sn(H)/ 62. (6.44) 
HEH 
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Since X*(H)/Bn = O(1) for H € H by (6.42), there exists a subsequence 

along which X*(H)/B, — a(H) for every H € H and some a(H). Along this 
subsequence, each term in the sum in (6.44) converges, by Lemma 6.41, to 

a(H)? aut(H)(1 — po)** and is bounded, using also (6.42), by b(H)? aut(H). 
Consequently, we may by (6.43) apply the dominated convergence theorem to 

(6.44), obtaining 

1 = Var X,/6, + 5 a(H)? aut(H)(1 — po)** 
HEH 

and thus (6.39) holds. By Theorem 6.45, applied along the subsequence, 

cee N(0,1) along the subsequence. 

Moreover, given any subsequence, this argument shows that there is a sub- 

subsequence with Xp, S N(0, 1), and the result follows by the subsubsequence 

principle. | 

Applications to subgraph counts in G(n, p) 

We use the decomposition method to obtain old and new results for subgraph 

counts. 

Example 6.50. Consider again the subgraph count XgG in G(n,p), where 
n — oo and p= p(n) is a function of n. We will use the results above to give 
yet another proof (our last) of Theorem 6.5. 

We can write, cf. (6.29) and the discussion there, 

1 
X¢ = —— Te ; 

yp e€y(G) 

summing over all injective mappings from the vertices of G into {1,.. S570}: 
As in the proof of Lemma 6.42, if we substitute I, = (Ie — p) +p, expand the 
product in (6.45) as a sum of terms of the type Tleepcrr le — p)p°?—** with 
H C G and rearrange the terms, we obtain an orthogonal expansion (6.30) 
with only H C G (and without isolated vertices) appearing. Furthermore, it 
follows from this argument that, for such H, 

Xen(H) = n¥o—0 pea-en 
and thus (omitting the subscript n) 

XG (A) x n2e7 0H /2pe6-en/2_ (6.46) 

Now consider p = p(n). If p > po, 0 < po < 1, then Xe) <x nve-vH/2 and 
thus Xg is dominated by the H ¥ @ with smallest vn, that is, by {K2}. By 
a simple application of Theorem 6.49, Xq is asymptotically normal. (This is 
essentially the first projection method; see Remark 6.44 and Example 6.40.) 
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If p + 1, X@ still is dominated by {K>}, and, assuming n2(1 — p) + 00 
asymptotic normality follows similarly. 

If p + 0, then, by (6.46), XG is dominated by the set of non-null H C G 
for which n~°’4/2p-ex/2 is of largest order, that is, of the leading overlaps 
defined in Section 3.2. The assumption np™(%) — oo implies by Lemma 3.15 
that all leading overlaps are connected. Since also m(H) < m(G) for H C G, 

Theorem 6.49 yields Xg 4 N(0, 1). 

b) 

Example 6.51. We next consider induced subgraph counts. Let Y¢(G(n, p)) 
be the number of induced subgraphs of G(n, p) that are isomorphic to G. We 

see, as before, that Yq has a finite decomposition (6.30), but now the sum has 

to be taken over all graphs H (without isolated vertices) with vy < ua. 

In the case p — 0, it is easy to see that the decomposition (6.30) is dom- 

inated by the same terms as in the decomposition for XG, that is, by the 

terms corresponding to leading overlaps of G, except in the case when G has 

no edges. Hence, by the argument in Example 6.50, Yc is asymptotically 

normal provided np™@) — oo. (In the exceptional case eg = 0, Xqg is de- 

generate but not Yg; Yg is dominated by {K2} and is thus asymptotically 

normal provided n*p — oo.) We leave the details to the reader (Exercise!). 
The case p — 1 is reduced to the case p + 0 by considering complements; 

Yg(G(n,p)) equals the number of induced copies of the complement of G in 

the complement of G(n, p), that is, in G(n, 1 — p). 

The case p > po € (0,1) is more interesting. Let us, for simplicity, assume 

that p(n) = pis constant. In this case, a detailed calculation shows that, with 

Qn = (n)vg /aut(G), 

Yala) = 82 (ea ~ (*2)p) ho1d = 2) Pee 
More generally, for every H there is a polynomial Qy such that 

Yo(H) = re i). 

In particular, Yg(H) = O(n’¢-"*) and thus Y¢(H) = Ola), more- 

over, O can here be replaced by © if Qy(p) # 0, while Yo(H) = YG(H) =0 

if Qi7(p) = 0. Consequently, Yg is dominated by the smallest non-null graphs 

H with Quy(p) #0. 

If p 4 eg/(*Z), then Qx,(p) 4 0 and thus Yq is dominated by {K2} (just 

as Xq is); consequently, Y¢ is asymptotically normal by Theorem 6.49. (This 

is essentially the first projection method; see Remark 6.44.) In this case, 

VariVoX YZ (Ke)?cx n779 7. i 
If, however, p = eg/("2), then Yq(K2) = 0 and we have to study larger H. 

The next possibility is vz = 3, which holds for two graphs H, namely, P2 and 

K3. (Recall that we only consider graphs H without isolated vertices.) Hence, 

if further Yo(P2) # 0 or Yo(K3) # 0, then Yq is dominated by {P2, K3}. 
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Since both P, and K3 are connected, Yg is asymptotically normal in this case 

too by Theorem 6.49. (This is essentially the second projection method; see 

Remark 6.44.) In this case, however, Var Yq x n??¢~9. 
The remaining possibility is that Y¢(K2) = Ye(P2) = Ye(K3) = 0. Graphs 

G that satisfy these conditions are known as p-proportional. For such G and p, 

it may be shown that Yo(2K2) # 0, where 2K% is the graph consisting of two 

disjoint edges. Hence the list of possible cases ends here: Yg is dominated 

by {H : vy = 4} and Var(Yc) = n?’¢~4. Furthermore, since 2K2 is discon- 
nected, Corollary 6.47 shows that Yg is not asymptotically normal. 

More precisely, this argument yields the following result; see Barbour, 

Karonski and Rucinski (1989) and Janson (1990a, 1995a) for further details. 

Theorem 6.52. Consider G(n, p) where p is fixed, 0 < p< 1. 

(i) We have 

n'~*s (Yq — EYg) 4 N(0, 02), 
for some o2 > 0; 

(ii) 03 = 0 if and only if p= eg/(*Z), and then 

n3/2-%6 (Yq — EYg) 4 N(0,02), 

for some a3 > 0; 

(iii) 05 = 0} =0 if and only if G is p-proportional, and then 

n-"8(¥G— Yo) alz- = ete 

where Z,,Z2 € N(0,1) are independent, a,b are constants, anda < 0. 
This limit is non-degenerate and not normal. & 

The parameters in the limit distributions may be given explicitly; here we 
only remark that a calculation shows that, for (iii), 

a = 2p(1— p)Qox2(p) = Sane (“Sere =p) Sata 
Remark 6.53. It is not trivial to construct proportional graphs, and not 
even obvious that any exist at all. The smallest proportional graphs have 
eight vertices; the first example was given in Barbour, Karonski and Ruciriski 
(1989), and another example is the wheel consisting of a cycle of seven vertices, 
all joined to a central vertex. Deterministic and probabilistic constructions 
showing that p-proportional graphs exist for every rational p € (0,1) are given 
by Janson and Kratochvil (1991), Karrman (1993), and Janson and Spencer 
(1992). 

Karrman (1994) has further constructed a graph (with 64 vertices) that is 
proportional (with p = 1/2) and, furthermore, such that Yo(H) = 0 for every 
H with vz = 4 except 2K»; in this case the constant b vanishes. 
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Applications to subgraph counts in G(n, M) 

We have so far treated the decomposition method for G(n,p). In fact, the 

results extend to the continuous time random graph process {G(n, t)}; defined 
in Chapter 1, with a random graph evolving in time. The method then yields 

results on convergence of graph functionals as stochastic processes. See Janson 

(1994a) for details; an example treated there is the asymptotic normality of 

the maximum number of isolated edges during the evolution of a random 

graph. 

The process version of the method also leads to results for G(n, M) by 

considering the random time when the evolving graph has exactly M edges. 

We let p = M/(‘"}) and define the variables S,,(H) by (6.29), now letting I, be 
the edge indicators for G(n, M). The expansion (6.30) is still valid, with the 

same X,,(H) as for G(n, p), but the terms are no longer orthogonal. Note that 

Sn(K2) = 0 for G(n, M), so clearly the term with H = K2 disappears from 

(6.30). Moreover, a further analysis shows that also terms where H contains 

an isolated edge (i.e., a component K2) require special treatment. This leads 
to the following result; for the proof we again refer to Janson (1994a), which 

also contains some extensions. 

Theorem 6.54. Let X, be a graph functional of G(n, M), where M = M(n) 

— 00, such that there is a finite family H with X,(H) = 0 for H ¢ H (for 
every p). Let p = M(n)/(5), and let H' be the subfamily of all graphs in 

H with at least three vertices. Suppose that p > po < 1, and that Bn 1s a 

sequence of positive numbers such that for every H € H', 

a(H) = lim X*(H)/Bn exists. 

Suppose further that a(H) = 0 for every H € H' with two or more isolated 

edges, and that if H € H' with a(H) £0, then np™) -+ oo. Then, 

= An uy ys a(H)U(H), (6.47) 

HEH 

where H = {H € H' : every component of H has at least three vertices}, 

U(H) is as in Theorem 6.43 and ay equals the expectation of Xp calculated 

for G(n, p). 
In particular, if a(H) = 0 for every H € H with two or more components 

with at least three vertices, but a(H) # 0 for some H € H', then Xy 1s 

asymptotically normal. & 

Note that the smallest H that gives a non-normal term in (6.47) is the 

union of two copies of P:, which has six vertices. 

Comparing the limits in Theorems 6.45 and Theorem 6.54, we see that 

the following holds, at least provided both theorems apply (and, presumably, 

more generally): If a graph functional is dominated by a family of graphs 
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that have no isolated edges, then it has the same asymptotic distribution for 

G(n,p) and G(n, M), with M ~ p(5). On the other hand, if the functional 
is dominated by Ko2 (i.e., the situation when the first projection applies), 

then the asymptotic distributions may be completely different; moreover, the 

variance for G(n,p) is of a larger magnitude than the variance for G(n, M). 

(See Pittel (1990) for a different approach to the relation between asymptotic 

distributions for the two models.) 

Example 6.55. We may now study the subgraph counts Xg (arbitrary sub- 

graphs) and Yq (induced subgraphs), where G is fixed, for the random graph 

G(n, M), M = M(n); see Examples 6.50 and 6.51 for the corresponding re- 
sults for G(n,p). We define p = M/(}), and begin by studying Xc. 

Since the term with H = K» in the decomposition (6.30) plays no role for 
G(n, M), we consider the graphs H # 0, K2 and find the ones with largest 
order of X3(H); by (6.46), these are the subgraphs H C G with vy > 3 and 
smallest order of n”# p*". 

Let us first assume that G has a component with three or more vertices, that 
is, G has a subgraph Pp», and assume that np™(9) + oo. Then the argument in 
the proof of Lemma 3.15, together with n*(?*2)pe(?@K2) »5 nv(P2)pe(P2) | shows 
that every such extremal H is connected, and it follows by Theorem 6.54 that 
Xg(G(n, M)) is asymptotically normal. We see further that the asymptotics 
of Xq@ are the same for G(n, M) as for G(n,p) when M is so small that 
K2 is not a leading overlap, but not for larger M. In the case M = p(5) 
with p € (0,1) fixed, Var Xg =< n?"¢-? for G(n, p) but Var Xg x n2¥¢-3 for 
G(n, M) (dominated by P» and possibly K3, when K> is ignored). 

In the exceptional case when every component of G has at most two ver- 
tices, that is, G consists of isolated vertices and edges, Xg is deterministic 
ifeg < 1. If eg > 2, a modification of the argument above shows that 
Xg is asymptotically normal in this case too, provided n3/2p -+ oo and 
n3/2(1 — p) + oo; we omit the details. 

The normalization used in Theorem 6.54 is not the natural one by the mean 
and variance of Xg, but it may be shown that in this case (and many others), 
all moments of the normalized variable converge to the corresponding mo- 
ments of N(0,1), and hence convergence holds with the natural normalization 
too. We may summarize the result as follows. 

Theorem 6.56. If eg > 1, M = M(n) > ni/?2, (5) -M > n!/2 and 
np™®) _+ oo, where p = M/(5), then Xa(G(n, M)) a N(O, 2) | 

Turning to the induced subgraph count Yo, we see by similar arguments 
that when p — 0, we have (just as for G(n, p)) the same dominating graphs H 
as for Xg, provided Py C G, and thus Y@ is asymptotically normal provided 
M is not too small. Again, this may be shown also in the exceptional case 
when G consists of isolated edges and vertices, provided vg > 3 (otherwise 
YG is constant). 
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Theorem 6.57. If ve > 3, M = M(n) > n}/?, p = M/(5) — 0 and 

np™) - 00, then Yo(G(n, M)) 4 N(0,1). ] 

Again the case M/(5) — 1 can be handled by considering the complements, 

and we obtain asymptotic normality in this case too, provided (5) — M is not 
too small. 

Finally, in the case M = p(s); p fixed, Theorem 6.54 yields the following 

analogue of Theorem 6.52; see Janson (1994a, 1995a) for details. We let Up 
denote the set of unlabelled graphs with k vertices, none of them isolated, and 

let U; denote the subset of connected graphs with k vertices. 

Theorem 6.58. Let 0 < p < 1 be fired and consider G(n, M) where (for 

simplicity) M = M(n) = |(3)p]. 

(i) We have 

n3/2-%2 (Yq — EY) 4 N(0,03) 

for some o2 > 0; 

(ii) 02 = 0 if and only if Yo(H) = 0 for H € U9 = {P2, K3}, and then 

n?-6 (Yq — EYq) 4 N(0, 0%) 

for some of > 0; 

(iii) 02 = 02 =0 jf and only if Yg(H) =0 for H EU UU§, and then 

n5/2—%G (Yq — EY) 4 N(0,02) 

for some o2 > 0; 

Gy) 2 =p. — of — 0 1 ond only if Yo(H) = 0 for H € US UU VUE, and 

then 

n3-%6 (Yo — EYq) 4 a(Z? — 1) + 0(Z3 - 1) +. cZs, 

where Z1,Z2,Z3 € N(0,1) are independent, a,b,c are constants, and 

a#0. This limit is non-degenerate and not normal. a 

Karrman’s (1994) example shows that there exists a graph G such that 

case (iii) occurs. We do not, however, know if there exists any graph such 

that case (iv) happens; thus we do not know whether Yc (G(n, M)) is always 

asymptotically normal. 

In any case, as remarked in connection with Theorem 6.52, a p-proportional 

graph G has Yo(2K2) # 0, and thus is not an example of (iv) in the present 

theorem. In other words, the classes of graphs that yield non-normal limits 

in Theorems 6.52 and 6.58 are disjoint. 
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Other projections 

We have in this section studied projections using the variables S,(H) only. 

Other projections are useful in other situations; we mention a few examples 

and references. 

A similar decomposition has been used by de Jong (1996) to extend The- 

orem 6.5 to random hypergraphs. 
Andersson (1998) has studied (directed) subgraph counts in a random tour- 

nament, obtaining results similar to Theorem 6.52. In that case, however, 

there is an infinite list of possible cases. 

Janson (1994b) studied the numbers of spanning trees, Hamilton cycles or 

perfect matchings in G(n, p) and G(n, M). For G(n, M), with M > n3/? and 
(3) — M > n, these random numbers are shown to be asymptotically normal, 

by approximating with a linear function of Xp,; a kind of “first projection” 

for G(n, M). For M x n°/?, as well as for G(n,p) with p = 2(n—/?) and 
1—p > n°, the numbers are shown to be asymptotically log-normal. 

Furthermore, in Chapter 9 we will prove results on asymptotic distributions 

for random regular graphs by projecting onto functions of the cycle counts 
Zi; in that case the basic variables Z; have asymptotic Poisson distributions 
and the resulting asymptotic distributions are quite different from the ones 
obtained here, see Theorem 9.12. 

6.5 FURTHER METHODS 

Finally, we briefly mention a couple of other methods. 

Martingales 

As mentioned above, the proof of Theorem 6.43 is based on a martingale limit 
theorem; another martingale limit theorem is used by de Jong (1996). Such 
theorems may also be used directly in situations where the methods described 
above fail. We will not go into details, which are rather technical, and mention 
only one example. 

Example 6.59. Barbour, Janson, Karoriski and Rucirski (1990) studied the 
number Xq of cliques of a given fixed size d > 2 in G(n,p), where a clique is 
defined as a maximal complete subgraph, that is, a Kq that is not contained 
in a Kq41. It was shown that if p = p(n) is such that EXg 3 A < oo, then 
Xa “+ Po(A), and if EXq— oo, then Xy-4 N(O,1). 

The Poisson part was proved using the Stein—Chen method. For the normal 
part, different methods were used for different ranges of p; for certain p the 
first projection method works, and for a larger range it is possible to use 
Corollary 6.46 (with the family H consisting of K2, K3, Kg and the ‘multistars’ 
Ma,r obtained by adding r > 1 vertices to Ka, joining them to all vertices 
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of Ka). For p close to the upper threshold, this fails, since then (6.39) does 

not hold; instead a martingale limit theorem was invoked directly. 

Generating functions 

A method that is widely used to find asymptotics, including asymptotic distri- 

butions, for combinatorial problems is to define a suitable generating function 

and obtain results through a study of its asymptotics. This method has, how- 

ever, been used rather sparsely for random graphs. We refer to Pittel (1990) 

and to Janson, Knuth, Luczak and Pittel (1993) for examples. 
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The Chromatic Number 

In this chapter we present results on the chromatic number which, due to 

their elegance and importance, range among the very best in the theory of 

random graphs. We begin with Frieze’s beautiful method, which combines 

the second moment method with large deviation inequalities to estimate the 

independence number of random graphs. In Section 7.4 we describe Bollobas’s 

ingenious argument for determining the chromatic number of dense random 

graphs — probably the most important and celebrated result on random graphs 

for the last years. Then we analyze an expose-and-merge algorithm, based on 

Matula’s original idea, which is used for estimating the chromatic number in 

the sparse case. Finding the chromatic number can be viewed as a vertex 

partition problem. In the last part of the chapter we discuss this problem in 

a more general form. 

7.1 THE STABILITY NUMBER 

Let us recall that a set of vertices of a graph G is independent, or stable, if 

it contains no edges of G. The size of the largest among such sets, denoted 

by a(G), is called the independence (or stability) number of G. In this section 

we study the behavior of a(G(n,p)) — a random variable closely related to 

the chromatic number y(G(n,p)). Note that the independence number of a 

graph is the same as the clique number of the complementary graph, so the 

results below can also be stated in terms of the clique number of G(n, 1 — p). 

179 
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Let us start with a classic result due to Bollobas and Erdés (1976) and 

Matula (1976). Its proof, based on the second moment method, can be found 

also in Bollobas (1985, Chapter XI). 

Theorem 7.1. Fore > 0 and b=1/(1-—p), set 

kee = |2log,n — 2log, log, np + 2log,(e/2) +1+e/p|. (FA) 

Then, for p = p(n) such that p > n~° for every 56 > 0 but p < c for some 
CE<GA a A285 

k_- < a(G(n,p)) < ke. ] 

Remark 7.2. In fact, Bollobés and Erdés (1976) and Matula (1976) proved 
that in the above range of p(n), the stability number a(G(n, p)) is asymptot- 
ically concentrated on at most two points, that is, there is a sequence k(n) 
such that a.a.s. k(n) < a(G(n,p)) < k(n) +1. 

In this section we will concentrate on the case when p = p(n) < log~* n. 
Then, in order to avoid dealing with logarithms of base b, instead of ka its 
convenient to use the functions k+., defined as 

2 ki.'= | 5 (log np — loglognp +1 —log2+ é)|. (7.2) 

Elementary calculations show (Exercise!) that for p < log~?n, € > 0, and n 
large enough, we have fort <oksd5< k_. and ke Ska< kse, and so it does 
not matter very much whether we use ki. or kx. to estimate a(G(n, p)). 

Let X(k) = X(k;n, p) denote the number of stable sets of size k in G(n, p). 
Since a(G(n,p)) > k if and only if X(k) > 0, the most natural way of han- 
dling a(G(n,p)) is to study the behavior of X(k). First we will estimate the 
probability P(X(k) > 0) for k_. < k < ke, using the second moment method. 
The following lemma shows that this approach works well for p = p(n) which 
does not tend to 0 too fast. 

Lemma 7.3. Let € > 0, and ke be defined as in (7.2). Then there exists a 
constant C, > 0 such that for C./n < p= p(n) < log~*n, we have 

P(X (ke) > 0) <EX(ke) 30 (7.3) 

and 

EX(k_-) 4 co 

as n —> co. Furthermore, if log? n/n < p < log~* n, then 

P(X(k--) > 0) =1—o(1) (7.4) 
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and if C./n <p < log’ n/n, then for large n 

Kz. 2 
P(X (k_-) > 0) > exp (- : ) > exp (-=—) (75) 

log” np plog” np 

In particular, if log? n//n < p< log? n, then a.as. 

k= = olG(n,p)) < k-- (7.6) 

Proof. The first moment of X(k-) is rather easy to handle. For instance, for 

np large enough, 

EX(k.) = (Ja — p(t) < (Few A
 

ahi p(ke — 1)\\* | 
EOS aoa e Ind ioe nah a oe < exp(— 
a Gas —loglog np) ©? ( 2 )) < exp(—ek./2) + 0 

We leave to the reader an elementary verification (Exercise!) that if np > Cz, 

where C, is a sufficiently large constant, then for large n 

E X(k_.-) > exp(ek_./2) — ov, (72) 

and concentrate on the proof of (7.4) and (7.5). 
Let us set, for convenience, k = k_- and X = X(k), and assume that 

C./n < p < log? n with C, large enough. As we have already mentioned, 

our proof is based on a standard second moment argument, that is, we will 

estimate E X? and then deduce (7.4) and (7.5) from (3.3). Note first that 

ee eu [aya - 9] (7.8) 
rahi poem ee 

< SoH py) = Vai, 
i=l h) 111 

where 

Furthermore, let 

Qi+1 (k- iy 

ai CNS eae 
by = 

It is not hard to see that for small i, the sequence b; decreases with 7 because 

of the factor i+ 1 in the denominator, for intermediate 7 it grows due to the 

factor (1—p)~‘ and, finally, when the difference k—7 becomes small, b; declines 
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again. Thus, a; achieves its largest value either at 7; = min{i > 1: }; < 1}, 
or at 72 = max{i < k: 6; > 1}+1. The reader can easily verify (Exercise!) 
that 7, is much smaller than k, so the factor (1 — p)~* is almost negligible 
and 7; = O(1+k?/n); more precisely, if k?/n < 1, then i; = 1, and otherwise 
a1 x k?/n (in fact, i; ~ k?/n if k?/n > co and np > oo). In order to find a 
lower bound for iz, set 14 = [k(1 — 1/log’ np)]. Then 

k , 
faa Ree O(igp*)) > 

and so tz > 25. 
Let us estimate the value of a;,. The inequalities iz > ip = (kis 

1/ log? np)] and (7.7) imply that for 15 < k we have 

“a (ea) (5)-(‘2) (22m) (eats) 

Tee ee Cee ener ag ( k 

e?n —t2 

S Ge ) e(-F) 
2 ei! 

: (Gag? (-yD)). 
1/plog® np 

oe (c?np log’? np exp iS log? np) ) =oln:*)s 

while for 72 = k, directly from (7.7), we get aig = ay = 1/EX = o(n-?). 
Thus, the contribution to 7, a; coming from the terms with large indices is 
negligible, and the sum is dominated by terms with indices close to i}. 

Let us consider two cases. If p > log? n/,/n, then k < 2/n/logn, i; = 1 
and, furthermore, for every i < i3 = [log np] and n large enough, 

(3) (3) 
(i) 

S80 ai, = o(n~). Hence, 

a; = 
i , = 3 ee 

(1—p)-&) < ne exp (ip/2) <(=y)’, 

k ig—1 ‘ 
2k? \i 4k? ou =< ye (=) +F k max{aj,, aj, } = re +-o(1) = o(1). (7.9) 

— eI 

Next, suppose that C- /n<p< log? n /Vn for some large constant C. > 0. 
Then, rather crudely, 

Gneea() ~ p)~ (2) < exp((1/2 + o(1))pi?) < op (sia) 

and 

k 
k Yai < kmaxois0s} <kexp(— 4) < enn pea 2 log” np 
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Now, in order to get (7.4) and (7.5), it is enough to put the values of EX 

and EX? given by (7.7), (7.8), (7.9) and (7.10) into (3.3) — a stronger form 

of the second moment method. = 

Let us remark that, although inequality (3.2) is slightly weaker than (3.3), 

for most random graph problems it works just as well. Here, however, it is 

not the case — for small p the inequality (3.2) gives a worthless negative lower 

bound for the probability P(X (k,) > 0). 
On the other hand, at first sight, the estimate (7.5) does not look terribly 

useful either — although positive it tends to 0 faster than exp(—\/n/2 log’ n). 

One might hope that this is because our estimates were too crude. Indeed, 

one can bound the variance of X more carefully and show that (3.3) yields 

(7.4) also for some p which tends to 0 faster than log” n/,/n. However, for 

p = p(n) which tends to 0 very quickly the second moment method utterly 

fails. It is not hard to understand why it does so poorly in this case: if, 

say, p = n~3/4, then the largest stable sets are larger than n°/*, and the 
majority of pairs of such sets share a substantial amount of elements which 

makes E(X?) much larger than (EX)?. Quite surprisingly, (7.5) can still be 
used for the evaluation of a(G(n, p)), provided it is supplemented with a large 

deviation inequality of a martingale or Talagrand type. We owe this profound 

observation to Frieze (1990), who showed that the estimates for a(G(n, p)) 
given by (7.6) remain valid also for p< 1//n. 

Theorem 7.4. Let e > 0 and let ki. be defined as in (7.2). Then there exists 

a constant C- such that for C./n < p= p(n) < log-? n a.a.s. 

ke <'a(G(n, p)) < ke. 

Proof. By Lemma 7.3, the assertion holds for log? nf/m <=) s log: n, and 

for the whole range of p = p(n) a.a.s. a(G(n,p)) < ke. Thus, it is enough to 

show that if C-/n < p < log’ n/n, then a.a.s. a(G(n,p)) > k-e- 

Note that Talagrand’s large deviation inequality, Theorem 2.29, can be 

applied to a(G(n,p)) with c; = 1 and ~(r) = [r] (see Examples 2.35 and 

2.33), and thus by (2.35) we get 

P(a(G(n,p)) < k-- — 1) P(a(G(n, p)) 2 k-e/2) 

. exp(- Ak 2/2 ) (7.11) 

(e/p)imitaw ta yale) 122 
< exp( iaaeiel = exp( alert 

Thus, combining (7.11) and (7.5) (for €/2), it follows that, for large n, 

Gin,p))/< hee) Sep (get) Be xp( —-————— + ———— Pla(G(n,p)) < kee) $ exP(-sooae + TP ap 
2 é ayes ets) Wer) ra 

< exp( aaa) a 
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7.2. THE CHROMATIC NUMBER: A GREEDY APPROACH 

Let us recall that the chromatic number x(G) of a graph G is the smallest 
integer € such that the vertex set of G can be partitioned into @ stable sets. 
The problem of computing the value of the chromatic number of a graph has 
drawn much attention in graph theory, but in this chapter we will not use 
any sophisticated results from this area, relying mainly on known elementary 
facts about x(G) (see, e.g., Bollobds (1998) or Diestel (1996)). 

We begin our study of x(G(n,p)) with the simple observation that for 
any graph G with n vertices and stability number a(G), the chromatic num- 
ber x(G) is bounded from below by [n/a(G)]. Thus, the upper bounds 
for a(G(n,p)) given by Theorem 7.1 and 7.4 yield immediately that a.a-s. 
x(G(n,p)) > n/ke if p is a constant (or p = p(n) tends to 0 slowly enough), 
and x(G(n,p)) > n/ke if C./n < p = p(n) < log~? n for a large enough con- 
stant C' = C,. Replacing these bounds by simpler, slightly smaller expressions 
we arrive at the following result. 

Corollary 7.5. 

(i) Ifp=p(n) >n~° for every 5>0 but p<c for somec <1, then a.as. 

n 
G > a 

x(G(n,p)) 2 2 log, n — log, log, n’ 

where b= 1/(1—p). 

(ii) There exists a constant Co such that if Co/n < p= p(n) < log-?n, then 
a.a.s. 

np 

2loglognp +1 ~ . 
= x(G(n,p)) > Merce 

The main question about x(G(n, p)) is whether the vertex set of G(n, p) 
can be partitioned into stable sets of nearly maximum size, that is, whether 

x(G(n, p)) = (1 + op(1))n/a(G(n, p)). (7.12) 
In this section we examine an algorithmic approach to this problem, and 
describe a simple algorithm coloring the vertices of G(n,p) which a.a.s. uses 
only twice as many colors as anticipated in (7.12). 

Let D(G) = maxycg 5(H) be the degeneracy number of a graph G and, as 
in Section 3.1, let m(G) = maxycg |E(H)|/|V(H)|. Much of our argument 
will rely on the following well-known simple upper bound on x(G). 

Lemma 7.6. There exists a polynomial time algorithm which colors the ver- 
tices of every graph using at most 1+ D(G) colors. In particular, 

x(G) $14 D(G) <1+2m(G). ui 
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The above fact is particularly well suited for small subgraphs of a random 

graph, which are quite sparse and thus can be effectively colored with only 

a few colors. Throughout this chapter we will use the following estimates of 

the density of small subgraphs of G(n, p). Statements (i)—(iii) below can be 

easily verified using the first moment method (Exercise!). In order to prove 

(iv) it is enough to compute the expected number of subgraphs of G(n, p) 

with m(F) > 1.45 and fewer than 0.05n vertices, and use the fact that if 

np < 1.001 then a.a.s. the size of the largest component of G(n, p) is smaller 

than 0.05n (see Theorem 5.4). 

Lemma 7.7. 

(i) There exists a constant Co such that for np > Co a.a.s. every sub- 

graph F of G(n,p) with fewer than n/ log? np vertices satisfies m(F) < 

np/ log? np. 

(ii) If p < log? n/n, then a.a.s. for every subgraph F of G(n,p) with fewer 

than 2,\/nlogn vertices we have m(F) < log® n. 

(iii) Ifp <n-°/", then a.as. for every subgraph F of G(n,p) with fewer than 

70./nlogn vertices m(F) < 1.45 holds. 

(iv) If np < 1.001, then a.a.s. m(F) < 1.45 for every subgraph of G(n,p). 

In particular, a.a.s. x(G(n, p)) <3. a 

Note that although it follows from the proof of Theorem 7.4 that the ex- 

pected number of stable sets of size (1 — o(1))a(G(n,p)) is quite large, such 

sets have a natural tendency to cluster together and so, possibly, they do 

not cover all vertices of the random graph. However, in the first attempt to 

estimate x(G(n,p)) from above, we will defer this problem for a while, and 

instead look more closely at the stable sets which are about half the size of 

the largest one. More specifically, the following fact can be shown using the 

first moment method (Exercise!). A stable set is called maximal if it is not 

contained in any other stable set. 

Lemma 7.8. 

(i) There exists a constant Co such that tf Co/ 1, Pe log-* n, then with 

probability 1 — o(n~*), G(n,p) contains no maximal stable set smaller 

than (log np — 3 log log np) /p. 

(ii) Ifp> log? n but p < c for some c < 1, then with probability 1 — o(n~?) 

every maximal stable set of G(n,p) is larger than log,n — 3 log, log, n, 

where b= 1/(1—p). 

Lemma 7.8 tells us that a.a.s. each stable set much smaller than 5a(G(n, p)) 

can be extended to a bigger one. In particular, every vertex belongs to a stable 

set of size about a(G(n, p))/2. As was observed by Grimmett and McDiarmid 
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(1975), one can use this fact to describe an algorithm which colors the vertices 

of Gin, p) with (2 + 0,(1))n/a(G(n, p)) colors. 

Theorem 7.9. There exists a polynomial time algorithm CHR for which the 

following hold: 

(i) there exists a constant Co such that if Co/n < p < 1/ log? n, then a.as. 

CHR uses no more than np/(lognp—6 loglog np) colors to properly color 
the vertices of G(n, p); 

(ii) ifp > log? n butp<c for some c < 1, then a.a.s. the number of colors 

used by CHR to color the vertices of G(n,p) is bounded from above by 

n/ (log, n — 6 log, log, n), where b = 1/(1—p). 

Proof. We will show only the first part of the assertion; the proof of (ii) is 
similar. Note first that in a random graph G(n,p) one can find a maximal 
stable subset S by examining only those pairs of vertices of G(n,p) which 
have at least one end in S. Indeed, to construct S greedily start from any 
vertex, put it into S, then check for every other vertex if it has neighbors 
among the vertices already in S; if this is not the case add such a vertex to S. 
Now color the vertices of S using the first color. Then, the graph obtained 
from G(n,p) by deleting the vertices of S can be viewed as the random graph 
G(n — |S|,p), so we can repeat the above greedy procedure over and over 
again, until the number of vertices in the graph drops below n / log? np. If Co 
is sufficiently large, then, due to Lemma 7.8, the number of colors used so far 
is a.a.s. bounded from above by 

np np Sr UT Fp 
log(np/ log? np) — 3 log log(np/ log” np) — lognp — 5loglognp 

Furthermore, Lemmas 7.6 and 7.7(i) imply that a.a.s. the remaining vertices 
of the graph can be effectively colored by at most 2np/log? np + 1 colors. 
Consequently, a.a.s. 

np 2np np G(n, 5 ot I eee eee ; 
x(G(n,p)) < log np — 5 log log np log? np ~ log np — 6 log log np 

Can we do better than the algorithm CHR and effectively color G(n, p) 
using a substantially smaller number of colors? Clearly, in order to reduce 
the number of colors by a constant factor, we need to describe a fast procedure 
IND(4) which a.a.s. finds in G(n, p) a stable set larger than (1/2+45)a(G(n, p)) 
for some 6 > 0. (The problem of the existence of IND(5) was posed by Karp 
(1976) and, as was observed by Juels and Peinado (1998), has some interesting 
cryptographic consequences.) In fact, Matula ( 1987) showed that, having such 
a procedure as a subroutine, one could devise an algorithm which a.a.s. colors 
the vertices of G(n,p) with fewer than (2 — 6’ )n/a(G(n, p)) colors, for some 
positive constant 6’. 
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However, at this moment neither do we know what IND(6) should look like, 

nor do we have any idea how to show that such a procedure does not exist. 

Although it is possible to find in G(n, p) stable sets slightly larger than those 

whose existence is assured by Lemma 7.8, and describe algorithms which a.a.s. 

color the vertices of G(n, p) with fewer colors than CHR does, all improvements 

are only with respect to the second-order terms: all these procedures produce 

stable sets of size (1/2 + 0p(1))a(G(n, p)). (Examples of such algorithms were 
given, e.g., by Bollobas and Thomason (1985), Pittel and Weishaar (1997), 

and Jerrum (1992); a survey on the algorithmic theory of random graphs was 

published by Frieze and McDiarmid (1997).) Thus, the problem of existence of 

IND(6) continues to be the most important open question of algorithmic flavor 

in the theory of random graphs. To illustrate our ignorance concerning this 

subject let us mention that even the following problem, posed independently, 

in various variants, by Jerrum (1992) and Kuéera (1995), has not been settled 
so far. 

Problem 7.10. Let 0 < a < 1/2, 0 < p < 1, and let G, pa be a random 
graph obtained from G(n,p) by choosing randomly a subset S of size |n°| 

of the vertex set of G(n,p) and removing from G(n, p) all the edges with both 

ends in S. Describe a polynomial time algorithm which a.a.s. finds a maximum 

stable set in Gnipa for every a > 0. 

Note that if a > 0, then a.a.s. S is the unique maximum stable set of Gn ip.o 

(Exercise!). Alon, Krivelevich and Sudakov (1998) provided an algorithm 
which a.a.s. finds S in a polynomial time for a = 1/2. Moreover, as observed 

by Kuéera (1995), if a > 1/2, then the problem has an immediate solution: 

in this case all vertices of S a.a.s. can be identified just by inspecting their 

degrees (Exercise!). 

7.3. THE CONCENTRATION OF THE CHROMATIC NUMBER 

From Theorems 7.1, 7.4 and 7.9 we know that for every 6 > 0 andc < 1, 

and for every function p such that C;/n < p < c¢ for some constant Cs, 

the chromatic number x(G(n,p)) a.a.s. lies between n/a(G(n,p)) and (2 + 

6)n/a(G(n, p)). But is it sharply concentrated, in other words, is there some 

function h(n) = h(n, p) such that a.a.s. x(G(n,p)) = (1 + op(1))h(n)? 

One can immediately see using the vertex exposure martingale and Corol- 

lary 2.27 that x(G(n, p)) is concentrated in an interval of length Op(/n). This 

fact, however, does not answer our question in the case of a sparse random 

graph, when the chromatic number is of an order smaller than \/n. Nonethe- 

less, Shamir and Spencer (1987) proved a sharp concentration of y(G(n, p)) 

throughout the entire evolution of G(n,p). Here we present a somewhat 

stronger version of their result given by Luczak (1991c), based on an idea 

of Frieze. 
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Theorem 7.11. For every sequence p = p(n) there exists a function h(n) 

such that the following hold: 

(i) fp >n-*/7, then x(G(n,p)) = (1 + op(1)) h(n); 

(ii) if p<n-*/", then a.as. h(n) < x(G(n,p)) < h(n) +1. 

Proof. As we indicated earlier, statement (i) is easy for a sufficiently dense ran- 

dom graph. If p > po = log’ n/\/n, then, by Corollary 7.5, a.a.s. y(G(n, p)) > 

x(G(n, po)) > Ynlogn/2. Corollary 2.27 applied to the vertex exposure mar- 
tingale, gives 

P(|x(G(n, p)) — Ex(G(n, p))| > Vnloglogn) = o(1), 

that is, in this case the assertion (i) follows with h(n) = Ex(G(n, p)). 
Assume now that p < log’ n/,/n and let h = h(n) be the smallest natural 

number for which 

P(x(G(n, p)) < h) > 1/logn. 
Consequently, P(x(G(n,p)) < h) < 1/logn, and so a.a.s. x(G(n,p)) > h. 
Denote by Y the number of vertices in the largest induced subgraph of G(n, p) 
which can be colored by at most h(n) colors, and set Y = n—Y. We first 
prove that EY < /nlogn. Indeed, suppose that EY > Vnlogn. Since 
altering the presence of the edges incident to a single vertex cannot affect the 
value of Y by more than one, Corollary 2.27 applies to the random variable Y 
with vertex exposure. This gives 

P(x(G(n,p) < h) = P(Y =0) < P(Y < EY — V/nlogn) 
< exp(—logn/2) < 1/logn, 

contradicting the choice of h. Thus EY < Wnlogn and, once again using 
Corollary 2.27, we get 

P(Y > 2V/nlogn) < P(Y > EY + Vnlogn) < exp(— logn/2) < 1/logn. 

Hence a.a.s. all except at most 2,\/nlogn vertices of G(n, p) can be colored 
using at most h colors. Moreover, Lemmas 7.6 and 7.7(ii) imply that for such 
a function p a.a.s. each subgraph of G(n,p) with at most 2,/nlogn vertices 
can be colored using at most 2log* n + 1 colors. Thus, in this case a.a.s. 

h<x(G(n,p)) <h+2log?n +1. (7.13) 

Note now that if p > n~®/7, then, by Corollary 7.5, @.a.s. x(G(n,p)) > 
n\/7/logn. Thus, (7.13) implies that 2log?n+1 = o(h) and, again by (7.13), 
the assertion (i) follows. 

The argument for p < n~§/7 is slightly more involved. Let us start with 
some comments on the rather uninteresting case np < 1.001. If np > 0, then 
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a.a.s. G(n,p) is a forest (see Section 5.1) and so a.a.s. 1 < x(G(n,p)) < 2. If 

n—'/10 < np < 1.001, then a.a.s. G(n, p) contains at least one edge, and thus, 

by Lemma 7.7(iv), a.a.s. 2 < x(G(n,p)) <3. 
Thus, we may and will assume that 1.001/n < p < n-®°/". Then, with prob- 

ability 1 — 0(1/logn), G(n, p) contains an odd cycle of size 2| (log log n)?| +1, 

(Exercise!) and so h > 3. Hence, Lemma 7.7(iii) and the argument presented 

above imply that there exists h = h(n) > 3 such that a.a.s. G(n,p) has the 

following properties: 

(i) all except at most 2\/nlogn vertices of the graph can be colored with 

at most h colors; 

(ii) for every subgraph F of the graph with fewer than 70\/nlogn vertices 

we have m(F’) < 1.45. 

Now to complete the proof it is enough to show that every graph G = (V, E) 

with the above two properties can be colored using at most h + 1 colors. 

Let S be asubset of V such that |S| < 2,\/nlogn and the vertices of V\S can 

be colored with at most h colors. We recursively define an ascending sequence 

of sets S = Sp C S; C--- C S; C V in such a way that |S;| < 62/nlogn 

and the neighborhood of S; is a stable set in G. The recursive step is simple: 

if the set S; has already been found and the neighborhood of S; contains an 

edge {v,w}, we put Si41 = Si U {v,w}. Note that |Si41| = |Si| + 2 and that 

e(Si+1) > e(S;) +3, where e(S;) is the number of edges of G contained in Sj. 

Hence, after 2 steps, 

|S;|=|S|+2i and e(S;) > 32. 

