igraph library

API Documentation

October 8, 2020

Contents
Contents 1
1 Package igraph 2
1.1 Modules e 2
1.2 Functions e 3
1.3 Variables 5
1.4 Class Vertex o 5
1.4.1 Methods o e 6
1.4.2 Properties 11
1.5 Class Graph e 11
1.5.1 Methods e e e 13
1.5.2 Properties L 90
1.5.3 Class Variables 90
1.6 Class VertexSeq o o o i 91
1.6.1 Methods e 92
1.6.2 Properties 98
1.7 Class EdgeSeq« . o o e 98
1.7.1 Methods oL 100
1.7.2 Properties L 103
1.8 Class ARPACKOptions 103
1.8.1 Methods 104
1.8.2 Properties L 104
1.9 Class BFSIter 105
1.9.1 Methods o e e 105
1.9.2 Properties e 105
1.10 Class DFSIter o 105
1.10.1 Methods e 105
1.10.2 Properties 106
1.11 Class Edge e 106
1.11.1 Methods e 106
1.11.2 Properties e 109
1.12 Class GraphBase e 109
1.12.1 Methods e 110
1.12.2 Properties e 225
1.12.3 Class Variables e 225
2 Module igraph. igraph 226

CONTENTS CONTENTS

2.1 Functions e 226
2.2 Variables e e 228
2.3 Class InternalError 229
2.3.1 Methods e e 229
2.3.2 Properties e 229

3 Package igraph.app 231
3.1 Modules e 231
3.2 Variables 231
4 Module igraph.app.shell 232
4.1 Functions L e e 232
4.2 Variables 232
4.3 Class TerminalController 232
4.3.1 Methods e 233
4.3.2 Class Variables 233

4.4 Class ProgressBar e 235
4.4.1 Methods e 235
4.4.2 Class Variables L e 235
4.4.3 Instance Variables L 235

4.5 Class Shell e 236
4.5.1 Methods e 236
4.5.2 Properties e 236

4.6 Class IDLEShell o 237
4.6.1 Methods e 237
4.6.2 Properties L e 237

4.7 Class ConsoleProgressBarMixin 238
4.7.1 Methods e e 238
4.7.2 Properties L e 238

4.8 Class IPythonShell o 238
4.8.1 Methods e 239
4.8.2 Properties oL e 239

4.9 Class ClassicPythonShell0 239
4.9.1 Methods e 240
4.9.2 Properties e e 240

5 Module igraph.clustering 241
5.1 Functions L 243
5.2 Variables 245
5.3 Class Clustering 245
5.3.1 Methods e 246
5.3.2 Properties 248

5.4 Class VertexClustering e 248
54.1 Methods e 249
5.4.2 Properties e e 254

5.5 Class Dendrogram e 254
5.5.1 Methods e 255
5.5.2 Properties e 256

5.6 Class VertexDendrogram L e 257
5.6.1 Methods e 257
5.6.2 Properties 258

5.7 Class COVEr o o o e e 259

CONTENTS CONTENTS

5.7.1 Methods e 260
5.7.2 Properties 261

5.8 Class VertexCover e 262
5.8.1 Methods e 262
5.8.2 Properties e 265

5.9 Class CohesiveBlocks 265
5.9.1 Methods e 266
5.9.2 Properties L e e 267

6 Module igraph.configuration 269
6.1 Functions e e 269
6.2 Variables e 269
6.3 Class Configuration L 270
6.3.1 Methods e 272
6.3.2 Properties 273

7 Module igraph.cut 274
7.1 Variables 274
7.2 Class Cut e 274
7.2.1 Methods o e 276
7.2.2 Properties 277

7.3 Class Flow e 277
7.3.1 Methods e e 279
7.3.2 Properties e 280

8 Module igraph.datatypes 281
8.1 Variables e 281
8.2 Class Matrix e 281
8.2.1 Methods e 281
8.2.2 Propertieso 286

8.3 Class DyadCensus e 286
8.3.1 Methods e 287
8.3.2 Properties e 288

8.4 Class TriadCensus o 0t 288
8.4.1 Methods e 289
8.4.2 Properties e 289

8.5 Class UniqueldGenerator e 290
8.5.1 Methods e 290
8.5.2 Properties 291

9 Package igraph.drawing 292
9.1 Modules e 292
9.2 Functions e 294
9.3 Class DefaultGraphDrawer e 295
9.3.1 Methods e 296
9.3.2 Properties e 297

9.4 Class BoundingBox 297
9.4.1 Methods e 298
9.4.2 Propertieso e 298

9.5 Class Point e 299
9.5.1 Methods e 299
9.5.2 Properties e 301

CONTENTS CONTENTS

9.6 Class Rectangle 301
9.6.1 Methods e 302
9.6.2 Properties L e 306

9.7 Class Plot 307
9.7.1 Methods 309
9.7.2 Properties e 311

10 Module igraph.drawing.baseclasses 312

10.1 Variables e 312

10.2 Class AbstractDrawer e 312
10.2.1 Methods e e 312
10.2.2 Properties L 312

10.3 Class AbstractCairoDrawer i i e e e 312
10.3.1 Methods 313
10.3.2 Properties 313

10.4 Class AbstractXMLRPCDrawer e 314
10.4.1 Methods e e 314
10.4.2 Properties o e e e 314

11 Module igraph.drawing.colors 315

11.1 Functions e e 315

11.2 Variables 318

11.3 Class Palette 318
11.3.1 Methods s 318
11.3.2 Properties L 321

11.4 Class GradientPalette e 321
11.4.1 Methods 322
11.4.2 Properties e e 322

11.5 Class AdvancedGradientPalette 322
11.5.1 Methods e 323
11.5.2 Properties e 323

11.6 Class RainbowPalette e 323
11.6.1 Methods s 324
11.6.2 Properties e 325

11.7 Class PrecalculatedPalette 325
11.7.1 Methods e 325
11.7.2 Properties e 325

11.8 Class ClusterColoringPalette o 326
11.8.1 Methods s 326
11.8.2 Properties e 327

12 Module igraph.drawing.coord 328

12.1 Variables 328

12.2 Class CoordinateSystem L 328
12.2.1 Methods e 328
12.2.2 Properties e 329

12.3 Class DescartesCoordinateSystem L L 329
12.3.1 Methods s 329
12.3.2 Properties e e 330

13 Module igraph.drawing.edge 331

13.1 Class AbstractEdgeDrawer 331

CONTENTS CONTENTS

13.1.1 Methods e 331
13.1.2 Properties L 333
13.2 Class ArrowEdgeDrawer 333
13.2.1 Methods e 334
13.2.2 Properties L e 334
13.3 Class TaperedEdgeDrawer e 334
13.3.1 Methods 335
13.3.2 Properties oL 335
13.4 Class AlphaVaryingEdgeDrawer 335
13.4.1 Methods e 336
13.4.2 Properties e 336
13.5 Class LightToDarkEdgeDrawer 337
13.5.1 Methods e 337
13.5.2 Properties L e 337
13.6 Class DarkToLightEdgeDrawer 338
13.6.1 Methods e 338
13.6.2 Properties 338

14 Module igraph.drawing.graph 339
14.1 Class DefaultGraphDrawer 339
14.1.1 Methods L e 340
14.1.2 Properties e 341
14.2 Class UbiGraphDrawer 341
14.2.1 Methods e e 342
14.2.2 Properties e 342
14.3 Class CytoscapeGraphDrawer 343
14.3.1 Methods e 344
14.3.2 Properties L e 345

15 Module igraph.drawing.metamagic 346
15.1 Class AttributeSpecification L 347
15.1.1 Methods e 347
15.1.2 Properties e 347
15.2 Class AttributeCollectorBase 348
15.2.1 Methods 348
15.2.2 Properties oL 348

16 Module igraph.drawing.shapes 349
16.1 Class ShapeDrawerDirectory L 349
16.1.1 Methods e 349
16.1.2 Properties e 350
16.1.3 Class Variables e 350

17 Module igraph.drawing.text 352
17.1 Class TextAlignment 352
17.1.1 Methods e 352
17.1.2 Properties e e 352
17.1.3 Class Variables e 352

17.2 Class TextDrawer 352
17.2.1 Methods e 353
17.2.2 Properties 355
17.2.3 Class Variables e 356

CONTENTS CONTENTS

18 Module igraph.drawing.utils 357
18.1 Class Rectangle e 357
18.1.1 Methods e 357

18.1.2 Properties o e e 362

18.2 Class BoundingBox 362
18.2.1 Methods L 363

18.2.2 Properties oL 363

18.3 Class FakeModule e 364
18.3.1 Methods e 364

18.3.2 Properties L 364

18.4 Class Point 364
18.4.1 Methods 365

18.4.2 Properties L 367

19 Module igraph.drawing.vertex 368
19.1 Class AbstractVertexDrawer 368
19.1.1 Methods oL 368

19.1.2 Properties o e 369

19.2 Class AbstractCairoVertexDrawer 369
19.2.1 Methods 370

19.2.2 Properties oL 370

19.3 Class DefaultVertexDrawer 371
19.3.1 Methods e e 371

19.3.2 Properties L 372

20 Module igraph.layout 373
20.1 Variables e 373
20.2 Class Layout e e 373
20.2.1 Methods e 374

20.2.2 Properties e e 379

21 Module igraph.matching 380
21.1 Variables L e 380
21.2 Class Matching L 380
21.2.1 Methods e 381

21.2.2 Properties 382

22 Module igraph.operators 383
22.1 Functions e e e e 383
23 Package igraph.remote 386
23.1 Modules L e 386
23.2 Variables e 386
24 Module igraph.remote.gephi 387
24.1 Class GephiConnection i e 387
24.1.1 Methods e 387

24.1.2 Properties e 388

24.2 Class GephiGraphStreamingAPIFormat 388
24.2.1 Methods e 389

24.2.2 Propertieso 391

24.3 Class GephiGraphStreamer e 391

CONTENTS CONTENTS
24.3.1 Methods e 392

24.3.2 Properties e 393

25 Module igraph.statistics 394
25.1 Functions e 394
25.2 Class FittedPowerLaw e 397
25.2.1 Methods e 398

25.2.2 Properties e 399

25.3 Class Histogram e 399
25.3.1 Methods e 399

25.3.2 Properties 401

25.4 Class RunningMean L. 401
25.4.1 Methods e 402

25.4.2 Properties L e 404

26 Module igraph.summary’ 405
26.1 Class GraphSummary L e e 405
26.1.1 Methods e 406

26.1.2 Properties e 407

27 Module igraph.utils 408
27.1 Functionso e e 408
27.2 Variables e e 410
27.3 Class multidict o e 411
27.3.1 Methods e 411

27.3.2 Properties e 414

27.3.3 Class Variables e 414

28 Module igraph.version 415
28.1 Variables e 415

Package igraph

1 Package igraph
IGraph library.
Version: 0.8.3

License: Copyright (C) 2006-2012 Tamés Nepusz <ntamas@gmail.com> Pazmany Péter sétany 1/a, 1117
Budapest, Hungary

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

1.1 Modules

e igraph: Low-level Python interface for the igraph library.
(Section 2, p. 226)
e app: User interfaces of igraph
(Section 3, p. 231)
— shell: Command-line user interface of igraph
(Section 4, p. 252)
e clustering: Classes related to graph clustering.
(Section 5, p. 241)
e configuration: Configuration framework for igraph.
(Section 6, p. 269)
e cut: Classes representing cuts and flows on graphs.
(Section 7, p. 274)
e datatypes: Additional auxiliary data types
(Section 8, p. 281)
e drawing: Drawing and plotting routines for IGraph.
(Section 9, p. 292)
— baseclasses: Abstract base classes for the drawing routines.
(Section 10, p. 812)
— colors: Color handling functions.
(Section 11, p. 315)
— coord: Coordinate systems and related plotting routines
(Section 12, p. 328)
— edge: Drawers for various edge styles in graph plots.
(Section 18, p. 831)
— graph: Drawing routines to draw graphs.
(Section 14, p. 339)
— metamagic: Auxiliary classes for the default graph drawer in igraph.
(Section 15, p. 846)
— shapes: Shape drawing classes for igraph
(Section 16, p. 849)
— text: Drawers for labels on plots.

Functions Package igraph

(Section 17, p. 352)
— utils: Utility classes for drawing routines.
(Section 18, p. 857)
— vertex: Drawing routines to draw the vertices of graphs.
(Section 19, p. 368)
e formula (Section 7?7, p. 77)
e layout: Layout-related code in the IGraph library.
(Section 20, p. 373)
e matching: Classes representing matchings on graphs.
(Section 21, p. 380)
e operators: Implementation of union, disjoint union and intersection operators.
(Section 22, p. 383)
e remote: Classes that help igraph communicate with remote applications.
(Section 28, p. 386)
— gephi: Classes that help igraph communicate with Gephi (http://www.gephi.org).
(Section 24, p. 887)
e statistics: Statistics related stuff in igraph
(Section 25, p. 394)
e summary (Section 1.2, p. 4)
e summary’: Summary representation of a graph.
(Section 26, p. 405)
e utils: Utility functions that cannot be categorised anywhere else.
(Section 27, p. 408)
e version (Section 28, p. 415)

1.2 Functions

autocurve(graph, attribute="’curved’, default—0)

Calculates curvature values for each of the edges in the graph to make sure that multiple
edges are shown properly on a graph plot.

This function checks the multiplicity of each edge in the graph and assigns curvature values
(numbers between -1 and 1, corresponding to CCW (-1), straight (0) and CW (1) curved
edges) to them. The assigned values are either stored in an edge attribute or returned as a
list, depending on the value of the attribute argument.

Parameters
graph: the graph on which the calculation will be run

attribute: the name of the edge attribute to save the curvature values to. The
default value is curved, which is the name of the edge attribute the
default graph plotter checks to decide whether an edge should be
curved on the plot or not. If attribute is None, the result will not be
stored.

default: the default curvature for single edges. Zero means that single edges
will be straight. If you want single edges to be curved as well, try
passing 0.5 or -0.5 here.

Return Value
the list of curvature values if attribute is None, otherwise None.

http://www.gephi.org

Functions Package igraph

get _include()

Returns the folder that contains the C API headers of the Python interface of igraph.

read(filename, *args, **kwds)

Loads a graph from the given filename.
This is just a convenience function, calls Graph.Read directly. All arguments are passed
unchanged to Graph.Read

Parameters
filename: the name of the file to be loaded

load(filename, *args, **kwds)

Loads a graph from the given filename.
This is just a convenience function, calls Graph.Read directly. All arguments are passed
unchanged to Graph.Read

Parameters
filename: the name of the file to be loaded

write(graph, filename, *args, **kwds)

Saves a graph to the given file.
This is just a convenience function, calls Graph.write directly. All arguments are passed
unchanged to Graph.write

Parameters
graph: the graph to be saved

filename: the name of the file to be written

save(graph, filename, *args, **kwds)

Saves a graph to the given file.
This is just a convenience function, calls Graph.write directly. All arguments are passed
unchanged to Graph.write

Parameters
graph: the graph to be saved

filename: the name of the file to be written

summary (obj, stream=None, *args, **kwds)

Prints a summary of object o to a given stream
Positional and keyword arguments not explicitly mentioned here are passed on to the
underlying summary () method of the object if it has any.

Parameters
obj: the object about which a human-readable summary is requested.

stream: the stream to be used. If None, the standard output will be used.

10

Class Vertex

Package igraph

1.3 Variables
Name Description

config Value: None
ADJ DIRECTED Value: 0
ADJ LOWER Value: 3
ADJ MAX Value: 1
ADJ MIN Value: 4
ADJ PLUS Value: 5
ADJ UNDIRECTED Value: 1
ADJ UPPER Value: 2
ALL Value: 3
BLISS F Value: 0
BLISS FL Value: 1
BLISS FLM Value: 4
BLISS FM Value: 3
BLISS FS Value: 2
BLISS FSM Value: 5
GET ADJACENCY BOTH Value: 2
GET ADJACENCY LOWE- | Value: 1
R
GET ADJACENCY UPPER | Value: 0
IN Value: 2
ouT Value: 1
REWIRING SIMPLE Value: 0
REWIRING SIMPLE LOOP- | Value: 1
S
STAR IN Value: 1
STAR MUTUAL Value: 3
STAR _OUT Value: 0
STAR UNDIRECTED Value: 2
STRONG Value: 2
TRANSITIVITY NAN Value: 0
TRANSITIVITY _ZERO Value: 1
TREE IN Value: 1
TREE OUT Value: 0
TREE UNDIRECTED Value: 2
WEAK Value: 1
__package Value: ’igraph’

arpack options

Value: <igraph.ARPACKOptions object at

0x10c48ab90>

name

Value: ’write_svg’

1.4 Class Vertex

object
igraph.Vertex

Class representing a single vertex in a graph.

The vertex is referenced by its index, so if the underlying graph changes, the semantics of the vertex object

11

Class Vertex Package igraph

might change as well (if the vertex indices are altered in the original graph).

The attributes of the vertex can be accessed by using the vertex as a hash:

>>> v["color"] = "red" #doctest: +SKIP
>>> print v["color"] #doctest: +SKIP
red

1.4.1 Methods

__delitem __ (z, y)

del x[y]
__ceqa__(zy)
X==y
__ge__(ny)
X>=y

__getitem (z, y)

xly]

gt__ (% y)

X>y

__hash (z)

hash(x)

Overrides: object. hash

__le__(zy)
X<=y
__len (2)
len(x)
__t__(zy)
X<y
__ne__(zy)
x!l=y

12

Class Vertex Package igraph

___repr__ (z)

repr(x)

Overrides: object.__repr_

__setitem (z, 4, y)

x[i]=y

all edges(...)

Proxy method to Graph.incident (..., mode="all")

This method calls the incident() method of the Graph class with this vertex as the first
argument and "all" as the mode argument, and returns the result.

See Also: Graph.incident() for details.

attribute names()

Returns the list of vertex attribute names

Return Value
list

attributes()

Returns a dict of attribute names and values for the vertex

Return Value
dict

betweenness(...)

Proxy method to Graph.betweenness ()

This method calls the betweenness method of the Graph class with this vertex as the first
argument, and returns the result.

See Also: Graph.betweenness() for details.

closeness(...)

Proxy method to Graph.closeness()

This method calls the closeness method of the Graph class with this vertex as the first
argument, and returns the result.

See Also: Graph.closeness() for details.

13

Class Vertex Package igraph

constraint(...)

Proxy method to Graph.constraint ()

This method calls the constraint method of the Graph class with this vertex as the first
argument, and returns the result.

See Also: Graph.constraint() for details.

degree(...)

Proxy method to Graph.degree ()

This method calls the degree method of the Graph class with this vertex as the first
argument, and returns the result.

See Also: Graph.degree() for details.

delete(...)

Proxy method to Graph.delete_vertices()

This method calls the delete vertices method of the Graph class with this vertex as the first
argument, and returns the result.

See Also: Graph.delete vertices() for details.

diversity(...)

Proxy method to Graph.diversity()

This method calls the diversity method of the Graph class with this vertex as the first
argument, and returns the result.

See Also: Graph.diversity() for details.

eccentricity(...)

Proxy method to Graph.eccentricity()

This method calls the eccentricity method of the Graph class with this vertex as the first
argument, and returns the result.

See Also: Graph.eccentricity() for details.

get shortest paths(...)

Proxy method to Graph.get_shortest_paths()

This method calls the get shortest paths method of the Graph class with this vertex as the
first argument, and returns the result.

See Also: Graph.get shortest paths() for details.

14

Class Vertex Package igraph

in_edges(...)

Proxy method to Graph.incident (..., mode="in")

This method calls the incident() method of the Graph class with this vertex as the first
argument and "in" as the mode argument, and returns the result.

See Also: Graph.incident() for details.

incident(...)

Proxy method to Graph.incident ()

This method calls the incident method of the Graph class with this vertex as the first
argument, and returns the result.

See Also: Graph.incident() for details.

indegree(...)

Proxy method to Graph.indegree ()

This method calls the indegree method of the Graph class with this vertex as the first
argument, and returns the result.

See Also: Graph.indegree() for details.

is _minimal separator(...)

Proxy method to Graph.is_minimal_separator()

This method calls the is_minimal separator method of the Graph class with this vertex as
the first argument, and returns the result.

See Also: Graph.is_minimal separator() for details.

is_separator(...)

Proxy method to Graph.is_separator ()

This method calls the is_separator method of the Graph class with this vertex as the first
argument, and returns the result.

See Also: Graph.is_separator() for details.

neighbors(...)

Proxy method to Graph.neighbors()

This method calls the neighbors method of the Graph class with this vertex as the first
argument, and returns the result.

See Also: Graph.neighbors() for details.

15

Class Vertex Package igraph

out edges(...)

Proxy method to Graph.incident (..., mode="out")

This method calls the incident() method of the Graph class with this vertex as the first
argument and "out" as the mode argument, and returns the result.

See Also: Graph.incident() for details.

outdegree(...)

Proxy method to Graph.outdegree ()

This method calls the outdegree method of the Graph class with this vertex as the first
argument, and returns the result.

See Also: Graph.outdegree() for details.

pagerank(...)

Proxy method to Graph.pagerank()

This method calls the pagerank method of the Graph class with this vertex as the first
argument, and returns the result.

See Also: Graph.pagerank() for details.

personalized pagerank(...)

Proxy method to Graph.personalized_pagerank()

This method calls the personalized pagerank method of the Graph class with this vertex as
the first argument, and returns the result.

See Also: Graph.personalized pagerank() for details.

predecessors(...)

Proxy method to Graph.predecessors ()

This method calls the predecessors method of the Graph class with this vertex as the first
argument, and returns the result.

See Also: Graph.predecessors() for details.

shortest paths(...)

Proxy method to Graph.shortest_paths()

This method calls the shortest paths method of the Graph class with this vertex as the first
argument, and returns the result.

See Also: Graph.shortest paths() for details.

16

Class Graph Package igraph

strength(...)

Proxy method to Graph.strength()

This method calls the strength method of the Graph class with this vertex as the first
argument, and returns the result.

See Also: Graph.strength() for details.

successors(...)

Proxy method to Graph.successors()

This method calls the successors method of the Graph class with this vertex as the first
argument, and returns the result.

See Also: Graph.successors() for details.

update attributes(E, **F)
Updates the attributes of the vertex from dict/iterable E and F.

If E has a keys () method, it does: for k in E: self[k] = E[k]. If E lacks a keys ()
method, it does: for (k, v) in E: self[k] = v. In either case, this is followed by: for k
in F: self[k] = F[k].

This method thus behaves similarly to the update () method of Python dictionaries.

Return Value
None

Inherited from object

__delattr (), format (), getattribute (), _init (), new (),
__reduce (), reduce ex (), setattr (), sizeof (), _str__ (),

__subclasshook ()

1.4.2 Properties

Name Description
graph The graph the vertex belongs to
index Index of the vertex
Inherited from object
__class

1.5 Class Graph

object T

igraph.GraphBase
igraph.Graph

17

Class Graph Package igraph

Generic graph.

This class is built on top of GraphBase, so the order of the methods in the Epydoc documen-
tation is a little bit obscure: inherited methods come after the ones implemented directly
in the subclass. Graph provides many functions that GraphBase does not, mostly because
these functions are not speed critical and they were easier to implement in Python than in
pure C. An example is the attribute handling in the constructor: the constructor of Graph
accepts three dictionaries corresponding to the graph, vertex and edge attributes while the
constructor of GraphBase does not. This extension was needed to make Graph serializable
through the pickle module. Graph also overrides some functions from GraphBase to pro-
vide a more convenient interface; e.g., layout functions return a Layout instance from Graph
instead of a list of coordinate pairs.

Graphs can also be indexed by strings or pairs of vertex indices or vertex names. When a
graph is indexed by a string, the operation translates to the retrieval, creation, modification
or deletion of a graph attribute:

>>> g = Graph.Full(3)

>>> g[”name" = "Triangle graph"
>>> g["name"

’Triangle graph’

>>> del g["name"

When a graph is indexed by a pair of vertex indices or names, the graph itself is treated as
an adjacency matrix and the corresponding cell of the matrix is returned:

>>> g = Graph.Full(3)

>>> g. Vs ['name"] = ["a", "B", "cv]
>>> g1, 2]

1

>>> g["A", ng"]

1

>>> g, "B"] =0

>>> g.ecount ()

2

Assigning values different from zero or one to the adjacency matrix will be translated to one,
unless the graph is weighted, in which case the numbers will be treated as weights:

>>> g.is_weighted()

False
>>> g[nAu’ an] = 2
>>> g[HAII’ I|Bll]

1
>>> g.es["weight"] = 1.0
>>> g.is_weighted()

True

18

Class Graph Package igraph

>>> g, "] = 2
>>> g["A"’ "B”]

2
>>> g.es["weight"]
[1.0, 1.0, 2]

1.5.1 Methods

omega()

Returns the clique number of the graph.

The clique number of the graph is the size of the largest clique.
See Also: largest_cliques() for the largest cliques.

alpha()

Returns the independence number of the graph.

The independence number of the graph is the size of the largest independent
vertex set.

See Also: largest_independent_vertex_sets() for the largest independent
vertex sets

shell index(mode=ALL)

Finds the coreness (shell index) of the vertices of the network.

The k-core of a graph is a maximal subgraph in which each vertex has at least
degree k. (Degree here means the degree in the subgraph of course). The
coreness of a vertex is k if it is a member of the k-core but not a member of
the k+1-core.

Parameters
mode: whether to compute the in-corenesses (IN), the out-corenesses
(OUT) or the undirected corenesses (ALL). Ignored and
assumed to be ALL for undirected graphs.

Return Value
the corenesses for each vertex.

Reference: Vladimir Batagelj, Matjaz Zaversnik: An O(m) Algorithm for
Core Decomposition of Networks.

19

Class Graph Package igraph

cut_ vertices()

Returns the list of articulation points in the graph.

A vertex is an articulation point if its removal increases the number of
connected components in the graph.

20

Class Graph Package igraph

evcent(directed—True, scale=True, weights—None, return_ eigenvalue—False,
arpack__options=None)

Calculates the eigenvector centralities of the vertices in a graph.

Eigenvector centrality is a measure of the importance of a node in a network.
It assigns relative scores to all nodes in the network based on the principle
that connections from high-scoring nodes contribute more to the score of the
node in question than equal connections from low-scoring nodes. In practice,
the centralities are determined by calculating eigenvector corresponding to the
largest positive eigenvalue of the adjacency matrix. In the undirected case,
this function considers the diagonal entries of the adjacency matrix to be twice
the number of self-loops on the corresponding vertex.

In the directed case, the left eigenvector of the adjacency matrix is calculated.
In other words, the centrality of a vertex is proportional to the sum of
centralities of vertices pointing to it.

Eigenvector centrality is meaningful only for connected graphs. Graphs that
are not connected should be decomposed into connected components, and the
eigenvector centrality calculated for each separately.

Parameters
directed: whether to consider edge directions in a
directed graph. Ignored for undirected graphs.
scale: whether to normalize the centralities so the
largest one will always be 1.
weights: edge weights given as a list or an edge

attribute. If None, all edges have equal weight.

return_eigenvalue: whether to return the actual largest
eigenvalue along with the centralities

arpack_options: an ARPACKOptions object that can be used to
fine-tune the calculation. If it is omitted, the
module-level variable called arpack_options
is used.

Return Value
the eigenvector centralities in a list and optionally the largest
eigenvalue (as a second member of a tuple)

21

Class Graph Package igraph

vertex disjoint paths(source=-1, target=-1, checks=True,
neighbors="error")

Calculates the vertex connectivity of the graph or between some vertices.

The vertex connectivity between two given vertices is the number of vertices
that have to be removed in order to disconnect the two vertices into two
separate components. This is also the number of vertex disjoint directed paths
between the vertices (apart from the source and target vertices of course). The
vertex connectivity of the graph is the minimal vertex connectivity over all
vertex pairs.

This method calculates the vertex connectivity of a given vertex pair if both
the source and target vertices are given. If none of them is given (or they are
both negative), the overall vertex connectivity is returned.

Parameters
source: the source vertex involved in the calculation.
target: the target vertex involved in the calculation.
checks: if the whole graph connectivity is calculated and this is

True, igraph performs some basic checks before
calculation. If the graph is not strongly connected, then
the connectivity is obviously zero. If the minimum
degree is one, then the connectivity is also one. These
simple checks are much faster than checking the entire
graph, therefore it is advised to set this to True. The
parameter is ignored if the connectivity between two
given vertices is computed.

neighbors: tells igraph what to do when the two vertices are
connected. "error" raises an exception, "infinity"
returns infinity, "ignore" ignores the edge.

Return Value
the vertex connectivity

22

Class Graph Package igraph

edge disjoint paths(source=-1, target=-1, checks=True)

Calculates the edge connectivity of the graph or between some vertices.

The edge connectivity between two given vertices is the number of edges that
have to be removed in order to disconnect the two vertices into two separate
components. This is also the number of edge disjoint directed paths between
the vertices. The edge connectivity of the graph is the minimal edge
connectivity over all vertex pairs.

This method calculates the edge connectivity of a given vertex pair if both the
source and target vertices are given. If none of them is given (or they are both
negative), the overall edge connectivity is returned.

Parameters
source: the source vertex involved in the calculation.

target: the target vertex involved in the calculation.

checks: if the whole graph connectivity is calculated and this is
True, igraph performs some basic checks before calculation.
If the graph is not strongly connected, then the
connectivity is obviously zero. If the minimum degree is
one, then the connectivity is also one. These simple checks
are much faster than checking the entire graph, therefore it
is advised to set this to True. The parameter is ignored if
the connectivity between two given vertices is computed.

Return Value
the edge connectivity

23

Class Graph Package igraph

cohesion(source=-1, target=-1, checks=True, neighbors="error")

Calculates the vertex connectivity of the graph or between some vertices.

The vertex connectivity between two given vertices is the number of vertices
that have to be removed in order to disconnect the two vertices into two
separate components. This is also the number of vertex disjoint directed paths
between the vertices (apart from the source and target vertices of course). The
vertex connectivity of the graph is the minimal vertex connectivity over all
vertex pairs.

This method calculates the vertex connectivity of a given vertex pair if both
the source and target vertices are given. If none of them is given (or they are
both negative), the overall vertex connectivity is returned.

Parameters
source: the source vertex involved in the calculation.
target: the target vertex involved in the calculation.
checks: if the whole graph connectivity is calculated and this is

True, igraph performs some basic checks before
calculation. If the graph is not strongly connected, then
the connectivity is obviously zero. If the minimum
degree is one, then the connectivity is also one. These
simple checks are much faster than checking the entire
graph, therefore it is advised to set this to True. The
parameter is ignored if the connectivity between two
given vertices is computed.

neighbors: tells igraph what to do when the two vertices are
connected. "error" raises an exception, "infinity"
returns infinity, "ignore" ignores the edge.

Return Value
the vertex connectivity

24

Class Graph Package igraph

adhesion(source=-1, target=-1, checks=True)

Calculates the edge connectivity of the graph or between some vertices.

The edge connectivity between two given vertices is the number of edges that
have to be removed in order to disconnect the two vertices into two separate
components. This is also the number of edge disjoint directed paths between
the vertices. The edge connectivity of the graph is the minimal edge
connectivity over all vertex pairs.

This method calculates the edge connectivity of a given vertex pair if both the
source and target vertices are given. If none of them is given (or they are both
negative), the overall edge connectivity is returned.

Parameters
source: the source vertex involved in the calculation.

target: the target vertex involved in the calculation.

checks: if the whole graph connectivity is calculated and this is
True, igraph performs some basic checks before calculation.
If the graph is not strongly connected, then the
connectivity is obviously zero. If the minimum degree is
one, then the connectivity is also one. These simple checks
are much faster than checking the entire graph, therefore it
is advised to set this to True. The parameter is ignored if
the connectivity between two given vertices is computed.

Return Value
the edge connectivity

25

Class Graph Package igraph

shortest paths dijkstra(source=None, target=None, weights=None,
mode=0UT)

Calculates shortest path lengths for given vertices in a graph.

The algorithm used for the calculations is selected automatically: a simple
BFS is used for unweighted graphs, Dijkstra’s algorithm is used when all the
weights are positive. Otherwise, the Bellman-Ford algorithm is used if the
number of requested source vertices is larger than 100 and Johnson’s algorithm
is used otherwise.

Parameters
source: a list containing the source vertex IDs which should be
included in the result. If None, all vertices will be
considered.

target: a list containing the target vertex IDs which should be
included in the result. If None, all vertices will be
considered.

weights: a list containing the edge weights. It can also be an
attribute name (edge weights are retrieved from the given
attribute) or None (all edges have equal weight).

mode: the type of shortest paths to be used for the calculation in
directed graphs. OUT means only outgoing, IN means only
incoming paths. ALL means to consider the directed graph
as an undirected one.

Return Value
the shortest path lengths for given vertices in a matrix

26

Class Graph Package igraph

subgraph(vertices, implementation—"auto")

Returns a subgraph spanned by the given vertices.

Parameters
vertices: a list containing the vertex IDs which should be
included in the result.

implementation: the implementation to use when constructing the
new subgraph. igraph includes two
implementations at the moment.
"copy_and_delete" copies the original graph and
removes those vertices that are not in the given
set. This is more efficient if the size of the
subgraph is comparable to the original graph. The
other implementation ("create_from_scratch")
constructs the result graph from scratch and then
copies the attributes accordingly. This is a better
solution if the subgraph is relatively small,
compared to the original graph. "auto" selects
between the two implementations automatically,
based on the ratio of the size of the subgraph and
the size of the original graph.

Return Value
the subgraph

27

Class Graph Package igraph

__init (n=0, edges=None, directed=False, graph_ attrs—None,
vertex attrs=None, edge attrs—None)

Constructs a graph from scratch.

Parameters
n: the number of vertices. Can be omitted, the default
is zero. Note that if the edge list contains vertices
with indexes larger than or equal to m, then the
number of vertices will be adjusted accordingly.

edges: the edge list where every list item is a pair of
integers. If any of the integers is larger than n-1, the
number of vertices is adjusted accordingly. None
means no edges.

directed: whether the graph should be directed
graph_attrs: the attributes of the graph as a dictionary.

vertex_attrs: the attributes of the vertices as a dictionary. Every
dictionary value must be an iterable with exactly n
items.

edge_attrs: the attributes of the edges as a dictionary. Every
dictionary value must be an iterable with exactly m
items where m is the number of edges.

Overrides: object. init

add edge(source, target, **kwds)

Adds a single edge to the graph.

Keyword arguments (except the source and target arguments) will be assigned
to the edge as attributes.

Parameters
source: the source vertex of the edge or its name.

target: the target vertex of the edge or its name.

Return Value
the newly added edge as an Edge object. Use add_edges([(source,
target)]) if you don’t need the Edge object and want to avoid the
overhead of creating t.

28

Class Graph

Package igraph

add edges(es)
Adds some edges to the graph.

Parameters
es: the list of edges to be added. Every edge is represented with a
tuple containing the vertex IDs or names of the two endpoints.
Vertices are enumerated from zero.

Overrides: igraph.GraphBase.add edges

add vertex(name=None, **kwds)

Adds a single vertex to the graph. Keyword arguments will be assigned as
vertex attributes. Note that name as a keyword argument is treated specially;
if a graph has name as a vertex attribute, it allows one to refer to vertices by
their names in most places where igraph expects a vertex ID.

Return Value
the newly added vertex as a Vertex object. Use add_vertices(1) if
you don’t need the Vertex object and want to avoid the overhead of
creating t.

add vertices(n)

Adds some vertices to the graph.

Oparam n: the number of vertices to be added, or the name of a sin
vertex to be added, or a sequence of strings, each corresponding
name of a vertex to be added. Names will be assigned to the C{na
vertex attribute.

Oparams attributes: dict of sequences, all of length equal to the
number of vertices to be added, containing the attributes of the
vertices. If n is a string (so a single vertex is added), then t
values of this dict are the attributes themselves, but if n=1 th
they have to be lists of length 1.

Note that if n is a sequence of strings, indicating the names of t
new vertices, and attributes has a key ’name’, the two conflict. I
that case the attribute will be applied.

Parameters
n: the number of vertices to be added

Overrides: igraph.GraphBase.add vertices

29

Class Graph Package igraph

adjacent(vertex, mode=0UT)

Returns the edges a given vertex is incident on.

Deprecated: replaced by Graph.incident () since igraph 0.6

as_ directed(*args, **kwds)

Returns a directed copy of this graph. Arguments are passed on to
Graph.to_directed() that is invoked on the copy.

as_undirected(*args, **kwds)

Returns an undirected copy of this graph. Arguments are passed on to
Graph.to_undirected() that is invoked on the copy.

delete edges(self, *args, **kwds)

Deletes some edges from the graph.

The set of edges to be deleted is determined by the positional and keyword
arguments. If the function is called without any arguments, all edges are
deleted. If any keyword argument is present, or the first positional argument is
callable, an edge sequence is derived by calling EdgeSeq.select with the same
positional and keyword arguments. Edges in the derived edge sequence will be
removed. Otherwise the first positional argument is considered as follows:

e None - deletes all edges (deprecated since 0.8.3)
e a single integer - deletes the edge with the given ID
e a list of integers - deletes the edges denoted by the given IDs

e a list of 2-tuples - deletes the edges denoted by the given source-target
vertex pairs. When multiple edges are present between a given
source-target vertex pair, only one is removed.

Parameters
es: the list of edges to be removed. Edges are identifed by edge IDs.
EdgeSeq objects are also accepted here. No argument deletes all
edges.

Overrides: igraph.GraphBase.delete edges

Deprecated: Graph.delete_edges(None) has been replaced by
Graph.delete_edges () - with no arguments - since igraph 0.8.3.

30

Class Graph Package igraph

indegree(self, *args, **kwds)

Returns the in-degrees in a list.

See degree for possible arguments.

outdegree(self, *args, **kwds)

Returns the out-degrees in a list.

See degree for possible arguments.

all st cuts(self, source, target)

Returns all the cuts between the source and target vertices in a directed graph.
This function lists all edge-cuts between a source and a target vertex. Every
cut is listed exactly once.

Parameters
source: the source vertex ID

target: the target vertex ID

Return Value
a list of Cut objects.

Overrides: igraph.GraphBase.all st cuts

Reference: JS Provan and DR Shier: A paradigm for listing (s,t)-cuts in
graphs. Algorithmica 15, 351-372, 1996.

31

Class Graph Package igraph

all st mincuts(self, source, target, capacity=None)

Returns all the mincuts between the source and target vertices in a directed
graph.
This function lists all minimum edge-cuts between a source and a target vertex.

Parameters
source: the source vertex ID

target: the target vertex ID

capacity: the edge capacities (weights). If None, all edges have
equal weight. May also be an attribute name.

Return Value
a list of Cut objects.

Overrides: igraph.GraphBase.all st mincuts

Reference: JS Provan and DR Shier: A paradigm for listing (s,t)-cuts in
graphs. Algorithmica 15, 351-372, 1996.

biconnected components(self, return_ articulation_ points=False)

Calculates the biconnected components of the graph.

Parameters
return_articulation_points: whether to return the articulation
points as well

Return Value
a VertexCover object describing the biconnected components, and
optionally the list of articulation points as well

Overrides: igraph.GraphBase.biconnected components

blocks(self, return_ articulation_points—False)

Calculates the biconnected components of the graph.

Parameters
return_articulation_points: whether to return the articulation
points as well

Return Value
a VertexCover object describing the biconnected components, and
optionally the list of articulation points as well

32

Class Graph Package igraph

clear()

Clears the graph, deleting all vertices, edges, and attributes.
See Also: Graph.delete_vertices and Graph.delete_edges.

cohesive blocks()

Calculates the cohesive block structure of the graph.

Cohesive blocking is a method of determining hierarchical subsets of graph
vertices based on their structural cohesion (i.e. vertex connectivity). For a
given graph G, a subset of its vertices S is said to be maximally k-cohesive if
there is no superset of S with vertex connectivity greater than or equal to k.
Cohesive blocking is a process through which, given a k-cohesive set of
vertices, maximally l-cohesive subsets are recursively identified with 1 > k.
Thus a hierarchy of vertex subsets is obtained in the end, with the entire
graph G at its root.

Return Value
an instance of CohesiveBlocks. See the documentation of
CohesiveBlocks for more information.

Overrides: igraph.GraphBase.cohesive blocks
See Also: CohesiveBlocks

clusters(mode=STRONG)

Calculates the (strong or weak) clusters (connected components) for a given
graph.

Parameters
mode: must be either STRONG or WEAK, depending on the clusters
being sought. Optional, defaults to STRONG.

Return Value
a VertexClustering object

Overrides: igraph.GraphBase.clusters

33

Class Graph Package igraph

components(mode—STRONG)

Calculates the (strong or weak) clusters (connected components) for a given
graph.

Parameters
mode: must be either STRONG or WEAK, depending on the clusters
being sought. Optional, defaults to STRONG.

Return Value
a VertexClustering object

degree distribution(bin_ width—1, ...)

Calculates the degree distribution of the graph.

Unknown keyword arguments are directly passed to degree().

Parameters
bin_width: the bin width of the histogram

Return Value
a histogram representing the degree distribution of the graph.

dyad census()

Calculates the dyad census of the graph.

Dyad census means classifying each pair of vertices of a directed graph into
three categories: mutual (there is an edge from a to b and also from b to a),
asymmetric (there is an edge from a to b or from b to a but not the other way
round) and null (there is no connection between a and b).

Return Value
a DyadCensus object.

Overrides: igraph.GraphBase.dyad census

Reference: Holland, P.W. and Leinhardt, S. (1970). A Method for Detecting
Structure in Sociometric Data. American Journal of Sociology, 70, 492-513.

34

Class Graph Package igraph

get adjacency (self, type=2, attribute=None, default=0, eids=False)

Returns the adjacency matrix of a graph.

Parameters
type: either GET_ADJACENCY_LOWER (uses the lower triangle of
the matrix) or GET_ADJACENCY_UPPER (uses the upper
triangle) or GET_ADJACENCY_BOTH (uses both parts).
Ignored for directed graphs.

attribute: if None, returns the ordinary adjacency matrix. When
the name of a valid edge attribute is given here, the
matrix returned will contain the default value at the
places where there is no edge or the value of the given
attribute where there is an edge. Multiple edges are not
supported, the value written in the matrix in this case
will be unpredictable. This parameter is ignored if eids
is True

default: the default value written to the cells in the case of
adjacency matrices with attributes.

eids: specifies whether the edge IDs should be returned in the
adjacency matrix. Since zero is a valid edge 1D, the
cells in the matrix that correspond to unconnected
vertex pairs will contain -1 instead of 0 if eids is True.
If eids is False, the number of edges will be returned in
the matrix for each vertex pair.

Return Value
the adjacency matrix as a Matrix.

Overrides: igraph.GraphBase.get adjacency

get adjacency sparse(self, attribute=None)

Returns the adjacency matrix of a graph as scipy csr matrix.

Parameters
attribute: if None, returns the ordinary adjacency matrix. When
the name of a valid edge attribute is given here, the
matrix returned will contain the default value at the
places where there is no edge or the value of the given
attribute where there is an edge.

Return Value
the adjacency matrix as a scipy.sparse.csr_matrix.

35

Class Graph Package igraph

get adjlist(mode=0UT)

Returns the adjacency list representation of the graph.

The adjacency list representation is a list of lists. Each item of the outer list
belongs to a single vertex of the graph. The inner list contains the neighbors
of the given vertex.

Parameters
mode: if OUT, returns the successors of the vertex. If IN, returns the
predecessors of the vertex. If ALL, both the predecessors and
the successors will be returned. Ignored for undirected graphs.

get adjedgelist(mode—0UT)

Returns the incidence list representation of the graph.
Deprecated: replaced by Graph.get_inclist() since igraph 0.6
See Also: Graph.get inclist()

36

Class Graph Package igraph

get all simple paths(v, to=None, mode—=0UT)

Calculates all the simple paths from a given node to some other nodes (or all
of them) in a graph.

A path is simple if its vertices are unique, i.e. no vertex is visited more than
once.

Note that potentially there are exponentially many paths between two vertices
of a graph, especially if your graph is lattice-like. In this case, you may run
out of memory when using this function.

Parameters
v the source for the calculated paths
to: a vertex selector describing the destination for the

calculated paths. This can be a single vertex 1D, a list of
vertex IDs, a single vertex name, a list of vertex names or a
VertexSeq object. None means all the vertices.

cutoff: maximum length of path that is considered. If negative,
paths of all lengths are considered.

mode: the directionality of the paths. IN means to calculate
incoming paths, OUT means to calculate outgoing paths,
ALL means to calculate both ones.

Return Value
all of the simple paths from the given node to every other reachable
node in the graph in a list. Note that in case of mode=IN, the
vertices in a path are returned in reversed order!

get inclist(mode=0UT)

Returns the incidence list representation of the graph.

The incidence list representation is a list of lists. Each item of the outer list
belongs to a single vertex of the graph. The inner list contains the IDs of the
incident edges of the given vertex.

Parameters
mode: if OUT, returns the successors of the vertex. If IN, returns the
predecessors of the vertex. If ALL, both the predecessors and
the successors will be returned. Ignored for undirected graphs.

37

Class Graph Package igraph

gomory hu tree(capacity=None, flow="£low")

Calculates the Gomory-Hu tree of an undirected graph with optional edge
capacities.

The Gomory-Hu tree is a concise representation of the value of all the
maximum flows (or minimum cuts) in a graph. The vertices of the tree
correspond exactly to the vertices of the original graph in the same order.
Edges of the Gomory-Hu tree are annotated by flow values. The value of the
maximum flow (or minimum cut) between an arbitrary (u,v) vertex pair in the
original graph is then given by the minimum flow value (i.e. edge annotation)
along the shortest path between u and v in the Gomory-Hu tree.

Parameters
capacity: the edge capacities (weights). If None, all edges have
equal weight. May also be an attribute name.

flow: the name of the edge attribute in the returned graph in
which the flow values will be stored.

Return Value
the Gomory-Hu tree as a Graph object.

Overrides: igraph.GraphBase.gomory hu _tree

is named()

Returns whether the graph is named, i.e., whether it has a "name" vertex
attribute.

is weighted()

Returns whether the graph is weighted, i.e., whether it has a "weight" edge
attribute.

38

Class Graph Package igraph

maxflow (source, target, capacity=None)

Returns a maximum flow between the given source and target vertices in a
graph.

A maximum flow from source to target is an assignment of non-negative real
numbers to the edges of the graph, satisfying two properties:

1. For each edge, the flow (i.e. the assigned number) is not more than the
capacity of the edge (see the capacity argument)

2. For every vertex except the source and the target, the incoming flow is
the same as the outgoing flow.

The value of the flow is the incoming flow of the target or the outgoing flow of
the source (which are equal). The maximum flow is the maximum possible
such value.

Parameters
capacity: the edge capacities (weights). If None, all edges have
equal weight. May also be an attribute name.

Return Value
a Flow object describing the maximum flow

Overrides: igraph.GraphBase.maxflow

39

Class Graph Package igraph

mincut(source=None, target—None, capacity—None)

Calculates the minimum cut between the given source and target vertices or
within the whole graph.

The minimum cut is the minimum set of edges that needs to be removed to
separate the source and the target (if they are given) or to disconnect the
graph (if neither the source nor the target are given). The minimum is
calculated using the weights (capacities) of the edges, so the cut with the
minimum total capacity is calculated.

For undirected graphs and no source and target, the method uses the
Stoer-Wagner algorithm. For a given source and target, the method uses the
push-relabel algorithm; see the references below.

Parameters
source: the source vertex ID. If None, the target must also be
None and the calculation will be done for the entire
graph (i.e. all possible vertex pairs).
target: the target vertex ID. If None, the source must also be

None and the calculation will be done for the entire
graph (i.e. all possible vertex pairs).

capacity: the edge capacities (weights). If None, all edges have
equal weight. May also be an attribute name.

Return Value
a Cut object describing the minimum cut

Overrides: igraph.GraphBase.mincut

st _mincut(source, target, capacity=None)

Calculates the minimum cut between the source and target vertices in a graph.

Parameters
source: the source vertex ID

target: the target vertex ID

capacity: the capacity of the edges. It must be a list or a valid
attribute name or None. In the latter case, every edge
will have the same capacity.

Return Value
the value of the minimum cut, the IDs of vertices in the first and
second partition, and the IDs of edges in the cut, packed in a 4-tuple

Overrides: igraph.GraphBase.st _mincut

40

Class Graph Package igraph

modularity (membership, weights=None)

Calculates the modularity score of the graph with respect to a given clustering.

The modularity of a graph w.r.t. some division measures how good the
division is, or how separated are the different vertex types from each other.
It’s defined as Q=1/(2m)*sum(Aij-ki*kj/(2m)delta(ci,cj),i,j). m is the number
of edges, Aij is the element of the A adjacency matrix in row ¢ and column j,
ki is the degree of node 4, kj is the degree of node j, and C% and cj are the
types of the two vertices (i and 7). delta(x,y) is one iff z=y, 0 otherwise.

If edge weights are given, the definition of modularity is modified as follows:
Aij becomes the weight of the corresponding edge, ki is the total weight of
edges adjacent to vertex 4, kj is the total weight of edges adjacent to vertex j
and m is the total edge weight in the graph.

Parameters
membership: a membership list or a VertexClustering object

weights: optional edge weights or None if all edges are weighed
equally. Attribute names are also allowed.

Return Value
the modularity score

Overrides: igraph.GraphBase.modularity

Reference: MEJ Newman and M Girvan: Finding and evaluating community
structure in networks. Phys Rev E 69 026113, 2004.

path length hist(directed—=True)

Returns the path length histogram of the graph

Parameters
directed: whether to consider directed paths. Ignored for
undirected graphs.

Return Value
a Histogram object. The object will also have an unconnected
attribute that stores the number of unconnected vertex pairs (where
the second vertex can not be reached from the first one). The latter
one will be of type long (and not a simple integer), since this can be
very large.

Overrides: igraph.GraphBase.path length hist

41

Class Graph Package igraph

pagerank(self, vertices=None, directed=True, damping—0.85, weights—None,
arpack__options=None, implementation—"prpack’, niter—=1000, eps—0.001)

Calculates the Google PageRank values of a graph.

Parameters

vertices: the indices of the vertices being queried. None
means all of the vertices.

directed: whether to consider directed paths.

damping: the damping factor. I-damping is the PageRank
value for nodes with no incoming links. It is also
the probability of resetting the random walk to a
uniform distribution in each step.

weights: edge weights to be used. Can be a sequence or

iterable or even an edge attribute name.

arpack_options: an ARPACKOptions object used to fine-tune the
ARPACK eigenvector calculation. If omitted, the
module-level variable called arpack_options is
used. This argument is ignored if not the
ARPACK implementation is used, see the
implementation argument.

implementation: which implementation to use to solve the
PageRank eigenproblem. Possible values are:

e "prpack": use the PRPACK library. This is a
new implementation in igraph 0.7

e "arpack": use the ARPACK library. This
implementation was used from version 0.5,
until version 0.7.

e "power": use a simple power method. This is
the implementation that was used before
igraph version 0.5.

niter: The number of iterations to use in the power
method implementation. It is ignored in the other
implementations

eps: The power method implementation will consider

the calculation as complete if the difference of
PageRank values between iterations change less
than this value for every node. It is ignored by
the other implementations.

Return Value
a list with the Google PageRank values of the specified vertices.

42

Class Graph Package igraph

spanning tree(self, weights=None, return_ tree=True)

Calculates a minimum spanning tree for a graph.

Parameters
weights: a vector containing weights for every edge in the
graph. None means that the graph is unweighted.

return_tree: whether to return the minimum spanning tree (when
return_tree is True) or to return the IDs of the
edges in the minimum spanning tree instead (when
return_tree is False). The default is True for
historical reasons as this argument was introduced in
igraph 0.6.

Return Value
the spanning tree as a Graph object if return_tree is True or the
IDs of the edges that constitute the spanning tree if return_tree is
False.

Reference: Prim, R.C.: Shortest connection networks and some
generalizations. Bell System Technical Journal 36:1389-1401, 1957.

43

Class Graph Package igraph

transitivity avglocal undirected(self, mode=’nan’, weights=None)

Calculates the average of the vertex transitivities of the graph.

In the unweighted case, the transitivity measures the probability that two
neighbors of a vertex are connected. In case of the average local transitivity,
this probability is calculated for each vertex and then the average is taken.
Vertices with less than two neighbors require special treatment, they will
either be left out from the calculation or they will be considered as having zero
transitivity, depending on the mode parameter. The calculation is slightly
more involved for weighted graphs; in this case, weights are taken into account
according to the formula of Barrat et al (see the references).

Note that this measure is different from the global transitivity measure (see
transitivity_undirected()) as it simply takes the average local transitivity
across the whole network.

Parameters
mode: defines how to treat vertices with degree less than two. If
TRANSITIVITY_ZERO or "zero", these vertices will have
zero transitivity. If TRANSITIVITY_NAN or "nan", these
vertices will be excluded from the average.

weights: edge weights to be used. Can be a sequence or iterable or
even an edge attribute name.

Overrides: igraph.GraphBase.transitivity avglocal undirected

See Also: transitivity_undirected(),
transitivity_local_undirected()

Reference:

e Watts DJ and Strogatz S: Collective dynamics of small-world
networks. Nature 393(6884):440-442, 1998.

e Barrat A, Barthelemy M, Pastor-Satorras R and Vespignani A:
The architecture of complex weighted networks. PNAS 101, 3747
(2004). http://arziv.org/abs/cond-mat/0311416.

triad census()

Calculates the triad census of the graph.

Return Value
a TriadCensus object.

Overrides: igraph.GraphBase.triad census

Reference: Davis, J.A. and Leinhardt, S. (1972). The Structure of Positive
Interpersonal Relations in Small Groups. In: J. Berger (Ed.), Sociological
Theories in Progress, Volume 2, 218-251. Boston: Houghton Mifflin.

44

http://arxiv.org/abs/cond-mat/0311416

Class Graph Package igraph

count automorphisms vf2(self, color=None, edge_ color—=None,
node compat_fn=None, edge compat fn—None)

Returns the number of automorphisms of the graph.
This function simply calls count_isomorphisms_vf2 with the graph itself. See
count_isomorphisms_vf2 for an explanation of the parameters.

Return Value
the number of automorphisms of the graph

See Also: Graph.count isomorphisms vf2

get automorphisms_vf2(self, color=None, edge_ color=None,
node_ compat_ fn=None, edge compat_fn=None)

Returns all the automorphisms of the graph
This function simply calls get_isomorphisms_vf2 with the graph itself. See
get_isomorphisms_vf2 for an explanation of the parameters.

Return Value
a list of lists, each item containing a possible mapping of the graph
vertices to itself according to the automorphism

See Also: Graph.get isomorphisms v{2

community fastgreedy(self, weights=None)

Community structure based on the greedy optimization of modularity.

This algorithm merges individual nodes into communities in a way that
greedily maximizes the modularity score of the graph. It can be proven that if
no merge can increase the current modularity score, the algorithm can be
stopped since no further increase can be achieved.

This algorithm is said to run almost in linear time on sparse graphs.

Parameters
weights: edge attribute name or a list containing edge weights

Return Value
an appropriate VertexDendrogram object.

Overrides: igraph.GraphBase.community fastgreedy

Reference: A Clauset, MEJ Newman and C Moore: Finding community
structure in very large networks. Phys Rev E 70, 066111 (2004).

45

Class Graph Package igraph

community infomap(self, edge_ weights=None, verter_ weights=None,
trials=10)

Finds the community structure of the network according to the Infomap
method of Martin Rosvall and Carl T. Bergstrom.

Parameters
edge_weights: name of an edge attribute or a list containing
edge weights.

vertex_weights: name of an vertex attribute or a list containing
vertex weights.

trials: the number of attempts to partition the network.

Return Value
an appropriate VertexClustering object with an extra attribute
called codelength that stores the code length determined by the
algorithm.

Overrides: igraph.GraphBase.community infomap

Reference:

e M. Rosvall and C. T. Bergstrom: Maps of information flow
reveal community structure in complex networks, PNAS 105,
1118 (2008). http://dz.doi.org/10.1073/pnas.0706851105,
http://arxiv.org/abs/0707.0609.

e M. Rosvall, D. Axelsson, and C. T. Bergstrom: The map
equation, Eur. Phys. J. Special Topics 178, 13 (2009).
http://dx.doi.org/10.1140/epjst/e2010-01179-1,
http://arziv.org/abs/0906.1405.

46

http://dx.doi.org/10.1073/pnas.0706851105
http://arxiv.org/abs/0707.0609
http://dx.doi.org/10.1140/epjst/e2010-01179-1
http://arxiv.org/abs/0906.1405

Class Graph Package igraph

community leading eigenvector naive(clusters=None,
return_merges=False)

A naive implementation of Newman’s eigenvector community structure
detection. This function splits the network into two components according to
the leading eigenvector of the modularity matrix and then recursively takes
the given number of steps by splitting the communities as individual networks.
This is not the correct way, however, see the reference for explanation.
Consider using the correct community_leading_eigenvector method instead.

Parameters
clusters: the desired number of communities. If None, the
algorithm tries to do as many splits as possible.
Note that the algorithm won’t split a community
further if the signs of the leading eigenvector are
all the same, so the actual number of discovered
communities can be less than the desired one.

return_merges: whether the returned object should be a
dendrogram instead of a single clustering.

Return Value
an appropriate VertexClustering or VertexDendrogram object.

Reference: MEJ Newman: Finding community structure in networks using
the eigenvectors of matrices, arXiv:physics/0605087

47

Class Graph Package igraph

community leading eigenvector(clusters=None, weights—None,
arpack__options=None)

Newman’s leading eigenvector method for detecting community structure.
This is the proper implementation of the recursive, divisive algorithm: each
split is done by maximizing the modularity regarding the original network.

Parameters
clusters: the desired number of communities. If None, the
algorithm tries to do as many splits as possible.
Note that the algorithm won’t split a community
further if the signs of the leading eigenvector are
all the same, so the actual number of discovered
communities can be less than the desired one.

weights: name of an edge attribute or a list containing
edge weights.

arpack_options: an ARPACKOptions object used to fine-tune the
ARPACK eigenvector calculation. If omitted, the
module-level variable called arpack_options is
used.

Return Value
an appropriate VertexClustering object.

Overrides: igraph.GraphBase.community leading eigenvector

Reference: MEJ Newman: Finding community structure in networks using
the eigenvectors of matrices, arXiv:physics/0605087

48

Class Graph Package igraph

community label propagation(weights=None, initial=None, fired—=None)

Finds the community structure of the graph according to the label propagation
method of Raghavan et al. Initially, each vertex is assigned a different label.
After that, each vertex chooses the dominant label in its neighbourhood in
each iteration. Ties are broken randomly and the order in which the vertices
are updated is randomized before every iteration. The algorithm ends when
vertices reach a consensus. Note that since ties are broken randomly, there is
no guarantee that the algorithm returns the same community structure after
each run. In fact, they frequently differ. See the paper of Raghavan et al on
how to come up with an aggregated community structure.

Parameters
weights: name of an edge attribute or a list containing edge weights

initial: name of a vertex attribute or a list containing the initial
vertex labels. Labels are identified by integers from zero
to m-1 where n is the number of vertices. Negative
numbers may also be present in this vector, they represent
unlabeled vertices.

fixed: a list of booleans for each vertex. True corresponds to
vertices whose labeling should not change during the
algorithm. It only makes sense if initial labels are also
given. Unlabeled vertices cannot be fixed.

Return Value
an appropriate VertexClustering object.

Overrides: igraph.GraphBase.community label propagation

Reference: Raghavan, U.N. and Albert, R. and Kumara, S. Near linear time
algorithm to detect community structures in large-scale networks. Phys Rev E

76:036106, 2007. http://arziv.org/abs/0709.2938.

49

http://arxiv.org/abs/0709.2938

Class Graph Package igraph

community multilevel(self, weights=None, return_ levels=False)

Community structure based on the multilevel algorithm of Blondel et al.

This is a bottom-up algorithm: initially every vertex belongs to a separate
community, and vertices are moved between communities iteratively in a way
that maximizes the vertices’ local contribution to the overall modularity score.
When a consensus is reached (i.e. no single move would increase the
modularity score), every community in the original graph is shrank to a single
vertex (while keeping the total weight of the adjacent edges) and the process
continues on the next level. The algorithm stops when it is not possible to
increase the modularity any more after shrinking the communities to vertices.

This algorithm is said to run almost in linear time on sparse graphs.

Parameters
weights: edge attribute name or a list containing edge
weights

return_levels: if True, the communities at each level are returned
in a list. If False, only the community structure
with the best modularity is returned.

Return Value
a list of VertexClustering objects, one corresponding to each level
(if return_levels is True), or a VertexClustering corresponding
to the best modularity.

Overrides: igraph.GraphBase.community multilevel

Reference: VD Blondel, J-L. Guillaume, R Lambiotte and E Lefebvre: Fast
unfolding of community hierarchies in large networks, J Stat Mech P10008
(2008), http://arxiv.org/abs/0803.0476

50

Class Graph Package igraph

community optimal modularity(self, *args, **kwds)

Calculates the optimal modularity score of the graph and the corresponding
community structure.

This function uses the GNU Linear Programming Kit to solve a large integer
optimization problem in order to find the optimal modularity score and the
corresponding community structure, therefore it is unlikely to work for graphs
larger than a few (less than a hundred) vertices. Consider using one of the
heuristic approaches instead if you have such a large graph.

Parameters
weights: name of an edge attribute or a list containing edge
weights.

Return Value
the calculated membership vector and the corresponding modularity
in a tuple.

Overrides: igraph.GraphBase.community optimal modularity

51

Class Graph Package igraph

community edge betweenness(self, clusters=None, directed=True,
weights=None)

Community structure based on the betweenness of the edges in the network.

The idea is that the betweenness of the edges connecting two communities is
typically high, as many of the shortest paths between nodes in separate
communities go through them. So we gradually remove the edge with the
highest betweenness and recalculate the betweennesses after every removal.
This way sooner or later the network falls of to separate components. The
result of the clustering will be represented by a dendrogram.

Parameters

clusters: the number of clusters we would like to see. This
practically defines the "level" where we "cut" the
dendrogram to get the membership vector of the vertices.
If None, the dendrogram is cut at the level which
maximizes the modularity when the graph is unweighted;
otherwise the dendrogram is cut at at a single cluster
(because cluster count selection based on modularities
does not make sense for this method if not all the
weights are equal).

directed: whether the directionality of the edges should be taken
into account or not.

weights: name of an edge attribute or a list containing edge
weights.

Return Value
a VertexDendrogram object, initally cut at the maximum
modularity or at the desired number of clusters.

Overrides: igraph.GraphBase.community edge betweenness

52

Class Graph

Package igraph

community spinglass(weights=None, spins=25, parupdate=False,
start _temp=1, stop _temp=0.01, cool fact=0.99, update rule="config",
gamma=1, implementation="orig", lambda_=1)

Parameters
weights:

spins:

parupdate:

start_temp:
stop_temp:
cool_fact:

update_rule:

gamma:

lambda_:

implementation:

Finds the community structure of the graph according to the spinglass
community detection method of Reichardt & Bornholdt.

edge weights to be used. Can be a sequence or
iterable or even an edge attribute name.

integer, the number of spins to use. This is the
upper limit for the number of communities. It is
not a problem to supply a (reasonably) big
number here, in which case some spin states will
be unpopulated.

whether to update the spins of the vertices in
parallel (synchronously) or not

the starting temperature
the stop temperature
cooling factor for the simulated annealing

specifies the null model of the simulation.
Possible values are "config" (a random graph
with the same vertex degrees as the input graph)
or "simple" (a random graph with the same
number of edges)

the gamma argument of the algorithm, specifying
the balance between the importance of present
and missing edges within a community. The
default value of 1.0 assigns equal importance to
both of them.

currently igraph contains two implementations of
the spinglass community detection algorithm.
The faster original implementation is the default.
The other implementation is able to take into
account negative weights, this can be chosen by
setting implementation to "neg"

the lambda argument of the algorithm, which
specifies the balance between the importance of
present and missing negatively weighted edges
within a community. Smaller values of lambda
lead to communities with less negative
intra-connectivity. If the argument is zero, the
algorithm reduces to a graph coloring algorithm,
using the numbgg of spins as colors. This
argument is ignored if the original
implementation is used. Note the underscore at
the end of the argument name; this is due to the

fact that lambda is a reserved keyword in Python.

http://arxiv.org/abs/cond-mat/0603718
http://arxiv.org/abs/0811.2329

Class Graph Package igraph

community walktrap(self, weights=None, steps—4)

Community detection algorithm of Latapy & Pons, based on random walks.

