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Preface 

Algebraic graph theory is the branch of mathematics that studies graphs by using 

algebraic properties of associated matrices. In particular, spectral graph theory 

studies the relation between graph properties and the spectrum of the adjacency 

matrix or Laplace matrix. And the theory of association schemes and coherent 

configurations studies the algebra generated by associated matrices. 

Spectral graph theory is a useful subject. The founders of Google computed 

the Perron-Frobenius eigenvector of the web graph and became billionaires. The 

second-largest eigenvalue of a graph gives information about expansion and ran- 

domness properties. The smallest eigenvalue gives information about independence 

number and chromatic number. Interlacing gives information about substructures. 

The fact that eigenvalue multiplicities must be integral provides strong restrictions. 

And the spectrum provides a useful invariant. 

This book gives the standard elementary material on spectra in Chapter 1. 

Important applications of graph spectra involve the largest, second-largest, or small- 

est eigenvalue, or interlacing, topics that are discussed in Chapters 3 and 4. After- 

wards, special topics such as trees, groups and graphs, Euclidean representations, 

and strongly regular graphs are discussed. Strongly related to strongly regular 

graphs are regular two-graphs, and Chapter 10 mainly discusses Seidel’s work on 

sets of equiangular lines. Strongly regular graphs form the first nontrivial case of 

(symmetric) association schemes, and Chapter 11 gives a very brief introduction to 

this topic and Delsarte’s linear programming bound. Chapter 12 very briefly men- 

tions the main facts on distance-regular graphs, including some major developments 

that have occurred since the monograph [54] was written (proof of the Bannai-Ito 

conjecture, construction by Van Dam and Koolen of the twisted Grassmann graphs, 

determination of the connectivity of distance-regular graphs). Instead of working 

over R, one can work over F, or Z and obtain more detailed information. Chapter 

13 considers p-ranks and Smith normal forms. Finally, Chapters 14 and 15 return 

to the real spectrum and consider when a graph is determined by its spectrum and 

when it has only few eigenvalues. 

In Spring 2006, both authors gave a series of lectures at IPM, the Institute for 

Studies in Theoretical Physics and Mathematics, in Tehran. The lecture notes were 
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combined and published as an IPM report. Those notes grew into the present text, of 

which the on-line version still is called ipm. pdf. We aim at researchers, teachers, 

and graduate students interested in graph spectra. The reader is assumed to be 

familiar with basic linear algebra and eigenvalues, but we did include a chapter on 

some more advanced topics in linear algebra, such as the Perron-Frobenius theorem 

and eigenvalue interlacing. The exercises at the end of the chapters vary from easy 

but interesting applications of the treated theory to little excursions into related 
topics. 

This book shows the influence of Seidel. For other books on spectral graph 
theory, see CHUNG [93], CVETKOVIC, DooB & SACHS [115], and CVETKOVIC¢, 
ROWLINSON & SIMIC [120]. For more algebraic graph theory, see BIGGS [30], 
GODSIL [172], and GODSIL & ROYLE [177]. For association schemes and distance- 
regular graphs, see BANNAI & ITO [21] and BROUWER, COHEN & NEUMAIER 
[54]. 

Amsterdam Andries Brouwer 
December 2010 Willem Haemers 
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Chapter 1 

Graph Spectrum 

This chapter presents some simple results on graph spectra. We assume the reader is 

familiar with elementary linear algebra and graph theory. Throughout, J will denote 

the all-1 matrix, and 1 is the all-1 vector. 

1.1 Matrices associated to a graph 

Let I be a graph without multiple edges. The adjacency matrix of I” is the 0-1 ma- 

trix A indexed by the vertex set VI’ of I, where A,y = 1 when there is an edge from 

x to yin I” and Ayy = 0 otherwise. Occasionally we consider multigraphs (possibly 

with loops), in which case Ay equals the number of edges from x to y. 

Let I’ be an undirected graph without loops. The (vertex-edge) incidence matrix 

of I’ is the 0-1 matrix M, with rows indexed by the vertices and columns indexed by 

the edges, where M,- = 1 when vertex x is an endpoint of edge e. 

Let I" be a directed graph without loops. The directed incidence matrix of I” is 

the matrix N, with rows indexed by the vertices and columns by the edges, where 

Nye = —1,1,0 when x is the head of e, the tail of e, or not on e, respectively. 

Let I be an undirected graph without loops. The Laplace matrix of I” is the 

matrix L indexed by the vertex set of I", with zero row sums, where Lyy = —Axy for 

x # y. If D is the diagonal matrix, indexed by the vertex set of I” such that D,, is the 

degree (valency) of x, then L = D —A. The matrix Q = D +A is called the signless 

Laplace matrix of I. 

An important property of the Laplace matrix L and the signless Laplace matrix 

Q is that they are positive semidefinite. Indeed, one has Q = MM T and L=NN' if 

M is the incidence matrix of I and N the directed incidence matrix of the directed 

graph obtained by orienting the edges of I" in an arbitrary way. It follows that for 

any vector u one has u! Lu = Dyy(ux — by)? and u"Ou =>, \us + uy), where the 

sum is over the edges of I’. 
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1.2 The spectrum of a graph 

The (ordinary) spectrum of a finite graph I" is by definition the spectrum of the 

adjacency matrix A, that is, its set of eigenvalues together with their multiplicities. 

The Laplace spectrum of a finite undirected graph without loops is the spectrum of 

the Laplace matrix L. 

The rows and columns of a matrix of order n are numbered from | to n, while A 

is indexed by the vertices of I”, so that writing down A requires one to assign some 

numbering to the vertices. However, the spectrum of the matrix obtained does not 

depend on the numbering chosen. It is the spectrum of the linear transformation A 

on the vector space K* of maps from X into K, where X is the vertex set and K is 

some field such as R or C. 

The characteristic polynomial of T is that of A, that is, the polynomial p, defined 

by pa(@) = det(@J — A). 

Example Let I be the path P3 with three vertices and two edges. Assigning some 

arbitrary order to the three vertices of I”, we find that the adjacency matrix A be- 

comes one of 
Ooh 010 001 

100} or |101] or JO01 

100 010 10 

The characteristic polynomial is p4(@) = 0° — 20. The spectrum is V2, 0, —V2. 

The eigenvectors are: 

V2 2 v2 1 0 =] AO) 2 V2 

OO ee OO 30) 

Here, for an eigenvector u, we write u, as a label at the vertex x. One has Au = Ou 

if and only if }),,-,~uy = Qu, for all x. The Laplace matrix L of this graph is one of 

2.—1—1 fail @ 1 QO =1 

—1l. 1 OO] or }=—1., 2.—1] of 0 1-1 

(Pom | )eal| 0-11 —l1-1 2 

Its eigenvalues are 0, 1 and 3. The Laplace eigenvectors are: 

I 1 1 1 0 =i 1 =2 r 
ooo O_o O— ou aes 

One has Lu = @u if and only if}. uy = (d; — @) uy for all x, where d, is the degree 
of the vertex x. 

Example Let I" be the directed triangle with adjacency matrix 

010 

A=) O08 

100 
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Then A has characteristic polynomial p4(@) = 9° — 1 and spectrum 1, w, @”, where 

@ is a primitive cube root of unity. 

Example Let I be the directed graph with two vertices and a single directed edge. 

00 
tiplicity (that is, the dimension of the corresponding eigenspace) equal to | and 

algebraic multiplicity (that is, its multiplicity as a root of the polynomial p,) equal 

to, 

OL 
Then A = | with pa(@) = 07, so A has the eigenvalue 0 with geometric mul- 

1.2.1 Characteristic polynomial 

Let I" be a directed graph on n vertices. For any directed subgraph C of I that 

is a union of directed cycles, let c(C) be its number of cycles. Then the charac- 

teristic polynomial pa(t) = det(t/— A) of I can be expanded as Ycjt”~', where 
C= ra pase with C running over all regular directed subgraphs with in- and 

outdegree | on i vertices. 

(Indeed, this is just a reformulation of the definition of the determinant as 

detM = Yq sgn(0)Mio(1)°**Mno(n)- Note that when the permutation o with n—1 
fixed points is written as a product of nonidentity cycles, its sign is (—1)*, where e 

is the number of even cycles in this product. Since the number of odd nonidentity 

cycles is congruent to i (mod 2), we have sgn(o) = (1) 

For example, the directed triangle has co = 1, cz3 = —1. Directed edges that do 

not occur in directed cycles do not influence the (ordinary) spectrum. 

The same description of p(t) holds for undirected graphs (with each edge 

viewed as a pair of opposite directed edges). 

Since £ det(tl —A) = ¥,det(t/ —A,) where A, is the submatrix of A obtained 

by deleting row and column x, it follows that p/,(t) is the sum of the characteristic 

polynomials of all single-vertex-deleted subgraphs of I’. 

1.3 The spectrum of an undirected graph 

Suppose I is undirected and simple with n vertices. Since A is real and symmetric, 

all its eigenvalues are real. Also, for each eigenvalue @, its algebraic multiplicity 

coincides with its geometric multiplicity, so that we may omit the adjective and just 

speak about “multiplicity”. Conjugate algebraic integers have the same multiplicity. 

Since A has zero diagonal, its trace trA, and hence the sum of the eigenvalues, is 

zero. 

Similarly, L is real and symmetric, so that the Laplace spectrum is real. More- 

over, L is positive semidefinite and singular, so we may denote the eigenvalues by 
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[1,---;Hn, where 0 = fy < My <... < fn. The sum of these eigenvalues is trL, 

which is twice the number of edges of I’. 

Finally, also Q has real spectrum and nonnegative eigenvalues (but is not neces- 

sarily singular). We have trQ = trL. 

1.3.1 Regular graphs 

A graph I is called regular of degree (or valency) k when every vertex has precisely 

k neighbors. So, I" is regular of degree k precisely when its adjacency matrix A has 

row sums k, i.e., when Al = k1 (or AJ = kJ). 

If I is regular of degree k, then for every eigenvalue @ we have |@| < k. (One way 

to see this is by observing that if |t| > k then the matrix t/ —A is strictly diagonally 

dominant, and hence nonsingular, so that ¢ is not an eigenvalue of A.) 

If I is regular of degree k, then L = kJ — A. It follows that if I” has ordinary 

eigenvalues k = 0; >... > 0, and Laplace eigenvalues 0 = MW; < U2 <... < My, then 

6; = k— p; for i= 1,...,n. The eigenvalues of Q = kI +A are 2k,k+ @,...,k+ 0). 

1.3.2 Complements 

The complement T of I is the graph with the same vertex set as I, where two 

distinct vertices are adjacent whenever they are nonadjacent in I”. So, if I has ad- 

jacency matrix A, then I” has adjacency matrix A = J — I — A and Laplace matrix 

Lan) 6, 

Because eigenvectors of L are also eigenvectors of J, the eigenvalues of L are 

0,2 — Un,...,4— My. (In particular, u, <n.) 

If I” is regular we have a similar result for the ordinary eigenvalues: if I" is k- 

regular with eigenvalues 0; > ... > 6,, then the eigenvalues of the complement are 

n—k—1,-1—@Q,..., -1— 6). 

1.3.3 Walks 

From the spectrum one can read off the number of closed walks of a given length. 

Proposition 1.3.1 Let h be a nonnegative integer. Then (A") xy is the number of 
walks of length h from x to y. In particular, (A)x, is the degree of the vertex x, and 
trA? equals twice the number of edges of I; similarly, trA? is six times the number 
of triangles in I. 
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1.3.4 Diameter 

We saw that all eigenvalues of a single directed edge are zero. For undirected graphs 

this does not happen. 

Proposition 1.3.2 Let I be an undirected graph. All its eigenvalues are zero if and 

only if I’ has no edges. The same holds for the Laplace eigenvalues and the signless 

Laplace eigenvalues. 

More generally, we find a lower bound for the diameter: 

Proposition 1.3.3. Let I be a connected graph with diameter d. Then I has at least 

d+1 distinct eigenvalues, at least d+ 1 distinct Laplace eigenvalues, and at least 

d+1 distinct signless Laplace eigenvalues. 

Proof Let M be any nonnegative symmetric matrix with rows and columns in- 

dexed by VI and such that for distinct vertices x, y we have M,, > 0 if and only if 

x ~ y. Let the distinct eigenvalues of M be 6),..., 0. Then (M— 0;/)---(M—@,I) = 

0, so that M' is a linear combination of J,M,...,M'~!. But if d(x, y) =t for two ver- 

tices x,y of I, then (M'),. = 0 for 0 <i<t-—1 and (M‘),, > 0, a contradiction. 
Hence t > d. This applies to M = A, to M = nI —L, and to M = Q, where A is the 

adjacency matrix, L is the Laplace matrix, and Q is the signless Laplace matrix of 

1 8 0 

Distance-regular graphs, discussed in Chapter 12, have equality here. For an up- 

per bound on the diameter, see §4.7. 

1.3.5 Spanning trees 

From the Laplace spectrum of a graph one can determine the number of spanning 

trees (which will be nonzero only if the graph is connected). 

Proposition 1.3.4 Let I. be an undirected (multi)graph with at least one vertex, 

and Laplace matrix L with eigenvalues 0 = [hy < Uo <... < Mn: Let ly be the (x, y)- 

cofactor of L. Then the number N of spanning trees of T’ equals 

1 1 
N=, = dettL+ 72) = Ha Hn forany x,yEVT. 

(The (i, ;)-cofactor of a matrix M is by definition (—1)'*/ detM (i, j), where M(i, j) 

is the matrix obtained from M by deleting row i and column j. Note that ¢,, does 

not depend on an ordering of the vertices of I.) 

Proof Let L’, for SC VI, denote the matrix obtained from L by deleting the rows 

and columns indexed by S, so that ¢,, = det L'*}. The equality N = ¢,, follows by 

induction on n, and for fixed n > 1 on the number of edges incident with x. Indeed, 

if n = 1 then @,, = 1. Otherwise, if x has degree 0, then ¢,, = 0 since L*} has zero 
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row sums. Finally, if xy is an edge, then deleting this edge from I” diminishes fy 

by detL*}, which by induction is the number of spanning trees of I with edge 

xy contracted, which is the number of spanning trees containing the edge xy. This 

shows N = &,,. 

Now det(t/ — L) =t]]_,(t — w;) and (—1)"~' py +++ Un is the coefficient of r, that 

is, is 4 det(t!—L)|,—o. But 4 det(t? —L) =D, det(tJ —L**), so py -- Hn = Ly bax = 
nN. 

Since the sum of the columns of L is zero, so that one column is minus the sum of 

the other columns, we have £,, = ¢,, for any x, y. Finally, the eigenvalues of L+ J 

are 1 and [l,...,[n, 80 det(L + 4yJ) = 5p ->- Mn. - 

For example, the multigraph of valency k on two vertices has Laplace matrix 

a & 4 SO fy = 0, fz = 2k, and N = 52k =k. 

If we consider the complete graph K,,, then Ly = ... = Un =n, and therefore Ky, 

has N = n"~? spanning trees. This formula is due to CAYLEY [85]. Proposition 1.3.4 

is implicit in KIRCHHOFF [242] and known as the matrix-tree theorem. There 1s a 

“1-line proof” of the above result using the Cauchy-Binet formula. 

Ib 

Proposition 1.3.5 (Cauchy-Binet) Let A and B be m x n matrices. Then 

detAB' = }'detAs detBs, 
S 

where the sum is over the () m-subsets S§ of the set of columns, and As (Bs) is the 

square submatrix of order m of A (resp. B) with columns indexed by S. 

Second proof of Proposition 1.3.4 (sketch) Let N, be the directed incidence matrix 

of I with row x deleted. Then J, = detN,N,|. Apply the Cauchy-Binet formula to 

get /,, as a sum of squares of determinants of size n — 1. These determinants vanish 

unless the set S of columns is the set of edges of a spanning tree, in which case the 

determinant is +1. O 

1.3.6 Bipartite graphs 

A graph I’ is called bipartite when its vertex set can be partitioned into two disjoint 

parts X;,X2 such that all edges of I” meet both X; and X2. The adjacency matrix of a 
0B 

bipartite graph has the form A = | BT 0 | It follows that the spectrum of a bipartite 

graph is symmetric w.r.t. 0: if ; is an eigenvector with eigenvalue @, then 

is an eigenvector with eigenvalue —@. (The converse also holds, see Proposition 
3.4.1.) 

For the ranks one has rk A = 2rkB. If n; = |X;| (i= 1,2) and n; > mo, then rkA < 

2n2, so I” has eigenvalue 0 with multiplicity at least ny — np. 

One cannot, in general, recognize bipartiteness from the Laplace or signless 
Laplace spectrum. For example, K;3 and K; + K3 have the same signless Laplace 
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spectrum and only the former is bipartite. And Figure 14.4 gives an example of a 

bipartite and a nonbipartite graph with the same Laplace spectrum. However, by 

Proposition 1.3.10 below, a graph is bipartite precisely when its Laplace spectrum 

and signless Laplace spectrum coincide. 

1.3.7 Connectedness 

The spectrum of a disconnected graph is easily found from the spectra of its con- 

nected components: 

Proposition 1.3.6 Let be a graph with connected components Tj (1 <i<s). Then 

the spectrum of I’ is the union of the spectra of Ij (and multiplicities are added). The 

same holds for the Laplace spectrum and the signless Laplace spectrum. O 

Proposition 1.3.7 The multiplicity of 0 as a Laplace eigenvalue of an undirected 

graph I" equals the number of connected components of I. 

Proof We have to show that a connected graph has Laplace eigenvalue 0 with 

multiplicity 1. As we saw earlier, L = NN | where N is the incidence matrix of an 

orientation of P. Now Lu = 0 is equivalent to N'u = 0 (since 0 =u! Lu=||N‘ul|?), 
that is, for every edge the vector u takes the same value on both endpoints. Since I’ 

is connected, that means that u is constant. Oo 

Proposition 1.3.8 Let the undirected graph I’ be regular of valency k. Then k is 

the largest eigenvalue of I’, and its multiplicity equals the number of connected 

components of I. 

Proof We have L= kl —A. LC 

One cannot see from the spectrum alone whether a (nonregular) graph is con- 

nected: both K;,4 and K; + Cy have spectrum 2', 0°, (—2)' (we write multiplicities 
as exponents). And both Eg and K, + Ce have spectrum 2', 17, 0, (—1)?, (—2)!. 

Fig. 1.1 Two pairs of cospectral graphs 

Proposition 1.3.9 The multiplicity of 0 as a signless Laplace eigenvalue of an undi- 

rected graph I equals the number of bipartite connected components of I’. 



8 1 Graph Spectrum 

Proof Let M be the vertex-edge incidence matrix of I’, so that Q = MM. If 

MM 'u=0, then M'u = 0, so uy = —uy for all edges xy, and the support of u is 

the union of a number of bipartite components of I’. O 

Proposition 1.3.10 A graph I is bipartite if and only if the Laplace spectrum and 

the signless Laplace spectrum of I” are equal. 

Proof If I is bipartite, the Laplace matrix L and the signless Laplace matrix Q 

are similar by a diagonal matrix D with diagonal entries +1 (that is, Q = DED). 

Therefore Q and L have the same spectrum. Conversely, if both spectra are the same, 

then by Propositions 1.3.7 and 1.3.9 the number of connected components equals 

the number of bipartite components. Hence I is bipartite. O 

1.4 Spectrum of some graphs 

In this section we discuss some special graphs and their spectra. All graphs in this 

section are finite, undirected, and simple. Observe that the all-1 matrix J of order 

n has rank 1, and that the all-1 vector 1 is an eigenvector with eigenvalue n, so the 

spectrum of J is n', 0"—'. (Here and throughout, we write multiplicities as exponents 

where convenient and no confusion seems likely.) 

1.4.1 The complete graph 

Let I” be the complete graph K, on n vertices. Its adjacency matrix is A = J — IJ, and 

the spectrum is (n—1)', (—1)"~!. The Laplace matrix is nJ — J, which has spectrum 
0! ; yn?! i 

1.4.2 The complete bipartite graph 

The spectrum of the complete bipartite graph Ki, is +,/mn, 0*"-?. The Laplace 

spectrum is 0!, m""!, n™-!, (m+n)!. 

1.4.3 The cycle 

Let I be the directed n-cycle D,. Eigenvectors are (1,€,¢7,...,¢”—')", where €” = 
1, and the corresponding eigenvalue is ¢. Thus, the spectrum consists precisely of 

the complex n-th roots of unity e?”//" (j =0,...,2—1). 



1.4 Spectrum of some graphs 9 

Now consider the undirected n-cycle C,. If B is the adjacency matrix of D,, then 

A=B-+B' is the adjacency matrix of C,. We find the same eigenvectors as before, 

with eigenvalues ¢ + €~', so that the spectrum consists of the numbers 2 cos(27j/n) 
Cpe Ouse es Ly 

This graph is regular of valency 2, so the Laplace spectrum consists of the num- 

bers 2 —2cos(2aj/n) (j =0,...,n—1). 

1.4.4 The path 

Let I” be the undirected path P, with n vertices. The ordinary spectrum con- 

sists of the numbers 2cos(mj/(n+1)) (j = 1,...,n). The Laplace spectrum is 
2—2cos(mj/n) (j =0,...,n—1). ; 

The ordinary spectrum follows by looking at Co,49. If u(€) = (1,6,67,..., 
6"+1)T is an eigenvector of Cyn12, where €2"+* = 1, then u(€) and u(¢—') have 
the same eigenvalue, 2cos(aj/(n+1)), and hence so has u(¢) —u(€~'). This latter 
vector has two zero coordinates distance n+ 1 apart and (for € 4 +1) induces an 

eigenvector on the two paths obtained by removing the two points where it is zero. 

Eigenvectors of L with eigenvalue 2—€ —C-! are (14+ 07"-!,...,C/ +6217)” 
en EC?) where € 2n — 1. One can check this directly, or view P, as the result 

of folding C2,, where the folding has no fixed vertices. An eigenvector of C2, that is 

constant on the preimages of the folding yields an eigenvector of P, with the same 

eigenvalue. 

1.4.5 Line graphs 

The line graph L(I) of I is the graph with the edge set of I” as vertex set, where two 

vertices are adjacent if the corresponding edges of I” have an endpoint in common. 

If N is the incidence matrix of I, then N' N — 2/ is the adjacency matrix of L(I). 

Since N'N is positive semidefinite, the eigenvalues of a line graph are not smaller 

than —2. We have an explicit formula for the eigenvalues of L(I”) in terms of the 

signless Laplace eigenvalues of I’. 

Proposition 1.4.1 Suppose I. has m edges, and let p, = ... = Pr be the positive 

signless Laplace eigenvalues of I. Then the eigenvalues of L(I”) are 0; = pi — 2 for 

be Ninanls GNA = oT <u MH, 

Proof The signless Laplace matrix Q of I and the adjacency matrix B of L(I’) 

satisfy Q=NN' and B+2/ = N'N. Because NN! and N'N have the same nonzero 

eigenvalues (multiplicities included), the result follows. 

Example Since the path P, has line graph P,_; and is bipartite, the Laplace and the 

signless Laplace eigenvalues of P, are 2+ 2cos@,i=1,...,n. 
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Corollary 1.4.2 If I’ is a k-regular graph (k > 2) with n vertices, e = kn/2 edges, 

and eigenvalues 0; (i = 1,...,n), then L(I’) is (2k —2)-regular with eigenvalues 

6,+k—-2(i=1,...,n) ande—n times —2. O 

The line graph of the complete graph K, (n > 2) is known as the triangular graph 

T(n). It has spectrum 2(n —2)!, (n—4)"~!, (—2)""-9)/2. The line graph of the 
regular complete bipartite graph Kim (m > 2) is known as the Jattice graph Lz(m). 

It has spectrum 2(m—1)!, (m—2)?”"-?, (aoe These two families of graphs, 
and their complements, are examples of strongly regular graphs, which will be the 

subject of Chapter 9. The complement of T(5) is the famous Petersen graph. It has 

spectrum 3! 1° (—2)4. 

1.4.6 Cartesian products 

Given graphs I’ and A with vertex sets V and W, respectively, their Cartesian prod- 

uct I CIA is the graph with vertex set V x W, where (v,w) ~ (v’,w’) when either 
v=v' and w ~ w’ or w=w’ and v ~ v’.. For the adjacency matrices we have 
Arosa =Ar @I1+1@Ay4. 

If u and v are eigenvectors for I and A with ordinary or Laplace eigenvalues @ 

and 1), respectively, then the vector w defined by wi, y) = uxvy is an eigenvector of 

IVA with ordinary or Laplace eigenvalue 0 + 7. 

For example, L2(m) = Kn O Km. 

For example, the hypercube 2”, also called Q,, is the Cartesian product of n 

factors K2. The spectrum of K2 is 1,—1, and hence the spectrum of 2” consists of 

the numbers n — 2i with multiplicity (7) (i=0,1,...,n). i 

x,y) 

1.4.7 Kronecker products and bipartite double 

Given graphs I" and A with vertex sets V and W, respectively, their Kronecker prod- 

uct (or direct product, or conjunction) I. @ A is the graph with vertex set V x W, 

where (v,w) ~ (v’,w’) when v ~ v’ and w ~ w’. The adjacency matrix of [ @ A is 
the Kronecker product of the adjacency matrices of I and A. 

If u and v are eigenvectors for T and A with eigenvalues @ and 1, respectively, 

then the vector w = u®v (with wi, y) = uxvy) is an eigenvector of I @ A with eigen- 

value 817. Thus, the spectrum of I’ @ A consists of the products of the eigenvalues 

of I’ and A. 

Given a graph I’, its bipartite double is the graph I ® K> (with for each vertex x 

of I two vertices x’ and x”, and for each edge xy of I’ two edges x’y” and x’y’). If C 
is bipartite, its double is just the union of two disjoint copies. If I is connected and 

not bipartite, then its double is connected and bipartite. If [ has spectrum ®, then 
I’ @ Kz has spectrum ®BU-—@., 
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The notation I” x A is used in the literature both for the Cartesian product and 

for the Kronecker product of two graphs. We avoid it here. 

1.4.8 Strong products 

Given graphs I" and A with vertex sets V and W, respectively, their strong product 

I A is the graph with vertex set V x W, where two distinct vertices (v,w) and 

(v’,w’) are adjacent whenever v and v’ are equal or adjacent in I’, and w and w’ 

are equal or adjacent in A. If Ar and A, are the adjacency matrices of I” and A, 

then ((Ar +/) @ (A, +J)) —/ is the adjacency matrix of  & A. It follows that 
the eigenvalues of [ KA are the numbers (@ + 1)(7 +1) —1, where @ and 7 run 
through the eigenvalues of I” and A, respectively. 4 

Note that the edge set of the strong product of I and A is the union of the edge 

sets of the Cartesian product and the Kronecker product of I and A. 

For example, Kinin = Km&® Kn. 

1.4.9 Cayley graphs 

Let G be an Abelian group and S C G. The Cayley graph on G with difference set 

S is the (directed) graph I” with vertex set G and edge set E = {(x,y) | y—x € S}. 
Now I is regular with in- and outvalency |S|. The graph I will be undirected when 

=: 
It is easy to compute the spectrum of finite Cayley graphs (on an Abelian group). 

Let y be a character of G, that is, a map y : G— C* such that ¥(x+y) = x(x) (J). 

Then Yy v1 X(y) = (Zses X(5))X (x), So the vector (¥(x))xec is a right eigenvector of 

the adjacency matrix A of I with eigenvalue 7(S) := DYses X(s). The n = |G| distinct 
characters give independent eigenvectors, so one obtains the entire spectrum in this 

way. 
For example, the directed pentagon (with in- and outvalency 1) is a Cayley graph 

for G = Zs and S = {1}. The characters of G are the maps i++ ¢' for some fixed 

fifth root of unity €. Hence the directed pentagon has spectrum {€ | ¢° = 1}. 

The undirected pentagon (with valency 2) is the Cayley graph for G = Zs and 

S = {1,1}. The spectrum of the pentagon becomes {¢ + €~' | ¢° = 1}, that is, 

consists of 2 and $(—1 + V5) (both with multiplicity 2). 

1.5 Decompositions 

Here we present two nontrivial applications of linear algebra to graph decomposi- 

tions. 
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1.5.1 Decomposing K\o into Petersen graphs 

An amusing application ({35, 310]) is the following. Can the edges of the com- 

plete graph Kio be colored with three colors such that each color induces a graph 

isomorphic to the Petersen graph? Kio has 45 edges, 9 on each vertex, and the Pe- 

tersen graph has 15 edges, 3 on each vertex, so at first sight this might seem possi- 

ble. Let the adjacency matrices of the three color classes be P;, P, and P3, so that 

P,+P)+P3; =J—I. If P, and P; are Petersen graphs, they both have a 5-dimensional 

eigenspace for eigenvalue 1, contained in the 9-space 1+. Therefore, there is a com- 

mon l-eigenvector u and P3u = (J —J)u— P,u — P)u = —3u so that u is an eigen- 

vector for P; with eigenvalue —3. But the Petersen graph does not have eigenvalue 

—3, so the result of removing two edge-disjoint Petersen graphs from Kio is not a 

Petersen graph. (In fact, it follows that P; is connected and bipartite.) 

1.5.2 Decomposing K,, into complete bipartite graphs 

A famous result is the fact that for any edge decomposition of K, into complete 

bipartite graphs one needs to use at least n — 1 summands. Since K;,, has eigenvalue 

—1 with multiplicity n — 1, this follows directly from the following: 

Proposition 1.5.1 (H. S. Witsenhausen; GRAHAM & POLLAK [181]) Suppose a 

graph I” with adjacency matrix A has an edge decomposition into r complete bi- 

partite graphs. Then r > n,(A) and r > n_(A), where n(A) and n_(A) are the 
numbers of positive and negative eigenvalues of A, respectively. 

Proof Let u; and v; be the characteristic vectors of both sides of a bipartition of 

the i-th complete bipartite graph. Then that graph has adjacency matrix D; = uv) = 

viu; , and A = )\Dj. Let w be a vector orthogonal to all u;. Then w' Aw = 0 and 

it follows that w cannot be chosen in the span of eigenvectors of A with positive 

(negative) eigenvalue. O 

1.6 Automorphisms 

An automorphism of a graph I" is a permutation 7 of its point set X such that x ~ y 

if and only if w(x) ~ m(y). Given 7, we have a linear transformation P, on V defined 

by (Pr(u))x = Un(x) for u€ V, x € X. That @ is an automorphism is expressed by 
AP, = P,A. It follows that P; preserves the eigenspace Vg for each eigenvalue @ of 
A. 

More generally, if G is a group of automorphisms of I, then we find a linear 
representation of degree m(@) = dimVo of G. 

We denote the group of all automorphisms of I by Aut I. One would expect 
that when Aut I” is large then m(@) tends to be large, so that I" has only few distinct 
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eigenvalues. And indeed, the arguments below will show that a transitive group of 

automorphisms does not go together very well with simple eigenvalues. 

Suppose dimVg = 1, say Vg = (u). Since Pz preserves Vg, we must have P,u = 

+u. So either u is constant on the orbits of 7 or w has even order, Pr (u) = —u, and 

u is constant on the orbits of 2”. For the Perron-Frobenius eigenvector (cf. §2.2) we 

always have the former case. 

Corollary 1.6.1 Jf all eigenvalues are simple, then Aut T" is an elementary Abelian 

2-group. 

Proof If 7 has order larger than 2, then there are two distinct vertices x, y in an 

orbit of 22, and all eigenvectors have identical x- and y-coordinates, a contradiction. 

Corollary 1.6.2 Let Aut I" be transitive on X. (Then T is regular of degree k, say.) 

(i) If m(@) = 1 for some eigenvalue 0 # k, then v = |X| is even and 0=k 
(mod 2). If Aut I is, moreover, edge-transitive then I” is bipartite and 

6 = —k. 
(ii) If m(@) = 1 for two distinct eigenvalues 0 # k, then v = 0 (mod 4). 

(iii) If m(@) = 1 for all eigenvalues 0, then I” has at most two vertices. 

Proof (i) Suppose Vg = (u). Then u induces a partition of X into two equal parts: 

X = X, UX_, where u, = a for x € X, and u, = —a for x € X_. Now 0=k—- 

2|I' (x) NX_| for x € X,. 
(ii) If m(k) = m(@) = m(@’) = 1, then we find three pairwise orthogonal (+1)- 

vectors, and a partition of X into four equal parts. 

(iii) There are not enough integers 9 = k (mod 2) between —k and k. 

For more details, see CVETKOVIC, DOOB & SACHS [115], Ch. 5. 

1.7 Algebraic connectivity 

Let I be a graph with at least two vertices. The second-smallest Laplace eigenvalue 

Lt2(I) is called the algebraic connectivity of the graph I’. This concept was intro- 

duced by FIEDLER [156]. Now, by Proposition 1.3.7, U2(I”) > 0, with equality if 

and only if I” is disconnected. 

The algebraic connectivity is monotone: it does not decrease when edges are 

added to the graph: 

Proposition 1.7.1 Let I and A be two edge-disjoint graphs on the same vertex set, 

and I UA their union. We have [2(T UA) > bo (I) + ua(A) = Uo (TL). 

Proof Use p2(I") = min, {u+Lu | (u,u) = 1, (u, 1) = O}. 

The algebraic connectivity is a lower bound for the vertex connectivity: 
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Proposition 1.7.2 Let I be a graph with vertex set X. Suppose D C X is a Set 

of vertices such that the subgraph induced by T on X \ D is disconnected. Then 

|D| > u2(T). 

Proof By monotonicity we may assume that I” contains all edges between D and 

X \ D. Now a nonzero vector u that is 0 on D and constant on each component of 

X \ D and satisfies (u,1) = 0, is a Laplace eigenvector with Laplace eigenvalue |D]. 

0 

1.8 Cospectral graphs 

As noted above (in §1.3.7), there exist pairs of nonisomorphic graphs with the same 

spectrum. Graphs with the same (adjacency) spectrum are called cospectral (or 

isospectral). The two graphs of Figure 1.2 below are nonisomorphic and cospectral. 

Both graphs are regular, which means that they are also cospectral for the Laplace 

matrix and any other linear combination of A, J, and J, including the Seidel matrix 

(see §1.8.2) and the adjacency matrix of the complement. 

Fig. 1.2 Two cospectral regular graphs 

(Spectrum: 4, 1, (—1)*, V5, 3(1+ V17)) 

Let us give some more examples and families of examples. A more extensive 

discussion is found in Chapter 14. 

1.8.1 The 4-cube 

The hypercube 2” is determined by its spectrum for n < 4, but not for n > 4. 

Indeed, there are precisely two graphs with spectrum 4!, 24, 0°, (—2)*, (—4)! 
(HOFFMAN [218]). Consider the two binary codes of word length 4 and dimen- 

sion 3 given by C, = 1+ and C) = (0111)+. Construct a bipartite graph, where one 
class of the bipartition consists of the pairs (i,x) € {1,2,3,4} x {0,1} of coordinate 
position and value, and the other class of the bipartition consists of the code words, 
and code word u is adjacent to the pairs (i,u;) for i € {1,2,3,4}. For the code C, 
this yields the 4-cube (tesseract), and for Cy we get its unique cospectral mate. 
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Fig. 1.3 Tesseract and cospectral switched version 

1.8.2 Seidel switching 

The Seidel adjacency matrix of a graph I with adjacency matrix A is the matrix S 

defined by 
Oifu=v 

Sy it ey 

lifuxyv 

so that S = J —I — 2A. The Seidel spectrum of a graph is the spectrum of its Sei- 

del adjacency matrix. For a regular graph on n vertices with valency k and other 

eigenvalues @, the Seidel spectrum consists of n — 1 — 2k and the values —1 — 20. 

Let I” have vertex set X, and let Y c X. Let D be the diagonal matrix indexed by 

X with D,, = —1 for x € Y, and D,, = 1 otherwise. Then DSD has the same spec- 

trum as S. It is the Seidel adjacency matrix of the graph obtained from I” by leaving 

adjacency and nonadjacency inside Y and X \ Y as it was, and interchanging adja- 

cency and nonadjacency between Y and X \ Y. This new graph, Seidel-cospectral 

with I’, is said to be obtained by Seidel switching with respect to the set of vertices 

ee 
Being related by Seidel switching is an equivalence relation, and the equivalence 

classes are called switching classes. Here are the three switching classes of graphs 

with four vertices. 

Sy gic ly So Nd a is ba ga 
The Seidel matrix of the complementary graph I" is —S, so a graph and its com- 

plement have opposite Seidel eigenvalues. 

If two regular graphs of the same valency are Seidel-cospectral, then they are 

also cospectral. 

Figure 1.2 shows an example of two cospectral graphs related by Seidel switch- 

ing (with respect to the four corners). These graphs are nonisomorphic: they have 

different local structure. 
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The Seidel adjacency matrix plays a role in the description of regular two-graphs 

(see §§10.1-10.3) and equiangular lines (see 810.6). 

1.8.3 Godsil-McKay switching 

Let I be a graph with vertex set X, and let {C),...,C,;,D} be a partition of X such 

that {C,...,C;} is an equitable partition of X \ D (that is, any two vertices in C; 
have the same number of neighbors in C; for all i, 7), and for every x € D and every 

i € {1,...,t} the vertex x has either 0, 3|C;| or |C;| neighbors in C;. Construct a 
new graph I’ by interchanging adjacency and nonadjacency between x € D and the 

vertices in C; whenever x has 5ICi| neighbors in C;. Then I” and I’ are cospectral 

({176]). 
Indeed, let O,, be the matrix 2] —I of order m, so that Q?, =i. Let — iC). | nen 

the adjacency matrix A’ of I’ is found to be QAQ where Q is the block diagonal 
matrix with blocks Q,, (1 <i<t) and J (of order |D)). 

The same argument also applies to the complementary graphs, so that also the 

complements of I and I’ are cospectral. Thus, for example, the second pair of 

graphs in Figure 1.1 is related by GM switching, and hence has cospectral comple- 

ments. The first pair does not have cospectral complements and hence does not arise 

by GM switching. 

The 4-cube and its cospectral mate (Figure 1.3) can be obtained from each other 

by GM switching with respect to the neighborhood of a vertex. Figure 1.2 is also an 

example of GM switching. Indeed, when two regular graphs of the same degree are 

related by Seidel switching, the switch is also a case of GM switching. 

1.8.4 Reconstruction 

The famous Kelly-Ulam conjecture (1941) asks whether a graph I" can be recon- 

structed when the (isomorphism types of) the n vertex-deleted graphs I" \ x are 

given. The conjecture is still open (see Bondy [34] for a discussion), but Tutte [339] 

showed that one can reconstruct the characteristic polynomial of I, so any coun- 

terexample to the reconstruction conjecture must be a pair of cospectral graphs. 

1.9 Very small graphs 

Table 1.1 gives various spectra for the graphs on at most four vertices. The columns 
with heading A, L, Q, S give the spectrum for the adjacency matrix, the Laplace 
matrix L = D—A (where D is the diagonal matrix of degrees), the signless Laplace 
matrix Q = D +A, and the Seidel matrix § = J —] —2A, respectively. 



1.10 Exercises 17 

Label Picture A lb Q S 

0.1 

lle 0 0 0 0 

2.1 e-« al 0.2 2,0 aie 

22060 0,0 0,0 0,0 eked 

3.1 ne oe es 0,3,3 4,1,1 ulead 

3.2 oat V2,0,-v2 0,1,3 3,1,0 Sy es 

3.3 fin Al ae 0,0,2 2,0,0 ofl | 

3.4 yest 0,0,0 0,0,0 0,0,0 +1; =1;2 

4.1 NM SSeS Te 0.4 at4 6,2,2,2 Sat tl 

4.2 4 p01 1p 02,44 1 2h 2 4.224297 —4/5,—1, dds 

4.3 tay 20.0, —2 0,202.4 4,2,2,0 igs 

4.4 Yi OO ie 12 Osha 01d 434) 2p; 21.8 Po V5.1 i V5 

4.5 wl V3,0,0,23, 05 14 4,1,1,0 oe eS a) 

4.6 ei 7 t-t1-%—T0.4—-0,2.0, -6,2,4-0.0., —V5,—1,054/5 

4.7 Ve 2Opsiven tates 0,0,3,3 Tas et og ia 

4.8 ee 4/2, 0,0, Sys gf O13 3k, 0 Otreuree 5a hh dan/S, 

4.9 ! i didracel od wea Osteee 2,2,0,0 St Oe 

4.10 l e 20,051 0,0,0,2 220-0:0" * A/S ays 

4.11 % ; 0,0,0,0 0,0,0,0 0,0,0,0 es ae ee 

Table 1.1 Spectra of very small graphs 

Here @ = 24+ V2, t= (1+V5)/2, and p = (1+ V17)/2, and 0 = 2.17009, 
@ ~ 0.31111, 03 + —1.48119 are the three roots of 0°? — 0? —30+1=0. 

1.10 Exercises 

Exercise 1.1 Show that no graph has eigenvalue —1/2. Show that no undirected 

graph has eigenvalue 2+ /5. (Hint: Consider the algebraic conjugates of this 

number.) 

Exercise 1.2 Let I be an undirected graph with eigenvalues 6),...,0,. Show that 

for any two vertices a and b of I there are constants cj,...,C, such that the number 

of walks of length h from a to b equals ¥c6/" for all h. 

Exercise 1.3 Let I be a directed graph with constant outdegree k > 0 and without 

directed 2-cycles. Show that I” has a nonreal eigenvalue. 
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Exercise 1.4 A perfect e-error-correcting code in an undirected graph I" is a set of 

vertices C such that each vertex of I" has distance at most e to precisely one vertex 

in C. For e = 1, this is also known as a perfect dominating set. Show that if I” is 

regular of degree k > 0, and has a perfect dominating set, it has an eigenvalue —1. 

Exercise 1.5 (i) Let I be a directed graph on n vertices such that there is an h 

with the property that for any two vertices a and b (distinct or not) there is a unique 

directed path of length h from a to b. Prove that I" has constant in-degree and out- 

degree k, where n = k’, and has spectrum k! 0"~!. 
(ii) The de Bruijn graph of order m is the directed graph with as vertices the 

2” binary sequences of length m, where there is an arrow from a1 ...dm to by ...bm 

when the tail az...am of the first equals the head bj ...bm_1 of the second. (For 

m = 0 we take a single vertex with two loops.) Determine the spectrum of the de 

Bruijn graph. 

(iii) A de Bruijn cycle of order m > 1 ([70, 71, 160]) is a circular arrangement 

of 2” zeros and ones such that each binary sequence of length m occurs once in 

this cycle. (In other words, it is a Hamiltonian cycle in the de Bruijn graph of order 

m, and a Eulerian cycle in the de Bruijn graph of order m — 1.) Show that there are 

recisely 22" '—m de Bruijn cycles of order m. Pp 

Exercise 1.6 ([43, 306]) Let I’ be a tournament, that is, a directed graph in which 

there is precisely one edge between any two distinct vertices, or, in other words, of 

which the adjacency matrix A satisfies A' +A = J—I. 

(i) Show that all eigenvalues have real part not less than —1/2. 

(ii) The tournament I’ is called transitive if (x,z) is an edge whenever both (x, y) 

and (y,z) are edges. Show that all eigenvalues of a transitive tournament are 

zero. 

(ii1) The tournament I" is called regular when each vertex has the same number 

of out-arrows. Clearly, when there are 7 vertices, this number of out-arrows 

is (n — 1)/2. Show that all eigenvalues @ have real part at most (n — 1)/2 
and that Re(@) = (n— 1)/2 occurs if and only if I is regular (and then @ = 
(n—1)/2). 

(iv) Show that A either has full rank n or has rank n — 1, and that A has full rank 

when I is regular andn > 1. 

(Hint: For a vector u, consider the expression a! (AT +A)u.) 

Exercise 1.7 Let I” be bipartite and consider its line graph L(T’). 

(i) Show that I admits a directed incidence matrix N such that N'N — 21 is the 

adjacency matrix of L(I"). 

(ii) Give a relation between the Laplace eigenvalues of I" and the ordinary eigen- 
values of L(I’). 

(iii) Verify this relation in case I is the path P,. 

Exercise 1.8 ([102]) Verify (see §1.2.1) that both graphs pictured here have charac- 
teristic polynomial t4(t* — 7t? +9), so that these two trees are cospectral. 
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ies: 
Note how the coefficients of the characteristic polynomial of a tree count partial 

matchings (sets of pairwise disjoint edges) in the tree. 

Exercise 1.9 ({17]) Verify that both graphs pictured here have characteristic poly- 

nomial (t — 1)(t + 1)?(t? — t* — St + 1) by computing eigenvectors and eigenvalues. 
Use the observation (§1.6) that the image of an eigenvector under an automorphism 

is again an eigenvector. In particular, when two vertices x, y are interchanged by an 

involution (automorphism of order 2), then the eigenspace has a basis consisting of 

vectors where the x- and y-coordinates are either equal or opposite. 

ope py | 

Exercise 1.10 Show that the disjoint union T+ A of two graphs I” and A has 

characteristic polynomial p(x) = pr(x)pa(x). 

Exercise 1.11 If I is regular of valency k on n vertices, then show that its comple- 

ment I” has characteristic polynomial 

nx—ntk+1 
Bite eller 5 05] pr(-x- d): 

Exercise 1.12 Let the cone over a graph I’ be the graph obtained by adding a new 

vertex and joining that to all vertices of I. If I" is regular of valency k on n vertices, 

then show that the cone over I has characteristic polynomial 

p(x) = (x? —kx—n)pr(x)/(x—k). 

Exercise 1.13 Let the join of two graphs I” and A be T +A, the result of joining 

each vertex of I” to each vertex of (a disjoint copy of) A. If I and A are regular of 

valencies k and @, and have m and n vertices, respectively, then the join of I” and A 

has characteristic polynomial 

iO anne pe) = (x K)(x— 8) — mn) Ty: 

Exercise 1.14 Let C = (V,E) be a graph with n vertices and m edges. Construct a 

new graph A with vertex set V UE (of size n +m), where I” is the induced subgraph 

on V and E is a coclique, and each edge e = xy in E is adjacent to its two endpoints 

x,y in V. Show that if I” is k-regular, with k > 1, then the spectrum of A consists of 

two eigenvalues 5(0 + /02 +46 + 4k) for each eigenvalue @ of A, together with 0 

of multiplicity m—n. 

LIVERPOOL JOHN MOORES UNIVERSITY 
LEARNING SERVICES 
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Exercise 1.15 Show that the Seidel adjacency matrix S of a graph on n vertices has 

rank n—1 orn. (Hint: det S=n-— 1 (mod 2).) 

Exercise 1.16 Let I be a graph with at least one vertex such that any two distinct 

vertices have an odd number of common neighbors. Show that I” has an odd number 

of vertices. (Hint: Consider A1 and A711 (mod 2).) 



Chapter 2 

Linear Algebra 

In this chapter we present some less elementary but relevant results from linear 

algebra. 

2.1 Simultaneous diagonalization 

Let V be a complex vector space with finite dimension, and fix a basis {e; | i € /}. 

Then we can define an inner product on V by putting (x,y) = Sxyi = x'yforx,y € 

V,x => xe;, y = DX yiei, where the bar denotes complex conjugation. If the linear 

transformation A of V is Hermitean, i.e., if (Ax, y) = (x, Ay) for all x,y € V, then all 

eigenvalues of A are real, and V admits an orthonormal basis of eigenvectors of A. 

Proposition 2.1.1 Suppose @& is a collection of commuting Hermitean linear trans- 

formations on V (i.e., AB = BA for A,B € &). Then V has a basis consisting of 

common eigenvectors of all A € &. 

Proof Induction on dimV. If each A € # is a multiple of the identity /, then 

all is clear. Otherwise, let A € & not be a multiple of J. If Au = Ou and BE &, 

then A(Bu) = BAu = @Bu, so B acts as a linear transformation on the eigenspace 
Ve for the eigenvalue @ of A. By the induction hypothesis, we can choose a basis 

consisting of common eigenvectors for each B € & in each eigenspace. The union 

of these bases is the basis of V we were looking for. LJ 

Given a square matrix A, we can regard A as a linear transformation on a vector 

space (with fixed basis). Hence the above concepts apply. The matrix A will be Her- 

mitean precisely when A = A'; in particular, a real symmetric matrix is Hermitean. 

21 
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2.2 Perron-Frobenius theory 

Let T be a real n x n matrix with nonnegative entries. T is called primitive if for 

some k we have T* > 0 and it is called irreducible if for all i, j there is a k such that 

(T*);; > 0. Here, for a matrix (or vector) A, A > 0 (> 0) means that all its entries 

are positive (nonnegative). 

The matrix T = (t;;) is irreducible if and only if the directed graph I7 with ver- 

tices {1,...,n} and edges (i, j) whenever t;; > 0 is strongly connected. 
(A directed graph (X,E) is strongly connected if for any two vertices x,y there 

is a directed path from x to y, i.e., there are vertices x9 = x,x1,..-,%m = y such that 

(xj3-1;4;) € E for 1 <i<m.) 

Note that if T is irreducible, then J + T is primitive. 

The period d of an irreducible matrix T is the greatest common divisor of the 

integers k for which (T*);; > 0. It is independent of the i chosen. 

Theorem 2.2.1 Let T > 0 be irreducible. Then there is a (unique) positive real 

number Qo with the following properties: 

(i) There is a real vector xy > 0 with Tx = Oxo. 

(ii) 09 has geometric and algebraic multiplicity 1. 

(iii) For each eigenvalue 0 of T, we have |@| < @. If T is primitive, then |@| = 
@ implies @ = Q. In general, if T has period d, then T has precisely d 

eigenvalues @ with |@| = @, namely @ = Qe2"'//4 for j =0,1,...,d—1. In 

fact, the entire spectrum of T is invariant under rotation of the complex plane 

over an angle 21/d about the origin. 

(iv) Any nonnegative left or right eigenvector of T has eigenvalue @p. 

Suppose t € R, andx >0,x 40. 

If Tx < tx, thenx > 0 and t > 0; moreover, t = Qp if and only if Tx = tx. 

If Tx > tx, thent < 09; moreover, t = Qp if and only if Tx = tx. 

(v) If0 <S<T or ifS is a principal minor of T, and S has eigenvalue o, then 

|o| < 4; if |o| = %, thenS=T. 

(vi) Given a complex matrix S, let |S| denote the matrix with elements |S|i; = |Si;\. 
If |S| < T and S has eigenvalue o, then \o| < Q. If equality holds, then 
|S| = T, and there are a diagonal matrix E with diagonal entries of absolute 

value | and a constant c of absolute value | such that S = cETE™'. 

Proof (i) Let P=(/+T)"~'. Then P > Oand PT =TP. Let B={x|x>Oandx4 
0}. Define for x € B: 

ive Ge pate aoe : 
O(x) = max {t |t € R, tx < Tx} = min{—— | 1 <i<n, x; 40}. 

Xj 

Now 0( ax) = @(x) fora €R, @>0, and (x < y,x# y implies Px < Py, so) @(Px) > 
8(x); in fact, @(Px) > @(x) unless x is an eigenvector of T. Put C = {x | x > 0 and 
||x|| = 1}. Then, since C is compact and @(.) is continuous on P[C] (but not in 
general on C !), there is an x9 € P[C] such that 
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Oo := sup O(x) = sup O(x) = sup O(x) = A(x). 
xEB xEC xEP(C| 

Now xo > 0 and xo is an eigenvector of T, so Tx9 = O@pxo and @ > 0. 

Gi) Fore verion x =4(41,---,4,;) |. write te = (yj |,-2 5 [a,|) '. If Tx = Ox, then 
by the triangle inequality we have Tx, > |@|x,. For nonzero x this means |@| < 

O(x,) < Op. If, for some vector z € B, we have Tz > pz, then z is an eigenvector of 

T (otherwise @(Pz) > 0), and since 0 < Pz = (1+ @)""'z we have z > 0. If x is 
a reai vector such that 7x = ox, then consider y = xo + €x, where € is chosen such 

that y > 0 but not y > 0. By the foregoing, y ¢ B, so that y = 0, and x is a multiple of 

xq. If x is a nonreal vector such that Tx = 0.x, then both the real and imaginary parts 

of x are multiples of x9. This shows that the eigenspace of @ has dimension 1, i.e., 

that the geometric multiplicity of @ is 1. We shall look at the algebraic multiplicity 

later. ‘ 

(iii) We have seen |0| < 6p. If |@| = @ and Tx = Ox, then Tx; = Ox, and we 

have equality in the triangle inequality |¥/t;jxj;| < Djtij|xj|. This means that all 
numbers t;;x; (1 < j <n) have the same angular part (argument). If T is primitive, 

then we can apply this reasoning with T* instead of T, where T* > 0, and conclude 

that all x; have the same angular part. Consequently, in this case x is a multiple of a 

real vector and may be taken real, nonnegative. Now Tx = 0x shows that @ is real, 

and |@| = 9 so that 9 = @p. In the general case, T¢ is a direct sum of primitive matri- 

ces T),..., T4-), and if. x = (x,...,x4-) is the corresponding decomposition 
of an eigenvector of T (with eigenvalue @), then (x), 6x ,...,€4-1x@-)) also is 
an eigenvector of T, with eigenvalue €0@, for any d-th root of unity ¢. (Here we 

assume that the 7) are ordered in such a way that in I7 the arrows point from the 

subset corresponding to 7) to the subset corresponding to T“+").) Since T4 has a 

unique eigenvalue of maximum modulus (let Be be the (nonsquare) submatrix 

of T describing the arrows in I7 from the subset corresponding to T) to the subset 

corresponding to T+"); then T = 120 nse and if Tz = yz, z > 0, then 

T\-1)7 = yz! where z = Ess # 0, so that all T‘ have the-same eigenvalue of 

maximum modulus), it follows that T has precisely d such eigenvalues. 

(iv) Doing the above for left eigenvectors instead of right ones, we find yo > 

0 with DWE = NYG « If Tx = Ox and y'T = ny’, then ny'x=y'Tx= Oy! x, It 

follows that either @ = 7 or y'x =0. Taking y € B, x = xo or x € B, y = yo we see that 

6 =n (= 6% =). If x € Band Tx < tx, thent > O and 0 < Px < (1+t)""!x, sox > 

0. Also Ooyg x = ve Tes aes so Op <t; in case of equality we have yg (Tx —tx)=0 

and hence Tx = tx. For Tx > tx the same argument applies. 

(v) Ifs £0, Ss = os, then Ts, > Ss1 > |o|s,, so |o| < O. But if |o| = Op, then 

s, is an eigenvector of T and s, > Oand (T —S)s; =0, soS=T. 

(vi) If s £0, Ss = os, then Ts, > |S|s4 > |o|s,, so |o| < 4, and if |o| = 4, 

then s, is an eigenvector of T and s, > 0 and |S| = 7. Equality in |S|s+ = |o|s+ 

means that |¥S;;s;| = X|Si|-|s;|, so that given i all S;;s; have the same angular part. 

Let Ej = s;/|si| and ¢= o/|o|. Then Sij = cEyE;"|Sij\. 
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(vii) Finally, in order to prove that 0 is a simple root of 77, the characteristic 

polynomial of T, we have to show that x7 (@) is nonzero for 8 = 6. But xr (@) = 

det(@J —T) and xr (@) = Y, det(@/ — 7j;), and by (v) we have det(@/ — Tj) > 0 
for 8 = @. L 

Remark Incase T > 0 but T not necessarily irreducible, we can say the following. 

(i) The spectral radius 0) of T is an eigenvalue, and there are nonnegative left 

and right eigenvectors corresponding to it. 

(ii) If |S| < 7 and S has eigenvalue o, then |o| < 4p. 

(Proof (i) Use continuity arguments; (ii) the old proof still applies. ) 

For more detail, see the exposition of Perron-Frobenius theory in GANTMACHER 

[167], Ch. XIII; see also VARGA [341], MARCUS & MINC [269], SENETA [320], 

Ch. 1, BERMAN & PLEMMONS [26], or HORN & JOHNSON [227], Ch. 8. 

2.3 Equitable partitions 

Suppose A is a symmetric real matrix whose rows and columns are indexed by 

X = {1,...,n}. Let {X1,...,Xm} be a partition of X. The characteristic matrix 
S is the n x m matrix whose j-th column is the characteristic vector of Xj (j = 

1,...,m). Define nj = |X;| and K = diag(n,,...,nm). Let A be partitioned according 
to-{Aq,-5 Ay teat 45, 

Aji mies Aim 

Ai ; : 

A sree Mini 

where A; ; denotes the submatrix (block) of A formed by rows in X; and the columns 

in X;. Let bj; denote the average row sum of A;,;. Then the matrix B = (bj,;) is 
called the quotient matrix of A w.r.t. the given partition. We easily have 

KB=S'AS, S'S=K. 

If the row sum of each block A; ; is constant then the partition is called equitable (or 

regular) and we have Aj j1 = bj ;1 for i,j = 0,...,d, so 

AS = SB. 

The following result is well-known and useful. 

Lemma 2.3.1 If for an equitable partition, v is an eigenvector of B for an eigen- 
value A, then Sv is an eigenvector of A for the same eigenvalue A. 

Proof Bv= 6v implies ASv = SBv = OS. O 

In the situation of this lemma, the spectrum of A consists of the spectrum of 
the quotient matrix B (with eigenvectors in the column space of S, i.e., constant on 
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the parts of the partition) together with the eigenvalues belonging to eigenvectors 

orthogonal to the columns of S (i.e., summing to zero on each part of the partition). 

These latter eigenvalues remain unchanged if the blocks Aj; are replaced by Aj; + 

ci,jJ for certain constants c;,;. 

2.3.1 Equitable and almost equitable partitions of graphs 

If in the above the matrix A is the adjacency matrix (or the Laplace matrix) of a 

graph, then an equitable partition of the matrix A is a partition of the vertex set into 

parts X; such that each vertex in X; has the same number 5; ; of neighbors in part X; 

for any j (or any j i). Such partitions are called (almost) equitable partitions of 

the graph. ‘ 

For example, the adjacency matrix of the complete bipartite graph Kpq has an eq- 

Op uitable partition with m = 2. The quotient matrix B equals \y 0 | and has eigenvalues 

+,/pq, which are the nonzero eigenvalues of Kp g. 
More generally, consider the join I” of two vertex-disjoint graphs Ij and I, the 

graph obtained by inserting all possible edges between Ij and I}. If Ij and Iz have 

n, (resp. n2) vertices and are both regular, say of valency k; (resp. k2), and have 

spectra B; (resp. ®y), then I has spectrum ® = (@ \ {ki }) U(® \ {ko}) U {kk} 
where k’,k” are the two eigenvalues of 

k 1 2 

ny kp ; 

Indeed, we have an equitable partition of the adjacency matrix of I” with the above 

quotient matrix. The eigenvalues that do not belong to the quotient coincide with 

those of the disjoint union of Ij and I. 

2.4 The Rayleigh quotient 

Let A be a real symmetric matrix and let uw be a nonzero vector. The Rayleigh quo- 

tient of u w.r.t. A is defined as 
u' Au 

ulu 

Let u1,...,Un be an orthonormal set of eigenvectors of A, say with Au; = 9;u;, where 

0; >... > Oy. Ifu= Sau, then ul u = >a? and u' Au = > a7 Gj. It follows that 

ul Au 

uu 
> 6 ifue OF ea 7) 

and 



26 2 Linear Algebra 

u! Au 

ulu 

In both cases, equality implies that u is a 0;-eigenvector of A. Conversely, one has 

<6, ifue Tr Parle 

Theorem 2.4.1 (Courant-Fischer) Let W be an i-subspace of V. Then 

Ae 
0;> min = 

uEeW,uA0 U'U 

and 
ane ul Au 

Pi, max : 
uceW+ uA0 ulu 

Proof See [227], Theorem 4.2.11. OC 

2.5 Interlacing 

Consider two sequences of real numbers, 0; >... > 0, and ; >... > 1m, with 

m <n. The second sequence is said to interlace the first one whenever 

0: > nS 6, fp aplota 18 alin: 

The interlacing is tight if there exists an integer k € [0,m] such that 

6, =; for 1 <i< k and; 6.4.5 = Hiiterk+1<7 <m. 

Ifm =n —1, the interlacing inequalities become 0; > N| > @2 >12>...>m=> 9, 

which clarifies the name. GODSIL [172] reserves the name “interlacing” for this 

particular case and calls it generalized interlacing otherwise. 

Theorem 2.5.1 Let S be a real n x m matrix such that S'S =I. Let A be a real 

symmetric matrix of order n with eigenvalues 0, >... > 0,. Define B = S'AS, and 

let B have eigenvalues ; > ... > Nm and respective eigenvectors V},...,Vm. 

(i) The eigenvalues of B interlace those of A. 

(ti) If Ni = 8; or Ni = On—-m+i for some i € [1,ml, then B has a n;-eigenvector v 

such that Sv is a nj-eigenvector of A. 

(iu) If, for some integer 1, n; = 0; for i= Vu. .,1 (or Ny = O24; fori=l,....m), 

then Sv; is a Nj-eigenvector of A for i=1,...,1 (respectively i=1,...,m). 

(iv) If the interlacing is tight, then SB = AS. 

Proof Let u;,...,u, be an orthonormal set of eigenvectors of the matrix A, where 

Au; = 9;u;. For each i € [1,m], take a nonzero vector 5; in 

ale 

(Viy-+- (ST a, -.,ST Ht) (2.1) 
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Then Ss; € (u,... ,uj_1)~ and hence by Rayleigh’s principle, 

WSs (Ss;) 'A(Ssj) ce s;' Bs; earn} 

he AROS SINT iggy at? 

and similarly (or by applying the above inequality to —A and —B) we get 0,_m+i < 

Ni, proving (i). If 0; = nj, then s; and Ss; are 0;-eigenvectors of B and A, respectively, 

proving (ii). We prove (iii) by induction on /. Assume Sv; = u; for i= 1,...,/ — 

1. Then we may take s; = v; in (2.1), but in proving (ii) we saw that Ss; is a )- 

eigenvector of A. (The statement between parentheses follows by considering —A 

and —B.) Thus we have (iii). Let the interlacing be tight. Then, by (iii), Sv,...,SVm 

is an orthonormal set of eigenvectors of A for the eigenvalues 1)1,..., Mm. So we have 

SBy; = njiSv; = ASv;, for i= 1,...,m. Since the vectors v; form a basis, it follows 

that SB = AS. gt la 

If we take S = [J 0]", then B is just a principal submatrix of A and we obtain: 

Corollary 2.5.2 If B is a principal submatrix of a symmetric matrix A, then the 

eigenvalues of B interlace the eigenvalues of A. 

The theorem requires the columns of S to be orthonormal. If one has a situation with 

orthogonal but not necessarily orthonormal vectors, some scaling is required. 

Corollary 2.5.3 Let A be a real symmetric matrix of order n. Let x,...,Xm be 

nonzero orthogonal real vectors of order n. Define a matrix C = (cjj) by cij = 
Reap aay X; AX}. 

peas ac J 

(i) The eigenvalues of C interlace the eigenvalues of A. 

(ii) If the interlacing is tight, then Ax; = ¥cijx; for all j. 

(iii) Let x = )\x;. The number r := x lies between the smallest and largest 

eigenvalue of C. If x is an eigenvector of A with eigenvalue @, then also C has 

an eigenvalue @ (for eigenvector 1). 

Proof Let K be the diagonal matrix with Kj; = ||x;||. Let R be the n x m matrix 
with columns x;, and put S = RK -!. Then S'S = J, and the theorem applies with 

B=S'AS = KCK™'. If interlacing is tight we have AR = RC. With x = Yx; = R1 
al 

and y = K1, we have Xft = 72. oO 

In particular, this applies when the x; are the characteristic vectors of a partition 

(or just a collection of pairwise disjoint subsets). 

Corollary 2.5.4 Let C be the quotient matrix of a symmetric matrix A whose rows 

and columns are partitioned according to a partitioning {X,,...,Xm}- 

(i) The eigenvalues of C interlace the eigenvalues of A. 

(ii) If the interlacing is tight, then the partition is equitable. 

Theorem 2.5.1(i) is a classical result; see COURANT & HILBERT [107], Vol. 1, 

Ch. I. For the special case of a principal submatrix (Corollary 2.5.2), the result even 
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goes back to Cauchy and is therefore often referred to as Cauchy interlacing. Inter- 

lacing for the quotient matrix (Corollary 2.5.4) is especially applicable to combina- 

torial structures (as we shall see). Payne (see, for instance, [291]) has applied the 

extremal inequalities 0; > n; > 9, to finite geometries several times. He attributes 

the method to Higman and Sims and therefore calls it the Higman-Sims technique. 

Remark This theorem generalizes directly to complex Hermitean matrices instead 

of real symmetric matrices (with conjugate transpose instead of transpose) with vir- 

tually the same proof. 

For more detailed eigenvalue inequalities, see HAEMERS [197], [199]. 

2.6 Schur’s inequality 

Theorem 2.6.1 (SCHUR [307]) Let A be a real symmetric matrix with eigenvalues 

0, > @ >... > 0, and diagonal elements d, > dz >... > dn. Then Yj_, d; < Yi_, 9; 
for 1 <1 <7. 

Proof Let B be the principal submatrix of A obtained by deleting the rows and 

columns containing d;+1,...,d,. If B has eigenvalues n; (1 < i < t), then by inter- 

lacing 54d) =i => i se Pi] 

Remark Again “real symmetric” can be replaced by “Hermitean”’. 

2.7 Schur complements 

In this section, the square matrix 

Ai Aj2 As 
Re ia 

is a Square partitioned matrix (over any field), where A,; is nonsingular. The Schur 

complement A/A,, of Aj, in A is the matrix A22 —A21A7A12. The following result 

is a straightforward but important consequence from the definition. 

