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I hear, and I forget, 

I see, and I remember, 

I do, and I understand. 

(Chinese Proverb) 
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Introduction 

This book is different! We don’t suggest that you should read it straight through from 
the beginning to the end. It is true that we have organized the topics in a logical 
order, with the ideas that belong together being presented together, so we don’t 
recommend that you merely dip into various chapters at random. But human beings 
do not usually acquire information in an orderly linear fashion. We tend to learn 
something, play with it for a while, and use our new information to do things we 

have not been able to do before. Later we return to the original idea and study it 
more carefully. Then, when we don’t see what more we can do with that particular 

idea, we move on. In a nutshell, this is what you will probably do with this book. 
Chapter 1 is crucial. If you know how to fold all the polygons described in 

Chapter 1, then the constructions described in Chapters 3 through 11 may be done in 

any order. However, we believe that there is a natural order, both in terms of a 

person’s expected learning pattern and in terms of his or her visual imagination and 

development of manipulative skill. These considerations are reflected in the arrange- 

ment of chapters (thus 2-dimensional constructions precede 3-dimensional construc- 

tions) and also in the arrangement of topics within a chapter. 

The order of events in Chapters 3 through 11 shows that we have presented the 

easiest constructions first. Thus, although it is true that the collapsoids of Chapter 11 

require only equilateral triangles in their construction, we have left them until late in 

the book because we believe they will be easier to understand at that point. Neverthe- 

less, a highly motivated person could certainly construct them—without, perhaps, 

fully appreciating their properties—as soon as he or she has learned how to fold 

equilateral triangles, as described in Sections 1.2 and 1.3. 

We suggest that you start with Chapter | and continue folding the various types 

of polygons, taking excursions into other chapters to build models as the urge strikes 

you. We would especially urge you to look seriously at Chapter 2 at some stage of 

your reading to learn how to fold other polygons that are not explicitly discussed in 

Chapter 1 and to see the richness of the mathematics connected with folding poly- 

gons. Likewise, we encourage you, once you have made your models, to look care- 

fully at Chapter 12. What you will discover is that your beautiful models will become 

even more beautiful when you understand the mathematics connected with them. 

Who Are Our Readers? 

The obvious logical answer is, You are! However, let us elaborate a little on our 

intended readership. We have chosen an expository style that should, we believe, 
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make this book accessible—and attractive—to any intelligent person aged between 
twelve and one hundred. It does not need the intervention of.a teacher to mediate 
between the text and the student; but we would hope that many teachers will read, 
understand, and appreciate our text and then pass on their understanding and their 
enthusiasm to their students. Thus we particularly hope that senior high, junior high, 
and even upper-grade elementary school teachers will read this book and incorporate 
the appropriate parts of its content into their own teaching. Naturally, then, we also 
hope that our book will be appreciated by those concerned with both in-service and 
pre-service education of teachers and those responsible for summer institutes for 
teachers. We need the support and active interest of all these professionals to restore 
the study of geometry to the place it should have in the minds and hearts of all 
sensitive, intelligent people. 

Should You Always Follow Instructions? 

Any self-respecting human being, and therefore all our readers, must answer this 
question with a resounding NO! In the next paragraph we describe two aspects of 
our building instructions where we do advise rather rigid adherence to our specifica- 
tions. However, we are very far from recommending that you fold all your regular 
polygons and construct all your polyhedra exactly as described. What we have done is 
to give you algorithms for the relevant constructions. Machines follow algorithms with 
relentless fervor; human beings look for special ways of doing particular things. 
Always feel free to use your ingenuity to avoid an algorithm that is not working for 
you. (This, of course, is exactly the advice teachers should give children learning to do 
computations! ) 

A Word fo the Wise 

We've done a lot of field testing of the material in this book. Our instructions seem to 
be, on the whole, quite comprehensible to most readers. However, there are two basic 
types of error that people seem prone to make in following the instructions. 

Material Error In doing mathematics, it is absurd to specify the type or quality of 
paper on which the mathematics should be done. However, when we describe to you 
how to make mathematical models, we must insist that the choice of material is not 
arbitrary—instructions for making models that are easily constructed using gummed 
mailing tape are unlikely to be effective if a strip of paper taken from an exercise book 
is used! Sometimes it may merely be a question of the finished model not being 
sufficiently sturdy, but it may even be true that the instructions simply cannot be 
carried out with inappropriate materials. Exercise your own initiative in choosing 
which models to make but not in your choice of material (except within very narrow 
limits). js 
Geometrical Error Look carefully at the two illustrations at the top of the next page. 
Do you see a difference? If you do not see a difference, look again! 

Notice that in (a) the portion of the strip going in the downward direction is on 
top of the horizontal part of the strip; whereas in (b) that portion is underneath the 
horizontal part of the strip. You will save yourself a great deal of time and effort if 
you will accustom yourself to looking very carefully at the illustrations, especially with 
respect to this distinction. 
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(a) (b) 

Here are some further examples about how to interpret the illustrations. 

underneath 

on top 

When a strip of paper is folded along a crease line, we indicate the revealed part of 
the back of the paper by shading. 

The following symbols instruct you to turn the paper over in the direction of the 

arrow. 
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For example, here is how the original and the turned piece would look, in our 
illustrations, for a transparent piece of plastic with an upper case F printed on it; we 
show two ways of turning the plastic piece. 

The following arrow means that by performing the indicated moves on the left- 
hand figure, we obtain the right-hand figure. 

AAR 
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The Expected Effects on Our Readers 

Please notice that we are talking of the “expected effects” rather than the “hoped for 
effects.” This is because we are incorrigible optimists—were we not, we would never 

have undertaken the labor of writing a book in which precision and detail are so vital. 

Notice, too, that we do not talk of the “effects of reading our book.” This, of course, 

is because you are expected to do much more than merely read the pages that follow. 
The Chinese proverb 

I hear, and I forget, 

I see, and I remember, 

I do, and I understand. 

is true in all learning situations but especially in the two situations covered by this book, 

namely, when you are learning how to build something and when you are learning 

mathematics. Even the professional standards of the NCTM encourage teachers to 

“engage students in an active process of learning in which the students create, discover, 

and make sense of mathematics.” 
Certainly we want you to be able to build fascinating geometric models and to 

understand some of the mathematics that goes with them. This we might call our local 

purpose. By contrast, our global purpose is to encourage an appropriate attitude 

towards mathematics itself. Many children carry into adulthood the false view that it 

is in the nature of mathematics to proceed from assigned task, via prescribed meth- 

ods, to the unique “right answer.” We expect our readers to enjoy taking the initiative 

in inventing new problems (often by modifying familiar problems) and new rules of 

procedure, and to welcome the multiplicity of possible outcomes. We have drafted 

our text with a view to whetting your appetite for further work, both in constructing 

geometrical models and in mathematics, arising directly or indirectly from the experl- 

ences offered to you in the following pages. Remember that asking good questions is 

as important as answering them; and experiment is the road to knowledge. 

GOOD LUCK! 

Using the Metric System 

You may convert the measurements in this book to the metric system by using the 

conversions: 

lin.= 2.54 cm=25.4 mm 

1 ft =30.48 cm 

lyd= 0.914m 





1 Folding Regular 

Polygons 

1.1 Some History 

The Greeks were fascinated with the challenge of constructing regular convex poly- 
gons—that is, those polygons in which all sides are of the same length and all angles 
are equal. They wanted to create these polygons using only an unmarked straightedge 
and a compass. Drawing an exact geometric figure with these restrictions 1s called a 

Euclidean construction, and the straightedge and compass are called Euclidean tools. The 

Greeks were successful around 350 B.c. in devising Euclidean constructions for regu- 
lar convex polygons having the following number of sides: 

3,23, 4x3, 8x3.,... (or 2” x 3, where n20) 

6.2% 5, 4%, 8X5... (or 2” 5, where n20) 

15.2% 15, 4% 15,7. (or 2” xX 15, where n=0) 

4, 8, 16,... (or 2”, where n=2) 

No further progress seems to have been made in the next two thousand years, 

until Gauss (1777-1855) discovered that a Euclidean construction of a regular con- 

vex polygon is possible if and only if the number of sides of the polygon is expressible 

as a power of 2 times a product of distinct Fermat primes.* This discovery implied 

that, in addition to what the Greeks could do, it is (theoretically!) possible to con- 

struct, with Euclidean tools, regular convex polygons having the following number of 

sides: 

IFI2 x17 fp 4 X27 56.: 
257, 2x 257, 4X 257, ... 
65537, 2 x 65537, 4 x 65537 ... 

3X TFI2 oR 174K SKITS 

3x 257, 2x 3x 257, 43x 257... 

3 x 65537, 2 x 3 x 65537, 4x 3 x 65537, §... 

5x 172K S 14X17 SIS 

3x 5X 17x 257 X 65537, 2X 3X5X 17x 257 x 65537, 

AxBx 517X257 X 65537e%e 

but no others. (The only known Fermat primes are 3, 5, 17, 257, and 65537.) 

*A Fermat prime, F,,, is a prime number of the form F,,= 2+ 1. Thus, Fo= SEY = 5, F,.=17, F3=257, 

and F,= 65537 are Fermat primes. Euler (1707-1783) showed that Fs is vot a prime number, and that, 

in fact, Fs5= 2? + 1=2*+1 is the product 641 x 6700417. It is not known whether or not any other 

Fermat numbers F,, are prime. It is known (with the help of a large computer) that F, is not prime. 
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It is unlikely that you will be interested in constructing regular polygons with as 
many sides as most of those in this list. But it may be interesting to observe that some 
relatively small numbers are not in this list. Thus, for example, if you had your heart 
set on constructing a regular convex polygon with 7 or 9 sides, you would know 
from Gauss’ result that this is impossible using only Euclidean tools. Of course, Gauss 
might well have been able to tell you how to construct such a polygon using more 
sophisticated tools—and he might have had interesting methods of obtaining very 
respectable approximations. You will be learning much more about this idea of approx1- 
mate construction in the pages that follow. 

Some regular polygons have special names, which are based (except for the first 
few) on the Greek names for the numbers. We cite just a few examples in the 
following table. 

N=number of sides Name of regular polygon having N sides 

equilateral (or equiangular) triangle 
square (or regular quadrilateral) 
regular pentagon 
regular hexagon 
regular heptagon 
regular octagon 
regular nonagon 
regular decagon 
regular dodecagon NOOO MAN ANA w pt pe 

Notice that the word equilateral appears only with the triangle. Do you see why it is 
not sufficient in the other cases to describe a regular polygon as equilateral (or, for 
that matter, equiangular)? 

) 

You'll be happy to know that it is not necessary to memorize all those names— 
that’s not what geometry, or mathematics, is about! In this book we will only refer to 
the special names of polygons when they have 3, 4, 5, 6, or 8 sides, and even then it 
should be clear from the context how many sides are involved. To make the terminol- 
ogy simpler for you we will adopt the convention that 

a regular convex polygon with N sides is called a regular N-gon. 
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Thus a regular N-gon is convex unless otherwise stated (there are also regular star 
polygons, which we talk about later, but these are not polygons in the strict sense). 
Naturally our convention only makes sense when N is a number greater than or equal 
to 3. (What is'a 2-gon?) 

The Euclidean constructions of regular polygons are exact—that is, they are 
perfect 1 the mind. However, the real accuracy of any actual Euclidean construction 
on paper is, and owing to the nature of reality must always be, imperfect, depending 
on many variables. Some of the factors that affect the degree of accuracy in the 
finished construction are the smoothness of the paper or surface on which the con- 
struction is drawn, the sharpness of the drawing instrument (pen, pencil, chalk, stick, 

and so on), and, of course, the skill of the person making the construction. This last 

factor affects many young children (and even some adults). 