But, due to property (ii), as long as i < 34\/nlogn we have 

3i < e(S;) < 1.45|S;| = 1.45]S| + 2.91 < 3/nlogn + 2.94 

and so the procedure must end after at most t < 30./nlogn steps. Conse- 

quently, G contains a set S; of size smaller than |S| + 2t < 62,/nlogn such 

that its neighborhood N(S;) is stable in G and all vertices outside S; can be 

colored by at most h colors. 

Now one can color the vertices of G with at most h+1 colors in the following 

way. All the vertices not belonging to S,UN(S;) are colored with the first h 

colors, while the vertices of N(S¢) are colored by the (h + 1)st color. Finally, 

the set S;, which due to Lemma 7.6 spans a subgraph with chromatic number 

at most three, can be colored by any three of the first h colors. | 

Recently Alon and Krivelevich (1997), adding to the above argument one 

more ingredient, the Lovasz Local Lemma, showed that y(G(n,p)) is asymp- 

totically concentrated on at most two points as long as p <irigh! 27 aT hey 

also observed the following consequence of the two-point distribution, leading, 

by a suitable choice of p(n), to a one-point distribution. 
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Corollary 7.12. For every « > 0 and every positive integer sequence r = 

r(n) <n'/2-© there exists a probability sequence p = p(n) such that for suffi- 
crently large n 

P(x(G(n,p)) =r) >1—e. 

Proof. We may assume that € < 1 andr > 1. Define p = p(n) as the infimum 
of all real numbers p € (0,1) such that 

P(x(G(n, p)) <r) <€/2. 

Corollary 7.5 implies that p < n~1!/?-£/2, and thus we may apply Theo- 
rem 7.11(ii) (in the extended range). It follows that h(n) = r —1, but 
P(x(G(n,p)) =r —1) <e/2. B 

Let us compare the obtained concentration of y(G(n,p)) with that of 
a(G(n,p)). From Theorem 7.11 we know that x(G(n,p)) is concentrated 
on at most two points when p(n) tends to 0 quickly enough, while Remark 7.2 
states that a similar two-point concentration holds for a(G(n,p)) when p 
tends to 0 very slowly with n. This connection is probably due to the relation 
x(G) > n/a(G) which, for random graphs, tends to become an asymptotic 
equation. The fact that Theorem 7.11 does not specify the function h(n), 
while the concentration function of a(G(n, p)) is explicit, indicates that deal- 
ing with the chromatic number is more difficult. The reason is not hard to 
understand: the stability number is a local parameter of a random graph, 
while the chromatic number characterizes its overall structure. Nevertheless, 
in the next two sections we will find the asymptotic value of h(n). 

7.4 THE CHROMATIC NUMBER OF DENSE RANDOM GRAPHS 

When Shamir and Spencer (1987) used Azuma’s inequality (Theorem 2.25) 
to show that both the stability number and, more importantly, the chromatic 
number of G(n, p), are sharply concentrated around their expectations, it was 
not expected that martingales could help in finding the asymptotic value of 
x(G(n,p)). As we saw in the previous section, Shamir and Spencer proved 
that, in particular, for every constant p there exists a sequence h(n) such that 
x(G(n, p)) = (1+0,(1))h(n). In view of Corollary 7.5(i) and Theorem 7.9 (ii) 
we have, with b = 1/(1—p), 

n 
< h(n) < : 

2log,n — (n) log, n 

It came as a great surprise when Bollobds (1988a) used martingales to show 
that the truth lies at the left endpoint of the above interval. His paper estimat- 
ing x(G(n,p)) for dense random graphs was based on a beautiful, insightful 
and, at the same time, very simple argument. By the second moment method 
it was known (see Theorem 7.1) that if 0 < p < 1 is a constant, then a.a.s. 
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G(n,p) contains a stable set of size k ~ 2log,n. Bollobds observed that 
one can use large deviation inequalities to show that a.a.s. each subgraph of 

G(n, p) on at least n/ log’ n vertices contains a stable set of size k not far 

from k. But then we are done! Indeed, we can color greedily disjoint, k- 

element stable sets of G(n,p), until the number of uncolored vertices drops 

below n/log* n. Finally, we color the uncolored vertices by new, distinct colors 

(since n/ log? n is much smaller than the anticipated value of x(G(n,p)) this 

does not increase significantly the number of colors used in the procedure). 

A crucial ingredient of the above argument is an exponential upper bound 

for the probability that G(n, p) contains no large stable set; Bollobas derived 

it from the martingale inequalities in Corollary 2.27 using an elegant thinning 

argument. We will instead deduce this bound from Theorem 2.18. 

Lemma 7.13. Let 0 < p < 1 be a constant and b = 1/(1—p). Then the 

probability that G(n, p) contains no stable set of size [2log, n — 2.1 log, log, n] 

is bounded from above by exp(—(1 — p)n?/33 loge n). 

Proof. Recall that X(k) stands for the number of stable k-element sets of the 

random graph G(n,p). By Theorem 2.18(ii), applied to the cliques in the 

complement G(n,1 — p) of G(n,p), we have 

(7.14) P(X(k) = 0) < exp (- EAL, ik 
ear an EXa Xan 

where 
1 if A is stable in G(n, p) 

Xa = 
0 otherwise, 

and the sum in the denominator is taken over all pairs A’, A” such that 

|A’| = |A"| = k and |A’N A” | > 2. As in Section 7.1, setting k='|(2login— 

2.1 log, log, n], one obtains 

k eT k\ i 

DE Xa Xan _ aay eae. — p)(2)-() 

[EX (k)}? EX(k) 

Elementary, though tedious calculations (Exercise!) show that in the above 

sum the first term is the largest one. Thus 

k 
2 

[EX(K).2  ~ E X(k) 

aapfecaee (7) (1 - 2) e B3logyn . 

_ E X(k) TAL pn 

Bollobds’s result on the chromatic number of dense random graphs follows 

from the above lemma almost immediately (we present it here in a slightly 

weaker version). 



192 THE CHROMATIC NUMBER 

Theorem 7.14. Let 0 < p< 1 be a constant and b=1/(1—p). Then a.as. 

n n 
< << S  . 
< x(Gin, p)) < 2 log, n — 8 log, log, n 2 log, n — log, log, n 

Proof. Since the lower bound for y(G(n, p)) is given by Corollary 7.5, we need 
only to prove that a.a.s. the vertices of G(n,p) can be properly colored by 
no more than n/(2log, n — 8 log, log, ) colors. Note first that a.a.s. each 
subgraph of G(n,p) on at least n/log* n vertices contains a stable set of size 
at least 

2 log, ( ) eae ogy logs (; i ) > 2 log, n — 7 log, log, n. 
log? n og’ n 

Indeed, due to Lemma 7.13, the expected number of subgraphs of G(n, Pp) 
induced by at least n/ log? n vertices containing no stable sets of this size is 
bounded from above by 

1 — p)n?/log* 
scifi oe ee pin / ee =) < 2” exp(— 

33 log; (n/ log~ n) 

2 

aatane 
log? n 

Thus, a@.a.s. one can greedily color all except at most n / log? n vertices of 
G(n,p) with at most n/(2log, n — 7log, log, n) colors. Clearly, the remaining 
vertices can be generously colored each by a new color and so a.a.s. 

n 
n 

G an sige et ya la x ( (n, p)) ~ 2log,n — 7 log, log, n 2. log? n 
nr 

<< —__.. | ~ 2log,n — 8 log, log, n 

Remark 7.15. With a little more work, Bollobds’s method yields the sharper 
estimate (McDiarmid 1989) 

n G : a) ) | ATH 
x(G(n p)) 2 log, n — 2 log, log, n + Oc (1) 

for p constant; moreover, with the error term replaced by Oc(1/p), this holds 
for p + 0 too, provided p > n~ for every 5 > 0. 

7.5 THE CHROMATIC NUMBER OF SPARSE RANDOM GRAPHS 

Unfortunately, Bollobas’s ingenious argument cannot be used to determine 
the chromatic number of G(n,p) in the whole range of p = p(n). Although 
it works very well for p > n~°, where 6 is a small positive constant, we are 
in deep trouble when the probability p = p(n) tends to zero very quickly. 
Then, the left-hand side of the inequality (7.14) tends to one as n + oo 
and, as we have already seen when proving Theorem 7.4, finding the correct 
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asymptotic size of the largest stable set in G(n, p) requires a combination of 

a large deviation inequality and the second moment method. One may still 

hope that Frieze’s approach can be used to show that. the probability of G(n, p) 

containing no large stable sets of size k ~ a(G(n,p)) tends to 0 much faster 

than hanes as required in Bollobds’s method. However, a quick inspection 
of the proof of Theorem 7.4 reveals that it is based on the large deviation 

inequality (7.11), which cannot “capture” probabilities smaller than exp(—k), 

where k ~ a(G(n, p)). 
Thus, in order to deal with small edge probability p we will need a new 

idea: Matula’s erpose-and-merge approach (see Matula (1987) and Matula and 

Kuéera (1990), where it was used to determine, independently from Bollobas, 

the correct size of the chromatic number of G(n,1/2)). We follow Luczak 

(1991b) and combine this method with Frieze’s argument used in the proof of 
Theorem 7.4 to find the correct asymptotic order of the chromatic number of 

a random graph basically for all values of p > C/n, where C is a sufficiently 

large constant. Here we consider only p = p(n) for which p < log” n; if 

p > log-'‘n but p < c for some c < 1, then one can get better estimates for 

x(G(n,p)) using Bollobds’s argument presented in the previous section (see 

Remark 7.15). 

Theorem 7.16. There exists Co such that for every p = p(n) satisfying 

Co/n<p< log‘ n a.a.s. 

np np < << 
ee x(Gin,p)) S 2 log np — 40 log log np 2 log np — 2 log log np + 

The proof of Theorem 7.16 is based on Lemma 7.18 below, which, in turn, 

relies on a strengthening of Theorem 7.4 given by Luczak (1991b). This result, 

stated as Lemma 7.17, can be verified by following closely Frieze’s original 

argument, but since its computational part is much more involved, we state 

it without proof. 

Lemma 7.17. Let ¢ > 0 and k = |2(lognp — loglognp + 1 — log2 — €)/p]. 

Then there exists a constant C. such that for C-/n < p(n) < log’ n, with 

probability at least 1—o(n—'), G(n, p) contains [n log °(np)/k] disjoint stable 

sets, each of k vertices. | 

Lemma 7.18. There is a constant Co such that for Co/n < p < log’ n, 

and n large enough, with probability greater than 1 — log! np, more than 

n — 2nlog~* np vertices of G(n,p) can be properly colored with fewer than 

np/(2log np — 38 loglog np) colors. 

Proof. We will show the statement using Matula’s “expose-and-merge” tech- 

nique. Let Co/n<p< log~* n, where Co is assumed to be large enough for 
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later estimates. Furthermore, set 

k = [(2log np — 37 loglog np)/p], 

é = [n/(klog”* np)], 
m = [nlog7"' np]. 

Choose a subset A; of [n] uniformly at random among all subsets of [n] with 
m vertices. Since the subgraph H; induced in G(n,p) by A; can be viewed 
as G(m,p), by Lemma, 7.17, with probability at least 1 — o(m~!) there are @ 
disjoint stable sets in H;, each of size k. Let us choose uniformly at random 
one such family, J},... ,J?. This extra randomization gives each k-element 
subset of A; the same overall chance of being chosen as one of these stable 
sets. We mark all vertices from the set W = es I} as used and all pairs of 
vertices {v,w} with v,w € A, as exposed. 

Now choose another set Az, uniformly at random among all subsets of 
[n] \ W of m vertices, and let H} be the graph induced by Ap» in G(n, p). 
We would like to apply Lemma 7.17 to H3 but, although H can be viewed 
as G(m,p), its structure may depend on the structure of H,, because some 
pairs of vertices from Az could be already exposed. Here comes Matula’s 
ingenious recipe. Let us ignore all exposed pairs, at least for a moment, and 
for each exposed pair {v, w} perform another random experiment in which the 
probability of success is p, and connect v and w by an edge according to its 
outcome. The graph obtained this way from Hy is denoted by H>. Note that 
H can no longer be viewed as a subgraph of G(n,p) — when we expose the 
exposed pairs for the second time, we might have drawn an edge between two 
vertices which are not adjacent in G(n,p), and vice versa. However, H> has 
one great advantage: it can be identified with a random graph G(m, p) which 
is independent of H,, because H; and H> were generated in separate sequences 
of random experiments. Thus, we can apply Lemma 7.17 and choose in Ho, 
again randomly, a family of @ disjoint sets ae ey 7 which are stable in H> 
(but not necessarily in G(n, p)). Finally, we include all vertices of I Fete I? in 
the set W containing the used vertices, and all pairs from Ap» in the set of 
exposed pairs (some of them may have been already marked as exposed). 

Let us repeat this procedure r = flog”? np — log’? np| times. According to 
Lemma 7.17, the probability that for some graph H;, 1 <i <r, we have not 
succeeded with the choice of the family J?,... ,Ij is o(r/m) = o(log7} np). 
Thus, let us assume that during the procedure we have produced a family of 
rf disjoint sets My where for each 7, 1 < i < r, all sets Ii, LAS Pte, “are 
stable in H;. We will use them to define a proper coloring of all except at 
most 2n log~? np vertices of G(n, p). 

As we have already noticed, a set I 5 may not be stable in G(n, p), because 
when generating H;, we could have included in I a pair {v,w} which was 
an edge of G(n,p), but which was exposed at one of the earlier stages of the 
algorithm. Let s be the smallest index for which {v,w} € H,. We denote the 
number of such troublesome edges by Y. 
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Now we estimate the expectation of Y. Since 1 < s < t <r, there exist (5) 

choices for s and t. At the s-th stage, when we picked a set A, of size m, the 

ends v,w € A, of a troublesome edge could be chosen in one of () ways; the 

probability that the pair {v,w} appeared as an edge of H, and thus of G(n, p) 

is, of course, p. Now it remains to bound the probability that both v and w 

belonged to one of the sets /{,I§..., I}. Note first that at the t-th stage of 
the procedure the set A;, and thus also the sets It, I ..., I}, were chosen from 

at least n — r€k > 0.5n log * np vertices. Since |J!| = k for’all¢= 1,2,0.-,2 

the probability that v belonged to U{_, It is smaller than 2¢k/nlog~* np. 
Similarly, the probability that w was contained in the set J{ which contained 

v is bounded from above by 2k/nlog~* np. Thus, 

. r\ (m 4(k)*e 

= (1) (2) "tog? & np 

log* np ~—n? 8n log’ np 
—— = 2nlog~° np. 

- 2 = 2log?* np n? log”* np Bi Th 

Hence, from Markov’s inequality, we get 

P(Y > nlog-* np) < 2log-* np < 0.5log™' np. 

Consequently, with probability at least 1 — log‘ np, the procedure described 

above generates a system of disjoint sets Ij, 1 <i <r,1< 3 < @, which 

contain not more than nlog~* np troublesome edges. Let us delete one end 

of each such edge from J;_, te I;. Then, the resulting set has at least 

rk —nlog-* np > n—2n log”? np 

vertices and, on the other hand, it can be colored using not more than 

np n 
<= TO 

‘22 k ee 2log np — 38 log log np 

colors. ou 

Proof of Theorem 7.16. The lower bound for x(G(n,p)) is given by Corol- 

lary 7.5. In order to get the upper bound for the chromatic number of Gin, p) 

observe that, due to Lemma 7.18, with probability at least 1 — log! np all 

except at most 2n log? np vertices of G(n,p) can be colored using at most 

np/(2 log np—38 log log np) colors. Furthermore, Lemmas 7.6 and 7.7(i) imply 

that with probability 1 — o(1) the subgraph induced in G(n,p) by the uncol- 

ored vertices can be colored using at most 2np log~? np + 1 additional colors. 

Consequently, with probability at least 1 — o(1) — log‘ (np), 

np + mit +1 
38loglognp log* np (7.15) 

< ie | = Qlognp — 39loglog np 

x(G(n,p)) < seen 
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Thus, for say, np > logn, a.a.s. the chromatic number is bounded from 

above by np/(2 log np — 39 log log np). Finally, if Co < np < logn, then (7.15) 

together with Theorem 7.11 implies that a.a.s. 

Se re 
APNE): S 2 log np — 39 log log np — 2log np — 40 log log np © 

The above theorem states that for np being a large enough constant the 

chromatic number of G(n, p) is a.a.s. about np/(2log np). But how large must 
this constant be to guarantee that the chromatic number is at least k, for a 

given natural number k > 4? Recently, Achlioptas and Friedgut (1999) have 

shown the existence of a sequence d,(n) such that a.a.s. G(n, (dx (n) — €)/n) 
has chromatic number at most k, while G(n, (d,(n) + €)/n) does not. The 
sequence d,(n). is certainly bounded, but it is not known (although widely 

believed) that it converges to a limit. To avoid this problem one can define 
the threshold constant c,, setting 

cy = inf{d: a.a.s. x(G(n,d/n)) > k}. 

Theorem 7.16 states that for large k we have 

Chr = (2+ 0(1))klogk, (7.16) 

where the o(1) stands for a quantity which tends to 0 as k > oo. For small 
values of k the constants cy have been estimated by Chvatal (1991), Molloy 
(1996), and Achlioptas and Molloy (1999). In particular, it turns out that 
for k > 3, during the evolution of G(n,p), the first subgraph of G(n, p) of 
minimum degree k appears before the chromatic number of the random graph 
Jumps to k + 1 (see Molloy (1996) and Achlioptas and Molloy (1997)). Note 
also that if k is large then the non-empty k-core appears in the random graph 
when its expected average degree is about k (see Section 5.1). Thus, for 
large k, (7.16) implies that the k-core, at the moment it emerges in G(n, p), 
a.a.s. has chromatic number smaller than k. 

7.6 VERTEX PARTITION PROPERTIES 

The concept of chromatic number can be modified in various ways, and quite 
a few of its variants have been studied in the theory of random graphs (see, 
e.g., Bollobés and Thomason (1995, 1997)). In this section we consider one 
such generalization of the chromatic number, closely related to Ramsey the- 
ory. Note that having chromatic number greater than r is equivalent to the 
property that every r-coloring results in an edge with both endpoints of the 
same color. This is nothing else but a special case of a general Ramsey prop- 
erty for graphs, often depicted by the following Erdés—Rado arrow notation. 
Given two graphs F and G, we write 

HTN G) 
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if for every r-coloring of the vertices of F there is a monochromatic copy of G 

in F. (A similar notion but with respect to edge-coloring will be thoroughly 

studied in the next chapter.) Thus, y(F’) > r if and only if F > (K2)!. With 

this extent of generality in mind, we will refocus our interest as compared to 

the case G = K» studied in the previous sections of this chapter, and instead 

of asking for an analogue of the chromatic number, that is, for the smallest 
number of colors r = r(n, p) for which 

G(n, p) > (G)} T) 

we will fix r and look for a threshold probability function for the above prop- 

erty. 

Intuitively, the threshold should be determined by the requirement that for 

each subgraph H of G, the number of copies of H in the random graph G(n, p) 
is of the order of the magnitude of n. Let us explain the reason behind this 
heuristic. The copies of G contained in G(n, p) are fairly uniformly distributed 

and so, when the number of copies of G is much smaller than n, most of these 

copies are almost disjoint (see Section 3.5). Thus, it seems plausible that one 

can color the vertices of G(n,p), even with just two colors, and not create a 

monochromatic copy of G. On the other hand, if a vertex of G(n, p) belongs 

on average to many copies of G, then coloring all vertices of G(n,p) one by 

one we may expect that sooner or later we will put ourselves in a position in 

which coloring a new vertex inevitably leads to a monochromatic copy of G. 

As for every three graphs H C G, and F, the property F — (G)} implies 
F — (H)}, the same heuristic applies to every subgraph H of G. Note now 

that for each H C G, 

E(Xy) = O(n’* p**) = O(n(np*#/@#-D)e# 1), (ip) 

Hence, we anticipate that the threshold for the property G(n,p) — (G)} 

should be of the form n~!/™”(@) where, let us recall, for a graph G with at 

least two vertices, 
e 

mi (G) = HCG on> = tu CG,vH22 UH 

Note that, not surprisingly, the same function appeared in Theorem 4.9 as 

the threshold function for the property Fg(e) that all but at most en vertices 

of G(n,p) can be covered by vertex disjoint copies of G. 

Theorem 7.19. For every integer r, r > 2, and for every graph G which 

contains at least one edge and, if r = 2, satisfies A(G) > 2, there exist 

positive constants c and C such that 

, —1/m)(@) Ot MB/s comet e hs 
jim P(G(n,p) a (G);) Fy ‘ if p > Cn-1/m™ (4), 

Remark 7.20. Note that the number of colors r does not appear in the 

exponent of the threshold function, but is hidden in the constants. 
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Remark 7.21. The case in which G is a matching and r = 2 is somewhat 

different. One can show using the second moment method (Exercise!) that 
if pn = c > 1 then a.a.s. G(n,p) contains at least loglogn vertex disjoint 

cycles of odd length and thus a.a.s. G(n, p) + (G)}. However, if np = c and 

0 <c< 1, then one can use the method of moments (see Section 6.1) to show 

that the number of odd cycles converges in distribution to Poisson distribution 

Po(A) for some positive constant A = A(c) (Exercise!). Furthermore, in this 
case a.a.s. G(n, p) consists of trees and unicyclic components (Theorem 5.5), 
and for such a graph F’ and a matching G we have F' + (G)j if and only if F 

contains at least 2e(G) — 1 odd cycles (Exercise!). Thus, 

lim P(G(n,p) + (@)}) = a(c), 
where ‘ 

co x 

O ale — y em Nat 

Hence, in order to have a.a.s. G(n, p) # (G)3, we need p« n7!. 

Remark 7.22. It is tempting to conjecture that for given G and r the two 
constants c and C' can be chosen arbitrarily close to each other, that is, there 
is a single constant C’ such that we can take c = C —e and C = C+¢ for 
every € > 0. There is at present not much hope, however, to determine or 
even show the existence of such a C. As we mentioned in the previous section, 
this problem remains open even in the simplest case G = Ko. 

A partial result has recently been obtained by Friedgut and Krivelevich 
(2000), who proved that if G is strictly K,-balanced, then the threshold is 
sharp in the sense defined in Section 1.6; in this case it means that there 
exists such a C’ = C(n) = @(1), which, however, possibly depends on n. 

Proof of Theorem 7.19. Suppose that G(n,p) 4 (G)!. Then the largest color 
class of any coloring with no monochromatic G spans a G-free subgraph of size 
at least n/r. The probability that this happens is, by Theorem 3.9, smaller 
than 

2" P(G(n/r, p) BG) < 2" exp{—ceGg(n/r,p)}, 
where ®g(n,p) = min{EXy : H CG, ey > 1} and the constant cg depends 
on G only. It follows from (7.17) that for p > Cn-™ (©) we have ®g(n, p) > 
C'n, where C’ grows to infinity as a function of C, so that the probability of 
G(n,p) A (G); tends to 0 for C sufficiently large. 

For the proof of the 0-statement of Theorem 7.19 we assume that p= 
en-V/ mY (G) where c is a sufficiently small positive constant. The reader can 
easily check that if m“)(G) = 1, that is, if G is a forest with at least one edge, 
then Theorem 5.5 implies that the assertion holds whenever c < 1 (Exercise!). 
Thus, without loss of generality we may assume that vg = 3 and that for 
every proper subgraph H of G with at least two vertices 

€H eG 

(00 4 ee iL UG ile 
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that is, G is strictly K,-balanced (see Section 3.2). (If this was not the case, 

one could replace G with its smallest subgraph H for which ey/(vy — 1) = 

m)(G).) This assumption implies that there are no isolated vertices in G 
and that, for each proper subgraph H of G with at least two vertices, 

nia ps = Qn‘) (7.18) 

for some € > 0. 

Our proof will consist of two parts: a deterministic one, where we show 

that every graph F' with F — (G)} contains a dense subgraph of a special 
type, and a probabilistic one, where we prove that a.a.s. such dense subgraphs 

do not appear in G(n, p). 

In order to show the first part of the statement we will need a number 

of definitions. Let us recall that a hypergraph H is a pair (V,€), where V 

denotes the set of vertices and € is a family of subsets of V, called hyperedges. 

A hypergraph H has chromatic number x(H) at least three if every 2-coloring 

of vertices of H leads to at least one monochromatic hyperedge. We say that 

H is 3-edge-critical if y(H) > 3 but the deletion of any hyperedge results in 

losing this property. For graphs F and G, let H(F,G) be the hypergraph 

with vertex set V(F’), whose hyperedges are the vertex sets of all copies of G 
contained in F’. Note that for each hyperedge A of H(F,G), we have |A| = vg. 

We denote by G(A) a copy of G in F which corresponds to the hyperedge A of 

H(F,G), and by G(Ho) the graph U4e7,, G(A), where Ho is a subhypergraph 

of H. Note that F > (G)3 if and only if the chromatic number of H(F, G) is at 
least three. Furthermore, we may assume that H(F, G) is 3-edge-critical, since 

otherwise we could replace H(F,G) with a 3-edge-critical subgraph, ignoring 

some copies of G in F. In our further considerations we will use the following 

result about 3-edge-critical hypergraphs, the simple proof of which is left to 

the reader (Exercise!). 

Proposition 7.23. If H is a 3-edge-critical hypergraph, then for every hy- 

peredge A of H and every vertex v € A there is a hyperedge A’ such that 

ANA! = {v}. | 

A linear path (A,,...,Ae) is a hypergraph with hyperedges Aj,..., Ag, 

£> 1, such that 

1 ifj=itl, 
0 otherwise. 

[A;NA;| = 

A linear [quasi-linear] cycle (Ao, A1,-.-, A,) is a hypergraph which consists 

of a linear path (A;,...,A¢), € > 2, and a hyperedge Ao such that 

Le meni ce 1 
|Ap N A;| = 0 forts) tale 1, 

8 Wig eed de 
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where s = 1 [s > 1], respectively). A cycle which is quasi-linear but not linear 

we will call spoiled. 

Let P be the longest linear path in H = H(F,G). By Proposition 7.23, P 

contains at least two hyperedges. Let x and y be two vertices which belong 

only to the first hyperedge of P, and let A; and A, be two hyperedges of 

H (which, of course, correspond to two copies of G contained in F’) whose 

existence is guaranteed by Proposition 7.23, that is, A.M A; = {z},z=Z,y. 

By the maximality-of P )|V(P) @As > 2.2 = yy Leta 2m 

A, A; # 0}, z = x,y, and assume that, say, 1, < iz. The hyperedges 

A,,...,A;,,Az form a quasi-linear cycle C, which is linear if and only if |A,/N 

A;,| = 1. Otherwise C is spoiled. We also have |A,V(C)| > 2. Moreover, 

there is an edge in G(A,) which does not belong to G(C). Indeed, as 6(G) > 1, 

take any edge of G(A,) incident to y. We call the pair (C, A,) a cycle with 

handle. So, we have just proved a deterministic statement that if F + (G)} 

then the hypergraph H(F,G) contains a quasi-linear cycle with handle. 

Now we will show that a.a.s. no such structure does exist in H(G(n, p), G). 
Let X, Y and Z be random variables counting, respectively, linear paths 

of length at least Blogn, spoiled cycles C = (Ao,..., Az), and linear cycles 
with handles (C, A) of length less than B logn +1, in the random hypergraph 
H(G(n,p),G), where B = B(c,G) is a big enough constant. Straightforward 
estimates show that their expectations all converge to 0 as n — oo. Indeed, 

E(X) < ed nilvc—l)+1 ptec <n Sy (cet = o(1), 

t>Blogn t>Blogn 

E(Y) — Dy S> nive—1)—(vH—1) ptec —en = 0(1) 

t>2 HCG 

and 

Blogn 

ih ae ( Dinu nba aw oneal cat = o(1), 
= BY Nahe: 

where the inner sums extend over all proper subgraphs H of G with at least 
two vertices and correspond, in case of Y, to all possible shapes of the in- 
tersection G(Ao) N G(A;) and, in the case of Z, to all possible shapes of the 
intersection G(A) M G(C). The index ¢ stands for the number of hyperedges 
in a path or cycle. The logarithmic factor in the last estimate represents the 
number of choices of the vertices at which the handle A is attached to the 
cycle. Finally, we made use of formula (7.18). 

Thus, by Markov’s inequality, P(X = Y = Z = 0) > 1 as n > o, which 
completes the proof of Theorem 7.19. 5 



Extremal and Ramsey 
Properties 

As the reader has undoubtedly noticed, statements of many results in this 

book could well begin with the phrase: “Let G be a fixed graph and let 

G(n,p) be the random graph such that p(n) = ...”. Let us recall that in 
Section 3.1 we studied the probability that G(n,p) contains a copy of G for 

different values of p = p(n), while in Section 3.3 and Chapter 6 the asymptotic 

behavior of the random variable Xg which counts copies of G in G(n,p) was 

thoroughly analyzed. In Section 3.4 we dealt with the property that every ver- 

tex of G(n, p) belongs to a copy of G and in Section 4.2 a connection between 

this property and the property that G(n,p) has a G-factor was considered. 

Finally, in Section 7.6, by estimating the order of the largest G-free subset of 

V(G(n, p)), we proved that n~?/ mG) ig the threshold for the property that 

every coloring of the vertices of G(n,p) with a fixed number of colors leads to 

a monochromatic copy of G. 

In this chapter we investigate further variations of this familiar theme which 

are the edge versions of the questions from Section 7.6. Specifically, we will 

study the size of the largest subgraph of G(n, p) that contains no copy of G and 

look for the threshold function p = p(n) which guarantees that each coloring 

of the edges of G(n, p) with a fixed number of colors creates a monochromatic 

copy of G. 

It turns out that dealing with edges rather than vertices makes the above 

two problems much different from their vertex counterparts. This is apparent 

already when G = K3. From the proof of Theorem 4.9 it follows that if 

n2p> -+ oo then a.a.s. every induced subgraph of G(n, p) of order en contains 

a triangle, while, on the other hand, it is very well known that every graph 
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contains a triangle-free subgraph with at least half of the edges. Thus, before 

we proceed any further, we will examine some heuristics leading to the main 

results of this chapter. 

8.1 HEURISTICS AND RESULTS 

An edge partition problem 

Following the Erdés—Rado arrow notation, for two graphs F' and G and a 

natural number r, r > 2, we write F — (G)? if every coloring of the edges 
of F with r colors creates a monochromatic copy of G. Since in the whole 

chapter we always color the edges, not vertices, we will omit the superscript 2, 

writing just F — (G),. Our first goal is to determine for what p = p(n) a 

random graph has the Ramsey property G(n,p) — (G),. 

Let us notice that for given G and r the property F — (G), is increasing, 

so it has a threshold function (Theorem 1.24). In the vertex case the threshold 

was determined by the requirement that the number of copies of G should be 

of the order of n, the number of vertices in G(n, p). When coloring the edges 

we are facing a similar situation. If the number of copies of G is much smaller 

than the number of edges of G(n,p), most copies of G are edge disjoint, and 

the edges can be colored so that no copy of G is monochromatic. Although this 

fact is hardly surprising, its proof is rather tedious. It is similar to but more 

involved than the proof of the 0-statement of Theorem 7.19 in Section 7.6. 

Copies of G may locally cluster together and a substantial amount of work is 

needed to show that a proper coloring does exist (Rédl and Ruciriski 1993). 

On the other hand, if the number of copies of G is much larger than the number 
of edges, one may expect that they are so uniformly distributed around the 
graph that each coloring leads to many monochromatic copies of G. The 
quantities Xg and Xx, are of the same order of magnitude when, setting as 
usual vg = |V(G)| and eg = |E(G)|, 

n> 74 = O(n? p). 

But the property F — (G), is hereditary with respect to taking subgraphs 
of G and, just as in studying the containment problem in Chapter 3 or the 
vertex coloring problem in Section 7.6, one has to consider all (non-empty) 
subgraphs of G, which leads to the condition 

: 0(G') ne(G’)y _ 2 
Se ei p" /} = O(n*p), 

or, using the notation of Chapter 3, 6g = Q(n?p). 
Hence, the threshold function for the property G(n,p) — (G), should be 

p= p(n) =n-/m(G) | where m() (G) was defined in (3.18). 
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/ 

Fig. 8.1 A sunshine graph. 

The following result proved by Rédl and Rucinski (1995) states that this 

is indeed the case, except for star forests (i.e., forests where every component 

is a star). Recall that P3 is the path with 3 edges. 

Theorem 8.1. Let r > 2, and let G be a graph with at least one edge. 

(i) If G is a star forest, then the threshold function for G(n,p) > (G), is 
n-1-1/((A(G)=i)r+1) 

(ii) [fr = 2 and G is a forest consisting of stars and P3’s, with at least one 

P3, then there exists a constant C such that 

~ [OnsitfpeontTVPGOe1/n, 
2) ANCE fe if p> Cn-/m™(G) = C/n. 

(iii) In every other case, there exist constants c = c(G,r) and C = C(G,r) 

such that 

0, ifp<en W/m), 
TGP (Gals ie i > Cn-1/m™@), 

Proof of (i) and (1). Case (i), a star forest, is easy. If, for example, G is 

a single star K,,, then F — (G), for every F with A(F) > (k-1)r +1, 

while F / (G), if F is a forest with smaller A(F’) (Exercise!). It then follows 

that the threshold for G(n,p) — (G), coincides with the threshold for the 

existence of a Ky (4—1)r+1 given by Theorem 3.4. Note that by Theorem 3.19, 

this is a coarse threshold which cannot be tightened as in Cases (ii) or (iii). 

For (ii), the other special case, assume for simplicity that G = P3. As was 

first observed by Friedgut (personal communication), the 0-statement in (ii) 

cannot be improved as in (iii), since F — (P3)2 if F is the sunshine graph 

in Figure 8.1 (or any other graph obtained by adding pendant edges at every 

vertex of an odd cycle of length at least 5). This observation also yields the 

1-statement in (ii), with C ~ 1.35, the solution of C(1—e~°) = 1 (Advanced 



204 EXTREMAL AND RAMSEY PROPERTIES 

Exercise!). The 0-statement follows because G(n,p) is, for p< 1/n, a.a.s. a 

forest (see Section 5.1), and if F’ is a forest then F # (P3)2 (Exercise!). 

An extended outline of the proof of the 1-statement in (iii), which utilizes 

the Szemerédi Regularity Lemma, will be presented in Section 8.4. The special 

case G = Kz was first proved for an arbitrary number of colors in Rodl and 

Rucinski (1994). For the proof of the 0-statement, see Luczak, Rucinski and 
Voigt (1992) and Rédl and Ruciriski (1993). 

Remark 8.2. Note the different types of dependency on r for the different 

cases. If G is a star forest, then the threshold function is a power of n where 

the power depends on r. For other G, the rate does not depend on r, which 

affects the result only through the constants c(G,r) and C(G,r); if G is as in 
(ii), we have a coarser type of threshold for r = 2 than for r > 3. 

Note also that in Case (iii) we necessarily have C(G,r) + oo as r > oo. 

In fact, with 3r colors arranged in r groups of three colors each, let p = 

c(G, 3)rn—1/m® (G) and assign randomly one of the color groups to each edge 

of G(n, p). This exhibits G(n, p) as the union of r disjoint copies of G(n, p/r), 
each of which a.a.s. can be properly colored with the three corresponding 

colors; hence a.a.s. G(n,p) # (G)3,, and thus C(G,3r) > c(G,3)r. (We do 
not know the true order of growth of C(G,r); the upper bound given by the 
proof is enormous.) 

Remark 8.3. Just as for the vertex case in Theorem 7.19, it is tempting 
to conjecture that in Case (iii), for given G and r there is a single constant 
C = C(G,r) such that we can take c= C —e andC =C +e for every € > 0. 
A proof of this statement seems difficult even for the simplest choices of G and 
r. A partial result has recently been obtained by Friedgut and Krivelevich 
(2000), who proved that if r = 2 and G is a tree other than a star or P3, then 
the threshold is sharp, in the sense defined in Section 1.6, which means that 
there exists such a quantity C = C(n), which, however, possibly depends on 
Bs 

A Turan-type problem 

Another problem which continues to stimulate research in the theory of ran- 
dom graphs has the flavor of extremal graph theory, rather than Ramsey the- 
ory. Instead of partitioning the edges of G(n, p) into several classes, one tries 
here to determine the minimum size of a subgraph of G(n, p) which guarantees 
the containment of a copy of G. This problem, unlike the partition problem, 
in general remains open. 

Let us introduce some notation. For two graphs F' and G, we denote by 
ex(F, G’) the number of edges in the largest subgraph of F containing no copy 
of G and set €x(F,G) for the fraction of the number of edges of F' in such a 
subgraph, that is, 

ex(F,G) = max{ey :G Z H C F} 
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and 

ex(F,G) = ex(F,G)/er. 

When er = 0, we define ex(F,G) = 1 for every G. 

The function ex(K,,,G) has been studied extensively in extremal graph 

theory (see Bollobas’s (1978) monograph). A celebrated result of Erdés, Stone 

and Simonovits (Erdés and Stone 1946, Erdés and Simonovits 1966) states 

that for each G with at least one edge 

, 1 n 
ex(K,,G) = | 1- —.—— i (Kn,G) ( ayn +t) (3); (8.1) 

or, equivalently, lim,_-,.. €x(Kn,G) = rCEt Thus, the asymptotic behavior 

of €x(K,,G) depends exclusively on the chromatic number x(G) of the graph 

(en 
If F # Ky, the function €x(F, G) is much harder to study. Obviously, one 

always has é€x(F,G) < 1, and equality holds if and only if G Z F (unless F’ 

and G are both empty). Is it true that for a given graph G one can make 

ex(F’,G) arbitrarily small by a suitable choice of F’? As was already noticed, 

this is not the case when G = Ks, since for every graph F we have ex(F’, K3) > 

1/2. In general, an easy probabilistic argument (Exercise!) yields ex(F’,G) > 
limn—oo €X(Kn,G), provided x(G) > 3. This asymptotic inequality turns out 

to be exact and holds for bipartite graphs too. 

Proposition 8.4. For every graph F on n vertices and for every graph G, 

ex(F,G) > ex(Kn,G). 

Proof. Let F be any graph with the vertex set [n] and let H denote a graph 

on [n] such that G ¢ H and ey = ex(Kn,G). For a given permutation 

a : [n] > [n] let H(c) be the graph obtained from H by relabelling the 

vertices according to o and let F(c) = FN H(a). Finally, let oT"? be a 

random permutation of (n]. The expected number of edges in F'(a™"*) is 

n 
eren/(5) oer ex(Kn,@)/(3) ener ha G), 

so there exists a permutation go such that e(F(00)) > er €X(Kn,G). Fur- 

thermore F(go), as a subgraph of H(go), contains no copy of Ge Thus 

@x(F,G) > &(Kn,G) and the assertion follows. a] 

Corollary 8.5. For every graph G and all m < n, we have éx(Km,G) > 

ex(Kn,G). 

Proof. Apply Proposition 8.4 with F being the union of a complete graph Ky, 

and n — m isolated vertices. | 

Proposition 8.4 suggests that the right “Turdn-type” question to ask about 

random graphs is the following: For which functions p = p(n) do we have 

ex(G(n,p),G@) = (1 + op(1)) (Kn, G)? (8.2) 
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It will follow from the next result that if (8.2) holds for some p;, then it does 

so for each pz > p;. In this result we technically assume that G(n, p;) and 

G(n, p2 ) are related in the natural way, which is to say that they are two stages 

of the same random graph process {G(n, t)}; (just as, e.g., when applying the 

two-round-exposure technique). 

Proposition 8.6. Let G be a graph with A(G) > 2, and let p,; = p(n) and 

p2 = p2(n) be such that py < po. Then 

ex(G(n, pi),G) > (1 + op(1)) ex(G(n, pz), G). 

Proof. We will actually prove the corresponding statement for the uniform 

model Gin, M): If A(G) > 2 and M, = M,(n) < M2(n) = Mo, then 

€x(G(n, M1), G) > (1 + 0p(1)) &X(G(n, Mp), G). (8.3) 

The proposition follows by conditioning on the number of edges in both 

G(n, pi) and G(n, pe). 
Again, we regard G(n, M,) and G(n, M2) as two stages of the same random 

graph process {G(n, M)},. In particular, we may view G(n, M,) as a graph 
obtained from G(n, M2) by a random deletion of Mz — M, edges. In order to 
show (8.3), we consider three cases which, together with the subsubsequence 
principle, yield the general result. 

(i) My ex(G(n, M2), G) — 00. 
Let H be a maximal G-free subgraph of G(n, M2), and let H’ = HNG(n, M, e 
Then, clearly, ex(G(n, Mi ),G) > e(H’) and we need to estimate e(H’). Note 
that e(H’) has a hypergeometric distribution with mean 

M1 AH) VA ex(G(n, M2), G), M2 

which, by assumption, tends to infinity. Thus, a standard application of 
Chebyshev’s inequality yields 

e(H') = (1 + 09(1))My &X(G(n, M2), G), 

as required. 

(ii) M, €x(G(n, M2),G) < C for some C > 0, but M, > co. 
As M, > oo, a.a.s. one can find more than C disjoint edges in G(n, M,), and 
thus ex(G(n, M,),G) > C > My &X(G(n, M2), G). 

(iii) MM, ts bounded. 
In this case a.a.s. &(G(n, M,),G) = 1 (Exercise!) and (8.3) holds trivially. 

Remark 8.7. If A(G) = 1, in which case G is a disjoint union of edges and, 
possibly, isolated vertices, the result remains true provided poo fe) 
(Exercise!). However, there are counterexamples with smaller p; and p2. For 
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instance, the assertion is false if G = 2K2, p) = an~?/* with 1 < a < 2 and 

po = 2n—3/2 (Exercise!). 

Remark 8.8. By almost the same argument it follows that if PF"), F@),... is 

a sequence of graphs with v(F'")) + oo, A(G) > 2, p, = pi(n) < po(n) = po, 

and, furthermore, ex(Fy”),G) 4 oo, then 

ex(F A”), G) > (1 + op(1)) x(FRy?,G), 

where FS” is the reliability network created by randomly destroying edges of 

F(™), independently, with probability 1 — p (Exercise!). 