The basic idea of the algorithm is that short random walks tend to stay in the
same community. The result of the clustering will be represented as a
dendrogram.

Parameters
weights: name of an edge attribute or a list containing edge weights

steps: length of random walks to perform

Return Value
a VertexDendrogram object, initially cut at the maximum
modularity.

Overrides: igraph.GraphBase.community walktrap

Reference: Pascal Pons, Matthieu Latapy: Computing communities in large
networks using random walks, http://arxiv.org/abs/physics/0512106.

k core(self, *args)

Returns some k-cores of the graph.

The method accepts an arbitrary number of arguments representing the
desired indices of the k-cores to be returned. The arguments can also be lists
or tuples. The result is a single Graph object if an only integer argument was
given, otherwise the result is a list of Graph objects representing the desired
k-cores in the order the arguments were specified. If no argument is given,
returns all k-cores in increasing order of £.

54

http://arxiv.org/abs/physics/0512106

Class Graph

Package igraph

community leiden(objective_ function—=CPM, weights—=None,
resolution_ parameter=1.0, beta=0.01, initial membership=None,
n_iterations=2, node_weights—None)

Traag, van Eck & Waltman.

Parameters
objective_function:

weights:

beta:

initial_membership:

n_iterations:

node_weights:

Return Value

resolution_parameter:

Finds the community structure of the graph using the Leiden algorithm of

whether to use the Constant Potts Model
(CPM) or modularity. Must be either
"CPM" or "modularity".

edge weights to be used. Can be a
sequence or iterable or even an edge
attribute name.

the resolution parameter to use. Higher
resolutions lead to more smaller
communities, while lower resolutions lead
to fewer larger communities.

parameter affecting the randomness in the
Leiden algorithm. This affects only the
refinement step of the algorithm.

if provided, the Leiden algorithm will try
to improve this provided membership. If
no argument is provided, the aglorithm
simply starts from the singleton partition.

the number of iterations to iterate the
Leiden algorithm. Each iteration may
improve the partition further. Using a
negative number of iterations will run
until a stable iteration is encountered (i.e.
the quality was not increased during that
iteration).

the node weights used in the Leiden
algorithm. If this is not provided, it will
be automatically determined on the basis
of whether you want to use CPM or
modularity. If you do provide this, please
make sure that you understand what you
are doing.

an appropriate VertexClustering object.
Overrides: igraph.GraphBase.community leiden

Reference: Traag, V. A., Waltman, L., & van Eck, N. J. (2019). From
Louvain to Leiden: guaranteeing well-cannected communities. Scientific
reports, 9(1), 5233. doi: 10.1038/s41598-019-41695-z

Class Graph Package igraph

layout(self, layout=None, *args, **kwds)

Returns the layout of the graph according to a layout algorithm.

Parameters and keyword arguments not specified here are passed to the layout
algorithm directly. See the documentation of the layout algorithms for the
explanation of these parameters.

Registered layout names understood by this method are:

e auto, automatic: automatic layout (see Graph.layout_auto)
e bipartite: bipartite layout (see Graph.layout_bipartite)
e circle, circular: circular layout (see Graph.layout_circle)

e dh, davidson_harel: Davidson-Harel layout (see
Graph.layout_davidson_harel)

e drl: DrL layout for large graphs (see Graph.layout_drl)
e drl_3d: 3D DrL layout for large graphs (see Graph.layout_drl)

e fr fruchterman_reingold: Fruchterman-Reingold layout (see
Graph.layout_fruchterman_reingold).

e fr_3d, fr3d, fruchterman_reingold_3d: 3D Fruchterman- Reingold
layout (see Graph.layout_fruchterman_reingold).

e grid: regular grid layout in 2D (see Graph.layout_grid)

e grid_3d: regular grid layout in 3D (see Graph.layout_grid_3d)

e graphopt: the graphopt algorithm (see Graph.layout_graphopt)

e kk, kamada_kawai: Kamada-Kawai layout (see
Graph.layout_kamada_kawai)

e kk_3d, kk3d, kamada_kawai_3d: 3D Kamada-Kawai layout (see
Graph.layout_kamada_kawai)

e 1gl, large, large_graph: Large Graph Layout (see Graph.layout_lgl)
e mds: multidimensional scaling layout (see Graph.layout_mds)

e random: random layout (see Graph.layout_random)

e random_3d: random 3D layout (see Graph.layout_random)

e rt, tree, reingold_tilford: Reingold-Tilford tree layout (see
Graph.layout_reingold_tilford)

e rt_circular, reingold_tilford_circular: circular Reingold-Tilford
tree layout (see Graph.layout_reingold_tilford_circular)

e sphere, spherical, circle_3d, circular_3d: spherical layout (see
Graph.layout_circle)

e star: star layout (see Graph.layout_star)

e sugiyama: Sugiyama layout (see Graph.layout_sugiyama)

Parameters
layout: the layout to use. This can be one of the registered layout
names or a callable whichb@eturns either a Layout object or
a list of lists containing the coordinates. If None, uses the
value of the plotting.layout configuration key.

Return Value

Class Graph Package igraph

layout auto(self, *args, **kwds)

Chooses and runs a suitable layout function based on simple topological
properties of the graph.

This function tries to choose an appropriate layout function for the graph
using the following rules:

1. If the graph has an attribute called layout, it will be used. It may either
be a Layout instance, a list of coordinate pairs, the name of a layout
function, or a callable function which generates the layout when called
with the graph as a parameter.

2. Otherwise, if the graph has vertex attributes called x and y, these will be
used as coordinates in the layout. When a 3D layout is requested (by
setting dim to 3), a vertex attribute named z will also be needed.

3. Otherwise, if the graph is connected and has at most 100 vertices, the
Kamada-Kawai layout will be used (see Graph.layout_kamada_kawai()).

4. Otherwise, if the graph has at most 1000 vertices, the
Fruchterman-Reingold layout will be used (see
Graph.layout_fruchterman_reingold()).

5. If everything else above failed, the DrL layout algorithm will be used (see
Graph.layout_drl()).

All the arguments of this function except dim are passed on to the chosen
layout function (in case we have to call some layout function).

Parameters
dim: specifies whether we would like to obtain a 2D or a 3D layout.

Return Value
a Layout object.

layout grid fruchterman reingold(*args, **kwds)

Compatibility alias to the Fruchterman-Reingold layout with the grid option
turned on.

See Also: Graph.layout fruchterman reingold|()

57

Class Graph Package igraph

layout sugiyama(layers—=None, weights=None, hgap=1, vgap=1,
mazxiter—=100, return_ extended graph—False)

Places the vertices using a layered Sugiyama layout.

This is a layered layout that is most suitable for directed acyclic graphs,
although it works on undirected or cyclic graphs as well.

Each vertex is assigned to a layer and each layer is placed on a horizontal line.
Vertices within the same layer are then permuted using the barycenter
heuristic that tries to minimize edge crossings.

Dummy vertices will be added on edges that span more than one layer. The
returned layout therefore contains more rows than the number of nodes in the
original graph; the extra rows correspond to the dummy vertices.

Parameters

layers: a vector specifying a non-negative integer
layer index for each vertex, or the name
of a numeric vertex attribute that
contains the layer indices. If None, a
layering will be determined automatically.
For undirected graphs, a spanning tree
will be extracted and vertices will be
assigned to layers using a breadth first
search from the node with the largest
degree. For directed graphs, cycles are
broken by reversing the direction of edges
in an approximate feedback arc set using
the heuristic of Eades, Lin and Smyth,
and then using longest path layering to
place the vertices in layers.

weights: edge weights to be used. Can be a
sequence or iterable or even an edge
attribute name.

hgap: minimum horizontal gap between vertices
in the same layer.

vgap: vertical gap between layers. The layer
index will be multiplied by wvgap to
obtain the Y coordinate.

maxiter: maximum number of iterations to take in
the crossing reduction step. Increase this
if you feel that you are getting too many
edge crossings.

return_extended_graph: specifies that the extended graph with
the added dummy vertices should also be
returned® When this is True, the result
will be a tuple containing the layout and
the extended graph. The first |V| nodes
of the extended graph will correspond to

U R D A A T T

Class Graph Package igraph

maximum _bipartite matching(self, types=’type’, weights=None,
eps=None)

Finds a maximum matching in a bipartite graph.

A maximum matching is a set of edges such that each vertex is incident on at
most one matched edge and the number (or weight) of such edges in the set is
as large as possible.

Parameters
types: vertex types in a list or the name of a vertex attribute
holding vertex types. Types should be denoted by zeros
and ones (or False and True) for the two sides of the
bipartite graph. If omitted, it defaults to type, which is
the default vertex type attribute for bipartite graphs.

weights: edge weights to be used. Can be a sequence or iterable or
even an edge attribute name.

eps: a small real number used in equality tests in the weighted
bipartite matching algorithm. Two real numbers are
considered equal in the algorithm if their difference is
smaller than this value. This is required to avoid the
accumulation of numerical errors. If you pass None here,
igraph will try to determine an appropriate value
automatically.

Return Value
an instance of Matching.

to networkx(self)

Converts the graph to networkx format

from networkx(klass, g)

Converts the graph from networkx
Vertex names will be converted to " nx name" attribute and the vertices will
get new ids from 0 up (as standard in igraph).

Parameters
g: networkx Graph or DiGraph

59

Class Graph Package igraph

to graph tool(self, graph_ attributes=None, verter_ attributes—=None,
edge_ attributes=None)

Converts the graph to graph-tool

Oparam graph_attributes: dictionary of graph attributes to transfer.
Keys are attributes from the graph, values are data types (see
below). C{None} means no graph attributes are transferred.

Oparam vertex_attributes: dictionary of vertex attributes to transfer.
Keys are attributes from the vertices, values are data types (se
below). C{None} means no vertex attributes are transferred.

Oparam edge_attributes: dictionary of edge attributes to transfer.
Keys are attributes from the edges, values are data types (see
below). C{None} means no vertex attributes are transferred.

()

Data types: graph-tool only accepts specific data types. See the
following web page for a list:

https://graph-tool.skewed.de/static/doc/quickstart.html

NOTE: because of the restricted data types in graph-tool, vertex apd
edge attributes require to be type-consistent across all vertices pr
edges. If you set the property for only some vertices/edges, the other
will be tagged as None in python-igraph, so they can only be converted
to graph-tool with the type ’object’ and any other conversion will
fail.

from graph tool(klass, g)

Converts the graph from graph-tool

Parameters
g: graph-tool Graph

60

Class Graph Package igraph

write adjacency(self, f, sep=> 7, eol="\n’, *args, **kwds)

Writes the adjacency matrix of the graph to the given file
All the remaining arguments not mentioned here are passed intact to
Graph.get_adjacency.
Parameters
f: the name of the file to be written.

sep: the string that separates the matrix elements in a row

eol: the string that separates the rows of the matrix. Please note
that igraph is able to read back the written adjacency matrix if
and only if this is a single newline character

Read Adjacency(klass, f, sep=None, comment_ char="4#’, attribute=None,
*args, **kwds)

Constructs a graph based on an adjacency matrix from the given file

Additional positional and keyword arguments not mentioned here are passed
intact to Graph.Adjacency.

Parameters
f: the name of the file to be read or a file object
sep: the string that separates the matrix elements in a

row. None means an arbitrary sequence of
whitespace characters.

comment_char: lines starting with this string are treated as
comments.

attribute: an edge attribute name where the edge weights are
stored in the case of a weighted adjacency matrix. If
None, no weights are stored, values larger than 1 are
considered as edge multiplicities.

Return Value
the created graph

61

Class Graph Package igraph

write dimacs(self, f, source=None, target=None, capacity—=’capacity’)

Writes the graph in DIMACS format to the given file.

Parameters
f: the name of the file to be written or a Python file handle.
source: the source vertex ID. If None, igraph will try to infer it

from the source graph attribute.

target: the target vertex ID. If None, igraph will try to infer it
from the target graph attribute.

capacity: the capacities of the edges in a list or the name of an
edge attribute that holds the capacities. If there is no
such edge attribute, every edge will have a capacity of 1.

Overrides: igraph.GraphBase.write dimacs

write graphmlz(self, f, compresslevel=9)

Writes the graph to a zipped GraphML file.

The library uses the gzip compression algorithm, so the resulting file can be
unzipped with regular gzip uncompression (like gunzip or zcat from Unix
command line) or the Python gzip module.

Uses a temporary file to store intermediate GraphML data, so make sure you
have enough free space to store the unzipped GraphML file as well.

Parameters
f: the name of the file to be written.

compresslevel: the level of compression. 1 is fastest and produces
the least compression, and 9 is slowest and
produces the most compression.

62

Class Graph Package igraph

Read DIMACS(f, directed=False)

Reads a graph from a file conforming to the DIMACS minimum-cost flow file
format.

For the exact definition of the format, see
http:/ /Ipsolve.sourceforge.net/5.5/DIMACS.htm.

Restrictions compared to the official description of the format are as follows:

e igraph’s DIMACS reader requires only three fields in an arc definition,
describing the edge’s source and target node and its capacity.

e Source vertices are identified by ’s” in the FLOW field, target vertices are
identified by 't’.
e Node indices start from 1. Only a single source and target node is allowed.

Parameters
f: the name of the file or a Python file handle

directed: whether the generated graph should be directed.

Return Value
the generated graph. The indices of the source and target vertices
are attached as graph attributes source and target, the edge
capacities are stored in the capacity edge attribute.

Overrides: igraph.GraphBase.Read DIMACS

Read GraphMLz(f, directed—=True, index—=0)

Reads a graph from a zipped GraphML file.

Parameters
f: the name of the file

index: if the GraphML file contains multiple graphs, specified the
one that should be loaded. Graph indices start from zero, so
if you want to load the first graph, specify 0 here.

Return Value
the loaded graph object

63

http://lpsolve.sourceforge.net/5.5/DIMACS.htm

Class Graph Package igraph

write pickle(self, fname=None, version—-1)

Saves the graph in Python pickled format

Parameters
fname: the name of the file or a stream to save to. If None, saves
the graph to a string and returns the string.

version: pickle protocol version to be used. If -1, uses the highest
protocol available

Return Value
None if the graph was saved successfully to the given file, or a string
if fname was None.

write picklez(self, fname=None, version—=-1)

Saves the graph in Python pickled format, compressed with gzip.
Saving in this format is a bit slower than saving in a Python pickle without
compression, but the final file takes up much less space on the hard drive.

Parameters
fname: the name of the file or a stream to save to.

version: pickle protocol version to be used. If -1, uses the highest
protocol available

Return Value
None if the graph was saved successfully to the given file.

Read Pickle(klass, fname=None)

Reads a graph from Python pickled format

Parameters
fname: the name of the file, a stream to read from, or a string
containing the pickled data.

Return Value
the created graph object.

Read Picklez(klass, fname, *args, **kwds)

Reads a graph from compressed Python pickled format, uncompressing it
on-the-fly.

Parameters
fname: the name of the file or a stream to read from.

Return Value
the created graph object.

64

Class Graph Package igraph

write svg(self, fname, layout="auto’, width=None, height=None,
labels=’1abel’, colors=’color’, shapes=’shape’, vertex size=10,
edge colors=’color’, edge stroke widths—’width’, font size=16, *args,

M kwds)
Saves the graph as an SVG (Scalable Vector Graphics) file

The file will be Inkscape (http://inkscape.org) compatible. In Inkscape, as
nodes are rearranged, the edges auto-update.

Parameters
fname: the name of the file or a Python file handle

layout: the layout of the graph. Can be either an
explicitly specified layout (using a list of
coordinate pairs) or the name of a layout
algorithm (which should refer to a method in
the Graph object, but without the layout_
prefix.

width: the preferred width in pixels (default: 400)
height: the preferred height in pixels (default: 400)

labels: the vertex labels. Either it is the name of a
vertex attribute to use, or a list explicitly
specifying the labels. It can also be None.

colors: the vertex colors. Either it is the name of a
vertex attribute to use, or a list explicitly
specifying the colors. A color can be
anything acceptable in an SVG file.

shapes: the vertex shapes. Either it is the name of a
vertex attribute to use, or a list explicitly
specifying the shapes as integers. Shape 0
means hidden (nothing is drawn), shape 1 is
a circle, shape 2 is a rectangle and shape 3 is
a rectangle that automatically sizes to the
inner text.

vertex_size: vertex size in pixels

edge_colors: the edge colors. Either it is the name of an
edge attribute to use, or a list explicitly
specifying the colors. A color can be
anything acceptable in an SVG file.

edge_stroke_widths: the stroke widths of the edges. Either it is
the name of an edge attribute to use, or a
list explicitly specifying the stroke widths.
The stroke width can be anything acceptable
in an SVG ﬁle

font_size: font size. If 1t is a string, it is written into
the SVG file as-is (so you can specify
anything which is valid as the value of the
font-size style). If it is a number, it is

Class Graph Package igraph

Read(klass, f, format=None, *args, **kwds)

Unified reading function for graphs.

This method tries to identify the format of the graph given in the first
parameter and calls the corresponding reader method.

The remaining arguments are passed to the reader method without any
changes.

Parameters
f: the file containing the graph to be loaded

format: the format of the file (if known in advance). None means
auto-detection. Possible values are: "ncol" (NCOL
format), "1gl" (LGL format), "graphdb" (GraphDB
format), "graphml", "graphmlz" (GraphML and gzipped
GraphML format), "gml" (GML format), "net", "pajek"
(Pajek format), "dimacs" (DIMACS format), "edgelist",
"edges" or "edge" (edge list), "adjacency" (adjacency
matrix), "d1l" (DL format used by UCINET), "pickle"
(Python pickled format), "picklez" (gzipped Python
pickled format)

Raises
I0Error if the file format can’t be identified and none was given.

66

Class Graph Package igraph

Load(klass, f, format=None, *args, **kwds)

Unified reading function for graphs.

This method tries to identify the format of the graph given in the first
parameter and calls the corresponding reader method.

The remaining arguments are passed to the reader method without any
changes.

Parameters
f: the file containing the graph to be loaded

format: the format of the file (if known in advance). None means
auto-detection. Possible values are: "ncol" (NCOL
format), "1gl" (LGL format), "graphdb" (GraphDB
format), "graphml", "graphmlz" (GraphML and gzipped
GraphML format), "gml" (GML format), "net", "pajek"
(Pajek format), "dimacs" (DIMACS format), "edgelist",
"edges" or "edge" (edge list), "adjacency" (adjacency
matrix), "d1l" (DL format used by UCINET), "pickle"
(Python pickled format), "picklez" (gzipped Python
pickled format)

Raises
I0Error if the file format can’t be identified and none was given.

67

Class Graph

Package igraph

write(self, f, format=None, *args, **kwds)

changes.

Parameters

Raises

Unified writing function for graphs.

This method tries to identify the format of the graph given in the first
parameter (based on extension) and calls the corresponding writer method.

The remaining arguments are passed to the writer method without any

f: the file containing the graph to be saved

format: the format of the file (if one wants to override the format
determined from the filename extension, or the filename
itself is a stream). None means auto-detection. Possible
values are:

"adjacency": adjacency matrix format

"dimacs": DIMACS format

"dot", "graphviz": GraphViz DOT format
"edgelist", "edges" or "edge": numeric edge list
format

"gml": GML format

"graphml" and "graphmlz": standard and gzipped
GraphML format

"gw", "leda", "lgr": LEDA native format

"1gl": LGL format

"ncol": NCOL format

"net", "pajek": Pajek format

"pickle", "picklez": standard and gzipped Python
pickled format

"svg": SVG format

I0Error if the file format can’t be identified and none was given.

68

Class Graph

Package igraph

save(self, f, format=None, *args, **kwds)

changes.

Parameters

Raises

Unified writing function for graphs.

This method tries to identify the format of the graph given in the first
parameter (based on extension) and calls the corresponding writer method.

The remaining arguments are passed to the writer method without any

f: the file containing the graph to be saved

format: the format of the file (if one wants to override the format
determined from the filename extension, or the filename
itself is a stream). None means auto-detection. Possible
values are:

"adjacency": adjacency matrix format

"dimacs": DIMACS format

"dot", "graphviz": GraphViz DOT format
"edgelist", "edges" or "edge": numeric edge list
format

"gml": GML format

"graphml" and "graphmlz": standard and gzipped
GraphML format

"gw", "leda", "lgr": LEDA native format

"1gl": LGL format

"ncol": NCOL format

"net", "pajek": Pajek format

"pickle", "picklez": standard and gzipped Python
pickled format

"svg": SVG format

I0Error if the file format can’t be identified and none was given.

69

Class Graph Package igraph

DictList(klass, vertices, edges, directed—=False, vertex name_ attr—’name’,
edge_ foreign keys=(’source’, ’target’), iterative=False)

Constructs a graph from a list-of-dictionaries representation.

This representation assumes that vertices and edges are encoded in two lists,
each list containing a Python dict for each vertex and each edge, respectively.
A distinguished element of the vertex dicts contain a vertex ID which is used
in the edge dicts to refer to source and target vertices. All the remaining
elements of the dict are considered vertex and edge attributes. Note that the
implementation does not assume that the objects passed to this method are
indeed lists of dicts, but they should be iterable and they should yield objects
that behave as dicts. So, for instance, a database query result is likely to be fit
as long as it’s iterable and yields dict-like objects with every iteration.

Parameters
vertices: the data source for the vertices or None if
there are no special attributes assigned to
vertices and we should simply use the edge list
of dicts to infer vertex names.
edges: the data source for the edges.
directed: whether the constructed graph will be directed

vertex_name_attr: the name of the distinguished key in the dicts
in the vertex data source that contains the
vertex names. Ignored if vertices is None.

edge_foreign_keys: the name of the attributes in the dicts in the
edge data source that contain the source and
target vertex names.

iterative: whether to add the edges to the graph one by
one, iteratively, or to build a large edge list
first and use that to construct the graph. The
latter approach is faster but it may not be
suitable if your dataset is large. The default is
to add the edges in a batch from an edge list.

Return Value
the graph that was constructed

70

Class Graph Package igraph

TupleList(klass, edges, directed—False, vertexr name_ altr—’name’,
edge attrs=None, weights=False)

Constructs a graph from a list-of-tuples representation.

This representation assumes that the edges of the graph are encoded in a list
of tuples (or lists). Each item in the list must have at least two elements,
which specify the source and the target vertices of the edge. The remaining
elements (if any) specify the edge attributes of that edge, where the names of
the edge attributes originate from the edge_attrs list. The names of the
vertices will be stored in the vertex attribute given by vertex_name_attr.

The default parameters of this function are suitable for creating unweighted
graphs from lists where each item contains the source vertex and the target
vertex. If you have a weighted graph, you can use items where the third item
contains the weight of the edge by setting edge_attrs to "weight" or
["weight"]. If you have even more edge attributes, add them to the end of
each item in the edges list and also specify the corresponding edge attribute
names in edge_attrs as a list.

Parameters
edges: the data source for the edges. This must be a

list where each item is a tuple (or list)
containing at least two items: the name of the
source and the target vertex. Note that names
will be assigned to the name vertex attribute
(or another vertex attribute if
vertex_name_attr is specified), even if all the
vertex names in the list are in fact numbers.

directed: whether the constructed graph will be directed

vertex_name_attr: the name of the vertex attribute that will
contain the vertex names.

edge_attrs: the names of the edge attributes that are filled
with the extra items in the edge list (starting
from index 2, since the first two items are the
source and target vertices). None means that
only the source and target vertices will be
extracted from each item. If you pass a string
here, it will be wrapped in a list for
convenience.

weights: alternative way to specify that the graph is
weighted. If you set weights to true and
edge_attrs is not given, it will be assumed
that edge_attrs is ["weight"] and igraph will
parse the third element from each item into an
edge weight. If you set weights to a string, it
will be assum@H that edge_attrs contains that
string only, and igraph will store the edge
weights in that attribute.

Return Value

Class Graph Package igraph

Formula(Graph, formula=None, altr—"name", simplify—True)

Generates a graph from a graph formula

A graph formula is a simple string representation of a graph. It is very handy
for creating small graphs quickly. The string consists of vertex names
separated by edge operators. An edge operator is a sequence of dashes (-) that
may or may not start with an arrowhead (< at the beginning of the sequence
or > at the end of the sequence). The edge operators can be arbitrarily long,
i.e., you may use as many dashes to draw them as you like. This makes a total
of four different edge operators:

e —-- makes an undirected edge

e <-- makes a directed edge pointing from the vertex on the right hand side
of the operator to the vertex on the left hand side

e --> is the opposite of <--
e <--> creates a mutual directed edge pair between the two vertices

If you only use the undirected edge operator (---), the graph will be
undirected. Otherwise it will be directed. Vertex names used in the formula
will be assigned to the name vertex attribute of the graph.

Some simple examples:

>>> from igraph import Graph

>>> print Graph.Formula() # empty graph
IGRAPH UN-- 0 O --

+ attr: name (v)

>>> g = Graph.Formula("A-B") # undirected graph
>>> g.VS ["name"

[’A°, ’B’]

>>> print &

IGRAPH UN-- 2 1 --

+ attr: name (v)

+ edges (vertex names):

A--B

>>> g.get_edgelist ()

[(0, D]

>>> g2 = Graph.Formula("a--————————- B")

>>> g2.isomorphic(g)

True

>>> g = Graph.Formula("a ---> B") # directed graph
>>> g.vs ["name"

A%, *B’]

>>> print &

IGRAPH DN-- 2 1 --

+ attr: name (v)

72

+ edges (vertex names):

A->B

If you have may disconnected componnets, you can separate them with
commas. You can also specifv isolated vertices:

Class Graph Package igraph

Bipartite(types, edges, directed—False)

Creates a bipartite graph with the given vertex types and edges. This is
similar to the default constructor of the graph, the only difference is that it
checks whether all the edges go between the two vertex classes and it assigns
the type vector to a type attribute afterwards.

Examples:

>>> g = Graph.Bipartite([0, 1, 0, 11, [(0, 1), (2, 3), (0, 3)1)
>>> g.is_bipartite()

True

>>> g.vs ["type"]

[False, True, False, True]

Parameters
types: the vertex types as a boolean list. Anything that
evaluates to False will denote a vertex of the first kind,
anything that evaluates to True will denote a vertex of
the second kind.

edges: the edges as a list of tuples.

directed: whether to create a directed graph. Bipartite networks
are usually undirected, so the default is False

Return Value
the graph with a binary vertex attribute named "type" that stores
the vertex classes.

73

Class Graph Package igraph

Full Bipartite(nl, n2, directed=False, mode—=ALL)

Generates a full bipartite graph (directed or undirected, with or without
loops).

>>> g = Graph.Full_Bipartite(2, 3)
>>> g.is_bipartite()

True

>>> g.vs ["type"]

[False, False, True, True, Truel

Parameters
nl: the number of vertices of the first kind.
n2: the number of vertices of the second kind.

directed: whether tp generate a directed graph.

mode: if OUT, then all vertices of the first kind are connected to
the others; IN specifies the opposite direction, ALL
creates mutual edges. Ignored for undirected graphs.

Return Value
the graph with a binary vertex attribute named "type" that stores
the vertex classes.

74

Class Graph

Package igraph

Random _Bipartite(ni, n2, p=None, m=None, directed=False,
neimode—ALL)

Parameters
nl:

n2:
p:

m:

neimode:

Generates a random bipartite graph with the given number of vertices and
edges (if m is given), or with the given number of vertices and the given
connection probability (if p is given).

If m is given but p is not, the generated graph will have nl vertices of type 1,
n2 vertices of type 2 and m randomly selected edges between them. If p is
given but m is not, the generated graph will have nl vertices of type 1 and n2
vertices of type 2, and each edge will exist between them with probability p.

the number of vertices of type 1.
the number of vertices of type 2.
the probability of edges. If given, m must be missing.

the number of edges. If given, p must be missing.

directed: whether to generate a directed graph.

if the graph is directed, specifies how the edges will be

generated. If it is "all", edges will be generated in both

directions (from type 1 to type 2 and vice versa)

independently. If it is "out" edges will always point from

type 1 to type 2. If it is "in", edges will always point
from type 2 to type 1. This argument is ignored for
undirected graphs.

GRG(n, radius, torus=False, return_ coordinates—False)

coordinates of

Parameters
n:

radius:

torus:

Generates a random geometric graph.

The algorithm drops the vertices randomly on the 2D unit square and
connects them if they are closer to each other than the given radius. The

the vertices are stored in the vertex attributes x and y.

The number of vertices in the graph
The given radius

This should be True if we want to use a torus instead of a
square.

75

Class Graph Package igraph

Incidence(matriz, directed—=False, mode—=ALL, multiple=False)

Creates a bipartite graph from an incidence matrix.
Example:

>>> g = Graph.Incidence([[0, 1, 1], [1, 1, 01])

Parameters
matrix: the incidence matrix.

directed: whether to create a directed graph.

mode : defines the direction of edges in the graph. If OUT, then
edges go from vertices of the first kind (corresponding to
rows of the matrix) to vertices of the second kind (the
columns of the matrix). If IN, the opposite direction is
used. ALL creates mutual edges. Ignored for undirected
graphs.

multiple: defines what to do with non-zero entries in the matrix. If
False, non-zero entries will create an edge no matter
what the value is. If True, non-zero entries are rounded
up to the nearest integer and this will be the number of
multiple edges created.

weighted: defines whether to create a weighted graph from the
incidence matrix. If it is ¢{None} then an unweighted
graph is created and the multiple argument is used to
determine the edges of the graph. If it is a string then for
every non-zero matrix entry, an edge is created and the
value of the entry is added as an edge attribute named
by the weighted argument. If it is True then a weighted
graph is created and the name of the edge attribute will
be ‘weight’.

Return Value
the graph with a binary vertex attribute named "type" that stores
the vertex classes.

Raises
ValueError if the weighted and multiple are passed together.

76

Class Graph

Package igraph

DataFrame(directed—True, vertices—=None)

Parameters
edges:

directed:

vertices:

Return Value
the graph

Generates a graph from one or two dataframes.

pandas DataFrame containing edges and metadata
bool setting whether the graph is directed

None (default) or pandas DataFrame containing vertex
metadata. The first column must contain the unique ids
of the vertices and will be set as attribute 'name’. All
other columns will be added as vertex attributes by
column name.

7

Class Graph Package igraph

bipartite projection(self, types=’type’, multiplicity=True, probel —-1,
which="both?)

Projects a bipartite graph into two one-mode graphs. Edge directions are
ignored while projecting.

Examples:

>>> g = Graph.Full_Bipartite(10, 5)
>>> gl, g2 = g.bipartite_projection()
>>> g1.isomorphic(Graph.Full(10))

True

>>> g2.isomorphic(Graph.Full(5))

True

Parameters
types: an igraph vector containing the vertex types, or an
attribute name. Anything that evalulates to False
corresponds to vertices of the first kind, everything
else to the second kind.

multiplicity: if True, then igraph keeps the multiplicity of the
edges in the projection in an edge attribute called
"weight". E.g., if there is an A-C-B and an A-D-B
triplet in the bipartite graph and there is no other X
(apart from X=B and X=D) for which an A-X-B
triplet would exist in the bipartite graph, the
multiplicity of the A-B edge in the projection will
be 2.

probel: this argument can be used to specify the order of
the projections in the resulting list. If given and
non-negative, then it is considered as a vertex ID;
the projection containing the vertex will be the first
one in the result.

which: this argument can be used to specify which of the
two projections should be returned if only one of
them is needed. Passing 0 here means that only the
first projection is returned, while 1 means that only
the second projection is returned. (Note that we use
0 and 1 because Python indexing is zero-based).
False is equivalent to 0 and True is equivalent to 1.
Any other value means that both projections will be
returned in a tuple.

Return Value
a tuple containing the two projected one-mode graphs if which is not
1 or 2, or the projected one-mode graph specified by the which
argument if its value is 0, 1, False or True.

78
Overrides: igraph.GraphBase.bipartite projection

Class Graph Package igraph

bipartite projection size(types="type")

Calculates the number of vertices and edges in the bipartite projections of this
graph according to the specified vertex types. This is useful if you have a
bipartite graph and you want to estimate the amount of memory you would
need to calculate the projections themselves.

Parameters
types: an igraph vector containing the vertex types, or an attribute
name. Anything that evalulates to False corresponds to
vertices of the first kind, everything else to the second kind.

Return Value
a 4-tuple containing the number of vertices and edges in the first
projection, followed by the number of vertices and edges in the
second projection.

Overrides: igraph.GraphBase.bipartite projection size

get incidence(self, types="type")

Returns the incidence matrix of a bipartite graph. The incidence matrix is an
n times m matrix, where n and m are the number of vertices in the two vertex
classes.

Parameters
types: an igraph vector containing the vertex types, or an attribute
name. Anything that evalulates to False corresponds to
vertices of the first kind, everything else to the second kind.

Return Value
the incidence matrix and two lists in a triplet. The first list defines
the mapping between row indices of the matrix and the original
vertex IDs. The second list is the same for the column indices.

Overrides: igraph.GraphBase.get incidence

dfs(self, vid, mode=1)
Conducts a depth first search (DFS) on the graph.

Parameters
vid: the root vertex ID

mode: either IN or OUT or ALL, ignored for undirected graphs.

Return Value
a tuple with the following items:

e The vertex IDs visited (in order)

e The parent of every vertex in the DFS

79

Class Graph Package igraph

__iadd___ (self, other)
In-place addition (disjoint union).

See Also: __add

add __ (self, other)

Copies the graph and extends the copy depending on the type of the other
object given.

Parameters
other: if it is an integer, the copy is extended by the given number
of vertices. If it is a string, the copy is extended by a single
vertex whose name attribute will be equal to the given string.
If it is a tuple with two elements, the copy is extended by a
single edge. If it is a list of tuples, the copy is extended by
multiple edges. If it is a Graph, a disjoint union is performed.

and _ (self, other)

Graph intersection operator.

Parameters
other: the other graph to take the intersection with.

Return Value
the intersected graph.

__isub__ (self, other)
In-place subtraction (difference).

See Also: __sub__

sub_ (self, other)
Removes the given object(s) from the graph

Parameters
other: if it is an integer, removes the vertex with the given ID from
the graph (note that the remaining vertices will get
re-indexed!). If it is a tuple, removes the given edge. If it is
a graph, takes the difference of the two graphs. Accepts lists
of integers or lists of tuples as well, but they can’t be mixed!
Also accepts Edge and EdgeSeq objects.

80

Class Graph Package igraph

mul (self, other)

Copies exact replicas of the original graph an arbitrary number of times.

Parameters
other: if it is an integer, multiplies the graph by creating the given
number of identical copies and taking the disjoint union of
them.

___nonzero__ (self)

Returns True if the graph has at least one vertex, False otherwise.

_or___ (self, other)

Graph union operator.

Parameters
other: the other graph to take the union with.

Return Value
the union graph.

__coerce___ (self, other)

Coercion rules.

This method is needed to allow the graph to react to additions with lists,
tuples, integers, strings, vertices, edges and so on.

__reduce__ (self)

Support for pickling.

Overrides: object. reduce

81

Class Graph Package igraph

__plot_ (self, context, bbox, palette, *args, **kwds)

Plots the graph to the given Cairo context in the given bounding box

The visual style of vertices and edges can be modified at three places in the
following order of precedence (lower indices override higher indices):

1. Keyword arguments of this function (or of plot() which is passed intact
to Graph.__plot__().

2. Vertex or edge attributes, specified later in the list of keyword arguments.
3. igraph-wide plotting defaults (see igraph.config.Configuration)
4. Built-in defaults.

E.g., if the vertex_size keyword attribute is not present, but there exists a
vertex attribute named size, the sizes of the vertices will be specified by that
attribute.

Besides the usual self-explanatory plotting parameters (context, bbox,
palette), it accepts the following keyword arguments:

e autocurve: whether to use curves instead of straight lines for multiple
edges on the graph plot. This argument may be True or False; when
omitted, True is assumed for graphs with less than 10.000 edges and
False otherwise.

e drawer_factory: a subclass of AbstractCairoGraphDrawer which will
be used to draw the graph. You may also provide a function here which
takes two arguments: the Cairo context to draw on and a bounding box
(an instance of BoundingBox). If this keyword argument is missing,
igraph will use the default graph drawer which should be suitable for
most purposes. It is safe to omit this keyword argument unless you need
to use a specific graph drawer.

e keep_aspect_ratio: whether to keep the aspect ratio of the layout that
igraph calculates to place the nodes. True means that the layout will be
scaled proportionally to fit into the bounding box where the graph is to
be drawn but the aspect ratio will be kept the same (potentially leaving
empty space next to, below or above the graph). False means that the
layout will be scaled independently along the X and Y axis in order to fill
the entire bounding box. The default is False.

e layout: the layout to be used. If not an instance of Layout, it will be
passed to Graph.layout to calculate the layout. Note that if you want a
deterministic layout that does not change with every plot, you must
either use a deterministic layout function (like Graph.layout_circle) or
calculate the layout in advance and pass a Layout object here.

e margin: the top, right, bottom, left margins as a 4-tuple. If it has less
than 4 elements or is a single float, the elements will be re-used until the
length is at least 4.

e mark_groups: whether to highligh%ome of the vertex groups by colored
polygons. This argument can be one of the following:

— False: no groups will be highlighted

— A dict mapping tuples of vertex indices to color names. The given

Class Graph Package igraph

str (self)

Returns a string representation of the graph.

Behind the scenes, this method constructs a GraphSummary instance and
invokes its __str__ method with a verbosity of 1 and attribute printing
turned off.

See the documentation of GraphSummary for more details about the output.

Overrides: object. str

summary (self, verbosity=0, width=None, *args, **kwds)

Returns the summary of the graph.

The output of this method is similar to the output of the __str__ method. If
verbosity is zero, only the header line is returned (see __str__ for more

details), otherwise the header line and the edge list is printed.

Behind the scenes, this method constructs a GraphSummary object and invokes
its __str__ method.

Parameters
verbosity: if zero, only the header line is returned (see __str__ for

more details), otherwise the header line and the full
edge list is printed.

width: the number of characters to use in one line. If None, no
limit will be enforced on the line lengths.

Return Value
the summary of the graph.

disjoint _union(self, other)

Creates the disjoint union of two (or more) graphs.

Parameters
graphs: graph or list of graphs to be united with the current one.

Return Value
the disjoint union graph

83

Class Graph

Package igraph

union(self, other)

Creates the union of two (or more) graphs.

Parameters
graphs: graph or list of graphs to be united with the current one.

byname: whether to use vertex names instead of ids. See
igraph.union for details.

Return Value
the union graph

intersection(self, other)

Creates the intersection of two (or more) graphs.

Parameters
other: graph or list of graphs to be intersected with the current
one.

byname: whether to use vertex names instead of ids. See
igraph.intersection for details.

Return Value
the intersection graph

layout fruchterman reingold 3d(*args, **kwds)

Alias for layout_fruchterman_reingold() with dim=3.

See Also: Graph.layout fruchterman reingold()

layout kamada kawai 3d(*args, **kwds)

Alias for layout_kamada_kawai() with dim=3.
See Also: Graph.layout kamada kawai()

layout random 3d(*args, **kwds)

Alias for layout_random() with dim=3.
See Also: Graph.layout random()

layout grid 3d(*args, **kwds)

Alias for layout_grid() with dim=3.
See Also: Graph.layout grid()

84

Class Graph Package igraph

layout sphere(*args, **kwds)

Alias for layout_circle() with dim=3.
See Also: Graph.layout circle()

layout bipartite(types="type", hgap=1, vgap=1, maziter=100)

Place the vertices of a bipartite graph in two layers.

The layout is created by placing the vertices in two rows, according to their
types. The positions of the vertices within the rows are then optimized to
minimize the number of edge crossings using the heuristic used by the
Sugiyama layout algorithm.

Parameters

types: an igraph vector containing the vertex types, or an
attribute name. Anything that evalulates to False
corresponds to vertices of the first kind, everything else to
the second kind.

hgap: minimum horizontal gap between vertices in the same
layer.

vgap: vertical gap between the two layers.

maxiter: maximum number of iterations to take in the crossing
reduction step. Increase this if you feel that you are
getting too many edge crossings.

Return Value
the calculated layout.

Overrides: igraph.GraphBase.layout bipartite

layout circle(dim=2, order—None)

Places the vertices of the graph uniformly on a circle or a sphere.

Parameters
dim: the desired number of dimensions for the layout. dim=2
means a 2D layout, dim=3 means a 3D layout.

order: the order in which the vertices are placed along the circle.
Not supported when dim is not equal to 2.

Return Value
the calculated layout.

Overrides: igraph.GraphBase.layout circle

85

Class Graph Package igraph

layout davidson harel(seed=None, maziter=10, fineiter—-1,
cool_fact=0.75, weight node dist=1.0, weight border=0.0,
weight edge lengths=-1, weight edge crossings=-1,

weight node_ edge dist—-1)

Places the vertices on a 2D plane according to the Davidson-Harel layout
algorithm.

The algorithm uses simulated annealing and a sophisticated energy function,
which is unfortunately hard to parameterize for different graphs. The original
publication did not disclose any parameter values, and the ones below were
determined by experimentation.

The algorithm consists of two phases: an annealing phase and a fine-tuning
phase. There is no simulated annealing in the second phase.

Parameters
seed: if None, uses a random starting layout for
the algorithm. If a matrix (list of lists),
uses the given matrix as the starting
position.

maxiter: Number of iterations to perform in the
annealing phase.

fineiter: Number of iterations to perform in the
fine-tuning phase. Negative numbers set
up a reasonable default from the base-2
logarithm of the vertex count, bounded
by 10 from above.

cool_fact: Cooling factor of the simulated annealing
phase.

weight_node_dist: Weight for the node-node distances in the
energy function.

weight_border: Weight for the distance from the border
component of the energy function. Zero
means that vertices are allowed to sit on
the border of the area designated for the
layout.

weight_edge_lengths: Weight for the edge length component of
the energy function. Negative numbers
are replaced by the density of the graph
divided by 10.

weight_edge_crossings: Weight for the edge crossing component
of the energy function. Negative numbers
are replaced by one minus the square
root of the density of the graph.

weight_node_edge_dist: Weight 8f(ci)r the node-edge distance
component of the energy function.
Negative numbers are replaced by 0.2
minus 0.2 times the density of the graph.

Class Graph Package igraph

layout drl(weights=None, fized=None, seed=None, options=None, dim=2)

Places the vertices on a 2D plane or in the 3D space ccording to the DrL
layout algorithm.

This is an algorithm suitable for quite large graphs, but it can be surprisingly
slow for small ones (where the simpler force-based layouts like
layout_kamada_kawai() or layout_fruchterman_reingold() are more
useful.

Parameters
weights: edge weights to be used. Can be a sequence or iterable or
even an edge attribute name.

seed: if None, uses a random starting layout for the algorithm.
If a matrix (list of lists), uses the given matrix as the
starting position.

fixed: if a seed is given, you can specify some vertices to be kept
fixed at their original position in the seed by passing an
appropriate list here. The list must have exactly as many
items as the number of vertices in the graph. Items of the
list that evaluate to True denote vertices that will not be
moved.

options: if you give a string argument here, you can select from five
default preset parameterisations: default, coarsen for a
coarser layout, coarsest for an even coarser layout,
refine for refining an existing layout and final for
finalizing a layout. If you supply an object that is not a
string, the DrL layout parameters are retrieved from the
respective keys of the object (so it should be a dict or
something else that supports the mapping protocol). The
following keys can be used:

e edge_cut: edge cutting is done in the late stages of
the algorithm in order to achieve less dense layouts.
Edges are cut if there is a lot of stress on them (a large
value in the objective function sum). The edge cutting
parameter is a value between 0 and 1 with 0
representing no edge cutting and 1 representing
maximal edge cutting.

e init_iterations: number of iterations in the
initialization phase

e init_temperature: start temperature during
initialization

e init_attraction: attraction during initialization

e init_damping mult: damping multiplier during
initialization .

e liquid_iterations, liquid_temperature,
liquid_attraction, liquid_damping _mult: same
parameters for the liquid phase

e expansion_iterations, expansion_temperature,

Class Graph Package igraph

layout fruchterman reingold(weights=None, niter=500, seed=None,
start _temp—None, minr—None, maxz—=None, miny—None, mazry—None,
minz=None, mazz=None, grid="auto")

Places the vertices on a 2D plane according to the Fruchterman-Reingold
algorithm.

This is a force directed layout, see Fruchterman, T. M. J. and Reingold, E. M.:
Graph Drawing by Force-directed Placement. Software — Practice and
Experience, 21/11, 1129-1164, 1991

Parameters
weights: edge weights to be used. Can be a sequence or iterable
or even an edge attribute name.
niter: the number of iterations to perform. The default is

500.

start_temp: Real scalar, the start temperature. This is the
maximum amount of movement alloved along one axis,
within one step, for a vertex. Currently it is decreased
linearly to zero during the iteration. The default is the
square root of the number of vertices divided by 10.

minx: if not None, it must be a vector with exactly as many
elements as there are vertices in the graph. Each
element is a minimum constraint on the X value of the
vertex in the layout.

maxx: similar to msnz, but with maximum constraints

miny: similar to minz, but with the Y coordinates

maxy: similar to mazz, but with the Y coordinates

minz: similar to minz, but with the Z coordinates. Use only
for 3D layouts (dim=3).

maxz: similar to mazz, but with the Z coordinates. Use only
for 3D layouts (dim=3).

seed: if None, uses a random starting layout for the

algorithm. If a matrix (list of lists), uses the given
matrix as the starting position.

grid: whether to use a faster, but less accurate grid-based
implementation of the algorithm. "auto" decides
based on the number of vertices in the graph; a grid
will be used if there are at least 1000 vertices. "grid"
is equivalent to True, "nogrid" is equivalent to False.

Return Value
the calculated layout.

Overrides: igraph.GraphBase.layout_frlglghterman_reingold

Class Graph Package igraph

layout graphopt(niter=500, node_ charge=0.001, node_ mass=30,
spring length=0, spring constant=1, max_sa_movement=>5, seed—None)

This is a port of the graphopt layout algorithm by Michael Schmuhl. graphopt
version 0.4.1 was rewritten in C and the support for layers was removed.

graphopt uses physical analogies for defining attracting and repelling forces
among the vertices and then the physical system is simulated until it reaches
an equilibrium or the maximal number of iterations is reached.

See hitp://www.schmuhl.org/graphopt/ for the original graphopt.

Parameters
niter: the number of iterations to perform. Should be a
couple of hundred in general.
node_charge: the charge of the vertices, used to calculate
electric repulsion.
node_mass: the mass of the vertices, used for the spring

forces
spring_length: the length of the springs
spring_constant: the spring constant

max_sa_movement: the maximum amount of movement allowed in a
single step along a single axis.

seed: a matrix containing a seed layout from which
the algorithm will be started. If None, a random
layout will be used.

Return Value
the calculated layout.

Overrides: igraph.GraphBase.layout graphopt

89

http://www.schmuhl.org/graphopt/

Class Graph Package igraph

layout grid(width=0, height=0, dim=2)

Places the vertices of a graph in a 2D or 3D grid.

Parameters
width: the number of vertices in a single row of the layout. Zero or
negative numbers mean that the width should be
determined automatically.

height: the number of vertices in a single column of the layout.
Zero or negative numbers mean that the height should be
determined automatically. It must not be given if the
number of dimensions is 2.

dim: the desired number of dimensions for the layout. dim=2
means a 2D layout, dim=3 means a 3D layout.

Return Value
the calculated layout.

Overrides: igraph.GraphBase.layout grid

90

Class Graph Package igraph

layout kamada kawai(maziter=1000, seed=None, maziter—=1000,
epsilon=0, kkconst=None, minz=None, maxrr—None, miny—=None,
mazy=None, minz—None, mazz—None, dim=2)

Places the vertices on a plane according to the Kamada-Kawai algorithm.

This is a force directed layout, see Kamada, T. and Kawai, S.: An Algorithm
for Drawing General Undirected Graphs. Information Processing Letters,
31/1, 7-15, 1989.

Parameters
maxiter: the maximum number of iterations to perform.

seed: if None, uses a random starting layout for the algorithm.
If a matrix (list of lists), uses the given matrix as the
starting position.

epsilon: quit if the energy of the system changes less than epsilon.
See the original paper for details.

kkconst: the Kamada-Kawail vertex attraction constant. None
means the square of the number of vertices.

minx: if not None, it must be a vector with exactly as many
elements as there are vertices in the graph. Each element
is a minimum constraint on the X value of the vertex in

the layout.

Maxx: similar to minz, but with maximum constraints

miny: similar to minz, but with the Y coordinates

maxy: similar to mazz, but with the Y coordinates

minz: similar to minz, but with the Z coordinates. Use only for
3D layouts (dim=3).

maxz: similar to mazz, but with the Z coordinates. Use only for
3D layouts (dim=3).

dim: the desired number of dimensions for the layout. dim=2

means a 2D layout, dim=3 means a 3D layout.

Return Value
the calculated layout.

Overrides: igraph.GraphBase.layout kamada kawai

91

Class Graph Package igraph

layout lgl(maxiter—=150, maxzdelta—=-1, area=-1, coolexp=1.5,
repulserad—=-1, cellsize=-1, root=None)

Places the vertices on a 2D plane according to the Large Graph Layout.

Parameters

maxiter: the number of iterations to perform.

maxdelta: the maximum distance to move a vertex in an
iteration. If negative, defaults to the number of
vertices.

area: the area of the square on which the vertices will be
placed. If negative, defaults to the number of vertices
squared.

coolexp: the cooling exponent of the simulated annealing.

repulserad: determines the radius at which vertex-vertex repulsion
cancels out attraction of adjacent vertices. If negative,
defaults to area times the number of vertices.

cellsize: the size of the grid cells. When calculating the
repulsion forces, only vertices in the same or
neighboring grid cells are taken into account. Defaults
to the fourth root of area.

root: the root vertex, this is placed first, its neighbors in the
first iteration, second neighbors in the second, etc.
None means that a random vertex will be chosen.

Return Value
the calculated layout.

Overrides: igraph.GraphBase.layout lgl

92

Class Graph Package igraph

layout mds(dist=None, dim=2, arpack_ options=None)

Places the vertices in an Euclidean space with the given number of dimensions
using multidimensional scaling.

This layout requires a distance matrix, where the intersection of row 4 and
column j specifies the desired distance between vertex ¢ and vertex j. The
algorithm will try to place the vertices in a way that approximates the
distance relations prescribed in the distance matrix. igraph uses the classical
multidimensional scaling by Torgerson (see reference below).

For unconnected graphs, the method will decompose the graph into weakly
connected components and then lay out the components individually using the
appropriate parts of the distance matrix.

Parameters

dist: the distance matrix. It must be symmetric and
the symmetry is not checked — results are
unspecified when a non-symmetric distance
matrix is used. If this parameter is None, the
shortest path lengths will be used as distances.
Directed graphs are treated as undirected when
calculating the shortest path lengths to ensure
symmetry.

dim: the number of dimensions. For 2D layouts, supply
2 here; for 3D layouts, supply 3.

arpack_options: an ARPACKOptions object used to fine-tune the
ARPACK eigenvector calculation. If omitted, the
module-level variable called arpack_options is
used.

Return Value
the calculated layout.

Overrides: igraph.GraphBase.layout mds

Reference: Cox & Cox: Multidimensional Scaling (1994), Chapman and Hall,
London.

93

Class Graph Package igraph

layout random(dim=2)

Places the vertices of the graph randomly.

Parameters
dim: the desired number of dimensions for the layout. dim=2 means
a 2D layout, dim=3 means a 3D layout.

Return Value
the coordinate pairs in a list.

Overrides: igraph.GraphBase.layout random

layout reingold _tilford(mode="out", root=None, rootlevel=None)

Places the vertices on a 2D plane according to the Reingold-Tilford layout
algorithm.

This is a tree layout. If the given graph is not a tree, a breadth-first search is
executed first to obtain a possible spanning tree.

Parameters

mode: specifies which edges to consider when builing the tree.
If it is OUT then only the outgoing, if it is IN then only
the incoming edges of a parent are considered. If it is
ALL then all edges are used (this was the behaviour in
igraph 0.5 and before). This parameter also influences
how the root vertices are calculated if they are not
given. See the root parameter.

root: the index of the root vertex or root vertices. if this is a
non-empty vector then the supplied vertex IDs are used
as the roots of the trees (or a single tree if the graph is
connected. If this is None or an empty list, the root
vertices are automatically calculated based on
topological sorting, performed with the opposite of the
mode argument.

rootlevel: this argument is useful when drawing forests which are
not trees. It specifies the level of the root vertices for
every tree in the forest.

Return Value
the calculated layout.

Overrides: igraph.GraphBase.layout reingold _tilford
See Also: layout reingold tilford circular

Reference: EM Reingold, JS Tilford: Tidier Drawings of Trees. IEEE
Transactions on Software Engineering 7:22, 223-228, 1981.

94

Class Graph Package igraph

layout reingold tilford circular(mode="out", root=None,
rootlevel=None)

Circular Reingold-Tilford layout for trees.

This layout is similar to the Reingold-Tilford layout, but the vertices are
placed in a circular way, with the root vertex in the center.
See layout_reingold_tilford for the explanation of the parameters.

Return Value
the calculated layout.

Overrides: igraph.GraphBase.layout reingold tilford circular
See Also: layout reingold tilford

Reference: EM Reingold, JS Tilford: Tidier Drawings of Trees. IEEE
Transactions on Software Engineering 7:22, 223-228, 1981.

layout star(center=0, order=None)

Calculates a star-like layout for the graph.

Parameters
center: the ID of the vertex to put in the center

order: a numeric vector giving the order of the vertices (including
the center vertex!). If it is None, the vertices will be placed
in increasing vertex ID order.

Return Value
the calculated layout.

Overrides: igraph.GraphBase.layout star

Inherited from igraph. GraphBase(Section 1.12)

Adjacency(), Asymmetric_Preference(), Atlas(), Barabasi(), De Bruijn(), De-

gree Sequence(), Erdos_ Renyi(), Establishment(), Famous(), Forest _Fire(), Full(),

Full _Citation(), Growing Random(), Isoclass(), K_Regular(), Kautz(), LCF(),
Lattice(), Preference(), Read DL(), Read Edgelist(), Read GML(), Read GraphDB(),
Read GraphML(), Read Lgl(), Read Ncol(), Read Pajek(), Recent Degree(),

Ring(), SBM(), Star(), Static_ Fitness(), Static_Power Law(), Tree(), Watts Strogatz(),
Weighted Adjacency(), delitem (), getitem (), invert (), _ (),
_setitem (), all_minimal st _separators(), are_connected(), articulation pomts(),

assortativity(), assortativity degree(), assortativity nominal(), attributes(), au-

thority score(), average path length(), betweenness(), bfs(), bfsiter(), bibcou-

pling(), bridges(), canonical permutation(), clique number(), cliques(), closeness(),
cocitation(), complementer(), compose(), constraint(), contract vertices(), con-

vergence degree(), convergence field size(), copy(), coreness(), count isomorphisms_ vf2(),

95

Class Graph Package igraph

count multiple(), count subisomorphisms v{2(), decompose(), degree(), delete vertices(),
density(), dfsiter(), diameter(), difference(), diversity(), dominator(), eccentric-

ity (), ecount(), edge attributes(), edge betweenness(), edge connectivity(), eigen adjacency(),
eigenvector centrality(), farthest points(), feedback arc_set(), get all shortest paths(),
get diameter(), get edgelist(), get eid(), get eids(), get isomorphisms vf2(),

get shortest paths(), get subisomorphisms lad(), get subisomorphisms v{2(),

girth(), has multiple(), hub_score(), incident(), independence number(), inde-

pendent vertex sets(), induced subgraph(), is_bipartite(), is_connected(), is_dag(),
is_directed(), is_loop(),is_minimal separator(),is multiple(), is_mutual(), is_separator(),
is_simple(), isoclass(), isomorphic(), isomorphic_ bliss(), isomorphic_ vf2(), knn(),

laplacian(), largest cliques(), largest _independent vertex sets(), linegraph(), maxde-

gree(), maxflow value(), maximal cliques(), maximal independent vertex sets(),

mincut _value(), minimum_ size separators(), motifs randesu(), motifs randesu estimate(),
motifs randesu no(), neighborhood(), neighborhood size(), neighbors(), permute vertices(),
personalized pagerank(), predecessors(), radius(), random walk(), reciprocity(),

rewire(), rewire edges(), shortest paths(), similarity dice(), similarity inverse log weighted(),
similarity jaccard(), simplify(), strength(), subcomponent(), subgraph edges(),
subisomorphic lad(), subisomorphic_ vf2(), successors(), to_directed(), to prufer(),
to_undirected(), topological _sorting(), transitivity local undirected(), transitiv-

ity undirected(), unfold tree(), vcount(), vertex attributes(), vertex connectivity(),

write dot(), write edgelist(), write gml(), write graphml(), write leda(), write 1gl(),

write ncol(), write pajek()

Inherited from object

__delattr (), format (), _ getattribute (), reduce ex (), _repr (),
~setattr (), sizeof (), subclasshook ()

1.5.2 Properties

Name Description
VS The vertex sequence of the graph
es The edge sequence of the graph
_as_parameter

Inherited from object
__class

1.5.3 Class Variables

Name Description
__iter Value: None
__hash Value: None

96

Class VertexSeq Package igraph

1.6 Class VertexSeq

object T

igraph.drawing.graph. VertexSeq
igraph.VertexSeq
Class representing a sequence of vertices in the graph.

This class is most easily accessed by the vs field of the Graph object, which returns an
ordered sequence of all vertices in the graph. The vertex sequence can be refined by invoking
the VertexSeq.select() method. VertexSeq.select() can also be accessed by simply
calling the VertexSeq object.

An alternative way to create a vertex sequence referring to a given graph is to use the
constructor directly:

>>> g = Graph.Full(3)
>>> vs = VertexSeq(g)
>>> restricted_vs = VertexSeq(g, [0, 1])

The individual vertices can be accessed by indexing the vertex sequence object. It can be
used as an iterable as well, or even in a list comprehension:

>>> g=Graph.Full(3)
>>> for V in g.VS:
v["value"] = v.index ** 2

>>> [V["value"] ¥k 0.5 for Vv in g.VS]
[0.0, 1.0, 2.0]

The vertex set can also be used as a dictionary where the keys are the attribute names.
The values corresponding to the keys are the values of the given attribute for every vertex
selected by the sequence.

>>> g=Graph.Full(3)
>>> for idx, v in enumerate(g.vs):
v["weight"] = idx*(idx+1)

>>> g.vs ["weight"]

[0, 2, 6]

>>> g.vs.select(1,2) ["weignht"] = [10, 20]
>>> g.VS ["weight"]

[0, 10, 20]

If you specify a sequence that is shorter than the number of vertices in the VertexSeq, the
sequence is reused:

97

Class VertexSeq Package igraph

>>> g = Graph.Tree(7, 2)
>>> g.VS["color"] = ["red", "green"]
>>> g.VS ["color"]

[’red’, ’green’, ’red’, ’green’, ’red’, ’green’, ’red’]
You can even pass a single string or integer, it will be considered as a sequence of length 1:

>>> g.vs ["color"] = "red"
>>> g.vs ["color"]

[’red’, ’red’, ’red’, ’red’, ’red’, ’red’, ’red’]

Some methods of the vertex sequences are simply proxy methods to the corresponding meth-
ods in the Graph object. One such example is VertexSeq.degree():

>>> g=Graph.Tree(7, 2)

>>> g.vs.degree()

(2, 3, 3, 1, 1, 1, 1]

>>> g.vs.degree() == g.degree()

True

1.6.1 Methods

attributes(self)

Returns the list of all the vertex attributes in the graph associated to this
vertex sequence.

find(self, *args, **kwds)

Returns the first vertex of the vertex sequence that matches some criteria.

The selection criteria are equal to the ones allowed by VertexSeq.select. See
VertexSeq.select for more details.

For instance, to find the first vertex with name foo in graph g:
>>> g.vs.find (name="foo") #doctest : +SKIP
To find an arbitrary isolated vertex:

>>> g.vs.find(_degree=0) #doctest: +SKIP

Return Value
Vertex

Overrides: igraph.drawing.graph.VertexSeq.find

98

Class VertexSeq Package igraph

select(self, *args, **kwds)

Selects a subset of the vertex sequence based on some criteria

The selection criteria can be specified by the positional and the keyword
arguments. Positional arguments are always processed before keyword
arguments.

e If the first positional argument is None, an empty sequence is returned.

e If the first positional argument is a callable object, the object will be
called for every vertex in the sequence. If it returns True, the vertex will
be included, otherwise it will be excluded.

e If the first positional argument is an iterable, it must return integers and
they will be considered as indices of the current vertex set (NOT the
whole vertex set of the graph — the difference matters when one filters a
vertex set that has already been filtered by a previous invocation of
VertexSeq.select (). In this case, the indices do not refer directly to the
vertices of the graph but to the elements of the filtered vertex sequence.

e If the first positional argument is an integer, all remaining arguments are
expected to be integers. They are considered as indices of the current
vertex set again.

Keyword arguments can be used to filter the vertices based on their attributes.
The name of the keyword specifies the name of the attribute and the filtering
operator, they should be concatenated by an underscore (_) character.
Attribute names can also contain underscores, but operator names don’t, so
the operator is always the largest trailing substring of the keyword name that
does not contain an underscore. Possible operators are:

e eq: equal to

e ne: not equal to

e 1t: less than

e gt: greater than

e le: less than or equal to

e ge: greater than or equal to

e in: checks if the value of an attribute is in a given list

e notin: checks if the value of an attribute is not in a given list

For instance, if you want to filter vertices with a numeric age property larger
than 200, you have to write:

>>> g.vs.select (age_gt=200) #doctest: +SKIP
Similarly, to filter vertices whose type is in a list of predefined types:

>>> liSt_Of_typeS = ["HR", "Finance", "Management"]
>>> g.vs.select(type_in=list_of_types) #doctest: +SKIP

If the operator is omitted, it defaults to eq. For instance, the following selector
selects vertices whose cluster property equals to 2:

Class VertexSeq Package igraph

__call (self, *args, **kwds)

Shorthand notation to select()

This method simply passes all its arguments to VertexSeq.select ().

betweenness(*args, **kwds)

Proxy method to Graph.betweenness ()

This method calls the betweenness () method of the Graph class restricted to
this sequence, and returns the result.

See Also: Graph.betweenness() for details.

bibcoupling(*args, **kwds)

Proxy method to Graph.bibcoupling()

This method calls the bibcoupling() method of the Graph class restricted to
this sequence, and returns the result.

See Also: Graph.bibcoupling() for details.

closeness(*args, **kwds)

Proxy method to Graph.closeness()

This method calls the closeness() method of the Graph class restricted to
this sequence, and returns the result.

See Also: Graph.closeness() for details.

cocitation(*args, **kwds)

Proxy method to Graph.cocitation()

This method calls the cocitation() method of the Graph class restricted to
this sequence, and returns the result.