“Don’t spoil my circles!” p yi 

as Archimedes in 212 B.C. 

There is, however, a way to construct regular polygons by simply folding a 
straight strip of paper. In this chapter we show you how this may be done. In fact, 
the illustrations on the following pages show you very explicitly how to fold regular 

3-, 4-, 5-, 6-, 7-, 8-, 9-, and 10-gons. The discussion in the next chapter describes 

how you may devise folding techniques to obtain certain other regular N-gons. 

Moreover, we make the fold lines simply by guesswork or by bisecting angles—we 
never use a protractor to measure angles. 

Just as with any kind of construction, the perfection of the finished product 

depends on your skill. However, the constructions we describe are not nearly as 

sensitive to your ability to work accurately as Euclidean straightedge and compass 

constructions. The constructions of the Greeks were theoretically exact but very 

rough in practice; the constructions we describe are theoretically approximate but 

very accurate in practice. 

Another way in which these paper-folding techniques are different from the 

Euclidean constructions is that their justification requires practically no knowledge of 

formal geometry. However, if you do have some knowledge of elementary plane 

geometry, don’t let that distract you during the actual paper-folding. We suggest that 

you wait until you’ve completed your folding of the polygon before you try to figure 

out why it works.. 
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This means that we are asking you to trust us for the moment and follow the 
instructions carefully. You will be able to construct some very accurate regular poly- 
gons with surprisingly little effort even if you don’t yet understand why the construc- 
tions work. 

It is important to begin, so get a strip of paper and follow the step-by-step 
illustrations for constructing certain regular polygons. We suggest you construct your 
regular N-gons in the order in which we’ve arranged the instructions. As you are 
about to see, in this case, the order 3, 6, 5, 10, 9, 7, 4, 8 is much more natural and 
enlightening for carrying out these constructions than the more usual ordering of the 
numbers between 3 and 10. r 

Along the way we may ask some questions (and in some cases we give some hints 
as to how those questions may be answered), but you need not worry about these 
questions unless they interest you. Don’t let it worry you if, at first, you want to skip 
over them. In the next chapter we discuss some of the mathematics connected with 
regular polygons and with some of our general folding procedures. We include this 
material for those of you who wish to become more familiar with the polygons you 
have constructed but, as we’ve said, you do not need to read or understand all the 
mathematical parts of this book in order to be able to enjoy constructing the models. 
Many will prefer to postpone the study of the mathematics to a second reading. 

1.2 Preparing to Fold Polygons 

Required Materials 

L] Strips (or a roll) of gummed mailing tape, adding machine tape, or brightly 
colored tape about 1’ in. wide. The glue on the gummed tape should be of the 
type that needs to be moistened to become sticky. Don’t try to use tape that is 
sticky to the touch when it is dry, unless you want an exercise in frustration. 

L] Transparent tape or white glue, but only if your folding tape is not gummed 

Optional Materials 

L] Scissors 
L} Colored acetate cut in 1-in. strips (for teachers only) 
L] Masking tape 

A Hint to Teachers 

An effective way to teach this activity to your classes is to make strips in bright colors 
by cutting up acetate report covers. Then, attaching the left-hand end of the colored 
strip to the glass on the overhead projector with a piece of masking tape, execute the 
steps outlined in the instructions of this section with that strip. Have your students 
imitate each of your folds at their own desks with strips of gummed mailing tape. 

If you wish to make the rather attractive models shown on the cover of this book, 
a Polyhedra Kit is available from The Diffraction Company, Inc. (Box 151, Rider- 
wood, Maryland 21139) at a substantial but reasonable price. One kit contains 
enough materials to decorate two complete sets of the models in Build Your Own 
Polyhedra. 
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1.3 Folding Triangles and Hexagons 

1. Begin with a long strip of gummed tape. 

. Fold UP— 

anyway | 
will do. 

4, Fold DOWN—now you must do it exactly as shown. 

8 Gnd 
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6. Fold UP, exactly as shown. 

7. Unfold. 

8. Fold DOWN, exactly as shown. 

9. Unfold. 
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10. Fold UP, exactly as shown. 

11. Unfold. 

12. Continue folding to make a string of triangles as long as you need. Notice two 

things. First, the folding process goes UP, DOWN, UP, DOWN, UP, DOWN... 

(which we can abbreviate UDUDUD... or U ‘D"). Second, although the first few 

triangles may be a bit irregular, the triangles formed always become more and 

more regular. (Can you prove it?) When you use these triangles for constructing 

models, throw away the irregular ones at the beginning of the tape. 

Suppose you want a bigger triangle. This can be achieved by taking a strip of 

about 30 triangles and executing the F-A-T- (Fold-And-Twist) algorithm along the 

top of the tape at each of the heavy dots. The F-A-T algorithm is illustrated very 

precisely in Figure 1.1. We advise you to master this systematic algorithm, since you 

will be using it frequently to construct other polygons. 

Of course, you can vary the size of the finished triangle by taking any sequence of 

equally spaced dots along the top edge of the tape at the points where the fold lines 

meet the top edge. 
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finished triangle 

Figure 1.1 F-A-T algorithm. 



It is important 
that your tape 
look just like 
this. Don’t 
worry whether 
the sticky side 
is up or down. 

Figure 1.2 
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A fascinating, versatile toy, called a flexagon, can be made from a strip of 10 
equilateral triangles. Before folding and gluing your flexagon (as shown in Figure 
1.2), be certain to crease all the fold lines in both directions (so that the paper flexes 
easily along each fold line). See Section 3.1 for details about how to make your 
flexagon work and for instructions about building even bigger and more remarkable 
flexagons. 

Glue these 
two triangles 
together. (If the 
sticky sides of 
the paper are 
not in contact 
with each other, 
lift the bottom 
triangle over 
the top one.) 

Constructing a flexagon. 

We have just shown you how to construct a rather special hexagon, using the fact 

that a regular hexagon may be subdivided into 6 equilateral triangles. Another con- 

struction of a regular hexagon may be carried out by adding some secondary fold lines 

to a strip of equilateral triangles (obtained, you will recall, by folding UDUDUD...). 

Try introducing secondary fold lines on a strip of equilateral triangles, as shown next. 
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1. Begin with a strip of equilateral triangles. 

2. Fold down, exactly as shown. We call this a secondary fold through the top vertex. 

3. Repeat step 2 at each of the vertices marked with a heavy dot. 

Now do the F-A-T- (fold-and-twist) algorithm at each vertex along the top of the 
tape indicated by the arrows to obtain a regular 6-gon (with a hole in the center ), as 
shown next. 
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A bigger hexagon can be obtained by increasing the distance between the successive 

vertices along the top of the tape at which you make your secondary folds. The 

hexagon is then formed, as before, by performing the F-A-T algorithm at 6 successive 

vertices equally spaced along the top of the tape. For example, this strip of tape 

Figure 1.3 
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You have seen how to take tape that produces 3-gons (by the F-A-T algorithm) 
and convert it into tape that produces 6-gons (by the F-A-T algorithm). Can you 
guess how to add more fold lines so that this tape can be used to produce 12-gons 
(by the F-A-T algorithm)? Try it! 

i.4 Folding Pentagons and 10-gons 

I. Begin with a long strip of gummed tape. 

. Unfold. 

, Fold Up— 

now you must 

do it exactly 
as shown. 
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5. Unfold. 

Gaia 

9. Unfold. 
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11. Unfold. 

13. Unfold. a 
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14. Continue folding until you get a few feet of triangles. Notice that the folding 

process goes UP, UP, DOWN, DOWN, UP, UP, DOWN, DOWN, .. . (which 

we abbreviate UUDDUUDD..., or UD”). Notice, also, that as you fold, the 

pattern becomes more and more regular. Throw away the first few triangles and 

try the following construction: 

Take a section 
of tape like 
this 

and construct 
a pentagon 
like this. 

This tape, which we describe as having been folded UUDDUUDD... (abbreviated 

UD”), may be used to construct regular pentagons in at least three different ways. 

It is important to observe that the tape has two kinds of fold lines, some short and 

some long. If you take this tape and crease it only on the short fold lines (leaving the 

long fold lines flat), then you obtain the pentagon shown in Step 14. But suppose 

you crease this tape only on the long fold lines and leave the short fold lines flat. 

What happens? Try it. If you have difficulty, follow the illustrations in Figure 1.4. 

strip of 12 triangles 

Figure 1.4 The /ong-line construction of a pentagon. 
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Figure 1.4 cont. 
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Figure 1.4 cont. 

Of course, as you might expect, a regular pentagon can also be folded from this 

tape using the F-A-T algorithm. The step-by-step illustration of that construction 1s 

shown in Figure 1.5. 

strip of 23 triangles ~~ 

Figure 1.5 The F-A-T construction of a pentagon. 
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Figure 1.5 cont. 

fold and twist 

fold and twist 
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Figure 1.5 cont. tuck in 

We can also adapt the U*D* tape, by adding secondary fold lines, so that it can be 
used to construct a regular 10-gon. First, introduce secondary folds as shown next. 

2. Introduce a secondary fold line exactly as shown. 

3. Unfold and repeat step 2 at each of 10 equally spaced intervals along the top of 

the tape. The locations of the desired secondary fold lines are indicated by heavy 

dots in step l. 

wa Sr SrPQTe SIA TRISTE 
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Figure 1.6 shows how the tape should look when you have introduced the 
necessary secondary folds. Now take this tape and perform the F-A-T algorithm at 
each of 10 locations along the top edge. The first 4 locations are indicated by heavy 
dots in Figure 1.6(a). We show only a portion of the 10-gon here, but since you will 
not be restricted by the size of the pages in this book, you will be able to complete 
your 10-gon. You will note, however, that when the polygon gets this big it is a little 

per and gently iron it with a steam iron to make it lie flat. 

7 ove 
. ’ ¢ ¢ si a . Soe << i Pes ‘ ~~ a a pe . — ee i ro ‘ < = ant i 
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A portion of the finished 10-gon. 

-? 
-? 

o AO 
7 

o 

Figure 1.6 

Now, as a reward for following this rather long construction, we will tell you 
about a particularly easy way to obtain a single pentagon. Just take a strip of paper 
and begin to tie a knot. As you pull the knot tight, press it flat. See Figure 1.7. 

floppy. It may help to place the finished model between two large pieces of newspa- 



Figure 1.7 
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\ ac 

In this and the previous section (Section 1.3), we have started to describe a 

systematic folding procedure, where we make the same number of folds at the top of 

the tape as at the bottom of the tape. Furthermore, each of the fold lines bisects the 

angle, on the right, between the last fold line and an edge of the tape. Thus, as you 

may observe, all new fold lines will “go from left to right,” sloping up if they are 

produced by an UP fold and sloping down if they are produced by a DOWN fold. If 

you keep this observation in mind, you can then simply “read off” the folding 

instructions from any folded strip of tape. 

Let us review our results by placing them in a table; see if you can guess a general 

rule. 
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By folding tape and executing the F-A-T algorithm at equally spaced 
intervals along the top of the folded tape, we obtain a 
regular polygon having 

3 sides 
5 sides 

? sides (make a guess!) 

? sides (make a guess!) 

Let us give you just one bit of information. The correct answer to the first 
question above is mot 7 (but that is the most popular wrong answer!). 

In the next section we show you exactly how to fold tape U°D%.... The informa- 
tion we get from that tape will give us the answer to the first question in the 
preceding table. Of course, after you have discovered and studied the correct answer 
to the first question, you will be in a much better position to find the correct answer 
to the second question; you will have the examples 7 = 1, 2 =2, n=3 from which to 
try to find the generalization for an arbitrary value of n. 