Proposition 8.6 suggests that, for a fixed a satisfying limp. €X(Kn, G) < 

a <1, the property that 

ex(G(n, p),G) <a, (8.4) 

although not monotone, behaves very much like a monotone one, and we may 

hope to find a threshold function for it. 

A necessary condition for (8.4) is not hard to determine. Note that for any 

two graphs F and G we have 

ex(F,G) > er —#{G CF}, 

where #{G C F} is the number of copies of G contained in F’, and that 

Property (8.4) is hereditary with respect to taking subgraphs of G. Thus, 

if for some p = p(n) a.a.s. ex(G(n,p),G) < a, where a < 1, then, just as 

for the partition problem, the number of copies of each subgraph G’ of G in 

G(n,p) should be comparable with the number of edges of G(n,p). Hence, 

p=n/ m'?)(G) is, again, our guess for the threshold. The reader is invited 

to compute the expectation and variance of appropriate random variables, 

making the above argument rigorous, and thus proving the following fact 

(Exercise!). 

Proposition 8.9. For every graph G with A(G) > 2 and for everyO<a<l, 

there exists a constant c = c(G,a) such that a.a.s. 

ex(G(n,p),G) 24, 

provided p = p(n) < ena 1/mO(G) 
ni 

Remark 8.10. In the rather uninteresting case in which A(G) = 1, and thus 

m()(G) = 1/2, one should instead assume that pn” —+ 0 or, otherwise, slightly 

modify the assertion (Exercise!). 

It is natural to conjecture that if the number of copies of G (or, more pre- 

cisely, the number of copies of the subgraph of G most infrequent in G(n, p)) 

is much larger than the number of edges of G(n, p), the value of €x(G(n, p), G) 
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approaches ex(A,,G) (because of Proposition 8.4 it cannot drop any further). 

More formally, one may expect that the following is true. 

Conjecture 8.11. For every graph G with A(G) > 2 and for every 7 > 0, 

there exists C = C(G,7) such that a.a.s. 

ex(G(n,p),G) < (1 + 9) €x(Kn, G) 

whenever p = p(n) > Cn7}/m(G)_ 

Unfortunately, at this moment we are able to verify this conjecture only 

for some special cases of G. In Section 8.2 we show its truth for G = K3 and 

present an elementary proof of Frankl and Rédl (1986). An alternative proof 

for triangles is.given in Section 8.5. It relies on a modified (sparse) version of 

the Szemerédi Regularity Lemma and on the observation that Conjecture 8.11 

follows from a stronger one, Conjecture 8.35, stating a better-than-exponential 

upper bound on the probability of nonexistence of copies of G in a special 

model of a random graph. Conjecture 8.35 (or its weaker version, sufficient 
for the proof of Conjecture 8.11) is settled in the affirmative for G being 
an arbitrary cycle (Haxell, Kohayakawa and Luczak 1995, Kreuter 1997, Ko- 
hayakawa, Kreuter and Steger 1998), or the complete graph K4 (Kohayakawa, 
Luczak and Rédl 1997). Thus, at least in these cases, Conjecture 8.11 holds. 
Yet another approach, which verifies Conjecture 8.11 for odd cycles, is pre- 
sented by Haxell, Kohayakawa and Luczak (1996). 

Let us make a few comments on the connections between Conjecture 8.11 
and Theorem 8.1. Note first that if G is bipartite, then, according to the 
Erd6és—Stone-Simonovits result (8.1), we have €X(Kn,G) = o(1) and so Con- 
jecture 8.11, if true, would imply the 1-statement of Theorem 8.1. However, if 
x(G) > 3, neither statement can be deduced from the other one, although, in 
a way, they both reflect the fact that in dense random graphs copies of G are 
distributed nearly as uniformly as they are in the complete graphs. The only 
case in which the partition and extremal properties get close to each other 
is that of G = Ks and r = 2. This fact is utilized in the proof presented in 
Section 8.2. 

Note also that Conjecture 8.11 and Proposition 8.9 would imply that the 
threshold function for the property &x(F, G) <a is not very much affected by 
the choice of a as long as limp X(Kn,G) <a <1. 

We close this introductory section with a brief account of further develop- 
ments in the theory of partition and extremal properties of random structures. 
Some partial results for nonsymmetric Ramsey properties of random graphs 
were obtained by Kohayakawa and Kreuter (1997). A first step into the un- 
explored area of partition properties of random hypergraphs was taken in 
Rédl and Rucinski (1998). A few results on partition and extremal prop- 
erties of random subsets of integers have appeared in Rédl and Rucinski 
(1995, 1997), Graham, Rédl and Rucirski (1996), and Kohayakawa, Luczak 
and Rédl (1996). 
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8.2 TRIANGLES: THE FIRST APPROACH 

Counting monochromatic triangles 

The goal of this section is to present an elementary proof of Conjecture 8.11 

when G = K3. It will follow from a strengthening of the 1-statement of 

Theorem 8.1 for G = K3 and r = 2. The strengthening claims not one 
but many monochromatic triangles in every two-coloring of G(n,p). There 

are so many that there is not enough room for them in any color class with 

fewer than (5 —n) (3)p edges. Only slightly weaker versions of this particular 

result were proved by Frankl and Rédl (1986) and Luczak, Ruciriski and Voigt 

(1992). The proof is based on a beautiful and simple idea of Goodman (1959), 
who applied it to bound the total number of triangles in a graph and its 

complement. 

To fully appreciate this idea we begin by considering the deterministic 

case of two-colorings of the edges of the complete graph K,,, or equivalently, 

the random graph G(n,p) with p = 1. Thus, let us first ask, how many 

monochromatic triangles are guaranteed if one colors the edges of K, with 

two colors, blue and red. 

A trivial upper bound of $(3) is provided by the probabilistic method 
(Exercise!). Surprisingly, this is asymptotically the right answer. For a given 

coloring and each v = 1,2,...,n, let by [ry] be the number of blue [red] edges 

incident with the vertex v. Then the total number of two-colored triangles is 

il n 1 n 

= bury = = > bo(n — 1 by) < n(n — 1)?/8. Teed ge telD 1— by) < n(n )°/8 

This implies Mantel’s theorem (i.e., Turan’s theorem for triangles — see, e.g., 

Bollobds (1998)). Indeed, let H be a graph with n vertices and ey > n?/4. 

Let us suppose that there is no triangle in H and count the ordered pairs 

(e, t), where e is an edge of H and t is a triple of vertices containing e. On the 

one hand, the number of such pairs is precisely ey (n — 2). On the other hand, 

denoting by t;, i = 1,2, the number of triples of vertices containing 7 edges of 

H, there are t, + 2t2 < 2(t; +t2) such pairs. By the above upper bound on 

the number of two-colored triangles, treating the edges of H as those colored 

blue, we have 

(n? /4+3/4)(n — 2) < ey(n— 2) < 2(t1 + te) < 2n(n - 189 

which is a contradiction for n > 4. Hence H contains a triangle. 

After this deterministic rehearsal we should be ready to repeat the same 

argument for the random graph G(n, p). 

Theorem 8.12. For every € > 0 there exists a constant C = C(€) such that 

if np? > C, then a.a.s. each two-coloring of the edges of G(n,p) results in at 

least (1/4 — €)(3)p® monochromatic triangles. 
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The probabilistic part of the proof is contained in the following technical 

lemma, the proof of which is left to the reader. (Exercise! — The only tools 

needed are Chebyshev’s and Chernoff’s inequalities.) Let J’ denote the number 

of triangles in G(n, p), d, = deg(v) stand for the degree of vertex v, and N, 
(also known as N(v)) be the neighborhood of v. Finally, for a vertex set A, 
let e(A) be the number of edges induced in G(n, p) by A. 

Lemma 8.13. Suppose that np? = Q(1). Then 

(i) |Z — ($)p°| = op(n*p*); 

(ii) maxi<y<n |dy — (n — 1)p| = 09(np); 

(ili) maxi<y<n |e(Ny) — (%)p| Ont py 

(iv) Moreover, for every € > 0 there exists C' = C'(e) such that if np* > C’, 

then a.a.s.. for every v = 1,2,...,n and for each A C N,, e(A)-> 

(41) p —en’p?. a 

Proof of Theorem 8.12. For a given blue-red coloring of the edges of G(n, p), 
let B, [Ry] be the set of vertices adjacent to v by edges colored blue [red], 
and let z, be the number of edges joining those pairs of neighbors of v which 
are adjacent to v by edges of different colors, that is, 

Zy = e(By, R,) = e(Ny) — e(By) — e(R,). 

Then, similarly to the deterministic case, there are precisely os Zy two- 
colored triangles. Recalling our previous notation b, = |B,| and r, = |Ryl, 
and using Lemma 8.13(iii, iv) with ¢/7, we find that the number of two-colored 
triangles is bounded from above by 

1 d b r 2 
ape (S)e- ({)e- (‘"s)o+ ZEN’ p» + 0p(n°p?) 

uv 

Pp 1 
nud: ss byty + zEnp» + Op(n*p’), 

Uv 

provided np? > C'(e/7), where C’(e/7) comes from Lemma 8.13 (iv). 
Since by Lemma 8.13(ii), by + ry = dy = np+ Op(np) for each v, uniformly, 

we find }), bury < }n3p? + op(n3p?). This, together with Lemma 8.13(i) 
yields Theorem 8.12 with C(e) = C'(e/7). a 

A Turan-type theorem for random graphs 

As a consequence of Theorem 8.12, we will now derive a special case of Con- 
jecture 8.11. It can be viewed as Mantel’s theorem for random graphs. 
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Rs eee plas For every n > 0 there exists C = C(n) > 0 such that if 

p>Cn-'/?, then a.a.s. every subgraph of G(n,p) with at least (1/2 + n)(3)P 

edges contains a triangle. 

Proof. In order to repeat almost literally the argument used in the determin- 

istic case, we need to show first that most edges belong to nearly the expected 
number of triangles. Let X,; be the number of vertices joined to both ver- 

tices 1 and j7. Then X;,; has the binomial distribution Bi(n — 2,p”) and the 

expectation around np*. Let Z count the edges {i,j} of G(n,p) for which 

Xi; < (1 —€)np’, where € > 0 satisfies 

3(1/2 + n)(1 — €) > 3/2 4 2e. (8.5) 

We have 

E(Z) = (7) pP(Xi2 <(1- €)np*) < (Bnei 

via the Chernoff inequality (2.6). If np? > oo, then E(Z) = o(n?p) and by 
Markov’s inequality (1.3), Z = op(n?p). Otherwise, it is quite straightforward 

to show that E(Z(Z — 1)) ~ (E(Z))? and thus, by Chebyshev’s inequality 

6.0.8. 2 < 1A Peal Thus, in either case, a.a.s. 

Tine (sl el RL (8.6) 

Let us take C = C(e) as in Theorem 8.12, and so large that the addition 

of the term —2e~(©©)*/3 to the leftmost brackets of (8.5) is negligible, in the 
sense that the inequality 

S(t pete) 2) aes 2a. 24 (8.7) 

holds. Note that C depends on 7 through e. 

Suppose there exists a subgraph H of G(n,p) with ey > (1/2+7n) (3)p and 

containing no triangle. We will show that this event implies either a violation 

of (8.6) or a violation of the conclusion of Theorem 8.12, both events having 

probability converging to 0. Indeed, assuming they are not violated, let us 

count in two ways the ordered pairs (e,t) where e is an edge of H and t 

is a triangle of G(n,p) containing e. On the one hand, there are at least 

(1/2 +n — 2e~(©°)"/3) (2) p(1 — €)np” such pairs. On the other hand, viewing 

the edges of H as the blue edges and the remaining edges of G(n, p) as the red 

ones, we conclude by Theorem 8.12 that there are no more than 2(j +€)(3)p* 

such pairs. This yields a contradiction to (8.7). & 

Remark 8.15. Let us note that the dependence of C on the parameter 7 in 

Theorem 8.14 is genuine. In other words, it is not true that there exists an 

absolute constant C such that for every 7 > 0 a.a.s. every subgraph H of 
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G(n, Cn '/?) with at least (1/2 +) (})p edges contains a triangle. It follows 

that, for G = K3, the equation (8.2) holds if and only if p >> n7}/?. 
To find a counterexample, set V; = {1,2,...,n/2}, n even, and V2 = 

{n/2+1,...,n}, and fix C > 0. It can be proved routinely by the second 

moment method that, for sufficiently small 7 = n(C), a.a.s. there are at least 

3n(5)p edges with both endpoints in V; and with no common neighbor in V2. 
Moreover, it is well known that at least one half of these edges form a bipartite 

graph. The union of this bipartite graph and the bipartite graph spanned in 

G(n, p) between V, and V2 contains no triangle and has at least (1/2 +n)(3)p 

edges (Exercise!). 

8.3 THE SZEMEREDI REGULARITY LEMMA 

The Szemerédi Regularity Lemma states that, roughly speaking, for every 

large graph there exists a partition of its vertex set into a small number of 

almost equal subsets, such that in most of the bipartite graphs induced by 

pairs of these subsets, the edges are, in a way, “uniformly” distributed. The 

Lemma was introduced as an important step in the proof of Szemerédi’s cel- 

ebrated density theorem (Szemerédi 1975) and soon after the graph theorists 
realized that the presence of such “uniform”, or, as we will call them later, 

“regular” partitions could greatly simplify many existing proofs and lead to 

solutions of many open problems in graph theory. Nowadays the Szemerédi 
Regularity Lemma is one of the most powerful tools of modern graph theory 
(see, e.g., Bollobas (1998), Diestel (1996), Komlés and Simonovits (1996)), as 
well as of the theory of random structures. That is why we devote a whole 
section to various versions of this important (but purely deterministic) result. 

Regular pairs and partitions 

In order to state the Szemerédi Regularity Lemma in a mathematically rig- 
orous way we need a few definitions. Throughout, H is a graph with vertex 
set V(H) and edge set E(H) and 0 < s < 1 is a real number which will 
be called the scaling factor. The role played by s will soon become clear; 
here we only mention that the two most prominent cases are s = 1 and 
8 = p(H) = en/(*3'). For two disjoint subsets U,W C V(H) the (s; H)- 
density ds (U,W) is defined as 

ex (U, W) ds. (U,W) = ——__., lO) = SOT 
where e#(U,W) counts the edges of H joining U and W. For0<e< 1, we 
say that two disjoint subsets U,W C V(H) form an (s;H, €)-regular pair if 
for every pair of their subsets U' C U, W’ C W, such that |U'| > e|U| and 
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|W'| > e|W|, we have 

ldsxH(U’, W’) -* d, H(U, W)| =e, 

that is, the (s; H)-density of any pair of large subsets of the pair (U,W) does 

not deviate much from the (s; H)-density of (U,W). 

Furthermore, let I] = (Vo, Vi,..., Vx) be a partition of V(H). We say that 

this partition is (s; H,e,k)-regular if |V,\| = |V2| = --- = |Vel, |Vo] < evw, and 

for all except at most (5) choices of the indices 1 < i < j < k, the pairs 
(V;,V;) are (s;H,¢)-regular. Note the special status of Vo, which, for that 

reason, will be called the exceptional class of the (s; H,¢,k)-regular partition 

(Vo,Vi,---,Vk). We say that a partition (Wo,W,,...,Wz,) is a subpartition 
of a partition (Vo,Vi,...,V,) if for every 1 <i < k’ there exists 1 < jj < k 

such that W; C V3,. 
Clearly, every graph H on n vertices admits an (s; H,¢, 1)-regular parti- 

tion and an (s; H,¢,n)-regular partition. In applications, however, one rather 

needs an (s;H,e€,k)-regular partition for some k which is bounded from be- 

low and from above by some constants m and M. The Szemerédi Regularity 

Lemma provides the existence of such a partition, with M depending on é 

and m only. 

The classic case 

Let us start with the important case s = 1. It was considered by Szemerédi 

(1978) and later in most applications of his result. To simplify the notation, 

we drop the index s, when s = 1, using terms like pair density dy(U,W), 

(H,e,k)-regular partitions, and so forth. Then, the Szemerédi Regularity 

Lemma can be stated as follows. 

Lemma 8.16. For every € > 0 and a natural number m there exists M = 

M(e,m) such that every graph H on at least m vertices admits an (H,«€,k)- 

regular partition for some k, wherem<k <M. 

The idea of the proof. It is remarkable that the proof of so deep and insightful 

a result is based on a very simple idea. Let II, = (Vi,.--, Vk) be any partition 

of the set of vertices of a graph H, where |Vi| = --- = |Vk|. Associate with 

II, a real number ind II, called the index of II, setting 

hE Ok 

indy a S> Sdn (Vi). 
i=1 j=i+1 

Note that since the density of a pair of sets is not greater than one, the index 

of any partition is bounded by a half. 

Now, let T,, = (Wi,.--,Wex) be a subpartition of II, into k’ > k equal 

parts. Then, clearly, for every 1<i<j< k, we have 

k?2 

di (ViVi) = Ge >> dO dx(Wi,W,). 
W,.CV; Wi CV; 
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Thus, the Cauchy—Schwarz inequality gives 

(dur Vi, ¥))? < 2 SP aes, Wa)? (8.8) 
i WicV; W.CV; 

and, consequently, 

ind II, — indII, > 0, (8.9) 

where equality holds in (8.8) (and thus in (8.9)) if and only if all terms on the 
right-hand side of (8.8) are equal. 

Suppose that the partition II, is not (H,¢,k)-regular. Then a substantial 
fraction of the pairs (V;,V;) are not (H,¢)-regular, and one can pick a sub- 
partition II, so that for each such pair the densities on the right-hand side 
of (8.8) differ significantly from each other. The key observation in the proof 
of Lemma 8.16 is that these differences force the index to increase. More pre- 
cisely, the following holds. If k is large enough and I], is not (H,<, k)-regular, 
then there exists a subpartition II, of II, such that k’ is bounded from above 
by a function of k and the difference ind IIj,, — ind II, is bounded from below 
by some positive constant which depends only on < but not on k. 

From this statement the lemma follows almost immediately. We begin with 
any partition II,, of V(H) into ko > m equal parts. If I,, is not (H,¢, ko)- 
regular, a new partition I,, is constructed in such a way that its index is 
substantially larger than indII,,. We continue this way until an (H,<,k)- 
regular partition is found for some k. Since for every r > 1 the difference 
ind II, — ind II,,_, is bounded from below by a constant which depends only 
on € and, on the other hand, the index of every partition is bounded from 
above by a half, the procedure is guaranteed to end after at most a number 
of steps, which depends on ¢ and m only. 

Although it is quite easy to believe that this argument works, its detailed 
proof is rather tedious and must take care of several technicalities. For ex- 
ample, one needs to use a special form of the Cauchy-Schwarz inequality to 
control the growth of ind II, — ind I],,. Furthermore, in the description above 
we tacitly assumed that k always divides both k’ and n, whereas in the origi- 
nal proof of Lemma 8.16 this problem is solved by introducing the exceptional 
class which, for the sake of simplicity of presentation, does not appear in our 
outline. We omit the details, referring the reader to Szemerédi (1978), Diestel 
(1996), or Bollobds (1998). a 

The argument above can be easily modified to obtain stronger versions of 
Lemma 8.16. In particular, if H;,... ,H, are graphs on the same vertex set 
V, then one can mimic the proof with ind II, replaced by 

1 eB fs k 

maxel WE. = ba yen. ye (di, (Vi, V;))?, 

f=18=1 96-1 
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and find a partition which is (H;¢,¢,k)-regular simultaneously for each @ = 

1,...,r. Thus, we arrive at the following strengthening of Lemma 8.16. 

Lemma 8.17. For all ¢ > 0 and natural numbers m and r there exists 

M = M(e,m,r) such that the following holds: For all graphs H,,...,H, 

on the same set V of at least m vertices, there exists a partition of V which 

ts (He, €,k)-regular for some k, m<k < M, and every @ =1,2,...,r. a 

Sparse regularity lemma 

The Szemerédi Regularity Lemma has proved to be extremely useful in many 

combinatorial investigations. We must point out, however, two drawbacks of 

its applications. First, Szemerédi’s argument gives a very poor upper bound 

on the value of M(e,m,), which grows so quickly with « > 0 that it is al- 
most useless for any quantitative estimates. The other problem is that the 

Szemerédi Regularity Lemma, as stated above, is meaningful only when one 

deals with graphs of large density. For a graph H with n vertices and, say, 

maximum degree at most ,/n, each partition of V(H) into k equal parts is 

(H, ¢, k)-regular, provided n is large enough. This is because the density of the 

bipartite subgraph induced by any two sets of size Q(n) is O(1//n) = o(1) 

and, therefore, does not measure effectively the distribution of the edges. 

Nonetheless, as noticed independently by Kohayakawa (1997) and Rédl (per- 

sonal communication), a simple generalization of the Szemerédi Regularity 

Lemma will efficiently work for sparse graphs too. The key observation is 

that the proof of Lemma 8.16 still works for the scaled densities ds q in- 

stead of the ordinary densities dy, provided there exists a constant b such 

that d,.7(X,Y) < 6 for all pairs of large sets X,Y. The constant 6 is an 

upper bound for an appropriately scaled index function and guarantees that 

the procedure of taking subpartitions terminates after a bounded number of 

steps. 
More precisely, for b > 1 and f > O, call a graph H (s; b, B)-bounded if 

for every pair of disjoint subsets U, W C V(H) with |U|,|W| > Bux we have 

d,(U,W) <b. Then, a “scaled” version of the Szemerédi Regularity Lemma 

can be stated as follows. 

Lemma 8.18. For alle >0, b> 1 and natural numbers m and r there exist 

B = B(e,b,m,r) > 0 and M = M(e,b,m,r) such that the following holds: 

For every choice of scaling factors s1,...,Sr, and (s¢;b, 3)-bounded graphs 

Hy, £ = 1,...,7r, on the same set V of at least m vertices, there exists a 

partition of V which is (se; He,€,k)-regular for some k, m < SER TE 

SS GE Ae OP PS 8 

Besides the classic case of s¢ = 1, the other instance of Lemma 8.18 which 

will be used in the forthcoming sections is the case in which s¢ = Hp 

ex, /(°%). To simplify the notation in the latter case, we say that a graph H 

is (b, 3)-bounded if it is (o(H); 6, 6)-bounded, a pair is sparsely (H,€)-regular 
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if it is (p(H); H,¢)-regular, and a partition is sparsely (H,e,k)-regular if it is 

(p(H); H,¢,k)-regular. Below we state this special version of Lemma 8.18. 

Lemma 8.19. For alle > 0, b> 1 and natural numbers m and r there exist 

B = Ble, b,m,r) > 0 and M = M(e,b,m,r) such that the following holds: For 

every chorce of (b, 3)-bounded graphs H,,...,H, on the same set V of at least 

m vertices, there exists a partition of V which is sparsely (H,,€, k)-regular for 

some kim. ki <M. ond every (= 12) ast, ES 

8.4 A PARTITION THEOREM FOR RANDOM GRAPHS 

This section is entirely devoted to presenting an outline of the proof of the 
l-statement of Theorem 8.1. For more details, see Réd] and Ruciriski (1995). 

Uniformly dense graphs 

For 0 < d < 1 and € > 0, we say that a graph F is (€,d)-dense, if for 
every V C V(F) with |V| > €up the induced subgraph F[V] has density at 
least d. Note that it suffices to demand this for subsets V with |V| = [ fur |; 
the property then holds for larger subsets by averaging over all their subsets 
with exactly [vp] elements. Observe further that the complete graph K,, is 
(€,d)-dense for all choices of £ > 0 and 0 < d <1. It can be easily verified 
(Exercise!) that the following is true (Rédl and Ruciriski 1995, Lemma 2). 

Proposition 8.20. For each 0 < d <1 and each graph G, there exists € > 
0 such that every (€,d)-dense graph on n vertices contains O(n“) copies 
of G. Be 

Thus, in a sense, (€,d)-dense graphs imitate complete graphs. 
The heart of the proof of Theorem 8.1 is the following deterministic lemma 

which utilizes the Szemerédi Regularity Lemma in a “canonical” way. 

Lemma 8.21. For all 0 < &' < 1 andO0 < d < 1, and for every natural 
number r there exist € > 0, v > 0, and no, such that if F is a (€,d)-dense 
graph onn > no vertices and E(F) = E,U---UE,, then there exist fo € [r] and 
V CV(F), |V| > un, for which the subgraph of F consisting of the vertices 
of V and of the edges of Ex, M F[V] is (€',d')-dense, where d’ = d/20r. 

Remark 8.22. This lemma, together with Proposition 8.20 and inequality 
(2.6), implies Theorem 8.1 in the case in which p is a constant. Indeed, 
by Chernoff’s inequality G(n,p) is then a.a.s. (€,p/2)-dense for any fixed ¢ 
(Exercise!). Thus, by Lemma 8.21, for every r-coloring at least one of the 
color classes is (£’, p/40r)-dense on a large subset V of [n], and contains, by 
Proposition 8.20, many (monochromatic) copies of G. We will see later in this 
section how Lemma 8.21 can be applied in the Sparse range of p. 
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Proof. Set 

Z 2.05 

abe oa 

WO ls roe ap (8.11) 
——"/” 

where R(q,t,...,t) is the Ramsey number (see, e.g., Graham, Rothschild and 
SS 

Tr 

Spencer (1992) for definition). Furthermore, set 

. le = 1 
e=min} oh, (8.12) 

win(k =e) Ste) _ 20M 
eval a ‘ Ve gaa and Nae rearee (8.13) 

where M = M(ce,2m,r) is the constant provided by the Szemerédi Regularity 

Lemma 8.17. 
Let F be a (£,d)-dense graph on n > no vertices, and let E(F) = E,U---U 

E, be a partition of the edge set of F. Denote by Hy = F[E] the (spanning) 

subgraph of F consisting of the edges of Ey, @ = 1,...,r. By Lemma 8.17 

there exists a partition V(F) = Co UC, U---U Ck, 2m < k < M, which is 

(H:,€, k)-regular for each = 1,...,r. 

As, by (8.12), at least (1 — re)(5) >(1l- a) ee pairs (C;,C;) are (He, €)- 

regular for each £ = 1,2,...,7, it follows from Turan’s theorem that there are 

m sets, Ci,...-,Cm say, such that all es) pairs of them are (H¢,€)-regular for 

each £. 

Consider the (r + 1)-coloring of [m]?, [m]? = Do UD, U---UD,, where 

d 
te9) € Do if d(C;,C;) <a 3 (8.14) 

and, for @ € [r], 

d 
mM E€ Dy if du, (C;,C;) 2 nee 

(Note that a pair may belong to more than one set D;.) By (8.11), there exists 

either a subset K C [ml], |K| =, [K]? C Do, or a subset L C [m], |L| = t, 

[L]? C Dz, for some ¢ € [r]. The first option is impossible, since then, putting 

z = |C;|, the set C = Ujex Cj would have, by (8.14) and (8.10), density 

e(FIC)) _ Gaz ta) 4,1 
AAG ok Nae mn a AC al 
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This contradicts the fact that F is (€,d)-dense, because, by (8.13), |C| = gz > 

goon = €n. Thus, for some fp € [r], there are ¢ sets, Cy,...,Cz say, which 

satisfy 
d ras 

Cig) 2 BF for all {i,j} € [t]?. 

We will prove that the graph H = H,,[V], where V = Ci, U---UC;, is 

(€’, s4-)-dense. (Note that, by (8.13) again, |V| = tx > phoee = Vilas 
required.) 

Consider V' C V of size 

[V"| = [eV] = [€'ta]. 

vis |(SP +1) es). 

Since by (8.13) we have x > Goe)n > 20 and also €’ < 1, the right-hand side 

above can further be bounded from above by 3.12, leading to 

Then, by (8.10), 

|V'| < 3.12. (8.15) 

Set 2; =|V’NC;|,i = 1,...,t. Then, owing to (8.15), we infer that 

Se i < 3(3) F Oe < 3.01 ea (8.16) 
jail | 

Let V' = V" UV" be a partition, where V” = Usecece Vil Cragtlearly, 
|V"| < tex, and thus, by (8.10) and (8.12), E 

MOA (2 eer (8.17) 

Let us bound from below the number of edges in the graph H [V'"]. By the 
definition of V’" and by the choice of C),...,C; 

b) 

(HV) > (+ % :) ae 

where the double summation is taken over all pairs 2,j, 1 <i < 7 <t, such 
that 2; > ex and x; > ex. But, by (8.16) and (8.17), 

Dbaa= (%")-O (3) 2G) -s0 (5) >os0(* 37), 
where the single summations are taken over all i satisfying 7; > ex. Hence 

e(H[V'"]) > 0.99 (= = .) & i 3) (8.18) 
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Finally, by (8.15), (8.18) and (8.12), 

ote|v'y = CVD , e(HIV'"D) . 0.9965, ~ ©) (72') 
my = vy 2 GR) 

0.99 d % 1 d a d 

Ota or Ir mal Rae's: 

proving that the graph H is (€’, 55)-dense a 

Sketch of proof of the 1-statement of Theorem 8.1 

The proof proceeds by double induction on the number of colors r and the 

number of edges eg. As often happens with induction, it helps to gener- 

alize the statement a little. Our strengthening touches all three aspects of 
Theorem 8.1: the random graph space, the property in question, and the 

probability with which this property is held by the random graph. 

(1) We replace the random graph G(n,p) with the reliability network I, 
where I is a (€,d)-dense graph on n vertices. 

(2) We replace the partition property [, — (G), with the property that 
every r-coloring results in 2Q(n*¢ p*¢) monochromatic copies of G. Moreover, 
only copies contained in complete subgraphs of [ count. We call such copies 

nested. Note that when [T = K,, every copy of G is nested. 

(3) We replace the convergence of probability to 1 with the condition that 

the probability of the opposite event is 2~%(""). (In what follows we will 
often use the phrase high probability, meaning precisely this.) 

More formally, we prove the following general result which implies the 1- 

statement of Theorem 8.1. 

Theorem 8.23. For every graph G with at least one edge, for all integers 

r > 1 and all real numbers 0 < d <1, there exist positive numbers €, a, b, C, 

and no such that if 

(i) n ce no; 

(ii) I is a (€,d)-dense graph with n vertices, and 

(iii) p> Cn-V/m@), 

then, with probability at least 1 — g-bn’p every r-coloring of the edges of Vp 

results in at least an’@ p°¢ monochromatic, nested copies of G. 

Sketch of proof. For both initial cases, eg = 1, r arbitrary, and r = 1, eg 

arbitrary, every copy of G is automatically monochromatic, and all we need 

in order to validate Theorem 8.23 is to show that I’, contains sufficiently many 

nested copies of G with sufficiently high probability. Proposition 8.20 shows 

that I contains O(n?) complete subgraphs Ky,, and a standard application 

of Theorem 2.14 gives the required result (Exercise!). 
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G J} J J 

Fig. 8.2 Graphs G, J, and JJ for G = K3. 

Assume now that eg > 2 and r > 2, and that Theorem 8.23 is true for 

all instances with either fewer than r colors or fewer than eg edges. Our 
strategy is to apply the two-round exposure technique (cf. Section 1.1), that 

is, to represent I’, as a union of two independent random graphs T,, and T,,, 
where pi + p2 — pipe = p, and p, and pz are suitably chosen. It is planned that 

p2 will be sufficiently bigger than p;, but both of the same order of magnitude. 

Let J = J(G,e) be the graph obtained from G by the removal of one fixed 
edge e, and let JJ = JJ(G,e) be obtained from the union of two copies of G 
sharing e by the removal of e (see Figure 8.2, where G = K3, J = P> and 
JJ = C4). By the induction assumption, with high probability, there are many 
monochromatic, nested copies of J in every r-coloring of I',,. Thus, there are 
many edges of P, which, when added to a monochromatic, nested copy of J, 
form a copy of G, provided there are not too many copies of JJ. It is here 
where we use Lemmas 2.51 and 2.52. Indeed, we are satisfied with an upper 
bound on the number of copies of JJ on a subset of edges of [p,. By a standard 
application of the Cauchy—Schwarz inequality, there are O(n?) edges in I such 
that each of them “closes” as many as 2(n”¢~?p*¢-!) monochromatic, nested 
copies of J. Most of these edges are not in T',. Let us denote the subgraph 
of T consisting of all such edges by F, and associate with each edge u of F 
the color most frequently appearing in the monochromatic copies of J in T), 
which, together with u, form a copy of G. The colors associated in the above 
way with the edges of F vary from edge to edge, which naturally imposes a 
partition E(F) = E, U---UE,. Write Hy, for the spanning subgraph of F 
with the edge set E;,i=1,...,r. 

In the second round we would like to apply the induction assumption with 
r — 1 colors to one of the graphs Hy, @ = 1,2,...,r. For this, however, we 
have to show that one of these graphs is (é’, d’ )-dense for some €’ > 0 and 
d’ > 0. It turns out that it is easier to show first that with sufficiently high 
probability the graph F is (£),do)-dense for some £) and do, and then apply 
Lemma 8.21. Indeed, the proof that F is (&, do )-dense is similar to showing 
that F’ has many edges, which we have just described. Then, by Lemma 8.21, 
there is a color fp € [r] and a large subset V C V(F) such that the graph 
H = H,,[V] satisfies the assumptions of Theorem 8.23. 

We are now justified in applying the induction assumption with r—1 colors 
to H. Thus, provided that color &) has not been used for the random graph 
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H,,, we might conclude that the second round produces with high probability 

plenty of monochromatic, nested copies of G in Hp,. On the other hand, every 

time color fp is used on an edge of H,,, it produces Q(n’¢~?p5°~*) nested 
copies of G of color @). Hence, if color ) is used for H,, at least Q(n*p2) 

times, we are done. It remains to clear the case in which the selected color 

is used only a few times on the edges of Hp,. As all of the above holds 

also for (1 — 5)p2 instead of pz, this last case follows from Lemma 2.52 alone 

(Exercise!). 
No matter how the adversary colored the edges emerging from the first 

round, the outcome of the second round should be successful. Therefore, 

the probability of failure in the second round must be much smaller than 

the reciprocal of the number of all possible r-colorings h of the edges of Tp,. 

The number of edges of I’,, is, by Chernoff’s inequality, with high probability, 

fewer than n”p;, and thus the number of such colorings does not exceed pe Pr, 

The probability of failure in the second round is forced to be sufficiently small 

by choosing p2 sufficiently bigger than py. 

Let us now organize the whole proof a little bit more rigorously. Let A be 

the event that there is an r-coloring h : E(I'p) — [r] with fewer than an”? p°¢ 

monochromatic, nested copies of G. 

For a copy J’ of J inT, let cl(J’) be the set of all edges u € I such that 

J' U {u} is isomorphic to G. Given an r-coloring h : E(f',) — [r], define the 

edge sets 

Ey(h) = {u € E(T)\ E(Up) : {J' C Pp, su € el(J’) and ACJ’) = e}] > 2}, 

where z = cn’@—2p¢—! for some c, and set Hy(h) = (V(I), Ee(h)), & = 

iL aes 

Let B be the event that for every h : E(I'p,) — [r] there exist an f € [r] 

and aset V C V(L) =n], |V| > vn, such that the graph He, (h)[V] is (6 d))- 

dense and that |E(I'p,)| < n?p1. Conditioning on Tp, and fixing h, let An be 

the event that there is an extension of h, h: E(I'p) — [r], that is, h = h when 

restricted to E(I'p,), such that there are fewer than an°¢ p°¢ monochromatic, 

nested copies of G. Then, 

P(A) < P(=B) + 50 P(A|Tp, = K)P(Pp, = *) 
KeEB 

and 

P(A|Tp, = K)=P (U- si =k) <r”?! P(Ano [Tp = K); 
h 

where the summation is taken over all r-colorings h of the edges of Pp, = K 

and ho maximizes the conditional probability. 

We have just outlined the proofs of the inequalities 

PIB) > ase 



222 EXTREMAL AND RAMSEY PROPERTIES 

and J 
P(Ap, | Le 3s K) < g-Q(n P2) 

the latter for every K € B and for every r-coloring h of the edges of K. These 
two facts imply that P(A) = 2-°(""?) for some small a. a 

8.5 TRIANGLES: AN APPROACH WITH PERSPECTIVE 

In Section 8.2 we used Goodman’s elegant idea to verify Conjecture 8.11 
for triangles and showed that the 1-statement of Theorem 8.1 is valid for 
G = K3 and r = 2. Now we present an entirely new approach based on 
the sparse version of the Szemerédi Regularity Lemma (Lemma 8.19) anda 
better-than-exponential estimate of the probability that a sufficiently “dense” 
and “regular” random graph contains a copy of a given graph G. So far, the 
method verifies Conjecture 8.11 and yields Theorem 8.1 (for an arbitrary 
number r of colors) only in a few small cases of G. But we hope that the 
fundamental Conjecture 8.35 stated below will soon be proved, paving the 
road to a complete solution of Conjecture 8.11. In this section we will restrict 
ourselves to the simplest case G = K3. 

We switch now to the uniform random graph G(n, M). It has the advantage 
over the binomial model G(n, p) that the relative density p(G(n, M)) is fixed 
and equal to M/(3). We set 

pw = (G(n,M)) =a / (3), 
for convenience. Thus, in this section we will prove the following result. 

Theorem 8.24. For every n > 0 there exists C = C(n) > 0 such that if 
M > Cn? then a.a.s. every subgraph of G(n,M) with at least (1/2 +7n)M 
edges contains a triangle. 

By Proposition 1.12, Theorem 8.24 implies Theorem 8.14. 

The idea of proof 

The proof we give contains probabilistic as well as deterministic ingredients. 
To some extent, the general framework is analogous to that of the proof of 
Theorem 8.23. The notion of a (€, d)-dense graph is replaced by €-uniformity, 
and Lemma 8.26 below has the flavor of Lemma 8.21. Both are consequences 
of the Szemerédi Regularity Lemma. However, in Section 8.4, owing to the 
chosen method of proof, we were able to use its dense version, Lemma 8.17, 
despite the fact that Theorem 8.23 deals with sparse random graphs. Here 
we do not have this option. We will directly apply the sparse version of the 
Szemerédi Regularity Lemma in the form of Lemma 8.19. 
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The straightforward approach, so successful in the vertex-coloring case (see 

Section 7.6), would be to show that the expected number of the triangle-free 

subgraphs of G(n, M) with M’ = (1/2 + n)M edges tends to 0. There are, 

roughly, 2” subgraphs of G(n, M) with M’ edges and each such subgraph 

can be viewed as a random graph G(n, M') on its own (formally, turn to the 

random graph process {G(n, M)}aq and consider its subprocess of M' specified 

steps). Unfortunately, Theorem 3.11 implies that if, say, n3/? < M' < in’, 
then P(G(n, M’) D K3) = e~°(™), which may not be sufficient. However, the 
lower bound on P(G(n, M) 2 K3) was obtained via a bound on the probability 

that G(n, M) is bipartite. The main idea of this proof is that G(n, M) is so 

far from being bipartite that each subgraph with M' edges contains a highly 

regular tripartite subgraph which is then extremely likely to contain a triangle. 

Before making the above argument rigorous, we must decide how to define 

the tripartite structure in precise, mathematical terms. For our purposes, 

given n,p,€ > 0, an (n,p,¢)-triplet is a tripartite graph T with a specified 

tripartition V(T) = Vj U V2 U V3 such that |Vi| = |V2| = |V3| > n, each of the 
pairs (Vi, V2), (V2, V3) and (Vi, V3) is sparsely (T,¢)-regular and the number 

of edges in each of the three bipartite graphs induced by these pairs satisfies 

If, moreover, er(Vi, V;) = [p|Vi||V;|] for each pair, then the triplet is said to 

be ezact. 

Hence, in order to prove Theorem 8.24, and thus Conjecture 8.11 for tri- 

angles, we will show first that a.a.s. every subgraph of G(n, M) with sub- 

stantially more than half of its edges contains a large triplet (Corollary 8.27), 

and then that a.a.s. every such triplet contains a triangle (Lemma 8.32). 

By conditioning on the number of edges in the triplet, we will reduce our 

considerations to tripartite random graphs with a fixed number of edges, and 

show that, if highly regular, they contain no triangle with probability (o(1))” 

(Lemma 8.30). 

Similarly one can conduct the proof of the 1-statement of Theorem 8.1 for 

G = Kz and an arbitrary number r of colors. We state without proof an 

appropriate fact as part (ii) of Lemma 8.26. 

Uniformly sparse graphs 

We say that a graph F on n vertices is €-uniform if for every pair of disjoint 

subsets X and Y of vertices of F’ such that |X|,|Y| > &n, its (p(F); F)-density 

is close to 1, or, more precisely, 

er(X,Y) Ea hu LE pon Waa S 
APIXIY] «tS 1 == fe do(r),F(X,Y) = 
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and the relative density of the subgraph induced by X in F is also close to 1, 
thats: | ix) | ) 

as p(FX]) = e(FX)) Tee 
eee p(F) p(F)('3!) : 3 

where p(F) = er/(5). 

Lemma 8.25. If M/n — oo and € > 0, then the random graph G(n, M) is 
a.a.s. €-uniform. | 

The above lemma follows (Exercise!) by an easy application of Chernoff’s 
bound for the hypergeometric distribution (see Theorem 2.10 and the inequal- 
ity (2.9)). 

Next we show, by a nontrivial application of the sparse version of the 
Szemerédi Regularity Lemma, that every sufficiently dense subgraph of a €- 
uniform graph contains a large triplet. 

Lemma 8.26. 

(i) For every 0 < n < 1/2 ande > O there exist E = &(n,€) > 0 and no 
such that every spanning subgraph H of a €-uniform graph F onn > No 
vertices satisfying ey > (1/2+n)er contains a (€n,0.1np(F),€)-triplet. 