Theorem 2.7.1 (see [356]) The Schur complement A/'A, satisfies 

(i) | ii O| | Aq Ain I Aj Ai2 a Ail O 

AA; I | [Ax An||O 1 O A/A\, |’ 
(ii) det(A/Aj1) = detA/detA 11, 

(iii) rkA = rk Aj +1k(A/A}1). 

Corollary 2.7.2 If rkA = rkAj1, then Ay = A21A7! A112. oO 



2.9 Gram matrices 29 

2.8 The Courant-Wey]l inequalities 

Denote the eigenvalues of a Hermitean matrix A, arranged in nonincreasing order, 

Theorem 2.8.1 Let A and B be Hermitean matrices of order n, and let 1 <i,j <n. 

(i) Ifi+j—1<n, then Ni+j-1(A +B) < Xi(A) +A;(B). 

(ii) Ifit+ j—n>1, then Ai(A) +A,(B) < Ais j—-n(A +B). 
(iii) If B is positive semidefinite, then A;(A + B) > A;(A). 

Proof (i) Let u),...,u, and v1,...,v, be orthonormal sets of eigenvectors of A 

(resp. B) with Au; = A;(A)u; and By; = A,(B)v;. Let U = (up, | 1 <A <i—1) and 
V=(%,\ls4<j—-1), and WwW —=U+V. For w € W+ we have w!(A+B)w < 

(A;(A) + A;(B))w'w. It follows that the space spanned by eigenvectors of A+B 
with eigenvalue larger than A;(A) + A;(B) has dimension at most i+ j — 2. 

(ii) Apply (i) to —A and —B. (iii) Apply the case j = n of (ii). () 

KY FAN [153] shows that A(A) +A(B) dominates A(A + B): 

Theorem 2.8.2 Let A and B be Hermitean matrices of order n. Then, for all t, 0 < 

t <n, we have Ew Ai(A +B) < Bits Ai(A) +y, A; (B). 

Proof i_,A;(A) = maxtr(U*AU), where the maximum is over all n x t matrices 
U with U*U =I. O 

2.9 Gram matrices 

Real symmetric n x n matrices G are in bijective correspondence with quadratic 

forms q on R" via the relation 

q(x) =x'Gx (xER"). 

Two quadratic forms q and q’ on R” are congruent, i.e., there is a nonsingular n x n 

matrix S such that g(x) = q/(Sx) for all x € R”, if and only if their corresponding ma- 

trices G and G’ satisfy G = S' G'S. Moreover, this occurs for some S if and only if G 

and G’ have the same rank and the same number of nonnegative eigenvalues—this is 

SYLVESTER [332]’s “law of inertia for quadratic forms”, cf. GANTMACHER [167], 

Vol. 1, Ch. X, §2. We shall now be concerned with matrices that have nonnegative 

eigenvalues only. 

Lemma 2.9.1 Let G be a real symmetric n x n matrix. Equivalent are: 

(i) Forallx € R", x'Gx>0. 

(ii) All eigenvalues of G are nonnegative. 

(iii) G can be written as G= H'H, with H anm xn matrix, where m is the rank 

of G. 
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Proof There is an orthogonal matrix Q and a diagonal matrix D whose nonzero 

entries are the eigenvalues of G such that G = Q' DQ. If (ii) holds, then nines 

(Qx)' D(Qx) > 0 implies (i). Conversely, (ii) follows from (i) by choosing x to be 

an eigenvector. If G= H'H then x' Gx = ||H-x||* > 0, so (iii) implies (i). Finally, 
let E = D'/2 be the diagonal matrix that squares to D, and let F be the m x n matrix 

obtained from E by dropping the zero rows. Then G = Q'E'EQ=Q'F'FQ= 
H'H, so that (ii) implies (iii). Oo 

A symmetric n x n matrix G satisfying (i) or (11) is called positive semidefinite. 

It is called positive definite when x'Gx=0 implies x = 0, or, equivalently, when 

all its eigenvalues are positive. For any collection X of vectors of IR”, we define its 

Gram matrix as the square matrix G indexed by X whose (x, y)-entry Gyy is the inner 

product (x,y) =x! y. This matrix is always positive semidefinite, and it is definite if 

and only if the vectors in X are linearly independent. (Indeed, if n = |X|, and we use 
H to denote the m x n matrix whose columns are the vectors of X, then G=A'H, 

and x' Gx = ||H-x||* > 0.) 

Lemma 2.9.2 Let N be a real mx n matrix. Then the matrices NN' and N'N 
have the same nonzero eigenvalues (including multiplicities). Moreover, rk NN' = 

tkN'N =rkN. 

Proof Let @ be a nonzero eigenvalue of NN'. The map u+4 N!u is an isomor- 

phism from the 6-eigenspace of NN' onto the @-eigenspace of N'N. Indeed, if 

NN'u = 9u, then N'NN'u = ON'u and N'u is nonzero for nonzero u since 
NN'u = Ou. The final sentence follows since rkN'N < rkN, but if N'Nx = 0 
then ||Nx||? =x'N'Nx = 0, so Nx =0. oO 

2.10 Diagonally dominant matrices 

A diagonally dominant matrix is a complex matrix B with the property that we have 

\bii| => Xj-4; |bi;| for all i. When all these inequalities are strict, the matrix is called 
strictly diagonally dominant. 

Lemma 2.10.1 (i) A strictly diagonally dominant complex matrix is nonsingular. 
(ii) A symmetric diagonally dominant real matrix with nonnegative diagonal en- 

tries is positive semidefinite. 

(ui) Let B be a symmetric real matrix with nonnegative row sums and nonpositive 
off-diagonal entries. Define a graph I on the index set of the rows of B, where two 
distinct indices i, j are adjacent when bj; # 0. The multiplicity of the eigenvalue 0 
of B equals the number of connected components C of I’ such that all rows i € C 
have zero row sum. 

Proof Let B = (b;;) be diagonally dominant, and let u be an eigenvector, say, with 
Bu = bu. Let |u;| be maximal among the |u;|. Then (b;; — b) uj; = —Yj4idiju;. In all 
cases the result follows by comparing the absolute values of both sides. 
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In order to prove (i), assume that B is singular, and that Bu = 0. Take absolute 

values on both sides. We find |bji|.|ui] < Xj |bij|-luj| < DX j-4i |ij||uil < |Biil-luil, a 
contradiction. 

For (ii), assume that B has a negative eigenvalue b. Then (b;; — b).|u;| < |bii|.[uil, 
a contradiction. 

For (iii), take b = 0 again, and see how equality could hold everywhere in 

Drea di lPij|-lu, =< pat |i; ||uil < bj;.\u;|. We see that uw must be constant 

on the connected components of I”, and zero where row sums are nonzero. 

2.10.1 Gersgorin circles 

The above can be greatly generalized. Let B(c,r) = {z € C | |z—c| < r} be the 
closed ball in C with center c and radius r. 

Proposition 2.10.2 Let A = (a;j) be a complex matrix of order n, and let A be an 

eigenvalue of A. Put rj = X;4i\aij|. Then for some i we have A € B(aji,ri). If C is 

a connected component of \); B(aji,ri) that contains m of the aji, then C contains m 

eigenvalues of A. 

Proof If Au = Au, then (A — ajj)uj = Xj4iaijuj. Let i be an index for which |u;\ 

is maximal. Then |A — aji|.|ui| < Xj4ilaij|-|ui| so that A € B(aji,r;). For the second 
part, use that the eigenvalues are continuous functions of the matrix elements. Let 

A(€) be the matrix with the same diagonal as A and with off-diagonal entries €a;;, 

so that A = A(1). Then A(0) has eigenvalues a;;, and for 0 < € < 1 the matrix A(€) 
has eigenvalues inside ); B(aji, ri). O 

This result is due to GERSGORIN [169]. A book-length treatment was given by 

VARGA [342]. 

2.11 Projections 

QN 

N'R 
eigenvalues a and b, partitioned with square Q and R. Let Q have h eigenvalues 0; 

distinct from a and b. Then R has h eigenvalues a+ b — 0; distinct from a and b, and 

h = mp(a) —mo(a) — mpr(a) = mp(b) — mg(b) — mr(b), where my(N) denotes the 

multiplicity of the eigenvalue n of M. 

Lemma 2.11.1 Let P = be a real symmetric matrix of order n with two 

Proof We may take a = | and b = 0, so that P is a projection and P? = P. Now 

if Qu = Ou, then Rv = (1 — @)v for v=N'u and NN'u = 0(1 — @)u, so that the 

eigenvalues of Q and R different from 0 and 1 correspond 1-1. The rest follows by 

taking traces: 0 = trP — trQ —trR = mp(1) — mg(1) —mp(1) —h. O 
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2.12 Exercises 

Exercise 2.1 Consider a symmetric n x n matrix A with an equitable partition 

{X\,..-,Xm} of the index set for rows and columns, where all classes have equal 

size. Let S and B be the characteristic matrix and the quotient matrix of this par- 

tition, respectively. Prove that A and SS' commute and give an expression for the 

eigenvalues of A+ a@SS' fora €R. 

Exercise 2.2 Let A be a real symmetric matrix of order n with eigenvalues 0, > 

... > O,. Let {X1,...,Xm} be a partition of the index set for row and columns of 
A, and let B be the corresponding quotient matrix, with eigenvalues 7; >... > Nm. 

Show that if 0; = 7; for some s, then A has a @,-eigenvector that is constant on each 

part X je 

Exercise 2.3 Let B denote the quotient matrix of a symmetric matrix A whose rows 

and columns are partitioned according to a partitioning {X1,...,Xm}. 

(i) Give an example where the eigenvalues of B are a sub(multi)set of the eigen- 

values of A and the partition is not equitable. 

(ii) Give an example where the partition is equitable and the interlacing is not 

tight. 



Chapter 3 

Eigenvalues and Eigenvectors of Graphs 

In this chapter, we apply the linear algebra from the previous chapter to graph spec- 

tra. 

3.1 The largest eigenvalue 

The largest eigenvalue of a graph is also known as its spectral radius or index. 

The basic information about the largest eigenvalue of a (possibly directed) graph 

is provided by the Perron-Frobenius theorem. 

Proposition 3.1.1 Each graph I has a real eigenvalue with nonnegative real 

corresponding eigenvector and such that for each eigenvalue @ we have |®| < 9. 

The value @¢(I") does not increase when vertices or edges are removed from I’. 

Assume that I is strongly connected. Then: 

(i) @ has multiplicity 1. 

(ii) If I’ is primitive (strongly connected, and such that not all cycles have a 

length that is a multiple of some integer d > 1), then |@| < 4 for all eigen- 

values @ different from @. 

(iii) The value @)(I) decreases when vertices or edges are removed from Teeencalsl 

Now let I” be undirected. By the Perron-Frobenius theorem and interlacing, we 

find upper and lower bounds for the largest eigenvalue of a connected graph. (Note 

that A is irreducible if and only if I” is connected.) 

Proposition 3.1.2 Let I" be a connected graph with largest eigenvalue 0,. If I is 

regular of valency k, then 9; =k. Otherwise, we have kin < k < 01 < kmax, where 

Kminy Kmax and k are the minimum, maximum, and average degree, respectively. 

Proof Let 1 be the vector with all entries equal to 1. Then Al < kmax1, and by 

Theorem 2.2.1(iv) we have 0; < kmax with equality if and only if Al = 6,1, that is, 

if and only if I is regular of degree 0). 

33 
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Now consider the partition of the vertex set consisting of a single part. By Corol- 

lary 2.5.4, we have k < 6; with equality if and only if I” is regular. O 

For not necessarily connected graphs, we have kK <0, <kmax, and k = 0, if and 

only if I” is regular. If 09; = kmax, then we only know that I” has a regular component 

with this valency but I need not be regular itself. 

As was noted already in Proposition 3.1.1, the largest eigenvalue of a connected 

graph decreases strictly when an edge is removed. 

3.1.1 Graphs with largest eigenvalue at most 2 

As an example of the application of Theorem 2.2.1, we can mention: 

Theorem 3.1.3 (SMITH [327], cf. LEMMENS & SEIDEL [250]). The only con- 

nected graphs having largest eigenvalue 2 are the following graphs (the number 

of vertices is one more than the index given). 

An (n> 2) 1 
1 

_ pit Bala 2 

en ree Ee 
| 1 1 1 To Ny ese eee 

For each graph, the corresponding eigenvector is indicated by the integers at the 
vertices. Moreover, each connected graph with largest eigenvalue less than 2 is a 
subgraph of one of the graphs above, i.e., one of the graphs An = Py, the path with 
n vertices (n > 1), or 



3.1 The largest eigenvalue 35 

Finally, each connected graph with largest eigenvalue more than 2 contains one 

Of An, Dn, Eo, E7, Eg as a subgraph. 

Proof The vectors indicated are eigenvectors for the eigenvalue 2. Therefore, ee 

Dy, and E, (m = 6,7,8) have largest eigenvalue 2. Any graph containing one of 

these as an induced proper subgraph has an eigenvalue larger than 2. So, if I” has 

largest eigenvalue at most 2 and is not one of A, or Dn, then I’ is a tree without 

vertices of degree at least 4 and with at most one vertex of degree 3, and the result 

easily follows. L 

These graphs occur as the Dynkin diagrams and extended Dynkin diagrams of 

finite Coxeter groups, cf. [41, 54, 230]. Let us give their eigenvalues: 

The eigenvalues of A, are 2cosia/(n+1) (= 1,2,...,n). 

The eigenvalues of D,, are 0 and 2cosim/(2n— 2) (i= 1,3,5,...,2n —3).- 

The eigenvalues of Eg are 2cosim/12 (i= 1,4,5,7,8,11). 

The eigenvalues of E7 are 2cosim/18 (i= 1,5,7,9, 11, 13,17). 

The eigenvalues of Eg are 2cosim/30 (i = 1,7, 11, 13,17, 19, 23,29). 

(Indeed, these eigenvalues are 2 cos(dj — 1)a/h (1 <i< xn), where h is the Coxeter 

number and the d; are the degrees, cf. [54], pp. 84, 308. Note that in all cases the 

largest eigenvalue is 2cos /h.) 

The eigenvalues of D,, are 2, 0,0, —2 and 2cosin/(n—2) ((=1,...,n—3). 

The eigenvalues of | GEN tag log Wine Wg 4 Cg ae 

The eigenvalues of EF are 2. V2 070. = 15 Ley ee: 

The eigenvalues of £g are 2, t, 1, t~', 0, —t~!, —1, —1, —2. 

Remark It is possible to go a little bit further and find all graphs with largest 

eigenvalue at most (2+ V5 ~% 2.05817, cf. BROUWER & NEUMAIER [65]. 
For the graphs with largest eigenvalue at most 3/2 = 2.12132, see WOO & 

NEUMAIER [353] and CIOABA et al. [98]. 

3.1.2 Subdividing an edge 

Let I be a graph on n vertices, and consider the graph I’ on n+ 1 vertices ob- 

tained from I” by subdividing an edge e (that is, by replacing the edge e = xy by the 

two edges xz and zy where z is a new vertex). The result below relates the largest 

eigenvalue of I and I’. 
We say that e lies on an endpath if T \e (the graph on n vertices obtained by 

removing the edge e from I) is disconnected and one of its connected components 

is a path. 

Proposition 3.1.4 (HOFFMAN & SMITH [221]) Let I” be a connected graph, and 

let the graph I' be obtained from T by subdividing an edge e. Let I’ and ' have 

largest eigenvalues 0 and 6', respectively. Then, if e lies on an endpath, we have 

@’ > 0, and otherwise 0’ < @ with equality only when both equal 2. 
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Proof If e lies on an endpath, then I" is obtained from I’ by removing a leaf 

vertex, and @ < @’ follows by Proposition 3.1.1. Suppose e is not on an endpath. By 

Theorem 3.1.3, 9 > 2. Let A and A’ be the adjacency matrices of I and I’, so that 
Au = @u for some vector u > 0. We use Theorem 2.2.1 (iv) and conclude 0’ < 0 

from the existence of a nonzero vector v with v > 0 and A’v < @v. Such a vector v 

can be constructed as follows. If z is the new point on the edge e = xy, then we can 

take vp = up for p # z, and vp = min(u,, uy), provided that Ov, > ux + uy. Suppose 

not. Without loss of generality, assume u, < uy, SO Ou, < Ux + Uy and hence u, < uy. 

We have 0 < Yipnxpdy Up = Bux — Uy < uy. If x has degree 2 in I’, say x ~ Py, then 

replace e = xy by e= 

does not change I’. If x has degree m > 2, then define v by vy = Oux — uy, Vz = Ux, 

and vp = up for p #x,z. We have to check that @v, > v, + uy, but this follows from 

OV, = OX pnx phy Up = (m— 1)ux = 2uy > vy + Ux. 0 

3.1.3 The Kelmans operation 

As we saw, adding edges causes the largest eigenvalue to increase. The operation 

described below (due to KELMANS [241]) only moves edges, but also increases 0). 

Given a graph I” and two specified vertices u, v, construct a new graph I’ by 

replacing the ecge vx by a new edge ux for all x such that v ~ x ~ u. The new 

graph I’ obtained in this way has the same number of vertices and edges as the old 

graph, and all vertices different from u,v retain their valency. The vertices u,v are 

adjacent in I’ if and only if they are adjacent in I. An isomorphic graph is obtained 

if the roles of u and v are interchanged: if N(u) and N(v) are the sets of neighbors 

of u,v distinct from u and v, then in the resulting graph the corresponding sets are 

N(u) UN(v) and N(u) ON (v). 

If I denotes the complementary graph of I, then also I’ is obtained by a Kel- 

mans operation from I. 

Proposition 3.1.5 (CSIKVARI [110]) Let I" be a graph, and let T' be obtained from 

T’ by a Kelmans operation. Then 0,(I’) < @(I"'). (And hence also 6, (I") < @(T°).) 

Proof Let A and A’ be the adjacency matrices of and I’, and let Ax = 0).x, where 

x >0, x'x = 1. Without loss of generality, let x, > x,. Then @,(I"') > x'A'’x = 

x Ax-+ 2(xy — Xy) Lwen(v)\W(u) Ngee Or). CO 

Csikvari continues and uses this to show that @(I7) + @(I) < 5(1+ V3)n. 

Earlier, BRUALDI & HOFFMAN [69] had observed that a graph with maximal 
spectral radius p among the graphs with a given number of vertices and edges has a 
vertex ordering such that ifx ~ yandz<x,w<y,z#w, then z ~ w. ROWLINSON 
[303] calls the adjacency matrices of these graphs (ordered this way) stepwise and 
proves that the maximal value of p among the graphs on n vertices and e edges 
is obtained by taking K,, + (n —m)K,, where m is minimal such that @ ) > e, and 
removing es ) — e edges on a single vertex. 
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It follows from the above proposition that a graph with maximal 6(I") + (I) 

has a stepwise matrix. It is conjectured that in fact 0;(I") + @:(T-) < zn —1. 

3.2 Interlacing 

By the Perron-Frobenius theorem, the largest eigenvalue of a connected graph goes 

down when one removes an edge or a vertex. Interlacing also gives information 

about what happens with the other eigenvalues. 
The pictures for A and L differ. The eigenvalues for the adjacency matrix A show 

nice interlacing behavior when one removes a vertex but not when an edge is re- 

moved (cf. $1.9). The Laplace eigenvalues behave well in both cases. For A, an 

eigenvalue can go both up or down when an edge is removed. For L, it cannot in- 

crease. 

Proposition 3.2.1 (i) Let I be a graph and A an induced subgraph. Then the eigen- 

values of A interlace those of I. 

(ii) Let T be a graph and let A be a subgraph, not necessarily induced, on m 

vertices. Then the i-th-largest Laplace eigenvalue of A is not larger than the i-th- 

largest Laplace eigenvalue of T (1 <i<m), and the i-th-largest signless Laplace 

eigenvalue of A is not larger than the i-th-largest signless Laplace eigenvalue of I” 

(1<i<m). 

Proof Part (i) is immediate from Corollary 2.5.2. For part (ii), recall that we have 

L=NN' when N is the directed point-edge incidence matrix obtained by orienting 

the edges of I” arbitrarily and that NN' and N'N have the same nonzero eigen- 

values. Removing an edge from I" corresponds to removing a column from N and 

leads to a principal submatrix of N'N, and interlacing holds. Removing an isolated 

vertex from I corresponds to removing a Laplace eigenvalue 0. The same proof 

applies to the signless Laplace matrix. O 

3.3 Regular graphs 

It is possible to see from the spectrum whether a graph is regular. 

Proposition 3.3.1 Let I be a graph with eigenvalues k = 0; > @ >... > O,. The 

following are equivalent: 

(i) T is regular (of degree k). 

(ii) AJ = igh 

(iii) £0? = 

Proof We have seen that (i) and (ii) are equivalent. Also, if I” is regular of degree 

k, then 5,0? = trA” = kn. Conversely, if (iii) holds, then k=n'¥,6? = @, and, by 

Proposition 3.1.2, I” is regular. 0 
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As we saw above in §1.3.7, it is also possible to see from the spectrum whether a 

graph is regular and connected. However, for nonregular graphs it is not possible to 

see from the spectrum whether they are connected. 

The following very useful characterization of regular connected graphs was given 

by HOFFMAN [218]. 

Proposition 3.3.2 The graph I is regular and connected if and only if there exists 

a polynomial p such that J = p(A). 

Proof If J = p(A), then J commutes with A and hence I is regular (and clearly 

also connected). Conversely, let IX be connected and regular. Choose a basis such 

that the commuting matrices A and J become diagonal. Then A and J become 

ey @,...,0,) and diag(n,0,...,0). Hence, if we put f(x) = []#_,(x— 4), then 
=nf(A)/ f (k ), and p(x) =nf ise 5) /f (k) satisfies the requirements. O 

3.4 Bipartite graphs 

Among the connected graphs I, those with imprimitive A are precisely the bipartite 

graphs (and for these, A has period 2). Consequently, from Theorem 2.2.1(iii) we 

find the following. 

Proposition 3.4.1 (i) A graph I is bipartite if and only if, for each eigenvalue 0 of 

I’, also —@ is an eigenvalue, with the same multiplicity. 

(ii) If I is connected with largest eigenvalue 0, then T is bigdivies if and only if 

—O@, is an eigenvalue of T. 

Proof For connected graphs all is clear from the Perron-Frobenius theorem. That 

gives (ii) and (by taking unions) the “only if” part of (i). For the “if” part of (i), let 0 

be the spectral radius of I”. Then some connected component of I" has eigenvalues 

6; and —@, and hence is bipartite. Removing its contribution to the spectrum of I’, 

we see by induction on the number of components that all components are bipartite. 

3.5 Cliques and cocliques 

A clique in a graph is a set of pairwise adjacent vertices. A coclique in a graph 
is a set of pairwise nonadjacent vertices. The clique number w(I) is the size of 
the largest clique in I. The independence number a(I’) is the size of the largest 
coclique in I’. 

Let I” be a graph on n vertices (undirected, simple, and loopless) having an ad- 
jacency matrix A with eigenvalues 0; >... > @,. Both Corollaries 2.5.2 and 2.5.4 
lead to a bound for a(I). 
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Theorem 3.5.1 a@(I°) <n—n_ =|{i| 6; > 0}| and a(L) <n—n, =|{i| 6; < 0}|. 

Proof A has a principal submatrix B = 0 of size a = a (I). Corollary 2.5.2 gives 

9a = Na = 0 and O,-g¢—-1 < Mm =0. 

For example, the Higman-Sims graph (see §9.1.7) has spectrum 22! 277 (—8)??. 
Each point neighborhood is a coclique of size 22, and equality holds. 

Theorem 3.5.2 [fT is regular of nonzero degree k, then 

and if a coclique C meets this bound, then every vertex not in C is adjacent to 

precisely —@, vertices of C. 

Proof We apply Corollary 2.5.4. The coclique gives rise to a partition of A with 

quotient matrix 

0 k 
B= | ka p ko | ’ 

n—-@ n—-O 

where a = a(I’). B has eigenvalues n| = k = 9) (the row sum) and 2 = —ka/(n— 

) (since trace B= k + 12) and so 8, < M2 gives the required inequality. If equality 

holds, then 72 = 9, and since 7; = 4), the interlacing is tight and hence the partition 

is equitable. 

For example, the Petersen graph has spectrum 3! 1° (—2)* and its independence 
number is 4, so equality holds in both bounds. 

The first bound is due to CVETKOVIC [112]. The second bound is an unpublished 

result of Hoffman known as the Hoffman bound or ratio bound. The Hoffman bound 

was generalized to the nonregular case in [197] as follows. 

Proposition 3.5.3 Let I have minimum vertex degree 6. Then 

— 616, 

6? — 010, 
a(l) <n 

3.5.1 Using weighted adjacency matrices 

Let us call a real symmetric matrix B a weighted adjacency matrix of a graph I” 

when B has rows and columns indexed by the vertex set of I”, has zero diagonal, 

and satisfies B,, = 0 whenever x % y. 

The proof of Theorem 3.5.1 applies to B instead of A, and we get 

Theorem 3.5.4 o(I°) <n—n_(B) and o(0) <n—n4(B). 

Similarly, the proof of Theorem 3.5.2 remains valid for weighted adjacency ma- 

trices B with constant row sums. 
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Theorem 3.5.5 Let B be a weighted adjacency matrix of I with constant row sums 

b and smallest eigenvalue s. Then a(I) < n(—s)/(b—s). 

A version that does not mention constant row sums: 

Theorem 3.5.5a ((352]) Let B be a weighted adjacency matrix of I’ such that I + 

B—c7'J is positive semidefinite. Then a(I’) < c. 

Proof We have 0 < x! (1+B—c—'J)x = |C|—c7'|C/? for the characteristic vec- 
tor x of a coclique C. 

3.6 Chromatic number 

A proper vertex coloring of a graph is an assignment of colors to the vertices so that 

adjacent vertices get different colors (in other words, a partition of the vertex set 

into cocliques). The chromatic number x (I) is the minimum number of colors of a 
proper vertex coloring of I’. 

Proposition 3.6.1 (WILF [350]) Let I. be connected, with largest eigenvalue 0. 

Then x(I’) < 1+ 1, with equality if and only if T is complete or an odd cycle. 

Proof Put m= y(I'). Since I cannot be colored with m— 1 colors, whereas col- 

oring vertices of degree less than m— 1 is easy, there must be an induced subgraph 

A of I’ with minimum degree at least m— 1. Now 0; > 0;(A) > dmin(A) >m—1= 

x(I’) — 1. If equality holds, then by the Perron-Frobenius theorem IT = A and A 

is regular of degree m— 1 (by Proposition 3.1.2), and the conclusion follows by 

Brooks’s theorem. L) 

Since each coclique (color class) has size at most a(I”), we have x(I") >n/a(I’) 
for a graph I” with n vertices. Thus upper bounds for a(I”) give lower bounds for 

x(). For instance, if I is regular of degree k = 0,, then Theorem 3.5.2 implies that 

x4(T) >1- a. This bound remains valid, however, for nonregular graphs. 

Theorem 3.6.2 (HOFFMAN [219]) fT is not edgeless then x(T.) > 1— a : 
nN 

Proof Put m= (I). Since I is not edgeless, 0, < 0. Now, by part (i) of the 

following proposition, 0; + (m—1)0, < 0; + O,-m42 +... +0, <0. O 

Proposition 3.6.3 Put m= x(I'). Then 

(i) 0; id On—m42 a i 0, = 0. 

(ii) Ifn > m, then 0. +...+Om+ On—-m+1 > 0. 

(iii) Ifn > tm, then O41 bE Opn 1 + On +(m—1) > 0. 

Proof Let A have orthonormal eigenvectors uj, so that Au j = Oju;. 
(i) Let {X1,...,Xm} be a partition of I” into m cocliques, where m = y(I’). Let ie 

be the pointwise product of u; with the characteristic vector of X j> 8o that Sx; = uy. 
Now apply Corollary 2.5.3 to the vectors x; after deleting those that are zero. The 
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matrix C defined there satisfies C1 = 0,1, has zero diagonal, and has eigenvalues 1); 

interlacing those of A. Hence 

OO a ie Ni Ot Oy ear a <P Dy: 

(ii) Put A’ = A — (0 — 9, )uyu} . Then A’ has the same eigenvectors uj; as A, but 

with eigenvalues 0,, 02, ..., 9,. Pick a nonzero vector y in 

(Unecnetae a ,Un) M (x1 pete ae 

The two spaces have a nontrivial intersection since the dimensions add up to n and 

u, is orthogonal to both. Let y; be the pointwise product of y with the characteristic 

vector of X;, so that )y; = y and yj A'y; = 0. Now apply Corollary 2.5.3 to the 

matrix A’ and the vectors y; after deleting those that are zero. The matrix C defined 

there has zero diagonal, and smallest eigenvalue smaller than the Rayleigh quotient - 
nen which by choice of y is at most 9, —m4+1. We find 

0=tr(C) = m+... + Nm < +O 4...+ Om + On—mti- 

(iii) The proof is as under (ii), but this time we move ¢ (instead of just one) 

eigenvalues away (by subtracting multiples of u ju} for 1 < j <t). The vector y 

must be chosen orthogonal to tm vectors, which can be done inside the (tm —t + 1)- 

space (Un—1m4t,---,Un), assuming that this space is already orthogonal to u1,...,ur, 

i.e., assuming that n > tm. i 

The above proof of Theorem 3.6.2 using (i) above appeared in [196]. 

A coloring that meets the bound of Theorem 3.6.2 is called a Hoffman coloring. 

For regular graphs, the color classes of a Hoffman coloring are cocliques that meet 

Hoffman’s coclique bound. So in this case all the color classes have equal size and 

the corresponding matrix partition is equitable. 

In [197], more inequalities of the kind above are given. But the ones mentioned 

here, especially (i) and (ii), are by far the most useful. 

Example The complete multipartite graph Ky,xq has chromatic number m and spec- 

trum (am—a)! 0"4-!) (—a)"~!. It has equality in Hoffman’s inequality (and hence 

in (i)) and also in (ii). 

Example The graph obtained by removing an edge from K,, has chromatic number 

n—1 and spectrum $(n = oe Wi) Wy Na 8 Sy am S(n —3-—/D), where D = (n+ 

1)? — 8, with equality in (i). 

Example Consider the generalized octagon of order (2,4) on 1755 vertices. It has 

spectrum 10! 535! 19° (—3)®” (—5)’8. It is not 3-chromatic, as one sees by remov- 

ing the 352 largest eigenvalues, i.e., by applying (iii) with ¢t = 352. 

The inequality (ii) can be made more explicit if the smallest eigenvalue @, has a 

large multiplicity. 

Corollary 3.6.4 If the eigenvalue 8, has multiplicity g and @ > 0, then 
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x() > min(1+g,1— a) 

Proof Ifm:=x7(I) < g, then 0, = 0,m+1, so that (m—1)0:+0, > 0. O 

A similar, more explicit form for inequality (iii) follows in the same way. 

3.6.1 Using weighted adjacency matrices 

If I” has an m-coloring, then I’L)K,, has an independent set of size n, the number of 

vertices of I”. This means that one can use bounds on the size of an independent set 

to obtain bounds on the chromatic number. 

Example Consider the generalized octagon of order (2,4) again. Call it I”, and call 

its adjacency matrix A. Now consider the weighted adjacency matrix B of K30T, 

where the K3 is weighted with some number r, where 1 <r < 3. For each eigenvalue 

0 of A, we find eigenvalues @ + 2r (once) and @ — r (twice) as eigenvalues of B. 

Applying Theorem 3.5.4, we see that a(K30I) < 3(1 +351) +650 = 1706, while 
I has 1755 vertices, so I” is not 3-chromatic. 

3.6.2 Rank and chromatic number 

The easiest way for A to have low rank is when it has many repeated rows. But 

then I” contains large cocliques. People have conjectured that it might be true that 

x(0) <1kA when A # 0. A counterexample was given by ALON & SEYMOUR 
[9], who observed that the complement of the folded 7-cube (on 64 vertices) has 
chromatic number y = 32 (indeed, a = 2) and rank 29 (indeed, the spectrum of the 
folded 7-cube is 7! 371 (—1)3° (—5)’). 

3.7 Shannon capacity 

SHANNON [323] studied the capacity Co of the zero-error channel defined by a graph 
I’, where a transmission consists of sending a vertex of I”, and two transmissions 
can be confused when the corresponding vertices are joined by an edge. 

The maximum size of a set of mutually inconfusable messages of length 1 is 
a(I’), so that one can transmit log a (I) bits by sending one vertex. The maximum 
size of a set of mutually inconfusable messages of length # is the independence 
number a(I" 4 ), where I’ denotes (in this section) the strong product [™ of @ copies 
of I’, that is, the graph on sequences of £ vertices from I", where two sequences are 
adjacent when on each coordinate position their elements are equal or adjacent. One 
can transmit log a(I“) bits by sending a sequence of @ vertices, and it follows that 
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the channel capacity is Co = logc(I”), where c(I) = sup,_,., a(I"")'/". This value 
c(I’) is called the Shannon capacity of T. 

For example, for the pentagon, we find c(I”) > 5, as shown by the S-coclique 
00, 12, 24, 31, 43 in Cs ICs. 

Computing c(I°) is a difficult unsolved problem, even for graphs as simple as C7, 

the 7-cycle. 

Clearly, a(I’) < c(’) < x(I). (Indeed, if m = x (I), then I can be covered by 
m cliques, and I‘ can be covered by m* cliques, and a(I™’) < m’.) In a few cases 

this suffices to determine c(I’). 
One can sharpen the upper bound to the fractional clique covering number. For 

example, the vertices of Cs can be doubly covered by five cliques, so the vertices of 

C£ can be covered 2° times by 5‘ cliques, and a(C£) < (5/2)', so c(Cs) < 5/2. 
ia A is the adjacency matrix of I’, then @‘(A + /) —/ is the adjacency matrix of 

re : 
The Hoffman upper bound for the size of cocliques is also an upper bound for 

c(I-) (and therefore, when the Hoffman bound holds with equality, also the Shannon 

capacity is determined). 

Proposition 3.7.1 (LOVASZ [261]) Let I be regular of valency k. Then 

c(I) < n(—@,)/(k— 9). 

Proof Use the weighted Hoffman bound (Theorem 3.5.5). If B = A — @,J, then 

@'B —(—@,)*I has constant row sums (k — 6,)’ — (—@,)* and smallest eigenvalue 
—(—6,)*, so that a(I"*) < (n(—O,)/(k—9n))*. 0 

Using n = 5, k = 2, 0, = (—1— V5)/2 we find for the pentagon c(I") < V5. 

Hence equality holds. 

HAEMERS [194, 195] observed that if B is a matrix indexed by the vertices of 

T and B,, 4 0 for all x, and By, = 0 whenever x % y, then c(I-) < rkB. Indeed, 

for such a matrix @(I”) < rkB since an independent set determines a submatrix 

that is zero outside a nonzero diagonal. Now @‘B is a suitable matrix for ’!, and 

rk @ B = (rk B)’. The rank here may be taken over any field. 

Example The collinearity graph I" of the generalized quadrangle GQ(2,4) (the 

complement of the Schlafli graph, cf. §9.6) on 27 vertices has spectrum 10! 17° 
(—5)°. Taking B = A —I shows that c(I’) < 7. (And c(I’) > aI”) = 6.) The com- 
plement I” has a(I’) = 3, but this is also the Hoffman bound, so c(I’) = 3. 

ALON [5] proves that c(I' +I") > 2,/n for all I. Combined with the above ex- 

ample, this shows that the Shannon capacity of the disjoint sum of two graphs can 

be larger than the sum of their Shannon capacities. More detail about the Lovasz 

and Haemers bounds for c(I”) is given in the following sections. 



44 3 Eigenvalues and Eigenvectors of Graphs 

3.7.1 Lovasz’s 3-function 

Consider a simple graph I" of order n, and let .@r be the set of real symmetric 

matrices M indexed by VI that satisfy M,, = 1 when u=v or u & v. The Lovasz 

parameter 0 (I°) is defined by 

o(P) = inf 61(M), 

where 0;(M) denotes the largest eigenvalue of M. The results below are all due to 

LovAsz [261]. 

Lemma 3.7.2 0(I KA) < (LT) 8(A). O 

Proof If Mr €.4@, and My €.%, then Mr @ My € Arma. Moreover, 0;(Mr ® 

Ma) = 91 (Mr) 01 (Ma). oO 

LovASsz [261] shows that equality holds here. 

Theorem 3.7.3 The Shannon capacity c(I’) satisfies 

a(P) <c(P) < or). 
Proof Let M € .@. A coclique of size a(I") corresponds to a principal subma- 

trix J of order a(I”) in M. Interlacing gives a(I”) = 6;(J) < @,(M), which proves 
a(I) < 0(I). By Lemma 3.7.2, we now have a(I’) < o(I") < (8(L))*, and 
hence c(I’) < &(T). O 

The upper bound x (I) for c(I’) is also an upper bound for 3 (I): 

Theorem 3.7.4 (“Sandwich”) a(I’) < 8(C) < x(L). 

Proof To prove the second inequality, consider a covering of I with ¥ pairwise 

disjoint cliques. Define M,,, = 1 — X if uw and v are distinct vertices in the same clique 

of the covering, and M,, = 1 otherwise. Then M € .@, and 0;(M) = 7. Indeed, the 

clique covering gives an equitable partition of M (see §2.3), and the eigenvectors 

of M orthogonal to the characteristic vectors of the partition have eigenvalue Y, 

while the other eigenvalues are those of the quotient matrix B = JA —YA + YI, 

where A is the diagonal matrix whose diagonal entries are any sizes of the cliques 

of the cavenng. Now 6;(B) < X because B is similar to AZIA2 — VAY band 

XA — AZJA2 is positive semidefinite since YJ — J is. O 

This is an important result: while computing the independence number and the 
chromatic number of a graph are NP-complete, 0(I") can be computed to any de- 
sired precision in polynomial time (see [184]). In particular, in the cases where 
a(I) = x(L), this value can be found efficiently. For perfect graphs (graphs such 
that o(A) = 7(A) for every induced subgraph A) this yields an efficient procedure 
for actually finding a maximal coclique. 

The Hoffman bound for the size of a coclique in a regular graph is also an upper 
bound for #(I”) (and therefore, when the Hoffman bound holds with equality, 3 (I") 
is determined). 
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Proposition 3.7.5 Suppose I is regular of valency k, with smallest eigenvalue 0. 

Then 9 
—n 

o([) < = 
( ) +F k ind 6, 

Proof Let A be the adjacency matrix of I, and define M = J — ;“,-A. Then M € 

Mr, and @;(M) = —n8,,/(k — 9,). 

For example, for the Petersen graph, we have a(I") = 0(I) = 4. For the pen- 

tagon, c(I) = 3(I) = V5. LovAsz [261] proved that equality holds in the above 
formula if I has an edge-transitive automorphism group. Equality also holds if I” is 

strongly regular (see [194]). 

Proposition 3.7.6 One has 39(I.)8(I-) > n fora graphT of order n. Equality holds 
if I” is vertex transitive. = 

LovASz [261] gives several equivalent expressions for 0(I"). The following al- 
ternative definition uses the set .4 of real symmetric matrices N indexed by VI’, 

with the property that N is positive semidefinite, trN = 1, and N,, =O if u ~ v: 

o(C) = sup trNJ. 
NEN 

(Note that trNJ equals the sum of the entries of N.) Equivalence of the two defi- 

nitions follows from duality in semidefinite programming. It also follows that the 

infimum and supremum in the two expressions for U(I”) are actually a minimum 

and a maximum. 

3.7.2 The Haemers bound on the Shannon capacity 

For a graph I, let the integer 1(I”) (the Haemers invariant) be the smallest rank 

of any matrix M (over any field), indexed by VI’, which satisfies M,, 4 0 for all u, 

and M,, = 0 if u & v (see [195]). The following propositions show that this rank 

parameter has some similarity with 0(I°). 

Lemma 3.7.7 n( BA) < n(L)n(A). 

Proof Suppose Mr and Mj, are admissible for P and A with minimum rank. Then 

Mr @M, is admissible for F&A, and rk(Mr @ My) = n(T)n(A). 0 

Theorem 3.7.8 The Shannon capacity c(I’) satisfies 

a(l) <e(T) < nl). 

Proof A coclique in I corresponds to a nonsingular diagonal matrix in M. There- 

fore a(I”) <rkM for every admissible M, so that a(I) < n(I”). By Lemma 3.7.7 

we have a(I"’) < n(I“) < (n(I))‘, and hence c(I’) < n(I’). O 

LIVERPOOL JOHN MOORES UNIVERSITY 
LEARNING SERVICES 
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Proposition 3.7.9 a(I) <n(0) < x(P). 

Proof To prove the second inequality, fix a cover with y(I) cliques, and take 

M, = 0 if wand v are in different cliques of the clique cover and M,,, = 1 otherwise. 

Then rkM = y(T). O 

In spite of the above similarity, n(I") and #(I-) are very different. To begin with, 
8(I) need not be an integer, whereas n(I°) always is. The computation of n(I”) 
is probably NP-hard ({292]). The two are not related by an inequality: for some 

graphs 0(I") < n(I) (for example, 3(Cs) = V5 < 3 = n(Cs)), whereas for other 
graphs n(I’) < 3(I) (for example, for the collinearity graph I" of the generalized 

quadrangle GQ(2,4), we have n(I.) <7<9=(L)). 

Example Consider the graph I’ on the triples from an m-set 2, adjacent when they 

meet in precisely one point. Let N be the m x ( incidence matrix of symbols and 

triples. Then M = N'N is admissible over F>, so (I) < rk2M < m. If 4|m, then 
consider a partition of X into zm 4-sets. The triples contained in one of the parts 

form a coclique of size m, so a(I”) = c(I’) = n(I-) = m in this case. Here 0(I") = 

ti (for m > 7), so that O(P) > m > n(P) form > 8. Also n(I-) < m, so 

n()n(D) <m < (3) =n for m > 8 ((194]). 

3.8 Classification of integral cubic graphs 

A graph is called integral when all of its eigenvalues are integral. As an applica- 
tion of Proposition 3.3.2, let us classify the cubic graphs (graphs that are regu- 
lar of valency 3) with integral spectrum. The result is due to BUSSEMAKER & 
CVETKOVIC [75]. See also SCHWENK [309]. There are 13 examples, of which 8 
are bipartite. 

Case--4y Spectrum Description 

(ier +3, 0 K33 
(ii) 8 +3, (4-1) 2° 
(iii) 10 2 £2, (+1)%,.07 9 Ke Ok 
(iv) 12 3, (+2)7, +1, 07 Co OK? 
(v) 20 ab (£2), ery IT@ Ky 
(vi) 20 we (+2)4 oe T* @ Kp 
(vii) 24 salt 2)°, (41)3, 2 @K2 
(viii) 30 steel oo GQ(2,2) 
(ix) °4 3, (= D Ky 
(KK) PS 3 107 K301K> 
(xi) 10 By Peces2\4 n 
Cap To 3257" 2 Ie as ie (IT@ Ky) /o 
Ceiit) F2°S3 088 02, (=1)?, (—2)3 Dy 
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3.8.1 A quotient of the hexagonal grid 

Let us describe a graph that comes up in the classification. Take a tetrahedron and cut 

off each corner. Our graph & is the 1-skeleton of the resulting polytope, or, equiva- 

lently, the result of replacing each vertex of K4 by a triangle (a Y — A operation). It 

can also be described as the line graph of the graph obtained from K4 by subdividing 

each edge. The bipartite double X ® K2 of X is more beautiful (for example, its group 

is a factor of 6 larger than that of X), and can be described as the quotient A /6A 

of the hexagonal grid A = (a+bq@|a,b € Z, a+b =0,1(mod 3)) in the complex 
plane, where w* + w+ 1 = 0. Now & is found e.g. as A/(3a+6bq@ | a,b € Z). 

3.8.2 Cubic graphs with loops 

For a graph I’ where all vertices have degree 2 or 3, let * be the cubic graph (with 

loops) obtained by adding a loop at each vertex of degree 2. Note that the sum of 

the eigenvalues of I*, the trace of its adjacency matrix, is the enaley of loops. 

The graph Ky 3 has spectrum 3, 1, 1, 0, —2. 

Let T be the graph on the singletons and pairs in a 4-set, where adjacency is 

inclusion. Then 7* has spectrum 3!, 23, 1*, (—1)?, (—2)!. 

3.8.3 The classification 

Let IT be the Petersen graph and 2, T the graphs described above. 

We split the result into two propositions, one for the bipartite case and one for 

the nonbipartite case. 

Proposition 3.8.1 Let I be a connected bipartite cubic graph such that all of its 

eigenvalues are integral. Then I is one of eight possible graphs, namely (i) K3,3, 

(ii) 23, (iii) K3 3 @ Ko, (iv) Ce UK, (v) the Desargues graph (that is, the bipartite 

double II ® K of the Petersen graph I1), (vi) T* (cospectral with the previous), (vii) 

the bipartite double of X, (viii) the point-line incidence graph of the generalized 

quadrangle of order 2 (that is, the unique 3-regular bipartite graph with diameter 4 

and girth 8, also known as Tutte’s 8-cage). 

Proof Let I have spectrum (+3)! (+2)4(+1)?0 (with multiplicities written as 

exponents). 

The total number of vertices is v= 2+ 2a + 2b + 2c. The total number of edges is 

sy= oS Stra? = 9+4a+b (so that 2b+ 3c = 6+a). The total number of quadrangles 

is g=9-—a-—b, as one finds by computing trAt = 15v+ 8q = 2(81 + 16a +b). 

The total number of hexagons is h = 10 + 2b — 2c, found similarly by computing 

trA® = 87v+ 96g + 12h = 2(729 + 64a +b). 
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More in detail, let g, be the number of quadrangles on the vertex u, and guy the 

number of quadrangles on the edge uv, and similarly for h and hexagons. Let uv be 

an edge. Then A, = 1 and (A>) yy, =5+quy and (A>) wy = 29 +2qy + 2qy + 6quy +huy- 
The Hoffman polynomial A(A + 3/) (A? — I) (A? —4J) defines a rank 1 matrix with 

eigenvalue 720, so A(A + 31)(A* —I)(A* — 41) = D0] and in particular v|240 since 

for an edge xy the xy entry of Poy must be divisible by 3. This leaves for (a,b,c, v) 

the possibilities (a) (0,0,2,6), (b) (0,3,0,8), (c) (1,2,1,10), (d) (2,1,2,12), (e) 

(35,341 46); ) (4;5;0, 20); (2) (5,153; 20), (a G53,2,24), ).(970,5;30). 

In case (a) we have K3,3, case (i) of the theorem. 

In case (b) we have the cube 23, case (ii). 

In case (c) we have a graph of which the bipartite complement has spectrum 

27170?(—1)?(—2)* and so is the disjoint union of a 4-cycle and a 6-cycle, case (iii). 
In case (d) we have q = 6 and h = 8. Let uv be an edge, and evaluate A(A + 

31)(A* —1)(A? — 4/) = 60 at the uv position to find (A> — 5A? + 4A), = 20 and 
2qu+2qy + duy +huy = 12. It follows that uv cannot lie in three or more quadrangles. 

Suppose u lies in (at least) three quadrangles. Then for each neighbor x of u we have 

2qx + hyx = 4, so that q, = 2 and h, = 0. The mod 2 sum of two quadrangles on u 

is not a hexagon, and it follows that we have a K23 on points u,w,x,y,z (with u,w 

adjacent to x,y,z). The six quadrangles visible in the K2,3 on u,w,x, y,z contribute 

6+4+2+0 to 2qy +2qx + qux + hux = 12, and it follows that there are no further 

quadrangles or hexagons on these points. So the three further neighbors p,q,r of 

x,y,z are distinct and have no common neighbors, which is impossible since v = 12. 

So, no vertex is in three or more quadrangles, and hence every vertex u is in precisely 

two quadrangles. These two quadrangles have an edge uu’ in common, and we find 

an involution interchanging each u and w’ and preserving the graph. It follows that 

we either have C¢ L) K2 (and this has the desired spectrum; it is case (iv)), or a twisted 

version, but that has only 6 hexagons. 

In case (e) we have v = 16 vertices. For any vertex x, Hoffman’s polynomial 

yields (A°) «. —5(A*)xx +4(A”)x. = 45. On the other hand, (A), is odd for each i, 
since each walk of length 2i from x to x can be paired with the reverse walk, so that 

the parity of (A~‘),, is that of the number of self-reverse walks x...zwz...x which is 

3‘. Contradiction. 
In case (f) we have v = 20, g = 0, h = 20. Since c = 0 we can omit the factor A 

from Hoffman’s polynomial and find (A + 31)(A* — I)(A? — 41) = 12J. If u,w have 
even distance, then (A* — 5A” + 47), = 4. In particular, if d(u,w) = 2 then 9 = 
(aye = 7+ hyy So that hyy = 2: each 2-path uvw lies in two hexagons. If no 3-path 

uvwx lies in two hexagons then the graph is distance-regular with intersection array 
{3,2,2,1,1; 1,1,2,2,3} (cf. Chapter 12) and hence is the Desargues graph. This is 
case (v) of the theorem. Now assume that the 3-path uvwx lies in two hexagons, 
so that there are three paths u ~ v; ~ w; ~ x (i= 1,2,3). The v; and w; need one 
more neighbor, say vj ~ y; and w; ~ z; (i= 1,2,3). The vertices y; are distinct since 
there are no quadrangles, and similarly the z; are distinct. The vertices y; and z j 
are nonadjacent, otherwise there would be a quadrangle (if i = j) or uv jw; would 
be in three hexagons (if i # j). There remain six more vertices: three that are each 
adjacent to two vertices y;, and three that are each adjacent to two vertices z;. Call 
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them s; and t;, where s; ~ y; and t; ~ zj whenever i  j. The final part is a matching 

between the s; and the t;. Now the 2-path v;w;z; is in two hexagons, and these must 

be of the form tjzj;wjviyis, with j 4 i # k, and necessarily j = k, that is, the graph is 

uniquely determined. This is case (vi) of the theorem. 

In case (g) we have v = 20, g = 3, h = 6. For an edge uv we have (A> — 5A? + 

4A) yu, = 12, so that 2qy + 2q) + quy + hw = 4. But that means that the edge uv cannot 

be in a quadrangle, contradiction. 

In case (h) we have v = 24, g = 0, h = 12. For an edge uv we have (A> Sa Aes 

4A)» = 10, so that hy, = 2. It follows that each vertex is in three hexagons, and each 

2-path vuw is in a unique hexagon. Now one straightforwardly constructs the unique 

cubic bipartite graph on 24 vertices without quadrangles and such that each 2-path 

is in a unique hexagon. Starting from a vertex u, call its neighbors v; (i= 1,2,3), let 

wij (i,j = 1,2,3 andi F J) be the six vertices at distance 2, and let x; G=,2,5)pe 

the three vertices opposite u in a hexagon on u, so that the three hexagons on u are 

uviwijXkw jiv; (with distinct i, j,k). Let the third neighbor of w;; be y;;, and let the 

third neighbor of x; be z;. Necessarily z% ~ yxj;. Now each vertex y;; still needs a 

neighbor and there are two more vertices, say 5 ~ y12,23,31 andt ~ y13,y21,)32. 

This is case (vii). 

In case (j) we have v = 30, g = h = 0 and we have Tutte’s 8-cage. This is case 

(viii) of the theorem. LJ 

Proposition 3.8.2 Let I be a connected nonbipartite cubic graph such that all of its 

eigenvalues are integral. Then I is one of five possible graphs, namely (ix) Ka, (x) 

KK», (xi) the Petersen graph, (xii) the graph on 10 vertices defined by i ~ (i+1) 

(mod 10),0~5,1~3,2~ 6,4 ~ 8,7 ~ 9 (or, equivalently, the graph obtained 

from K33 by replacing each of two nonadjacent vertices by a triangle using aY — A 

operation), (xiti) X. 

Proof Consider I @ K>. It is cubic and has integral eigenvalues, and hence is one 

of the eight graphs A found in the previous proposition. There is an involution & 

of A =I’ @K», without fixed edges, that interchanges the two vertices x’ and x” for 

each vertex x of DC. Now I can be retrieved as A/o. 

In cases (i), (iii), (viii) the graph I would be cubic on an odd number of vertices, 

which is impossible. 

In case (ii), oO must interchange antipodes, and the quotient 23/o is the complete 

graph K4. This is case (ix). 

In case (iv), C6 Kz, o must interchange antipodes in the same copy of Co, and 

the quotient is K3)K2. This is case (x). 

In case (v), IT @ K, we get the Petersen graph for a o that interchanges antipodal 

vertices. This is case (xi). The group is Sym(5).2 and has two conjugacy classes of 

suitable involutions o. The second one interchanges x’ with (12).x”, and its quotient 

is obtained from IT by replacing the hexagon 13 ~ 24 ~ 15 ~ 23 ~ 14 ~ 25 ~ 13 

by the two triangles 13, 14, 15 and 23,24, 25. This is case (xii). 

In case (vi) there is no suitable o. (An automorphism o must interchange the two 

vertices u,x found in the previous proof, since this is the only pair of vertices joined 

by three 3-paths. But any shortest ux-path is mapped by o into a different xu-path 
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(since the path has odd length, and o cannot preserve the middle edge) so that the 

number of such paths, which is 3, must be even.) 

In case (vii) we get X. This is case (xiii). (The group of 2 @ Kz has order 144, 

six times the order of the group Sym(4) of 2, and all possible choices of o are 

equivalent.) 

Remarks Integral graphs with a small number of vertices have been classified. The 

number of nonisomorphic connected integral graphs on n vertices, 1 <n < 11 1s 1, 

1, 1, 2, 3, 6, 7, 22, 24, 83, 113, see Sloane EIS sequence #A064731. For integral 

trees, see §5.6 below. 

Most graphs have nonintegral eigenvalues: the integral graphs constitute a frac- 

tion of at most 2~”/4 of all graphs on n vertices ([1]). (Nevertheless, integral graphs 
are very common, there are far too many to classify.) 

Integral graphs (and certain bipartite graphs) occur in quantum information the- 

ory in the description of systems with “perfect state transfer’, cf. [305, 174]. 

All Cayley graphs for the elementary Abelian group 2” are integral. 

3.9 The largest Laplace eigenvalue 

If UW; <... < Mp are the Laplace eigenvalues of a simple graph I, then 0 < n— 

Hn S.-. <n— My are the Laplace eigenvalues of the complement of I" (see §1.3.2). 

Therefore Hf, <n with equality if and only if the complement of I" is disconnected. 

If I” is regular with valency k, we know (by Proposition 3.4.1) that uy, < 2k, with 

equality if and only if I” is bipartite. More generally: 

Proposition 3.9.1 Let I be a graph with adjacency matrix A (with eigenvalues 0; > 
... 2 0,), Laplacian L (with eigenvalues Uy < ... < Un), and signless Laplacian Q 
(with eigenvalues pi >... > Pn). Then 

(i) (ZHANG & LUO [358]) 

Un = P1 . 

If Tis connected, then equality holds if and only if I is bipartite. 
(ii) Let d, be the degree of the vertex x. If [ has at least one edge, then 

Pi < max (d,+d,). 
xX~y . 

Equality holds if and only if T is regular or bipartite semiregular. 
(iii) (YAN [354]) 

26; < pi (1<i<n). 
Proof (i) Apply Theorem 2.2.1 (vi). 

(1i) Using Proposition 3.1.2 to bound the largest eigenvalue of L(I’) by its maxi- 
mum degree max;~y (d, +dy — 2), we find p, = 0;(L(I’)) +2 < maxx~y (d, + dy), 
with equality if and only if L(I) is regular so that I is regular or bipartite semireg- 
ular. 
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(iii) Since Q = L+2A and L is positive semidefinite, this follows from the 

Courant-Weyl inequalities (Theorem 2.8.1 (ii1)). L 

Corollary 3.9.2 ({10]) Let I bea graph on n vertices with at least one edge. Then 

Un aS max (dy +dy). 
x~y 

IfT is connected, then equality holds if and only if I" is bipartite regular or semireg- 

ular. [ 

For bipartite graphs, L and Q have the same spectrum (see Proposition 1.3.10). 

It follows by the Perron-Frobenius theorem that the largest Laplace eigenvalue of a 

connected bipartite graph decreases strictly when an edge is removed. 

Interlacing provides a lower bound for Ly: 

Proposition 3.9.3 ({186]) Let I be a graph on n vertices with at least one edge, 

and let d, be the degree of the vertex x. Then 

Mn = 1 +maxd,. 
x 

If I’ is connected, then equality holds if and only if max,d, =n—1. 

Proof If I has a vertex of degree d, then it has a subgraph Kj¢ (not necessarily 

induced), and U, > d+ 1. If equality holds, then I” does not have a strictly larger 

bipartite subgraph. If I” is, moreover, connected, then d =n—1. 

Deriving bounds on M, has become an industry—there are many papers, cf. [42, 

134,190, 252,253; 260,279,357]. 

3.10 Laplace eigenvalues and degrees 

The Schur inequality (Theorem 2.6.1) immediately yields an inequality between 

the sum of the largest m Laplace eigenvalues and the sum of the largest m vertex 

degrees. GRONE [185] gave a slightly stronger result. 

Proposition 3.10.1 If I" is connected, with Laplace eigenvalues V, > V2 2 ... 2 

Vv, = 0 and vertex degrees d, > dz >... > dy > 0, then for 1 <m<n—1 we have 

Led S Lin1 Vie 

Proof Let x; have degree d;, and put Z = {x),...,Xm}. Let N(Z) be the set of 

vertices outside Z with a neighbor in Z. Instead of assuming that I” is connected, 

we just use that N(Z) is nonempty. If we delete the vertices outside ZUN (Z), then 

Y-czdz does not change, and }7", v; does not increase, so we may assume X= 

ZUN(Z). Let R be the quotient matrix of L for the partition {{z} | z€ Z}U{N(Z)} of 

X, and let Aj >... > Am41 be the eigenvalues of R. The matrix R has row sums 0, so 
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Am+1 = 0. By interlacing (Corollary 2.5.4), we have ©", vi > Di Ai = met Xi = 
trR = Dez 4d, + Rm+iym+1, and the desired result follows since Rm+1jm+1 2 1. ie 

Second proof. We prove the following stronger statement: 

For any graph T (not necessarily connected) and any subset Z of the vertex set X 

of T one has h+¥czdz <>", Vi, where d, denotes the degree of the vertex zinI’, 

and m = |Z|, and h is the number of connected components of the graph Iz induced 

on Z that are not connected components of I. 

We may assume that I” is connected, and that Z and X \ Z are nonempty. Now h 

is the number of connected components of Iz. 

The partition {Z,X \ Z} of X induces a partition L = | 
Bnte@ 

-C' E 
nected, B is nonsingular by Lemma 2.10.1 (iii). All entries of B~' are nonnegative. 

(Write B = n(I —T), where T > 0, then B7' = (7+ T+T* +...) >0.1fh=1, 
then B~! > 0.) 

; y ¥: : : : POl. 
Since L is positive semidefinite, we can write L = MM', where M = | 0 z is 

a square matrix. Now B = PP' and —C = PQ". The eigenvalues of MM' are the 
same as those of M | M, and the latter matrix has submatrix P' P+ o'O of order m. 

By Schur’s inequality, we get ©”, v; > r(P'P+Q'Q) =>,<zd,+trQ'Q, and it 
remains to show that ttQ'Q>h. 

Now Q'Q=P7-'cc'P-', sotrQ'Q =trB~'CC". We have B = Lz + D, where 
Lz is the Laplacian of Iz and D is the diagonal matrix of the row sums of C. Since 

CC! >Dand B™! > 0, we have trQ'Q > trB~'D. If Lzu=0, then (Lz + D)~!Du = 
u. Since Lz has eigenvalue 0 with multiplicity h, the matrix B~'D has eigenvalue 

1 with multiplicity h. Since this matrix is positive semidefinite (since D!/2B~!pD!/2 
is), its trace is at least h. CO 

| Since I" is con- 

A lower bound for the individual v; was conjectured by GUO [191] and proved 

in BROUWER & HAEMERS [60]. 

Proposition 3.10.2 Let I be a graph with Laplace eigenvalues V, > V2 >... > Vp = 

0 and with vertex degrees d| > dz >... > dy. Let 1 <m<n. IfT is not Ky +(n— 

m)K,, then Vm > dm —m-+ 2. O 

We saw the special case m = 1 in Proposition 3.9.3. The cases m = 2 and m = 3 
were proved earlier in [251] and [191]. 

Examples with equality are given by complete graphs K,, with a pending edges 

at each vertex (where a > 0), with Laplace spectrum consisting of 0, ™¢-)) a +1, 

and $(m+a+1+./(m+a-+ 1)? —4m) with multiplicity m—1 each, so that Vn = 
a+l=dy,—m+2. 

Further examples are complete graphs K,, with a pending edges attached at a 
single vertex. Here n = m-+-a, and the Laplace spectrum consists of m+ a, m”~2 
7 CanchOWse that v= Iki 42k 

Any graph contained in Ky, and containing K2,q has vz = a = do, with equality 
form =2. 

Any graph on n vertices with d; = n—1 has equality for m = 1. 

9: 
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More generally, whenever one has an eigenvector u and vertices x, y with ux = uy, 

then uv remains an eigenvector, with the same eigenvalue, if we add or remove an 

edge between x and y. Many of the above examples can be modified by adding 

edges. This leads to many further cases of equality. 

3.11 The Grone-Merris conjecture 

3.11.1 Threshold graphs 

A threshold graph is a graph obtained from the graph Ko by a sequence of operations 

of the form (i) add an isolated vertex, or (ii) take the complement. 

Proposition 3.11.1 Let I be a threshold graph with Laplace eigenvalues (in non- 

increasing order) V; > Vz >... > Vn = 0. Let d, be the degree of the vertex x. Then 

V; —#{x | d,> J}. 

Proof Induction on the number of construction steps of type (1) or (ii). LC 

GRONE & MERRIS [186] conjectured that this is the extreme case, and that for 

all undirected graphs and all ¢ one has 

For t = 1, this is immediate from v, <n. For t =n, equality holds. This conjecture 

was proved in HUA BAI [16], see §3.11.2 below. There is a generalization to higher- 

dimensional simplicial complexes, see §3.12 below. 

A variation on the Grone-Merris conjecture is the following. 

Conjecture (Brouwer) Let I" be a graph with e edges and Laplace eigenvalues 

Vj > V2 >... > Vy = 0. Then for each t we have Service (a: 

It is easy to see (by induction) that this inequality holds for threshold graphs. In 

[202] it is proved for trees, and for t = 2. In [27] it is shown that there is at such 

that the t-th inequality of this conjecture is sharper than the t-th Grone-Merris in- 

equality if and only if the graph is nonsplit. In particular, this conjecture holds for 

split graphs. It also holds for regular graphs. 

3.11.2 Proof of the Grone-Merris conjecture 

Very recently, HUA BAI [16] proved the Grone-Merris conjecture. We repeat the 

statement of the theorem. 
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Theorem 3.11.2 Let I" be an undirected graph with Laplace eigenvalues (in non- 

increasing order) V; > V2 >... > Vn = 0. Let dy be the degree of the vertex x. Then 

for allt,0<t <n, we have 

t t 

Yi < Ye | de >i. (3.1) 
=] i=) 

The proof is by reduction to the case of a split graph, that is a graph where the 

vertex set is the disjoint union of a nonempty subset inducing a clique (complete 

graph), and a nonempty subset inducing a coclique (edgeless graph). Then for split 

graphs a continuity argument proves the crucial inequality stated in the following 

lemma. 

Lemma 3.11.3 Let I" be a split graph with clique of size c and Laplace eigenvalues 

Vi > v2 >... > Vv, = 0. Let 6 be the maximum degree among the vertices in the 

coclique, so that 6 < c. If Ve > ¢ or Ve = > 6, then we have Yf_, vi < YS, #{x | 

Proof of Theorem 3.11.2 (assuming Lemma 3.11.3). Consider counterexamples to 

(3.1) with minimal possible t. 

Step 1 Jf I” is such a counterexample with minimal number of edges, and x,y are 

vertices in I’ of degree at most t, then they are nonadjacent. 

Indeed, if x ~ y then let I’ be the graph obtained from I by removing the edge 

xy. Then ¥i_, #{x | di. > i} +2 = di_, #{x | dy > i}. The Laplace matrices L and 
L' of I and I’ satisfy L = L’+H where H has eigenvalues 2, 0"~!. By Theorem 
2.8.2 we have Yi_, Vi < Yj_, vi +2, and since I’ has fewer edges than I" we find 
Diet Vi S Din Wj +2 < Die H{x | dl > i} +2 = i_, #{x | dy > i}, a contradiction. 
O 

Step 2 There is a split counterexample I for the same t, with clique size c := #{x | 

d, >t}. 

Indeed, we can form a new graph I” from the I of Step 1 by adding edges xy for 
every pair of nonadjacent vertices x, y, both of degree at least t. Now Y!_, #{x | dy > 
i} does not change, and }'_, v; does not decrease, and the new graph is split with 
the stated clique size. CO 

This will be our graph I’ for the rest of the proof. 

Step 3A split graph A of clique size c satisfies Ve4, <¢ < Ve. 

Indeed, since A contains the complete graph K, with Laplace spectrum c°~!, 0, we 
see by the Courant-Wey] inequalities (Theorem 2.8.1 (iii)) that v-_| > c. And since 
A is contained in the complete split graph with clique of size c and coclique of 
size n —c and all edges in-between, with Laplace spectrum n°, c”~°—!, 0, we have 
VeieiG. i 
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Since t was chosen minimal, we have v, > #{x | d, >t} =c. The previous step 

then implies c >t. If c=t, then v. > c and Lemma 3.11.3 gives a contradiction. So 

CE 

All vertices in the coclique of I have degree at most t — | and all vertices in the 

clique have degree at least c— 1. So #{x | d, > i} =c fort <i <c—1. From Step 
3 we have v; : Veni Pee tor 1 << ce 1) Since S44 Vi > Sa Hx | > i}, we 

also have re iVi> a, #{x | d, > i}. Now if v. > c we contradict Lemma 3.11.3 

(since #{x | dy >c} <c). So Ve <c. 