1.5 Investigating a Question 

1. Begin with a straight strip of gummed tape. 

2. Fold UP—any way will do. 
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4 Fold UP. 
exactly as 
shown. 

5. Unfold. 

7. Unfold. 
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9. Unfold. 

10. Fold DOWN, exactly as shown. 

Hi. Unfold. 

12. Fold D as shown. OWN, exactly 
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13. Unfold. 

14. Fold UP, exactly as shown. 

4. Roe repeat steps 3 through 14. That is, continue folding UP, UP, UP, DOWN, 

DOWN, DOWN, UP, UP, UP, DOWN, DOWN, DOWN, ... (or U%D*). You 

oat notice that, as you fold, the pattern of lines on the tape becunics more and 

-more regular. First throw away the beginning part of the tape (say, the first 9 

triangles). Now observe that the tape has three different kinds of lines. For 

| _ simplicity let us call them short, medium, and long lines. Now experiment with 

your strip of tape and try creasing it on just one kind of line while leaving the | 

_ other fold lines flat. You should crease all lines of the given kind. What do you 

think will happen? Make a guess and test it. After you have experimented and 

made the three different sizes of regular polygons that result, look at Figures 

1.8-1.11 and see if the polygons you discovered are the same as ours. 
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Figure 1.8 A long-line 9-gon. 

Figure 1.9 _ A medium-line 9-gon. 
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Figure 1.10 A short-line 9-gon. 

Figure 1.11 Part of a 9-gon constructed by performing the F-A-T algorithm on long \ines. 
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Now we know that the answer to our first question at the end of Section 1.4. is 
9. So we need to find a reasonable general rule that will give 3, 5, and 9 for the first 
three entries. Let us now set out the evidence. 

We return to the folding procedure in these three cases and write what we know 
in tabular form. 

Case Number Number of Angle made by Number of 
(and folding times angle (at longest fold sides of 
procedure) top or bottom) line, as a resulting 

was bisected fraction of | polygon 
original angle 

Ah hah! The numbers 2, 4, and 8 are very closely related to the sequence 3, 5, 
and 9. In fact, it is very easy to see that 

3=2+1=2)4) 
5=4+1=27+] 
9=8+1=23+] 

So now we should suspect (and it turns out to be true) that if we fold U"D”, we can 
use that tape to construct regular convex (2” + 1)-gons. 

The next case in our list, namely n= 4, would yield 2*+ 1 =17. Thus we now 
know how we may construct Gauss’ beloved 17-gon. Simply fold a strip of tape using 
the U*D* procedure and then apply the F-A-T algorithm (on the longest line) at 17 
equally spaced vertices along the top of the tape. Alternatively, crease consistently 
along any one of the four different kinds of fold lines, while leaving the other fold 
lines flat. 

In theory, we could use this method to construct the 33-gon (since 
33 = 32+ 1=2°+1), the 65-gon (since 65 = 64+ 1=2°+ 1), the 129-gon, the 257- 
gon, and so on. In principle, we could even construct the 65537-gon (by folding 
U'*D"*). However, in practice, it is very difficult to fold either up or down in the 
prescribed manner more than four times. 

Actually, we can do more with the U*D* tape. You may have already noticed in 
your own investigations that it is possible to perform the F-A-T algorithm on the 
U°D* tape along the medium-length lines. Figure 1.12 shows the star polygon that is 
obtained by this procedure. The notation we use for this polygon, that is, the }-gon, 

is the clever invention of the mathematician H.S.M. Coxeter. In this case, the denomi- 
nator 2 indicates that the top edge of the tape visits successively every second vertex of 
some regular convex polygon, and the numerator 9 indicates that the regular convex 
polygon we are talking about has mine vertices (and hence nine sides). All our pre- 
vious polygons could be denoted, if we wished, by this fractional notation, with | in 
the denominator, but as usual we follow the custom of just writing the numerator in 
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this case. We may always regard a convex polygon as the special case of a star polygon 
in which the vertices are visited in their natural sequence.* 

Figure 1.12 A regular star {3}-gon, formed by performing the F-A-T algorithm on medium lines. 

1.6 Folding 7-gons 

So far we have given folding rules in which we treat the top and bottom of the tape 
in the same way. We have seen that this restriction will only allow us to construct 
(2” + 1)-gons. Let us see whether we can construct a wider class of regular polygons if 

we use a different number of fold lines at the top and bottom of the tape. If so, it will 

surely be worth considering this more general folding procedure. 

Let us start then with the simplest case, the D’U' (or, equivalently, U'D”) proce- 

dure. We will show you in the last section of Chapter 2 why this produces the regular 

7-gon. 

Folding 7-gons 

= a 2 Begin with a straight strip of gummed tape. 

*The strict definition of a polygon (or polygonal path) does not allow the sides of the polygon to cross 

each other. Thus a star polygon is not truly a polygon—but that doesn’t mean it is not a beautiful 

geometrical figure of considerable mathematical interest. 
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2. Fold DOWN—any way will do. 

3. Unfold. 

5. Unfold. 

6. Fold UP, 
exactly as 

_ shown. 
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7. Unfold. 
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14. Now repeat steps 8 through 13. That is, continue folding DOWN, DOWN, UP, 
DOWN, DOWN, UP... . (or D?U'). As with our other folding procedures, the 
pattern of lines on the tape will become more and more regular as you continue 
to fold. Throw away the first part of the tape (say, the first 8 triangles). The 
remaining tape can now be used to construct star 7-gons, including the convex 
7-gon, as indicated in Figure 1.13. 

Figure 1.13 (a) A convex 7-gon constructed by executing the F-A-T algorithm on successive Jong lines. 
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Figure 1.13 cont. 

(b) A star {}-gon constructed by executing the F-A-T algorithm on every other medium line 
starting from the top of the tape. 

(c) A star %-gon constructed by executing the F-A-T algorithm on every other short line 

starting on the bottom of the tape. 

a 
(d) A 7-gon formed by creasing along all (e) A star -gon formed by creasing along 

long and short lines, leaving the medium all short and medium lines, leaving the 

lines flat. long lines flat. 
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1.7 Folding Squares and 8-gons 

The constructions in this section are exact (but only in theory!). Consequently, when 
you follow the folding instructions you will be able to use all the tape without 
throwing away any portion at the beginning. There are many methods for folding 
squares and octagons. You probably already know some of them. 

Since it is more exciting to try to discover things for yourself than to follow what 
someone else has done, we suggest that you take a strip of gummed tape and try to 
fold some squares or octagons before looking at our instructions. You may discover 
some pretty ones we have not thought of. After you have experimented with your 
own ideas, then look at our instructions. 

In the constructions for squares and 8-gons (octagons) that we describe, we have 
selected—from the many possibilities—procedures that enable us to use the F-A-T 
algorithm and also to build some very interesting related models. Our construction 
for a square may surprise you, since you may have been expecting to fold a strip to 
look like this: 

ie . . Se SS . NS 

You may, in fact, wish to fold a strip like this and execute the F-A-T algorithm on 
each of the long lines. The reason we chose the following instructions for folding a 
square is that the strip can then be used to construct a very interesting mathematical 
toy, the 8-flexagon of Section 3.3, and a very attractive polyhedron, the diagonal cube 
of Section 9.3. 

As we have said, you may try any construction that appeals to you. We certainly 
want you to try out your own ideas and to experiment with your own constructions. 
Then, after you’ve tried to construct your own squares and octagons, you may want 
to look at the following pages. 

Folding Squares 

1. Start with a straight strip of gummed tape. 
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7. Unfold. 

42 

8. Fold UP, exactly as shown. 

es s ° 3 3 8 
4 

wo oO = OD o 5 x Ay S mm 

9. Unfold. 

11. Unfold. 
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12. consats folding i in this way until you get a long strip of triangles that look just 
like this. These triangles will be regular from the beginning. You won’t need to 
throw any of them away! a 

Figures 1.14 and 1.15 show two different ways of folding a square. 

fold on long lines 

NY 
\ 

fold and tuck last triangle under 

Figure 1.14 
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Begin with a strip of 17 triangles. 

and 

twist 
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and 

f 
glue this triangle 

! 

Figure 1.15 

Actually, we have described something far more interesting than a mere square in 

Figure 1.15. What we have here is another example of a flexagon. Since it is a square, 

it is sometimes called a tetraflexagon. We will call it an 8-flexagon because its surface 

consists of 8 triangles. See Section 3.3 for details about flexing your new toy. 
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Folding 8-gons 

1. Begin with a straight strip of gummed tape. 

2. Fold straight back, exactly as shown. 

3. Unfold. 

4. Fold DOWN, exactly as shown. 



1.7 Folding Squares and 8-gons 47 

5. Unfold. 
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10. Continue folding, repeating steps 4 through 9. You will get a strip of tape that 
looks like the one in Figure 1.16. You can use this strip to fold a regular 8-gon 
by executing the F-A-T algorithm along each long line, or by creasing on each 
long and short line and leaving the medium-length lines flat. You may discover 
other ways to fold 8-gons on your own. See also Figure 1.17. 

Figure 1.16 An 8-gon constructed by executing the F-A-T algorithm on log lines. 



Figure 1.17 
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(a) An 8-gon formed by creasing on long and _—(b) A 4-gon formed by executing the F-A-T 
short lines, leaving the medium lines flat. algorithm on medium lines. 

Just as we introduced secondary fold lines into the D'U’-folded tape to produce 
6-gons instead of 3-gons, and into the D?U?-folded tape to produce 10-gons instead 
of 5-gons, so we could introduce secondary fold lines into any tape from which we 
constructed squares in order to produce 8-gons. However, in our opinion the result- 
ing 8-gon is not quite as attractive as the one constructed by the method we have just 
described. 





2 The Mathematics 

of Paper Folding 

This chapter 1s included for those of you who would like to know just what can be 
done by paper folding, using the F-A-T algorithm, and why it works. Many of you 

may prefer to go straight on to Chapter 3 and subsequent chapters, rather than take 
the time now to master this theoretical material. That would be a perfectly reasonable 
and understandable thing to do. However, we do not recommend that you completely 
ignore the mathematical basis of the practical work you will be doing with polygons 
and polyhedra. We do want you to understand why the constructions we describe in 
this book work. So this chapter and Chapter 12 are, in our view, very important 
chapters. 

For those still with us, we’re glad you’re here! We now begin. 

2.1. Angles 

Let us look again at our construction of a regular 9-gon by the D*U® folding proce- 
dure. We are going to explain to you now why it works, and we start with some 
important facts about angles. Suppose that we have any 9-gon: 

We have extended the sides of the polygon so that you may see the exterior angles. 
We make the following claim: 

For any polygon, the sum of the exterior angles is 360°. 

51 
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To see this, we use our “argument by myopia”! A shortsighted person, looking at our 
polygon from a considerable distance, would see this: 

This person would immediately conclude the truth of our claim; one moves through 
one complete revolution in going around the polygon. Of course, this has nothing to 
do with the polygon having 9 sides and would work for any polygon. 

Now suppose that the polygon is regular. Then all the exterior angles are equal, 
-_ 360° . é ayes 

so each is ——, where p is the number of vertices (which is, of course, the same as the 

number of sides). Now let’s look at the interior angles. Each is the supplement of the 
corresponding exterior angle, so we get the following result: 

Each exterior angle of a regular p-gon is - 

360, 0 
ole Each interior angle of a regular p-gon is (180 — 

So, for our regular 9-gon, the exterior angles are 40° and the interior angles are 140°. 
It thus follows that if we have marked 9 points at regularly spaced intervals along the 
top of the tape, and if we have a procedure for turning the tape through 40° at each 
of these points, then the top of the tape will form itself into a regular 9-gon. It 
remains, of course, to convince you that our folding procedure U*D? (which is 
equivalent to D® UB ), combined with the F-A-T algorithm, does turn the top edge of 
the tape through 40° at regularly spaced points, but we will do this a little later. 