(ii) For every natural number r and € > 0 there erist E > 0 and no such 
that for every partition E(F) = E,U---UE, of the edges of a €-uniform 
graph F with n > no vertices, there exists an ly € [r] such that the graph 
He, = F[E¢,] contains a (En, p(F)/2r,e)-triplet. 

Proof. We will only prove part (i). Before plunging into this detailed and 
slightly tedious proof we strongly encourage the reader to formulate and prove 
the special case of part (i) when F = K, (Exercise!). 

For the general case, we may assume € < 1. Set ¢! = en/15 and m = [20/n] 
and apply Lemma 8.19 with e’, b = 2 andr = 1. Let € = min(@,1/2M,.e’), 
where @ = B(e’,2,m,1) and M = M (e',2,m,1) are as in Lemma 8.19. Let F 
be a €-uniform graph on n vertices and let H be a spanning subgraph of F 
satisfying ey > (1/2+n)er. Since € is smaller than n, the graph H is (2, €)- 
bounded (Exercise!) and thus, by Lemma 8.19, there is a sparsely (H, ’, k)- 
regular partition II = (Vo,W,.. -, Ve) of vertices of H with m < k <nlf2e& 
Note that |V;| > 4£n > €n for i> 1. 

Call a pair (Vi,V;), 1 <i<j<k, good if it is sparsely (H, ¢’)-regular and 
satisfies 

en (Vi, Vj) > 0.Inp(F)|ValIVj|. (8.19) 
Our goal is to show that the auxiliary graph, the vertices of which are the 
sets V;,...,V, and the edges represent good pairs, has more than k? /4 edges. 
Then, by Mantel’s theorem, there is a triangle in this graph. This triangle 
consists of three sets Vj, , Viz, Vig, which induce a tripartite subgraph T of H : 
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with every pair being sparsely (H,¢’)-regular and satisfying (8.19). Since, by 
(8.19), 

A(T) > 03m F)MP/(OD") > Eno) > Zenolt), 
15 15 

these pairs are also sparsely (T',¢)-regular, and it follows that T is a 
(En, 0.1np(F), €)-triplet. 

To obtain the required lower bound on the number of good pairs, we will 

first bound from above the total number of edges of H which are not within 

the good pairs. It will turn out that the majority of the edges of H is indeed 

between the good pairs and, as there cannot be too many edges between any 

fixed pair, the lower bound on the number of good pairs will follow. 

The edges not within the good pairs can be classified into four groups: 

(a) Edges with at least one endpoint in the exceptional class Vo. For each 

i =1,...,k, let W; be a subset of vertices such that W; D Vo, Win Vi = 0 
and |W;| = [e’n] > én. Then, 

W. 
H{Vol) < e(F(Mi]) < (+8) ( SY oF) < 00ier 

and, similarly, for each i = 1,...,k, 

eH(Vo, Vi) < er(Wi, Vi) < (1+ )|Wil|Vilo(F) < 0.20ner/k, 

yielding a total upper bound of 0.21ner on the number of these edges. 

(b) Edges with both endpoints in the same class V;, for anyi = 1,...,k. The 

number of edges of H contained in the set V; is 

e(H[V;]) < e(F[Vj]) < (1+) ( in o(F) < (1+ &er/mk < 0.06ner/k. 

Hence the total number of edges in this category is fewer than 0.06ner. 

(c) Edges between the pairs (V;,V;), 1 < i<j <k, which are not sparsely 

(H,e')-regular. Note that, since F is €-uniform, for all 1 <2,j7 <k 

VillV 
(2) 

Thus, the number of edges in this category is bounded from above by 

‘() op VillVsl 
(3) 

(d) Edges between the pairs (V;,V;) which violate (8.19). There are no more 

than 

(5) oner VAlIV51 < O.lner 
2 aE 

en(Vi, Vj) < (1+ Jer 

< 0.07ner. 
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such edges. 

Consequently, at least 

ey —0.44ner > (1+ ner /2 

edges of H join good pairs (Vj, V;). ' 

On the other hand, we have just noticed in point (c) above that no bipartite 

graph spanned in H by a pair (V;,V;), 1 <i <j <k, has more than 

[Vil]V5 
(2) 

edges. Thus, among the pairs (V;,V;), 1 < i,7 < k, there must be more than 

(l-ajer/2 >t 
ee 
2(1+ n)er/k? 4 

(1+ f)er < (1+ )2ep/k? 

good ones, and the assertion (i) follows. 
The second part can be proved in an analogous way, but, instead of Mantel’s 

theorem, one must use Turdn’s and Ramsey’s theorems (in this order) as in 
the proof of Lemma 8.21. Since this result is needed only for an alternative 
proof of Theorem 8.1 in the very special case G = K3, we leave the proof to 
the reader (Exercise!). s 

Lemma 8.26(i) together with Lemma 8.25 have the following consequence. 

Corollary 8.27. For every0 <n < 1/2 ande > 0 there exists — €(77, 2) > 0 
such that if M/n — oo, then a.a.s. every subgraph H of G(n, M) with e(H) > 
(1/2+)M contains a (€n,0.1npy,€)-triplet. Lad 

The conclusions of Lemma 8.26 and Corollary 8.27 may be strengthened 
to the existence of an exact triplet by the following simple fact, the proof of 
which is left to the reader. (Exercise! — Use Theorem 2.10.) 

Lemma 8.28. For every « > 0 there exists C = C(e) > 0 such that if B is a 
bipartite graph with bipartition (Vi, V2), [Vi] = |Ve| =n, with L edges, and the 
pair (V,,V2) is sparsely (B,e)-regular, then for every K withCn<K<L 
there is a subgraph B' of B with K edges and such that (Vi, V2) is sparsely 
(B’, 2€)-regular. | 

Corollary 8.29. Every (n, p,¢)-triplet with pn > Cle) contains an exact 
(n, p, 2€)-triplet. & 

Tripartite random graphs 

In order to state the main probabilistic ingredient of our argument we need 
to introduce one more model of a random graph. Let G3(n, M) be a graph 
chosen uniformly at random from the family of all tripartite graphs F with 
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vertex set V = Vj UV2 UV3, where |Vi| = |V2| = |V3| = n, such that for each 
1<i<j <3, er(Vi,V;) = M. For this random graph, although “genuinely” 
tripartite, the probability of containing no triangls does not drop down to 
(o(1))™. Indeed, splitting V) = V’ UV", We eV? eee 20th =< 7? 4: 

then with probability at least 16~™ there is no edge between V2 and V’ and 

no edge between V3 and V” (Exercise!). Hence, with at least this probability, 

there is no triangle in G3(n, M). To make the appearence of triangles more 

likely, we condition on the event that each of the three bipartite subgraphs of 

G3(n, M) has a highly regular structure, that is, that G3(n, M) is a triplet. 

Lemma 8.30. For every 0 < € < 0.01 and natural numbers n and M > 
(8/e)/2n3/2 | 

P(G3(n, M) is a triangle-free (n, M/n?, €)-triplet) pes (8.20) 

We deduce Lemma 8.30 from the following result on random subsets of a 

regular pair of sets. 

Lemma 8.31. Let0 <¢<0.01,t >1, M > 4n?/(et) and let H be a bipartite 

graph with bipartition (V',V"’) such that |V'| = |V"| =n, e(H) = M and the 
pair (V',V") is sparsely (H,e€)-regular. Furthermore, let S{ and S;' be two 
random sets of size t picked independently and uniformly from all t-element 

subsets of, respectively, V' and V". Then, the probability that there 1s no edge 

between Si and S!' is smaller than e*/4. 

Proof. We may assume that t < en, since otherwise the assumption that 

(V',V”) is sparsely (H,e)-regular implies that there is always an edge be- 

tween S; and Si’. We will show that with probability at least 1 — e'/3 the 

neighborhood of the set S{ contains all but at most en vertices of V’”. This 
is all we need, as the probability that Sj’ is contained in a fixed set of size at 

most en is not greater than 

en Nt 

t iy) 

P(en(Si, Si’) =0) <e/B +et <etl*. 
and thus 

Let us generate S/ sequentially, picking its elements s1,..., 5; one by one, 

uniformly at random, from all currently available vertices of Via For = 

1,...,t, let S; = {s1,...,8:} and let W; denote the set of all vertices of yr 

which are not adjacent to any vertices of S;. Set for convenience Wo = V". 

Furthermore, let B;, i = 0,...,t, be the set of all vertices of V'\ S; with fewer 

than p(H)|W,| neighbors in W;, where, recall, p(H) = p = M/(73). Note that 

dy,u(V',V") = (2n—1)/n > 1.5 for n > 2. 

Suppose that |W;| > en, and thus |W;| > en for each 0 <i < t. Then, for 

each 0 <i < t, |Bi| < en, since otherwise the pair (B;,W;) with its density 



228 EXTREMAL AND RAMSEY PROPERTIES 

dp,H(B;,W,) smaller than 1 would yield a contradiction with the assumption 

that the pair (V’,V”’) is sparsely (H, ¢)-regular. Hence, for each 0 <i < ¢—1, 

[Bil eek 
scien as Miya st 

t P(sit1 € Bi) = —— oes 

The supposition that |W;| > en has also another consequence. Let us 

consider how many times the event {s;+1 € B;} holds. Each time we choose 

Si+1 Outside B;, the size of W; is decreased by at least p(H)|W;| > pen, 

that is, |Wi41| — |Wi| < —p(H)|W:| < —pen. This means, however, that the 

event {|W;| > en} implies that {s;4; € B;} holds at least t/2 times, since 
otherwise |W;| — |Wo| < —5pen < -—etM/4n < —n, yielding a contradiction. 

The probability that {s;4; € B;} holds for at least t/2 indices i = 1,...,t can 

be bounded from above by 

(am (1.02¢)!¢/21 < (4.08€)*/? < et/3, 

because € < (4.08)~3. Consequently, P(|W;| > en) < et/8. a 

Proof of Lemma 8.30. For given e > 0, n and M let A;,; be the event that the 

pair (Vj, V;) is sparsely (G3 (n, M),¢)-regular and let A = A12MAi3N Ad3. 
Further, let K be the event that G3;(n,M) Z K3. Hence the event that 
G3(n, M) is a triangle-free (n, M/n?,€)-triplet is KN A. 

Let D denote the event that at least n/2 vertices of V; each have more than 
t = [M/2n] neighbors in both V2 and V3. It can be easily verified (Exercise!) 
that the conjunction A;,2Aj;,3 implies D with plenty of room to spare. Thus 

P(KN A) < POKNDN Ag). 

Denote by N;(v) the set of all neighbors of a vertex v € V; which belong to 
Vi, t = 2,3, and consider the random vectors D; = (|Ni(v)| : v € Vi), i = 2,3. 
Let A be the set of all pairs of integer vectors of length n and sum M, such 
that at some [n/2] coordinates the entries of both vectors are greater than 
t. Furthermore, let G3(n, M)[V2, V3] be the subgraph of G3 (n, M) induced by 
V2 and V3, and let H be the set of all bipartite graphs with vertex set (V2, V3) 
which satisfy property A2,3. Then, by the law of total probability, 

P(KNDN Az 3) 

= DS) YE PK] {Gs (n, M)[Va, Va] = H} N {Dz = 89} {Dy = s3}) 
(s2,s3)€A HEH 

x P({D2 = So} MN {D3 — s3}) P(G3 (n, M)|V2, V3] = HY: 

Clearly, to complete the proof it is enough to show that 

P(K | {Gs (n, M)[V2, V3] = H}N {D2 =s2}/N {D3 = s3}) < @M/16 
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for every triple s2,s3, H. Fix one such triple. For a vertex v € Vi, let M, be 
the event that e77(N2(v), N3(v)) = 0. The event K implies Auev, Mv, which, 
in turn, implies Nev, M,, where V, is the subset of those vertices of V; for 
which s2(v), s3(v) > t. 

Now observe that with all the degrees fixed the choices of neighborhoods 
N2(v) and N3(v) are independent of each other for all v € Vj. Moreover, for 

any ty, te Zz t, 

P(en(S;,,54,) = 0) < P(e (St, S;') = 0), 

where S;, and S/! are random sets defined as in Lemma 8.31 but of sizes t; 
and te, respectively. Hence, by Lemma 8.31, 

P(K | {G3 (n, M)[V2, V3] = H} N {D2 = So} M {Ds = s3}) 

<P(() M, | {Gs (n, M)[V2, Vs] = H} N {D2 = s2} M {D3 = s3}) 
vEeN 

= TI Plen(S'.), Sty) = 0) < Plen (Si, 5%”) = 0)! < (et/4) 
vEV; 

fe —@M/16_ | 

n/2 

Proof of Theorem 8.24 

The last ingredient of the proof of Theorem 8.24 is the following lemma. 

Lemma 8.32. For every 7 > 0 there exists € = e(n) > 0 such that for every 

€ > 0 there exists C = C(n,€,€) < 00 such that if M > Cn?/?, then a.a.s. 
every (€n,npm,€)-triplet contained in G(n, M) contains a triangle. 

Proof. In view of Corollary 8.29, it suffices to prove that a.a.s. every exact 

(€n, npm,€)-triplet contained in G(n, M) contains a triangle. We will do this 

with € < 0.01 so small that 6 = 64e”/1® < 1, and with C = (nv/fe/2)*. 

For any given £ with £n < £ < n/3, let Vi, V2, V3 be three disjoint subsets of 

[n] such that |Vi| = |V2| = |V3| = 2. Let Gin, M)[Vi, V2, Vs] be the tripartite 

subgraph of G(n, M) induced by V;, V2 and V3 and let G3 (€; Ki2, K13, K23) be 

the random tripartite graph with vertex set V; UV2 UV3 and K;; edges between 

the sets V; and V;, 1<i<j <3. Furthermore, let M' = M'(é) = [npme’]. 

As a guideline for the forthcoming estimates, note that there are at most 

8” choices of V;, V2, V3. Observe also that for any property P the probability 

that G3 (é; Ki2, Ki3, K23) contains a spanning subgraph satisfying P which 

has M' edges across each of the three pairs (Vi, V2), (V,, V3) and (V2, V3), can 

be bounded from above by the probability that G3(¢,M’) € P multiplied by 

(37) (ere) (TP) (Exercise!). Due to our choice of C, M'/@/2 > noel’? > 

2nC(l/n)!/? = (8/e)!/?, and thus we may apply Lemma 8.30 to G3 (¢, M’). 
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Consequently, for any Ky2,K 13, K23 < 2px? and sufficiently large n, 

P(G(n, M)|V, , V2, V3] contains a triangle-free exact (¢, pm, €)-triplet 

| ee(n,my (Vi, Vj) = Kaj, 1S <j <3) 
= P(G3(n; Ki2, K13, K23) contains a triangle-free exact (£, pm, €)-triplet) 

K K K rag ; A 
< tae (man (jean) P(G;(é, M’) is a triangle-free (£, np, €)-triplet) 

< Qki2t+Kis+Ko3 -M'/16 < 96em > nom f° /16 a jem ee 

Moreover, owing to Theorem 2.10, the probability that the random tripartite 

graph Gin, M)[M, V2, V3] has more than 2p,,é? edges in any of the three 

bipartite graphs it forms, can be bounded from above by 3e~3?™£"/8. Hence, 
by the law of total probability, 

P(G(n, M)[Vi, V2, Vs] contains a triangle-free exact (£,npa,€)-triplet) 

< 5PM 4 36-80MO/8, 

Finally, summing over all @ > €n and subsets Vj, V2, V3, 

P(G(n, p) contains a triangle-free exact (€n,npm, €)-triplet) 

n/3 

2 (Coe a er aa < ng” (ome + Ba sealsy = 0(1). 
c—Eay 

| 

Proof of Theorem 8.24. The theorem now follows from Corollary 8.27 and 
Lemma 8.32, by first choosing € = €(0.17) as in Lemma 8.32, then € = &(n,€) 
as in Corollary 8.27, and finally C = C(0.1n, €, €) as in Lemma 8.32 again. Mf 

The argument we have just presented is more involved than the method 
based on Goodman’s idea described in Section 8.2, but it has two big advan- 
tages. First, it has more potential for generalizations; for example, one can 
easily observe that it can be modified to give a new proof of the 1-statement of 
Theorem 8.1 in the case G = K3 (Exercise!). More importantly, there is some 
hope that it can be generalized to show extremal results for graphs other than 
triangles ~ see the last subsection of this chapter. Second, the same method 
can give some information on the structure of maximal triangle-free subgraphs 
of a random graph. 

Triangle-free subgraphs 

A structural strengthening of Mantel’s result is the Stability Theorem (see, 
e.g., Bollobads (1978, p. 340) and Simonovits (1983)), which states not only 
that the Turan graph (i.e., the balanced complete bipartite graph) maximizes 
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the number of edges in a triangle-free graph, but that every triangle-free graph 
with the number of edges close to n*/4 looks very much like the Turan graph. 
A precise statement of the Stability Theorem goes as follows. 

Proposition 8.33. For every a > 0 there exists B > 0 such that every 

triangle-free graph with n vertices and at least n?/4— Bn? edges can be turned 

into the Turan graph by adding and/or deleting at most an? edges. | 

Now, let us assume that H is a triangle-free subgraph of G(n, M) with 

M > Cn3/? and ey > M/2, say. As in Lemma 8.26 we apply to H the sparse 

version of the Szemerédi Regularity Lemma (Lemma 8.19) for some small ¢ > 

0 and very large m. In such a way we obtain a partition I] = (Vo,Vi,.-.-, Ve), 

in which at least k?/4 — Bk? out of the (a) pairs of sets Vj,..., Vz are “good”, 
that is, are sparsely (H,¢)-regular and contain a fair number of edges. On 

the other hand in such a partition we a.a.s. do not find a triplet since, as we 

have shown in Lemma 8.32, a.a.s. each triplet which is contained in G(n, M) 

contains a triangle, provided the random graph is dense enough. Thus, the 

auxiliary “partition” graph, with vertices representing the sets Vj,..., Vx and 

edges between the good pairs, is triangle-free and, owing to Proposition 8.33, 

has a “bipartite-like” structure. This, in turn, implies that H itself must be 

bipartite-like as well. Although the technical details behind the above idea are 

not very appealing, we believe that the reader can convert it into a rigorous 

argument and show the following result (Advanced Exercise!). 

Theorem 8.34. For every constant n > 0 there exists C = C(n) such that 

for every M > Cn°/? a.a.s. each triangle-free subgraph of G(n,M) with at 

least M/2 edges can be made bipartite by omitting at most nM edges. re] 

Note also that a.a.s. the random graph G(n, M) contains no bipartite sub- 

graph with more than, say, M/2 + nlogn edges (Exercise!), and thus Theo- 

rem 8.34 immediately implies Theorem 8.24. 

It is, maybe, worthwhile to mention that the threshold function for the 

property that the largest triangle-free subgraph of a graph is bipartite has 

not yet been found. The remark made at the end of Section 8.2 suggests that 

the threshold function M for this property (if it exists) satisfies M > Cnel2: 

On the other hand, Babai, Simonovits and Spencer (1990) proved that for 

M ~ n?/4, the largest triangle-free subgraph of G(n, M) is a.a.s. bipartite. 

A stronger conjecture 

We conclude this section with some comments on Conjecture 8.11 for graphs G 

other than triangles. As we have already observed, unlike the proof from 

Section 8.2, the argument presented in this section can be easily used for any 

graph G, provided one could show a result similar to Lemma 8.30. More 

specifically, let G be any graph with vertex set {1,2,..., k} and Fg(n, M) be 

a graph chosen uniformly at random from all k-partite graphs F' with vertex 

set V, U--- UV; such that |Yi| =--- = |Vi| =n, and er(V;,V;) = M for all 
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1<i<j<-k for which {i,j} is an edge of G and e-(V;, V;) = 0 otherwise. 

Let A be the event that each pair (V;,V;) is sparsely (Fg(n, M),¢€)-regular 

and let G be the event that Fg(n, M) contains no copy of G. Then the main 

probabilistic problem concerning extremal properties of random graphs (and, 

we believe, one of the most important open questions in the theory of random 

graphs) is to verify the following conjecture of Kohayakawa, Luczak and Rédl 

(1997). 

Conjecture 8.35. For every graph G and every a > 0 there exist constants 

€ = €(G,a) and C = C(G,a) such that 

PICA) <a, 

provided M > Cn2-1/m(G)_ 

It is not hard to see that this conjecture would imply Theorem 8.1 and, 

coupled with the Erdés—Stone-Simonovits Theorem, would also settle in the 

affirmative Conjecture 8.11, even in its stronger, extremal version analogous 

to Theorem 8.34. Unfortunately, at this moment we are unable to prove it for 

general G. One can easily see that the statement holds trivially when G is a 
tree. Furedi (1994), following ideas of Kleitman and Winston (1982), proved 
that a slightly weaker statement holds for cycles of length four, even if we 
replace Fg(n,M) by G(n, M). Haxell, Kohayakawa and Luczak (1995) and 
Kohayakawa, Kreuter and Steger (1998) extended this result to every cycle of 
even length. A somewhat weaker version of Conjecture 8.35, which, however, 
is sufficient for showing Conjecture 8.11, was proved by Kreuter (1997) for odd 
cycles, and by Kohayakawa, Luczak and Rédl (1997) for G = Ky. It seems 
that with a substantial amount of work, methods from Haxell, Kohayakawa 
and Luczak (1995) and Kohayakawa, Luczak and Rédl (1997) can be used 
to prove Conjecture 8.35 for some other graphs, for example, the complete 
bipartite graphs K2,~. The two Kuratowski graphs, K33 and Ks, are the 
smallest instances of G for which Conjecture 8.35 remains open. 



Random Regular Graphs 

A regular graph is a graph with the same degree (i.e., number of edges) at 

each vertex; we say that the graph is r-regular if the common degree is r. 

Traditionally, a 3-regular graph is also called cubic. 

Note that an r-regular graph with n vertices has rn/2 edges; hence rn has 

to be even. Moreover, r < n — 1. Conversely, it is easily seen that there exist 

r-regular graphs with n vertices whenever rn is even and n > r > 0. 

We define the random r-regular graph G(n,r) to be a random graph with 

the uniform distribution over all r-regular graphs on n given vertices, say [n]. 
We assume, whenever talking about G(n,r), that rn is even and n > r. 

In this chapter we will study random r-regular graphs for a fixed r > 1, 

letting the number of vertices n tend to infinity. (If r is odd, we tacitly assume 

n to be even.) The reader may think of r as quite small, for example, 3 or 4. 

(Smaller values of r are too simple, and are exceptions to many of the results 

below.) We will here not consider the case r — oo (as some function of n), 
which is rather different. 

As we will see below, random r-regular graphs turn out to have properties 

quite different from the two basic models G(n, p) (the binomial random graph) 
and G(n, M) (the uniform random graph). For example, they are sparse but 

typically connected. 

This chapter is to a large extent based on Janson (1995b), which also 
contains similar results for random regular directed graphs; see further, for 

example, Cooper, Frieze and Molloy (1994). For further results, including sev- 

eral topics not covered here, see Frieze and Luczak (1992) (chromatic number) 

and the recent survey by Wormald (1999b). 

Z55 
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Example 9.1. The cases r = 0 and r = 1 are trivial. A 0-regular graph is an 

empty graph, and a 1-regular graph is the same as a perfect matching, that 

is, a set of disjoint edges covering all the vertices. The random graph G(n, 1) 
is thus obtained by randomly choosing one of the (n — 1)!! = n!/2"/?(n/2)! 

partitions of the vertex set into n/2 pairs. 

Example 9.2. Also the case r = 2 is rather simple. It is obvious that every 

component in a 2-regular graph is a cycle, so G(n, 2) is obtained by a random 

partition of the vertex set into cycles of length at least 3. This is similar 

to the cycle decomposition of a permutation, although there the cycles are 

oriented. Hence, the study of G(n, 2) becomes similar to the study of random 
permutations. 

The definition of random regular graphs that we have given is conceptually 

simple, but it is not so easy to use. (For example, there is no simple formula 

for the total number of r-regular graphs on n vertices, so we do not even know 

the probability of obtaining a given r-regular graph. An asymptotic formula 

was given by Bender and Canfield (1978); see Corollary 9.8 below.) Of course, 

we may obtain G(n,r) from G(n,p) (for any p € (0,1), but p = r/n seems 
natural) or G(n, M) (with M = rn/2) by conditioning on the graph being 
r-regular, but the probability of this event is exponentially small and this 
procedure is not very useful. 

Fortunately, there is an efficient way to generate G(n,r) that is useful both 
for theoretical studies as here and (for small r) for the practical problem of 
constructing random regular graphs in simulations. This is the configuration 
model, which will be described in the next section. 

Note also that there are other natural ways to generate regular graphs 
at random. For example, we may construct r independent random perfect 
matchings of the n given vertices (n even) and take the union of them, con- 
ditioning on the event that there are no multiple edges. Another possibility 
is to take |r/2] independent Hamilton cycles on the vertices, together with a 
perfect matching in the case in which r is odd. 

A different. approach is to construct the graph sequentially by adding edges 
one by one, at each step randomly (uniformly) choosing between all remaining 
edges that do not increase any vertex degree above r. (It was shown by 
Ruciniski and Wormald (1992) that this process a.a.s. leads to an r-regular 
graph.) 

It should be emphasized that these constructions do not give uniformly dis- 
tributed r-regular graphs. However, the resulting distributions are interesting 
in their own right. Moreover, it has been proved in several cases (and conjec- 
tured in others) that the distribution is not too far from the uniform one, in 
the sense that properties holding a.a.s. for one of the distributions also hold 
a.a.s. for the other; this, which is expressed by saying that the distributions 
are contiguous, will be studied in Sections 9.5 and 9.6. 
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9.1 THE CONFIGURATION MODEL 

Most work on random regular graphs is based on the following construction, 
due in different versions to Bender and Canfield (1978) and Bollobas (1980, 
1985). We will use Bollobas’s version, which has become standard. 

Given a set V, which is to be the vertex set of the graph, we associate 

disjoint r-element sets to the elements in V. In order to be specific, let n 

and r be positive integers (with rn even), take V = [n], and consider the 
set W = [n] x [r]; A configuration is a partition of W into rn/2 pairs; these 
pairs are called edges of the configuration and the points in W are called half- 

edges. The natural projection of the set W onto V = [n] (ignoring the second 

coordinate) projects each configuration F to a multigraph 7(F’) on V. Note 

that 7(F’) may contain loops (arising from edges in F' between two half-edges 

corresponding to the same vertex in V) and multiple edges (arising from sets 

of two or more edges in F' whose endpoints correspond to the same pair of 

vertices in V). Thus 7(F’) is, in general, not a simple graph. Note, however, 
that (Ff) is an r-regular multigraph (with multiple edges and loops counted 

in the natural way). In particular, if 7(F’) lacks loops and multiple edges, it 

is an r-regular graph. 

There are (rn — 1)!! = (rn)!/27"/?(rn/2)! different configurations on W 

(Exercise!). When we talk about a random configuration, we will always 

(unless we explicitly specify a different distribution) mean a configuration 

chosen at random, uniformly among all possibilities. Each r-regular graph 

on V is the projection of the same number of configurations (viz. r!”), and 
it follows that if we take the projection 7(F’) of a random configuration and 

condition on it being a simple graph, we obtain a random r-regular graph on 

V with the uniform distribution over all such graphs (Exercise!). This is thus 

a construction of the random graph G(n,r). 
It turns out that it is often advantageous to allow loops and multiple edges 

and work with r-regular multigraphs, if necessary afterwards conditioning to 

simple graphs. We thus define the random r-regular multigraph G*(n,r) to 

be the multigraph 1(F’) obtained from a random configuration F’. Note that 

G*(n,r) does not have the uniform distribution over all r-regular multigraphs 

on V, because different multigraphs arise from different numbers of config- 

urations. In fact, it is easily seen that the probability of obtaining a given 

multigraph is proportional to a weight consisting of the product of a factor 

1/2 for each loop and a factor 1/j! for each multiple edge of multiplicity j. 

(In particular, the weight for any simple graph is 1, in accordance with the 

fact stated above that the conditional distribution over the r-regular simple 

graphs is uniform.) 

Remark 9.3. It may be shown that the distribution of G* (n,r) is contiguous 

to the uniform distribution, in the sense of Section 9.5; see Janson (1995b). 

An important feature of the configuration model is that the probability 

of obtaining a simple graph, P(G*(n,r) is simple) is bounded below by some 
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positive number (depending on r) for all n > r; more precisely, as will be 

shown in Section 9.2, the probability converges to exp(—(r? —1)/4) asn — oo. 

Hence, the probability that an event occurs for the random r-regular graph 

G(n,r) is bounded by a constant times the probability that the event occurs 

for G*(n,r), which equals the probability that a corresponding event occurs 

for a random configuration. In particular, any event holding a.a.s. for G* (n,r) 

also holds a.a.s. for G(n,r) (Exercise!). 
It follows directly from the definitions that the probability that any given 

set of k disjoint edges on W is contained in a random configuration is given 

by 

(rn — 2k —1)!! | 1 
Dae iat) ene ee 

This will be used repeatedly in the sequel. In particular, we will use the 

following asymptotical results. 

Lemma 9.4. 

(i) If m > 2 is even, then 

(m — 1)! = V2m™/2e-™/2(1 + O(1/m)). 

(ii) If k ts fixed and n > ov, then 

De ~ (rn)—*. 

(iii) If rn — 2k > o, then 

De ~ n—*e¥(r = 2hinye ky ee 

Proof. (i) follows from (m — 1)!! = m!/2™/?(m/2)! and Stirling’s formula, (ii) 
follows directly from (9.1), and (iii) follows from (9.1) and (i) (Exercise!). 

9.2 SMALL CYCLES 

The foundation of our results for random r-regular graphs is the study of the 
numbers of small cycles, due to Bollobds (1980, 1985) and Wormald (1981b). 

Given a (multi)graph G, we let Z, = Z(G) denote the number of cycles of 
length k in G. Here for simple graphs we let k = 3,4,..., but for multigraphs 
we let kK = 1,2,..., where Z, is the number of loops and Zp» is the number 
of pairs of parallel edges. Note that a multigraph is simple if and only if 
2 =) 25. =), 

Taking the graph G to be our random graph G(n,r) or G*(n,r), Zz becomes 
a random variable. We then have the following theorem. By joint convergence 
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of an infinite number of variables we mean joint convergence of every finite 

subset, which is equivalent to convergence in R®. 

Theorem 9.5. Let \x = 4(r —1)* and let Zyoo € Po(Ag) be independent 
Poisson distributed random variables, k = 1,2,3,... Then the random vari- 

ables Z,(G*(n,r)) converge in distribution to Zpoo, Ze(G* (n,7)) BS ge 0k, 

n — 00, jointly for all k. 

Proof. We use the method of moments, more precisely Theorem 6.10. We 

begin by computing the expectation of Z, = Z,(G*(n,r)). Each k-cycle in 

G*(n,r) arises from a set of k edges in the corresponding configuration, such 

that the endpoints of the edges match properly when they are projected to 

V; with a slight abuse of language, we call such a set of k edges a k-cycle on 

W. Let a, be the number of possible k-cycles on W. The probability that a 

given one of them is contained in a random configuration is p, given in (9.1), 

and thus E Z, = agp x. 

In order to calculate az, we consider oriented cycles, with a specified ini- 

tial vertex and a specified direction, and note that each (unoriented) k-cycle 

corresponds to 2k oriented ones. Hence the number of oriented k-cycles on 

W is 2ka,. Moreover, an oriented k-cycle on W consists of k edges that can 

be written ((v;, i), (vizi, yi+1)) (with indices taken modulo k), and it is thus 
described by a sequence of k distinct vertices v1,...,vx% € V and, for each 

i =1,...,k, two distinct indices p;,q; € [r]. This description is unique, and 

thus 

k 
2kaz — (n)x(r(r = 1)) c (9.2) 

For fixed k and r we thus have, as n — oo, ax ~ snk rk (r = 1)" and; by 

Lemma 9.4(ii), py ~ (rn)~*. Consequently, 

1 
EZ, = AbPr ~ ap = i}* = Xk: 

In other words, E Z, — Ax as n — 00, for each k > 1. 

Before proceeding, let us note that the same argument shows that if H is 

any (multi)graph with v vertices and e edges, then the expected number of 

copies of H in G*(n,r) is O(n”)-O(n-*) = O(n*~*) (Exercise!). In particular, 

if H is a graph with more edges than vertices, that is, v < e, the expected 

number of copies of H is O(n~*). 

Next, we compute factorial moments. We begin with E(Z,)2 and indicate 

the small modifications needed in the general case later. 

Note that (Z,)2 is the number of ordered pairs of two distinct k-cycles in 

G*(n,r). The two k-cycles may or may not intersect, and we write (Z,)2 = 

Y'+Y" where Y’ is the number of ordered pairs of (vertex) disjoint k-cycles, 

while Y” is the number of ordered pairs of distinct k-cycles having at least 

one common vertex. 
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The number Y" may be further decomposed according to the number of 

common vertices and edges, and their relative positions. This expresses Y” as 

the sum of a number of terms Y;’, where the number of terms depends on k but 

not on n, and each term counts the number of copies of some (multi)graph H,; 

in G*(n,r), where H; (being the union of two distinct cycles with at least one 

common vertex) is connected and has more than one cycle. Each such H; has 

more edges than vertices and thus, by the result just shown, EY,’ = O(n) 
for each 7. Summing over all 7, we finally obtain 

EY 0 (ne): 

Hence the main term is EY’, which we compute in the same way as E Z,. 
If azz denotes the number of ordered pairs of possible k-cycles on W that 

project to disjoint cycles on V, we obtain as above, orienting both cycles, 

(2k)?ax% = (n)on(r(r —1))”* ~ (2kag)?. 

The probability that a given pair of disjoint k-cycles on W is contained in a 
random configuration is po, ~ (rn)~?* ~ p2, and consequently, 

EY’ = aggpor ~ (axpr)? ~ XZ. 

E(Z,)2 =EY' +BY" = 2 + o(1). 

The same argument applies to any factorial moment E(Zz)m, and more 
generally to any joint factorial moment E(2Z1)m,(Z2)m2°-*(Z1)m,; we now 
consider the number of sequences of m; + m>+---+ m, distinct cycles such 
that the first m; have length 1, the next m2 have length 2, etc. (Here! > 1 
and m,...,m, > 0 are any fixed integers.) As before we write this number 
as Y’ + Y”, where Y’ counts the sequences of disjoint cycles, and split Y” 
further according to the pattern of intersection of the cycles into a sum of 
terms Y;’, each counting the number of copies of some graph H; in G*(n,r). 
The graphs H; that appear here are unions of cycles, each having at least 
one component with more than one cycle, and it is easy to see that each H = 
has more edges than vertices. Hence, we again obtain EY;" = O(n) and 
EY” = O(n!) (Exercise!). 

For Y’, the same argument as above yields EY’ ~ Ay Ay? ---Ay"', and 
summing we obtain 

E(Z1)m, (Z2)me got (Zi) m, z= Ay Ag? . + rr" : (9.3) 

By Theorem 6.10, this implies that the joint distribution of Z,,...,Z; con- 
verges to the joint distribution of Z1.,..., Zico, Which completes the proof. 
(Note that the right-hand side of (9.3) equals E(Z100)m1(Z200)ma *** (Zico) m,-) 

EB 

Recall that G*(n,r) is simple if and only if Z, = Zz = 0, and that G*(n,r) 
conditioned on Z; = Zz = 0 yields G(n,r). 
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Corollary 9.6. Let \, and Zp be as in Theorem 9.5. Then the random 

variables Z,(G(n,r)) converge in distribution to Zpoo, Zx(G(n,7)) fag 
as n — oo, jointly for all k > 3. 

Proof. Directly from Theorem 9.5, conditioning on Z; = Z2 = 0 (Exercise!). 

| 

Corollary 9.7. If n > oo, then 

P(G*(n,r) is simple) + ent 1/4 =.) 

Proof. Theorem 9.5 yields 

P(Zo = Z1 = 0) > P(Zoce = Zio = 0) =e ™-™, 

where Ay + Az = $(r — 1) + f(r — 1)? = F(r? - 1). z 

Corollary 9.8. The number L,, of labelled r-regular graphs on n nodes sat- 

isfies, as n + oo for fired r, 

‘Pa Woe 4 Gil zee onre/ 2. 

Proof. The number of configurations is (rn —1)!! ~ V2(rn/ e)""/?, the propor- 

tion of them that yield simple graphs is e~‘" ~1)/4 4 0(1) by Corollary 9.7, and 

there are r!” such configurations corresponding to each r-regular graph. 

Theorem 9.9. Any property that holds a.a.s. for G*(n,r) holds a.a.s. for 

G(n,r) too. 

Proof. Suppose that the property P holds a.a.s. for G*(n,r). Then Corol- 

lary 9.7 yields 

P(G(n,r) does not have P) 

= P(G*(n,r) does not have P | G*(n,r) is simple) 

P(G*(n,r) does not have P and is simple) 

- P(G*(n,r) is simple) 

P(G*(n,r) does not have P) 
WP & 

Fe P(G*(n,7r) is simple) if 

The converse does not hold, as the trivial example of not containing a loop 

shows. 

9.3 HAMILTON CYCLES 

In the preceding section we studied the numbers of cycles of a given fixed 

length in a random regular graph. Let us now instead study Hamilton cycles, 

that is, cycles of length n (where n as usual is the number of vertices). We 
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let H(G) denote the number of Hamilton cycles in a (multi)graph G, and let 

Hy, ee H(G(n,r)), 13 pe = H(G* (n,7)). 

In the notation of Section 9.2, thus Hx = Z, and by (9.2) and (9.1), 

n! (r(r — 1))” (rn — 2n — 1)!! 

2n (rn — 1)!! ve 
EH ap, 

If r = 0 or 1, then there is clearly never any Hamilton cycle at all in G(n,r) or 

G*(n,r). Ifr = 2, then (9.4) yields, using Stirling’s formula and Lemma 9.4(i), 

: m2" 1 

me 2n(2n—1)!! Y 4n 

and thus E H%. — 0 as n > oo. Hence, by the first moment method, there is 
a.a.s. no Hamilton cycle in G*(n,2). By Theorem 9.9, there is also a.a.s. no 
Hamilton cycle in G(n, 2). 

Let us thus assume r > 3. Then (9.4), Stirling’s formula and Lemma 9.4 
yield 

EH*~ ea (Bee Ee — 2)7n/2—n,—rn/en_—n 
e 

bn sae eee lleer aay (9.5) 

Moreover, it is easily verified that 

(r — 1)(r — 2)"/2-1 
pr /2—-1 A(r) = eee 

for example because A(3) = 2/\/3, while for r > 4, 

Ar ofr) ate lae a Site liens i rar >(r-l)e~>1 

Consequently, EH* — oo as n - oo, which suggests (but does not prove) 
that G*(n,r) typically has lots of Hamilton cycles when r > 3. 

In order to study the existence of Hamilton cycles further, we calculate the 
variance of H>. This is considerably more involved than the calculation just 
given for the expectation, and we give for the moment only the result (Frieze, 
Jerrum, Molloy, Robinson and Wormald 1996), postponing the proof to the 
next section. 

Lemma 9.10. Jf r > 3, then 

a i fs 2n dk 

r—22n (r) r—2 
(E H*)? (9.6) 

and thus 
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Recall that if X,, is any sequence of random variables with EX, > 0 and 
Var(Xn)/(E Xn)? > 0, or equivalently E.X2/(EX,,)? + 1, then Chebyshev’s 
inequality yields X,/EX, al and, in particular, P(X, > 0) — 1; see (1.2) 

and Section 3.1. For H* this fails, but just barely; Var(H*)/(E H*)* converges 
to a positive number. This suggests that H*/E H* converges in distribution 
to a nondegenerate distribution, and we will soon show that this indeed is the 
case. 

We have so far considered H*, but the situation is the same for H,; we 

will later show the corresponding results (Robinson and Wormald 1994): 

EH, ~eEH* ~ ey/$n/? A(r)”, (9.7) 

EH? /(EH,)? ~ e72/¢-) —_ (9.8) 
(pase 

and thus 

Var(Hn)/(E Hn)? 3 eae geel al (9.9) ar 

Again, the second moment method fails. For example, for r = 3, the 

inequality (3.2) yields limsup P(H, = 0) < lim Var(Hn)/(E Hn)? = 2 ies 

0.104, while the sharper inequality (3.4), using P(H, > 0) > (EH,,)?/EH?2 > 
e/3, yields lim sup P(H, = 0) < 1—lim(EH,)?/EH?2 =1- § = 0.094. This 
shows that Hamilton cycles appear in at least 90% of the realizations of G(n, 3) 
when n is large, but this estimate is not sharp. Indeed, as we will show below, 

G(n,r) a.a.s. has a Hamilton cycle for any r > 3. This was generally believed 

for a long time, and explicitly conjectured by Bollobas (1981b); partial results 

were given by various methods by Bollobds (1983) (r > 10”), Fenner and 

Frieze (1984) (r > 796) and Frieze (1988) (r > 85), but the general result was 

not proved until the papers by Robinson and Wormald (1992, 1994). 

The main idea in the proof by Robinson and Wormald is to condition on 

the number of small cycles, compute the conditional variance which turns 

out to be rather small, and use Chebyshev’s inequality for the conditioned 

variables. This is thus a conditioned version of the second moment method. 

The argument can be regarded as an analysis of variance; the main point 

is that most of the total variance is explained by the variance between the 

groups, whence the variance within the groups is relatively small; see Cooper, 

Frieze, Molloy and Reed (1996) for further comments (and results). 