Step 4 The m-th Grone-Merris inequality for a graph T is equivalent to the (n—1— 

m)-th Grone-Merris inequality for its complement T (1<m<n-l). 

Indeed, IT has Laplace eigenvalues V; = n — V,_; (1 <i <n—1) and dual degrees 

#H{x | d, >i} =n—#{x | d, >n—i}, and Yi = DL #{x | de = if. O 

In our case I” is pe with clique size n — c, and by the above we have 

Vn-¢ =N— Ve > n—c and Y7 1 Vi > D7, Hix | d, > i}. This contradicts Lemma 

344.3. 
This contradiction completes the proof of the Grone-Merris conjecture, except 

that Lemma 3.11.3 still has to be proved. 

3.11.2.1 Proof of Lemma 3.11.3 

Let I be a split graph with clique of size c and coclique of size n — c. The partition 

Kee A 
Ae r where 

K is the Laplacian of the complete graph K; and A is the c x (n—c) adjacency matrix 

between vertices in the clique and the coclique, and D and E are diagonal matrices 

with the row and column sums of A. 

Step 5 If Vv. >, then Y<_, #{x | dy > if} =c? +rD. 

of the vertex set induces a partition of the Laplace matrix L = | 

Indeed, all vertices in the clique have degree at least c, for if some vertex x 

in the clique had degree c — 1, then we could move it to the coclique and find 

v. <c—1 from Step 3, contrary to the assumption. It follows that Yf_, #{x | dy > 

i} =>, min(c,dy) =c? +trE = e? ete D! 0 

Step 6 Suppose that the subspace W spanned by the L-eigenvectors belonging to 

I I : 
V},---,Ve is spanned by the columns of ia . Then L x = i Z for some matrix 

Z, and ey Vi a trZ 

Indeed, if E 4 has these eigenvectors as columns, then L | = | T where T 

‘ I I 
is the diagonal matrix with the eigenvalues. Now ie = | a U, so that L | a = 

|Z where Z=UTU™ and teZ = te > 24 Vj: OJ 
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Suppose we are in the situation of the previous step, and that moreover X is 

nonpositive. Let 6 be the maximum degree among the vertices in the coclique, so 

that 6 < c. We have to show that if v. > c or vy =c > 6 then trZ < oc? +trD. 

. = enh bes: ,soZ=K+D-—AX, and trZ = tr(K + D— AX) = 

c(c—1)+trD—tr(AX), and we need tr(AX ) > —c. But since c < n, the eigenvectors 
are orthogonal to 1 so X has column sums —1. Since X is nonpositive, tr(AX) > —c 

follows, and we are done. 

By interlacing, v.41 is at most the largest eigenvalue of E, that is 6, which by 

Now L 

0 is 
hypothesis is smaller than v.. Hence the subpace of vectors ° meets W trivially, 

so that W has a basis of the required form. Only nonpositivity of X remains, and the 

following lemma completes the proof. 

Lemma 3.11.4 Jf v. > 6, then the invariant subspace W spanned by the L-eigen- 

; : re : =: 
vectors for V;, 1 <i<c, is spanned by the columns of | where X is nonpositive. 

x 

Proof We argue by continuity, viewing L = L(A) and X = X(A) as functions of 
the real-valued matrix A, where 0 < A < J. (Now D has the row sums of A, and E 

has the column sums, and 6 is the largest element of the diagonal matrix E.) We 

write J for the c x (n—c) all-1 matrix, and J, for the all-1 matrix of order c, so that 
IX = J. 

Our hypothesis v. > 6 holds for all matrices L() := L(@A + (1—a)J) = @L+ 

(1—a)L, for 0 < a < 1. Indeed, let L( have eigenvalues v\®, so that v0) =n 
(0) _ (0) : and v = c. The matrix L') has lower left-hand corner @E + (1—a)cl ct+l ~ "n-1 

so that 6() = a6 + (1 — a@)c. The c-space W is orthogonal to 1, so that yl) = 

av. + (1 — a)c (by Theorem 2.4.1), and hence yi@) > 6 for 0 < a < 1, and also 

for a = 0, since vy) =nand 6) =c. It follows that vi) > yin forO<a<l. 

As we already used, L(/) has spectrum n°, c"~°~', 0, and one checks that X (J) = 
= J T <0, as desired. Above we found the condition XZ = —A’ + EX on X, that 

is, X(K+D—AX)—EX+A' =0, that is, X(K+Jp+D) =XJp+XAX+EX—Al = 
—X(J—A)X + EX —A'. It follows, since K + J. +D is a positive diagonal matrix, 
that if X < 0 and A > 0, then X < 0. The matrix X(A) depends continuously on 
A (in the region where v.41 < V.-) and is strictly negative when A > 0. Then it is 
nonpositive when A > 0. L) 

=v 

3.12 The Laplacian for hypergraphs 

Let a simplicial complex on a finite set S be a collection @ of subsets of S (called 
simplices) that is an order ideal for inclusion, that is, is such that if A € @ and B CA 
then also B € @. Let the dimension of a simplex A be one less than its cardinality, 
and let the dimension of a simplicial complex be the maximum of the dimensions of 
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its simplices. Given a simplicial complex @, let G; (for i > —1) be the vector space 

(over any field) that has the simplices of dimension i as basis. Order the simplices 

arbitrarily (say, using some order on S) and define 0; : G@ — G_1 by O50...) = 

¥ j(—1)/s0.-.5}...s;. Then 0;_10;= 0 for all i > 0. 

Let N; be the matrix of 0; on the standard basis, and put L; = Nivi Ni, and 

Li = N,'N;. The matrices L; generalize the Laplacian. Indeed, in the case of a 1- 

dimensional simplicial complex (that is, a graph) the ordinary Laplace matrix is just 

Lo, and Lp is the all-1 matrix J. 
Since 0;0;,1 = 0 we have L;L; = L;L; = 0, generalizing LJ = JL = 0. 
We have trL;_; = trLi = (i+ 1)|@;|. This generalizes the facts that trL is twice 

the number of edges, and trJ the number of vertices. 

In case the underlying field is IR, we have the direct sum decomposition @j = 

imNj+1 ®@ ker(Lj + Li) @ imN,". (Because then M' Mx = 0 if and only if Mx = 0.) 

Now kerN; = imNj+1 @ ker(L; + Li) so that the i-th reduced homology group is 

Hy(@) :=kerN;/imNj41 ~ ker(L; +L). 

Example The spectrum of Lm—2 for a simplicial complex containing all m-subsets 

of an n-set (the complete m-uniform hypergraph) consists of the eigenvalue n with 

multiplicity (en and all further eigenvalues are 0. 

Indeed, we may regard simplices so... 5m—1 as elements sg /\...ASm—1 Of an exterior 

algebra. Then the expression s9...5m—1 is defined regardless of the order of the 

factors, and also when factors are repeated. Now Nito...ti = j(-1)/to.. Fj eet; 

and for the complete (i+ 2)-uniform hypergraph we have Neto. tp Sly st, SO 

that L; + Li =n. It follows that Ne NiiNi = Nees and L; has eigenvalues 0 

and n. The multiplicities follow by taking the trace. 

DUVAL & REINER [149] generalized the Grone-Merris conjecture. Given an m- 

uniform hypergraph .#, let d, be the number of edges containing the vertex x. Let 

the spectrum of # be that of the matrix L,—2 for the simplicial complex consisting 

of ali subsets of edges of #. 

Conjecture Let the m-uniform hypergraph H have degrees d, and Laplace eigen- 

values v;, ordered such that Vv; > V2 >... > 0. Then for all t we have 

Equality for allt holds if and only if H is invariant under downshifting. 

The part about “downshifting” means the following: Put a total order on the vertices 

of # in such a way that if x < y then d, > dy. Now KH is said to be invariant under 

downshifting if whenever {x1,...,%m} is an edge of #, and {y1,... Ym} is an m-set 

with y; <x; for all i, then also {y1,...,¥m} is an edge of KH . Vf this holds for one 

total order, then it holds for any total order that is compatible with the degrees. 

For m = 2 this is precisely the Grone-Merris conjecture. (And the graphs that are 

invariant for downshifting are precisely the threshold graphs.) The “if” part of the 

equality case is a theorem: 
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Theorem 3.12.1 (DUVAL & REINER [149]) If # is an m-uniform hypergraph with 

degrees d, and Laplace eigenvalues Vv; with Vj > V2 >... > 0, and # is invariant 

for downshifting, then v; = #{x | dy > j} for all t. 

In particular it follows that hypergraphs invariant for downshifting have integral 

Laplace spectrum. 

For example, the complete m-uniform hypergraph on an underlying set of size n 

has degrees ("_1) so that vj =n for 1 < j < ("_}) and v; =0 for ("_1) <j < (), 
as we already found earlier. 

3.12.1 Dominance order 

The conjecture and the theorem can be formulated more elegantly in terms of dom- 

inance order. Let a = (a;) and b = (b;) be two finite nonincreasing sequences 
of nonnegative real numbers. We say that b dominates a, and write a<ib, when 

Yi a < Lj-, 4; for all t, and Y*_, a; = U2, b;, where missing elements are taken 
to be zero. 

For example, in this notation Schur’s inequality (Theorem 2.6.1) says that d << @ 

if d is the sequence of diagonal elements and 6 the sequence of eigenvalues of a real 

symmetric matrix. 

If a = (aj) is a finite nonincreasing sequence of nonnegative integers, then a 

denotes the sequence (a} ) with aj = #{i| a; > j}. If a is represented by a Ferrers 

+ 

diagram, then a! is represented by the transposed diagram. 

For example, the Duval-Reiner conjecture says that v<d'. 

If a and b are two nonincreasing sequences, then let aU b denote the (multiset) 

union of both sequences, with elements sorted in nonincreasing order. 

Lemma 3.12.2 

(jall=a 
(ii) (aUb)' =a! +b! and (a+b)' =a! ub!, 
(iii) a<lb if and only ifb' <a’. 2 

3.13 Applications of eigenvectors 

Sometimes it is not the eigenvalue but the eigenvector that is needed. We very briefly 
sketch some of the applications. 
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0.15 0.08 

0.42 0.52 0.27 0.08 
0395 

0.42 0.47 0.22 

Fig. 3.1 Graph with Perron-Frobenius eigenvector 

3.13.1 Ranking 

In a network, important people have many connections. One would like to pick out 

the vertices of highest degree and call them the most important. But it is not just the 

number of neighbors. Important people have connections to many other important 

people. If one models this and says that up to some constant of proportionality one’s 

importance is the sum of the importances of one’s neighbors in the graph, then the 

vector giving the importance of each vertex becomes an eigenvector of the graph, 

necessarily the Perron-Frobenius eigenvector (cf. Figure 3.1) if importance cannot 

be negative. The constant of proportionality is then the largest eigenvalue. 

3.13.2 Google PageRank 

Google uses a similar scheme to compute the PageRank [46] of web pages. The 

authors described (in 1998) the algorithm as follows: 

Suppose pages x}, ..., Xm are the pages that link to a page y. Let page x; have d; outgoing 

links. Then the PageRank of y is given by 

PR(y)=1 ea 

The PageRanks form a probability distribution: ¥,, PR(x) = 1. The vector of PageRanks can 

be calculated using a simple iterative algorithm, and corresponds to the principal eigenvec- 

tor of the normalized link matrix of the web. A PageRank for 26 million web pages can be 

computed in a few hours on a medium size workstation. A suitable value for 0 is & = 0.85. 

In other words, let I be the directed graph on n vertices consisting of all web 

pages found, with an arrow from x to y when page x contains a hyperlink to page 

y. Let A be the adjacency matrix of I (with Ayy = 1 if there is a link from x to y). 

Let D be the diagonal matrix of outdegrees, so that the scaled matrix S = DA 

has row sums 1, and construct the positive linear combination M = ay + aS with 

0 < a <1. Since M > 0, the matrix M has a unique positive left eigenvector u, 
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normed so that ¥u, = 1. Now M1 = 1 and hence uM = u. The PageRank of the web 

page x is the value u,. 

A small detail is the question of what to do when page x does not have outgoing 

edges, so that row x in A is zero. One possibility is to do nothing (and take D,, = 1). 

Then u will have eigenvalue less than 1. 

The vector u is found by starting with an approximation (or just any positive vec- 

tor) ug and then computing the limit of the sequence u; = uoM'. That is easy: the 

matrix M is enormous, but A is sparse: on average a web page does not have more 

than a dozen links. The constant @ regulates the speed of convergence: convergence 

is determined by the 2nd largest eigenvalue, which is bounded by & ([{212]). It is 

reported that 50 to 100 iterations suffice. A nonzero @ guarantees that the matrix is 

irreducible. An @ much less than | guarantees quick convergence. But an &@ close 

to 1 is better at preserving the information in A. Intuitively, wu, represents the ex- 

pectation of finding oneself at page x after many steps, where each step consists of 

either (with probability a) clicking on a random link on the current page, or (with 

probability 1 — a) picking a random internet page. Note that the precise value of u, 

is unimportant—only the ordering among the values uw, is used. 

There are many papers (and even books) discussing Google’s PageRank. See e.g. 

[72], [28]. 

3.13.3 Cutting 

Often the cheapest way to cut a connected graph into two pieces is by partitioning 

it into a single vertex (of minimal valency) and the rest. But in the area of clustering 

(see also below) one typically wants relatively large pieces. Here the second Laplace 

eigenvector helps. Without going into any detail, let us try the same example as 

above in Figure 3.2 below. 

—0.41 0.52 

=0:27, 2020 0.25 0.52 
Ae a lp =0.51 

-0.27 0.20 0.04 
Fig. 3.2. Graph with 2nd Laplace eigenvector 

We see that cutting the edges where the second Laplace eigenvector changes sign 
is fairly successful in this case. See also §3.13.5 below. 
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3.13.4 Graph drawing 

Often, a reasonable way to draw a connected graph is to take Laplace eigenvectors 

u and v for the 2nd and 3rd smallest Laplace eigenvalues, and draw the vertex x at 

the point with coordinates (u,,v,). See, e.g., [246]. 

One can justify this as follows. Let the energy of an embedding p : IT > R” 

be the sum of the squared edge lengths >, ||p(x) — p(y)||? where the sum is over 
all edges e = xy. Let R be the m x n matrix of which the columns are the vertex 

images p(x). Then the energy of p equals RLR'. For graph drawing one would 

like to minimize the energy, given some normalization so that not all vertices are 

mapped close to the origin or close to some lower-dimensional subspace of R”. 

PISANSKI & SHAWE-TAYLOR [295] propose to require R1 = 0 and IRR OLST S80 

that the origin is the center of mass, and ||R! v||? = ||v||? for all vectors v € R™: no 
vector is almost perpendicular to the entire drawing. In this situation the minimum 

energy 1s » Hh L;, and this minimum is achieved when the row space of R contains 

the Laplace eigenvectors of My,..., Mm+1- The authors also discuss variations of this 

setup. 

3.13.5 Clustering 

Given a large data set, one often wants to cluster it. If the data is given as a set of 

vectors in some Euclidean space R”, then a popular clustering algorithm is k-means: 

Given a set X of N vectors in R” and a number k, find a partition of X into 

k subsets X,,...,X, such that Yk, dXxex,; || — ci\|? is as small as possible, where 

ci = (1/|Xi|) Sxex, x is the centroid of Xi. 

The usual algorithm uses an iterative approach. First choose the k vectors c; in 

some way, arbitrary or not. Then take X; to be the subset of X consisting of the vec- 

tors closer to c; than to the other c; (breaking ties arbitrarily). Then compute new 

vectors c; as the centroids of the sets X;, and repeat. In common practical situations 

this algorithm converges quickly, but one can construct examples where this takes 

exponential time. The final partition found need not be optimal, but since the al- 

gorithm is fast, it can be repeated a number of times with different starting points 

Cj. 

Now if the data is given as a graph, one can compute eigenvectors u),...,Um for 

the m smallest eigenvalues [),...,[m of the Laplace matrix L, and assign to the 

vertex x the vector (u;(x)); and apply a vector space clustering algorithm such as 

k-means to the resulting vectors. 

This is reasonable. For example, if the graph is disconnected with c connected 

components, then the first c eigenvalues of L are zero, and the first c eigenvectors are 

(linear combinations of) the characteristic functions of the connected components. 

This approach also works when one has more detailed information—not adja- 

cent/nonadjacent but a (nonnegative) similarity or closeness measure. (One uses 
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an edge-weighted graph, with Ay = w(x, y) and dy = Y,w(x,y) and D the diago- 
nal matrix with D,, = d,, and L = D—A. Again L is positive semidefinite, with 

u! Lu = w(x, y)(u(x) — u(y))*. The multiplicity of the eigenvalue 0 is the num- 
ber of connected components of the underlying graph where points x, y are adjacent 

when w(x, y) > 0.) 
Especially important is the special case where one searches for the cheapest cut 

of the graph into two relatively large pieces. If the graph is connected, then map the 

vertices into R! using x +4 u(x), where u is the eigenvector for the second smallest 

eigenvalue of L, and then use 2-means to cluster the resulting points. Compare 81.7 

on the algebraic connectivity of a graph. 

Several matrices related to the Laplacian have been used in this context. It seems 

useful to normalize the matrix, and to retain the property that if the graph is dis- 

connected the characteristic functions of components are eigenvectors. Suitable 

matrices are for example D~'L = J— D~'A and the symmetric version Lporm = 
D7/2,p-1/2 = 1 — D~'/2AD~'/2 known as the normalized Laplacian. 

There is a large body of literature on clustering in general and spectral clustering 

in particular. A few references are [189, 266, 324, 330, 351]. 

3.13.6 Graph isomorphism 

No polynomial algorithm for graph isomorphism is known. But for graphs of 

bounded eigenvalue multiplicity, graph isomorphism can be decided in polynomial 

time (BABAI, GRIGORYEV & MOUNT [14]). 

The graph isomorphism problem (on graphs with n vertices) can be reduced to 

the problem of finding the size of the automorphism group of a graph (on at most 2n 

vertices) (MATHON [273]). Suppose graphs I’, A given. If they are not connected, 

replace them by their complements. Now in order to determine whether [ & A, it 

suffices to compute |Aut(I”)|, |Aut(A)|, |Aut(I7 + A)]. The graphs are isomorphic 
when the third number is larger than the product of the former two. 

Let I be a graph with vertex set X of size n. We want to find |Aut(I”)| in polyno- 
mial time. One cannot test all n! permutations of X, so one needs enough structure 

on I to restrict the number of potential automorphisms. 

Let V be the real vector space with basis X and natural inner product. Let G 
be a group of automorphisms of I’. Then the elements of G can be regarded as 
orthogonal linear transformations of V, permuting its basis, and the eigenspaces of 
I are G-invariant. Let Y be a G-invariant subset of X, and let § be a G-invariant 
subspace of V. Let projs : V + S be the orthogonal projection of V onto S. This 
commutes with the action of G, and it follows that the partition of Y into fibers 

Y; = {y €¥ | projs(y) = s} (with s € S) forms a system of imprimitivity for G. 
If S has dimension m, then a maximal independent subset B of proj s(Y) has 

size at most m. Since the induced action G of G on the fibers is determined by the 
images of the elements in B, we have |G| <n", and the potential elements of G can 
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be enumerated in polynomial time. The elements that permute proj,;(Y) will form 

an explicitly known overgroup G of G. 

This basic step can be used recursively, or used for the sum S of a number of 

eigenspaces. For details, see [14]. 

FURER [165, 166] shows that there are combinatorial ways to distinguish pairs 

of vertices in a graph that are at least as strong as the known approaches using spec- 

trum and eigenspaces. His approach moreover has the advantage that high precision 

numerical mathematics (to distinguish different eigenvalues) is avoided. 

3.13.7 Searching an eigenspace 

There exists a unique strongly regular graph! with parameters (v,k, A, 1) = (162,56, 

10,24) found as the second subconstituent of the McLaughlin graph. Its vertex set 

can be split into two halves such that each half induces a strongly regular graph with 

parameters (v,k,A,u) = (81,20, 1,6) (cf. §9.7). How many such splits are there? 

Can we find them all? 
In this and many similar situations one can search an eigenspace. The first graph 

has spectrum 56! 2'4° (—16)*! and a split gives an eigenvector with eigenvalue —16 
if we take the vector that is 1 on the subgraph and —1 on the rest. 

It is easy to construct an explicit basis (u;) for the 21-dimensional eigenspace, 

where the j-th coordinate of u; is 6;;. Construct the 2?! eigenvectors that are +1 

on the first 21 coordinates and inspect the remaining coordinates. If all are +1, one 

has found a split into two regular graphs of valency 20. In this particular case there 

are 224 such subgraphs, 112 splits, and all subgraphs occurring are strongly regular 

with the abovementioned parameters. 

3.14 Stars and star complements 

Consider a graph I’ with vertex set X. By interlacing, the multiplicity of any given 

eigenvalue changes by at most | if we remove a vertex. But there is always a vertex 

such that removing it actually decreases the multiplicity. And that means that if @ is 

an eigenvalue of multiplicity m we can find a star subset for @, that is, a subset S of 

X of size m such that I \ S does not have eigenvalue 6. Now X \S is called a star 

complement. 

Why precisely can we decrease the multiplicity? Let u be a @-eigenvector of A, 

so that (@/ — A)u = 0, and let x be a vertex with uv, # 0. Then removing x from iy 

decreases the multiplicity of @. 

| For strongly regular graphs, see Chapter 9. No properties are used except that the substructure of 

interest corresponds to an eigenvector of recognizable shape. 
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Indeed, removing x is equivalent to the two actions: (i) forcing u, = 0 for eigen- 

vectors u, and (ii) omitting the condition }.,uy = Oux (row x of the matrix equa- 

tion (07 —A)u = 0) for eigenvectors u. Since A is symmetric, the column depen- 

dency (07 — A)u = 0 given by u is also a row dependency, and row x is dependent 

on the remaining rows, so that (ii) doesn’t make a difference. But (i) does, as the 

vector u shows. So the multiplicity goes down. 

This argument shows that the star sets for 9 are precisely the sets S of size m 

such that no @-eigenvector vanishes on all of S. Also, that any subgraph without 

eigenvalue @ is contained in a star complement. 

Proposition 3.14.1 ({150, 117]) Let T° be a graph with eigenvalue 0 of multiplicity 

m. Let S be a subset of the vertex set X of I, and let the partition {S,X \ S} of X 
Ba, 

CD 

if |S| =m and D does not have eigenvalue @), then B— @I =C(D—@1)~'C'. 

induce a partition A = | of the adjacency matrix A. If S is a star set for @ (i.e., 

Proof The row space of A — @/ has rank n — m. If S is a star set, then this row 

space is spanned by the rows of [C' D— @/]. Alternatively, apply Corollary 2.7.2 to 
A- 9. O 

This proposition says that the edges inside a star set are determined by the rest of 

the graph (and the value @). Especially when m is large, this may be useful. 

Stars and star complements have been used to study exceptional graphs with 

smallest eigenvalue not less than —2, see, e.g., [116, 118, 119]. (One starts with the 

observation that if @ is the smallest eigenvalue of a graph, then a star complement 

has smallest eigenvalue larger than @. But all graphs with smallest eigenvalue larger 

than —2 are explicitly known.) Several graphs and classes of graphs have been char- 

acterized by graph complement. See, e.g., [234, 118]. 

A star partition is a partition of X into star sets Sg for 8, where @ runs through 
the eigenvalues of I”. It was shown in [117] that every graph has a star partition. 

3.15 Exercises 

Exercise 3.1 Let I” be an undirected graph with smallest eigenvalue —1. Show that 
I” is the disjoint union of complete graphs. 

Exercise 3.2 Consider a graph with largest eigenvalue 6; and maximum valency 
kmax- Use interlacing to show that 0; > W/kmax. When does equality hold? 

Exercise 3.3 Let I be a k-regular graph with n vertices and eigenvalues k = 0, > 
--. 2 @,. Let I be an induced subgraph of I with n’ vertices and average degree k’. 

(i) Prove that @ > a =k >On. 

(i1) What can be said in case of equality (on either side)? 
(iii) Deduce Hoffman’s bound (Theorem 3.5.2) from the above inequality. 
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Exercise 3.4 Deduce Proposition 3.6.3(iii) (the part that says (m— 1)O,41; + 

9;,-1(m—1) 2 9) from Theorem 3.5.4. 

Exercise 3.5 ([{151]) Let the Ramsey number R(k;,k2) be the smallest integer r 

such that for each coloring of the edges K, with two colors c;,c2 there is a subgraph 

of size k; of which all edges have the same color c; for i = 1 or i = 2. Show that 

a(T BA) <R(a(T)+1,a(A)+1)—1. 

Exercise 3.6 Show that the Lovdsz parameter (I) is the minimum possible value 

of s such that there exists a Euclidean representation of I" that assigns a unit vector 

in R” to each vertex, where the images of any two nonadjacent vertices have inner 

product —1/(s—1). 

Exercise 3.7 Let an orthonormal labeling of a graph I be the assignment of a unit 

vector u, (in some R”) to each vertex x, where the u} uy = 0 whenever x % y. Show 

that (I) = min, max,( c" ux) ~2 where the minimum is over all unit vectors c, and 

the maximum over all vertices x. 

(Hint: Consider the matrix M with M,, = 1 and M,, = 1— oe. 4 

Exercise 3.8 Show that #(I") < d(I) < x(I), where d(I-) is the smallest d such 

that I has an orthonormal labeling in R¢. (Hint: Consider the new orthonormal 

labeling in RL given by the vectors u; @ u,, and take c = d-1/2 Ye; @ e.) 

Exercise 3.9 (cf. [2, 152]) Let # denote the class of real symmetric matrices M 

indexed by VI’ such that M,, =Oifu # v,andM,y AO0ifu~v (nothing is required 

for the diagonal of M). The parameter 

mr(I’) = jmin rkM. 
CK 

is called the minimum rank of I’. Show that 

(i) mr(K,) = 1 and that mr(I) <n—1 with equality if I” is the path F,. 

(ii) mr(A) < mr(T) if A is an induced subgraph of I. 

(iii) mr(L(K,)) =n—2. 

(iv) mr(L()) <n—2 for every line graph L(I’) of a graph I” of order n, with 

equality if I has a Hamilton path. 

Exercise 3.10 ({192, 274]) The energy E(I’) of a graph I’, as defined by Gutman, 

is ,,|9;|, the sum of the absolute values of the eigenvalues of the adjacency matrix 

A. Show that if I has n vertices and m edges, then 

4/2m +n(n—1)|detAl?/" < E(I) < v2mn. 

(Hint: Use the arithmetic-geometric mean inequality and Cauchy-Schwarz.) 

Exercise 3.11 ({245]) (i) Let I” be a graph on n vertices with m edges, so that its 

average valency is k = 2m/n. If k > 1 then 
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E(P) <k+k(n—B(n—1) 

with equality if and only if I" is mK2, or K, or a strongly regular graph with param- 

eters (n,k,A,u), where A = wu = k(k—1)/(n—1). 
(Hint: Use Cauchy-Schwarz.) 

(ii) Let I" be a graph on n vertices. Then 

E(P) < 5n(1 + vf) 

with equality if and only if I is a strongly regular graph with parameters (n,k,A, 1), 

where k = (n+/n)/2 and A = uw = (n+ 2,/n)/4. There are infinitely many exam- 
ples with equality. 

Exercise 3.12 Prove the conjecture from §3.11.1 for regular graphs. 

(Hint: Use Cauchy-Schwarz.) 

Exercise 3.13 Suppose the vertex set of a graph I’ is partitioned into m classes of 

equal size = n/m. Let 0 = fy < Up <--- < My be the Laplace eigenvalues of I, 

and let e denote the total number of edges with endpoints in different classes of the 

partition. Prove that 

ap ants S260 py Li, 
2 i=n—m+2 

and in particular 

£(m— 1) < 2e < &(m— 1) Uy. 

What can be said in case of equality on either side of both formulas? 



Chapter 4 

The Second-Largest Eigenvalue 

There is a tremendous amount of literature about the second-largest eigenvalue of a 

regular graph. If the gap between the largest and second-largest eigenvalues is large, 

then the graph has good connectivity, expansion and randomness properties. (About 

connectivity, see also §1.7.) 

4.1 Bounds for the second-largest eigenvalue 

In this connection it is of interest how large this gap can become. Theorems by 

Alon-Boppana and Serre say that for k-regular graphs on n points, where k is fixed 

and n tends to infinity, @. cannot be much smaller than 2V/k — 1, and that in fact a 

positive fraction of all eigenvalues is not much smaller. 

Proposition 4.1.1 (Alon-Boppana, see ALON [4]) [fk > 3 then for k-regular graphs 

on n vertices one has 

log(k — 1) 
Gre Vet Ol ae )). 

Proposition 4.1.2 (SERRE [322]) Fix k > 1. For each € > 0, there exists a positive 

constant c = c(€,k) such that for any k-regular graph T’ on n vertices, the number 

of eigenvalues of T larger than (2 — €)V/k — 1 is at least cn. 

Quenell gives (weaker) explicit bounds: 

Proposition 4.1.3 ([298]) Let I” be a finite graph with diameter d and minimal 

degree k > 3. Then for2<m<1+d/4, the m-th eigenvalue of the adjacency matrix 

A of I satisfies Qm > 2Wk — 1cos(=47), where r= |d/(2m—2)|. 

ALON [4] conjectured, and FRIEDMAN [163] proved that large random k-regular 

graphs have second-largest eigenvalue smaller than 2Vk—1+€ (for fixed k, € > 

0 and n sufficiently large). Friedman remarks that numerical experiments seem to 

indicate that random k-regular graphs in fact satisfy 0. << 2Vk—1. 

67 
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A connected k-regular graph is called a Ramanujan graph when |0| < 2V/k—1 

for all eigenvalues 8 4 k. (This notion was introduced in [265].) It is not diffi- 

cult to find such graphs. For example, complete graphs, or Paley graphs, will do. 

Highly nontrivial was the construction of infinite sequences of Ramanujan graphs 

with given, constant, valency k and size n tending to infinity. LUBOTZKY, PHILLIPS 

& SARNAK [265] and MARGULIS [271] constructed for each prime p = 1 (mod 4) 

an infinite series of Ramanujan graphs with valency k= p+ 1. 

In the general case where n is not assumed to be large, a trivial estimate using 

trA* = kn shows that A? > k(n —k)/(n—1) where A = max <<, |0;|. This holds 
with equality for complete graphs, and is close to the truth for Paley graphs (which 

have k © 5n, A = 5y/n). 

4.2 Large regular subgraphs are connected 

We note the following trivial but useful result. 

Proposition 4.2.1 Let I’ be a graph with second-largest eigenvalue 0. Let A be 

a nonempty regular induced subgraph with largest eigenvalue p > 0). Then A is 

connected. 

Proof The multiplicity of the eigenvalue p of A is the number of connected com- 

ponents of A, and by interlacing this is 1. LJ 

4.3 Randomness 

Let I” be a regular graph of valency k on n vertices, and assume that (for some real 
constant 1) we have |@| < A for all eigenvalues @ # k. The ratio A/k determines 
randomness and expansion properties of I”: the smaller 7/k, the more random, and 
the better expander I is. 

For example, the following proposition says that most points have approximately 
the expected number of neighbors in a given subset of the vertex set. Here I” (x) 
denotes the set of neighbors of the vertex x in the graph I. 

Proposition 4.3.1 Let R be a subset of size r of the vertex set X of !. Then 

k = 
Yr~nr|- “2 < May 
xEX a “: 

Proof Apply interlacing to A* and the partition {R,X \ R} of X. The sum of all 
entries of the matrix A” in the (R,R)-block equals the number of paths y~ x ~ z, 
with y,z € R and x € X, that is, ,(\'(x) NR). oO 
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Rather similarly, the following proposition, a version of the expander mixing 

lemma from ALON & CHUNG [7], says that there are about the expected number of 

edges between two subsets. 

Proposition 4.3.2 Let S and T be two subsets of the vertex set of I’, of sizes s and 

t, respectively. Let e(S,T) be the number of ordered edges xy with x € S and y € T. 

Then 

k 
le(S,7)— —|'< Ay /se(1—=)(1—-) < AV. 

nh n n 

Proof Write the characteristic vectors ys and yr of the sets S and 7 as a linear 

combination of a set of orthonormal eigenvectors of A: ¥5 = Yau; and yr = Y Biui, 

where Au; = 9ju;. Then e(S,T) = 73 AXr = ¥ 04B;0;. We have a = s/,/n and B, = 

t/./nand 0, = k. Now |e(S,T) — | =|Zis1 o%BiOi| < A Lis: oil and Dis 07 < 
(xs,%s) —52/n = s(n—s)/n, and 5; B? < t(n—t)/n, so that |e(S,T) — Ast | = 

Ay/st(n—s)(n—t)/n. O 

If S and T are equal or complementary, this says that 

eset) yaya shh 
n 

In particular, the average valency ks of an induced subgraph S of size s satisfies 

lks — As | <1. For example, the Hoffman-Singleton graph has 02 = 2, @, = —3, 

so A =3 and we find equality for subgraphs Kis (s = 15, ks = 0), 10K (s = 20, 

ks =.1) and 5C5 (9 = 25, ks = 2). 

4.4 Random walks 

Let I be a connected graph, possibly with loops, with n vertices and m edges, where 

m > 0. Let A be its adjacency matrix, and D the diagonal matrix of vertex degrees 

(so that Dy = d, is the degree of the vertex x and Al = D1). A random walk on I" 

is a sequence of vertices xo,...,X%+-1,%1,--. Starting at some vertex xo, where at the 

t-th step the vertex x; is chosen at random among the neighbors of x;—1. 

Given an initial probability distribution p = (p,) over the vertices, we have after 

t steps a distribution (AD~')'p for the ‘current vertex’. It follows that the distribu- 

tion 5,D1 = (d,/2m)x is stationary. Conversely, a stationary distribution p satisfies 

AD~'!p = p, hence LD~! p = 0, and since I is connected, p is uniquely determined. 

We see that if v is any vertex, the expected time 7, for a random walk starting at v 

to return to v is given by 7, = 2m/d,, and if vw is any edge, the expected time T 

between two traversals of this edge in the same direction is given by T = d,T, = 2m. 

Now suppose that I is regular of degree k. If A <k, that is, if I” is not bipartite, 

then an arbitrary initial distribution p converges to the stationary distribution. In- 

deed, ||(£A)'p— 14)? < (A /k)*" (as one sees in the usual way: writing p = 1 Qui, 
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where Au; = 0;u;). This shows that the mixing rate is determined by A/k. Similar 

things hold for nonregular I. 

(Thus, if A/k is small, then any initial distribution p converges quickly to the 

stationary distribution. It follows that I has good connectivity and expansion prop- 

erties.) 

Fix a vertex v, and let g, be the expected number of steps for a random walk 

starting at x to reach v (the access time of v from x), where g, = 0. For x # v we 

have qx = 1+ Yyax zy so that (I D~'A)q = 1—T,e,, and q is determined by 

Lq = D1 —2me, and q, = 0. This leads to explicit formulas for the access time. 

This is a large subject. See Lovasz [262] for a survey. 

4.5 Expansion 

An expander is a (preferably sparse) graph with the property that the number of 

points at distance at most | from any given (not too large) set is at least a fixed 

constant (larger than 1) times the size of the given set. Expanders became famous 

because of their role in sorting networks (cf. AJTAI, KOMLOS & SZEMEREDI [3]) 

and have since found many other applications. Proposition 4.3.1 already implies that 

there cannot be too many vertices without neighbors in a given subset of the vertex 

set. A better bound was given by Tanner in order to show that generalized polygons 

are good expanders. 

Proposition 4.5.1 (cf. TANNER [334]) Let I" be connected and regular of degree k, 

and let |@| < A for all eigenvalues 0 # k of I. Let R be a set of r vertices of T and 

let I'(R) be the set of vertices adjacent to some point of R. Then 

where p =r/n. 

Proof Let x be the characteristic vector of R. Write it as a linear combination 

of a set of orthonormal eigenvectors of A: y = Y.aju; where Au; = 0;u;. Then 

AX = L;6ju; and (Ax,AX) = L077, so that ||Ayx||? < a (03 A?) +2? Ya? = 
(x,uo)?(k? —A?)+A2(x,x) = ual —A*)+rA*. Now let y be the characteristic 

vector of I(R). Then 77? = (Ay, 1)? = (Ax, Ww)? < lIAxIZIlyll? < IP(R)| (2 (2 - 
A*) +rA7), proving our claim. oO 

The above used two-sided bounds on the eigenvalues different from the valency. 
It suffices to bound @). Let the edge expansion constant h(T-) (a.k.a. isoperimetric 
constant or Cheeger number) of a graph I’ be the minimum of e(S,7)/|S| where 
the minimum is taken over all partitions {S,7} of the vertex set with |S| < |7|, and 
where e(S,7) is the number of edges meeting both S and T. We have 

Proposition 4.5.2 ([280]) Let I be regular of degree k, not K, withn <3. Then 
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+(e 0) < A(T) < 1/2 - 83. 

Proof For the lower bound, apply interlacing to A and a partition {S,7} of the 

vertex set, with s = |S| and ¢ = |T|. Put e = e(S,T). One finds ne/st > k — @, so 
that e/s > (t/n)(k— @) > 5(k — 05). For the upper bound, consider a nonnegative 

vector w indexed by the point set X of I”, with support of size at most in. If w, takes 

t different nonzero values a, > ... > a; > 0, then let §; = {x |] wy > ai} A <i <1), 

and let m; = |S; \ S;-1| (with So = 0). Let h = h(I-). Now 

h> wx = » |wx — Wy]. 
x x~y 

Indeed, all S; have size at most $n, so at least h|S;| edges stick out of S;, and these 

contribute at least h(m; +-+-+mj)(aj—aj+1) tO Levy |W — Wy| (with a,+1 = 0). The 

total contribution is at least h>{; mjaj = hd, wx. 

Let u be an eigenvector of A with Au = @):u. We may assume that uv, > 0 for at 

most 5n points x (otherwise replace u by —w). Define a vector v by vy = max(ux, 0). 

Since (Av)y = DywxVy > Lynx ly = (Au)x = Quy = Ox if vy > 0, we have vi Av= 

Dx Vx (Av) x 22. Ord; es 

Note that Y,.y(Vx = vy = hve wv: 

Apply the above to the nonnegative vector w given by w, = vz. We find hv; < 

Dae v2 = ve | < Ce Me i vy)*. Lewy (Vx i vy)?) hie (RD vz)? ai (v'Av)?)1/4 < 

(X.v2)4/k? — 03, assuming @ > 0. O 

For similar results for not necessarily regular graphs, see 84.8. 

4.6 Toughness and Hamiltonicity 

As application of the above ideas, one can give bounds for the toughness of a graph 

in terms of the eigenvalues. 

A connected, noncomplete graph I’ is called t-tough if one has |S| > tc for every 

disconnecting set of vertices S such that the graph induced on its complement has 

c > 2 connected components. The toughness t(I”) of a graph I” is the largest t such 

that I is t-tough. For example, the Petersen graph has toughness 4 3: 

This concept was introduced by CHVATAL [94], who hoped that t-tough graphs 

would be Hamiltonian (i.e., have a circuit passing through all vertices) for suffi- 

ciently large t. People tried to prove this for t = 2, the famous “2-tough conjecture”, 

but examples were given in [23] of t-tough non-Hamiltonian graphs for all t < 9/4. 

Whether a larger bound on 7 suffices is still open. 

Still, being tough seems to help. In [22] it was shown that a ¢-tough graph I~ on 

n > 3 vertices with minimum degree 6 is Hamiltonian when (t + 1)(6 + 1) >n. 
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Proposition 4.6.1 ({[50]) Let I be a connected noncomplete regular graph of va- 

lency k and let \@| < A for all eigenvalues 0 # k. Then t() > k/A —2. 

This proposition gives the right bound, in the sense that there are infinitely many 

graphs with t(I”) <k/A. The constant 2 can be improved a little. The result can be 
refined by separating out the smallest and the second-largest eigenvalue. The main 

tool in the proof is Proposition 4.3.1. 

See also the remarks following Theorem 9.3.2. 

KRIVELEVICH & SUDAKOV [247] show that, when n is large enough, a graph on 

n vertices, regular of degree k = @,, and with second-largest eigenvalue @) satisfying 

0, (loglogn)? 

6 1000lognlogloglogn 

is Hamiltonian. PYBER [297] shows that it follows that every sufficiently large 

strongly regular graph is Hamiltonian. 

4.6.1 The Petersen graph is not Hamiltonian 

An amusing application of interlacing (cf. [281, 214]) shows that the Petersen graph 

is not Hamiltonian. Indeed, a Hamilton circuit in the Petersen graph would give an 

induced Cjo in its line graph. Now the line graph of the Petersen graph has spectrum 

4! 2° (—1)* (—2)° and by interlacing the seventh eigenvalue 2 cos 34 = (1— /5)/2 
of Cig should be at most —1, a contradiction. 

4.7 Diameter bound 

CHUNG [92] gave the following diameter bound. 

Proposition 4.7.1 Let I” be a connected noncomplete graph on n > 2 vertices, reg- 
ular of valency k, and with diameter d. Let |@| < A for all eigenvalues @ £ k. Then 

ve log(n — 1) 

~ | log(k/A) 

Proof The graph I” has diameter at most m when A” > 0. Let A have or- 
thonormal eigenvectors u; with Au; = 0;u;. Then A = Xi Ou; uj. Take u; = 1. 

m vn 

Now (A™) xy = Yi 87" (u,) ui) xy 2 =A si |(ui).x1-|(ui)y| and Ys |(ui)x|-|(ui)y| < 

(Dist [(wa)xl?)!/? (Disa ay?) /? = (1 = |(ur)x|?)'/2(0 — | (cer) y|2)/2 = 1 — *, 80 
that ( ™) ry >Oifk"™ > (n—-1)A™. la} 
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4.8 Separation 

Let I” be a graph with Laplace matrix L and Laplace eigenvalues 0 = Wy <... < Mn. 

The Laplace matrix of a subgraph I’ of I is not a submatrix of L, unless I’ is a com- 

ponent. So the interlacing techniques of §2.5 do not work in such a straightforward 

manner here. But we can obtain results if we consider off-diagonal submatrices of 

Es 

Proposition 4.8.1 Let X and Y be disjoint sets of vertices of I’ such that there is no 

edge between X and Y. Then 

» 
|X ||¥| 2 (ee) . 

(n—|X|)(n—|¥|) ~ \ Ha + be 

Proof Put u = 5 (Mn + M2) and define a matrix A of order 2n by 

a O08 = L— py 
At boils 0 | 

Let A have eigenvalues 0; >... > @2,. Then 02,41-; = —9; (1 <i < 2n) and 6; = 

and @) = 5 (Un — [l2). The sets X and Y give rise to a partitioning of A (with rows 

and columns indexed by Y, Y, X, X) with quotient matrix 

0 0 —u 0 
X x 

Be ee ° , - + Bo “Ha 
—pth ut 0 0 

0 —U 0 0 

Let B have eigenvalues 7; >... > M4. Then mj = 0; = ws and 14 = 02, = —y, and 

mnonsN4 = detB = 4 —oen > 0. Using interlacing, we find 

EAT cg 
* G@—KD)@-) 

which gives the required inequality. 

= —mM3 < —020on—-1 = (5 (Mn — ba)”, 

One can rewrite Tanner’s inequality (applied with R = X, (R) =VI\Y) in 

the form |X||Y|/(n — |X|)(n—|Y|) < (A/k)? where A = max(@),—O,), and this is 

slightly weaker than the above, equivalent only when 6, = —4. 

The vertex sets X and Y with the above property are sometimes called discon- 

nected vertex sets. In the complementary graph, X and Y become sets such that all 

edges between X and ¥ are present. Such a pair is called a biclique. 

For applications another form is sometimes handy: 

Corollary 4.8.2 Let I be a connected graph on n vertices, and let X and Y be 

disjoint sets of vertices such that there is no edge between X and Y. Then 
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XLS (Hn = be)” 
n(n—|X|—|¥|) ~ 4H 

Proof Let K be the constant for which Proposition 4.8.1 says |X||Y¥| < K(n— 

IX|)(2—|¥|). Then [X||¥|(1—K) <n(n— |X| —|¥])K. C 
The above proposition gives bounds on vertex connectivity. For edge connectivity 

one has 

Proposition 4.8.3 (ALON & MILMAN [8]) Let A and B be subsets of VI" such that 

each point of A has distance at least p to each point of B. Let F be the set of edges 

that do not have both ends in A or both in B. Then 

|A||B| 
F\> 2b s 

For p = | this yields: 

Corollary 4.8.4 Let I be a graph on n vertices, A a subset of VI, and F the set of 

edges with one end in A and one end outside A. Then 

A iF > wala — 4). 
Let x be the characteristic vector of A. Then equality holds if and only if x — lAly is 

a Laplace eigenvector with eigenvalue [. 

Proof Let uv; be an orthonormal system of Laplace eigenvectors, so that Luj = [ju;. 

Take u, = al. Let ¥ = ¥ aj,u;. Now |A| = (7, x) = Da? and a = (x,u1) = alAl. 

We find |F | az duiacA,b¢éA,a~b | = Dye —Xy)? fa pao a LO; ui 4 (dis Ot?) [p. 
O 

This is best possible in many situations. 

Example The Hoffman-Singleton graph has Laplace spectrum 0!57°10?!, and we 

find |F| > |A||B|/10. This holds with equality for the 10-40 split into a Petersen 
subgraph and its complement. 

4.8.1 Bandwidth 

A direct consequence of Proposition 4.8.1 is an inequality of HELMBERG et al. [213] 
concerning the bandwidth of a graph. A symmetric matrix M is said to have band- 
width w if (M);,; =0 for all 7, j satisfying |i— j| > w. The bandwidth w(I’) of a graph 
I’ is the smallest possible bandwidth for its adjacency matrix (or Laplace matrix). 
This number (and the vertex order realizing it) is of interest for some combinatorial 
optimization problems. 
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Theorem 4.8.5 Suppose I is not edgeless and define b = ae Then 

b_ if n—b is even > ? 

w(P) 2 vith if n—b is odd. 

Proof Order the vertices of I such that L has bandwidth w = w(I)). If n—w is 

even, let X be the first $(n —w) vertices and let Y be the last 5(n —w) vertices. Then 
Proposition 4.8.1 applies and thus we find the first inequality. If n — w is odd, take 

for X and Y the first and last $(n —w-— 1) vertices and the second inequality follows. 

If b and w have different parity, then w — b > 1 and so the better inequality holds. 0 

In case n — w is odd, the bound can be improved a little by applying Proposi- 

tion 4.8.1 with |X| = 5(n—w-+1) and |Y| = +(n—w— 1). It is clear that the result 
remains valid if we consider graphs with weighted edges. - 

4.8.2 Perfect matchings 

A more recent application of Proposition 4.8.1 is the following sufficient condition 

for existence of a perfect matching (a perfect matching in a graph is a subset of the 

edges such that every vertex of the graph is incident with exactly one edge of the 

subset). 

Theorem 4.8.6 ((59]) Let I be a graph with n vertices, and Laplace eigenvalues 

O= mM < bb <... < Mn. If nis even and Uy < 2p, then I has a perfect matching. 

Except for Proposition 4.8.1, we need two more tools for the proof. The first one is 

Tutte’s famous characterization of graphs with a perfect matching. The second one 

is an elementary observation. 

Theorem 4.8.7 (TUTTE [338]) A graph T = (V,E) has no perfect matching if and 

only if there exists a subset S C V such that the subgraph of I’ induced by V \ S has 

more than |S| odd components. 

Lemma 4.8.8 Let x;...X, be n positive integers such that Yi, xj =k < 2n—1. 

Then, for every integer ¢ satisfying 0 < ¢ <k, there exists an I C {1,...,n} such that 

dier%i = . 

Proof Induction onn. The case n = 1 is trivial. If n > 2, assume xj >... > Xn. Then 

n—1<k—x; <2(n—1)—1 and we apply the induction hypothesis to > ae 

k —x, with the same @ if 2<n—1, and £—.x) otherwise. 

Proof of Theorem 4.8.6. Assume I = (V,E) has no perfect matching. By Tutte’s 

theorem, there exists a set S C V of size s (say) such that the subgraph I” ‘of I 

induced by V \ S has g > s odd components. But since n is even, s+ is even, and 

hence:g S's+-2: 

First assume n < 3s +3. Then I’ has at most 2s +3 vertices and at least s+ 2 

components. By Lemma 4.8.8, I ‘ and hence I’ has a pair of disconnected vertex 
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sets X and Y with |X| = [4(n—s)] and |Y| = [5(n—s)]. Now Proposition 4.8.1 
implies 

ba os Bi Va a (ese 
Ln t+bo) ~ ns+|X|-|¥|  (n+s)?- 

where € = 0 if n—s is even and € = 1 if n—s is odd. Using n > 2s +2 we obtain 

Un + Le n+s ~ 3s+2 Ww 

Hence 2p < Mn. 

Next assume n > 3s +4. Now I’, and hence I, has a pair of disconnected vertex 

sets X and Y with |X|+ |Y¥| = |X|-|Y| > (s+ 
1)(n—2s—1) > ns — 2s. Now Proposition 4.8.1 implies 

Hn — ba je |X| -|Y| > ia i s oh 

Ln + Le ns+|X|-|Y| ~ 2ns—2s* 2 2n—2s” 4 

since n > 3s+4. So : ' 

a Soe 
Hn + U2 2 3 

and again 2Uly < Ly. O 

The complete bipartite graphs K;,, with / < m have Laplace eigenvalues l) = m 

and [M, =n =I1-+m. This shows that 2 can get arbitrarily close to MU, for graphs 

with n even and no perfect matching. 

If the graph is regular, the result can be improved considerably. 

Theorem 4.8.9 ([59, 96]) A connected k-regular graph on n vertices, where n is 

even, with (ordinary) eigenvalues k = 0; > 0)... > ®,, which satisfies 

a k-1+ < ifk is even, 

** k= 14 4s ifkis odd, 

has a perfect matching. 

Proof. Let I’ = (V,E) be a k-regular graph with n = |V| even and no perfect match- 
ing. By Theorem 4.8.7 there exists a set S C V of size s such that V \ S induces a 
subgraph with g > s+2 odd components IV, Ib,.. . Ig (say). Let t; denote the num- 
ber of edges in I between S and Jj, and let n; be the number of vertices of T;. Then 
clearly ponte iti < ks, s > 1, and t; > 1 (since I’ is connected). Hence t; < k and pl 
for at least three values of i, say i = 1, 2, and 3. Let ¢; denote the largest eigenvalue 
of Ij, and assume £; > ¢) > ¢3. Then eigenvalue interlacing applied to the subgraph 
induced by the union of I, I3, and Fj gives £; < 6; fori= dee Dyide 

Consider I3 with nz vertices and e3 edges (say). Then 2e3 = kn3 —<n3 (n3 —1). 
We saw that t3 < : and n3 > 1, hence k < n3. Moreover, the average degree d3 of 
equals 2e3/n3 = k —13/n3. Because n3 is odd and kn3 — tz is even, k and t3 have the 
same parity, oe t3 < k implies t3 < k—2. Also, k < nz implies k < n3—1 if k 
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is even, and k < n3 —2 if k is odd. Hence 

a k— © if kis even, 

~ (k= £5 if kis odd. 

Note that t3 < n3 implies that I4 cannot be regular. Next we use the fact that the 

largest adjacency eigenvalue of a graph is bounded from below by the average 

degree with equality if and only if the graph is regular (Proposition 3.1.2). Thus 

d3 < £3. We saw that £3 < 03, which finishes the proof. 0 

From the above it is clear that n even and 0) < k— 1 implies existence of a perfect 

matching. In terms of the Laplace matrix this translates into: 

Corollary 4.8.10 A regular graph with an even number of vertices and algebraic 

connectivity at least | has a perfect matching. ; 

But we can say more. The Laplace matrix of a disjoint union of n/2 edges has 

eigenvalues 0 and 2. By the Courant-Wey] inequalities (Theorem 2.8.1), this implies 

that deletion of the edges of a perfect matching of a graph I” reduces the eigenvalues 

of the Laplace matrix of I by at most 2. Hence: 

Corollary 4.8.11 A regular graph with an even number of vertices and algebraic 

connectivity Uz has at least |(U2 + 1)/2| pairwise disjoint perfect matchings. 

Fig. 4.1 A 3-regular graph with no perfect matching 

CIOABA, GREGORY & HAEMERS [97] have improved the sufficient condition fora 

perfect matching from Theorem 4.8.9 to 03 < gx, where g3 = 2.85577... (the largest 

root of x3 — x? —6x +2), gx = (k-2+Vk? +12)/2 if k > 4 and even, and g, = 

(k—3+ /(k+1)2 + 16)/2 if k > 5 and odd. They also prove that this bound is best 

possible by giving examples of k-regular graphs with n even and A3 = gy that have 

no perfect matching. The example for k = 3 is presented in Figure 4.1. 

4.9 Block designs 

In case we have a nonsymmetric matrix N (say), we can still use interlacing by 

considering the matrix 
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ON re Fi 4 } 

We find results in terms of the eigenvalues of A, which now satisfy 6; = —®@,—i+1 

for i=1,...,n. The positive eigenvalues of A are the singular values of N, they are 

also the square roots of the nonzero eigenvalues of NN' (and of N'N). 
Suppose N is the 0-1 incidence matrix of an incidence structure (P,B) with point 

set P (rows) and block set B (columns). Then we consider the so-called incidence 

graph IT’ of (P,B), which is the bipartite graph with vertex set PUB, where two 
vertices are adjacent if they correspond to an incident point-block pair. An edge of 

T is called a flag of (P,B). 
An incidence structure (P,B) is called a t-(v,k,A) design if |P| = v, all blocks 

are incident with k points, and for every t-set of points there are exactly A blocks 

incident with all ¢ points. For example, (P, B) is a 1-(v,k,r) design precisely when N 
has constant column sums k (i.e., N'1= k1) and constant row sums r (i.e., N1 = r1), 

in other words, when I" is semiregular with degrees k and r. Moreover, (P,B) is a 

2-(v,k,A) design if and only if N'1=k1 and NN! =AJ+(r—A)I. Note that, for 
t > 1, a t-design is also a (t — 1)-design. In particular, a 2-(v,k,A) design is also a 

1-(v,k,r) design with r= A(v—1)/(k—1). A Steiner system S(t,k,v) is at-(v,k,A) 
design with A = 1. 

Theorem 4.9.1 Let (P,B) be a 1-(v,k,r) design with b blocks and let (P',B') be a 
substructure with m’ flags. Define b = |B\, v' = |P’| and b' = |B’|. Then 

b 
(m'— —b'k) (m= —V TY 05 viv NBD Y. 

Equality implies that all four substructures induced by P' or V\\V' and B' or B\ B' 
form a \-design (possibly degenerate). 

Proof We apply Corollary 2.5.4. The substructure (P’, B’) gives rise to a partition 

of A with the quotient matrix 

0 0 sy oe 
b'k—n b'k—m! 

B= p 0 ; YaV i enieee 

AOE eB lms onary 
v/r—m! im vy r—n! 0 0 
b—b! 7 Dae 

We easily have 0; = —0, = Ni = —N4 = V rk and 

IY _ ple Dip cif) re ( he BLU let eeatie lp 
y—y b—b' 

det(B) 

rk 

Interlacing gives 

=—MmM < —6,_1 = 65, 
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which proves the first statement. If equality holds, then 0; = 7, 62 = N2, 9-1 = Ms, 

and 0, = 14, so we have tight interlacing, which implies the second statement. 1 

The above result becomes especially useful if we can express 2 in terms of the 

design parameters. For instance, if (P,B) is a 2-(v,k,A) design, then 03 =r—A = 

Ai" (see the exercises) and if (P,B) is a generalized quadrangle of order (s,t), 

then 4B =s-+t (see §9.6). Let us consider two special cases. (A 2-design (P,B) with 

|P| = |B| is called symmetric.) 

Corollary 4.9.2 Ifa symmetric 2-(v,k,A) design (P,B) has a symmetric 2-(v',k’,A') 

subdesign (P’ ,B’) (possibly degenerate), then 

(k’v — kv’)? < (k-A)(v—v’)’. 

If equality holds, then the subdesign (P’,B\ B’) is a2-(v',v'(k—-k’)/(v—v'),A—A') 
design (possibly degenerate). 

Proof In Theorem 4.9.1, take b =v, r=k, b! =v’, m! =v/k’, and 05 =k—A. 

Corollary 4.9.3 Let X be a subset of the points and let Y be a subset of the blocks 

of a 2-(v,k,A) design (P,B) such that no point of X is incident with a block of Y. 

Then 

kr|X||¥| < (r-A)(v— |X|)(6— |¥1)- 

If equality holds, then the substructure (X ,B’) = (X,B\Y) is a 2-design. 

Proof Take m' = 0, v’ = |X|, b! = |Y| and 67 = r—A. Now Theorem 4.9.1 gives 

the inequality and that (X,B’) is a 1-design. But then (X,B’) is a 2-design, because 

(P,B) is. Oo 

An example of a subdesign of a symmetric design is the incidence structure 

formed by the absolute point and lines of a polarity in a projective plane of or- 

der g. This gives a (degenerate) 2-(v’,1,0) design in a 2-(¢ +q4+1,¢4+1,1) 

design. The bound gives v’ < g,/q+ 1. (See also the following section.) The 2- 

(q.\/9¢+1,q+1, 1) design that is obtained in case of equality is called a unital. Other 

examples of symmetric designs that meet the bound can be found in HAEMERS 

& SHRIKHANDE [205] or JUNGNICKEL [237]. Wilbrink used Theorem 4.9.1 to 

shorten the proof of Feit’s result on the number of points and blocks fixed by an 

automorphism group of a symmetric design (see [67]). The inequality of the sec- 

ond corollary is tight for hyperovals and (more generally) maximal arcs in finite 

projective planes. 

4.10 Polarities 

A projective plane is a point-line geometry such that any two points are on a unique 

line, and any two lines meet in a unique point. It is said to be of order q when all 
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lines have g + 1 points and all points are on g+ 1 lines. A projective plane of order 

g has q?-+q+1 points and as many lines. 

A polarity of a point-block incidence structure is a map of order 2 interchanging 

points and blocks and preserving incidence. An absolute point is a point incident 

with its image under the polarity. 

Suppose we have a projective plane of order g with a polarity o. The polarity 

enables us to write the point-line incidence matrix N as a symmetric matrix, and then 

the number of absolute points is tr. By definition, we have N? = NN' = J+q], 

which has one eigenvalue equal to (q+ 1)? and all other eigenvalues equal to g. That 

means that N has spectrum (q+ 1)', \/q”, —,/q", for certain integers m,n, where 
this time exponents indicate multiplicities. The number of absolute points equals 

a=q+1+(m—n),/q. It follows that if g is not a square then m = n and there are 

precisely g+ 1 absolute points. If g is a square, and p is a prime dividing g, then 

a= 1 (mod p) so that a is nonzero. 

(This is false in the infinite case: the polarity sending the point (p,g,r) to the line 

pX + qY +rZ =0 has no absolute points over R.) 

With slightly more effort one finds bounds for the number of absolute points: 

Proposition 4.10.1 A polarity of a projective plane of order q has at least g+1 and 

at most q,/q + | absolute points. 

Proof Suppose z is a nonabsolute point. Now o induces a map T on the line z° 

defined for y € z° by: y* is the common point of y° and z°. Now t? = 1, and y* = y 

precisely when y is absolute. This shows that the number of absolute points on a 

nonabsolute line is g+ 1 (mod 2). 

Now if g is odd, then take an absolute point x. This observation says that each line 

on x different from x° contains another absolute point, for a total of at least g+1. On 

the other hand, if g is even, then each nonabsolute line contains an absolute point, 

so gq’ +q+1—a<aqanda>q+l. 
For the upper bound, use interlacing: partition the matrix N into absolute / non- 

absolute points/lines and find the matrix of average row sums A a ie ag. | ’ 
yv—a v—a 

where v = g* + q+1, with eigenvalues g+1 and 1 — —. Now interlacing yields 
1-4 > —/q, that is, a < q,/q + 1, just like we found in the previous section. 0 v—a 

The essential part of the proof of the lower bound was to show that there is at 
least one absolute point, and this used an eigenvalue argument. 

4.11 Exercises 

Exercise 4.1 Prove the following bipartite version of Proposition 4.5.1. Let I be 
a connected and bipartite graph, semiregular with degrees k and /. Let |@| < A for 
every eigenvalue @ ¢ +,/kI. If R is a subset of the set K of vertices of degree k, and 
p =|R|/|K|, then 
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Le i 
IR| ~ p(kl—A?)+A2- 

(This is the result from TANNER [334].) 

Exercise 4.2 (i) Determine the isoperimetric number h(K,,). 
(ii) Using Proposition 4.5.2, show that the n-cube has h(Q,,) = 1. 

Exercise 4.3 An (,m)-biclique in a graph I” is a complete bipartite subgraph Ke j, 

of I (not necessarily induced). Let 0 = pf; <... < HM, be the Laplace eigenvalues of 

T. Show that &m/(n—£)(n—m) < ((Mn — M2) /(2n— 2 — Mn))* if I’ is noncomplete 
and contains an (¢,m)-biclique. 

Exercise 4.4 Let A be the incidence graph of a 2-(v,k,A.) design with b blocks and r 

blocks incident with each point. Express the spectrum of A in the design parameters 

v,k, A, band r. ‘ 

Exercise 4.5 Let (P,B) be a 2-(v,k,A) design, and suppose that some block is 
repeated £ times (i.e., 2 blocks are incident with exactly the same set of k points). 

Prove that b > év. (This is Mann’s inequality.) 
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Chapter 5 

Trees 

Trees have a simpler structure than general graphs, and we can prove stronger re- 

sults. For example, interlacing tells us that the multiplicity of an eigenvalue de- 

creases by at most one when a vertex is removed. For trees Godsil’s lemma gives 

the same conclusion also when a path is removed. 

5.1 Characteristic polynomials of trees 

For a graph I" with adjacency matrix A, let y(t) := det(t/ — A) be its characteristic 

polynomial. 

Note that since the characteristic polynomial of the disjoint union of two graphs 

is the product of their characteristic polynomials, results for trees immediately yield 

results for forests as well. 

It will be useful to agree that @7\, =0 ifx=y. 

Proposition 5.1.1 Let T be atree, and for x,y € T, let Py be the unique path joining 

x and yinT. 

(i) Let e = xy be an edge inT that separates T into two subtrees A and B, with 

x €Aand y € B. Then 

br = dads — 9a\xOa\y- 

(ii) Let x be a vertex of T. Then 

Or (t) =tor\x(t) — DY) br\ gry} (0): 
yex 

(iii) Let x be a vertex of T. Then 

r\x(t)Or(s) — Or\x(s) Or (t) = (s—t) DY Pr\Py (8) Or\Py (t)- 
yeT 

(iv) Let x be a vertex of T. Then 

83 
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Or\xd'7 - 9’ r\x9r F >» Or \ Py: 
yeT 

(v) Let x,y be vertices of T. Then 

O7\xPr\y — Or\xyOr = d7\P,," 

(vi) Let x,y,z be vertices of T, where z € Pry. Then 

Or\x,y,29T = Pr\xPr\y,2 — Pr\cPr\x,y + Or\yPr\x,z- 

(vii) We have $'r = Leet Or\x- 

(viii) Let T have n vertices and Cm matchings of size m. Then 

or (t) = Y(- 1 Vege 
m 

Proof Part (i) follows by expansion of the defining determinant. It can also be 

phrased as $7 = $7\¢ — $r\{xy}. Part (ii) follows by applying (i) to all edges on 

x. Note that $1,)(¢) = ¢. Part (iii) follows from (ii) by induction on the size of T. 

Expand @7(s) and 7 (t) on the left-hand side using (ii), and then use induction. Part 
(iv) is immediate from (iii). Part (vii) follows by taking the derivative of the defining 

determinant. Part (viii) is a reformulation of the description in §1.2.1. Note that the 

only directed cycles in a tree are those of length 2. Part (v) is true if T = P,,, and the 

general case follows from part (vi) and induction: the statement remains true when a 

subtree S is attached via an edge e at a vertex z € Pyy. Finally, part (vi) follows from: 

if \2=A +B, then $r = dauchs + adzuz — $4 94.) bs, where of course $4.3 (t) =F. 
O 

Theorem 5.1.2 (“Godsil’s lemma”, [173]) Let T be a tree and @ an eigenvalue of 

multiplicity m > 1. Let P be a path in T. Then @ is an eigenvalue of T \ P with 
multiplicity at least m— 1. 

Proof By parts (iv) and (vii) of the above Proposition we have 

o'r (t) — 9" r(t)or(t) = YX orp, (0). 
xX Ver 

Now @ is a root of multiplicity at least 2m — 2 of the left-hand side, and hence also 
of each of the terms on the right-hand side. O 

As an application of Godsil’s lemma, consider a tree T with e distinct eigenvalues 
and maximum possible diameter e — 1. Let P be a path of length e — 1 (that is, with e 
vertices) in T. Then T \ P has a spectrum that is independent of the choice of P: for 
each eigenvalue @ with multiplicity m of T, the forest T \ P has eigenvalue @ with 
multiplicity m— 1 (and it has no other eigenvalues). 

In particular, all eigenvalues of a path have multiplicity 1. 