Before moving on, however, let’s look at a star polygon, say, the 3. -polygon, 

or {5 “}. -gon: 
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We have agreed that to construct a regular convex 7-gon, the tape must turn, at 

regularly spaced intervals, through an angle of oo If the vertices of our star polygon 

are indeed vertices ” : Saini 7-gon, then AOA to D we have pe 3 times 

through an angle of 3° , that is, we have turned through an angle of é = 360)°. 

Thus we see that to fold a {5 4}. -gon, we need ie be able to turn the top of the tape, at 

regularly spaced points, fiona an angle of x 360)”. 

We now remark that if—somehow—we rit put fold lines into the tape making 

angles of d degrees with the top of the tape, at regular intervals along the top of the 

tape, then the F-A-T algorithm allows us to turn the top of the tape, at these points, 

through an angle of 2d degrees: 

eo 

ou 
+ 

. 
conc 

2 
5 o 

a 

And 

So we can obtain a Gt -gon if we can put fold lines into the tape, at regular intervals, 

making angles of x 180)°. Quite generally, we have the following result: 

If we can put fold lines into the tape, at regular intervals, making an angle of 

. x 180)° with the ee of the tape, then the F-A-T algorithm enables us to 

construct a regular { *}. -gon. 

In fact, the main problem is to devise ways of putting in fold lines making angles 

of [ x 180)° where a and b are both odd. For there are fairly obvious ways, given such 

fold lines, of 5 ase secondary fold lines to make angles of 

2x 180°, = ais 1807 ts Wes 180°, as 180°, 
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We already described a few such secondary fold lines in Chapter 1 when we discussed 
the construction of 6-gons, 12-gons, and 10-gons. So the real problem is concerned 
with the case of constructing {°}-gons with @ and a both odd. 

There is a further small point to be made here. In discussing {7}-gons, we 
obviously want a and 0 to have no nee factor (why?); but we also want to 

restrict ourselves to the case where a<2Z 5 This is because, for example, a {= 7). -gon 1s 

really the same thing as a {5 4). -gon (why?). 

We can sum up our Hisctistib so far as follows: 

We know how to construct all regular star polygons, once we know how to 
construct regular {}-gons with 4 and a both odd. Thus the problem is to put 
fold lines in the tape making angles of GC x 180)° with the top of the tape, where 

band a are odd with a<%. 

So let us now discuss this problem. In this section we are content to make a few 
crucial preliminary remarks. 

We first consider a special case. We have seen that to construct a regular 7-gon, 
we ee succeed in putting in fold lines at equally spaced intervals, making angles 
of xo With the top of the tape. Now suppose that, somehow, we have put in one such 
fold fr. as shown: 

7 

ae es i ae, 180° * 

Se 

<< 
. 

. 

~S 
. . 

Bo 

Because RS and TU are parallel lines, the angles SApBy and ApBoU are supplementary 
(that is, their sum is 180°). Thus the angle ApBoU is G x 180)°. Let us put in an UP 
fold line (exactly as we did in Chapter 1) to bisect this angle: 

R Ao A\ § =a —_= = a a 

_— eo om — 
ag 180° / 

2 
See 7 

; 

“sf 3x 180 T 
OSS ’ 7 

2 U 
— —— -— a. 

ea ee a —_——<— — 
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Again, by the rule of supplementary angles, the angle SA Bo is G x 180)°. If we fold 

DOWN once (exactly as we did in Chapter 1), we bisect this angle; if we fold 

DOWN again, this angle is divided by 4. The resulting angle is G x 180)°—exactly 

what we want! 

rar inn sci 
: ws 0 Ts - 

180° pateee 180 S38 PAs 
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Thus we may repeat the procedure. It is obvious that the points Ao, Aj, Ag, ... are 

appearing at equally spaced intervals along the top of this tape. Likewise, the points 

Bo, By, Bo, ... are appearing at equally spaced intervals along the bottom of the tape. 

Moreover, the folding procedure we have described is exactly the D°’U' procedure we 

introduced earlier to construct a regular 7-gon. Notice, too, that if we use the bottom 

of the tape instead of the top, we construct the regular {2}-gon, and that if we use the 

medium fold lines at the top, we construct the regular }-gon. 

Everything seems then to hinge on whether we can put in that first fold line 

AoBo. However, we show you in the next section that this is no barrier to achieving 

our construction provided we are content with an arbitrarily good approximation to 

our desired regular polygon. Here we consider the question of just how general our 

method is. Would it work for any }-gon, with 4 and a odd? 

Before we attempt to answer this question, we'd better be more precise as to what 

we mean by “our method.” This consists of supposing a correct initial fold line put 

into the tape making an angle of C x 180)° with the top of the tape, passing to 

the supplementary angle at the bottom of the tape, which will have the form 

(vs x 180)°, and then halving this angle by bisection until it takes the form 

b-a' * x 180) 

at the top of the tape and again halve this angle by bisection until it takes the form 
G x 180)°, with a’ again odd. Then we go to the supplementary angle ( 

(f x 180)° with a” odd; and so on. So now we repeat the question: Does the method 

always work? 
The answer is, yes and no! It is “no” in the sense that we certainly cannot 

construct amy such }- gon if we insist that the folding instructions be of the simple 

kind, “fold down m times, fold up 7 times (D”U").” In Section 2.3 we discuss which 

ones we can get that way. However, the answer is “yes” in the sense that we can 

construct any such {}-gon if we allow a rather more complicated—but equally sys- 

tematic—folding procedure. 
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Let us illustrate this last remark by considering the regular 11-gon. As we know, 

making a regular 11-gon necessitates our putting in fold lines making angles of ae 

with the top of the tape at regular intervals. Imitating our procedure with the 7-gon, 
we suppose one such fold line ApBo put in. We may now tabulate our subsequent 
moves, as follows: 

Angle ApBoU is (s Ox 180)°. 

Bisect it to get angle A,;BoU of = | X 180)°. 

Angle SA,By is (= x 180)°. 

Bisect it to get angle SA,B, of S x 180)°. 

Angle A,B,U is (= x 180)°. 

Bisect it 3 times to get angle A,B,U of (=x 180)°. 

A\ A2 A3 S 
=a oe ow SS LR ST Sr — ae, val = == =a 

a ie ee = x 180° ee eee: eo wage ae 
Si ‘ we q Bi, eet ‘ ? Cars 2 OR feiseskread cle dis 8 oc 'a we ex tabs 3 5 aN ef aie este 1 On 3 ] 

Ss, iiaaios 180 Ss A SeGieees- eas 180° , Sai 180° 
es fee aoe Meo Ese 11 ‘s pseese tal ete 1] U 

Bo By Bo 

Notice that we have now achieved the angle we want, but it has appeared at the 
bottom of a tape. But that’s no problem—repeat the sequence! Thus ie get angle 

SA>B, of (7x 180)°, angle AsB,U of (= x 180)°, and angle SA3B; of (+x 180)°. 
Coat this way, fold lines appear ae top of the tape at equally ee points 

Ao, A3, Ag, Ao, ..., all making angles of = =with the top of the tape. The folding 

instructions may be written D*U iDysp! U *, Thus the folding instructions are, as we 
claimed, more complicated but just as systematic; and they can be deduced by simple 
arithmetic from the odd numbers 8 and a involved—in this case, = 11 and a=1. It 

may be shown that this arithmetic always works, that is, for any odd numbers b and a 

for which we wish to construct a regular {2}. -gon, the arithmetic will give us a folding 

procedure for doing so, once the initial fold ou has been put into the tape. The original 

angle, c x 180)°, may reappear first at the top or the bottom of the tape. If (as in our 

example) it reappears first at the bottom, just repeat the folding sequence, so that its 
next appearance is at the top. 
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2.2 Approximation and Convergence — 

We seem to have reduced our problem to that of making the initial fold in the tape— 
but is that not an appallingly difficult thing to do? We now show that it is, in fact, 
ridiculously easy provided we are content to have our resulting polygons be arbitrarily 
good approximations. (In a deep philosophical sense it would be an impossible thing 
to do if we insisted on absolute accuracy!) 

In fact, we show that our initial fold can be as inaccurate as we please! Let us explain 

this apparently strange remark. We revert to our discussion of the regular 7-gon, and 

we now suppose that our initial fold line ApBo actually made an angle of vs +E)" 

with the top of the tape. Here we think of E as an error, which may, of course, be 

positive or negative. Following through the arithmetic, we see that ByA, makes an 

angle of (3 x 180 -5)° with the bottom of the tape; and_A,B, makes an angle of 

cS +5)" with the top of the tape. Thus the error has been reduced to =. If we look at 

A,B, the angle will be, by the same argument, _ +2)’, and so on. Now our initial 

error E would certainly be no bigger than + 20° if we just guessed, and it is very 

unlikely to be bigger than + 10°. Thus, in the worst case, the error in the direction of 

A,B; is less than 20’, and the error in the direction of A4B, is less than 20". So we 

may regard A,B, as our initial fold line! This is the reason for the instruction given to 

start folding and throw away the first (that is, the left-hand) part of the folded tape. 

It is, of course, plain that as the direction of A,B, gets closer and closer to the 

distance between successive points A, and A,,,, on the top of the tape undergoes less 

and less change as we move to the right along the tape. 
The justification for our procedure works in general. Suppose we had to intro- 

duce k fold lines in passing from Ay to the next point A, on the top of the tape at 

which, ideally, the fold line is parallel to the one at Ag (thus, for the 7-gon, k= 3; for 

the 11-gon, &= 10). (Let us call this point A,.) Then it is not difficult to see that if 

the initial error was E, the error in the direction of the fold line at A, is 5 So, for our 

11-gon, an initial error of 10° is immediately reduced to an error of less than 0.01". 

Here we have a beautiful example of a (rapidly) converging process. The sequence of 

angles at these successive points on the top of the tape converges very quickly to the 

angle we want; and, as the angles converge, so does the distance between successive 

points. Of course, the actual distance to which this sequence converges, which will be 

the distance between successive vertices on the polygonal path we construct, depends 

on the width of our tape. 

2.3 The Simple Folding Procedure D"U" 

In this section we answer the question: What star polygons can we fold if we 

confine attention to the folding procedure D”U”, where we fold DOWN m times 

at every vertex at the top of the tape and UP m times at every vertex at the bottom 

of the tape?* 

*Of course, D”U” is the same as U”D”. Henceforth in this section we will write the “D” before the “U” 
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Suppose this folding procedure yields an angle of x° at the top and an angle of 9° 
at the bottom: 
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Then, if we look at Bo, we see that the supplement of « was halved (bisected) 7 times 
to produce y, so that 

x + 2”y = 180 

If, likewise, we look at Aj, we see that the supplement of y was halved (bisected) 
m times to produce x, so that 

y + 2" = 180 

We have a pair of simultaneous equations in x and y to solve. Let us solve by 
eliminating y; we find 

x + 2” (180 — 2x) = 180 
(2"*” — 1)x = (2"—1)180 

anal 

Similarly, 

nee 
a5 a 5mzn 180 

We have proved the following: 

Qe aS ] 

peal 
}-gon using the bottom of the tape. 

The D”U” procedure allows us to construct a { 
m+n 

}-gon using the top of the 
tape and a es 

To see that this fits with what we know, let us first consider the procedures D!U!, 
D’U’, and D°U*. Of course, with these procedures, it does not matter whether we use 
the top or bottom of the tape. (Why?) With D'U! we make a a 

a 3-gon; with D°U? we make a gon, that is, a 5-gon; with D°U® we make a 
es -}-gon, that is, a (2”+ 1)- 

gon. All this you saw, or guessed, much earlier. 