Remark 9.11. One can similarly study random bipartite regular graphs. It 

turns out that in this case EH?/(EH,)* — 1 and thus the second moment 

method applies, at least provided r = 3 (Robinson and Wormald 1984). This 

probably holds also for r > 4, but as far as we know no one has yet verified 

this. The fact that a.a.s. there exists a Hamilton cycle in a random bipartite 

regular graph with r > 4 was proved in Robinson and Wormald (1994) by the 

method indicated in Remark 9.39, below.) 
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We state a general theorem (Janson 1995b) that will be applicable also in 

several similar situations below. In our applications we let Xjn = Zin, the 

number of cycles of length 7 in a random regular (multi)graph. The proof, 

which is based on the argument in Robinson and Wormald (1992) and related 

to the projection methods discussed in Section 6.4, will be given in the next 

section. We define 0° = 1. 

Theorem 9.12. Let \; > 0 and p; > 0,1 = 1,2,..., be constants, let 6; = 

i/Ai — 1 > —1, and suppose that for each n there are random variables 

Xin, 1 = 1,2,..., and Y, (defined on the same probability space), such that 

Xin ts non-negative integer valued and EY, # 0 (at least for large n) and, 

furthermore, the following conditions are satisfied: 

CAL) Xe, & Xioo ASN —> OO, jointly for all 1, where Xioo € Po(A;) are 

independent Poisson random variables; 

(A2) For any finite sequence 21,...,2m of non-negative integers, 

EVAL Ai ee in =n) eee 
TT te Hi as nN — OO; EY. is 

ot 

ee 

ala (EY,)2 = exp(>> 6?) as n — oo. 

Then 

Yt 7 
=a >We I[a + 6;) Xie em 5: as N — 00; (9.10) 

e {= 

moreover, this and the convergence in (A1) hold jointly. Furthermore, the 
normalized variables Y,/EY, are uniformly square integrable, and EW? = 
limps EY?/(EY,)7. 

The infinite product defining W converges, so W is well defined. This is 
not obvious, so we state it together with some useful properties as the next 
theorem. The proof is postponed to the next section. 

Theorem 9.13. Suppose that \; > 0 and 6; > —1 and Xico are as in Theo- 
rem 9.12 and that (A3) holds. Then the infinite product defining W in (9.10) 
converges a.s. and in L?, EW =1 and EW? = exp(>>; \i6?). Furthermore, 
the event W > 0 equals, up to a set of probability zero, the event that Xiong > 0 
for some i with 6; = —1. In particular, W > 0 as. if and only if 6; > —1 for 
every 1. 

Note that a.s. here and below is used in the standard sense “with probability 
1”; see Remark 1.2. 
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Remark 9.14. The values of \;, 4; and 6; are prescribed by (Al) and (A2). 
If sup,, E XZ, < oo for each i, as is the case in all our applications, then {Xin}n 
and {XinY¥n/EY,}n, are uniformly integrable (for fixed i) and we obtain (by 
Theorem 9.12 or directly from (Al) and (A2)) 

E Xin ape Wes = rj 

E(XinYn/ EY,) =z E XiggW = E Xjoo(1 + 6; ) ive eid: = Ai(1 + 0;) = pi 

and thus 

Vi == lim EK Xin 
n—-co 

n—+co 

6; = lim E(XinYa)/(E Xin EYa) —1= lim Cov(Xin,Ya)/(E Xin EYn). 
n—+0co n—0o 

Remark 9.15. It follows from the proof that if we have several sequences 

of variables Y,? z each satisfying the conditions of Theorem 9.12 (possibly 

with different 6!) with the same variables X;,, then the y¥) converge 

jointly. It follows, for example, by the uniform square integrability, that 

EYYY,) (EY EY.) = EWOW) = exp(d, Ad! 6)”). 

Remark 9.16. If (A1) holds, then (A2) is easily seen to be equivalent to 

(A2’) For any finite sequence 7),...,2m of non-negative integers, 

Ea = fe. 
m™m 

EY, mn = im) oak [[a 4 6;)7!e iO as n — oo. 
i=1 

We will in all our applications of Theorem 9.12 verify condition (A2) by 

the method of moments argument used by Robinson and Wormald (1992). 

We state this step as a separate lemma. 

Lemma 9.17. Suppose that Y, > 0 and define (when EY, > 0) a new prob- 

ability measure Qn by Qn(A) = E(YnIa)/EYn for every event A in the prob- 

ability space 2, where Xin and Y, are defined. Then (A2) is equivalent to 

(A2”) Under the measures Qn, Xin a Po(p;), jointly for alli with indepen- 

dent limits. 

In particular, (A2) follows if 

CAO! RB a (Xin) ji SX mayne [4 as n — oo, for every finite se- 

1 
quence j1,---,Jm of non-negative integers. 

Proof. The first statement is clear by the definition of Qn, and the second 

follows by the method of moments (Theorem 6.10). | 
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Remark 9.18. (A2’”) can also be written 

E(Y¥n(Xinlin-+(Xmn)in)/ En > LL tere 
1 

avoiding explicit mention of Q,, (Exercise!). 

For Hamilton cycles, the general theorem yields the following result; we 

postpone the proof. 

Theorem 9.19. Let r > 3 be fixed and let H, = H(G(n,r)) be the number 
of Hamilton cycles in a random r-regular graph on n vertices. Then 

Til d ». 2, Zico ji 

i odd 

where Zico E Po( &5") are independent Poisson random variables. 

As a consequence, we obtain the existence result by Robinson and Wormald 
(1992, 1994). 

Theorem 9.20. If r >3 is fixed, then G(n,r) a.a.s. has a Hamilton cycle. 

Proof. The limiting random variable W in Theorem 9.19 is positive a.s. by 
Theorem 9.13, since 6; = —2/(r — 1)* > —1. Hence Theorem 9.19 implies 

P(H, > 1) = P(H,/EH, > 0) > P(W > 0) = 1. E 

An immediate consequence of the existence of a Hamilton cycle is that the 
graph contains a perfect matching (provided n is even). 

Corollary 9.21. If r > 3 is fired and n is even, then G(n,r) a.a.s. contains 
a perfect matching. om 

Remark 9.22. The existence of a Hamilton cycle also proves 2-connectivity 
a.a.s. of G(n,r) for r > 3. (Again, this is false if r < 2.) However, this is 
not the historical path. Indeed, connectivity was proved much earlier and 
by much simpler methods, which also show the stronger result that G(n,r) 
a.a.s. is r-connected (Bollobds 1981b, 1985, Wormald 1981a); see also Luczak 
(1992). 

The limiting distribution in Theorem 9.19 is more complicated than the 
ones that usually appear in the theory of random graphs. The Poisson vari- 
ables Z;.. that appear have, however, a simple interpretation as the numbers 
of small cycles in the random regular graph. More precisely, see Theorem 9.12, 
if we let Z;, be the number of cycles of length 7 in the graph, then Z;, = iss 
as n — oo, and this convergence in distribution holds jointly, for all i, together 
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with H,/EH,, 4, W. Hence the theorem can be interpreted as saying that 
H,,/ E H,, is, with large probability, well approximated by the infinite product 
with Z;.. replaced by the small cycle count Zj,, or rather by a finite product 

Tiare — 2/(r — 1) 2841) 22k440 61/(2k+1) (We have to let n — oo first and 

then K -— ov in order to get convergence, because the factors e!/(?4+1) | which 

are necessary convergence factors in (9.11), act as divergence factors for any 
finite n.) 

It should perhaps not be surprising that H,, thus essentially is determined 

by the numbers of small cycles. Similar results hold for the standard models 

G(n,p) and G(n, M), where for certain ranges of p and M, log Hy, is well 

approximated by a linear function of the number of edges, and of the number of 

paths of length 2, respectively; see Janson (1994b). Those results are simpler, 

however, since log H,, then is asymptotically normal, while in the present case 

log H, —log E H,, converges to log W which has a rather complicated infinitely 

divisible distribution. Moreover, for G(n,p) and G(n, M) it suffices to use 
one small subgraph count in the approximation, whereas here we need an 

infinite sequence. (There are parallels to this in G(n, p) for other functionals; 

see Section 6.4, Barbour, Janson, Karonski and Rucinski (1990) and Janson 

(1994a).) 
Note that every small subgraph count for random regular graphs can be 

essentially expressed in terms of small cycle counts, since a random regular 

graph a.a.s. has no small multicyclic subgraphs. This explains why only cy- 

cle counts appear in Theorem 9.19 (as Z;..), but it seems mysterious that 

only the odd cycle counts appear, while the even cycle counts are asymptoti- 

cally independent of H,. (Recall in this connection that for random bipartite 

cubic graphs, where there are no odd cycles at all, EH?/(EH,)* — 1; see 

Remark 9.11.) 
We may extend Theorem 9.19 to multigraphs. 

Theorem 9.23. Let r > 3 be fixed and let H* = H(G*(n,r)) be the number 

of Hamilton cycles in a random r-regular multigraph on n vertices. Then 

tts 

EH. Uae Gey aaa ed 
4 ir 

where Zico € Po( <5") are independent Poisson random variables. 

As above, the variables Zj.. are the limits of the cycle counts Zink 

Note that the limit distribution for multigraphs in Theorem 9.23 differs 

from the one for graphs in Theorem 9.19 only by the additional factor (1 - 

Ee where Zoo € Po(*>*) should be interpreted as (the limit of) the 

number of 1-cycles, or cee in the multigraph. 

If r’ > 4, so that’ 1— =) > 0, then the limit random variable W is a.s. 

strictly positive also in Them 9.23, and thus the theorem implies that a 
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random r-regular multigraph a.a.s. contains a Hamilton cycle. On the other 

hand,if ni=)3, then!1.— aaa = 0, and thus W = O when Zi. > O but, 

as before, W > 0 as. when Z}., = 0. Consequently, it follows from the 

joint convergence of (H*, Zin) to (W, Z1..) that a random cubic multigraph 

a.a.s. is Hamiltonian if and only if it lacks loops, in the sense that as n > 

oo, the probability tends to 0 that a random cubic multigraph has one of 

these properties but not the other. (One implication is obvious for all cubic 

multigraphs; the other holds only asymptotically.) 

Remark 9.24. The joint convergence of (H7, Zin, Zon) and the fact that 

P(Z1c0 = Z200 = 0) > O imply that the limit in Theorem 9.23 remains true if 

we condition on Z1n = Zon = 0, that is, if we let (X | A) denote the random 

variable X conditioned on the event A, 

H* 

& Zin = Zan =0) 4 (W | Zise = Zasc = 0) 

a 2 a 1/i 

=A] Feat rome 
1>3 
zt odd 

The left-hand side is the distribution of the number H, = H(G(n,r)) of 
Hamilton cycles in a random regular graph, normalized by the expectation 

E H,, for the random multigraph. Since the uniform integrability of H*/ E H* 
(see Theorem 9.12) survives the conditioning, taking the expectation yields 

EA, /EH) = E(Ap | Zin = Zon = 0)/E HZ > E(W | 200 = Zon = 0) =, 

and we recover Theorem 9.19 as a corollary to Theorem 9.23. 

Remark 9.25. We can use the conditioning argument in Remark 9.24 in all 
cases where Theorem 9.12 applies. We obtain, if Y,, = (Y, | Xin = Xon = 0), 

Rie) hye = E(W | X13 = Aone = 0) = exp(—Aj 61 = A262) (9.13) 

and similarly 

E(Y,)?/(E Y9? ty E(w? | Nico == X200 = 0) 

= exp(—2151 — 2A2d2 + 5 d;6?); 
i=3 

combining these we obtain 

E(Y,)’/(EY,)” > exp ie id?) = exp(—)16? — A262) EW?. (9.14) 
i=s3 

For the Hamilton cycles in Theorem 9.23 we have 6; = —2/(r —1), 62 =0 
and A, = (r — 1)/2, and we see that (9.13) and (9.14) yield (9.7) and (9.8) 
from (9.5) and (9.6). 
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9.4 PROOFS 

We prove the assertions in the previous section. 

Proof of Theorem 9.13. We begin by observing that, since Xjoo € Po(A;), 

Bio mee em eo Ae Sekt ond B((1 + 5;) *ice)? = edi(1t+di)’-rA = 
ei(26:+87) Thus, defining 

wl — [[a 2h 6; ) Kice Aide 

1 

W'™) is a product of independent variables with mean 1, and hence the se- 

quence (W(™))°°_| is a martingale; cf. Section 2.4 and, for example, Chung 

(1974, Chapter 9). The martingale is L?-bounded because 

E(W'™)? = Tle = exp(S- id?) > exp(S- \i6? ) <oo asm-— oo. 

l 1 1 

Thus, by the martingale convergence theorem (see, e.g., Chung (1974, Sec- 

tion 9.4)), the limit W = limn_,.. W'™ exists a.s. and in L?, with EW = 

limm—o3o EW'™ =1 and EW? = exp bar id?) We observe for future use 

that 

E|W-W™)?? Ew? -E(w™)? = exp(S- 6?) — exp 2 \id?). 
pI 1 

(9.15) 

In order to show that W #0 as., except when X;.. > 0 for some 7 with 

6; = —1, let us break the product defining W into two parts Wi = [J5, <_1/2 

and W2 = [];,5-1 /2° For W, we observe that although there may conceivably 

be infinitely many indices in I; = {i : 6; < —1/2}, Condition (A3) implies 

that E>), Xico = oy, Xi S AD di6? < 00, and similarly 57, |Aidi| < oo. 

Hence there are a.s. only finitely many non-zero Xj, 7 € Nh, and Wi = 

ey caine II fd 6;)*i, where the product really is a finite product which 

is positive unless some factor vanishes, that is, unless Xjoo > O for some 2 

with 0; ==— il, 

For W> we define 6; = —6;/(1+ 6:), 1€ bh = {1:6 > —%}, and note that 

Sy) ts ib? < co and thus the argument above shows that 

We = []A+6:)%nre™™ 
In 

converges a.s. with W. < oo. However, since (1 + 6;)(1+6;) =1, 

W2W> yf [ie = exp(- SE d67/(1 aP 6i)) > 0h, 

Te I2 
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so W2 > 0 a.s., which completes the proof that W > 0 a.s. except when some 

factor vanishes. & 

Proof of Theorem 9.12. For this proof we make, without loss of generality, two 

simplifying assumptions. First we may assume EY, = 1. Secondly, we invoke 

a theorem by Skorokhod (1956) which implies that although the variables Xj, 

and Y, originally may be defined on different probability spaces for different 

n, and X;.. on yet another probability space, we may replace them by other 

variables having the same distributions, such that they become defined on a 

single probability space and the convergence in (A1) holds a.s., i.e. Xin + Xico 
a.S. as n — oo for each 7. 

Fix a large integer m and define the functions 

Ga ees) =i(Y,, | AG == 77) hoe AX ong ee) 

bs Colao Jim fa Ligge fa) = [a - Pi ky tees 

1 

where we used Assumption (A2) (in the form (A2’)). Consider the random 
variable 

ed = E(¥, | 46 Peer »Xmn) = fn(Xin,--- »Xmn). 

By our simplifying assumption Xin > Xioo a.s., we have a.s. Xin = Xiog for 
all 2 < m and sufficiently large n; thus 

Jim | yee) a au fn(X100,++- »X moo) = tool Xtene yy wim) a.S., 

(9.16) 

with W'™ as above. Hence, by Fatou’s lemma 

n—- Co 

lim inf E(¥(™)? > E(W(™))? = exp()> \,6?). 
1 

Consequently, since Y,™) is a conditional expectation of Y;, 

lim sup E|¥, — ¥,(” |? = lim sup(E Y,? — E(¥™)?) 
n—-> oo n—- oo 

< exp (> iid?) — exp (- did?) (9.17) 
1 1 
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Using Chebyshev’s inequality (1.2), (9.16), (9.17) and (9.15), we now ob- 

tain, for every € > 0, 

lim sup P(|Y, — W| > 3e) 
n—-co 

< lim sup P(|¥, — Y,°| > e) + limsup P(|Y™ — W™| > e) 
n—-co 

+ P(\W'™ — W| >.) 

é* lim sup E|Y, — Y¥(™|? +0+e-7E|W —w'™)/? 
n—->Cco 

soge=* lexp bs 6?) ~ exp(S- we?)| ; (9.18) 

1 1 

We now let m — oo, keeping « fixed. The right-hand side of (9.18) tends to 

0, so the left-hand side, which does not depend on m, has to vanish for each 

€ > 0, which proves Y, + W. 

Finally, by (A4) and Theorem 9.13, EY, — exp(5°; Aid?) = EW?, and 
this, together with the already established convergence in distribution, implies 

that the random variables Y,, are uniformly square integrable. a 

Proof of Theorems 9.19 and 9.23. Most steps are the same for the random 

graphs and multigraphs, so we do both theorems together. In the proof we 

let i > 1 in the multigraph case a 7 > 3 in the graph case. 

The assertion (Al), with A; = +(r—1)', is Theorem 9.5 and Corollary 9.6. 
For (A2) we use Lemma 9. 17. ‘The computation of factorial moments is 

done in Robinson and Wormald (1992) (at least for G(n, 3)), using generating 

functions to keep track of the different possibilities for intersections of cycles. 

Here we will give a slightly different argument, using matrices. We restrict 

ourselves for the time being to random multigraphs, which (sometimes) are 

easier to handle than graphs. 

The measure Q,, in Lemma 9.17 has in this case the following interpreta- 

tion. Consider the set 2, of all pairs ic, H 1) of a configuration G (on the nr 

half-edges [n] x [r]) and a set H of edges in G that projects to a Hamilton cycle 

in the multigraph G* obtained by projecting G. Pick one of these pairs (e H) 

at random, uniformly over 2, and take the projection G*. This defines a ran- 

dom r-regular multigraph which has distribution Q,, since the probability of 

obtaining a specific multigraph G* is proportional to the number of pairs 

(G,H) € © projecting to G*, which is proportional to H(G") (Exercise!). 

Furthermore, by symmetry, we obtain the same distribution Qn by picking 

the pair (G, H 1) at random in the subset Q, of all such pairs (G, H) such that 

the edges in A join half-edges in V x {19 2}. But these pairs are just the pairs 

(HU H", H), where H is a configuration on [n] x {1, 2} projecting to a Hamil- 

ton cycle and H’ is any configuration on [n] x {3,...,r}. Picking an element 

in co at random is thus the same as picking such H and H' independently 

at eiiden and after projecting we see that Q, equals the distribution of the 
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union of a random Hamilton cycle and a random (r — 2)-regular multigraph 

G*(n,r — 2) (both defined on the same vertex set [n]). 
We will, for simplicity, only verify 

Eg, Zen — Lk as n — 00, (9.19) 

for a suitable yz; the extension to mixed higher factorial moments is routine, 

following the argument in the proof of Theorem 9.5 (Exercise!). 

Fix k > 1 and assume n > k. There are sz (")k ~ apm k-cycles in the 

complete graph on [n]. For each such cycle C’ we fix an orientation and label 
the edges by 1,...,k, starting at an arbitrary edge. Consider a configuration 

H UH’, where as above H is a configuration on W; = [n] x {1,2} projecting 
to a Hamilton cycle and H’ is any configuration on W2 = [n] x {3,...,r}. If 

C is a set of k edges in H U H' that projects to C, we say that an ee in C 

is of type 1 if it belongs to H and type 2 if it belongs to H'. Let us calculate 

the expected number of such “cycles” C in HUH’ that project to C and have 

edges of types i1,...,%%, where (i;)* € {1,2}* is a given sequence and the 

edges in C are ordered according to the ordering in the projection C. 

Let us say that the vertex in C between edges / and !+ 1 has type iy7)41. 

There are two choices of half-edges in C at a vertex of type 11 (the two possible 

orderings of the two corresponding half-edges in W,), at a vertex of type 12 or 

21 there are 2(r — 2) choices (one half-edge from W, and one from W2), and 
at a vertex of type 22 there are (r — 2)(r — 3) choices (two different half-edges 

from W2). Hence, if b;; is the number of choices of the two half-edges in Cata 

vertex of type 77, we have bi; = 2, bj2 = b21 = 2(r—2) and bg2 = (r—2)(r—3). 

Each choice of half-edges over all k vertices specifies G completely, and it 

remains to compute the probability that this ‘a actually is a subset of HUH’. 

Note that if there are k, indices / with 7; = 1, and thus ky = k — ky with 

4; = 2, then each choice of half-edges specifies k, edges in H and ko in H’. The 
probability that the latter kz occur is, by Lemma 9.4(ii), ~ ((r —2)n)—*2. For 
H we observe that there are C(n) = 2°n!/2n = 2"-1(n — 1)! configurations 
that project to a Hamilton cycle. If we specify k,; edges such that their 
projection is a union of paths, then the number of configurations containing 
these edges is C(n — k,) = 2"~—1(n — ky — 1)!, since we may contract these 
edges and obtain a one-to-one correspondence with Hamilton cycles on a set 
of n — ky vertices; hence the rid guns that H contains the given set of edges 
is asymptotically equal to (2n)~™:. On the other hand, a set of edges on W, 
whose projection contains a cycle of length smaller than n is never a subset 
of H. 

Since H and H’ are independent, it follows that the expected number of 
“cycles” C in HU H' that project to C and have edges of types 71,..., i, is 
asymptotically given by, letting i,4; = 1, and defining r} = 2, rp =r — 3 

k 

[] iigs (22) (7 — 2)n)-*? = n= [Dacre Pa 
(ul 
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provided kz > 0; in the remaining case i) =--- = i, = 1, the expected number 
is 0. If we set aj; = bi;/rj, sum over all sequences (i,)* and multiply by the 
number ag (")k of k-cycles C, we obtain 

1 k 

Eo, Lie SH ok SE [Tosi = x (8 I] Qinirys — a) (9.20) 

(2p) rE(1eee., LU) t= (in) t=1 

This equation is of the form (9.19), and we proceed to evaluate the right-hand 
side. We introduce the matrix 

Lor 2 
Ar (ai;) = E a _) (9.21) 

and can rewrite (Exercise!) (9.20) as 

1 
Eg, Zin > yaa A*® — 1). (9.22) 

It is easily verified (Exercise!) that the matrix A has eigenvalues r—1 and —1, 

for example by solving the characteristic equation (1—A)(r—3-—A) —2(r—2) = 

0; hence Tr A* = (r — 1)* + (—1)*, and we have verified 

Eg, Zkn > Hk 

with 

1 be = = ((r - 1)* + (—1)* — 1). (9.23) 

As claimed above, (A2’”) follows similarly (Exercise!), and (A2) follows by 

Lemma 9.17. 

With this value of uz, we obtain 

ee Yea | 2 |g eal)”, Mietodd, Feared wineries Ls: inte) (9.24) 
vi (r — 1) 0 k even. 

(It is the fact that 6, vanishes for even k that makes the number of Hamilton 

cycles asymptotically independent of the even cycle counts. The calculation 

above gives no intuitive explanation for this phenomenon.) 

Having verified (A2) and thus (A2’) for the multigraph case, we note that 

the graph case follows immediately by specializing to x; = 2 = 0, using, in 

particular, 

EH, _ E(Hn | Zin = Zon = 0) ae E H* Ey ebignl a sie cs 
E H* n n 

which we obtained in a different way in Remark 9.24. 
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The values of A; and 6; yield 

Sa = earth) h(t) 17 odd 

SAF) 

Sem) 

and thus (for the graph case) 03° A;6? = log 5 — a Hence (A3) holds, 
and the variance condition (A4) says 

PEE WER ays (9.25) 
in the graph case (this is (9.8)), and in the multigraph case 

r 

OM 
E H**/(EH*) > : (9.26) 

The latter result was stated in Lemma 9.10, which is proved below; this lemma 
thus completes the verification of the conditions in Theorem 9.12 for the 
multigraph case, and Theorem 9.23 follows. 

The graph case, Theorem 9.19, follows from Theorem 9.23 by conditioning 
as we observed in Remark 9.24. Alternatively, Theorem 9.23 implies (9.25) 
by Remark 9.25, which verifies (A4) for the graph case; thus Theorem 9.19 
follows by Theorem 9.12 (Exercise!). a 

Remark 9.26. For r = 3, (9.25) is proved directly in Robinson and Wormald 
(1984). Robinson and Wormald (1992) use this case and they state the result 
for r > 4 (when the proof is more difficult) in Robinson and Wormald (1994). 

It remains to prove the variance estimate Lemma 9.10; we follow essentially 
Frieze, Jerrum, Molloy, Robinson and Wormald (1996). (The estimate follows 
by a long, and not very illuminating, calculation. It would be desirable to 
find another simpler, or more conceptual proof.) 

Proof of Lemma 9.10. We first obtain an exact formula for E(H)? by a com- 
binatorial argument, similar to the argument used above in the proof of (9.20). 
This formula ((9.28) below) is rather complicated, however, and a non-trivial 
analytic argument then is needed to complete the proof. 

Consider the family of all pairs (H, H’) of two n-cycles on W = [n] x [r], 
that is, two sets of edges on W that project to Hamilton cycles on [n]; if G is 
a random configuration, then 

E(t) = >. BAU CG). 
AH! 

If the intersection HM H’ consists of b edges on W, then, by (9.1), 

P(H UH’ CG) = pons = (rn — dn + 2b — 1)!!/(rn — 1). 
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Hence, if a, is the number of n-cycles H on W, given by (9.2), and N(b) is 

the number of n-cycles H’ that intersect a given H in b edges on W (this 

number is clearly independent of H), then 

E(H*)? = So anN(b)pon—. (9.27) 
b=0 

If b=n, then N(b) =1 (H' = B). 
If 1 < b < n, we decompose N(b) = 3-?_, N(b,a), where N(b,a) is the 

number of n-cycles H' such that the b edges on W in HN H’, when projected 

to [n], form a disjoint paths. (These paths are subpaths of the Hamilton cycle 
H on [n] obtained by projecting H.) 

To compute V(b, a), consider first the number of ways to choose the a paths 

in H. Fix an orientation of H. Choosing an initial vertex which begins one 

of the paths, we then can choose the successive lengths of the paths in (a3) 

ways, and the lengths of the gaps between them in (Chee) ways. Further, 
there are n possible initial vertices, and a of them can be used for each set of 

a paths. Consequently, the number of sets of a paths with total length 6 is 

1) D—1\ (nie b 1 eee an b\ (n—b 

a\a-1 a—1 }) b(n—b)\a aa) s 

Next, by collapsing the a paths into single vertices, we see that each oriented 

Hamilton cycle H’ on [n] containing these paths defines an oriented Hamilton 

cycle on n—b vertices and, furthermore, an orientation of each of the a paths; 

this yields a bijection, and thus the number of such oriented Hamilton cycles 

H' equals 

2°(n-—b-1)! 

Finally, each such H’ corresponds to 

(r Zz gyre ab ip Ss. 3) Rrdae. 

oriented n-cycles on W, since the half-edges may be chosen in (r — 2)(r — 3) 

ways at each of the n — a — b vertices disjoint from the given paths, and in 

r — 2 ways at each of the 2a endpoints of the paths. Ignoring the orientation 

yields an additional factor on and multiplying the factors together we obtain 

b\ (n—b an = = An 
ee per oye n-b-01(?)( ), 

The same formula holds for the case b = 0 too, in which case we set a = 0 

and N(0) = N(0,0), provided we interpret a/b as 1. 
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Consequently, we obtain from (9.27) and (9.4) the formula 

*)2 1 N(b, Ae E(H;) a S- ( a)p2 b 
* a 2 

m 0<a<b<n nPn 

2 

= : + ys pe ilhey A = 1)-"(r 2 7) ened foe By yore 

E H* hens b(n — b) 

b\ (n — b\ (n — b)! (rn — 4n + 2b— 1)!!(rn — 1)!! 

: (") ( a ) n! (rn — 2n — 1)!!2 
(9.28) 

The second step of the proof is to estimate this double sum. 

First consider the case r = 3. In this case, because of the factor (r—3)"~?~° 

in (9.28), we only have to consider terms with a+ b = n, and (9.28) simplifies 
to 

(A 2 gg et ere? eS Get (ren Tyan ye SS ap eee 
< a(n — a) (E H*)? ~ EH (n — 2a)! n! (n — 1)!!2 n 

(9.29) 

Using Stirling’s formula, the terms in the sum can be written 

iL n? 1 
Sy a 129 (0/70) see) ) 9.30 

Vimna/n—a/n—2a+1- ( aser ), a 

where 

g(x) = xlog 2 —log6 + (1 — z) log(1 — x) — (1 — 22) log(1 — 2x) + 2 log 3. 

Hence the sum is dominated by the terms where g(a/n) is close to the maxi- 
mum of g on [0,1/2]. We differentiate and find 

g (x) = log 2 — log(1 — x) + log(1 — 2z), 

and thus the equation g'(xo) = 0 has the unique root ro = 1/3 in (0,1/2). 
Moreover, 

and it follows that zo is the unique maximum point of g in the closed interval 
[0, 1/2]; the maximum value is thus 

g(x) = 3 log 2 — log6 + 2 log 2 — g log} + Slog3 =0 

and, consequently, g(x) < 0 for « £ ao. 
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Since 9(Zo) = g'(@o) = 0 and g"(xo) < 0, a Taylor expansion shows that if 

6 > 0 is small enough, then for some c, > 0 

g(t) <-ey(a@— 29), — |x — ao] < 26. (9.31) 

Furthermore, the set (0, 1/2] \ (ao — 6, 79 + 6) is compact, and g is continuous 
and negative there; hence, for some cp > 0, g(x) < —c2 when |x — zo| > 6. It 

follows that the terms in (9.29) with |a/n — xo| > 6 are exponentially small, 
and rewriting the sum of the remaining terms as an integral, we obtain from 

(9.29) and (9.30) 

An(\t}/n)er9l)/™ dt + o(1) 
(E H7)? Vv 27n 

where, for |x — zo| < 26, 

se em specs 

n(zo—6) 

2 

hale) = eee ame (I +(;)) =m + 0(G) 
with 

1 

rV1—2vV1 = Oe 

The variable substitution t = nzo + yn yields 

hte} s 

Aes bag alas | 
(EH*)? 2a 

For fixed y, An(zo + y/V/n + O(1/n)) > h(x0) = 2-1/29 and, by a Taylor 

expansion using g(zo) = g'(zo) = 0 again, 

ng(zo + y/Vn + O(1/n)) = $9" (xo)y” + 0(1)- 

5/n 
/ An (toty/Vnt+O(1/n)) ers rote/ vet O/P)) dt+o(1). 

-—b5f/n 

Consequently, the dominated convergence theorem, justified by (9.31), yields 

*2 co 

Gar > ya |, Meade Be dy 
n MT J—oo 

= h(z0)|9" (20) |-1/? = 3, 

as asserted by (9.26). 

The proof for r > 4 is similar, but requires a more complicated two-variable 

analysis, and we omit some details. First, using Stirling’s formula, the terms 

in the sum in (9.28) may be written (Exercise!) 

: ng(a/n,b/n) 
Pr he le essa ar een) 
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where 

g(x,y) = clog 2 — logr — log(r — 1) + (1+ 2 — y) log(r — 2) 

+ (1-2 —y) log(r — 3) + ylogy + 2(1 — y) log(1 — y) 
— (y — 2) log(y — x) — 2x log — (1 —  — y) log(1 — x — y) 
(G2 4) log a aay toe nT = yon rez) 

and (with a minor modification when z = 0, r = y or r+ y = 1) 

A(z,y) =y 771-9) *(y —2) F0 —2—y) 7. 
The partial derivatives of g are 

og = log 2 + log(r — 2) — log(r — 3) + log(y — x) — 2logr + log(1— 2x — y), 
Ox 

. = — log(r — 2) — log(r — 3) + logy — 2log(1 — y) — log(y — z) 
y 

+ log(1 — x — y) + log(r — 4 + 2y). 

It is easily verified (Exercise!) that (ro,yo) = (2(r — 2)/r(r — 1),2/r) is a 
critical point of g, and routine calculations show that g(xo, yo) = 0 and that 
the Hessian matrix D?g of second derivatives is negative definite at (Zo; Yo); 
so that g has a local maximum there, and Det(D?9(xo, yo)) = r3(r—1)?/4(r— 
2)(r —3). Moreover, with further effort (Frieze, Jerrum, Molloy, Robinson and 
Wormald 1996), it can be shown that (zo, yo) is the unique global maximum 
point of g in the domain {(z,y):0<24<y<1-—z}. 

The proof is now completed similarly to the case r = 3. Substituting first 
a = [rn], b = lyn] and then z = 2p + 1/V/n, y = yo + 22/Vn, one finally 
obtains, arguing as above, 

*2 co co x , 
eae ac zil. i h(wo, yo)em 3 (21122)D? 9(z0,v0)(21.22)' dey dy 

= h(z0, yo) Det(D?g(x0, yo)” 
T 

r—2’ 

which verifies (9.26). aS 

Remark 9.27. A similar, but even more complicated, variance calculation 
for the number of cycles of length I(n), where 1 (n) is a given sequence with 
I(n) + co but I(n) < n (with some margin), is given by Garmo (1999) 

9.5 CONTIGUITY OF RANDOM REGULAR GRAPHS 

We will in this section study different models of random regular (multi)graphs. 
Our main objective is to show that in many cases, different constructions yield 
random (multi)graphs that have distributions that are contiguous in the sense 
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of Section 9.6; thus, although the distributions are different, they are not too 
different. (More precisely, two contiguous random objects have the same 
qualitative properties; anything that holds a.a.s. for one of them holds a.a.s. 
for the other, but quantitative properties such as (asymptotical) probabilities 
may differ. A formal definition of contiguity is given in Section 9.6, together 
with some properties used below.) 

We denote contiguity of two random (multi)graphs GW and G?) by GD x 

G?). Recall that this is an asymptotic property as n > oo. 

Besides G(n,r) and G*(n,r) defined earlier, we will in this section also 

study the intermediate G'(n,r), which we define as a random regular multi- 

graph G*(n,r) conditioned to have no loops; thus G' (n,r) may have multiple 
edges but no loops. 

Moreover, we let H(n) denote a random Hamilton cycle on [n]; this is a 

random 2-regular graph, but it obviously has a different distribution than 

G(n, 2) or G*(n, 2) (except for some very small n). 

We will also study multigraphs obtained by adding several random regular 

(multi)graphs; we use the notation + for the union of independent random 

(multi)graphs on the same vertex set [n]. Note that the union of simple 
graphs, in general, is not a simple graph, because double edges may arise. 

Hence we also define the “simple sum” @ by defining G, @ G to be G| + @ 

conditioned on being simple. 

Example 9.28. G(n,1) + G(n,1) + G(n,1) denotes the random 3-regular 
multigraph obtained by taking independently three perfect matchings at ran- 

dom, while G(n,1) 6 G(n, 1) ® G(n, 1) denotes the random 3-regular graph 

obtained by taking three disjoint perfect matchings at random. 

After these preliminaries, we begin by observing that we have already stud- 

ied H(n) + G*(n,r — 2) in the proof of Theorem 9.23, where the distribution 

of this multigraph was denoted by Qn. If we let P, denote the distribution of 

G*(n,r), then dQ,,/dP, = H*/EH;, and Proposition 9.49 and Theorem 9.23 

show that P,, and Q, are contiguous, provided the limit W in Theorem 9.23 

satisfies EW = 1 and W >Oas. By Theorem 9.13, EW = 1 always holds, 

while W > 0 as. if and only if 6; > —1 for all 7; since 6; = —2(r — 1)~*, this 

holds for r > 4 but not for r = 3, in which case 6; = —1. We have proved the 

following. 

Theorem 9.29. If r > 4, then the random multigraphs H(n) + G*(n,r — 2) 

and G*(n,r) are contiguous. F) 

For r = 3, Theorem 9.29 does not hold; this can be seen directly because 

H(n) + G*(n, 1) never contains any loop, while G* (n,3) contains loops with 

positive limit probability. Indeed, this is the only obstacle, and we have the 

following substitute when r = 3. 

Theorem 9.30. The random cubic multigraphs H(n) + G* (n, 1) and G'(n, 3) 

are contiguous. 
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Proof. Let P, be the distribution of G’ (n, 3) and Q,, the distribution of H(n)+ 

G*(n,1). Then dQ,/dP, = H'/EH"', where H' = H(G'(n,3)), the number 
of Hamilton cycles in G'(n, 3). It follows from Theorem 9.23 by conditioning 

on Z1, = 0, using the same argument as in Remark 9.24, that 

iy, d Rn BAS 1/i 

Since this limit variable satisfies W’ > 0 a.s. and EW’ = 1, the result follows 

by Proposition 9.49. a 

If we condition on the multigraphs being simple in the last two theorems, 

using Proposition 9.50(i), we obtain the following corollary for graphs. (Note 
that r = 3 is no longer special.) 

Corollary 9.31. If r > 3, then H(n)®G(n,r—2) and G(n,r) are contiguous. 

& 

In particular, taking r = 3, we see that H(n) @ G(n,1) and G(n,3) are 
contiguous. Since G(n,1) is a perfect matching, and thus H(n) 6 G(n,1) by 

definition always contains a perfect matching, it follows that G(n,3) a.a.s. 
contains one too. This gives another proof of Corollary 9.21 for r = 3. A 
similar argument and induction yields Corollary 9.21 for any odd r > 3. 

We proceed to study more general unions, and begin with the small cycles 
in them. 

Theorem 9.32. Let G = G +---+Gn, where m > 1 and G,...,Gm are 
independent random regular (multi)graphs such that G; is a copy of either 
G*(n,ri) (with r; > 1) or H(n); in the latter case we let r; = 2. Let r = 
Ty +-+>+1m; thus G is an r-regular multigraph. Let further my be the 
number of H(n) among the G;. Then 

Z(G) ‘. Po(px), as nN — 00, 

jointly for all k > 1 with independent limits, with 

_ (r—1)* + (m— 1)(-1)* — my 
“siralhn, iaek PDK Saag 

Proof. We argue as we did for the special case H(n) + G* (n,r — 2) in the 
proof of Theorem 9.23. We now have m types and let bij = rir; when i F 7, 
bsaz g(r; — 1L)s thus aij = bis [ts any ss sss where Og is Kronecker’s delta. 
We have to exclude the cases when all edges in the cycle are of the same 
type and this type corresponds to a graph H(n), and we obtain as before 
Z(G) 4 Po(s1x), jointly for all k, with 

1 

2k 

Hk be 1. 

be = —(Tr(A*) - my). 
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Here A is the m x m matrix (aig) Pyar = (73 - Oi; )fy=1- Thus A+ I is the 

matrix eats which has rank 1 and therefore m — 1 vanishing eigenvalues; 

the last eigenvalue has to equal Tr(4 + /) =r. Hence, A has the eigenvalues 

r —1 and —1 (with multiplicity m — 1), and 

Tr(A*) = (r - 1)* + (m — 1)(-1)F. i 

Before proving further instances of contiguity, let us look at a counter- 

example. 

Example 9.33. Consider the three different 2-regular multigraphs G* (n, 2), 

H(n), and G(n,1) + G(n,1). Theorem 9.32 shows that in all three cases, 

Zr — Po(ux) (jointly for all k), with 

Eo for G*(n, 2), 

— J 1+(-1)* 
UA tae TOT Malt), 1) G(n, 1), 

0, for H(n). 

It follows that the conclusion of Corollary 9.54 is violated for any pair of these 

three random 2-regular multigraphs; hence no two of them are contiguous. 

This remains true if we condition on the multigraphs being simple, since 

we then still have Z, —> Po(y,) for k > 3, which is just as good (or bad) for 

the application of Corollary 9.54. For example, G(n, 2) and G(n, 1) ® G(n, 1) 

are not contiguous. 

We will see below (Theorem 9.43) that such counter-examples occur only 

for 2-regular multi-graphs; in all instances of Theorem 9.32 with r > 3, G is 

contiguous to either G*(n,r) or G'(n,r). 

One conceivable method to prove this result is to follow the proofs of 

Theorems 9.29 and 9.30. We thus try to apply Theorem 9.12 with Xin = 

Z;(G*(n,r)) and Y, equal to the number of decompositions of the random 

multigraph G*(n,r) as a union G; + --- + Gm, where G; is any r;-regular 

multigraph when G; is of the type G*(n, r;), and G; is a Hamilton cycle when 

G; is of the type H(n). The measure Q,, in Lemma 9.17 then is the distribution 

of G. 

Condition (Al) holds by Theorem 9.5, with Ax = g(r — 1)*, and (A2’) 

holds by Theorem 9.32, with yx = 3: ((r —1)* + (m—1)(-1)* - mu). Hence 

(9.32) 
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= Solem ze =)! Simm (—G) 
= —4((m - 1)? + my) log(1 - —) + (m ~ Lamy log(1 + ss) 
—3((m — 1)? + mj) log(r — 2) + (m — 1)my log(r) 
+ $(m — 1— my)? log(r — 1). 

Consequently, assuming r > 3, (A3) holds, and (A4) says 

BY? (r — 1)(m-1-mu)?/2 p(m—1)mx 

(EY,,)? (r — 2)((m—1)?+mj, )/2 (9.33) 

If (9.33) holds, then Theorem 9.12 yields Y,/EYp 4, W for a certain 
random variable W with EW = 1. It is easily seen that py, > 0 and thus 
6x > —1 for all k > 1, except when k = 1 and all constituents G; are either 
G*(n,1) = G(n,1) or H(n); in this case loops clearly are impossible. Except 
in the loopless case we thus have W > 0 a.s., and Proposition 9.49 shows that 
G and G*(n,r) are contiguous; in the loopless case we condition on Xin = 0, 
and obtain as in the proof of Theorem 9.30 that G and G'(n,r) are contiguous. 

In other words, we have shown that contiguity holds in all cases when 
(9.33) holds. While it seems quite difficult to prove (9.33) in general by present 
methods, it has been verified in a number of special cases by arguments similar 
to the proof of Lemma 9.10 above. (Some of the references below actually treat 
only the corresponding results for G(n,r), but then the case G* (n,r) can be 
shown by similar methods.) 

We begin with the simplest case. 

Theorem 9.34. If r > 3, then G*(n,r — 1) +G*(n,1) x G (n,r). 