Note that going from T to T \ x changes multiplicities by at most 1: they go up 
or down by at most 1. Godsil’s lemma is one-sided: going from T to T \ P, the 
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multiplicities go down by at most 1, but they may well go up by more. For example, 

if one joins the centers x,y of two copies of K 1m by an edge, one obtains a tree T 

that has 0 as an eigenvalue of multiplicity 2m — 2. For P = xy, the forest T \ P has 

eigenvalue 0 with multiplicity 2m. 

5.2 Eigenvectors and multiplicities 

For trees we have rather precise information about eigenvectors and eigenvalue mul- 

tiplicities (FIEDLER [157]). 

Lemma 5.2.1 Let T be a tree with eigenvalue 0, and let Z = Z7(@) be the set 
of vertices in T where all @-eigenvectors vanish. If for some vertex t € T- some 

component S of T \t has eigenvalue @ (in particular, if some 0-eigenvector of T 

vanishes att), then Z # 0. 

Proof Consider proper subtrees S of T with eigenvalue @ and with a single edge 

st joining some vertex s € S with some vertex t € T \S, and pick a minimal one. 

If |S| = 1, then @ = 0, and t € Z. Assume |S| > 1. If a 0-eigenvector u of S is 
the restriction to S of a @-eigenvector v of 7, then v vanishes in ft. So, if some 0- 

eigenvector v of T does not vanish at t, then uw and v|s are not dependent, and some 

linear combination vanishes in s and is a 9-eigenvector of S\s, contradicting the 

minimality of S. This shows that t € Z. UO 

Note that it is not true that the hypothesis of the lemma implies that t € Z. For 

example, consider the tree T of type De given by 1~ 2~3~4~ 5,6. It has 

Z(0) = {2,4}, and the component S = {4,5,6} of T \3 has eigenvalue 0, but 3 ¢ 

Z(0). 

Proposition 5.2.2 Consider a tree T with eigenvalue @, and let Z = Z(@) be the 

set of vertices in T where all @-eigenvectors vanish. Let Zy) = Zo(@) be the set of 

vertices in Z that have a neighbor in T \ Z. 

(i) Let S be a connected component of T \ Z. Then S has eigenvalue @ with mul- 

tiplicity 1. If u is a @-eigenvector of S, then u is nowhere zero. 

(ii) Let T \ Z have c connected components, and let d = |Zo|. Then @ has multi- 

plicity c — d. 

The components of T \ Z(@) are called the eigenvalue components of T for @. 

Proof (i) Suppose @ is eigenvalue of T with multiplicity greater than 1. Then 

some @-eigenvector has a zero coordinate and Lemma 5.2.1 shows that Z # 0. 

If S is a connected component of T \ Z then it has eigenvalue @ (otherwise S C 

Z, a contradiction). Apply Lemma 5.2.1 to S instead of T to find that if some 6- 

eigenvector of S vanishes on a point of S, then there is a point s € $ where all of 

its @-eigenvectors vanish. But the restriction to S of a @-eigenvector of T is a 6- 

eigenvector of S, so s-€ Z, contradiction. 
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(ii) Each point of Zp imposes a linear condition, and since T is a tree, these 

conditions are independent. LJ 

We see that if the multiplicity of @ is not 1, then Z contains a vertex of degree 

at least 3. In particular, Z 4 0, and hence Zp # 0. Deleting a vertex in Zp from T 

increases the multiplicity of @. 

In particular, we see again that all eigenvalues of a path have multiplicity 1. 

5.3 Sign patterns of eigenvectors of graphs 

For a path, the i-th-largest eigenvalue has multiplicity 1 and an eigenvector with 

i— 1 sign changes, that is, i areas of constant sign. It is possible to generalize this 

observation to more general graphs. One obtains discrete analogues of Courant’s 

nodal domain theorem. See also [135]. 

Given a real vector u, let the support suppu be the set {i|u; 4 0}. For « one of 

<, >, <, =>, we also write supp*u for {i|u; *0}. Let N(u) (resp. N*(u)) be the number 
of connected components C of the subgraph induced by suppu (resp. supp*u) such 

that u does not vanish identically on C. 

Proposition 5.3.1 Let I be a graph with eigenvalues 0; >... > 9,, and let u be 

an eigenvector with eigenvalue @ = 0; = 8j4m-1 of multiplicity m. Let A be the 

subgraph of I’ induced by suppu, with eigenvalues nN, >... > |. Then 

(i) 
N° (u) +N*(u) < #{i| ni > O} < j+m—1, 

(i) 
N*(u) +N<(u) —N(u) < #{i| ni > 0} < j—1, and 

(iii) if I" has c connected components, then 

N2(u) +NS(u) < j+e-1. 

Proof Fora subset S of the vertex set of I, let Js be the diagonal matrix with ones 
on the positions indexed by elements of S and zeros elsewhere. 

Let C run through the connected components of supp? u and supp<u (resp. 
supp=u and supp u). Put uc = Icu. Then the space U :='(uc | C) has dimension 
N> (u) +N<(u) (resp. N2(u) +NS(u)). 

Let A be the adjacency matrix of A (resp. I”). Define a real symmetric matrix B 
by Bcp = ue (A — @/)up. Then B has zero row sums and nonpositive off-diagonal 
entries, so B is positive semidefinite. It follows that for y € U we have y' (A—@I \y> 
0. This means that U intersects the space spanned by the eigenvectors of A — @/ with 
negative eigenvalue in 0. 

For (i), N~ (u) + N<(u) < #{i| 1; > 0} follows. 
The vectors y € U with y'(A— 6 )y = 0 correspond to eigenvectors with eigen- 

value 0 of B, and by Lemma 2.10.1 there are N(u) (resp. c) such independent eigen- 
vectors. This proves (ii) (resp. (iii)). LO 
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Remarks (i) For j = 1, the results follow from the Perron-Frobenius theorem. (If 

T is connected, then the eigenvector for 0; is nowhere zero and has constant sign.) 

(ii) The only thing used about A is that its off-diagonal elements are nonnegative, 

and zero for nonadjacent pairs of vertices. For example, the conclusions also hold 

for —L. 

Examples (a) Let I" be connected and bipartite, and let 0 be the smallest eigenvalue 

of I’. The corresponding eigenvector u has different signs on the two sides of the 

bipartition, so supp~ u and supp u are the two sides of the bipartition, N~ (u) + 
N<(u) =nand N(u) = 1. We have equality in (i)—(iii). 

(b) Let I be the star K),;. The spectrum is Js', 0-1, (—1/s)!. Let wu be an eigen- 

vector with eigenvalue @ = 0 that has t nonzero coordinates. (Then 2 <t <5.) Now 

N> (uw) +N<(u) = N(u) =t and N=(u) +.NS(u) = 2, and for t = s equality holds in 
(i)—(ii1). 2 

(c) Let I" be the Petersen graph. It has spectrum 3!, 1°, (—2)*. Let u be an 
eigenvector with eigenvalue @ = 1 that vanishes on four points, so that suppu 

induces 3K> with spectrum 17, (—1)°. We find N*(u) +N<(u) = N(u) = 3 and 
N=(u) + NS(u) = 2, again equality in (i)—(iii). 

(d) Let I be the path P,. The eigenvalues are 0, = 2cos(ka/(n + 1)) for 

k =1,...,n. The eigenvector u corresponding to 6; has k — 1 sign changes, so that 

N> (u) +N<(u) =k. If ged(k,n+1) = 1 then w has no zero entries, so that N(w) = 1. 

Now we have equality in (i)—(iii). If ged(k,n+ 1) =r, then u has r — 1 zero entries, 

so that N(u) = r. Also, the eigenvalue @, is the k/r-th of each component of suppu, 

so #Hi|n; > 0} =k and #{i | n > 6} =k —r, with equality in (i) and the first 

inequality of (ii). 

Remark It is not true that N(u) < m if mis the multiplicity of @ for I”. For example, 

in case (b) above we have N(u) = s and m= s — 1. (And in case (c) the opposite 

happens: N(u) = 3 and m= 5.) 

Proposition 5.3.2 Let I" be a connected graph with second-largest eigenvalue 4. 

Let u be a @)-eigenvalue with minimal support. Then N~ (u) = N<(u) = 1. 

Proof By the Perron-Frobenius theorem, only 6; has an eigenvector (say Zz) with 

constant sign, so N* (uw) and N<(u) are both nonzero. If C and D are two connected 

components of supp uv, and we put uc = Icu, etc., as before, then a suitable linear 

combination y of uc and up is orthogonal to z and has Rayleigh quotient at least 0), 

so that y is a @)-eigenvector with support strictly contained in that of u. O 

This proposition will play a role in the discussion of the Colin de Verdiére pa- 

rameter (in the proof of Proposition 7.3.3). Remark (ii) above also applies here. 

5.4 Sign patterns of eigenvectors of trees 

For trees we have more precise information. 
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Proposition 5.4.1 Let T be a tree with eigenvalue 0, and put Z = Z(@). Let T \Z 

have eigenvalues Ni > ... > Nn. Let g = #{i| ni > 0} andh = #{i | ni > O}. Let u 

be a 0-eigenvector of T. Then N* (u) + N<(u) = g and N*(u) +N<(u) —N(u) =A. 

Proof Since N() and g and h are additive over connected components, we may 

assume that Z is empty. Now by Proposition 5.2.2(i), 8 has multiplicity 1 and u is 

nowhere 0. Let T have n vertices, and let there be p edges xy with u,u, > 0 and 

q edges xy with u,uy < 0. Then p+g=n-—1. Since T is bipartite, also —@ is 

an eigenvalue, and an eigenvector v for —@ is obtained by switching the sign of u 

on one bipartite class. By Proposition 5.3.1, we have g = N*(u) +N<(u) -—1<h 
and p = N*(v) + N<(v) —1 <n—h-—1, that is q > h, and hence equality holds 
everywhere. L] 

Let a sign change for an eigenvector u of T be an edge e = xy such that u,uy < 0. 

Proposition 5.4.2 Let T be a tree with j-th eigenvalue 9. If u is an eigenvector for 

6 with s sign changes, and d = |Zo(@)|, thend+s< j—1. 

Proof Let T \Z have c connected components, and let u be identically zero on co 

of these. Then s+ c — co = N*(u) + N<(u). Let @ = 0; = 0j4m_1, where m=c—d 
is the multiplicity of @. By Proposition 5.3.1(i), we have s+c—co < j+m-—1, that 

is, d+s—co < j—1. But we can make co zero by adding a small multiple of some 

0-eigenvector that is nonzero on all of T \ Z. 0 

Example For T = £¢ all eigenvalues have multiplicity 1, and N~(u) + N<(u) takes 
the values 1, 2, 3, 4, 4, 6 for the six eigenvectors u. The sign patterns are: 

Se ee ee ee a ee | a ee re a 

+i certs ea Fea Odes sae eee tet 

We see that a small perturbation that would make u nonzero everywhere would give 
the two zeros in the second eigenvector the same sign, but the two zeros in the fifth 
eigenvector different signs (because 0) > 0 and @5 < 0), and for the perturbed vector 
u’ we would find 0, 1, 2, 3, 4, 5 sign changes. 

5.5 The spectral center of a tree 

There are various combinatorial concepts of “center” for trees. One has the cen- 
ter/bicenter and the centroid/bicentroid. Here we define a concept of center using 
spectral methods. Closely related results can be found in NEUMAIER [286]. 



5.6 Integral trees 89 

Proposition 5.5.1 Let T be a tree (with at least two vertices) with second-largest 

eigenvalue i. Then there is a unique minimal subtree Y of T such that no connected 

component of T \Y has largest eigenvalue larger than X. If Z(A) # 0 (and in par- 

ticular if A has multiplicity larger than 1) then Y = Zo(A) and |Y| = 1. Otherwise 
|Y| =2, and contains the endpoints of the edge on which the unique A-eigenvector 

changes sign. In this latter case, all connected components of T \Y have largest 

eigenvalue strictly smaller than 2X. 

We call the set Y the spectral center of T. 

Proof If for some vertex y all connected components of T \ y have largest eigen- 

value at most A, then pick Y = {y}. Otherwise, for each vertex y of T there is a 
unique neighbor y’ in the unique component of T \ y that has largest eigenvalue 

more than A. Since T is finite, we must have y” = y for some vertex y. Now pick 
Y = {y,y’}. Clearly, Y has the stated property and is minimal. : 

Put Z = Z(A). If Z =, then A has multiplicity 1 and by Proposition 5.4.2 there 

is a unique edge e = pq such that the unique A-eigenvector has different signs on p 

and g. Both components of T \e have largest eigenvalue strictly larger than A (e.g., 

by Theorem 2.2.1 (iv)), so that Y must contain both endpoints of e. 

If Z  @, then all eigenvalue components for A have eigenvalue A, and any strictly 

larger subgraph has a strictly larger eigenvalue, so Y must contain Zo := Zo(A). By 

Proposition 5.4.2 we have |Zo| = 1, say Zo = {y}. If Y is not equal to {y}, then Y 

also contains y’. This proves uniqueness. 

Suppose that Z) = {y}. If T \Z has c connected components, then A has mul- 
tiplicity c in T \ y and c—1 in T. Since T has precisely c eigenvalues 6 > A, by 

interlacing T \ y has at most c such eigenvalues, so that T \ y has no eigenvalues 

larger than A. This shows that |Y| = 1 when Z is nonempty. 
Finally, suppose that Y = {y,y’} and that T \Y has largest eigenvalue 2. By 

Lemma 5.2.1, Z £ 0, a contradiction. O 

Example If T is the path P, with n vertices, then A = 2cos2a/(n+1).Ifn=2m+1 

is odd, then Y consists of the middle vertex, and T \ Y is the union of two paths P,, 

with largest eigenvalue A = 2cosa/(m-+ 1). Ifn = 2m is even, then Y consists of the 

middle two vertices, and T \ Y is the union of two paths P,,_; with largest eigenvalue 

2cosm/m< dX. 

5.6 Integral trees 

An integral tree is a tree with only integral eigenvalues. Such trees are rare. A list 

of all integral trees on at most 50 vertices can be found in [52]. 

A funny result is 

Proposition 5.6.1 (WATANABE [347]) An integral tree cannot have a perfect match- 

ing, that is, must have an eigenvalue 0, unless it is Kp. 
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Proof The constant term of the characteristic polynomial of a tree is, up to sign, 

the number of perfect matchings. It is also the product of all eigenvalues. If it is 

nonzero, then it is 1, since the union of two distinct perfect matchings contains a 

cycle. But then all eigenvalues are +1 and P3 is not an induced subgraph, so we 

have K». C] 

This result can be extended a little. Let SK; be the tree on 2m + 1 vertices 

obtained by subdividing all edges of Kim. The spectrum is +Vm-+ 1 (+1)"-1 0. 

Proposition 5.6.2 (BROUWER [52]) /f an integral tree has eigenvalue 0 with mul- 

tiplicity 1, then it is SK m, where m = t? — 1 for some integer t > 1. O 

For a long time it has been an open question whether there exist integral trees of 

arbitrarily large diameter. Recently, this was settled in the affirmative by Csikvari. 

The construction is as follows. Define trees T’(r),...,rm) by induction: T’() is the 
tree with a single vertex x. T’(r),.--,/m) is the tree obtained from T’(r1,.--,m—1) 

by adding r, pendant edges to each vertex u with d(u,xo) = m— 1 (mod 2). The 

diameter of this tree is 2m (assuming r; > 1) and it has 2m-+ 1 distinct eigenvalues: 

Proposition 5.6.3 (CSIKVARI [111]) The tree T'(r),..., 1m) has eigenvalues 0 and 

+/si (1 <i<m), where s; =r; +-::+1rm. 

Now all trees T’(n? —n3,...,n2_, —nz,n7,) are integral of diameter 2m when 
mom 

Ny > >. > Nn 

A short proof can be given using the following observation. If A and B are trees 

with fixed vertices x and y, respectively, then let A~ mB be the tree constructed on 

the union of A and m copies of B, where x is joined to the m copies of y. Now Propo- 

sition 5.1.1(i) and induction immediately yields that T = A ~mB has characteristic 

polynomial ¢r = $7"! (dads — m,\x9g\y), Where the last factor is symmetric in A 
and B. 

Proof Induction on m. The statement holds for m < 1. With A = T'(r3,...) and 

B= T'(r2,73,- ..), we have T'(r1,12,73,- ..) =A~r\B and T'(ry +72,13,...)=Brw 

rjA. | 

5.7 Exercises 

Exercise 5.1 Show that there are six integral trees on at most ten vertices, namely 

(i) Ky, Gi) Ko, (iii) K1,4 = Da, (iv) Ds, (v) Eo, (vi) Ky 9. (For notation, see §3.1.1.) 



5.7 Exercises 91 

An integral tree on 31 vertices. 

What is the spectrum? 

Exercise 5.2 Show that the only trees that have integral Laplace spectrum are the 

stars Ky m. z 

Exercise 5.3 ({106, 192]) The energy E(I’) of a graph I, as defined by Gutman, is 

¥; |9;|, the sum of the absolute values of the eigenvalues of the adjacency matrix A. 

It can be expressed in terms of the characteristic polynomial @(x) by 

TT J —co 
tC ab -[- [nx to (in) dx. 

Show that if J is a tree on n vertices, different from the star S = K; ,—; and the path 

PAP then 

ECGS) ET) < E(P): 
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Chapter 6 

Groups and Graphs 

6.1 (G,H,S) 

Let G be a finite group, H a subgroup, and S a subset of G. We can define a graph 

I'(G,H,S) by taking as vertices the cosets gH (g € G) and calling gH and g2H 

adjacent when Hg, | 91H C HSH. The group G acts as a group of automorphisms 

on '(G,H,S) via left multiplication, and this action is transitive. The stabilizer of 

the vertex H is the subgroup H. A graph '(G,H,S) with H = 1 is called a Cayley 

graph. 

Conversely, let be a graph with transitive group of automorphisms G. Let x be 

a vertex of I”, and let H := G, be the stabilizer of x in G. Now I can be identified 

with (G,H,S), where S= {g € G| x ~ gx}. If I’ is, moreover, edge-transitive, 

then S can be chosen to have cardinality 1. 

Instead of representing each vertex as a coset, one can represent each vertex y by 

the subgroup Gy that fixes it. If H = G, and y = gx, then Gy = gH g-!, so now G 

acts by conjugation. 

6.2 Spectrum 

Let I be a graph and G a group of automorphisms. Let M be a matrix with rows 

and columns indexed by the vertex set of I, and suppose that M commutes with all 

elements of G (so that gM = Mg, or, equivalently, My = Mgx,gy). Now trgM only 

depends on the conjugacy class of g in G, so the map g +> trgM defines a class 

function on G. 

(Also the spectrum of gM only depends on the conjugacy class of g in G, but it is 

not clear how the spectrum should be ordered. Having the trace, however, suffices: 

one can retrieve the spectrum of a matrix M from the traces of the powers M ‘ People 

also introduce the zeta function of a graph I by ¢r-(—s) = )A* = trL’, where the 

93 
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sum is over the eigenvalues A of the Laplacian L, in order to have a single object 

that encodes the spectrum.) 

If I has vertex set X, and V = R* is the R-vector space spanned by the vertices 

of I’, then by Schur’s lemma M acts as a multiple of the identity on each irreducible 

G-invariant subspace of V. In other words, the irreducible G-invariant subspaces are 

eigenspaces of M. If M acts like @/ on the irreducible G-invariant subspace W with 

character v, then trgM|w = 07(g). 

Example Let I" be the Petersen graph, with as vertices the unordered pairs from 

a 5-set, adjacent when they are disjoint, and let M = A, the adjacency matrix. Now 

f(g) := trgA = #{x |x ~ gx} defines a class function on Aut T = Sym(5). Below 
we show f together with the character table of Sym(5) (with the top row indicating 

the cycle shape of the element): 

JNO. 02440. 2°56 

We see that f = 37; — 273 + 4s. It follows that has spectrum 3! (—2)* 1>, where 
the eigenvalues are the coefficients of f, written as linear combination of irreducible 

characters, and the multiplicities are the degrees of these characters. The permuta- 

tion character is 7 = 71 + 73+ Ys (obtained for M = 1). It is multiplicity free, that 

is, no coefficients larger than 1 occur. In the general case, the coefficient of an irre- 

ducible character y in the expression for f will be the sum of the eigenvalues of M 

on the irreducible subspaces with character y. 

6.3 Non-Abelian Cayley graphs 

Let G be a group and S C G. The Cayley graph Cay(G,S) is the (directed) graph 
with vertex set G and edge set E = {(g,gs) |g © G, s € S} (so that S is the set of out- 
neighbors of 1). Now I” is regular with in- and outvalency |S]. It will be undirected 
if and only if S is symmetric, i.e., S~' = S, where S~! = {s—! | s € S}. 

The graph Cay(G,S) is connected if and only if S generates G. If H = (S) is the 
subgroup of G generated by S, then Cay(G,S) consists of |G/H| disjoint copies of 
Cay(H,S). 

The spectrum of Cayley graphs in an Abelian group G was discussed in 81.4.9, 
More generally, one has the following. 
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Proposition 6.3.1 ({144, 282]) Let G be a finite group and S a subset that is 

symmetric and invariant under conjugation. The graph Cay(G,S) has eigenvalues 

0, = ZI) Lses x(s) with multiplicity x(1)*, where x ranges over the irreducible 

characters of G. 

Proof Since S is a union of conjugacy clases of G, the adjacency matrix A com- 

mutes with the elements of G, and the previous discussion applies. The regular rep- 

resentation of G decomposes into a direct sum of irreducible subspaces, where for 

each irreducible character x there are 7(1) copies of Vy. On each copy, A acts like 
61, and dimV, = (1), so @ has multiplicity 7(1)*. We saw that trAg|w = 0x(g), 
so that in particular 0y(1) = trAlw = dyes X(s), where W = Vy. 0 

For example, the graph K33 can be described as the Cayley graph Cay(G,S), 

where G = Sym(3) and S = {(12), (13), (23)}. Its complement 2K3 is the Cayley 
graph Cay(G,S’), where S’ = {(123),(132)}. The character table of Gis 

ft ioe ao 

and we read off the spectrum 3, —3, 04 of K3.3 from column 2 and the spectrum 2, 

2, (—1)* of 2K3 from column 3. 
As an application, RENTELN [299] computes the smallest eigenvalue of the de- 

rangement graph (the graph on Sym() where g; ~ g2 when 2) 22 has no fixed 

points) and finds Onin = —k/(n — 1), providing an easy proof for the result that this 

graph has independence number a = (n— 1)!. 

6.4 Covers 

Let a graph T = (X,E) consist of a set of vertices X and a set of edges E and an 

incidence relation between X and E (such that each edge is incident with one or two 

points). An edge incident with only one point is called a loop. A homomorphism 

f :T — A of graphs is a map that sends vertices to vertices, edges to edges, loops 

to loops, and preserves incidence. For example, the chromatic number of I is the 

smallest integer m such that there is a homomorphism from I’ to Km. 

The map f is called a covering when it is a surjective homomorphism, and for 

each vertex x of I and each edge e of A that is incident with f(x), there is a unique 

edge é of I” that is incident with x such that f(@) = e. Now I’ is called a cover of A. 

If f is a covering, then paths in A starting at a vertex y of A lift uniquely to paths 

starting at a vertex x of I”, for each x € f(y). 

The universal cover of a connected graph A is the unique tree 7 that is a cover. If 

ais a fixed vertex of A, then the vertices of T can be identified with the walks inA 

starting at a that never immediately retrace an edge, where two walks are adjacent 
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when one is the extension of the other by one more edge. The tree T will be infinite 

when A contains at least one cycle. If f is the covering map (that assigns to a walk 

its final vertex), then T has a group of automorphisms H acting regularly on the 

fibers of f. 

Given an arbitrary collection of cycles @ in A and a positive integer nc for each 

C € @, one may consider the most general cover satisfying the restriction that the in- 

verse image of the walk traversing C nc times is closed. (For example, the “universal 

cover modulo triangles” is obtained by requiring that the preimage of each triangle 

be a triangle.) There is a unique such graph, a quotient of the universal cover. Again 

the covering group (the group preserving the fibers) acts regularly on the fibers. 

Conversely, let I” be a graph and H a group of automorphisms. The quotient 

graph I'/H has as vertices the H-orbits on the vertices of I, as edges the H-orbits 

on the edges of I’, and a vertex x” is incident with an edge e when some element 

of x’ is incident with some element of e”. 
The natural projection 2 : T + I'/H is a homomorphism. It will be a covering 

when no vertex x of I" is on two edges in an orbit e”’. In this case, we also say that 

I is a cover of ’/H. 

Now, let I” be finite and f : I — A a covering. Let Ar and A, be the adjacency 

matrices of I and A. Then (Aq) ¢(x),2 = Lye f-!(z) (Ar )xy. If we view Ar and A, as 

linear transformations on the vector spaces Vr and V, spanned by the vertices of I” 

and A, and extend f to a linear map, then this equation becomes A, 0 f = foAr-. If 

u is an eigenvector of A with eigenvalue 0, then uo f (defined by (uo f)y =u f(y) 

is an eigenvector of I” with the same eigenvalue, and the same holds for Laplace 

eigenvectors and eigenvalues. (This is immediately clear, but also follows from the 

fact that the partition of VI into fibers f~'(z) is an equitable partition.) 

For example, let I~ be the path on six vertices with a loop added on both sides 

and A the path on two vertices with a loop added on both sides. Then the map 

sending vertices 1, 4, 5 of I to one vertex of A and 2, 3, 6 to the other, is a covering. 

The ordinary spectrum of A is 2,0, and hence also I has these eigenvalues. (It has 

spectrum 2, Be laOeraly 4/33) 

Thus, the spectrum of A is a subset of the spectrum of I". We can be more precise 
and indicate which subset. 

Let V = R* be the vector space spanned by the vertices of I”. Let G be a group of 
automorphisms of I”. We can view the elements g € G as linear transformations of V 
(permuting the basis vectors). Let H be a subgroup of G, and let W be the subspace 
of V fixed by H. 

Lemma 6.4.1 Let M be a linear transformation of V that commutes with all geG. 
Then M preserves W and trM|w = (1y,¢u\|n) = (1%, bu), where oy is the class 
function on G defined by $y (g) = tr gM. 

Proof The orthogonal projection P from V onto W is given by 

1 
P= — h. 

| hy 
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If M commutes with all h € H, then MPu = PMu, so M preserves the fixed space 

W, and its restriction M|w has trace trPM. Expanding P, we find trM|w = trPM = 

val Yancy tthM = (14, ¢u|x). The second equality follows by Frobenius reciprocity. 

Now assume that the map 7: I’ > I’/H is a covering. Then 1oAp = Ap jy OT. 

One can identify the vector space V-/ spanned by the vertices of I” /H with the 

vector space W: the vertex x” corresponds to Tia Ynew x" € W. This identification 

identifies Ay /;; with A lw. This means that Lemma 6.4.1 (applied with M = A) gives 

the spectrum of I"/H. In precisely the same way, for M = L, it gives the Laplace 

spectrum of '/H. 
We see that for a covering the spectrum of the quotient ’/H does not depend on 

the choice of H but only on the permutation character 1c This is Sunada’s obser- 

vation and has been used to construct cospectral graphs; see §14.2.4. ¥ 

6.5 Cayley sum graphs 

In §1.4.9, we discussed Cayley graphs for an Abelian group G. A variation is the 

concept of Cayley sum graph with sum set S in an Abelian group G. It has vertex set 

G, and two elements g,h € G are adjacent when g +h € S. (Other terms are addition 

Cayley graphs or just sum graphs.) 

It is easy to determine the spectrum of a Cayley sum graph. 

Proposition 6.5.1 ([{143]) Let I be the Cayley sum graph with sum set S in the finite 

Abelian group G. Let x run through the n = \G| characters of G. The spectrum of 

T consists of the numbers x(S) for each real x, and +|x(S)| for each pair x ,X of 

conjugate nonreal characters, where x(S) = Yscs X(S). 

Proof If ¥ : G— C* is a character of G, then Yy..X%(¥) = YsesX(S — x) = 

(Ses X(5))X(—x) = x(S)xz(x). Now I is undirected, so the spectrum is real. If 

x is a real character, then we found an eigenvector ¥ with eigenvalue VS). If ¥ is 

nonreal, then pick a constant @ with |y(S)| = a7(S). Then Re(ay) and Im(a@y) 

are eigenvectors with eigenvalues |y(S)| and —|7(S)|, respectively. O 

CHUNG [92] constructs Cayley sum graphs that are good expanders. For further 

material on Cayley sum graphs, see [6], [90], [183], [188]. 

6.5.1 (3,6)-fullerenes 

An amusing application was given by DEVOS et al. [143]. A (3,6)-fullerene is a 

cubic plane graph whose faces (including the outer face) have sizes 3 or 6. Fowler 
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conjectured (cf. [162]) that such graphs have spectrum ®U {3, —1,—1, —1} (as mul- 

tiset), where ® = —Q, and this was proved in [143]. 

For example, the graph 

has spectrum 3, /5, 1, (—1)4, —V/5 with eigenvalues 3,—1,—1,—1 together with 

the symmetric part +/5, +1. 

The proof goes as follows. Construct the bipartite double I” ® K2 of I. This is a 

cover of I”, and both triangles and hexagons lift to hexagons, three at each vertex, 

so I @ Kz is a quotient of #, the regular tesselation of the plane with hexagons. 

Let WH have vertex set H, and let [ @ K> have vertex set U, and let I have vertex 

set V. Let 7: H +U and p: U - V be the quotient maps. The graph I @ K> is 

bipartite with bipartite halves U; and U2, say. Fix a vertex a; € U; and call it 0. Now 

m~'(U,) is a lattice in R*, and m~!(a;) is a sublattice (because the concatenation 
of two walks of even length in I” starting and ending in a again is such a walk), 

so the quotient G = 2~'(U,)/m~'(a;) is an Abelian group, and G can be naturally 
identified with V. The automorphism of I" @ K2 that for each u € V interchanges the 

two vertices u1,u2 of p—'(w) lifts (for each choice of @ € m~!(az)) to an isometry of 
HA with itself that is a point reflection x 4 v—x (where v = @). It follows that if two 

edges x; y2 and zjw2 in # are parallel, then x+ y = z+w. Hence I is the Cayley 

sum graph for G where the sum set S is the set of three neighbors of a in T. 

Now the spectrum follows. By the foregoing, the spectrum consists of the values 

+|x(S)| for nonreal characters x of G, and y(S) for real characters. Since trA = 
0 and I” is cubic and not bipartite (it has four triangles) it suffices to show that 
there are precisely four real characters (then the corresponding eigenvalues must be 
3,—1,—1,-—1). But this is clear since the number of real characters is the number 
of elements of order 2 in G, an Abelian group with (at most) two generators, hence 
at most four, and fewer than four would force nonzero trA. This proves Fowler’s 
conjecture. 
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6.6 Exercises 

Exercise 6.1 Show that a (3,6)-fullerene has precisely four triangles. 
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Chapter 7 

Topology 

In our discussion of the Shannon capacity (§3.7), we encountered the Haemers in- 

variant, the minimum possible rank for certain matrices that fit a given graph. By 

far the most famous such invariant is the Colin de Verdiére invariant of a graph, an 

algebraic invariant that turns out to have a topological meaning. 

7.1 Embeddings 

An embedding of a loopless graph in R” consists of a representation of the vertices 

by distinct points in R” and a representation of the edges by curve segments between 

the endpoints such that these curve segments only intersect in endpoints. (A curve 

segment between x and y is the range of an injective continuous map ¢ from (0, 1] 

to R" with @(0) = x and @(1) =y.) 
Every finite graph can be embedded in R” if m > 3. A graph is planar if it 

admits an embedding in R*. A graph is outerplanar if it admits an embedding in 

IR? such that the points are on the unit circle and the representations of the edges 

are contained in the unit disk. A graph I is linklessly embeddable if it admits an 

embedding in R? such that no two disjoint circuits of I” are linked. (Two disjoint 

Jordan curves in R? are linked if there is no topological 2-sphere in R? separating 

them.) 

Examples of outerplanar graphs are all trees, C,, and P;. Examples of graphs that 

are planar but not outerplanar are K4, 3K, Co, and K2,—2 for n > 5. Examples of 

graphs that are not planar, but linklessly embeddable are Ks and K3,n—3 for n > 6. 

The Petersen graph and K,, for n > 6 are not linklessly embeddable. 
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7.2 Minors 

A graph minor of a graph I’ is any graph that can be obtained from I” by a se- 

quence of edge deletions and contractions, and deletion of isolated vertices. Here 

the contraction of an edge e of the graph (VI',ET’) is the operation that merges 
the endpoints of e in VI and deletes e from EI. A deep theorem of Robertson and 

Seymour [300] states that for every graph property Y that is closed under taking 

graph minors, there exists a finite list of graphs such that a graph I" has property 7 

if and only if no graph from the list is a graph minor of I”. Graph properties such as 

being planar, being outerplanar, being embeddable in some given surface, or being 

linklessly embeddable are closed under taking graph minors. For example, the Ku- 

ratowski- Wagner theorem ((248, 343]) states that a graph is planar if and only if no 

minor is isomorphic to Ks or K3 3. 

The Hadwiger conjecture [193] says that if a graph has chromatic number m, 

then it has a K,, minor. 

7.3 The Colin de Verdiére invariant 

A symmetric real matrix M is said to satisfy the strong Arnold hypothesis whenever 

there exists no symmetric nonzero matrix X with zero diagonal such that MX = O 

and MoX = O, where o denotes the componentwise (Hadamard, Schur) multiplica- 
tion. 

The Colin de Verdiére parameter u(I") of a graph I’ is defined by (see [101, 226]) 

Tre kM (LT) Frat Maca : 

where .Z7 is the set of symmetric real matrices M indexed by VI that satisfy 

(a) the strong Arnold hypothesis, 

(b) My <Oifu ~ v, and M,, = 0 if u % v (nothing is required for the diagonal 
entries of M), and 

(c) M has exactly one negative eigenvalue, of multiplicity 1. 

We agree that w(I”) = 0 if I has no vertices. 

Although (I) is an algebraic parameter, it is directly related to some important 
topological graph properties, as we shall see below. It is easily seen that (Kn) = 
n—| (take M = —J), and that u(I”) = 1 ifn > 1 and T has no edges (M must be a 
diagonal matrix with exactly one negative entry, and the strong Arnold hypothesis 
forbids two or more diagonal entries to be 0). If I has at least one edge, then w+ 

A) = max{u(I’), u(A)}. 

Theorem 7.3.1 ({101]) The Colin de Verdiére parameter (I) is graph minor 
monotone, that is, if A is a graph minor of T, then (A) < p(T). 
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In other words, for a given integer k, the property u(I) < k is closed under taking 

graph minors (see [226]). 

Theorem 7.3.2 ([{101, 263, 301]) The Colin de Verdiére parameter (I) satisfies: 

(i) w(I) < 1 ifand only if T is the disjoint union of paths. 

(ii) w(T’) <2 ifand only if T is outerplanar. 
(iii) U(I’) <3 ifand only if T is planar. 

(iv) W(D) < 4 ifand only if T is linklessly embeddable. 

(v) If I’ is embeddable in the real projective plane or in the Klein bottle, then 

PAT) a>. 
(vi) If T° is embeddable in the torus, then U(I") < 6. 
(vii) If I is embeddable in a surface S with negative Euler characteristic x¥(S), 

then W(T) <4—2y7(S). 

COLIN DE VERDIERE [101] conjectures that y(I") < w(I-) +1 for all I’, where 
x (I) is the chromatic number of I. (This would follow immediately from the Had- 
wiger conjecture.) If true, this would imply the four-color theorem. 

VAN DER HOLST [224] gave a self-contained proof for (iii) above: 

Proposition 7.3.3 If I is planar, then u(I-) < 3. 

Proof Suppose I is a counterexample. Add edges until I” is maximally planar— 

(I) does not decrease. Now I’ is 3-connected and contains a triangle xyz that is 

a face. Let M € -Yf satisfy u(I) = corankM. Then corankM > 3 so that kerM 
contains a nonzero vector u with u, = uy = uz = 0. Choose u with minimal support. 

Since I’ is 3-connected, there exist three pairwise disjoint paths P; (i= 1,2,3), 

where each P; starts in a vertex v; outside suppu adjacent to some vertex of suppu, 

and ends in xyz. 

Since Mu = 0, the vertices v; are all adjacent to both supp~ u and supp<u. By 

Proposition 5.3.2, both supp~ u and supp< u induce connected subgraphs of I” and 

hence can be contracted to a point. Also contract each path P; to a point, and add a 

vertex a inside the triangle xyz adjacent to each of its vertices. The resulting graph 

is still planar but contains K3,3, a contradiction. 

7.4 The Van der Holst-Laurent-Schrijver invariant 

VAN DER HOLST, LAURENT & SCHRIJVER [225] define the graph invariant A(I°) 

of a graph I = (V,E) as the largest integer d for which there exists a d-dimensional 

subspace X of RY such that for each nonzero x € X the positive support supp~ (x) 

(cf. §5.3) induces a (nonempty) connected subgraph of I’. (All results in this section 

are from [225].) 

Lemma 7.4.1 One has A(T’) =d if and only if there isa map @:V > R? such that 

for each open halfspace H in R? the set ¢~'(H) induces a (nonempty) connected 

subgraph of I. 
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Proof Given X, with basis x;,...,xg, let 6(v) = (x1(v),...,x%a(v)). Conversely, 
given @, define X to be the collection of maps sending v € V to c' (v), where 
cER?. 

Proposition 7.4.2 /f A is a minor of T, then A(A) < A(L). 

Proof Given a suitable map y: V(A) > R¢ as above, we construct a suitable map 

¢. There are three cases. (i) If A arises from I” by deletion of an isolated vertex v, 

then let @(u) = w(u) for u £ v, and $(v) = 0. (ii) If A arises from I" by deletion of 
an edge e, then let @ = yw. (iii) If A arises from I” by contraction of an edge e = uv 

to a single vertex w, then let @(u) = @(v) = w(w), and @(z) = w(z) forzAu,v. O 

One has A(K,) =n-—1. More generally, if I" is the 1-skeleton of a d-dimensional 

convex polytope, then A (I") > d. In particular, A(I”) > 3 if I is a 3-connected planar 

graph. If A is obtained from I" by deleting a single vertex, then A(I.) < A(A) +1. 
Let Vg be the Cayley graph with vertex set Zg and difference set {+1,4}. We have 

the analogue of Theorem 7.3.2: 

Proposition 7.4.3. (i) A(I’) < 1 ifand only if T has no k3 minor. 
(ii) A(I’) <2 if and only if T has no K4 minor. 

(iii) A(I’) <3 if and only if has no Ks or Vg minor. 

(iv) A(T’) <4 ifT is linklessly embeddable. 

Many further minor-monotone algebraic graph invariants have been proposed. 

Often these can be related to topological embeddability properties. 



Chapter 8 

Euclidean Representations 

The main goal of this chapter is the famous result of CAMERON, GOETHALS, 

SEIDEL & SHULT [84] characterizing graphs with smallest eigenvalue not less than 

—2. 

8.1 Examples 

We have seen examples of graphs with smallest eigenvalue Onin => —2. The most 

important example is formed by the line graphs (see §1.4.5), and people wanted to 

characterize line graphs by this condition and possibly some additional hypotheses. 

Another series of examples are the so-called cocktail party graphs, the graphs 

Km x2, i.€., MK, with spectrum 2m — 2, 0”, (2) For m > 4, these are not line 

graphs. 

And there are exeptional examples like the Petersen graph (with spectrum 3 f° 

(—2)4), lots of them. It is easy to see that the Petersen graph is not a line graph. 

More generally, no line graph can have a 3-claw, that is, an induced K,3 subgraph, 

as is immediately clear from the definition. 

8.2 Euclidean representation 

Suppose the graph I" has smallest eigenvalue Onin > —2. Then A + 2/ is positive 

semidefinite, so that A + 2/ is the Gram matrix of a collection of vectors in some 

Euclidean space R”™ (where m = rk (A + 2/)), cf. §2.9. 

In this way we obtain a map x +> x from vertices of I to vectors in IR”, where 

OM Kuary 

(US a sy. 

Oifx % y. 
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The additive subgroup of R” generated by the vectors x, for x in the vertex set 

X of I, is a root lattice: an integral lattice generated by roots: vectors with squared 

length 2. Root lattices have been classified. That classification is the subject of the 

next section. 

8.3 Root lattices 

We start with an extremely short introduction to lattices. 

Lattice 

A lattice A is a discrete additive subgroup of R”. Equivalently, it is a finitely gener- 

ated free Z-module with positive definite symmetric bilinear form. 

Basis 

Assume that our lattice A has dimension y, i.e., spans R”. Let {a1,...,a,} be a Z- 

basis of A. Let A be the matrix with the vectors a; as rows. If we choose a different 

Z-basis {b,...,bn}, so that b; = ¥\s;ja;, and B is the matrix with the vectors b; as 

rows, then B = SA, with S = (s;;). Since S is integral and invertible, it has deter- 

minant +1. It follows that |detA| is uniquely determined by A, independent of the 
choice of basis. 

Volume 

R"/A is an n-dimensional torus, compact and with finite volume. Its volume is the 

volume of the fundamental domain, which equals |detA|. If A’ is a sublattice of A, 

then vol(R"/A‘) = vol(R"/A).|A/A’|. 

Gram matrix 

Let G be the matrix (a;,a;) of inner products of basis vectors for a given basis. Then 

G=AA!', so vol(R"/A) = VdetG. 

Dual lattice 

The dual A* of a lattice A is the lattice of vectors having integral inner products with 

all vectors in A: A* = {x € R" | (x,r) € Z for all r € A}. It has a basis {a*,...,a*} 
defined by (a*,a;) = 6;;. Now A*A! =J, so A* = (A7')" and A* has Gram matrix 
G* = G~!. It follows that vol(R"/A*) = vol(R"/A)~!. We have A** = A. 

Integral lattice 

The lattice A is called integral when every two lattice vectors have an integral inner 
product. For an integral lattice A one has A C A*. 

The lattice A is called even when (x,x) is an even integer for each x € A. An 
even lattice is integral. 
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Discriminant 

The determinant, or discriminant, disc A of a lattice A is defined by disc A = detG. 

When A is integral, we have discA = |A*/A|. 
A lattice is called self-dual or unimodular when A = A%*, i.e., when it is integral 

with discriminant 1. An even unimodular lattice is called type II, and the remain- 

ing unimodular lattices are called type I. It can be shown that if there is an even 

unimodular lattice in R”, then n is divisible by 8. 

Direct sums 

If A and A’ are lattices in R” and R"”, respectively, then A | A’, the orthogonal 

direct sum of A and A’, is the lattice {(x,y) € R"™” |x € A and y € A’}. A lattice is 
called irreducible when it is not the orthogonal direct sum of two nonzero lattices. 

8.3.1 Examples 

(i) Z” 

The lattice Z” is unimodular, type I. 

(ii) Ag 

e 

2r+s ne 

o5«e =e 

The triangular lattice in the plane R? has basis {r,s}. Choose the scale such that r 

has length 2. Then the Gram matrix is G = ( Ard , so detG = 3 and p,g € A. 
—-1 2 

A fundamental region for A2 is the parallelogram on 0,7,s. A fundamental region 

for A} is the parallelogram on 0, p,q. Note that the area of the former is thrice that 

of the latter. 

The representation of this lattice in IR? has nonintegral coordinates. It is easier to 

work in R?, on the hyperplane ¥,x; = 0, and choose r = (1,—1,0), s = (0,1,—1). 

Then A> consists of the points (x1 ,x2,x3) with x; € Z and x; = 0. The dual lattice 

A} consists of the points (x1,x2,%3) with xy = x2 = x3 (mod 1) and }/x; = 0 (so that 

3x; € Z). It contains, for example, p = 4 (2r+ = (, —4, —4). 
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(iii) Eg 

Let p : Z” — 2” be coordinatewise reduction mod 2. Given a binary linear code 

C, the lattice p~'(C) is integral, since it is contained in Z”, but never unimodular, 

unless it is all of Z”, a boring situation. 

Now suppose that C is self-orthogonal, so that any two code words have an even 

inner product. Then A(C) = FP '(C) is an integral lattice. If dimC = k, then 

we have vol(R"/p~!(C)) = 2”-* and hence vol(R"”/A(C)) = 2"/2-*. In particular, 
A(C) will be unimodular when C is self-dual, and even when C is “doubly even”, 

i.e., has weights divisible by 4. 

Let C be the [8,4,4] extended Hamming code. Then A(C) is an even unimodular 

8-dimensional lattice known as Eg. 

The code C has weight enumerator 1 + 14X4+X® (that is, has one word of weight 

0, 14 words of weight 4, and one word of weight 8). It follows that the roots (vectors 

r with (7,r) = 2) in this incarnation of Eg are the 16 vectors +; (2,0,0,0,0,0, 0,0) 

(with 2 in any position), and the 16-14 = 224 vectors oa (+1, +1, +1,+1,0,0,0,0) 

with +1 in the nonzero positions of a weight 4 vector. Thus, there are 240 roots. 

8.3.2 Root lattices 

A root lattice is an integral lattice generated by roots (vectors r with (r,r) = 2). For 

example, Az and Ex are root lattices. 

The set of roots in a root lattice is a (reduced) root system , i.e., satisfies 

(i) Ifr € ® and Ar € O, then A = +1. 

(ii) ® is closed under the reflection w, that sends s to s — 215}, for each re @. 

(iii) 2723 € Z. 

Since ® generates A and @ is invariant under W = (w, | r € ®), the same holds 
for A, so root lattices have a large group of automorphisms. 

A fundamental system of roots IT in a root lattice A is a set of roots generating A 
and such that (7,5) < 0 for distinct r,s € IT. A reduced fundamental system of roots 
is a fundamental system that is linearly independent. A nonreduced fundamental 
system is called extended. 

For example, in Az the set {r,s} is a reduced fundamental system, and {r,s,—r— 
s} is an extended fundamental system. 

The Dynkin diagram of a fundamental system IT such that (r,s) 4 —2 for r,s € IT 
is the graph with vertex set IT where r and s are joined by an edge when (r,s) = —1. 
(The case (r,s) = —2 happens only for a nonreduced system with A, component. In 
that case we do not define the Dynkin diagram.) 

Every root lattice has a reduced fundamental system: Fix some vector u, not 
orthogonal to any root. Put *(u) = {r € ® | (r,u) > O} and I (w) = {r € ®t (uw) |r 
cannot be written as s+¢ with s,t € ®*(u)}. Then IT(u) is a reduced fundamental 



8.3. Root lattices 109 

system of roots, and written on this basis each root has only positive or only negative 

coefficients. 

(Indeed, if r,s € II(u) and (r,s) = 1, then say r—s € ®*(u) andr=(r—s)+s, 

contradiction. This shows that IT(u) is a fundamental system. If > y-r = 0, then 
separate the y, into positive and negative ones to get ) ar = ) B,s = x A 0, where 

all coefficients a,, B; are positive. Now 0 < (x,x) = ¥a,B; (r,s) < 0, a contradiction. 
This shows that IT(u) is reduced. Each root in ®* (u) has an expression over IT(u) 

with only positive coefficients.) 

Proposition 8.3.1 Let IT be a reduced fundamental system. 

(i) For all x € R" there is aw € W such that (w(x),r) > 0 for all r € I. 

(ii) IT = IT(u) for some u. (That is, W is transitive on reduced fundamental sys- 

tems.) 

(iii) If A is irreducible, then there is a unique * € ® such that II U {7} is an 

extended fundamental system. 

Proof (i) Let G be the Gram matrix of IT, and write A = 2/ —G. Since G is positive 

definite, A has largest eigenvalue less than 2. Using the Perron-Frobenius theorem, 

let y= (%)rem be a positive eigenvector of A. If (x,s) < 0 for some s € IT, then put 

x’ =w,(x) =x—(x,5)s. Now 

CA ee (x Ltr) (GY) NK, 3) S204 Lv). 

But W is finite, so after finitely many steps we reach the desired conclusion. 

(ii) Induction on |IT|. Fix x with (x,r) > 0 for all r € I. Then Ip = Trees 
is a fundamental system of a lattice in a lower-dimensional space, so of the form 

Tp = Tp(uo). Take u = x + Eup for small € > 0. Then IT = IT(u). 
(iii) If r € ®*(u) has maximal (r,u), then 7 = —r is the unique root that can 

be added. It can be added, since (7,5) > 0 means (r,s) < 0, so that r +s is a root, 

contradicting the maximality of r. And it is unique because linear dependencies of 

an extended system correspond to an eigenvector with eigenvalue 2 of the extended 

Dynkin diagram, and by the Perron-Frobenius theorem there is, up to a constant, 

a unique such eigenvector when the diagram is connected, that is, when A is irre- 

ducible. O 

8.3.3 Classification 

The irreducible root lattices one finds are Ay (n > 0), Dy, (n > 4), Eo, E7, Eg. Each 

is defined by its Dynkin diagram. 

(1) An: The lattice vectors are the x € Z'+! with ¥x; = 0. There are n(n + 1) 

roots: e; —é; (i ve j). The discriminant isn+1, and Aj,/An = Z,+1, with the quotient 

generated by 4 (ey +--+ +en —Nen+1) € Ap. 
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(e =€n41) 

pc
r 

€n+1 — €n (oie | €3°>'€2 

(2) Dn: The lattice vectors are the x € Z” with ¥ x; = 0 (mod 2). There are 2n(n — 

1) roots te; +e; (i # j). The discriminant is 4, and D*/D, is isomorphic to Z4 
when n is odd, and to Z2 x Zz when n is even. D7 contains e; and $(e +-+++e,). 

Note that D3 = A3. 

ey te (—€n—1 —€n) 

€n—1 — €n-2 €n — €n-1 (eX S| 3 —1e7 

(3) Eg: (Recall that we already gave a construction of Eg from the Hamming 

code.) The lattice is the span of Dg and c := $(e +--++eg). There are 240 = 

112 + 128 roots, of the forms +e; +e; (i # J) and $(te +---+eg) with an even 
number of minus signs. The discriminant is 1, and Eo = Eg. 

5(1,1,1,-1,-1,-1,-1,1) 

7 —e| €3—e2 €4 —€3 5 —e4 & — es e7-& —e7—eg (c) 

(4) E7: Take E7 = Eg c+. There are 126 = 56 +70 roots. The discriminant is pa 
and E} contains $(1,1,1,1,1,1,—3, —3). 

5(1,1,1,—-1,-1,—1,-1,1) 

(e1—eg) e2-e €3 —e2 €4 — 63 e5 —e4 6 — €5 €7 — & 

(5) Eo: For the vector d = —e7 — eg, take Eg = Eg {c,d}+. There are 72 = 32 + 
40 roots. The discriminant is 3, and E% contains the vector F(1, 1 iil, 22.0.0): 
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(e7 — eg) 

$(1,1,1,-1,-1,-1,-1,1) 

eor— er es 3 4 —'€3 €5 — &4 € — @€5 

That this is all is an easy consequence of the Perron-Frobenius theorem: A = 2] — 

G is the adjacency matrix of a graph, namely the Dynkin diagram, and this graph 

has largest eigenvalue at most 2. These graphs were determined in Theorem 3.1.3. 

The connected graphs with largest eigenvalue less than 2 are the Dynkin diagrams of 

reduced fundamental systems of irreducible root systems, and the connected graphs 

with largest eigenvalue 2 are the Dynkin diagrams of extended root systems. 

In the pictures above, the reduced fundamental systems were drawn with black 

dots, and the additional element of the extended system with an open dot (and a 

name given in parentheses). 

8.4 The Cameron-Goethals-Seidel-Shult theorem 

Now return to the discussion of connected graphs I" with smallest eigenvalue @nin = 

—2. In 88.2 we found a map x ++ x from the vertex set X of I’ to some Euclidean 

space IR” such that the inner product (x,y) takes the value 2, 1,0 whenx=y,x ~ y 

and x % y, respectively. 
Let = be the image of X under this map. Then generates a root lattice A. Since 

T is connected, the root lattice is irreducible. 

By the classification of root lattices, it follows that the root lattice is one of Ay, 

Dy, Eo, E7, or Eg. Note that the graph is determined by 2, so the classification of 

graphs with Onin > —2 is equivalent to the classification of subsets ® of the root 

system with the property that all inner products are 2, 1, or 0, i.e., are nonnegative. 

Now A,, and D,, can be chosen to have integral coordinates, and Eg C E7 C Eg, 

so we have the two cases (i) © c Zt! and (ii) Y C Eg. A graph is called excep- 

tional in case (ii). Since Eg has a finite number of roots, there are only finitely many 

exceptional graphs. 

In case (i) one quickly sees what the structure of I” has to be. Something like 

a line graph with attached cocktail party graphs. This structure has been baptised 

generalized line graph. The precise definition will be clear from the proof of the 

theorem below. 

Theorem 8.4.1 (i) Let C be a connected graph with smallest eigenvalue Onin = 

—2. Then T is either a generalized line graph or one of finitely many exceptions, 

represented by roots in the Eg lattice. 
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(ii) A regular generalized line graph is either a line graph or a cocktail party 

graph. 

(iii) A graph represented by roots in the Eg lattice has at most 36 vertices, and 

every vertex has valency at most 28. 

Proof (i) Consider the case © Cc Z’”"*!, Roots in Z”*! have shape te; +e je if 

some e; has the same sign in all o € X in which it occurs, then choose the basis 

such that this sign is +. Let J be the set of all such indices i. Then {x | * = ej + 
e; for some i, j € J} induced a line graph in I”, with x corresponding to the edge 

ij on J. If j ¢ J, then e; occurs with both signs, and there are o,t € X with o = 

+e; +e; and t = te, — e;. Since all inner products in X are nonnegative, i = 7’ 

with i € J, and o =e; +e;, T = e; — e;. Thus, i is determined by j and we have 

amap @: j++ 7 from indices outside J to indices in J. Now for each i € J the set 

{x | ¥ =e; +e; for some j with (j) =i} induces a cocktail party graph. Altogether 
we see in what way I is a line graph with attached cocktail party graphs. 

(ii) Now let I” be regular. A vertex x with x = e; — e; is adjacent to all vertices 

with image e; + e, different from e;+e;. But a vertex y with y = e; +e, where i,k €1 

is adjacent to all vertices with image e; +e, without exception (and also to vertices 

with image e, te;). Since I” is regular, both types of vertices cannot occur together, 

so that I” is either a line graph or a cocktail party graph. 

(iii) Suppose 2 C Eg. Consider the 36-dimensional space of symmetric 8 x 8 

matrices, equipped with the positive definite inner product (P,Q) = trPQ. Associ- 
ated with the 240 roots r of Eg are 120 rank 1 matrices P. = rr! with mutual inner 

products (P,,P,;) =trrr'ss' = (r,s)?. The Gram matrix of the set of P, for r € ¥ is 
G = 41 +A. Since G is positive definite (it has smallest eigenvalue > 2), the vectors 

P, are linearly independent, and hence |Z| < 36. 

Finally, let r be a root of Eg. The 56 roots s of Eg that satisfy (r,s) = 1 fall into 
28 pairs s,s’ with (s,s’) = —1. So, Y can contain at most one member from each of 

these pairs, and each vertex of I” has valency at most 28. LJ 

The bounds in (ii) are best possible: Take the graph Kg + L(Kg) and add edges 
joining i € Kg with jk € L(Kg) whenever i, j,k are distinct. This graph has 36 ver- 
tices, the vertices in Kg have 28 neighbors, and the smallest eigenvalue is —2. A 

representation in Eg is given by i> 5(e +:+++eg)—e and jk e; +e. 
There is a large amount of literature on exceptional graphs. 

8.5 Further applications 

The basic observation of this chapter is that if M is a symmetric positive semidefinite 
matrix, then M is the Gram matrix of a collection of vectors in some Euclidean 
space. Now one can use the geometry of Euclidean space to study the situation. 

If the adjacency matrix A of a graph has smallest eigenvalue —m, then A + ml is 
positive semidefinite, and this technique can be used. 
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More generally, if f is a polynomial such that f(@) > 0 for all eigenvalues @ of 

A, then f(A) is positive semidefinite, hence a Gram matrix. For example, in 89.7.4 

below we sketch a uniqueness proof for a graph using the fact that 4J — (A —2/)(A+ 

61) is positive semidefinite. 
This applies in particular to distance-regular graphs, where the idempotents pro- 

vide Euclidean representations, cf. §12.10. 

8.6 Exercises 

Exercise 8.1 Show that the following describes a root system of type E¢. Take 

the following 72 vectors in R?: 18 vectors +(u,0,0), +(0,u,0), +(0,0,u),-where 
u € {(1,—1,0),(0,1,—-1),(—1,0,1)}, and 54 vectors +(u,v,w), where u,v,w € 

(G-$-PCRE DEH) 
Exercise 8.2 Show that the following describes a root system of type E7. Take 

the following 126 vectors in R’: 60 vectors te;+e; with 1 <i< j <6, and 64 

WECUOTS (11,9 3.6; Zi) with x; = +3, where an even number of x; has + sign, and 

2 vectors +(0,...,0, V2). 
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Chapter 9 

Strongly Regular Graphs 

9.1 Strongly regular graphs 

A graph (simple, undirected, and loopless) of order v is called strongly regular with 

parameters v, k, A, {1 whenever it is not complete or edgeless and 

(i) each vertex is adjacent to k vertices, 

(ii) for each pair of adjacent vertices there are A vertices adjacent to both, 

(iii) for each pair of nonadjacent vertices there are [ vertices adjacent to both. 

We require that both edges and nonedges occur, so that the parameters are well- 

defined. 
In association scheme terminology (cf. §11.1), a strongly regular graph is a sym- 

metric association scheme with two (nonidentity) classes, in which one relation is 

singled out to be the adjacency relation. 

9.1.1 Simple examples 

Easy examples of strongly regular graphs: 

(i) A quadrangle is strongly regular with parameters (4,2,0,2). 

(ii) A pentagon is strongly regular with parameters (5,2,0, Dy): 

(iii) The 3 x 3 grid, the Cartesian product of two triangles, is strongly regular 

with parameters (9,4, 1,2). 

(iv) The Petersen graph is strongly regular with parameters (10, 3,0, 1). 

(Each of these graphs is uniquely determined by its parameters, so if you do not 

know what a pentagon is, or what the Petersen graph is, this defines it.) 

Each of these examples can be generalized in numerous ways. For example, 

(v) Let g = 4t + 1 be a prime power. The Paley graph Paley(q) is the graph with 

the finite field F, as vertex set, where two vertices are adjacent when they differ by 
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a (nonzero) square. It is strongly regular with parameters (4¢ + 1,2t,t — 1,t), as we 

shall see below. Doing this for g = 5 and g = 9, we find Examples (ii) and (iii) again. 

For g = 13 we find a graph that is locally a hexagon. For g= 17 we find a graph that 

is locally an 8-gon + diagonals. 

(vi) The m x m grid, the Cartesian product of two complete graphs on m vertices, 

is strongly regular with parameters (m*,2(m—1),m—2,2) (for m > 1). For m=2 

and m = 3, we find Examples (1) and (iii) again. 

(vii) The complete multipartite graph K,,~q, with vertex set partitioned into m 

groups of size a, where two points are adjacent when they are from different groups, 

is strongly regular with parameters (ma, (m—1)a,(m—2)a,(m—1)a) (form > 1 and 
a> 1). Form=a=2, we find Example (i) again. 

The complement of a graph T is the graph I" with the same vertex set as I, where 

two vertices are adjacent if and only if they are nonadjacent in I”. The complement 

of a strongly regular graph with parameters (v,k,A, 1) is again strongly regular, and 

has parameters (v,v—k—1,v—2k+fs—2,v—2k+A). (Indeed, we keep the same 
association scheme, but now single out the other nonidentity relation.) 

(viii) The Paley graph Paley(q) is isomorphic to its complement. (Indeed, an 

isomorphism is given by multiplication by a nonsquare.) In particular, we see that 

the pentagon and the 3 x 3 grid are (isomorphic to) their own complements. 

(ix) The disjoint union mK, of m complete graphs of size a is strongly regular 

with parameters (ma,a —1,a—2,0) (for m> 1 and a> 1). These graphs are the 

complements of those in Example (vii). 

(x) The triangular graph on the pairs in an m-set, denoted by T(m), or by (‘), 
has these pairs as vertices, where two pairs are adjacent whenever they meet in one 

point. These graphs are strongly regular, with parameters (('}),2(m—2),m—2,4), 
if m > 4. For m= 4 we find K3.2. For m= 5 we find the complement of the Petersen 

graph. 

The four parameters are not independent. Indeed, if 4 0 we find the relation 

by counting vertices at distance 0, 1, and 2 froma given vertex. 

9.1.2 The Paley graphs 

We claimed above that the Paley graphs (with vertex set IF,, where q is a prime power 
congruent | mod 4, and where two vertices are adjacent when their difference is a 
nonzero square) are strongly regular. Let us verify this. 

Proposition 9.1.1 The Paley graph Paley(q) with q = 4t +1 is strongly regular with 
parameters (v,k,A,M) = (4t + 1,2t,t—1,t). Ithas eigenvalues k, (—1+ /q)/2 with 
multiplicities 1, 2t, 2t, respectively. 
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Proof The values for v and k are clear. Let y : F, + {—1,0,1} be the quadratic 

residue character defined by 7(0) = 0, x(x) = 1 when x is a (nonzero) square, 
and 7(x) = —1 otherwise. Note that >, v(x) = 0, and that for nonzero a we have 

YX (2? — az) = Devo x (1 - +) =—1. Now A and p follow from 

4 > LQ =x) PN (ey) +1) = 41 = 24(x=y) + (2). 
Pes Z#X,Y 

For the spectrum, see Theorem 9.1.3 below. 

9.1.3 Adjacency matrix 

For convenience we call an eigenvalue restricted if it has an eigenvector perpendic- 

ular to the all-1 vector 1. 

Theorem 9.1.2 For a simple graph T of order v, not complete or edgeless, with 

adjacency matrix A, the following are equivalent: 

(i) T is strongly regular with parameters (v,k,A,W) for certain integers k, A, |. 

(ii) AX =(A—p)A+(k—p)I+ J for certain real numbers k, A, |. 
(iii) A has precisely two distinct restricted eigenvalues. 

Proof The equation in (ii) can be rewritten as 

A? =k1+AA+p(J—I-A). 

Now (i) <=> (ii) is obvious. 

(ii) > (iii): Let p be a restricted eigenvalue, and u a corresponding eigenvector 

perpendicular to 1. Then Ju = 0. Multiplying the equation in (ii) on the right by 

u yields p? = (A—p)p + (k—L). This quadratic equation in p has two distinct 

solutions. (Indeed, (A — 1)? = 4(u —k) is impossible since uw <k and A <k—1.) 

(iii) > (ii): Let r and s be the restricted eigenvalues. Then (A — rI)(A —sI) = a&J 

for some real number a. So A? is a linear combination of A, J, and J. 

9.1.4 Imprimitive graphs 

A strongly regular graph is called imprimitive if it, or its complement, is discon- 

nected, and primitive otherwise. Imprimitive strongly regular graphs are boring. 

If a strongly regular graph is not connected, then u = 0 and k= A +1. And 

conversely, if = 0 or k = A +1 then the graph is a disjoint union aK, of some 

number a of complete graphs Ky». In this case v= am, k =m—1,A =m—2,=0 

and the spectrum is (m—1)%, (—1)4"-). 
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If the complement of a strongly regular graph is not connected, then k = pw. And 

conversely, if k = pt then the graph is the complete multipartite graph Kam, the 

complement of aK, with parameters v = am, k = pb = (a—1)m, A = (a—2)m and 

spectrum (a—1)m!, 04-1), (—m)2-!. 
Let r and s (r > s) be the restricted eigenvalues of A. For a primitive strongly 

regular graph one hask > r > O ands < —1. 

9.1.5 Parameters 

Theorem 9.1.3 Let I" be a strongly regular graph with adjacency matrix A and 

parameters (v,k,A,u). Let r and s (r > s) be the restricted eigenvalues of A and let 
f, g be their respective multiplicities. Then 

(i) k(k-1—2)=p(v—k—1). 
(ii) rs=p—k, r+s=A-wp. 

(iti) fF, g@= $(v—1 = Cy 
(iv) Ifr and s are nonintegral, then f = g and (v,k,A,) = (4t +1,2t,t—1,t) for 

some integer t. 

Proof (i) Fix a vertex x of I. Let (x) and A(x) be the sets of vertices adja- 
cent and nonadjacent to x, respectively. Counting in two ways the number of edges 

between I(x) and A(x) yields (i). The equations (ii) are direct consequences of The- 

orem 9.1.2(ii), as we saw in the proof. Formula (iii) follows from f +g = v—1 and 

O=traceA=k+ fr+gs=k+4(r+s)(f+g)+ 5(r—s)(f —g). Finally, if f 4 g, 
then one can solve for r and s in (iii) (using (ii)) and find that r and s are rational, 

and hence integral. But f = g implies (u — A)(v— 1) = 2k, which is possible only 
foru—A=1,v=2k+1. O 

These relations imply restrictions for the possible values of the parameters. 
Clearly, the right-hand sides of (iii) must be positive integers. These are the so- 
called rationality conditions. 

9.1.6 The half case and cyclic strongly regular graphs 

The case of a strongly regular graph with parameters (v,k,A,) = (4¢+1,2r,t—1,1) 
for some integer tf is called the half case. Such graphs are also called conference 
graphs. If such a graph exists, then v is the sum of two squares, see Theorem 10.4.2 
below. The Paley graphs (89.1.2, §10.4, §13.6) belong to this case, but there are 
many further examples. 

A characterization of the Paley graphs of prime order is given by 
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Proposition 9.1.4 (KELLY [240], BRIDGES & MENA [44]) A strongly regular 

graph with a regular cyclic group of automorphisms is a Paley graph with a prime 

number of vertices. 

(See the discussion of translation association schemes in [54], §2.10. This result 

has been rediscovered several times.) 