}-gon, that is, 

Pe 

}-gon, that is, a 9-gon; with D”U” we make a a 
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Now let us look at the D?U! procedure. Using the top of the tape we construct a 
al 

F—}gon, that is, a 7-gon; and, at the bottom of the tape, we have fold lines 
23-1 

l 
enabling us to construct a 5r- 
results. 

What convex polygons can we construct by our simple procedure? The answer 
m+n 

20> 

answer helpful? How can we recognize if a given number N has this form? It turns out 
that this question admits a very striking answer, which we give in two parts. 

}-gon, that is, a {4}-gon. This, too, confirms earlier 

is plain—we can construct a convex N-gon if N has the form Z +. But is this 

m+n 

The fraction 2 mo is an integer if and only if 7 is a factor of m. 

all 

Let us write N in base 2. Then N has the form 2 aly 
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if and only if, in base 2, 

where 10 ... 0 repeats = times and consists of 1 followed by (7 — 1) zeros. 

We call 10 ... 0 the repeating pattern of N. 

Notice that the second part not only enables us to recognize the numbers N that have 
DAW ee l 

the form a 

determine just which D”U” folding procedure produces a specific convex N-gon. Let 

us look at some examples. 

, but also tells us what m and 7 are in terms of N, thus enabling us to 

Example 1 Let N=7. In base 2, 7=111. Thus a 7-gon may be constructed by 

folding D”U” where = | (since there are no zeros in the repeating pattern) and 

= 2, so that m=2 (remember that the final 1 is mot part of the repeating pattern). 

Example 2 Let N=21. In base 2, 21 = 10101. Thus a 21-gon may be constructed 

by folding D”U” where = 2 (since there is one zero in the repeating pattern) and 

a 2, so that m=4 (since 10 appears twice). 

Example 3 Let N=11. In base 2, 11= 1101. This does not have the right pattern, so 

we cannot construct an 11-gon by any D”U” folding procedure. Indeed, we saw that 

we needed a more complicated procedure. 

Finally: What star polygons can we construct by some D”U” procedure? The 

question is, naturally, more difficult, but the answer is very rewarding. Let us call 

those numbers N such that we can construct convex N-gons by (some) D”U” proce- 

dure the folding numbers. Thus a folding number is a number of the form 

Oa ] 

oF ek 
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where 7 is a factor of m. Then we may prove the following: 

The star polygons that we can construct by our simple folding procedure are 

those *}-gons where N is a folding number and a is a prime section of N. 

It remains to explain what we mean by a prime section of N. To understand this, 
we revert to our representation of N in base 2, 

INES O2 ec O LOS OMe. Lora Or TL 
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Then a section of N is a number represented in base 2 by the right-hand portion of N, 
starting at some 1. Thus, for example, 

ifN = 1001001001 = 585 

then a = 1001001 73 iS a section. 

Of course, for it to be reasonable to talk of an *}-gon, we need a<x and, further, a 

and N should not have any common factor (except 1). The inequality a<x is always 

true if a is a proper section of N (that is, if @ is a section different from N itself). The 
following lovely property of folding numbers tells us whether a and N have a com- 
mon factor. 

If N is a folding number with p 1’s when written in base 2, and if a is a section of 
N with g 1’s when written in base 2, then N and a have no common factor 
precisely when p and g have no common factor. In that case, we say that a is a 
prime section of N. 

Example 4 Let N= 101010101010101 =21845 (here p=8). 

Then the sections of N are as follows: 

q=l (ice aada 
2 ll= 5 
3 10101 = 21 
4 1010101 = 85 
5 101010101 = 341 
6 10101010101 = 1365 

7 1010101010101 = 5461 

As predicted, if q= 2, 4, or 6, a has a factor in common with 21845 (obviously, 5 is 
such a factor); you may verify that if g=1, 3, 5, or 7, then a has no factor in common 
with 21845, that is, a is a prime section of 21845. 

You now know (though we don’t advise you to verify this by actually folding a 
strip of paper!) that you could, using some simple D’”U” procedure, construct the 
convex 21845-gon and the star 

21845, ,21845, 21845 
Petia tas Ugh pot needed OUR) natn | i 

oy D> tag b> Ueqgq Bons! 
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You should now have one final question to ask: If N is a given folding number and 

a is a section of N that has no factors in common with N, how do es choose m 

and 7 so that the D”U” procedure enables you to construct a star - -gon? The 

answer is again quite precise. Note first that if a convex N-gon 1s constructed by using 

D™U" and if a convex a-gon is constructed by using D’”?U™, then m, =n. (Why? 

Remember that a is a section of N.) Then we may prove the following: 

If a convex N-gon is constructed by using DU”! and a convex a-gon is made by 

using DU”, then 2, =, and a star *}-gon is constructed by using D”U”, 

where m=m,—M, N=N, + Mp. 

Example 5 We know that a convex 7-gon is constructed by using D?U" olin pase:2; 

7=111 and 3=11, so 3 is a section of 7. Moreover, we know that a convex 3-gon is 

constructed by using D'U'. We have already verified that, in this case, 2; =m (=1), 

m, = 2, and m,=1. Thus a star {5 4}. -gon is constructed 2 using D'U?. We also knew 

this, since we had observed that we could construct a {5 4}. -gon by using the DU’ pro- 

cedure and then using the Jottom of the tape. 

For those keen to read further into the mathematical mysteries of folding paper, 

we suggest you consult our references. 

Remark 

Throughout this chapter we have measured angles in degrees. There is another angu- 

lar measure called radian measure. If an angle subtends an arc of length / on the circle 

of unit radius, we say that / is the radian measure of that angle. Thus 

180° = mw radians 

You will see that our results are really better expressed using radians rather than 

degrees. 

REFERENCES 

Hilton, Peter, and Jean Pedersen. “Approximating Any Regular Polygon by Folding Paper: An 

Interplay of Geometry, Analysis and Number Theory.” Mathematics Magazine, 56 (1983), 

pp. 141-155. 
Hilton, Peter, and Jean Pedersen. “Folding Regular Star Polygons and Number Theory.” 

Mathematical Intelligencer, 7, no. 1 (1985), pp. 15-26. 

Hilton, Peter, and Jean Pedersen. “Geometry in Practice and Numbers in Theory,” 

Undergraduate Journal of Mathematics, Monograph (1987). 





3 Constructing 

Flexagons 

Required Materials 

C1 Strips (or a roll) of gummed mailing tape or adding machine tape about 17/2 in. 

wide. The glue on the gummed tape should be the type that needs to be mois- 

tened to become sticky. Don’t try to use tape that is sticky to the touch when dry. 

L] White glue or paper clips, but only if your folding tape is not gummed. 

3.1 Basic Instructions 

In this chapter we describe how to construct some special polygons that change their 

appearances when they are manipulated in certain ways. 

In general, we refer to these configurations as N-flexagons, where N indicates the 

number of congruent triangles surrounding the center of the regular polygon formed 

by the constructed figure. We should point out that in the case of the 8-flexagons, the 

bounding polygon of the construction has 4 sides, not 8 as you might expect. For this 

reason the 8-flexagon is sometimes referred to as a tetraflexagon (see Section 1.7). 

We describe in detail how to construct and flex two special cases for each of the 

values N=6 and N=8. We also refine the nomenclature by adding another number at 

the beginning of the name to indicate how many different complete “faces,” of N 

triangles each, that the model may present when it is flexed. This nomenclature will 

be illustrated and described in detail at the appropriate tme—and, for those of you 

who like to use big words, we will also give you the names that utilize Greek prefixes 

instead of the numbers. 
We first discuss the 6-flexagons (already well known in the literature as hexaflexa- 

gons) in Section 3.2. We do this because they are the easiest flexagons to manipulate. 

Our idea is that you are likely to find it more pleasant to develop your flexing skills 

on the 6-flexagons, and that by doing this you will be better prepared to appreciate 

the considerably more complicated 8-flexagons described in Section 3.3. Of course, 

in keeping with the spirit of this entire book, we suggest variations or references 

along the way so that you can construct (or maybe even invent) other flexagons on 

your own. 

63 
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bottom side 

Constructing Flexagons 

6-Flexagons 

The simplest 6-flexagon* is made from a straight strip of 10 equilateral triangles. You 
may have already constructed it in Chapter 1, but we think it worthwhile to describe 

it here in terms of instructions that we will use throughout the rest of the chapter. 

Instructions for the basic construction are these: 

1. Prepare the pattern piece, labeling both sides of it precisely'as shown. 
2. Crease all fold lines in doth directions. 
3. Fold im order (so that the numbers are no longer visible) 

triangle | onto triangle 1, 
triangle 2 onto triangle 2, 
triangle 3 onto triangle 3, 

and finally, triangle O onto triangle O. 
4, Glue, or attach with a paper clip, so that Ois attached to O. 
5. Gently flex and play with your model—decorate the faces with interesting 

patterns. 
6. Enjoy your flexagon and show it to your friends! 

Here is the pattern piece for the 6-flexagon. Try out the instructions. 

Now for the magic! Gently mountain-fold and valley-foldt the hexagon as shown 
in the pictures to make a 3-petaled arrangement that will “come apart” at the top and 
lie flat when the vertices labeled x, , z are brought together below the hexagon. 
Repeat the process. Notice that as you flex the hexagon in this way you see 3 faces, - 
the A face, the B face, and the 1-2-3 face. 

* Hexaflexagons were discovered in 1939 by Arthur H. Stone, a Professor Emeritus of mathematics at the 
University of Rochester. See Martin Gardner’s book, The Scientific American Book of Mathematical Puzzles 
and Diverstons (New York: Simon and Schuster, 1959), for an interesting account of Stone’s discovery and 
his collaboration with Bryant Tuckerman, then a graduate student, and now a retired research mathemati- 
cian from IBM (Yorktown Heights, NY), Richard P. Feynman, then a graduate student in physics and 
later a Nobel Laureate, and John W. Tukey, then a young mathematics instructor and now an Emeritus 
Professor at Princeton. It is interesting to remark that the diagrams Feynman devised for analyzing 
6-flexagons were the forerunners of the Feynman Diagrams famous in modern atomic physics. 

+A mountain fold is above the surrounding terrain; a valley fold is below the surrounding terrain. 
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mountain 

\ 
(Note the location 

Zz of the slits on the 
\ lle mountain folds.) 

valley 

<— mountain { 

ARUNE, ’ 

Although 6-flexagons constructed from the same width of tape will all have the 

same shape and size, they may differ in the number of hexagonal faces that can be 

presented as the polygon is flexed. In this sense, the flexagon you have just con- 

structed is the “smallest” hexaflexagon that can be constructed with a straight strip of 

equilateral triangles. Since it has 3 faces, we call it a 3-6-flexagon (it is well known by 

the name of tri-hexa-flexagon). 

Play with your flexagon until you become very adept at flexing it. You may want 

to draw some patterns on its faces. Begin by drawing a design on the two visible faces 

and then flex it. You will notice a blank face appears and one of the existing faces 

disappears—and even the face that is still visible may seem changed. You will soon 

see that although you can draw patterns on only 3 hexagonal faces originally, more 

than 3 designs will appear, owing to the way the patterns on the triangular portions 

of the face are moved about when the flexagon is flexed. 