Proof. In this case, the number Y,, of decompositions equals the number of 
perfect matchings in G*(n,r), and the condition (9.33) is 

EY, (r —1)}/2 

This has been proved by Bollobas and McKay (1986), which completes the 
proof. & 

Another case is the following theorem, proved by Robalewska (1996). 
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Theorem 9.35. If r > 3, then G*(n,r — 2) + G*(n,2) & G*(n,r). 

Proof. This is proved as Theorem 9.34; we now have to verify 

a ze (r - Ly 

(EY,,)2 (r = 2)2/2? 
(9.35) 

where Y,, is the number of 2-factors of G*(n,r), that is, the number of 2- 
regular submultigraphs. This can be verified by long calculations similar to 
those in the proof of Lemma 9.10; we omit the details (Robalewska 1996). 

As a simple application, we obtain the following theorem which gives partial 

justification for the intuitive feeling that increasing the degree of a random 

regular graph adds edges and makes it easier to, for example, find a specified 

subgraph. (Cf. Section 1.3, where other models of random graphs are covered.) 

Theorem 9.36. Let 2<r<-s. 

(i) Any increasing property that holds a.a.s. for G*(n,r) holds a.a.s. for 

G*(n, s) too. 

(ii) Any increasing property that holds a.a.s. for G(n,r) holds a.a.s. for 

G(n, s) too. 

Proof. First consider even n only. Any increasing property that holds a.a.s. 

for G*(n,r) holds a.a.s. for G* (n,r) + G*(n, 1) too; hence it holds a.a.s. also 
for G*(n,r +1) by Theorem 9.34. The assertion (i) follows by induction. For 
odd n, r and s have to be even, and we argue using Theorem 9.35 instead. 

The statement (ii) is proved similarly, using G(n,r) @G(n, 1) = G(n,r +1) 
and G(n,r) ® G(n,2) ~ G(n,r + 2), which follow from Theorem 9.34 and 
Theorem 9.35 by conditioning. if 

Remark 9.37. Theorem 9.36 is not true for r = 1. For example, G*(n,1) = 
G(n, 1) contains always a perfect matching (in fact, it is one), while G*(n, 2) 

or G(n,2) contains a perfect matching only if it contains no cycles of odd 

length, and it follows easily from Theorem 9.5 that the probability of this 

tends to 0. 

Remark 9.38. Unlike the simple monotonicity result in Lemma 1.10 for 

G(n, p) and G(n, M), it is, in general, not true that if P is an increasing prop- 

erty and 2 < r < s, then P(G*(n,r) satisfies P) < P(G*(n, s) satisfies P). 

A counter-example is obtained if we take r = 2, s = 3, n = 2 and let 

P be the property that the multigraph contains a multiple edge. Then 

P(G* (2, 2) satisfies P) = 2/3 while P(G* (2,3) satisfies P) = 2/5. We do not 

know whether the corresponding statement for the random graphs G(n,r) 

and G(n,s) also may fail; nor do we know if the statement is always true 

asymptotically, taking limsup,_,,. of both sides. 
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Remark 9.39. The original proof by Robinson and Wormald (1992) that 

a Hamilton cycle a.a.s. exists in G(n,3) was by (a version of) the method 

used in the proof of Theorem 9.20 above. For G(n,r), r > 4 (Robinson 

and Wormald 1994), where the variance calculation as seen above is much 

harder, they preferred a slightly different method, establishing (implicitly) 

Theorem 9.34 and Theorem 9.36 for n even by the method above, which uses 

the easier variance estimate (9.34) for the number of perfect matchings. The 

case r > 4 then follows from the case r = 3 (with an extra argument when n 

is odd). 

We continue with further instances of contiguity. 

Theorem 9.40. G*(n, 1) + G*(n, 1) + G*(n,1) & G(n, 3). 

Proof. This time the condition (9.33) is 

EY? 
(EY,)? 

> 4, 

where Y,, is the number of partitions of the edge set of G*(n,3) into three 

disjoint perfect matchings. This is verified by Janson (1995b) and Molloy, 

Robalewska, Robinson and Wormald (1997). 5 

Theorem 9.41. H(n) + H(n) = G'(n, 4). 

Proof. This time (9.33) says 

EY2 
(E Y,,)? > v24, 

where Y, is the number of partitions of the edge set of G*(n,4) into two 
Hamilton cycles. This is verified by Kim and Wormald (2000+). a 

The theorems above are so far the only instances where (9.33) has been ver- 
ified. Nevertheless, by combining them, we obtain contiguity in all remaining 
cases too. We begin with the case of G*(n,r;) + G* (n,r2) 

Lemma 9.42. If r; > 1, r2 >1 andr, +r2 > 3, then G* (n,r1)+G* (n,r2) & 
G*(n,r1 +72). 

Proof. We may assume r; > rp. The cases r> = 1 and 2 are Theorems 9.34 
and 9.35. For r; > re > 3, we use induction on rz and assume that the result 
is true for smaller rz (and any r;). 

We observe first that if G, + Gi and Gp = Gb, then G] + Gz + Gi + G33 
this is a consequence of Proposition 9.50(ii)(iii). Recall also that contiguity is 
an equivalence relation. 
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Hence, ifr; > rz > 3 and at least one of them is odd (which forces n even), 

using Theorem 9.34 twice and the induction hypothesis, 

G* (n,7r1) + G* (n, rz) & G* (n, 71) + G* (n, 1) + G* (n,r2 — 1) 

= G* (n,r; +1) + G*(n,r2 — 1) 

= G"(n,r1 +12), 

which verifies the induction step. If both r; and r2 are even (which allows 

odd n too), we argue similarly using Theorem 9.35 instead. ba) 

Finally, we prove the full result. 

Theorem 9.43. Let G be a union as in Theorem 9.32, and assume that r > 

3. Then G ts contiguous to G*(n,r) or G'(n,r) (the latter in the cases in 
which each G; is either G*(n,1) or H(n) and thus loops are impossible). 

Proof. Consider first the case in which all constituents are G* (n, 1) or H(n). If 

there are constituents of both these types we begin by combining one G* (n, 1) 

and one H(n) using Theorem 9.30; if all are G* (n, 1), and there thus are r > 3 

of them, we combine three of them using Theorem 9.40; if all are H(n) we 
combine two of them using Theorem 9.41. In all three subcases this yields a 

new sum, contiguous to the original one, with one constituent G’(n,s) (s =3 
or 4). Now we observe that by Theorem 9.34 and conditioning on no loops, 

using Proposition 9.50(i), G'(n,s) + G*(n,1) & G(n,s + 1) when s > 2; 
similarly by Theorem 9.29 and conditioning, G'(n,s) + H(n) ~ G'(n,s + 2) 
when s > 2. Consequently we may absorb all remaining G*(n,1) and H(n) 
one by one into the G'(n, s); eventually we reach G'(n,r). 

Secondly, if there is at least one constituent G*(n,r;) with r; > 2, we 

may absorb all other constituents into it one by one using Lemma 9.42 and 

Theorem 9.29; eventually we reach G*(n,r). a 

Corollary 9.44. Let G=G, 6...® Gm, where m > 1 and Gini Gare 

independent random regular graphs such that G; is a copy of either G(n, ri) 

(with r; > 1) or H(n), in the latter case we let ry = 2. Letr =11 +--+ +Tm; 

thus G is an r-regular graph. If r > 3, then G % G(n,r). 

Proof. By Theorem 9.43, conditioning on the multigraphs being simple; see 

Proposition 9.50(i). | 

Remark 9.45. Another model (with a different distribution) of a random 2- 

regular (multi)graph is obtained by taking a (uniformly distributed) random 

permutation 7 of [n] and drawing the n edges im(i). We denote this model by 

P(n). 

a is well known (and easily shown) that for this model, the cycle counts 

Z, —> Po(1/k) (with independent limits); hence Corollary 9.54 shows that 

P(n) is not contiguous to any of the three 2-regular multigraphs considered 

in Example 9.33. 
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On the other hand, we conjecture that Theorem 9.43 can be extended to 

allow summands P(n) too. Indeed, by an argument similar to the proof of 

Theorem 9.29, P(n) + G*(n,r — 2) & G*(n,r) and by induction as above, the 

conjecture holds at least when there is one summand G*(n,r;). To settle the 

remaining cases, with unions of H(n) and P(n) only, it would suffice to show 

that H(n) + P(m) and P(n) + P(n) both are contiguous to G*(n, 4), but this 
remains an open problem. 

It is not difficult to extend the small cycle count Theorem 9.32 to allow also 

mp summands P(n), with my replaced by my — mp in the formula for pp. 

Hence condition (9.33) extends too, with the same modification, but it has 

not yet been verified for the relevant cases. (The right-hand sides of (9.33) 
are \/3/2 and 39/22-13/2, respectively.) 

The model P(n) + --- + P(n) of a random 2d-regular multigraph has occa- 
sionally been used. A proof of the conjecture would imply that results, in the 
form of a.a.s. properties, that can be proved for this model hold for G* (n, 2d) 
and G(n, 2d) too. 

9.6 A BRIEF COURSE IN CONTIGUITY 

We end this chapter with a discussion of contiguity in general. The purpose 
of this purely probabilistic section is to provide an easily accessible reference 
for some facts used in the preceding section. Readers who are either experts 
in probability theory or completely uninterested in it may skip this section. 

The notion of contiguity was introduced in statistics by Le Cam (1960); see 
also Le Cam (1969, 1986) and Roussas (1972). It is defined as an equivalence 
relation among sequences of probability measures on a sequence of space (12,). 

Definition. Let (P,,)f° and (Qn)? be two sequences of probability measures, 
such that for each n, P, and Q, both are defined on the same measurable 
space (Qn,F,). We then say that the sequences are contiguous if for every 
sequence of measurable sets An C Qn, 

jim Pa(An) =0 <> lim Qn(An) =0. 

There are many equivalent definitions of contiguity; some are given below 
and several others are given in the references given above. 

Contiguity is mainly used in statistics, but it seems to be a natural and 
useful property also in the study of random combinatorial structures. In 
that case, typically, Q, is a (finite) set of some combinatorial objects of size 
n, Fn is the o-field of all subsets of Q,, and P, and Qn are probability 
measures corresponding to two different ways of selecting an element of 2, 
“at random”. In this connection, we also say that two random objects X,, 
and Y,, depending on a parameter n, are contiguous if the corresponding 
sequences of distributions (C(X,)) and (L(Y;)) are contiguous. (This entails 
that X, and Y,, take values in a common space 22,,.) 
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Several examples of contiguity for random regular graphs are given earlier 

in this chapter. Another combinatorial example was given by Winkler (1991), 

who showed that for two-dimensional partial orders, the uniform distribution 

is contiguous to the distribution of the intersection of two independent random 

linear orders. 

It is important to realize that contiguity is an asymptotic property of two 

sequences of probability measures; if we say that two probability measures (or 

distributions, or random models) are contiguous, we really mean that there 

is some parameter n (although perhaps not explicitly mentioned) that tends 

to infinity. If, as is often useful, we informally regard asymptotic results as 

statements about a fictitious infinite limiting model, then contiguity can be 

interpreted as mutual absolute continuity of the two probability measures. (In 

this context it may be observed that in the special case that Q,, Fn, Py and 

Qn do not depend on n, contiguity reduces to mutual absolute continuity.) 

Note also that the definition says nothing about the rates of convergence of 

P,(An) and Qn(An); these may be quite different. It is, nevertheless, possible 
to restate the definition in terms of estimates, which, however, use unknown 

functions to relate the rates. (In certain examples, it may, of course, be possi- 

ble to replace these by explicit functions.) We given two such reformulations, 

which we think may be useful for a better understanding the contiguity con- 

cept. 

Proposition 9.46. The sequences (P,) and (Q,) are contiguous if and only 

if there exist a sequence En — 0 and a continuous function ¢ : [0,1] > [0,1] 
with y(0) = 0, such that for every n and An € Fn 

Pn(An) < En + ~(Qn(An)) and Qn(An) < En + (Pn(An))- 

Proof. If (Pn) and (Qn) are contiguous, then for every € > 0 there exist n(é) 

and 6(€) such that n > n(e) and Pp(An) < 6(€) > Qn(An) < €, and similarly 

with P,, and Q,, interchanged. The existence of (€,) and y now follows easily 

(Exercise!). The converse is obvious. & 

For the next results, we recall that each Q, has a Lebesgue decomposition 

Qn = Q2+Q5 where Q2 is absolutely continuous with respect to Pn, while QF, 

and P,, are mutually singular, and that there exists a function dQ,/dP, > 0 

(the Radon—Nikodym derivative) such that 

dQn 
‘(A = — dP), TVA ea ey, Qn ( ) ah dP, 

(If 2, is countable (e.g., finite), the measures are given by probability func- 

tions ppn(w) and qn(w); in this case Q;, is the restriction of Qn to the set 

{w : pn(w) = 0}, while dQ,/dPa = Qn(w)/Pn(w) when pp(w) # 0 (and 

arbitrary otherwise).) 
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Proposition 9.47. The sequences (P,) and (Qn) are contiguous if and only 

if for every « > 0 there exist n(€) and K(e), such that for every n > n(e) 
there exists a set By € Fn with P,(BS) <e€ and Q(B) <€, such that 

Sepa das asl Fa fle Castle! gad Pe (9.36) 

Remark 9.48. Here we may replace (9.36) by the equivalent condition that 

the restriction of Q, to B, is absolutely continuous with respect to P,, with 

Kier ts a < K(e) Pi aeons 

Proof. Suppose that (P,,) and (Q,,) are contiguous. Fix a large number K, let 
C, be a set such that P,,(C,) = 0 = Q§ (CS) (this is possible by the definition 
of singular measures), and define 

Dr=YwiewimcidQ;/dRae> ik}. 

Then 

1 dQn 1 1 
= <= —— P= —O7(D Se P(OnUDn) = ff dPa< ef Sota, = 2O%Ds) < % 

Hence Proposition 9.46 yields Qn(CnUDn) < En +y(K—'). Furthermore, for 
BMV eA Cpu )e. 

Qn(An) = Qn (An) ae he dP, 

We similarly define C;, and D/, with the roles of P, and Q,, interchanged, and 
let B, = (ChUD,UC;,UD?,)°. Then P, (BS), Qn(BS) < K-!+e€n+(K7—}), 
which is less than € for n > n(e) if n(e) and K = K(e) are large enough. 

Conversely, if such sets B, exist, then for large n and every An € Fn, 

Qn(An) < Qn(AnN Bn) + Qn(BS) < K(e€)Pp(An) +e. 

In particular, if P,(An) > 0, then limsupQ,n(An) < e, for every € > 0, and 
thus Qn(An) > 0. By symmetry, we obtain also the converse implication and 
thus the sequences are contiguous. & 

For the next result, we consider for simplicity only the case in which 
dQn/dPp converges in distribution. 

Proposition 9.49. Suppose that Ln, = dQn /dP,,, regarded as a random vari- 
able on (Qn, Fn, Pn), converges in distribution to some random variable L as 
n —> co. Then (Pn) and (Qn) are contiguous if and only if L > 0 a.s. and 
| el Be Wh 
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Proof. Suppose that (P,) and (Q,) are contiguous. Let € > 0, and let K(e) 

and B,, n > n(e), be as in Proposition 9.47. In particular, by Remark 9.48, 
Ke = b= Kile) on 8, whe 

P(L =0) < P(L < K(e)~*) < limsup P,, (L, < K(e)“) 
n— co 

<— limsupiatp,) — . 
n—co 

; d ; 
Moreover, since L, A K(e) > L A K(e) as n > oo, dominated convergence 

yields 

EL>E(LAK(e))= lim | L,AK(e)dPy 
n—-oco Q 

> lim sup | Lor, =—umsip ,,(b,) 2 le. 
Bar n—-+co n—->co 

Since ¢€ is arbitrary, and by Fatou’s lemma EL < liminf EL, = 1, this shows 

that P(L = 0) =O and EL =1. 
Conversely, suppose that P(ZL = 0) = 0 and EL = 1, and let e > 0. There 

exists 6 > 0 such that P(L < 6) < €; we may furthermore choose 6 such that 
5 <1 and P(L = 6) =0. Then P;(Ln < 5) > P(L < 4), and thus Pa(In < 
6) < e for large n, which also yields Q9(Ln < 6) = Ses Lethe brne. 

We can also find K > 1/e such that E(L A K) > 1—€ and thus 

lim | (Lyx A K)dP, =E(LA K) >1-e. 
n—>co 

Hence, for large n, say n > n(e€), 

e>1- f (Ln AK) dPy = QU) +Q4(%n) = fn AK) Ap 
Qa Qn 

= Q4(n) + f (Ln — Ln AK) GPa > Q5(On) + 3 (he saa 
(Qe Ln>2K 

= Q5 (Qn) + $Q%(Ln > 2K). 

Let N,, be a set with P,(Nn) = Q%(N¢) = 0, and define B, = {we NE:d< 

Ln < 2K}. Then, for n > n(é), 

P,, (BS) = Pa(Ln < 6) + Pa(Ln > 2K) < e+ [% dP Zhe <a 2e 

and 

Qn(BS) = Q5,(Qn) + Q2(Ln < 5) + Qn(Ln > 2K) < de. 

Hence Proposition 9.47 implies that (P,) and (Qn) are contiguous. Eo 
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Contiguity is preserved by some natural operations, as the next proposi- 

tion shows. In (ii) and (iii) we suppose that (Q/,,F/,) is another sequence of 

measure spaces. 

Proposition 9.50. Suppose that (P,) and (Q,) are contiguous. 

(i) If (An) ts any sequence of events such that liminf P,(A,) > 0, then the 

conditioned measures P,(-| An) and Qn(-| An) are contiguous. 

(ii) If fr: Qn > O!, are measurable functions, then the induced measures 

P,of,' and Q,o° f,' on Q!, are contiguous. 

(ili) If P, and Q}, are contiguous probability measures on 0, then the prod- 

uct measures P, x P! and Qn X Q}, on Qn x N!, are contiguous. 

Proof. (i) and (ii) follow easily from the definition (note that in (i), also 

lim inf Q,(An) > 0 by the contiguity); for (iii) it is perhaps simplest to use 

Proposition 9.47 with Remark 9.48. We omit the details (Exercise!). & 

Contiguity of two sequences (P,) and (Q;,) has several useful consequences 
for limit theorems. The definition says that any property which holds un- 
der P,, with probability tending to 1 as n + oo (i.e., asymptotically almost 
surely) also holds under Qn with probability tending to 1 (and conversely). 
An immediate consequence is that if X, are any random variables such that 
X,, under P, converges in probability to some constant c, then X,, converges 
in probability to the same constant c also under Q,. 

For convergence in distribution we need some further information. In the 
next two results we suppose that S and S’ are two complete separable metric 
spaces, for example R, R? or the space R© of infinite sequences. (See Billings- 
ley (1968) for details on convergence in metric spaces.) We use COC PY 6 
denote the distribution of X under P. 

In the first result we assume joint convergence under P,, of the variables 
X, and the Radon—Nikodym derivatives dQ, jak... 

Proposition 9.51. Suppose that (P,) and (Qn) are contiguous, and let L, = 
dQn/dP,. Suppose further that X, are random variables defined on Q, with 
values in S, such that L((Xn, Ln) | Pn) + L(X,L) for some random variables 
X and L (with values in S and R, respectively), defined on a probability 
space (Q,F,P). Then LIX, | Qn) + L(X | Q), where dQ = LdP (t.e., 
Q(A) =], badP, Ae F). 

Proof. Note that {LdP = 1 by Proposition 9.49, so Q is a probability 
measure. Let f be a bounded continuous real-valued function on S. Then 
L£(f(Xn)Ln | Pn) + L(f(X)L). If f > 0, then Fatou’s lemma yields 

lim inf ‘h eile: / f(X)LaP. (9.37) 
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Taking first f = 1, we see that 

lim inf Q® = lim inf f Ly > [tap =]; (9.38) 
N—- Co n 7 —? co 

and thus [L,dP, + [LdP. Hence it follows, by adding a constant to f, 
that (9.37) actually holds for every bounded continuous f. But then we may 
also substitute —f in (9.37), and obtain 

[ #%0)4Q% = f #%n)in dP, + [ seotar= [ 5249. 0.39) 

Moreover, by (9.38), Q§ (Qn) = 1— Q2(Q,n) > 0, and we obtain 

| #n)dQn > f se) a0 
for every such f, which gives the result. Le] 

The next result gives a necessary condition for contiguity. 

Proposition 9.52. Suppose that (P,) and (Q,) are contiguous, and that Xp, 

are random variables defined on Q, with values in S. Suppose further that 

Xn converges in distribution under both P, and Qn: 

LUX | Fy) > Px and E(X,, | Qa) > Ox 

for two probability measures Px andQx on S. Then Px and Q x are mutually 

absolutely continuous. 

Proof. Let Ln = dQn/dPn. Since EL, < 1, the sequence (Ly) is tight and we 

may, by restricting attention to a subsequence, assume that L((Xn, Ln) | Pn) 
converges. Proposition 9.51 now implies that Q x is absolutely continuous 

with respect to Px. The converse holds by symmetry. | 

We combine Proposition 9.52 with the following standard result. (In fact, 

the given conditions are equivalent to mutual absolute continuity.) 

Proposition 9.53. Suppose that the measure [[; Po(A;) and []; Po(\j) on 

Z@~ are mutually absolutely continuous. Then 

De eX = 0, 

and 
(Ai — Aji)? So aco 

Proof. The first conclusion is trivial. For the second, we may use the Hellinger 

integral, defined for any two probability measures and p’' on the same space 

by 1G 1 i= ip emee Ve dy, where v is any o-finite measure with p, pp’ < v. 
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It is easily seen that p and p’ are mutually singular if and only if 7(y, py’) = 0, 

and that in our case 

7, (II Poth) [Pot = [[ 7(PoQ:), Po) = Lee VXL2 

Hence the measures are mutually singular unless 

Oo Ws Nem 4/22) =e) ag) aee 4 

> Fi — 4)?/s + 2). & 

Corollary 9.54. Suppose that (P,) and (Qn) are contiguous, and that Xxn, 

k > 1, are integer-valued random variables defined on 2,,. Suppose further 

that Xzn 1s asymptotically Poisson distributed under both P, and Qn: 

Li Xen | Pa) = Po(Ax) and Exes | Qn) => Po();,) 

for some Xx and Xj, for each k, as n - oo, and that these hold jointly for all 

k with independent limits, for both P, and Qn. Then 

(Ai — Aj)? 
DL BEB te es 
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ZLero-One Laws 

10.1 PRELIMINARIES 

Most of the problems we have studied so far followed a similar scheme: given 

a graph property A estimate the asymptotic probability that A holds for a 

random graph G(n,p), where the edge probability p = p(n) varies. In this 

chapter we consider questions of a different type: we fix a function p = p(n) 

and study the asymptotic behavior of the probability that G(n,p) has A, 
where A ranges over a prescribed class of graph properties 2. Thus, in the 

following section we identify functions p = p(n) for which the zero-one law 

holds, that is, the probability that G(n,p) has A tends to either zero or 

one as n —> oo for every property A from %. If p = p(n) is close to the 

threshold function of some property from 2%, then the behavior of G(n, p) 

becomes more complicated. In particular, another phenomenon may happen: 

for each A € & the probability that G(n, p) has A converges (but, maybe, to 

a non-trivial limit). Several instances of p(n) satisfying such a weak zero-one 

law are given in Section 10.3. Then we introduce sum schemes of models — a 

fairly general approach which can be used to show zero-one laws for random 

discrete structures. Finally, we ask when the behavior of the probability that 

G(n,p) has some property can be effectively determined. In particular, if for 

a given function p = p(n), there is a procedure which separates all properties 

in 2% which hold a.a.s. from those which a.a.s. do not hold for G(n, p). 

In order to start our considerations we need to decide first what class of 

graph properties 2% we are going to study. Indeed, it would be naive to hope 

that for some non-trivial p = p(n) the probability that G(n, p) has A converges 

271 
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for every graph property A; the probability that G(n,p) has an even number 

of vertices oscillates between 0 and | as n — oo, no matter what function 

p = p(n) we choose. Hence, we have to find a class of properties 2 which is 

wide enough to include many interesting graph properties yet does not contain 

“odd” properties such as “the number of vertices of a graph is even”. 

A natural way of describing different families of properties comes from 

mathematical logic: we specify a language L, treat all graphs as models of L 

and consider the class of all properties which can be written as sentences of L. 

Therefore, in this chapter we employ notions and facts from mathematical 

logic which have not appeared in this book so far. In the remaining part 

of this section, we list basic terminology and results we will need for our 
considerations. 

We will deal only with first-order languages, whose vocabulary, besides 

Boolean symbols 7, A, V, quantifiers V, 3, and brackets, consists of a countable 

number of logical variables denoted by z,y,z,..., possibly with indices, the 

binary predicate of equality “=”, and a finite number of additional predicates. 

Two such languages will be of special interest to us: the first-order language 

of graphs L., which contains only one additional predicate “~”, and the first- 

order language of linearly ordered graphs L°'¢, which, besides “~”, contains 

also a binary predicate “<”. The expression “z ~ y” is interpreted as “the 
vertices x and y are adjacent”, and “<” should be understood as the standard 
ordering relation in the set of natural numbers. Thus, in this part of the 
book, graphs defined on subsets of natural numbers are viewed as models of 
the languages DL. and L°"4. Consequently, we will be mainly concerned with 
graph properties which can be expressed by sentences of Ly or L°'4. For 
example, the property that a graph contains a cycle of length 1729, and the 
property that any two vertices of a graph are connected by path of length 
123 can be expressed by sentences in both L~ and L°™4. The property that a 
graph contains a “monotone” path of length two, 

dpdydz(z SyAySzArr~yAy~z), 

can be expressed in L°™ but not in L.. Note that the symbol “€” is not a 
part of the vocabulary described above and consequently all logical variables 
of first-order languages must be interpreted as elements of a model, in our 
case the vertices of a graph. Hence, there is no obvious way to write in LY 
(or L°'*) that a graph is connected; as a matter of fact we will soon see that 
this property cannot be stated in LL. Note also that neither L. nor Vee 
contains logical constants, so we cannot use the labels of vertices, and no 
sentence of L. (or L°™) can express the property which, for a graph G with 
vertex set [n], means: “vertices [n/2] and |n/2] +1 are adjacent”. In Lee 
we can implicitly define vertices 1 and n as those without predecessors and 
successors, respectively, so it is possible to say that, for example, vertex 7 is 
adjacent to vertex n — 5; in L. we cannot do even that. 

Finally, the quantifier depth qd(w) of a formula y tells us, roughly speaking, 
how many times quantifiers are nested inside w. More formally, the quantifier 
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depth can be defined recursively with respect to the structure of a formula by 
setting: 

© qd(y) =0 for a formula w without quantifiers: 

° qd(v) = qd(-y); 

e qd(~) = max;{qd(y;)} if either ~ = Vv; or v = A; Vis 

° qd(s,¥(x)) = qd(¥(x)) + 1 and qd(Vz%(x)) = qd(w(z)) + 1. 

Thus, for example, the property that a graph contains a cycle of length six 

but none of length four can be in an obvious way written as a sentence of L~ 

of quantifier depth six. However, it is not hard to see that the same property 

can be expressed by the following slightly more complicated sentence of LW. 

of quantifier depth four: 

eons Vee Vary (A(721 = 273 AN7%2 = 274 AT ~%2 N22 ~ 73 

IN G3 SS La INL ~ £4)) 

A eocoEe (721 =e Not — o5 \ 30 23 (10.1) 

NA, et = ta Am wera NE ta ht, 73) 

Nap (ote = 4 Nit 24 ATs ~ Nes ~~) 

A 37, (a3 =F, IN ai CS IN ay AI Sey 4))) : 

If a model M satisfies the property described by a sentence w, we sometimes 

say that M is a model for w, and write M — w. For a model M of L, we 

denote by Tht (M ), or simply by Thx(M), the set of all sentences of L of 

quantifier depth at most k which hold for M, that is, 

Th,(M) = Thy(M) = {py € L:M - pand qd(p) <k}. 

Let us also mention that for any first-order language L and every k there 

are only finite number of non-equivalent properties expressed by sentences 

from Tht (M), that is, if for each such property we choose one sentence which 

describes it, then the set Tht (M) becomes finite. 

10.2 EHRENFEUCHT GAMES AND ZERO-ONE LAWS 

In the study of combinatorial properties of discrete structures viewed as mod- 

els of some languages it is sometimes convenient to use elements of the theory 

of games. In many cases such an approach provides combinatorial insight 

into otherwise purely logical considerations and often simplifies the statement 

of the problem. For analysis of first-order theories the Ehrenfeucht game, 

introduced by Ehrenfeucht (1961), has proved to be particularly useful. 
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Ehrenfeucht games 

Let M’ and M” denote two models of a first-order language L and let k be a 

natural number. The k-round Ehrenfeucht game, denoted by Ehr,(M', M"), 

is a perfect information game, played on models M’ and M”" by two players. 

In each round the first player chooses one of the models and an element in it. 

The second player must answer by picking an element in the other model. This 

procedure is repeated k times until, at the end of the game, two sequences 

(zi,...,@,) and (x],...,2)) of elements of M' and M", respectively, are 
obtained. Let us emphasize that in each step of the game the first player 

is free to change the model from which he picks an element; if in the first 

step he decides to choose x} from M’, in the second round he might either 

pick zy € M", or move again at M’. Thus, some of the vertices r},..., 2}, 

might have been selected by the first player and the others by the second 

one. The second player wins Ehr;,(M’, M”) if the substructures spanned by 
the sequences (zj,...,2,,) and (x/,...,2,) are isomorphic as models of L; 

otherwise the game goes to the first player. The isomorphism should map 2; 

into z;’, thus, in the case of the language L~ the second player should assure 

that for all 1 <i,7 < k we have z; = x, if and only if x/ = zi, and z; ~ x’, if 

and only if xj! ~ x, whereas in the case of L°4 we additionally require that 
av, < 2; if and only if x7 < zi. 

Example 10.1. Let ¢% be the property that a graph has diameter at most 
two, that is, 

VaVys2(@ =yVar~yV(ax~zAzr~y)), 

and suppose that we have two graphs G’ and G” such that w holds for G’ 
but not for G’’. It is not hard to see that in such a case the first player has a 
sure win in the game Ehr3(G’,G”’). In the first two moves he should pick two 
vertices ry and x3 which are not connected by a path of length at most two 
in G". The second player must answer by selecting non-adjacent vertices nl 
and x} in G'. Then, in his last move, the first player should choose as rz a 
common neighbor of vertices x and x in G’, so the second player cannot 
duplicate his move in G" because of the choice of x!’ and 2’. 

Example 10.2. Let G’ and G” be two graphs such that in G’ the shortest 
cycle has length six whereas G" contains no cycles of length smaller than 
seven. Then, although the first player cannot build in G” a cycle of length six 
in four moves, nonetheless he can win Ehr4(G’,G”). Indeed, in the first three 
moves he should choose vertices x, 24,24 which belong to a cycle of length 
six in G’ and are such that the distance between any two of them is two. 
In response to that the second player must pick three non-adjacent vertices 
z},@5,25 in G” but, since G” contains no short cycles, either all three of 
them are adjacent to one vertex, or the distance between at least one pair 
of vertices, say xy and x4, must be larger than two. In either case the first 
player wins if he chooses as x, the common neighbor of Ly and 24. 
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One might suspect that in Example 10.1 the strategy of the first player, who 

in the first two rounds picks elements from G” and in the third one switches 
to G’, has something to do with the fact that in the sentence ~ two general 
quantifiers are followed by the existential one. Furthermore, the reader patient 

enough to study the formula (10.1) can easily notice that the strategy of the 

first player in Example 10.2 in a way “reflects” the structure of the sentence 

(10.1) of depth four which holds for G’ but not for G’’. More generally, it is 

not hard to see that if the first player can win Ehr;(M’, M") then, knowing 
his winning strategy, one can write down a sentence w of quantifier depth at 

most k which holds for M' but not for M”. On the other hand, if there is a 

sentence of quantifier depth at most k which holds for only one of M’ and M", 

the first player can use it to create his winning strategy for Ehr;,(M', M"). 

This observation, stated below as Lemma 10.3, can be used to replace an 

argument from mathematical logic by purely combinatorial considerations. 

Lemma 10.3. The second player has a winning strategy in the game 

Ehr;,(M', M") if and only tf Thy(M’) = Thy(M"). a 

One can use the above fact to prove that certain properties cannot be 

expressed in the first-order language of graphs. We give just one such example; 

the reader can easily show using a similar argument that the properties that 

a graph contains a cycle, or a perfect matching, or that it is bipartite, or, 

finally, that it contains an even number of vertices, cannot be expressed in 

the first-order language of graph theory (Exercise!). 

Corollary 10.4. The property that a graph is connected cannot be written as 

a sentence from LW. 

Proof. Suppose that there is a sentence w in L~ of quantifier depth k, which 

says that a graph is connected. Furthermore, let G’ be a cycle of length 

3*+1 and let G” consist of two copies of G’. Then there exists a simple 
winning strategy for the second player in Ehr,(G’,G”’): if in the i-th move 

the first player picks a vertex which is within distance 3*~* from some vertex 
chosen previously, the second player should select a “corresponding” vertex 

in the second model, otherwise he may answer with any vertex which lies 

far enough from vertices already chosen. The reader is encouraged to verify 

that this strategy really works, i.e., that, basically, if the distances between 

z, and x5, and x and zy are both larger than 3*-1, then the first player 

cannot effectively use the fact that the distances might be different to win the 

game Ehr;(G’,G"). Thus, Thy(G’) = Th, (G"), contradicting the fact that 

w € Th,(G’) while p ¢ Thx(G”). a 

Zero-one laws for very dense and very sparse random graphs 

Throughout the chapter we will repeatedly use Lemma 10.3 to establish the 

zero-one law in G(n,p) for some particular function p = p(n). Since for this 

type of problem it does not matter whether we study properties of a random 
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graph or properties of its complement, we may and wil] always assume that 

p=p(n) < 1/2. 
We start with a classical result on dense random graphs by Glebski, Kogan, 

Liagonkii and Talanov (1969), independently proved also by Fagin (1976). 

Theorem 10.5. If 1/2 > p = p(n) = n~° then for every sentence w 
from L~ the probability that G(n,p) satisfies w tends either to 0 or to 1 as 

n— co. 

Proof. For a natural number k > 1 let yz be the property that for every 

pair of disjoint subsets of vertices S; and S2, such that |S,| + |S2| < k — 1, 

there exists a vertex which is adjacent to all vertices from S, and no vertices 

from Sz. (Note, by the way, that since both S, and S2 have prescribed size, 

(x is a first-order sentence of quantifier depth at most k.) Then, for every 
k > 1, we have 

k-—1 k-1-2£, 

P(G(n,p) E7vr) < D> SO nt (1 — p2 (1 — p))n-* 
Li—0 fo—0 

< k?n*~ exp(k — np*~1(1 — p)*-1) < ke*n* exp(—n-°) = 0 (1), 

and so a.a.s. G(n,p) satisfies y,. On the other hand, for any two graphs 
G' and G” for which y, holds, the second player can win Ehr;(G’,G”) by 
playing an obvious strategy: the fact that both y, holds for both G’ and G” 
guarantees that in each of the first k steps he will be able to imitate the moves 
of his opponent. Thus, a.a.s. Th, (G(n,p)) = Thx(Gx), where G, is any graph 
for which yx holds (the existence of G;, follows from the probabilistic part of 
our proof). Consequently, for any sentence w from L. of quantifier depth k 
we have either ~ € Th, (G,), and then 

Jim P(G(n,p) 4) =1, 

or w ¢ Thy(G,), which implies that 

Jim P(G(n,p) F ¥) = 0. c 
It is worthwhile to note that the above argument proves that for every 

sentence w of L. of quantifier depth at most k either y or mw is a consequence 
of the axiom set which consists of one sentence (x, in other words, we showed 
that {y;} is a complete system of axioms for the theory which consists of the 
sentences of depth at most k from L.. Needless to say, this can be verified 
directly without invoking Ehrenfeucht games. As a matter of fact, from the 
remarks which led us to Lemma 10.3, it should be clear that virtually every 
proof which employs Ehrenfeucht games can be transformed into a purely 
logical argument, and it is only a matter of personal preference whether one 
decides to use the logical or the combinatorial approach. 
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Now let us consider the behavior of a very sparse random graph G(n, p), 
that is, the case p = p(n) < n~'*°(). In order to do that we first identify 
some functions for which the zero-one law certainly does not hold. According 
to Theorem 3.19, if 

pe cnt 

for some natural number ¢ > 1 and a constant c > 0, then the probability 

of the first-order property saying that G(n, pe) contains a tree of size 0+ 1 

converges to a limit which is neither zero nor one. Furthermore, from the 
same result we infer that if 

nNpp = c 

for some constant c’ > 0, then the probability that G(n, po) contains a triangle 

also tends to a non-trivial limit. Finally, let r,s be integers such that s > 

r—1>0 and 

rnprs = logn + sloglogn +c", 

where this time c” is any constant, not necessarily positive, and let A,,, denote 

the first-order property that a graph contains a path v, ---v, such that the 

total number of edges incident to the vertices v1,...,v, is s. Elementary 

application of the method of moments (Exercise!) shows that the probability 

that G(n,p,,;) has A,,, tends to a non-trivial limit, which rules out p,,, as a 

possible candidate for a function for which the zero-one law holds. We will 

show that, as long as p < n~!+°(), the functions pz, po and pr,s are, in a way, 
the only ones which do not obey the zero-one law (see Shelah and Spencer 

(1988) and Luczak and Spencer (1991), where Theorem 10.6 is proved using 

a somewhat different method). 

Theorem 10.6. Let p = p(n) be a function for which one of the following 

conditions holds: 

(i) n3-/£ <p «Kn VF) for some natural number £ > 1, 

(ii) p<n7 but p=n--), 

(iii) p> n7! but p= n't) and for every given pair of integers r and s 

such that s >r —1>0 we have either rnp — logn — sloglogn — —oo, 

or rnp — logn — sloglogn — oo. 

Then, for every sentence y from L the probability that G(n, p) satisfies w 

tends either to 0 or to1 asn-— oo. 

Proof. Let w be a sentence from L~ of quantifier depth k. Consider first 

the simplest case n7!~!/4 < p « n7!~1/(41), In this early period of the 

evolution, a.a.s. G(n,p) consists of isolated trees of size at most €+ 1 and 

every tree of size at most £ + 1 appears as a component of G(n, p) at least k 

times (see Theorems 3.4 and 3.19). Clearly, this property uniquely determines 

all properties of a graph described by the sentences of length at most k, since 
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in the Ehrenfeucht game on two such graphs the second player may always 

choose a vertex which lies in a tree isomorphic to one picked by the first player. 

The case when p < n~! but p = n~!~°) is only slightly more difficult. 
Set 

=, = {Th,(T) : T is a finite tree} 

and let 

Tk = {Ted sae . Tent 

be a collection of trees such that for every finite tree T there is a tree T’ € 7, 

for which Th,(T) = Th,(T’). Furthermore, let G, be a graph which consists 

of k copies of each tree from 7;. If p = p(n) = n~1—°() and np > 0 then a.a.s. 
G' = G(n,p) is a forest which contains at least k copies of each given tree 
as components :(Exercise!), in particular, it contains at least k copies of each 

element from 7;. It is easy to see that this property ensures that the second 
player can win the game Ehr;(G,,G’). Indeed, if the first player chooses a 
vertex in some component T of G’, the second one will pick a component T’ of 
G, such that Th,(T’) = Th,(T), and select a vertex in T’ which guarantees 
him a win in Ehr,(T,T’). Needless to say, if at some stage of the game the 
first player decides to choose again a vertex from either T or T’ the second 
player will play according to his winning strategy for Ehr;,(T,7’). 

The last part of the proof is slightly more complicated. Roughly speaking, 
now the second player will use the fact that for p = n~!+°) the typical 
random graph G(n,p) “locally” resembles a tree, in which every vertex has 
large degree. The only problem he might face is the presence of sparsely 
distributed short cycles and some number of vertices of small degree. 

In order to deal with short cycles, let us recall that the distance between 
two subsets of vertices V’ and V” of a graph is measured by the number of 
edges in the shortest path joining a vertex from V’ to a vertex from V". Note 
that Theorem 3.4 implies that if p = n~!+°() then a.a.s. any two cycles of 
G(n, p) shorter than 3**? lie at a distance larger than 3*+2. Elementary first 
moment calculations show also that if p >> n7! then a.a.s. every vertex of 
G(n,p) which lies within distance 3*+? from such a short cycle must have 
degree at least 3+! (Exercise!). Furthermore, a.a.s. G(n, p) contains at least 
k cycles of each length £, where 3 < £ < 3*+!, provided pn > co (Exercise!). 
Thus, although G(n,p) contains a lot of short cycles, they lie far apart from 
each other and from other “critical” structures and can be dealt with without 
much problem (see the proof of Corollary 10.4). 