See Also: Graph.cocitation() for details.

constraint(*args, **kwds)

Proxy method to Graph.constraint ()

This method calls the constraint () method of the Graph class restricted to
this sequence, and returns the result.

See Also: Graph.constraint() for details.

100

Class VertexSeq Package igraph

degree(*args, **kwds)

Proxy method to Graph.degree ()

This method calls the degree () method of the Graph class restricted to this
sequence, and returns the result.

See Also: Graph.degree() for details.

delete(*args, **kwds)

Proxy method to Graph.delete_vertices()

This method calls the delete_vertices() method of the Graph class
restricted to this sequence, and returns the result.

See Also: Graph.delete vertices() for details.

diversity (*args, **kwds)

Proxy method to Graph.diversity()

This method calls the diversity () method of the Graph class restricted to
this sequence, and returns the result.

See Also: Graph.diversity() for details.

eccentricity (*args, **kwds)

Proxy method to Graph.eccentricity()

This method calls the eccentricity() method of the Graph class restricted to
this sequence, and returns the result.

See Also: Graph.eccentricity() for details.

get shortest paths(*args, **kwds)

Proxy method to Graph.get_shortest_paths()

This method calls the get_shortest_paths() method of the Graph class
restricted to this sequence, and returns the result.

See Also: Graph.get shortest paths() for details.

101

Class VertexSeq Package igraph

indegree(*args, **kwds)

Proxy method to Graph.indegree()

This method calls the indegree () method of the Graph class restricted to this
sequence, and returns the result.

See Also: Graph.indegree() for details.

is _minimal separator(*args, **kwds)

Proxy method to Graph.is_minimal_separator()

This method calls the is_minimal_separator () method of the Graph class
restricted to this sequence, and returns the result.

See Also: Graph.is _minimal separator() for details.

is_separator(*args, **kwds)

Proxy method to Graph.is_separator()

This method calls the is_separator () method of the Graph class restricted to
this sequence, and returns the result.

See Also: Graph.is_separator() for details.

isoclass(*args, **kwds)

Proxy method to Graph.isoclass()

This method calls the isoclass() method of the Graph class restricted to this
sequence, and returns the result.

See Also: Graph.isoclass() for details.

maxdegree(*args, **kwds)

Proxy method to Graph.maxdegree ()

This method calls the maxdegree () method of the Graph class restricted to
this sequence, and returns the result.

See Also: Graph.maxdegree() for details.

102

Class VertexSeq Package igraph

outdegree(*args, **kwds)

Proxy method to Graph.outdegree ()

This method calls the outdegree () method of the Graph class restricted to
this sequence, and returns the result.

See Also: Graph.outdegree() for details.

pagerank(*args, **kwds)

Proxy method to Graph.pagerank()

This method calls the pagerank () method of the Graph class restricted to this
sequence, and returns the result.

See Also: Graph.pagerank() for details.

personalized pagerank(*args, **kwds)

Proxy method to Graph.personalized_pagerank()

This method calls the personalized_pagerank() method of the Graph class
restricted to this sequence, and returns the result.

See Also: Graph.personalized pagerank() for details.

shortest paths(*args, **kwds)

Proxy method to Graph.shortest_paths()

This method calls the shortest_paths() method of the Graph class restricted
to this sequence, and returns the result.

See Also: Graph.shortest paths() for details.

similarity dice(*args, **kwds)

Proxy method to Graph.similarity_dice()

This method calls the similarity_dice() method of the Graph class
restricted to this sequence, and returns the result.

See Also: Graph.similarity dice() for details.

103

Class EdgeSeq Package igraph

similarity jaccard(*args, **kwds)

Proxy method to Graph.similarity_jaccard()

This method calls the similarity_jaccard() method of the Graph class
restricted to this sequence, and returns the result.

See Also: Graph.similarity jaccard() for details.

subgraph(*args, **kwds)

Proxy method to Graph.subgraph ()

This method calls the subgraph() method of the Graph class restricted to this
sequence, and returns the result.

See Also: Graph.subgraph() for details.

Inherited from igraph.drawing.graph. VertexSeq

__delitem (), __getitem (), __init_ (), __len_ (), _mew_ (), _setitem (),
attribute _names(), get attribute values(), set attribute values()

Inherited from object

__delattr (), format (), getattribute (), hash (), reduce (),
~ reduce_ex (), _repr_ (), setattr (), sizeof (), str_ (),
__subclasshook ()

1.6.2 Properties
Name \ Description
Inherited from igraph.drawing.graph. VertexSeq
graph, indices
Inherited from object
__class

1.7 Class EdgeSeq

object T
igraph. igraph.EdgeSeq
igraph.EdgeSeq
(Class representing a sequence of edges in the graph.

This class is most easily accessed by the es field of the Graph object, which returns an
ordered sequence of all edges in the graph. The edge sequence can be refined by invoking

104

Class EdgeSeq Package igraph

the EdgeSeq.select () method. EdgeSeq.select() can also be accessed by simply calling
the EdgeSeq object.

An alternative way to create an edge sequence referring to a given graph is to use the
constructor directly:

>>> g = Graph.Full(3)
>>> es = EdgeSeq(g)
>>> restricted_es = EdgeSeq(g, [0, 11)

The individual edges can be accessed by indexing the edge sequence object. It can be used
as an iterable as well, or even in a list comprehension:

>>> g=Graph.Full(3)

>>> for € in g.es:
print e.tuple

o, 1

0, 2)

(1, 2)

>>> [max(e.tuple) for e in g.es]
(1, 2, 2]

The edge sequence can also be used as a dictionary where the keys are the attribute names.
The values corresponding to the keys are the values of the given attribute of every edge in
the graph:

>>> g=Graph.Full(3)
>>> for idx, e in enumerate(g.es):
e["weight"] = idX*(idX"‘l)

>>> g.es["weight"]

(0, 2, 6]

>>> g.es["weight"] = range(3)
>>> g.es["weight"]

o, 1, 2]

If you specify a sequence that is shorter than the number of edges in the EdgeSeq, the
sequence is reused:

>>> g = Graph.Tree(7, 2)
>>> g.eS["color"] = ["red", "green"]
>>> g.es ["color"]

[’red’, ’green’, ’red’, ’green’, ’red’, ’green’]
You can even pass a single string or integer, it will be considered as a sequence of length 1:

>>> g.es ["color"] = "red"

105

Class EdgeSeq Package igraph

>>> g.es ["color"]

[’red’, ’red’, ’red’, ’red’, ’red’, ’red’]

Some methods of the edge sequences are simply proxy methods to the corresponding methods
in the Graph object. One such example is EdgeSeq.is_multiple():

>>> g=Graph(3, [(0,1), (1,0), (1,2)1)

>>> g.es.is_multiple()

[False, True, False]

>>> g.es.is_multiple() == g.is_multiple()

True

1.7.1 Methods

attributes(self)

Returns the list of all the edge attributes in the graph associated to this edge
sequence.

find(self, *args, **kwds)

Returns the first edge of the edge sequence that matches some criteria.

The selection criteria are equal to the ones allowed by VertexSeq.select. See
VertexSeq.select for more details.

For instance, to find the first edge with weight larger than 5 in graph g:

>>> g.es.find(weight_gt=5) #doctest : +SKIP

Return Value
Edge

Overrides: igraph. igraph.EdgeSeq.find

106

Class EdgeSeq Package igraph

select(self, *args, **kwds)

Selects a subset of the edge sequence based on some criteria

The selection criteria can be specified by the positional and the keyword
arguments. Positional arguments are always processed before keyword
arguments.

e If the first positional argument is None, an empty sequence is returned.

e If the first positional argument is a callable object, the object will be
called for every edge in the sequence. If it returns True, the edge will be
included, otherwise it will be excluded.

e If the first positional argument is an iterable, it must return integers and
they will be considered as indices of the current edge set (NOT the whole
edge set of the graph — the difference matters when one filters an edge set
that has already been filtered by a previous invocation of
EdgeSeq.select (). In this case, the indices do not refer directly to the
edges of the graph but to the elements of the filtered edge sequence.

e If the first positional argument is an integer, all remaining arguments are
expected to be integers. They are considered as indices of the current
edge set again.

Keyword arguments can be used to filter the edges based on their attributes

and properties. The name of the keyword specifies the name of the attribute
and the filtering operator, they should be concatenated by an underscore (_)
character. Attribute names can also contain underscores, but operator names
don’t, so the operator is always the largest trailing substring of the keyword

name that does not contain an underscore. Possible operators are:

e eq: equal to

e ne: not equal to

e 1t: less than

e gt: greater than

e le: less than or equal to

e ge: greater than or equal to

e in: checks if the value of an attribute is in a given list

e notin: checks if the value of an attribute is not in a given list

For instance, if you want to filter edges with a numeric weight property larger
than 50, you have to write:

>>> g.es.select(weight_gt=50) #doctest: +SKIP
Similarly, to filter edges whose type is in a list of predefined types:

>>> liSt_Of_typeS = ["inhibitory", "excitatory"]
>>> g.es.select(type_in=list_of_tyP&s) #doctest: +SKIP

If the operator is omitted, it defaults to eq. For instance, the following selector
selects edges whose type property is intracluster:

Class EdgeSeq Package igraph

__call (self, *args, **kwds)

Shorthand notation to select()

This method simply passes all its arguments to EdgeSeq.select().

count multiple(*args, **kwds)

Proxy method to Graph.count_multiple()

This method calls the count_multiple() method of the Graph class restricted
to this sequence, and returns the result.

See Also: Graph.count multiple() for details.

delete(*args, **kwds)

Proxy method to Graph.delete_edges()

This method calls the delete_edges () method of the Graph class restricted to
this sequence, and returns the result.

See Also: Graph.delete edges() for details.

edge betweenness(*args, **kwds)

Proxy method to Graph.edge_betweenness ()

This method calls the edge_betweenness() method of the Graph class
restricted to this sequence, and returns the result.

See Also: Graph.edge betweenness() for details.

is_loop(*args, **kwds)

Proxy method to Graph.is_loop()

This method calls the is_loop() method of the Graph class restricted to this
sequence, and returns the result.

See Also: Graph.is loop() for details.

is _multiple(*args, **kwds)

Proxy method to Graph.is_multiple()

This method calls the is_multiple() method of the Graph class restricted to
this sequence, and returns the result.

See Also: Graph.is multiple() for details.

108

Class ARPACKOptions Package igraph

is__mutual(*args, **kwds)

Proxy method to Graph.is_mutual()

This method calls the is_mutual () method of the Graph class restricted to
this sequence, and returns the result.

See Also: Graph.is_ mutual() for details.

subgraph(*args, **kwds)

Proxy method to Graph.subgraph_edges ()

This method calls the subgraph_edges () method of the Graph class restricted
to this sequence, and returns the result.

See Also: Graph.subgraph edges() for details.

Inherited from igraph. igraph.EdgeSeq

__delitem (), __getitem (), __init_ (), __len_ (), _mew_ (), _setitem (),

attribute_names(), get_attribute_values(), is_all(), set_attribute_values()
Inherited from object

__delattr (), format (), getattribute (), hash (), reduce (),
~ reduce_ex (), _repr_ (), setattr (), sizeof (), str_ (),
__subclasshook ()

1.7.2 Properties
Name \ Description
Inherited from igraph. igraph.EdgeSeq
graph, indices
Inherited from object
__class

1.8 Class ARPACKOptions

object
igraph. ARPACKOptions
Class representing the parameters of the ARPACK module.

ARPACK is a Fortran implementation of the implicitly restarted Arnoldi method, an algo-
rithm for calculating some of the eigenvalues and eigenvectors of a given matrix. igraph uses
this package occasionally, and this class can be used to fine-tune the behaviour of ARPACK
in such cases.

109

Class ARPACKOptions

Package igraph

The class has several attributes which are not documented here, since they are usually of
marginal use to the ordinary user. See the source code of the original ARPACK Fortran
package (especially the file dsaupd.f) for a detailed explanation of the parameters. Only
the most basic attributes are explained here.

otherwise.

Most of them are read only unless stated

bmat: type of the eigenproblem solved. ’I’ means standard eigenproblem (A*x

lambda*x), >G’ means generalized eigenproblem (A*x = lambda*B*x

n: dimension of the eigenproblem

tol: precision. If less than or equal to zero, the standard machine precision is used as

).

computed by the LAPACK utility called dlamch. This can be modified.

mxiter: maximum number of update iterations to take. This can be modified. You can

also use maxiter.

iter: actual number of update iterations taken
numop: total number of OP*x operations

numopb: total number of B*x operations if bmat is ’G’

numreo: total number of steps of re-orthogonalization

1.8.1 Methods

new (7,5, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

str ()

str(x)

Overrides: object. str

Inherited from object

_delattr (), format (), _ getattribute (), _hash (),
__reduce__ (), __reduce_ex_ (), __repr_ (), __setattr__ (),
__subclasshook ()

1.8.2 Properties

~init (),

__sizeof (),

Name \ Description

Inherited from object
__class

110

Class DFSIter

Package igraph

1.9 Class BFSIter

object
igraph.BFSIter

igraph BFS iterator object

1.9.1 Methods

__iter ()

iter(x)

next(z)

Return Value

the next value, or raise Stoplteration

Inherited from object

__delattr (), format (), getattribute (), _hash (), _init_ (),
_ new_ (), reduce (), reduce ex (), repr (), setattr (),
_ sizeof (), _str_ (), subclasshook ()
1.9.2 Properties
Name Description
Inherited from object

__class

1.10 Class DFSIter

object
igraph.DFSIter

igraph DF'S iterator object

1.10.1 Methods

__iter (=)

iter(x) B

next(z)

Return Value

the next value, or raise Stoplteration

111

Class Edge Package igraph

Inherited from object

__delattr (), format (), getattribute (), _hash (), _init (),
~ new_ (), reduce (), reduce ex (), repr (), setattr (),
__sizeof (), __str__ (), __subclasshook ()

1.10.2 Properties

Name \ Description
Inherited from object
__class

1.11 Class Edge

object
igraph.Edge
(Class representing a single edge in a graph.

The edge is referenced by its index, so if the underlying graph changes, the semantics of the
edge object might change as well (if the edge indices are altered in the original graph).

The attributes of the edge can be accessed by using the edge as a hash:

>>> e["weight"] = 2 #doctest: +SKIP
>>> print €["weight"] #doctest: +SKIP
2

1.11.1 Methods

__delitem (z, y)

del x|y]
_eq__(z,y)
X==y
ge (z,9)
X>=y

__getitem (z, y)

x|y]

112

Class Edge Package igraph

__gt__(zy)
X>y

__hash (2)
hash(x)

Overrides: object. hash

__le__(zy)
X<=y
_len (2)
len(x)

__ It (%)
X<y
__ne__(%y)
x!=y
__repr___(z)
repr(x)
Overrides: object. repr

__setitem (7,4, y)

xli]=y

attribute names()

Returns the list of edge attribute names

Return Value
list

attributes()

Returns a dict of attribute names and values for the edge

Return Value
dict

113

Class Edge Package igraph

count multiple(...)

Proxy method to Graph.count_multiple()

This method calls the count multiple method of the Graph class with this
edge as the first argument, and returns the result.

See Also: Graph.count multiple() for details.

delete(...)
Proxy method to Graph.delete_edges()

This method calls the delete edges method of the Graph class with this edge
as the first argument, and returns the result.

See Also: Graph.delete edges() for details.

is_loop(...)

Proxy method to Graph.is_loop()

This method calls the is loop method of the Graph class with this edge as the
first argument, and returns the result.

See Also: Graph.is_loop() for details.

is_multiple(...)

Proxy method to Graph.is_multiple()

This method calls the is _multiple method of the Graph class with this edge as
the first argument, and returns the result.

See Also: Graph.is_multiple() for details.

is_mutual(...)

Proxy method to Graph.is_mutual()

This method calls the is_mutual method of the Graph class with this edge as
the first argument, and returns the result.

See Also: Graph.is mutual() for details.

114

Class GraphBase Package igraph

update attributes(E, **F)
Updates the attributes of the edge from dict/iterable E and F.

If E has a keys() method, it does: for k in E: self[k] = E[k]. If E lacks
a keys() method, it does: for (k, v) in E: self[k] = v. In either case,
this is followed by: for k in F: self[k] = F[k].

This method thus behaves similarly to the update () method of Python
dictionaries.

Return Value
None

Inherited from object

__delattr (), format (), getattribute (), _init (), new (),
~reduce_ (), reduce ex (), setattr (), sizeof (), _str (),
__subclasshook ()

1.11.2 Properties

Name Description
graph The graph the edge belongs to
index Index of this edge
source Source vertex index of this edge
source _vertex Source vertex of this edge
target Target vertex index of this edge
target vertex Target vertex of this edge
tuple Source and target vertex index of this edge as a
tuple
vertex tuple Source and target vertex of this edge as a tuple
Inherited from object
__class

1.12 Class GraphBase

object
igraph.GraphBase
Known Subclasses: igraph.Graph
Low-level representation of a graph.

Don’t use it directly, use igraph.Graph instead.

115

Class GraphBase Package igraph

1.12.1 Methods

Adjacency(matriz, mode—ADJ_DIRECTED)

Generates a graph from its adjacency matrix.

Parameters
matrix: the adjacency matrix

mode: the mode to be used. Possible values are:
e ADJ_DIRECTED - the graph will be directed and a matrix
element gives the number of edges between two vertex.
e ADJ_UNDIRECTED - alias to ADJ_MAX for convenience.

e ADJ_MAX - undirected graph will be created and the
number of edges between vertex i and j is max(A(1,j),

A(j,i)

e ADJ_MIN - like ADJ_MAX, but with min(A(i,5), A(j,i))

e ADJ_PLUS - like ADJ_MAX, but with A(i,j) + A(j,1)

e ADJ_UPPER - undirected graph with the upper right
triangle of the matrix (including the diagonal)

e ADJ_LOWER - undirected graph with the lower left
triangle of the matrix (including the diagonal)

These values can also be given as strings without the ADJ
prefix.

116

Class GraphBase Package igraph

Asymmetric_ Preference(n, type_ dist_matriz, pref matriz,
attribute=None, loops—False)

Generates a graph based on asymmetric vertex types and connection
probabilities.

This is the asymmetric variant of Graph.Preference. A given number of
vertices are generated. Every vertex is assigned to an "incoming" and an
"outgoing" vertex type according to the given joint type probabilities. Finally,
every vertex pair is evaluated and a directed edge is created between them
with a probability depending on the "outgoing" type of the source vertex and
the "incoming" type of the target vertex.

Parameters
n: the number of vertices in the graph

type_dist_matrix: matrix giving the joint distribution of vertex

types

pref_matrix: matrix giving the connection probabilities for
different vertex types.

attribute: the vertex attribute name used to store the
vertex types. If None, vertex types are not
stored.

loops: whether loop edges are allowed.

Atlas(idz)

Generates a graph from the Graph Atlas.

Parameters
idx: The index of the graph to be generated. Indices start from
zero, graphs are listed:

1. in increasing order of number of vertices;

2. for a fixed number of vertices, in increasing order of the
number of edges;

3. for fixed numbers of vertices and edges, in increasing order
of the degree sequence, for example 111223 < 112222;

4. for fixed degree sequence, in increasing number of
automorphisms.

Reference: An Atlas of Graphs by Ronald C. Read and Robin J. Wilson,
Oxford University Press, 1998.

117

Class GraphBase Package igraph

Barabasi(n, m, outpref =False, directed=False, power=1, zero appeal=1,
implementation="psumtree", start from—=None)

Generates a graph based on the Barabasi-Albert model.

Parameters

n: the number of vertices

m: either the number of outgoing edges generated for
each vertex or a list containing the number of
outgoing edges for each vertex explicitly.

outpref: True if the out-degree of a given vertex should
also increase its citation probability (as well as its
in-degree), but it defaults to False.

directed: True if the generated graph should be directed
(default: False).

power: the power constant of the nonlinear model. It can
be omitted, and in this case the usual linear
model will be used.

zero_appeal: the attractivity of vertices with degree zero.

implementation: the algorithm to use to generate the network.
Possible values are:

e "bag": the algorithm that was the default in
igraph before 0.6. It works by putting the ids
of the vertices into a bag (multiset) exactly as
many times as their in-degree, plus once more.
The required number of cited vertices are then
drawn from the bag with replacement. It
works only for power=1 and zero_appeal=1.

e "psumtree": this algorithm uses a partial
prefix-sum tree to generate the graph. It does
not generate multiple edges and it works for
any values of power and zero_ appeal.

e "psumtree_multiple": similar to
"psumtree", but it will generate multiple
edges as well. igraph before 0.6 used this
algorithm for powers other than 1.

start_from: if given and not None, this must be another Graph
object. igraph will use this graph as a starting
point for the preferential attachment model.

Reference: Barabasi, A-L. and Albert, R. 1999. Emergence of scaling in
random networks. Science, 286 509-512.

118

Class GraphBase Package igraph

De Bruijn(m, n)

Generates a de Bruijn graph with parameters (m, n)

A de Bruijn graph represents relationships between strings. An alphabet of m
letters are used and strings of length n are considered. A vertex corresponds
to every possible string and there is a directed edge from vertex v to vertex w
if the string of v can be transformed into the string of w by removing its first
letter and appending a letter to it.

Please note that the graph will have m “n vertices and even more edges, so
probably you don’t want to supply too big numbers for m and n.

Parameters
m: the size of the alphabet

n: the length of the strings

119

Class GraphBase Package igraph

Degree Sequence(out, in=None, method="simple")

Generates a graph with a given degree sequence.

Parameters
out: the out-degree sequence for a directed graph. If the
in-degree sequence is omitted, the generated graph will be
undirected, so this will be the in-degree sequence as well

in: the in-degree sequence for a directed graph. If omitted, the
generated graph will be undirected.

method: the generation method to be used. One of the following:

e "simple" — simple generator that sometimes generates
loop edges and multiple edges. The generated graph is
not guaranteed to be connected.

e "no_multiple" — similar to "simple" but avoids the
generation of multiple and loop edges at the expense of
increased time complexity. The method will re-start the
generation every time it gets stuck in a configuration
where it is not possible to insert any more edges
without creating loops or multiple edges, and there is
no upper bound on the number of iterations, but it will
succeed eventually if the input degree sequence is
graphical and throw an exception if the input degree
sequence is not graphical.

e "y1" — a more sophisticated generator that can sample
undirected, connected simple graphs uniformly. It uses
Monte-Carlo methods to randomize the graphs. This
generator should be favoured if undirected and
connected graphs are to be generated and execution
time is not a concern. igraph uses the original
implementation of Fabien Viger; see the following URL
and the paper cited on it for the details of the
algorithm:
http:/ /www-rp.lip6.fr/ "latapy/FV /generation.html.

120

http://www-rp.lip6.fr/~latapy/FV/generation.html

Class GraphBase Package igraph

Erdos Renyi(n, p, m, directed=False, loops=False)

Generates a graph based on the Erdos-Renyi model.

Parameters
n: the number of vertices.
p: the probability of edges. If given, m must be missing.
m: the number of edges. If given, p must be missing.

directed: whether to generate a directed graph.

loops: whether self-loops are allowed.

Establishment(n, k, type_ dist, pref matriz, directed—False)

Generates a graph based on a simple growing model with vertex types.

A single vertex is added at each time step. This new vertex tries to connect to
k vertices in the graph. The probability that such a connection is realized
depends on the types of the vertices involved.

Parameters
n: the number of vertices in the graph
k: the number of connections tried in each step

type_dist: list giving the distribution of vertex types

pref_matrix: matrix (list of lists) giving the connection
probabilities for different vertex types

directed: whether to generate a directed graph.

Famous(name)

Generates a famous graph based on its name.

Several famous graphs are known to igraph including (but not limited to) the
Chvatal graph, the Petersen graph or the Tutte graph. This method generates
one of them based on its name (case insensitive). See the documentation of
the C interface of igraph for the names available: http://igraph.org/doc/c.

Parameters
name: the name of the graph to be generated.

121

http://igraph.org/doc/c

Class GraphBase Package igraph

Forest Fire(n, fw_prob, bw_ factor=0.0, ambs=1, directed—False)

Generates a graph based on the forest fire model

The forest fire model is a growing graph model. In every time step, a new
vertex is added to the graph. The new vertex chooses an ambassador (or more
than one if ambs>1) and starts a simulated forest fire at its ambassador(s).
The fire spreads through the edges. The spreading probability along an edge is
given by fw_prob. The fire may also spread backwards on an edge by
probability fw_prob * bw_factor. When the fire ended, the newly added
vertex connects to the vertices “burned” in the previous fire.

Parameters
n: the number of vertices in the graph

fw_prob: forward burning probability
bw_factor: ratio of backward and forward burning probability
ambs : number of ambassadors chosen in each step

directed: whether the graph will be directed

Full(n, directed=False, loops—False)

Generates a full graph (directed or undirected, with or without loops).

Parameters
n: the number of vertices.

directed: whether to generate a directed graph.

loops: whether self-loops are allowed.

Full Citation(n, directed—=False)

Generates a full citation graph
A full citation graph is a graph where the vertices are indexed from 0 to n-1
and vertex ¢ has a directed edge towards all vertices with an index less than 1.

Parameters
n: the number of vertices.

directed: whether to generate a directed graph.

122

Class GraphBase Package igraph

Growing Random(n, m, directed=False, citation—=False)

Generates a growing random graph.

Parameters
n: The number of vertices in the graph
m: The number of edges to add in each step (after adding a

new vertex)
directed: whether the graph should be directed.

citation: whether the new edges should originate from the most
recently added vertex.

Isoclass(n, class, directed=False)

Generates a graph with a given isomorphism class.

Parameters
n: the number of vertices in the graph (3 or 4)
class: the isomorphism class

directed: whether the graph should be directed.

K Regular(n, k, directed=False, multiple=False)

Generates a k-regular random graph

A k-regular random graph is a random graph where each vertex has degree k.
If the graph is directed, both the in-degree and the out-degree of each vertex

will be k.
Parameters
n: The number of vertices in the graph
k: The degree of each vertex if the graph is undirected, or

the in-degree and out-degree of each vertex if the graph
is directed

directed: whether the graph should be directed.

multiple: whether it is allowed to create multiple edges.

123

Class GraphBase Package igraph

Kautz(m, n)

Generates a Kautz graph with parameters (m, n)

A Kautz graph is a labeled graph, vertices are labeled by strings of length n-+1
above an alphabet with m+1 letters, with the restriction that every two
consecutive letters in the string must be different. There is a directed edge
from a vertex v to another vertex w if it is possible to transform the string of v
into the string of w by removing the first letter and appending a letter to it.

Parameters
m: the size of the alphabet minus one

n: the length of the strings minus one

LCF(n, shifts, repeats)

Generates a graph from LCF notation.

LCF is short for Lederberg-Coxeter-Frucht, it is a concise notation for
3-regular Hamiltonian graphs. It consists of three parameters, the number of
vertices in the graph, a list of shifts giving additional edges to a cycle
backbone and another integer giving how many times the shifts should be
performed. See http://mathworld.wolfram.com/LCFNotation.html for details.

Parameters
n: the number of vertices

shifts: the shifts in a list or tuple

repeats: the number of repeats

Lattice(dim, nei=1, directed=False, mutual=True, circular=True)

Generates a regular lattice.

Parameters
dim: list with the dimensions of the lattice
nei: value giving the distance (number of steps) within which

two vertices will be connected.
directed: whether to create a directed graph.

mutual: whether to create all connections as mutual in case of a
directed graph.

circular: whether the generated lattice is periodic.

124

http://mathworld.wolfram.com/LCFNotation.html

Class GraphBase Package igraph

Preference(n, type dist, pref matriz, attribute—=None, directed—False,
loops=False)

Generates a graph based on vertex types and connection probabilities.

This is practically the nongrowing variant of Graph.Establishment. A given
number of vertices are generated. Every vertex is assigned to a vertex type
according to the given type probabilities. Finally, every vertex pair is
evaluated and an edge is created between them with a probability depending
on the types of the vertices involved.

Parameters
n: the number of vertices in the graph

type_dist: list giving the distribution of vertex types

pref_matrix: matrix giving the connection probabilities for
different vertex types.

attribute: the vertex attribute name used to store the vertex
types. If None, vertex types are not stored.

directed: whether to generate a directed graph.

loops: whether loop edges are allowed.

Read DIMACS(f, directed—=False)

Reads a graph from a file conforming to the DIMACS minimum-cost flow file
format.

For the exact description of the format, see
http://Ipsolve.sourceforge.net/5.5/DIMACS.htm

Restrictions compared to the official description of the format:

e igraph’s DIMACS reader requires only three fields in an arc definition,
describing the edge’s source and target node and its capacity.

e Source vertices are identified by ’s’ in the FLOW field, target vertices are
identified by 't’.
e Node indices start from 1. Only a single source and target node is allowed.

Parameters
f: the name of the file or a Python file handle

directed: whether the generated graph should be directed.

Return Value
the generated graph, the source and the target of the flow and the
edge capacities in a tuple

125

http://lpsolve.sourceforge.net/5.5/DIMACS.htm

Class GraphBase Package igraph

Read DL(f, directed=True)
Reads an UCINET DL file and creates a graph based on it.

Parameters
f: the name of the file or a Python file handle

directed: whether the generated graph should be directed.

Read Edgelist(f, directed=True)

Reads an edge list from a file and creates a graph based on it.
Please note that the vertex indices are zero-based. A vertex of zero degree will
be created for every integer that is in range but does not appear in the edgelist.

Parameters
f: the name of the file or a Python file handle

directed: whether the generated graph should be directed.

Read GML(f)
Reads a GML file and creates a graph based on it.

Parameters
f: the name of the file or a Python file handle

Read GraphDB(f, directed=False)
Reads a GraphDB format file and creates a graph based on it.

GraphDB is a binary format, used in the graph database for isomorphism
testing (see http://amalfi.dis.unina.it/graph/).

Parameters
f: the name of the file or a Python file handle

directed: whether the generated graph should be directed.

Read GraphML(f, directed=True, index=0)

Reads a GraphML format file and creates a graph based on it.

Parameters
f: the name of the file or a Python file handle

index: if the GraphML file contains multiple graphs, specifies the
one that should be loaded. Graph indices start from zero, so
if you want to load the first graph, specify 0 here.

126

http://amalfi.dis.unina.it/graph/

Class GraphBase Package igraph

Read Lgl(f, names=True, weights="if _present", directed=True)
Reads an .lgl file used by LGL.

It is also useful for creating graphs from "named" (and optionally weighted)
edge lists.

This format is used by the Large Graph Layout program. See the
documentation of LGL* regarding the exact format description.

LGL originally cannot deal with graphs containing multiple or loop edges, but
this condition is not checked here, as igraph is happy with these.

Parameters
f: the name of the file or a Python file handle
names: If True, the vertex names are added as a vertex attribute

called 'name’.

weights: If True, the edge weights are added as an edge attribute
called 'weight’, even if there are no weights in the file. If
False, the edge weights are never added, even if they are
present. "auto" or "if _present" means that weights
are added if there is at least one weighted edge in the
input file, but they are not added otherwise.

directed: whether the graph being created should be directed

%http://bioinformatics.icmb.utexas.edu/1gl/

127

http://bioinformatics.icmb.utexas.edu/lgl/

Class GraphBase Package igraph

Read Ncol(f, names=True, weights="if _present", directed=True)

Reads an .ncol file used by LGL.

It is also useful for creating graphs from "named" (and optionally weighted)
edge lists.

This format is used by the Large Graph Layout program. See the
documentation of LGL* regarding the exact format description.

LGL originally cannot deal with graphs containing multiple or loop edges, but
this condition is not checked here, as igraph is happy with these.

Parameters
f: the name of the file or a Python file handle
names: If True, the vertex names are added as a vertex attribute

called 'name’.

weights: If True, the edge weights are added as an edge attribute
called 'weight’, even if there are no weights in the file. If
False, the edge weights are never added, even if they are
present. "auto" or "if _present" means that weights
are added if there is at least one weighted edge in the
input file, but they are not added otherwise.

directed: whether the graph being created should be directed

%http://bioinformatics.icmb.utexas.edu/1gl/

Read Pajek(f)

Reads a Pajek format file and creates a graph based on it.

Parameters
f: the name of the file or a Python file handle

128

http://bioinformatics.icmb.utexas.edu/lgl/

Class GraphBase

Package igraph

Recent Degree(n, m, window, outpref =False, directed=False, power=1)

window.

Parameters
n:

m:

window:

outpref:

directed:

power:

Generates a graph based on a stochastic model where the probability of an
edge gaining a new node is proportional to the edges gained in a given time

the number of vertices

either the number of outgoing edges generated for each
vertex or a list containing the number of outgoing edges
for each vertex explicitly.

size of the window in time steps

True if the out-degree of a given vertex should also
increase its citation probability (as well as its in-degree),
but it defaults to False.

True if the generated graph should be directed (default:
False).

the power constant of the nonlinear model. It can be
omitted, and in this case the usual linear model will be
used.

Ring(n, directed=False, mutual=False, circular=True)

Parameters
n:

directed:

mutual:

circular:

Generates a ring graph.

the number of vertices in the ring
whether to create a directed ring.
whether to create mutual edges in a directed ring.

whether to create a closed ring.

129

Class GraphBase Package igraph

SBM(n, pref matriz, block sizes, directed—=False, loops—False)

Generates a graph based on a stochastic blockmodel.

A given number of vertices are generated. Every vertex is assigned to a vertex
type according to the given block sizes. Vertices of the same type will be
assigned consecutive vertex IDs. Finally, every vertex pair is evaluated and an
edge is created between them with a probability depending on the types of the
vertices involved. The probabilities are taken from the preference matrix.

Parameters
n: the number of vertices in the graph

pref_matrix: matrix giving the connection probabilities for
different vertex types.

block_sizes: list giving the number of vertices in each block; must
sum up to n.

directed: whether to generate a directed graph.

loops: whether loop edges are allowed.

Star(n, mode="undirected", center=0)

Generates a star graph.

Parameters
n: the number of vertices in the graph

mode: Gives the type of the star graph to create. Should be either

"in", "out", "mutual" or "undirected"

center: Vertex ID for the central vertex in the star.

130

Class GraphBase

Package igraph

multiple=False)

Static Fitness(m

, fitness _out, fitness_in—=None, loops=False,

fitnesses.

Parameters
m:

fitness_out:

fitness_in:

loops:
multiple:

Return Value

distributions.

Generates a non-growing graph with edge probabilities proportional to node

The algorithm randomly selects vertex pairs and connects them until the given
number of edges are created. Each vertex is selected with a probability
proportional to its fitness; for directed graphs, a vertex is selected as a source
proportional to its out-fitness and as a target proportional to its in-fitness.

the number of edges in the graph

a numeric vector with non-negative entries, one for
each vertex. These values represent the fitness scores
(out-fitness scores for directed graphs). fitness is an
alias of this keyword argument.

a numeric vector with non-negative entries, one for
each vertex. These values represent the in-fitness
scores for directed graphs. For undirected graphs,
this argument must be None.

whether loop edges are allowed.

whether multiple edges are allowed.

a directed or undirected graph with the prescribed power-law degree

131

Class GraphBase Package igraph

Static Power Law(n, m, exponent_out, exponent_in—=-1, loops=False,
multiple=False, finite size_correction=True)

Generates a non-growing graph with prescribed power-law degree distributions.

Parameters
n: the number of vertices in the graph

m: the number of edges in the graph

exponent_out: the exponent of the out-degree
distribution, which must be between 2
and infinity (inclusive). When
exponent 1n is not given or negative,
the graph will be undirected and this
parameter specifies the degree
distribution. exponent is an alias to this
keyword argument.

exponent_in: the exponent of the in-degree
distribution, which must be between 2
and infinity (inclusive) It can also be
negative, in which case an undirected
graph will be generated.

loops: whether loop edges are allowed.
multiple: whether multiple edges are allowed.

finite_size_correction: whether to apply a finite-size correction
to the generated fitness values for
exponents less than 3. See the paper of
Cho et al for more details.

Return Value
a directed or undirected graph with the prescribed power-law degree
distributions.

Reference:

e Goh K-I, Kahng B, Kim D: Universal behaviour of load
distribution in scale-free networks. Phys Rev Lett
87(27):278701, 2001.

e Cho YS, Kim JS, Park J, Kahng B, Kim D: Percolation

transitions in scale-free networks under the Achlioptas process.
Phys Rev Lett 103:135702, 2009.

132

Class GraphBase Package igraph

Tree(n, children, type—TREE_UNDIRECTED)

Generates a tree in which almost all vertices have the same number of children.

Parameters
n: the number of vertices in the graph

children: the number of children of a vertex in the graph

type: determines whether the tree should be directed, and if
this is the case, also its orientation. Must be one of
TREE_IN, TREE_OUT and TREE_UNDIRECTED.

Watts Strogatz(dim, size, nei, p, loops=False, multiple=False)

Parameters
dim: the dimension of the lattice
size: the size of the lattice along all dimensions
nei: value giving the distance (number of steps) within which
two vertices will be connected.
p: rewiring probability
loops: specifies whether loop edges are allowed

multiple: specifies whether multiple edges are allowed
See Also: Lattice(), rewire(), rewire_edges () if more flexibility is needed

Reference: Duncan J Watts and Steven H Strogatz: Collective dynamics of
small world networks, Nature 393, 440-442, 1998

133

Class GraphBase Package igraph

Weighted Adjacency(matriz, mode—=ADJ_DIRECTED, attr—"weight",
loops=True)

Generates a graph from its adjacency matrix.

Parameters
matrix: the adjacency matrix

mode: the mode to be used. Possible values are:
e ADJ_DIRECTED - the graph will be directed and a matrix
element gives the number of edges between two vertex.
e ADJ_UNDIRECTED - alias to ADJ_MAX for convenience.

e ADJ_MAX - undirected graph will be created and the
number of edges between vertex i and j is max(A(i,j),

A(j,i))
e ADJ_MIN - like ADJ_MAX, but with min(A(i,j), A(ji))
e ADJ_PLUS - like ADJ_MAX, but with A(%,j) + A(j.i)

e ADJ_UPPER - undirected graph with the upper right
triangle of the matrix (including the diagonal)

e ADJ_LOWER - undirected graph with the lower left
triangle of the matrix (including the diagonal)

These values can also be given as strings without the ADJ
prefix.

attr: the name of the edge attribute that stores the edge weights.

loops: whether to include loop edges. When False, the diagonal
of the adjacency matrix will be ignored.

__delitem (z, y)
del x|y]

__getitem (z, y)

x|y]

__init (...)

X. _init_ (...) initializes x; see help(type(x)) for signature

Overrides: object. init

__invert (z)

X

134

Class GraphBase Package igraph

_ _mnew_ (T, S, ..)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

__setitem (7,4, y)

xli]=y

str (z)

str(x)

Overrides: object. str

add edges(es)
Adds edges to the graph.

Parameters
es: the list of edges to be added. Every edge is represented with a
tuple, containing the vertex IDs of the two endpoints. Vertices
are enumerated from zero.

add vertices(n)

Adds vertices to the graph.

Parameters
n: the number of vertices to be added

all minimal st separators()

Returns a list containing all the minimal s-t separators of a graph.

A minimal separator is a set of vertices whose removal disconnects the graph,
while the removal of any subset of the set keeps the graph connected.

Return Value
a list where each item lists the vertex indices of a given minimal s-t
separator.

Reference: Anne Berry, Jean-Paul Bordat and Olivier Cogis: Generating all
the minimal separators of a graph. In: Peter Widmayer, Gabriele Neyer and
Stephan Eidenbenz (eds.): Graph-theoretic concepts in computer science,
1665, 167-172, 1999. Springer.

135

Class GraphBase Package igraph

all st cuts(source, target)

Returns all the cuts between the source and target vertices in a directed graph.

This function lists all edge-cuts between a source and a target vertex. Every
cut is listed exactly once.

Parameters
source: the source vertex ID

target: the target vertex ID

Return Value
a tuple where the first element is a list of lists of edge IDs
representing a cut and the second element is a list of lists of vertex
IDs representing the sets of vertices that were separated by the cuts.

Attention: this function has a more convenient interface in class Graph which
wraps the result in a list of Cut objects. It is advised to use that.

all st mincuts(source, target)

Returns all minimum cuts between the source and target vertices in a directed
graph.

Parameters
source: the source vertex ID

target: the target vertex ID

Attention: this function has a more convenient interface in class Graph which
wraps the result in a list of Cut objects. It is advised to use that.

are connected(v1, v2)

Decides whether two given vertices are directly connected.

Parameters
v1: the ID or name of the first vertex

v2: the ID or name of the second vertex

Return Value
True if there exists an edge from v1 to v2, False otherwise.

articulation points()

Returns the list of articulation points in the graph.

A vertex is an articulation point if its removal increases the number of
connected components in the graph.

136

Class GraphBase Package igraph

assortativity (types1, types2—None, directed—True)

Returns the assortativity of the graph based on numeric properties of the
vertices.

This coefficient is basically the correlation between the actual connectivity
patterns of the vertices and the pattern expected from the disribution of the
vertex types.

See equation (21) in Newman MEJ: Mixing patterns in networks, Phys Rev E
67:026126 (2003) for the proper definition. The actual calculation is performed
using equation (26) in the same paper for directed graphs, and equation (4) in
Newman MEJ: Assortative mixing in networks, Phys Rev Lett 89:208701
(2002) for undirected graphs.

Parameters
typesl: vertex types in a list or the name of a vertex attribute
holding vertex types. Types are ideally denoted by
numeric values.
types2: in directed assortativity calculations, each vertex can

have an out-type and an in-type. In this case, types!
contains the out-types and this parameter contains the
in-types in a list or the name of a vertex attribute. If
None, it is assumed to be equal to types].

directed: whether to consider edge directions or not.

Return Value
the assortativity coefficient
Reference:

e Newman MEJ: Mixing patterns in networks, Phys Rev E
67:026126, 2003.

e Newman MEJ: Assortative mixing in networks, Phys Rev Lett
89:208701,

1.

See Also: assortativity_degree() when the types are the vertex degrees

137

Class GraphBase Package igraph

assortativity degree(directed=True)

Returns the assortativity of a graph based on vertex degrees.
See assortativity() for the details. assortativity_degree() simply calls
assortativity() with the vertex degrees as types.

Parameters
directed: whether to consider edge directions for directed graphs
or not. This argument is ignored for undirected graphs.

Return Value
the assortativity coefficient

See Also: assortativity()

assortativity nominal(types, directed=True)

Returns the assortativity of the graph based on vertex categories.

Assuming that the vertices belong to different categories, this function
calculates the assortativity coefficient, which specifies the extent to which the
connections stay within categories. The assortativity coefficient is one if all the
connections stay within categories and minus one if all the connections join
vertices of different categories. For a randomly connected network, it is
asymptotically zero.

See equation (2) in Newman MEJ: Mixing patterns in networks, Phys Rev E
67:026126 (2003) for the proper definition.

Parameters
types: vertex types in a list or the name of a vertex attribute
holding vertex types. Types should be denoted by
numeric values.

directed: whether to consider edge directions or not.

Return Value
the assortativity coefficient

Reference: Newman MEJ: Mixing patterns in networks, Phys Rev E
67:026126, 2003.

attributes()

Return Value
the attribute name list of the graph

138

Class GraphBase Package igraph

authority score(weights=None, scale=True, arpack_ options=None,
return_ eigenvalue—=False)

Calculates Kleinberg’s authority score for the vertices of the graph

Parameters
weights: edge weights to be used. Can be a sequence or
iterable or even an edge attribute name.
scale: whether to normalize the scores so that the
largest one is 1.
arpack_options: an ARPACKOptions object used to fine-tune

the ARPACK eigenvector calculation. If
omitted, the module-level variable called
arpack_options is used.

return_eigenvalue: whether to return the largest eigenvalue

Return Value
the authority scores in a list and optionally the largest eigenvalue as
a second member of a tuple

See Also: hub_score()

average path length(directed=True, unconn—=True)

Calculates the average path length in a graph.

Parameters
directed: whether to consider directed paths in case of a directed
graph. Ignored for undirected graphs.

unconn: what to do when the graph is unconnected. If True, the
average of the geodesic lengths in the components is
calculated. Otherwise for all unconnected vertex pairs, a
path length equal to the number of vertices is used.

Return Value
the average path length in the graph

139

Class GraphBase Package igraph

betweenness(vertices—None, directed=True, culoff =None, weights—None,
nobigint=True)

Calculates or estimates the betweenness of vertices in a graph.

Keyword arguments:

Parameters
vertices: the vertices for which the betweennesses must be
returned. If None, assumes all of the vertices in the
graph.

directed: whether to consider directed paths.

cutoff: if it is an integer, only paths less than or equal to this
length are considered, effectively resulting in an
estimation of the betweenness for the given vertices. If
None, the exact betweenness is returned.

weights: edge weights to be used. Can be a sequence or iterable or
even an edge attribute name.

nobigint: if True, igraph uses the longest available integer type on
the current platform to count shortest paths. For some
large networks that have a specific structure, the counters
may overflow. To prevent this, use nobigint=False,
which forces igraph to use arbitrary precision integers at
the expense of increased computation time.

Return Value
the (possibly estimated) betweenness of the given vertices in a list

bfs(vid, mode=0UT)
Conducts a breadth first search (BFS) on the graph.

Parameters
vid: the root vertex ID

mode: either IN or OUT or ALL, ignored for undirected graphs.

Return Value
a tuple with the following items:

e The vertex IDs visited (in order)
e The start indices of the layers in the vertex list

e The parent of every vertex in the BFS

140

Class GraphBase Package igraph

bfsiter(vid, mode=0UT, advanced—False)
Constructs a breadth first search (BFS) iterator of the graph.

Parameters
vid: the root vertex ID
mode: either IN or OUT or ALL.

advanced: if False, the iterator returns the next vertex in BFS
order in every step. If True, the iterator returns the
distance of the vertex from the root and the parent of
the vertex in the BFS tree as well.

Return Value
the BFS iterator as an igraph.BFSIter object.

bibcoupling(vertices=None)

Calculates bibliographic coupling scores for given vertices in a graph.

Parameters
vertices: the vertices to be analysed. If None, all vertices will be
considered.

Return Value
bibliographic coupling scores for all given vertices in a matrix.

biconnected components(return_ articulation_ points=True)

Calculates the biconnected components of the graph.

Components containing a single vertex only are not considered as being
biconnected.

Parameters
return_articulation_points: whether to return the articulation
points as well

Return Value
a list of lists containing edge indices making up spanning trees of the
biconnected components (one spanning tree for each component) and
optionally the list of articulation points

bipartite projection(types, multiplicity=True, probel =-1, which—-1)

Internal function, undocumented.

See Also: Graph.bipartite projection()

141

Class GraphBase Package igraph

bipartite projection size(types)

Internal function, undocumented.

See Also: Graph.bipartite projection size()

bridges()

Returns the list of bridges in the graph.

An edge is a bridge if its removal increases the number of (weakly) connected
components in the graph.

canonical permutation(sh="£fm", color=None)

Calculates the canonical permutation of a graph using the BLISS isomorphism
algorithm.

Passing the permutation returned here to Graph.permute_vertices() will
transform the graph into its canonical form.

See http://www.tcs.hut.fi/Software/bliss /index.html for more information
about the BLISS algorithm and canonical permutations.

Parameters
sh: splitting heuristics for graph as a case-insensitive string,
with the following possible values:

"f": first non-singleton cell

e "f1": first largest non-singleton cell

e "fs": first smallest non-singleton cell

e "fm": first maximally non-trivially connected
non-singleton cell

e "flm": largest maximally non-trivially connected

non-singleton cell

e "fsm": smallest maximally non-trivially connected
non-singleton cell

color: optional vector storing a coloring of the vertices with respect
to which the isomorphism is computed.If None, all vertices
have the same color.

Return Value
a permutation vector containing vertex IDs. Vertex 0 in the original
graph will be mapped to an ID contained in the first element of this
vector; vertex 1 will be mapped to the second and so on.

142

http://www.tcs.hut.fi/Software/bliss/index.html

Class GraphBase Package igraph

clique number()

Returns the clique number of the graph.

The clique number of the graph is the size of the largest clique.
See Also: largest_cliques() for the largest cliques.

cliques(min=0, mazr=0)

Returns some or all cliques of the graph as a list of tuples.

A clique is a complete subgraph — a set of vertices where an edge is present
between any two of them (excluding loops)

Parameters
min: the minimum size of cliques to be returned. If zero or negative,
no lower bound will be used.

max: the maximum size of cliques to be returned. If zero or
negative, no upper bound will be used.

143

Class GraphBase Package igraph

closeness(vertices=None, mode=ALL, cutoff =None, weights—None,
normalized=True)

Calculates the closeness centralities of given vertices in a graph.

The closeness centerality of a vertex measures how easily other vertices can be
reached from it (or the other way: how easily it can be reached from the other
vertices). It is defined as the number of the number of vertices minus one
divided by the sum of the lengths of all geodesics from/to the given vertex.

If the graph is not connected, and there is no path between two vertices, the
number of vertices is used instead the length of the geodesic. This is always
longer than the longest possible geodesic.

Parameters
vertices: the vertices for which the closenesses must be
returned. If None, uses all of the vertices in the graph.

mode: must be one of IN, OUT and ALL. IN means that the
length of the incoming paths, OUT means that the
length of the outgoing paths must be calculated. ALL
means that both of them must be calculated.

cutoff: if it is an integer, only paths less than or equal to this
length are considered, effectively resulting in an
estimation of the closeness for the given vertices
(which is always an underestimation of the real
closeness, since some vertex pairs will appear as
disconnected even though they are connected).. If
None, the exact closeness is returned.

weights: edge weights to be used. Can be a sequence or iterable
or even an edge attribute name.

normalized: Whether to normalize the raw closeness scores by
multiplying by the number of vertices minus one.

Return Value
the calculated closenesses in a list

144

Class GraphBase Package igraph

clusters(mode—=STRONG)

Calculates the (strong or weak) clusters for a given graph.

Parameters
mode: must be either STRONG or WEAK, depending on the clusters
being sought. Optional, defaults to STRONG.

Return Value
the component index for every node in the graph.

Attention: this function has a more convenient interface in class Graph which
wraps the result in a VertexClustering object. It is advised to use that.

cocitation(vertices=None)

Calculates cocitation scores for given vertices in a graph.

Parameters
vertices: the vertices to be analysed. If None, all vertices will be
considered.

Return Value
cocitation scores for all given vertices in a matrix.

cohesive blocks()

Calculates the cohesive block structure of the graph.

Attention: this function has a more convenient interface in class Graph which
wraps the result in a CohesiveBlocks object. It is advised to use that.

145

Class GraphBase Package igraph

community edge betweenness(directed=True, weights=None)

Community structure detection based on the betweenness of the edges in the
network. This algorithm was invented by M Girvan and MEJ Newman, see: M
Girvan and MEJ Newman: Community structure in social and biological
networks, Proc. Nat. Acad. Sci. USA 99, 7821-7826 (2002).

The idea is that the betweenness of the edges connecting two communities is
typically high. So we gradually remove the edge with the highest betweenness
from the network and recalculate edge betweenness after every removal, as
long as all edges are removed.

Parameters
directed: whether to take into account the directedness of the
edges when we calculate the betweenness values.

weights: name of an edge attribute or a list containing edge
weights.

Return Value
a tuple with the merge matrix that describes the dendrogram and
the modularity scores before each merge. The modularity scores use
the weights if the original graph was weighted.

Attention: this function is wrapped in a more convenient syntax in the
derived class Graph. It is advised to use that instead of this version.

146

Class GraphBase Package igraph

community fastgreedy(weights=None)

Finds the community structure of the graph according to the algorithm of
Clauset et al based on the greedy optimization of modularity.

This is a bottom-up algorithm: initially every vertex belongs to a separate
community, and communities are merged one by one. In every step, the two
communities being merged are the ones which result in the maximal increase
in modularity.

Parameters
weights: name of an edge attribute or a list containing edge weights

Return Value
a tuple with the following elements:

1. The list of merges

2. The modularity scores before each merge

Attention: this function is wrapped in a more convenient syntax in the
derived class Graph. It is advised to use that instead of this version.

Reference: A. Clauset, M. E. J. Newman and C. Moore: Finding community
structure in very large networks. Phys Rev E 70, 066111 (2004).

See Also: modularity()

147

Class GraphBase Package igraph

community infomap(edge_ weights=None, vertex_ weights—=None,
trials=10)

Finds the community structure of the network according to the Infomap
method of Martin Rosvall and Carl T. Bergstrom.

See hitp://www.mapequation.org for a visualization of the algorithm or one of
the references provided below.

Parameters
edge_weights: name of an edge attribute or a list containing
edge weights.

vertex_weights: name of an vertex attribute or a list containing
vertex weights.

trials: the number of attempts to partition the network.

Return Value
the calculated membership vector and the corresponding codelength
in a tuple.

Reference:

e M. Rosvall and C. T. Bergstrom: Maps of information flow
reveal community structure in complex networks. PNAS 105,
1118 (2008). hitp://arxiv.org/abs/0707.0609

e M. Rosvall, D. Axelsson and C. T. Bergstrom: The map
equation. Eur Phys J Special Topics 178, 13 (2009).
http://arziv.org/abs/0906.1405

148

http://www.mapequation.org
http://arxiv.org/abs/0707.0609
http://arxiv.org/abs/0906.1405

Class GraphBase Package igraph

community label propagation(weights=None, initial=None, fired—=None)

Finds the community structure of the graph according to the label
propagation method of Raghavan et al.

Initially, each vertex is assigned a different label. After that, each vertex
chooses the dominant label in its neighbourhood in each iteration. Ties are
broken randomly and the order in which the vertices are updated is
randomized before every iteration. The algorithm ends when vertices reach a
consensus.

Note that since ties are broken randomly, there is no guarantee that the
algorithm returns the same community structure after each run. In fact, they
frequently differ. See the paper of Raghavan et al on how to come up with an
aggregated community structure.

Parameters
weights: name of an edge attribute or a list containing edge weights

initial: name of a vertex attribute or a list containing the initial
vertex labels. Labels are identified by integers from zero
to m-1 where n is the number of vertices. Negative
numbers may also be present in this vector, they represent
unlabeled vertices.

fixed: a list of booleans for each vertex. True corresponds to
vertices whose labeling should not change during the
algorithm. It only makes sense if initial labels are also
given. Unlabeled vertices cannot be fixed. Note that
vertex attribute names are not accepted here.

Return Value
the resulting membership vector

Reference: Raghavan, U.N. and Albert, R. and Kumara, S. Near linear time
algorithm to detect community structures in large-scale networks. Phys Rev E
76:036106, 2007. http://arziv.org/abs/0709.2958.

149

http://arxiv.org/abs/0709.2938

Class GraphBase Package igraph

community leading eigenvector(n—-1, arpack_options=None,
weights=None)

A proper implementation of Newman’s eigenvector community structure
detection. Each split is done by maximizing the modularity regarding the
original network. See the reference for details.

Parameters
n: the desired number of communities. If negative,
the algorithm tries to do as many splits as
possible. Note that the algorithm won’t split a
community further if the signs of the leading
eigenvector are all the same.

arpack_options: an ARPACKOptions object used to fine-tune the
ARPACK eigenvector calculation. If omitted, the
module-level variable called arpack_options is
used.

weights: name of an edge attribute or a list containing
edge weights

Return Value
a tuple where the first element is the membership vector of the
clustering and the second element is the merge matrix.

Attention: this function is wrapped in a more convenient syntax in the
derived class Graph. It is advised to use that instead of this version.

Reference: MEJ Newman: Finding community structure in networks using
the eigenvectors of matrices, arXiv:physics/0605087

150

Class GraphBase Package igraph

community leiden(edge_ weights=None, node_ weights=None,
resolution_ parameter=1.0, normalize resolution—=False, beta=0.01,
initial_membership=None, n_ iterations=2)

Finds the community structure of the graph using the Leiden algorithm of
Traag, van Eck & Waltman

Parameters
edge_weights: edge weights to be used. Can be a
sequence or iterable or even an edge
attribute name.
node_weights: the node weights used in the Leiden

algorithm.

resolution_parameter: the resolution parameter to use. Higher
resolutions lead to more smaller
communities, while lower resolutions lead
to fewer larger communities.

normalize_resolution: if set to true, the resolution parameter will
be divided by the sum of the node weights.
If this is not supplied, it will default to the
node degree, or weighted degree in case
edge weights are supplied.

node_weights: the node weights used in the Leiden
algorithm.
beta: parameter affecting the randomness in the

Leiden algorithm. This affects only the
refinement step of the algorithm.

initial_membership: if provided, the Leiden algorithm will try
to improve this provided membership. If
no argument is provided, the aglorithm
simply starts from the singleton partition.

n_iterations: the number of iterations to iterate the
Leiden algorithm. Each iteration may
improve the partition further.

Return Value
the community membership vector.

151

Class GraphBase Package igraph

community multilevel(weights=None, return_ levels=True)

Finds the community structure of the graph according to the multilevel
algorithm of Blondel et al. This is a bottom-up algorithm: initially every
vertex belongs to a separate community, and vertices are moved between
communities iteratively in a way that maximizes the vertices’ local
contribution to the overall modularity score. When a consensus is reached (i.e.
no single move would increase the modularity score), every community in the
original graph is shrank to a single vertex (while keeping the total weight of
the incident edges) and the process continues on the next level. The algorithm
stops when it is not possible to increase the modularity any more after
shrinking the communities to vertices.

Parameters
weights: name of an edge attribute or a list containing edge
weights

return_levels: if True, returns the multilevel result. If False,
only the best level (corresponding to the best
modularity) is returned.

Return Value
either a single list describing the community membership of each
vertex (if return_levels is False), or a list of community
membership vectors, one corresponding to each level and a list of
corresponding modularities (if return_levels is True).

Attention: this function is wrapped in a more convenient syntax in the
derived class Graph. It is advised to use that instead of this version.

Reference: VD Blondel, J-L. Guillaume, R Lambiotte and E Lefebvre: Fast
unfolding of community hierarchies in large networks. J Stat Mech P10008
(2008), http://arxiv.org/abs/0803.0476

See Also: modularity()

152

Class GraphBase Package igraph

community optimal modularity(weights=None)

Calculates the optimal modularity score of the graph and the corresponding
community structure.

This function uses the GNU Linear Programming Kit to solve a large integer
optimization problem in order to find the optimal modularity score and the
corresponding community structure, therefore it is unlikely to work for graphs
larger than a few (less than a hundred) vertices. Consider using one of the
heuristic approaches instead if you have such a large graph.

Parameters
weights: name of an edge attribute or a list containing edge
weights.

Return Value
the calculated membership vector and the corresponding modularity
in a tuple.

153

Class GraphBase Package igraph

community spinglass(weights=None, spins=25, parupdate=False,
start _temp=1, stop _temp=0.01, cool fact=0.99, update rule="config",
gamma=1, implementation="orig", lambda=1)

Finds the community structure of the graph according to the spinglass
community detection method of Reichardt & Bornholdt.

Parameters

weights: edge weights to be used. Can be a sequence or
iterable or even an edge attribute name.

spins: integer, the number of spins to use. This is the
upper limit for the number of communities. It is
not a problem to supply a (reasonably) big
number here, in which case some spin states will
be unpopulated.

parupdate: whether to update the spins of the vertices in
parallel (synchronously) or not

start_temp: the starting temperature

stop_temp: the stop temperature

cool_fact: cooling factor for the simulated annealing

update_rule: specifies the null model of the simulation.
Possible values are "config" (a random graph
with the same vertex degrees as the input graph)
or "simple" (a random graph with the same
number of edges)

gamma : the gamma argument of the algorithm, specifying

the balance between the importance of present
and missing edges within a community. The
default value of 1.0 assigns equal importance to
both of them.

implementation: currently igraph contains two implementations for
the spinglass community detection algorithm.
The faster original implementation is the default.
The other implementation is able to take into
account negative weights, this can be chosen by
setting implementation to "neg".

lambda: the lambda argument of the algorithm, which
specifies the balance between the importance of
present and missing negatively weighted edges
within a community. Smaller values of lambda
lead to communities with less negative
intra-connectivity. If the argument is zero, the
algorithm reduces to a graph coloring algorithm,
using the numbleg40f spins as colors. This
argument is ignored if the original
implementation is used.

Return Value
the communitv membership vector.

Class GraphBase Package igraph

community walktrap(weights=None, steps—None)

Finds the community structure of the graph according to the random walk
method of Latapy & Pons.

The basic idea of the algorithm is that short random walks tend to stay in the
same community. The method provides a dendrogram.

Parameters
weights: name of an edge attribute or a list containing edge weights

Return Value
a tuple with the list of merges and the modularity scores
corresponding to each merge

Attention: this function is wrapped in a more convenient syntax in the
derived class Graph. It is advised to use that instead of this version.

Reference: Pascal Pons, Matthieu Latapy: Computing communities in large
networks using random walks, http://arziv.org/abs/physics/0512106.

See Also: modularity()

complementer(loops—False)

Returns the complementer of the graph

Parameters
loops: whether to include loop edges in the complementer.

Return Value
the complementer of the graph

compose(other)

Returns the composition of two graphs.

155

http://arxiv.org/abs/physics/0512106

Class GraphBase Package igraph

constraint(vertices=None, weights—None)

Calculates Burt’s constraint scores for given vertices in a graph.

Burt’s constraint is higher if ego has less, or mutually stronger related (i.e.
more redundant) contacts. Burt’s measure of constraint, Cl[i], of vertex i’s ego
network V[i], is defined for directed and valued graphs as follows:

Cli] = sum(sum((pli,a] pla.j])"2, a in V[i, g = i,j), j in V]|, j I= i)
for a graph of order (ie. number od vertices) N, where proportional tie

strengths are defined as follows:

pli,j|=(ali,j]+alj,i]) / sum(alik|+alk,i], k in V[i], k != 1), ali,j] are elements of
A and the latter being the graph adjacency matrix.

For isolated vertices, constraint is undefined.

Parameters
vertices: the vertices to be analysed or None for all vertices.

weights: weights associated to the edges. Can be an attribute
name as well. If None, every edge will have the same
weight.

Return Value
constraint scores for all given vertices in a matrix.

156

Class GraphBase Package igraph

contract _vertices(mapping, combine_ attrs—None)

Contracts some vertices in the graph, i.e. replaces groups of vertices with
single vertices. Edges are not affected.

Parameters
mapping: numeric vector which gives the mapping between
old and new vertex IDs. Vertices having the same
new vertex ID in this vector will be remapped into
a single new vertex. It is safe to pass the
membership vector of a VertexClustering object
here.

combine_attrs: specifies how to combine the attributes of the
vertices being collapsed into a single one. If it is
None, all the attributes will be lost. If it is a
function, the attributes of the vertices will be
collected and passed on to that function which will
return the new attribute value that has to be
assigned to the single collapsed vertex. It can also
be one of the following string constants which
define built-in collapsing functions: sum, prod,
mean, median, max, min, first, last, random. You
can also specify different combination functions for
different attributes by passing a dict here which
maps attribute names to functions. See
Graph.simplify() for more details.

Return Value
None.

See Also: Graph.simplify()

convergence degree()

Undocumented (yet).

convergence field size()

Undocumented (yet).

157

Class GraphBase Package igraph

copy()
Creates a copy of the graph.

Attributes are copied by reference; in other words, if you use mutable Python
objects as attribute values, these objects will still be shared between the old
and new graph. You can use ‘deepcopy()‘ from the ‘copy‘ module if you need a
truly deep copy of the graph.

coreness(mode=ALL)

Finds the coreness (shell index) of the vertices of the network.

The k-core of a graph is a maximal subgraph in which each vertex has at least
degree k. (Degree here means the degree in the subgraph of course). The
coreness of a vertex is k if it is a member of the k-core but not a member of
the k+1-core.

Parameters
mode: whether to compute the in-corenesses (IN), the out-corenesses
(OUT) or the undirected corenesses (ALL). Ignored and
assumed to be ALL for undirected graphs.