A 6-6-flexagon (the hexa-hexa-flecagon) may be constructed from a strip of 19 

equilateral triangles. Here is the pattern piece. Now it’s up to you! Following the basic 

instructions, make your 6-6-flexagon and then read the rest of this section for sugges- 

tions about how to flex it and how to build the even bigger 9-6-flexagons, 12-6- 

flexagons, and, in general, 37-6-flexagons. 

top side 

bottom side 

The 6-6-flexagon is flexed in exactly the same way as the 3-6-flexagon. However, 

most people have difficulty finding all 6 faces. Bryant Tuckerman invented a proce- 

dure for bringing out the 6 faces with the shortest possible flexing sequence. His 

process, known as the Tuckerman Traverse, involves continually flexing at one vertex 



66 Constructing Flexagons 

Figure 3.1 

until the flexagon refuses to open, then moving to an adjacent vertex (either way) and 
continuing to flex at that vertex until the flexagon refuses to open, .... It is an 
interesting exercise to record the sequence of faces that appears as you perform this 
flexing algorithm. Try it and compare your results with the diagram in Figure 3.1. 

Notice that although you drew 6 patterns on the faces of this polygon, there are 
many more actual designs (since the triangular parts of the hexagon appear in differ- 
ent orientations as you flex the model). How many different designs do you get from 
your 6 faces? (Your answer will depend on the symmetry of the patterns you use.) 

You may have already noticed a pattern in the number of faces on these 6-flexagons. 
The smaller had 3 faces and the last one had 6 faces.* Do you suppose the next larger 
one will have 9 faces? If so, how do you construct it? The answer to the first question 
is yes, and here are some hints about how to go about constructing it. 

First of all let us suppose that somehow we remember that it is possible to 
construct a 3-6-flexagon but that we’ve forgotten how many triangles we need. We 
can readily calculate the number of triangles required. We need to have 6 x 3 triangles 
available in order to provide the 3 faces. We also need 2 extra triangles that get glued 
together. Thus this flexagon contains 6 x 3 + 2 triangles in all. However, since each 
triangle on the strip of tape has 2 sides, the number of triangles this model actually 
requires is only half this number, that is, 

oxs2 = 10 

In exactly the same way, we can reason that for a 6-faced 6-flexagon the number 
of triangles required 1s 

oxet2=19 

*It is a fact (which we don’t prove) that the number of faces that can occur on 6-flexagons constructed 
with straight strips of equilateral triangles must be a multiple of 3. 
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We can rewrite each of these expressions (on the left) to see the following pattern: 

For the (3 x 1)-6-flexagon we need a strip of 10 (= 19+ 1) triangles. 
For the (3 x 2)-6-flexagon we need a strip of 19 (=2 x 9+ 1) triangles. 

In general: 

For the 3n-6-flexagon we need a strip of (n x 9+ 1), that is, (97+ 1) triangles. 

Thus, for example, the 9-6-flexagon (nona-hexa-flexagon) requires a strip of 
3x9+1 (= 28) triangles. 

Now that we know the number of triangles required for our 9-6-flexagon, how 
do we get them folded in the right arrangement? Again we study the two 6-flexagons 
we've already constructed. 

Notice that, in the flattened position of the 3-6-flexagon, the thicknesses of tape 
on two adjacent triangular sections are ] and 2, respectively (see Figure 3.2). (Where 
two triangles are glued together, they behave as 1 thickness of tape.) 

2 thicknesses 

1 thickness 
SS ~ | thickness 

=" 
2 thicknesses ~ 2 thicknesses 

/ 

1 thickness 

1 + 2 = 3 = the number of faces for a 3-6-flexagon. 

What is the situation with the 6-6-flexagon? We observe that in its flattened 

position immediately after construction (before any flexing takes place), the thicknesses 

of tape on two adjacent triangular sections are 2 and 4. However, when the 6-6- 

flexagon is flexed, it sometimes has thicknesses of 1 and 5 on adjacent triangular 

sections. See Figure 3.3. 

after flexing 

The numbers in parentheses 
indicate the thicknesses of tape 
on each triangular section. 

244-145 = 6 = the number of faces for the 6-6-flexagon. 
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Figure 3.4 

Constructing Flexagons 

This information contains the secret for constructing the 9-6-flexagon. What we 
might seek is an arrangement so that the thicknesses on any two adjacent triangular 
sections of the flattened hexagon sum to 9. One possibility is to use the fact that 
4+5=9 and try to find out how to fold the strip of equilateral triangles so as to 
produce adjacent triangles on the finished model having 4 and 5 thicknesses, respec- 
tively (see Figure 3.4). But we already know, from our construction of the 6-6- 
flexagon, how to fold the strip to obtain 4 thicknesses on one of the triangular 
sections; and, as we’ve observed, there must exist a way to obtain 5 thicknesses on a 

triangular section. The idea is to construct the 6-6-flexagon, except that you attach 
the last two faces together with a paper clip instead of using glue. You can then flex 
this flexagon until you have thicknesses of 1 and 5 on adjacent triangular sections. At 
that point you can remove the paper clip and “unwrap” the arrangement to see how to 
fold a triangular section with 5 thicknesses. With a little practice you will be surprised 
how easily you can guess how to fold the required number of thicknesses for a given 
triangular section. 

In the same way that we figure out from the 6-6-flexagon how to construct the 9- 
6-flexagon, we can use the 9-6-flexagon to discover how to build the 12-6-flexagon 
(dodeca-hexa-flexagon) with a strip of 37 equilateral triangles. Of course, the process 
goes on, and you may even find that if you try it you can construct the 15-6-flexagon 
with a strip of 46 equilateral triangles. In fact, constructing it may be easier for some 
people than learning how to pronounce its Greek name, which is penta-cai-deca-hexa- 
flexagon! (Penta-cat-deca means “5 and 10” or “15” and, of course, “hexa” means “6.”) 

Thicknesses for the triangular sections of the 9-6-flexagon. 

3.3 8-Flexagons 

The 8-flexagon (octa-flexagon), already described in Section 1.7, was discovered 
independently by many people and is, as we have said, often referred to as a tetraflex- 
agon because the bounding polygon of the original construction is a square. How- 
ever, we take a different point of view and call this an 8-flexagon because there are 8 
hinged triangular sections surrounding the center of the polygon—just as there are 6 
hinged triangular sections surrounding the center of the 6-flexagon. 

There are many differences (and some similarities) between 6-flexagons and 8- 
flexagons. The first difference that should concern us is that 6-flexagons are con- 
structed from straight strips of equilateral triangles, whereas 8-flexagons are con- 
structed from straight strips of isosceles right triangles (instructions for folding these 
appear in Section 1.7). 
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The simplest 8-flexagon, called a 4-8-flexagon (or tetra-octa-flexagon, because it 

has 4 faces), may be made from a straight strip of 17 isosceles right triangles, as 

shown in Figure 3.5. (If you have already constructed this model from the instruc- 

tions in Section 1.7, you may go directly to the flexing instructions). Once the 

pattern piece is folded, all you need to do to produce your 4-8-flexagon is follow the 

basic instructions given at the beginning of this chapter. 

Just one word of caution before you proceed. This flexagon is much more versa- 

tile than the 6-flexagons. It can assume many shapes other than the square, and there 

are at least three different ways it can be flexed. As a result of the 8-flexagon’s 

extraordinary capability to display different faces and shapes to the world, it some- 

times gets twisted. This is not serious, and if you are patient, it can always be 

untwisted. However, if you feel that it is possible that you might suffer from a 

shortage of patience, we offer this bit of advice. In the beginning just paper-clip the 

last two faces together, instead of gluing them. This way if you inadvertently get the 

flexagon in a state that frustrates you, then you can simply remove the paper clip and 

reassemble it. This procedure also allows you to unwrap the flexagon to find out 

whether or not you have put patterns on all the faces. 

Now get, or construct, your 4-8-flexagon and then return. We'll wait. 

Look at your flexagon. Observe that there are subtle differences between the two 

visible faces. One side should look like (a) and the other should look like (b). 

Surprisingly, this flexagon can change its shape. ‘Io sce how this happens, begin 

with the (a) side up and execute the moves shown in Figure 3.6. Of course, after you 

have gone from left to right you will need to reverse the moves to get the flexagon 

back into its original shape. You may wish to practice these procedures until you have 

a feel for them. Take your time. Then come back and we'll tell you how to flex your 

8-flexagon in ways similar to what you did for the 6-flexagon. 
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Figure 3.6 

Figure 3.7 

Constructing Flexagons 

Before we begin flexing the 4-8-flexagon, let us see how we could anticipate how 
many faces it has. Observe that the thicknesses on adjacent triangular sections are 1 
and 3 (see Figure 3.7). Thus we might expect (and it turns out to be true) that this 
flexagon will have 4 distinct faces. We challenge you to find those 4 faces by repeated 
flexing. 

The numbers in parentheses indicate the thicknesses 
of tape on each triangular section. 

We describe first a straight flex. Begin with your flexagon in the position shown in 
Figure 3.8 (if it doesn’t look exactly like this, turn it over). Then make mountain 
folds along the dotted lines, and bring the 4 vertices labeled_A, B, C, and D together 
below the flexagon. The top of the flexagon (surrounded by the vertices E, F, G, and 
H) will then “come apart” and the flexagon will lie flat again in the shape of a square. 
To repeat this straight flex, as we call it, you must turn the flexagon over. Practice this 
a few times and draw patterns on all the faces you can find. 



Figure 3.8 

Figure 3.9 
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Executing the straight flex. 

You are now ready for the more complicated pass-through flex.'To do this, begin 
with the other side of the flexagon up (as shown in Figure 3.9) and make mountain 

folds along the diagonal lines so that you obtain a 4-petaled arrangement. Then pull 

two opposite petals down. You will then have a square platform above the two petals 

you pulled down. Fold the sides of the platform down and let the flexagon open at 

the top as shown in Figure 3.9. Be patient, keep calm, stay happy! It will work! (In 

the very unlikely event that you don’t get it right the first time, try again—the very 

worst that can happen is that you will have to take your flexagon apart, reassemble it, 

and then try again.) 

D 

B D B 

— | — | 

C A i 
A | ye 
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ae 
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Executing the pass-through flex. 
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Figure 3.10 

Constructing Flexagons 

Practice flexing with the straight and pass-through flexes. How many faces can 

you find? (Answer: Only 3.) However, there is yet another way to flex. We call it the 

reverse pass-through flex, and we’ve saved it for last because it really is a little tricky. To 

perform this flex you do all the steps of the pass-through flex, but just at the point 
where you would open the flexagon, stop! At this point your flexagon looks like 4 
petals that are formed by 4 mountain folds and 4 valley folds. Now you complete the 
reserve pass-through flex by reversing the mountain and valley folds (as shown in 
Figure 3.10) and then opening the flexagon at the top as before. Now you will see the 
fourth face. 

B 
First do the pass-through flex, but don’t open it. 
Then reverse fold. aa. 

C {lL D 

Executing the reverse pass-through flex. 

After you have become familiar with your 4-8-flexagon you will be ready for a 
real treat—the 8-8-flexagon (octa-octa-flexagon). This model is no more complicated 
to construct than the 4-8-flexagon, and it is flexed in exactly the same way. 

We now have a special challenge for you. Recall that we know how to bring out 
all the faces on a 6-flexagon with a simple algorithm (the Tuckerman Traverse). We 
therefore felt sure that there must be a fairly simple algorithm for bringing out all the 
faces of an 8-flexagon. In fact, such an algorithm was shown to us by Jennifer Hooper 
(the Jennifer Pedersen of Chapter 6), but we should warn you that although each face 
appears on the top or the bottom in the course of exécuting this algorithmic sequence 
of flexes, it is not true that each face appears on the top, nor is it true that each face 
appears on the bottom. Can you find Jennifer’s algorithm? We'll give you a hint. Her 
algorithm involves only the straight flex and the reverse pass-through flex. But this is 
not surprising, since, as you may verify, the pass-through flex has the same effect as 
the following sequence of three flexes: 

reverse pass-through flex 
straight flex 
reverse pass-through flex 



top side 

bottom side 

Figure 3.11 

Figure 3.12 
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Figure 3.1] gives the pattern piece for the 8-8-flexagon. 