9.1.7 Strongly regular graphs without triangles 

As an example of the application of the rationality conditions we classify the 

strongly regular graphs of girth 5. 

Theorem 9.1.5 (HOFFMAN & SINGLETON [220]) Suppose (v,k,0,1) is the pa- 
rameter set of a strongly regular graph. Then (v,k) = (5,2), (10,3), (50,7) or 

(3250,57). 

Proof The rationality conditions imply that either f = g, which leads to (v,k) = 

(5,2), or r—s is an integer dividing (r+ s)(v—1) +2k. By Theorem 9.1.3(i)-(ii) 

we have 

s=—r—-1,k=rP+4+r4+1, v= ae 

and thus we obtain r= 1, 2 or 7. 

The first three possibilities are uniquely realized by the pentagon, the Petersen 

graph and the Hoffman-Singleton graph. For the last case existence is unknown (but 

seer tS: L): 
More generally we can look at strongly regular graphs of girth at least 4. Seven 

examples are known. 

(i) The pentagon, with parameters (5,2,0, 1). 

(ii) The Petersen graph, with parameters (10,3,0,1). This is the complement of 

the triangular graph T (5). 

(iii) The folded 5-cube, with parameters (16,5,0,2). This graph is obtained from 

the 5-cube 2° on 32 vertices by identifying antipodal vertices. (The complement of 

this graph is known as the Clebsch graph.) 

(iv) The Hoffman-Singleton graph, with parameters (50,7,0,1). There are many 

constructions for this graph, cf., e.g., [54], §13.1. A short one, due to N. Robertson, 

is the following. Take 25 vertices (i, j) and 25 vertices (i, j)’ with i,j € Zs, and 

join (i,j) with (i,j +1), (i, 7)’ with (i,j +2)’, and (i,k) with (j,ij +k)! for all 

i, j,k € Zs. Now the subsets (i, *) become pentagons, the (i, «)’ become pentagons 

(drawn as pentagrams), and each of the 25 unions of (i,*) with ( j,*)' induces a 

Petersen subgraph. 

(v) The Gewirtz graph, with parameters (56, 10,0,2). This is the graph with as 

vertices the 77 — 21 = 56 blocks of the unique Steiner system $(3,6,22) not con- 

taining a given symbol, where two blocks are adjacent when they are disjoint. It isa 

subgraph of the following. 
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(vi) The M2 graph, with parameters (77, 16,0,4). This is the graph with as ver- 

tices the 77 blocks of the unique Steiner system S(3,6,22), adjacent when they are 

disjoint. It is a subgraph of the following. 

(vii) The Higman-Sims graph, with parameters (100,22,0,6). This is the graph 

with as 1+22+77 vertices an element 9, the 22 symbols of S(3,6,22), and the 

77 blocks of S(3,6,22). The element oo is adjacent to the 22 symbols, each symbol 

is adjacent to the 21 blocks containing it, and blocks are adjacent when disjoint. 

The (rank 3) automorphism group of this graph is HS.2, where HS is the sporadic 

simple group of Higman and Sims. This graph can be partitioned into two halves, 

each inducing a Hoffman-Singleton graph, cf. [54], §13.1. 

Each of these seven graphs is uniquely determined by its parameters. It is un- 

known whether there are any further examples. There are infinitely many feasi- 

ble parameter sets. For the parameters (324,57,0,12) nonexistence was shown in 

GAVRILYUK & MAKHNEV [168] and in KASKI & OSTERGARD [239]. 

9.1.8 Further parameter restrictions 

Except for the rationality conditions, a few other restrictions on the parameters are 

known. We mention two of them. The Krein conditions, due to SCOTT [311], can be 

stated as follows: 

(r+1)(k+r+2rs) < (k+r)(s+1)?, 

(s+1)(k+s5+2rs) < (k+s)(r+1)?. 

When equality holds in one of these, the subconstituents of the graph (the induced 

subgraphs on the neighbors and on the nonneighbors of a given point) are both 

strongly regular (in the wide sense) again. For example, in the Higman-Sims graph 
with parameters (v,k,A,u) = (100,22,0,6) and k,r,s = 22,2, —8, the second sub- 
constituent of any point has parameters (77, 16,0,4). 

Seidel’s absolute bound for the number of vertices of a primitive strongly regular 
graph (see Corollary 10.6.8 below) reads 

v< f(f+3)/2, v< g(g+3)/2. 

For example, the parameter set (28,9,0,4) (spectrum 9! 17! (—5)®) is ruled out both 
by the second Krein condition and by the absolute bound. 

A useful identity is an expression for the Frame quotient (cf. [54], 2.2.4 and 
2.7.2). One has 

fg(r—s)? =vk(v—1— k) 

(as is easy to check directly from the expressions for f and g given in Theorem 
9.1.3 (iii)). From this one immediately concludes that if v is prime, then r — 5 = Jv 
and we are in the “half case” (v,k,A, pL) = (4t + 1,2¢,t — 1,1). 

The Frame quotient, Krein conditions, and absolute bound are special cases of 
general (in)equalities for association schemes—see also §11.4 below. In BROUWER 
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& VAN LINT [62] one may find a list of known restrictions and constructions. It is a 

sequel to HUBAUT [229]’s earlier survey of constructions. 

Using the above parameter conditions, NEUMAIER [284] derives the U-bound: 

Theorem 9.1.6 For a primitive strongly regular graph wb < s°(2s +3). If equality 

holds, then r = —s?(2s +3). 

Examples of equality in the u-bound are known for s = —2 (the Schlafli graph, 

with (v,k,A,u) = (27,16, 10,8)) and s = —3 (the complement of the McLaughlin 

graph, with (v,k,A,u) = (275, 162, 105,81)). 
BROUWER & NEUMAIER [64] showed that a connected partial linear space with 

girth at least 5 and more mee one line, in which every point is collinear with m other 

points, contains at least 5 m(m-+ 3) points. It follows that a strongly regular graph 

with pt = 2 either has k > 5A(A +3) or has (A + 1)|k. 
BAGCHI [15] showed that any Kj,;,2-free strongly regular graph is either the 

collinearity graph of a generalized quadrangle (cf. §9.6 below) or satisfies k > (A + 

1)(A +2). (It follows that in the above condition on pf = 2 the (A + 1)|k alternative 

only occurs for the m x m grid, where m = A + 2.) 

9.1.9 Strongly regular graphs from permutation groups 

Suppose G is a permutation group, acting on a set 2. The rank of the action is the 

number of orbits of G on Q x Q. (These latter orbits are called orbitals.) If R is an 

orbital, or a union of orbitals, then (2,R) is a directed graph that admits G as group 

of automorphisms. 
If G is transitive of rank 3 and its orbitals are symmetric (for all x,y € Q the 

pairs (x,y) and (y,x) belong to the same orbital), say with orbitals /, R, S, where 

I = {(x,x) | x € Q}, then (Q,R) and (Q,S) form a pair of complementary strongly 

regular graphs. 

For example, let G be Sym() acting on a set & of size 5. This action induces an 

action on the set Q of unordered pairs of elements in X, and this latter action is rank 

3, and gives the pair of graphs T(5) and TB), where this latter graph is the Petersen 

graph. 

The rank 3 groups have been classified by the combined effort of many people, 

including Foulser, Kallaher, Kantor, Liebler, Liebeck and Saxl, see [238, 254, 255, 

73). 

9.1.10 Strongly regular graphs from quasisymmetric designs 

As an application of Theorem 9.1.2, we show that quasisymmetric block designs 

give rise to strongly regular graphs. A quasisymmetric design is a 2- (v,k,A) design 

(see §4.9) such that any two blocks meet in either x or y points, for certain fixed 
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distinct x, y. Given this situation, we may define a graph I’ on the set of blocks, and 

call two blocks adjacent when they meet in x points. Let N be the point-block matrix 

of the design and A the adjacency matrix of ". Then N'N =kI+xA+y(J—I—A). 
Since each of NN', NJ, and JN is a linear combination of J and J, we see that 

A? can be expressed in terms of A,/,J, so that I is strongly regular by part (ii) of 

Theorem 9.1.2. (For an application, see §10.3.2.) 

A large class of quasisymmetric block designs is provided by the 2-(v,k,A) de- 

signs with A = 1 (also known as Steiner systems S(2,k,v)). Such designs have only 

two intersection numbers since no two blocks can meet in more than one point. 

This leads to a substantial family of strongly regular graphs, including the trian- 

gular graphs T(m) (derived from the trivial design consisting of all pairs from an 

m-set). 

9.1.11 Symmetric 2-designs from strongly regular graphs 

Conversely, some families of strongly regular graphs lead to designs. Let A be the 

adjacency matrix of a strongly regular graph with parameters (v,k,A,A) (i.e., with 

A = p; such a graph is sometimes called a (v,k, A) graph). Then, by Theorem 9.1.2, 

AA! =A* =(k—A)I+AJ, 

which reflects that A is the incidence matrix of a symmetric 2-(v,k,A) design. (And 

in this way one obtains precisely all symmetric 2-designs possessing a polarity with- 

out absolute points.) For instance, the triangular graph T(6) provides a symmetric 

2-(15,8,4) design, the complementary design of the design of points and planes in 
the projective space PG(3,2). Similarly, if A is the adjacency matrix of a strongly 
regular graph with parameters (v,k,A,A +2), then A +/ is the incidence matrix of a 
symmetric 2-(v,k + 1,4 +2) design (and in this way one obtains precisely all sym- 
metric 2-designs possessing a polarity with all points absolute). For instance, the 
Gewirtz graph with parameters (56,10,0,2) provides a biplane 2-(56,11,2). 

9.1.12 Latin square graphs 

A transversal design of strength t and index A is a triple (X,Y,¥), where X is a 
set of points, Y is a partition of X into groups, and & is a collection of subsets of 
X called blocks such that (i) t < |Y|, (ii) every block meets every group in precisely 
one point, and (iii) every t-subset of X that meets each group in at most one point is 
contained in precisely A blocks. 

Suppose X is finite and t < |Y|. Then all groups G € Y have the same size m, and 
the number of blocks is Am’. Given a point x9 € X, the groups not on xo together 
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with the blocks B \ {xo} for x9 € B € Z form a transversal design of strength t — 1 
with the same index A. 

Equivalent to the concept of transversal design is that of orthogonal array. An 

orthogonal array with strength t and index A over an alphabet of size mis ak x N 

array (with N = Am‘) such that for any choice of t rows and prescribed symbols on 

these rows there are precisely A columns that satisfy the demands. 

When t = 2 the strength is usually not mentioned, and one talks about transversal 

designs TD, (k,m) or orthogonal arrays OA, (m,k), where k is the block size and m 

the group size. 

When A = 1 the index is suppressed from the notation. Now a TD(k,m) or 

OA(m,k) is equivalent to a set of k —2 mutually orthogonal Latin squares of or- 
der m. (The k rows of the orthogonal array correspond to row index, column index, 

and Latin square number; the columns correspond to the m? positions.) 

The dual of a transversal design is a net. An (m,k)-net is a set of m? points 

together with km lines, partitioned into k parallel classes, where two lines from 

different parallel classes meet in precisely one point. 

Given a point-line incidence structure, the point graph or collinearity graph is 

the graph with the points as vertices, adjacent when they are collinear. Dually, the 

block graph is the graph with the lines as vertices, adjacent when they have a point 

in common. 
The collinearity graph of an (m,t)-net, that is, the block graph of a transversal 

design TD(t,m) (note the new use of t here!), is strongly regular with parameters 

v=m,k=t(m—1),A=m—2+(t—1)(t—2), w =t(t — 1) and eigenvalues 
r=m-—t,s =-—t. One says that a strongly regular graph “is a pseudo Latin square 

graph”, or “has Latin square parameters” when there are t and m such that (v,k,A, pM) 

have the above values. One also says that it has “OA(m,t) parameters”. 

There is extensive literature on nets and transversal designs. 

Proposition 9.1.7 Suppose I is a strongly regular graph with OA(m,t) parameters 

with a partition into cocliques of size m. Then the graph A obtained from I’ by 

adding edges so that these cocliques become cliques is again strongly regular and 

has OA(m,t + 1) parameters. 

Proof More generally, let be a strongly regular graph with a partition into co- 

cliques that meet the Hoffman bound. Then the graph A obtained from I” by adding 

edges so that these cocliques become cliques has spectrum k +m — 1, ig), 

(s +m —1)", (s—1)8", where m is the size of the cocliques, and h = v/m—1. 

The proposition is the special case m= r—s. a 

For example, from the Hall-Janko graph with OA(10,4) parameters (100, 36, 

12, 14) and a partition into ten 10-cocliques (which exists) one obtains a strongly 

regular graph with OA(10,5) parameters (100,45,20,20), and hence also a sym- 

metric design 2-(100,45,20). But an OA(10,5) (three mutually orthogonal Latin 

squares of order 10) is unknown. 
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9.1.13 Partial geometries 

A partial geometry with parameters (s,t, 0) is a point-line geometry (any two points 

are on at most one line) such that all lines have size s+ 1, there are t+ 1 lines on each 

point, and given a line and a point outside, the point is collinear with @ points on the 

given line. One calls this structure a pg(s,t, a). Partial geometries were introduced 

by BOSE [36]. 

Note that the dual of a pg(s,t, at) is a pg(t,s,@) (where “dual” means that the 

names “point” and “line” are swapped). 

One immediately computes the number of points v = (s+ 1)(st + a) /a@ and lines 

b= (t+1)(st+ a)/a. The collinearity graph of a pg(s,t, a) is complete if a=s+1, 
and otherwise strongly regular with parameters v = (s+ 1)(st+a@)/a,k=s(t+1), 
A=s—1+t(a-—1),u=a(t+1), and eigenvalues 0, = s— a, 0, = —t — 1. (Note: 

earlier we used s for the smallest eigenvalue, but here s has a different meaning!) 

The extreme examples of partial geometries are generalized quadrangles (partial 

geometries with a = 1) and Steiner systems S(2,K,V) (partial geometries with a@ = 

s+ 1). Many examples are also provided by nets (with tf = @) or their duals, the 

transversal designs (with s = a). 

A strongly regular graph is called geometric when it is the collinearity graph of 

a partial geometry. It is called pseudogeometric when there are integers s,t,@ such 

that the parameters (v,k,A,[) have the values given above. 

BOSE [36] showed that a pseudogeometric graph with given t and sufficiently 

large s must be geometric. NEUMAIER [284] showed that the same conclusion works 

in all cases, and hence derives a contradiction in the nonpseudogeometric case. 

Theorem 9.1.8 (Bose-Neumaier) A strongly regular graph with s < —1 and r > 

+8(s+1)(u+1)—1 is the block graph of an S(2,K,V) or a transversal design. 

It follows immediately (from this and the U-bound) that 

Theorem 9.1.9 For any fixed s = —m, there are only finitely many primitive strongly 
regular graphs with smallest eigenvalue s, that are not the block graph of an 
S(2,K,V) ora transversal design. ‘ 

9.2 Strongly regular graphs with eigenvalue —2 

For later use, we give SEIDEL [315]’s classification of the strongly regular graphs 
with s = —2. 

Theorem 9.2.1 Let I” be a strongly regular graph with smallest eigenvalue —2. 
Then I is one of 

(t) the complete n-partite graph Knx2, with parameters (v,k,A,) = (2n,2n— 
2,2n—4,2n—2),n> 2, 
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(ii) the lattice graph L2(n) = K,U Kn, with parameters (v,k,A,W) = (n*,2(n— 

L)in +252), n= 3, 
(iii) the Shrikhande graph, with parameters (v,k,A,) = (16,6,2,2) 

(iv) the triangular graph T (n) with parameters (v,k,A, 1) = ((") ,2(n — 2, 

4),n>5, 

(v) one of the three Chang graphs, with parameters (v,k,A,L) = (28, 12,6,4), 

(vi) the Petersen graph, with parameters (v,k,A,m) = (10,3,0, 1), 

(vii) the Clebsch graph, with parameters (v,k,A, UW) = (16, 10,6,6), or 

(viii) the Schldfli graph, with parameters (v,k,A, 1) = (27, 16, 10,8). 

Proof If I is imprimitive, then we have case (i). Otherwise, the u-bound gives 

Lt < 8, and the rationality conditions give (r +2)|(f —2)(u — 4), and integrality of 
v gives |2r(r +1). For = 2 we find the parameters of L2(n), for u = 4 those 

of T(n), and for the remaining values for fs only the parameter sets (v,k,A,M@) = 
(10,3,0,1), (16,10,6,6), and (27, 16,10,8) survive the parameter conditions and 
the absolute bound. It remains to show that the graph is uniquely determined by its 

parameters in each case. Now SHRIKHANDE [325] proved uniqueness of the graph 

with L2(n) parameters, with the single exception of n = 4, where there is one more 

graph, now known as the Shrikhande graph, and CHANG [86, 87] proved uniqueness 

of the graph with T(n) parameters, with the single exception of n = 8, where there 

are three more graphs, now known as the Chang graphs. In the remaining three cases 

uniqueness is easy to see. 3 

Let us give definitions for the graphs involved. 

The Shrikhande graph is the result of Seidel switching the lattice graph L2(4) 

with respect to an induced circuit of length 8. It is the complement of the Latin 

square graph for the cyclic Latin square of order 4. It is locally a hexagon. Drawn 

on a torus: 

The three Chang graphs are the result of switching T(8) (the line graph of Kg) 

with respect to (a) a 4-coclique Ky, that is, 4 pairwise disjoint edges in Kg; (b) 

K;+Ks, that is, 8 edges forming a triangle and a (disjoint) pentagon in Kg; (c) the 

line graph of the cubic graph formed by an 8-circuit plus edges between opposite 

vertices. 

The Clebsch graph is the complement of the folded 5-cube. 

The Schldafli graph is the complement of the collinearity graph of GQ(2,4) 

(cf. 89.6). 

9.3 Connectivity 

For a graph I, let I(x) denote the set of vertices at distance i from x in I”. Instead 

of Ij (x) we write '(x). 
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Proposition 9.3.1 Jf I is a primitive strongly regular graph, then for each vertex x 

the subgraph I3(x) is connected. 

Proof Note that I>(x) is regular of valency k — w. If it is not connected, then its 

eigenvalue k — ff would have multiplicity at least 2, and hence would be not larger 

than the second largest eigenvalue r of I. Then x* + (u—A)x+m—k <0 forx = 
k— , i.e., (k—p)(k—A—1) <0, a contradiction. O 

The vertex connectivity K(I) of aconnected noncomplete graph I” is the smallest 

integer m such that I” can be disconnected by removing m vertices. 

Theorem 9.3.2 (BROUWER & MESNER [63]) Let I” be a connected strongly regu- 

lar graph of valency k. Then «(I’) =k, and the only disconnecting sets of size k are 

the sets of all neighbors of some vertex x. 

Proof Clearly, x(I) < k. Let S be a disconnecting set of vertices not containing 

all neighbors of some vertex. Let  \S = A+B be a separation of I” \ S. Since the 

eigenvalues of A UB interlace those of I’, it follows that at least one of A and B, 

say B, has largest eigenvalue at most r. It follows that the average valency of B is at 

most r. Since B has an edge, r > 0. 

Now let |S] < k. Since B has average valency at most r, we can find two points 

x,y in B such that |SQI"(x)|+|SAI'(y)| > 2(k—1r), so that these points have at least 
k —2r common neighbors in S. 

If I” has nonintegral eigenvalues, then we have (v,k,A,u) = (4t + 1,2t,t — 1,1) 
for some t, and r = (—1+ ,/v)/2. The inequality max(A,) > k — 2r gives t < 2, 
but for ¢ = 2 the eigenvalues are integral, so we have t = | and I’ is the pentagon. 

But the claim is true in that case. 

Now let r,s be integral. If s << —3, then uw =k+rs<k—3randA=pt+rt+s< 

k — 2r—3, so no two points can have k — 2r common neighbors. 

Therefore s = —2, and we have one of the eight cases in Seidel’s classification. 

But not case (i), since r > 0. 

Since both A and B contain an edge, both B and A have size at most ff = v —2k+ 

A, so that both A and B have size at least k— A, and v > 3k —2A. This eliminates 

cases (vii) and (viii). 

If B is a clique, then |B] <r+1=k—A—1, acontradiction. So, B contains two 
nonadjacent vertices, and their neighbors must be in BUS, so 2k — uw < |B|+|S|—2 
and k— i+2 <|B| <p. 

In cases (iii), (v), and (vi) we have ft = k — 1 +2, so equality holds and (B= p 
and |S| = k. Since v < 2j1 +k, we have |A| < fi and A must be a clique (of size 
v—k—jt=k—A). But the Petersen graph does not contain a 3-clique, and the 
Shrikhande graph does not contain 4-cliques; also, if A is a 6-clique in a Chang 
graph, and a,b,c € A, then (a) NS, I'(b) NS, and '(c) MS are three 7-sets in 
the 12-set S that pairwise meet in precisely two points, which is impossible. This 
eliminates cases (iii), (v), and (vi). 

We are left with the two infinite families of lattice graphs and triangular graphs. In 
both cases it is easy to see that if x, y are nonadjacent, then there exist k paths joining 
xand y, vertex disjoint apart from x, y, and entirely contained in {x, y}UI"(x) UI" (y). 
Hence |S| = k, and if S separates x and y, then S C (x) UI'(y). 
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The subgraph A :=T \ ({x,y}UI'(x) UI'(y)) is connected (if one removes a 
point and its neighbors from a lattice graph, the result is a smaller lattice graph, and 

the same holds for a triangular graph), except in the case of the triangular graph (3), 
where A is empty. 

Each vertex of (I(x) UI (y)) \S has a neighbor in A and we find a path of length 
4 disjoint from S joining x and y, except in the case of the triangular graph ae 

where each vertex of I’(x) \ S is adjacent to each vertex of ’(y) \S, and we find a 

path of length 3 disjoint from S$ joining x and y. 

We remark that it is not true that for every strongly regular graph I” with vertex x 

the vertex connectivity of the subgraph I>(x) equals its valency k — uw. A counterex- 

ample is given by the graph I" that is the complement of the strongly regular graph 

A with parameters (96, 19,2,4) constructed by Haemers for g = 4, see [197], p. 76, 

or [62], 88A. Indeed, we have A(x) © K3 +4Cy, so that I3(x) has degree 16 and 

vertex connectivity 15. 

One might guess that the cheapest way to disconnect a strongly regular graph 

such that all components have at least two vertices would be by removing the 

2k — A —2 neighbours of an edge. Cioaba, Kim and Koolen recently observed that 

this is false (the simplest counterexample is probably T(6), where edges have 10 

neighbours and certain triangles only 9), but proved it for several infinite classes of 

strongly regular graphs. 

CHVATAL & ERDOsS [95] showed that if a graph I" on at least three vertices has 

vertex connectivity « and largest independent set of size a, and a < k, then I has 

a Hamiltonian circuit. BIGALKE & JUNG [29] showed that if I” is 1-tough, with 

a<«+1and Kk >3,andT is not the Petersen graph, then I” is Hamiltonian. These 

results imply that if I" is strongly regular with smallest eigenvalue s, and s is not in- 

tegral, or —s < 1 +1, then I is Hamiltonian. This, together with explicit inspection 

of the Hoffman-Singleton graph, the Gewirtz graph, and the M22 graph, shows that 

all connected strongly regular graphs on fewer than 99 vertices are Hamiltonian, 

except for the Petersen graph. 

9.4 Cocliques and colorings 

In §2.5 we derived some bounds for the size of a coclique in terms of eigenvalues. 

These bounds are especially useful for strongly regular graphs. Moreover, strongly 

regular graphs for which the bounds of Hoffman and Cvetkovié are tight have a very 

special structure: 

Theorem 9.4.1 Let I be a strongly regular graph with eigenvalues k (degree), r and 

s (r > s) and multiplicities 1, f and g, respectively. Suppose that I is not complete 

multipartite (i.e., r #0), and let C be a coclique in I’. Then 

(i) |C| <8, 
(ii) |C| <ns/(s—k), 
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(iii) if |\C| = g =ns/(s—k), then the subgraph I" of TV induced by the vertices 

not in C is strongly regular with eigenvalues k' = k +5 (degree), r' = r and 

s’ =r+s and respective multiplicities 1, f —g+1 and g—1. 

Proof Parts (i) and (ii) follow from Theorems 3.5.1 and 3.5.2. Assume |C| = g = 

ns/(s—k). By Theorem 2.5.4, I’ is regular of degree k +s. Apply Lemma 2.11.1 
ior =A= cr] , where A is the adjacency matrix of I. Since I” is regular, A and 

J commute and therefore P has eigenvalues r and s with multiplicities f+ 1 and g, 

respectively. We take Q = —*J of size |C| = g and R = A’ — ‘r J, where A’ is 
the adjacency matrix of I’. Lemma 2.11.1 gives the eigenvalues of R: r (f +1—g 

times), s (0 times), r +s (g—1 times), and r+s+g(k—r)/n (1 time). Since I’ is 

regular of degree k +s and A’ commutes with J, we obtain the required eigenvalues 

for A’. By Theorem 9.1.2, I’’ is strongly regular. O 

For instance, an (m— 1)-coclique in T(m) is tight for both bounds and the graph 
on the remaining vertices is T(m-— 1). 

Also for the chromatic number we can say more in the case of a strongly regular 

graph. 

Theorem 9.4.2 [fT is a primitive strongly regular graph, not the pentagon, then 

y(P) >1- : ; 

Proof Since I is primitive, r > 0 and by Corollary 3.6.4 it suffices to show that 

the multiplicity g of s satisfies g > —s/r for all primitive strongly regular graphs but 

the pentagon. First we check this claim for all feasible parameter sets with at most 

23 vertices. Next we consider strongly regular graphs with v > 24 and r < 2. The 

complements of these graphs have s > —3, and by Theorem 9.1.3 (iv), s = —2. By 

use of Theorem 9.2 we easily find that all these graphs satisfy the claim. 

Assume that I” is primitive, that r > 2, and that the claim does not hold (that is, 

g <—s/r). Now (v—1—g)r+gs+k=0 gives 

gi< —sg/r=v—1—g+k/r<v—1—g+k/2 <3v/2-8. 

This implies g(g +3) < 3v/2 = 2y/3v/2. By use of the absolute bound v < g(g+ 
3)/2, we get v/2 < 2,/3v/2, so v < 24, a contradiction. O 

For example, if I” is the complement of the triangular graph T(m), then I’ is 
strongly regular with eigenvalues k = (m —2)(m=3), r= T, ands = 3 wr (for 
m > 4). The above bound gives y(I’) > m—2, which is tight, while Hoffman’s 
lower bound (Theorem 3.6.2) equals 5m. On the other hand, if m is even, Hoffman’s 
bound is tight for the complement of I while the above bound is much smaller. 
We saw (see 83.6) that a Hoffman coloring (i.e., a coloring with 1 — k/s classes) 
corresponds to an equitable partition of the adjacency matrix. For the complement 
this gives an equitable partition into maximal cliques, which is called a spread of 
the strongly regular graph. For more applications of eigenvalues to the chromatic 
number we refer to [155] and [177]. See also §9.7. 
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9.5 Automorphisms 

Let A be the adjacency matrix of a graph I, and P the permutation matrix that 

describes an automorphism @ of I. Then AP = PA. If @ has order m, then P” = J, 

so that the eigenvalues of AP are m-th roots of unity times eigenvalues of A. 

Apply this in the special case of strongly regular graphs. Suppose @ has f fixed 

points, and moves g points to a neighbor. Then f = trP and g = trAP. Now consider 

M=A-—sSlI. It has eigenvalues k—s, r—s, and 0. Hence MP has eigenvalues k — s, 

(r—s)€ for certain m-th roots of unity ¢, and 0. It follows that g—sf =trMP= 

k—s(modr-—s). 
For example, for the Petersen graph every automorphism satisfies f = g + 

1 (mod 3). Or, for a hypothetical Moore graph on 3250 vertices (cf. §11.5.1), every 

automorphism satisfies 8f + g =5 (mod 15). , 
In some cases, where a structure is given locally, it must either be a universal 

object, or a quotient, where the quotient map preserves local structure, that is, only 

identifies points that are far apart. In the finite case arguments like those in this 

section can be used to show that f = g = 0 is impossible, so that nontrivial quotients 

do not exist. For an example, see [53]. 

9.6 Generalized quadrangles 

A generalized n-gon is a connected bipartite graph of diameter n and girth 2n. (The 

girth of a graph is the length of a shortest circuit.) 

It is common to call the vertices in one color class of the unique 2-coloring points, 

and the other vertices lines. For example, a generalized 3-gon is the same thing as a 

projective plane: any two points have an even distance at most 3, hence are joined 

by a line, and similarly any two lines meet in a point; finally, two lines cannot meet 

in two points since that would yield a quadrangle, but the girth is 6. 

A generalized quadrangle is a generalized 4-gon. In terms of points and lines, the 

definition becomes: a generalized quadrangle is an incidence structure (P,L) with 

set of points P and set of lines L, such that two lines meet in at most one point, and 

if p is a point not on the line m, then there is a unique point q on m and a unique line 

non p such that g is on n. 

9.6.1 Parameters 

A generalized n-gon is called firm (thick) when each vertex has at least two (resp. 

three) neighbors, that is, when each point is on at least two (three) lines, and each 

line is on at least two (three) points. 

An example of a nonfirm generalized quadrangle is a pencil of lines on one com- 

mon point x9. Each point different from xo is on a unique line, and I3(xo) = 9. 
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Proposition 9.6.1 (i) If a generalized n-gon I has a pair of opposite vertices x,y 

where x has degree at least two, then every vertex has an opposite, and I is firm. 

(ii) A thick generalized n-gon has parameters: each line has the same number of 

points, and each point is on the same number of lines. When moreover n is odd, then 

the number of points on each line equals the number of lines through each point. 

Proof Fora vertex x of a generalized n-gon, let k(x) be its degree. Call two vertices 

of a generalized n-gon opposite when they have distance n. If x and y are opposite, 

then each neighbor of one is on a unique shortest path to the other, and we find 

k(x) = k(y). 
(i) Being nonopposite gives a bijection between I(x) and I’(y), and hence if 

k(x) > 1 then also each neighbor z of x has an opposite and satisfies k(z) > 1. Since 
T is connected, it is firm. 

(ii) Let x,z be two points joined by the line y. Let w be opposite to y. Since 

k(w) > 2, there is a neighbor u of w opposite to both x and z. Now k(x) =k(u) =k(z). 
Since I” is connected and bipartite, this shows that k(p) is independent of the point 

p. If nis odd, then a vertex opposite a point is a line. LJ 

A firm, nonthick generalized quadrangle is the vertex-edge incidence graph of a 
complete bipartite graph. 

The halved graph of a bipartite graph I" is the graph on the same vertex set, 

where two vertices are adjacent when they have distance 2 in I. The point graph 

and line graph of a generalized n-gon are the two components of its halved graph 

containing the points and lines, respectively. 

The point graph and line graph of a finite thick generalized n-gon are distance- 
regular of diameter |n/2]| (see Chapter 12). In particular, the point graph and line 
graph of a thick generalized quadrangle are strongly regular (see Theorem 9.6.2). 

It is customary to let GQ(s,t) denote a finite generalized quadrangle with s + 1 
points on each line and f + 1 lines on each point. Note that it is also customary to 
use s to denote the smallest eigenvalue of a strongly regular graph, so in this context 
one has to be careful to avoid confusion. 

It is a famous open problem whether a thick generalized n-gon can have finite 
s and infinite rt. In the special case of generalized quadrangles a little is known: 
Cameron, Kantor, Brouwer, and Cherlin [81, 49, 88] show that this cannot happen 
fors+1<5. 

9.6.2 Constructions of generalized quadrangles 

Suppose V is a vector space provided with a nondegenerate quadratic form F of Witt 
index 2 (that is, such that the maximal totally singular subspaces have vector space 
dimension 2). Consider in the projective space PV the singular projective points and 
the totally singular projective lines. These will form a generalized quadrangle. 

Indeed, f defines a bilinear form B on V via B(x, y) = f (x+y) — f(x) — f(y). Call 
x and y orthogonal when B(x, y) = 0. When two singular vectors are orthogonal, the 
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subspace spanned by them is totally singular. And conversely, in a totally singular 

subspace any two vectors are orthogonal. The collection of all vectors orthogonal 

to a given vector is a hyperplane. We have to check that if P = (x) is a singular 

projective point, and L is a totally singular projective line not containing P, then P 

has a unique neighbor on L. But the hyperplane of vectors orthogonal to x meets L, 

and cannot contain L otherwise f would have larger Witt index. 

This construction produces generalized quadrangles over arbitrary fields. If V 

is a vector space over a finite field F,, then a nondegenerate quadratic form can 

have Witt index 2 in dimensions 4, 5, and 6. A hyperbolic quadric in 4 dimensions 

yields a generalized quadrangle with parameters GQ(q,1), a parabolic quadric in 

5 dimensions yields a generalized quadrangle with parameters GQ(q,q), and an 

elliptic quadric in 6 dimensions yields a generalized quadrangle with parameters 

GQ(4,q°). 
Other constructions, and other parameters occur. 

In the below we’ll meet GQ(2,t) for t = 1,2,4 and GQ(3,9). Let us give simple 

direct descriptions for GQ(2,1) and GQ(2,2). The unique GQ(2,1) is the 3-by-3 

grid: 9 points, 6 lines. Its point graph is K3 1 K3. The unique GQ(2,2) is obtained 

by taking as points the 15 pairs from a 6-set, and as lines the 15 partitions of that 

6-set into three pairs. Now collinearity is being disjoint. Given a point ac, and a line 

{ab,cd,ef}, the two points ab and cd on this line are not disjoint from ac, so that 

ef is the unique point on this line collinear with ac, and the line joining ac and ef 

is {ac,bd,ef}. 

9.6.3 Strongly regular graphs from generalized quadrangles 

As mentioned before, the point graph (collinearity graph) of a finite thick general- 

ized quadrangle is strongly regular. The parameters and eigenvalues can be obtained 

in a straightforward way (Exercise 9.4). 

Theorem 9.6.2 The collinearity graph of a finite generalized quadrangle with pa- 

rameters GQ(s,t) is strongly regular with parameters 

v=(s+1)(st+1), kK=s(t+1), A=s—1, w=t+1 

and spectrum 

s(t+1) with multiplicity 1, 
s—1 with multiplicity st(s+1)(t+1)/(s+t), 
—t—1 with multiplicity s?(st +1)/(s+t). 

In particular, if a GQ(s,t) exists, then (s +t) |s?(st +1). 
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9.6.4 Generalized quadrangles with lines of size 3 

Let a weak generalized quadrangle be a point-line geometry with the properties that 

two lines meet in at most one point, and given a line m and a point p outside there 

is a unique pair (g,n) such that p ~ n ~ q ~ m, where ~ denotes incidence. The 

difference with the definition of a generalized quadrangle is that connectedness is 

not required. (But, of course, as soon as there are a point and a line, the geometry is 

connected.) 

Theorem 9.6.3 A weak generalized quadrangle where all lines have size 3 is one 

of the following: 

(i) a coclique (no lines), 

(ii) a pencil (all lines passing through a fixed point), 

(iii) the unique GQ(2,1), 

(iv) the unique GQ(2,2), 

(v) the unique GQ(2,4). 

Proof After reducing to the case of GQ(2,t) one finds (¢ + 2)|(8¢ +4), ie., 
(t + 2)|12, ie., t © {1,2,4, 10}, and t = 10 is ruled out by the Krein conditions. 
Alternatively, or afterwards, notice that the point graphs have eigenvalue 1, so that 

their complements have smallest eigenvalue —2, and apply Seidel’s classification. 

Cases (iii), (iv), and (v) here have point graphs that are the complements of the lat- 

tice graph K3(1K3, the triangular graph T(6), and the Schlafli graph, respectively. 
a 

LJ 

This theorem can be used in the classification of root lattices, where the five cases 

correspond to Ay, Dn, Es, E7, and Eg (cf. [54], p. 102). And the classification of root 

lattices can be used in the classification of graphs with smallest eigenvalue —2. See 

Chapter 8, especially Theorem 8.4.1. 

9.7 The (81, 20, 1, 6) strongly regular graph 

Large parts of this section are taken from [57]. Sometimes the graph of this section 
is called the Brouwer-Haemers graph. 

Let = (X,£) be a strongly regular graph with parameters (v,k, A, 1) = (81,20, 
1,6). Then I” has spectrum {20!,2°°, —779}, where the exponents denote multiplic- 
ities. We will show that up to isomorphism there is a unique such graph I’. More 
generally we give a short proof for the fact (due to IVANOV & SHPECTOROV [233]) 
that a strongly regular graph with parameters (v,k,A,W) = (q*,(q? +1)(q—1),q— 
2,q(q—1)) that is the collinearity graph of a partial quadrangle (that is, in which all 
maximal cliques have size q) is the second subconstituent of the collinearity graph 
of a generalized quadrangle GQ(q,q”). In the special case g = 3, this will imply our 
previous claim, since A = 1 implies that all maximal cliques have size 3 and it is 
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known (see CAMERON, GOETHALS & SEIDEL [83]) that there is a unique gener- 

alized quadrangle GQ(3,9) (and this generalized quadrangle has an automorphism 

group transitive on the points). 

9.7.1 Descriptions 

Let us first give a few descriptions of our graph on 81 vertices. Note that the unique- 

ness shows that all constructions below give isomorphic graphs, something which 

is not immediately obvious from the description in all cases. 

A. Let X be the point set of AG(4,3), the 4-dimensional affine space over F3, 
and join two points when the line connecting them hits the hyperplane at infinity (a 

PG(3,3)) ina fixed elliptic quadric Q. This description shows immediately that v = 

81 and k = 20 (since |Q| = 10). Also A = 1 since no line meets Q in more than two 
points, so the affine lines are the only triangles. Finally ps = 6, since a point outside 

Q in PG(3,3) lies on 4 tangents, 3 secants, and 6 exterior lines with respect to Q, and 

each secant contributes 2 to 2. We find that the group of automorphisms contains 

G=34 -PGO, -2, where the last factor 2 accounts for the linear: transformations 

that do not preserve the quadratic form Q, but multiply it by a constant. In fact, this 

is the full group, as will be clear from the uniqueness proof. 

B. A more symmetric form of this construction is found by starting with X = 

11 / (1) in F$ provided with the standard bilinear form. The corresponding quadratic 

form (Q(x) = wt(x), the number of nonzero coordinates of x) is elliptic, and if we 
join two vertices x + (1) ,y+ (1) of X when Q(x— y) =0, i.e., when their difference 
has weight 3, we find the same graph as under A. This construction shows that the 

automorphism group contains G = 34 - (2 x Sym (6)) - 2, and again this is the full 

group. 
C. There is a unique strongly regular graph with parameters (112,30,2,10), the 

collinearity graph of the unique generalized quadrangle with parameters GQ(3,9). 

Its second subconstituent is an (81,20,1,6) strongly regular graph, and hence iso- 

morphic to our graph I’. (See CAMERON, GOETHALS & SEIDEL [83].) We find 

that Aut I” contains (and in fact equals) the point stabilizer in U4(3) -Dg acting on 

GQ(3,9). 

D. The graph I’ is the coset graph of the truncated ternary Golay code C: take the 

3* cosets of C and join two cosets when they contain vectors differing in only one 

place. 

E. The graph I" is the Hermitean forms graph on F3; more generally, take the q* 

matrices M over F,2 satisfying M' = M, where ~ denotes the field automorphism 

x —> x4 (applied entrywise), and join two matrices when their difference has rank 1. 

This will give us a strongly regular graph with parameters (v,k,A,M) = (q*,(q° + 

1)(q—1),¢—2,4(q-1)). 
F. The graph I’ is the graph with vertex set Fg;, where two vertices are joined 

when their difference is a fourth power. (This construction was given by VAN LINT 

& SCHRIJVER [257].) 
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There is a unique strongly regular graph with parameters (275, 112,30,56) 

known as the McLaughlin graph, Its first subconstituent is the 112-point graph men- 

tioned under C. Its second subconstituent is the unique strongly regular graph with 

parameters (162,56,10,24). In §3.13.7 we discussed how to find all splits of this 

latter graph into two copies of I. 

9.7.2 Uniqueness 

Now let us embark upon the uniqueness proof. Let ! = (X,E) be a strongly regular 

graph with parameters (v,k,A,) = (q*,(q* +1)(q—1),q—2,q(q—1)) and assume 
that all maximal cliques (we shall just call them lines) of I” have size g. Let I have 

adjacency matrix A. Using the spectrum of A, which is {k!, (¢—1)/,(q—1-—q7)8}, 

where f = g(q—1)(q? +1) and g = (q—1)(q? +1), we can obtain some structure 
information. Let T be the collection of subsets of X of cardinality g* inducing a 

subgraph that is regular of degree g — 1. 

Claim 1. [fT € T, then each point of X \T is adjacent to q* points of T. 

Look at the matrix B of average row sums of A, with sets of rows and columns 

partitioned according to {T, X \T}. We have 

with eigenvalues k and g— 1 — q’, so interlacing is tight, and by Corollary 2.5.4(ii) 

it follows that the row sums are constant in each block of A. 

Claim 2. Given a line L, there is a unique T, € T containing L. 

Let Z be the ae of vertices in X \ L without a neighbor in L. Then |Z| = g* — q— 
q(k—q+1) =q° —q. Let T = LUZ. Each vertex of Z is adjacent to qu=4q aA —1) 
vertices with a neighbor in L, so T induces a subgraph that is regular of degree g—1. 

Claim 3. [fT € T and x € X \T, then x is on at least one line L disjoint from T, 
and Ty, is disjoint from T for any such line L. 

The point x is on g* + 1 lines, but has only q* neighbors in 7. Each point of L has 
qg° neighbors in T, so each point of T has a neighbor on L and hence is not in 7;. 

Claim 4. Any T € T induces a subgraph A isomorphic to @ Ky. 
It saltiges to show that the multiplicity m of the eigenvalue q—1 of A is (at 

least) q* (it cannot be more). By ppterlagiitg we find m > q? —q, so we need some 
additional work. Let M := A —(q—1/q’)J. Then M has spectrum {(q—1)/*!, (q— 
1 —q’)}, and we want that Mr, the submatrix of M with paves and columns indexed 
by T, has eigenvalue g — 1 with multiplicity (at Least) Gilt Ot equivalently (by 
Lemma 2.11.1), that My\r has eigenvalue g— 1 — g° with multiplicity (at least) 
q—2. But for each U € T with U NT =0we oa an eigenvector xy = (2—q)yyu + 
Xx\(rUWU) of My\r with eigenvalue g — 1 —q’. A collection {xy | U € U} of such 
eigenvectors cannot be linearly dependent when U = {U;,U2,...} can be ordered 
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such that U; ¢ Uj<;Uj; and UU # X \T, so we can find (using Claim 3) at least 

q —2 such linearly independent eigenvectors, and we are done. 

Claim 5. Any T € T determines a unique partition of X into members of T. 

Indeed, we saw this in the proof of the previous step. 

Let IT be the collection of partitions of X into members of T. We have |T| = 

q(q* +1) and |II| = q? + 1. Construct a generalized quadrangle GQ(q,q") with 
point set {oo} UT UX as follows: The q* + 1 lines on c are {ee} Ua for a € II. 
The g* remaining lines on each T € T are {T} UL for L CT. It is completely 

straightforward to check that we really have a generalized quadrangle GQ(q, q’). 

9.7.3 Independence and chromatic numbers 

Let I again be the strongly regular graph with parameters (v,k,A, UW) =(81,20, 1,6). 

We have a(I") = 15 and y(I") =7. 
Clearly, the independence number of our graph is one less than the independence 

number of the unique GQ(3,9) of which it is the second subconstituent. So it suffices 
to show that a@(A) = 16, where A is the collinearity graph of GQ(3,9). 

It is easy to indicate a 16-coclique: define GQ(3,9) in PG(5,3) provided with the 
nondegenerate elliptic quadratic form Sy As There are 112 isotropic points, 80 of 

weight 3 and 32 of weight 6. Among the 32 of weight 6, 16 have coordinate product 

1, and 16 have coordinate product —1, and these two 16-sets are cocliques. 

That there is no larger coclique can be seen by cubic counting. Let C be a 16- 

coclique in A. Let there be n; vertices outside that have i neighbors inside. Then 

yn; = 96, Yin; = 480, > (5) n= 1200)" * e) nj = 2240, 

SO 

¥\(i— 4)? (i— 10)nj = 0. 

(Here the quadratic counting is always possible in a strongly regular graph, and the 

last equation can be written because the second subconstituent is itself strongly reg- 

ular.) Now each point is on 10 lines, and hence cannot have more than 10 neighbors 

in C. It follows that each point has either 4 or 10 neighbors in C. In particular, C is 

maximal. 

As an aside: Solving these equations gives nq = 80, nio = 16. Let D be the set 

of 16 vertices with 10 neighbors in C. If two vertices d;,d2 € D are adjacent, then 

they can have only 2 common neighbors in C, but each has 10 neighbors in C, 

a contradiction. So, also D is a 16-coclique, which means that 16-cocliques in A 

come in pairs. 

Since 81/15 >5, we have (I) > 6. Since A has a split into two Gewirtz graphs, 

and the Gewirtz graph has chromatic number 4, it follows that y(A) < 8. (And in 

fact equality holds.) This shows that for our graph 6 < ¥(I°) < 8. In fact, (I) =7 

can be seen by computer (Edwin van Dam, pers. comm.). 
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Since A = 1, the maximum clique size equals 3. And from the uniqueness proof 

it is clear that I admits a partition into 27 triangles. So the complement of I” has 

chromatic number 27. 

9.7.4 Second subconstituent 

The second subconstituent of I has spectrum 14! 24° (—4)!° (—6)? (as can be seen 
using Lemma 2.11.1) and is uniquely determined by its spectrum ({33]). The proof 

is an example where “partially tight” interlacing (Theorem 2.5.1 (ii)) is used. We 

give a very brief indication of the uniqueness proof. 

Let © be a graph with spectrum 14! 24° (—4)!° (—6)?. Then Z is regular of 

valency 14 and is connected. Since (A — 2/)(A + 4/)(A + 61) = 72J, we find that 
each vertex is in 4 triangles. Partition the vertex set into {x}, a set T of 8 neighbors 
of x such that {x} UT contains the 4 triangles on x, the 6 remaining neighbors of 

x, and the rest. The quotient matrix for this partition has second-largest eigenvalue 

equal to 2, and by “partially tight” interlacing the vector that is constant 15, 3, 1, 

—1 on the four parts is a 2-eigenvector of A. It follows that each vertex of T has 

precisely one neighbor in T, that is, two triangles on x have only x in common. It 

also follows that a nonneighbor y of x has 6 — U(x, y) neighbors on the triangles on 

x. The rank 10 matrix B = 4J — (A — 2/)(A + 6/) is positive semidefinite and hence 

can be written as B= N'N for a 10 x 60 matrix N. The map sending a vertex x to 

column x of N maps the vertices of 2 to vectors with squared norm 2 and integral 

inner products, so that these images span a root lattice in R!°. After some work, one 

finds that this root lattice must be As + As, and the graph is uniquely determined. 

9.8 Strongly regular graphs and two-weight codes 

9.8.1 Codes, graphs, and projective sets 

In this section we show the equivalence of three kinds of objects: 

(i) projective two-weight codes, 

(li) subsets X of a projective space such that |X 1 A| takes two values when H 
ranges through the hyperplanes of the projective space, 

(ili) strongly regular graphs defined by a difference set that is a cone in a vector 
space. 

This equivalence is due to DELSARTE [138]. An extensive survey of this material 
was given by CALDERBANK & KANTOR [80]. 

A linear code is a linear subspace of some finite vector space with fixed basis. 
For basic terminology and results on codes, see MACWILLIAMS & SLOANE [267] 
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and VAN LINT [256]. A linear code C is called projective when its dual C+ has 

minimum weight at least 3, that is, when no two coordinate positions of C are lin- 

early dependent. The weight of a vector is its number of nonzero coordinates. A 

two-weight code is a linear code in which precisely two nonzero weights occur. 

Let us first discuss the correspondence between linear codes and subsets of pro- 

jective spaces. 

9.8.2 The correspondence between linear codes and subsets of a 

projective space 

A linear code C of word length n over the alphabet IF, is a linear subspace-of the 

vector space 7. The weight of a vector is its number of nonzero coordinates. We call 

C an |[n,m,w]-code if C has dimension m and minimum nonzero weight w. We say 

that C has effective length (or support) n — z when there are precisely z coordinate 

positions j such that c; = 0 for all c € C. The dual C+ of a code C is the linear 

code {d € Fi | (c,d) = 0 for all u € C}, where (c,d) = Ycid; is the standard inner 
product (bilinear form). i 

Let us call two linear codes of length n over Fy equivalent when one arises 

from the other by permutation of coordinates or multiplication of coordinates by a 

nonzero constant. For example, the F3-codes generated by ines and ( Kae) 

are equivalent. If we study codes up to equivalence, and assume that is chosen min- 

imal, i.e., that the generator matrix has no zero columns, we may identify the set of 

columns in an m Xn generator matrix with points of a projective space PG(m— 1,q). 

In this way, we find a subset X of PG(m— 1,q), possibly with repeated points, or, if 

you prefer, a weight function w : PG(m—1,q) +N. 

Choosing one code in an equivalence class means choosing a representative in 

F™ for each x € X, and fixing an order on X. Now the code words can be identified 

with the linear functionals f, and the x-coordinate position is f(x). 

Clearly, the code has word length n = |X|. Note that the code will have dimension 

m if and only if X spans PG(m-— 1,q), i.e., if and only if X is not contained in a 

hyperplane. 

The weight of the code word f equals the number of x such that f (x) £0. But a 

nonzero f vanishes on a hyperplane of PG(m— 1,q). Consequently, the number of 

words of nonzero weight w in the code equals g — | times the number of hyperplanes 

H that meet X inn —w points. In particular, the minimum distance of the code is n 

minus the maximum size of HMX for a hyperplane H. 

The minimum weight of the dual code equals the minimum number of points of 

X that are dependent. So, it is 2 if and only if X has repeated points, and 3 when X 

has no repeated points but has three collinear points. 

Example Take for X the entire projective space PG(m — 1,q), so that n = |X| = 

(q” —1)/(q—1). We find the so-called simplex code: all words have weight Te 
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and we have an [n, m, q"~']-code over F4. Its dual is the [n, n—m, 3] Hamming 

code. It is perfect! 

9.8.3 The correspondence between projective two-weight codes, 

subsets of a projective space with two intersection numbers, 

and affine strongly regular graphs 

Given a subset X of size n of PG(m— 1,q), let us define a graph I with vertex 

set FQ’, with x ~ y if and only if (y —x) € X. Then clearly I is regular of valency 

k = (q—1)n. We show below that this graph has eigenvalues k — gw; when the linear 

code has weights w;. Hence if a linear code has only two nonzero weights, and its 

dual has minimum weight at least 3, then we have a strongly regular graph. 

Let us look at the details. 

Let F = F, and K = Fy and let tr: K — F be the trace map defined by tr(x) = 

x+x44--.4x4"'. Then the F-linear maps f : F > K are precisely the maps fy 

defined by f, (x) = tr(ax), for a € K. If tr(ax) = 0 for all x, then a = 0. 
(Indeed, first of all, these maps are indeed F-linear. If a £ 0, then tr(ax) is a 

polynomial of degree gq! and cannot have g‘ zeros. It follows that we find g* 
distinct maps fj. But this is the total number of F-linear maps from K to F (since K 

is a vector space of dimension k over F,, and such a map is determined by its values 
on a basis).) 

Let G be a finite Abelian group. If a: G — C is any function, and we define the 

matrix A by A, = a(y—.x), then the eigenspaces of A have a basis consisting of 

characters of G. 

(Indeed, if ¥ : G + C* is a character (a homomorphism from the additively writ- 
ten group G into the multiplicative group of nonzero complex numbers), then 

(Ax)x= Di aly—x)x(y) = (= a(z)x 5) x(x) 
yEG 

so that ¥ (regarded as column vector) is an eigenvector of A with eigenvalue 
Xzec 4(z)xX(z). But G has |G| characters, and these are linearly independent, so this 
gives us the full spectrum of A.) 

abc 1 
Example. The matrix A= | c ab } has eigenvectors | @ | with eigenvalues 

bca wo 

a+bq@ +c”, where @ runs through the cube roots of unity. 

Now apply this to the adjacency matrix A of the graph I. Let D := {dé F Fal 
(d) € X}, so that |D| = (q— 1).|X|. Then the neighbors of the vertex x of I are 
the points x +d for d € D, and we see that I has valency k = |D| = (q¢—1)n. The 
eigenvalues of A are the sums Yep x%(d), where yx is a character of the additive 
group of I. Let 6 =e2/P bea primitive p-th root of unity, and let tr : Fo if, be 
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the trace function. Then the characters y are of the form 

tals) = Seon), 
Now 

Si Aba ts if (a,x) 40 
ie, 0 otherwise. 

(Indeed, if S denotes this sum, then ¥,(Ux)S = S for all pt, so if S #0, then 

tr((a, x) = tr(u(a,x)) = 0 for all 1, and by the above (a,x) = 0.) 
Thus, we find, if Do is a set of representatives for X, 

70) = ss >) Xa(Ad) a q.\HaNX| — |X| 
deD deDy AEKFy\{0} 

where H, is the hyperplane {(x) | (a,x) = 0} in PG(m—1,q). This shows that if Ha 
meets X in mg points, so that the corresponding g — 1 code words have weight wg = 

n— mg, then the corresponding eigenvalue is gmg —n = (q—1)n—qwg =k — qua. 

We have proved: 

Theorem 9.8.1 There is a 1-1-1 correspondence between 

(i) linear codes C of effective word length n and dimension m and (q —1) f; words 

of weight w;, and 

(ii) weighted subsets X of total size n of the projective space PG(m—1,q) such 

that for f; hyperplanes H we have |X \ H| = wj, and 
(iii) graphs I, without loops but possibly with multiple edges, with vertex set F7, 

invariant under translation and dilatation, and with eigenvalues k — qw; of 

multiplicity (q —1)f;, where k = n(q-—1). 

If the code C is projective, that is, if no two coordinate positions are dependent (so 

that the dual code has minimum weight at least 3), then X has no repeated points, 

and we find an ordinary subset under (ii), and a simple graph under (iii) (that is, 

without multiple edges). 

Corollary 9.8.2 There is a 1-1-1 correspondence between 

(i) projective linear codes C of effective word length n and dimension m with 

precisely two nonzero weights w, and w2, and 

(ii) subsets X of size n of the projective space PG(m—1,q) such that for each 

hyperplane H we have |X \H| = wi, i € {1,2}, and 

(iii) strongly regular graphs I, with vertex set F”, invariant under translation 

and dilatation, and with eigenvalues k — qw;, where k = n(q—1). 

For example, if we take a hyperoval in PG(2,q), q even, we find a two-weight 

[q + 2,3,q]-code over Fy. If we take the curve 1 (hee eto ulin Gilad 

{(0,0,...,0,1)} in PG(m— 1,q), q arbitrary, we find a [¢+1,m,q—m-+ 2]-code 

over F,. (These codes are optimal: they reach the Singleton bound.) 
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A 1-1 correspondence between projective codes and two-weight codes was 

shown in BROUWER & VAN EUPEN [56]. 

9.8.4 Duality for affine strongly regular graphs 

Let X be a subset of PG(m — 1,q) such that all hyperplanes meet it in either m; or 

mz points. In the dual projective space (where the roles of points and hyperplanes 

have been interchanged), the collection Y of hyperplanes that meet X in m; points 

is a set with the same property: there are numbers n; and nz such that each point is 

in either n; or nz hyperplanes from Y. 

Indeed, let x € X be in n; hyperplanes from Y. We can find n; (independent of 

the choice of x) by counting hyperplanes on pairs x, y of distinct points in X: 

i | 

ny.(my — 1)+ ( 

Ge od 

=n) (m1) MAES Dcgerares 

In a similar way we find nz, the number of hyperplanes from Y on a point outside 

X. Computation yields (m; —mz)(n; —nz) = q*~*. This proves: 

Proposition 9.8.3 The difference of the weights in a projective 2-weight code, and 

the difference of the nontrivial eigenvalues of an affine strongly regular graph, are 

a power of p, where p is the characteristic of the field involved. 

Let I” and A be the strongly regular graphs corresponding to X and Y, respec- 

tively. We see that I and A both have g¥ vertices; I has valency k = (q—1)|X| and 
multiplicity f = (q—1)|Y|, and for A these values have interchanged roles. We call 

A the dual of I’. (More generally, it is possible to define the dual of an association 

scheme with a regular Abelian group of automorphisms, cf. [54], p. 68.) 

Example. The ternary Golay code is a perfect [11,6,5] code over F3, and its dual 

Cis a [11,5,6] code with weights 6 and 9. The corresponding strongly regular graph 

I” has parameters (v,k,v—k—1,A,u,r,5,f,2) = (243, 22, 220, 1,2, 4, —5, 132, 
110) (it is the Berlekamp-van Lint-Seidel graph) and its dual has parameters (243, 
110, 132, 37, 60, 2, —25, 220, 22), and we see that k,v —k —1 interchange place 
with g, f. The code corresponding to A is a [55,5, 36] ternary code. 

Example. The quaternary Hill code ({217]) is a [78,6,56] code over F4 with 
weights 56 and 64. The corresponding strongly regular graph has parameters (4096, 
234, 3861, 2, 14, 10, —22, 2808, 1287). Its dual has parameters (4096, 1287, 2808, 
326, 440, 7, —121, 3861, 234), corresponding to a quaternary [429, 6,320] code 
with weights 320 and 352. This code lies outside the range of the tables, but its 
residue is a world record [109,5,80] code. The binary (234, 12,112] code derived 
from the Hill code has a [122, 11,56] code as residue—also this is a world record. 
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9.8.5 Cyclotomy 

In this section, we take D to be a union of cosets of a subgroup of the multiplicative 

group of a field F,. (Thus, the g here corresponds to the qé of the previous sections.) 

Let gq = p*, p prime and e|(q—1), say g=em+1. Let K C F) be the sub- 

group of the e-th powers (so that |K| = m). Let @ be a primitive element of F,. For 
JC {0,1,...,e—1}, put uw := |J| and D:= Dy := U{a/K | je J} = {a’ts | je 
J,0 <i<m}. Define a (directed) graph I = Ij with vertex set F, and edges (x, y) 
whenever y — x € D. Note that I” will be undirected iff either —1 is an e-th power 

(i.e., g is even or e|(g —1)/2) or J+ (q—1)/2 =J (arithmetic in Z,). 
Let A = A, be the adjacency matrix of I defined by A(x,y) = 1 if (x,y) is an 

edge of I and A(x, y) = 0 otherwise. Let us compute the eigenvalues of A. For each 

(additive) character ¥ of IF, we have 

x)= D240) = (1) x) 
yrnr uED 

So each character gives us an eigenvector, and since these are all independent we 

know all eigenvalues. Their explicit determination requires some theory of Gauss 

sums. Let us write Ay = 0(7)x. Clearly, 0(1) = mu, the valency of I. Now assume 

x #1. Then x = Xe for some g, where 

q(t!) = exp (“u(a'*4) 

and tr: Fy — F, is the trace function. 

If is any multiplicative character of order e (say, u(a/) = C/, where ¢ = 

exp(224)), then 
e—1 : 

i — e if L(x) all 

dH (x) = i 0 otherwise. 

Hence, 

2) = DY Xe(4) = DY Dd Xi+e(u =-) » Xirel = = 
uED J€J uEeK e jes xeFG 

e=1 ; 1 

253 (. sp) sae ay (- 1+ Sica ain) 
ies i=1 xA0 ied 

where G; is the Gauss sum 40 X0(x)'(2). 
In general, determination of Gauss sums seems to be complicated, but there are 

a few explicit results. For our purposes the most interesting is the following: 

Proposition 9.8.4 (Stickelberger, and Davenport and Hasse; see MCELIECE & 

RUMSEY [275]) Suppose e > 2 and p is semiprimitive mod e (i.e., there exists an I 

such that p' = —1 (mod e)). Choose | minimal and write K = 2It. Then 
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Cpe (otytte® q; 

where 
pe { —1 if e is even and (p! + 1)/e is odd 

+] otherwise. 

Under the hypotheses of this proposition, we have 

Cal 7a Go| Pa ; —1) ifr~1 
¥ pw i(ai+8)G; a 2 Con eh te tee Os een 1) ca ie 
i=] 

where € = exp(2mi/e) and r = rg ; = €~/-8e! (so that r° = €* = 1), and hence 

8(%) = =(-1+ (-1)' Va) + (-1) Va ALI ES | rg = 1). 

If we abbreviate the cardinality in this formula with #, then: If e = 1 then #= 1 if 

g € —J (mod e), and # = 0 otherwise. If e’ = —1 (then e is even and p is odd) then 

#=lifge se —J (mod e), and # = 0 otherwise. We proved: 

Theorem 9.8.5 Let q = p*, with p prime, and e|(q—1), where p is semiprimitive 

mod e (i.e., there is anl > 0 such that p' = —1 mod e). Choose | minimal with this 

property and write kK = 2It. Choose u, 1 <u < e—1, and assume that q is even 

or u is even or e|(q—1)/2. Then the graphs Ty (where J is arbitrary for q even or 

e|(q —1)/2 and satisfies J + (q—1)/2 =J mod e otherwise) are strongly regular, 
with eigenvalues 

k= thy with multiplicity 1, 
6; = #(—1+ (—1)',/@) with multiplicity gq —1—k, 

& = ¥(-14 (-1)'/q)+ (-1)*' V@_ with multiplicity k. 

(Obviously, when t is even we have r = 0,, s = 0, and otherwise r = 0), s = Q\.) 

Clearly, if e|e’|(q— 1), then the set of e-th powers is a union of cosets of the set of 
e’-th powers, so when applying the above theorem we may assume that e has been 
chosen as large as possible, i.e., e = p! + 1. Then the restriction “q iS even or u is 
even or e|(q — 1)/2” is empty, and J can always be chosen arbitrarily. 

The above construction can be generalized. Pick several values e; (i € I) with 
e;|(¢q — 1). Let K; be the subgroup of Fj of the e;-th powers. Let J; be a subset of 
{0,1,...,e;— 1}. Let Dj := Dy, := U{a/K; | j € Jj}. Put D:= UD;. If the D; are 
mutually disjoint, then D defines a graph of which we can compute the spectrum. 

For example, let p be odd, and take e; = p+ 1 (i = 1,2) and g = p*, where 
kK = 4ljs; (i= 1,2). Pick J, to consist of even numbers only, and Jz to consist of odd 
numbers only. Then D; 1 D2 = @ and g € —J; (mod e;) cannot happen for i = 1,2 
simultaneously. This means that the resulting graph will be strongly regular with 
eigenvalues 
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Aca — a) (-1+ 4) — V9.6(g € —J;(mod e;) for i= 1 or i=2) 
1 DL 

A(z) = ( 
(where 6(P) = 1 if P holds, and 6(P) = 0 otherwise). See also [68]. In the special 
CaSeupuce Sele yaa 2) Ce 4 C= 10. Jp 0}; Jo. = {1}; the difference:set 

consists of the powers a with i= 0 (mod 4) or i= 1 (mod 10) (ie., is the set 
{1,a, 04,008, a!!,a!?,a!}(a9)), and we found the first graph from DE LANGE 
[249] again. (It has parameters (v,k,A,W) = (6561,2296,787,812) and spectrum 

2206 28 (53) ) 

9.9 Table of parameters for strongly regular graphs 
- 

Below a table with the feasible parameters for strongly regular graphs on at most 

100 vertices. Here feasible means that the parameters v,k,A,u and multiplicities 

f,g are integers, withO<A<k—1land0<u<k< v. In some cases a feasible 

parameter set is ruled out by the absolute bound or the Krein conditions, or the 

restriction that the order of a conference graph must be the sum of two squares. For 

some explanation of the comments, see §9.9.1. 

qo Rayon yi sé Comments 

. 5 2 0 1 0.618% —1.618" pentagon; Paley(5); Seidel 2-graph—« 

He Ry ZT dE —2*  Paley(9); 3?; 2-graph—* 
LO eS OmerL iP? —24 PETERSEN [294]; NO, (2); NO; + (5); 2-graph 

6 3 4 it —2> (5); 2-graph 
Mn SuGue en Sel 3030023032 Paley(13); 2-graph—* 

Ve Ss Onl 3 12 —3° — Qs(2) polar graph; Sp4(2) polar graph; NO, (3); 2-graph—* 

yy ab yk oe —29 (6); 2-graph—« 
OW Se Oo Gh? —3> 3) =0; vanLint-Schrijver(1); VO; (2) affine polar graph; projective binary 

[5,4] code with weights 2, 4; RSHCD™ ; 2-graph 

10 6 6 2 20 Gin = 0; Clebsch graph [100, 108, 99, 315]; vanLint-Schrijver(2); 2-graph 

Pal WN INe08 —29 — SHRIKHANDE [325]; 4°; from a partial spread: projective binary [6,4] code 
with weights 2, 4; RSHCD* ; 2-graph 

9 4 6 1? —36  OA(4,3); Biling.2(2); Goethals-Seidel(2,3); VO; (2) affine polar graph; 2- 

graph 

1 17 8 3 4 1.5628 W—2.562° Paley(17); 2-graph—« 

2 PANO, Ge —4° 
KO. Sth Be Sh THES 

=O 4s 179? 279 0 Cont 

1 D5a8e03) 2a 938 =9'6"" 5? 
1669 12m IeS —48 OAG,4) 

IS125912. 55210 gv —3!2 complete enumeration by PAULUS [290]; Paley(25); OA(S,3); 2-graph—* 

10}, 26n10NSer 4a 2° —3'2 complete enumeration by PAULUS [290]; 2-graph 
[SmeSang mez? —3'3  §(2,3,13); 2-graph 

eTetOmiee se 120 —5° gy =0; OF (2) polar graph; GQ(2,4); 2-graph—* 

1610 8 4° —220 gi, =0; Schlafli graph; unique by SEIDEL [315]; 2-graph—* 

SP lee an —5°  Kreinz; Absolute bound 
ASe12=10Ner4® —2?! Krein; Absolute bound 

MOR IO Gide eM 270 (8); Chang graphs, CHANG [87]; 2-graph 

1a Onl Olmmnl ae —5’ NO¢ (2); Goethals-Seidel(3,3); Taylor 2-graph for U3 (3) 

41! 29 14 6 7 2.193'4 —3.193'4 complete enumeration by Bussemaker & Spence [pers.comm.]; Paley(29), 
2-graph—* re — ne seen 
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S| be ik SA ri sf Comments 

33 16 8 2.37216 —3.372'° Conf 

3854! 35 

130 

180! 36 

32548! 36 

+ Od 

28! 40 

+ 4l 
78! 45 

16 

18 

10 

25 

14 

21 

14 

21 

tS 

20 
18 

12 

27 

20 
12 

32 

16 

28 
Pp) 
1 

7 

6 

9 
4 

16 

ms 

i) 

DSovonw 

920 —4l4 

314 —320 

410 _725 

125 —510 

921 = als 

3/4 32! 