Return Value
the corenesses for each vertex.

Reference: Vladimir Batagelj, Matjaz Zaversnik: An O(m) Algorithm for
Core Decomposition of Networks.

158

Class GraphBase Package igraph

count isomorphisms _vf2(other=None, color! =None, color2=None,
edge_ color1 =None, edge_color2=None, node compat fn=None,
edge_compat_ fn—None)

Determines the number of isomorphisms between the graph and another one

Vertex and edge colors may be used to restrict the isomorphisms, as only
vertices and edges with the same color will be allowed to match each other.

Parameters
other: the other graph. If None, the number of
automorphisms will be returned.

colorl: optional vector storing the coloring of the vertices
of the first graph. If None, all vertices have the
same color.

color2: optional vector storing the coloring of the vertices
of the second graph. If None, all vertices have the
same color.

edge_colorl: optional vector storing the coloring of the edges of
the first graph. If None, all edges have the same
color.

edge_color2: optional vector storing the coloring of the edges of
the second graph. If None, all edges have the
same color.

node_compat_fn: a function that receives the two graphs and two
node indices (one from the first graph, one from
the second graph) and returns True if the nodes
given by the two indices are compatible (i.e. they
could be matched to each other) or False
otherwise. This can be used to restrict the set of
isomorphisms based on node-specific criteria that
are too complicated to be represented by node
color vectors (i.e. the colorl and color2
parameters). None means that every node is
compatible with every other node.

edge_compat_fn: a function that receives the two graphs and two
edge indices (one from the first graph, one from
the second graph) and returns True if the edges
given by the two indices are compatible (i.e. they
could be matched to each other) or False
otherwise. This can be used to restrict the set of
isomorphisms based on edge-specific criteria that
are too complicated to be represented by edge
color vectors (i.e. the edge_colorl and
edge_color2 parameters). None means that
every edge is coftbatible with every other node.

Return Value
the number of isomorphisms between the two given graphs (or the
number of automorphisms if other is None.

Class GraphBase Package igraph

count multiple(edges=None)

Counts the multiplicities of the given edges.

Parameters
edges: edge indices for which we want to count their multiplicity. If
None, all edges are counted.

Return Value
the multiplicities of the given edges as a list.

160

Class GraphBase Package igraph

count subisomorphisms_vf2(other, color! =None, color2=None,
edge_ color1 =None, edge_color2=None, node compat fn=None,
edge_compat_ fn—None)

Determines the number of subisomorphisms between the graph and another
one

Vertex and edge colors may be used to restrict the isomorphisms, as only
vertices and edges with the same color will be allowed to match each other.

Parameters

other: the other graph.

colorl: optional vector storing the coloring of the vertices
of the first graph. If None, all vertices have the
same color.

color2: optional vector storing the coloring of the vertices
of the second graph. If None, all vertices have the
same color.

edge_colorl: optional vector storing the coloring of the edges of
the first graph. If None, all edges have the same
color.

edge_color2: optional vector storing the coloring of the edges of
the second graph. If None, all edges have the
same color.

node_compat_fn: a function that receives the two graphs and two
node indices (one from the first graph, one from
the second graph) and returns True if the nodes
given by the two indices are compatible (i.e. they
could be matched to each other) or False
otherwise. This can be used to restrict the set of
isomorphisms based on node-specific criteria that
are too complicated to be represented by node
color vectors (i.e. the colorl and color2
parameters). None means that every node is
compatible with every other node.

edge_compat_fn: a function that receives the two graphs and two
edge indices (one from the first graph, one from
the second graph) and returns True if the edges
given by the two indices are compatible (i.e. they
could be matched to each other) or False
otherwise. This can be used to restrict the set of
isomorphisms based on edge-specific criteria that
are too complicated to be represented by edge
color vectors (i.e. the edge_colorl and
edge_color2 parameters). None means that
every edge is co¥patible with every other node.

Return Value
the number of subisomorphisms between the two given graphs

Class GraphBase Package igraph

decompose(mode=STRONG, mazcompno—None, minelements—1)

Decomposes the graph into subgraphs.

Parameters
mode: must be either STRONG or WEAK, depending on
the clusters being sought.
maxcompno: maximum number of components to return. None

means all possible components.

minelements: minimum number of vertices in a component. By
setting this to 2, isolated vertices are not returned as
separate components.

Return Value
a list of the subgraphs. Every returned subgraph is a copy of the
original.

degree(vertices, mode=ALL, loops=True)

Returns some vertex degrees from the graph.

This method accepts a single vertex ID or a list of vertex IDs as a parameter,
and returns the degree of the given vertices (in the form of a single integer or a
list, depending on the input parameter).

Parameters
vertices: a single vertex ID or a list of vertex IDs

mode: the type of degree to be returned (OUT for out-degrees,
IN IN for in-degrees or ALL for the sum of them).

loops: whether self-loops should be counted.

delete edges(es)

Removes edges from the graph.

All vertices will be kept, even if they lose all their edges. Nonexistent edges
will be silently ignored.

Parameters
es: the list of edges to be removed. Edges are identifed by edge IDs.
EdgeSeq objects are also accepted here. No argument deletes all
edges.

162

Class GraphBase Package igraph

delete vertices(vs)

Deletes vertices and all its edges from the graph.

Parameters
vs: a single vertex ID or the list of vertex IDs to be deleted. No
argument deletes all vertices.

density(loops—False)

Calculates the density of the graph.

Parameters
loops: whether to take loops into consideration. If True, the
algorithm assumes that there might be some loops in the
graph and calculates the density accordingly. If False, the
algorithm assumes that there can’t be any loops.

Return Value
the density of the graph.

dfsiter(vid, mode=0UT, advanced—False)
Constructs a depth first search (DFS) iterator of the graph.

Parameters
vid: the root vertex ID
mode: either IN or OUT or ALL.

advanced: if False, the iterator returns the next vertex in DF'S
order in every step. If True, the iterator returns the
distance of the vertex from the root and the parent of
the vertex in the DFS tree as well.

Return Value
the DFS iterator as an igraph.DFSIter object.

163

Class GraphBase Package igraph

diameter(directed—=True, unconn—True, weights—None)

Calculates the diameter of the graph.

Parameters
directed: whether to consider directed paths.

unconn: if True and the graph is unconnected, the longest
geodesic within a component will be returned. If False
and the graph is unconnected, the result is the number of
vertices if there are no weights or infinity if there are
weights.

weights: edge weights to be used. Can be a sequence or iterable or
even an edge attribute name.

Return Value
the diameter

difference(other)

Subtracts the given graph from the original

diversity (vertices=None, weights—=None)

Calculates the structural diversity index of the vertices.

The structural diversity index of a vertex is simply the (normalized) Shannon
entropy of the weights of the edges incident on the vertex.

The measure is defined for undirected graphs only; edge directions are ignored.

Parameters
vertices: the vertices for which the diversity indices must be
returned. If None, uses all of the vertices in the graph.

weights: edge weights to be used. Can be a sequence or iterable or
even an edge attribute name.

Return Value
the calculated diversity indices in a list, or a single number if a single
vertex was supplied.

Reference: Eagle N, Macy M and Claxton R: Network diversity and
economic development, Science 328, 1029-1031, 2010.

164

Class GraphBase Package igraph

dominator(...)

dominator(vid, mode=)
Returns the dominator tree from the given root node@param vid: the root
vertex ID

Parameters
mode: either IN or OUT

Return Value
a list containing the dominator tree for the current graph.

dyad census()

Dyad census, as defined by Holland and Leinhardt

Dyad census means classifying each pair of vertices of a directed graph into
three categories: mutual, there is an edge from a to b and also from b to a;
asymmetric, there is an edge either from a to b or from b to a but not the
other way and null, no edges between a and b.

Return Value
the number of mutual, asymmetric and null connections in a 3-tuple.

Attention: this function has a more convenient interface in class Graph which
wraps the result in a DyadCensus object. It is advised to use that.

eccentricity (vertices=None, mode—ALL)

Calculates the eccentricities of given vertices in a graph.

The eccentricity of a vertex is calculated by measuring the shortest distance
from (or to) the vertex, to (or from) all other vertices in the graph, and taking
the maximum.

Parameters
vertices: the vertices for which the eccentricity scores must be
returned. If None, uses all of the vertices in the graph.

mode: must be one of IN, OUT and ALL. IN means that edge
directions are followed; OUT means that edge directions
are followed the opposite direction; ALL means that
directions are ignored. The argument has no effect for
undirected graphs.

Return Value
the calculated eccentricities in a list, or a single number if a single
vertex was supplied.

165

Class GraphBase Package igraph

ecount|()

Counts the number of edges.

Return Value
the number of edges in the graph.

(type=integer)

edge attributes()

Return Value
the attribute name list of the graph’s edges

edge betweenness(directed=True, cutoff =None, weights=None)

Calculates or estimates the edge betweennesses in a graph.

Parameters
directed: whether to consider directed paths.

cutoff: if it is an integer, only paths less than or equal to this
length are considered, effectively resulting in an
estimation of the betweenness values. If None, the exact
betweennesses are returned.

weights: edge weights to be used. Can be a sequence or iterable or
even an edge attribute name.

Return Value
a list with the (exact or estimated) edge betweennesses of all edges.

166

Class GraphBase Package igraph

edge connectivity(source=-1, target—=-1, checks=True)

Calculates the edge connectivity of the graph or between some vertices.

The edge connectivity between two given vertices is the number of edges that
have to be removed in order to disconnect the two vertices into two separate
components. This is also the number of edge disjoint directed paths between
the vertices. The edge connectivity of the graph is the minimal edge
connectivity over all vertex pairs.

This method calculates the edge connectivity of a given vertex pair if both the
source and target vertices are given. If none of them is given (or they are both
negative), the overall edge connectivity is returned.

Parameters
source: the source vertex involved in the calculation.

target: the target vertex involved in the calculation.

checks: if the whole graph connectivity is calculated and this is
True, igraph performs some basic checks before calculation.
If the graph is not strongly connected, then the
connectivity is obviously zero. If the minimum degree is
one, then the connectivity is also one. These simple checks
are much faster than checking the entire graph, therefore it
is advised to set this to True. The parameter is ignored if
the connectivity between two given vertices is computed.

Return Value
the edge connectivity

eigen adjacencyf(...)

167

Class GraphBase Package igraph

eigenvector centrality(directed=True, scale=True, weights=None,
return_ eigenvalue=False, arpack_options=None)

Calculates the eigenvector centralities of the vertices in a graph.

Eigenvector centrality is a measure of the importance of a node in a network.
It assigns relative scores to all nodes in the network based on the principle
that connections from high-scoring nodes contribute more to the score of the
node in question than equal connections from low-scoring nodes. In practice,
the centralities are determined by calculating eigenvector corresponding to the
largest positive eigenvalue of the adjacency matrix. In the undirected case,
this function considers the diagonal entries of the adjacency matrix to be twice
the number of self-loops on the corresponding vertex.

In the directed case, the left eigenvector of the adjacency matrix is calculated.
In other words, the centrality of a vertex is proportional to the sum of
centralities of vertices pointing to it.

Eigenvector centrality is meaningful only for connected graphs. Graphs that
are not connected should be decomposed into connected components, and the
eigenvector centrality calculated for each separately.

Parameters
directed: whether to consider edge directions in a
directed graph. Ignored for undirected graphs.
scale: whether to normalize the centralities so the
largest one will always be 1.
weights: edge weights given as a list or an edge

attribute. If None, all edges have equal weight.

return_eigenvalue: whether to return the actual largest
eigenvalue along with the centralities

arpack_options: an ARPACKOptions object that can be used to
fine-tune the calculation. If it is omitted, the
module-level variable called arpack_options
is used.

Return Value
the eigenvector centralities in a list and optionally the largest
eigenvalue (as a second member of a tuple)

168

Class GraphBase Package igraph

farthest points(directed=True, unconn=True, weights—None)

Returns two vertex IDs whose distance equals the actual diameter of the graph.

If there are many shortest paths with the length of the diameter, it returns the
first one it found.

Parameters
directed: whether to consider directed paths.

unconn: if True and the graph is unconnected, the longest
geodesic within a component will be returned. If False
and the graph is unconnected, the result contains the
number of vertices if there are no weights or infinity if
there are weights.

weights: edge weights to be used. Can be a sequence or iterable or
even an edge attribute name.

Return Value
a triplet containing the two vertex IDs and their distance. The IDs
are None if the graph is unconnected and unconn is False.

169

Class GraphBase Package igraph

feedback arc set(weights=None, method—="eades")

Calculates an approximately or exactly minimal feedback arc set.

A feedback arc set is a set of edges whose removal makes the graph acyclic.
Since this is always possible by removing all the edges, we are in general
interested in removing the smallest possible number of edges, or an edge set
with as small total weight as possible. This method calculates one such edge
set. Note that the task is trivial for an undirected graph as it is enough to find
a spanning tree and then remove all the edges not in the spanning tree. Of
course it is more complicated for directed graphs.

Parameters
weights: edge weights to be used. Can be a sequence or iterable or
even an edge attribute name. When given, the algorithm
will strive to remove lightweight edges in order to
minimize the total weight of the feedback arc set.

method: the algorithm to use. "eades" uses the greedy cycle
breaking heuristic of Eades, Lin and Smyth, which is
linear in the number of edges but not necessarily optimal;
however, it guarantees that the number of edges to be
removed is smaller than |E|/2 - [V]/6. "ip" uses an
integer programming formulation which is guaranteed to
yield an optimal result, but is too slow for large graphs.

Return Value
the IDs of the edges to be removed, in a list.

Reference: Eades P, Lin X and Smyth WF: A fast and effective heuristic for
the feedback arc set problem. In: Proc Inf Process Lett 319-323, 1993.

get adjacency(type—=GET_ADJACENCY_BOTH, eids—=False)

Returns the adjacency matrix of a graph.

Parameters
type: either GET_ADJACENCY_LOWER (uses the lower triangle of the
matrix) or GET_ADJACENCY_UPPER (uses the upper triangle) or
GET_ADJACENCY_BOTH (uses both parts). Ignored for directed
graphs.

eids: if True, the result matrix will contain zeros for non-edges and
the ID of the edge plus one for edges in the appropriate cell.
If False, the result matrix will contain the number of edges
for each vertex pair.

Return Value
the adjacency matrix.

170

Class GraphBase Package igraph

get all shortest paths(v, to=None, weights=None, mode—=0UT)

Calculates all of the shortest paths from/to a given node in a graph.

Parameters
v: the source for the calculated paths
to: a vertex selector describing the destination for the

calculated paths. This can be a single vertex 1D, a list of
vertex IDs, a single vertex name, a list of vertex names or
a VertexSeq object. None means all the vertices.

weights: edge weights in a list or the name of an edge attribute
holding edge weights. If None, all edges are assumed to
have equal weight.

mode: the directionality of the paths. IN means to calculate
incoming paths, OUT means to calculate outgoing paths,
ALL means to calculate both ones.

Return Value
all of the shortest path from the given node to every other reachable
node in the graph in a list. Note that in case of mode=IN, the
vertices in a path are returned in reversed order!

get diameter(directed=True, unconn—=True, weights—=None)

Returns a path with the actual diameter of the graph.

If there are many shortest paths with the length of the diameter, it returns the
first one it founds.

Parameters
directed: whether to consider directed paths.

unconn: if True and the graph is unconnected, the longest
geodesic within a component will be returned. If False
and the graph is unconnected, the result is the number of
vertices if there are no weights or infinity if there are
weights.

weights: edge weights to be used. Can be a sequence or iterable or
even an edge attribute name.

Return Value
the vertices in the path in order.

get edgelist()

Returns the edge list of a graph.

171

Class GraphBase Package igraph

get eid(v1, v2, directed=True, error=True)

Returns the edge ID of an arbitrary edge between vertices vl and v2

Parameters
vi: the ID or name of the first vertex
v2: the ID or name of the second vertex

directed: whether edge directions should be considered in directed
graphs. The default is True. Ignored for undirected
graphs.

error: if True, an exception will be raised when the given edge
does not exist. If False, -1 will be returned in that case.

Return Value
the edge ID of an arbitrary edge between vertices vl and v2

get eids(pairs=None, path=None, directed=True, error=True)

Returns the edge IDs of some edges between some vertices.

This method can operate in two different modes, depending on which of the
keyword arguments pairs and path are given.

The method does not consider multiple edges; if there are multiple edges
between a pair of vertices, only the ID of one of the edges is returned.

Parameters
pairs: a list of integer pairs. Each integer pair is considered as a
source-target vertex pair; the corresponding edge is
looked up in the graph and the edge ID is returned for
each pair.
path: a list of vertex IDs. The list is considered as a continuous

path from the first vertex to the last, passing through
the intermediate vertices. The corresponding edge 1Ds
between the first and the second, the second and the
third and so on are looked up in the graph and the edge
IDs are returned. If both path and pairs are given, the
two lists are concatenated.

directed: whether edge directions should be considered in directed
graphs. The default is True. Ignored for undirected
graphs.

error: if True, an exception will be raised if a given edge does
not exist. If False, -1 will be returned in that case.

Return Value
the edge IDs in a list

172

Class GraphBase Package igraph

get _incidence(types)

Internal function, undocumented.

See Also: Graph.get incidence()

173

Class GraphBase Package igraph

get isomorphisms vf2(other=None, color! =None, color2=None,
edge_ color1 =None, edge_color2=None, node compat fn=None,
edge_compat_ fn—None)

Returns all isomorphisms between the graph and another one

Vertex and edge colors may be used to restrict the isomorphisms, as only
vertices and edges with the same color will be allowed to match each other.

Parameters
other: the other graph. If None, the automorphisms will
be returned.

colorl: optional vector storing the coloring of the vertices
of the first graph. If None, all vertices have the
same color.

color2: optional vector storing the coloring of the vertices
of the second graph. If None, all vertices have the
same color.

edge_colorl: optional vector storing the coloring of the edges of
the first graph. If None, all edges have the same
color.

edge_color2: optional vector storing the coloring of the edges of
the second graph. If None, all edges have the
same color.

node_compat_fn: a function that receives the two graphs and two
node indices (one from the first graph, one from
the second graph) and returns True if the nodes
given by the two indices are compatible (i.e. they
could be matched to each other) or False
otherwise. This can be used to restrict the set of
isomorphisms based on node-specific criteria that
are too complicated to be represented by node
color vectors (i.e. the colorl and color2
parameters). None means that every node is
compatible with every other node.

edge_compat_fn: a function that receives the two graphs and two
edge indices (one from the first graph, one from
the second graph) and returns True if the edges
given by the two indices are compatible (i.e. they
could be matched to each other) or False
otherwise. This can be used to restrict the set of
isomorphisms based on edge-specific criteria that
are too complicated to be represented by edge
color vectors (i.e. the edge_colorl and
edge_color2 parameters). None means that
every edge is coffpatible with every other node.

Return Value
a list of lists, each item of the list containing the mapping from
vertices of the second graph to the vertices of the first one

Class GraphBase

Package igraph

get shortest paths(v, to=None, weights=None, mode—=0UT,
output="vpath")

Calculates the shortest paths from/to a given node in a graph.

Parameters
v: the source/destination for the calculated paths
to: a vertex selector describing the destination/source for the

calculated paths. This can be a single vertex 1D, a list of
vertex IDs, a single vertex name, a list of vertex names or
a VertexSeq object. None means all the vertices.

weights: edge weights in a list or the name of an edge attribute
holding edge weights. If None, all edges are assumed to
have equal weight.

mode: the directionality of the paths. IN means to calculate
incoming paths, OUT means to calculate outgoing paths,
ALL means to calculate both ones.

output: determines what should be returned. If this is "vpath", a
list of vertex IDs will be returned, one path for each
target vertex. For unconnected graphs, some of the list
elements may be empty. Note that in case of mode=1IN,
the vertices in a path are returned in reversed order. If

output="epath", edge IDs are returned instead of vertex
IDs.

Return Value
see the documentation of the output parameter.

175

Class GraphBase Package igraph

get subisomorphisms_lad(other, domains=None, induced=False,
time_ limit=0)

Returns all subisomorphisms between the graph and another one using the
LAD algorithm.

The optional domains argument may be used to restrict vertices that may
match each other. You can also specify whether you are interested in induced
subgraphs only or not.

Parameters

other: the pattern graph we are looking for in the graph.

domains: a list of lists, one sublist belonging to each vertex in
the template graph. Sublist 7 contains the indices of
the vertices in the original graph that may match
vertex ¢ in the template graph. None means that every
vertex may match every other vertex.

induced: whether to consider induced subgraphs only.

time_limit: an optimal time limit in seconds. Only the integral
part of this number is taken into account. If the time
limit is exceeded, the method will throw an exception.

Return Value
a list of lists, each item of the list containing the mapping from
vertices of the second graph to the vertices of the first one

176

Class GraphBase Package igraph

get subisomorphisms_ vf2(other, color! =None, color2=None,
edge_ color1 =None, edge_color2=None, node compat fn=None,
edge_compat_ fn—None)

Returns all subisomorphisms between the graph and another one

Vertex and edge colors may be used to restrict the isomorphisms, as only
vertices and edges with the same color will be allowed to match each other.

Parameters

other: the other graph.

coloril: optional vector storing the coloring of the vertices
of the first graph. If None, all vertices have the
same color.

color2: optional vector storing the coloring of the vertices
of the second graph. If None, all vertices have the
same color.

edge_colorl: optional vector storing the coloring of the edges of
the first graph. If None, all edges have the same
color.

edge_color2: optional vector storing the coloring of the edges of
the second graph. If None, all edges have the
same color.

node_compat_fn: a function that receives the two graphs and two
node indices (one from the first graph, one from
the second graph) and returns True if the nodes
given by the two indices are compatible (i.e. they
could be matched to each other) or False
otherwise. This can be used to restrict the set of
isomorphisms based on node-specific criteria that
are too complicated to be represented by node
color vectors (i.e. the colorl and color2
parameters). None means that every node is
compatible with every other node.

edge_compat_fn: a function that receives the two graphs and two
edge indices (one from the first graph, one from
the second graph) and returns True if the edges
given by the two indices are compatible (i.e. they
could be matched to each other) or False
otherwise. This can be used to restrict the set of
isomorphisms based on edge-specific criteria that
are too complicated to be represented by edge
color vectors (i.e. the edge_colorl and
edge_color2 parameters). None means that

every edge is compatible with every other node.

177
Return Value

a list of lists, each item of the list containing the mapping from
vertices of the second graph to the vertices of the first one

Class GraphBase Package igraph

girth(return_shortest circle=False)

Returns the girth of the graph.

The girth of a graph is the length of the shortest circle in it.

Parameters
return_shortest_circle: whether to return one of the shortest
circles found in the graph.

Return Value
the length of the shortest circle or (if return_shortest_circle) is
true, the shortest circle itself as a list

gomory hu_tree(capacity=None)

Internal function, undocumented.

See Also: Graph.gomory hu tree()

has multiple()

Checks whether the graph has multiple edges.

Return Value
True if the graph has at least one multiple edge, False otherwise.

(type=boolean)

178

Class GraphBase Package igraph

hub score(weights=None, scale=True, arpack_ options=None,
return_ eigenvalue—=False)

Calculates Kleinberg’s hub score for the vertices of the graph

Parameters
weights: edge weights to be used. Can be a sequence or
iterable or even an edge attribute name.
scale: whether to normalize the scores so that the
largest one is 1.
arpack_options: an ARPACKOptions object used to fine-tune

the ARPACK eigenvector calculation. If
omitted, the module-level variable called
arpack_options is used.

return_eigenvalue: whether to return the largest eigenvalue

Return Value
the hub scores in a list and optionally the largest eigenvalue as a
second member of a tuple

See Also: authority score()

incident(vertez, mode=0UT)

Returns the edges a given vertex is incident on.

Parameters
vertex: a vertex ID

mode: whether to return only successors (OUT), predecessors (IN)
or both (ALL). Ignored for undirected graphs.

independence number()

Returns the independence number of the graph.
The independence number of the graph is the size of the largest independent
vertex set.

See Also: largest_independent_vertex_sets() for the largest independent
vertex sets

179

Class GraphBase Package igraph

independent vertex sets(min=0, maz=0)

Returns some or all independent vertex sets of the graph as a list of tuples.

Two vertices are independent if there is no edge between them. Members of an
independent vertex set are mutually independent.

Parameters
min: the minimum size of sets to be returned. If zero or negative, no
lower bound will be used.

max: the maximum size of sets to be returned. If zero or negative,
no upper bound will be used.

induced _subgraph(vertices, implementation—"auto")

Returns a subgraph spanned by the given vertices.

Parameters
vertices: a list containing the vertex IDs which should be
included in the result.

implementation: the implementation to use when constructing the
new subgraph. igraph includes two
implementations at the moment.
"copy_and_delete" copies the original graph and
removes those vertices that are not in the given
set. This is more efficient if the size of the
subgraph is comparable to the original graph. The
other implementation ("create_from_scratch")
constructs the result graph from scratch and then
copies the attributes accordingly. This is a better
solution if the subgraph is relatively small,
compared to the original graph. "auto" selects
between the two implementations automatically,
based on the ratio of the size of the subgraph and
the size of the original graph.

Return Value
the subgraph

180

Class GraphBase Package igraph

is_bipartite(return_ types=False)

Decides whether the graph is bipartite or not.

Vertices of a bipartite graph can be partitioned into two groups A and B in a
way that all edges go between the two groups.

Parameters
return_types: if False, the method will simply return True or

False depending on whether the graph is bipartite
or not. If True, the actual group assignments are
also returned as a list of boolean values. (Note that
the group assignment is not unique, especially if the
graph consists of multiple components, since the
assignments of components are independent from
each other).

Return Value
True if the graph is bipartite, False if not. If return_types is True,
the group assignment is also returned.

is_connected(mode=STRONG)

Decides whether the graph is connected.

Parameters
mode: whether we should calculate strong or weak connectivity.

Return Value
True if the graph is connected, False otherwise.

is dag()

Checks whether the graph is a DAG (directed acyclic graph).

A DAG is a directed graph with no directed cycles.

Return Value
True if it is a DAG, False otherwise.

(type=boolean)

is_directed()
Checks whether the graph is directed.

Return Value
True if it is directed, False otherwise.

(type=boolean)

181

Class GraphBase Package igraph

is_loop(edges—=None)

Checks whether a specific set of edges contain loop edges

Parameters
edges: edge indices which we want to check. If None, all edges are
checked.

Return Value
a list of booleans, one for every edge given

is minimal separator(vertices)

Decides whether the given vertex set is a minimal separator.
A minimal separator is a set of vertices whose removal disconnects the graph,
while the removal of any subset of the set keeps the graph connected.

Parameters
vertices: a single vertex ID or a list of vertex IDs

Return Value
True is the given vertex set is a minimal separator, False otherwise.

is_ multiple(edges—=None)

Checks whether an edge is a multiple edge.

Also works for a set of edges — in this case, every edge is checked one by one.
Note that if there are multiple edges going between a pair of vertices, there is
always one of them that is not reported as multiple (only the others). This
allows one to easily detect the edges that have to be deleted in order to make
the graph free of multiple edges.

Parameters
edges: edge indices which we want to check. If None, all edges are
checked.

Return Value
a list of booleans, one for every edge given

182

Class GraphBase Package igraph

is_mutual(edges=None)

Checks whether an edge has an opposite pair.

Also works for a set of edges — in this case, every edge is checked one by one.
The result will be a list of booleans (or a single boolean if only an edge index
is supplied), every boolean corresponding to an edge in the edge set supplied.
True is returned for a given edge a —> b if there exists another edge b —> a in
the original graph (not the given edge set!). All edges in an undirected graph
are mutual. In case there are multiple edges between a and b, it is enough to
have at least one edge in either direction to report all edges between them as
mutual, so the multiplicity of edges do not matter.

Parameters

edges: edge indices which we want to check. If None, all edges are
checked.

Return Value
a list of booleans, one for every edge given

is_separator(vertices)

Decides whether the removal of the given vertices disconnects the graph.

Parameters
vertices: a single vertex ID or a list of vertex IDs

Return Value
True is the given vertex set is a separator, False if not.

is_simple()

Checks whether the graph is simple (no loop or multiple edges).

Return Value
True if it is simple, False otherwise.

(type=boolean)

183

Class GraphBase Package igraph

isoclass(vertices)

Returns the isomorphism class of the graph or its subgraph.

Isomorphy class calculations are implemented only for graphs with 3 or 4
vertices.

Parameters
vertices: a list of vertices if we want to calculate the isomorphism
class for only a subset of vertices. None means to use the
full graph.

Return Value
the isomorphism class of the (sub)graph

isomorphic(other)

Checks whether the graph is isomorphic to another graph.
The algorithm being used is selected using a simple heuristic:

e If one graph is directed and the other undirected, an exception is thrown.

e If the two graphs does not have the same number of vertices and edges, it
returns with False

e If the graphs have three or four vertices, then an O(1) algorithm is used
with precomputed data.

e Otherwise if the graphs are directed, then the VF2 isomorphism
algorithm is used (see Graph.isomorphic_vf2).

e Otherwise the BLISS isomorphism algorithm is used, see
Graph.isomorphic_bliss.

Return Value
True if the graphs are isomorphic, False otherwise.

184

Class GraphBase

Package igraph

isomorphic_ bliss(other, return_ mapping_ 12=False,
return_mapping 21=False, sh1="fm", sh2=None)

isomorphism algorithm.

Parameters
other:

colorl:

color2:

shi:

sh2:

Return Value

return_mapping_12:

return_mapping_21:

Checks whether the graph is isomorphic to another graph, using the BLISS

See http://www.tcs.hut.fi/Software/bliss /index.html for more information
about the BLISS algorithm.

the other graph with which we want to
compare the graph.

optional vector storing the coloring of the

vertices of the first graph. If None, all vertices

have the same color.

optional vector storing the coloring of the
vertices of the second graph. If None, all
vertices have the same color.

if True, calculates the mapping which maps
the vertices of the first graph to the second.

if True, calculates the mapping which maps
the vertices of the second graph to the first.

splitting heuristics for the first graph as a
case-insensitive string, with the following
possible values:

e "f": first non-singleton cell
e "f1": first largest non-singleton cell
e "fs": first smallest non-singleton cell

e "fm": first maximally non-trivially
connected non-singleton cell

e "flm": largest maximally non-trivially
connected non-singleton cell

e "fsm": smallest maximally non-trivially
connected non-singleton cell

splitting heuristics to be used for the second
graph. This must be the same as shi;
alternatively, it can be None, in which case it
will automatically use the same value as shi.
Currently it is present for backwards
compatibility only.

if no mapping is calculated, the result is True if the graphs are
isomorphic, False otherwise. If any or both mappings are
calculated, the result is a 3-tuple, t&&@ first element being the above
mentioned boolean, the second element being the 1 -> 2 mapping
and the third element being the 2 -> 1 mapping. If the
corresponding mapping was not calculated, None is returned in the
annronriate eletment of the 2-t11nle

http://www.tcs.hut.fi/Software/bliss/index.html

Class GraphBase Package igraph

isomorphic_ vf2(other=None, color! =None, color2=None,
edge_color1 =None, edge_color2=None, return_mapping 12=False,
return_mapping 21=False, node compat fn=None,

edge_ compat_ fn—None, callback—=None)

Checks whether the graph is isomorphic to another graph, using the VF2
isomorphism algorithm.

Vertex and edge colors may be used to restrict the isomorphisms, as only
vertices and edges with the same color will be allowed to match each other.

Parameters

other: the other graph with which we want to
compare the graph. If None, the
automorphjisms of the graph will be tested.

colorl: optional vector storing the coloring of the
vertices of the first graph. If None, all vertices
have the same color.

color2: optional vector storing the coloring of the
vertices of the second graph. If None, all
vertices have the same color.

edge_colorl: optional vector storing the coloring of the
edges of the first graph. If None, all edges
have the same color.

edge_color2: optional vector storing the coloring of the

edges of the second graph. If None, all edges
have the same color.

return_mapping_12: if True, calculates the mapping which maps
the vertices of the first graph to the second.

return_mapping_21: if True, calculates the mapping which maps
the vertices of the second graph to the first.

callback: if not None, the isomorphism search will not
stop at the first match; it will call this
callback function instead for every
isomorphism found. The callback function
must accept four arguments: the first graph,
the second graph, a mapping from the nodes
of the first graph to the second, and a
mapping from the nodes of the second graph
to the first. The function must return True if
the search should continue or False otherwise.

node_compat_fn: a function that receives the two graphs and
two node indices (one from the first graph,
one from the second graph) and returns True
if the nodesigiéven by the two indices are
compatible (i.e. they could be matched to
each other) or False otherwise. This can be
used to restrict the set of isomorphisms based
on node-specific criteria that are too

Class GraphBase Package igraph

knn(vids—None, weights—None)

Calculates the average degree of the neighbors for each vertex, and the same
quantity as the function of vertex degree.

Parameters
vids: the vertices for which the calculation is performed. None
means all vertices.

weights: edge weights to be used. Can be a sequence or iterable or
even an edge attribute name. If this is given, the vertex
strength will be used instead of the vertex degree in the
calculations, but the "ordinary" vertex degree will be used
for the second (degree- dependent) list in the result.

Return Value
two lists in a tuple. The first list contains the average degree of
neighbors for each vertex, the second contains the average degree of
neighbors as a function of vertex degree. The zeroth element of this
list corresponds to vertices of degree 1.

laplacian(weights=None, normalized—False)

Returns the Laplacian matrix of a graph.

The Laplacian matrix is similar to the adjacency matrix, but the edges are
denoted with -1 and the diagonal contains the node degrees.

Normalized Laplacian matrices have 1 or 0 in their diagonals (0 for vertices
with no edges), edges are denoted by 1 / sqrt(d i * d_j) where d_i is the
degree of node i.

Multiple edges and self-loops are silently ignored. Although it is possible to
calculate the Laplacian matrix of a directed graph, it does not make much
sense.

Parameters
weights: edge weights to be used. Can be a sequence or iterable
or even an edge attribute name. When edge weights
are used, the degree of a node is considered to be the
weight of its incident edges.

normalized: whether to return the normalized Laplacian matrix.

Return Value
the Laplacian matrix.

187

Class GraphBase Package igraph

largest cliques()

Returns the largest cliques of the graph as a list of tuples.

Quite intuitively a clique is considered largest if there is no clique with more
vertices in the whole graph. All largest cliques are maximal (i.e.
nonextendable) but not all maximal cliques are largest.

See Also: clique_number () for the size of the largest cliques or
maximal_cliques() for the maximal cliques

largest independent vertex sets()

Returns the largest independent vertex sets of the graph as a list of tuples.

Quite intuitively an independent vertex set is considered largest if there is no
other set with more vertices in the whole graph. All largest sets are maximal
(i.e. nonextendable) but not all maximal sets are largest.

See Also: independence_number () for the size of the largest independent
vertex sets or maximal_independent_vertex_sets() for the maximal
(nonextendable) independent vertex sets

layout bipartite(types="type", hgap=1, vgap=1, maziter=100)

Place the vertices of a bipartite graph in two layers.

The layout is created by placing the vertices in two rows, according to their
types. The positions of the vertices within the rows are then optimized to
minimize the number of edge crossings using the heuristic used by the
Sugiyama layout algorithm.

Parameters

types: an igraph vector containing the vertex types, or an
attribute name. Anything that evalulates to False
corresponds to vertices of the first kind, everything else to
the second kind.

hgap: minimum horizontal gap between vertices in the same
layer.

vgap: vertical gap between the two layers.

maxiter: maximum number of iterations to take in the crossing
reduction step. Increase this if you feel that you are
getting too many edge crossings.

Return Value
the calculated layout.

188

Class GraphBase Package igraph

layout circle(dim=2, order=None)

Places the vertices of the graph uniformly on a circle or a sphere.

Parameters
dim: the desired number of dimensions for the layout. dim=2
means a 2D layout, dim=3 means a 3D layout.

order: the order in which the vertices are placed along the circle.
Not supported when dim is not equal to 2.

Return Value
the calculated layout.

189

Class GraphBase Package igraph

layout davidson harel(seed=None, maziter=10, fineiter—-1,
cool_fact=0.75, weight node dist=1.0, weight border=0.0,
weight edge lengths=-1, weight edge crossings=-1,

weight node_ edge dist—-1)

Places the vertices on a 2D plane according to the Davidson-Harel layout
algorithm.

The algorithm uses simulated annealing and a sophisticated energy function,
which is unfortunately hard to parameterize for different graphs. The original
publication did not disclose any parameter values, and the ones below were
determined by experimentation.

The algorithm consists of two phases: an annealing phase and a fine-tuning
phase. There is no simulated annealing in the second phase.

Parameters
seed: if None, uses a random starting layout for
the algorithm. If a matrix (list of lists),
uses the given matrix as the starting
position.

maxiter: Number of iterations to perform in the
annealing phase.

fineiter: Number of iterations to perform in the
fine-tuning phase. Negative numbers set
up a reasonable default from the base-2
logarithm of the vertex count, bounded
by 10 from above.

cool_fact: Cooling factor of the simulated annealing
phase.

weight_node_dist: Weight for the node-node distances in the
energy function.

weight_border: Weight for the distance from the border
component of the energy function. Zero
means that vertices are allowed to sit on
the border of the area designated for the
layout.

weight_edge_lengths: Weight for the edge length component of
the energy function. Negative numbers
are replaced by the density of the graph
divided by 10.

weight_edge_crossings: Weight for the edge crossing component
of the energy function. Negative numbers
are replaced by one minus the square
root of the density of the graph.

weight_node_edge_dist: Weightl?gr the node-edge distance
component of the energy function.
Negative numbers are replaced by 0.2
minus 0.2 times the density of the graph.

Class GraphBase Package igraph

layout drl(weights=None, fized=None, seed=None, options=None, dim=2)

Places the vertices on a 2D plane or in the 3D space ccording to the DrL
layout algorithm.

This is an algorithm suitable for quite large graphs, but it can be surprisingly
slow for small ones (where the simpler force-based layouts like
layout_kamada_kawai() or layout_fruchterman_reingold() are more
useful.

Parameters
weights: edge weights to be used. Can be a sequence or iterable or
even an edge attribute name.

seed: if None, uses a random starting layout for the algorithm.
If a matrix (list of lists), uses the given matrix as the
starting position.

fixed: if a seed is given, you can specify some vertices to be kept
fixed at their original position in the seed by passing an
appropriate list here. The list must have exactly as many
items as the number of vertices in the graph. Items of the
list that evaluate to True denote vertices that will not be
moved.

options: if you give a string argument here, you can select from five
default preset parameterisations: default, coarsen for a
coarser layout, coarsest for an even coarser layout,
refine for refining an existing layout and final for
finalizing a layout. If you supply an object that is not a
string, the DrL layout parameters are retrieved from the
respective keys of the object (so it should be a dict or
something else that supports the mapping protocol). The
following keys can be used:

e edge_cut: edge cutting is done in the late stages of
the algorithm in order to achieve less dense layouts.
Edges are cut if there is a lot of stress on them (a large
value in the objective function sum). The edge cutting
parameter is a value between 0 and 1 with 0
representing no edge cutting and 1 representing
maximal edge cutting.

e init_iterations: number of iterations in the
initialization phase

e init_temperature: start temperature during
initialization

e init_attraction: attraction during initialization

e init_damping mult: damping multiplier during
initialization o1

e liquid_iterations, liquid_temperature,
liquid_attraction, liquid_damping _mult: same
parameters for the liquid phase

e expansion_iterations, expansion_temperature,

Class GraphBase Package igraph

layout fruchterman reingold(weights=None, niter=500, seed=None,
start _temp—None, minr—None, maxz—=None, miny—None, mazry—None,
minz=None, mazz=None, grid="auto")

Places the vertices on a 2D plane according to the Fruchterman-Reingold
algorithm.

This is a force directed layout, see Fruchterman, T. M. J. and Reingold, E. M.:
Graph Drawing by Force-directed Placement. Software — Practice and
Experience, 21/11, 1129-1164, 1991

Parameters
weights: edge weights to be used. Can be a sequence or iterable
or even an edge attribute name.
niter: the number of iterations to perform. The default is

500.

start_temp: Real scalar, the start temperature. This is the
maximum amount of movement alloved along one axis,
within one step, for a vertex. Currently it is decreased
linearly to zero during the iteration. The default is the
square root of the number of vertices divided by 10.

minx: if not None, it must be a vector with exactly as many
elements as there are vertices in the graph. Each
element is a minimum constraint on the X value of the
vertex in the layout.

maxx: similar to msnz, but with maximum constraints

miny: similar to minz, but with the Y coordinates

maxy: similar to mazz, but with the Y coordinates

minz: similar to minz, but with the Z coordinates. Use only
for 3D layouts (dim=3).

maxz: similar to mazz, but with the Z coordinates. Use only
for 3D layouts (dim=3).

seed: if None, uses a random starting layout for the

algorithm. If a matrix (list of lists), uses the given
matrix as the starting position.

grid: whether to use a faster, but less accurate grid-based
implementation of the algorithm. "auto" decides
based on the number of vertices in the graph; a grid
will be used if there are at least 1000 vertices. "grid"
is equivalent to True, "nogrid" is equivalent to False.

Return Value
the calculated layout.

192

Class GraphBase Package igraph

layout graphopt(niter=500, node_ charge=0.001, node_ mass=30,
spring length=0, spring constant=1, max_sa_movement=>5, seed—None)

This is a port of the graphopt layout algorithm by Michael Schmuhl. graphopt
version 0.4.1 was rewritten in C and the support for layers was removed.

graphopt uses physical analogies for defining attracting and repelling forces
among the vertices and then the physical system is simulated until it reaches
an equilibrium or the maximal number of iterations is reached.

See hitp://www.schmuhl.org/graphopt/ for the original graphopt.

Parameters
niter: the number of iterations to perform. Should be a
couple of hundred in general.
node_charge: the charge of the vertices, used to calculate
electric repulsion.
node_mass: the mass of the vertices, used for the spring

forces
spring_length: the length of the springs
spring_constant: the spring constant

max_sa_movement: the maximum amount of movement allowed in a
single step along a single axis.

seed: a matrix containing a seed layout from which
the algorithm will be started. If None, a random
layout will be used.

Return Value
the calculated layout.

193

http://www.schmuhl.org/graphopt/

Class GraphBase Package igraph

layout grid(width=0, height=0, dim=2)

Places the vertices of a graph in a 2D or 3D grid.

Parameters
width: the number of vertices in a single row of the layout. Zero or
negative numbers mean that the width should be
determined automatically.

height: the number of vertices in a single column of the layout.
Zero or negative numbers mean that the height should be
determined automatically. It must not be given if the
number of dimensions is 2.

dim: the desired number of dimensions for the layout. dim=2
means a 2D layout, dim=3 means a 3D layout.

Return Value
the calculated layout.

194

Class GraphBase Package igraph

layout kamada kawai(maziter=1000, seed=None, maziter—=1000,
epsilon=0, kkconst=None, minz=None, maxrr—None, miny—=None,
mazy=None, minz—None, mazz—None, dim=2)

Places the vertices on a plane according to the Kamada-Kawai algorithm.

This is a force directed layout, see Kamada, T. and Kawai, S.: An Algorithm
for Drawing General Undirected Graphs. Information Processing Letters,
31/1, 7-15, 1989.

Parameters
maxiter: the maximum number of iterations to perform.

seed: if None, uses a random starting layout for the algorithm.
If a matrix (list of lists), uses the given matrix as the
starting position.

epsilon: quit if the energy of the system changes less than epsilon.
See the original paper for details.

kkconst: the Kamada-Kawail vertex attraction constant. None
means the square of the number of vertices.

minx: if not None, it must be a vector with exactly as many
elements as there are vertices in the graph. Each element
is a minimum constraint on the X value of the vertex in

the layout.

Maxx: similar to minz, but with maximum constraints

miny: similar to minz, but with the Y coordinates

maxy: similar to mazz, but with the Y coordinates

minz: similar to minz, but with the Z coordinates. Use only for
3D layouts (dim=3).

maxz: similar to mazz, but with the Z coordinates. Use only for
3D layouts (dim=3).

dim: the desired number of dimensions for the layout. dim=2

means a 2D layout, dim=3 means a 3D layout.

Return Value
the calculated layout.

195

Class GraphBase Package igraph

layout lgl(maxiter—=150, maxzdelta—=-1, area=-1, coolexp=1.5,
repulserad—=-1, cellsize=-1, root=None)

Places the vertices on a 2D plane according to the Large Graph Layout.

Parameters

maxiter: the number of iterations to perform.

maxdelta: the maximum distance to move a vertex in an
iteration. If negative, defaults to the number of
vertices.

area: the area of the square on which the vertices will be
placed. If negative, defaults to the number of vertices
squared.

coolexp: the cooling exponent of the simulated annealing.

repulserad: determines the radius at which vertex-vertex repulsion
cancels out attraction of adjacent vertices. If negative,
defaults to area times the number of vertices.

cellsize: the size of the grid cells. When calculating the
repulsion forces, only vertices in the same or
neighboring grid cells are taken into account. Defaults
to the fourth root of area.

root: the root vertex, this is placed first, its neighbors in the
first iteration, second neighbors in the second, etc.
None means that a random vertex will be chosen.

Return Value
the calculated layout.

196

Class GraphBase Package igraph

layout mds(dist=None, dim=2, arpack_ options=None)

Places the vertices in an Euclidean space with the given number of dimensions
using multidimensional scaling.

This layout requires a distance matrix, where the intersection of row 4 and
column j specifies the desired distance between vertex ¢ and vertex j. The
algorithm will try to place the vertices in a way that approximates the
distance relations prescribed in the distance matrix. igraph uses the classical
multidimensional scaling by Torgerson (see reference below).

For unconnected graphs, the method will decompose the graph into weakly
connected components and then lay out the components individually using the
appropriate parts of the distance matrix.

Parameters

dist: the distance matrix. It must be symmetric and
the symmetry is not checked — results are
unspecified when a non-symmetric distance
matrix is used. If this parameter is None, the
shortest path lengths will be used as distances.
Directed graphs are treated as undirected when
calculating the shortest path lengths to ensure
symmetry.

dim: the number of dimensions. For 2D layouts, supply
2 here; for 3D layouts, supply 3.

arpack_options: an ARPACKOptions object used to fine-tune the
ARPACK eigenvector calculation. If omitted, the
module-level variable called arpack_options is
used.

Return Value
the calculated layout.

Reference: Cox & Cox: Multidimensional Scaling (1994), Chapman and Hall,
London.

layout random(dim=2)

Places the vertices of the graph randomly.

Parameters
dim: the desired number of dimensions for the layout. dim=2 means
a 2D layout, dim=3 means a 3D layout.

Return Value
the coordinate pairs in a list.

197

Class GraphBase Package igraph

layout reingold _tilford(mode="out", root=None, rootlevel=None)

Places the vertices on a 2D plane according to the Reingold-Tilford layout
algorithm.

This is a tree layout. If the given graph is not a tree, a breadth-first search is
executed first to obtain a possible spanning tree.

Parameters

mode: specifies which edges to consider when builing the tree.
If it is OUT then only the outgoing, if it is IN then only
the incoming edges of a parent are considered. If it is
ALL then all edges are used (this was the behaviour in
igraph 0.5 and before). This parameter also influences
how the root vertices are calculated if they are not
given. See the root parameter.

root: the index of the root vertex or root vertices. if this is a
non-empty vector then the supplied vertex IDs are used
as the roots of the trees (or a single tree if the graph is
connected. If this is None or an empty list, the root
vertices are automatically calculated based on
topological sorting, performed with the opposite of the
mode argument.

rootlevel: this argument is useful when drawing forests which are
not trees. It specifies the level of the root vertices for
every tree in the forest.

Return Value
the calculated layout.

See Also: layout reingold tilford circular

Reference: EM Reingold, JS Tilford: Tidier Drawings of Trees. IEEE
Transactions on Software Engineering 7:22, 223-228, 1981.

198

Class GraphBase Package igraph

layout reingold tilford circular(mode="out", root=None,
rootlevel=None)

Circular Reingold-Tilford layout for trees.

This layout is similar to the Reingold-Tilford layout, but the vertices are
placed in a circular way, with the root vertex in the center.
See layout_reingold_tilford for the explanation of the parameters.

Return Value
the calculated layout.

See Also: layout reingold tilford

Reference: EM Reingold, JS Tilford: Tidier Drawings of Trees. IEEE
Transactions on Software Engineering 7:22, 223-228, 1981.

layout star(center=0, order—None)

Calculates a star-like layout for the graph.

Parameters
center: the ID of the vertex to put in the center

order: a numeric vector giving the order of the vertices (including
the center vertex!). If it is None, the vertices will be placed
in increasing vertex ID order.

Return Value
the calculated layout.

linegraph()

Returns the line graph of the graph.

The line graph L(G) of an undirected graph is defined as follows: L(G) has
one vertex for each edge in G and two vertices in L(G) are connected iff their
corresponding edges in the original graph share an end point.

The line graph of a directed graph is slightly different: two vertices are
connected by a directed edge iff the target of the first vertex’s corresponding
edge is the same as the source of the second vertex’s corresponding edge.

199

Class GraphBase Package igraph

maxdegree(vertices—None, mode—=ALL, loops—False)

Returns the maximum degree of a vertex set in the graph.

This method accepts a single vertex ID or a list of vertex IDs as a parameter,
and returns the degree of the given vertices (in the form of a single integer or a
list, depending on the input parameter).

Parameters
vertices: a single vertex ID or a list of vertex IDs, or None
meaning all the vertices in the graph.

mode: the type of degree to be returned (OUT for out-degrees,
IN IN for in-degrees or ALL for the sum of them).

loops: whether self-loops should be counted.

maxflow (source, target, capacity=None)

Returns the maximum flow between the source and target vertices.

Parameters
source: the source vertex ID

target: the target vertex ID

capacity: the capacity of the edges. It must be a list or a valid
attribute name or None. In the latter case, every edge
will have the same capacity.

Return Value
a tuple containing the following: the value of the maximum flow
between the given vertices, the flow value on all the edges, the edge
IDs that are part of the corresponding minimum cut, and the vertex
IDs on one side of the cut. For directed graphs, the flow value vector
gives the flow value on each edge. For undirected graphs, the flow
value is positive if the flow goes from the smaller vertex ID to the
bigger one and negative if the flow goes from the bigger vertex ID to
the smaller.

Attention: this function has a more convenient interface in class Graph which
wraps the result in a Flow object. It is advised to use that.

200

Class GraphBase Package igraph

maxflow value(source, target, capacity=None)

Returns the value of the maximum flow between the source and target vertices.

Parameters
source: the source vertex ID

target: the target vertex ID

capacity: the capacity of the edges. It must be a list or a valid
attribute name or None. In the latter case, every edge
will have the same capacity.

Return Value
the value of the maximum flow between the given vertices

maximal cliques(min=0, maz=0, file=None)

Returns the maximal cliques of the graph as a list of tuples.

A maximal clique is a clique which can’t be extended by adding any other
vertex to it. A maximal clique is not necessarily one of the largest cliques in
the graph.

Parameters
min: the minimum size of maximal cliques to be returned. If zero
or negative, no lower bound will be used.

max: the maximum size of maximal cliques to be returned. If zero
or negative, no upper bound will be used. If nonzero, the size
of every maximal clique found will be compared to this value
and a clique will be returned only if its size is smaller than
this limit.

file: a file object or the name of the file to write the results to.
When this argument is None, the maximal cliques will be
returned as a list of lists.

Return Value
the maximal cliques of the graph as a list of lists, or None if the file
argument was given.@see: largest_cliques() for the largest
cliques.

201

Class GraphBase Package igraph

maximal independent vertex sets()

Returns the maximal independent vertex sets of the graph as a list of tuples.

A maximal independent vertex set is an independent vertex set which can’t be
extended by adding any other vertex to it. A maximal independent vertex set
is not necessarily one of the largest independent vertex sets in the graph.

See Also: largest_independent_vertex_sets() for the largest independent
vertex sets

Reference: S. Tsukiyama, M. Ide, H. Ariyoshi and 1. Shirawaka: A new
algorithm for gemerating all the mazimal independent sets. STAM J
Computing, 6:505-517, 1977.

202

Class GraphBase Package igraph

mincut(source=None, target—None, capacity—None)

Calculates the minimum cut between the source and target vertices or within
the whole graph.

The minimum cut is the minimum set of edges that needs to be removed to
separate the source and the target (if they are given) or to disconnect the
graph (if the source and target are not given). The minimum is calculated
using the weights (capacities) of the edges, so the cut with the minimum total
capacity is calculated. For undirected graphs and no source and target, the
method uses the Stoer-Wagner algorithm. For a given source and target, the
method uses the push-relabel algorithm; see the references below.

Parameters
source: the source vertex ID. If None, target must also be
{None} and the calculation will be done for the entire
graph (i.e. all possible vertex pairs).
target: the target vertex ID. If None, source must also be

{None} and the calculation will be done for the entire
graph (i.e. all possible vertex pairs).

capacity: the capacity of the edges. It must be a list or a valid
attribute name or None. In the latter case, every edge
will have the same capacity.

Return Value
the value of the minimum cut, the IDs of vertices in the first and
second partition, and the IDs of edges in the cut, packed in a 4-tuple

Attention: this function has a more convenient interface in class Graph which
wraps the result in a Cut object. It is advised to use that.

Reference:
e M. Stoer, F. Wagner: A simple min-cut algorithm. Journal of
the ACM 44(4):585-591, 1997.

e A. V. Goldberg, R. E. Tarjan: A new approach to the
maximum-flow problem. Journal of the ACM 35(4):921-940,
1988.

203

Class GraphBase Package igraph

mincut_ value(source=-1, target—=-1, capacity=None)

Returns the minimum cut between the source and target vertices or within the
whole graph.

Parameters
source: the source vertex ID. If negative, the calculation is done
for every vertex except the target and the minimum is
returned.
target: the target vertex ID. If negative, the calculation is done
for every vertex except the source and the minimum is
returned.

capacity: the capacity of the edges. It must be a list or a valid
attribute name or None. In the latter case, every edge
will have the same capacity.

Return Value
the value of the minimum cut between the given vertices

minimum size separators()

Returns a list containing all separator vertex sets of minimum size.

A vertex set is a separator if its removal disconnects the graph. This method
lists all the separators for which no smaller separator set exists in the given
graph.

Return Value
a list where each item lists the vertex indices of a given separator of
minimum size.

Reference: Arkady Kanevsky: Finding all minimum-size separating vertex
sets in a graph. Networks 23:533-541, 1993.

204

Class GraphBase Package igraph

modularity (membership, weights=None)

Calculates the modularity of the graph with respect to some vertex types.

The modularity of a graph w.r.t. some division measures how good the
division is, or how separated are the different vertex types from each other. It
is defined as Q=1/(2m) * sum(Aij-ki*kj/(2m)delta(ci,cj),i,j). m is the number
of edges, Aij is the element of the A adjacency matrix in row ¢ and column j,
ki is the degree of node 4, kj is the degree of node j, and C% and cj are the
types of the two vertices (i and 7). delta(x,y) is one iff z=y, 0 otherwise.

If edge weights are given, the definition of modularity is modified as follows:
Aij becomes the weight of the corresponding edge, ki is the total weight of
edges incident on vertex 4, kj is the total weight of edges incident on vertex j
and m is the total edge weight in the graph.

Parameters
membership: the membership vector, e.g. the vertex type index for
each vertex.

weights: optional edge weights or None if all edges are weighed
equally.

Return Value
the modularity score. Score larger than 0.3 usually indicates strong
community structure.

Attention: method overridden in Graph to allow VertexClustering objects
as a parameter. This method is not strictly necessary, since the
VertexClustering class provides a variable called modularity.

Reference: MEJ Newman and M Girvan: Finding and evaluating community
structure in networks. Phys Rev E 69 026113, 2004.

205

Class GraphBase Package igraph

motifs randesu(size=3, cut_prob=None, callback—=None)

Counts the number of motifs in the graph

Motifs are small subgraphs of a given structure in a graph. It is argued that
the motif profile (ie. the number of different motifs in the graph) is
characteristic for different types of networks and network function is related to
the motifs in the graph.

This function is able to find the different motifs of size three and four (ie. the
number of different subgraphs with three and four vertices) in the network.

In a big network the total number of motifs can be very large, so it takes a lot
of time to find all of them. In such cases, a sampling method can be used.
This function is capable of doing sampling via the cut prob argument. This
argument gives the probability that a branch of the motif search tree will not
be explored.

Parameters
size: the size of the motifs (3 or 4).

cut_prob: the cut probabilities for different levels of the search tree.
This must be a list of length size or None to find all
motifs.

callback: None or a callable that will be called for every motif
found in the graph. The callable must accept three
parameters: the graph itself, the list of vertices in the
motif and the isomorphism class of the motif (see
Graph.isoclass()). The search will stop when the
callback returns an object with a non-zero truth value or
raises an exception.

Return Value
the list of motifs if callback is None, or None otherwise

Reference: S. Wernicke and F. Rasche: FANMOD: a tool for fast network
motif detection, Bioinformatics 22(9), 1152-1153, 2006.

See Also: Graph.motifs randesu no()

206

Class GraphBase Package igraph

motifs randesu estimate(size=3, cut_prob=None, sample)

Counts the total number of motifs in the graph

Motifs are small subgraphs of a given structure in a graph. This function
estimates the total number of motifs in a graph without assigning isomorphism
classes to them by extrapolating from a random sample of vertices.

Parameters
size: the size of the motifs (3 or 4).

cut_prob: the cut probabilities for different levels of the search tree.
This must be a list of length size or None to find all
motifs.

sample: the size of the sample or the vertex IDs of the vertices to
be used for sampling.

Reference: S. Wernicke and F. Rasche: FANMOD: a tool for fast network
motif detection, Bioinformatics 22(9), 1152-1153, 2006.

See Also: Graph.motifs randesu()

motifs randesu no(size=3, cut_prob=None)

Counts the total number of motifs in the graph

Motifs are small subgraphs of a given structure in a graph. This function
counts the total number of motifs in a graph without assigning isomorphism
classes to them.

Parameters
size: the size of the motifs (3 or 4).

cut_prob: the cut probabilities for different levels of the search tree.
This must be a list of length size or None to find all
motifs.

Reference: S. Wernicke and F. Rasche: FANMOD: a tool for fast network
motif detection, Bioinformatics 22(9), 1152-1153, 2006.

See Also: Graph.motifs randesu()

207

Class GraphBase Package igraph

neighborhood(vertices=None, order=1, mode=ALL, mindist—0)

For each vertex specified by wvertices, returns the vertices reachable from that
vertex in at most order steps. If mindist is larger than zero, vertices that are
reachable in less than mindist steps are excluded.

Parameters
vertices: a single vertex ID or a list of vertex IDs, or None
meaning all the vertices in the graph.

order: the order of the neighborhood, i.e. the maximum number
of steps to take from the seed vertex.

mode: specifies how to take into account the direction of the
edges if a directed graph is analyzed. "out" means that
only the outgoing edges are followed, so all vertices
reachable from the source vertex in at most order steps
are counted. "in" means that only the incoming edges
are followed (in reverse direction of course), so all
vertices from which the source vertex is reachable in at
most order steps are counted. "all" treats directed
edges as undirected.

mindist: the minimum distance required to include a vertex in the
result. If this is one, the seed vertex is not included. If
this is two, the direct neighbors of the seed vertex are
not included either, and so on.

Return Value
a single list specifying the neighborhood if vertices was an integer
specifying a single vertex index, or a list of lists if vertices was a list
or None.

208

Class GraphBase Package igraph

neighborhood _size(vertices=None, order=1, mode=ALL, mindist=0)

For each vertex specified by wvertices, returns the number of vertices reachable
from that vertex in at most order steps. If mindist is larger than zero, vertices
that are reachable in less than mindist steps are excluded.

Parameters
vertices: a single vertex ID or a list of vertex IDs, or None
meaning all the vertices in the graph.

order: the order of the neighborhood, i.e. the maximum number
of steps to take from the seed vertex.

mode: specifies how to take into account the direction of the
edges if a directed graph is analyzed. "out" means that
only the outgoing edges are followed, so all vertices
reachable from the source vertex in at most order steps
are counted. "in" means that only the incoming edges
are followed (in reverse direction of course), so all
vertices from which the source vertex is reachable in at
most order steps are counted. "all" treats directed
edges as undirected.

mindist: the minimum distance required to include a vertex in the
result. If this is one, the seed vertex is not counted. If
this is two, the direct neighbors of the seed vertex are
not counted either, and so on.

Return Value
a single number specifying the neighborhood size if vertices was an
integer specifying a single vertex index, or a list of sizes if vertices
was a list or None.

neighbors(vertex, mode—=ALL)

Returns adjacent vertices to a given vertex.

Parameters
vertex: a vertex ID

mode: whether to return only successors (OUT), predecessors (IN)
or both (ALL). Ignored for undirected graphs.

209

Class GraphBase Package igraph

path length hist(directed=True)

Calculates the path length histogram of the graph

Parameters
directed: whether to consider directed paths

Return Value
a tuple. The first item of the tuple is a list of path lengths, the ith
element of the list contains the number of paths with length i+1.
The second item contains the number of unconnected vertex pairs as
a float (since it might not fit into an integer)

Attention: this function is wrapped in a more convenient syntax in the
derived class Graph. It is advised to use that instead of this version.

permute vertices(permutation)

Permutes the vertices of the graph according to the given permutation and
returns the new graph.

Vertex k of the original graph will become vertex permutation/k/ in the new
graph. No validity checks are performed on the permutation vector.

Return Value
the new graph

210

Class GraphBase Package igraph

personalized pagerank(vertices=None, directed=True, damping=0.85,
reset=None, reset vertices=None, weights=None, arpack options=None,
implementation="prpack", niter=1000, eps=0.001)

Calculates the personalized PageRank values of a graph.

The personalized PageRank calculation is similar to the PageRank calculation,
but the random walk is reset to a non-uniform distribution over the vertices in
every step with probability 1-damping instead of a uniform distribution.

Parameters
vertices: the indices of the vertices being queried. None
means all of the vertices.
directed: whether to consider directed paths.
damping: the damping factor. 1-damping is the PageRank
value for vertices with no incoming links.
reset: the distribution over the vertices to be used when

resetting the random walk. Can be a sequence, an
iterable or a vertex attribute name as long as
they return a list of floats whose length is equal
to the number of vertices. If None, a uniform
distribution is assumed, which makes the method
equivalent to the original PageRank algorithm.

reset_vertices: an alternative way to specify the distribution over
the vertices to be used when resetting the random
walk. Simply supply a list of vertex IDs here, or a
VertexSeq or a Vertex. Resetting will take place
using a uniform distribution over the specified
vertices.

weights: edge weights to be used. Can be a sequence or
iterable or even an edge attribute name.

arpack_options: an ARPACKOptions object used to fine-tune the
ARPACK eigenvector calculation. If omitted, the
module-level variable called arpack_options is
used. This argument is ignored if not the
ARPACK implementation is used, see the
implementation argument.

implementation: which implementation to use to solve the
PageRank eigenproblem. Possible values are:

e "prpack": use the PRPACK library. This is a
new implementation in igraph 0.7

e "arpack": use the ARPACK library. This
implementation was used from version 0.5,
until version 0.7.

e "power": udd simple power method. This is
the implementation that was used before
igraph version 0.5.

niter: The number of iterations to use in the power

Class GraphBase Package igraph

predecessors(vertex)

Returns the predecessors of a given vertex.

Equivalent to calling the Graph.neighbors method with type=IN.

radius(mode=0UT)

Calculates the radius of the graph.

The radius of a graph is defined as the minimum eccentricity of its vertices
(see eccentricity()).

Parameters
mode: what kind of paths to consider for the calculation in case of
directed graphs. OUT considers paths that follow edge
directions, IN considers paths that follow the opposite edge
directions, ALL ignores edge directions. The argument is
ignored for undirected graphs.