As you construct your 8-8-flexagon, you may notice that the thicknesses on 

adjacent triangular sections are 3 and 5 (which accounts for the 8 faces). Notice, 

however, as you flex your 8-8-flexagon, that it is possible to produce an arrangement 

where the thicknesses on adjacent triangular sections will be 1 and 7 (see Figure 

3.12). This is marvelous! It means that, just as we could figure out how to build 6- 

flexagons with 3n faces from 6-flexagons with fewer faces, we can figure out how to 

build 8-flexagons with 4” faces from 8-flexagons with fewer faces. 

VARINA 
YANN] Zo 

We now close this chapter and leave the exploration of these ideas to you. We feel 

certain some of you will want to take a strip of 

12,0842) 6 
ema 

isosceles right triangles and build the 12-8-flexagon (dodeca-octa-flexagon), which has 

5 and 7 thicknesses on adjacent triangular sections. You may even want to take a strip 

of 

16x18 2" 
more ese 

isosceles right triangles and construct the 16-8-flexagon. We could even believe that 

some people might want to make this giant flexagon just so that, when there is a lull 

in the conversation, they can talk about their hexa-cat-deca-octa-flexagon! 





4 Introduction to 

Polyhedra 

4.1 An Intuitive Approach to Polyhedra 

In Chapter 1 we looked at polygons in the plane and, in particular, we studied how 
to construct regular convex polygons. A natural extension of this idea in 3 dimensions 
is to study how to construct polyhedra, which are, in an obvious intuitive way, the 3- 
dimensional analogues of polygons. For example, just as a connected polygon divides 
the plane into two regions (the inside and the outside), a connected polyhedron 
divides space into two regions (again, the inside and the outside). A polygon consists 
of straight (uncurved) sides, that is, parts of lines, whereas a polyhedron consists of 
flat (uncurved) faces, that is, parts of planes. A rectangular box is an example of a 
polyhedron, but a cylindrical can of soup is not, because its entire boundary does not 
consist of flat faces. 

The formal study of polyhedra is very rich and intellectually rewarding, but we 
will restrain ourselves and postpone our general discussion of the mathematics until 
the last chapter. Here, and in the next chapters, we study polyhedra from the practical, 
constructive point of view. We think this is the appropriate order of events. You will 
discover that making the models we describe is a vivid and educational experience. 
Sometimes it will seem almost magical when the faces finally all fit together—and 
sometimes the final shape obtained is surprisingly beautiful. Of course, it can be 
exasperating if the pieces don’t fit together correctly, but we’ve tried to spare you this 
unpleasant experience by including in our instructions more information than is 
actually needed to construct the polyhedra, some of it of a very practical, nonmathe- 
matical nature. 

Nevertheless, most people find constructing polyhedra so exciting and absorbing 
that it would be quite pointless to try to do anything else at the same time. Teachers, 

especially, should be aware of this and should let their students enjoy the experience 

of constructing the polyhedra without other distractions. Don’t be too impatient, 

wait, and discuss the mathematical properties of the models after some models have 

been constructed. 
In the next section we describe a classical method for constructing polyhedra from 

what are called met diagrams, and we make some suggestions for how you can use 

what you learned in Chapter 1 to produce the nets. When you have constructed the 

models, you will be prepared to read Section 4.3, where we ask (and answer) the 

questions, What is a polyhedron? and What is a regular convex polyhedron? 
75 
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But let us get on with constructing some polyhedra so that you can begin to ask 

some questions of your own and be able to appreciate the definitions we give in 

Section 4.3. 

4.2 Constructing Polyhedra from Nets 

Required Materials 

[1 Small pieces of cardboard (from shoe boxes, for example) 

1 8%x11 in. (or bigger) sheets of heavy construction paper (colored paper is nice) 

LJ Pen or pencil 
L] White glue 
L] Scissors 

Optional Materials 

Gummed mailing tape about 2 in. wide (the heaviest quality you can find) 

Sponge 
Bow! of water 
Hand towel (or rag) 
Books 
Colored paper, acrylic paint, or glitter Leh RE cis esd ota) Te) 

The idea, which is especially suitable for young children (provided that an adult 

prepares the pattern pieces!), is simple. Think of taking a polyhedron, such as a cube, 

that is made from paper and slitting apart some of the edges so that all of the faces of 
the polyhedron lie flat and the whole thing still remains in one piece. The resulting 
configuration (of which, for any given polyhedron, there are many possibilities) 1s 
called a net for the polyhedron. Now, since our object is really to go the other way, 
that is, to construct the polyhedron from a net, it is necessary to add some tabs to the 
net so that we can glue the edges together. It is an interesting and useful fact that for 
any net of a polyhedron, if tabs are attached to alternate sides of the boundary of the 
net, then it will always be possible to assemble the polyhedron by using those tabs to 
join appropriate faces. Notice that we said appropriate faces. We were very careful 
about this because, as you may easily verify—in the case of the triangular dipyramid, 
for example—it is sometimes possible to join the faces of the net by means of the tabs 
in such a way that you don’t get the desired polyhedron—or, in fact, any polyhedron 
at all! Where we think it would be helpful, we have added arrows to the net to 
indicate that the two sides at the beginning,and end of the arrow should be joined to 
form an edge of the polyhedron. 

Figure 4.1 shows nets, with the tabs attached, for a special class of polyhedra 

called convex deltahedra (we explain the word convex in the next section; a deltahedron is 
a polyhedron, all of whose faces are triangles). An illustration of the completed model 
(and its name) is shown next to each net so that you will have an idea of how the 
completed polyhedron should look. 

General Instructions (Traditional) 

1. Make a cardboard pattern in the shape of an equilateral triangle. See Section 1.3 
for a method of folding an equilateral triangle if necessary. 

2. Decide which polyhedron you want to make. 
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. Use your pattern piece to duplicate the required net on a piece of construction 
paper. Press firmly with your pen or pencil so that it will be easy to fold along the 
edge lines. The shape of the tabs is not critical, as long as they do not extend 
beyond the sides of the triangle you are using for a pattern. 

. Cut out the pattern piece and carefully valley-fold along each of the pen (or 
pencil) lines. 

. Glue the tabs in place. Notice that, because you made valley fold lines on the pen 
(or pencil) lines, the lines will be on the inside of the model. This will give a 
cleaner looking model. 

. Cut out colored triangles and glue them on the faces, paint the faces with acrylic 
paint, or spread glue on the faces and sprinkle glitter on them. In a word, be 
creative! (optional) 

General Instructions (Alternative) 

Figure 4.1 

I 
2. 
3 

Select the polyhedron you want to make. 
Count the number of faces and tabs. 
Fold a strip of heavy gummed tape UDUD... until you have about twice as many 
triangles as there are faces and tabs on the model you want to make. (Keep any 
extra triangles for the next model.) 

. Cut and glue portions of the UD tape together to make a duplicate of the desired 

pattern piece. Do this so that the gummed side is on the inside of the finished 
model. Here it is particularly easy to make tabs in the shape of equilateral triangles; 
for ease of construction, mark them so that you will know they are tabs and not 
faces. 

. Place heavy books on the pattern piece and tabs while they dry. This keeps the 
faces flat. 

. Fold and crease all the edges so that the edges will be sharp. 

. Glue the tabs in place (paying attention to the arrows, if there are any on the net 
you chose). 

. Color the faces. (optional) 

Notice that the triangular tabs add strength to the model and, since they cover the 
entire face, their function is undetectable. Notice, also, that with this method all of 

the gluing is done on the outside of the model. We think this is a distinct improvement 
over those instructions that tell you to glue the tabs zmszde the polyhedron. (We always 

find that the last tab is then almost impossible to do neatly, if it can be done at all.) 

Now try it! 

Tetrahedron 

Convex Deltahedra (Based on patterns from Geometric Playthings by Jean J. and Kent A. 

Pedersen.) 
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Figure 4.1 cont. 

Dodecadeltahedron 

Tetracaidecadeltahedron 
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Figure 4.1 cont. 
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Figure 4.2 

4.2 Constructing Polyhedra from Nets 81 

Notice that the idea of constructing polyhedra from nets works just as well if the 
faces are regular squares or pentagons. So we now give you the nets for the hexahe- 
dron, or cube, and the dodecahedron and leave the necessary modification of the 
Traditional General Instructions to you (see Figure 4.2). We give one minor word of 
advice. The tabs are not shown on these nets; but, in the case of the cube, you 

proceed by making one square cardboard pattern piece (see Section 1.7 if you’ve 
forgotten how to fold a square) and drawing a net. Then add the tabs to alternate 
sides of the boundary of the net to produce a pattern for the cube. You may wish to 

use tabs that are themselves square, since they will then reinforce the construction and 

leave no trace of their function. 

Cube (hexahedron) etal 

Dodecahedron 

In a similar way, if you begin with one cardboard pentagon (you can produce the 

pattern for it by the method of Section 1.4), you can draw the net for the dodecahe- 

dron and add the tabs to alternate sides of the boundary to form the desired pattern 

piece. Here, however, it is not possible for all the tabs to be in the shape of a regular 

pentagon. (Do you see why?) However, if the size of the pentagon you used to make 

your net is the same as that of the pentagon formed by folding along short lines of 

the U*D” tape, then you can use more of this same UD” tape to cut out tabs to glue 

onto the net diagram (using a sponge and water). Simply cut along every other short 

line, as shown here, to get the tabs. 

/ cut / cut 
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Alternative Construction 

It is also possible to construct a net from a single U’D? strip of tape. First think of a 
short section of the UD? tape 

Now take a strip of tape containing 30 short sections and fold it along certain short 
lines, gluing all the overlapping portions, so that the result looks exactly like this (a 
small sponge and a bow] of water are handy—with a hand towel or rag to wipe up 
the excess water): 

The only tricky part here is to realize that the pentagons at the top and bottom of this 
figure are formed from five short sections (zigzagging back and forth to form a very 
strong pentagon). Once the net is prepared, tabs can be made, as before, Oy cutting 
the U*D” tape on every other short line. 

Practical Hints 

1. Be certain to glue all of the overlapping portions. 
2. Let the net with its tabs attached dry underneath some heavy books so that the 

faces will be as flat as possible. 
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3. Crease all of the edge lines firmly so that the edges will be sharp and straight. 
4. Where tabs are attached, crease the edge firmly before gluing the other half of the 

tab to the model. 
5. Be patient; don’t try to go too fast. Wait until each tab is stable before gluing the 

next one. 

Now that you have constructed some polyhedra, you should get to know them. 
Play with them, admire them, and notice how many faces they have, what they look 
like from various directions, and how they féel. Do you notice anything about them 
when you close your eyes and hold them that you didn’t notice by simply looking at 
them? Experiment by holding them in front of a light and looking at the shadows 
they cast. Try classifying them according to certain properties. 

4.3 What Is a Regular Polyhedron? 

Before we attempt to answer this question we should be more precise as to what we 
mean by a polyhedron. 

Let us begin by looking again at polygons. We distinguish between a polygon (or 
polygonal path) and a polygonal region. A polygon consists of edges hinged together at 
vertices and does not contain its interior (recall that it was the top edge of the tape in 
Chapter 1 that formed the polygon). Similarly, we say that a polyhedron consists of 
faces hinged together at edges, and it does not contain its interior. Thus, strictly 
speaking, a polyhedron is a surface and not a solid, although it is sometimes loosely 
referred to as a solid (for example, the Platonic Solids, which we will discuss shortly). 

Now, just as each vertex of a polygon is an endpoint of exactly two edges, so is 
each edge of a polyhedron the side of exactly two faces. Thus a polyhedron should be 
regarded as a collection of faces, each of which is a polygonal region; and two 
intersecting faces intersect precisely in a common side of each, or in just one vertex 
that is a common vertex of each face. For examples, look at the figures next to the net 
diagrams in Figure 4.1. 