58 —227 

127 —68 

315 —320 

920 —4)s 

2541 3 548 
224 —4ls 

315 _324 

2.7027° —3.702° 
320 324 

924 —420 

6? —235 

135 72. 

2.85422 —3.854% 
512 —736 

136 —6)2 

932 516 

416 332 

4}8 —330 

230 518 

324 —4?4 

928 3?! 

921 —328 

1? _97 

87 = p42 

325 —4?4 

324 —425 

3.1407 —4.14076 
710 Bons 

144 —g!0 

935 —420 

320 —335 

148 —10’ 

g/ eae 

238 518 

4i8 —338 

518 —338 

938 —6!8 

3.275% —4.27578 
3.405% —4.40530 

ts es Be 
107, = 255 
335 —§27 

427 —435 

64 = 9 

complete enumeration by MCKAY & SPENCE [277]; 2-graph—* 

S(2,3,15); lines in PG(3,2); Of (2) polar graph; 2-graph—* 
6? 

U3(3).2/L2(7).2—subconstituent of the Hall-Janko graph; complete enu- 
meration by MCKAY & SPENCE [277]; RSHCD_ ; 2-graph 

2-graph 

T(9) 

complete enumeration by MCKAY & SPENCE [277]; OA(6,3); NO¢ (2)s 

RSHCD*™ ; 2-graph 
NO; (3); 2-graph 
Paley(37); 2-graph—* 

complete enumeration by SPENCE [328]; O5(3) polar graph; Sp4(3) polar 
graph 

NU (4,2) 
Paley(41); 2-graph—* 

complete enumeration by COOLSAET, DEGRAER & SPENCE [104]; U4(2) 

polar graph 

NOE (3) 
T(10) 

MATHON [272]; 2-graph—* 
PP 

OA(7,6) 

BUSSEMAKER, HAEMERS, MATHON, & WILBRINK [77] 

OA(7,3) 
OA(7,5) 
Paley(49); OA(7,4); 2-graph—* 

HOFFMAN & SINGLETON [220]; U3(S*).2/Sym(7) 

Absolute bound 

Absolute bound 

2-graph 

S(2,4,25); 2-graph 

Paley(53); 2-graph—« 

T(il) 

Sims-Gewirtz graph [170, 171, 58]; L3(4).27/Alt(6).2? 
intersection-2 graph of a 2-(21,6,4) design with block intersections 0, 2 

Krein; Absolute bound 

Krein, ; Absolute bound 

WILBRINK & BROUWER [349] 

$(2,3,19) 

Conf 

Paley(61); 2-graph—* 

Krein; Absolute bound 

Krein;; Absolute bound 

intersection-8 graph of a 2-(36,16,12) design with block intersections 6, 8; 

O;(2) polar graph; Sp¢(2) polar graph; 2-graph—* 

S(2,4,28); intersection-6 graph of a 2-(28,12,11) design with block intersec- 

tions 4, 6; NU (3,3); 2-graph—* 

87; from a partial spread of 3-spaces: projective binary [14,6] code with 
weights 4, 8 a ee ee ee ee 
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wae rh hn, . sae a. lee 
49 36 42. 17 SOAS 7) 

NGTG45 18 ie Gane —6'8 complete enumeration by HAEMERS & SPENCE [207]; GQ(3,5); from a 

hyperoval: projective 4-ary [6,3] code with weights 4, 6 

AS©32, 305 053° —345 
See yetl Dil We Way APE —117 Krein; Absolute bound 

42 30:22 107 —2°° Krein,; Absolute bound 

ey 164-0158 6 52! 3 OA(8,3); Bilin2,.3(2); from a Baer subplane: projective 4-ary [7,3] code 
with weights 4, 6; from a partial spread of 3-spaces: projective binary [21,6] 

code with weights 8, 12 

CO AS BM) OR? —67! OA(8,6) 

+ 6427 10 12 376 —5*’ from a unital: projective 4-ary [9,3] code with weights 6, 8; VO, (2) affine 
polar graph; RSHCD ; 2-graph 

36 20 20 477 —436  2-sraph 
a 6428 12 128 4" —4> QA(8,4); from a partial spread of 3-spaces: projective binary [28,6] code 

with weights 12, 16; RSHCD*; 2-graph 
S508 20s 3 —578 — OA(8,5); Goethals-Seidel(2,7); VO¢ (2) affine polar graph; 2-graph 

— 64 3018 10 10° —2°> Absolute bound 

28 all) Ph) iH —118 Absolute bound 
2 65 32 15 16 3.53152 —4.5313? 2-graph—*? z 
"66:20:10 4 81! —2% (12) 

ASE SSO eelon =o! 

PENC69 20a) a SPA 3% 
A8I32636 eo —6 — §(2,6,46) does not exist 

— 69 34 16 17 3.653°4 —4.653%4 Conf 
OFZ 1129) eG” =3? 2S2821) 

EMIS Dh he) -7° 
+ 73 36 17 18 3.77236 —4.772%© Paley(73); 2-graph—* 
T5232 10116 22° —8!8  2-graph—+? 

AEDS = 27s” —3%  2-graph—*? 

See Gk Roe —7'9 HAEMERS [198] 
54 39 36 «6! —3% 

Di GNSO) 8 142-277 —8'8  2-graph? 
A5) 2810492" —3°7 2-graph? 

2 Tes ivy Pe —3°6 2-graph? 

40 18 24 2°6 —8'9 2-graph? 
Wy 77116, "0) 427? —6?! — §(3,6,22); Mz2.2/2*: Sym(6); unique by BROUWER [48]; subconstituent of 

Higman-Sims graph 
60 47 45 ‘5?! —355  intersection-2 graph of a 2-(22,6,5) design with block intersections 0, 2 

— 77 38 18 19 3.88798 —4.88738 Conf 

ie BRR ATINE, he One TS) 

55130145) 1° 10% 
GW Oh 7s —2°  G?: froma partial spread: projective ternary [8,4] code with weights 3, 6 

64 49 56 1% —8'© OAQ,8) 
1 ua Ges! —7 unique by BROUWER & HAEMERS [57]; VO, (3) affine polar graph; pro- 

jective ternary [10,4] code with weights 6, 9 

GONAS A425 62" —3 
“1 581)24.:9 36, 62 —3°©  OA(9,3); VNOj (3) affine polar graph; from a partial spread: projective 

ternary [12,4] code with weights 6, 9 

56 37 42 2° —72+ OA 2) 

4 GS) TD SEY —6°9  VNO, (3) affine polar graph; HAMADA & HELLESETH [211]: projective 
ternary [15,4] code with weights 9, 12 

SOPs IESO lose 43 

cb ARIES D 1 Sew 522 —448 — QA(9,4); Biling,.2(3); VOj (3) affine polar graph; from a partial spread: pro- 
jective ternary [16,4] code with weights 9, 12 

48 2730 3% —67 OA(Q,6) 
Boi 40) 3026 ee ee —148 Absolute bound 

40 25 14. 138 —27? Absolute bound 
I eye ais Ze 540 Paley(81); OA(9,5); projective ternary [20,4] code with weights 12, 15; 2- 

graph—* a 
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=n i 8 Comments 

+ 82. 368150160 aes = SU Overaphitl Nera gunn eae 
45 2425 470 —54! — §(2,5,41); 2-graph 

85) 14 382 a4 =350 
TOMST EGON 2° =597 

4S 850 20) (She Ore eoee —5*4 — Q5(4) polar graph; Sp4(4) polar graph 
64 48 48 «434 =450 

2 SS5m 30 LE1OM 35:4 —450 
54733736 §3°° 264 S651)? 

2 85 42 20 21 4.110% —5.1104 2-graph—x? 
2 88: 27 (G9 1372 6 

60 41 40 5% —455 
+ 89 44 21 22 4.21744 —5.217™ Paley(89); 2-graph—* 
1 91.24 12 4 103 = 2 esr (tA) 

66-45 55 177 = 12 
— 93 46 22 23 4.322% —5.322* Conf 
2-95. 40112720 27 —10!9 2-graph—*? 

5453327 a9)” —37 2-graph—*? 

96, 198 Qa 4m 9377 —538  HAEMERS [197] 
76 60 60 «438 —457 

459620) 44 ay —4  GQ(5,3) 
75 58 60 3°° a9 

2 96 35710"14" 3° eo 
60 38 36 «6 —493 

— 96 38 1018 276 —10!9 DEGRAER [136] 
57 36 30 919 318 

2 96 45 24 18 90 —37 2-graph? 
502253002? —107° 2-graph? 

+ 97 48 23 24 4.42448 5.42448 Paley(97); 2-graph—x 
25-90 S148 ioe 354 =444 

SA0TIMI2= 53.7 =A 
299 (422115) 797} =3)7) 

56°28 36 277 = 1024 
+ 99 482224 4% —64 2-graph—* 

507250250) 5 —5°4 — §(2,5,45); 2-graph—* 
T100 18s esse Ne Kt? 

81 64 72 12! —918 
! 10022: O86 "277 —8” — 3, =0; HIGMAN & SIMS [216]; HS.2/Mp2.2; unique by GEWIRTZ [170] 

TT ACORSON tT =o eg =O 
+100 27°10" 6" 727 = 3/2 OAS) 

72 50 56 9272 —877 QA(10,8)? 
2 100) 387.8" 127 13° Tee 

66 44 42 63 496 
+ 100 33°14°9 324 = 3159 S235) 

66 41 48°" 275 o-4 
= 100 3351887) 18 —288 Absolute bound 

66°39 52 «188 —14!! Absolute bound 

+ 100 36 14 12 6% —4% — Hall-Janko graph; J>.2/U3(3).2; subconstituent of G2(4) graph; OA(10,4) 
63 38 42 «3883 —7® QA(10,7)? 

+ 100 44 18 20 455 —64 JORGENSEN & KLIN [236]; RSHCD~; 2-graph 
55 30 30 544 —5°% 2-graph 

+ 100 45 2020 54 —5°4 — OA(10,5)?; RSHCD*; 2-graph 
54 28 30 4>4 —6 OA(10,6)?; 2-graph 

9.9.1 Comments 

Comment Explanation 

q\; =9, 93, =0 Zero Krein parameter, see §11.4. 

m Hamming graph H(2,m), a.k.a. lattice graph Ly(m), or 
grid graph m x m, or Km Km, see §12.4.1, §1.4.5. 

continued... 
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Comment 

T (m) 

OA(n,t) (t > 3) 

S(2,k,v) 

Goethals-Seidel(k, r) 

2-graph 

2-graph—* 

RSHCD* 

Explanation 

Johnson graph J(m,2), a.k.a. triangular graph T(m), see 

§12.4.2, 81.4.5. 
Block graph of an orthogonal array OA(n,t) (that is, t — 2 

mutually orthogonal Latin squares of order 7). 

Block graph of a Steiner system S(2,k,v) (that is, foe 

(v,k, 1) design). 

Graph constructed from a Steiner system S$(2,k,v) (with 

r= (v—1)/(k—1)) and a Hadamard matrix of order r+ 1 

as in [179]. 

Graph in the switching class of a regular 2-graph, see 

810.2. 

Descendant of a regular 2-graph, see 810.2. 

Graph derived from a regular symmetric Hadamard ma- 

trix with constant diagonal (cf. §10.5.1, [62], [179]). 

Taylor 2-graph for U3(q) Graph derived from Taylor’s regular 2-graph (cf. [62], 

Paley(q) 
vanLint-Schrijver(u) 

Biling.¢(q) 

GQ(s,t) 

O§ ,(4), Ora-+1(4) 

Spra(q) 

[336], [337]). 

Paley graph on F,,, see §10.4, 813.6. 

Graph constructed by the cyclotomic construction of 

[257], taking the union of u classes. . 

Graph on the 2 xd matrices over F,, adjacent when their 

difference has rank 1. 

Collinearity graph of a generalized quadrangle with pa- 

rameters GQ(s,t), see §9.6.3. 
Isotropic points on a nondegenerate quadric in the projec- 

tive space PG(2d — 1,q) or PG(2d,q), joined when the 

connecting line is totally singular. 

Points of PG(2d — 1,q) provided with a nondegenerate 

symplectic form, joined when the connecting line is to- 

tally isotropic. 

Isotropic points of PG(d — 1,q”) provided with a non- 
degenerate Hermitean form, joined when the connecting 

line is totally isotropic. 

Nonisotropic points of PG(2d — 1,2) provided with a 
nondegenerate quadratic form, joined when they are or- 

thogonal, i.e., when the connecting line is a tangent. 

One class of nonisotropic points of PG(2d — 1,3) pro- 
vided with a nondegenerate quadratic form, joined when 

they are orthogonal, i.e., when the connecting line is el- 

liptic. 
[sre So nae 

continued... 
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Comment Explanation 

NO}441(4) One class of nondegenerate hyperplanes of PG(2d,q) 

provided with a nondegenerate quadratic form, joined 

when their intersection is degenerate. 

NOSS 5 (5) One class of nonisotropic points of PG(2d,5) provided 
with a nondegenerate quadratic form, joined when they 

are orthogonal. 

NU,(q) Nonisotropic points of PG(n — 1,q) provided with a non- 

degenerate Hermitean form, joined when the connecting 

line is a tangent. 

VO54(9) Vectors of a 2d-dimensional vector space over F, pro- 

vided with a nondegenerate quadratic form Q, where two 

vectors u and v are joined when Q(v— u) = 0. 
VNOS ,(q) (q odd) Vectors of a 2d-dimensional vector space over Fy pro- 

vided with a nondegenerate quadratic form Q, where two 

vectors u and v are joined when Q(v—u) is a nonzero 

square. 

9.10 Exercises 

Exercise 9.1 ([{179]) Consider the graph on the set of flags (incident point-line 

pairs) of the projective plane PG(2,4), where (p,L) and (q,M) are adjacent when 
p#qandL + M and either p € M or q € L. Show that this graph is strongly regular 

with parameters (v,k,A, 1) = (105,32,4,12). 

Exercise 9.2 ({25]) Consider the graph on the cosets of the perfect ternary Golay 

code (an [11,6,5] code over 3), where two cosets are adjacent when they differ 

by a vector of weight 1. Show that this graph is strongly regular with parameters 

(v,k,A,) = (243,22, 1,2). It is known as the Berlekamp-van Lint-Seidel graph. 

Exercise 9.3 Fix a Steiner system $(3,6,22) on a 22-set Q. Consider the graph 

that has as vertices the pairs of symbols from Q, where two pairs are adjacent when 

they are disjoint and their union is contained in a block of the Steiner system. Show 

that this graph is strongly regular with parameters (v,k,A, ) = (231,30,9,3). It is 
known as the Cameron graph. 

Exercise 9.4 Prove Theorem 9.6.2. 

Exercise 9.5 For a strongly regular graph I" and a vertex x of I, let A be the 
subgraph of I” induced on the set of vertices different from x and nonadjacent to 
x. If I has no triangles and spectrum k!, r/, 58, then show that A has spectrum 
(k—p)', r~*, s8-*, (—p)*-!. Conclude if I is primitive that f > k and g > k, and 
that if f =k or g =k then A is itself complete or strongly regular. Determine all 
strongly regular graphs with A = 0 and f =k. 
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Exercise 9.6 Let I’ be a strongly regular graph with parameters (v,k,A,u) and 

spectrum k!, r/, s%. Let x be a vertex of I, and suppose that the graph I(x) induced 

on the set of neighbors of x is isomorphic to (t + 1)K, (so that k= a(t+1) and A = 

a—1). Then the graph I>(x) induced on the set of nonneighbors of x has spectrum 

(k—p)' r'-*, 8", (=p), (r-+s+1)**=!.. int: Use Lemma 2.11.1.) 

Exercise 9.7 ({302]) Prove that if the complete graph K, can be decomposed into 

an edge-disjoint union of three copies of a strongly regular graph with parameters 

(v,k,A,), then there is an m € Z such that v = (3m—1)?,k =3m? —2m, A =m? —1, 

pt = m* — m. (Hint: Apply the argument from §1.5.1.) 

Exercise 9.8 ((37]) Show that having a constant k almost follows from having 

constant A, 4. More precisely: Consider a graph I” with the property that any two 

adjacent (nonadjacent) vertices have A (resp. W) common neighbors. Show that if 

I is not regular, then either u = 0 and I is a disjoint union of (A + 2)-cliques, or 
fu = 1, and Tis obtained from a disjoint union of (A + 1)-cliques by adding a new 

vertex, adjacent to all old vertices. 

Exercise 9.9 A spread in a generalized quadrangle is a subset S of the lines such 

that every point is on exactly one line of S. Prove that a GO(q" ) has no spread. 

(Hint: A spread is a coclique in the line graph.) 

Exercise 9.10 Show that the Schlafli graph is obtained from L(Kg) (that is, T(8)) 

by switching one point isolated, and removing it. 

Exercise 9.11 ({236]) Show that the strongly regular graph with parameters (v,k,/, 

1) = (100,45, 20, 20) obtained from the Hall-Janko graph in §9.1.12 can be switched 

into a strongly regular graph with parameters (100,55, 30, 30). 

Exercise 9.12 There exist strongly regular graphs in F4, invariant for translation and 

dilatation, with parameters (v,k,A, 1) = (81,20, 1,6) and (81,30,9, 12). Determine 
the corresponding ternary codes and their weight enumerators. 

Exercise 9.13 With C and D as in §9.7, show that CUD induces a distance-regular 

graph of diameter 3 with intersection array {10,9,4; 1,6, 10}. 

Exercise 9.14 With I as in §9.7, show that y(I") > 6 also follows from Corol- 

lary 3.6.4 applied to the induced subgraph of I, obtained by deleting all vertices of 

one color class. 

Exercise 9.15 Under what conditions is the Hamming code cyclic? Negacyclic? 

Constacyclic? 

Exercise 9.16 A cap in a projective space is a collection of points, no three on a 

line. Show that a [n,n —m,4] code over F, exists if and only if there is a cap of size 

nin PG(m— 1,q). Construct form > 0a [2”-! 2™-! _ m, 4] binary code. 

Exercise 9.17 Given a two-weight code over F, of word length n, dimension m and 

weights w; and w2. Express the parameters v, k, A, u,r, 5, f, g of the corresponding 

strongly regular graph in terms of g, n, k, wi and wp. 
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Chapter 10 

Regular Two-graphs 

10.1 Strong graphs 

Let us call a graph (possibly improper) strongly regular when it is strongly regular or 

complete or edgeless. Above (Theorem 9.1.2) we saw that a graph I” is (possibly im- 

proper) strongly regular if and only if its adjacency matrix A satisfies AEMALE J), 

where (...) denotes the R-span. In particular, this condition implies that I” is regular, 

so that AJ = JA. 
Consider the Seidel matrix § = J —I —2A (see §1.8.2). We have (A,/,J) = 

(S,I,J). If A? € (A, I,J) then also S? € (S,1,J), but the converse does not hold. For 
example, consider the path P; of length 2. We have S* = § +21, but A only satisfies 

the cubic equation A> = 2A. 
We call a graph strong whenever its Seidel matrix S satisfies S? € (S,,J), Thus a 

(possibly improper) strongly regular graph is strong, and conversely a regular strong 

graph is (possibly improper) strongly regular. As we saw, a strong graph need not 

be regular. Another example is given by Cs + Ki, where the Seidel matrix satisfies 

S? = 5I. But the following properties are satisfied (recall that an eigenvalue is called 

restricted if it has an eigenvector orthogonal to the all-1 vector 1): 

Proposition 10.1.1 Fora graphT with v vertices and Seidel matrix S, the following 

holds: 

(i) I is strong if and only if S has at most two restricted eigenvalues. In this 

case (S — piI)(S — pol) = (v—1+ pip2)J, where p; and pz are restricted 

eigenvalues of S. 

(ii) I is strong and regular if and only if T is (possibly improper) strongly reg- 

ular, In this case the eigenvalue po of S for 1 satisfies (Po — P1)(Po — P2) = 

v(v—1+pip2). 

(iii) If D is strong with restricted eigenvalues p, and 2, and v—1-+ pip2 #0; 

then I’ is regular, and hence (possibly improper) strongly regular. 

(iv) S has a single restricted eigenvalue if and only if S = +(J —1), that is, if and 

only if I is complete or edgeless. 

151 
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Proof. (i) If IF is strong, then S* + aS + BI = yJ for some constants a, B, and y. 
If p is a restricted eigenvalue of S with eigenvector v orthogonal to 1, then (p? + 

ap + B)v = yJv = 0, so p? + ap + B = 0. Therefore S has at most two restricted 
eigenvalues. Conversely, if S has just two restricted eigenvalues p; and p2, then 

(S— pi1)(S — pol) € (J), soT is strong. And if (S— p1/)(S— p2l) = yJ, then the 
diagonal entries show that y= v—1+ p12. 

(ii) We know that (possibly improper) strongly regular implies strong and regular. 

Suppose I’ is strong and regular. Then S* € (S,J,/) and SJ € (J), which implies that 

the adjacency matrix A = (J —S—J)/2 of T satisfies A? € (A,1,/), soT is (possibly 
improper) strongly regular by Theorem 9.1.2. 

(iii) If I” is not regular, then J is not a polynomial in S, so v— 1+ p1p2 = 0 follows 

from part (i). C 

We see that v— 1+ pip2 = 0 if and only if S has exactly two distinct eigen- 

values p; and p2. Recall that two graphs I” and I” are switching equivalent (see 

81.8.2) if their Seidel matrices S and S are similar by some diagonal matrix D = 

diag (sel cee) ales S = DSD). So switching-equivalent graphs have the same_ 

Seidel spectrum, and therefore the property of being strong with two Seidel eigen- 

values is invariant under Seidel switching. 

Suppose I" is a strong graph on v vertices with two Seidel eigenvalues p; and 

P2 (sov—1+ pip2 = 0). Clearly, I” is regular of degree k if and only if its Seidel 

matrix has constant row sum v — | — 2k. Therefore v — 1 — 2k = pg is an eigenvalue 

of S, so either Po = P1, OF Po = P2. Switching in I produces another strong graph, 

which may or may not be regular. If it is regular, then it is regular of degree either 

(v— 1 —p1)/2 or (v— ] — p2)/2. 

Examples (i) If I” is P3, then the Seidel eigenvalues are —1 and 2, so a regular 

graph that is switching equivalent must have degree either 3/2 or 0. The former is 

impossible, but the latter happens: P; is switching equivalent to 3K). 

(ii) If I" is Cs + Kj, then the eigenvalues are +\/5, and so can never be equal to 

the row sum. So this graph cannot be switched into a regular one. 

(iii) If I” is the 4 x 4 grid (the lattice graph L2(4)), then v = 16 and po = Dy. 

p2 = —5. So I’ is strong with two eigenvalues. Switching in I with respect to a 

coclique of size 4 again gives a regular graph with the same parameters as I", but 
which is not isomorphic to I’. This is the Shrikhande graph (see §9.2). Switching 
with respect to the union of two parallel lines in the grid (that is, two disjoint 4- 
cliques in I~) gives a regular graph of degree 10, the Clebsch graph (see §9.2). 

Strong graphs were introduced by SEIDEL [315]. 

10.2 Two-graphs 

A two-graph Q = (V,A) consists of a finite set V, together with a collection A of 
unordered triples from V such that every 4-subset of V contains an even number of 
triples from A. The triples from A are called coherent. 
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From a graph I” = (V,£), one can construct a two-graph Q = (V,A) by defining 

a triple from V to be coherent if the three vertices induce a subgraph in I” with an 

odd number of edges. It is easily checked that out of the four triples in any graph on 

four vertices, 0, 2, or 4 are coherent. So Q is a two-graph. We call Q the two-graph 

associated to’. 

Observe that Seidel switching does not change the parity of the number of edges 

in any three-vertex subgraph of I’. Therefore switching-equivalent graphs have the 

same associated two-graph. Conversely, from any two-graph Q = (V,A) one can 

construct a graph I" as follows. Take @ € V. Define two vertices x,y € V \{@} to 
be adjacent in I" if {@,x,y} € A, and define @ to be an isolated vertex of I. We 

claim that every triple {x,y,z} € A has an odd number of edges in I”, which makes 

Q the two-graph associated to I’. If @ € {x,y,z} this is clear. If w ¢ {x,y,z}, the 
4-subgraph condition implies that {x,y,z} € A whenever from the triples {@, y,z}, 
{@,x,y}, {@,x,z} just one or all three are coherent. Hence {x, y,x} has one of three 
edges in I. Thus we have established a one-to-one correspondence between two- 

graphs and switching classes of graphs. 

Small two-graphs were enumerated in [78]. The number of nonisomorphic two- 

graphs on n vertices for small n is 

SHOE NEVIGS 9 10 

7 16 54 243 2038 33120 

There is an explicit formula for arbitrary n. See, e.g., [268]. 

For the graph I" with an isolated vertex @, obtained from Q as indicated above, 

the graph I’ \ @ plays an important role. It is called the descendant of Q with respect 

to @, and will be denoted by Iq. 

Since switching-equivalent graphs have the same Seidel spectrum, we can define 

the eigenvalues of a two-graph to be the Seidel eigenvalues of any graph in the 

corresponding switching class. 

SEIDEL & TSARANOV [319] classified the two-graphs with smallest Seidel 

eigenvalue not less than —3: 

Theorem 10.2.1 (i) A graph T’ with smallest Seidel eigenvalue larger than —3 is 

switching equivalent to the void graph on n vertices, to the one-edge graph on n 

vertices, or to one of the following 2 +3 +5 graphs on 5,6,7 vertices, respectively: 

OC CELE 
(ii) A graph I’ with smallest Seidel eigenvalue not less than —3 is switching 

equivalent to a subgraph of mK or T (8). O 
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10.3 Regular two-graphs 

A two-graph (V, A) is called regular (of degree a) if every unordered pair from V is 

contained in exactly a triples from A. Suppose Q = (V,A) is a two-graph, and let 
V be the set of noncoherent triples. Then it easily follows that Q = (V,V) is also a 

two-graph, called the complement of Q. Moreover, Q is regular of degree a if and 

only if the complement Q is regular of degree @ = v — 2 —a. The following result 

relates regular two-graphs with strong graphs and strongly regular graphs. 

Theorem 10.3.1 For a graph I with v vertices, its associated two-graph Q, and 

any descendant Ivy of Q the following are equivalent. 

(i) I is strong with two Seidel eigenvalues p, and p>. 

(ii) Q is regular of degree a. 

(iii) I~ is (possibly improper) strongly regular with parameters (v —1,k,A,[) 

with pW = k/2. 

The parameters are related by v= 1—pip2, a= k = 2p = —(p1 + 1)(p2 + 1)/2, 
and A = (3k—v)/2 =1—(p; +3)(p2 +3)/4. The restricted Seidel eigenvalues of 
I are p; and p2, and pj + p2 =v—2a—2 =a —a. 

Proof. (ii) = (iii): Let x be a vertex of Ij). The number of coherent triples containing 
@ and x equals the number of edges in I, containing x, so I~ is regular of degree a. 

For two vertices x and y in Ij, let p(x, y) denote the number of vertices z (z £ x,y) 

adjacent to x but not to y. If x and y are distinct and nonadjacent, then p(x, y) + 
p(y,x) =a, and the number ut of common neighbors of x and y equals k — p(x, y) = 

k — p(y,x). Therefore u = k/2 = a/2 is independent of x and y. Similarly, if x and 
y are adjacent, then p(x,y) + p(y,x) =@ (the degree of the complement), and the 
number A of common neighbors of x and y equals k — 1 — p(x,y) =k—1-— p(y,x), 
which implies A = (3k — v)/2, which is independent of x and y. 

(iii) => (ii): If Iq is strongly regular and k = 2, then Theorem 9.1.3 gives A = 
(3k — v)/2. With the relations above this shows that Q is regular of degree k. 

(i) = (iii): Switch in I’ with respect to the neigbors of @, then @ becomes iso- 
lated, and I’ \ @ = Iq. If Sq is the Seidel matrix of I), then 

is the Seidel matrix of I. We know (S— p,/)(S — pol) = 0. This gives (So — 
pil)(S@ — p21) = —J. Therefore Ij is strongly regular with restricted Seidel eigen- 

values p; and p2 and v— 1 = —p; p> vertices. From S = J — 2A —I we get the adja- 
cency eigenvalues r= —(p, + 1)/2 and s = —(p2 +1)/2 of Ij). Now the parameters 
of I~ follow from Theorem 9.1.3. 

(iii) = (i): Suppose Ij is strongly regular with k = 2 and Seidel matrix Sj). 
Then it follows readily that S~1 = (p; + P2)1 and (Sm — pil) (Sw —p2I) = —J. This 
implies that S satisfies (S — p,/)(S— pol) = 0. O 
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Small regular two-graphs have been classified. The table below gives the num- 

bers of nonisomorphic nontrivial regular two-graphs with p; = —3 or p; = —S or 

v < 50. 

v 6 10 14 16 ZO Mzs 30 36 18 
Pi,p2|+V5 +3 4V13 -3,5 4V17 +5 -3,9 4729 —-5,7 

# 1 1 1 1 I 4 1 6 7 

eee 4G Ue 6 962 126. 116.276 
#3) +V4l +¥45 47 —5,15 —5,19 —5,25 —5,35 —5,55 
Store is Oy = 54° 6? ? 1 1 I 

10.3.1 Related strongly regular graphs 

Given the parameters of a regular two-graph Q, we find three parameter sets for 

strongly regular graphs that may be related, namely the parameter set of the descen- 

dants and the two possible parameter sets for regular graphs in the switching class 

of Q. The parameters are given by: 

Proposition 10.3.2 (i) Let I be strongly regular with parameters (v,k,A,U). The 

associated two-graph Q is regular if and only if v = 2(2k—A — p). If this is the 

case, then it has degree a = 2(k — 1), and I is strongly regular with parameters 

Wie 1,2(k—p),k+A 2k fh). 

(ii) Conversely, if T is regular of valency k, and the associated two-graph Q is 

regular of degree a, then I is strongly regular with parameters A = k —(v—a)/2 

and ft = k—a/2, and k satisfies the quadratic 2k? — (v + 2a)k +(v—1)a=0. 

Proof (i) By definition, Q is regular of degree a if and only if a= A + (v—2k+ 

A) =2(k —). The parameters follow immediately. 
(ii) The quadratic expresses that k— 5v € {r,s}. O 

In the case of the regular two-graph on 6 vertices, the descendants are pentagons, 

and there are no regular graphs in the switching class. 

In the case of the regular two-graph on 10 vertices, the descendants are grid 

graphs 3 x 3. The switching class contains both the Petersen graph and its comple- 

ment. Therefore Q is isomorphic to its complement (and so are the descendants). 

In the case of the regular two-graph on 16 vertices, the descendants are isomor- 

phic to the triangular graph T(6) (with parameters (15,8,4,4) and spectrum 8! 2° 

(—2)?). The switching class contains the grid graph 4 x 4 and the Shrikhande graph 

(both with parameters (16,6, 2,2) and spectrum 6! 2° (—2)°), and the Clebsch graph 

(with parameters (16, 10,6,6) and spectrum 10! 2° (—2)!®). 

It remains to specify what switching sets are needed to switch between two 

strongly regular graphs associated to the same regular two-graph. 

Proposition 10.3.3 Let I" be strongly regular with parameters (v,k,A,[), associ- 

ated with a regular two-graph. 
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(i) The graph T is switched into a strongly regular graph with the same param- 

eters if and only if every vertex outside the switching set S is adjacent to half 

of the vertices of S. 

(ii) The graphT is switched into a strongly regular graph with parameters (v,k+ 

c,A+c,u+c) where c= $v — 2 if and only if the switching set S has size 

$v and is regular of valency k — pL. | 

For example, in order to switch the 4 x 4 grid graph into the Shrikhande graph, 

we can switch with respect to a 4-coclique. And in order to switch the 4 x 4 grid 

graph into the Clebsch graph, we need a split into two halves that are regular with 

valency 4, and the union of two disjoint K4’s works. 

Regular two-graphs were introduced by Graham Higman and further investigated 

by TAYLOR [335]. 

10.3.2 The regular two-graph on 276 points 

If N is the point-block incidence matrix of the unique Steiner system S(4,7,23), then 
NN' = 561 +21J, NJ =77J, JN = 7J. Since any two blocks in this Steiner system 

meet in one or three points, we have N'N = 7] +A +3(J—I—A) where A describes 
the relation of meeting in one point. As we already saw in §9.1.10, A is the adjacency 

matrix of a strongly regular graph—in this case one with parameters (v,k,A,) = 
(253, 112,36, 60) and spectrum 112! 27° (—26)??. The Seidel matrix § = J—I—2A 
has spectrum 28! (—5)?3° 51” and satisfies (S — 51/)(S+5I) = —3J. Now S! = 

é ore 4 ai) satisfies (S’ — 55/)(S’ +5I) = 0 and hence is the Seidel matrix 

of a regular two-graph on 276 vertices. This two-graph is unique (GOETHALS & 

SEIDEL [180]). Its group of automorphisms is Cos, acting 2-transitively. 

10.3.3 Coherent subsets 

A clique, or coherent subset, in a two-graph Q = (V,A) is a subset C of V such that 
all triples in C are coherent. If x ¢ C, then x determines a partition {C,,C/} of C into 
two possibly empty parts such that a triple xyz with y,z € C is coherent precisely 
when y and z belong to the same part of the partition. 

Proposition 10.3.4 (TAYLOR [337]) Let C be a nonempty coherent subset of the 
regular two-graph Q with eigenvalues p1, 02, where p2 < 0. Then 

(i) |C| < 1 — po, with equality iff for each x ¢ C we have |\C,| = |C!|, 
and 

(ii) |C| < m(p2). 
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Proof (i) Let c = |C|. Counting incoherent triples that meet C in two points, we 
find 5c(c — 1)a= Lx¢c |Cx|.|C| < Lrec(c/2)? = }c*(v—c). It follows that c* — 

(v —2a)c — 2a < 0. But the two roots of x? — (v — 2a@)x —2@ = 0 are 1 — p, and 
1 — p2, and hence 1 — p; <c < 1—/po. 

(ii) This follows by making a system of equiangular lines in R” as in §10.6.1 

corresponding to the complement of Q. We can choose unit vectors for the points 

in C such that their images form a simplex (any two have the same inner product), 

and hence |C| is bounded by the dimension m = v — m(p;) = m(pz2). 0 

10.3.4 Completely regular two-graphs 

In a regular two-graph, each pair is in a2 = a coherent triples, that is, in az 3-cliques, 

and each coherent triple is in a3 4-cliques, where a3 is the number of common 

neighbors of two adjacent vertices in any strongly regular graph Ij, so that a3 = 

—1(p, +3)(p2 +3) +1 by Theorem 10.3.1. 
Let a t-regular two-graph be a regular two-graph in which every i-clique is con- 

tained in a nonzero constant number a; of (i+ 1)-cliques, for 2 <i <t. By Propo- 
sition 10.3.4 we must have t < —p. A completely regular two-graph is a t-regular 

two-graph with t = —p2. For example, the regular two-graph on 276 points (§10.3.2) 

is completely regular. NEUMAIER [287] introduced this concept and gave parameter 

restrictions strong enough to leave only a finite list of feasible parameters. There are 

five examples, and two open cases. 

Existence 

unique [314] 

unique [314] 

unique [314] 
unique (BH) 

none (NP) 

none [287] 

unique [180] 

none [287] 

none [32] 

% 

none (BH) 
9 

none [287] 

Table 10.1 Parameters of completely regular two-graphs 

Here (BH) refers to an unpublished manuscript by Blokhuis and Haemers, while 

(NP) is the combination of NEUMAIER [287] who showed that a derived graph on 

95 vertices must be locally GQ(3,3), and PASECHNIK [289] who classified such 

graphs and found none on 95 vertices. 
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10.4 Conference matrices 

The Seidel matrix of Cs + K; is an example of a so-called conference matrix. An 

n Xn matrix S is a conference matrix if all diagonal entries are 0, the off-diagonal 

entries are +1, and SS’ = (n—1)/. 
Multiplying a row or column by —1 (switching) does not affect the conference 

matrix property. It was shown in [140] that any conference matrix can be switched 

into a form where it is either symmetric or skew-symmetric: 

Lemma 10.4.1 Let S be a conference matrix of order n with n > 2. Then n is even 

and one can find diagonal matrices D and E with diagonal entries +1 such that 

(DSE)' = DSE if and only if n = 2 (mod 4). One can find such D and E with 

(DSE)' = —DSE if and only if n = 0 (mod 4). 

Proof Switch rows and columns so as to make all nondiagonal entries of the first 

row and column equal to 1. The second row now has n/2 entries | and equally 

many entries —1 (since it has inner product zero with the first row). So, 1 is even, 

say n = 2m-+ 2. Let there be a,b,c,d entries 1,—1,1,—1 in the third row below the 

entries 1,1,—1,—1 of the second row, respectively. We may assume (by switching 

the first column and all rows except the first if required) that S23 = 1. If S32 = 1, then 

at+b=m-—1,c+d=m,a+c+1l=m,a—b—c+d+4+1=0implya+1=b= 

C0 = sm so that m is even. If $32 = —1, thena+b=m—1,c+d=m,a+c=m, 

@=bee-pdik= Olimplywasb)S¢ea4 =d= $(m— 1) so that m is odd. This 
proves that after switching the first row and column to 1, the matrix S$ has become 

symmetric in case n = 2 (mod 4), while after switching the first row to 1 and the 

first column to —1, the matrix S has become skew-symmetric in case n = 0 (mod 4). 
O 

Thus, if n = 2 (mod 4), S gives rise to a strong graph with two eigenvalues, and 

its associated two-graph is regular of degree (n —2)/2. The descendants are strongly 

regular with parameters (n—1,(n—2)/2,(n—6)/4,(n—2)/4). We call these graphs 
conference graphs. Conference graphs are characterized among the strongly regular 

graphs by f = g (f and g are the multiplicities of the restricted eigenvalues), and are 

the only cases in which nonintegral eigenvalues can occur. 

The following condition is due to BELEVITCH [24]. 

Theorem 10.4.2 If n is the order of a symmetric conference matrix, then n—1 is 
the sum of two integral squares. 

Proof. CC' = (n—1)I implies that J and (n — 1)/ are rationally congruent (two 
matrices A and B are rationally congruent if there exists a rational matrix R such 
that RAR' = B). A well-known property (essentially Lagrange’s four squares the- 
orem) states that for every positive rational number a, the 4 x 4 matrix ay is ra- 
tionally congruent to J4. This implies that the n x n matrix QJ, is rationally con- 
gruent to diag(1,...,1,@,...,@) where the number of ones is divisible by 4. Since 
n = 2 (mod 4), J must be rationally congruent to diag(1,...,1,2—1,n— 1). This 
implies that n — | is the sum of two squares. O 
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Note that this theorem also gives a necessary condition for the existence of con- 

ference graphs. For example, 21 is not the sum of two squares, therefore there exists 

no conference matrix of order 22, and no strongly regular graph with parameters 

(21,10,4,5). 

For many values of n, conference matrices are known to exist, see for example 

[178]. The following construction, where n — | is an odd prime power, is due to 

PALEY [288]. Let Sj be a matrix whose rows and columns are indexed by the el- 

ements of a finite field Fy of order g, g odd. by (Sw)i,j = X(i— Jj), where x is the 

quadratic residue character (that is, ¥(0) = 0 and v(x) = 1 if x is a square, and —1 
if x is not a square). It follows that S is symmetric if g = 1 (mod 4), and S is skew 

symmetric if g = 3 (mod 4). In both cases 

is a conference matrix. If n = 2 (mod 4), S represents a regular two-graph and 

all its descendants are isomorphic. They are the Paley graphs, which we already 

encountered in §9.1.2. 

10.5 Hadamard matrices 

Closely related to conference matrices are Hadamard matrices. A matrix H of order 

n is called a Hadamard matrix if every entry is 1 or —1, and HH' =nl. If H is 

a Hadamard matrix, then so is H'. If a row or a column of a Hadamard matrix is 

multiplied by —1, the matrix remains a Hadamard matrix. The core of a Hadamard 

matrix H (with respect to the first row and column) is the matrix C of order n — 

1 obtained by first multiplying rows and columns of H by +1 so as to obtain a 

Hadamard matrix of which the first row and column consist of ones only, and then 

deleting the first row and column. Now all entries of C are +1, and we have CC! = 

C'C=nlI—J, and C1 =C'1= ~1. This implies that the (0, 1) matrix N = 5(C+J) 
satisfies N'1 = (4n—1)1 and NN! = jnl+({n—1)J, so that, for n > 2, N is the 
incidence matrix of a symmetric 2-(n — 1, $n Ly, in 1) design. Conversely, if N 

is the incidence matrix of a 2-design with these parameters, then 2N — J is the core 

of a Hadamard matrix. Note that the design parameters imply that n is divisible by 

4 if n > 2. The famous Hadamard conjecture states that this condition is sufficient 

for existence of a Hadamard matrix of order n. Many constructions are known (see 

below), but the conjecture is still far from being solved. 

A Hadamard matrix H is regular if H has constant row and column sum (¢ say). 

Now —H is a regular Hadamard matrix with row sum —¢. From HH T =n we get 

that 02 =n, so = +,/n, and n is a square. If H is a regular Hadamard matrix with 

row sum @, then N = 4(H + J) is the incidence matrix of a symmetric 2-(n, (n+ 

¢)/2,(n+20)/4) design. Conversely, if N is the incidence matrix of a 2-design with 

these parameters (a Menon design), then 2N — J is a regular Hadamard matrix. 
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A Hadamard matrix H is graphical if it is symmetric with constant diagonal. 

Without loss of generality we assume that the diagonal elements are 1 (otherwise 

we replace H by —#). If H is a graphical Hadamard matrix of order n, then S= H —J 

is the Seidel matrix of a strong graph I with two Seidel eigenvalues: —1 + \/n. In 

other words, I is in the switching class of a regular two-graph. The descendant of 

I with respect to some vertex has Seidel matrix C —/, where C is the corresponding 

core of H. It is a strongly regular graph with parameters (v,k,A,) = (n—1, sn - 

le qn —1, in — 1). From tr $ = 0 it follows that also for a graphical Hadamard matrix 

n is a square. If, in addition, H is regular with row sum @ = +,/n, then I’ is a 

strongly regular graph with parameters (n, (n — £)/2,(n — 20)/4,(n —22€)/4). And 
conversely, a strongly regular graph with one of the above parameter sets gives rise 

to a Hadamard matrix of order n. 

There is an extensive literature on Hadamard matrices. See, e.g., [312, 313, 109]. 

10.5.1 Constructions 

There is a straightforward construction of Hadamard matrices from conference ma- 

trices. If S is a skew-symmetric conference matrix, then H = §+J/ is a Hadamard 

matrix, and if S is a symmetric conference matrix, then 

S+I S-I 4= [57-51] 
is a Hadamard matrix. Thus the conference matrices constructed in the previous 
section give Hadamard matrices of order n = 4m if 4m—1 is a prime power, and if 
m is odd and 2m — | is a prime power. Some small Hadamard matrices are: 

EG BE es pe es 
ret [Gl Areal ag {cl b-1-1 
Peal? 1h LP AE ee eae 

Sale TS oie et —1-1-1 1 

Observe that the two Hadamard matrices of order 4 are regular and graphical. One 
easily verifies that if H; and H) are Hadamard matrices, then so is the Kronecker 
product H; @ Hz. Moreover, if H; and H) are regular with row sums ; and £5, re- 
spectively, then H; ® Hz is regular with row sum ¢) 5. Similarly, the Kronecker 
product of two graphical Hadamard matrices is graphical again. With the small 
Hadamard matrices given above, we can make Hadamard matrices of order n = 2¢ 
and regular graphical Hadamard matrices of order n = 4’ with row sum ¢ = +2. 

Let RSHCD be the set of pairs (n,€) such that there exists a regular symmetric 
Hadamard matrix H with row sums ¢ = €,/n and constant diagonal, with diagonal 
entries 1. If (m,6),(n,€) € RSHCD, then (mn, de) € RSHCD. 

We mention some direct constructions: 

(i) (4,1), (36, +1), (100, +1), (196, +1) € RSHCD. 
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(ii) If there exists a Hadamard matrix of order m, then (m?,+1) € RSHCD. 

(iii) If both a— 1 and a+ 1 are odd prime powers, then (a”,1) € RSHCD. 
(iv) If a+ 1 is a prime power and there exists a symmetric conference matrix of 

order a, then (a*,1) € RSHCD. 
(v) If there is a set of t —2 mutually orthogonal Latin squares of order 2r, then 

(47,1) € RSHCD. 
(vi) (4¢*,+1) € RSHCD. 

See [179], [62] and [312], §5.3. For the third part of (i), see [236]. For the fourth 

part of (i), cf. [179], Theorem 4.5 (for k = 7) and [231]. For (ii), cf. [179], Theorem 

4.4, and [201]. For (iii), cf. [312], Corollary 5.12. For (iv), cf. [312], Corollary 5.16. 

For (v), consider the corresponding Latin square graph. For (vi), see [209]. 

10.6 Equiangular lines 

10.6.1 Equiangular lines in R¢ and two-graphs 

Seidel (cf. [250, 258, 141]) studied systems of lines in Euclidean space R?, all pass- 

ing through the origin 0, with the property that any two make the same angle @. The 

cases @ = 0 (only one line) and g@ = 4 (at most d lines, mutually orthogonal) being 

trivial, we assume 0 < 9 < iM Let a@ = cos@, so that 0 < a < 1. Choose for each 

line @; a unit vector x; on @; (determined up to sign). Then mex; = | for each i, and 

x) x; COS @O =. 0 font J: 

For the Gram matrix G of the vectors x; this means that G = 17+ aS, where S is the 

Seidel adjacency matrix of a graph I. (That is, S is symmetric with zero diagonal, 

and has entries —1 and 1 for adjacent and nonadjacent vertices, respectively.) Note 

that changing the signs of some of the x; corresponds to Seidel switching of I. 

Conversely, let S be the Seidel adjacency matrix of a graph on at least two ver- 

tices, and let @ be the smallest eigenvalue of S. (Then 8 < 0 since S £ 0 and trS = 0.) 

Now S — @1 is positive semidefinite, and G = J — 48 is the Gram matrix of a set of 

vectors in R¢, where d = rk (S— 9) =n—m/(@) where n is the number of vertices 
of the graph, and m(@) the multiplicity of @ as eigenvalue of S. 

We see that there is a 1-1 correspondence between dependent equiangular sys- 

tems of 7 lines and two-graphs on n vertices, and more precisely between equiangu- 

lar systems of n lines spanning IR? (with d < n) and two-graphs on n vertices such 

that the smallest eigenvalue has multiplicity n —d. 

Thus, in order to find large sets of equiangular lines, one has to find large graphs 

where the smallest Seidel eigenvalue has large multiplicity (or, rather, small comul- 

tiplicity). 
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10.6.2 Bounds on equiangular sets of lines in R¢ or C4 

An upper bound for the size of an equiangular system of lines (and hence an upper 

bound for the multiplicity of the smallest Seidel eigenvalue of a graph) is given by 

the so-called absolute bound, due to M. Gerzon (cf. [250]): 

Theorem 10.6.1 (“Absolute bound”) The cardinality n of a system of equiangular 

lines in Euclidean space R¢ is bounded by 5d (d+1). 

Proof Let X; = ae be the rank 1 matrix that is the projection onto the line @;. 

Then Ke = X; and 

Pi 7 Ie. Das 
trX;Xj = (x; xj)" = - otherwise. 

We prove that the matrices X; are linearly independent. Since they are symmetric, 

that will show that there are at most }d(d +1). So, suppose that }\c;X; = 0. Then 

di ciXiX; = 0 for each j, so that c;(1— a?) a? > cj = 0 for each j. This means that 

all c; are equal, and since >\c; = tr ¥c;X; = 0, they are all zero. C] 

In C4 one can study lines (1-spaces) in the same way, choosing a spanning unit 

vector in each and agreeing that (x) and (y) make angle @ = arccos@ where @ = 
|x*y|. (Here x* stands for x'.) The same argument now proves 

Proposition 10.6.2 The cardinality n of a system of equiangular lines in C4 is 

bounded by d?. O 

There are very few systems of lines in R¢ that meet the absolute bound, but it 

is conjectured that systems of d? equiangular lines in C@ exist for all d. Such sys- 

tems are known for d = 1,2,3,4,5,6,7,8, 19 ((355, 222, 223, 182, 11]). In quantum 

information theory, they are known as SICPOVMs. 

The special bound gives an upper bound for n in terms of the angle @, or an upper 

bound for @ (equivalently, a lower bound for @ = cos @) in terms of n. 

Proposition 10.6.3 (“Special bound”) /f there is a system of n> 1 lines in R¢ or 
C4 such that the cosine of the angle between any two lines is at most a, then a > 
(n—d)/(n—1)d, or, equivalently, n < d(1—@)/(1— ad) if1—a?d >0. 

Proof Let x; (1 <i <n) be unit vectors in R4 or C4 with |x*x;| < @ for iF j. 
Put X; = x;x; and Y = 9), X; — 5/. Then trX;X; = [xix; |? < o? fori ¢ j, and trX; = 

trX? = 1. Now0<trYY* <n(n—1)a? +n—*. O 

Complex systems of lines with equality in the special bound are known as 
equiangular tight frames. There is a lot of recent literature. 

If equality holds in the absolute bound, then the X; span the vector space of all 
symmetric matrices, and in particular / is a linear combination of the X;. If equality 
holds in the special bound, the same conclusion follows. In both cases, the following 
proposition shows (in the real case) that the graph I belongs to a regular two-graph. 
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Proposition 10.6.4 Suppose x; (1 <i<n) are unit vectors in R4 or C4 with |x*x;| = 
a fori# j, where 0 < a < 1. Put X; = xjx} and suppose that there are constants c; 

such that I = ¥.c;X;. Then c; = d/n for all i and n = d(1 — a) /(1— 7d). 
If the x; are vectors in R4, and G is the Gram matrix of the x;, and G =I + aS, 

then S has eigenvalues (n—d)/(ad) and —1/a with multiplicities d and n— d, 
respectively. Ifn > d+ 1 and nF 2d, then these eigenvalues are odd integers. 

Proof If J = YciX; then X; = ¥,ciX;X; for each j, so cj(1—@?) + 0? Yeo =1 
for each j. This means that all c; are equal, and since }ic; = tr ).c;X; = tr] = d, 

they all equal d/n. Our equation now becomes (d/n)(1 — a?) + 07d =1, son= 
d(i — a”) /(1— ad). 

If F is the d x n matrix whose columns are the vectors x;, then G = F TF, and 

FF! = xx) =X; = (n/d)I. It follows that FF ' has eigenvalue n/d with multi- 
plicity d, and G= F'' F has the same eigenvalues, and in addition 0 with multiplicity 

n—d. The spectrum of S$ follows. If the two eigenvalues of the integral matrix S are 

not integers, they are conjugate algebraic integers, and then have the same multi- 

plicity, som = 2d. Since S = J —I — 2A, the eigenvalues of S, when integral, are odd. 

C] 

Graphs for which the Seidel adjacency matrix S$ has only two eigenvalues are 

strong (cf. §10.1, Proposition 10.1.1) and belong to the switching class of a regular 

two-graph (Theorem 10.3.1). 

The known lower and upper bounds for the maximum number of equiangu- 

lar lines in R¢@ are given in the table below. For these bounds, see VAN LINT & 

SEIDEL [258], LEMMENS & SEIDEL [250], and SEIDEL [318] (p. 884). 

d |12345 6 7-14 15 16 17-18 

Nmax|1 3661016 28 3640 48 

d 19 20 21 22 23-42 43 

Nmax|72—76 90-96 126 176 276 344 

Bounds for the size of systems of lines in R¢ or C4 with only a few distinct, 

specified, angles, or just with a given total number of distinct angles, were given by 

DELSARTE, GOETHALS & SEIDEL [141]. 

10.6.3 Bounds on sets of lines with few angles and sets of vectors 

with few distances 

In the case of equiangular lines the absolute value of the inner product took only 

one value. Generalizing that, one has 

Theorem 10.6.5 ({141]) For a set of n unit vectors in IR? such that the absolute 

value of the inner product between distinct vectors takes s distinct values different 

from 1, one hasn < aaa p If one of the inner products is 0, thenn < ieacen) 
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There are several examples of equality. For example, from the root system of Eg 

one gets 120 lines in R® with |a| € {0, +}. 

Theorem 10.6.6 ({141]) For a set of n unit vectors in C4 such that the abso- 

lute value of the inner product between distinct vectors takes s distinct values 

different from 1, one has n < (EM If one of the inner products is 0, then 1 
d+s—1)\ (d+s—2 

ns Cet) 

For example, there are systems of 40 vectors in C* with |a| € {0, 4/3} and 126 

vectors in C® with |a| € {0, +}. 
For sets of unit vectors instead of sets of lines it may be more natural to look at 

the inner product itself, instead of using the absolute value. 

Theorem 10.6.7 ([{142]) For a set of n unit vectors in R? such that the inner product 

between distinct vectors takes s distinct values, one has n < Gans, te (seh If 
atta): the set is antipodal, thenn < 2( 1 

For example, in the antipodal case the upper bound is met with equality for s = 1 

by a pair of vectors +x (with n = 2), for s = 2 by the vectors +e; of a coordinate 

frame (with n = 2d), and for s = 6 by the set of shortest nonzero vectors in the Leech 

lattice in R™ (with inner products —1,0,+4,-4 and size n = 2(*8)). 
In the general case the upper bound is met with equality for. s = 1 by a simplex 

(with nm = d+ 1). For s = 2 one has 

AD ay 22 23 3, 4, 7-21, 24-39 

Nmax|5 16 27 275 276-277 zd(d+1) 

with examples of equality in the bound n < sd (d +3) for d = 2,6,22. The upper 
bounds for d > 6, d # 22, are due to MUSIN [283]. 

Corollary 10.6.8 ([142]) Let I be a regular graph on n vertices, with smallest 

eigenvalue Omin < —1 of multiplicity n—d. Thenn < $d(d +1)-1. 

(Earlier we saw for strongly regular graphs that n < - f(f +3). Here d= f +1, 

so this gives the same bound, but applies to a larger class of graphs.) 

Theorem 10.6.9 ((31]) A set of vectors in R@ such that the distance between distinct 
vectors takes s values has size at most (ay 

For d < 8, the maximal size of a 2-distance set in R? was determined by 
LISONEK [259]. The results are 

G5\4.2 34 25 Gees 

Naax'l3 2 610 16 27 29.45 

so that equality holds in the Blokhuis bound (73°) for d = 1 and d =8. 
The above gave generalizations of the absolute bound. There are also analogues 

of the special bound, see [141, 142]. 



Chapter 11 

Association Schemes 

11.1 Definition 

An association scheme with d classes is a finite set X together with d+ 1 relations 

R; on X such that 

(i) {Ro,Ri,...,Ra} is a partition of X x X; 

(ii) Ro = {(x,x) |x eX}; 
(iii) if (x,y) € Rj, then also (y,x) € Rj, for all x,y € X andi € {0,...,d}; 
(iv) for any (x,y) € Ry the number pf, of z € X with (x,z) € R; and (z,y) € R; 

depends only on i, j and k. 

The numbers Bij are called the intersection numbers of the association scheme. The 

above definition is the original definition of BOSE & SHIMAMOTO [39]; it is what 

DELSARTE [139] calls a symmetric association scheme. In Delsarte’s more general 

definition, (iii) is replaced by: 

(iii’) for each i € {0,...,d} there exists a j € {0,...,d} such that (x, y) € R; implies 

(y,x) s Rj, 

iii”) pi; = phi, for all i, j,k € {0,...,d}. 

It is also very common to require just (i), (ii), (iii’), and (iv), and to call the scheme 

“commutative” when it also satisfies (iii). Define n = |X|, and n; = p?.. Clearly, for 
each i € {1,...,d}, (X,Rj) is a simple graph which is regular of degree nj. 

Theorem 11.1.1 The intersection numbers of an association scheme satisfy 

(i) po; = Ox: p?; = din}, Dis = Pip 

(ii) Lipi; = nj, Linj=m 

(iii) Pine = Dix 
(iv) Ly) Pi jPG = Xi PP: 

Proof. Equations (i), (ii), and (iii) are straightforward. The expressions on both 

sides of (iv) count quadruples (w,x,y,z) with (w,x) € Ri, (x,y) € Rj, (yz) € Re, for 

a fixed pair (w,z) € Rm. 0 

165 
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It is convenient to write the intersection numbers as entries of the so-called inter- 

section matrices Lo,...,La: 

(Li)kj = Di. 

Note that Lo = J and LjL; = > Pij L,. From the definition it is clear that an asso- 

ciation scheme with two ed is the same as a pair of complementary strongly 

regular graphs. If (X,R,) is strongly regular with parameters (v,k,A,), then the 

intersection matrices of the scheme are 

Ok 0 0 0 

Ly= |1Ak-A-1|, b= |O0k-A-1 v—2k+A 

Od ke if 1 

11.2 The Bose-Mesner algebra 

The relations R; of an association scheme are described by their adjacency matrices 

A; of order n defined by 

(A; 1 whenever (x,y) € Rj 
i)xy = 0 otherwise. 

In other words, A; is the adjacency matrix of the graph (X,R;). In terms of the 
adjacency matrices, the axioms (i)—(iv) become 

(ji) LeoA=J, 
(li) Ag = /, 

(iii) Aj = AT, for all i € {0)...4d}; 
(iv) AiAj = Le pi Ak, for all i, j,k € {0,...,d}. 

From (i) we see that the (0,1) matrices A; are linearly independent, and by use of 
(1i)-(iv) we see that they generate a commutative (d + 1)-dimensional algebra & of 
symmetric matrices with constant diagonal. This algebra was first studied by BOSE 
& MESNER [38] and is called the Bose-Mesner algebra of the association scheme. 

Since the matrices A; commute, they can be diagonalized simultaneously (see 
MARCUS & MINC [270)]), that is, there exists a matrix S such that for each A €  , 
S—'AS is a diagonal matrix. Therefore ./ is semisimple and has a unique basis of 
minimal idempotents Eo,...,Eq (see BURROW [74]). These are matrices satisfying 

d 

EE = Ok, > et. 
i=0 

The matrix ty is a minimal idempotent (that it is an idempotent is clear, and that 
it is eet follows since rk J = 1). We shall take Ey) = ty. Let P and 1 _Q be the 
matrices relating our two bases for .&/: 
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d d 1 
1 We iy) = OR. 

i=0 i=0 

Then clearly 

PO= OP =a 

It also follows that 

AjE; = PiE;, 

which shows that the P;; are the eigenvalues of A; and that the columns of £; are 

the corresponding eigenvectors. Thus m; = rk £; is the multiplicity of the eigenvalue 

P;; of Aj (provided that P;; A Py; for k # i). We see that mo = 1, Xm; =n, and 

mj = trace E; = n(Ej) ;; (indeed, E; has only eigenvalues 0 and 1, so rk E; equals the 

sum of the eigenvalues). 

Theorem 11.2.1 The numbers P;; and Qj; satisfy 

(i) Pio = Qio = 1, Poi = ni, Qoi = Mi, 
(ii) PijPix = Dio Pin P 

(iii) mP.j =njQji, LeMiPijPix = 1H jn, Vi NiQijQix = nMjOjx, 
(iva Pi leony, \Orj| Sn}. 

Proof Part (i) follows easily from >; £; = 1 = Ao, ¥;Ai = J = nEo, Aid = niJ, 

and trE; = mj. Part (ii) follows from A jA, = > PiyAl- The first equality in (111) 

follows from m;,P;; = trA;E; = njQji, and the other two follow since PQ = Maks Woe 

first inequality of (iv) holds because the P;; are eigenvalues of the n;-regular graphs 

(X,Rj). The second inequality then follows from (iii). 

Relations (iii) are often referred to as the orthogonality relations, since they state 

that the rows (and columns) of P (and Q) are orthogonal with respect to a suitable 

weight function. 

An association scheme is called primitive if no union of the relations is a nontriv- 

ial equivalence relation. Or, equivalently, if no graph (X,R;) with i # 0 is discon- 

nected. For a primitive association scheme, (iv) above can be sharpened to |P;j| <n; 

and |Q;;| < mj for j £0. 
If d = 2, and (X,R}) is strongly regular with parameters (v,k,A, 4) and spectrum 

k! rf 58, the matrices P and Q are 

Vio Lae 8 
PS er ay SOS i fre oes yk 

1s —s—l 1—-f-4 Sr 

In general the matrices P and Q can be computed from the intersection numbers 

of the scheme: 

Theorem 11.2.2 For i = 0,...,d, the intersection matrix L; has eigenvalues P;; 

(0<i<d). 

Proof Theorem 11.2.1(ii) yields 
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EP Cpee er = Pp PPD orton Py 
kl k 

and hence PL;P~' = diag (Po;,...,Pu;)- 

Thanks to this theorem, it is relatively easy to compute P, Q (= ‘p-') and mj; 

(= Qo). It is also possible to express P and Q in terms of the (common) eigenvectors 

of the L;. Indeed, PL;P~' = diag (Po j»--+,Pa;) implies that the rows of P are left 

eigenvectors and the columns of Q are right eigenvectors. In particular, m; can be 

computed from the right eigenvector u; and the left eigenvector v; , normalized such 

that (u;)o = (vi)o = 1, by using mjuj v; =n. Clearly, each m; must be an integer. 
These are the rationality conditions for an association scheme. As we saw in the 

case of a strongly regular graph, these conditions can be very powerful. 

11.3 The linear programming bound 

One of the main reasons association schemes have been studied is that they yield 

upper bounds for the size of substructures. 

Let Y be a nonempty subset of X, and let its inner distribution be the vector a 

defined by a; = |(Y x Y) NRi|/|¥|, the average number of elements of Y in relation 
R; to a given one. Let y be the characteristic vector of Y. Then a; = WI xy! Aix. 

Theorem 11.3.1 (Delsarte) aQ > 0. 

Proof We have |Y|(aQ); = |¥| LaiQij = x" DOijAix =nx'E;x > 0 since E; is 
positive semidefinite. O 

Example Consider the schemes of the triples from a 7-set, where two triples are in 
relation R; when they have 3 —i elements in common (i = 0,1,2,3). We find 

112 18-4 ice Cidablngenlt 
Sah Sits etits Th LipS 2 90ers 

Tillis 09) 1a ee nea ats 
eo eneiet WeDo ade 

How many triples can we find such that any two meet in at most one point? For the 
inner distribution a of such a collection Y we have a; = 0, so a = (1,0,5,t), and 
aQ > 0 gives the three inequalities 

6-s—3t>0, 14-454+7>0, 144+4s-24>0. 

The linear programming problem is to maximize |Y| = 1+.5-+1 given these inequal- 
ities, and the unique solution is s = 6, t = 0. This shows that one can have at most 
7 triples that pairwise meet in at most one point in a 7-set, and if one has 7, then no 
two are disjoint. Of course an example is given by the Fano plane. 
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How many triples can we find such that any two meet in at least one point? Now 

a = (1,7,5,0) and the optimal solution of aQ > 0 is (1,8,6,0). An example of such 

a collection is given by the set of 15 triples containing a fixed point. 

How many triples can we find such that no two meet in precisely one point? Now 

a = (1,r,0,t) and the maximum value of 1 +r-+t is 5. An example is given by the 

set of 5 triples containing two fixed points. 

11.3.1 Equality 

More information is available when the bound (aQ)j; > 0 is tight. Let the outer 

distribution of the set Y be the b x (d+ 1) matrix B, defined by 

By = #{y €Y | (x,y) € Ri} = (Aid) x. 

Theorem 11.3.2 /f(aQ) ; =0, then (BQ); =0/for all x € X. The number of nonzero 

(aQ); (0 < j < d) equals rkB. 

Proof (BQ)x; = (Xj QijAix)x = n(Ej;xX)x and we saw that |Y|(aQ); =ny'Ejx = 
n||E;x\|*, so that E;x = 0 if and only if (aQ); = 0. For the second part, note that 
rk B =rkB'B, that Q is nonsingular, and that Q' B' BQ is the diagonal matrix with 

diagonal entries (Q' B' BQ) ;; = n|Y|(aQ) ;. O 

11.3.2 The code-clique theorem 

Consider a fixed association scheme with underlying set X and d + 1 relations. For 

IC {i,...,d}, let LP(/) be the linear programming upper bound for the cardinality 

of subsets Y of X with inner distribution a, such that a; = 0 for all i € J. Then LP(/) 

is (by definition) the maximum of >); a; under the conditions a9 = 1, a; = O fori €/, 

and aQ > 0. Note that ¥;a; = (aQ)o. 