Return Value
the radius

See Also: Graph.eccentricity()

random _walk(start, steps, mode="out", stuck="return")

Performs a random walk of a given length from a given node.

Parameters
start: the starting vertex of the walk

steps: the number of steps that the random walk should take

mode: whether to follow outbound edges only (0UT), inbound edges
only (IN) or both (ALL). Ignored for undirected
graphs.@param stuck: what to do when the random walk
gets stuck. "return" returns a partial random walk;
"error" throws an exception.

Return Value
a random walk that starts from the given vertex and has at most the
given length (shorter if the random walk got stuck)

212

Class GraphBase Package igraph

reciprocity (ignore loops—True, mode—"default")

Reciprocity defines the proportion of mutual connections in a directed graph.
It is most commonly defined as the probability that the opposite counterpart
of a directed edge is also included in the graph. This measure is calculated if
mode is "default".

Prior to igraph 0.6, another measure was implemented, defined as the
probability of mutual connection between a vertex pair if we know that there
is a (possibly non-mutual) connection between them. In other words,
(unordered) vertex pairs are classified into three groups: (1) disconnected, (2)
non-reciprocally connected and (3) reciprocally connected. The result is the
size of group (3), divided by the sum of sizes of groups (2) and (3). This
measure is calculated if mode is "ratio".

Parameters
ignore_loops: whether loop edges should be ignored.

mode: the algorithm to use to calculate the reciprocity; see
above for more details.

Return Value
the reciprocity of the graph

rewire(n=1000, mode="simple")

Randomly rewires the graph while preserving the degree distribution.

Please note that the rewiring is done "in-place", so the original graph will be
modified. If you want to preserve the original graph, use the copy method

before.
Parameters
n: the number of rewiring trials.

mode: the rewiring algorithm to use. It can either be "simple" or
"loops"; the former does not create or destroy loop edges
while the latter does.

213

Class GraphBase Package igraph

rewire edges(prob, loops=False, multiple=False)

Rewires the edges of a graph with constant probability.

Each endpoint of each edge of the graph will be rewired with a constant
probability, given in the first argument.

Please note that the rewiring is done "in-place", so the original graph will be
modified. If you want to preserve the original graph, use the copy method

before.
Parameters
prob: rewiring probability
loops: whether the algorithm is allowed to create loop edges

multiple: whether the algorithm is allowed to create multiple edges.

shortest paths(source=None, target—None, weights=None, mode—0UT)

Calculates shortest path lengths for given vertices in a graph.

The algorithm used for the calculations is selected automatically: a simple
BFS is used for unweighted graphs, Dijkstra’s algorithm is used when all the
weights are positive. Otherwise, the Bellman-Ford algorithm is used if the
number of requested source vertices is larger than 100 and Johnson’s algorithm
is used otherwise.

Parameters
source: a list containing the source vertex IDs which should be
included in the result. If None, all vertices will be
considered.

target: a list containing the target vertex IDs which should be
included in the result. If None, all vertices will be
considered.

weights: a list containing the edge weights. It can also be an
attribute name (edge weights are retrieved from the given
attribute) or None (all edges have equal weight).

mode: the type of shortest paths to be used for the calculation in
directed graphs. OUT means only outgoing, IN means only
incoming paths. ALL means to consider the directed graph
as an undirected one.

Return Value
the shortest path lengths for given vertices in a matrix

214

Class GraphBase

Package igraph

loops=True)

similarity dice(vertices—=None, pairs=None, mode—IGRAPH_ALL,

counterpart.
Parameters

vertices:

pairs:

mode:

loops:

Return Value

not None.

Dice similarity coefficient of vertices.

The Dice similarity coefficient of two vertices is twice the number of their
common neighbors divided by the sum of their degrees. This coefficient is very
similar to the Jaccard coefficient, but usually gives higher similarities than its

the vertices to be analysed. If None and pairs is also
None, all vertices will be considered.

the vertex pairs to be analysed. If this is given, vertices
must be None, and the similarity values will be
calculated only for the given pairs. Vertex pairs must be
specified as tuples of vertex IDs.

which neighbors should be considered for directed graphs.

Can be ALL, IN or OUT, ignored for undirected graphs.

whether vertices should be considered adjacent to
themselves. Setting this to True assumes a loop edge for
all vertices even if none is present in the graph. Setting
this to False may result in strange results: nonadjacent
vertices may have larger similarities compared to the
case when an edge is added between them — however,
this might be exactly the result you want to get.

the pairwise similarity coefficients for the vertices specified, in the
form of a matrix if pairs is None or in the form of a list if pairs is

215

Class GraphBase Package igraph

similarity inverse log weighted(vertices=None, mode—IGRAPH_ALL)

Inverse log-weighted similarity coefficient of vertices.

Each vertex is assigned a weight which is 1 / log(degree). The log-weighted
similarity of two vertices is the sum of the weights of their common neighbors.

Parameters
vertices: the vertices to be analysed. If None, all vertices will be
considered.
mode: which neighbors should be considered for directed

graphs. Can be ALL, IN or QUT, ignored for undirected
graphs. IN means that the weights are determined by the
out-degrees, OUT means that the weights are determined
by the in-degrees.

Return Value
the pairwise similarity coefficients for the vertices specified, in the
form of a matrix (list of lists).

216

Class GraphBase

Package igraph

loops=True)

similarity jaccard(vertices=None, pairs=None, mode—IGRAPH_ALL,

Parameters
vertices:

pairs:

mode:

loops:

Return Value

not None.

Jaccard similarity coefficient of vertices.

The Jaccard similarity coefficient of two vertices is the number of their
common neighbors divided by the number of vertices that are adjacent to at
least one of them.

the vertices to be analysed. If None and pairs is also
None, all vertices will be considered.

the vertex pairs to be analysed. If this is given, vertices
must be None, and the similarity values will be
calculated only for the given pairs. Vertex pairs must be
specified as tuples of vertex IDs.

which neighbors should be considered for directed graphs.

Can be ALL, IN or OUT, ignored for undirected graphs.

whether vertices should be considered adjacent to
themselves. Setting this to True assumes a loop edge for
all vertices even if none is present in the graph. Setting
this to False may result in strange results: nonadjacent
vertices may have larger similarities compared to the
case when an edge is added between them — however,
this might be exactly the result you want to get.

the pairwise similarity coefficients for the vertices specified, in the
form of a matrix if pairs is None or in the form of a list if pairs is

217

Class GraphBase Package igraph

simplify (multiple=True, loops=True, combine edges—None)

Simplifies a graph by removing self-loops and /or multiple edges.

For example, suppose you have a graph with an edge attribute named weight.
graph.simplify(combine_edges=max) will take the maximum of the weights
of multiple edges and assign that weight to the collapsed edge.
graph.simplify(combine_edges=sum) will take the sum of the weights. You
can also write graph.simplify(combine_edges=dict(weight="sum")) or
graph.simplify(combine_edges=dict(weight=sum)), since sum is
recognised both as a Python built-in function and as a string constant.

Parameters
multiple: whether to remove multiple edges.
loops: whether to remove loops.

combine_edges: specifies how to combine the attributes of multiple
edges between the same pair of vertices into a
single attribute. If it is None, only one of the edges
will be kept and all the attributes will be lost. If it
is a function, the attributes of multiple edges will
be collected and passed on to that function which
will return the new attribute value that has to be
assigned to the single collapsed edge. It can also be
one of the following string constants:

e "ignore": all the edge attributes will be
ignored.

"sum": the sum of the edge attribute values
will be used for the new edge.

e "product": the product of the edge attribute
values will be used for the new edge.

e "mean": the mean of the edge attribute values
will be used for the new edge.

e "median": the median of the edge attribute
values will be used for the new edge.

e "min": the minimum of the edge attribute
values will be used for the new edge.

e "max": the maximum of the edge attribute
values will be used for the new edge.

e "first": the attribute value of the first edge in
the collapsed set will be used for the new edge.

e "last": the attribute value of the last edge in
the collapsed set will be used for the new edge.

e "random": a randomly selected value will be
used for the new edge

e "concat": tlfdthttribute values will be
concatenated for the new edge.

You can also use a dict mapping edge attribute
names to functions or the above string constants if

Class GraphBase Package igraph

st _mincut(source, target, capacity=None)

Calculates the minimum cut between the source and target vertices in a graph.

Parameters
source: the source vertex ID

target: the target vertex ID

capacity: the capacity of the edges. It must be a list or a valid
attribute name or None. In the latter case, every edge
will have the same capacity.

Return Value
the value of the minimum cut, the IDs of vertices in the first and
second partition, and the IDs of edges in the cut, packed in a 4-tuple

Attention: this function has a more convenient interface in class Graph which
wraps the result in a list of Cut objects. It is advised to use that.

strength(vertices, mode=ALL, loops=True, weights—None)

Returns the strength (weighted degree) of some vertices from the graph

This method accepts a single vertex ID or a list of vertex IDs as a parameter,
and returns the strength (that is, the sum of the weights of all incident edges)
of the given vertices (in the form of a single integer or a list, depending on the
input parameter).

Parameters
vertices: a single vertex ID or a list of vertex IDs

mode: the type of degree to be returned (OUT for out-degrees,
IN IN for in-degrees or ALL for the sum of them).

loops: whether self-loops should be counted.

weights: edge weights to be used. Can be a sequence or iterable or
even an edge attribute name. “None* means to treat the
graph as unweighted, falling back to ordinary degree
calculations.

219

Class GraphBase Package igraph

subcomponent (v, mode—ALL)

Determines the indices of vertices which are in the same component as a given

vertex.
Parameters
v: the index of the vertex used as the source/destination

mode: if equals to IN, returns the vertex IDs from where the given
vertex can be reached. If equals to OUT, returns the vertex
IDs which are reachable from the given vertex. If equals to
ALL, returns all vertices within the same component as the
given vertex, ignoring edge directions. Note that this is not
equal to calculating the union of the results of IN and 0UT.

Return Value
the indices of vertices which are in the same component as a given
vertex.

subgraph edges(edges, delete_vertices=True)

Returns a subgraph spanned by the given edges.

Parameters
edges: a list containing the edge IDs which should be
included in the result.

delete_vertices: if True, vertices not incident on any of the
specified edges will be deleted from the result. If
False, all vertices will be kept.

Return Value
the subgraph

220

Class GraphBase Package igraph

subisomorphic lad(other, domains=None, induced=False, time_ limit=0,
return_ mapping—False)

Checks whether a subgraph of the graph is isomorphic to another graph.

The optional domains argument may be used to restrict vertices that may
match each other. You can also specify whether you are interested in induced
subgraphs only or not.

Parameters

other: the pattern graph we are looking for in the graph.

domains: a list of lists, one sublist belonging to each vertex
in the template graph. Sublist ¢ contains the
indices of the vertices in the original graph that
may match vertex ¢ in the template graph. None
means that every vertex may match every other
vertex.

induced: whether to consider induced subgraphs only.

time_limit: an optimal time limit in seconds. Only the

integral part of this number is taken into account.
If the time limit is exceeded, the method will
throw an exception.

return_mapping: when True, the function will return a tuple, where
the first element is a boolean denoting whether a
subisomorphism has been found or not, and the
second element describes the mapping of the
vertices from the template graph to the original
graph. When False, only the boolean is returned.

Return Value
if no mapping is calculated, the result is True if the graph contains a
subgraph that is isomorphic to the given template, False otherwise.
If the mapping is calculated, the result is a tuple, the first element
being the above mentioned boolean, and the second element being
the mapping from the target to the original graph.

221

Class GraphBase Package igraph

subisomorphic_ vf2(other, color! =None, color2=None, edge_ color! =None,
edge_color2=None, return_mapping 12=False,

return_ mapping 21=False, callback=None, node compat fn=None,

edge_ compat_ fn—None)

Checks whether a subgraph of the graph is isomorphic to another graph.

Vertex and edge colors may be used to restrict the isomorphisms, as only
vertices and edges with the same color will be allowed to match each other.

Parameters

other: the other graph with which we want to
compare the graph.

colorl: optional vector storing the coloring of the
vertices of the first graph. If None, all vertices
have the same color.

color2: optional vector storing the coloring of the
vertices of the second graph. If None, all
vertices have the same color.

edge_colorl: optional vector storing the coloring of the
edges of the first graph. If None, all edges
have the same color.

edge_color2: optional vector storing the coloring of the

edges of the second graph. If None, all edges
have the same color.

return_mapping_12: if True, calculates the mapping which maps
the vertices of the first graph to the second.
The mapping can contain -1 if a given node is
not mapped.

return_mapping_21: if True, calculates the mapping which maps
the vertices of the second graph to the first.
The mapping can contain -1 if a given node is
not mapped.

callback: if not None, the subisomorphism search will
not stop at the first match; it will call this
callback function instead for every
subisomorphism found. The callback function
must accept four arguments: the first graph,
the second graph, a mapping from the nodes
of the first graph to the second, and a
mapping from the nodes of the second graph
to the first. The function must return True if
the search should continue or False otherwise.

node_compat_fn: a function that receives the two graphs and
two node ingliges (one from the first graph,
one from the second graph) and returns True
if the nodes given by the two indices are
compatible (i.e. they could be matched to
each other) or False otherwise. This can be

Class GraphBase Package igraph

successors(vertez)

Returns the successors of a given vertex.

Equivalent to calling the Graph.neighbors method with type=0UT.

to_ directed(mutual=True)

Converts an undirected graph to directed.

Parameters
mutual: True if mutual directed edges should be created for every
undirected edge. If False, a directed edge with arbitrary
direction is created.

to prufer()

Converts a tree graph into a Prufer sequence.

Return Value
the Prufer sequence as a list

to undirected(mode="collapse", combine_ edges=None)

Converts a directed graph to undirected.

Parameters

mode: specifies what to do with multiple directed edges
going between the same vertex pair. True or
"collapse" means that only a single edge should
be created from multiple directed edges. False or
"each" means that every edge will be kept (with
the arrowheads removed). "mutual" creates one
undirected edge for each mutual directed edge pair.

combine_edges: specifies how to combine the attributes of multiple
edges between the same pair of vertices into a
single attribute. See Graph.simplify() for more
details.

223

Class GraphBase Package igraph

topological sorting(mode—=0UT)

Calculates a possible topological sorting of the graph.

Returns a partial sorting and issues a warning if the graph is not a directed
acyclic graph.

Parameters
mode: if OUT, vertices are returned according to the forward
topological order — all vertices come before their successors. If
IN, all vertices come before their ancestors.

Return Value
a possible topological ordering as a list

transitivity avglocal undirected(mode="nan")

Calculates the average of the vertex transitivities of the graph.

The transitivity measures the probability that two neighbors of a vertex are
connected. In case of the average local transitivity, this probability is
calculated for each vertex and then the average is taken. Vertices with less
than two neighbors require special treatment, they will either be left out from
the calculation or they will be considered as having zero transitivity,
depending on the mode parameter.

Note that this measure is different from the global transitivity measure (see
transitivity_undirected()) as it simply takes the average local transitivity
across the whole network.

Parameters
mode: defines how to treat vertices with degree less than two. If
TRANSITIVITT_ZERO or "zero", these vertices will have zero
transitivity. If TRANSITIVITY_NAN or "nan", these vertices
will be excluded from the average.

See Also: transitivity_undirected(),
transitivity_local_undirected()

Reference: D. J. Watts and S. Strogatz: Collective dynamics of small-world
networks. Nature 393(6884):440-442, 1998.

224

Class GraphBase Package igraph

transitivity local undirected(vertices=None, mode="nan",
weights—=None)

Calculates the local transitivity (clustering coefficient) of the given vertices in
the graph.

The transitivity measures the probability that two neighbors of a vertex are
connected. In case of the local transitivity, this probability is calculated
separately for each vertex.

Note that this measure is different from the global transitivity measure (see
transitivity_undirected()) as it calculates a transitivity value for each
vertex individually.

The traditional local transitivity measure applies for unweighted graphs only.
When the weights argument is given, this function calculates the weighted
local transitivity proposed by Barrat et al (see references).

Parameters
vertices: a list containing the vertex IDs which should be included
in the result. None means all of the vertices.

mode: defines how to treat vertices with degree less than two. If
TRANSITIVITT_ZERQO or "zero", these vertices will have
zero transitivity. If TRANSITIVITY_NAN or "nan", these
vertices will have NaN (not a number) as their transitivity.

weights: edge weights to be used. Can be a sequence or iterable or
even an edge attribute name.

Return Value
the transitivities for the given vertices in a list

See Also: transitivity_undirected(),
transitivity_avglocal_undirected()

Reference:

e Watts DJ and Strogatz S: Collective dynamics of small-world
networks. Nature 393(6884):440-442, 1998.

e Barrat A, Barthelemy M, Pastor-Satorras R and Vespignani A:
The architecture of complex weighted networks. PNAS 101, 3747
(2004). http://arziv.org/abs/cond-mat/0311416.

225

http://arxiv.org/abs/cond-mat/0311416

Class GraphBase Package igraph

transitivity undirected(mode—="nan")

Calculates the global transitivity (clustering coefficient) of the graph.

The transitivity measures the probability that two neighbors of a vertex are
connected. More precisely, this is the ratio of the triangles and connected
triplets in the graph. The result is a single real number. Directed graphs are
considered as undirected ones.

Note that this measure is different from the local transitivity measure (see
transitivity_local_undirected()) as it calculates a single value for the
whole graph.

Parameters
mode: if TRANSITIVITY_ZERO or "zero", the result will be zero if
the graph does not have any triplets. If "nan" or
TRANSITIVITY_NAN, the result will be NaN (not a number).

Return Value
the transitivity

See Also: transitivity_local_undirected(),
transitivity_avglocal_undirected()

Reference: S. Wasserman and K. Faust: Social Network Analysis: Methods
and Applications. Cambridge: Cambridge University Press, 1994.

triad census()

Triad census, as defined by Davis and Leinhardt

Calculating the triad census means classifying every triplets of vertices in a
directed graph. A triplet can be in one of 16 states, these are listed in the
documentation of the C interface of igraph.

Attention: this function has a more convenient interface in class Graph which
wraps the result in a TriadCensus object. It is advised to use that. The name
of the triplet classes are also documented there.

226

Class GraphBase Package igraph

unfold tree(sources=None, mode=0UT)

Unfolds the graph using a BFS to a tree by duplicating vertices as necessary.

Parameters
sources: the source vertices to start the unfolding from. It should
be a list of vertex indices, preferably one vertex from each
connected component. You can use
Graph.topological_sorting() to determine a suitable
set. A single vertex index is also accepted.

mode: which edges to follow during the BF'S. OUT follows
outgoing edges, IN follows incoming edges, ALL follows
both. Ignored for undirected graphs.

Return Value
the unfolded tree graph and a mapping from the new vertex indices
to the old ones.

vcount()

Counts the number of vertices.

Return Value
the number of vertices in the graph.

(type=integer)

vertex attributes()

Return Value
the attribute name list of the graph’s vertices

227

Class GraphBase Package igraph

vertex connectivity(source=-1, target=-1, checks=True,
neighbors="error")

Calculates the vertex connectivity of the graph or between some vertices.

The vertex connectivity between two given vertices is the number of vertices
that have to be removed in order to disconnect the two vertices into two
separate components. This is also the number of vertex disjoint directed paths
between the vertices (apart from the source and target vertices of course). The
vertex connectivity of the graph is the minimal vertex connectivity over all
vertex pairs.

This method calculates the vertex connectivity of a given vertex pair if both
the source and target vertices are given. If none of them is given (or they are
both negative), the overall vertex connectivity is returned.

Parameters
source: the source vertex involved in the calculation.
target: the target vertex involved in the calculation.
checks: if the whole graph connectivity is calculated and this is

True, igraph performs some basic checks before
calculation. If the graph is not strongly connected, then
the connectivity is obviously zero. If the minimum
degree is one, then the connectivity is also one. These
simple checks are much faster than checking the entire
graph, therefore it is advised to set this to True. The
parameter is ignored if the connectivity between two
given vertices is computed.

neighbors: tells igraph what to do when the two vertices are
connected. "error" raises an exception, "infinity"
returns infinity, "ignore" ignores the edge.

Return Value
the vertex connectivity

228

Class GraphBase Package igraph

write dimacs(f, source, target, capacity=None)

Writes the graph in DIMACS format to the given file.

Parameters
f: the name of the file to be written or a Python file handle
source: the source vertex ID

target: the target vertex ID

capacity: the capacities of the edges in a list. If it is not a list, the
corresponding edge attribute will be used to retrieve
capacities.

write dot(f)
Writes the graph in DOT format to the given file.

DOT is the format used by the GraphViz® software package.

Parameters
f: the name of the file to be written or a Python file handle

%http://www.graphviz.org

write edgelist(f)

Writes the edge list of a graph to a file.

Directed edges are written in (from, to) order.

Parameters
f: the name of the file to be written or a Python file handle

write gml(f, creator—None, ids—=None)

Writes the graph in GML format to the given file.

Parameters
f: the name of the file to be written or a Python file handle

creator: optional creator information to be written to the file. If
None, the current date and time is added.

ids: optional numeric vertex IDs to use in the file. This must
be a list of integers or None. If None, the id attribute of
the vertices are used, or if they don’t exist, numeric vertex
IDs will be generated automatically.

229

http://www.graphviz.org

Class GraphBase Package igraph

write graphml(f)
Writes the graph to a GraphML file.

Parameters
f: the name of the file to be written or a Python file handle

write leda(f, names="name", weights="weights")

Writes the graph to a file in LEDA native format.

The LEDA format supports at most one attribute per vertex and edge. You
can specify which vertex and edge attribute you want to use. Note that the
name of the attribute is not saved in the LEDA file.

Parameters
f: the name of the file to be written or a Python file handle
names: the name of the vertex attribute to be stored along with

the vertices. It is usually used to store the vertex names
(hence the name of the keyword argument), but you may
also use a numeric attribute. If you don’t want to store
any vertex attributes, supply None here.

weights: the name of the edge attribute to be stored along with the
edges. It is usually used to store the edge weights (hence
the name of the keyword argument), but you may also use
a string attribute. If you don’t want to store any edge
attributes, supply None here.

write 1gl(f, names="name", weights="weights", isolates=True)

Writes the edge list of a graph to a file in .Igl format.

Note that multiple edges and/or loops break the LGL software, but igraph
does not check for this condition. Unless you know that the graph does not
have multiple edges and/or loops, it is wise to call simplify() before saving.

Parameters
f: the name of the file to be written or a Python file handle
names: the name of the vertex attribute containing the name of

the vertices. If you don’t want to store vertex names,
supply None here.

weights: the name of the edge attribute containing the weight of
the vertices. If you don’t want to store weights, supply
None here.

isolates: whether to include isolated vertices in the output.

230

Class GraphBase Package igraph

write ncol(f, names="name", weights="weights")

Writes the edge list of a graph to a file in .ncol format.

Note that multiple edges and/or loops break the LGL software, but igraph
does not check for this condition. Unless you know that the graph does not
have multiple edges and/or loops, it is wise to call simplify() before saving.

Parameters
f: the name of the file to be written or a Python file handle
names: the name of the vertex attribute containing the name of

the vertices. If you don’t want to store vertex names,
supply None here.

weights: the name of the edge attribute containing the weight of
the vertices. If you don’t want to store weights, supply
None here.

write pajek(f)

Writes the graph in Pajek format to the given file.

Parameters
f: the name of the file to be written or a Python file handle

Inherited from object

__delattr (), format (), getattribute (), reduce (), reduce ex (),
~repr_ (), _setattr (), sizeof (), __subclasshook ()

1.12.2 Properties

Name \ Description
Inherited from object
__class

1.12.3 Class Variables
Name Description
~_hash Value: None

231

Module igraph. igraph

2 Module igraph. igraph

Low-level Python interface for the igraph library. Should not be used directly.

2.1 Functions

convex hull(vs, coords—False)

Calculates the convex hull of a given point set.

Parameters
vs: the point set as a list of lists

coords: if True, the function returns the coordinates of the corners
of the convex hull polygon, otherwise returns the corner
indices.

Return Value
either the hull’s corner coordinates or the point indices
corresponding to them, depending on the coords parameter.

is degree sequence(oul_deg, in_ deg—None)

Returns whether a list of degrees can be a degree sequence of some graph.

Note that it is not required for the graph to be simple; in other words, this
function may return True for degree sequences that can be realized using one
or more multiple or loop edges only.

In particular, this function checks whether

e all the degrees are non-negative
e for undirected graphs, the sum of degrees are even

e for directed graphs, the two degree sequences are of the same length and
equal sums

Parameters
out_deg: the list of degrees. For directed graphs, this list must
contain the out-degrees of the vertices.

in_deg: the list of in-degrees for directed graphs. This parameter
must be None for undirected graphs.

Return Value
True if there exists some graph that can realize the given degree
sequence, False otherwise.@see: is_graphical_degree_sequence ()
if you do not want to allow multiple or loop edges.

232

Functions Module igraph. igraph

is graphical degree sequence(out_deg, in_ deg=None)

Returns whether a list of degrees can be a degree sequence of some simple
graph.

Note that it is required for the graph to be simple; in other words, this
function will return False for degree sequences that cannot be realized
without using one or more multiple or loop edges.

Parameters
out_deg: the list of degrees. For directed graphs, this list must
contain the out-degrees of the vertices.

in_deg: the list of in-degrees for directed graphs. This parameter
must be None for undirected graphs.

Return Value
True if there exists some simple graph that can realize the given
degree sequence, False otherwise.

See Also: is_degree_sequence() if you want to allow multiple or loop edges.

set progress handler(handler)

Sets the handler to be called when igraph is performing a long operation.

Parameters
handler: the progress handler function. It must accept two
arguments, the first is the message informing the user
about what igraph is doing right now, the second is the
actual progress information (a percentage).

set random number generator(generator)

Sets the random number generator used by igraph.

Parameters

generator: the generator to be used. It must be a Python object
with at least three attributes: random, randint and
gauss. Each of them must be callable and their
signature and behaviour must be identical to
random.random, random.randint and random.gauss.
By default, igraph uses the random module for random
number generation, but you can supply your alternative
implementation here. If the given generator is None,
igraph reverts to the default Mersenne twister generator
implemented in the C layer, which might be slightly
faster than calling back to Python for random numbers,
but you cannot set its seed or save its state.

233

Variables Module igraph. igraph

set status handler(handler)

Sets the handler to be called when igraph tries to display a status message.

This is used to communicate the progress of some calculations where no
reasonable progress percentage can be given (so it is not possible to use the
progress handler).

Parameters
handler: the status handler function. It must accept a single
argument, the message that informs the user about what
igraph is doing right now.

2.2 Variables

Name Description
ADJ DIRECTED Value: 0
ADJ LOWER Value: 3
ADJ MAX Value: 1
ADJ MIN Value: 4
ADJ PLUS Value: 5
ADJ UNDIRECTED Value: 1
ADJ UPPER Value: 2
ALL Value: 3
BLISS F Value: 0
BLISS FL Value: 1
BLISS FLM Value: 4
BLISS FM Value: 3
BLISS _FS Value: 2
BLISS FSM Value: 5
GET ADJACENCY BO- | Value: 2
TH
GET ADJACENCY LO- | Value: 1
WER
GET ADJACENCY UP- | Value: 0
PER
IN Value: 2
ouT Value: 1
REWIRING SIMPLE Value: 0
REWIRING SIMPLE L- | Value: 1
OOPS
STAR IN Value: 1
STAR MUTUAL Value: 3
STAR OUT Value: 0
STAR_UNDIRECTED Value: 2

continued on next page

234

Class InternalError Module igraph. igraph

Name Description
STRONG Value: 2
TRANSITIVITY NAN Value: 0
TRANSITIVITY ZERO Value: 1
TREE IN Value: 1
TREE OUT Value: 0
TREE UNDIRECTED Value: 2
WEAK Value: 1
__build date Value: ’0ct 8 2020°
__igraph version Value: ’0.8.3°
__package Value: None
arpack options Value: <igraph.ARPACKOptions object at
0x10c48ab90>

2.3 Class InternalError
object T
exceptions.BaseException T

exceptions.Exception T
igraph. igraph.InternalError

2.3.1 Methods

Inherited from exceptions.Exception
~init_ (), new_ ()

Inherited from exceptions.BaseEzxception

__delattr (), getattribute (), getitem (), getslice (), _ re-
duce_ (), __repr_ (), __setattr_ (), __setstate_ (), __str__(), __uni-
code ()

Inherited from object

~ format (), _hash (), reduce ex (), sizeof (), subclasshook ()

2.3.2 Properties
Name \ Description
Inherited from exceptions. BaseEzception
args, message
Inherited from object

continued on next page

235

Class InternalError

Module igraph. igraph

Name

Description

__class

236

Variables

Package igraph.app

3 Package igraph.app

User interfaces of igraph

3.1 Modules

e shell: Command-line user interface of igraph

(Section 4, p. 232)

3.2 Variables

Name

Description

__package

Value: None

237

Class TerminalController Module igraph.app.shell

4 Module igraph.app.shell

Command-line user interface of igraph

The command-line interface launches a Python shell with the igraph module automatically
imported into the main namespace. This is mostly a convenience module and it is used only
by the igraph command line script which executes a suitable Python shell and automatically
imports igraph’s classes and functions in the top-level namespace.

Supported Python shells are:

e IDLE shell (class IDLEShell)
e [Python shell (class IPythonShell)
e Classic Python shell (class ClassicPythonShell)

The shells are tried in the above mentioned preference order one by one, unless the global.shells
configuration key is set which overrides the default order. IDLE shell is only tried in Win-
dows unless explicitly stated by global.shells, since Linux and Mac OS X users are likely

to invoke igraph from the command line.

Version: 0.8.3

4.1 Functions

main()

The main entry point for igraph when invoked from the command line shell

4.2 Variables
Name Description
__package Value: ’igraph.app’

4.3 Class TerminalController
A class that can be used to portably generate formatted output to a terminal.

‘“TerminalController’ defines a set of instance variables whose values are initialized to the
control sequence necessary to perform a given action. These can be simply included in
normal output to the terminal:

>>> term = TerminalController()
>>> print ’This is ’+term.GREEN+ green’+term. NORMAL

This is green

Alternatively, the ‘render()‘ method can used, which replaces '${action}’ with the string
required to perform ’action’:

238

Class TerminalController Module igraph.app.shell

>>> term = TerminalController()
>>> print term.render (*This is ${GREEN}green${NORMAL}’)

This is green

If the terminal doesn’t support a given action, then the value of the corresponding instance
variable will be set to ”. As a result, the above code will still work on terminals that do not
support color, except that their output will not be colored. Also, this means that you can
test whether the terminal supports a given action by simply testing the truth value of the
corresponding instance variable:

>>> term = TerminalController ()
>>> if term.CLEAR_SCREEN:

print ’This terminal supports clearning the screen.’

Finally, if the width and height of the terminal are known, then they will be stored in the
‘COLS* and ‘LINES® attributes.

Author: Edward Loper

4.3.1 Methods

__init (self, term_ stream—=sys.stdout)

Create a ‘TerminalController’ and initialize its attributes with appropriate
values for the current terminal. ‘term stream’ is the stream that will be used
for terminal output; if this stream is not a tty, then the terminal is assumed to
be a dumb terminal (i.e., have no capabilities).

render (self, template)

Replace each $-substitutions in the given template string with the
corresponding terminal control string (if it’s defined) or ” (if it’s not).

4.3.2 Class Variables

Name Description

BOL Move the cursor to the beginning of the line
Value: *°

UpP Move the cursor up one line
Value: *°

DOWN Move the cursor down one line
Value: *°

LEFT Move the cursor left one char
Value: *°

RIGHT Move the cursor right one char
Value: *°

continued on next page

239

Class TerminalController

Module igraph.app.shell

Name

Description

CLEAR_SCREEN

Clear the screen and move to home position
Value: *°

CLEAR EOL Clear to the end of the line.
Value: *°

CLEAR_BOL Clear to the beginning of the line.
Value: *°

CLEAR_EOS Clear to the end of the screen
Value: *°

BOLD Turn on bold mode
Value: *°

BLINK Turn on blink mode
Value: *°

DIM Turn on half-bright mode
Value: *°

REVERSE Turn on reverse-video mode
Value: *°

NORMAL Turn off all modes
Value: *°

HIDE CURSOR Make the cursor invisible
Value: *°

SHOW _CURSOR Make the cursor visible
Value: *°

COLS Width of the terminal (None for unknown)
Value: None

LINES Height of the terminal (None for unknown)
Value: None

WHITE Value: *°

YELLOW Value: *°

MAGENTA Value: *°

RED Value: *°

CYAN Value: ’°

GREEN Value: *°

BLUE Value: *°

BLACK Value: *°

BG CYAN Value: 7’

BG _GREEN Value:

BG_ BLUE Value: ’°

BG_ BLACK Value: ’°

BG_WHITE Value: ’°

BG_YELLOW Value: ’°

BG_MAGENTA Value: ’°

BG_ RED Value:

240

Class ProgressBar Module igraph.app.shell

4.4 Class ProgressBar
A 2-line progress bar, which looks like:

Header

The progress bar is colored, if the terminal supports color output; and adjusts to the width
of the terminal.

4.4.1 Methods

__init (self, term)

update(self, percent=None, message—None)

Updates the progress bar.

Parameters
percent: the percentage to be shown. If None, the previous value
will be used.

message: the message to be shown above the progress bar. If None,
the previous message will be used.

update message(self, message)

Updates the message of the progress bar.

Parameters
message: the message to be shown above the progress bar

clear(self)

Clears the progress bar (i.e. removes it from the screen)

4.4.2 Class Variables

Name Description
BAR Value: *%3d%%
${GREEN} [${BOLD}%s%s${NORMAL}${GREEN}] ${NORMAL}’
HEADER Value: ’${BOLD}${CYAN}’;s${NORMAL}\n’

4.4.3 Instance Variables
Name Description
cleared true if we haven’t drawn the bar yet.

241

Class Shell Module igraph.app.shell

4.5 Class Shell

object T
igraph.app.shell.Shell
Known Subclasses: igraph.app.shell.ClassicPythonShell, igraph.app.shell. IDLEShell, igraph.app.shell.IP

Superclass of the embeddable shells supported by igraph

4.5.1 Methods

__init (self)

X. _init (...) initializes x; see help(type(x)) for signature

Overrides: object. init extit(inherited documentation)

__call (self)

supports progress bar(self)

Checks whether the shell supports progress bars.

This is done by checking for the existence of an attribute called
_progress_handler.

supports status messages(self)

Checks whether the shell supports status messages.

This is done by checking for the existence of an attribute called
_status_handler.

get progress handler(self)

Returns the progress handler (if exists) or None (if not).

get status handler(self)

Returns the status handler (if exists) or None (if not).

Inherited from object

__delattr (), format (), getattribute (), _hash (), new (),
__reduce_ (), _reduce_ex (), _repr_ (), _setattr (), _sizeof (),
__str__ (), __subclasshook ()

4.5.2 Properties

242

Class IDLEShell Module igraph.app.shell

Name \ Description
Inherited from object
__class

4.6 Class IDLEShell
object T

igraph.app.shell.Shell T
igraph.app.shell.IDLEShell
IDLE embedded shell interface.
This class allows igraph to be embedded in IDLE (the Tk Python IDE).
To Do: no progress bar support yet. Shell/Restart Shell command should re-import igraph

again.

4.6.1 Methods

__init (self)

Constructor.

Imports IDLE’s embedded shell. The implementation of this method is ripped
from idlelib.PyShell.main() after removing the unnecessary parts.

Overrides: object. _init

__call (self)
Starts the shell
Overrides: igraph.app.shell.Shell. call

Inherited from igraph.app.shell.Shell(Section 4.5)
get progress handler(), get status handler(), supports progress bar(), supports status message
Inherited from object

__delattr (), format (), getattribute (), _hash (), new (),
__reduce_ (), _reduce_ex_ (), _repr_ (), _setattr_ (), _sizeof _ (),
~str (), __subclasshook ()

4.6.2 Properties

243

Class IPythonShell Module igraph.app.shell

Name \ Description
Inherited from object
__class

4.7 Class ConsoleProgressBarMixin

object T
igraph.app.shell.ConsoleProgressBarMixin
Known Subclasses: igraph.app.shell.ClassicPythonShell, igraph.app.shell.IPythonShell

Mixin class for console shells that support a progress bar.

4.7.1 Methods

__init (self)

X. _init_ (...) initializes x; see help(type(x)) for signature

Overrides: object. _init extit(inherited documentation)

Inherited from object

__delattr (), format (), getattribute (), _hash (), new (),
_ _reduce (), reduce ex (), repr (), setattr (), sizeof (),
str (), _ subclasshook ()

4.7.2 Properties

Name \ Description
Inherited from object
__class

4.8 Class IPythonShell
object T
igraph.app.shell.Shell

object T

igraph.app.shell. ConsoleProgressBarMixin
igraph.app.shell.IPythonShell

244

Class ClassicPythonShell Module igraph.app.shell

[Python embedded shell interface.

This class allows igraph to be embedded in IPython’s interactive shell.

4.8.1 Methods

__init (self)

Constructor.

Imports [Python’s embedded shell with separator lines removed.

Overrides: object. init

__call (self)
Starts the embedded shell.
Overrides: igraph.app.shell.Shell. call

Inherited from igraph.app.shell.Shell(Section 4.5)
get progress handler(), get status handler(), supports progress bar(), supports status message
Inherited from object

__delattr (), format (), getattribute (), _hash (), new (),
_ _reduce (), reduce ex (), repr (), setattr (), sizeof (),
__str_ (), __subclasshook ()

4.8.2 Properties

Name \ Description
Inherited from object
__class

4.9 Class ClassicPythonShell

object T

igraph.app.shell.Shell

object T

igraph.app.shell. ConsoleProgressBarMixin
igraph.app.shell.ClassicPythonShell

Classic Python shell interface.

245

Class ClassicPythonShell Module igraph.app.shell

This class allows igraph to be embedded in Python’s shell.

4.9.1 Methods

__init (self)

Counstructor.

Imports Python’s classic shell

Overrides: object. init

__call (self)
Starts the embedded shell.
Overrides: igraph.app.shell.Shell. call

Inherited from igraph.app.shell.Shell(Section 4.5)
get progress handler(), get status handler(), supports progress bar(), supports status message
Inherited from object

__delattr (), format (), _ getattribute (), _hash (), new (),
~ _reduce (), reduce ex (), repr (), setattr (), sizeof (),

str (), __subclasshook ()

4.9.2 Properties

Name \ Description
Inherited from object
__class

246

Module igraph.clustering

5 Module igraph.clustering

Classes related to graph clustering.

License: Copyright (C) 2006-2012 Tamas Nepusz <ntamas@gmail.com™> Pazmany Péter
sétany 1/a, 1117 Budapest, Hungary

This program is free software; you can redistribute it and /or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY:; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301 USA

247

Module igraph.clustering

248

Functions Module igraph.clustering

5.1 Functions

compare communities(comml, comm?2, method=’vi’,
remove_none—False)

Compares two community structures using various distance measures.

Parameters
comm] : the first community structure as a membership list or
as a Clustering object.
comm? : the second community structure as a membership list
or as a Clustering object.
method: the measure to use. "vi" or "meila" means the

variation of information metric of Meila (2003),
"nmi" or "danon" means the normalized mutual
information as defined by Danon et al (2005),
"split-join" means the split-join distance of van
Dongen (2000), "rand" means the Rand index of
Rand (1971), "adjusted_rand" means the adjusted
Rand index of Hubert and Arabie (1985).

remove_none: whether to remove None entries from the membership
lists. This is handy if your Clustering object was
constructed using
VertexClustering.FromAttribute using an
attribute which was not defined for all the vertices. If
remove_none is False, a None entry in either comm1
or comm2 will result in an exception. If remove_none
is True, None values are filtered away and only the
remaining lists are compared.

Return Value
the calculated measure.

Reference:

e Meila M: Comparing clusterings by the variation of information.
In: Scholkopf B, Warmuth MK (eds). Learning Theory and
Kernel Machines: 16th Annual Conference on Computational
Learning Theory and 7th Kernel Workship, COLT /Kernel 2003,
Washington, DC, USA. Lecture Notes in Computer Science, vol.
2777, Springer, 2003. ISBN: 978-3-540-40720-1.

e Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing
community structure identification. J Stat Mech P09008, 2005.

e van Dongen D: Performance criteria for graph clustering and
Markov cluster experiments. Technical Report INS-R0012,

National Research Institute for Mathematics and Computer
Science in the Netherlands, Amsterdam, May 2000.

e Rand WM: Objective criteria % the evaluation of clustering
methods. J Am Stat Assoc 66 %6):846—850, 1971.

e Hubert L. and Arabie P: Comparing partitions. Journal of
Classification 2:193-218, 1985.

Functions Module igraph.clustering

split join distance(comml, comm?2, remove_none=False)

Calculates the split-join distance between two community structures.

The split-join distance is a distance measure defined on the space of partitions
of a given set. It is the sum of the projection distance of one partition from
the other and vice versa, where the projection number of A from B is if
calculated as follows:

1. For each set in A, find the set in B with which it has the maximal
overlap, and take note of the size of the overlap.

2. Take the sum of the maximal overlap sizes for each set in A.

3. Subtract the sum from n, the number of elements in the partition.

Note that the projection distance is asymmetric, that’s why it has to be
calculated in both directions and then added together. This function returns
the projection distance of comm1 from comm2 and the projection distance of
comm? from comml, and returns them in a pair. The actual split-join distance
is the sum of the two distances. The reason why it is presented this way is
that one of the elements being zero then implies that one of the partitions is a
subpartition of the other (and if it is close to zero, then one of the partitions is
close to being a subpartition of the other).

Parameters
comml : the first community structure as a membership list or
as a Clustering object.
comm? : the second community structure as a membership list

or as a Clustering object.

remove_none: whether to remove None entries from the membership
lists. This is handy if your Clustering object was
constructed using
VertexClustering.FromAttribute using an
attribute which was not defined for all the vertices. If
remove_none is False, a None entry in either comm1
or comm2 will result in an exception. If remove_none
is True, None values are filtered away and only the
remaining lists are compared.

Return Value
the projection distance of comm1 from comm2 and vice versa in a
tuple. The split-join distance is the sum of the two.

Reference: van Dongen D: Performance criteria for graph clustering and
Markov cluster experiments. Technical Report INS-R0012, National Research
Institute for Mathematics and Computer Science in the Netherlands,
Amsterdam, May 2000.

See Also: compare_communities() with method = "split-join" if you are
not interested in the individual projectipy distances but only the sum of them.

Class Clustering Module igraph.clustering

5.2 Variables
Name Description
__package Value: ’igraph’

5.3 Class Clustering

object
igraph.clustering.Clustering
Known Subclasses: igraph.clustering. VertexClustering
Class representing a clustering of an arbitrary ordered set.

This is now used as a base for VertexClustering, but it might be useful for other purposes
as well.

Members of an individual cluster can be accessed by the []1 operator:

>>> cl = Clustering([0,0,0,0,1,1,1,2,2,2,2])
>>> c1[0]
[0, 1, 2, 3]

The membership vector can be accessed by the membership property:

>>> cl.membership
o, 0,0,0,1,1,1,2,2,2, 2]

The number of clusters can be retrieved by the len function:

>>> len(cl)
3

You can iterate over the clustering object as if it were a regular list of clusters:

>>> for cluster in cl:
print " ".join(str(idx) for idx in cluster)
0123
4586
789 10

If you need all the clusters at once as lists, you can simply convert the clustering object to
a list:

>>> cluster_list = list(cl)
>>> print cluster_list
[ro, 1, 2, 31, (4, 5, 61, [7, 8, 9, 10]]

251

Class Clustering Module igraph.clustering

5.3.1 Methods

__init_ (self, membership, params=None)

Constructor.

Parameters
membership: the membership list — that is, the cluster index in
which each element of the set belongs to.

params: additional parameters to be stored in this object’s
dictionary.

Overrides: object. init

__getitem (self, idx)

Returns the members of the specified cluster.

Parameters
idx: the index of the cluster

Return Value
the members of the specified cluster as a list

Raises
IndexError if the index is out of bounds

__iter (self)

Iterates over the clusters in this clustering.

This method will return a generator that generates the clusters one by one.

len (self)

Returns the number of clusters.

Return Value
the number of clusters

__str_ (self)
str(x)
Overrides: object. str extit(inherited documentation)

as_cover(self)

Returns a Cover that contains the same clusters as this clustering.

252

Class Clustering Module igraph.clustering

compare _to(self, other, *args, **kwds)

Compares this clustering to another one using some similarity or distance
metric.

This is a convenience method that simply calls compare_communities with
the two clusterings as arguments. Any extra positional or keyword argument is
also forwarded to compare_communities.

size(self, idzx)

Returns the size of a given cluster.

Parameters
idx: the cluster in which we are interested.

sizes(self, *args)

Returns the size of given clusters.

The indices are given as positional arguments. If there are no positional
arguments, the function will return the sizes of all clusters.

size histogram(self, bin_ width=1)

Returns the histogram of cluster sizes.

Parameters
bin_width: the bin width of the histogram

Return Value
a Histogram object

summary (self, verbosity=0, width—None)

Returns the summary of the clustering.

The summary includes the number of items and clusters, and also the list of
members for each of the clusters if the verbosity is nonzero.

Parameters
verbosity: determines whether the cluster members should be
printed. Zero verbosity prints the number of items and
clusters only.

Return Value
the summary of the clustering as a string.

Inherited from object
~_delattr (), format (), getattribute (), _hash (), new (),

253

Class VertexClustering Module igraph.clustering

~reduce (), reduce ex (), repr_ (), setattr (), sizeof (),

:_subclasshook__ ()

5.3.2 Properties

Name Description
membership Returns the membership vector.
n Returns the number of elements covered by this
clustering.
Inherited from object
_class

5.4 Class VertexClustering

object
T
igraph.clustering.Clustering
igraph.clustering.VertexClustering
Known Subclasses: igraph.cut.Cut
The clustering of the vertex set of a graph.

This class extends Clustering by linking it to a specific Graph object and by optionally
storing the modularity score of the clustering. It also provides some handy methods like
getting the subgraph corresponding to a cluster and such.

Note: since this class is linked to a Graph, destroying the graph by the del operator does not
free the memory occupied by the graph if there exists a VertexClustering that references
the Graph.

254

Class VertexClustering Module igraph.clustering

5.4.1 Methods

__init_ (self, graph, membership=None, modularity=None, params—=DNone,
modularity params=DNone)

Creates a clustering object for a given graph.

Parameters

graph: the graph that will be associated to the
clustering

membership: the membership list. The length of the list
must be equal to the number of vertices in the
graph. If None, every vertex is assumed to
belong to the same cluster.

modularity: the modularity score of the clustering. If
None, it will be calculated when needed.

params: additional parameters to be stored in this

object.

modularity_params: arguments that should be passed to
Graph.modularity when the modularity is
(re)calculated. If the original graph was
weighted, you should pass a dictionary
containing a weight key with the appropriate
value here.

Overrides: object. init

255

Class VertexClustering Module igraph.clustering

FromAttribute(cls, graph, attribute, intervals—None, params—None)

Creates a vertex clustering based on the value of a vertex attribute.

Vertices having the same attribute will correspond to the same cluster.

Parameters
graph: the graph on which we are working

attribute: name of the attribute on which the clustering is based.

intervals: for numeric attributes, you can either pass a single
number or a list of numbers here. A single number
means that the vertices will be put in bins of that width
and vertices ending up in the same bin will be in the
same cluster. A list of numbers specify the bin positions
explicitly; e.g., [10, 20, 30] means that there will be
four categories: vertices with the attribute value less
than 10, between 10 and 20, between 20 and 30 and
over 30. Intervals are closed from the left and open
from the right.

params: additional parameters to be stored in this object.

Return Value
a new VertexClustering object

as_cover(self)

Returns a VertexCover that contains the same clusters as this clustering.

Overrides: igraph.clustering.Clustering.as_cover

256

Class VertexClustering Module igraph.clustering

cluster graph(self, combine_ vertices=None, combine_ edges=None)

Returns a graph where each cluster is contracted into a single vertex.

In the resulting graph, vertex 7 represents cluster ¢ in this clustering. Vertex 4
and j will be connected if there was at least one connected vertex pair (a, b)
in the original graph such that vertex a was in cluster 7 and vertex b was in
cluster j.

Parameters
combine_vertices: specifies how to derive the attributes of the
vertices in the new graph from the attributes of
the old ones. See Graph.contract_vertices()
for more details.

combine_edges: specifies how to derive the attributes of the
edges in the new graph from the attributes of
the old ones. See Graph.simplify() for more
details. If you specify False here, edges will
not be combined, and the number of edges
between the vertices representing the original
clusters will be equal to the number of edges
between the members of those clusters in the
original graph.

Return Value
the new graph.

crossing(self)

Returns a boolean vector where element ¢ is True iff edge ¢ lies between
clusters, False otherwise.

recalculate modularity (self)

Recalculates the stored modularity value.

This method must be called before querying the modularity score of the
clustering through the class member modularity or q if the graph has been
modified (edges have been added or removed) since the creation of the
VertexClustering object.

Return Value
the new modularity score

257

Class VertexClustering Module igraph.clustering

subgraph(self, idx)

Get the subgraph belonging to a given cluster.

Parameters
idx: the cluster index

Return Value
a copy of the subgraph

Precondition: the vertex set of the graph hasn’t been modified since the
moment the clustering was constructed.

subgraphs(self)

Gets all the subgraphs belonging to each of the clusters.

Return Value
a list containing copies of the subgraphs

Precondition: the vertex set of the graph hasn’t been modified since the
moment the clustering was constructed.

giant(self)

Returns the largest cluster of the clustered graph.

The largest cluster is a cluster for which no larger cluster exists in the
clustering. It may also be known as the giant community if the clustering
represents the result of a community detection function.

Return Value
a copy of the largest cluster.

Note: there can be multiple largest clusters, this method will return the copy
of an arbitrary one if there are multiple largest clusters.

Precondition: the vertex set of the graph hasn’t been modified since the
moment the clustering was constructed.

258

Class VertexClustering Module igraph.clustering

__plot_ (self, context, bbox, palette, *args, **kwds)

Plots the clustering to the given Cairo context in the given bounding box.

This is done by calling Graph.__plot__() with the same arguments, but
coloring the graph vertices according to the current clustering (unless
overridden by the vertex_color argument explicitly).

This method understands all the positional and keyword arguments that are
understood by Graph.__plot__(), only the differences will be highlighted
here:

e mark_groups: whether to highlight some of the vertex groups by colored
polygons. Besides the values accepted by Graph.__plot__ (i.e., a dict
mapping colors to vertex indices, a list containing lists of vertex indices,
or False), the following are also accepted:

— True: all the groups will be highlighted, the colors matching the
corresponding color indices from the current palette (see the palette
keyword argument of Graph.__plot_

— A dict mapping cluster indices or tuples of vertex indices to color
names. The given clusters or vertex groups will be highlighted by the
given colors.

— A list of cluster indices. This is equivalent to passing a dict mapping
numeric color indices from the current palette to cluster indices;
therefore, the cluster referred to by element i of the list will be
highlighted by color i from the palette.

The value of the plotting.mark_groups configuration key is also taken
into account here; if that configuration key is True and mark_groups is
not given explicitly, it will automatically be set to True.

In place of lists of vertex indices, you may also use VertexSeq instances.

In place of color names, you may also use color indices into the current
palette. None as a color name will mean that the corresponding group is
ignored.

e palette: the palette used to resolve numeric color indices to RGBA
values. By default, this is an instance of ClusterColoringPalette.

See Also: Graph.__plot__() for more supported keyword arguments.

Inherited from igraph.clustering. Clustering(Section 5.3)

__getitem__ (), _ _iter_ (), __len__(), __str__(), compare_to(), size(),
size histogram(), sizes(), summary()

Inherited from object
__delattr (), format (), getattribute (), _hash (), new (),

259

Class Dendrogram Module igraph.clustering

~reduce (), reduce ex (), repr_ (), setattr (), sizeof (),

:_subclasshook__ ()

5.4.2 Properties

Name Description
modularity Returns the modularity score
q Returns the modularity score
graph Returns the graph belonging to this object

Inherited from igraph.clustering. Clustering (Section 5.3)
membership, n

Inherited from object

__class

5.5 Class Dendrogram

object
igraph.clustering.Dendrogram
Known Subclasses: igraph.clustering.VertexDendrogram
The hierarchical clustering (dendrogram) of some dataset.

A hierarchical clustering means that we know not only the way the elements are separated
into groups, but also the exact history of how individual elements were joined into larger
subgroups.

This class internally represents the hierarchy by a matrix with n rows and 2 columns — or
more precisely, a list of lists of size 2. This is exactly the same as the original format used
by igraph’s C core. The ith row of the matrix contains the indices of the two clusters being
joined in time step ¢. The joint group will be represented by the ID n-+i, with i starting
from one. The ID of the joint group will be referenced in the upcoming steps instead of any
of its individual members. So, IDs less than or equal to n (where n is the number of rows
in the matrix) mean the original members of the dataset (with ID from 0 to n), while IDs
up from n+1 mean joint groups. As an example, take a look at the dendrogram and the
internal representation of a given clustering of five nodes:

0 -+

i

2 ___J|r_+ <====> [[0, 1], [3, 41, [2, 8], [6, 71]
-

260

Class Dendrogram Module igraph.clustering

4 oot -

5.5.1 Methods

__init__ (self, merges)

Creates a hierarchical clustering.

Parameters
merges: the merge history either in matrix or tuple format

Overrides: object. init
__str (self)
str(x)

Overrides: object. str extit(inherited documentation)

format(self, format—="newick’)

Formats the dendrogram in a foreign format.
Currently only the Newick format is supported.
Example:

>>> d = Dendrogram([(2, 3), (0, 1), (4, 5)1)
>>> d.format ()

’((2,3)4,(0,1)5)6;°

>>> d.names = list ("ABCDEFG")

>>> d.format ()

»((C,D)E, (A,B)F)G;’

261

Class Dendrogram Module igraph.clustering

summary (self, verbosity=0, maz_leaf count—=40)

Returns the summary of the dendrogram.

The summary includes the number of leafs and branches, and also an ASCII
art representation of the dendrogram unless it is too large.

Parameters
verbosity: determines whether the ASCII representation of
the dendrogram should be printed. Zero verbosity
prints only the number of leafs and branches.

max_leaf_count: the maximal number of leafs to print in the
ASCII representation. If the dendrogram has
more leafs than this limit, the ASCII
representation will not be printed even if the
verbosity is larger than or equal to 1.

Return Value
the summary of the dendrogram as a string.

__plot_ (self, context, bbox, palette, *args, **kwds)

Draws the dendrogram on the given Cairo context
Supported keyword arguments are:

e orientation: the orientation of the dendrogram. Must be one of the
following values: left-right, bottom-top, right-left or top-bottom.
Individual elements are always placed at the former edge and merges are
performed towards the latter edge. Possible aliases: horizontal =
left-right, vertical — bottom-top, 1r — left-right, r1 —
right-left, tb = top-bottom, bt = bottom-top. The default is
left-right.

Inherited from object
__delattr (), format (), getattribute (), _hash (), new (),

~reduce (), reduce ex (), repr (), _setattr (), __sizeof___(),
__subclasshook ()

5.5.2 Properties

Name Description
merges Returns the performed merges in matrix format
names Returns the names of the nodes in the
dendrogram
Inherited from object
__class

continued on next page

262

Class VertexDendrogram Module igraph.clustering

| Name | Description

5.6 Class VertexDendrogram

object T

igraph.clustering. Dendrogram
igraph.clustering.VertexDendrogram

The dendrogram resulting from the hierarchical clustering of the vertex set of a graph.

5.6.1 Methods

__init __ (self, graph, merges, optimal_ count=None, params=None,
modularity params—None)

Creates a dendrogram object for a given graph.

Parameters

graph: the graph that will be associated to the
clustering

merges: the merges performed given in matrix form.

optimal_count: the optimal number of clusters where the
dendrogram should be cut. This is a hint
usually provided by the clustering algorithm
that produces the dendrogram. None means
that such a hint is not available; the optimal
count will then be selected based on the
modularity in such a case.

params: additional parameters to be stored in this

object.

modularity_params: arguments that should be passed to
Graph.modularity when the modularity is
(re)calculated. If the original graph was
weighted, you should pass a dictionary
containing a weight key with the appropriate
value here.

Overrides: object. init

263

Class VertexDendrogram Module igraph.clustering

as_ clustering(self, n=None)

Cuts the dendrogram at the given level and returns a corresponding
VertexClustering object.

Parameters

n: the desired number of clusters. Merges are replayed from the
beginning until the membership vector has exactly n distinct
elements or until there are no more recorded merges, whichever
happens first. If None, the optimal count hint given by the
clustering algorithm will be used If the optimal count was not
given either, it will be calculated by selecting the level where the
modularity is maximal.

Return Value
a new VertexClustering object.

__plot_ (self, context, bbox, palette, *args, **kwds)

Draws the vertex dendrogram on the given Cairo context

See Dendrogram. __plot__ for the list of supported keyword arguments.

Overrides: igraph.clustering.Dendrogram. _ plot

Inherited from tigraph.clustering. Dendrogram (Section 5.5)

str (), format(), summary()

Inherited from object

__delattr (), format (), _ getattribute (), _hash (), new (),
~_reduce (), reduce ex (), _repr_ (), setattr (), sizeof (),

__subclasshook ()

5.6.2 Properties

Name Description
optimal count Returns the optimal number of clusters for this
dendrogram.
If an optimal count hint was given at
construction time, this property simply returns
the hint. If such a count was not given, this
method calculates the optimal number of
clusters by maximizing the modularity along all
the possible cuts in the dendrogram.
Inherited from igraph.clustering. Dendrogram (Section 5.5)
merges, names
Inherited from object

continued on next page

264

Class Cover Module igraph.clustering

Name Description
__class

5.7 Class Cover

object
igraph.clustering.Cover
Known Subclasses: igraph.clustering.VertexCover
Class representing a cover of an arbitrary ordered set.

Covers are similar to clusterings, but each element of the set may belong to more than one
cluster in a cover, and elements not belonging to any cluster are also allowed.

Cover instances provide a similar API as Clustering instances; for instance, iterating over
a Cover will iterate over the clusters just like with a regular Clustering instance. However,
they are not derived from each other or from a common superclass, and there might be
functions that exist only in one of them or the other.

Clusters of an individual cover can be accessed by the [] operator:

>>> ¢l = Cover([[0,1,2,3], [2,3,4], [0,1,6]1])
>>> c1[0]
[0, 1, 2, 3]

The membership vector can be accessed by the membership property. Note that contrary
to Clustering instances, the membership vector will contain lists that contain the cluster
indices each item belongs to:

>>> cl.membership
tto, 21, [o, 21, [o, 11, [o, 11, [11, [1, [2]]

The number of clusters can be retrieved by the len function:

>>> len(cl)
3

You can iterate over the cover as if it were a regular list of clusters:

>>> for cluster in cl:
print " ".join(str(idx) for idx in cluster)

0123
234
016

If you need all the clusters at once as lists, you can simply convert the cover to a list:

265

Class Cover Module igraph.clustering

>>> cluster_list = list(cl)
>>> print cluster_list
[ro, 1, 2, 31, [2, 3, 41, [0, 1, 6]]

Clustering objects can readily be converted to Cover objects using the constructor:

>>> clustering = Clustering([O, O, O, O, 1, 1, 1, 2, 2, 2])
>>> cover = Cover(clustering)
>>> list(clustering) == list(cover)

True

5.7.1 Methods

__init (self, clusters, n=0)

Constructs a cover with the given clusters.

Parameters
clusters: the clusters in this cover, as a list or iterable. Each
cluster is specified by a list or tuple that contains the IDs
of the items in this cluster. IDs start from zero.

n: the total number of elements in the set that is covered by
this cover. If it is less than the number of unique
elements found in all the clusters, we will simply use the
number of unique elements, so it is safe to leave this at
zero. You only have to specify this parameter if there are
some elements that are covered by none of the clusters.

Overrides: object. init

__getitem (self, index)

Returns the cluster with the given index.

__iter (self)

Tterates over the clusters in this cover.

len (self)

Returns the number of clusters in this cover.

str (self)

Returns a string representation of the cover.

Overrides: object. str

266

Class Cover Module igraph.clustering

size(self, idzx)

Returns the size of a given cluster.

Parameters
idx: the cluster in which we are interested.

sizes(self, *args)

Returns the size of given clusters.

The indices are given as positional arguments. If there are no positional
arguments, the function will return the sizes of all clusters.

size histogram(self, bin_ width=1)

Returns the histogram of cluster sizes.

Parameters
bin_width: the bin width of the histogram

Return Value
a Histogram object

summary (self, verbosity=0, width—None)

Returns the summary of the cover.

The summary includes the number of items and clusters, and also the list of
members for each of the clusters if the verbosity is nonzero.

Parameters
verbosity: determines whether the cluster members should be
printed. Zero verbosity prints the number of items and
clusters only.

Return Value
the summary of the cover as a string.

Inherited from object

__delattr (), format (), getattribute (), _hash (), new (),
~ _reduce (), reduce ex (), repr (), setattr (), sizeof (),
__subclasshook ()

5.7.2 Properties

267

Class VertexCover Module igraph.clustering

Name Description
membership Returns the membership vector of this cover.
The membership vector of a cover covering n
elements is a list of length n, where element i
contains the cluster indices of the sth item.
n Returns the number of elements in the set
covered by this cover.

Inherited from object
__class

5.8 Class VertexCover
object T
igraph.clustering.Cover
igraph.clustering.VertexCover
Known Subclasses: igraph.clustering.CohesiveBlocks

The cover of the vertex set of a graph.

This class extends Cover by linking it to a specific Graph object. It also provides some handy
methods like getting the subgraph corresponding to a cluster and such.

Note: since this class is linked to a Graph, destroying the graph by the del operator does
not free the memory occupied by the graph if there exists a VertexCover that references the
Graph.

5.8.1 Methods

__init _ (self, graph, clusters=None)

Creates a cover object for a given graph.

Parameters
graph: the graph that will be associated to the cover

clusters: the list of clusters. If None, it is assumed that there is
only a single cluster that covers the whole graph.

Overrides: object. init

crossing(self)

Returns a boolean vector where element ¢ is True iff edge ¢ lies between
clusters, False otherwise.

268

Class VertexCover Module igraph.clustering

subgraph(self, idx)

Get the subgraph belonging to a given cluster.

Parameters
idx: the cluster index

Return Value
a copy of the subgraph

Precondition: the vertex set of the graph hasn’t been modified since the
moment the cover was constructed.

subgraphs(self)

Gets all the subgraphs belonging to each of the clusters.

Return Value
a list containing copies of the subgraphs

Precondition: the vertex set of the graph hasn’t been modified since the
moment the cover was constructed.

269

Class VertexCover Module igraph.clustering

__plot_ (self, context, bbox, palette, *args, **kwds)

Plots the cover to the given Cairo context in the given bounding box.

This is done by calling Graph.__plot__() with the same arguments, but
drawing nice colored blobs around the vertex groups.

This method understands all the positional and keyword arguments that are
understood by Graph.__plot__(), only the differences will be highlighted
here:

e mark_groups: whether to highlight the vertex clusters by colored
polygons. Besides the values accepted by Graph.__plot__ (i.e., a dict
mapping colors to vertex indices, a list containing lists of vertex indices,
or False), the following are also accepted:

— True: all the clusters will be highlighted, the colors matching the
corresponding color indices from the current palette (see the palette
keyword argument of Graph.__plot__.

— A dict mapping cluster indices or tuples of vertex indices to color
names. The given clusters or vertex groups will be highlighted by the
given colors.

— A list of cluster indices. This is equivalent to passing a dict mapping
numeric color indices from the current palette to cluster indices;
therefore, the cluster referred to by element ¢ of the list will be
highlighted by color i from the palette.