Unfortunately, unlike short cycles, vertices of small degree can appear in 
clusters, so we need to classify them according to their neighborhood. We 
say that two vertices of a graph are of the same O-type if either they have the 
same degree smaller than k, or both of them have degree at least k. Clearly, 
this is an equivalence relation which partitions the vertices, according to their 
degrees, into k + 1 classes. Furthermore, for i = 1,...,k, we say that vertices 
w and w’ of the graph have the same i-type if for each (i — 1)-type the number 
of neighbors of w and w’ which belong to that type are either the same, or 
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both at least k. Note that for every given 7 there are only finitely many 7- 

types. Moreover, to determine the 7-type of a vertex v one needs only to check 

if v is the root of some finite subgraph F' of G(n,p) of depth i + 1 such that 

the size of F is bounded by a function of i and k and its vertices have certain 

prescribed degrees in G(n, p). It turns out that, whenever a function p = p(n) 

fulfills the assumptions of Theorem 10.6 for any given natural numbers 7 and k, 

the class of all i-types, where 1 < i < 3+!) can be split into two subclasses of 

“likely” and “unlikely” i-types, where the division depends on the behavior of 

p with respect to p,,,. It can be shown that a.a.s. G(n, p) contains no vertices 

of unlikely types; on the other hand a.a.s. G(n,p) contains at least k vertices 

of each likely type, which can be chosen in such a way that they lie at distance 

at least 3**! from each other. A rigorous verification of this fact relies on the 

computation of the expectation and variance of the number of vertices of a 

given i-type. Thus, if the expected number of vertices of a given 2-type tends 

to 0, then a.a.s. such vertices do not appear in G(n,p). On the other hand, 

if the expected number of vertices of an 7-type tends to infinity, then one can 

use Chebyshev’s inequality (1.2) to verify that, under the assumption of the 

theorem, G(n,p) a.a.s. contains many of them. Since this is a standard, but 

quite tedious argument, we neither elaborate on it, nor dare to recommend it 

to the reader as an exercise. 
Now let us consider the k-round Ehrenfeucht game on two graphs such that 

both of them 

e have many sparsely distributed short cycles, 

e contain no vertices of unlikely i-types, for i =0,1,...,3*t?, 

e contain a rich sparsely distributed system of representatives of likely 

types; for’ = 0) 14.53", 

where each of the above items should be understood in the context of the 

probabilistic results on properties of G(n,p) we mentioned. In such a game 

the second player has the following winning strategy. If in the 7-th round of 

the game the first player chooses a vertex, the second one checks whether it 

lies within distance 3*~? from either a cycle shorter than 3**?, or some vertex 

chosen previously: if this is the case, then he answers with an “analogous” 

vertex in the second graph (in the case of a cycle this means any vertex which 

lies at the same distance from the corresponding cycle in the other graph); 

otherwise he chooses any vertex of the same 3'—-*+1_type which lies at distance 

at least 3-*+! from all vertices selected so far. | 

Sophisticated winning strategies: The closure 

Let us assume now that p = p(n) = n~°+°) for some constant a € (On iaekt 

turns out that in this case the behavior of G(n,.p) depends strongly on whether 

a is rational or irrational. The analysis of the case in which a is rational is 
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somewhat involved: we postpone it until the next section and concentrate on 

the result of Shelah and Spencer (1988), stating that the zero-one law holds 

for every irrational a € (0,1). 

Theorem 10.7. Let p = p(n) = n-%+°), where a € (0,1) is irrational. 
Then, for every sentence w from Lo. the probability that G(n,p) satisfies w 

tends either to 0 or to 1 as n— oo. 

As in the case of Theorems 10.5 and 10.6, we prove Theorem 10.7 by show- 

ing that a certain Ehrenfeucht game can be won by the second player; however 

now his strategy must be much more sophisticated. Indeed, for p(n) = n~?) 

the random graph G(n,p) is a.a.s. so dense that it contains every possible 

configuration which can emerge during the Ehrenfeucht game. Thus, the sec- 

ond player can pick in each move any vertex which is appropriate at this stage 

of the game and not worry about his opponent’s further moves. Now this is 

no longer the case, if p(n) = n~%+°™) and a € (0,1), then one can easily find 

a graph H such that a.a.s. G(n,p) contains a copy of H, but not more than 

0p(n) of them. Hence, if the first player chooses in his first move a vertex in a 

copy of such an H, the second player must choose a vertex which also belongs 

to a copy of H, and at each stage of the game he must constantly analyze all 

possible strategies of his adversary. Furthermore, unlike in the game played 
on sparse graphs containing only a few “critical” structures lying far away 
from each other, here the diameter of the graph is bounded from above by 
[1/(1 — a)] (see Bollobds (1985, Chapter X)). Thus, there are no “isolated” 
structures and if the Ehrenfeucht game lasts long enough the first player can 
connect by a path any two vertices of the graph. 

In order to get some feeling for what the strategy of the second player should 
be, let us pick, say a = V3/2 = 0.86602..., and consider the Ehrenfeucht 
game of length k played on two graphs G’, G” such that if a sentence w of 
quantifier depth at most k holds a.a.s. in G(n, p) with p = p(n) = n~%, then 
it holds also for both G’ and G”. 

First set kK = 3. Then G(n,p) contains ©,(n?—%*) triangles (see Re- 
mark 3.7) and, since 0 < 3 — 3a < 1, we may assume that both G’ and 
G" contain some triangles as well as vertices which do not belong to them. 
Thus, before his first move the second player should check at least whether 
the vertex selected by the first player lies on a triangle, and pick his vertex 
accordingly. 

Now suppose that k = 4. Then the first move of the second player should 
depend not only on whether the vertex v picked by the first player belongs to 
a triangle: he certainly must consider also larger structures containing v, such 
as cycles of size four, five, six (see Example 10.2) and, as one can easily check, 
even seven. Furthermore, he must examine whether v is adjacent to some 
triangle and, if this is the case, choose a vertex which also has this property 
since otherwise the first player can win easily. 

What should be the first move of the second player when k becomes even 
larger, say k = 15? Certainly, he must, in particular, take into account all 
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aspects of the choice of the first player we mentioned for k = 4, since otherwise 
he will lose after the first four moves. But should he care whether the vertex v 
chosen by the first player lies within distance, say, ten from some triangle? 
It does not seem to be absolutely necessary: a.a.s. the diameter G(n,p) is 
eight and so is the diameter of G’ and G”, thus the second player might 
hope that he can always join the first vertex to a triangle when he notices 

that the first player is trying to do so. Hence, he must concentrate on the 

fact that the vertex v selected by the first player either belongs to a “rare” 

structure (like, in the case of a = 3/2, a short cycle), or at least lies close 

to it. More specifically, he should compute the “closure” of v, which consists 

of such structures, and choose in the second graph a vertex with the same 
closure as v. Now he might try to play according to the following strategy: 

if the first player chooses a vertex in the closure of the vertices chosen so 

far, then the second one picks a corresponding vertex in the closure of the 

set of vertices chosen in the other graph; if the first player decides to move 

outside the closure, then, hopefully, the second player will be able to find an 

“equivalent” vertex outside the closure in the second graph. 

Hence, the closure of a vertex or a set of vertices, should consist, roughly 

speaking, of all “rare” structures containing this vertex or set and, in the 

random graph, “rare” typically means “denser than average”. Note, however, 

that our sketchy analysis of the case a = /3/2, k = 4, has suggested that a 

triangle which lies at distance one from a vertex should belong to its closure, 

while, on the other hand, if a vertex v belongs to a triangle it is clearly not 

necessary to include all vertices adjacent to it in the closure of v. Thus, to 

find the closure of a vertex v we should not only examine all copies of a graph 

H in G(n, p) which contain v — we must also take into account how v is placed 

in them. 
Thus, instead of graphs, we will consider rooted graphs (R, H), which con- 

sist of a graph H and a subset of its vertices R C V(H) (see Section 3.4; 

although now, for technical reasons, we allow edges between vertices of R, 

they are irrelevant for our argument). The elements of R are roots, the ver- 

tices from V(H) \ R are called extension vertices, and we say that an edge of 

H is proper if it does not join two roots. The number of extension vertices for 

a rooted graph (R, H) is denoted by v(R, H), whereas e(R, H) stands for the 

number of proper edges. We say that (R, H) is sparse if v(R, H) > ae(R, H), 

and dense otherwise, where, throughout the rest of this section, a denotes a 

fixed irrational number from the interval (0,1). Thus, (R, H) is dense if either 

R=V(H), or o(R,H) < ae(R,H). We say that (R, H) is rigid if (S, H) is 

dense for every S with R C S C V(H), and safe if (R, H’) is sparse for every 

subgraph H’ of H with R C V(H’) C V(H). Note that if (R, H) is rigid, 

then any rooted graph (R’, H') such that R C R', V(H') = R'UV(H), and 

H CH’, is rigid as well. 

An extensive list of elementary properties of safe and rigid rooted graphs 

can be found in Shelah and Spencer (1988); here we will mention only three of 
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them. Throughout this section HUH' [HMH’] denotes the graph with vertex 
set V(H)UV(H') [V(H)NV(H’')] and edge set E(H)UE(A") [E(H)NE(#H’')|. 

Fact 10.8. If both (R, H) and (V(H#), H') are rigid, then (R, H') is rigid. 

Proof. Let R C S C V(H"'). Then, since both (R,H) and (V(H), HA’) are 

rigid, we get 

v(S,H') = v(S AV(H), H) +0(SUV(E), H) 
< ae(SNV(H),H) +ae(S UV(A), H') < ae(S, H’). az 

Fact 10.9. If both (R,H) and (R,H') are rigid, then (R, H' UH) is rigid. 

Proof. Note that (V(H), HUH’) = (V(H)UR, V(H) UH’) is rigid and apply 
Fact 10.8. gE 

Fact 10.10. If (R, H) is not safe, then there exists a subgraph H' of H such 

that R C V(H"') and the rooted graph (R, H') is rigid. 

Proof. Let H’ be a minimal subgraph of H such that R C V(H’) and the 
rooted graph (R,H’) is dense. Furthermore, let S” be any set such that 
RCS" Cc V(H"') and let H” denote the subgraph spanned by S” in H’. 
Because of the choice of H’, the rooted graph (R, H"’) is sparse, and so 

u(S", H') = o(R, H') — o(R, H") < ae(R, H') — ae(R, H") = ae(S", H"'). 

Thus, (R, H’) is rigid. Lal 

Let (R, H) be a given rooted graph and R’ be a subset of vertices of a 
graph G, such that |R| = |R'|. A pair (R’, H') is an (R, H)-extension of R in 
G if H’ is a subgraph of G such that R’ C V(H’) C V(G) and there exists 
a bijection f : V(H) > V(H') which maps R into R’ and transforms all 
proper edges of (R, H) into edges of H’, that is, if {v',v’} € E(H) and either 
v',v" € V(H)\R, or v' € R,v" € V(H)\R, then also {f(v'), f(v")} € E(A’). 
Note that we do not care about edges joining two roots, nor do we prohibit 
additional edges in H’. 

Finally, we introduce the crucial notion of t-closure. Let t > 0, G bea graph 
and W C V(G). The t-closure of W is the minimal set W - W such that for 
every rigid rooted graph (R, H) with v(R, H) < t, each (R, H)-extension of a 
subset R’ of W is contained in W. The t-closure of W we denote by clh:(W), 
or, if W = {wi,...,w,}, we put simply ck(wy,... , wr). It is easy to see that 
cl:(W) is uniquely defined, and that for all W and ¢ there exists a sequence 
W=Wo CW, C-:--C We=ch(W) such that for i = 1,...,2, the set W; is 
obtained by appending to W;_, the vertices of some rigid (R;, H;)-extension 
of a subset of W;_1, where v(R;, Hi) < t. Thus, due to Facts 10.8 and 10.9, 
(W,cli(W)) is a rigid extension of W. 

Our next result states that in a random graph the t-closure of a small set 
is unlikely to be very large. 
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Lemma 10.11. Let p = p(n) = n-°+?), where a € (0,1) is an irrational 
number. Then for all natural numbers r and t, there exists M = M(a,r, t) 

such that a.a.s. for every choice of vertices v,,...,v, of G(n,p) we have 

BCL Ui pcre, Uy) < M. 

Proof. As we have already observed, for every set W and a natural number t 

there exists a sequence W = Wo C W, C--- C We = chy (W) such that W; = 

W;,_-1 UV (Hj), for some rigid (R;, H;)-extension (Ri, H/), with v(R;, Hi) < t 

and R; C Wi-1. Furthermore, it is easy to see that we may assume that all 

rooted graphs (R;, H;) are minimal rigid graphs, that is, for each rigid graph 

(Ri, Hi) such that R; C Ri, 0 # V(Hi)\ Ri C V(H;)\R; and H, C H; we have 
R; = R, and H; = H;. Note also that for each minimal rigid rooted graph 

(Ri, Hi) with v(R;, H;) < t we must have |R;| < t/a +t. Indeed, otherwise 

either there exists a vertex in R; with no neighbors in V(H;) \ Ri, or some 
vertex v € V(H;) \ R; has more than 1 + 1/a neighbors in R;, contradicting 

the minimality of (R;,H;). Thus, since there are only finitely many non- 

isomorphic rooted graphs (R,H) with |R| < t/a +t and v(R,A) < t, we 

have 

€¢ = min{ae(R, H) — v(R, H) : (R, A) is dense 

and 0 < o(R, H) <t, |R| <t/a+t}>0. 

We will show that the assertion holds with M =r+t[r/et]. 
The idea of the proof is rather simple. Suppose that W = {v,...,u,} is 

a subset of vertices of a graph G such that |ck(W)| > M. Let W =Wo Cc 
W, C -:- C Wp be a sequence of subsets of G such that for 7 = 1,2,...,m 

the set W; is the result of an (R;, H;)-expansion of W;_1, where (Rj, Hj) is a 

minimal rigid rooted graph with v(R;, Hi) < t, and finally |W,,| > M while for 

i =0,...,m—1 we have |W;| < M. We will show that the subgraph induced 

by W,, contains at least |W,,|/a edges, whereas, due to Theorem 3.4, a.a.s. 

G(n,p) contains no subgraphs on at most M +t vertices with density larger 

than 1/a. 
Thus, let G; denote the subgraph of G spanned by Wi, 2 = 0,1,...,m. 

Since G; is the (W;_-1 U Ri, Wi-1 U H;)-extension of Wi-1, where the rooted 

graph (W;_1 U Ri, Wi_-1 U Ai) is rigid, and furthermore, (R;, H;) is a minimal 

rigid rooted graph, we have 

|W; | = |Wi-1| = u(Wi-1 U R;, Wi-1 U H;) < ae(W;-1 U R;, Wi-1 U H;) ae (i es 

Then, tor@.= 1,2, sc. ,1, 

Wala|Waed) cree 
e(Gi) == e(Gi-1) > Godan an F ai 

Consequently, since |W;| — |Wi-i| < t for 7 = 1,2,...,m, and [Wn| > M = 

r+tf{r/ez], we have m > [r/ez], and so 

e(Gm) 1 elie a [=] =) > ~ ; a SS 
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Now we state two probabilistic lemmas on G(n,p) which will be crucial 

for constructing the winning strategy for the second player. The first one, 

Lemma 10.12, guarantees that in the first move the second player can choose 

a vertex whose closure is identical with the closure of the vertex selected by 

the first player. Lemma 10.13 assures the existence of a suitable move for the 

second player when the first one selects a vertex outside the closure. 

Lemma 10.12. Let p = p(n) = n~%*°), where a € (0,1) is an irrational 
number, let ({w},H) be a rooted rigid graph such that m(H) < 1/a, and let 

t > v({w},H). Then a.a.s. G(n,p) contains a verter v such that cl;(v) is 
isomorphic to ({w},H), where the isomorphism maps v into w. BE 

Lemma 10.13. Let t > 1, p = p(n) = n~%+°), where a € (0,1) is an 

irrational number and let (R,H) be a rooted safe graph with |R| = r. Then 

a.a.s. for every choice of vertices v;,...,v, of G(n,p) there exists an (R, H)- 

extension ({v1,...,Ur},H’) such that ck(V(H")) = ck(u,...,v-) UV(A’). 

a 

Unfortunately, the proofs of the above results are somewhat technical, so 

we just briefly comment on them. The existence of the required extensions 
in both lemmas is not very hard to show: in the case of Lemma 10.12 it 
is an immediate consequence of Theorem 3.4, for Lemma 10.13 it follows 
from Theorem 3.27. However, one needs also to prove that at least one such 
extension contains no vertices which can be used as the roots of rigid rooted 
graphs to extend the closure of the set we are dealing with. This can be done 
using a similar technique as employed in the proof of Lemma 10.11, but since 
the argument is long and not very instructive, we decided to omit it here. 

Proof of Theorem 10.7. Let k be a fixed natural number. Define a sequence 
t1,...,tx setting t, = 0 and t; = M(a,k,ti41) for i = 1,2,...,k —1, where 
M(a,r,t) is a function which fulfills the assertion of Lemma 10.11. Let G’, G”’ 
be two graphs such that for all r < k, t < t;, and every graph H with at most 
M(a,k,t,) vertices, all graph properties which, according to Theorem 3.4, 
Lemmas 10.11, 10.12 and 10.13, a.a.s. hold for G(n, p), hold also for both G’ 
and G”’. We will show that the second player can win the Ehrenfeucht game 
Ehr;,(G’, GG"), which, due to Lemma 10.3, will imply the theorem. 

A winning strategy for the second player for Ehr;(G', G” ) has already been 
anticipated in our remarks following the statement of Theorem 10.7. We will 
show that, for i = 1,...,k, in the i-th step of the game the second player 
can make his move in such a way that the subgraph Gi, induced in G’ by 
cly;(z,,--.,24), and G!’ spanned in G” by cli; (x7,..., 24), are isomorphic, 
where the isomorphism maps x’, into ry for j = 1,...,7. (Here and below 
av; € V(G") and x” € V(G") stand for the vertices chosen in the j-th step of 
the game Ehr;(G’, G”).) 

Since neither G’ nor G” contains subgraphs H with |\V(H)| < M(a,k, ty) 
and m(H) > 1/a (Theorem 3.4), the existence of a vertex with appropriate 
t,-closure which can be chosen in the first move by the second player is assured 
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by Lemma 10.12. Thus, let us assume that for some 2,7 = 1,...,k — 1, the 

subgraphs Gi and G’’ are isomorphic. Furthermore, without loss of generality 

we may assume that the first player decides to pick a vertex x}, , from G’. Our 

aim is to show that there exists a vertex z//,, in G” such that the subgraph 
Gist spanned in G’ by cl;;,, (x1,.--, £4, ,) is isomorphic to the subgraph G4, , 
induced by cl;;,,(27,---,2/,,) in G”’. We consider the following two cases. 

BCS Ee AN iol BS Cee ed 
Then, using the isomorphism of G! and G’’, the second player should choose 

in G; the vertex xj/,, corresponding to zj,,. Since 

IV (Gi41)I = che. (x1, “Kei »Zi41)| s M (a, k, ti+1) = ti, 

the definition of t;-closure and Fact 10.8 imply that 

V (Giga) = Chesgs (21,---» Tig) © cle (@1,---, 25) = VG). 
Similarly, we have V(Gi,,) C V(GY’), and so Gi, and Gj, are isomorphic 
as subgraphs of G{, and G‘’ respectively. 

Case 2: 2.1, ¢ Che.(215.<. + 2;)- 
Let H; denote the maximal subgraph such that 

Zi, ae Zi = V (Hi) C Chess; (aa; ace »Ei41) = V(Gi41) 

and the rooted graph ({z},...,25}, H}) is rigid. Note that, due to Fact 10.9, 

H! is uniquely defined and contains cl, ,,(z1,.--,2;). Because H ; is chosen to 

be maximal, from Fact 10.10 it follows that the rooted graph (V(Hj), Gj41) 

is safe. Moreover, since 

\V (H;)| < | cl eas aI) Paani) S M(a, Ket) = ti, 

we have 

V (Hj) C cle, (a1,---, 24) = V(G%). 
and consequently z/,, ¢ V(H;). 

Now let Hi’ be a subgraph of G/ isomorphic to Hj C G‘. Then the 

second player should use Lemma 10.13 to find a (V (Hj), Gi, )-extension 

(V (H!'), Gi,,) of Hj’ in G" which does not enlarge the t;4,-closure of V (H;’). 

Finally, as x’, ,, he should pick the vertex of (V(Hj'), Gi, ,) which corresponds 

to ©,, in Gi4;- a 

10.3. FILLING GAPS 

In this section we complete the “first-order picture” of G(n, p). Thus, we look 

at the behavior of G(n, p) for probability functions p = p(n) which are “close” 

to the known thresholds, such as p = n~%, where either a = 1+ 1/é for some 

natural number £, or a is a positive rational number smaller than one. Finally, 

we discuss briefly what happens when we consider properties of G(n, p) which 

can be expressed in L°4, a much stronger language than Li which has been 

studied so far. 
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Weak zero-one laws 

We start with the case p < n~!*°") when, as we have already learned from 
the previous section, the behavior of G(n,p) is rather easy to study. The- 

orem 10.6, which specifies the threshold functions for this range of p(n), is 

nicely supplemented by the following result, which says that at these thresh- 

olds the probabilities of sentences from L~ converge, that is, the weak zero-one 

law holds. (For a more thorough analysis of the behavior of G(n,p) at this 
stage of the evolution see Lynch (1990) and Spencer and Thoma (1999).) 

Theorem 10.14. Let p = p(n) be such that one of the following conditions 
holds: 

(i) ni+1/€n - ¢, for some natural number & > 1 and a positive constant c, 

(ii) np > c’, for some positive constant c’, 

(iii) rnp — logn — sloglogn — c" for some, not necessarily positive, con- 
stant c’ and integers r,s such thatO<r—1<<s. 

Then, for every sentence w from LX, the probability that G(n,p) satisfies 
wW converges as n > oo. 

Proof. The proof closely follows the way which led us to Theorem 10.6. Let 
ni+1/fn + ¢ > 0 and w be a sentence from L.. of quantifier depth k. Then, 
a.a.s. G(n, p) is a forest, which contains no trees of size larger than +1, and 
at least k copies of each tree of size at most @. Thus, our main concern is trees 
of size €+ 1 which appear in G(n,p) with probabilities which are bounded 
away from both 0 and 1 (see Theorem 3.19). Let T),... »Im be the family of 
all pairwise non-isomorphic trees with €+ 1 vertices and ry,.22, 7, be natural 
numbers such that 0 < rj < k for 1 <i<m. We say that a graph G has 
property Y4,¢(T1,.-.,7m) if the following hold: 

(a) G is a forest; 

(b) for any tree T on at most @ vertices G contains at least k components 
isomorphic to T; 

(c) G contains no components on £ + 2 vertices; 

(d) for alli, 1 <i < m, the number of copies of T; in G is r; if 0 < rj < k-1, 
and at least k if r; = k. 

A simple calculation of the moments of an appropriate m-dimensional ran- 
dom variable shows that for every sequence r},...,7m, the limit 

jim P(G(n,p) - Crt Nadenr pTrw)) = AlGigents sa) 

exists (see Remark 3.20); as a matter of fact, A(T1,...,7m) is a sum of 
certain probabilities of a multidimensional Poisson distribution. Now let 
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G(r ,--+,;Tm) be a graph for which yx,¢(71,...,7m) holds. One can see imme- 

diately that, for any other graph G which fulfills yz. ¢(71,---,7m), the second 

player has a winning strategy in the game Ehr;(G,G(ri,...,7m)). Thus, 

Jim, P(G(n,p) Fv) = oy A(r1,.--,Tm) 
arigcnes (Pee) 

Gu Rigs, Tn iv 

and (i) follows. 

The proofs of (ii) and (iii) are similar, although slightly longer and more 

involved, so we omit them here. | 

Zero-one laws and recursive functions 

In order to complete the picture of the first-order properties of G(n,p), it 

remains to study the behavior of G(n,p) for p = p(n) = note) where 

a € (0,1) is a rational number. We remark that for each rational a € (0, 1] 

there exists a strictly balanced graph Ha such that d(H.) = a (Rucinski and 

Vince 1986). Thus, for pn® + c > 0, the probability that G(n, p) contains 

H,, tends to a constant a = a(c) which is neither 0 nor 1 (see Theorem 3.19) 

and the zero-one law does not hold. If p = p(n) = n~°+?) the behavior of 

G(n, p) is much more involved and thus, to simplify its description and avoid 

many technical details, we will consider only the special case a = 1 hits 

As observed by Luczak and Spencer (1991), the argument which led us to 

Theorem 10.7 can be modified to show that the zero-one law holds when p is 

slightly larger than n~1/7. 

Theorem 10.15. Let p= p(n) be such that 

p'n > Tlogn+w(n) loglogn , 

where w = w(n) > 00 but p= p(n) = n-V/7+), Then, for every sentence ~ 

from L~ the probability that G(n,p) satisfies ~ tends either to 0 or to 1 as 

1 —> CO. a 

Remark 10.16. The above result is, in a way, best possible. Indeed, for 

every natural number ¢ and np’ = Tlogn + £loglogn, the probability of the 

property that G(n,p) contains seven vertices v1,...,U7 which have precisely @ 

common neighbors tends to a constant A, where 0 < eG MES PEST ee 

(Exercise!). Thus, the function w(n) in Theorem 10.15 cannot be replaced by 

any constant. 

What happens when p = n7'/ 7+0(1) but np” = o(logn)? The bold reader 

who has managed to read the book until this point would probably be willing 

to bet that now, as in Theorem 10.6, we specify a spectrum of the thresh- 

old functions for different properties, and in between them the zero-one law 

must hold. This is indeed what an experienced graph theorist should expect. 
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However, as shown by Shelah and Spencer (1988), the truth is much more 

surprising. 

Theorem 10.17. There exists a sentence w from L~ such that for every 

p= p(n) satisfying 

Hae ee log log log log n a np" Ba logn (10.2) 
mn ~ log log log log logn 

we have 

lim inf P(G(n, p) FE w) = 0 
n—-Cco 

and 

lim sup P(G(n, pp) F ~) = 1. 

Before we say a few words about the proof of Theorem 10.17 we comment 
briefly on the content of this very counterintuitive result. First of all, note 
that the theorem states that the probability of a first-order property can os- 
cillate between 0 and 1 even for such odd functions as p' = n~!/7log-™n 
or p” = n71/7-1/Viogloglogn which certainly do not resemble any threshold 
function we have seen so far. Furthermore, there exists one sentence w which 
behaves eccentrically for all such functions at the same time. Finally, the 
inequality (10.2) looks very “asymmetric”. Indeed, we already know from 
Theorem 10.15 that the zero-one law holds if np” is substantially larger than 
logn, hence the upper bound for np’ cannot be replaced by a much bet- 
ter one (although it is by no means best possible — see Theorem 10.19 and 
Remark 10.20 below); on the other hand the lower bound for np’ given in 
Theorem 10.17 tends to 0 much faster than any power of the logarithm. 

Can we significantly extend the range of p = p(n) for which Theorem 10.17 
holds? More precisely, can we replace in (10.2) the iterated logarithm by 
any function which tends to infinity? The following theorem by Luczak and 
Spencer (1991) answers this question in the negative. 

Theorem 10.18. There exists a function w = w(n) which tends to infinity 
as n — 00 such that for p = p(n) = n~1/7-1/” and every sentence w from Li 
the probability that G(n, p) satisfies w converges either to 0, or to 1. 

Proof. Let a; be a sequence of irrational numbers which monotonically tends 
to infinity as 7 > oo, say, a; = i\/2, and let Ap = {@1,@2,...} and pg, = 
n—1/T-1/a: Furthermore, let {~1, 2,...} be the set of all sentences from L.. 
In order to find w(n) we first define a decreasing sequence of infinite sets 
Ap D A, D Arie ak and a sequence of sentences w; from L., where for every 
a> leither py; = yj or Wy = 7y,. Thus, let us suppose that for some i > Othe 
set A; has already been defined. Then, by Theorem 10.7, we can partition A; 
into two classes, according to whether for a € A; the formula ~;4, holds a.a.s. 
for G(n, pa), or a.a.s. G(n, pa) satisfies 7,41. Let Aj+1 denote the set of the 
above partition which is infinite (if both are infinite we can pick either of 
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them) and let 7,41 be the sentence from {%j+1, 7~i41} which holds a.a.s. for 

G(n, pa), for all a € A;+,. Moreover, choose a; € A; such that a; <a <... 

and select n; in such a way that 1 < ny < no <... and for every j < i and 
ce Wp 

P(G(n,pa,) K vj) > 1-1/i. 

Now, it is enough to set w(n) = a; for each nj <n < nj41,7> 1. a 

It turns out, however, that each function w(n) which fulfills the assumptions 
of the above theorem tends to zero unimaginably slowly. Before we make this 

statement precise, let us recall that a recursive function f : N > N is a 

function such that there exists a procedure which for every n computes the 

value of f(n) in a finite time using a deterministic Turing machine. (The 

reader who is not familiar with this notion is advised either to look at one of 

the equivalent definitions of a recursive function in any book on the theory 

of computation, or accept Church’s thesis and view a recursive function just 

as a function which can be effectively computed.) Somewhat surprisingly at 

first sight, recursive functions play an important role in the analysis of the 

behavior of G(n, p). 

Theorem 10.19. For every recursive function w = w(n) which tends to in- 
finity as n + oo, and every p = p(n), satisfying 

nl” < np’ <logn/w, (10.3) 

there exists a sentence w from L~ such that 

lim inf P(G(n,p) Fy) = 0 

and 
lim sup P(G(n,p) Fy) =1. 
n— co 

Remark 10.20. The fact that Theorem 10.18 remains true if we replace 

n—1/ log log log log logn Hy n—!/¥, where the recursive function w tends to infinity 

as n —> 00, was observed by Luczak and Spencer (1991) (note, however, that 

now w does depend on w). This lower bound for np" is best possible in the 

sense that, as Theorem 10.18 shows, we cannot omit the assumption that w is 

recursive. The fact that log n/ log log log log log n in (10.2) can be replaced by 

logn/w, where w is a recursive function which tends to infinity, follows from 

the original argument of Shelah and Spencer (1988). Let us also mention that 

at this moment it is not known whether the assumption that w is recursive is 

really necessary. It is even possible that the assertion of Theorem 10.19 holds 

as long as np’ < (7 — €) logn for some € > 0 (see Theorem 10.15). 

Although we will not give here complete proofs of Theorems 10.17 and 10.19 

(which are long and technical), we sketch the main idea of the argument so 

that the somewhat unexpected appearance of recursive functions will become 
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clear. Let us suppose that p = n—!/7-!/¥, where w = w(n) tends to in- 

finity slowly, say, slower than logloglogn. For each subset {v1,...,v7} of 

vertices of G(n,p) let N(v,,...,u7) denote the set of common neighbors of 

U1,---,07. It turns out (Exercise!) that a.a.s. the maximum of |N(v1,.-..,v7)| 

over all choices of v,,...,v7 differs from w by no more than 4. Further- 

more, a.a.s. for any two sets {uj,...,v7} and {vj,...,u7} and every sym- 
metric binary relation R on N(v,,...,v7) U N(v},...,u%) with fewer than 

2w elements, there exist elements 21, Z2, 23, Z4 and yi, Yo,---,Y2o0 Such 

that zRz’ if and only if the set N(z,z',21,22,23,24,yi) is non-empty for 

some y;, where 1 <i < 20. Since, clearly, |N(v,...,v7)| > |N(vj,---,v7)| if 

and only if there exists a “matching” binary relation between N(vj,...,v7) \ 
N(vj,...,v4) and N(vj,...,v7) \ N(v1,...,v7) which saturates each element 
from N(vj,...,v7) \ N(v,...,v7), it is possible to write a formula in L~ 

which would mean “|N(v1,...,v7)| > |N(vj,---,v7)|”. Consequently, it is 
possible to “identify” in L. one of the subsets {v1,...,v7} which maximizes 
|N(v,...,U7)|, in other words, it is possible to define a predicate P in Ly 

such that P(x) holds if and only if z belongs to some A = N(vj,...,v7), where 
for each choice of v},...,v7 we have |N(vu1,...,v7)| > |N(vj,...,v4)|. Ina 
similar way one can show that a.a.s. for each symmetric ternary relation T on 

A with at most 9w elements there are vertices 21, £2, 23, and Y1, Y2;---; Yoo 

such that T(z, 2z’,z”) holds if and only if N(z,2z',2",21,22,23,yi) # @ for 

some 2, 1 < i < 90. Thus, each such relation T could be, in principle, ex- 
pressed in L.. One can use a few additional technical tricks to show that 
there exists a subset S C A in G(n,p) which can be defined using L., such 
that |S| > |A|!//2 > w!/4 and each ternary relation on A can be “encoded” 
in L.. Thus, we have arrived at the following result (in the statement we 
include all functions p = p(n) for which (10.3) holds, although when np’ does 
not tend to 0 fast enough the encoding procedure is more involved). Here, for 
simplicity, we use v = (v1,..., Um) to denote sequences of vertices of length m, 
where m does not depend on n. 

Lemma 10.21. There exist formulas P*(x,v) and T*(z,y,z,v) in LO such 
that if w = w(n) < logn is any function which tends to infinity as n + oo 
and 

—1/w 7 n < np <logn/w, 

then a.a.s. for every choice of v = v> the set S(v) = {w: P*(w,v)} of vertices 
of G(n,p) has the following two properties: 

(i) either S(v) = 9, or w'/® < |S(v)| <n, 

(ii) for every ternary relation T defined on S(u) there exists v? such that if 
r,y,z € S(v), then T(x,y,z) holds if and only if T*(x,y,z,u") is true 
for G(n, p). 

pioie bas a.a.s. there exists v such that S(v) # 0, that is, |S(v)| > wis, if 
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Before we sketch the proofs of Theorems 10.17 and 10.19, we state one 

more fact about recursive functions. 

Lemma 10.22. Let g : N > N be any function such that for some non- 

decreasing recursive function f : N + N which tends to infinity as n — oo 

we have f(n) < g(n) < n forn > 2. Then there exists a recursive function 
h:N—-N such that h(g(N)) contains all natural numbers. 

Proof. For any non-decreasing unbounded recursive function f : N > N such 

that f(n) <n for n > 2, define f* : N +N, setting 

f*(n) = min{ f(F(...f(n)...)) =}. 
ee 

k 

Obviously, f* is recursive and non-decreasing. Moreover it tends to infinity 

as n — co but much slower than f. We leave to the reader the elementary 

calculations which show that the assertion holds for h = f* (Exercise!). 

Sketch of the proofs of Theorems 10.17 and 10.19. Let us suppose that the 

condition (10.3) holds for p = p(n). Furthermore, to simplify the argument 

slightly, let us assume that the recursive function w(n) which appears in the 

assumptions of Theorem 10.19 is non-decreasing, and set f(n) = [w(n)]}/8. 
Then, by Lemma 10.21, a.a.s. G(n, p) contains a set S, such that f(n) < |S| < 

n, which can be encoded by P*(-,v*°) for some v*. Furthermore, any ternary 

relation T on S can be encoded in L~ by the predicate T*(-,-,-,v7) for some 

sequence v!. Thus, for instance, there exists vS and w such that for all z, y, 

z, for which P*(z,v°), P*(y,v°), P*(z,v°), we have: 

(i) if T*(x,y,w, v=) and T*(y,z,w,vs), then T*(z, z,w, v5); 

(ii) if T*(x,y,w,vS) and T*(y,z,w,v), then x = y; 

(iii) either T*(a,y,w,vS), or T*(y, 2, w,v-). 

Hence, v< and w define on S a linear order. Now, we can use Lemma 10.21 

to find an element v+ such that for x, y, z, for which P*(z,v°), P*(y,v°), 

P*(z,v%), the relation T*(x,y,z,u*) holds if and only if +4 = Z, where 

2, 9, 2 denote the positions of elements x, y and z, respectively, in the order 

determined by v< and w. Indeed, it is enough to require that the relation 

T*(x,y,z,v*) has all the properties which hold for the sum of two natural 

numbers; for instance, if T*(z,y,z,v*), then T* (x, F(y), F(z),v*), where 

F(y) and F(z) stand for the elements which in the linear order determined by 

v< and w succeed y and z, respectively. Clearly, in a similar manner we can 

encode in such a linearly ordered set S any recursive function. In particular, if 

h is a function whose existence is assured by Lemma 10.22, there exists v” such 

that for z, y, z with P*(z,v°), P*(y,v°), P*(z,uv°) we have T*(z,y, z,v") 

if and only if y = h(x). Now let s be a maximal element from S, that is, 
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P*(s,u°%) and for each x such that P*(zr,v°) and T*(z,s,w,u<) we have 

x = s. Furthermore, let 7 be the sentence 

d,s d,<dwy+5,»dsde5y a(u°,vS,w,vt,u",s) 

AP Gow NP Ue Al (s.4,2.0 AT Aya, Do \, 

where a is a long and complicated formula which contains the definition of S, 

the axioms of linear ordering, the axioms of addition, the definitions of h and s, 

and so on. The above w~ belongs to L~ and expresses the property “h(|S|) is 

even”. Hence, by Lemmas 10.21 and 10.22, as n + o0 the probability that w 

holds for G(n, p) oscillates between 0 and 1. a] 

The idea of encoding the initial segments of the natural numbers by sub- 

structures of a random structure has been widely used in the literature to 

show that the zero-one law does not occur. Typically, in such cases some sort 

of “recursive bound behavior”, similar to that described by Theorems 10.18 

and 10.19, can be observed. A good example of such a phenomenon is the fol- 

lowing theorem of Dolan and Lynch (1993), who ingeniously used the strength 

of the language L°™4 to encode the initial segments of the natural numbers 
even in random graphs with very few edges. 

Theorem 10.23. 

(i) If p = p(n) is such that n*p > c as n > oo for some constant c, then 
for every yp from L&¢ the probability that G(n,p) satisfies = converges 
as nN —> Oo. 

(ii) There exists a function p = p(n) such that n2p > oo and for every w 
from L°4 the probability that G(n, p) satisfies w converges. 

(iii) [fp = p(n) < 1/2 but n?p > f(n) for some unbounded recursive function 
f:N-N, then there exists a sentence w of L°™ such that 

lim inf P(G(n,p) Kv) = 0 
and 

lim sup P(G(n, p) EF w) =1. ig 

10.4 SUMS OF MODELS 

In this part of the chapter we will study the behavior of random structures 
using yet another approach: a sum of models. Although it does not contribute 
much to the picture of G(n, p), which is now nearly complete, it is a simple yet 
very convenient tool which can be used to obtain different types of zero-one 
laws for various random structures. Because of the character of the book, 
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we present here only the simplest version of a more sophisticated notion (see 

Luczak and Shelah (1995), where more general sum schemes were used to 
study the behavior of the random graph G(n, p) defined below). 

Sum schemes 

Throughout this section L will denote a first-order language with predicates 

P,,...,/, all of them binary, and 9M will stand for a family of models of 

L with binary relations R,,...,R;. Suppose that we are given a t-tuple of 

pairs of zeros and ones t = ((7, ,7;'),---,(% 57 ))- A binary operation 
B: MxM > Mis a sum scheme for M with signature Tt if for all M,, Mz € M 

the set of elements of M = M, @ Mz is a disjoint sum of the set U; of elements 

of M, and the set U2 of elements of Mo, and for every i = 1,2,...,t the 

following hold: 

(i) ifz,y €U,, r= 1,2, then xR,y in M if and only if zR,y in M,; 

(ii) if s € Uy, and y € U2, then zRjy when 7,‘ = 1, and 7~aRiy whenever 
7; = 0. Similarly, for such z, y, we have yRix for 7, = i, and 7yRjz 

otherwise. 

Note that the operation © is associative but typically it is not commutative 

(unless ¢ = 7. fpr all? 1, <1). 

Example 10.24. Let G; and G2 be graphs with vertex sets [nj] and [ng], 

respectively. Define G = G, + G2 as a graph with vertex set [n1 + 2], such 

that {z,y} is an edge of G if and only if either 

e1<z,y <n, and {z,y} is an edge of Gj, 

or 
ent1l<zjy <n, +n and {x — 7, y — 71} is an edge of Go. 

Thus, roughly speaking, to obtain G one should put G2 behind G preserving 

the order of vertices in each of the graphs. Clearly, the operation + is a sum 

scheme for graphs viewed as the models of either L~ or L°'4, with signature 

((0,0)) for L~ and ((0,0), (0,1)) for Le’. 

The relevance of sum schemes for the study of first-order properties is based 

on the following simple observation. 

Lemma 10.25. If © : Mx M + Mt is a sum scheme for M, then for 

all M,,M2 € M the set Thk(Mi © M2) can be computed from Th, (M1) 

and Thx (M2), i.e., The(M1) = Thy(M{) and Thy(Mz) = Thx(M3) implies 

Th,(M, © M2) = Thk(Mj ® M5). 

Proof. Suppose that Thy (M1) = Thx(M;) and Thy (M2) = Thx (M3). Thus, 

according to Lemma 10.3, the second player has winning strategies in both 

Ehr;,(M,, Mj) and Ehr;,(M2, M3). But then, he can win also Ehr;(Mi ® 

Mz, M! ® M3) using his winning strategy for Ehr;(M,, Mj) whenever the 
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first player selects a vertex from either M, or Mj, and playing according to 

his winning strategy for Ehr, (M2, M4) whenever the first player picks a vertex 

from M2 or M3. Thus, the assertion follows immediately from Lemma 10.3. 

a 

Let k be a natural number and @ : IN x MN — Mt be a sum scheme for 

a family of models 92%. A model M € M is (IM, ,k)-persistent, or simply 

persistent, if for every M' € Sit we have Th,(M @ M' @ M) = Thx(M). We 
will show that for every sum scheme such a persistent model can be found. 

Theorem 10.26. Every family of models M with a sum scheme ® : MxM 4 

IM contains at least one (IM, B, k)-persistent model for every natural number k. 

The proof of Theorem 10.26 will rely on the following property of the 

operation @. 