Theorem 11.3.3 Let {I,J} be a partition of {1,...,d}. Then LP(I).LP(J) < |X|. In 

particular, if Y and Z are nonempty subsets of X with inner distributions b and c, 

respectively, where b; = 0 fori € I and c; =0 for j € J, then |¥|.|Z| < |X|. Equality 

holds if and only if for all i # 0 we have (bQ); = 0 or (cQ); = 0. 

Proof Write n = (bQ)o and € = (cQ)o. We show that n¢ <n = |X]. Define B; = 

6-'m="(cQ);. Then Bo = 1, B; > 0 for all i, and CY; BiQxi = Xi,jcjm; 'QjiQui = 

Di,jejn; | PijQui = cyn;, 'n, so that 

n a n 

1 = (bQ)o S$ Y(6Q)iBi = YP QuiBi = ia Dg beck = ec oO 

, k i,k 
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This type of result is not unexpected. For example, if I” is any graph with transitive 

group, with maximal cliques and cocliques of sizes a and b, respectively, then ab < 

n. However, the above theorem uses not the actual sizes but the LP upper bounds for 

the sizes. 

11.3.3 Strengthened LP bounds 

One can strengthen the linear programming upper bound by adding more inequali- 

ties known to hold for a. For example, one also has a > 0. 

11.4 The Krein parameters 

The Bose-Mesner algebra .% is closed not only under ordinary matrix multiplica- 

tion, but also under componentwise (Hadamard, Schur) multiplication (denoted 0). 

Clearly {Ao,...,Aq} is the basis of minimal idempotents with respect to this multi- 
plication. Write 

1 d 

The numbers a thus defined are called the Krein parameters. (Our hij are those of 
Delsarte, but differ from SEIDEL [317]’s by a factor n.) As expected, we now have 
the analogue of Theorems 11.1.1 and 11.2.1. 

Theorem 11.4.1 The Krein parameters of an association scheme satisfy 

(i) qj = Six, a; = Sim, af; = ae 
(ii) DiGi =mj, Yjmj =n, 

(iii) gksmp = qhemj, 
(iv) >) ij Mi =a jUib 

(v) 0;;02= 4, Lik Qi, 

(vi) nmi; = X11 QuQr; Qe. 
Proof Let (A) denote the sum of all entries of the matrix A. Then JAJ = Y(A)J, 
(A 0B) = trace AB! and XE 1 0 if i #0, since then E;,J = nE;Ep = 0. Now (i) 
follows by use of E;0o Eo = 1Ei, q}j = X(E;°E;) = trace E;E; = 6;;m;, and E;oE; = 
E; 0° E;, respectively. Equation (iv) follows by evaluating E, o E; 0 Ex in two ways, 
=a (iii) follows from (iv) by taking m = 0. Equation (v) follows from evaluating 
Aj 0 Ej 0° Ex in two ways, and (vi) follows from (v), using the orthogonality relation 
x) aa iQ = Onxmpn. Finally, by use of (iii) we have 

mk Dads = Daim) =Nn- trace ( E; 0 Ex) PAE iu (Ex) i] = ™MjmMk, 

proving (ii). ia 
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The above results illustrate a dual behavior between ordinary multiplication, the 

numbers vi; and the matrices A; and P on the one hand, and Schur multiplication, the 

numbers dij and the matrices E; and Q on the other hand. If two association schemes 
have the property that the intersection numbers of one are the Krein parameters of 

the other, then the converse is also true. Two such schemes are said to be (formally) 

dual to each other. One scheme may have several (formal) duals, or none at all (but 

when the scheme is invariant under a regular Abelian group, there is a natural way 

to define a dual scheme, cf. DELSARTE [139]). In fact, usually the Krein parameters 

are not even integers. But they cannot be negative. These important restrictions, due 

to SCoTT [311], are the so-called Krein conditions. 

Theorem 11.4.2 The Krein parameters of an association scheme satisfy gi 20 for 

all i,j,k € {0,...,d}. 

Proof The numbers ld (0 < k < d) are the eigenvalues of E;0 E; (since (E;° 

Ej )E, = {gh Ey ). On the other hand, the Kronecker product E; @ Ej is positive 
semidefinite, since each E; is. But E;o E; is a principal submatrix of FE; @ Ej, and 

therefore is positive semidefinite as well, i.e., has no negative eigenvalue. O 

The Krein parameters can be computed by use of Theorem 11.4.1 (vi). This equa- 

tion also shows that the Krein condition is equivalent to 

Yi QiQ1jQu, = 0 for all i, j,k € {0,...,d}. 
I 

In the case of a strongly regular graph we obtain 

2 3 
d= (1+ 5-4) 20. ke (v—k—1)? 

Zz a : 3 Z s (s+1) 
pe. sae SS: 

tr y (14% etl) 20 

(the other Krein conditions are trivially satisfied in this case), which is equivalent to 

the result mentioned in section 9.1.5. 

NEUMAIER [285] generalized Seidel’s absolute bound to association schemes, 

and obtained the following. 

Theorem 11.4.3 The multiplicities m; (0 < i < d) of an association scheme with d 

classes satisfy 

mS { ON ieagh woo eee ipo 5m;(m; +1) ifi= Jj. 

Proof The left-hand side equals rk (E;o E;). But rk (Ejo Ej) < rk (E;@ Ej) = tkE;- 

rk Ej = mjm;. And if i= j, then rk (E;,0E;) < 5mj(m; + 1). Indeed, if the rows of E; 
are linear combinations of m; rows, then the rows of E; 0 E; are linear combinations 

of the m; + 5 mi( m; — 1) rows that are the elementwise products of any two of these 

Mm; TOWS. a, 
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For strongly regular graphs with ai = 0 we obtain Seidel’s bound: v < : f(f+ 

3). But when gj; > 0, Neumaier’s result states that the bound can be improved to 

vstf(f+l). 

11.5 Automorphisms 

Let 2 be an automorphism of an association scheme, and suppose there are N; points 

x such that x and 7(x) are in relation Rj. 

Theorem 11.5.1 (G. Higman) For each j the number +4 . NiQj; is an algebraic 
integer. 

Proof The automorphism is represented by a permutation matrix S, where SM = 

MS for each M in the Bose-Mesner algebra. Let E = E; be one of the idempotents. 

Then E has eigenvalues 0 and 1, and S has eigenvalues that are roots of unity, so ES 

has eigenvalues that are zero or a root of unity, and trZS is an algebraic integer. But 

res = 1S N;Qij. 

If one puts aj = 1S N;Qij, then N, = ¥j4;Pin for all h. 

11.5.1 The Moore graph on 3250 vertices 

Let I’ be a strongly regular graph with parameters (v,k,A, UW) = (3250,57,0,1) (an 
unknown Moore graph of diameter 2, cf. Theorem 9.1.5). 

L129) 1520 

For such a graph QO = | 1 oe = 
13 10 

Searcy eae 
ASCHBACHER [12] proved that there is no such graph with a rank 3 group. 

G. Higman (unpublished, cf. CAMERON [82]) proved that there is no such graph 
with a vertex-transitive group. 

Proposition 11.5.2 (G. Higman) I’ is not vertex-transitive. 

Proof Consider any nontrivial group of automorphisms G of such a graph. The 
collection of points fixed by G has the properties A = 0 and pt = 1. Also, two non- 
adjacent fixed vertices are adjacent to the same number of fixed vertices, so the fixed 
subgraph is either a strongly regular Moore graph (and then has 5, 10 or 50 vertices), 
or all fixed vertices have distance at most | to some fixed vertex (so that there are at 
most k+ 1 = 58 of them). 

Consider an involution 7. If 2 does not interchange the endpoints of some edge, 
then Nj = 0 and No + No = 3250. But if {x,y} is an orbit of 7, then the unique 
common neighbor z of x and y is fixed, and z occurs for at most 28 pairs {x,y}, so 
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Nz < 56No, so that Np = 58, N; = 0, Nz = 3192 and 3455 (58 x 1729-3192 x B) = 
is is not an integer, contradiction. 

” So, 7 must interchange two adjacent points x and y, and hence interchanges the 

remaining 56 neighbors u of x with the remaining 56 neighbors v of y. If {u,v} is 

such an orbit, then the unique common neighbor of u and v is fixed, and these are 

all the fixed points. So No = 56, that is, 7 is an odd permutation, since it is the 

product of 1597 transpositions. Let N be the subgroup of G consisting of the even 

permutations. Then N does not have any involutions, so is not transitive, and if G 

is transitive, N has two orbits interchanged by any element outside N. But @ has 

fixed points and cannot interchange the two orbits of NV, a contradiction, so G is not 

transitive. 

11.6 P- and Q-polynomial association schemes 

In many cases, the association scheme carries a distance function such that relation 

R; is the relation of having distance i. Such schemes are called metric. They are 

characterized by the fact that Pix is zero whenever one of i, j,k is larger than the 

sum of the other two, while joey is nonzero for i= j +k. Note that whether a scheme 

is metric depends on the ordering of the relations R;. A scheme may be metric for 

more than one ordering. Metric association schemes are essentially the same objects 

as distance-regular graphs (see Chapter 12 below). 

Dually, a cometric scheme is defined by dit = 0 fori > j+k and dig > 0 for 

fe fink, 
There are several equivalent formulations of the metric (cometric) property. 

An association scheme is called P-polynomial if there exist polynomials f, of 

degree k with real coefficients, and real numbers z; such that Px, = fx (zi). Clearly 

we may always take z; = Pi. By the orthogonality relation 11.2.1 (iii) we have 

Linifil Zi) fe(Zi) ma PijPik = nnjOjx, 

which shows that the f; are orthogonal polynomials. 

Dually, a scheme is called Q-polynomial when the same holds with Q instead of 

P. The following result is due to DELSARTE [139] (Theorem 5.6, p. 61). 

Theorem 11.6.1 An association scheme is metric (resp. cometric) if and only if it 

is P-polynomial (resp. Q-polynomial). 

Proof Let the scheme be metric. Then 

A\A;j = pi, Ami + p\Ait pit tAivs 

Since po ls 0, Aj; can be expressed in terms of A;, Aj_; and A;. Hence for each 

j there exists a polynomial f; of degree j such that Aj; = fj(A1), and it follows that 

P,jE; = AjE; = f(A Ei = fj (Pi )Ei, and hence Pi; are Fi): 
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Now suppose that the scheme is P-polynomial. Then the f; are orthogonal poly- 

nomials, and therefore they satisfy a 3-term recurrence relation (see SZEGO [333], 

p. 42) 

O41 f+1(Z) = (Bj —z) F(Z) + Y-1Fj-1@)- 

Hence 

Py Pip = — O41 Pi j4t + Pili Viet fORt — Oyen Oe 

Since. Pa Pip =D) Pi Pu and P is nonsingular, it follows that Pj = 0 for | — j| > 1. 
Now the full metric property easily follows by induction. The proof for the cometric 

case is similar. LO 

Given a sequence of nonzero real numbers, let its number of sign changes be ob- 

tained by first removing all zeros from the sequence, and then counting the number 

of consecutive pairs of different sign. (Thus, the number of sign changes in 1, —1, 

0, 1 is 2.) 

Proposition 11.6.2 (i) Let (X,Z@) be a P-polynomial association scheme, with re- 

lations ordered according to the P-polynomial ordering and eigenspaces ordered 

according to descending real order on the 0; := P;;. Then both row i and column i 

of both matrices P and Q have precisely i sign changes (0 <i <d). 

(ii) Dually, if (X,Z) is a Q-polynomial association scheme, and the eigenspaces 

are ordered according to the Q-polynomial ordering and the relations are ordered 

according to descending real order on the 0; := Qj, then row i and column i of the 

matrices P and Q have precisely i sign changes (0 <i < d). 

Proof Since m;P;; = njQji, the statements about P and Q are equivalent. De- 

fine polynomials p; of degree j for 0 < j <d+1 by p_i(x) =0, po(x) = 1, 

(Y= a pi) = bj-1Pj-1 eC Epil aoe taking cgi; = 1. Then Aj = p;(A), and 

Pa+1(x) = 0 has as roots the eigenvalues of A. The numbers in row j of P are p;(@ i) 

(0 <i< 4d), and by the theory of Sturm sequences the number of sign changes is the 

number of roots of pg. larger than @;, which is j. The numbers in column i of P 
are the values of p; evaluated at the roots of py+1. Since p; has degree i, and there is 
at least one root of pa;, between any two roots of p; there are i sign changes. The 
proof in the Q-polynomial case is similar. a 

Example Consider the Hamming scheme H(4,2), the association scheme on the 
binary vectors of length 4, where the relation is their Hamming distance. Now 



11.7 Exercises 175 

11.7 Exercises 

Exercise 11.1 Show that the number of relations of valency 1 in an association 

scheme is 2” for some m > 0, and 2”|n. (Hint: The relations of valency 1 form an 

elementary Abelian 2-group with operation i@ j = k when A;A ; = Ax.) 

Exercise 11.2 Show that for the special case where Y is a coclique in a strongly reg- 

ular graph, the linear programming bound is the Hoffman bound (Theorem 3.5.2). 

Exercise 11.3 Show that if I" is a relation of valency k in an association scheme, 

and @ is a negative eigenvalue of I, then |S| < 1 —k/@ for each clique S in I’. 

Exercise 11.4 Consider a primitive strongly regular graph I” on v vertices with 

eigenvalues k!,r/,s% (k > r > s) with a Hoffman coloring (that is a coloring with 

1 —k/s colors). Consider the following relations on the vertex set of I’: 

Ro: identity, 

R,: adjacent in I’, 

R: nonadjacent in I” with different colors, 

R3: nonadjacent in I” with the same color. 

Prove that these relations define an association scheme on the vertex set of I”, and 

determine the matrices P and Q. 

Exercise 11.5 Let (X,R) be a primitive association scheme, and let I = (X,R;) be 
a graph corresponding to one of the classes. Let m > 1 be one of the multiplicities 

of the scheme. Let n( ) denote the Haemers invariant (§3.7.2). Then n(I’) <m+1. 

Exercise 11.6 Consider the root system of type FE with the five relations of having 

inner product 2, 1, 0, —1, —2. Show that this is an association scheme with n = 72 

and 
e200) Oe | Wa oe Wms 8 aes bs 

P10 "0-101 I 3) 2) —=3:=3 

Past 2-6) 2, Lica O11 50 =—4. 0-3 

Nice De OE 2) lis 3- -2e Stas 

1-4 6 -4 1 1 —6 20 —30 15 

Show with the notation of §11.3.2 that LP({1,2}) = 21 and LP({3,4}) = 4 = 

n/LP({1,2}), where the latter system has unique optimal solution a = (1,0,0, 2 

—3). Adding a > 0 to the inequalities (or, in this case, just taking the integral part) 

improves the upper bound to 3. 
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Chapter 12 

Distance-Regular Graphs 

Consider a connected simple graph with vertex set X of diameter d. Define Rj C X 

by (x,y) € R; whenever x and y have graph distance i. If this defines an association 

scheme, then the graph (X,R_) is called distance-regular. By the triangle inequality, 

pi, =O ifi+ j <kor |i— j| > k. Moreover, Pi! > 0. Conversely, if the intersection 

numbers of an association scheme satisfy these conditions, then (X,R1) is easily 

seen to be distance-regular. 

Many of the association schemes that play a role in combinatorics are metric. 

Families of distance-regular graphs with unbounded diameter include the Hamming 

graphs, the Johnson graphs, the Grassmann graphs, and graphs associated to dual 

polar spaces. Recently VAN DAM & KOOLEN [131] constructed a new such family, 

the fifteenth, and the first without transitive group. 

Many constructions and results for strongly regular graphs are the d = 2 special 

case of corresponding results for distance-regular graphs. 

The monograph [54] is devoted to the theory of distance-regular graphs, and 

gives the state of the theory in 1989. 

12.1 Parameters 

Conventionally, the parameters are b; = p' air and ¢; = Pia (and aj = pi). 
The intersection array of a distance-regular graph of diameter d is {bo,...,ba—1; 

C1,---,€a}. The valencies Des which were called n; above, are usually called k; here. 

We have c;k; = bj_1k;_1. The total number of vertices is usually called v. 

It is easy to see that one has bo > bi >... > bg_; and ce; Sc. <... S cg and 

Gy bga ll = iS): 

ie 
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12.2 Spectrum 

A distance-regular graph I” of diameter d has d+ 1 distinct eigenvalues, and the 

spectrum is determined by the parameters. (Indeed, the matrices P and Q of any 

association scheme are determined by the parameters Digs and for a distance-regular 

graph the Dix are determined again in terms of the b; and c;.) 

The eigenvalues of I” are the eigenvalues of the tridiagonal matrix L; = ( Pi ,) of 

order d + | that here gets the form 

If Lju = Ou and uo = 1, then the multiplicity of @ as eigenvalue of I equals 

m(0) = v/(>) kiu?). 

12.3 Primitivity 

A distance-regular graph I” of diameter d is called imprimitive when one of the 
relations (X,R;) with i 4 0 is disconnected. This can happen in three cases: I" is an 
n-gon (and i|n), or I" is bipartite (and i = 2), or T' is antipodal (and i = d). Here T is 
called antipodal when having distance d is an equivalence relation on VI. Graphs 
can be both bipartite and antipodal. The 2n-gons fall in all three cases. 

12.4 Examples 

12.4.1 Hamming graphs 

Let Q be a set of size g. The Hamming graph H(d,q) is the graph with vertex set 
Q*, where two vertices are adjacent when they agree in d — 1 coordinates. 

This graph is distance-regular, with parameters c; = i, bi = (q—1)(d —1), di- 
ameter d, and eigenvalues (q — 1)d — gi with multiplicity (4)(q¢— 1)! (0 <i<d). 
(Indeed, H(d,q) is the Cartesian product of d copies of Kg, see 81.4.6.) 

For q = 2, this graph is also known as the hypercube 2%, often denoted Qg. For 
d = 2, the graph H(2,q) is also called L(q). 
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Cospectral graphs 

In 81.8.1 we saw that there are precisely two graphs with the spectrum of H(4,2). In 

89.2 we saw that there are precisely two graphs with the spectrum of H(2,4). Here 

we give a graph cospectral with H (3,3) (cf. [206]). 

Fig. 12.1 The geometry of the Hamming graph H(3,3) 

The graphs H(d,q) have q@ vertices, and dq’~! maximal cliques (“lines”) of size 
q. Let N be the point-line incidence matrix. Then NN | — dI is the adjacency matrix 

of I = H(d,q), and N' N — qI is the adjacency matrix of the graph A on the lines, 

where two lines are adjacent when they have a vertex in common. It follows that 

for d = q the graphs I" and A are cospectral. In I” any two vertices at distance 2 

have c2 = 2 common neighbors. If g > 3, then two vertices at distance 2 in A have 

1 or g common neighbors (and both occur), so that A is not distance-regular, and in 

particular not isomorphic to I". For gq = 3 the geometry is displayed in Figure 12.1. 

See also §14.2.2. 

12.4.2 Johnson graphs 

Let X be a set of size n. The Johnson graph J(n,m) is the graph with vertex set 

(@ Ns the set of all m-subsets of X, where two m-subsets are adjacent when they have 

m— 1 elements in common. For example, J/(n,0) has a single vertex; J(n, 1) is the 

complete graph K,; J(n,2) is the triangular graph T(n). 
This graph is distance-regular, with parameters c; = i”, bj = (m—i)(n—m—i), 

diameter d = min(m,n—m) and eigenvalues (m— i)(n — m—i) —i with multiplicity 

(7) WY (;",)- 
The Kneser graph K(n,m) is the graph with vertex set fe ), where two m-subsets 

are adjacent when they have maximal distance in J(n,m) (i.e., are disjoint when 

n > 2m, and have 2m —n elements in common otherwise). These graphs are not 

distance-regular in general, but the Odd graph On+1, which equals K(2m + 1,m), 

is. 
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Sending a vertex (m-set) to its complement in X is an isomorphism from J(n,m) 
onto J(n,n—m) and from K(n,m) onto K(n,n—m). Thus, we may always assume 
that n > 2m. 

12.4.3 Grassmann graphs 

Let V be a vector space of dimension n over the field F,. The Grassmann graph 

Gr(n,m) is the graph with vertex set ["], the set of all m-subspaces of V, where 
two m-subspaces are adjacent when they intersect in an (m— 1)-space. This graph 

is distance-regular, with parameters c; = [‘] eq ee get | a) diameter d = 

min(m,n—m), and eigenvalues q'*!["~"] {""""~] — [1] with multiplicity [”] — [,",]. 
(Here ["] = (q"—1)---(q’-*! —1)/(q'—1)---(q—1) is the g-binomial coefficient, 
the number of m-subspaces of an n-space.) 

12.4.4 Van Dam-Koolen graphs 

VAN DAM & KOOLEN [131] construct distance-regular graphs vDK(m) with the 
same parameters as Gr(2m-+ 1,m). (They call them the twisted Grassmann graphs.) 
These graphs are ugly, the group of automorphisms is not transitive. The existence 
of such examples reinforces the idea that the parameters of distance-regular graphs 
of large diameter are strongly restricted, while there is some freedom for the ac- 
tual structure. The construction is as follows. Let V be a vector space of dimension 
2m +1 over Fg, and let H be a hyperplane of V. Take as vertices the (m-+ 1)- 
subspaces of V not contained in H, and the (m— 1)-subspaces contained in H, where 
two subspaces of the same dimension are adjacent when their intersection has codi- 
mension | in both, and two subspaces of different dimension are adjacent when one 
contains the other. This graph is the line graph (concurrency graph on the set of 
lines) of the partial linear space of which the points are the m-subspaces of V, with 
natural incidence, while the point graph (collinearity graph on the set of points) is 
Gr(2m + 1,m). It follows that ,DK(m) and Gr(2m-+ 1,m) are cospectral. 

12.5 Bannai-Ito conjecture 

The most famous problem about distance-regular graphs was the Bannai-Ito conjec- 
ture ([21], p. 237): show that there are only finitely many distance-regular graphs 
with fixed valency k larger than 2. After initial work by Bannai and Ito, the con- 
jecture was attacked by Jack Koolen and coauthors in a long series of papers. After 
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25 years a complete proof was given by BANG, DUBICKAS, KOOLEN & MOULTON 

[19]. 

12.6 Connectedness 

For strongly regular graphs we had Theorem 9.3.2 stating that the vertex connectiv- 

ity «(I) equals the valency k. In [61] it was shown that the same holds for distance- 

regular graphs. 

For strongly regular graphs we also had Proposition 9.3.1 which says that the 

induced subgraph on the vertices at maximal distance from a given vertex is con- 

nected. This is a very important property, but for distance-regular graphs additional 

hypotheses are needed. For example, there are two generalized hexagons with pa- 

rameters GH(2,2) (duals of each other) and in one of them the subgraphs I3(x) are 

disconnected. 

12.7 Growth 

Not surprisingly, the number of vertices of a distance-regular graph grows exponen- 

tially with the diameter. This was first proved by PYBER [296]. Currently the best 

bound is d < $ log, v, due to BANG et al. [18]. 

12.8 Degree of eigenvalues 

For strongly regular graphs we saw that eigenvalues are integral, except in the “half 

case” where they are quadratic. Something similar happens for distance-regular 

graphs. 

Polygons have eigenvalues of high degree: for an n-gon the degree of the i-th 

eigenvalue is @(m) where m = gcd(i,n), and @ is the Euler totient function. But 
elsewhere only integral and quadratic eigenvalues seem to occur. 

For the case of a P- and Q-polynomial scheme of diameter at least 34, BANNAI 

& ITO [21], Thm7.11, shows that the eigenvalues are integers. 

There is precisely one known distance-regular graph of valency larger than 2 

with a cubic eigenvalue, namely the Biggs-Smith graph, the unique graph with in- 

tersection array {3,2,2,2,1,1,1; 1,1,1,1,1,1,3}. It has 102 vertices, and spectrum 

31 2!8 ol? (14.17) /2)? 07°, where the 9; are the three roots of 0° +307 —3 =0. 

A result in this direction 1s 

Proposition 12.8.1 The only distance-regular graph of diameter 3 with a cubic 

eigenvalue is the heptagon. 
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Proof Let I be a distance-regular graph of diameter 3 on n vertices with a cubic 

eigenvalue. Since algebraically conjugate eigenvalues have the same multiplicity 

we have three eigenvalues 9; with multiplicity f = (n —1)/3. Since trA = 0 we 
find that 0; + @) + 03 = —k/f. Now k/f is rational and an algebraic integer, hence 

an integer, and k > (n—1)/3. The same reasoning applies to A; for i = 2,3 and 

hence k; > (n— 1)/3, and we must have equality. Since k = ky = k3 we see that 

by =O =") = Cse 

Write Mf := c2. The distinct eigenvalues k, @,, 02,03 of A are the eigenvalues of 

the matrix L; (Theorem 11.2.2) and hence K—1 =k+0,+0.+ 6 =trL; =a,+ 

az +a3 = (k—p—1)+(k—2p) + (k—p), so that k = 2u and ap = 0. 
Let d(x,y) =3 and put A=I'(x)N1h(y), B= L(x) NI (9), so that |A| = |B] = 

c3 = [. Every vertex in B is adjacent to every vertex in A, and hence two vertices in 

B have at least u + 1 common neighbors, so must be adjacent. Thus B is a clique, 

and wf = |B| < a) +1, that is, w=1,k =2. 0 

12.9 Moore graphs and generalized polygons 

Any k-regular graph of diameter d has at most 

1+k+k(k-1)+...+k(k—-1)*"! 

vertices, as is easily seen. A graph for which equality holds is called a Moore graph. 
Moore graphs are distance-regular, and those of diameter 2 were dealt with in The- 
orem 9.1.5. Using the rationality conditions, DAMERELL [133] and BANNAI & 
ITO [20] showed: 

Theorem 12.9.1 A Moore graph with diameter d > 3 is a (2d +1)-gon. 

A strong nonexistence result of the same nature is the theorem of FEIT & 
HIGMAN [154] about finite generalized polygons. We recall that a generalized m- 
gon is a point-line incidence geometry such that the incidence graph is a connected, 
bipartite graph of diameter m and girth 2m. It is called regular of order (s,t) for cer- 
tain (finite or infinite) cardinal numbers s, t if each line is incident with s + 1 points 
and each point is incident with t + 1 lines. From such a regular generalized m-gon of 
order (s,t), where s and ¢ are finite and m > 3, we can construct a distance-regular 
graph with valency s(t +1) and diameter d = | #| by taking the collinearity graph 
on the points. 

Theorem 12.9.2 A finite generalized m-gon of order (s,t) with s > 1 andt>1 
satisfies m € {2,3,4,6, 8}. 

Proofs of this theorem can be found in FEIT & HIGMAN [154], BROUWER, COHEN 
& NEUMAIER [54] and VAN MALDEGHEM [340]; again the rationality conditions 
do the job. The Krein conditions yield some additional information: 

Theorem 12.9.3 A finite regular generalized m-gon with s > 1 andt > 1 Satisfies 
s<?t? andt <s* ifm=4or8; it satisfies s<t? andt < 53 ifm= 6. 

This result is due to HIGMAN [215] and HAEMERS & ROOS [204]. 
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12.10 Euclidean representations 

Let I” be distance-regular, and let @ be a fixed eigenvalue. Let E = E; be the idem- 

potent in the association scheme belonging to @, so that AE = OE. Let u; = Q;;/n, 

so that E = 37u;A;. Let f =rkE. 

The map sending vertex x of I” to the vector x = Ee,, column x of EF, provides a 

representation of I” by vectors in an f-dimensional Euclidean space, namely the col- 

umn span of E, where graph distances are translated into inner products: if d(x, y) =i 

CENA Ys Ep tt 
If this map is not injective, and x = y for two vertices x,y at distance i £ 0, 

then u; = ug and any two vertices at distance i have the same image. For i = | this 

happens when @ = k. Otherwise, I" is imprimitive, and either i = 2 and I’ is bipartite 

and @ = —k, ori=d and TI is antipodal, or 2 <i<dandT is a polygon. 

This construction allows one to translate problems about graphs into problems in 

Euclidean geometry. Especially when f is small, this is a very useful tool. 

As an example of the use of this representation, let us prove Terwilliger’s Tree 

Bound. Call an induced subgraph T of I” geodetic when distances measured in T 

equal distances measured in I’. 

Proposition 12.10.1 Let I be distance-regular, and let @ be an eigenvalue different 

from +k. Let T be a geodetic tree in I. Then the multiplicity f of the eigenvalue @ 

is at least the number of endpoints of T. 

Proof We show that the span of the vectors x for x € T has a dimension not less 

than the number e of endpoints of 7. Induction on the size of T. If T = {x,y} then 

xy since k # @. Assume |T| > 2. If x € T, and S is the set of endpoints of T 

adjacent to x, then for y,z € S and w € T \S we have (w, ¥ — Z) = 0. Pick x such that 
S is nonempty, and x is an endpoint of T’ = T \ S. By induction dim(w|w € T’) > 

e—|S|+1. Since 9 ¢ +k, we have dim(y —Z|x,y € S) = |S|—1. 

Example For a distance-regular graph without triangles, f > k. Equality can 

hold. For example, the Higman-Sims graph is strongly regular with parameters 

(v,k,A, 2) = (100,22,0,6) and spectrum 22! 27” (—8)?. 

12.11 Extremality 

This section gives a simplified account of the theory developed by Fiol and Garriga 

and coauthors. The gist is that among the graphs with a given spectrum with d + 1 

distinct eigenvalues the distance-regular graphs are extremal in the sense that they 

have a maximal number of pairs of vertices at mutual distance d. 

Let I be a connected k-regular graph with adjacency matrix A with eigenvalues 

k = 0; >--- > 0,. Suppose that A has precisely d+ 1 distinct eigenvalues (so that 

the diameter of I" is at most d). Define an inner product on the (d + 1)-dimensional 

vector space of real polynomials modulo the minimum polynomial of A by 
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1 
(p,q) = —tp(A)q(A) = — DY p(:)q(8)). 

Note that (p,p) > 0 for all p, and (p, p) = 0 if and only if p(A) = 0. By applying 

Gram-Schmidt to the sequence of polynomials x! (0 < i < d) we find a sequence of 

orthogonal polynomials p; of degree i (0 < i < d) satisfying (p;,pj) = 0 for iF j 

and (pi, pi) = pi(k). This latter normalization is possible since p;(k) 4 0. 

(Indeed, suppose that p; changes sign at values aj (0 < j < h) inside the interval 

(Oke Putg (sx) = TT (x — a). Then all terms in (p;,qg) have the same sign, and 
not all are zero, so (p;,q) 4 0, hence h = i, so that all zeros of p; are in the interval 

(@,,k), and pi(k) # 0.) 
The Hoffman polynomial (the polynomial p such that p(A) = J) equals po +...+ 

pa. Indeed, (pj, p) = +tr p;(A)J = pi(k) = (pi, pi) for alll i. 
If I” is distance-regular, then the p; are the polynomials for which A; = p;(A). 

Theorem 12.11.1 (“Spectral Excess Theorem”) Let I" be connected and regular of 

degree k, with d +1 distinct eigenvalues. Define the polynomials p; as above. Let 

ki >> k(x) be the average number of vertices at distance d from a given vertex 

in I’. Then kq < pa(k), and equality holds if and only if I” is distance-regular. 

Proof We follow FIOL, GAGO & GARRIGA [159]. Use the inner product (M,N) = 

1trM'N on the space M,(R) of real matrices of order n. If M,N are symmetric, 

then (M,N) = 45, \(MoON)xy. If M = p(A) and N = q(A) are polynomials in A, 

then (M,N) = (p,q). 
Since (Aq, pa(A)) = (Aa, J) = kg, the orthogonal projection A’, of Ag on the space 

(I,A,...,A%) = (po(A),---; pa(A)) of polynomials in A equals 

» yy Aa pilA)) 4) _ (Aa, palA)) on Kaw 
yk: j(A) Palk) a(A) pak Pt A): 

Now ||A/,||? < ||Aa||? gives ae /pa(k) < ka, and the inequality follows since pq(k) > 
0. When equality holds, Ag = pq(A). 

Now it follows by downward induction on h that An = pp(A) (0 <h < d). In- 
deed, from >); pj(A) =J = A; it follows that po(A) +---+ p,(A) =Ao +++: +Ap. 
Hence pn(A)xy =O if d(x,y) > h, and py(A)xy = 1 if d(x,y) =h. Since (xppi1,pj) = 
(Pnti,xpj) =0 for j Ah,h+1,h+2, we have XPh+1 = 4Pnt+ bpns; +cpniz and 
hence AAj+) = apn(A) + bAny1 + cAn+2 for certain a,b,c with a ~ 0. But then 
Pn(A)xy = 0 if d(x,y) < h, so that pp(A) = Ap. 

Finally, the three-term recurrence for the py, now becomes the three-term recur- 
rence for the A;, that defines distance-regular graphs. L) 

Noting that pqg(k) depends on the spectrum only, we see that this provides a char- 
acterization of distance-regularity in terms of the spectrum and the number of pairs 
of vertices far apart (at mutual distance d). See [124], [158], [159], and Theorem 
14.5.3 below. 
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12.12 Exercises 

Exercise 12.1 ({244]) Show that if c; > cj_1, then cj > cj + ¢j_-; for 1 < j<i-1. 

(Hint: If c; > cj_; and d(x,y) =i, then there is a matching between Ij_; (x) NI (y) 

and I” (x) NIj_1(y) such that corresponding vertices have distance larger than i — 2.) 

Show that if b; > bj41, then b; > big jp +; Lor 1 5. 1. 

Exercise 12.2 Determine the spectrum of a strongly regular graph minus a vertex. 

(Hint: If the strongly regular graph has characteristic polynomial p(x) = (x —k)(x— 

r)‘ (x —s)8, then the graph obtained after removing one vertex has characteristic 
polynomial ((x—k)(x—A +p) +p) (x-r)F“!(x—s)8-1) 

Determine the spectrum of a strongly regular graph minus two adjacent or non- 

adjacent vertices. 

Show that the spectrum of a distance-regular graph minus a vertex does not de- 

pend on the vertex chosen. Give an example of two nonisomorphic cospectral graphs 

both obtained by removing a vertex from the same distance-regular graph. 
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Chapter 13 

p-ranks 

Designs or graphs with the same parameters can sometimes be distinguished by 

considering the p-rank of associated matrices. For example, there are three noniso- 

morpic 2-(16,6,2) designs, with point-block incidence matrices of 2-rank 6, 7 and 8, 

respectively. 

Tight bounds on the occurrence of certain configurations are sometimes obtained 

by computing a rank in some suitable field, since p-ranks of integral matrices may 

be smaller than their ranks over R. 

Our first aim is to show that given the parameters (say, the real spectrum), only 

finitely many primes p are of interest. 

13.1 Reduction mod p 

A technical difficulty is that one would like to talk about eigenvalues that are zero 

or nonzero mod p for some prime p, but it is not entirely clear what that might 

mean when the eigenvalues are nonintegral. Necessarily some arbitrariness will be 

involved. For example (5+ V2)(5— V2) = 0 mod 23, and one point of view is 

that this means that 23 is not a prime in Q(V2), and one gets into algebraic num- 

ber theory. But another point of view is that if one “reduces mod 23”, mapping 

to a field of characteristic 23, then at least one factor must become 0. However, 

the sum of 5+ V2 and 5— V2 does not become 0 upon reduction mod 23, so not 

both factors become 0. Since these factors are conjugate, the “reduction mod 23” 

cannot be defined canonically, but must involve some arbitrary choices. We follow 

ISAACS [232], who follows Brauer. 

Let R be the ring of algebraic integers in C, and let p be a prime. Let M be a 

maximal ideal in R containing the ideal pR. Put F = R/M. Then F is a field of 

characteristic p. Let r+ 7 be the quotient map R — R/M = F. This will be our 

“reduction mod p”. (It is not canonical because M is not determined uniquely.) 

Lemma 13.1.1 (ISAACS [232], (15.1)) Let U = {z € C| 2” = 1 for some integer m 

not divisible by p}. Then the quotient map R — R/M = F induces an isomorphism 

187 
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of groups U — F* from U onto the multiplicative group F* of F. Moreover, F is 

algebraically closed, and is algebraic over its prime field. 

One consequence is that on integers “reduction mod p” has the usual meaning: 

if m is an integer not divisible by p, then some power is 1 (mod p) and it follows 

that m # 0. More generally, if @ = 0, then p|N(@), where N(@) is the norm of @, the 
product of its conjugates, up to sign the constant term of its minimal polynomial. 

13.2 The minimal polynomial 

Let M be a matrix of order n over a field F. For each eigenvalue @ of M in F, let 

m(@) be the geometric multiplicity of @, so that rk(M — 6/) =n—m(6@). 
Let e(@) be the algebraic multiplicity of the eigenvalue @, so that the character- 

istic polynomial of M factors as c(x) := det(xJ — M) = [](x— 0)*%)co(x), where 
co(x) has no roots in F. Then m(@) < e(@). 

The minimal polynomial p(x) of M is the unique monic polynomial over F of 
minimal degree such that p(M) = 0. The numbers @ € F for which p(@) = 0 are 
precisely the eigenvalues of M (in F). By the Cayley-Hamilton theorem, p(x) di- 
vides c(x). It follows that if p(x) = [](x— 0)" po(x), where po(x) has no roots in 
F, then 1 <h(@) < e(@). 

In terms of the Jordan decomposition of M, m(@) is the number of Jordan blocks 
for @, h(@) is the size of the largest block, and e(@) is the sum of the sizes of all 
Jordan blocks for @. 

We see that n — e(@) + h(@) — 1 < rk(M — @/) < n—e(@)/h(@), and also that 
1 <rk((M — 61)') —rk((M— 91)*) < m(@) for 1 <i<A-1. 

13.3 Bounds for the p-rank 

Let M be a square matrix of order n, and let rk,(M) be its p-rank. Let R and F be as 
above in §13.1. Use a suffix F or p to denote rank or multiplicity over the field F or 
F, (instead of C). 

Proposition 13.3.1 

Let M be an integral square matrix. Then tk,(M) < rk(M). 
Let M be a square matrix with entries in R. Then tkr(M) < rk(M). 

Proof The rank of a matrix is the size of the largest submatrix with nonzero deter- 
minant. L 

Proposition 13.3.2 Let M be an integral square matrix. Then 

rk p(M) > Y{m(@) | 8 4 0}. 
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Proof Let M have order n. Then rk,(M) =n —m,(0) > n—ep(0) =n— er (0) = 

Ler (t) |t AO} = X{e(@) | 6 AO} = T{m(6) | 6 A O}. 

Proposition 13.3.3 Let the integral square matrix M be diagonalizable. Then we 

have rkp(M — @1) < n—e(@) for each eigenvalue @ of M. 

Proof rk-(M— 61) < rk(M — 6J) =n—m(6@) =n—e(8). oO 

It follows that if 6 = 0 for a unique @, then rk,(M) =n —e(@). We can still say 
something when @ = 0 for two eigenvalues 0, when one has multiplicity 1: 

Proposition 13.3.4 Let the integral square matrix M be diagonalizable, and sup- 

pose that @ = 0 for only two eigenvalues 0, say @) and 0;, where e(@)) = 1. LetM 

have minimal polynomial p(x) = (x — @9) f(x). Then tkp(M) =n—e(@) — €, where 
€=1 if f(M) =0 and é = 0 otherwise. 

Proof By the above n—e(0,) — 1 <rkp(M) < n—e(@,). By the previous section 
n—er(0)+hpr(0) —1 < rke(M) < n—er(0)/hAp(0). Since er (0) = e(0,) +1 we 
find rke(M) = n—e(0,) — €, where € = 1 if he(0) = 1 and € = 0 otherwise. But 
hp (0) = 1 iff f(M) =0. O 

If M is a matrix with integral entries, then the minimal polynomial p(x) and its 

factor f(x) have integral coefficients. In particular, if M is an integral symmetric 

matrix with constant row sums k, and the eigenvalue k of M has multiplicity 1, 

then f(M) = (f(k)/n)J and the condition f(M) = 0 becomes ¢ = 0, where c = 
1 To ze (k — @) is an integer. 

13.4 Interesting primes p 

Let A be an integral matrix of order n, and let M = A — al for some integer a. If @ is 

an eigenvalue of A, then @ —a is an eigenvalue of M. 

If 6 = for no 9, then rk,(M) =n. 

If @ = 4 for a unique 9, then rk,(M) = rkr(M) = rkp(M — (9 —a)l) <1tk(A— 
61) =n—m(@) by Proposition 13.3.1, but also rk,(M) > n — m(@) by Proposition 

13.3.2, so that rk,(M) =n—m(@). 
So, if the p-rank of M is interesting, if it gives information not derivable from 

the spectrum of A and the value a, then at least two eigenvalues of M become zero 

upon reduction mod p. But if @—a = 7 —a=0, then 6 — n = 0, and in particular 

p|N(@—1), which happens for finitely many p only. 

Example The unique distance-regular graph with intersection array {4,3, 2; 1,2,4} 

has 14 vertices and spectrum 4, mek: , (—V2)®, —4 (with multiplicities written as 

exponents). 

Let A be the adjacency matrix of this graph, and consider the p-rank of M = 

A —al for integers a. The norms of 8 — a are 4 —a, a’ —2, —4—a, and if these are 

all nonzero mod p, then the p-rank of M is 14. If p is not 2 or 7, then at most one of 
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these norms can be 0 mod p, and for a = 4 (mod p) or a= —4 (mod p) the p-rank 

of M is 13. If a? =2 (mod p), then precisely one of the eigenvalues /2—a and 

—/2—a reduces to 0, and the p-rank of M is 8. Finally, for p = 2 and p=7 we 

need to look at the matrix M itself, and find rk2(A) = 6 and rk7(A +3/) = 8. 

13.5 Adding a multiple of J 

Let A be an integral matrix of order n with row and column sums k, and consider the 

rank and p-rank of M = M, = A+ bJ. Since J has rank 1, all these matrices differ 

in rank by at most 1, so either all have the same rank r, or two ranks r, r+ 1 occur, 

and in the latter case rank r+ 1 occurs whenever the row space of M contains the 

vector 1. 

The matrix M has row sums k + bn. 

If p {n, then the row space of M over F, contains 1 when k + bn £0 (mod p). 
On the other hand, if k + bn = 0 (mod p), then all rows have zero row sum (mod p) 
while 1 does not, so 1 is not in the row space over F,. Thus, we are in the second 

case, where the smaller p-rank occurs for b = —k/n only. 

If p|n and p{k, then all row sums are nonzero (mod p) for all b, and we are in 

the former case: the rank is independent of b, and the row space over F,, always 

contains 1. 

Finally, if p|n and also p|k, then further inspection is required. 

Example (PEETERS [293]). According to [206], there are precisely ten graphs with 

the spectrum 7! VT (—1)’ (—V7)8, one of which is the Klein graph, the unique 
distance-regular graph with intersection array {7,4,1; 1,2,7}. It turns out that the 
p-tanks of A — al + bJ for these graphs depend on the graph only for p = 2 ({293)). 
Here n = 24 andk = 7—a+24b. 

graph rk7(A +/) rko(A+/+J) 

#1,2 14 14 rk3(A—al+bJ) —_tk7(A—al) 
#3/8.9mrnds 14 plod a\b 0 
#4,7 13 12 0 2424 24 Ores 
#5 12 12 1 16S 1% 1U5't 24 
#6 11 10 2 1616 16 oui 
#10 9 8 

Interesting primes (dividing the norm of the difference of two eigenvalues) are 2, 
3, and 7. All p-ranks follow from the parameters except possibly rk)(A +1 +bJ s 
tk3(A —I + bJ), rk3(A +1), and rk7(A). 

The interesting 2-rank is rk2(A +/), and inspection of the graphs involved shows 
that this takes the values 9, 11, 12, 13, 14, 15 where 9 occurs only for the Klein 
graph. The value of rk2(A ++ J) follows, since a symmetric matrix with zero 
diagonal has even 2-rank, and the diagonal of a symmetric matrix lies in the F>- 
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space of its rows. Hence if rk2(A +/) is even, then rk3(A +/+J) =rk2(A+/), and 
if rko(A +1) is odd, then rk>(A +/ +J) =rko(A+J) —1. 

The 3-rank of A—J + bJ is given by Proposition 13.3.4. Here f(x) = (x+2)((x+ 
1)? —7) and k = 6+ 246, so that f(k)/n = 0 (mod 3) is equivalent to b = 1 (mod 3). 

One has rk3(A +/) = 16 in all ten cases. 
The value of rk7(A) can be predicted: We have det(A + J) = —7°.31, so the Smith 

normal form (§13.8) of A+J has at most 8 entries divisible by 7 and rk7(A+J) > 16. 

By Proposition 13.3.3, rk7(A + J) = 16. Since 7 {n and 1 is in the row space of A+J 
but not in that of A, rk7(A) = 15. 

13.6 Paley graphs 

Let q be a prime power, g = 1 (mod 4), and let I” be the graph with vertex set F, 

where two vertices are adjacent whenever their difference is a nonzero square. (Then 

T is called the Paley graph of order q.) In order to compute the p-rank of the Paley 

graphs, we first need a lemma. 

Lemma 13.6.1 Let p(x,y) = bs pas, cijx'y/ be a polynomial with coefficients in 

a field F. Let A,B C F, with m:= |A| > d and n:= |B| > e. Consider the mxn 
matrix P = (p(a,b))aca,pep and the d x e matrix C = (cjj). Then tkr (P) = rkp(C). 

Proof For any integer s and subset X of F, let Z(s,X) be the |X| x s matrix 
(x') xex,0<i<s—1- Note that if |X| = s then this is a Vandermonde matrix and hence 
invertible. We have P = Z(d,A)CZ(e,B)', so rke(P) < rkr(C), but P contains a 
submatrix Z(d,A’)CZ(e,B’) with A’ C A, B’ CB, |A’| =d, |B’| =e, and this subma- 
trix has the same rank as C. O 

For odd prime powers g = p*, p prime, let Q be the {0,+1}-matrix of order g 

with entries Q,y = 7(y—x) (x, y € Fg, x the quadratic residue character, ¥(0) = 0). 

Proposition 13.6.2 ((55]) rk,»Q = ((p+1)/2)°. 

Proof Applying the above lemma with p(x,y) = x(y—x) = (y—-x)@VP = 
y;(—1)}! (a2 haey Caer we see that rk,Q equals the number of binomial coef- 

ficients (a 3) with 0 <i < (q—1)/2 not divisible by p. Now Lucas’ Theorem 

says that if 1 = Y;l;p' and k = ¥;kip' are the p-ary expansions of / and k, then 

(.) =T (i) (mod p). Since $(q—1) = ¥;3(p—1)p’, this means that for each 

p-ary digit of i there are (p + 1)/2 possibilities and the result follows. O 

For Lucas’ Theorem, cf. MACWILLIAMS & SLOANE [267], 813.5, p. 404 (and 

references given there). Note that this proof shows that each submatrix of Q of order 

at least (q+ 1)/2 has the same rank as Q. 
The relation between Q here and the adjacency matrix A of the Paley graph is 

Q=2A+I1—J. From Q? = ql — J = —J (mod p) and (2A +/)* =ql+(q-1)J= 

—J (mod p) it follows that both (Q) and (24 +/) contain 1, so rkp(A + 5) = 

rkp(2A +1) = kp(Q) = ((p + 1)/2)°. 
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13.7 Strongly regular graphs 

Let I” be a strongly regular graph with adjacency matrix A, and assume that A has 

integral eigenvalues k,r,s with multiplicities 1, f,g, respectively. We investigate the 

p-rank of a linear combination of A, J and J. 

The following proposition shows that only the case p|(r—s) is interesting. 

Proposition 13.7.1 Let M =A+bJ+cl. Then M has eigenvalues 09) =k+bv+c, 

0; =r+c, & =s+c, with multiplicities mp = 1, m; = f, m2 = g, respectively. 

(i) If none of the 0; vanishes (mod p), then rkpM = v. 

(ii) If precisely one 0; vanishes (mod p), then M has p-rank v — mj. 

Put e:= wb +b?v+2bk+b(p—A). 
(iii) If 09 = 8, = 0 (mod p), @ #0 (mod p), then rk,M = g if and only if ple, 

and tk,M = g + 1 otherwise. 

(iii)’ If 0) = ® =0 (mod p), 6; #0 (mod p), then tk,M = f if and only if ple, 
and rk,M = f +1 otherwise. 

(iv) In particular, if k =r = 0 (mod p) and s 0 (mod p), then rk,A = g. And if 
k =s=0 (mod p) and r £0 (mod p), then rk,A = f. 

(v) If 0; = & =0 (mod p), then rkpM < min(f + 1,g +1). 

Proof Parts (i), (ii), and (v) are immediate from Propositions 13.3.1 and 13.3.2. 
Suppose 4 = 6; = 0 (mod p), 6 4 0 (mod p). Then we can apply Proposition 
13.3.4 with the two eigenvalues 0 and @. Since rk,(M — @:/) = v—g, and g < 
tkpM < g +1, it follows that rk,M = g if and only if M(M — @)/) = 0 (mod p). But 
using (A —rI)(A —sI) = wJ andr+s =A —, we find M(M — @J) = (A+bJ — 
rl)(A+bJ — sl) = eJ. Part (iii)’ is similar. O 

Thus, the only interesting case (where the structure of I plays a role) is that 
where p divides both @; and 6), so that p | (r—s). In particular, only finitely many 
primes are of interest. In this case we only have the upper bound (v). 

Looking at the idempotents sometimes improves this bound by 1: We have E = 
(r—s)~'(A—sI —(k—s)v~!J) and Ey = (s—r)7! (A —rI —(k—r)v—'J). Thus, if 
k —s and v are divisible by the same power of p (so that (k — s)/v can be interpreted 
in F,,), then rkp(A — sI — (k—s)v—'J) < rk E = f, and, similarly, if k —r and v are 
divisible by the same power of p then rk, (A — rl — (k—r)v7!J) <rk Ey = g. 
For M=A+bJ+cl and p|(r+c), p|(s+c) we have ME; = JE, =0 (over F,,) so 

that rk, (M,1) < g+1, and hence rk,M < g (and similarly tkpM < f) when 1 ¢ (M). 
Much more detail is given in [55] and [292]. 

In the table below we give for a few strongly regular graphs for each prime p 
dividing r — s the p-rank of A — s/ and the unique bo such that tk,(A — sI — boJ) = 
tk,(A —sI —bJ) — | for all b ¥ bo, or “-” in case tk,(A — sI —bJ) is independent of 
b. (When p{ v we are in the former case, and bo follows from the parameters. When 
p\v and p+ |, we are in the latter case.) 

For a description of most of these graphs, see [62]. 
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Name v kaAw rl — s& — prk,(A—sl) bo 
Focedesube = 2©=©=*«C*! eC ke sy CC 
Schlafli 27 16:10,8::4° “(=2)™ 2 6 0 

3 7 : 
T(8) 28-1206 4 47> (2) 42 6 0 

3 8 2 
3 Chang graphs IS1246 4A 41 2)”. 2 8 - 

3 8 2 
G2(2) 36 14,4 6 27! (=4)* 2 8 : 

eye eae : 
Sp4(3) ay 12 2 47)" (4) 16 - 

<a 1 
Os(3) AQ 12) 24 2 (4) 2 10 - 

Joe sell 1 
Hoffman-Singleton SORE Tn 0; Mareen 3) ins 21 - 

Gewirtz 56. 100 2:2 (Say Date 20 ate 
B= 20) 1 

Mo) 7) GO. AO (—6)42 2, 2 20 0 
Brouwer-Haemers SIZ 2028s Go a) 3 ag - 
Higman-Sims 100° 220 F602" (= 8)2 20m 22 ; 

By $493 : 
Hall-Janko 100,23644.12 .6°° (=A) 32 36 0 

coma): 
GQ(3,9) 112 30. 210 2° (—10)7! 2 22 

3 4126 I 
001... in $(5, 8,24) 120 2424, S802"? (= 12/7240!) 20 - 

Leth Ouint rec 
Sp4(5) 156 30.46, 479 0:( 6) | 2eren 66 . 

ee ELS 1 
Sub McL 1627-56-10 24216) 2 20" 0 

: ea é 
Edges of Ho-Si 175; ° 72:20:36 2'53-(=18)*! 2021) 20 0 

Sh le 21 4 
01... in §(5, 8, 24) 176:570.18.34,2'94 (—18)71 25 » 22 4“ 

eee! 3 
a switched version 176 9038 54 255 (-18)2 2 22 . 
of the previous graph > DD, 3 

Cameron DS WNZOE OAS OS 3) OD emeasS 1 
B56 1 

Berlekamp-van Lint-Seidel 243 22 1 2 41°? (—5)!#9 3 67 = 
Delsarte DAB 110 37 60 27725)? 32 22 E 
S(4,7,23) 253 112/36,60127" (=—26)7* 2: «22 0 

1 ae 5 
McLaughlin 215 112305027" (=28)" 2 22 0 

continued... 
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Name yustind Ap rh g8 p tk,(A—sI) bo 
3 22 I 
5 23 

a switched version 276140 58 84 27>? (—28)3 2 24 - 
of previous plus 3 23 2 

isolated point 5 24 3 

G(4) 416100 36 20 20% (—4)> 2 38 - 
3 65 I 

Dodecads mod 1 1288 792 476 504 8195 (—36)?>? 2 2» 0 
Ps 2300S 

Table 13.1 p-ranks of some strongly regular graphs ({55]) 

13.8 Smith normal form 

The Smith normal form S(M) of an integral matrix M is a diagonal matrix S(M) = 
PMQ = diag(sj,...,5,), where P and Q are integral with determinant +1 and 

51 |S2|-++|Sn. It exists and is uniquely determined up to the signs of the s;. The s; are 
Be é ; ; jet 

called the elementary divisors or invariant factors. For example, if M = | : 
Suciat 

then S(M) = eno 

Let (M) denote the row space of M over Z. By the fundamental theorem for 

finitely generated Abelian groups, the group Z”/(M) is isomorphic to a direct sum 

Zs, ®::-@Zs,, @ Z for certain s1,...,5m,s, where s;|---|sm. Since Z"/(M) = 

Z" /(S(M)), we see that diag(s,,...,5m,0') is the Smith normal form of M, when 
M has r rows and n = m+ s columns, and t = min(r,n) — m. 

If M is square, then []s; = detS(M) = tdetM. More generally, 1s 5; is the 
g.c.d. of all minors of M of order t. 

The Smith normal form is a finer invariant than the p-rank: the p-rank is just the 
number of s; not divisible by p. (It follows that if M is square and p*||detM, then 
tk,M >n—e.) 

We give some examples of graphs distinguished by Smith normal form or p-rank. 

Example Let A and B be the adjacency matrices of the lattice graph K4 Ky and 
the Shrikhande graph. Then S(A) = S(B) = diag(1°,2+,4°,12), but S(A + 2/) = 
diag(1°,8',0°) and S(B + 2/) = diag(1°,2',0°). All have 2-rank equal to 6. 

Example An example where the p-rank suffices to distinguish, is given by the 
Chang graphs, strongly regular graphs with the same parameters as the triangular 
graph T(8), with (v,k,A, 1) = (28, 12,6,4) and spectrum 12! 47 (—2). If A is the 
adjacency matrix of the triangular graph and B that of one of the Chang graphs, then 
S(A) = diag(1°,2!°, 8,24!) and S(B) = diag(18,2!2,87,24!), so that A and B have 
different 2-rank. 

Example Another example is given by the point graph and the line graph of the 
GQ(3,3) constructed in §9.6.2. The 2-ranks of the adjacency matrices are 10 and 
16, respectively. 
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Fig. 13.1 Graphs with the same Laplacian Smith normal form (1°,5, 15,0) 

GRONE, MERRIS & WATKINS [187] gave the pair of graphs in Figure 13.1 that 

have S(L) = diag(1*,5,15,0), where L is the Laplacian. The Laplace spectrum of 
the left one (which is Ky 1 K3) is 0, 2, 3°, 57. That of the right one is 0, 0.914, 3.572, 
57, 5.514, where the three nonintegers are roots of A> — 10A? +28A — 18 =0. 

13.8.1 Smith normal form and spectrum 

There is no very direct connection between Smith normal form and spectrum. For 
hull 

example, the matrix i; 3 has eigenvalues 2 and 4, and invariant factors | and 8. 

Proposition 13.8.1 Let M be an integral matrix of order n, with invariant factors 

Speci Sis 

(i) If a is an integral eigenvalue of M, then alsp. 

(ii) If a is an integral eigenvalue of M with geometric multiplicity m, then 

ASA: 

(iii) If M is diagonalizable with distinct eigenvalues a,,...,@m, all integral, then 

we have Sy|\a1a2 +++ dm. 

Proof Part (i) is a special case of (ii). Part (ii) is Proposition 13.8.4 below. For 

(iii) we may assume that all a; are nonzero. It suffices to show that every element in 

ZI / (My has an order dividing aa --- dm. We show by induction on k that if u = Qu; 

is integral and is sum of k left eigenvectors u; of M, with uj;M = aqjuj;, then aj ---axu € 

(M). Indeed, since uM = Yaju; € (M) and ayu—uM = Y (a, — a;)u; is integral and 

sum of at most k— 1 eigenvectors, we find by induction that aj ---ax_1(axu—uM) € 

(M), and hence aj---axu € (M). O 

The invariant factors are determined when we know for each prime p and each 

i > 0 how many invariant factors are divisible by p’, and the following proposition 

tells us. 
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Proposition 13.8.2 Let A be an integral matrix of order n, p a prime number and 

i a nonnegative integer. Put M; := M;(A) := {x € Z" | p~'Ax € Z"}. Let M; C 1 

be the mod p reduction of M,j. Then M; is an F ,-vectorspace, and the number of 

invariant factors of A divisible by p' equals ait, Th 

Proof dim, WM; does not change when A is replaced by PAQ, where P and Q are 

integral matrices of determinant 1. So we may assume that A is already in Smith 

normal form. Now the statement is obvious. 

There is a dual statement: 

Proposition 13.8.3 Let A be an integral matrix of order n, p a prime number, and 

i a nonnegative integer. Put N; := N;(A) := {p~'Ax | x € M;}. Then the number of 
invariant factors of A not divisible by p't! equals dim, Ni. 

Proof dim, WN; does not change when A is replaced by PAQ, where P and Q are 

integral matrices of determinant 1. So we may assume that A is already in Smith 

normal form. Now the statement is obvious. L 

Proposition 13.8.4 Let A be a square integral matrix with integral eigenvalue a of 
(geometric) multiplicity m. Then the number of invariant factors of A divisible by a 
is at least m. 

Proof Let W = {x € Q" | Ax = ax} be the a-eigenspace of A over Q, so that 
dimg(W) = = m. By Proposition 13.8.2, it suffices to show that ees m for all 
primes p, where W is the mod p reduction of WZ”. Pick a basis x),...,Xm of W 
consisting of m integral vectors, chosen in such a way that the n x m matrix X that 
has columns x; has a (nonzero) minor of order m with the minimum possible num- 
ber of factors p. If upon reduction mod p these vectors become dependent, that is, 
if 3c xj = 0 where not all c; vanish, then Yc jx; has coefficients divisible by p, so 
that y := = ae jx; © WZ", and we can replace some x; (with nonzero c j) by y and 
geta mane X’ where the minors have fewer factors p, contrary to assumption. So, 
the x; remain independent upon reduction mod p, and dim, W = m. O 

Example Let g = p’ for some prime p. Consider the adjacency matrix A of the 
graph I” of which aa vertices are the lines of PG(3,q), where two lines are adfaventt 
when they are disjoint. This graph is ssiaaly pegniay. with eigenvalues k= g*, r=q, 
s = —q? and multiplicities 1, f = g++ q’, g= gt+¢ + q, respectively. Since detA 
is a power of p, all invariant factors are powers of p. Let p’ occur as invariant factor 
with multiplicity e;. 

Claim. We have ej +e, +++» +e = f and ey +--+ + e3, = g and e4, = 1 and 
e; = O fort <i < 2t and 3t <i < 4t andi > 4t. Moreover, ea2j Se, for 0 < 12k 

Proof The total number of invariant factors is the size of the matrix, so );e; = f+ 
g +1. The number of factors p in detA is Dj ie; = t(f +2g +4). Hence Yi(i-t)e; = 
t(g +3). 

Let m; := > >; e;. By (the proof of) Proposition 13.8.4 we have m4, = 1 and my, > 
g +1. (The +1 follows because 1 is orthogonal to eigenvectors with eigenvalue other 
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than k, but has a nonzero (mod p) inner product with itself, so that 1 ¢ W for an 

eigenspace W with 1 ¢ W.) 

The matrix A satisfies the equation (A — r/)(A — sl) = wJ, that is, A(A + g(q— 
1)I) = @I+q°(q—1)J, and the right-hand side is divisible by p*. If x € Z" and 
p'(A+q(q—1)I)x € Z", then p~'(A + q(q—1)I)x € Mx_;(A) for 0 <i < 3t. If 
0 <i<t, then p~'g(q—1)x = 0 (mod p), so that Nj C M3;_;. Also 1 € M3,_;, while 
1 ZN; because 1' p~‘Ax = p’—‘1' x reduces to 0 (mod p) for integral x, unlike 1'1. 
By Proposition 13.8.3 we find m3,_; > eg +--- te; t+1(O0<i<t). 

Adding the inequalities — Yo<j<p ei + Li>3x_n@i 2 1 (OSA <1), and td i>, e; = 

t(g+ 1) and t>;s4, e; > t yields 

Yi G-deat Y G@-ne+2e Ye +3t Ye >t(g+3) 
O<i<t 2t<i<3t 3t+1<i<4t i>4t 

and equality must hold everywhere since };(i—t)e; = t(g +3). os 

Note that our conclusion also holds for any strongly regular graph with the same 

parameters as this graph on the lines of PG(3,q). 

In the particular case gq = p, the invariant factors are 1, p, p”, p°, p* with multi- 
plicities e, f —e, g —e, e, 1, respectively, where e = t p(2p? +1) in the case of the 

lines of PG(3, p) (cf. [148]). Indeed, the number e of invariant factors not divisible 

by p is the p-rank of A, determined in SIN [326]. 

For p = 2, there are 3854 strongly regular graphs with parameters (35,16,6,8) 

({277]), and the 2-ranks occurring are 6, 8, 10, 12, 14 (with frequencies 1, 3, 44, 

574, 3232, respectively )—they must be even because A is alternating (mod 2). 

The invariant factors of the disjointness graph of the lines of PG(3,4) are 1°° 2° 
4220 1632 32!6 647° 256!, with multiplicities written as exponents. 

One can generalize the above observations, and show for example that if p is a 

prime, and A is the adjacency matrix of a strongly regular graph, and p“||k, p? |Ir, 

p’||s, where a > b+c and p}v, and A has e; invariant factors s; with p'||s;, then 
e; = 0 for min(b,c) <i < max(b,c) andb+c <i<aandi> a. Moreover, ép4¢_j = 

e; for0 <i < min(b,c). 

13.9 Exercises 

Exercise 13.1 ({55]) Let A be the adjacency matrix of the n x n grid graph (n > 

2). Then A has Smith normal form $(A) = diag(12"-?,2("-2)" , (2n — 4)?"-3, 2(n — 
1)(n—2)) and 2-rank 2n — 2. 

Exercise 13.2 ((55]) Let A be the adjacency matrix of the triangular graph T (1) 

(n > 4). Then A has Smith normal form 

pay or diag(1”-?,2("-2)("-3)/2. (2n —8)"-*, (n—2)(n—4)) if nis even, 

A= diag(1”—!,2@-("-4)/2 (2n — 8)"-*,2(n — 2) (n—4)) if n is odd. 

The 2-rank of A is n —2 if n is even, and n — 1 if n is odd. 
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Chapter 14 

Spectral Characterizations 

In this chapter, we consider the question to what extent graphs are determined by 

their spectrum. First we give several constructions of families of cospectral graphs 

and then give cases in which it has been shown that the graph is determined by its 

spectrum. 

Let us abbreviate “determined by the spectrum” to DS.! Here, of course, “‘spec- 

trum” (and DS) depends on the type of adjacency matrix. If the matrix is not speci- 

fied, we mean the ordinary adjacency matrix. 

Large parts of this chapter were taken from VAN DAM & HAEMERS [126, 127, 

128]. 

14.1 Generalized adjacency matrices 

Let A = Ar be the adjacency matrix of a graph I’. The choice of 0, 1, 0 in A to 

represent equality, adjacency, and nonadjacency was rather arbitrary, and one can 

more generally consider a matrix x/J + yA + z(J —I —A) that uses x, y, z instead. Any 

such matrix with y ¥ z is called a generalized adjacency matrix of I”. The spectrum 

of any such matrix is obtained by scaling and shifting from that of a matrix of the 

form A+ yJ, so for matters of cospectrality we can restrict ourselves to this case. 

Call two graphs I’ and A y-cospectral (for some real y) when Ar — yJ and 

A, — yJ have the same spectrum. Then 0-cospectral is what we called cospectral, 

+-cospectral is Seidel-cospectral, and 1-cospectrality is cospectrality for the com- 

plementary graphs. Call two graphs just y-cospectral when they are y-cospectral but 

not z-cospectral for any z # y. 
The graphs Kj,4 and K; + C4 are just 0-cospectral. The graphs 2K3 and 2K, + K4 

are just +-cospectral. The graphs K; + Ce and Eg (cf. 81.3.7) are y-cospectral for all 

y. 

Proposition 14.1.1 (i) (JOHNSON & NEWMAN [235]) 

| We shall use the somewhat ugly “(non-)DS graph” for “graph (not) determined by the spectrum”. 