The value of the plotting.mark_groups configuration key is also taken
into account here; if that configuration key is True and mark_groups is
not given explicitly, it will automatically be set to True.

In place of lists of vertex indices, you may also use VertexSeq instances.

In place of color names, you may also use color indices into the current
palette. None as a color name will mean that the corresponding group is
ignored.

e palette: the palette used to resolve numeric color indices to RGBA
values. By default, this is an instance of ClusterColoringPalette.

See Also: Graph.__plot__() for more supported keyword arguments.

Inherited from igraph.clustering. Cover(Section 5.7)

__getitem (), __iter_ (), __len__ (),
sizes(), summary/()

str (), size(), size_histogram(),

Inherited from object

__delattr (), format (), getattribute (), _hash (), new (),
_ _reduce (), reduce ex (), repr (), setattr (), sizeof (),

270

Class CohesiveBlocks Module igraph.clustering

__subclasshook ()

5.8.2 Properties
Name Description
graph Returns the graph belonging to this object
Inherited from igraph.clustering. Cover (Section 5.7)
membership, n
Inherited from object
_class

5.9 Class CohesiveBlocks
object T
igraph.clustering.Cover T

igraph.clustering. VertexCover
igraph.clustering.CohesiveBlocks

The cohesive block structure of a graph.

Instances of this type are created by Graph.cohesive_blocks(). See the documentation of
Graph.cohesive_blocks() for an explanation of what cohesive blocks are.

This class provides a few more methods that make handling of cohesive block structures
easier.

271

Class CohesiveBlocks Module igraph.clustering

5.9.1 Methods

__init (self, graph, blocks=None, cohesion—=None, parent=None)

Constructs a new cohesive block structure for the given graph.

If any of blocks, cohesion or parent is None, all the arguments will be ignored
and Graph.cohesive_blocks() will be called to calculate the cohesive blocks.
Otherwise, these three variables should describe the *result® of a cohesive
block structure calculation. Chances are that you never have to construct
CohesiveBlocks instances directly, just use Graph.cohesive_blocks().

Parameters
graph: the graph itself

blocks: a list containing the blocks; each block is described as a
list containing vertex IDs.

cohesion: the cohesion of each block. The length of this list must
be equal to the length of blocks.

parent: the parent block of each block. Negative values or None
mean that there is no parent block for that block. There
should be only one parent block, which covers the entire
graph.
Overrides: object. init

See Also: Graph.cohesive blocks()

cohesion(self, idzx)

Returns the cohesion of the group with the given index.

cohesions(self)

Returns the list of cohesion values for each group.

hierarchy (self)

Returns a new graph that describes the hierarchical relationships between the
groups.

The new graph will be a directed tree; an edge will point from vertex 7 to
vertex j if group 4 is a superset of group j. In other words, the edges point
downwards.

max__cohesion(self, idx)

Finds the maximum cohesion score among all the groups that contain the
given vertex.

272

Class CohesiveBlocks Module igraph.clustering

max__cohesions(self)

For each vertex in the graph, returns the maximum cohesion score among all
the groups that contain the vertex.

parent(self, idr)

Returns the parent group index of the group with the given index or None if
the given group is the root.

parents(self)

Returns the list of parent group indices for each group or None if the given
group is the root.

__plot_ (self, context, bbox, palette, *args, **kwds)

Plots the cohesive block structure to the given Cairo context in the given
bounding box.

Since a CohesiveBlocks instance is also a VertexCover, keyword arguments
accepted by VertexCover.__plot__() are also accepted here. The only
difference is that the vertices are colored according to their maximal cohesions
by default, and groups are marked by colored blobs except the last group
which encapsulates the whole graph.

See the documentation of VertexCover.__plot__() for more details.

Overrides: igraph.clustering.VertexCover. _ plot

Inherited from igraph.clustering. VertexCover(Section 5.8)
crossing(), subgraph(), subgraphs()
Inherited from igraph.clustering. Cover(Section 5.7)

__getitem___ (), __iter__(), __len__ (), __str__ (), size(), size_histogram(),
sizes(), summary/()

Inherited from object

__delattr (), format (), getattribute (), _hash (), new (),
_ reduce (), reduce ex (), repr (), setattr (), sizeof (),
__subclasshook ()

5.9.2 Properties
Name \ Description
Inherited from igraph.clustering. VertexCover (Section 5.8)

continued on next page

273

Class CohesiveBlocks Module igraph.clustering

Name \ Description

graph

Inherited from igraph.clustering. Cover (Section 5.7)
membership, n

Inherited from object

_class

274

Module igraph.configuration

6 Module igraph.configuration

Configuration framework for igraph.

igraph has some parameters which usually affect the behaviour of many functions. This
module provides the framework for altering and querying igraph parameters as well as saving
them to and retrieving them from disk.

License: Copyright (C) 2006-2012 Tam'\xc3\xals Nepusz <ntamas@gmail.com> P\ xc3\xalzmxc3\xalny
P\xc3\xa0ter s\xc3\xadt\xc3\xalny 1/a, 1117 Budapest, Hungary

This program is free software; you can redistribute it and /or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program:;
if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301 USA

6.1 Functions

get platform image viewer()

Returns the path of an image viewer on the given platform

get user config file()

Returns the path where the user-level configuration file is stored

init()

Default mechanism to initiate igraph configuration

This method loads the user-specific configuration file from the user’s home
directory, or if it does not exist, creates a default configuration.

The method is safe to be called multiple times, it will not parse the
configuration file twice.

Return Value
the Configuration object loaded or created.

6.2 Variables

275

Class Configuration Module igraph.configuration

Name Description
__package Value: ’igraph’

6.3 Class Configuration

object
igraph.configuration.Configuration
(Class representing igraph configuration details.
(section) General ideas

The configuration of igraph is stored in the form of name-value pairs. This object provides
an interface to the configuration data using the syntax known from dict:

>>> c=Configuration()
>>> C ["general.verbose"] = True
>>> print C[”general.verbose”]

True

Configuration keys are organized into sections, and the name to be used for a given key is
always in the form section.keyname, like general.verbose in the example above. In that
case, general is the name of the configuration section, and verbose is the name of the key.
If the name of the section is omitted, it defaults to general, so general.verbose can be
referred to as verbose:

>>> c=Configuration()
>>> C["verbose"] = True
>>> print C["general.verbose"]

True

User-level configuration is stored in ~/.igraphrc per default on Linux and Mac OS X
systems, or in C:\Documents and Settings\username\.igraphrc on Windows systems.
However, this configuration is read only when igraph is launched through its shell interface
defined in igraph.app.shell. This behaviour might change before version 1.0.

(section) Known configuration keys

The known configuration keys are presented below, sorted by section. When referring to
them in program code, don’t forget to add the section name, expect in the case of section
general.

(section) General settings
These settings are all stored in section general.

e shells: the list of preferred Python shells to be used with the command-line igraph

276

Class Configuration Module igraph.configuration

script. The shells in the list are tried one by one until any of them is found on the
system. igraph functions are then imported into the main namespace of the shell and
the shell is launched. Known shells and their respective class names to be used can be
found in igraph.app.shell. Example: IPythonShell, ClassicPythonShell. This
is the default, by the way.

e verbose: whether igraph should talk more than really necessary. For instance, if set
to True, some functions display progress bars.

(section) Application settings

These settings specify the external applications that are possibly used by igraph. They are
all stored in section apps.

e image viewer: image viewer application. If set to an empty string, it will be deter-
mined automatically from the platform igraph runs on. On Mac OS X, it defaults to
the Preview application. On Linux, it chooses a viewer from several well-known Linux
viewers like gthumb, kuickview and so on (see the source code for the full list). On
Windows, it defaults to the system’s built-in image viewer.

(section) Plotting settings

These settings specify the default values used by plotting functions. They are all stored in
section plotting.

e layout: default graph layout algorithm to be used.

e mark groups: whether to mark the clusters by polygons when plotting a clustering
object.

e palette: default palette to be used for converting integer numbers to colors. See
colors.Palette for more information. Valid palette names are stored in colors.palettes.

e wrap labels: whether to try to wrap the labels of the vertices automatically if they
don’t fit within the vertex. Default: False.

(section) Shell settings

These settings specify options for external environments in which igraph is embedded (e.g.,
[Python and its Qt console). These settings are stored in section shell.

e ipython.inlining.Plot: whether to show instances of the P1lot class inline in [Python’s
console if the console supports it. Default: True

277

Class Configuration Module igraph.configuration

6.3.1 Methods

__init_ (self, filename=None)

Creates a new configuration instance.

Parameters
filename: file or file pointer to be read. Can be omitted.

Overrides: object. init

___contains __ (self, item)

Checks whether the given configuration item is set.

Parameters
item: the configuration key to check.

Return Value
True if the key has an associated value, False otherwise.

__getitem (self, item)

Returns the given configuration item.

Parameters
item: the configuration key to retrieve.

Return Value
the configuration value

__setitem (self, item, value)

Sets the given configuration item.

Parameters
item: the configuration key to set

value: the new value of the configuration key

__delitem (self, item)

Deletes the given item from the configuration.

If the item has a default value, the default value is written back instead of the
current value. Without a default value, the item is really deleted.

278

Class Configuration

Module igraph.configuration

has key(self, item)

Checks if the configuration has a given key.

Parameters
item: the key being sought

load(self, stream=None)

Loads the configuration from the given file.

Parameters
stream: name of a file or a file object. The configuration will be
loaded from here. Can be omitted, in this case, the
user-level configuration is loaded.

save(self, stream—=DNone)

Saves the configuration.

Parameters
stream: name of a file or a file object. The configuration will be
saved there. Can be omitted, in this case, the user-level
configuration file will be overwritten.

instance(cls)

Returns the single instance of the configuration object.

Inherited from object

__delattr (), format (), _ getattribute (), _hash (), new (),
_ _reduce (), reduce ex (), repr (), setattr (), sizeof (),
~ str__ (), subclasshook ()
6.3.2 Properties
Name Description
filename Returns the filename associated to the object.

that was used when creating the object.

the filename given to it. If None, the

information.

It is usually the name of the configuration file
Configuration.load always overwrites it with

configuration was either created from scratch or
it was updated from a stream without name

Inherited from object
__class

279

Class Cut Module igraph.cut

7 Module igraph.cut

Classes representing cuts and flows on graphs.

License: Copyright (C) 2006-2012 Tam'\xc3'\xals Nepusz <ntamas@gmail.com> P\ xc3\xalzm\xc3\xalny
P\xc3\xa0ter s\xc3\xadt\xc3\xalny 1/a, 1117 Budapest, Hungary

This program is free software; you can redistribute it and /or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY:; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301 USA

7.1 Variables
Name Description
__package Value: ’igraph’

7.2 Class Cut
object T
igraph.clustering.Clustering T

igraph.clustering. VertexClustering

igraph.cut.Cut
Known Subclasses: igraph.cut.Flow
A cut of a given graph.

This is a simple class used to represent cuts returned by Graph.mincut (), Graph.all_st_cuts()
and other functions that calculate cuts.

A cut is a special vertex clustering with only two clusters. Besides the usual VertexClustering
methods, it also has the following attributes:

e value - the value (capacity) of the cut. It is equal to the number of edges if there are
no capacities on the edges.

e partition - vertex IDs in the parts created after removing edges in the cut

e cut - edge IDs in the cut

280

Class Cut Module igraph.cut

e es - an edge selector restricted to the edges in the cut.
You can use indexing on this object to obtain lists of vertex IDs for both sides of the partition.

This class is usually not instantiated directly, everything is taken care of by the functions
that return cuts.

Examples:

>>> from igraph import Graph
>>> g = Graph.Ring(20)

>>> mc = g.mincut()

>>> print mc.value

2.0

>>> print min(map(len, mc))
1

>>> mc.es ["color"] = "red"

281

Class Cut Module igraph.cut

7.2.1 Methods

_init (self, graph, value=None, cut=None, partition—None,

partition2—None)

Initializes the cut.

This should not be called directly, everything is taken care of by the functions
that return cuts.

Parameters

graph: the graph that will be associated to the
clustering

membership: the membership list. The length of the list
must be equal to the number of vertices in the
graph. If None, every vertex is assumed to
belong to the same cluster.

modularity: the modularity score of the clustering. If
None, it will be calculated when needed.

params: additional parameters to be stored in this

object.

modularity_params: arguments that should be passed to
Graph.modularity when the modularity is
(re)calculated. If the original graph was
weighted, you should pass a dictionary
containing a weight key with the appropriate

value here.
Overrides: object. init
__repr__ (self)
repr(x)
Overrides: object. repr extit(inherited documentation)
__str_ (self)
str(x)

Overrides: object. str extit(inherited documentation)

Inherited from igraph.clustering. VertexClustering(Section 5.4)

FromAttribute(), plot (), as_cover(), cluster graph(), crossing(), giant(),
recalculate modularity(), subgraph(), subgraphs()

282

Class Flow Module igraph.cut

Inherited from igraph.clustering. Clustering(Section 5.3)

_getitem (), _iter (), _len (), compare to(),size(), size histogram(),
sizes(), summary()

Inherited from object

__delattr (), format (), getattribute (), _hash (), new (),

__reduce_ (), _reduce ex (), _setattr (), _sizeof (), _ subclasshook ()

7.2.2 Properties

Name Description
es Returns an edge selector restricted to the cut
partition Returns the vertex IDs partitioned according to
the cut
cut Returns the edge IDs in the cut
value Returns the sum of edge capacities in the cut

Inherited from igraph.clustering. VertexClustering (Section 5.4)
graph, modularity, q

Inherited from igraph.clustering. Clustering (Section 5.3)
membership, n

Inherited from object

__class

7.3 Class Flow

object T
igraph.clustering.Clustering T
igraph.clustering. VertexClustering T

igraph.cut.Cut
igraph.cut.Flow
A flow of a given graph.

This is a simple class used to represent flows returned by Graph.maxflow. It has the following
attributes:

e graph - the graph on which this flow is defined

e value - the value (capacity) of the flow

e flow - the flow values on each edge. For directed graphs, this is simply a list where
element ¢ corresponds to the flow on edge 7. For undirected graphs, the direction of

283

Class Flow Module igraph.cut

the flow is not constrained (since the edges are undirected), hence positive flow always
means a flow from the smaller vertex ID to the larger, while negative flow means a flow
from the larger vertex ID to the smaller.

e cut - edge IDs in the minimal cut corresponding to the flow.
e partition - vertex IDs in the parts created after removing edges in the cut
e es - an edge selector restricted to the edges in the cut.

This class is usually not instantiated directly, everything is taken care of by Graph.maxflow.
Examples:

>>> from igraph import Graph
>>> g = Graph.Ring(20)

>>> mnf = g.maxflow(0, 10)
>>> print mf.value

2.0

>>> mf . es ["color"] = '"red"

284

Class Flow Module igraph.cut

7.3.1 Methods

__init_ (self, graph, value, flow, cut, partition)

Initializes the flow.

This should not be called directly, everything is taken care of by
Graph.maxflow.

Parameters

graph: the graph that will be associated to the
clustering

membership: the membership list. The length of the list
must be equal to the number of vertices in the
graph. If None, every vertex is assumed to
belong to the same cluster.

modularity: the modularity score of the clustering. If
None, it will be calculated when needed.

params: additional parameters to be stored in this

object.

modularity_params: arguments that should be passed to
Graph.modularity when the modularity is
(re)calculated. If the original graph was
weighted, you should pass a dictionary
containing a weight key with the appropriate
value here.

Overrides: object. init

__repr__ (self)

repr(x)
Overrides: object. repr extit(inherited documentation)

str (self)

str(x)

Overrides: object. str extit(inherited documentation)

Inherited from igraph.clustering. VertexClustering(Section 5.4)

FromAttribute(), ~ plot (), as_cover(), cluster graph(), crossing(), giant(),
recalculate modularity(), subgraph(), subgraphs()

Inherited from tigraph.clustering. Clustering(Section 5.3)

285

Class Flow

Module igraph.cut

__getitem

0

sizes(), summary()

_iter (), _len (), compare to(), size(), size histogram(),

Inherited from object

__delattr (),
__reduce (),

7.3.2 Properties

format (), __getattribute_ (), __hash__ (), __new__(),
_reduce_ex__ (), __setattr__ (), __sizeof _ (), __subclasshook ()

Name

Description

flow

Returns the flow values for each edge.

For directed graphs, this is simply a list where
element ¢ corresponds to the flow on edge 7. For
undirected graphs, the direction of the flow is
not constrained (since the edges are
undirected), hence positive flow always means a
flow from the smaller vertex ID to the larger,
while negative flow means a flow from the
larger vertex ID to the smaller.

Inherited from igraph.cut. Cut (Section 7.2)
cut, es, partition, value

Inherited from igraph.clustering. VertexzClustering (Section 5.4)
graph, modularity, q

Inherited from igraph.clustering. Clustering (Section 5.3)
membership, n

Inherited from object
__class

286

Class Matrix Module igraph.datatypes

8 Module igraph.datatypes

Additional auxiliary data types

License: Copyright (C) 2006-2012 Tam'\xc3'\xals Nepusz <ntamas@gmail.com> P\ xc3\xalzm\xc3\xalny
P\xc3\xa0ter s\xc3\xadt\xc3\xalny 1/a, 1117 Budapest, Hungary

This program is free software; you can redistribute it and /or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY:; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301 USA

8.1 Variables
Name Description
__package Value: ’igraph’

8.2 Class Matrix

object
igraph.datatypes.Matrix
Simple matrix data type.

Of course there are much more advanced matrix data types for Python (for instance, the
ndarray data type of Numeric Python) and this implementation does not want to compete
with them. The only role of this data type is to provide a convenient interface for the
matrices returned by the Graph object (for instance, allow indexing with tuples in the case
of adjacency matrices and so on).

8.2.1 Methods

__init (self, data=None)

Initializes a matrix.

Parameters
data: the elements of the matrix as a list of lists, or None to create
a 0x0 matrix.

Overrides: object. init

287

Class Matrix Module igraph.datatypes

Fill(cls, value, *args)

Creates a matrix filled with the given value

Parameters
value: the value to be used

shape: the shape of the matrix. Can be a single integer, two
integers or a tuple. If a single integer is given here, the
matrix is assumed to be square-shaped.

Zero(cls, *args)

Creates a matrix filled with zeros.

Parameters
shape: the shape of the matrix. Can be a single integer, two
integers or a tuple. If a single integer is given here, the
matrix is assumed to be square-shaped.

Identity(cls, *args)

Creates an identity matrix.

Parameters
shape: the shape of the matrix. Can be a single integer, two
integers or a tuple. If a single integer is given here, the
matrix is assumed to be square-shaped.

add (self, other)

Adds the given value to the matrix.

Parameters
other: either a scalar or a matrix. Scalars will be added to each
element of the matrix. Matrices will be added together
elementwise.

Return Value
the result matrix

eq__ (self, other)

Checks whether a given matrix is equal to another one

288

Class Matrix Module igraph.datatypes

__getitem (self, 1)

Returns a single item, a row or a column of the matrix

Parameters
i: if a single integer, returns the ¢th row as a list. If a slice, returns
the corresponding rows as another Matrix object. If a 2-tuple,
the first element of the tuple is used to select a row and the
second is used to select a column.

__hash__ (self)

Returns a hash value for a matrix.

Overrides: object. _hash

__iadd__ (self, other)

In-place addition of a matrix or scalar.

__isub_ (self, other)

In-place subtraction of a matrix or scalar.

ne (self, other)

Checks whether a given matrix is not equal to another one

__setitem (self, i, value)

Sets a single item, a row or a column of the matrix

Parameters
i: if a single integer, sets the ¢th row as a list. If a slice, sets
the corresponding rows from another Matrix object. If a
2-tuple, the first element of the tuple is used to select a row
and the second is used to select a column.

value: the new value

sub_ (self, other)

Subtracts the given value from the matrix.

Parameters
other: either a scalar or a matrix. Scalars will be subtracted from
each element of the matrix. Matrices will be subtracted
together elementwise.

Return Value
the result matrix

289

Class Matrix Module igraph.datatypes

__repr___ (self)

repr(x)
Overrides: object. repr extit(inherited documentation)

str (self)

str(x)

Overrides: object. str extit(inherited documentation)

__iter (self)

Support for iteration.

This is actually implemented as a generator, so there is no need for a separate
iterator class. The generator returns copies of the rows in the matrix as lists
to avoid messing around with the internals. Feel free to do anything with the
copies, the changes won'’t be reflected in the original matrix.

290

Class Matrix Module igraph.datatypes

__plot_ (self, context, bbox, palette, **kwds)

Plots the matrix to the given Cairo context in the given box

Besides the usual self-explanatory plotting parameters (context, bbox,
palette), it accepts the following keyword arguments:

e style: the style of the plot. boolean is useful for plotting matrices with
boolean (True/False or 0/1) values: False will be shown with a white
box and True with a black box. palette uses the given palette to
represent numbers by colors, the minimum will be assigned to palette
color index 0 and the maximum will be assigned to the length of the
palette. None draws transparent cell backgrounds only. The default style
is boolean (but it may change in the future). None values in the matrix
are treated specially in both cases: nothing is drawn in the cell
corresponding to None.

e square: whether the cells of the matrix should be square or not. Default
is True.

e grid_width: line width of the grid shown on the matrix. If zero or
negative, the grid is turned off. The grid is also turned off if the size of a
cell is less than three times the given line width. Default is 1. Fractional
widths are also allowed.

e border_width: line width of the border drawn around the matrix. If zero
or negative, the border is turned off. Default is 1.

e row_names: the names of the rows
e col_names: the names of the columns.

e values: values to be displayed in the cells. If None or False, no values
are displayed. If True, the values come from the matrix being plotted. If
it is another matrix, the values of that matrix are shown in the cells. In
this case, the shape of the value matrix must match the shape of the
matrix being plotted.

e value_format: a format string or a callable that specifies how the values
should be plotted. If it is a callable, it must be a function that expects a
single value and returns a string. Example: "%#.2f" for floating-point
numbers with always exactly two digits after the decimal point. See the
Python documentation of the % operator for details on the format string.
If the format string is not given, it defaults to the str function.

If only the row names or the column names are given and the matrix is
square-shaped, the same names are used for both column and row names.

291

Class DyadCensus Module igraph.datatypes

min(self, dim=None)

Returns the minimum of the matrix along the given dimension

Parameters
dim: the dimension. 0 means determining the column minimums, 1
means determining the row minimums. If None, the global
minimum is returned.

max(self, dim=None)

Returns the maximum of the matrix along the given dimension

Parameters
dim: the dimension. 0 means determining the column maximums, 1
means determining the row maximums. If None, the global
maximum is returned.

Inherited from object

__delattr (), format (), getattribute (), new (), reduce (),
~_reduce _ex (), setattr (), sizeof (), subclasshook ()

8.2.2 Properties

Name Description
data Returns the data stored in the matrix as a list
of lists
shape Returns the shape of the matrix as a tuple
Inherited from object
_class

8.3 Class DyadCensus

object T
tuple
igraph.datatypes.DyadCensus
Dyad census of a graph.

This is a pretty simple class - basically it is a tuple, but it allows the user to refer to its
individual items by the names mutual (or mut), asymmetric (or asy or asym or asymm) and
null.

Examples:

>>> from igraph import Graph

292

Class DyadCensus Module igraph.datatypes

>>> g=Graph.Erdos_Renyi (100, 0.2, directed=True)
>>> dc=g.dyad_census ()

>>> print dc.mutual #doctest : +SKIP
179

>>> print dC:[”asym”] #doctest : +SKIP
1609

>>> print tuple(dc), list(dc) #doctest : +SKIP
(179, 1609, 3162) [179, 1609, 3162]
>>> print sorted(dc.as_dict().items()) #doctest:+ELLIPSIS

[(’asymmetric’, ...), (Pmutual’, ...), (’null’, ...)]

8.3.1 Methods

__getitem (self, idx)

x[y]
Overrides: tuple. getitem extit(inherited documentation)

__getattr (self, attr)

__repr__ (self)

repr(x)
Overrides: object. repr extit(inherited documentation)

__str_ (self)
str(x)
Overrides: object. str_ extit(inherited documentation)

as_ dict(self)

Converts the dyad census to a dict using the known dyad names.

Inherited from tuple

~add_ (), contains (), eq (), _ge (), _ getattribute (), get-
newargs (), getslice (), gt (), _hash (), _iter (), le (),
~dlen (), W (), mul (), mne (), mew_ (), rmul_ (),

count(), index()
Inherited from object

__delattr__ (), __format__ (), __init_ (), __reduce__ (), __reduce_ex__ (),
__setattr__ (), __sizeof __ (), __subclasshook _ ()

293

Class TriadCensus Module igraph.datatypes

8.3.2 Properties

8.4

Name Description

Inherited from object
_class

Class TriadCensus

object T

tuple
igraph.datatypes.TriadCensus

Triad census of a graph.

This is a pretty simple class - basically it is a tuple, but it allows the user to refer to its
individual items by the following triad names:

003 — the empty graph

012 — a graph with a single directed edge (A -> B, C)
102 — a graph with a single mutual edge (A <-> B, C)
021D — the binary out-tree (A <- B -> C)

021U — the binary in-tree (A -> B <- C)

021C — the directed line (A -> B -> C)

111D - A <-> B <- C

111U—-A <-> B -> C

030T-A ->B <-C, A ->C
030C-A <-B<-C, A >¢C
201 — A <->B <> C

120D—A <- B ->C, A <> C
1200-A -> B <-C, A <> C
120C-A ->B ->C, A<->C
210C - A -> B <->C, A <> C

300 — the complete graph (A <-> B <-> C, A <-> ()

Attribute and item accessors are provided. Due to the syntax of Python, attribute names
are not allowed to start with a number, therefore the triad names must be prepended with a
lowercase t when accessing them as attributes. This is not necessary with the item accessor
syntax.

Examples:

>>> from igraph import Graph

294

Class TriadCensus Module igraph.datatypes

>>> g=Graph.Erdos_Renyi (100, 0.2, directed=True)
>>> tc=g.triad_census()

>>> print tc.t003 #doctest: +SKIP
39864

>>> print tc["030c"] #doctest : +SKIP
1206

8.4.1 Methods

__getitem (self, idx)

x[y]
Overrides: tuple. getitem extit(inherited documentation)

__getattr (self, attr)

__repr___ (self)

repr(x)

Overrides: object. repr extit(inherited documentation)
__str (self)

str(x)

Overrides: object. str extit(inherited documentation)

Inherited from tuple

add (), contains (), _eq_ (), _ge (), _getattribute (), get-
newargs_ (), __getslice_ (), __gt (), _hash (), __iter_ (), __le_ (),
_den (), 1t (), __mul_ (), me_ (), mew__ (), _rmul__(),
count(), index()

Inherited from object

__delattr__ (), __format__ (), _init_ (), _reduce_ (), __reduce_ex__ (),
_setattr (), sizeof (), subclasshook ()

8.4.2 Properties

Name \ Description
Inherited from object
__class

295

Class UniqueldGenerator Module igraph.datatypes

8.5 Class UniqueldGenerator

object
igraph.datatypes.UniqueldGenerator
A dictionary-like class that can be used to assign unique IDs to names (say, vertex names).
Usage:

>>> gen = UniqueIdGenerator ()

>>> gen["a"]

0

>>> gen["B"

1

>>> gen[rc"]

2

>>> geIl["A”] # Retrieving already existing ID
0

>>> gen.add("D") # Synonym of gen["D"]

3

>>> len(gen) # Number of already used IDs
4

>>> "C" in gen

True

>>> "E" in gen

False

8.5.1 Methods

__init (self, id_ generator=None, initial=None)

Creates a new unique ID generator. ‘id _generator‘ specifies how do we assign
new IDs to elements that do not have an ID yet. If it is ‘None‘, elements will
be assigned integer identifiers starting from 0. If it is an integer, elements will
be assigned identifiers starting from the given integer. If it is an iterator or
generator, its ‘next’ method will be called every time a new ID is needed.

Overrides: object. init

___contains __ (self, item)

Checks whether ‘item* already has an ID or not.

__getitem (self, item)

Retrieves the ID corresponding to ‘item‘. Generates a new ID for ‘item‘ if it is
the first time we request an ID for it.

296

Class UniqueldGenerator Module igraph.datatypes

__setitem (self, item, value)

Overrides the ID for ‘item°.

len (self)

"Returns the number of items

reverse dict(self)

Returns the reverse mapping, i.e., the one that maps from generated IDs to
their corresponding objects

values(self)

Returns the values stored so far. If the generator generates items according to
the standard sorting order, the values returned will be exactly in the order
they were added. This holds for integer IDs for instance (but for many other
ID generators as well).

add(self, item)

Retrieves the ID corresponding to ‘item‘. Generates a new ID for ‘item’ if it is
the first time we request an ID for it.

Inherited from object
__delattr (), format (), getattribute (), _hash (), new (),

~ reduce (), reduce ex (), repr (), setattr (), __sizeof___(),
_str (), __subclasshook ()

8.5.2 Properties

Name \ Description
Inherited from object
__class

297

Package igraph.drawing

9 Package igraph.drawing

Drawing and plotting routines for IGraph.

Plotting is dependent on the pycairo or cairocffi libraries that provide Python bindings
to the popular Cairo library!. This means that if you don’t have pycairo? or cairocffi®
installed, you won’t be able to use the plotting capabilities. However, you can still use
Graph.write_svg to save the graph to an SVG file and view it from Mozilla Firefox* (free) or
edit it in Inkscape® (free), Skencil® (formerly known as Sketch, also free) or Adobe Illustrator.

Whenever the documentation refers to the pycairo library, you can safely replace it with
cairocffi as the two are API-compatible.

License: GPL

9.1 Modules

e baseclasses: Abstract base classes for the drawing routines.
(Section 10, p. 312)

e colors: Color handling functions.
(Section 11, p. 815)

e coord: Coordinate systems and related plotting routines
(Section 12, p. 328)

e edge: Drawers for various edge styles in graph plots.
(Section 13, p. 331)

e graph: Drawing routines to draw graphs.
(Section 14, p. 339)

e metamagic: Auxiliary classes for the default graph drawer in igraph.
(Section 15, p. 846)

e shapes: Shape drawing classes for igraph
(Section 16, p. 849)

e text: Drawers for labels on plots.
(Section 17, p. 352)

e utils: Utility classes for drawing routines.
(Section 18, p. 357)

e vertex: Drawing routines to draw the vertices of graphs.
(Section 19, p. 368)

Thttp://www.cairographics.org
2http://www.cairographics.org/pycairo
Shttp://cairocfi.readthedocs.io
4http://www.mozilla.org/firefox
Shttp://www.inkscape.org
Shttp://www.skencil.org

298

http://www.cairographics.org
http://www.cairographics.org/pycairo
http://cairocffi.readthedocs.io
http://www.mozilla.org/firefox
http://www.inkscape.org
http://www.skencil.org

Modules Package igraph.drawing

299

Functions Package igraph.drawing

9.2 Functions

plot(obj, target=None, bbox—=(0, 0, 600, 600), *args, **kwds)

Plots the given object to the given target.

Positional and keyword arguments not explicitly mentioned here will be passed
down to the __plot__ method of the object being plotted. Since you are most
likely interested in the keyword arguments available for graph plots, see
Graph.__plot__ as well.

Parameters
obj: the object to be plotted

target: the target where the object should be plotted. It can be
one of the following types:

e None — an appropriate surface will be created and the
object will be plotted there.

e cairo.Surface — the given Cairo surface will be used.
This can refer to a PNG image, an arbitrary window,
an SVG file, anything that Cairo can handle.

e string — a file with the given name will be created
and an appropriate Cairo surface will be attached to
it. The supported image formats are: PNG, PDF,
SVG and PostScript.

bbox: the bounding box of the plot. It must be a tuple with
either two or four integers, or a BoundingBox object. If
this is a tuple with two integers, it is interpreted as the
width and height of the plot (in pixels for PNG images
and on-screen plots, or in points for PDF, SVG and
PostScript plots, where 72 pt = 1 inch = 2.54 cm). If this
is a tuple with four integers, the first two denotes the X
and Y coordinates of a corner and the latter two denoting
the X and Y coordinates of the opposite corner.

opacity: the opacity of the object being plotted. It can be used to
overlap several plots of the same graph if you use the
same layout for them — for instance, you might plot a
graph with opacity 0.5 and then plot its spanning tree
over it with opacity 0.1. To achieve this, you’ll need to
modify the Plot object returned with Plot.add.

palette: the palette primarily used on the plot if the added objects
do not specify a private palette. Must be either an
igraph.drawing.colors.Palette object or a string
referring to a valid key of
igraph.drawing.colors.palettes (see module
igraph.drawing.colors) or None. In the latter case, the
default palette given bysphe configuration key
plotting.palette is used.

margin: the top, right, bottom, left margins as a 4-tuple. If it has

less than 4 elements or is a single float, the elements will
kD T‘D,'ITCD{‘] 11ﬂ+';] +hﬂ]Dﬂ(ffl’\ ;C ‘)+]DQC+ /I rrhﬂ ADFQ11]+

Class DefaultGraphDrawer Package igraph.drawing

9.3 Class DefaultGraphDrawer

object T

igraph.drawing.baseclasses. Abstract Drawer T
igraph.drawing.graph.AbstractGraphDrawer —

object T

igraph.drawing.baseclasses. Abstract Drawer T

igraph.drawing.baseclasses. AbstractCairoDrawer T

igraph.drawing.graph.AbstractCairoGraphDrawer
igraph.drawing.graph.Default GraphDrawei

Class implementing the default visualisation of a graph.

The default visualisation of a graph draws the nodes on a 2D plane according to a given
Layout, then draws a straight or curved edge between nodes connected by edges. This is
the visualisation used when one invokes the plot() function on a Graph object.

See Graph.__plot__() for the keyword arguments understood by this drawer.

301

Class DefaultGraphDrawer Package igraph.drawing

9.3.1 Methods

__init (self, context, bbox, vertex_ drawer_ factory=<class
’igraph.drawing.vertex.DefaultVertexDrawer’>,

edge drawer _factory=<class ’igraph.drawing.edge.ArrowEdgeDrawer’>,
label drawer factory—<class ’igraph.drawing.text.TextDrawer’>)

Constructs the graph drawer and associates it to the given Cairo context and
the given BoundingBox.

Parameters
context: the context on which we will draw
bbox: the bounding box within which we will

draw. Can be anything accepted by the
constructor of BoundingBox (i.e., a
2-tuple, a 4-tuple or a BoundingBox
object).

vertex_drawer_factory: a factory method that returns an
AbstractCairoVertexDrawer instance
bound to a given Cairo context. The
factory method must take three
parameters: the Cairo context, the
bounding box of the drawing area and
the palette to be used for drawing colored
vertices. The default vertex drawer is
DefaultVertexDrawer.

edge_drawer_factory: a factory method that returns an
AbstractEdgeDrawer instance bound to
a given Cairo context. The factory
method must take two parameters: the
Cairo context and the palette to be used
for drawing colored edges. You can use
any of the actual AbstractEdgeDrawer
implementations here to control the style
of edges drawn by igraph. The default
edge drawer is ArrowEdgeDrawer.

label_drawer_factory: a factory method that returns a
TextDrawer instance bound to a given
Cairo context. The method must take
one parameter: the Cairo context. The
default label drawer is TextDrawer.

Overrides: object. _ init

302

Class BoundingBox Package igraph.drawing

draw (self, graph, palette, *args, **kwds)

Abstract method, must be implemented in derived classes.

Overrides: igraph.drawing.baseclasses. AbstractDrawer.draw extit(inherited
documentation)

Inherited from igraph.drawing.graph. AbstractGraphDrawer
ensure layout()
Inherited from object

__delattr (), format (), getattribute (), _hash (), new (),
_reduce (), reduce_ex (), _repr (), _setattr (), sizeof (),
str (), _ subclasshook ()

9.3.2 Properties

Name \ Description
Inherited from igraph.drawing.baseclasses. AbstractCairoDrawer (Section 10.3)
bbox
Inherited from object
__class

9.4 Class BoundingBox

object T

igraph.drawing.utils.Rectangle

igraph.drawing.utils. BoundingBox

Class representing a bounding box (a rectangular area) that encloses some objects.

303

Class BoundingBox Package igraph.drawing

9.4.1 Methods

ior (self, other)

Replaces this bounding box with the union of itself and another.
Example:

>>> boxl = BoundingBox (10, 20, 50, 60)
>>> box2 = BoundingBox (70, 40, 100, 90)
>>> boxl |= box2

>>> print(box1)

BoundingBox(10.0, 20.0, 100.0, 90.0)

Overrides: igraph.drawing.utils.Rectangle. ior

_or___ (self, other)

Takes the union of this bounding box with another.
The result is a bounding box which encloses both bounding boxes.

Example:

>>> boxl = BoundingBox (10, 20, 50, 60)
>>> box2 = BoundingBox (70, 40, 100, 90)
>>> boxl | box2

BoundingBox(10.0, 20.0, 100.0, 90.0)

Overrides: igraph.drawing.utils.Rectangle. or

Inherited from igraph.drawing.utils. Rectangle(Section 18.1)

_and__(), __bool__(), __eq__(), __hash (), __init__(), __mne__ (),
~ _mnonzero__ (), _ repr (), contract(), expand(), intersection(), isdisjoint(),
isempty(), translate(), union()

Inherited from object

__delattr (), format (), getattribute (), new (), reduce (),
~reduce_ex (), setattr (), sizeof (), str_ (), subclasshook ()

9.4.2 Properties

Name \ Description
Inherited from igraph.drawing.utils. Rectangle (Section 18.1)
bottom, coords, height, left, midx, midy, right, shape, top, width
Inherited from object
__class

304

Class Point

Package igraph.drawing

9.5 Class Point
object T

tuple
igraph.drawing.utils.Point

Class representing a point on the 2D plane.

9.5.1 Methods

new (cls, z, y)

Creates a new point with the given coordinates

Return Value
a new object with type S, a subtype of T

Overrides: object. new

__repr__ (self)

Returns a nicely formatted representation of the point

Overrides: object. repr

__getnewargs (self)

Return self as a plain tuple. Used by copy and pickle.

Overrides: tuple. getnewargs

add _ (self, other)

Adds the coordinates of a point to another one

Overrides: tuple. add

sub_ (self, other)

Subtracts the coordinates of a point to another one

mul (self, scalar)

Multiplies the coordinates by a scalar

Overrides: tuple. mul

305

Class Point Package igraph.drawing

__rmul_ (self, scalar)

Multiplies the coordinates by a scalar

Overrides: tuple. rmul

div_ (self, scalar)

Divides the coordinates by a scalar

as_ polar(self)

Returns the polar coordinate representation of the point.

Return Value
the radius and the angle in a tuple.

distance(self, other)

Returns the distance of the point from another one.
Example:

>>> pl = Point(5, 7)
>>> p2 = Point (8, 3)
>>> pl.distance(p2)
5.0

interpolate(self, other, ratio=0.5)

Linearly interpolates between the coordinates of this point and another one.

Parameters
other: the other point

ratio: the interpolation ratio between 0 and 1. Zero will return this
point, 1 will return the other point.

length(self)
Returns the length of the vector pointing from the origin to this point.

normalized (self)

Normalizes the coordinates of the point s.t. its length will be 1 after
normalization. Returns the normalized point.

sq_ length(self)

Returns the squared length of the vector pointing from the origin to this point.

306

Class Rectangle Package igraph.drawing

towards(self, other, distance=0)

Returns the point that is at a given distance from this point towards another
one.

FromPolar(cls, radius, angle)

Constructs a point from polar coordinates.

‘radius’ is the distance of the point from the origin; ‘angle‘ is the angle
between the X axis and the vector pointing to the point from the origin.

Inherited from tuple

_ _contains (), eq (), _ge (), _getattribute (), getitem (),
~getslice (), et (), _hash (), _iter (), le (), len (),
It (), __mne (), count(), index()

Inherited from object

__delattr__ (), __format__ (), _init_ (), __reduce_ (), __reduce_ex_ _(),
__setattr__ (), __sizeof (), __str__(), __subclasshook_ ()

9.5.2 Properties

Name Description
X Alias for field number 0
y Alias for field number 1
Inherited from object
__class

9.6 Class Rectangle

object
igraph.drawing.utils.Rectangle
Known Subclasses: igraph.drawing.utils. BoundingBox

Class representing a rectangle.

307

Class Rectangle Package igraph.drawing

9.6.1 Methods

__init _ (self, *args)

Creates a rectangle.

The corners of the rectangle can be specified by either a tuple (four items, two
for each corner, respectively), four separate numbers (X and Y coordinates for
each corner) or two separate numbers (width and height, the upper left corner
is assumed to be at (0,0))

Overrides: object. init

contract(self, margins)

Contracts the rectangle by the given margins.

Return Value
a new Rectangle object.

expand (self, margins)

Expands the rectangle by the given margins.

Return Value
a new Rectangle object.

isdisjoint(self, other)

Returns “True” if the two rectangles have no intersection.
Example:

>>> rl = Rectangle(10, 10, 30, 30)

>>> r2 = Rectangle(20, 20, 50, 50)
>>> r3 = Rectangle(70, 70, 90, 90)
>>> rl.isdisjoint(r2)

False

>>> r2.isdisjoint(rl)

False

>>> rl.isdisjoint(r3)

True

>>> r3.isdisjoint(rl)

True

308

Class Rectangle

Package igraph.drawing

isempty (self)

Example:

>>> ril
>>> r2
>>> rl.
False
>>> r2.
False
>>> rl.
True

Returns “True® if the rectangle is empty (i.e. it has zero width and height).

Rectangle(10, 10, 30, 30)
Rectangle(70, 70, 90, 90)
isempty ()

isempty ()

intersection(r2) .isempty()

intersection(self, other)

Returns the intersection of this rectangle with another.

Example:
>>> rl = Rectangle(10, 10, 30, 30)
>>> r2 = Rectangle(20, 20, 50, 50)
>>> r3 = Rectangle(70, 70, 90, 90)
>>> ril.intersection(r2)
Rectangle(20.0, 20.0, 30.0, 30.0)
>>> r2 & ril
Rectangle(20.0, 20.0, 30.0, 30.0)
>>> r2.intersection(rl) == rl.intersection(r2)
True
>>> ril.intersection(r3)

Rectangle(0.0, 0.0, 0.0, 0.0)

309

Class Rectangle Package igraph.drawing

and _ (self, other)

Returns the intersection of this rectangle with another.

Example:
>>> rl = Rectangle(10, 10, 30, 30)
>>> r2 = Rectangle(20, 20, 50, 50)
>>> r3 = Rectangle(70, 70, 90, 90)

>>> ril.intersection(r2)

Rectangle(20.0, 20.0, 30.0, 30.0)

>>> r2 & ril

Rectangle(20.0, 20.0, 30.0, 30.0)

>>> r2.intersection(rl) == rl.intersection(r2)
True

>>> ril.intersection(r3)

Rectangle(0.0, 0.0, 0.0, 0.0)

translate(self, dz, dy)

Translates the rectangle in-place.
Example:

>>> r = Rectangle(10, 20, 50, 70)
>>> r.translate(30, -10)
>>> T

Rectangle(40.0, 10.0, 80.0, 60.0)

Parameters
dx: the X coordinate of the translation vector

dy: the Y coordinate of the translation vector

310

Class Rectangle Package igraph.drawing

union(self, other)

Returns the union of this rectangle with another.

The resulting rectangle is the smallest rectangle that contains both rectangles.

Example:
>>> rl = Rectangle(10, 10, 30, 30)
>>> r2 = Rectangle(20, 20, 50, 50)
>>> r3 = Rectangle(70, 70, 90, 90)

>>> ri.union(r2)

Rectangle(10.0, 10.0, 50.0, 50.0)
>>> 12 | rl

Rectangle(10.0, 10.0, 50.0, 50.0)
>>> r2.union(rl) == rl.union(r2)
True

>>> ril.union(r3)

Rectangle(10.0, 10.0, 90.0, 90.0)

_or___ (self, other)

Returns the union of this rectangle with another.

The resulting rectangle is the smallest rectangle that contains both rectangles.

Example:
>>> r1 = Rectangle(10, 10, 30, 30)
>>> r2 = Rectangle(20, 20, 50, 50)
>>> r3 = Rectangle(70, 70, 90, 90)

>>> ril.union(r2)

Rectangle(10.0, 10.0, 50.0, 50.0)
>>> r2 | rl

Rectangle(10.0, 10.0, 50.0, 50.0)
>>> r2.union(rl) == ril.union(r2)
True

>>> rl.union(r3)

Rectangle(10.0, 10.0, 90.0, 90.0)

311

Class Rectangle Package igraph.drawing

ior (self, other)

Expands this rectangle to include itself and another completely while still
being as small as possible.

Example:

>>> rl = Rectangle(10, 10, 30, 30)

>>> r2 = Rectangle(20, 20, 50, 50)
>>> r3 = Rectangle(70, 70, 90, 90)
>>> rl |= r2

>>> rl

Rectangle(10.0, 10.0, 50.0, 50.0)
>>> rl |= r3

>>> ri

Rectangle(10.0, 10.0, 90.0, 90.0)

__repr__ (self)

repr(x)

Overrides: object. repr extit(inherited documentation)

eq__ (self, other)

ne (self, other)

__bool (self)

__nonzero___ (self)

__hash_ (self)
hash(x)

Overrides: object. hash extit(inherited documentation)

Inherited from object

~delattr (), format (), getattribute (), mnew (), reduce (),
~reduce _ex (), setattr (), sizeof (), str_ (), subclasshook ()

9.6.2 Properties

312

Class Plot Package igraph.drawing

Name Description
coords The coordinates of the corners.
The coordinates are returned as a 4-tuple in the
following order: left edge, top edge, right edge,
bottom edge.
width The width of the rectangle
height The height of the rectangle
left The X coordinate of the left side of the box
right The X coordinate of the right side of the box
top The Y coordinate of the top edge of the box
bottom The Y coordinate of the bottom edge of the box
midx The X coordinate of the center of the box
midy The Y coordinate of the center of the box
shape The shape of the rectangle (width, height)
Inherited from object
_class

9.7 Class Plot

object
igraph.drawing.Plot
Class representing an arbitrary plot

Every plot has an associated surface object where the plotting is done. The surface is an
instance of cairo.Surface, a member of the pycairo library. The surface itself provides a
unified API to various plotting targets like SVG files, X11 windows, PostScript files, PNG
files and so on. igraph usually does not know on which surface it is plotting right now, since
pycairo takes care of the actual drawing. Everything that’s supported by pycairo should
be supported by this class as well.

Current Cairo surfaces that I'm aware of are:

e cairo.GlitzSurface — OpenGL accelerated surface for the X11 Window System.
e cairo.ImageSurface — memory buffer surface. Can be written to a PNG image file.
e cairo.PDFSurface - PDF document surface.

e cairo.PSSurface — PostScript document surface.

e cairo.SVGSurface — SVG (Scalable Vector Graphics) document surface.

e cairo.Win32Surface — Microsoft Windows screen rendering.

e cairo.XlibSurface — X11 Window System screen rendering.

If you create a Plot object with a string given as the target surface, the string will be treated
as a filename, and its extension will decide which surface class will be used. Please note that

313

Class Plot Package igraph.drawing

not all surfaces might be available, depending on your pycairo installation.

A Plot has an assigned default palette (see igraph.drawing.colors.Palette) which is
used for plotting objects.

A Plot object also has a list of objects to be plotted with their respective bounding boxes,
palettes and opacities. Palettes assigned to an object override the default palette of the plot.
Objects can be added by the Plot.add method and removed by the Plot.remove method.

314

Class Plot Package igraph.drawing

9.7.1 Methods

__init (self, target=None, bbox=None, palette=None, background—=None)

Creates a new plot.

Parameters
target: the target surface to write to. It can be one of the
following types:

e None — an appropriate surface will be created and
the object will be plotted there.

e cairo.Surface — the given Cairo surface will be
used.

e string — a file with the given name will be created
and an appropriate Cairo surface will be attached
to it.

bbox: the bounding box of the surface. It is interpreted
differently with different surfaces: PDF and PS
surfaces will treat it as points (1 point = 1/72 inch).
Image surfaces will treat it as pixels. SVG surfaces
will treat it as an abstract unit, but it will mostly be
interpreted as pixels when viewing the SVG file in
Firefox.

palette: the palette primarily used on the plot if the added
objects do not specify a private palette. Must be
either an igraph.drawing.colors.Palette object or
a string referring to a valid key of
igraph.drawing.colors.palettes (see module
igraph.drawing.colors) or None. In the latter case,
the default palette given by the configuration key
plotting.palette is used.

background: the background color. If None, the background will be
transparent. You can use any color specification here
that is understood by
igraph.drawing.colors.color_name_to_rgba.

Overrides: object. _ init

315

Class Plot Package igraph.drawing

add(self, obj, bbox=None, palette=None, opacity=1.0, *args, **kwds)
Adds an object to the plot.

Arguments not specified here are stored and passed to the object’s plotting
function when necessary. Since you are most likely interested in the arguments
acceptable by graphs, see Graph.__plot__ for more details.

Parameters
obj: the object to be added

bbox: the bounding box of the object. If None, the object will
fill the entire area of the plot.

palette: the color palette used for drawing the object. If the object
tries to get a color assigned to a positive integer, it will
use this palette. If None, defaults to the global palette of
the plot.

opacity: the opacity of the object being plotted, in the range
0.0-1.0

See Also: Graph. plot

remove(self, obj, bboxr—=None, idr=1)

Removes an object from the plot.

If the object has been added multiple times and no bounding box was
specified, it removes the instance which occurs idzth in the list of identical
instances of the object.

Parameters
obj: the object to be removed

bbox: optional bounding box specification for the object. If given,
only objects with exactly this bounding box will be
considered.

idx: if multiple objects match the specification given by obj and
bboz, only the idzth occurrence will be removed.

Return Value
True if the object has been removed successfully, False if the object
was not on the plot at all or ¢dz was larger than the count of
occurrences

mark dirty(self)
Marks the plot as dirty (should be redrawn)

316

Class Plot Package igraph.drawing

redraw (self, context—None)

Redraws the plot

save(self, fname=None)

Saves the plot.

Parameters
fname: the filename to save to. It is ignored if the surface of the plot
is not an ImageSurface.

show (self)

Saves the plot to a temporary file and shows it.

_repr_svg (self)

Returns an SVG representation of this plot as a string.

This method is used by IPython to display this plot inline.

Inherited from object

__delattr (), format (), getattribute (), _hash (), new (),
__reduce_ (), _reduce_ex_ (), __repr_ (), _setattr (), _sizeof _ (),
~str (), __subclasshook ()

9.7.2 Properties

Name Description

background Returns the background color of the plot. None
means a transparent background.

bounding box Returns the bounding box of the Cairo surface
as a BoundingBox object

height Returns the height of the Cairo surface on
which the plot is drawn

surface Returns the Cairo surface on which the plot is
drawn

width Returns the width of the Cairo surface on
which the plot is drawn

Inherited from object

__class

317

Class AbstractCairoDrawer Module igraph.drawing.baseclasses

10 Module igraph.drawing.baseclasses

Abstract base classes for the drawing routines.

10.1 Variables
Name Description
__package Value: ’igraph.drawing’

10.2 Class AbstractDrawer
object
igraph.drawing.baseclasses. Abstract Drawer

Known Subclasses: igraph.drawing.graph.AbstractGraphDrawer, igraph.drawing.baseclasses. AbstractC:
igraph.drawing.vertex. Abstract VertexDrawer, igraph.drawing.baseclasses. Abstract XMLRPCDrawer

Abstract class that serves as a base class for anything that draws an igraph object.

10.2.1 Methods

draw (self, *args, **kwds)

Abstract method, must be implemented in derived classes.

Inherited from object
__delattr (), format (), getattribute (), _hash (), init (),

~ mnew_ (), reduce (), reduce ex (), repr (), setattr (),
__sizeof (), __str_ (), __subclasshook ()

10.2.2 Properties

Name \ Description
Inherited from object
__class

10.3 Class AbstractCairoDrawer

object T

igraph.drawing.baseclasses. Abstract Drawer

igraph.drawing.baseclasses. AbstractCairoDrawer

Known Subclasses: igraph.drawing.graph. AbstractCairoGraphDrawer, igraph.drawing.vertex. AbstractC

318

Class AbstractCairoDrawer Module igraph.drawing.baseclasses

igraph.drawing.text. TextDrawer, igraph.drawing.shapes.PolygonDrawer, igraph.drawing.coord.Coordinate

Abstract class that serves as a base class for anything that draws on a Cairo context within

a given bounding box.

A subclass of AbstractCairoDrawer is guaranteed to have an attribute named context that
represents the Cairo context to draw on, and an attribute named bbox for the BoundingBox

of the drawing area.

10.3.1 Methods

__init (self, context, bbox)

Constructs the drawer and associates it to the given Cairo context and the
given BoundingBox.

Parameters
context: the context on which we will draw

bbox: the bounding box within which we will draw. Can be
anything accepted by the constructor of BoundingBox
(i.e., a 2-tuple, a 4-tuple or a BoundingBox object).

Overrides: object. init

draw (self, *args, **kwds)

Abstract method, must be implemented in derived classes.

Overrides: igraph.drawing.baseclasses. Abstract Drawer.draw

Inherited from object

__delattr (), format (), getattribute (), _hash (), new (),
__reduce_ (), _reduce_ex_ (), __repr__ (), __setattr_ (), __sizeof _ (),

_str (), __subclasshook ()

10.3.2 Properties

Name Description

bbox The bounding box of the drawing area where
this drawer will draw.

Inherited from object
__class

319

Class AbstractXMLRPCDrawer Module igraph.drawing.baseclasses

10.4 Class AbstractXXMLRPCDrawer
object T

igraph.drawing.baseclasses. AbstractDrawer
igraph.drawing.baseclasses. Abstract XMLRPCDraw
Known Subclasses: igraph.drawing.graph.CytoscapeGraphDrawer, igraph.drawing.graph.UbiGraphDrax
Abstract drawer that uses a remote service via XML-RPC to draw something on a remote

display.

10.4.1 Methods

__init_ (self, url, service=None)

Constructs an abstract drawer using the XML-RPC service at the given URL.

Parameters

url: the URL where the XML-RPC calls for the service should
be addressed to.

service: the name of the service at the XML-RPC address. If
None, requests will be directed to the server proxy object
constructed by xmlrpclib.ServerProxy; if not None, the
given attribute will be looked up in the server proxy
object.

Overrides: object. init

Inherited from igraph.drawing.baseclasses. AbstractDrawer(Section 10.2)
draw()
Inherited from object

__delattr (), format (), getattribute (), _hash (), new (),
~reduce (), reduce ex (), repr (), setattr (), sizeof (),
~_str__ (), __subclasshook ()
10.4.2 Properties

Name \ Description
Inherited from object
__class

320

Module igraph.drawing.colors

11 Module igraph.drawing.colors

Color handling functions.

License: Copyright (C) 2006-2012 Tamas Nepusz <ntamas@gmail.com™> Pazmany Péter
sétany 1/a, 1117 Budapest, Hungary

This program is free software; you can redistribute it and /or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY:; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301 USA

11.1 Functions

color name to_ rgb(color, palette=None)

Converts a color given in one of the supported color formats to R-G-B values.
This is done by calling color_name_to_rgba and then throwing away the
alpha value.

See Also: color name to rgba for more details about what formats are
understood by this function.

321

Functions Module igraph.drawing.colors

color name to rgba(color, palette=None)

Converts a color given in one of the supported color formats to R-G-B-A
values.

Examples:

>>> color_name_to_rgba("red")
(1.0, 0.0, 0.0, 1.0)
>>> color_name_to_rgba("#ffgo00") == (1.0, 128/255.0, 0.0, 1.0)

True

>>> color_name_to_rgba("#ffgo0080") == (1.0, 128/255.0, 0.0, 128/255.Q)
True

>>> color_name_to_rgba("#ost") == (0.0, 136/255.0, 1.0, 1.0)

True

>>> color_name_to_rgba("rgb(100%, 50%, 0%)")

(1.0, 0.5, 0.0, 1.0)

>>> color_name_to_rgba("rgba(100%, 50%, 0%, 25%)")
(1.0, 0.5, 0.0, 0.25)

>>> color_name_to_rgba("hsla(120, 100%, 50%, 0.5)")
(0.0, 1.0, 0.0, 0.5)

>>> color_name_to_rgba("hs1(60, 100%, 50%)")

(1.0, 1.0, 0.0, 1.0)

>>> color_name_to_rgba("hsv(60, 100%, 100%)")
(1.0, 1.0, 0.0, 1.0)

Parameters
color: the color to be converted in one of the following formats:

e CSS3 color specification: #rrggbb, #rgb,
#rrggbbaa, #rgba, rgb(red, green, blue),
rgba(red, green, blue, alpha), hsl(hue,
saturation, lightness), hsla(hue, saturation,
lightness, alpha), hsv(hue, saturation, value)
and hsva(hue, saturation, value, alpha) where
the components are given as hexadecimal numbers in
the first four cases and as decimals or percentages
(0%-100%) in the remaining cases. Red, green and
blue components are between 0 and 255; hue is
between 0 and 360; saturation, lightness and value is
between 0 and 100; alpha is between 0 and 1.

e Valid HTML color names, i.e. those that are
present in the HTML 4.0 specification

e Valid X11 color names, see
http://en.wikipedia.org/wiki/X11 color names

e Red-green-blue components given separately in
either a comma-, slash- or whitespace-separated string
or a list or a tuple, ifpghe range of 0-255. An alpha
value of 255 (maximal opacity) will be assumed.

¢ Red-green-blue-alpha components given
separately in either a comma-, slash- or
whitespace-separated <trine or a list or a tunle in the

http://en.wikipedia.org/wiki/X11_color_names

Functions Module igraph.drawing.colors

hsla to_ rgba(h, s, [, alpha=1.0)

Converts a color given by its HSLA coordinates (hue, saturation, lightness,
alpha) to RGBA coordinates.

Each of the HSLA coordinates must be in the range [0, 1].

hsl to rgb(h, s,)

Converts a color given by its HSL coordinates (hue, saturation, lightness) to
RGB coordinates.

Each of the HSL coordinates must be in the range [0, 1].

hsva to rgba(h, s, v, alpha=1.0)

Converts a color given by its HSVA coordinates (hue, saturation, value, alpha)
to RGB coordinates.

Each of the HSVA coordinates must be in the range [0, 1.

hsv_to rgb(h, s, v)

Converts a color given by its HSV coordinates (hue, saturation, value) to RGB
coordinates.

Each of the HSV coordinates must be in the range [0, 1].

rgba to hsla(r, g, b, alpha=1.0)

Converts a color given by its RGBA coordinates to HSLA coordinates (hue,
saturation, lightness, alpha).

Each of the RGBA coordinates must be in the range [0, 1].

rgba to hsva(r, g, b, alpha=1.0)

Converts a color given by its RGBA coordinates to HSVA coordinates (hue,
saturation, value, alpha).

Each of the RGBA coordinates must be in the range [0, 1].

rgb to_hsl(r, g, b)

Converts a color given by its RGB coordinates to HSL coordinates (hue,
saturation, lightness).

Each of the RGB coordinates must be in the range [0, 1].

323

Class Palette Module igraph.drawing.colors

rgb to_ hsv(r, g, b)

Converts a color given by its RGB coordinates to HSV coordinates (hue,
saturation, value).

Each of the RGB coordinates must be in the range [0, 1].

11.2 Variables

Name Description
known colors Value: {’alice blue’: (0.941176470588,
0.972549019608, 1.0, 1.0)...
palettes Value: {’gray’: <GradientPalette with
256 colors>, ’heat’: <Adva...

11.3 Class Palette

object
igraph.drawing.colors.Palette

Known Subclasses: igraph.drawing.colors. Advanced GradientPalette, igraph.drawing.colors.Precalculate
igraph.drawing.colors.GradientPalette, igraph.drawing.colors.RainbowPalette

Base class of color palettes.

Color palettes are mappings that assign integers from the range 0..n-1 to colors (4-tuples).
n is called the size or length of the palette. igraph comes with a number of predefined
palettes, so this class is useful for you only if you want to define your own palette. This can
be done by subclassing this class and implementing the Palette._get method as necessary.

Palettes can also be used as lists or dicts, for the __getitem__ method is overridden properly
to call Palette.get.

11.3.1 Methods

__init_ (self, n)

X. _init _ (...) initializes x; see help(type(x)) for signature

Overrides: object. init extit(inherited documentation)

clear cache(self)

Clears the result cache.

The return values of Palette.get are cached. Use this method to clear the
cache.

324

Class Palette Module igraph.drawing.colors

get(self, v)

Returns the given color from the palette.

Values are cached: if the specific value given has already been looked up, its
value will be returned from the cache instead of calculating it again. Use
Palette.clear_cache to clear the cache if necessary.

Parameters
v: the color to be retrieved. If it is an integer, it is passed to
Palette._get to be translated to an RGBA quadruplet.
Otherwise it is passed to color_name_to_rgb() to determine the
RGBA values.

Return Value
the color as an RGBA quadruplet

Note: you shouldn’t override this method in subclasses, override _get instead.
If you override this method, lookups in the known_colors dict won’t work, so
you won’t be able to refer to colors by names or RGBA quadruplets, only by
integer indices. The caching functionality will disappear as well. However, feel
free to override this method if this is exactly the behaviour you want.

get many (self, colors)

Returns multiple colors from the palette.

Values are cached: if the specific value given has already been looked upon, its
value will be returned from the cache instead of calculating it again. Use
Palette.clear_cache to clear the cache if necessary.

Parameters
colors: the list of colors to be retrieved. The palette class tries to
make an educated guess here: if it is not possible to
interpret the value you passed here as a list of colors, the
class will simply try to interpret it as a single color by
forwarding the value to Palette.get.

Return Value
the colors as a list of RGBA quadruplets. The result will be a list
even if you passed a single color index or color name.

325

Class Palette Module igraph.drawing.colors

__getitem (self, v)

Returns the given color from the palette.

Values are cached: if the specific value given has already been looked up, its
value will be returned from the cache instead of calculating it again. Use
Palette.clear_cache to clear the cache if necessary.

Parameters
v: the color to be retrieved. If it is an integer, it is passed to
Palette._get to be translated to an RGBA quadruplet.
Otherwise it is passed to color_name_to_rgb() to determine the
RGBA values.

Return Value
the color as an RGBA quadruplet

Note: you shouldn’t override this method in subclasses, override _get instead.
If you override this method, lookups in the known_colors dict won’t work, so
you won’t be able to refer to colors by names or RGBA quadruplets, only by
integer indices. The caching functionality will disappear as well. However, feel
free to override this method if this is exactly the behaviour you want.

len (self)

Returns the number of colors in this palette

__plot_ (self, contexat, bbox, palette, *args, **kwds)

Plots the colors of the palette on the given Cairo context
Supported keyword arguments are:

e border_width: line width of the border shown around the palette. If zero
or negative, the border is turned off. Default is 1.

e grid_width: line width of the grid that separates palette cells. If zero or
negative, the grid is turned off. The grid is also turned off if the size of a
cell is less than three times the given line width. Default is 0. Fractional
widths are also allowed.

e orientation: the orientation of the palette. Must be one of the following
values: left-right, bottom-top, right-left or top-bottom. Possible
aliases: horizontal = left-right, vertical = bottom-top, 1lr =
left-right, rl — right-left, tb — top-bottom, bt — bottom-top.
The default is left-right.