Lemma 10.27. For every k there exists m = m(k) such that if 8: Mx IM 4 
IM 1s a sum scheme for M, then for every model M € MN we have 

Thy(M @---@M)=Th.(M@---GM). 

m times m-+1 times 

Proof. We will show that the assertion holds if we put, rather crudely, m(k) = 
3**1. Thus, let G’ = Qj, Mj and G" = @™4" M!, where M/,...,M!, and 
M7',...,M7),, are identical copies of M. We will describe a winning strategy 
for the second player in the game Ehr;(G’,G”). Let us suppose that in the 
first i steps of the game the players choose vertices from copies M,,..., M;,, 
and M;\,...,M;!, respectively. Then if the first player in the (2 + 1)-th step 
picks a vertex v from M;,,, [or M{_|] the second player should select the $i41 
corresponding vertex v from M;'_ [M}._ |] chosen in such a way that Ti+1 

(a) "sp Tagl Tet oee wlor se eee 

(b) m+1— Si41 = ™M— 7341 if m — pucy Ss at [or m+1-—- Sp still: 

(c) Si41 — Sy = Ti41 — ry if for some 1 <3" <2 we have Iria — ri | < 3k-4 

forts eiresp [ea ihe 

(d) siza < sy if and only if rj4, < rj, for all 7! = ee ape ye 

As in the proof of Corollary 10.4, one can check (Exercise!) that such a strategy 
is consistent, that is, if the second player follows it from the beginning of the 
game he can always find a suitable element Si41 [or ri4i] in the (i + 1)-th 
move of the game. Thus, at the end of the game, for all 1 < i,j < k we have 
7, <1; if and only if s; < s;, and the second player wins. id 

We will need also the following elementary result on finite semigroups. 
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Lemma 10.28. Let S be a finite semigroup for which there exists a natural 

number m such that s™ = s™*+! for everys € S. Then S contains an element 

w such that wuw = w for everyue S. 

Proof. For x,y € S let us write x ~ y if for some s € S we have y = asz. 

Set A. = {y € S : z » y} and let A be a minimal subset in the family 

{A,:z€S}. Since the relation “~” is transitive, for every z € A, we have 

x ~» y if and only if y € A, and so for every z € A we have A = A,;. Thus, to 

verify the assertion, it is enough to show that A consists of only one element. 

Since we may assume that m > 3, for every z € A we have rx™~?z = 

z™ = x™t! € A. Observe also that the choice of A ensures that for each 

x € A the function f;: A> A: yH r™”yz™ is a bijection, that is, for every 

xz € A we have 

ee A Ae oe. yet, (10.4) 

Indeed, clearly x" Ax™ C A, and for every z € A, there exists s € S such that 

Seen es rt ar =r (rela a eye, 

where y = zsz € A. 

Now let z,y € A. Then, y = rsx for some s € S, and so zy = a(zs)z € A. 

Furthermore, 
m™m pate Tp rib gmt yx™ = 2™(xy)2™ 

and, because of (10.4), y = zy. Similarly, 

y™ay™ = y™(zy)y™ 

and so y = zy = x. Hence, A consists of only one element w and the assertion 

follows. bs) 

Proof of Theorem 10.26. Let us notice first that, due to Lemma 10.25, for 

a given k, the sum scheme @ induces an operation ® acting on the set 

=, (IN) = {Th,(M) : M € Mi}. Since the operation @ is associative, so is ®, 

and consequently (=; (2t),@®) is a finite semigroup. Due to Lemma 10.27, 

this semigroup fulfills the assumption of Lemma 10.28 and thus contains an 

element w = Th,(M) such that for every M' € M 

Thy(M) = Thy(M)@ Th,(M')@ Thy(M) = Thy(M © M' @ M). it 

Remark 10.29. For a language L in which all predicates are symmetric, as in 

the case of the first-order language of graphs L, Theorem 10.26 can be proved 

in a much simpler way. Indeed, one can easily see that then Lemma 10.27 holds 

with m(k) = k. Furthermore, the semigroup (=; (9), ®) is commutative, and 

so as a persistent element one can choose 

(ml :)"-( IL); LEE, (M) rEE, (Mt) 
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The random graph G(n, p) 

In the previous sections of this chapter we have characterized quite precisely 

for which p = p(n) in G(n, p) the zero-one law holds; now we use sum schemes 

to study the behavior of a slightly different type of random graph, denoted by 

G(n,p). Let p be a sequence of probabilities {p; s2,. Then, G(n,p) is a graph 

on the vertex set [n] obtained by joining each pair of vertices 1 <k <f<n 

with probability pe_,, independently for each such pair. Thus, in particular, 

G(n,p) is a special case of G(n,p) when all terms of the sequence p are equal 

to p. On the other hand, we will consider asymptotic properties of G(n,p) 

when n tends to infinity but the sequence p does not depend on n, thus it 

is not possible to deduce our previous results about G(n, p) from those given 

below on G(n,p), unless p does not depend on n. 

In order to simplify slightly our considerations we will study the behav- 

ior of G(n,p) only for sequences p = {p;}S2, for which 0 < p; < 1/2. The 

assumption that p > 0 helps to avoid some pathological cases when, for ex- 

ample, p is selected in such a way that no triangles are allowed in G(n, 5); 

let us mention, however, that Theorems 10.31, 10.33 and 10.34 below remain 

true also for sequences which contain zero terms (Luczak and Shelah 1995). 
The upper bound for p; takes care of another troublesome situation when p 

contains some ones or terms which quickly approach one as 7 — oo. It is easy 

to see that, under the above assumptions, a.a.s. the random graph G(n, >) 
contains many copies of any given subgraph H. Following Luczak and She- 
lah (1995) we will show that if the terms of p tend to 0 fast enough, then a 
stronger result holds: a.a.s. G(n,p) contains a copy of H of a very special 
type. 

Thus, let H and G be graphs with vertex sets [m] and [n], respectively. We 
say that a subgraph H’ of G spanned by vertices i+1,...,i+m is an exact 
copy of H if for alll <k < €<m the pair {k, €} is an edge of H if and only 
if {i+ k,2 + €} is an edge of G, and no vertex from H’ is adjacent to vertices 
outside H’. (Thus, H’ is an exact copy if it is an order-preserving induced 
copy of H on consecutive vertices which, moreover, is a sum of components 
of G.) Furthermore, such an exact copy of H’ is separating if no vertex i! <i 
of G is adjacent to a vertex i” > i+m +1, in other words, one can write 
the graph G as asum G’ + H’ + G", or, maybe, G’ + H’ or H’ +. G" (for the 
definition of G; + G2 see Example 10.24). 

Lemma 10.30. Let p = {p;}$2, be such that 0 < p; < 1/2 for every 2 > 1, 
and let H be a graph with verter set [m]. 

(i) If S07, pi = o(logn), then a.a.s. G(n,p) contains an exact copy of H. 

(ii) If the series °°, ip; converges, then a.a.s. G(n,p) contains an exact 
separating copy of H which contains no vertices with labels larger than m{n°9]. 

Proof. Let us consider a family A of disjoint sets Ay = {(€—1)m+1,..., £m}, 
where € = 1,..., [n°]. The probability that a given set Ay from A spans an 
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exact copy of H is given by p(A;) = p(H)p'(A,), where the first factor, 

pH)= fT pli-s) TJ G-pii'-3"))>0 
e={t,j}€E(H) e/={i' ,j' }¢E(H) 

remains the same for all @, while the second one, 

lm €—1)m n 

p'(Ae) = ii I] (1 — pr—s) I] C= peea), 
r=(f—1)m+1 s=1 tlm 

may depend on ¢. However, from our assumptions it follows that 

n 

p'(Ae) > (IIa ; p)) > exp(-2m >») 2 wees 
Jil 7=1 

so there exists a subfamily A’ of A with, say, [n°-7] elements, such that for 
every A € A’ the probability p’(A) is roughly the same, that is, for some 

function f(n), where n~°° < f(n) <1, and every A € A’ we have 

f(n)(1—o(n~")) < p'(A) < f(n). 

Let X denote the number of those sets from A’ which span exact copies 

of H. Then, the expectation of X is given by 

EX = )> (A) = (1+ 0(n"))p(H) f(n)n®7 > n°, 
AEA’ 

whereas, for the second factorial moment of X, we get 

E[X(X-DJ= > v(A)v(B)/ TI TG - 24-0) - 
A,BEA’ i€A jeEB 
AZB 

In order to estimate E[X (X — 1)], note that among the first n terms of every 

sequence p which fulfills the assumptions of Lemma 10.30 one can find at most 

n®25 terms larger than n~°?. Thus, for all except at most 2mn®?°|A'| <n 
pairs A,B € A’ we have 

1 la ere a uct (Laat pre >1-n° 

i€A jEB 

Furthermore, for all A,B € A’ 

II [a — Pii-3|) 2 I 1—pi)°" > exp(- ~4m ps) See 

i€A jEB 
re 

Thus, 

ELX(X-1)] < n!4f2(n)(1+.O(n-°")) +nf?(n)n° = (EX)?(1+O(n-")) , 
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and so for the variance of X we get 

Var X = E[X(X —1)]} + EX - (EX)? =o((EX)’). 

Consequently, a.a.s. X > EX/2 > 0, due to Chebyshev’s inequality. 

The second part of the lemma can be shown in a similar way, but now the 

probability that Ay € A is an exact separating copy of H is the product of 

three factors p(H), p’(A¢) and p”(A¢), where 

f—1)m n ( n co 

Se= IA (=pj-1) > []—p9)' > exp(-2 ins) 
4=1 t= 1 t= ag =m 

is bounded away from zero whenever the series >>, ip; converges. As we 

have done before, one must choose a family A” of sets for which the probabil- 
ity p(H)p'(A)p'’(A) is roughly the same for all A € A” and use Chebyshev’s 

inequality to show that a.a.s. at least one set from A” spans an exact sepa- 
rating copy of H. Since the proof follows very closely the previous argument, 

we omit it here (for details see Luczak and Shelah (1995)). | 

Zero-one laws for G(n, D) 

One can easily deduce from Theorem 10.26 and Lemma 10.30 that the zero- 

one law holds for G(n,p) whenever the sequence p tends to 0 quickly enough. 

Theorem 10.31. Let a sequence p = {p;}$2, be such that 0 < p; < 1/2 for 
a1>1 and 

SO = o(logn) . 
ad 

Then, for every sentence y from L~ the probability that w holds for G(n, 5) 
tends either to 0 or to 1 as n > oo. 

Proof. Let p fulfill the assumptions of the theorem and w be a sentence of 
quantifier depth k from L.. From Theorem 10.26 we know that there exists a 
graph Hx such that for every graph G we have Thy(H, +G+H;) = Thy (Hg). 
But Lemma 10.30 implies that a.a.s. G(n, p) contains an exact copy of Hy +H; 
and thus a.a.s. Thy(G(n,p)) = Thy(Hx), that is, if H, satisfies w, then 

Jim P(G(n,p) Fv) =1 
otherwise 

Jim P(G(n,p) FY) =0. E 

Remark 10.32. As was observed by Luczak and Shelah (1995), the above 
result is best possible in the following sense. Let ¢ > 0 and w' be a sentence 
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from L~ which says that a graph contains no components with [10/e] vertices. 
Then, there exists a sequence p’ = {p/}% =; such that 0 < pj < 1/2 and — 
every n > 2 we have 5°", pi < elogn, but liminf,_,.. P(G(n,p’) K v’) 
while lim sup,,_,,, P(G(n,p’) Kw’) = 1. 

What happens when, instead of L., we consider the stronger language L°"¢? 
Observe that if ~ is the first-order statement which says that the vertex with- 
out predecessors (i-e., 1) is adjacent to its immediate successor (i.e., 2), then 
for every n > 2 

0< P(G(n,p) EY) =m <1/2, 
in other words, for L°' the zero-one law does not hold. However, if the terms 
of p tend to 0 fast enough, then for every sentence w from L°4 the probability 
that G(n,p) satisfies converges. 

Theorem 10.33. Let p = {p;}%2, denote a sequence such that 0 < p; < 1/2 

for every i > 1 and the series ))~ .; ip; converges. Then, for every sentence w 

from L°4, the probability that w holds for G(n,p) converges as n —> co. 

Proof. As usual, let w denote a sentence of L°' of quantifier depth k and let p 

fulfill the assumptions of the theorem. We will show that {P(G(n, Dp) EK #)}°, 
is a Cauchy sequence, and so it must converge. 

Let {G (n,p)} 2, be a sequence of random graphs constructed in the fol- 

lowing way. Take G (1,3) to be a graph with a single vertex 1. For n > 1, 

define G(n + 1,p) in the following way: 

(i) if 1 <i < j < [n/2], then the pair {7,7} is an edge of Gin +1,p) if 

and only if {i,j} is an edge of G (n,p); 

(ii) if [n/2]+1<i <j <n+1, then the pair {7,7} is an edge of G (n+1,D) 

if and only if {2 — 1,7 — 1} is an edge of G (n,p); 

(iii) if 1 <i < [n/2] <j <n+1 then {i,j} is an edge of G(n + 1,5) with 
probability p;—;, independently for each such pair. 

Clearly, the n-th element of the Markov chain {G (n, p)}2, can be identified 

with the graph G(n, p), and so we may assume that G(n,p) = Gin n,p). Let us 

also remark that, of course, a much easier way of obtaining G(n + 1,p) from 

G(n, D) is to add to G(n,p) a new vertex n + 1 and join it to the vertices of 

G(n,p) with appropriate probabilities. Nonetheless, our method of inserting a 

new vertex in the middle of G(n, p) has one crucial advantage: the subgraphs 

induced in G(n,p) and G(n + 1,p) by the vertices with small labels are the 

same and, furthermore, the subgraphs spanned by the vertices with large 

labels in both graphs are identical as well. 

Let H;, denote a persistent graph with, say, m vertices, whose existence is 

assured by Theorem 10.26; thus, for every graph G we have Thy (Hx 4+GH 

Hy) = Thx(Hy). From Lemma 10.30 we know that the probability that a 
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separating exact copy of H; appears somewhere at the beginning of G(n, p) 

tends to 1 as n > oo and, similarly, by symmetry, the probability that one 

can find a separating exact copy of H;, somewhere near the end of G(n,p) 

tends to 1 as well. More precisely, with probability larger than 1 — e’(n), for 

some function e’(n) such that limp_4o. €’(n) = 0, G(n, p) can be represented as 
Gi +H,+G2+H;'+G3, where H; and H;! are exact separating copies of Hx, 

and Hj, contains no vertex with label larger than m[n°], while no vertex with 
label smaller than n + 1 — m[n®°] belongs to H;/. Now, for n’ > n, let us 
consider the random graph G(n’,p) viewed as a stage of the Markov chain 
described above, that is, we assume that G(n',p) was obtained from G(n, p) 

in a sequence of “middle vertex insertions”. Clearly, if in this process we have 

inserted no edge {7, j} such that j-i > n/2—mJ[n®-®] and either i < m[n°°] or 
j >n+1—mJn°*], then G(n, Dp) can be represented as G; +H, +G5+H;'+G3 
where G; and H, are the same as in the decomposition of G(n,p), and Hy,’ 

and G3 are shifted to the right by n’ — n. Furthermore, the probability that 

G(n', p) contains edges {7, 7} which can corrupt this decomposition is bounded 
from above by 

, 
n 

2m[n°>?] ss pi < We. ip; =e" (n), 

i=[n/2]—m[n°-9] i=|n/3] 

where e”(n) tends to 0 as n — oo. 

Hence, using the fact that H;, is persistent, with probability at least 1 — 

e'(n) — e€""(n), we have 

Thy (G(n',p)) = Thy (Gi + Hy + G + Hy 4+ G3) = Thy (Gi + Ay + Gs) 

= Th, (G, + H,, + G2 + Hy; + G3) = Thy (G(n, p)). 

In particular, for n’ > n, 

| P(G(n',p) Fb) — P(G(n,p) F ¥)| < e'(n) + e"(n), 

where é’(n) + €""(n) + 0 as n + oo. Thus, the sequence {P(G(n,p) FE W)}&, 
is Cauchy and so it must converge. a 

Let us mention one more result on the first-order properties of G(n, 5). 
Luczak and Shelah (1995) showed that for every ¢ > 0 and every sequence 
P = {pi}f2, there is a sentence 7 from L°4, and a sequence p! = {pi }o2, 
obtained from p by adding to it some number of zero terms, such that i 

lim sup P(G(n,p’) F ) — liminf P(G(n,p') FY) >1-e. 

However, for their construction one cannot put € = 0 unless the series Seep; 
diverges. It is somewhat surprising that, in fact, if >=); Pi < 00, then for no 
sentence ~ of L&4 the sequence {P(G(n, p) F ~}c2, has both 0 and 1 as 
concentration points; that is, the following defect zero-one law holds. 
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Theorem 10.34. Let p = {p;}S2, be a sequence such that 0 < p; < 1/2 for 

every i > 1 and the series )>*, pi; converges. Then, for every sentence 

from Lex, 

lim sup P(G(n, p) E w) — liminf P(G(n,p) Ew) <1. 
n—0o TL? OO 

Proof. Let ~ be a sentence of quantifier depth k and Hy, be a persistent graph 

on m vertices whose existence is implied by Theorem 10.26. The probability 

that G(n, p) can be represented as H;, +G + H;’, where H; and H;’ are exact 
separating copies of H,, is, for n > 3m, given by 

n—1 

(P(G(m, p) = Hy))’ II ees p;)mint{2m,2in—3} 

a 

> [PE(m,p) = Hy) (II -p))"] 

> [PGon,p) = Haexo(-2m op.) 3 
1=1 

and so it is larger than a suitably chosen constant ¢ > 0 which depends on 

both w and p but not on n. Hence, because of the persistence of Hy, if w 

holds for H;, then 

lim inf P(G(n,p) Fw) >e, 

and if H; is not a model for w, then 

lim sup P(G(n,p) Ev) <1l—e. a 

Finally, we remark that there are other types of zero-one laws we did not 

consider in this chapter. For instance, one can ask when the difference P(G(n+ 

1,D) E w) — P(G(n,p) & yw) tends to 0 as n — oo for every sentence w of 

L.~ or L°4 (Shelah 1996), or study the convergence of {P(G(n,p) F b)} 21, 

when n is chosen from some dense subset of the natural numbers (Lynch 1993). 

We should also mention that we have emphasized methods of combinatorial 

and probabilistic flavor which are not, by any means, the only ways to study 

zero-one laws for combinatorial structures (see, e.g., the survey of Compton 

(1988)). 

10.5 SEPARABILITY AND THE SPEED OF CONVERGENCE 

If we can show that a random structure satisfies the zero-one law another 

problem immediately emerges: is it possible to determine effectively which 

properties hold for the random structure a.a.s. and which a.a.s. do not? As 

a matter of fact, such a separability question can be asked even when the 
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zero-one law does not hold. Thus, we would like to find an algorithm which, 

given a function p = p(n) and a sentence w from L, puts w into one of two 

disjoint classes: one which contains all sentences of LZ which hold for G(n, p) 

a.a.s., and the other, which contains all sentences which a.a.s. do not hold 

for G(n, p). The sentences that are not of the above two types may be placed 

in either class, provided only that the decision will be reached after a finite 

number of steps — the algorithm is not allowed to run forever. 

Does there exist a separating procedure for G(n,p) and the language L~, 

in the case in which p = p(n) is one of the functions listed in Theorems 10.5, 

10.6, 10.7 or 10.15, where we know that the zero-one law holds? At first sight 

the positive answer seems to follow directly from the method we used in the 

proofs. Indeed, in each case we have employed a similar scheme. Given a sen- 

tence w of quantifier depth k we first determined a finite family of sentences 

$, = {yi}icr such that each sentence from ®, holds a.a.s. for G(n,p). Then 

we showed that for any two graphs G’ and G” such that both of them pos- 

sess all properties from ®, we had Th,(G’) = Th;y(G”), that is, we verified, 

using Lemma 10.3, that 6, was a complete system of axioms for the theory 

containing all sentences of LZ of quantifier depth at most k. Now let G’ be 

a graph such that G’ satisfies y; for every y; € $,; clearly G’ can be found 
by examining one by one all graphs on n vertices, as n ranges from one to 
infinity. Then, it is enough to check whether w holds for G’: if the answer is 
positive, then a.a.s. ~ holds for G(n,p), otherwise a.a.s. G(n,p) is a model 
for wy. 

Before we state the above result in a rigorous form, we need to make a 
comment of a somewhat technical nature. In order to decide on the limit 
probability that G(n, p) is a model for , the algorithm must be given both w 
and the function p = p(n) in a form such that one can study the behavior of 
p(n) for large values of n. However, instead of struggling with the problem of 
how to present a function p : N > Rina finite and accessible way, we will cheat 
a little bit and assume that we know the asymptotic behavior of p= pln): 
Thus, for instance, in the case of a function p = p(n) for which the assumptions 
of Theorem 10.6(i) hold, we assume that there is a way to compute @ such 
that n-1-1/! < p < n7!-/(4)), and use the value of £ to construct the 
appropriate complete axiom system oi in order to check whether a.a.s. w 
is satisfied in G(n,p). This idea works well for functions p = p(n) which 
fulfill the assumptions of one of Theorems 10.5, 10.6, or 10.15. When p(n) = 
n—+0(1) for an irrational a € (0, 1) we still need to find a compact description 
of a. However, a quick inspection of the proof of Theorem 10.7 reveals that 
we can study the behavior of G(n,p) for p = p(n) = n~*+°) | where a € 
(0,1) is irrational, provided we can estimate expressions like v — ae, for all 
natural numbers v and e. This, in turn, can be accomplished if we are given a 
subprocedure Oracle, which, for any rational r, can tell whether a < r. Thus 
we arrive at the following result. 
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Theorem 10.35. Let p = p(n) be a function for which we can decide that 
it fulfills the assumptions of either Theorem 10.5 or Theorem 10.15, or one 

of the assumptions of Theorem 10.6. Then there exists an algorithm which, 

given a sentence w from Li, computes limp... P(G(n, p) Fw). 

Furthermore, for every irrational a € (0,1) and p= p(n) = n+?) there 
exists an algorithm using Oracleg as a subprocedure which, given a sentence 

w from Li, computes limp... P(G(n, p) - v). a 

The above result might suggest that finding a separating procedure should 

be possible at least when we can prove that the zero-one law holds. We will 

soon show that it is not the case. Our argument will be based on the following 

consequence of Trahtenbrot’s theorem (Trahtenbrot 1950). 

Theorem 10.36. There is no procedure which can decide, for every sentence 

w from L., whether there exists a finite graph G such that G satisfies. 

Theorem 10.36 implies, in particular, that the minimal size of the model 

in which a sentence holds can grow very fast with the depth of the sentence. 

Corollary 10.37. There exists a sequence {Wx}P2, of sentences from LW 

such that for every k = 1,2,..., the sentence Wx has quantifier depth k and py 

holds for some finite graph Gx, but the function 

g(k) = min{v(Gx) : Ge F ve} 

is not bounded from above by any recursive function of k. 

Proof. Suppose that the assertion does not hold and for every sentence ~ from 

L.~ of quantifier depth k, either w holds for no finite graph, or it is valid for 

some finite graph of size bounded from above by a recursive (i.e., computable) 

function g(k). Consider a procedure which computes g(k), constructs all 

graphs on the set {1,2,...,@} for all 1 < & < k, and checks one by one 

whether w holds for one of them. Such an algorithm would verify whether wp 

holds for a finite graph, contradicting Theorem 10.36. a 

Let us look again at the random graph G(n, p) we studied in the previous 

section. In Theorem 10.31 we proved that if }-"_, pi = o(logn), then for ev- 

ery sentence w from L~ the zero-one law holds. We will show that, somewhat 

surprisingly, no procedure can decide whether the limit probability of a sen- 

tence is zero or one. Moreover, the speed of convergence for some sentences 

from L~ can be very, very slow. 

Theorem 10.38. Let p= {pi}, be such that 0 < pj < 1/2 and YY, pi = 

o(logn). Then there is no procedure which for every sentence y from L~ can 

decide whether a.a.s. w holds for G(n,p). 

Furthermore, there exists a sequence {we}, of sentences from L~ such 

that, for every k =1,2,..., the sentence wp has quantifier depth k and 

Jim, P(G(n,p) F ve) = 1, 
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but the function 

f(k) = min{n : P(G(n,p) F ve) > 0} 

1s not bounded from above by any recursive function of k. 

Proof. Let p be a sequence of probabilities which fulfills the assumptions of 

the theorem and let ~ be any sentence of L.. Denote by w the sentence 

saying that w holds in the neighborhood of some vertex of a graph, that is, in 

order to construct wy from w one needs to replace each occurrence of y ~ z by 

(xc ~yAr~zAy~ 2), each a(y ~ z) by (x ~yAzr ~ zA-7(y ~ z)), and add 

at the beginning of the formula the existential quantifier 3,. Then, obviously, 

w is a sentence from L~ of quantifier depth at most one larger than ~, and w 

has a finite model if and only if there is a finite model for w. Furthermore, a 

graph is a model for w if and only if one of its components satisfies w. 

Clearly, if = holds a.a.s. for G(n,p), then it has a finite model. Note 

however, that Lemma 10.30 implies that the converse is also true: if w holds 

for some graph H, then a.a.s. G(n, p) contains this graph as a component, and 

thus a.a.s. G(n,p) is a model for . Hence, if we could effectively compute the 

limit probability for every sentence from L~, we could also decide for every w 

from L~ whether it has a finite model, which would contradict Theorem 10.36. 

In order to show the second part of the proof, it is enough to consider 
sentences Wk corresponding to sentences ~, from L.~ chosen as in Corol- 
lary 10.37. | 

Finally, let us return to G(n,p) and consider the case in which p = p(n) = 
n—\/T+0(1) | where np’ is of an order smaller than log n, so Theorem 10.15 does 
not apply and, unless np’ tends to 0 very fast, the zero-one law does not hold 
(Theorem 10.19). Then, as observed by Dolan (1992), one can use the idea 
employed in the proof of Theorem 10.19 to show that for such a p = p(n) no 
separating procedure can be found. 

Theorem 10.39. Let p = p(n) = n—/7+°() be such that np’? = o(log n). 
Then there exists no procedure which can separate those sentences of L~ which 
a.a.s. hold in G(n,p) from those whose probability tends to 0 as n > oo. 

Furthermore, there exists a sequence {pe}, of sentences from Li such 
that, for every k = 1,2,..., the sentence wp, has quantifier depth k and 

Jim P(G(n,p) F ve) = 1, 
but the function 

f(k) = min{n : P(G(n,p) E vx) > 0} 
ts not bounded from above by any recursive function of k. 

Proof. Let w be any sentence from L~ and let wb denote the sentence from L, 
stating that there exists an element x such that ~ holds in the set of all 
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elements y for which x ~ y. Then, as in the proof of Theorem 10.38, we infer 
that w holds for some finite model if and only if for each m large enough there 
exists a model for w of m elements. 

From Lemma 10.21 we know that one can find formulas P* and T* from 
L. such that for some function w = w(n), where w(n) — 00 as n —> 00, the 
following holds: a.a.s. G(n,p) contains a set of vertices S, |S| > w, which is 
defined by P* and some sequence v*, and such that every ternary relation 
on S can be encoded by T*. Now let w* be the sentence obtained from a in 
the following way: replace each occurrence of “x ~ y” by “T*(x,y,z,u7) A 

T*(y,2z,z,v")”, for each logical variable x; used in , add to it “AP* (x;,u")”, 
and put at the beginning the existential quantifiers 565,742. Uhen, clearly, 

* is a sentence from L.. Moreover, a" states that for some subset S of 

vertices of G(n, p), such that |.S| > w, there exists a symmetric binary relation 

“~’” on S such that S with “~’” is a finite model for w. (Note that “~’” 

is not the adjacency relation of G(n,p).) Thus, if a.a.s. G(n, p) satisfies wp, 

then yb and thus w have finite models. On the other hand, if w has a finite 

model, then for every set S large enough there exists a symmetric binary 
Paacn “~” such that S with “~’” is a model for 7, and so y* a.a.s. holds 

for G(n,p). Consequently, an algorithm separating properties which a.a.s. 

hold in G(n,p) from those which a.a.s. do not hold, could be used to decide 
if w has a finite model, contradicting Trahtenbrot’s theorem. 

The second part of the statement follows from Corollary 10.37 in a similar 

manner. a 
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Index of Notation 

SETS AND NUMBERS 

n!! 

()k 

base of natural 

logarithm, 12 

ceiling 

floor 

A We agate a 
k-element subsets of X, 

5 
k-element subsets of [n], 

5 

semi-factorial, 140 

descending factorial, 

144 

VERTICES AND EDGES 

V(G) 
ug, v(G) 
E(G) 
ec,e(G) 
ec(V) 

ec(A, B) 

u(R, H) 

e(R, H) 

vertex set, 6 

number of vertices, 6 

edge set, 6 

number of edges, 6 
number of edges within 

Weaetl 
number of edges between 

A and B, 7 

number of extension 

vertices, 281 

number of proper edges, 

281 

SUBGRAPHS 

GV] 

G[E] 
x(G) 
5(G) 
(v, G) 
(R, G) 
cle(W) 

cr;,(G) 

cr(G) 
ker(G) 

DENSITIES 

d(G) 
m(G) 

d1)(G) 
m)(G) 

d‘?)(G) 
m(?)(G) 

d(v, G) 
m(v, G) 

induced, or spanned 

subgraph, 7 

spanning subgraph, 7 

subgraph plot, 63 

roof of subgraph plot, 63 
rooted graph, 68 

rooted graph, 73, 281 

t-closure, 282 

k-core, 106 

2-core, 122 

kernel, 122 

density, 6, 64 

maximum density, 6, 56, 

64 
Kj -density, 64 

maximum Kj -density, 

64, 197 

K2-density, 65 

maximum K -density, 

65 
rooted density, 69 

maximum rooted density, 

69 

SYA 
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d(R, G) rooted density, 74 

m(R, G) maximum rooted density, 

74 

p(G) relative density, 7 

PM relative density of 

G(n, M), 222 
dy(U,W) pair density, 213 

scaled pair density, 212 

DEGREES AND NEIGHBORS 

Ne(v) neighborhood of v, 7 

No(S) neighborhood of S, 7 

Noa(v) closed neighborhood of v, 
7 

Na(S) closed neighborhood of 
Shit 

6(G) minimum degree, 7 
A(G) maximum degree, 7 
deg(v) vertex degree, 7 

SPECIAL GRAPHS 

0 null graph, also empty 
set, 7 

Ge complement of G, 79 
KGa complete graph, 7 

Km,n complete bipartite graph, 

7 

Cr cycle, 7 

12fe path with k edges, 7 

Kin star, 7 

jG union of disjoint copies, 7 
jK2 matching, 7 

ke whisk graph, 68 
L, lollipop graph, 71 

Ky diamond, 97 

GRAPH PARAMETERS 

aut(G) number of 

automorphisms, 7 

a(G) stability, or independence 
number, 7 

x(G) chromatic number, 7 
D(G) degeneracy number, 7 
ex(F, G) Turan number, 204 
ex(F,G) relative Turan number, 

204 

GRAPH PROPERTIES 

COVe covering property, 68 
Ext(R, G) extension statement, 73 
PM perfect matching 

property, 84 

Fa(e) partial G-factor property, 

91 

F —- (G)} vertex Ramsey property, 
196 

F > (G)2 edge Ramsey property, 
202 

My Hamilton-matching 

property, 105 

PROBABILITY 

P probability, 1 

1[E] indicator function, 8 
Yx characteristic function, 

145 

(examen Xae joint characteristic 

function, 147 

L dependency graph, 11 

MOMENTS 

E expectation, 8 

Var variance, 8 

Cov covariance, 8 

E(X | €) conditional expectation, 
8 

m median, 40 

xXx standardized random 

variable, 139 

EX moments, 140 

E(X); factorial moments, 144 
ey, (X) cumulants, 145 
2(X1,...,X,) mixed cumulants, 147 

DISTRIBUTIONS 

& distribution, 7 

a convergence in 

distribution, 8 

ae ‘convergence in 

probability, 8 

Bi(n, p) binomial distribution, 7 
Be(p) Bernoulli distribution, 7 
Po(A) Poisson distribution, 7 
N(u, 0?) normal distribution, 7 
dry (X,Y) total variation distance, 

153 
d\(X,Y) distance between 

distributions, 158 

ASYMPTOTICS 

Qn =O(bn) —ibig O, 9 
an = 2(bn) inverse big O, 9 
an = O(bn) same order of magnitude 

10 
(rs Salis same as an = O(bn), 10 

2 



Qn ~ bn 

Qn = 0(bn) 

Qn XK bn 

Qn > bn 

a.a.s. 

asymptotic equality, 10 

little o, 10 

same as an = o(bn), 10 

same as bn = o(a,), 10 

asymptotically almost 

surely, 10 

PROBABILITY ASYMPTOTICS 

Xn = Op(an) 
2, = Oc(an) 

Xn = Op(an) 

Me — Oc(an) 

Xn = 0p(an) 

probabilistic big O, 10 

stronger probabilistic big 

O, 10 
probabilistic O(a, ), 10 

stronger probabilistic 

O(an), 10 

probabilistic little 0, 11 

RANDOM STRUCTURES 

Tp 

{lu}u 

G{n, p) 

G(m, n,p) 

G(n, M) 

C(k, 2) 

G(n, r) 

G* (n,r) 

G (n,r) 

G(n,p) 

G* (n, M) 

{G(t)}e 
{G(n, M)}m 

Go ~ G6?) 

G, + G 

Gi 6G 

P(n) 

binomial random subset, 

5 
uniform random subset, 

5 

general random subset, 
6 

random subset process, 
13 

binomial random graph, 

2 

bipartite random graph, 

2 

uniform random graph, 

3 

connected random graph, 

123 
random regular graph, 3, 

233 

random regular 
multigraph, 235 

random regular 

multigraph without 

loops, 257 

special random graph, 

296 

G(n, M) without largest 
component, 130 

random graph process, 4 

the random graph 

process, 4 

contiguity of random 

graphs, 257 

sum of random graphs, 

257 

simple sum of random 

graphs, 257 

random permutation, 263 

INDEX OF NOTATION 329 

SUBGRAPH COUNTS 

XG subgraph count, 55 
Po minimum expected 

subgraph count, 56 

Yo induced subgraph count, 78 

XG subgraph count in 

G(n, M), 61 
Te isolated subgraph count, 

79 

Ty isolated v-vertex trees 

count, 80 

Sn(H) “centralized” subgraph 
count, 165 

Zr cycle count in G(n, r) 
and G*(n,r), 236 

Xn(H) decomposition 
: coefficients, 166 

dS Veb)) scaled decomposition 

coefficients, 168 

15 ES Hamilton cycle count in 

G(n, r), 240 
He Hamilton cycle count in 

G* (n,r), 240 
L,(n, M) size of r-th largest 

component, 112 

Y (k, £) é-component count in 
G(n, M), 113 

C(k, £) number of connected 
graphs, 113 

K(n, M) excess of largest 
component of G(n, M), 
2 

THRESHOLDS 

Dp threshold in G(n, p), 18 

M threshold in G(n, M), 18 

M hitting time, 19 

6(e) width of threshold, 20 

LOGIC 

Nye first-order language of 

graphs, 272 

pes first-order language of 
ordered graphs, 272 

u~y adjacency predicate, 272 

qd(y) quantifier depth, 272 
Th, (M) set of sentences of depth 

at most k, 273 

MEp M is a model for vy, 273 
Ehr;,(M’,M"’) Ehrenfeucht game, 274 
Mi ® M2 sum scheme of models, 293 

Git+ Ge sum scheme of graphs, 293 
6 signature, 293 
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0-statement, 18 

1-factor, 82, 89 

1-statement, 18 

2-independent set, 88, 94 

@.0-85, 10 

Almost surely, 10 

asymptotically, 10 
Analysis of variance, 96, 241 

Arboricity, 66 

Arithmetic progression, 54 

Asymptotic 

equivalence, 14 

normality, 149 

Azuma’s inequality, 37 

Bounded in probability, 11 

Branching process, 107 

Characteristic function, 145 

joint, 147 
Chebyshev’s inequality, 8, 25, 241 

Chernoff bound, 26 

Chernoff’s inequality, 26 

Cherry, 82 
Chromatic number, 106, 184 

concentration, 187 

Closure, 282 
Coloring algorithm, 186 

Component 

complex, 112 

giant, 104, 120 

Configuration, 235 

Index 

graph, 137 

random, 235 

Connectivity, 104, 244 

Contiguity, 234, 264 

Convergence 
in distribution, 8 

in probability, 8 

Copy of graph, 7 

induced, 77 

isolated, 78, 157 
nested, 219 

solitary, 78 

Core, 105-106, 122, 124 
Cramér’s theorem, 9 

Cramér—Wold device, 9 

Cumulants, 145 

mixed, 147 

Decomposition method, 165 

Degeneracy number, 7, 96, 184 

Density, 6, 64 

maximum, 6, 64 

relative, 7, 222 

Dependency graph, 11 

Diameter, 105 

Diamond tree, 98 

Diamond, 97 

Distribution 

binomial, 26 
determined by moments, 140 

hypergeometric, 29 

331 
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lower tail, 31 

of random graph, 1 
upper tail, 31, 48 

Double jump, 111 

Ehrenhfeucht game, 274 

Erd6s—Rado arrow notation, 196, 202 

Erd6és—Stone-Simonovits Theorem, 205 

Evolution, 103 

Evolutionary path, 137 

Exact copy, 296 

separating, 296 

Exceptional class, 213 

Excess, 112 

Expose-and-merge, 193 

Extension statements, 73 

Extension 

balanced, 58 

rooted, 282 

vertex, 281 

Extinction probability, 107 

First cycle, 134 

First moment method, 54 

First-order language, 272 

FKG inequality, 30, 58 

G-factor, 90 

partial, 90 

Generating functions, 177 
Graph functional, 162 

asymptotically finitely dominated, 168 
dominated, 167 

Graph 

balanced, 58, 64 

bounded, 215 

cubic, 233 

dense, 216 

empty, 7 

K,-balanced, 65 

Ko2-balanced, 65 

null, 7 

order of, 6 

p-proportional, 172 

regular, 233 

size of, 6 

strictly balanced, 64 

strictly Ky-balanced, 65 

strictly K2-balanced, 65 
sunshine, 203 

uniform, 223 

whisk, 68, 90 

Hajnal-Szemerédi Theorem, 48, 94 
Half-edge, 235 
Hall Theorem, 82 

Hall’s condition, 82 

Hamilton cycles, 105, 239 

Hitting time, 19, 85 

Hypercube, 2 

spanning, 96 

Hypergraph, 199 

3-edge-critical, 199 

chromatic number of, 199 

H6lder’s inequality, 147 

Independence number, 179 

Isolated 

subgraphs, 79 

trees, 80, 162 

vertices, 80, 84, 156, 161 

Juncture, 115 

Kernel, 122 

é-component, 112 

Laplace transform, 25 

Law of total probability, 8 

Leader, 136 

Leading overlap, 62, 171 

unique, 62 

Lipschitz condition, 38 

Log-normal, 176 

Lollipop graph, 71 

Mantel’s theorem, 209-210, 224 

Markov’s inequality, 8, 25 

Martingale, 37, 127, 166, 176, 247 

edge exposure, 39 

vertex exposure, 39 

Matching, 7 

Median, 40 

Minimum degree phenomenon, 81, 105 

Moment generating function, 25 

Moments 

factorial, 144 

method of, 66, 140, 237 

Monochromatic triangles, 209 
Neighborhood, 7 

closed, 7 

Pair density, 213 

scaled, 212 

Partition 

edge set, 202 

index of, 213 

regular, 213 

sparsely regular, 216 

vertex set, 196 

Perfect matching, 82, 105, 244, 261 

fractional, 102 

in hypergraph, 100 

Persistent model, 294 

Phase 

critical, 104 

subcritical, 104, 112 

supercritical, 104, 115 

transition, 104 

Projection 

first, 162, 176 

second, 164 



Proper edge, 281 

Property 

convex, 12 

decreasing, 12 

extremal, 208 

graph, 7, 13 

increasing, 12, 261 

monotone, 12 

partition, 208 

semi-induced, 160 

Quantifier depth, 272 

Race of components, 136 

Ramsey property, 1 

edge, 202 

nonsymmetric, 208 

vertex, 196 

Random graph process, 4 
bipartite, 83 

continuous, 4 

restricted, 5 

the, 4, 85 

Random graph, 1 

binomial, 2 

bipartite, 2, 82 

distribution of, 1 

evolution, 103 

regular bipartite, 241 

regular, 3, 233 

tripartite, 226 

uniform, 3 

Random hypergraph, 100, 176, 208 

Random permutation, 205, 234, 263 

Random regular multigraph, 235 

Random subset process, 13 

Random subset, 5 

of integers, 54, 208 
of vertices, 48, 227 

Random tournament, 3, 176 

Random variable 

indicator, 8 

moments of, 140 

standardized, 139 

zero-one, 8 

Random variables 

negatively related, 154 
positively related, 154 

Recursive bound behavior, 292 

Recursive function, 289 

Regular pair, 212 

sparsely, 216 

Regularity Lemma 

sparse, 215 

Szemerédi, 213 

Reliability network, 2 

Roof, 63 

INDEX 

Root, 68, 281 

Rooted graph, 68, 73, 281 

balanced, 69, 74 

dense, 281 

rigid, 281 

safe, 281 

sparse, 281 

strictly balanced, 69, 74 

Scaling factor, 212 

Second moment method, 54, 241 

Semi-factorial, 140 

Semi-invariants, 145 

Separability, 301 

Shamir problem, 96 

Signature, 293 

Stability number, 7, 43, 179 

Stirling numbers, 144 
Stirling’s formula, 113 

Subgraph count, 67, 141, 145, 150, 157, 

160, 164, 170, 173 
induced, 171 

Subgraph plot, 63 

Subgraph 

grounded, 74 

induced, 78, 7 

isolated, 79 

primal, 74 

solitary, 79 

spanned, 7 

spanning, 2 

triangle-free, 230 

Subpartition, 213 

Subsubsequence principle, 12 

Suen’s inequality, 34 

Sum scheme, 293 

Switching theorem, 137 

Talagrand’s inequality, 39 

general form, 43 

Threshold, 18 

coarse, 21 

sharp, 21 

subgraph containment, 55 

width, 21 
Total variation distance, 153 

Trahtenbrot’s theorem, 303 

Triangle-factor, 97 

Triplet, 223 

exact, 223 

Turan Theorem, 76, 209 

for random graphs, 210 

Two-round exposure, 6 

Vertex degree, 7, 160 

Zero-one law, 271 

defect, 300 

weak, 271, 286 
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