199 
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If two graphs are y-cospectral for two distinct values of y, then they are for all y. 

(ii) (VAN DAM, HAEMERS & KOOLEN [129]) Jf two graphs are y-cospectral for 

an irrational value of y, then they are for all y. 

Proof Define p(x,y) = det(Ar —xI — yJ/). Thus, for fixed y, p(x, y) is the charac- 
teristic polynomial of Ar — yJ. Since J has rank 1, the degree in y of p(x, y) is 1 (this 

follows from Gaussian elimination in Ar — x/ — yJ/), so there exist integers do, ... , Qn 

and bo,...,b, such that 

p(y) = Ya + biy)x'. 
i=0 

Suppose I" and I’ are y-cospectral for some y = yo but not for all y. Then the 

corresponding polynomials p(x,y) and p’(x,y) are not identical, while p(x, yo) = 

p'(x,yo). This implies that a; + biyo = a; + bly with b; 4 bi for some i. So yo = 
(a’ — a;)/(b; — b‘) is unique and rational. O 

VAN DAM, HAEMERS & KOOLEN [129] show that there is a pair of nonisomor- 

phic just y-cospectral graphs if and only if y is rational. Values of y other than 0, 5, 1 

occur naturally when studying subgraphs of strongly regular graphs. 

Proposition 14.1.2 Let I be strongly regular with vertex set X of size n, and let @ 

be an eigenvalue other than the valency k. Let y = (k — 9)/n. Then for each subset 

S of X, the spectrum of I" and the y-spectrum of the graph induced on S determines 

the y-spectrum of the graph induced on X \ S. 

Proof Since A —yJ has only two eigenvalues, this follows immediately from 

Lemma 2.11.1. L] 

This can be used to produce cospectral pairs. For example, let I be the Petersen 

graph, and let S induce a 3-coclique. Then the y-spectrum of the graph induced on 

X \ S is determined by that on S, and does not depend on the coclique chosen. Since 

8 can take two values, the graphs induced on the complement of a 3-coclique (£¢ 
and K; +C¢) are y-cospectral for all y. 

14.2 Constructing cospectral graphs 

Many constructions of cospectral graphs are known. Most constructions from before 
1988 can be found in [115], 86.1, and [114], §1.3; see also [172], §4.6. More recent 
constructions of cospectral graphs are presented by SERESS [321], who gives an 
infinite family of cospectral 8-regular graphs. Graphs cospectral to distance-regular 
graphs can be found in [54], [126], [206], and in §14.2.2. Notice that the graphs 
mentioned are regular, so they are cospectral with respect to any generalized adja- 
cency matrix, which in this case includes the Laplace matrix. 

There exist many more papers on cospectral graphs. On regular as well as non- 
regular graphs, and with respect to the Laplace matrix as well as the adjacency 
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matrix. We mention [47], [164], [210], [264], [278] and [304], but don’t claim to be 

complete. 

Here we discuss four construction methods for cospectral graphs. One used 

by Schwenk to construct cospectral trees, one from incidence geometry to con- 

struct graphs cospectral with distance-regular graphs, one presented by Godsil and 

McKay, which seems to be the most productive one, and finally one due to Sunada. 

14.2.1 Trees 

Let I’ and A be two graphs, with vertices x and y, respectively. SCHWENK [308] 

examined the spectrum of what he called the coalescence of these graphs at x and 

y, namely, the result I’ +, A of identifying x and y in the disjoint union I’ +A. He 

proved the following (see also [115], p. 159, and [172], p. 65). 

Lemma 14.2.1 Let I and I’ be cospectral graphs and let x and x’ be vertices of 
T and I’ Rrcciel). Suppose that I’ — x (that is the subgraph of I’ obtained by 

deleting x) and T' — x’ are cospectral too. Let A be an arbitrary arapH with a fixed 

vertex y. Then I +, A is cospectral with D' +, A. 

Proof Let z be the vertex of Z:=I° +, A that is the result of identifying x and y. 

A directed cycle in Z cannot meet both I —x and A — y. By 81.2.1, the characteristic 

polynomial p(t) of Z can be expressed in the numbers of unions of directed cycles 

with given number of vertices and of components. We find p(t) = pr—x(t)pa(t) + 

pr (t)pa—y(t) —tpr—x(t)pa-y(t). 
For example, let [ = I’ be as given below. Then I — x and I’ — x’ are cospectral, 

because they are isomorphic. 

Suppose A = P; and let y be the vertex of degree 2. Then Lemma 14.2.1 shows that 

the graphs in Figure 14.1 are cospectral. 

Fig. 14.1 Cospectral trees 

It is clear that Schwenk’s method is very suitable for constructing cospectral 

trees. In fact, the lemma above enabled him to prove his famous theorem: 

Theorem 14.2.2 With respect to the adjacency matrix, almost all trees are non-DS. 
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After Schwenk’s result, trees were proved to be almost always non-DS with re- 

spect to all kinds of matrices. GODSIL & MCKaAy [175] proved that almost all 

trees are non-DS with respect to the adjacency matrix of the complement A, while 

McKay [276] proved it for the Laplace matrix L and for the distance matrix D. 

14.2.2 Partial linear spaces 

A partial linear space consists of a (finite) set of points Y, and a collection # of 

subsets of Y called lines, such that two lines intersect in at most one point (and con- 

sequently, two points are on at most one line). Let (Y, LY) be such a partial linear 

space and assume that each line has exactly qg points, and each point is on q lines. 

Then clearly |A| = ||. Let N be the point-line incidence matrix of (Y,L). Then 
NN! —qI and N'N — qI both are the adjacency matrix of a graph, called the point 
graph (also known as collinearity graph) and line graph of (Y,#), respectively. 

These graphs are cospectral, since NN' and N'N are. But in many examples they 

are nonisomorphic. An example was given in §12.4.1. 

14.2.3 GM switching 

Seidel switching was discussed above in §1.8.2. No graph with more than one vertex 

is DS for the Seidel adjacency matrix. In some cases Seidel switching also leads to 

cospectral graphs for the adjacency spectrum, for example when graph and switched 

graph are regular of the same degree. 

GoDSIL & McKay [176] consider a different kind of switching and give condi- 
tions under which the adjacency spectrum is unchanged by this operation. We will 
refer to their method as GM switching. (See also §1.8.3.) Though GM switching 
was invented to make cospectral graphs with respect to the adjacency matrix, the 
idea also works for the Laplace matrix and the signless Laplace matrix, as will be 
clear from the following formulation. 

Theorem 14.2.3 Let N be a (0, 1)-matrix of size b x c (say) whose column sums are 
0, b or b/2. Define N to be the matrix obtained from N by replacing each column 
v with b/2 ones by its complement 1 —. Let B be a symmetric b x b matrix with 
constant row (and column) sums, and let C be a symmetric c x c matrix. Put 

BN ~ [BN wea | 8 arr 
Then M and M are cospectral. 

zJ —Ip 0 
Proof Define @= | 0 7 

Cc 

|. then Q-'=Qand QMO"! =M. oO 
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The matrix partition used in [176] (and in §1.8.3) is more general than the one 

presented here. But this simplified version suffices to show that GM switching pro- 

duces many cospectral graphs. 

If M and M are adjacency matrices of graphs, then GM switching gives cospectral 

graphs with cospectral complements and hence, by the result of Johnson and New- 

man quoted in §14.1, it produces cospectral graphs with respect to any generalized 

adjacency matrix. 

If one wants to apply GM switching to the Laplace matrix L of a graph I’, take 

M = —L and let B and C (also) denote the sets of vertices indexing the rows and 

columns of the matrices B and C, respectively. The requirement that the matrix B 

has constant row sums means that N has constant row sums, that is, the vertices of 

B all have the same number of neighbors in C. 

For the signless Laplace matrix, take M = Q. Now all vertices in B must have the 

same number of neighbors in C, and, in addition, the subgraph of I’ induced by B 

must be regular. 

When Seidel switching preserves the valency of a graph, it is a special case of 

GM switching, where all columns of N have b/2 ones. So the above theorem also 

gives sufficient conditions for Seidel switching to produce cospectral graphs with 

respect to the adjacency matrix A and the Laplace matrix L. ' 

If b = 2, GM switching just interchanges the two vertices of B, and we call it 

trivial. But if b > 4, GM switching almost always produces nonisomorphic graphs. 

CA Oe 
Fig. 14.2 Two graphs cospectral w.r.t. any generalized adjacency matrix 

Wi) SSX 
Fig. 14.3 Two graphs cospectral w.r.t. the Laplace matrix 

In Figures 14.2 and 14.3 we have two examples of pairs of cospectral graphs pro- 

duced by GM switching. In both cases b = c = 4 and the upper vertices correspond 

to B and the lower vertices to C. In the example of Figure 14.2, B induces a regular 

subgraph and so the graphs are cospectral with respect to every generalized adja- 

cency matrix. In the example of Figure 14.3 all vertices of B have the same number 

of neighbors in C, so the graphs are cospectral with respect to the Laplace matrix L. 
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14.2.4 Sunada’s method 

As a corollary of the discussion in §6.4 we have: 

Proposition 14.2.4 Let I” be a finite graph, and G a group of automorphisms. If 

H, and Hy are subgroups of G such that T is a cover of I'/H; (i = 1,2) and such 
that each conjugacy class of G meets H, and Hp in the same number of elements, 

then the quotients '/H; (i = 1,2) have the same spectrum and the same Laplace 
spectrum. 

Proof The condition given just means that the induced characters 1h, (i= 1. 2) are 
the same. Now apply Lemma 6.4.1 with MW =A and M = L. O] 

SUNADA [331] did this for manifolds, and the special case of graphs was dis- 

cussed in [210]. BROOKS [47] shows a converse: any pair of regular connected 

cospectral graphs arises from this construction. 

14.3 Enumeration 

14.3.1 Lower bounds 

GM switching gives lower bounds for the number of pairs of cospectral graphs with 

respect to several types of matrices. 

Let I” be a graph on n — | vertices and fix a set X of three vertices. There is a 

unique way to extend I” by one vertex x to a graph I’ such that X U {x} induces a 

regular graph in I” and that every other vertex in I’ has an even number of neighbors 

in X U{x}. Thus the adjacency matrix of I’ admits the structure of Theorem 14.2.3, 

where B corresponds to X U {x}. This implies that from a graph I on n — 1 vertices 
one can make ice graphs with a cospectral mate on n vertices (with respect to 
any generalized adjacency matrix) and every such n-vertex graph can be obtained 
in four ways from a graph on n — | vertices. Of course some of these graphs may 
be isomorphic, but the probability of such a coincidence tends to zero as n — © 
(see [208] for details). So, if g, denotes the number of nonisomorphic graphs on n 
vertices, then: 

Theorem 14.3.1 The number of graphs on n vertices that are non-DS with respect 
to any generalized adjacency matrix is at least 

(3g —0(1)) nan—1. 

The fraction of graphs with the required condition with b = 4 for the Laplace matrix 
is roughly 2~"n,/n. This leads to the following lower bound (again see [208] for 
details): 
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Theorem 14.3.2 The number of non-DS graphs on n vertices with respect to the 

Laplace matrix is at least 

rmn/Nn—-1, 

for some constant r > 0. 

In fact, a lower bound like the one in Theorem 14.3.2 can be obtained for any 

matrix of the form A + aD, including the signless Laplace matrix Q. 

14.3.2 Computer results 

GODSIL & McKAy [175, 176] give interesting computer results for small cospec- 

tral graphs. In [176] all graphs up to 9 vertices are generated and checked on 

cospectrality. This enumeration has been extended to 11 vertices by HAEMERS & 

SPENCE [208], and cospectrality was tested with respect to the adjacency matrix 

A, the set of generalized adjacency matrices (A &A), the Laplace matrix L, and the 

signless Laplace matrix Q. The results are given in Table 14.1, where we list the 

fractions of non-DS graphs for each of the four cases. The last three columns give 

the fractions of graphs for which GM switching gives cospectral nonisomorphic 

graphs with respect to A, L and Q, respectively. Since GM switching gives cospec- 

tral graphs with cospectral complements, column GM-A gives a lower bound for 

column A&A. 

nL # graphs A [ARAL | © [[GM-aloM-t]Gw-o 
2 ANP) 0 0 0 0 0 

3 4 0 0 

4 0 

5 0 

6 0 

7 0 

8 0 

9 0 

10 12005168 

11 1018997864 0.174 | 0.060 | 0.001 

12] 165091172592 

Table 14.1 Fractions of non-DS graphs 

Notice that for n < 4 there are no cospectral graphs with respect to A or to L, but 

there is one such pair with respect to Q, namely K;,3 and K; + K3. For n = 5S there is 

just one pair with respect to A. This is of course the Saltire pair (Kj,4 and K; + C4). 

An interesting result from the table is that the fraction of non-DS graphs is non- 

decreasing for small n, but starts to decrease at n = 10 for A, at n = 9 for L, and 

at n = 6 for Q. Especially for the Laplace matrix and the signless Laplace matrix, 
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these data suggest that the fraction of DS graphs might tend to | as n — 9. In ad- 

dition, the table shows that the majority of non-DS graphs with respect to A&A 

and L comes from GM switching (at least for n > 7). If this tendency continues, 

the lower bounds given in Theorems 14.3.1 and 14.3.2 will be asymptotically tight 

(with maybe another constant) and almost all graphs will be DS for all three cases. 

Indeed, the fraction of graphs that admit a nontrivial GM switching tends to zero as 

n tends to infinity, and the partitions with b = 4 account for most of these switch- 

ings (see also [176]). Results for the normalized Laplacian, and for trees, are given 

in [351]. For the data for n = 12, see [66] and [329]. 

14.4 DS graphs 

In 814.2 we saw that many constructions for non-DS graphs are known, and in 

the previous section we remarked that it seems more likely that almost all graphs 

are DS, than that almost all graphs are non-DS. Yet much less is known about DS 

graphs than about non-DS graphs. For example, we do not know of a satisfying 

counterpart to the lower bounds for non-DS graphs given in §14.3.1. The reason is 

that it is not easy to prove that a given graph is DS. Below we discuss the graphs 

known to be DS. The approach is via structural properties of a graph that follow 

from the spectrum. So let us start with a short survey of such properties. 

14.4.1 Spectrum and structure 

Let us first investigate for which matrices one can see from the spectrum whether 
the graph is regular. 

Proposition 14.4.1 Let D denote the diagonal matrix of degrees. If a regular graph 
is cospectral with a nonregular one with respect to the matrix R=A+BJ+yD+6I, 
then y=Oand-1<B <0. 

Proof Without loss of generality, 6 = 0. Let I" be a graph with the given spectrum, 
and suppose that I” has n vertices and vertex degrees d; (1 <i <n). 

First suppose that y 4 0. Then Yd; is determined by tr(R) and hence by the 
spectrum of R. Since tr(R?) = B*n* + (1+ 2B + 2By)¥;d; + ¥ ¥;d?, it follows 
that also >; de is determined by the spectrum. Now Cauchy’s inequality states that 
(X;dj)* <n; d? with equality if and only if d} =... =d,. This shows that regular- 
ity of the graph can be seen from the spectrum of R. 

Now suppose y = 0 and B # —1/2. By considering tr(R*) we see that ¥;d; is 
determined by the spectrum of R. The matrix R = A + BJ has average row sum 
r= Bn+;d;/n determined by its spectrum. Let R have eigenvalues 0; >... > Op. 
By interlacing, 6; > r > 0,, and equality on either side implies that R has constant 
row sums, and I” is regular. On the other hand, if B > 0 (resp. B < —1), then R 
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(resp. —R) is a nonnegative matrix, hence if I" is regular, then 1 is an eigenvector 

for eigenvalue r = 0; (resp. r = —9,). Thus also here regularity of the graph can be 

seen from the spectrum. U] 

It remains to see whether one can see from the spectrum of A — yJ (with 0 < 

y < 1) whether the graph is regular. For y = “ the answer is clearly no: The Seidel 

adjacency matrix is S = J —] — 2A, and for S a regular graph can be cospectral with 

a nonregular one (e.g. K3 and K; + K2), or with another regular one with different 

valency (e.g. 4K; and Cy). CHESNOKOV & HAEMERS [89] constructed pairs of y- 

cospectral graphs where one is regular and the other not for all rational y,0 < y < 1. 

Finally, if y is irrational, then one can deduce regularity from the spectrum of A — yJ 

by Proposition 14.1.1(ii). 

Corollary 14.4.2 For regular graphs, being DS (or not DS) is equivalent for the 

adjacency matrix, the adjacency matrix of the complement, the Laplace matrix, and 

the signless Laplace matrix. 

Proof For each of these matrices the above proposition says that regularity can be 

recognized. It remains to find the valency k. For A, A, Q, the largest eigenvalue is k, 

n—1—k, 2k, respectively. For L, the trace is nk. OJ 

Lemma 14.4.3 For the adjacency matrix, the Laplace matrix and the signless 

Laplace matrix of a graph TI, the following can be deduced from the spectrum: 

(i) the number of vertices, 

(ii) the number of edges, 

(iii) whether I’ is regular, 

(iv) whether I" is regular with any fixed girth. 

For the adjacency matrix the following follows from the spectrum: 

(v) the number of closed walks of any fixed length, 

(vi) whether I’ is bipartite. 

For the Laplace matrix the following follows from the spectrum: 

(vii) the number of components, 

(viii) the number of spanning trees. 

Proof Part (i) is clear. For L and Q the number of edges is twice the trace of the 

matrix, while parts (ii) and (v) for A were shown in Proposition 1.3.1. Part (vi) 

follows from (v), since I” is bipartite if and only if I has no closed walks of odd 

length. Part (iii) follows from Proposition 14.4.1, and (iv) follows from (iii) and the 

fact that in a regular graph the number of closed walks of length less than the girth 

depends on the degree only. Parts (vii) and (viii) follow from Propositions 1.3.7 and 

1.3.4. 

The Saltire pair shows that (vii) and (viii) do not hold for the adjacency matrix. 

The two graphs of Figure 14.4 have cospectral Laplace matrices. They illustrate that 

(v) and (vi) do not follow from the Laplace spectrum. The graphs kK + K3 and kj 3 

show that (v)-(viii) are false for the signless Laplace matrix. 
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Fig. 14.4 Two graphs cospectral w.r.t. the Laplace matrix 

(Laplace spectrum: 0, 3 — V5, 2, 3, 3, 3+ V5) 

14.4.2 Some DS graphs 

Lemma 14.4.3 immediately leads to some DS graphs. 

Proposition 14.4.4 The graphs K, and Km,m and C, and their complements are DS 

for any matrix R= A+BJ+yD-+ 61 for which regularity follows from the spectrum 

of R. In particular this holds for the matrices A, A, L and R. 

Proof Since these graphs are regular, we only need to show that they are DS with 

respect to the adjacency matrix. A graph cospectral with K, has n vertices and 

n(n — 1)/2 edges and therefore equals K,. A graph cospectral with Kinm is regu- 
lar and bipartite with 2m vertices and m edges, so it is isomorphic to Km. A graph 

cospectral with C,, is 2-regular with girth n, so it equals C). CJ 

Proposition 14.4.5 The disjoint union of k complete graphs, Km, +... +Km,, is DS 

with respect to the adjacency matrix. 

Proof The spectrum of the adjacency matrix A of any graph cospectral with Km, + 
.- + Km, equals {[m —1]',..., [my —1]',[-1]"-*}, where n = m, +...+m. This 
ce that A + J is positive emaldotiwiie of rank k, and hence A +/ is che matrix of 
inner products of n vectors in R*. All these vectors are unit vectors, and the inner 
products are | or 0. So two such vectors coincide or are orthogonal. This clearly 
implies that the vertices can be ordered in such a way that A +/ is a block diagonal 
matrix with all-1 diagonal blocks. The sizes of these blocks are nonzero eigenvalues 
of A+T. O 

This proposition shows that a complete multipartite graph is DS with respect to 
A. In general, the disjoint union of complete graphs is not DS with respect to A and 
L. The Saltire pair shows that K; + Ky is not DS for A, and Ks +5K> is not DS for 
L, because it is cospectral with the Petersen graph extended by five isolated vertices 
(both graphs have Laplace spectrum (0]° [2]° [5]*). See also BOULET [40]. 

Proposition 14.4.6 The path with n vertices is determined by the spectrum of its 
adjacency matrix. More generally, each connected graph with largest eigenvalue 
less than 2 is determined by its spectrum. 

Proof Let I” be connected with n vertices and have largest eigenvalue less than 2, 
and let the graph A be cospectral. Then A does not contain a cycle, and has n— 1 
edges, so is a tree. By Theorem 3.1.3 (and following remarks) we find that A is one 
of An = Py, Dn, Eo, E7, Eg, and has largest eigenvalue 2 cos “ where h is the Coxeter 
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number. Now A is determined by n and h, that is, by its number of vertices and its 

largest eigenvalue. 

In fact, P, is also DS with respect to A, L, and Q. The result for A, however, is 

nontrivial and the subject of [147]. The hypothesis ‘“‘connected” here is needed, but 

we can describe precisely which pairs of graphs with largest eigenvalue less than 2 

are cospectral. 

Proposition 14.4.7 

(i) Dn42+Pn is cospectral with Poy+, +P, forn > 2. 

(iti) D7 +P» is cospectral with E¢ + P3. 

(iti) D9 + Py is cospectral with E7 + Ps. 

(iv) D6 +P4 +P» is cospectral with Eg + Po + Ps. 

(v) Iftwo graphs T and A with largest eigenvalue less than 2 are cospectral, then 

there exist integers a,b,c such that A + aP,+bP)+ cP, arises from I +aP,+ 

bP, + cP, by (possibly repeatedly) replacing some connected components by 

some others cospectral with the replaced ones according to (i)-(iv). 

For example, P;; + P) +P; is cospectral with Eg + Ps + P3, and Pj7 +P) +P, is 

cospectral with E7 + Pg + Ps, and Pro + Py + P2 +P; is cospectral with Eg + Pj4 + 

Py + Ps, and Eg +D10+P, is cospectral with E7 + Ds + Pj;, and E7 + Dg is cospectral 

with Dig +P), and Eg + De + Dg is cospectral with Dj + 2P;. 

It follows that P,, +...-+ Py, (with n; > 1 for all i) and Dy, +... + Dry, (with 

n; > 3 for all i) are DS. 

We do not know whether P,, +...-+ Py, is DS with respect to A. But it is easy to 

show that this graph is DS for L and for Q. 

Proposition 14.4.8 The union of k disjoint paths, P,, +... + Py, each having at 

least one edge, is DS with respect to the Laplace matrix L and the signless Laplace 

matrix Q. 

Proof The Laplace eigenvalues of P, are 2 + 2cos mI (= 1&3 (see §1.4.4); 

Since P, is bipartite, the signless Laplace eigenvalues are the same (see Proposition 

STO): 
Suppose I" is a graph cospectral with P,, +...+ Pp, with respect to L. Then all 

eigenvalues of L are less than 4. Lemma 14.4.3 implies that I” has k components and 

ni +... +n, —k edges, so I is a forest. Let L’ be the Laplace matrix of K1,3. The 

spectrum of L’ equals {0]! {1]* [4]'. If degree 3 (or more) occurs in I’, then L’ + D 
is a principal submatrix of L for some diagonal matrix D with nonnegative entries. 

But then L’ + D has largest eigenvalue at least 4, a contradiction. So the degrees 

in I" are at most two and hence I is the disjoint union of paths. The length m 

(say) of the longest path follows from the largest eigenvalue. Then the other lengths 

follow recursively by deleting P,, from the graph and the eigenvalues of P,, from the 

spectrum. 
For a graph I’ cospectral with P,, + ...+ Pn, with respect to Q, the first step is to 

see that I’ is a forest. But a circuit in I’ gives a submatrix L’ in Q with all row sums 
at least 4. So L’ has an eigenvalue at least 4, a contradiction (by Corollary 2.5.2), 
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and it follows that I’ is a forest and hence bipartite. Since for bipartite graphs L and 

Q have the same spectrum, I’ is also cospectral with P,, +...+ Pn, with respect to 

L, and we are done. O 

The above two propositions show that for A, A, L, and Q the number of DS 

graphs on n vertices is bounded below by the number of partitions of n, which is 

asymptotically equal to 2“V” for some constant a. This is clearly a very poor lower 

bound, but we know of no better one. 

We have seen that the disjoint union of some DS graphs is not necessarily DS. 

One might wonder whether the disjoint union of regular DS graphs with the same 

degree is always DS. The disjoint union of cycles is DS, as can be shown by an 

argument similar to that in the proof of Proposition 14.4.8. Also the disjoint union 

of some copies of a strongly regular DS graph is DS. In general we expect a negative 

answer, however. 

14.4.3 Line graphs 

The smallest adjacency eigenvalue of a line graph is at least —2 (see §1.4.5). Other 

graphs with least adjacency eigenvalue —2 are the cocktail party graphs (mK, the 
complement of m disjoint edges) and the so-called generalized line graphs, which 

are common generalizations of line graphs and cocktail party graphs (see [114], 

Ch. 1). We will not need the definition of a generalized line graph, but only use the 
fact that if a generalized line graph is regular, it is a line graph or a cocktail party 
graph. Graphs with least eigenvalue —2 have been characterised by CAMERON, 
GOETHALS, SEIDEL & SHULT [84] (cf. §8.4). They prove that such a graph is a 
generalized line graph or is in a finite list of exceptions that comes from root sys- 
tems. Graphs in this list are called exceptional graphs. A consequence of the above 
characterization is the following result of CVETKOVIC & DOOB [£13] Thimsd.4s 
see also [114], Thm. 1.8. 

Theorem 14.4.9 Suppose a regular graph A has the adjacency spectrum of the line 
graph L(I’) of a connected graph T. Suppose T is not one of the fifteen regular 
3-connected graphs on 8 vertices, or K3., or the semiregular bipartite graph with 9 
vertices and 12 edges. Then A is the line graph L(I’) of a graph I". 

It does not follow that the line graph of a connected regular DS graph, which is 
not one of the exceptions mentioned, is DS itself. The reason is that it can happen 
that two noncospectral graphs I” and I’ have cospectral line graphs. For example, 
both L(K¢) and K6,10 have a line graph with spectrum 14! 8° 49 —245, and both 
L(Petersen) and the incidence graph of the 2-(6,3,2) design have a line graph with 
spectrum 6! 45 14 0° —2!5. The following lemma gives necessary conditions for this 
phenomenon (cf. [76], Thm. 1.7). 

Lemma 14.4.10 Let I be a k-regular connected graph on n vertices and let T' 
be a connected graph such that L(I’) is cospectral with L(I’). Then either T' is 
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cospectral with T’, or I is a semiregular bipartite graph with n+ vertices and 

nk/2 edges, where (n,k) = (b? — 1, ab) for integers a and b witha < 5b. 

Proof Suppose that I” has m edges. Then L(I”) has m vertices. 

If N is the point-edge incidence matrix of I’, then NN' is the signless Laplace 

matrix of T, and NN! — KI is the adjacency matrix of I”, and N'N —21 is the ad- 

jacency matrix of L(I”). Since I is connected, the matrix N has eigenvalue 0 with 

multiplicity 1 if I” is bipartite, and does not have eigenvalue 0 otherwise. Conse- 

quently, L(I”) has eigenvalue —2 with multiplicity m—n-+1 if I is bipartite, and 

with multiplicity m—n otherwise. If n 4 0, then the multiplicity of n — 2 as eigen- 

value of L(I”) equals the multiplicity of n — k as eigenvalue of I. 

We see that for a regular connected graph I’, the spectrum of L(I’) determines 

that of I” (since L(G) is regular of valency 2k — 2 and n is determined by m = snk). 

Since L(I”’) is cospectral with L(I”), also I’ has m edges. L(I’’) is regular and 
hence I’ is regular or semiregular bipartite. Suppose that I’ is not cospectral with 

I. Then I’ is semiregular bipartite with parameters (n, ,n2,k,,k2) (say), and 

m snk ny ky n2kp. 

Since the signless Laplace matrices Q and Q’ of I and I’ have the same nonzero 

eigenvalues, their largest eigenvalues are equal: 

2k'= ky kp. 

If n = nj +n, then k, = kp, a contradiction. So 

n=nm +n —1. 

Write kj = k—aand ky = k-+a. Then nk = nik; +n2kz yields 

k = (n, —nz)a. 

Now 1k; = n2k2 gives 

(nj >) S15 SPI: 

Put b = nj — np. Then (n,k) = (b* — 1, ab). Since 2ab = ky +ky <2 +n = b’, it 
follows that a < Sb. O 

Now the following can be concluded from Theorem 14.4.9 and Lemma 14.4.10. 

Theorem 14.4.11 Suppose I is a connected regular DS graph, which is not a 3- 

connected graph with 8 vertices or a regular graph with b* —1 vertices and degree 

ab for some integers a and b, witha < Sb. Then also the line graph L(I’) of I’ is 

DS. 

BUSSEMAKER, CVETKOVIC & SEIDEL [76] determined all connected regular ex- 

ceptional graphs (see also [119]). There are exactly 187 such graphs, of which 32 

are DS. This leads to the following characterization. 
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Theorem 14.4.12 Suppose IT’ is a connected regular DS graph with all its adja- 

cency eigenvalues at least —2. Then one of the following occurs. 

(i) I is the line graph of a connected regular DS graph. 

(ti) I is the line graph of a connected semiregular bipartite graph, which is DS 

with respect to the signless Laplace matrix. 

(iii) I” is a cocktail party graph. 

(iv) I is one of the 32 connected regular exceptional DS graphs. 

Proof Suppose I is not an exceptional graph or a cocktail party graph. Then I is 

the line graph of a connected graph A, say. WHITNEY [348] has proved that A is 

uniquely determined from I’, unless I = K3. If this is the case, then = L(K3) = 

L(K1,3), So (i) holds. Suppose A’ is cospectral with A with respect to the signless 

Laplace matrix Q. Then I" and L(A’) are cospectral with respect to the adjacency 

matrix, so ’ = L(A’) (since I" is DS). Hence A = A’. Because I is regular, A must 
be regular, or semiregular bipartite. If A is regular, DS with respect to Q is the same 

as DS. O 

All four cases from Theorem 14.4.12 do occur. For (i) and (iv) this is obvious, and 

(iii) occurs because the cocktail party graphs mK are DS (since they are regular and 

A-cospectral by Proposition 14.4.5). Examples for Case (ii) are the complete graphs 

K, = L(Ki,n) with n # 3. Thus, the fact that K, is DS implies that Kin is DS with 

respect to Qifn #3. 

14.5 Distance-regular graphs 

All regular DS graphs constructed so far have the property that either the adjacency 
matrix A or the adjacency matrix A of the complement has smallest eigenvalue at 
least —2. In this section we present other examples. 

Recall that a distance-regular graph with diameter d has d+ 1 distinct eigen- 
values and that its (adjacency) spectrum can be obtained from the intersection array. 
Conversely, the spectrum of a distance-regular graph determines the intersection ar- 
ray (see, e.g., [126]). However, in general the spectrum of a graph doesn’t tell you 
whether it is distance-regular or not. 

For d > 3 we have constructed graphs cospectral with, but nonisomorphic to 
H(d,d) in §14.2.2. Many more examples are given in [206] and [130]. 

In the theory of distance-regular graphs an important question is: “Which graphs 
are determined by their intersection array?” For many distance-regular graphs this 
is known to be the case. Here we investigate in the cases where the graph is known 
to be determined by its intersection array, whether it is in fact already determined 
by its spectrum. 
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14.5.1 Strongly regular DS graphs 

The spectrum of a graph I” determines whether I" is strongly regular. Indeed, by 

Proposition 3.3.1 we can see whether I” is regular. And a regular graph with spec- 

trum 6; > ... > @, is strongly regular if and only if |{0, |2 <i<n}|=2. 

(That is, a regular graph is strongly regular if and only if either it is connected, 

and then has precisely three distinct eigenvalues: its valency and two others, or it is 

the disjoint union aK; (a > 2, € > 2) of a complete graphs of size 2.) 

Indeed, if I has valency k and all eigenvalues 0; with i > 1 are in {r,s}, then 
(A —rI)(A —sI) = cJ so that A? is a linear combination of A, J and J, and I is 
strongly regular. 

By Propositions 14.4.4 and 14.4.5 and Theorem 14.4.11, we find the following 

infinite families of strongly regular DS graphs. 

Proposition 14.5.1 [fn 4 8 and m#4, the graphs aki, L(Kn), L(Kmm), and their 

complements are strongly regular DS graphs. 

Note that L(K,,) is the triangular graph T(n), and L(Kmm) is the lattice graph 

Ly(n). For n = 8 and m = 4 cospectral graphs exist. There is exactly one graph 

cospectral with L(K44), the Shrikhande graph ([325]), and there are three graphs 

cospectral with L(Kg), the so-called Chang graphs ([87]). See also §9.2. 

Besides the graphs of Proposition 14.5.1, only a few strongly regular DS graphs 

are known; these are surveyed in Table 14.2. (Here a local graph of a graph I is the 

subgraph induced by the neighbors of a vertex of I.) 

Spectrum 

295 |4i 2” 

Table 14.2 The known sporadic strongly regular DS graphs (up to complements) 
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Being DS seems to be a very strong property for strongly regular graphs. Most 

strongly regular graphs have (many) cospectral mates. For example, there are ex- 

actly 32548 nonisomorphic strongly regular graphs with spectrum 15, 3!°, (—3)?° 

((277]). Other examples can be found in the survey [51]. FON-DER-FLAASS [161] 

showed that the number of nonisomorphic cospectral strongly regular graphs on at 

most n vertices grows exponentially in n. This implies that almost all strongly reg- 

ular graphs are non-DS. One might be tempted to conjecture that there are only 

finitely many strongly regular DS graphs besides the ones from Proposition 14.5.1. 

14.5.2 Distance-regularity from the spectrum 

If d > 3, only in some special cases does it follow from the spectrum of a graph that 

it is distance-regular. The following result surveys the cases known to us. 

Theorem 14.5.2 If I’ is a distance-regular graph with diameter d and girth g sat- 

isfying one of the following properties, then every graph cospectral with I’ is also 

distance-regular, with the same parameters as Tl. 

(i) g>2d-1. 

(ii) g > 2d—2andT is bipartite. 

(iit) g > 2d —2 and cg_\cg < —(cg_-1 + 1)(0; +...+ 0). 

(iv) I” is a generalized Odd graph, that is, a; =... =ag_| =0, ag £0. 
(V) (C= = Cay el 

(vi) I’ is the dodecahedron, or the icosahedron. 

(vii) I is the coset graph of the extended ternary Golay code. 

(viii) I” is the Ivanov-Ivanov-Faradjev graph. 

For parts (i), (iv) and (vi), see [58] (and also [200]), [228], and [206], respectively. 
Parts (ii), (iii), (v), (vii) are proved in [126] (in fact, (ii) is a special case of (iii)) and 
(vili) is proved in [130]. Notice that the polygons C,, and the strongly regular graphs 
are special cases of (i), while bipartite distance-regular graphs with d = 3 (these are 
the incidence graphs of symmetric block designs, see also [115], Thm. 6.9) are a 
special case of (ii). 

An important result on spectral characterizations of distance-regular graphs is the 
following theorem of FIOL & GARRIGA [158], a direct consequence of Theorem 
IZA. 

Theorem 14.5.3 Let I’ be a distance-regular graph with diameter d and Ke 
\[a(u)| vertices at distance d from any given vertex u. If T' is cospectral with T 
and |Ij(x)| = ka for every vertex x of T', then I is distance-regular. 

Let us illustrate the use of this theorem by proving Case (i) of Theorem 14.5.2. 
Since the girth and the degree follow from the spectrum, any graph I’ cospectral 
with I also has girth g and degree k;. Fix a vertex x in I’. Clearly, c,.. = 1 for 
every vertex y at distance at most (g —1)/2 from x, and a, = 0 (where ay, is the 
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number of neighbors of y at distance d(x, y) from x) if the distance between x and y 

is at most (g — 2) /2. This implies that the number k’ of vertices at distance i from 

x equals k,(k; — ae, fori =1,...,d— 1, Hence kt — k; for these 7. But then also 

ki, = ka and I” is distance-regular by Theorem 14.5.3. 

14.5.3 Distance-regular DS graphs 

BROUWER, COHEN & NEUMAIER [54] gives many distance-regular graphs deter- 

mined by their intersection array. We only need to check which ones satisfy one of 

the properties of Theorem 14.5.2. First we give the known infinite families: 

Proposition 14.5.4 The following distance-regular graphs are DS: y 

(i) the polygons Cy, 

(ii) the complete bipartite graphs minus a perfect matching, 

(iii) the Odd graphs Og+1, 

(iv) the folded (2d + 1)-cubes. 

Proof Part (i) follows from Theorem 14.5.2 (i) (and Proposition 14.4.4). Part (i1) 

follows from Theorem 14.5.2 (11). The graphs of parts (iii) and (iv) are generalized 

Odd graphs, so the result follows from Theorem 14.5.2 (iv). O 

Next, there are the infinite families where the spectrum determines the combina- 

torial or geometric structure, where the graphs are DS if and only if the correspond- 

ing structure is determined by its parameters. 

Proposition 14.5.5 A graph cospectral with the incidence graph of a symmetric 

block design with parameters 2-(v,k,A) is itself the incidence graph of a symmetric 

block design with these same parameters. 

The designs known to be uniquely determined by their parameters are the six 

projective planes PG(2,q) for q = 2,3,4,5,7,8, and the biplane 2-(11,5,2), and 

their complementary designs with parameters 2-(v,v—k,v—2k+A). 

The remaining known distance-regular DS graphs are presented in Tables 14.3, 

14.4, and 14.5. For all but one graph, the fact that they are unique (that is, determined 

by their parameters) can be found in [54]. Uniqueness of the Perkel graph has been 

proved only recently [103]. The last columns in the tables refer to the relevant the- 

orems by which distance-regularity follows from the spectrum. In these tables we 

denote by [G(v,k, A) the point-block incidence graph of a 2-(v,k,A) design, and by 

GH, GO, and GD the point graph of a generalized hexagon, generalized octagon, 

and generalized dodecagon, respectively. 

Recall that the point graph of a GH(1,q) (GO(1,q), GD(1,q)) is the point-line 

incidence graph of a projective plane (generalized quadrangle, generalized hexagon) 

of order g. Recall that the point graph of a GH(q,1) is the line graph of the dual 

GH(1,q), that is, the line graph of the point-line incidence graph (also known as the 

flag graph) of a projective plane of order q. 
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Finally, %3, %,, and Y2 denote the binary Golay code, the doubly truncated 

binary Golay code, and the extended ternary Golay code, and HoSi is the Hoffman- 

Singleton graph. 

Spectrum 

192)) (-v5) icosahedron 14.5.2vi 

14] 3 (- Heawood; GH(1,2) | 14.5.2i 

14] 4 ( 1G(7,4,2) 14.5.2ii 
15] 4 =4 ( 14.4.11 
21] 4 1—/2)° ( 14.5.2v 

215 (=/3) IG(11,5,2) 14.5.2ii 

22) 6 (-V3)!0( IG(11,6,3) 14.5.2ii 

26| 4 (-v3)* —( GH(1,3) 14.5.2i 

26| 9 (-v3)!2( IG(13,9,6) 14.5.2ii 
36] 5 eye ab Sylvester 14.5.2i 
42| 6 (-1)® ( antipodal 6-cover of K7|14.5.2i 

42] 5 (2) Pon nih GH(1,4) 14.5.2i 
4216 (2) (— 14.5.2ii 
52] 6 Q-/3 14.5.2v 

a 14.5.27 

GH(1,5) 14.5.2i 

IG(31,25,20) 14.5.2ii 

antipodal 7-cover of Ko|14.5.2v 

GH(4,1) 14.5.2v 

GH (1,7) 14.5.23 

IG(57,49, 42) 14.5.2ii 

GH(1,8) 14.5.2i 

IG(73, 64, 56) 14.5.2ii 
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175/21 zd L(HoSi) 14.4.11 
186] 10 (44+/5)*° (4—/5)20 GH(5,1) 14.5.2v 
456|14 (6+/7)*° (6—V7) GH(7,1) 14.5.2v 
506]15 —3) Mp3 graph 14.5.2: 
512)21 3) Coset graph of Y 14.5.2iii 
657} 16 (7+V8)"? (7—V8) GH(8, 1) 14.5.2v 
729|24 —3) Coset graph of 42 14.5.2vii 
819] 18 ) GH(2,8) 14.5.2v 

2048|23 —1) 1288 Coset graph of 43 14.5.2iii, iv 
Bt ils GH(8,2) 14.5.2v 

Table 14.3 Sporadic distance-regular DS graphs with diameter 3 

By Biaff(q), we denote the point-line incidence graph of an affine plane of order 
q minus a parallel class of lines (sometimes called a biaffine plane). Any graph 
cospectral with a graph Biaff(q) is also such a graph. For prime powers q < 9, there 
is a unique affine plane of order gq. (Biaff(2) is the 8-gon.) 
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n |Nonnegative spectrum] d 

18 3! V3 of Pappus; Biaff(3) 5. 
30 327 OF Tutte’s 8-cage; GO(1,2)|14.5.2i 
32 AlvolZigs 14.5.2ii 

50, 5! 5" 08 14.5.2ii 
go] 4! Ye" 020 14.5.2 

71 VT gl2 

3! We pial 028 

g! n/a gl4 

5! V8 0° 

98 

126 

128 

4} 39 110 (—1)? (=2)16 

102 Bit? a8 io 14.5.2v 

ae Bac 
(0), 2, 03 roots of 6? + 302 —3 =0) 

160) 06! (2+4/6)74129 (2—4/6)*4\(=2)?} 14.5.2v 
189 AE (EO) ev 14.5.2v 

Gay) ey 2) 
330 GA CNY Reco (ee er ee Mgt 14.5.2v 
42518' (34-/8)ro 3% (3 —w/8)?2\(-2)° 14.5.2v 
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Table 14.5 Sporadic nonbipartite distance-regular DS graphs with d > 4 

We finally remark that also the complements of distance-regular DS graphs are 

DS (but not distance-regular, unless d = 2). 

14.6 The method of Wang and Xu 

WANG & XU [344] invented a method to show that relatively many graphs are 

determined by their spectrum and the spectrum of their complement. We give a 

brief sketch. 
Let I’ be a graph on n vertices with adjacency matrix A. The walk matrix W of I" 

is the square matrix of order n with i-th column A’ '1(1 <i<n). Itis nonsingular if 

and only if A does not have an eigenvector orthogonal to 1. (Indeed, let u'A=O6u'. 

Then u'W = (1,0,..., Seat ke If u' 1 =0, then this shows that the rows of W 

are dependent. If for no eigenvector u' we have u'1 =O, then all eigenvalues have 

multiplicity 1, and by Vandermonde W is nonsingular.) 
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Let p(t) = Y.c;t' = det(t] — A) be the characteristic polynomial of A. Let the 
companion matrix C = (cj;) be given by cin = —c;j and cj; = 6;,;41 for 1 <j <n—1. 

Then AW = WC. (Indeed, this follows from p(A) = 0.) 
Assume that I and I’ are cospectral with cospectral complements. Call their 

walk matrices W and W’. Then W'W = W!'W’. (Indeed, (W'W);; = 1° A‘~71, 
and we saw in the proof of Proposition 14.1.1 that if and I’, with adjacency 

matrices A and A’, are y-cospectral for two distinct y, then 1'A”1 =1'A""1 for all 

m.) 

Suppose that W is nonsingular. Then W’ is nonsingular, and Q = W/W! is 

the unique orthogonal matrix such that A’ = QAQ' and Q1 = 1. (Indeed, since 

W'W =W’''W’ also W’ is nonsingular, and Q1 = 1 since QW = W’, and GQ! = 
w'(W'W)-'w’' =1. Since P and I’ are cospectral, their companion matrices are 

equal and QAQ' = QWCW~'Q' =W’CW'-! =A’ If Qis arbitrary with OQ' =/, 
Q1 = 1 (hence also Q'1 = 1) and QAQ' = A’, then QA" 1 = QA"Q'1=A""1 for 
all m, and QW = W’.) 

Forget about I’ and study rational matrices Q with QQ' =I, Q1 =1 and QAQ' 

a (0,1)-matrix with zero diagonal. Let the level of Q be the smallest integer such 

that £Q is integral. The matrices Q of level 1 are permutation matrices leading to 

isomorphic graphs. So the graph I” (without eigenvector orthogonal to 1) is deter- 

mined by its spectrum and the spectrum of its complement when all such matrices 

Q have level 1. 

If Q has level £, then clearly £|detW. A tighter restriction on £ is found by looking 

at the Smith normal form S of W. Let S = UWV with unimodular integral U and V, 

where S = diag(s),...,5,) with s;|s2|...|s,. Then W~! = VS~'U so that s,W7! is 
integral, and é|s,. 

Let p be prime, p|¢. There is an integral row vector z, z 4 0 (mod p) such that 

zW = 0 (mod p) and zz! = 0 (mod p). (Indeed, let z be a row of @Q, nonzero 
mod p. Now QW = W’ is integral and hence zW = 0 (mod p). And QQ! =1, so 
z’ =f" =0 (mod p),) 

This observation can be used to rule out odd prime divisors of @ in some cases. 
Suppose that all numbers s; are powers of 2, except possibly the last one s,. Let p 
be an odd prime divisor of s,, and suppose that uu' #0 (mod p), where u is the last 
row of U. Then p{ @. (Indeed, zW = 0 (mod p) and W = U-!SV—! with unimodular 
V implies zU~'S = 0 (mod p). Assume p|é, so that p|s,. Let y= zU~!. Then all 
coordinates of y except for the last one are 0 (mod p). And z= yU is a nonzero 
constant times u (mod p). This contradicts uu! # 0 (mod p).) 

It remains to worry about p = 2. Assume that s, = 2 (mod 4), so that (with all of 
the above assumptions) ¢ = 2. For z we now have z £ 0 (mod 2), zW = 0 (mod 2) 
z!=4 z21= 2, so that z has precisely four nonzero entries, three 1 and one —1. 

We proved the following: 

Theorem 14.6.1 Let I” be a graph on n vertices without eigenvector orthogonal to 
1, and let S = diag(s1,...,5,) =UWV be the Smith normal form of its walk matrix 
W, where U and V are unimodular. Let u be the last row of U. If 5, = 2 (mod 4), 
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and ged(uu! ,s,/2) = 1, and zW 40 (mod 2) for every (0,1)-vector z with weight 

4, then I is determined by its spectrum and the spectrum of its complement. O 

Wang and Xu generate a number of random graphs where this method applies. 

Let us abbreviate the condition “determined by its spectrum and the spectrum of 

its complement” by DGS (determined by the generalized spectrum). WANG & XU 

[345] used their approach to find conditions for which a DGS graph remains DGS 

if an isolated vertex is added. 

Theorem 14.6.2 Let I” be a graph without eigenvector orthogonal to 1. If we have 

gcd(detA,detW) = 1, then the graph obtained from T' by adding an isolated vertex 

is DGS if and only if I is. 

There is experimental evidence that in most cases where a cospectral mate exists, 

the level £ is 2. : 

14.7 Exercises 

Exercise 14.1 Show for the adjacency matrix A 

(i) that there is no pair of cospectral graphs on fewer than 5 vertices, 

(ii) that the Saltire pair is the only cospectral pair on 5 vertices, 

(iii) that there are precisely 5 cospectral pairs on 6 vertices. 

eta Aiethilieewizil: . -<o= 

SSE A ed Bs 

pr ct tae + 7x7 +4x-1 

Table 14.6 The cospectral graphs on 6 vertices (with characteristic polynomial) 

Exercise 14.2 Let I have spectrum 4!, (—2)!°, (-14 V3)!®, ((34 V5)/2)”. 
Show that I" has no m-cycles, for m = 3,4,6,7. Show that every 2-path is contained 

in a unique pentagon. In fact, there is a unique such graph (Blokhuis and Brouwer). 

Exercise 14.3 ({203]) Let I be the Kneser graph K(m,k) with vertex set V = pay 
where |X| = m= 3k—1 (k > 2). Fix Y CX with |Y| =k—1 and consider the subset 
W of the vertices of I consisting of the k-subsets of X containing Y. Prove that W 

satisfies the conditions for GM switching, and that the switching produces a graph 

nonisomorphic to I”, provided k > 3. 
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Chapter 15 

Graphs with Few Eigenvalues 

Graphs with few distinct eigenvalues tend to have some kind of regularity. A graph 

with only one eigenvalue (for A, L, or Q) is edgeless, and a connected graph with 

two distinct adjacency eigenvalues (for A, L, or Q) is complete. A connected regular 

graph I has three eigenvalues if and only if I” is connected and strongly regular. Two 

obvious next cases are connected regular graphs with four eigenvalues and general 

graphs with three eigenvalues. In the latter case, the graphs need not be regular, so it 

matters which type of matrix we consider. For the Laplace matrix, there is an elegant 

characterization in terms of the structure, which gives a natural generalization of the 

spectral characterization of strongly regular graphs. 

15.1 Regular graphs with four eigenvalues 

Suppose I" is regular with r distinct (adjacency) eigenvalues k = Aj > ... > A,. 
Then the Laplace matrix has eigenvalues 0 = k—A, <...<k—A,, and the signless 

Laplacian has eigenvalues k+ A, >... > k+A,. So for regular graphs these three 

matrices have the same number of distinct eigenvalues. If, in addition, both I” and 

its complement I’ are connected, then I also has r distinct eigenvalues, being n — 

k—1>-A,-—1>...>—A,—1. However, for the Seidel matrix the eigenvalues 

become —2A,—1 >... > —2A, — 1 and n—2k—1. But n—2k—1 may be equal 

to one of the other eigenvalues, in which case S has r — | distinct eigenvalues. For 

example, the Petersen graph has three distinct adjacency eigenvalues but only two 

distinct Seidel eigenvalues, being +3. 

Connected regular graphs with four distinct (adjacency) eigenvalues have been 

studied by Doos [145, 146], VAN DAM [121], and VAN DAM & SPENCE [132]. 

Many such graphs are known, for example the line graphs of primitive strongly reg- 

ular graphs and distance-regular graphs of diameter 3. More generally, most graphs 

defined by a relation of a three-class association scheme have four eigenvalues. 

There is no nice characterization as for regular graphs with three eigenvalues, but 

they do possess an interesting regularity property. A graph is walk-regular whenever 
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for every ¢ > 2 the number of closed walks of length @ at a vertex v is independent of 

the choice of v. Note that walk-regularity implies regularity (take 2 = 2). Examples 

of walk-regular graphs are distance-regular graphs and vertex-transitive graphs, but 

there is more. 

Proposition 15.1.1 Let I" be a connected graph whose adjacency matrix A has r = 

4 distinct eigenvalues. Then T is walk-regular if and only if A‘ has constant diagonal 

jor 2 sa 7=—2. 

Proof. We know that the number of closed walks of length @ at vertex v equals 

(A),,. Therefore, I is walk-regular if and only if A‘ has constant diagonal for all 

> 2. Suppose A‘ has constant diagonal for 2 < £ < r—2. Then A? has constant 

diagonal, so I” is regular. The Hoffman polynomial of I has degree r — 1 and hence 

A’ le (A"”,...,A?,A,1,J). This implies A® € (A”-?,...,A?,A,J,/) for all £ > 0. 
Therefore A‘ has constant diagonal for all 2 > 0. O 

Corollary 15.1.2 [fT is connected and regular with four distinct eigenvalues, then 

I’ is walk-regular. [il 

For a graph I” with adjacency matrix A, the average number of triangles through 

a vertex equals dtr’. Suppose I” is walk-regular. Then this number must be an 

integer. Similarly, x trA’ is an integer if 2 is odd, and tra’ is an integer if n is even. 

VAN DAM & SPENCE [132] have used these (and other) conditions in their computer 

generation of feasible spectra for connected regular graphs with four eigenvalues. 

For constructions, characterizations, and other results on regular graphs with four 

eigenvalues we refer to VAN DAM [121, 122]. Here we finish with the bipartite case, 

which can be characterized in terms of block designs (see §4.9). 

Proposition 15.1.3 A connected bipartite regular graph T with four eigenvalues is 
the incidence graph of a symmetric 2-design (and therefore distance-regular). 

Proof. Since I” is connected, bipartite, and regular, the spectrum is 

{k, Ay” us (—Az) abies. S 

where 2v is the number of vertices. For the adjacency matrix A of I, we have 

a NEOLN me VME @ 
a= iro and 4? =| O Hl 

for some square (0, 1)-matrix N satisfying N1 = N'1 = k1. It follows that NN" 
has spectrum {(k*)!,(A3)""!}, where k? corresponds to the row and column sum 
of NN’. This iriplies that NN' € (J,/), and hence N is the incidence matrix of a 
symmetric design. L] 
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15.2 Three Laplace eigenvalues 

If a connected graph I" has three distinct Laplace eigenvalues 0 < v < v’ (say), the 

complement I" has eigenvalues 0 <n—v’ <n—v, soif TI is connected, it also has 

three distinct eigenvalues. To avoid the disconnected exceptions, it is convenient to 

use the notion of restricted eigenvalues (recall that an eigenvalue is restricted if it 

has an eigenvector orthogonal to the all-1 vector 1) and consider graphs with two 

distinct restricted Laplace eigenvalues. 

We say that a graph IT" has constant y(I") if is not complete and any two distinct 

nonadjacent vertices of I” have the same number of common neighbors (equal to 

H(T)). 

Theorem 15.2.1 A graph I" has two distinct restricted Laplace eigenvalues v and 

v’ if and only if T has constant (I) and its complement T has constant u(F). If 
I is such a graph, only two vertex degrees, d and d', occur, and 

vtv =d+d'+1=p(l)+n—-p(P), vv! =dd'+p(C)=p(P)n. 

Proof. Suppose I" has just two restricted Laplace eigenvalues v and v’. Then (L— 

vI)(L—v’I) has rank 1 and row sum vv’, so 

/ 

(L—vI)(L—v'I) = bi) 
n 

If u and v are nonadjacent vertices, then (L),,., = 0, so (L”),» = vv’ /n, and w(I) = 

vv’ /n is constant. Similarly, P has constant u(I’) = (n— v)(n—v’)/n. 
Next, suppose = (I") and ff = w(T) are constant. If uw and y are adjacent ver- 

tices, then ((nJ — J — L)*),, = HL, So Hf = (L”) wy +n, and if w and v are nonadjacent, 
then (L”),,, = W. Furthermore, (L”).. =? +d,, where d, is the degree of u. Writing 

D = diag(d,...,d,), we obtain 

L? = (f—n)(D—-L)+p(VJ—-I-D+L)+D°+D= 
(uU+n—P)L+D?—(ut+tn—fP-1)D-pl+p. 

Since L and L? have zero row sums, it follows that d,” —d,(u+n—f#—1)—m+ 

jn = 0 for every vertex u, so L? — (u +n—ff)L+ unl = wJ. Now let v and v’ be 

such that v+ v’ = u+n—[and vv! = pn. Then (L— v/)(L—v'I) = wey, so L has 
distinct restricted eigenvalues v and v’. As a side result, we obtained that all vertex 

degrees d, satisfy the same quadratic equation, so d,, can only take two values d and 

d', and the formulas readily follow. O 

Regular graphs with constant u(I") and w(I’) are strongly regular, so The- 
orem 15.2.1 generalizes the spectral characterization of strongly regular graphs. 

Several nonregular graphs with two restricted Laplace eigenvalues are known. A 

geodetic graph of diameter 3 with connected complement provides an example with 

u(I-) = 1 (see [54], Theorem 1.17.1). Here we give two other constructions. Both 
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constructions use symmetric block designs (see 84.9). Correctness easily follows by 

using Theorem 15.2.1. 

Proposition 15.2.2 Let N be the incidence matrix of a symmetric 2-(n,k, 2) design. 

Suppose that N is symmetric (which means that the design has a polarity). Then 

L=kI —N is the Laplace matrix of a graph with two restricted eigenvalues, being 

k+WVk-—A. The possible degrees are k and k—1. LJ 

If all diagonal elements of N are 0, then the graph I" is an (n,k, A )-graph (a strongly 

regular graph with A = 2), and if all diagonal elements of N are 1, then I" is such a 

graph. Otherwise both degrees k and k — 1 occur. For example, the Fano plane admits 

a symmetric matrix with three ones on the diagonal. The corresponding graph has 

restricted Laplace eigenvalues 3 + /2 and vertex degrees 2 and 3. See also §4.10. 

Proposition 15.2.3 Let N be the incidence matrix of a symmetric block design. 

Write 
LN v—-J ON A-Js 

n= | ni | and defn Eat Oe yr ee 
‘i Ni = SON 2b Ae 

Then L has two restricted eigenvalues. LJ 

Other examples, characterizations, and a table of feasible spectra can be found in 

[125] and [122] (see also Exercise 15.1). See [346] for some more recent results on 

graphs with three Laplace eigenvalues. 

15.3 Other matrices with at most three eigenvalues 

No characterization of nonregular graphs with three M-eigenvalues is known, for a 
matrix M other than the Laplacian. However, several examples and properties are 
known. Some of these will be discussed below. 

15.3.1 Few Seidel eigenvalues 

Seidel switching (see §1.8.2) doesn’t change the Seidel spectrum, so having few 
Seidel eigenvalues is actually a property of the switching class of a graph. For 
example the switching class of K,, the edgeless graph on n vertices, consists 
of the complete bipartite graphs Kmn—m, and all of them have Seidel spectrum 
{(—1)""',n—1}. Only the one-vertex graph Kj has one Seidel eigenvalue. Graphs 
with two Seidel eigenvalues are strong (see §10.1). To be precise, they are the 
graphs whose associated two-graph is regular (Theorem 10.3.1). The Seidel ma- 
trix is a special case of a generalized adjacency matrix. These are matrices of the 
form M(x,y,z) = xl +yA+2z(J —I—A) with y ¥ z, where A is the adjacency ma- 
trix; see also Chapter 14. If A is the adjacency matrix of a strongly regular graph 
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with eigenvalues k > r > s, then both nA — (k—r)J and nA —(k—s)J (these are 

basically the nontrivial idempotents of the association scheme) are generalized ad- 

jacency matrices with two eigenvalues. We recall that a strong graph either has two 

Seidel eigenvalues or is strongly regular. Thus, for every strong graph there exist 

numbers x, y, and z such that M(x, y,z) has two eigenvalues. 

Proposition 15.3.1 A graph is strong if and only if at least one generalized adja- 

cency matrix has two eigenvalues. 

Proof Correctness of the “only if” part of the statement has been established 

already. Without loss of generality we assume that the eigenvalues of M = M(x, y,z) 

are 0 and 1. Then M? == M. Let d; be the degree of vertex i. Then x = Mj = (M?);; = 

x* + diy” +(n—1-—d;)z*, which gives d;(y* —z*) =x —x* — (n—1)z*. So y = —z 
or I” is regular. In the first case, § = 1(M — xI) is the Seidel matrix of I with two 

eigenvalues, so I” is strong. If I” is regular, the adjacency matrix A = —(M da(z= 

x)I —zJ) has three eigenvalues, so I" is strongly regular and therefore strong. 

So, if a generalized adjacency matrix M(x, y,z) of a nonregular graph has two 

eigenvalues, then y = —z (and we basically deal with the Seidel matrix). 

A strongly regular graph I” on n vertices with adjacency eigenvalues k, r, s (k > 

r > s) has Seidel eigenvalues: pp = n — 1 — 2k, pi = —2s—1, and p2 = —2r—1. 

If Po = Pi OF Po = f2, then I” has two eigenvalues; otherwise I’, and all graphs 

switching equivalent to I”, have three eigenvalues. For example, the (switching class 

of the) Petersen graph has two Seidel eigenvalues, 3 and —3, while the pentagon Cs 

has three Seidel eigenvalues 0 and +\/5. However, not every graph with three Seidel 

eigenvalues is switching equivalent to a strongly regular graph. Not even if the graph 

is regular. Indeed, consider a graph I” whose Seidel matrix S has two eigenvalues, 

p1 and p>. Then (S+/)@(S+J) —/ represents a graph I’? with eigenvalues (p; + 
1)? — 1, (p1 +1)(p2 + 1) — 1, and (p2 + 1)? — 1. Moreover, I’? is regular if I’ is. 

15.3.2 Three adjacency eigenvalues 

Connected regular graphs with three adjacency eigenvalues are strongly regular. The 

complete bipartite graphs Ky, have spectrum {—Vém,0"~?, Vém}. If £4 m they 

are nonregular with three adjacency eigenvalues. Other nonregular graphs with three 

adjacency eigenvalues have been constructed by BRIDGES & MENA [45], KLIN & 

MUZYCHUK [243], and VAN DAM [122, 123]. CHUANG & OMIDI [91] character- 

ized all such graphs with largest eigenvalue at most 8. Many nonregular graphs with 

three eigenvalues can be made from a strongly regular graph by introducing one new 

vertex adjacent to all other vertices. Such a graph is called a cone over a strongly 

regular graph. 

Proposition 15.3.2 Let I be a strongly regular graph on n vertices with eigenvalues 

k>r>-s. Then the cone I over T has three eigenvalues if and only if n= s(s —k). 
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Proof. If A is the adjacency matrix of I”, then A admits an equitable partition with 

quotient matrix 

On i 
with eigenvalues (k + Vk? +4n)/2, which are also eigenvalues of A. The other 

eigenvalues of A have eigenvectors orthogonal to the characteristic vectors of the 

partition, so they remain eigenvalues if the all-1 blocks of the equitable partition are 

replaced by all-zero blocks. Therefore they are precisely the restricted eigenvalues 

rand s of I. So the eigenvalues of A are (k + Vk? + 4n)/2, r, and s. Two of these 
values coincide if and only if s = (k— Vk? + 4n)/2. O 

There exist infinitely many strongly regular graphs for which n = s(s—k), the 

smallest of which is the Petersen graph. The cone over the Petersen graph has 

eigenvalues 5, 1, and —2. If a cone over a strongly regular graph has three eigen- 

values, then these eigenvalues are integers (see Exercise 15.3). The complete bipar- 

tite graphs provide many examples with nonintegral eigenvalues. In fact: 

Proposition 15.3.3 /f I” is a connected graph with three distinct adjacency eigen- 

values, of which the largest is not an integer, then I is a complete bipartite graph. 

Proof. Assume I" has n > 4 vertices. Since the largest eigenvalue p is nonintegral 

with multiplicity 1, one of the other two eigenvalues Pp (say) also has this property, 

and the third eigenvalue has multiplicity n — 2 > 2, so it cannot be irrational. Thus 

the spectrum of I” is 

{p =}(a+ vb), p= 4(a— vb), c-?} 

for integers a, b, and c. Now trA = 0 gives c = —a/(n—2). By the Perron-Frobenius 
theorem, p > |p|, and therefore a > 0 and c < 0. If c = 0, the eigenvalues of I are 

+,/b/2 and 0, and T is bipartite of diameter at most 2, and hence I" is complete 
bipartite. If c < —2, then trA* > 4(n —2)?, so T has at least 2(n — 2)? edges, which 
is ridiculous. If c = —1, then p = 5(n—2+-/b) <n—1, and hence Vb <n and 
p > —1. This implies that A + / is positive semidefinite (of rank 2), so A +/ is the 
Gram matrix of a set of unit vectors (in R?) with angles 0 and 2/2. This implies that 
being adjacent is an equivalence relation, so = K,, a contradiction. O 

The conference graphs are examples of regular graphs where only the largest 
eigenvalue is an integer. VAN DAM & SPENCE [79] found a number of nonregular 
graphs on 43 vertices with eigenvalues 21, —5 ole 5Vv41 . It turns out that all these 
graphs have three distinct vertex degrees: 19, 26, and 35 (which was impossible in 
the case of the Laplace spectrum). 



15.4 Exercises 227 

15.3.3 Three signless Laplace eigenvalues 

Recently, AYOOBI, OMIDI & TAYFEH-REZAIE [13] started to investigate nonreg- 

ular graphs whose signless Laplace matrix Q has three distinct eigenvalues. They 

found three infinite families. 

(i) The complete K,, with one edge deleted has Q-spectrum 

1 i 
{5 (3n Ot nee An 12), (n— 2)" “, 5 (3n-6— Vn? +4n—12)}. 

(ii) The star Kj,,—1 has Q-spectrum 0!,1"~?,n!, 

(iii) The complement of Kin m-+_mK has Q-spectrum 

Ome 2) cm ON (m2) 

In addition, there are some sporadic examples (see also Exercise 15.4). As in Propo- 

sition 15.3.3, the case in which the spectral radius is nonintegral can be character- 

ized. 

Proposition 15.3.4 ({13]) Let I" be a connected graph on at least four vertices, of 

which the signless Laplace matrix has three distinct eigenvalues. Then the largest 

of these eigenvalues is nonintegral if and only if I" is the complete graph minus one 

edge. 

It is not known if there exist other nonregular examples with a nonintegral eigen- 

value. We expect that the list above is far from complete. 

15.4 Exercises 

Exercise 15.1 Prove that a graph with two restricted Laplace eigenvalues whose 

degrees d and d’ differ by 1 comes from a symmetric design with a polarity as 

described in Proposition 15.2.2. 

Exercise 15.2 Let I be a strongly regular graph with a coclique C whose size 

meets Hoffman’s bound (3.5.2). Prove that the subgraph of I” induced by the vertices 

outside C is regular with at most four distinct eigenvalues. Can it have fewer than 

four eigenvalues? 

Exercise 15.3 Suppose I’ is a cone over a strongly regular graph. Show that if f 

has three distinct eigenvalues, then all three are integral. 

Exercise 15.4 Show that the cone over the Petersen graph has three signless Laplace 

eigenvalues. Find a necessary and sufficient condition on the parameters (n,k,A, 1) 

of a strongly regular graph I” under which the cone over I” has three signless Laplace 

eigenvalues. 
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