326

Class GradientPalette Module igraph.drawing.colors

__repr___ (self)

repr(x)
Overrides: object. repr extit(inherited documentation)

Inherited from object

__delattr (), format (), getattribute (), _hash (), new (),
__reduce_ (), _reduce_ex_ (), _setattr (), _sizeof (), __str__ (),
__subclasshook ()

11.3.2 Properties

Name Description
length Returns the number of colors in this palette
Inherited from object
__class

11.4 Class GradientPalette

object

T
igraph.drawing.colors.Palette
igraph.drawing.colors.GradientPalette

Base class for gradient palettes
Gradient palettes contain a gradient between two given colors.
Example:

>>> pal = GradientPalette('red", "blue", 5)
>>> pal.get(0)

(1.0, 0.0, 0.0, 1.0)

>>> pal.get(2)

(0.5, 0.0, 0.5, 1.0)

>>> pal.get(4)

(0.0, 0.0, 1.0, 1.0)

327

Class AdvancedGradientPalette Module igraph.drawing.colors

11.4.1 Methods

__init_ (self, colorl, color2, n—256)

Creates a gradient palette.

Parameters
colorl: the color where the gradient starts.

color2: the color where the gradient ends.
n: the number of colors in the palette.

Overrides: object. init

Inherited from igraph.drawing.colors. Palette(Section 11.3)

__getitem__ (), __len__(), __plot__(), __repr__(), clear_cache(), get(),
get many()

Inherited from object

__delattr (), format (), getattribute (), _hash (), new (),
__reduce_ (), _reduce_ex_ (), __setattr (), _sizeof (), __str__ (),
__subclasshook ()

11.4.2 Properties

Name Description
Inherited from igraph.drawing.colors. Palette (Section 11.3)
length
Inherited from object
__class

11.5 Class AdvancedGradientPalette
object T
igraph.drawing.colors.Palette
igraph.drawing.colors.Advanced GradientPalette
Advanced gradient that consists of more than two base colors.
Example:

>>> pal = AdvancedGradientPalette(["red", "black", "blue"], n=9)
>>> pal.get(2)

(0.5, 0.0, 0.0, 1.0)

>>> pal.get(7)

328

Class RainbowPalette Module igraph.drawing.colors

(0.0, 0.0, 0.75, 1.0)

11.5.1 Methods

__init _ (self, colors, indices=None, n—256)

Creates an advanced gradient palette

Parameters
colors: the colors in the gradient.

indices: the color indices belonging to the given colors. If None,
the colors are distributed equidistantly

n: the total number of colors in the palette

Overrides: object. init

Inherited from igraph.drawing.colors.Palette(Section 11.3)

~getitem (), len (), plot (), repr (), clear cache(), get(),
get many/()

Inherited from object

__delattr (), _format (), _ getattribute (), _hash (), _new_ (),
~reduce (), reduce ex (), setattr (), sizeof (), _str_ (),
__subclasshook ()

11.5.2 Properties

Name \ Description
Inherited from igraph.drawing.colors. Palette (Section 11.3)
length
Inherited from object
__class

11.6 Class RainbowPalette
object T
igraph.drawing.colors.Palette
igraph.drawing.colors.RainbowPalette
A palette that varies the hue of the colors along a scale.

Colors in a rainbow palette all have the same saturation, value and alpha components, while
the hue is varied between two given extremes linearly. This palette has the advantage that
it wraps around nicely if the hue is varied between zero and one (which is the default).

329

Class RainbowPalette Module igraph.drawing.colors

Example:

>>> pal = RainbowPalette(n=120)

>>> pal.get(0)

(1.0, 0.0, 0.0, 1.0)

>>> pal.get (20)

(1.0, 1.0, 0.0, 1.0)

>>> pal.get (40)

(0.0, 1.0, 0.0, 1.0)

>>> pal = RainbowPalette(n=120, s=1, v=0.5, alpha=0.75)
>>> pal.get(60)

(0.0, 0.5, 0.5, 0.75)

>>> pal.get(80)

(0.0, 0.0, 0.5, 0.75)

>>> pal.get (100)

(0.5, 0.0, 0.5, 0.75)

>>> pal = RainbowPalette(n=120)

>>> pal2 = RainbowPalette(n=120, start=0.5, end=0.5)
>>> pal.get(60) == pal2.get(0)

True

>>> pal.get(90) == pal2.get(30)

True

This palette was modeled after the rainbow command of R.

11.6.1 Methods

__init (self, n=256, s=1, v=1, start=0, end=1, alpha—1)

Creates a rainbow palette.

Parameters
n: the number of colors in the palette.
S: the saturation of the colors in the palette.
v the value component of the colors in the palette.

start: the hue at which the rainbow begins (between 0 and 1).
end: the hue at which the rainbow ends (between 0 and 1).
alpha: the alpha component of the colors in the palette.

Overrides: object. init

Inherited from igraph.drawing.colors. Palette(Section 11.3)

__getitem__ (), __len__(), __plot__(), __repr__(), clear_cache(), get(),
get many()

330

Class PrecalculatedPalette Module igraph.drawing.colors

Inherited from object

__delattr (), format (), getattribute (), _hash (), new (),
_ _reduce (), reduce ex (), setattr (), sizeof (), _str__ (),

__subclasshook ()

11.6.2 Properties

Name \ Description
Inherited from igraph.drawing.colors. Palette (Section 11.3)
length
Inherited from object
__class

11.7 Class PrecalculatedPalette
object T

igraph.drawing.colors.Palette
igraph.drawing.colors.Precalculated Palette
Known Subclasses: igraph.drawing.colors.ClusterColoringPalette

A palette that returns colors from a pre-calculated list of colors

11.7.1 Methods

__init (self, 1)

Creates the palette backed by the given list. The list must contain RGBA
quadruplets or color names, which will be resolved first by
color_name_to_rgba(). Anything that is understood by
color_name_to_rgba() is OK here.

Overrides: object. init

Inherited from igraph.drawing.colors.Palette(Section 11.3)

__getitem (), len (), _plot (), _repr (), clear cache(), get(),

get many/()

Inherited from object

__delattr (), format (), getattribute (), _hash (), new (),
__reduce_ (), _reduce_ex_ (), _setattr_ (), _sizeof (), __str__(),
__subclasshook ()

11.7.2 Properties

331

Class ClusterColoringPalette Module igraph.drawing.colors

Name \ Description
Inherited from igraph.drawing.colors. Palette (Section 11.3)
length
Inherited from object
__class

11.8 Class ClusterColoringPalette

object T
igraph.drawing.colors.Palette T

igraph.drawing.colors.Precalculated Palette
igraph.drawing.colors.ClusterColoringPalette
A palette suitable for coloring vertices when plotting a clustering.

This palette tries to make sure that the colors are easily distinguishable. This is achieved
by using a set of base colors and their lighter and darker variants, depending on the number
of elements in the palette.

When the desired size of the palette is less than or equal to the number of base colors
(denoted by n), only the bsae colors will be used. When the size of the palette is larger than
n but less than 2%*n, the base colors and their lighter variants will be used. Between 2%n
and 3%n, the base colors and their lighter and darker variants will be used. Above 3*n, more
darker and lighter variants will be generated, but this makes the individual colors less and
less distinguishable.

11.8.1 Methods

__init (self, n)

Creates the palette backed by the given list. The list must contain RGBA
quadruplets or color names, which will be resolved first by
color_name_to_rgba(). Anything that is understood by
color_name_to_rgba() is OK here.

Overrides: object. init extit(inherited documentation)

Inherited from igraph.drawing.colors. Palette(Section 11.3)

__getitem__ (), __len__(), __plot__(), __repr__(), clear_cache(), get(),
get many/()

Inherited from object

332

Class ClusterColoringPalette Module igraph.drawing.colors

~_delattr (), format (), getattribute (), _hash (), new (),

~reduce (), reduce ex (), setattr (), sizeof (), str (),
__subclasshook ()

11.8.2 Properties

Name \ Description
Inherited from igraph.drawing.colors. Palette (Section 11.3)
length
Inherited from object
_class

333

Class CoordinateSystem Module igraph.drawing.coord

12 Module igraph.drawing.coord

Coordinate systems and related plotting routines

License: GPL

12.1 Variables

Name Description
__package Value: ’igraph.drawing’

12.2 Class CoordinateSystem

object T
igraph.drawing.baseclasses. Abstract Drawer T

igraph.drawing.baseclasses. Abstract CairoDrawer
igraph.drawing.coord.CoordinateSystem
Known Subclasses: igraph.drawing.coord.DescartesCoordinateSystem
Class implementing a coordinate system object.

Coordinate system objects are used when drawing plots which 2D or 3D coordinate system
axes. This is an abstract class which must be extended in order to use it. In general, you’ll
only need the documentation of this class if you intend to implement an own coordinate
system not present in igraph yet.

12.2.1 Methods

__init (self, context, bbox)

Initializes the coordinate system.

Parameters
context: the context on which the coordinate system will be drawn.

bbox: the bounding box that will contain the coordinate system.

Overrides: object. init

draw (self)

Draws the coordinate system.

This method must be overridden in derived classes.

Overrides: igraph.drawing.baseclasses. Abstract Drawer.draw

334

Class DescartesCoordinateSystem Module igraph.drawing.coord

local to context(self, z, y)

Converts local coordinates to the context coordinate system (given by the
bounding box).

This method must be overridden in derived classes.

Inherited from object

__delattr (), format (), getattribute (), _hash (), new (),
__reduce (), reduce ex (), repr (), setattr (), sizeof (),

__str_ (), __subclasshook ()

12.2.2 Properties

Name \ Description
Inherited from igraph.drawing.baseclasses. AbstractCairoDrawer (Section 10.3)
bbox
Inherited from object
__class

12.3 Class DescartesCoordinateSystem
object T

igraph.drawing.baseclasses. AbstractDrawer T
igraph.drawing.baseclasses. AbstractCairoDrawer T

igraph.drawing.coord.CoordinateSystem
igraph.drawing.coord.DescartesCoordinate

Class implementing a 2D Descartes coordinate system object.

12.3.1 Methods

__init __ (self, conteat, bbox, bounds)

Initializes the coordinate system.

Parameters
context: the context on which the coordinate system will be drawn.

bbox: the bounding box that will contain the coordinate system.

bounds: minimum and maximum X and Y values in a 4-tuple.

Overrides: object. init

335

Class DescartesCoordinateSystem Module igraph.drawing.coord

draw(self)

Draws the coordinate system.

Overrides: igraph.drawing.baseclasses. AbstractDrawer.draw

local to context(self, z, y)

Converts local coordinates to the context coordinate system (given by the
bounding box).

Overrides: igraph.drawing.coord.CoordinateSystem.local to context

Inherited from object

__delattr (), format (), _ getattribute (), _hash (), new (),
_ _reduce (), reduce ex (), repr (), setattr (), sizeof (),
__str_ (), __subclasshook ()

12.3.2 Properties

Name Description
bbox Returns the bounding box of the coordinate
system
bounds Returns the lower and upper bounds of the X
and Y values

Inherited from object
__class

336

Module igraph.drawing.edge

13 Module igraph.drawing.edge

Drawers for various edge styles in graph plots.

License: GPL

13.1 Class AbstractEdgeDrawer

object
igraph.drawing.edge.AbstractEdgeDrawer

Known Subclasses: igraph.drawing.edge. ArrowEdgeDrawer, igraph.drawing.edge. AlphaVaryingEdgeDra
igraph.drawing.edge. TaperedEdgeDrawer

Abstract edge drawer object from which all concrete edge drawer implementations are de-
rived.

13.1.1 Methods

__init __ (self, context, palette)

Constructs the edge drawer.

Parameters
context: a Cairo context on which the edges will be drawn.

palette: the palette that can be used to map integer color indices
to colors when drawing edges

Overrides: object. init

draw directed edge(self, edge, src_vertex, dest_vertex)

Draws a directed edge.

Parameters
edge: the edge to be drawn. Visual properties of the edge
are defined by the attributes of this object.

src_vertex: the source vertex. Visual properties are given again
as attributes.

dest_vertex: the target vertex. Visual properties are given again
as attributes.

337

Class AbstractEdgeDrawer Module igraph.drawing.edge

draw loop edge(self, edge, vertex)

Draws a loop edge.

The default implementation draws a small circle.

Parameters
edge: the edge to be drawn. Visual properties of the edge are
defined by the attributes of this object.

vertex: the vertex to which the edge is attached. Visual properties
are given again as attributes.

draw undirected edge(self, edge, src_vertex, dest_vertex)

Draws an undirected edge.

The default implementation of this method draws undirected edges as straight
lines. Loop edges are drawn as small circles.

Parameters
edge: the edge to be drawn. Visual properties of the edge
are defined by the attributes of this object.

src_vertex: the source vertex. Visual properties are given again
as attributes.

dest_vertex: the target vertex. Visual properties are given again
as attributes.

338

Class ArrowEdgeDrawer Module igraph.drawing.edge

get label position(self, edge, src_vertex, dest_vertex)

Returns the position where the label of an edge should be drawn. The default
implementation returns the midpoint of the edge and an alignment that tries
to avoid overlapping the label with the edge.

Parameters
edge: the edge to be drawn. Visual properties of the edge
are defined by the attributes of this object.

src_vertex: the source vertex. Visual properties are given again
as attributes.

dest_vertex: the target vertex. Visual properties are given again
as attributes.

Return Value
a tuple containing two more tuples: the desired position of the label
and the desired alignment of the label, where the position is given as
(x, y) and the alignment is given as (horizontal, vertical).
Members of the alignment tuple are taken from constants in the
TextAlignment class.

Inherited from object

__delattr (), format (), _ getattribute (), _hash (), new (),
__reduce_ (), _reduce_ex_ (), __repr__ (), __setattr_ (), _sizeof _ (),
str (), __subclasshook ()

13.1.2 Properties

Name \ Description
Inherited from object
__class

13.2 Class ArrowEdgeDrawer

object T

igraph.drawing.edge. AbstractEdgeDrawer
igraph.drawing.edge.ArrowEdgeDrawer

Edge drawer implementation that draws undirected edges as straight lines and directed edges
as arrows.

339

Class TaperedEdgeDrawer Module igraph.drawing.edge

13.2.1 Methods

draw directed edge(self, edge, src_vertex, dest_wvertex)

Draws a directed edge.

Parameters
edge: the edge to be drawn. Visual properties of the edge
are defined by the attributes of this object.

src_vertex: the source vertex. Visual properties are given again
as attributes.

dest_vertex: the target vertex. Visual properties are given again
as attributes.

Overrides: igraph.drawing.edge. AbstractEdgeDrawer.draw _directed edge
extit(inherited documentation)

Inherited from igraph.drawing.edge. AbstractEdge Drawer(Section 13.1)
__init (), draw_loop edge(), draw_undirected edge(), get label position()
Inherited from object

__delattr (), format (), _ getattribute (), _hash (), new (),
~ _reduce (), reduce ex (), repr (), setattr (), sizeof (),
__str_ (), __subclasshook ()

13.2.2 Properties

Name \ Description
Inherited from object
__class

13.3 Class TaperedEdgeDrawer

object T

igraph.drawing.edge. Abstract EdgeDrawer
igraph.drawing.edge.Tapered EdgeDrawer

Edge drawer implementation that draws undirected edges as straight lines and directed edges
as tapered lines that are wider at the source and narrow at the destination.

340

Class AlphaVaryingEdgeDrawer Module igraph.drawing.edge

13.3.1 Methods

draw directed edge(self, edge, src_vertex, dest_wvertex)

Draws a directed edge.

Parameters
edge: the edge to be drawn. Visual properties of the edge
are defined by the attributes of this object.

src_vertex: the source vertex. Visual properties are given again
as attributes.

dest_vertex: the target vertex. Visual properties are given again
as attributes.

Overrides: igraph.drawing.edge. AbstractEdgeDrawer.draw _directed edge
extit(inherited documentation)

Inherited from igraph.drawing.edge. AbstractEdge Drawer(Section 13.1)
__init (), draw_loop edge(), draw_undirected edge(), get label position()
Inherited from object

__delattr (), format (), _ getattribute (), _hash (), new (),
~ _reduce (), reduce ex (), repr (), setattr (), sizeof (),
__str_ (), __subclasshook ()

13.3.2 Properties

Name \ Description
Inherited from object
__class

13.4 Class AlphaVaryingEdgeDrawer

object T
igraph.drawing.edge. Abstract EdgeDrawer
igraph.drawing.edge.AlphaVaryingEdgeDrawer
Known Subclasses: igraph.drawing.edge.DarkToLight EdgeDrawer, igraph.drawing.edge.Light ToDarkEd

Edge drawer implementation that draws undirected edges as straight lines and directed edges
by varying the alpha value of the specified edge color between the source and the destination.

341

Class AlphaVaryingEdgeDrawer Module igraph.drawing.edge

13.4.1 Methods

__init (self, context, alpha_at_src, alpha_ at_ dest)

Constructs the edge drawer.

Parameters
context: a Cairo context on which the edges will be drawn.

palette: the palette that can be used to map integer color indices
to colors when drawing edges

Overrides: object. init extit(inherited documentation)

draw directed edge(self, edge, src_vertex, dest_wvertex)

Draws a directed edge.

Parameters
edge: the edge to be drawn. Visual properties of the edge
are defined by the attributes of this object.

src_vertex: the source vertex. Visual properties are given again
as attributes.

dest_vertex: the target vertex. Visual properties are given again
as attributes.

Overrides: igraph.drawing.edge.AbstractEdgeDrawer.draw _directed edge
extit(inherited documentation)

Inherited from igraph.drawing.edge. AbstractEdge Drawer(Section 13.1)
draw loop edge(), draw undirected edge(), get label position()
Inherited from object

__delattr (), format (), getattribute (), _hash (), new (),
_ _reduce (), reduce ex (), repr (), setattr (), sizeof (),
_str__ (), __subclasshook ()

13.4.2 Properties

Name \ Description
Inherited from object
__class

342

Class LightToDarkEdgeDrawer Module igraph.drawing.edge

13.5 Class LightToDarkEdgeDrawer

object T
igraph.drawing.edge. AbstractEdgeDrawer T

igraph.drawing.edge. AlphaVaryingEdgeDrawer
igraph.drawing.edge.Light ToDarkEdgeDrawer

Edge drawer implementation that draws undirected edges as straight lines and directed edges
by using an alpha value of zero (total transparency) at the source and an alpha value of one
(full opacity) at the destination. The alpha value is interpolated in-between.

13.5.1 Methods

__init (self, context)

Constructs the edge drawer.

Parameters
context: a Cairo context on which the edges will be drawn.

palette: the palette that can be used to map integer color indices
to colors when drawing edges

Overrides: object. init extit(inherited documentation)

Inherited from igraph.drawing.edge. AlphaVaryingEdgeDrawer(Section 13.4)
draw _directed edge()

Inherited from igraph.drawing.edge. AbstractEdge Drawer(Section 13.1)
draw _loop edge(), draw undirected edge(), get label position()

Inherited from object

__delattr (), format (), getattribute (), _hash (), new (),
__reduce_ (), _reduce_ex_ (), __repr__ (), __setattr_ (), _sizeof _ (),
_str (), __subclasshook ()

13.5.2 Properties

Name \ Description
Inherited from object
_class

343

Class DarkToLightEdgeDrawer Module igraph.drawing.edge

13.6 Class DarkToLightEdgeDrawer

object T
igraph.drawing.edge. AbstractEdgeDrawer T
igraph.drawing.edge. AlphaVaryingEdgeDrawer

igraph.drawing.edge.DarkToLight EdgeDrawer

Edge drawer implementation that draws undirected edges as straight lines and directed edges
by using an alpha value of one (full opacity) at the source and an alpha value of zero (total
transparency) at the destination. The alpha value is interpolated in-between.

13.6.1 Methods

__init (self, context)

Constructs the edge drawer.

Parameters
context: a Cairo context on which the edges will be drawn.

palette: the palette that can be used to map integer color indices
to colors when drawing edges

Overrides: object. init extit(inherited documentation)

Inherited from igraph.drawing.edge. AlphaVaryingEdgeDrawer(Section 13.4)
draw _directed edge()

Inherited from igraph.drawing.edge. AbstractEdge Drawer(Section 13.1)
draw _loop edge(), draw undirected edge(), get label position()

Inherited from object

__delattr (), format (), getattribute (), _hash (), new (),
__reduce_ (), _reduce_ex_ (), __repr__ (), __setattr_ (), _sizeof _ (),
_str (), __subclasshook ()

13.6.2 Properties

Name \ Description
Inherited from object
_class

344

Module igraph.drawing.graph

14 Module igraph.drawing.graph

Drawing routines to draw graphs.
This module contains routines to draw graphs on:

e Cairo surfaces (DefaultGraphDrawer)
e UbiGraph displays (UbiGraphDrawer, see hitp://ubietylab.net/ubigraph)

It also contains routines to send an igraph graph directly to (Cytoscape”) using the (Cy-
toscapeRPC plugin®), see CytoscapeGraphDrawer. CytoscapeGraphDrawer can also fetch
the current network from Cytoscape and convert it to igraph format.

License: GPL
14.1 Class DefaultGraphDrawer
object T
igraph.drawing.baseclasses. Abstract Drawer T
igraph.drawing.graph.AbstractGraphDrawer —
object T

igraph.drawing.baseclasses. Abstract Drawer T

igraph.drawing.baseclasses. AbstractCairoDrawer T

igraph.drawing.graph.AbstractCairoGraphDrawer
igraph.drawing.graph.Default GraphDrawe
Class implementing the default visualisation of a graph.

The default visualisation of a graph draws the nodes on a 2D plane according to a given
Layout, then draws a straight or curved edge between nodes connected by edges. This is
the visualisation used when one invokes the plot () function on a Graph object.

See Graph.__plot__() for the keyword arguments understood by this drawer.

"http://www.cytoscape.org
8http://gforge.nbic.nl/projects/cytoscaperpc/

345

http://ubietylab.net/ubigraph
http://www.cytoscape.org
http://gforge.nbic.nl/projects/cytoscaperpc/

Class DefaultGraphDrawer Module igraph.drawing.graph

14.1.1 Methods

__init (self, context, bbox, vertex_ drawer_ factory=<class
’igraph.drawing.vertex.DefaultVertexDrawer’>,

edge drawer _factory=<class ’igraph.drawing.edge.ArrowEdgeDrawer’>,
label drawer factory—<class ’igraph.drawing.text.TextDrawer’>)

Constructs the graph drawer and associates it to the given Cairo context and
the given BoundingBox.

Parameters
context: the context on which we will draw
bbox: the bounding box within which we will

draw. Can be anything accepted by the
constructor of BoundingBox (i.e., a
2-tuple, a 4-tuple or a BoundingBox
object).

vertex_drawer_factory: a factory method that returns an
AbstractCairoVertexDrawer instance
bound to a given Cairo context. The
factory method must take three
parameters: the Cairo context, the
bounding box of the drawing area and
the palette to be used for drawing colored
vertices. The default vertex drawer is
DefaultVertexDrawer.

edge_drawer_factory: a factory method that returns an
AbstractEdgeDrawer instance bound to
a given Cairo context. The factory
method must take two parameters: the
Cairo context and the palette to be used
for drawing colored edges. You can use
any of the actual AbstractEdgeDrawer
implementations here to control the style
of edges drawn by igraph. The default
edge drawer is ArrowEdgeDrawer.

label_drawer_factory: a factory method that returns a
TextDrawer instance bound to a given
Cairo context. The method must take
one parameter: the Cairo context. The
default label drawer is TextDrawer.

Overrides: object. _ init

346

Class UbiGraphDrawer Module igraph.drawing.graph

draw (self, graph, palette, *args, **kwds)

Abstract method, must be implemented in derived classes.

Overrides: igraph.drawing.baseclasses. AbstractDrawer.draw extit(inherited
documentation)

Inherited from igraph.drawing.graph. AbstractGraphDrawer
ensure layout()
Inherited from object

__delattr (), format (), getattribute (), _hash (), new (),
_reduce (), reduce_ex (), _repr (), _setattr (), sizeof (),
str (), _ subclasshook ()

14.1.2 Properties

Name \ Description
Inherited from igraph.drawing.baseclasses. AbstractCairoDrawer (Section 10.3)
bbox
Inherited from object
__class

14.2 Class UbiGraphDrawer

object T

igraph.drawing.baseclasses. AbstractDrawer T
igraph.drawing.baseclasses. Abstract XMLRPCDrawer —,
object T

igraph.drawing.baseclasses. AbstractDrawer T

igraph.drawing.graph. AbstractGraphDrawer T
igraph.drawing.graph.UbiGraphDrawer

Graph drawer that draws a given graph on an UbiGraph display using the XML-RPC API
of UbiGraph.

The following vertex attributes are supported: color, label, shape, size. See the Ubigraph
documentation for supported shape names. Sizes are relative to the default Ubigraph size.

The following edge attributes are supported: color, label, width. Edge widths are relative

347

Class UbiGraphDrawer Module igraph.drawing.graph

to the default Ubigraph width.

All color specifications supported by igraph (e.g., color names, palette indices, RGB triplets,
RGBA quadruplets, HTML format) are understood by the Ubigraph graph drawer.

The drawer also has two attributes, vertex_defaults and edge_defaults. These are dic-
tionaries that can be used to set default values for the vertex/edge attributes in Ubigraph.

14.2.1 Methods

__init _ (self, url="http://localhost:20738/RPC2’)

Constructs an UbiGraph drawer using the display at the given URL.

Parameters

url: the URL where the XML-RPC calls for the service should
be addressed to.

service: the name of the service at the XML-RPC address. If
None, requests will be directed to the server proxy object
constructed by xmlrpclib.ServerProxy; if not None, the
given attribute will be looked up in the server proxy
object.

Overrides: object. _ init

draw (self, graph, *args, **kwds)

Draws the given graph on an UbiGraph display.

Parameters
clear: whether to clear the current UbiGraph display before
plotting. Default: True.

Overrides: igraph.drawing.baseclasses. Abstract Drawer.draw

Inherited from igraph.drawing.graph.AbstractGraphDrawer
ensure layout()
Inherited from object

__delattr (), format (), _ getattribute (), _hash (), new (),
~ _reduce (), reduce ex (), _repr_ (), setattr (), sizeof (),

str (), __subclasshook ()

14.2.2 Properties

Name \ Description
Inherited from object
__class

348

Class CytoscapeGraphDrawer Module igraph.drawing.graph

14.3 Class CytoscapeGraphDrawer

object T

igraph.drawing.baseclasses. Abstract Drawer T
igraph.drawing.baseclasses. Abstract XMLRPCDrawer —
object T

igraph.drawing.baseclasses. Abstract Drawer T

igraph.drawing.graph. AbstractGraphDrawer

igraph.drawing.graph.CytoscapeGraphDra
Graph drawer that sends/receives graphs to/from Cytoscape using CytoscapeRPC.

This graph drawer cooperates with Cytoscape® using CytoscapeRPC!¥. You need to install
the CytoscapeRPC plugin first and start the XML-RPC server on a given port (port 9000
by default) from the appropriate Plugins submenu in Cytoscape.

Graph, vertex and edge attributes are transferred to Cytoscape whenever possible (i.e. when
a suitable mapping exists between a Python type and a Cytoscape type). If there is no
suitable Cytoscape type for a Python type, the drawer will use a string attribute on the
Cytoscape side and invoke str() on the Python attributes.

If an attribute to be created on the Cytoscape side already exists with a different type, an
underscore will be appended to the attribute name to resolve the type conflict.

You can use the network_id attribute of this class to figure out the network ID of the last
graph drawn with this drawer.

Yhttp://www.cytoscape.org
Ohttp:/ /wiki.nbic.nl/index.php/CytoscapeRPC

349

http://www.cytoscape.org
http://wiki.nbic.nl/index.php/CytoscapeRPC

Class CytoscapeGraphDrawer Module igraph.drawing.graph

14.3.1 Methods

__init (self, url="http://localhost:9000/Cytoscape’)

Constructs a Cytoscape graph drawer using the XML-RPC interface of
Cytoscape at the given URL.

Parameters
url: the URL where the XML-RPC calls for the service should
be addressed to.

service: the name of the service at the XML-RPC address. If
None, requests will be directed to the server proxy object
constructed by xmlrpclib.ServerProxy; if not None, the
given attribute will be looked up in the server proxy
object.

Overrides: object. init

draw(self, graph, name=>Network from igraph’, create_view—=True, *arys,

M kwds)

Sends the given graph to Cytoscape as a new network.

Parameters
name: the name of the network in Cytoscape.

create_view: whether to create a view for the network in
Cytoscape.The default is True.

node_ids: specifies the identifiers of the nodes to be used in
Cytoscape. This must either be the name of a vertex
attribute or a list specifying the identifiers, one for
each node in the graph. The default is None, which
simply uses the vertex index for each vertex.

Overrides: igraph.drawing.baseclasses. AbstractDrawer.draw

350

Class CytoscapeGraphDrawer Module igraph.drawing.graph

fetch(self, name—=None, directed—False, keep canonical_names—False)

Fetches the network with the given name from Cytoscape.

When fetching networks from Cytoscape, the canonicalName attributes of
vertices and edges are not converted by default. Use the
keep_canonical_names parameter to retrieve these attributes as well.

Parameters
name: the name of the network in Cytoscape.
directed: whether the network is directed.

keep_canonical_names: whether to keep the canonicalName
vertex/edge attributes that are added
automatically by Cytoscape

Return Value
an appropriately constructed igraph Graph.

infer cytoscape type(values)

Returns a Cytoscape type that can be used to represent all the values in
‘values' and an appropriately converted copy of ‘values‘ that is suitable for an
XML-RPC call. Note that the string type in Cytoscape is used as a catch-all
type; if no other type fits, attribute values will be converted to string and then
posted to Cytoscape.

“None* entries are allowed in ‘values‘, they will be ignored on the Cytoscape
side.

Inherited from igraph.drawing.graph. AbstractGraphDrawer
ensure layout|()
Inherited from object

~_delattr (), format (), getattribute (), _hash (), new (),
~_reduce (), reduce ex (), repr (), setattr (), sizeof (),
_ str_ (), __subclasshook ()

14.3.2 Properties

Name \ Description
Inherited from object
__class

351

Module igraph.drawing.metamagic

15 Module igraph.drawing.metamagic

Auxiliary classes for the default graph drawer in igraph.

This module contains heavy metaclass magic. If you don’t understand the logic behind these
classes, probably you don’t need them either.

igraph’s default graph drawer uses various data sources to determine the visual appearance
of vertices and edges. These data sources are the following (in order of precedence):

e The keyword arguments passed to the igraph.plot () function (or to igraph.Graph.__plot__()
as a matter of fact, since igraph.plot () just passes these attributes on). For instance,
a keyword argument named vertex_label can be used to set the labels of vertices.

e The attributes of the vertices/edges being drawn. For instance, a vertex that has a
label attribute will use that label when drawn by the default graph drawer.

e The global configuration of igraph. For instance, if the global igraph.config.Configuration
instance has a key called plotting.vertex_color, that will be used as a default color
for the vertices.

e If all else fails, there is a built-in default; for instance, the default vertex color is "red".
This is hard-wired in the source code.

The logic above can be useful in other graph drawers as well, not only in the default one,
therefore it is refactored into the classes found in this module. Different graph draw-
ers may inspect different vertex or edge attributes, hence the classes that collect the at-
tributes from the various data sources are generated in run-time using a metaclass called
AttributeCollectorMeta. You don’t have to use AttributeCollectorMeta directly, just
implement a subclass of AttributeCollectorBase and it will ensure that the appropriate
metaclass is used. With AttributeCollectorBase, you can use a simple declarative syntax
to specify which attributes you are interested in. For example:

class VisualEdgeBuilder (AttributeCollectorBase):
arrow_size = 1.0
arrow_width = 1.0
color = ("black", palette.get)
width = 1.0

for edge in VisualEdgeBuilder (graph.es):
print edge.color

The above class is a visual edge builder — a class that gives the visual attributes of the
edges of a graph that is specified at construction time. It specifies that the attributes we are
interested in are arrow_size, arrow_width, color and width; the default values are also
given. For color, we also specify that a method called {palette.get} should be called on
every attribute value to translate color names to RGB values. For the other three attributes,
float will implicitly be called on all attribute values, this is inferred from the type of the
default value itself.

352

Class AttributeSpecification Module igraph.drawing.metamagic

See Also: AttributeCollectorMeta, AttributeCollectorBase

15.1 Class AttributeSpecification

object
igraph.drawing.metamagic.AttributeSpecification
Class that describes how the value of a given attribute should be retrieved.
The class contains the following members:

e name: the name of the attribute. This is also used when we are trying to get its value
from a vertex/edge attribute of a graph.

e alt_name: alternative name of the attribute. This is used when we are trying to
get its value from a Python dict or an igraph.Configuration object. If omitted at
construction time, it will be equal to name.

e default: the default value of the attribute when none of the sources we try can provide
a meaningful value.

e transform: optional transformation to be performed on the attribute value. If None or
omitted, it defaults to the type of the default value.

e func: when given, this function will be called with an index in order to derive the value
of the attribute.

15.1.1 Methods

__init (self, name, default=None, alt_name=None, transform=None,
func=None)

X. _init_ (...) initializes x; see help(type(x)) for signature

Overrides: object. init extit(inherited documentation)

Inherited from object

__delattr (), format (), getattribute (), _hash (), new (),
_reduce (), reduce_ex (), _repr_ (), _setattr (), sizeof (),
str (), __subclasshook ()

15.1.2 Properties
Name Description

acCessor
alt name
default
func
name

continued on next page

353

Class AttributeCollectorBase Module igraph.drawing.metamagic

Name Description

transform
Inherited from object
__class

15.2 Class AttributeCollectorBase
object
igraph.drawing.metamagic.AttributeCollectorBase

Base class for attribute collector subclasses. Classes that inherit this class may use a
declarative syntax to specify which vertex or edge attributes they intend to collect. See
AttributeCollectorMeta for the details.

15.2.1 Methods

__init (self, seq, kwds=None)

Constructs a new attribute collector that uses the given vertex/edge sequence
and the given dict as data sources.

Parameters
seq: an igraph.VertexSeq or igraph.EdgeSeq class that will be
used as a data source for attributes.

kwds: a Python dict that will be used to override the attributes
collected from seq if necessary.

Overrides: object. init

__getitem (self, index)

Returns the collected attributes of the vertex/edge with the given index.

len (self)

Inherited from object

__delattr (), format (), getattribute (), _hash (), new (),
~ _reduce (), reduce ex (), repr (), setattr (), sizeof (),
~ str__ (), _subclasshook ()
15.2.2 Properties

Name \ Description
Inherited from object
__class

354

Module igraph.drawing.shapes

16 Module igraph.drawing.shapes

Shape drawing classes for igraph

Vertex shapes in igraph are usually referred to by short names like "rect" or "circle". This
module contains the classes that implement the actual drawing routines for these shapes, and
a resolver class that determines the appropriate shape drawer class given the short name.

Classes that are derived from ShapeDrawer in this module are automatically registered by
ShapeDrawerDirectory. If you implement a custom shape drawer, you must register it in
ShapeDrawerDirectory manually if you wish to refer to it by a name in the shape attribute
of vertices.

License: Copyright (C) 2006-2012 Taméas Nepusz <ntamas@gmail.com™> Pazmany Péter
sétany 1/a, 1117 Budapest, Hungary

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301 USA

16.1 Class ShapeDrawerDirectory

object
igraph.drawing.shapes.ShapeDrawerDirectory
Static class that resolves shape names to their corresponding shape drawer classes.

Classes that are derived from ShapeDrawer in this module are automatically registered by
ShapeDrawerDirectory when the module is loaded for the first time.

16.1.1 Methods

register(cls, drawer class)

Registers the given shape drawer class under the given names.

Parameters
drawer_class: the shape drawer class to be registered

355

Class ShapeDrawerDirectory Module igraph.drawing.shapes

register namespace(cls, namespace)

Registers all ShapeDrawer classes in the given namespace

Parameters
namespace: a Python dict mapping names to Python objects.

resolve(cls, shape)

Given a shape name, returns the corresponding shape drawer class

Parameters
shape: the name of the shape

Return Value
the corresponding shape drawer class

Raises
ValueError if the shape is unknown

resolve default(cls, shape, default=<class
’igraph.drawing.shapes.NullDrawer’>)

Given a shape name, returns the corresponding shape drawer class or the
given default shape drawer if the shape name is unknown.

Parameters
shape: the name of the shape

default: the default shape drawer to return when the shape is
unknown

Return Value
the shape drawer class corresponding to the given name or the
default shape drawer class if the name is unknown

Inherited from object

__delattr (), format (), getattribute (), _hash (), init (),
~ mnew_ (), reduce (), reduce ex (), repr (), setattr (),
~sizeof (), __str (), subclasshook ()

16.1.2 Properties

Name \ Description
Inherited from object
_class

16.1.3 Class Variables

356

Class ShapeDrawerDirectory Module igraph.drawing.shapes

Name Description
known shapes Value: {’’: <class
’igraph.drawing.shapes.NullDrawer’>,
Jarrow’: ...

357

Class TextDrawer Module igraph.drawing.text

17 Module igraph.drawing.text

Drawers for labels on plots.

@undocumented: test License: GPL

17.1 Class TextAlignment

object
igraph.drawing.text.Text Alignment

Text alignment constants.

17.1.1 Methods
Inherited from object
__delattr (), format (), getattribute (), _hash (), init (),

~ mnew_ (), reduce (), reduce ex (), repr (), setattr (),
_sizeof (), __str_ (), __subclasshook ()

17.1.2 Properties

Name \ Description
Inherited from object
_class

17.1.3 Class Variables

Name Description
BOTTOM Value: ’bottom’
CENTER Value: ’center’
LEFT Value: ’left’
RIGHT Value: ’right’
TOP Value: ’top’

17.2 Class TextDrawer
object T
igraph.drawing.baseclasses. AbstractDrawer T

igraph.drawing.baseclasses. AbstractCairoDrawer

igraph.drawing.text.Text Drawer

358

Class TextDrawer Module igraph.drawing.text

Class that draws text on a Cairo context.

This class supports multi-line text unlike the original Cairo text drawing methods.

17.2.1 Methods

__init _ (self, context, text="", halign="center’, valign—"’center’)

Constructs a new instance that will draw the given text on the given Cairo
context. Parameters
context: the context on which we will draw

bbox: the bounding box within which we will draw. Can be
anything accepted by the constructor of BoundingBox
(i.e., a 2-tuple, a 4-tuple or a BoundingBox object).

Overrides: object. init

draw(self, wrap=False)

Draws the text in the current bounding box of the drawer.

Since the class itself is an instance of AbstractCairoDrawer, it has an
attribute named bbox which will be used as a bounding box. Parameters
wrap: whether to allow re-wrapping of the text if it does not fit
within the bounding box horizontally. (type=boolean)

Overrides: igraph.drawing.baseclasses. Abstract Drawer.draw

359

Class TextDrawer Module igraph.drawing.text

get text layout(self, z=None, y=None, width=None, wrap—=False)

Calculates the layout of the current text. x and y denote the coordinates
where the drawing should start. If they are both None, the current position of
the context will be used.

Vertical alignment settings are not taken into account in this method as the
text is not drawn within a box. Parameters
X: The X coordinate of the reference point where the layout
should start. (type=float or None)

y: The Y coordinate of the reference point where the layout
should start. (type=float or None)

width: The width of the box in which the text will be fitted. It
matters only when the text is right-aligned or centered. The
text will overflow the box if any of the lines is longer than
the box width and wrap is False. (type=float or None)

wrap: whether to allow re-wrapping of the text if it does not fit
within the given width. (type=boolean)

Return Value
a list consisting of (x, y, line) tuples where x and y refer to
reference points on the Cairo canvas and line refers to the
corresponding text that should be plotted there.

360

Class TextDrawer

Module igraph.drawing.text

draw _at(self, z=None, y=None, width=None, wrap—False)

Draws the text by setting up an appropriate path on the Cairo context and
filling it. x and y denote the coordinates where the drawing should start. If
they are both None, the current position of the context will be used.

Vertical alignment settings are not taken into account in this method as the
text is not drawn within a box. Parameters
X: The X coordinate of the reference point where the drawing
should start. (type=float or None)

y: The Y coordinate of the reference point where the drawing
should start. (type=float or None)

width: The width of the box in which the text will be fitted. It
matters only when the text is right-aligned or centered. The
text will overflow the box if any of the lines is longer than
the box width. (type=float or None)

wrap: whether to allow re-wrapping of the text if it does not fit
within the given width. (type=boolean)

text extents(self)

the text.

Returns the X-bearing, Y-bearing, width, height, X-advance and Y-advance of

For multi-line text, the X-bearing and Y-bearing correspond to the first line,
while the X-advance is extracted from the last line. and the Y-advance is the
sum of all the Y-advances. The width and height correspond to the entire
bounding box of the text.

Inherited from object

_delattr (), format (), _ getattribute (),

~ _hash (), new (),

_ _reduce (), reduce ex (), repr (), setattr (), sizeof (),
__str_ (), __subclasshook ()

17.2.2 Properties

Name

Description

text

Returns the text to be drawn.

bbox

Inherited from igraph.drawing.baseclasses. AbstractCairoDrawer (Section 10.3)

Inherited from object

361

continued on next page

Class TextDrawer

Module igraph.drawing.text

Name Description
__class
17.2.3 Class Variables
Name Description
BOTTOM Value: ’bottom’
CENTER Value: ’center’
LEFT Value: ’left’
RIGHT Value: ’right’
TOP Value: ’top’

362

Module igraph.drawing.utils

18 Module igraph.drawing.utils
Utility classes for drawing routines.

License: GPL

18.1 Class Rectangle

object
igraph.drawing.utils.Rectangle

Known Subclasses: igraph.drawing.utils.BoundingBox

Class representing a rectangle.

18.1.1 Methods

__init (self, *args)

Creates a rectangle.

The corners of the rectangle can be specified by either a tuple (four items, two
for each corner, respectively), four separate numbers (X and Y coordinates for
each corner) or two separate numbers (width and height, the upper left corner
is assumed to be at (0,0))

Overrides: object. init

contract(self, margins)

Contracts the rectangle by the given margins.

Return Value
a new Rectangle object.

expand (self, margins)

Expands the rectangle by the given margins.

Return Value
a new Rectangle object.

363

Class Rectangle

Module igraph.drawing.utils

isdisjoint(self, other)

Returns “True” if the two rectangles have no intersection.

Example:
>>> rl = Rectangle(10, 10, 30, 30)
>>> r2 = Rectangle(20, 20, 50, 50)
>>> r3 = Rectangle(70, 70, 90, 90)
>>> rl.isdisjoint (r2)
False
>>> r2.isdisjoint(rl)
False
>>> rl.isdisjoint(r3)
True
>>> r3.isdisjoint (r1)
True
isempty (self)

>>>
>>>

Example:

ri
r2

>>> ri.
False
>>> r2.
False
>>> rl.
True

Returns “True® if the rectangle is empty (i.e. it has zero width and height).

Rectangle(10, 10, 30, 30)
Rectangle(70, 70, 90, 90)
isempty ()

isempty ()

intersection(r2) .isempty()

364

Class Rectangle

Module igraph.drawing.utils

intersection(self, other)

Returns the intersection of this rectangle with another.

Example:
>>> rl = Rectangle(10, 10, 30, 30)
>>> r2 = Rectangle(20, 20, 50, 50)
>>> r3 = Rectangle(70, 70, 90, 90)

>>> ril.intersection(r2)

Rectangle(20.0, 20.0, 30.0, 30.0)

>>> r2 & ril

Rectangle(20.0, 20.0, 30.0, 30.0)

>>> r2.intersection(rl) == rl.intersection(r2)
True

>>> ril.intersection(r3)

Rectangle(0.0, 0.0, 0.0, 0.0)

and _ (self, other)

Returns the intersection of this rectangle with another.

Example:
>>> r1 = Rectangle(10, 10, 30, 30)
>>> r2 = Rectangle(20, 20, 50, 50)
>>> r3 = Rectangle(70, 70, 90, 90)

>>> ril.intersection(r2)

Rectangle(20.0, 20.0, 30.0, 30.0)

>>> r2 & ril

Rectangle(20.0, 20.0, 30.0, 30.0)

>>> r2.intersection(rl) == rl.intersection(r2)
True

>>> ril.intersection(r3)

Rectangle(0.0, 0.0, 0.0, 0.0)

365

Class Rectangle Module igraph.drawing.utils

translate(self, dz, dy)

Translates the rectangle in-place.
Example:

>>> r = Rectangle(10, 20, 50, 70)
>>> r.translate(30, -10)

>>> T

Rectangle(40.0, 10.0, 80.0, 60.0)

Parameters
dx: the X coordinate of the translation vector

dy: the Y coordinate of the translation vector

union(self, other)

Returns the union of this rectangle with another.

The resulting rectangle is the smallest rectangle that contains both rectangles.

Example:
>>> rl = Rectangle(10, 10, 30, 30)
>>> r2 = Rectangle(20, 20, 50, 50)
>>> r3 = Rectangle(70, 70, 90, 90)

>>> rl.union(r2)

Rectangle(10.0, 10.0, 50.0, 50.0)
>>> 12 | rl

Rectangle(10.0, 10.0, 50.0, 50.0)
>>> r2.union(rl) == ril.union(r2)
True

>>> ri1.union(r3)

Rectangle(10.0, 10.0, 90.0, 90.0)

366

Class Rectangle Module igraph.drawing.utils

_or___ (self, other)

Returns the union of this rectangle with another.

The resulting rectangle is the smallest rectangle that contains both rectangles.

Example:
>>> rl = Rectangle(10, 10, 30, 30)
>>> r2 = Rectangle(20, 20, 50, 50)
>>> r3 = Rectangle(70, 70, 90, 90)

>>> ri.union(r2)

Rectangle(10.0, 10.0, 50.0, 50.0)
>>> 12 | rl

Rectangle(10.0, 10.0, 50.0, 50.0)
>>> r2.union(rl) == rl.union(r2)
True

>>> ril.union(r3)

Rectangle(10.0, 10.0, 90.0, 90.0)

ior (self, other)

Expands this rectangle to include itself and another completely while still
being as small as possible.

Example:

>>> r1 = Rectangle(10, 10, 30, 30)

>>> r2 = Rectangle(20, 20, 50, 50)
>>> r3 = Rectangle(70, 70, 90, 90)
>>> rl |= r2

>>> ril

Rectangle(10.0, 10.0, 50.0, 50.0)
>>> rl |= r3

>>> ril

Rectangle(10.0, 10.0, 90.0, 90.0)

__repr__ (self)

repr(x)
Overrides: object. repr extit(inherited documentation)

eq__ (self, other)

ne (self, other)

367

Class BoundingBox

Module igraph.drawing.utils

__bool (self)

__nonzero___ (self)

__hash (self)
hash(x)

Overrides: object. hash extit(inherited documentation)

Inherited from object

__delattr (),

__reduce_ex_ (),

18.1.2 Properties

~ format (), getattribute (), new (),
__setattr (),

__sizeof (), _str_ (),

Name Description
coords The coordinates of the corners.
The coordinates are returned as a 4-tuple in the
following order: left edge, top edge, right edge,
bottom edge.
width The width of the rectangle
height The height of the rectangle
left The X coordinate of the left side of the box
right The X coordinate of the right side of the box
top The Y coordinate of the top edge of the box
bottom The Y coordinate of the bottom edge of the box
midx The X coordinate of the center of the box
midy The Y coordinate of the center of the box
shape The shape of the rectangle (width, height)
Inherited from object
__class

18.2 Class BoundingBox

object T

igraph.drawing.utils.Rectangle

igraph.drawing.utils.BoundingBox

Class representing a bounding box (a rectangular area) that encloses some objects.

368

~_reduce (),

__subclasshook ()

Class BoundingBox Module igraph.drawing.utils

18.2.1 Methods

ior (self, other)

Replaces this bounding box with the union of itself and another.
Example:

>>> boxl = BoundingBox (10, 20, 50, 60)
>>> box2 = BoundingBox (70, 40, 100, 90)
>>> boxl |= box2

>>> print(box1)

BoundingBox(10.0, 20.0, 100.0, 90.0)

Overrides: igraph.drawing.utils.Rectangle. ior

_or___ (self, other)

Takes the union of this bounding box with another.
The result is a bounding box which encloses both bounding boxes.

Example:

>>> boxl = BoundingBox (10, 20, 50, 60)
>>> box2 = BoundingBox (70, 40, 100, 90)
>>> boxl | box2

BoundingBox(10.0, 20.0, 100.0, 90.0)

Overrides: igraph.drawing.utils.Rectangle. or

Inherited from igraph.drawing.utils. Rectangle(Section 18.1)

_and__(), __bool__(), __eq__(), __hash (), __init__(), __mne__ (),
~ _mnonzero__ (), _ repr (), contract(), expand(), intersection(), isdisjoint(),
isempty(), translate(), union()

Inherited from object

__delattr (), format (), getattribute (), new (), reduce (),
~reduce_ex (), setattr (), sizeof (), str_ (), subclasshook ()

18.2.2 Properties

Name \ Description
Inherited from igraph.drawing.utils. Rectangle (Section 18.1)
bottom, coords, height, left, midx, midy, right, shape, top, width
Inherited from object
__class

369

Class Point Module igraph.drawing.utils

18.3 Class FakeModule

object
igraph.drawing.utils.FakeModule

Fake module that raises an exception for everything

18.3.1 Methods

__getattr (self,)

__call (self,)

__setattr _ (self, key, value)

X. _setattr ('name’, value) <==> x.name = value

Overrides: object. setattr extit(inherited documentation)

Inherited from object

_delattr (), format (), getattribute (), _hash (), init (),
~ mnew_ (), reduce (), reduce ex (), repr (), sizeof (),
__str_ (), __subclasshook ()

18.3.2 Properties

Name \ Description
Inherited from object
__class

18.4 Class Point
object T

tuple
igraph.drawing.utils.Point

Class representing a point on the 2D plane.

370

Class Point Module igraph.drawing.utils

18.4.1 Methods

new (cls, z, y)

Creates a new point with the given coordinates

Return Value
a new object with type S, a subtype of T

Overrides: object. new

__repr___ (self)

Returns a nicely formatted representation of the point

Overrides: object. repr

__getnewargs (self)

Return self as a plain tuple. Used by copy and pickle.

Overrides: tuple. getnewargs

add (self, other)

Adds the coordinates of a point to another one

Overrides: tuple. add

sub_ (self, other)

Subtracts the coordinates of a point to another one

mul (self, scalar)

Multiplies the coordinates by a scalar

Overrides: tuple. mul

__rmul_ (self, scalar)

Multiplies the coordinates by a scalar

Overrides: tuple. rmul

div_ (self, scalar)

Divides the coordinates by a scalar

371

Class Point Module igraph.drawing.utils

as_ polar(self)

Returns the polar coordinate representation of the point.

Return Value
the radius and the angle in a tuple.

distance(self, other)

Returns the distance of the point from another one.
Example:

>>> pl = Point(5, 7)
>>> p2 = Point(8, 3)
>>> pl.distance(p2)
5.0

interpolate(self, other, ratio=0.5)

Linearly interpolates between the coordinates of this point and another one.

Parameters
other: the other point

ratio: the interpolation ratio between 0 and 1. Zero will return this
point, 1 will return the other point.

length(self)

Returns the length of the vector pointing from the origin to this point.

normalized (self)

Normalizes the coordinates of the point s.t. its length will be 1 after
normalization. Returns the normalized point.

sq_ length(self)

Returns the squared length of the vector pointing from the origin to this point.

towards(self, other, distance=0)

Returns the point that is at a given distance from this point towards another
one.

372

Class Point Module igraph.drawing.utils

FromPolar(cls, radius, angle)

Constructs a point from polar coordinates.

‘radius’ is the distance of the point from the origin; ‘angle‘ is the angle
between the X axis and the vector pointing to the point from the origin.

Inherited from tuple

~ _contains (), _eq (), _ge (), _getattribute (), getitem (),
~getslice (), gt (), _hash (), iter (), le (), _len (),
It (), __mne (), count(), index()

Inherited from object

~delattr (), format (), init (), reduce (), reduce ex (),
__setattr__ (), __sizeof __ (), __str__(), __subclasshook _ ()

18.4.2 Properties

Name Description
X Alias for field number 0
Alias for field number 1

y
Inherited from object
__class

373

Module igraph.drawing.vertex

19 Module igraph.drawing.vertex

Drawing routines to draw the vertices of graphs.

This module provides implementations of vertex drawers, i.e. drawers that the default graph
drawer will use to draw vertices.

License: GPL

19.1 Class AbstractVertexDrawer
object T

igraph.drawing.baseclasses. AbstractDrawer
igraph.drawing.vertex.Abstract VertexDrawer
Known Subclasses: igraph.drawing.vertex. AbstractCairoVertexDrawer

Abstract vertex drawer object from which all concrete vertex drawer implementations are
derived.

19.1.1 Methods

__init_ (self, palette, layout)

Constructs the vertex drawer and associates it to the given palette.

Parameters
palette: the palette that can be used to map integer color indices
to colors when drawing vertices

layout: the layout of the vertices in the graph being drawn

Overrides: object. init

374

Class AbstractCairoVertexDrawer Module igraph.drawing.vertex

draw (self, visual vertex, vertex, coords)

Draws the given vertex.

Parameters
visual_vertex: object specifying the visual properties of the
vertex. Its structure is defined by the
VisualVertexBuilder of the DefaultGraphDrawer;
see its source code.

vertex: the raw igraph vertex being drawn

coords: the X and Y coordinates of the vertex as specified
by the layout algorithm, scaled into the bounding
box.

Overrides: igraph.drawing.baseclasses. Abstract Drawer.draw

Inherited from object

__delattr (), format (), getattribute (), _hash (), new (),
__reduce_ (), _reduce_ex_ (), __repr__ (), __setattr_ (), _sizeof _ (),
_str (), __subclasshook ()

19.1.2 Properties

Name \ Description
Inherited from object
__class

19.2 Class AbstractCairoVertexDrawer

object T

igraph.drawing.baseclasses. Abstract Drawer T
igraph.drawing.vertex. Abstract VertexDrawer —

object T

igraph.drawing.baseclasses. Abstract Drawer T

igraph.drawing.baseclasses. AbstractCairoDrawer

igraph.drawing.vertex.AbstractCairoVertexDr:
Known Subclasses: igraph.drawing.vertex.Default VertexDrawer

Abstract base class for vertex drawers that draw on a Cairo canvas.

375

Class AbstractCairoVertexDrawer Module igraph.drawing.vertex

19.2.1 Methods

__init (self, context, bbox, palette, layout)

Constructs the vertex drawer and associates it to the given Cairo context and
the given BoundingBox.

Parameters
context: the context on which we will draw

bbox: the bounding box within which we will draw. Can be
anything accepted by the constructor of BoundingBox
(i.e., a 2-tuple, a 4-tuple or a BoundingBox object).

palette: the palette that can be used to map integer color indices
to colors when drawing vertices

layout: the layout of the vertices in the graph being drawn

Overrides: object. init

Inherited from igraph.drawing.vertex. Abstract VertexDrawer(Section 19.1)
draw()

Inherited from object
~_delattr (), format (), getattribute (), _hash (), new (),

~ reduce (), reduce ex (), repr (), setattr (), __sizeof___(),
str (), __subclasshook ()

19.2.2 Properties

Name \ Description
Inherited from igraph.drawing.baseclasses. AbstractCairoDrawer (Section 10.3)
bbox
Inherited from object
__class

376

Class DefaultVertexDrawer Module igraph.drawing.vertex

19.3 Class DefaultVertexDrawer

object T

igraph.drawing.baseclasses. AbstractDrawer T
igraph.drawing.vertex. Abstract VertexDrawer —

object T

igraph.drawing.baseclasses. Abstract Drawer T

igraph.drawing.baseclasses. AbstractCairoDrawer T

igraph.drawing.vertex. AbstractCairoVertexDrawer
igraph.drawing.vertex.Default VertexDrawe

The default vertex drawer implementation of igraph.

19.3.1 Methods

__init (self, context, bbox, palette, layout)
Constructs the vertex drawer and associates it to the given Cairo context and
the given BoundingBox.

Parameters
context: the context on which we will draw

bbox: the bounding box within which we will draw. Can be
anything accepted by the constructor of BoundingBox
(i.e., a 2-tuple, a 4-tuple or a BoundingBox object).

palette: the palette that can be used to map integer color indices
to colors when drawing vertices

layout: the layout of the vertices in the graph being drawn

Overrides: object. init extit(inherited documentation)

377

Class DefaultVertexDrawer Module igraph.drawing.vertex

draw (self, visual vertex, vertex, coords)

Draws the given vertex.

Parameters
visual_vertex: object specifying the visual properties of the
vertex. Its structure is defined by the
VisualVertexBuilder of the DefaultGraphDrawer;
see its source code.

vertex: the raw igraph vertex being drawn

coords: the X and Y coordinates of the vertex as specified
by the layout algorithm, scaled into the bounding
box.

Overrides: igraph.drawing.baseclasses. AbstractDrawer.draw extit(inherited
documentation)

Inherited from object

__delattr (), format (), getattribute (), _hash (), new (),
reduce (), _reduce ex (), _repr_ (), _setattr (), sizeof (),
~ _str__ (), __subclasshook ()

19.3.2 Properties

Name \ Description
Inherited from igraph.drawing.baseclasses. AbstractCairoDrawer (Section 10.3)
bbox
Inherited from object
_class

378

Class Layout Module igraph.layout

20 Module igraph.layout

Layout-related code in the IGraph library.
This package contains the implementation of the Layout object.

License: Copyright (C) 2006-2012 Tamas Nepusz <ntamas@gmail.com> Pazmény Péter
sétany 1/a, 1117 Budapest, Hungary

This program is free software; you can redistribute it and /or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301 USA

20.1 Variables
Name Description
__package Value: ’igraph’

20.2 Class Layout

object
igraph.layout.Layout
Represents the layout of a graph.

A layout is practically a list of coordinates in an n-dimensional space. This class is generic
in the sense that it can store coordinates in any n-dimensional space.

Layout objects are not associated directly with a graph. This is deliberate: there were times
when I worked with almost identical copies of the same graph, the only difference was that
they had different colors assigned to the vertices. It was particularly convenient for me to
use the same layout for all of them, especially when I made figures for a paper. However,
igraph will of course refuse to draw a graph with a layout that has less coordinates than
the node count of the graph.

Layouts behave exactly like lists when they are accessed using the item index operator
([...]). They can even be iterated through. Items returned by the index operator are only
copies of the coordinates, but the stored coordinates can be modified by directly assigning
to an index.

379

Class Layout Module igraph.layout

>>> layout = Layout([(0, 1), (0, 2)1)
>>> coords = layout[1]

>>> print coords

[0, 2]

>>> coords = (0, 3)

>>> print layout [1]

[0, 2]

>>> layout [1] = coords

>>> print layout [1]

[0, 3]

20.2.1 Methods

__init _ (self, coords=None, dim—=None)

Counstructor.

Parameters
coords: the coordinates to be stored in the layout.

dim: the number of dimensions. If None, the number of
dimensions is determined automatically from the length of
the first item of the coordinate list. If there are no entries
in the coordinate list, the default will be 2. Generally, this
should be given if the length of the coordinate list is zero,
otherwise it should be left as is.

Overrides: object. init

len (self)

__getitem (self, idr)

_setitem (self, idz, value)

_delitem (self, idz)

__copy___ (self)

__repr___ (self)

repr(x)
Overrides: object. repr extit(inherited documentation)

380

Class Layout Module igraph.layout

append(self, value)

Appends a new point to the layout

mirror(self, dim)

Mirrors the layout along the given dimension(s)

Parameters
dim: the list of dimensions or a single dimension

rotate(self, angle, dim1=0, dim2=1, **kwds)

Rotates the layout by the given degrees on the plane defined by the given two
dimensions.

Parameters
angle: the angle of the rotation, specified in degrees.

diml: the first axis of the plane of the rotation.
dim2: the second axis of the plane of the rotation.

origin: the origin of the rotation. If not specified, the origin will be
the origin of the coordinate system.

scale(self, *args, **kwds)

Scales the layout.

Scaling parameters can be provided either through the scale keyword
argument or through plain unnamed arguments. If a single integer or float is
given, it is interpreted as a uniform multiplier to be applied on all dimensions.
If it is a list or tuple, its length must be equal to the number of dimensions in
the layout, and each element must be an integer or float describing the scaling
coefficient in one of the dimensions.

Parameters
scale: scaling coefficients (integer, float, list or tuple)

origin: the origin of scaling (this point will stay in place).
Optional, defaults to the origin of the coordinate system
being used.

381

Class Layout Module igraph.layout

translate(self, *args, **kwds)

Translates the layout.

The translation vector can be provided either through the v keyword argument
or through plain unnamed arguments. If unnamed arguments are used, the
vector can be supplied as a single list (or tuple) or just as a series of
arguments. In all cases, the translation vector must have the same number of
dimensions as the layout.

Parameters
v: the translation vector

to radial(self, min_ angle=100, maz_ angle=80, min_ radius=0.0,
maz_radius=1.0)

Converts a planar layout to a radial one

This method applies only to 2D layouts. The X coordinate of the layout is
transformed to an angle, with min(x) corresponding to the parameter called
min_ angle and max(y) corresponding to maz_angle. Angles are given in
degrees, zero degree corresponds to the direction pointing upwards. The Y
coordinate is interpreted as a radius, with min(y) belonging to the minimum
and max(y) to the maximum radius given in the arguments.

This is not a fully generic polar coordinate transformation, but it is fairly
useful in creating radial tree layouts from ordinary top-down ones (that’s why
the Y coordinate belongs to the radius). It can also be used in conjunction
with the Fruchterman-Reingold layout algorithm via its miny and mazxy
parameters (see Graph.layout_fruchterman_reingold) to produce radial
layouts where the radius belongs to some property of the vertices.

Parameters
min_angle: the angle corresponding to the minimum X value

max_angle: the angle corresponding to the maximum X value

min_radius: the radius corresponding to the minimum Y value

max_radius: the radius corresponding to the maximum Y value

382

Class Layout Module igraph.layout

transform(self, function, *args, **kwds)

Performs an arbitrary transformation on the layout

Additional positional and keyword arguments are passed intact to the given
function.

Parameters
function: a function which receives the coordinates as a tuple and
returns the transformed tuple.

centroid(self)

Returns the centroid of the layout.

The centroid of the layout is the arithmetic mean of the points in the layout.

Return Value
the centroid as a list of floats

boundaries(self, border=0)

Returns the boundaries of the layout.

The boundaries are the minimum and maximum coordinates along all
dimensions.

Parameters
border: this value gets subtracted from the minimum bounds and
gets added to the maximum bounds before returning the
coordinates of the box. Defaults to zero.

Return Value
the minimum and maximum coordinates along all dimensions, in a
tuple containing two lists, one for the minimum coordinates, the
other one for the maximum.

Raises
ValueError if the layout contains no layout items

383

Class Layout Module igraph.layout

bounding box(self, border=0)

Returns the bounding box of the layout.

The bounding box of the layout is the smallest box enclosing all the points in
the layout.

Parameters
border: this value gets subtracted from the minimum bounds and
gets added to the maximum bounds before returning the
coordinates of the box. Defaults to zero.

Return Value
the coordinates of the lower left and the upper right corner of the
box. "Lower left" means the minimum coordinates and "upper
right" means the maximum. These are encapsulated in a
BoundingBox object.

center(self, *args, **kwds)

Centers the layout around the given point.

The point itself can be supplied as multiple unnamed arguments, as a simple
unnamed list or as a keyword argument. This operation moves the centroid of
the layout to the given point. If no point is supplied, defaults to the origin of
the coordinate system.

Parameters
p: the point where the centroid of the layout will be after the
operation.

copy (self)

Creates an exact copy of the layout.

384

Class Layout

Module igraph.layout

fit _into(self, bbox, keep_ aspect_ ratio=True)

Fits the layout into the given bounding box.

The layout will be modified in-place.

Parameters
bbox:

keep_aspect_ratio: whether to keep the aspect ratio of the

the bounding box in which to fit the layout. If
the dimension of the layout is d, it can either
be a d-tuple (defining the sizes of the box), a
2d-tuple (defining the coordinates of the top
left and the bottom right point of the box), or
a BoundingBox object (for 2D layouts only).

current layout. If False, the layout will be
rescaled to fit exactly into the bounding box.
If True, the original aspect ratio of the layout
will be kept and it will be centered within the
bounding box.

Inherited from object

_delattr (),
~_reduce (),

__format_ (), __ getattribute_ (), __hash__ (), __new_ (),

_ _reduce_ex_ _ (), __setattr__ (), __sizeof (), __str__(),

__subclasshook ()

20.2.2 Properties

Name Description
dim Returns the number of dimensions
coords The coordinates as a list of lists

Inherited from object
__class

385

Class Matching Module igraph.matching

21 Module igraph.matching

Classes representing matchings on graphs.

License: Copyright (C) 2006-2012 Tamas Nepusz <ntamas@gmail.com™> Pazmany Péter
sétany 1/a, 1117 Budapest, Hungary

This program is free software; you can redistribute it and /or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY:; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301 USA

21.1 Variables
Name Description
__package Value: ’igraph’

21.2 Class Matching

object
igraph.matching.Matching
A matching of vertices in a graph.

A matching of an undirected graph is a set of edges such that each vertex is incident on
at most one matched edge. When each vertex is incident on ezactly one matched edge, the
matching called perfect. This class is used in igraph to represent non-perfect and perfect
matchings in undirected graphs.

This class is usually not instantiated directly, everything is taken care of by the functions
that return matchings.

Examples:

>>> from igraph import Graph
>>> g = Graph.Fa.mO'llS("noperfectmatching")
>>> matching = g.maximum_matching()

386

Class Matching Module igraph.matching

21.2.1 Methods

__init_ (self, graph, matching, types=None)

Initializes the matching.

Parameters
graph: the graph the matching belongs to

matching: a numeric vector where element ¢ corresponds to vertex i
of the graph. Element ¢ is -1 or if the corresponding
vertex is unmatched, otherwise it contains the index of
the vertex to which vertex 7 is matched.

types: the types of the vertices if the graph is bipartite. It must
either be the name of a vertex attribute (which will be
retrieved for all vertices) or a list. Elements in the list
will be converted to boolean values True or False, and
this will determine which part of the bipartite graph a
given vertex belongs to.

Raises
ValueError if the matching vector supplied does not describe a
valid matching of the graph.

Overrides: object. init

len (self)

__repr__ (self)

repr(x)
Overrides: object. repr extit(inherited documentation)

str (self)

str(x)

Overrides: object. str_ extit(inherited documentation)

edges(self)

Returns an edge sequence that contains the edges in the matching.

If there are multiple edges between a pair of matched vertices, only one of
them will be returned.

387

Class Matching Module igraph.matching

is_maximal(self)

Returns whether the matching is maximal.

A matching is maximal when it is not possible to extend it any more with
extra edges; in other words, unmatched vertices in the graph must be adjacent
to matched vertices only.

is_matched(self, vertex)

Returns whether the given vertex is matched to another one.

match _of (self, vertex)

Returns the vertex a given vertex is matched to.

Parameters
vertex: the vertex we are interested in; either an integer index or
an instance of Vertex.

Return Value
the index of the vertex matched to the given vertex, either as an
integer index (if verter was integer) or as an instance of Vertex.
When the vertex is unmatched, returns None.

Inherited from object

__delattr (), format (), getattribute (), _hash (), new (),
~reduce (), reduce ex (), setattr (), sizeof (), subclasshook ()

21.2.2 Properties

Name Description
graph Returns the graph corresponding to the
matching.
matching Returns the matching vector where element i
contains the ID of the vertex that vertex i is
matched to.

The matching vector will contain -1 for
unmatched vertices.

types Returns the type vector if the graph is bipartite.
Element ¢ of the type vector will be False or
True depending on which side of the bipartite
graph vertex ¢ belongs to.

For non-bipartite graphs, this property returns
None.

Inherited from object
__class

388

Module igraph.operators

22 Module igraph.operators

Implementation of union, disjoint union and intersection operators. License: Copyright (C)
2006-2012 Taméas Nepusz <ntamas@gmail.com > Pazmany Péter sétany 1/a, 1117 Budapest,
Hungary

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301 USA

22.1 Functions

disjoint union(graphs)

Graph disjoint union.
The disjoint union of two or more graphs is created.

This function keeps the attributes of all graphs. All graph, vertex and edge
attributes are copied to the result. If an attribute is present in multiple graphs
and would result a name clash, then this attribute is renamed by adding
suffixes: 1, 2, etc.

An error is generated if some input graphs are directed and others are
undirected.

@param graph: list of graphs. A lazy sequence is not acceptable. @return: the
disjoint union graph

389

Functions Module igraph.operators

union(graphs, byname=’auto’)

Graph union.

The union of two or more graphs is created. The graphs may have idpentical
or overlapping vertex sets. Edges which are included in at least ope graph
will be part of the new graph.

This function keeps the attributes of all graphs. All graph, vertex and
edge attributes are copied to the result. If an attribute is presept in
multiple graphs and would result a name clash, then this attribute| is

renamed by adding suffixes: _1, _2, etc.

The ’name’ vertex attribute is treated specially if the operation fis
performed based on symbolic vertex names. In this case ’name’ must| be
present in all graphs, and it is not renamed in the result graph.

An error is generated if some input graphs are directed and others|are
undirected.

Oparam graph: list of graphs. A lazy sequence is not acceptable.
Oparam byname: bool or ’auto’ specifying the function behaviour with
respect to names vertices (i.e. vertices with the ’name’ attribute). If
False, ignore vertex names. If True, merge vertices based on namps. If
’auto’, use True if all graphs have named vertices and False othprwise
(in the latter case, a warning is generated too).
Oreturn: the union graph

390

Functions

Module igraph.operators

intersection(graphs, byname="’auto’, keep all_vertices=True)

Graph intersection.

The intersection of two or more graphs is created. The graphs may
identical or overlapping vertex sets. Edges which are included in
graphs will be part of the new graph.

This function keeps the attributes of all graphs. All graph, verte
edge attributes are copied to the result. If an attribute is prese
multiple graphs and would result a name clash, then this attribute
renamed by adding suffixes: _1, _2, etc.

The ’name’ vertex attribute is treated specially if the operation
performed based on symbolic vertex names. In this case ’name’ must
present in all graphs, and it is not renamed in the result graph.

An error is generated if some input graphs are directed and others
undirected.

Oparam graph: list of graphs. A lazy sequence is not acceptable.

Oparam byname: bool or ’auto’ specifying the function behaviour wi
respect to names vertices (i.e. vertices with the ’name’ attribu
False, ignore vertex names. If True, merge vertices based on nam
’auto’, use True if all graphs have named vertices and False oth
(in the latter case, a warning is generated too).

Qkeep_all_vertices: bool specifying if vertices that are not prese
graphs should be kept in the intersection.

@return: the intersection graph

have
all

X and
nt in
is

be

are

th
te).
oS .

If
If
erwise

nt in all

391

Variables

Package igraph.remote

23 Package igraph.remote

Classes that help igraph communicate with remote applications.

23.1 Modules

e gephi: Classes that help igraph communicate with Gephi (http://www.gephi.org).

(Section 24, p. 387)

23.2 Variables

Name

Description

__package

Value: None

392

http://www.gephi.org

Module igraph.remote.gephi

24 Module igraph.remote.gephi

Classes that help igraph communicate with Gephi (http://www.gephi.org). License:
Copyright (C) 2006-2012 Tamés Nepusz <ntamas@gmail.com™> Pazmany Péter sétany 1/a,
1117 Budapest, Hungary

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301 USA

24.1 Class GephiConnection

object T
igraph.remote.gephi.GephiConnection

Object that represents a connection to a Gephi master server.

24.1.1 Methods

__init (self, url=None, host=2127.0.0.1°, port=8080, workspace=1)

Constructs a connection to a Gephi master server.

The connection object can be constructed either by specifying the url directly,
or by specifying the host, port and workspace arguments. The latter three
are evaluated only if url is None; otherwise the url will take precedence.

The url argument does not have to include the operation (e.g.,
7operation=updateGraph); the connection will take care of it. E.g., if you
wish to connect to workspace 2 in a local Gephi instance on port 7341, the
correct form to use for the url is as follows:

http://localhost:7341/workspace0

Overrides: object. init

del (self)

393

http://www.gephi.org

Class GephiGraphStreamingAPIFormat Module igraph.remote.gephi

close(self)

Flushes all the pending operations to the Gephi master server in a single
request.

flush(self)

Flushes all the pending operations to the Gephi master server in a single
request.

write(self, data)

Sends the given raw data to the Gephi streaming master server in an HTTP
POST request.

__repr___ (self)

repr(x)

Overrides: object. repr extit(inherited documentation)

Inherited from object

__delattr (), format (), getattribute (), _hash (), new (),
__reduce (), reduce ex_ (), _setattr (), sizeof (), _str__ (),
__subclasshook ()

24.1.2 Properties

Name Description
url The URL of the Gephi workspace where the
data will be sent.

Inherited from object
__class

24.2 Class GephiGraphStreaming A PIFormat

object T
igraph.remote.gephi.GephiGraphStreaming A PIFormat
Object that implements the Gephi graph streaming API format and returns Python objects

394

Class GephiGraphStreamingAPIFormat Module igraph.remote.gephi

corresponding to the events defined in the API.

24.2.1 Methods

get add node event(self, identifier, attributes={})

Generates a Python object corresponding to the event that adds a node with
the given identifier and attributes in the Gephi graph streaming API.

Example:

>>> api = GephiGraphStreamingAPIFormat ()

>>> api.get_add_node_event ("spam")

{’an’: {’spam’: {}}}

>>> api.get_add_node_event("spam", dict(ham="eggs"))
{’an’: {’spam’: {’ham’: ’eggs’}}}

get add edge event(self, identifier, source, target, directed, attributes—{})

Generates a Python object corresponding to the event that adds an edge with
the given source, target, directednessr and attributes in the Gephi graph
streaming API.

get change node event(self, identifier, attributes)

Generates a Python object corresponding to the event that changes the
attributes of some node in the Gephi graph streaming API. The given
attributes are merged into the existing ones; use C{None} as the attribute
value to delete a given attribute.

Example:

>>> api = GephiGraphStreamingAPIFormat ()

>>> api.get_change_node_event("spam", dict(ham="eggs"))
{’cn’: {’spam’: {’ham’: ’eggs’}}}

>>> api.get_change_node_event ("spam", dict(ham=None))
{’cn’: {’spam’: {’ham’: None}}}

395

Class GephiGraphStreamingAPIFormat Module igraph.remote.gephi

get change edge event(self, identifier, attributes)

Generates a Python object corresponding to the event that changes the
attributes of some edge in the Gephi graph streaming API. The given
attributes are merged into the existing ones; use C{None} as the attribute
value to delete a given attribute.

Example:

>>> api = GephiGraphStreamingAPIFormat ()

>>> api.get_change_edge_event ("spam", dict(ham="eggs"))
{’ce’: {’spam’: {’ham’: ’eggs’}}}

>>> api.get_change_edge_event("spam", dict(ham=None))
{’ce’: {’spam’: {’ham’: Nonel}}}

get delete node event(self, identifier)

Generates a Python object corresponding to the event that deletes a node
with the given identifier in the Gephi graph streaming API.

Example:

>>> api = GephiGraphStreamingAPIFormat ()
>>> api.get_delete_node_event ("spam")

{’dn’: {’spam’: {}}}

get delete edge event(self, identifier)

Generates a Python object corresponding to the event that deletes an edge
with the given identifier in the Gephi graph streaming API.

Example:

>>> api = GephiGraphStreamingAPIFormat ()
>>> api.get_delete_edge_event ("spam:ham")
{’de’: {’spam:ham’: {}}}

Inherited from object

_delattr (), format (), getattribute (), _hash (), init (),
~ mnew_ (), reduce (), reduce ex (), repr (), setattr (),
__sizeof (), __str__(), __subclasshook ()

396

Class GephiGraphStreamer Module igraph.remote.gephi

24.2.2 Properties

Name Description
Inherited from object
_class

24.3 Class GephiGraphStreamer

object T
igraph.remote.gephi.GephiGraphStreamer

Class that produces JSON event objects that stream an igraph graph to Gephi using the
Gephi Graph Streaming API.

The Gephi graph streaming format is a simple JSON-based format that can be used to post
mutations to a graph (i.e. node and edge additions, removals and updates) to a remote
component. For instance, one can open up Gephi (http://www.gephi.org}), install the
Gephi graph streaming plugin and then send a graph from igraph straight into the Gephi
window by using GephiGraphStreamer with the appropriate URL where Gephi is listening.

Example:

>>> from cStringI0 import StringIO

>>> from igraph import Graph

>>> buf = StringI0()

>>> streamer = GephiGraphStreamer ()

>>> graph = Graph.Formula("A --> B, B --> C")
>>> streamer.post(graph, buf)

>>> print buf.getvalue() # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
{"an": {"igraph:...:v:0": {"name": "A"}}}
{"an": {"igraph:...:v:1": {"name": "B"}}}
{"an": {"igraph:...:v:2": {"name": "C"}}}

<BLANKLINE>

397

http://www.gephi.org

Class GephiGraphStreamer Module igraph.remote.gephi

24.3.1 Methods

__init _ (self, encoder=None)

Constructs a Gephi graph streamer that will post graphs to a given file-like
object or a Gephi connection.

encoder must either be None or an instance of json.JSONEncoder and it must
contain the JSON encoder to be used when posting JSON objects. Overrides:
object. init

iterjsonobj(self, graph)

Iterates over the JSON objects that build up the graph using the Gephi graph
streaming API. The objects returned from this function are Python objects;
they must be formatted with json.dumps before sending them to the
destination.

post(self, graph, destination, encoder—None)

Posts the given graph to the destination of the streamer using the given JSON
encoder. When encoder is None, it falls back to the default JSON encoder of
the streamer in the encoder property.

destination must be a file-like object or an instance of GephiConnection.

send _event(self, event, destination, encoder—=None, flush=True)

Sends a single JSON event to the given destination using the given JSON
encoder. When encoder is None, it falls back to the default JSON encoder of
the streamer in the encoder property.

destination must be a file-like object or an instance of GephiConnection.

The method flushes the destination after sending the event. If you want to
avoid this (e.g., because you are sending many events), set flush to False.

Inherited from object

~_delattr (), format (), getattribute (), hash (), new (),
_ _reduce_ (), _reduce_ex_ (), __repr_ (), _setattr_ (), _sizeof _ (),

398

Class GephiGraphStreamer Module igraph.remote.gephi

__str_ (), __subclasshook ()

24.3.2 Properties

Name \ Description
Inherited from object
__class

399

Module igraph.statistics

25 Module igraph.statistics

Statistics related stuff in igraph

License: Copyright (C) 2006-2012 Tamas Nepusz <ntamas@gmail.com> Pazmany Péter
sétany 1/a, 1117 Budapest, Hungary

This program is free software; you can redistribute it and /or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY:; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301 USA

25.1 Functions

mean(zs)

Returns the mean of an iterable.
Example:

>>> mean([1, 4, 7, 11])

5.75

Parameters
xs: an iterable yielding numbers.

Return Value
the mean of the numbers provided by the iterable.

See Also: RunningMean() if you also need the variance or the standard
deviation

400

Functions Module igraph.statistics

median(zs, sort=True)

Returns the median of an unsorted or sorted numeric vector.

Parameters
Xs: the vector itself.

sort: whether to sort the vector. If you know that the vector is
sorted already, pass False here.

Return Value
the median, which will always be a float, even if the vector contained
integers originally.

percentile(zs, p=(25, 50, 75), sort=True)

Returns the pth percentile of an unsorted or sorted numeric vector.

This is equivalent to calling quantile(xs, p/100.0); see quantile for more
details on the calculation.

Example:

>>> round (percentile([15, 20, 40, 35, 50], 40), 2)

26.0

>>> for perc in percentile([15, 20, 40, 35, 50], (0, 25, 50, 75, 100)):
print "%.2f" % perc

15.00

17.50
35.00
45.00
50.00
Parameters
xs: the vector itself.
p: the percentile we are looking for. It may also be a list if you

want to calculate multiple quantiles with a single call. The
default value calculates the 25th, 50th and 75th percentile.

sort: whether to sort the vector. If you know that the vector is
sorted already, pass False here.

Return Value
the pth percentile, which will always be a float, even if the vector
contained integers originally. If p is a list, the result will also be a
list containing the percentiles for each item in the list.

401

Functions Module igraph.statistics

power law fit(data, zmin—=None, method=’auto’,
return_ alpha_ only—=False)

Fitting a power-law distribution to empirical data

Parameters
data: the data to fit, a list containing integer values
xmin: the lower bound for fitting the power-law. If None, the

optimal xmin value will be estimated as well. Zero means
that the smallest possible xmin value will be used.

method: the fitting method to use. The following methods are
implemented so far:

e continuous, hill: exact maximum likelihood
estimation when the input data comes from a
continuous scale. This is known as the Hill estimator.
The statistical error of this estimator is (alpha-1) /
sqrt(n), where alpha is the estimated exponent and n is
the number of data points above zmin. The estimator is
known to exhibit a small finite sample-size bias of order
O(n"-1), which is small when n > 100. igraph will try
to compensate for the finite sample size if n is small.

e discrete: exact maximum likelihood estimation when
the input comes from a discrete scale (see Clauset et al
among the references).

e auto: exact maximum likelihood estimation where the
continuous method is used if the input vector contains
at least one fractional value and the discrete method is
used if the input vector contains integers only.

Return Value
a FittedPowerLaw object. The fitted xmin value and the power-law
exponent can be queried from the xmin and alpha properties of the
returned object.

Reference:

e MEJ Newman: Power laws, Pareto distributions and Zipf’s law.
Contemporary Physics 46, 323-351 (2005)

e A Clauset, CR Shalizi, MEJ Newman: Power-law distributions
in empirical data. E-print (2007). arXiv:0706.1062

402

Class FittedPowerLaw

quantile(zs, ¢=(0.25, 0.5, 0.75), sort=True)

Module igraph.statistics

Returns the qth quantile of an unsorted or sorted numeric vector.

There are a number of different ways to calculate the sample quantile. The
method implemented by igraph is the one recommended by NIST. First we
calculate a rank n as q(N-+1), where N is the number of items in xs, then we
split n into its integer component k and decimal component d. If k <= 1, we
return the first element; if k >= N, we return the last element, otherwise we

return the linear interpolation between xs|k-1| and xs[k| using a factor d.
Example:

>>> round (quantile([15, 20, 40, 35, 50], 0.4), 2)

26.0
Parameters
xs: the vector itself.
q: the quantile we are looking for. It may also be a list if you

want to calculate multiple quantiles with a single call. The
default value calculates the 25th, 50th and 75th percentile.

sort: whether to sort the vector. If you know that the vector is
sorted already, pass False here.

Return Value
the qth quantile, which will always be a float, even if the vector
contained integers originally. If q is a list, the result will also be a
list containing the quantiles for each item in the list.

25.2 Class FittedPowerLaw
object

igraph.statistics.FittedPowerLaw
Result of fitting a power-law to a vector of samples
Example:

>>> result = power_law_fit([1, 2, 3, 4, 5, 6])

>>> result # doctest:+ELLIPSIS
FittedPowerLaw(continuous=False, alpha=2.425828..., xmin=3.0, L=-7.54633..., D=0.2138...
>>> print result # doctest:+ELLIPSIS

Fitted power-law distribution on discrete data

<BLANKLINE>

Exponent (alpha) = 2.425828

Cutoff (xmin) = 3.000000

403

, p=0.99311...)

Class FittedPowerLaw Module igraph.statistics

<BLANKLINE>

Log-1likelihood = -7.546337

<BLANKLINE>

HO: data was drawn from the fitted distribution
<BLANKLINE>

KS test statistic = 0.213817

0.993111

p-value
<BLANKLINE>
HO could not be rejected at significance level 0.05

>>> result.alpha # doctest:+ELLIPSIS
2.425828. ..

>>> result.xmin

3.0

>>> result.continuous

False

25.2.1 Methods

__init _ (self, continuous, alpha, xmin, L, D, p)

X. _init (...) initializes x; see help(type(x)) for signature

Overrides: object. init extit(inherited documentation)

__repr___ (self)

repr(x)
Overrides: object. repr extit(inherited documentation)

__str (self)
str(x)
Overrides: object. str extit(inherited documentation)

summary (self, significance=0.05)

Returns the summary of the power law fit.

Parameters
significance: the significance level of the Kolmogorov-Smirnov
test used to decide whether the input data could
have come from the fitted distribution

Return Value
the summary as a string

404

Class Histogram

Module igraph.statistics

Inherited from object

_delattr (), format (), getattribute (), hash
__reduce_ (), _reduce_ex (), _setattr (), _sizeof

25.2.2 Properties

_ 0y __mew__(),

(), __subclasshook ()

Name \ Description

Inherited from object
__class

25.3 Class Histogram

object
igraph.statistics.Histogram

Generic histogram class for real numbers

Example:
>>> h = Histogram(5) # Initializing, bin width = 5
>>>h << [2,3,2,7,8,5,5,0,7,9] # Adding more items

>>> print h

N = 10, mean +- sd: 4.8000 +- 2.9740
[0, B): xxxx (4)

[5, 10): xxxxxx (6)

25.3.1 Methods

__init (self, bin_ width—1, data—None)

Initializes the histogram with the given data set.

Parameters
bin_width: the bin width of the histogram.

Overrides: object. _init

data: the data set to be used. Must contain real numbers.

add(self, num, repeat=1)

Adds a single number to the histogram.

Parameters
num: the number to be added

repeat: number of repeated additions

405

Class Histogram Module igraph.statistics

add many (self, data)

Adds a single number or the elements of an iterable to the histogram.

Parameters
data: the data to be added

__Ishift (self, data)

Adds a single number or the elements of an iterable to the histogram.

Parameters
data: the data to be added

clear(self)
Clears the collected data

bins(self)

Generator returning the bins of the histogram in increasing order

Return Value
a tuple with the following elements: left bound, right bound, number
of elements in the bin

__plot_ (self, conteat, bbox, _, **kwds)

Plotting support

to_ string(self, mar_ width=78, show_ bars=True, show_ counts=True)

Returns the string representation of the histogram.

Parameters
max_width: the maximal width of each line of the string This
value may not be obeyed if it is too small.
show_bars: specify whether the histogram bars should be shown

show_counts: specify whether the histogram counts should be
shown. If both show bars and show_ counts are
False, only a general descriptive statistics (number
of elements, mean and standard deviation) is shown.

str (self)

str(x)

Overrides: object. str_ extit(inherited documentation)

406

Class RunningMean Module igraph.statistics

Inherited from object

__delattr (), format (), getattribute (), _hash (), new (),
_reduce (), reduce ex (), _repr (), setattr (), sizeof (),

__subclasshook ()

25.3.2 Properties

Name Description

n Returns the number of elements in the
histogram

mean Returns the mean of the elements in the
histogram

sd Returns the standard deviation of the elements
in the histogram

var Returns the variance of the elements in the
histogram

Inherited from object

__class

25.4 Class RunningMean

object
igraph.statistics. RunningMean
Running mean calculator.

This class can be used to calculate the mean of elements from a list, tuple, iterable or any
other data source. The mean is calculated on the fly without explicitly summing the values,
so it can be used for data sets with arbitrary item count. Also capable of returning the
standard deviation (also calculated on the fly)

407

Class RunningMean Module igraph.statistics

25.4.1 Methods

__init (items=None, n=0.0, mean=0.0, sd=0.0)

Initializes the running mean calculator.

There are two possible ways to initialize the calculator. First, one can provide
an iterable of items; alternatively, one can specify the number of items, the
mean and the standard deviation if we want to continue an interrupted
calculation.

Parameters
items: the items that are used to initialize the running mean
calcuator. If items is given, n, mean and sd must be zeros.

n: the initial number of elements already processed. If this is
given, items must be None.

mean: the initial mean. If this is given, items must be None.

sd: the initial standard deviation. If this is given, items must
be None.
Overrides: object. init

add(RunningMean, value, repeat=1)

Adds the given value to the elements from which we calculate the mean and
the standard deviation.

Parameters
value: the element to be added

repeat: number of repeated additions

add many(RunningMean, values)

Adds the values in the given iterable to the elements from which we calculate
the mean. Can also accept a single number. The left shift (<<) operator is
aliased to this function, so you can use it to add elements as well:

>>> rm=RunningMean ()

>>> rm << [1,2,3,4]

>>> rm.result # doctest:+ELLIPSIS
(2.5, 1.290994...)

Parameters
values: the element(s) to be added

(type=iterable)

408

Class RunningMean Module igraph.statistics

clear(self)

Resets the running mean calculator.

__repr___ (self)

repr(x)

Overrides: object. repr extit(inherited documentation)

__str_ (self)
str(x)
Overrides: object. str extit(inherited documentation)

__Ishift (RunningMean, values)

Adds the values in the given iterable to the elements from which we calculate
the mean. Can also accept a single number. The left shift (<<) operator is
aliased to this function, so you can use it to add elements as well:

>>> rm=RunningMean ()

>>> rm << [1,2,3,4]

>>> rm.result # doctest:+ELLIPSIS
(2.5, 1.290994...)

Parameters
values: the element(s) to be added

(type=iterable)

__float (self)

int (self)

__long (self)

__complex (self)

len (self)

Inherited from object

__delattr (), format (), getattribute (), _hash (), new (),
_reduce (), reduce ex (), setattr (), sizeof (), subclasshook ()

409

Class RunningMean Module igraph.statistics

25.4.2 Properties

Name Description
result Returns the current mean and standard
deviation as a tuple
mean Returns the current mean
sd Returns the current standard deviation
var Returns the current variation
Inherited from object
__class

410

b

Module igraph.summary

26 Module igraph.summary’

Summary representation of a graph.

License: Copyright (C) 2006-2012 Tamas Nepusz <ntamas@gmail.com™> Pazmany Péter
sétany 1/a, 1117 Budapest, Hungary

This program is free software; you can redistribute it and /or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY:; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301 USA

26.1 Class GraphSummary

object T

igraph.summary’.GraphSummary
Summary representation of a graph.

The summary representation includes a header line and the list of edges. The header line
consists of IGRAPH, followed by a four-character long code, the number of vertices, the number
of edges, two dashes (-) and the name of the graph (i.e. the contents of the name attribute,
if any). For instance, a header line may look like this:

IGRAPH U--- 4 5 --

The four-character code describes some basic properties of the graph. The first character is
U if the graph is undirected, D if it is directed. The second letter is N if the graph has a vertex
attribute called name, or a dash otherwise. The third letter is W if the graph is weighted (i.e.
it has an edge attribute called weight), or a dash otherwise. The fourth letter is B if the
graph has a vertex attribute called type; this is usually used for bipartite graphs.

Edges may be presented as an ordinary edge list or an adjacency list. By default, this
depends on the number of edges; however, you can control it with the appropriate constructor
arguments.

411

Class GraphSummary Module igraph.summary’

26.1.1 Methods

__init (self, graph, verbosity=0, width="78, edge_ list_format="auto”,
mazr_rows=99999, print_ graph_ attributes=False,
print_vertex attributes=False, print_edge attributes—=False, full=False)

Constructs a summary representation of a graph.

Parameters

verbosity: the verbosity of the summary. If zero,
only the header line will be returned.
If one, the header line and the list of
edges will both be returned.

width: the maximal width of each line in the
summary. None means that no limit
will be enforced.

max_rows: the maximal number of rows to print
in a single table (e.g., vertex attribute
table or edge attribute table)

edge_list_format: format of the edge list in the summary.

Supported formats are: compressed,
adjlist, edgelist, auto, which

selects automatically from the other
three based on some simple criteria.

print_graph_attributes: whether to print graph attributes if
there are any.

print_vertex_attributes: whether to print vertex attributes if
there are any.

print_edge_attributes: whether to print edge attributes if
there are any.

full: False has no effect; True turns on the
attribute printing for graph, vertex
and edge attributes with verbosity 1.

Overrides: object. init

str (self)

Returns the summary representation as a string.

Overrides: object. str

Inherited from object
__delattr (), format (), _ getattribute (), _hash (), new (),

412

Class GraphSummary

Module igraph.summary’

_reduce (),

__reduce_ex (),

:_subclasshook__ ()

26.1.2 Properties

_ repr_ (), _setattr (), sizeof (),

Name

Description

Inherited from object
__class

413

Module igraph.utils

27 Module igraph.utils

Utility functions that cannot be categorised anywhere else.

@Qundocumented: is running in_ipython License: Copyright (C) 2006-2012 Tamés Ne-
pusz <ntamas@Qgmail.com> Pazmany Péter sétany 1/a, 1117 Budapest, Hungary

This program is free software; you can redistribute it and /or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301 USA

27.1 Functions

named temporary file(*args, **kwds)

Context manager that creates a named temporary file and returns its name.

All parameters are passed on to tempfile.mkstemp, see its documentation for
more info.

numpy to contiguous memoryview(obj)

Converts a NumPy array or matrix into a contiguous memoryview object that
is suitable to be forwarded to the Graph constructor.

This is used internally to allow us to use a NumPy array or matrix directly
when constructing a Graph.

414

Functions Module igraph.utils

rescale(values, out range=(0.0, 1.0), in_range=None, clamp—False,
scale=None)

Rescales a list of numbers into a given range.

out_range gives the range of the output values; by default, the minimum of
the original numbers in the list will be mapped to the first element in the
output range and the maximum will be mapped to the second element.
Elements between the minimum and maximum values in the input list will be
interpolated linearly between the first and second values of the output range.

in_range may be used to override which numbers are mapped to the first and
second values of the output range. This must also be a tuple, where the first
element will be mapped to the first element of the output range and the
second element to the second.

If clamp is True, elements which are outside the given out_range after
rescaling are clamped to the output range to ensure that no number will be
outside out_range in the result.

If scale is not None, it will be called for every element of values and the
rescaling will take place on the results instead. This can be used, for instance,
to transform the logarithm of the original values instead of the actual values.
A typical use-case is to map a range of values to color identifiers on a
logarithmic scale. Scaling also applies to the in_range parameter if present.

Examples:

>>> rescale(range(5), (0, 8))

[0.0, 2.0, 4.0, 6.0, 8.0]

>>> rescale(range(5), (2, 10))

[2.0, 4.0, 6.0, 8.0, 10.0]

>>> rescale(range(5), (0, 4), (1, 3))

[-2.0, 0.0, 2.0, 4.0, 6.0]

>>> rescale(range(5), (0, 4), (1, 3), clamp=True)

[0.0, 0.0, 2.0, 4.0, 4.0]

>>> rescale([0]*5, (1, 3))

[2.0, 2.0, 2.0, 2.0, 2.0]

>>> from math import loglO

>>> rescale([1, 10, 100, 1000, 10000], (0, 8), scale=logl0)
[0.0, 2.0, 4.0, 6.0, 8.0]

>>> rescale([1, 10, 100, 1000, 10000], (O, 4), (10, 1000), scalp=logl0)
[-2.0, 0.0, 2.0, 4.0, 6.0]

415

Variables

Module igraph.utils

safemax(iterable, default—=0)

Safer variant of max() that returns a default value if the iterable is empty.

Example:

>>> safemax([-5, 6, 4])

6

>>> safemax ([])

0

>>> safemax((), 2)

2

safemin(iterable, default=0)

Safer variant of min() that returns a default value if the iterable is empty.

Example:

>>> safemin([-5, 6, 4])

-5

>>> safemin([])

0

>>> safemin((), 2)

2

27.2

Variables

Name

Description

dbl _epsilon

Value: 2.22044604925e-16

416

Class multidict Module igraph.utils

27.3 Class multidict
object T

_abcoll.Sized —
object T

__abcoll.Iterable T

object T

_abcoll.Container T
__abcoll.Mapping T

_abcoll.MutableMapping
igraph.utils.multidict

A dictionary-like object that is customized to deal with multiple values for the same key.

Each value in this dictionary will be a list. Methods which emulate the methods of a standard
Python dict object will return or manipulate the first items of the lists only. Special methods
are provided to deal with keys having multiple values.

27.3.1 Methods

__init (self, *args, **kwds)

X. _init (...) initializes x; see help(type(x)) for signature

Overrides: object. init extit(inherited documentation)

__contains___ (self, key)

Returns whether there are any items associated to the given key. Overrides:
_abcoll.Container. _ contains

_delitem (self, key)

Removes all the items associated to the given key. Overrides:
_abcoll. MutableMapping. delitem

417

Class multidict Module igraph.utils

__getitem (self, key)

Returns an arbitrary item associated to the given key. Raises KeyError if no
such key exists.

Example:

>>> d = multidict ([("spam", "eggs"), ("spam", "bacon")])
>>> d[nspamn]
7eggs’

Overrides: _abcoll.Mapping. getitem

__iter (self)

Iterates over the keys of the multidict. Overrides: _abcoll.Iterable. iter

len (self)

Returns the number of distinct keys in this multidict. Overrides:

_abcoll.Sized. len

_setitem (self, key, value)

Sets the item associated to the given key. Any values associated to the key
will be erased and replaced by value.

Example:

>>> d = multidict([("spa.m" , "eggs") , ("spam" s "bacon")])
>>> d["spam"] = "ham"
>>> d ["spa.m"]

’ham’

Overrides: _abcoll.MutableMapping. setitem

418

Class multidict Module igraph.utils

add(self, key, value)

Adds value to the list of items associated to key.
Example:

>>>d = multidict()
>>> d.add(”spam", "ham")
>>> d["spam"]

>ham’

>>> d.add("spam", "eggs")
>>> d.getlist("spam")
[’ham’, ’eggs’]

clear(self)

Removes all the items from the multidict. Return Value
None

Overrides: _abcoll. MutableMapping.clear

get(self, key, default—None)

Returns an arbitrary item associated to the given key. If key does not exist or
has zero associated items, default will be returned. Return Value
D[k] if k in D, else d

Overrides: _abcoll. Mapping.get

getlist(self, key)

Returns the list of values for the given key. An empty list will be returned if
there is no such key.

iterlists(self)

Iterates over (key, values) pairs where values is the list of values
associated with key.

419

Class multidict

Module igraph.utils

lists(self)

associated with key.

Returns a list of (key, values) pairs where values is the list of values

update(self, arg, **kwds)

F.items(): D[k|] = v

Return Value
None

Update D from mapping/iterable E and F. If E present and has a .keys()
method, does: for k in E: D[k| = E[k| If E present and lacks .keys() method,
does: for (k, v) in E: D[k| = v In either case, this is followed by: for k, v in

Overrides: _abcoll.MutableMapping.update extit(inherited documentation)

Inherited from _ abcoll. Mutable Mapping

pop(), popitem(), setdefault()

Inherited from _ abcoll. Mapping

~eq_ (), __me_ (), items(), iteritems(), iterkeys(), itervalues(), keys(), val-

ues()
Inherited from _ abcoll.Sized
__subclasshook ()

Inherited from object

__delattr__ (), __format_ _

27.3.2 Properties

(), getattribute (), new (),
~reduce _ex (), repr_ (), setattr (), sizeof (),

~_reduce (),

str ()

Name Description
Inherited from object
__class
27.3.3 Class Variables
Name Description
__abstractmethods Value: frozenset([])

~_hash

Inherited from _ abcoll. Mapping

420

Variables

Module igraph.version

28 Module igraph.version

Version: 0.8.3

28.1 Variables

Name

Description

__version_info

Value: (0, 8, 3)

__package

Value: None

421

Index

igraph (package), 2-225
igraph. igraph (module), 226-230

igraph. igraph.convex hull (function),
226

igraph. igraph.InternalError (class), 229
230

igraph. igraph.is degree sequence (func-
tion), 226

igraph.configuration.Configuration (class),
270-273

igraph.configuration.get platform image viewer

(function), 269
igraph.configuration.get user config file
(function), 269
igraph.configuration.init (function), 269

igraph.cut (module), 274-280

igraph. igraph.is graphical degree sequenceigraph.cut.Cut (class), 274-277

(function), 226

igraph.cut.Flow (class), 277-280

igraph. igraph.set progress handler (func-igraph.datatypes (module), 281-291

tion), 227

igraph.datatypes.DyadCensus (class), 286

igraph. igraph.set random number generator288

(function), 227
igraph. igraph.set status handler (func-
tion), 227
igraph.app (package), 231
igraph.app.shell (module), 232-240
igraph. ARPACKOptions (class), 103-104
igraph.autocurve (function), 3
igraph.BFSlter (class), 104-105
igraph.BFSIter. iter (method), 105
igraph.BFSIter.next (method), 105
igraph.clustering (module), 241-268
igraph.clustering.Clustering (class), 245
248
igraph.clustering.CohesiveBlocks (class),
265268
igraph.clustering.compare communities
(function), 243
igraph.clustering.Cover (class), 259-262
igraph.clustering. Dendrogram (class), 254—
257
igraph.clustering.split _join distance (func-
tion), 243
igraph.clustering. VertexClustering (class),
248-254
igraph.clustering. VertexCover (class), 262—
265
igraph.clustering. VertexDendrogram (class),
257-259
igraph.configuration (module), 269-273

422

igraph.datatypes.Matrix (class), 281-286

igraph.datatypes.TriadCensus (class), 288
289

igraph.datatypes.UniqueldGenerator (class),
289-291

igraph.DFSlter (class), 105-106

igraph.DFSlIter. iter (method), 105
igraph.DFSIter.next (method), 105

igraph.drawing (package), 292-311

igraph.drawing.baseclasses (module), 312
314
igraph.drawing.colors (module), 315-327
igraph.drawing.coord (module), 328-330
igraph.drawing.edge (module), 331-338
igraph.drawing.graph (module), 339-345
igraph.drawing.metamagic (module), 346—
349
igraph.drawing.Plot (class), 307-311
igraph.drawing.plot (function), 294
igraph.drawing.shapes (module), 349-351
igraph.drawing.text (module), 352-356
igraph.drawing.utils (module), 357-367
igraph.drawing.vertex (module), 368-372

igraph.Edge (class), 106-109

igraph.Edge. delitem (method), 106
igraph.Edge. eq (method), 106
igraph.Edge. ge (method), 106
igraph.Edge. getitem (method), 106
igraph.Edge. gt (method), 106

INDEX INDEX

igraph.Edge. le (method), 107 igraph.Graph.alpha (method), 13, 173
igraph.Edge. len (method), 107 igraph.Graph.as_directed (method), 24
igraph.Edge. 1t (method), 107 igraph.Graph.as undirected (method),
igraph.Edge. ne (method), 107 24
igraph.Edge. setitem (method), 107 igraph.Graph.biconnected components
igraph.Edge.attribute names (method), (method), 26
107 igraph.Graph.Bipartite (class method),
igraph.Edge.attributes (method), 107 66
igraph.Edge.count multiple (method), igraph.Graph.clear (method), 26
107 igraph.Graph.clusters (method), 27
igraph.Edge.delete (method), 108 igraph.Graph.community leading eigenvector naiv
igraph.Edge.is_loop (method), 108 (method), 40
igraph.Edge.is_multiple (method), 108 igraph.Graph.count _automorphisms_ v{2
igraph.Edge.is_ mutual (method), 108 (method), 38
igraph.Edge.update _attributes (method), igraph.Graph.cut _ vertices (method), 13,
108 130
igraph.EdgeSeq (class), 98-103 igraph.Graph.DataFrame (class method),
igraph.EdgeSeq. call (method), 101 70
igraph.EdgeSeq.attributes (method), 100 igraph.Graph.degree distribution (method),
igraph.EdgeSeq.count _multiple (method), 28
102 igraph.Graph.dfs (method), 73
igraph.EdgeSeq.delete (method), 102 igraph.Graph.DictList (class method), 63
igraph.EdgeSeq.edge betweenness (method), igraph.Graph.disjoint union (method),
102 7
igraph.EdgeSeq.is_loop (method), 102 igraph.Graph.edge disjoint _paths (method),
igraph.EdgeSeq.ismultiple (method), 102 16, 18, 160
igraph.EdgeSeq.is mutual (method), 102 igraph.Graph.evcent (method), 14, 161
igraph.EdgeSeq.subgraph (method), 103 igraph.Graph.Formula (class method),
igraph.get include (function), 3 65
igraph.Graph (class), 11-90 igraph.Graph.from graph tool (class method),
igraph.Graph. add _ (method), 74 54
igraph.Graph. _and (method), 74 igraph.Graph.from networkx (class method),
igraph.Graph. coerce (method), 75 53
igraph.Graph. _iadd _ (method), 73 igraph.Graph.Full _Bipartite (class method),
igraph.Graph. _isub_ (method), 74 67
igraph.Graph. mul _ (method), 74 igraph.Graph.get adjacency sparse (method),
igraph.Graph. nonzero _ (method), 29
75 igraph.Graph.get adjedgelist (method),
igraph.Graph. _or_ (method), 75 30
igraph.Graph. _ plot (method), 75 igraph.Graph.get adjlist (method), 29
igraph.Graph. _sub_ (method), 74 igraph.Graph.get all simple paths (method),
igraph.Graph.add edge (method), 22 30
igraph.Graph.add _vertex (method), 23 igraph.Graph.get automorphisms_ v{2
igraph.Graph.adjacent (method), 23 (method), 39

423

INDEX

INDEX

igraph.Graph.get inclist (method), 31
igraph.Graph.GRG (class method), 69
igraph.Graph.Incidence (class method),
69
igraph.Graph.indegree (method), 24
igraph.Graph.intersection (method), 78
igraph.Graph.is_named (method), 32
igraph.Graph.is_ weighted (method), 32
igraph.Graph.k core (method), 48
igraph.Graph.layout (method), 49
igraph.Graph.layout_auto (method), 50

igraph.Graph.shortest paths dijkstra (method),
19, 208

igraph.Graph.spanning tree (method),
36

igraph.Graph.subgraph (method), 20, 174

igraph.Graph.summary (method), 77

igraph.Graph.to graph tool (method),
53

igraph.Graph.to networkx (method), 53

igraph.Graph.TupleList (class method),
64

igraph.Graph.layout fruchterman reingold 3igraph.Graph.union (method), 77

(method), 78
igraph.Graph.layout grid 3d (method),
78

igraph.Graph.vertex disjoint_paths (method),
15, 17, 221
igraph.Graph.write (method), 61, 62

igraph.Graph.layout grid fruchterman reingiddaph.Graph.write adjacency (method),

(method), 51
igraph.Graph.layout kamada kawai 3d
(method), 78

igraph.Graph.layout random 3d (method),

78

igraph.Graph.layout sphere (method),
78

igraph.Graph.layout sugiyama (method),
51

54
igraph.Graph.write graphmlz (method),
56
igraph.Graph.write pickle (method), 57
igraph.Graph.write picklez (method), 58
igraph.Graph.write svg (method), 58

igraph.GraphBase (class), 109-225

igraph.GraphBase. delitem (method),
128

igraph.Graph.maximum _ bipartite matching igraph.GraphBase. getitem (method),

(method), 52
igraph.Graph.omega (method), 13, 136
igraph.Graph.outdegree (method), 25
igraph.Graph.pagerank (method), 35
igraph.Graph.Random _ Bipartite (class
method), 68
igraph.Graph.Read (class method), 59,
60

igraph.Graph.Read Adjacency (class method),

95

128

igraph.GraphBase. _ invert (method),
128

igraph.GraphBase. setitem (method),
129

igraph.GraphBase.add _edges (method),
129

igraph.GraphBase.add _vertices (method),
129

igraph.GraphBase.Adjacency (method),

igraph.Graph.Read GraphMLz (class method), 110

57

igraph.Graph.Read Pickle (class method),
58

igraph.Graph.Read Picklez (class method),
58

igraph.Graph.shell index (method), 13,
152

424

igraph.GraphBase.all minimal st separators
(method), 129

igraph.GraphBase.all st cuts (method),
129

igraph.GraphBase.all st mincuts (method),
130

igraph.GraphBase.are connected (method),

INDEX

INDEX

130

igraph.GraphBase.assortativity (method),
130

igraph.GraphBase.assortativity _degree
(method), 131

igraph.GraphBase.assortativity nominal
(method), 132

igraph.GraphBase. Asymmetric_ Preference
(method), 110

igraph.GraphBase.Atlas (method), 111

igraph.GraphBase.attributes (method),
132

igraph.GraphBase.authority score (method),
132

igraph.GraphBase.average path length
(method), 133

igraph.GraphBase.Barabasi (method), 111

igraph.GraphBase.betweenness (method),
133

igraph.GraphBase.bfs (method), 134

igraph.GraphBase.bfsiter (method), 134

igraph.GraphBase.bibcoupling (method),
135

igraph.GraphBase.biconnected components
(method), 135

igraph.GraphBase.bipartite projection
(method), 135

igraph.GraphBase.bipartite projection _size
(method), 135

igraph.GraphBase.bridges (method), 136

igraph.GraphBase.canonical permutation
(method), 136

igraph.GraphBase.cliques (method), 137

igraph.GraphBase.closeness (method), 137

igraph.GraphBase.clusters (method), 138

igraph.GraphBase.cocitation (method),
139

igraph.GraphBase.cohesive blocks (method),
139

(method), 141
igraph.GraphBase.community label propagation
(method), 142
igraph.GraphBase.community leading eigenvector
(method), 143
igraph.GraphBase.community leiden (method),
144
igraph.GraphBase.community multilevel
(method), 145
igraph.GraphBase.community optimal modularity
(method), 146
igraph.GraphBase.community spinglass
(method), 147
igraph.GraphBase.community walktrap
(method), 148
igraph.GraphBase.complementer (method),
149
igraph.GraphBase.compose (method), 149
igraph.GraphBase.constraint (method),
149
igraph.GraphBase.contract _ vertices (method),
150
igraph.GraphBase.convergence _degree (method),
151
igraph.GraphBase.convergence field size
(method), 151
igraph.GraphBase.copy (method), 151
igraph.GraphBase.count _isomorphisms v{2
(method), 152
igraph.GraphBase.count multiple (method),
153
igraph.GraphBase.count _subisomorphisms_ v{2
(method), 154
igraph.GraphBase.De Bruijn (method),
112
igraph.GraphBase.decompose (method),
155
igraph.GraphBase.degree (method), 156
igraph.GraphBase.Degree Sequence (method),

igraph.GraphBase.community edge betweenneskl3

(method), 139
igraph.GraphBase.community fastgreedy
(method), 140

igraph.GraphBase.community infomap

425

igraph.GraphBase.delete edges (method),
156

igraph.GraphBase.delete vertices (method),
156

INDEX INDEX

igraph.GraphBase.density (method), 157 166
igraph.GraphBase.dfsiter (method), 157 igraph.GraphBase.get isomorphisms_ v{2
igraph.GraphBase.diameter (method), 157 (method), 167
igraph.GraphBase.difference (method), igraph.GraphBase.get shortest paths (method),

158 168
igraph.GraphBase.diversity (method), 158 igraph.GraphBase.get subisomorphisms lad
igraph.GraphBase.dominator (method), (method), 169

158 igraph.GraphBase.get subisomorphisms_ v{2
igraph.GraphBase.dyad census (method), (method), 170

159 igraph.GraphBase.girth (method), 171
igraph.GraphBase.eccentricity (method), igraph.GraphBase.gomory hu_tree (method),

159 172
igraph.GraphBase.ecount (method), 159 igraph.GraphBase.Growing Random (method),
igraph.GraphBase.edge attributes (method), 116

160 igraph.GraphBase.has multiple (method),
igraph.GraphBase.edge betweenness (method), 172

160 igraph.GraphBase.hub _score (method),
igraph.GraphBase.cigen adjacency (method), 172

161 igraph.GraphBase.incident (method), 173
igraph.GraphBase.Erdos Renyi (method), igraph.GraphBase.independent vertex sets

114 (method), 173
igraph.GraphBase.Establishment (method), igraph.GraphBase.is bipartite (method),

115 174
igraph.GraphBase.Famous (method), 115 igraph.GraphBase.is _connected (method),
igraph.GraphBase.farthest points (method), 175

162 igraph.GraphBase.is _dag (method), 175
igraph.GraphBase.feedback arc set (method),igraph.GraphBase.is directed (method),

163 175
igraph.GraphBase.Forest Fire (method), igraph.GraphBase.is loop (method), 175

115 igraph.GraphBase.is_minimal separator
igraph.GraphBase.Full (method), 116 (method), 176
igraph.GraphBase.Full Citation (method), igraph.GraphBase.is multiple (method),

116 176
igraph.GraphBase.get adjacency (method), igraph.GraphBase.is mutual (method),

164 176
igraph.GraphBase.get all shortest paths igraph.GraphBase.is separator (method),

(method), 164 177
igraph.GraphBase.get _diameter (method), igraph.GraphBase.is _simple (method),

165 177
igraph.GraphBase.get edgelist (method), igraph.GraphBase.Isoclass (method), 117

165 igraph.GraphBase.isoclass (method), 177
igraph.GraphBase.get _eid (method), 165 igraph.GraphBase.isomorphic (method),
igraph.GraphBase.get _eids (method), 166 178

igraph.GraphBase.get _incidence (method), igraph.GraphBase.isomorphic bliss (method),

426

INDEX INDEX

178 193
igraph.GraphBase.isomorphic_ v{2 (method), igraph.GraphBase.maxflow (method), 194
179 igraph.GraphBase.maxflow value (method),
igraph.GraphBase.K Regular (method), 194
117 igraph.GraphBase.maximal _cliques (method),
igraph.GraphBase.Kautz (method), 117 195
igraph.GraphBase.knn (method), 180 igraph.GraphBase.maximal independent vertex se
igraph.GraphBase.laplacian (method), 181 (method), 195
igraph.GraphBase.largest cliques (method), igraph.GraphBase.mincut (method), 196
181 igraph.GraphBase.mincut _value (method),
igraph.GraphBase.largest independent vertex ks
(method), 182 igraph.GraphBase.minimum _size separators
igraph.GraphBase.Lattice (method), 118 (method), 198
igraph.GraphBase.layout bipartite (method), igraph.GraphBase.modularity (method),
182 198
igraph.GraphBase.layout circle (method), igraph.GraphBase.motifs randesu (method),
182 199
igraph.GraphBase.layout davidson harel igraph.GraphBase.motifs randesu estimate
(method), 183 (method), 200
igraph.GraphBase.layout drl (method), igraph.GraphBase.motifs randesu no (method),
184 201
igraph.GraphBase.layout fruchterman reingoldraph.GraphBase.neighborhood (method),
(method), 185 201
igraph.GraphBase.layout graphopt (method), igraph.GraphBase.neighborhood size (method),
186 202
igraph.GraphBase.layout_ grid (method), igraph.GraphBase.neighbors (method),
187 203
igraph.GraphBase.layout kamada kawai igraph.GraphBase.path length hist (method),
(method), 188 203
igraph.GraphBase.layout lgl (method), igraph.GraphBase.permute vertices (method),
189 204
igraph.GraphBase.layout mds (method), igraph.GraphBase.personalized pagerank
190 (method), 204
igraph.GraphBase.layout random (method), igraph.GraphBase.predecessors (method),
191 205
igraph.GraphBase.layout reingold _tilford igraph.GraphBase.Preference (method),
(method), 191 118
igraph.GraphBase.layout reingold tilford cirigrlaph. GraphBase.radius (method), 206
(method), 192 igraph.GraphBase.random walk (method),
igraph.GraphBase.layout star (method), 206
193 igraph.GraphBase.Read DIMACS (method),
igraph.GraphBase.LCF (method), 118 119
igraph.GraphBase.linegraph (method), 193 igraph.GraphBase.Read DL (method),
igraph.GraphBase.maxdegree (method), 119

427

INDEX INDEX

igraph.GraphBase.Read Edgelist (method), igraph.GraphBase.subisomorphic v{2 (method),

120 215
igraph.GraphBase.Read GML (method), igraph.GraphBase.successors (method),
120 216
igraph.GraphBase.Read GraphDB (method), igraph.GraphBase.to directed (method),
120 217
igraph.GraphBase.Read GraphML (method), igraph.GraphBase.to prufer (method),
120 217
igraph.GraphBase.Read Lgl (method), igraph.GraphBase.to undirected (method),
120 217
igraph.GraphBase.Read Ncol (method), igraph.GraphBase.topological _sorting (method),
121 217
igraph.GraphBase.Read Pajek (method), igraph.GraphBase.transitivity avglocal undirected
122 (method), 218
igraph.GraphBase.Recent Degree (method), igraph.GraphBase.transitivity local undirected
122 (method), 218
igraph.GraphBase.reciprocity (method), igraph.GraphBase.transitivity undirected
206 (method), 219
igraph.GraphBase.rewire (method), 207 igraph.GraphBase.Tree (method), 126
igraph.GraphBase.rewire edges (method), igraph.GraphBase.triad _census (method),
207 220
igraph.GraphBase.Ring (method), 123 igraph.GraphBase.unfold tree (method),
igraph.GraphBase.SBM (method), 123 220
igraph.GraphBase.similarity dice (method), igraph.GraphBase.vcount (method), 221
208 igraph.GraphBase.vertex _attributes (method),
igraph.GraphBase.similarity _inverse log weighed
(method), 209 igraph.GraphBase.Watts _Strogatz (method),
igraph.GraphBase.similarity jaccard (method), 127
210 igraph.GraphBase.Weighted Adjacency
igraph.GraphBase.simplify (method), 211 (method), 127
igraph.GraphBase.st_mincut (method), igraph.GraphBase.write dimacs (method),
212 222
igraph.GraphBase.Star (method), 124 igraph.GraphBase.write dot (method),
igraph.GraphBase.Static _Fitness (method), 223
124 igraph.GraphBase.write _edgelist (method),
igraph.GraphBase.Static _Power Law (method), 223
125 igraph.GraphBase.write gml (method),
igraph.GraphBase.strength (method), 213 223
igraph.GraphBase.subcomponent (method), igraph.GraphBase.write graphml (method),
213 223
igraph.GraphBase.subgraph edges (method), igraph.GraphBase.write leda (method),
214 224
igraph.GraphBase.subisomorphic_lad (methodjgraph.GraphBase.write lgl (method), 224
214 igraph.GraphBase.write ncol (method),

428

INDEX

INDEX

224
igraph.GraphBase.write pajek (method),
225
igraph.layout (module), 373-379
igraph.layout.Layout (class), 373-379
igraph.matching (module), 380-383
igraph.matching.Matching (class), 380
383
igraph.operators (module), 383-385
igraph.operators.disjoint _union (func-
tion), 383
igraph.operators.intersection (function),
384
igraph.operators.union (function), 383
igraph.read (function), 4
igraph.remote (package), 386
igraph.remote.gephi (module), 387-393
igraph.statistics (module), 394-404
igraph.statistics.FittedPowerLaw (class),
397-399
igraph.statistics.Histogram (class), 399—
401
igraph.statistics.mean (function), 394
igraph.statistics.median (function), 394
igraph.statistics.percentile (function), 395
igraph.statistics.power law _fit (function),
395
igraph.statistics.quantile (function), 396
igraph.statistics. RunningMean (class),
401-404
igraph.summary (function), 4
igraph.summary’ (module), 405-407
igraph.summary’.GraphSummary (class),
405-407
igraph.utils (module), 408-414
igraph.utils.multidict (class), 410-414
igraph.utils.named temporary file (func-
tion), 408

igraph.Vertex (class), 5-11

igraph.Vertex. delitem (method),
6
igraph.Vertex. _eq (method), 6
igraph.Vertex. ge (method), 6
igraph.Vertex. getitem (method),
6
igraph.Vertex. gt (method), 6
igraph.Vertex. le (method), 6
igraph.Vertex. len (method), 6
igraph.Vertex. 1t (method), 6
igraph.Vertex. ne (method), 6
igraph.Vertex. setitem (method),
7
igraph.Vertex.all edges (method), 7
igraph.Vertex.attribute names (method),
7
igraph.Vertex.attributes (method), 7
igraph.Vertex.betweenness (method), 7
igraph.Vertex.closeness (method), 7
igraph.Vertex.constraint (method), 7
igraph.Vertex.degree (method), 8
igraph.Vertex.delete (method), 8
igraph.Vertex.diversity (method), 8
igraph.Vertex.eccentricity (method), 8
igraph.Vertex.get shortest paths (method),
8
igraph.Vertex.in _edges (method), 8
igraph.Vertex.incident (method), 9
igraph.Vertex.indegree (method), 9
igraph.Vertex.is _minimal separator (method),
9
igraph.Vertex.is_separator (method), 9
igraph.Vertex.neighbors (method), 9
igraph.Vertex.out edges (method), 9
igraph.Vertex.outdegree (method), 10
igraph.Vertex.pagerank (method), 10
igraph.Vertex.personalized pagerank (method),

igraph.utils.numpy to contiguous memoryviewl 0

(function), 408
igraph.utils.rescale (function), 408
igraph.utils.safemax (function), 409
igraph.utils.safemin (function), 410

igraph.version (module), 415

429

igraph.Vertex.predecessors (method), 10

igraph.Vertex.shortest paths (method),
10

igraph.Vertex.strength (method), 10

igraph.Vertex.successors (method), 11

INDEX INDEX

igraph.Vertex.update attributes (method),
11
igraph.VertexSeq (class), 90-98
igraph.VertexSeq. call — (method),
93
igraph.VertexSeq.attributes (method), 92
igraph.VertexSeq.betweenness (method),
94
igraph.VertexSeq.bibcoupling (method),
94
igraph.VertexSeq.closeness (method), 94
igraph.VertexSeq.cocitation (method), 94
igraph.VertexSeq.constraint (method), 94
igraph.VertexSeq.degree (method), 94
igraph.VertexSeq.delete (method), 95
igraph.VertexSeq.diversity (method), 95
igraph.VertexSeq.eccentricity (method),
95
igraph.VertexSeq.get shortest paths (method),
95
igraph.VertexSeq.indegree (method), 95
igraph.VertexSeq.is_minimal separator
(method), 96
igraph.VertexSeq.is _separator (method),
96
igraph.VertexSeq.isoclass (method), 96
igraph.VertexSeq.maxdegree (method),
96
igraph.VertexSeq.outdegree (method), 96
igraph.VertexSeq.pagerank (method), 97
igraph.VertexSeq.personalized pagerank
(method), 97
igraph.VertexSeq.shortest paths (method),
97
igraph.VertexSeq.similarity dice (method),
97
igraph.VertexSeq.similarity jaccard (method),
97
igraph.VertexSeq.subgraph (method), 98
igraph.write (function), 4

430

	Contents
	Package igraph
	Modules
	Functions
	Variables
	Class Vertex
	Methods
	Properties

	Class Graph
	Methods
	Properties
	Class Variables

	Class VertexSeq
	Methods
	Properties

	Class EdgeSeq
	Methods
	Properties

	Class ARPACKOptions
	Methods
	Properties

	Class BFSIter
	Methods
	Properties

	Class DFSIter
	Methods
	Properties

	Class Edge
	Methods
	Properties

	Class GraphBase
	Methods
	Properties
	Class Variables

	Module igraph._igraph
	Functions
	Variables
	Class InternalError
	Methods
	Properties

	Package igraph.app
	Modules
	Variables

	Module igraph.app.shell
	Functions
	Variables
	Class TerminalController
	Methods
	Class Variables

	Class ProgressBar
	Methods
	Class Variables
	Instance Variables

	Class Shell
	Methods
	Properties

	Class IDLEShell
	Methods
	Properties

	Class ConsoleProgressBarMixin
	Methods
	Properties

	Class IPythonShell
	Methods
	Properties

	Class ClassicPythonShell
	Methods
	Properties

	Module igraph.clustering
	Functions
	Variables
	Class Clustering
	Methods
	Properties

	Class VertexClustering
	Methods
	Properties

	Class Dendrogram
	Methods
	Properties

	Class VertexDendrogram
	Methods
	Properties

	Class Cover
	Methods
	Properties

	Class VertexCover
	Methods
	Properties

	Class CohesiveBlocks
	Methods
	Properties

	Module igraph.configuration
	Functions
	Variables
	Class Configuration
	Methods
	Properties

	Module igraph.cut
	Variables
	Class Cut
	Methods
	Properties

	Class Flow
	Methods
	Properties

	Module igraph.datatypes
	Variables
	Class Matrix
	Methods
	Properties

	Class DyadCensus
	Methods
	Properties

	Class TriadCensus
	Methods
	Properties

	Class UniqueIdGenerator
	Methods
	Properties

	Package igraph.drawing
	Modules
	Functions
	Class DefaultGraphDrawer
	Methods
	Properties

	Class BoundingBox
	Methods
	Properties

	Class Point
	Methods
	Properties

	Class Rectangle
	Methods
	Properties

	Class Plot
	Methods
	Properties

	Module igraph.drawing.baseclasses
	Variables
	Class AbstractDrawer
	Methods
	Properties

	Class AbstractCairoDrawer
	Methods
	Properties

	Class AbstractXMLRPCDrawer
	Methods
	Properties

	Module igraph.drawing.colors
	Functions
	Variables
	Class Palette
	Methods
	Properties

	Class GradientPalette
	Methods
	Properties

	Class AdvancedGradientPalette
	Methods
	Properties

	Class RainbowPalette
	Methods
	Properties

	Class PrecalculatedPalette
	Methods
	Properties

	Class ClusterColoringPalette
	Methods
	Properties

	Module igraph.drawing.coord
	Variables
	Class CoordinateSystem
	Methods
	Properties

	Class DescartesCoordinateSystem
	Methods
	Properties

	Module igraph.drawing.edge
	Class AbstractEdgeDrawer
	Methods
	Properties

	Class ArrowEdgeDrawer
	Methods
	Properties

	Class TaperedEdgeDrawer
	Methods
	Properties

	Class AlphaVaryingEdgeDrawer
	Methods
	Properties

	Class LightToDarkEdgeDrawer
	Methods
	Properties

	Class DarkToLightEdgeDrawer
	Methods
	Properties

	Module igraph.drawing.graph
	Class DefaultGraphDrawer
	Methods
	Properties

	Class UbiGraphDrawer
	Methods
	Properties

	Class CytoscapeGraphDrawer
	Methods
	Properties

	Module igraph.drawing.metamagic
	Class AttributeSpecification
	Methods
	Properties

	Class AttributeCollectorBase
	Methods
	Properties

	Module igraph.drawing.shapes
	Class ShapeDrawerDirectory
	Methods
	Properties
	Class Variables

	Module igraph.drawing.text
	Class TextAlignment
	Methods
	Properties
	Class Variables

	Class TextDrawer
	Methods
	Properties
	Class Variables

	Module igraph.drawing.utils
	Class Rectangle
	Methods
	Properties

	Class BoundingBox
	Methods
	Properties

	Class FakeModule
	Methods
	Properties

	Class Point
	Methods
	Properties

	Module igraph.drawing.vertex
	Class AbstractVertexDrawer
	Methods
	Properties

	Class AbstractCairoVertexDrawer
	Methods
	Properties

	Class DefaultVertexDrawer
	Methods
	Properties

	Module igraph.layout
	Variables
	Class Layout
	Methods
	Properties

	Module igraph.matching
	Variables
	Class Matching
	Methods
	Properties

	Module igraph.operators
	Functions

	Package igraph.remote
	Modules
	Variables

	Module igraph.remote.gephi
	Class GephiConnection
	Methods
	Properties

	Class GephiGraphStreamingAPIFormat
	Methods
	Properties

	Class GephiGraphStreamer
	Methods
	Properties

	Module igraph.statistics
	Functions
	Class FittedPowerLaw
	Methods
	Properties

	Class Histogram
	Methods
	Properties

	Class RunningMean
	Methods
	Properties

	Module igraph.summary'
	Class GraphSummary
	Methods
	Properties

	Module igraph.utils
	Functions
	Variables
	Class multidict
	Methods
	Properties
	Class Variables

	Module igraph.version
	Variables