A polygon is connected, meaning that it is all in one piece; the polyhedra we 

consider are also connected in this sense. Further, just as we lay particular emphasis 

on convex polygons, so too we confine our attention here to convex polyhedra. We 

define a polyhedron to be convex if, given any two points P and Q of the region 

bounded by the polyhedron, then every point of the straight line segment PQ belongs 

to that region. Alternatively, we may say that if P and Q are any two points of the 

polyhedron, the straight-line segment PQ consists of points of the polyhedron or its 

interior. 
So in this section we will be discussing convex connected polyhedra as here 

defined. We emphasize that this is a very restrictive definition. In particular, the 

restriction to convex polyhedra is far more significant than the corresponding restric- 

tion to convex polygons. Without this restriction, it is not even meaningful to talk of 

“the region bounded by the polyhedron.” You may think of the polyhedra we wish to 

discuss as being obtained from a spherical surface made of some plastic material by 

“pushing and pulling” it around until it consists of flat polygonal faces as described. 

It is customary to name polyhedra in a manner similar to the way we named 

polygons—that is, just as we incorporated the number of sides of a polygon into its 

name (thus a pentagon has 5 sides), we now incorporate the number of faces a 
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polyhedron possesses into its name.* We next list the names of some of the better- 

known polyhedra. You will note that the part preceding hedron designates the number 

of faces (poly means “many”). In the case of a convex polyhedron, each of these faces 

can be used as a base when a model of it is set on a table. This explains the use of the 

generic term hedron, which is the Greek word meaning “base” or “seat.” 

Some Names 

A polyhedron with: 1s called a: 

4 faces tetrahedron 

5 faces pentahedron 
6 faces hexahedron 

7 faces heptahedron 
8 faces octahedron 

10 faces decahedron 

12 faces dodecahedron 

14 faces tetracaidecahedron (caz means “and”) 
15 faces pentacaidecahedron 
16 faces hexacaidecahedron 

20 faces icosahedron 

In Chapter 1 we defined a regular convex polygon (with 3 or more sides) to be a 
polygon with all sides equal and all angles equal (you may recall that only in the case 
of the triangle does each of these conditions imply the other). So now we ask: What 
would be an appropriate analogous requirement for a regular polyhedron? 

We reason that, since the faces of polyhedra are analogous to the sides of poly- 
gons, it should make sense to require that every face on a regular polyhedron should 
be the same regular polygon. We can readily agree, however, that this wouldn’t be a 
strong enough requirement. For example, observe that the polyhedra that were con- 
structed entirely of equilateral triangles are not all really regular. Thus, if you view the 
triangular dipyramid from the top vertex you see 3 triangles meeting, but if you view 
it from a side vertex you see 4 triangles meeting. A regular polyhedron should surely 
look the same when viewed from any vertex (or from any edge or from any face). So 
it would be reasonable to require that the arrangement of the polygonal faces on a 
regular polyhedron should be exactly the same at every vertex. Let us impose this 
extra restriction and then see, first of all, if any polyhedra exist that satisfy our 
requirements and, second, if the resulting polyhedra deserve to be called “regular” 

Following this idea we let p stand for the number of sides of each regular face. 
Then we know, from Section 2.1, that the interior angle of the regular p-gon, mea- 
sured in degrees, is 

(p-2)180 
P 

*It is common, in ordinary language, to refer to the sides of a cube; thus “a cube has 6 sides.” 
We strongly advise you to avoid this very misleading use of the word side and to use instead the 
mathematician’s word face; thus “a cube has 6 faces.” We use the word side exclusively to refer to 
a line segment forming part of the boundary of a face. Thus, for us, a cube has 6 faces, and 
each face has 4 sides. 
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Now if we consider the arrangement of q of these regular p-gons about a single 
vertex, we see that the sum of the face angles about that vertex is 

a te 
Notice that p=3. However, we also have g=3, because at least 3 faces must come 

together at each vertex. 
The concept of convexity now becomes important. It is a fact, first remarked by 

Euclid (which we illustrate but do not prove), that the sum of the face angles about 
any vertex on a convex polyhedron must be less than 360°. All the models you have 

constructed in this section illustrate this fact. However, we see from Figure 4.3(b) 

that the converse is not true, that is, the. sum of the face angles at every vertex may be 

less than 360° without the polyhedron being convex. 

(a) Convex polyhedron (b) Nonconvex polyhedron with the same 
face angles at each vertex as its convex 
cousin on the left. 

So now let us look for values of p and qg, with p=3 and q>3, such that 

(22189) < 360 

or 

pq — 24. < 2p 
after dividing by 180 and multiplying by p. Straightforward algebra then gives the 

following sequence of equivalent inequalities: 

Phaatoe Tot ae 
py 2p — 24 + 4 <4 

p(q—2) — 2(q-2) <4 
(p—2) (q-2) <4 

Notice that this last expression is symmetric in p and g—and thus if you find any 

values for p and q.that satisfy this inequality, you can find the “complementary” 

solution by exchanging the values for p and 4. Notice also that since p=3 and q23, it 
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follows that p— 221 and g— 221. Thus if (p— 2)(q—2)<4, then (p— 2)(q—2) must 
be 1, 2, or 3. When the product (p—2)(qg—2) is 1 we must have 

p-2=landq-2=1 

so that we obtain p= 3 and g=3. 

If (p —2)(q—2) =2, then either 

p-—2=2 and q-2=1 

or 

p-2=landq—-2=2 

Thus, in the first instance, p=4 and g= 3; in the second instance, p= 3 and g=4. 

Finally, if (p —2)(q— 2) =3, then either 

p-2=3andq—-2=1 

or 

p-2=landq-2=3 

The first equations give p=5 and q= 3; the second equations yield p= 3 and g=5. 

Thus we see that the only possible solutions to our inequalities (p —2)(q—2) < 4, 
Pp, 4 2 3 are 

In the form of a table, these give 

(P, 4) 
( 

v 

—_~ ~~ Ot Ww W WwW oO OW BP YW Se eee, d 

In fact, each solution corresponds to an actual’ polyhedron—and you have already 
been given instructions for constructing them. Each value of (p, g) determines exactly 
one polyhedron. The polyhedra in this very special set are known as the Platonic Solids 
(see Figure 4.4). We remind you that, as described, they are not really solid because 
they do not contain their interiors. But we also note, with some pleasure, that they 

satisfy our criteria for regularity; indeed, nobody could conceivably dispute the claim 
that they are regular! Thus we adopt our provisional definition of regularity, and we 
are in the happy position of knowing all the regular polyhedra—they are just the five 
Platonic Solids. 
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Tetrahedron 

eT 

(3, 3) 

Hexahedron (or cube) Octahedron 

( (3, 4) 

Dodecahedron Icosahedron 

(3, 5) (5, 3) 

The notation (p, q) means that each face is a regular p-gon and 
q faces come together at each vertex. 

Figure 4.4 The Platonic Solids. 
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5 Constructing 

Dipyramids from a 

Single Straight Strip 

Required Materials 

L About 5 ft of 2-in. gummed mailing tape (or a longer length of wider tape if you 
want a larger model). The glue on the tape should be the type that needs to be 
moistened to become sticky. Don’t try to use tape that is sticky to the touch when 
it is dry—unless you want an exercise in frustration. 

Optional Materials 

L 
L 
Lal 
L 
LJ 
fx] 
L 

Scissors 
Sponge (or washcloth) 
Shallow bowl 
Water 
Hand towel (or rag) 
Some books 
Colored paper of your choosing. Construction paper works well, but it must be 
cut into strips and glued together to get long enough pieces. Gift wrapping or 
butcher paper that comes in rolls is particularly easy to use for these models. 

5.1 Preparing the Pattern Piece 

Begin by folding the gummed mailing tape precisely as shown in Section 1.3. Do this 
with the gummed side up, so you can see your fold lines better. Continue folding 
until you have 40 or more triangles. Cut or carefully tear the tape on the last fold line. 
Then cut off, or tear off, a strip containing 31 triangles counting from this end (that 
is, mot from the end from which you began folding). 

Next place your strip of 31 equilateral triangles so that one end appears as shown 
in Figure 5.1 with the gummed side down. Mark the first and eighth triangles exactly as 
shown (note the orientation of each of the letters within their respective triangles). 

Figure 5.1 Left-hand end of pattern piece. 
89 
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5.2 Assembling the Model 

Figure 5.2 

Begin by placing the first triangle over the eighth triangle so that the corner labeled 

(A) is over the corner labeled A, is over B, and © is over C. Hold these two 

triangles together, in that position, and observe that you have the beginning of a 

double pyramid for which there will be five triangles above and five triangles below 

the horizontal plane of symmetry, as shown here. You may wish to secure the overlap- 

ping triangles by moistening just a small part of the center of the gummed triangle. 

N 

Ae 
S 

Completed pentagonal dipyramid. 

Now you can hold the model up and let the long strip of triangles fall around this 
frame. If the strip is folded well, the remaining triangles will fall into place. When you 
get to the last triangle, there will be a crossing of the strip that the last triangle can 
tuck into, and your pentagonal dipyramid 1s complete! See Figure 5.2. 

If you have trouble because the strip doesn’t seem to fall into place, there are two 
frequent explanations. The first (and more likely) problem is caused by not folding 
the crease lines firmly enough. This situation is easily remedied by refolding each 
crease line with more conviction, and it is sometimes helpful to fold each crease line 
in both directions (so that each fold line is scored as both a mountain and a valley 
fold). The second common difficulty occurs when the tape seems too short to reach 
around the model and tuck in. This problem can be remedied by trimming off a tiny 
amount from each edge of the tape (see Section 6.3 for an explanation of this 
phenomenon). 

5.3 Variations 

If you want to make a more attractive model, you may glue the strip of triangles onto 
a piece of colored paper. To do this, first prepare the piece of paper on which you 
plan to glue the prefolded strip. Make certain it is long enough and that it all lies on a 
flat surface. 3 

Place a sponge (or washcloth) in a bowl. Add water to the bow] so that the top of 
the sponge is very moist (squishy).* Moisten one end of the strip of triangles by 
pressing it onto the sponge; then, holding that end (yes, it’s messy!), pull the rest of 
the strip across the sponge. Make certain the entire strip gets wet and then place it on 
the colored paper. Use a hand towel (or rag) to wipe up the excess moisture and to 
smooth the tape into contact with the colored paper. 

*Perhaps some very old clothes should be included among the optional materials, if not among those 
required! 
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Figure 5.3 

Put some books on top of the tape so that it will dry flat. When the tape is dry, 
cut out the pattern piece, trimming off a small amount of the gummed tape (about 
“ie to Ys of an inch) from the edge as you do so (this serves to make the model look 
neater and, more importantly, allows for the increased thickness produced by gluing 
the strip to another piece of paper). Refold the piece so that the raised ridges are on 
the colored side of the paper. 

You can now construct the polyhedron exactly as before—except that now you 
probably won’t need to label any of the triangles. If you find it difficult to make the 
last triangle tuck in because it won’t reach, you should trim off a little more from each 
edge. 

Next, observe from Figure 5.2 that the completed pentagonal dipyramid has a 
well-defined equatorial pentagon ABCDE going around its middle. Each edge of this 
equatorial pentagon is incident with exactly two triangular faces (for instance, AB is 
incident with face NAB and face SAB), and each triangular face is incident with 
exactly one edge of the equatorial pentagon. The two faces sharing an equatorial edge 
are said to be associated. If the faces are labeled at random with the digits 0, 1, 2, 3, 4, 

5, 6, 7, 8, 9, then we may use the pentagonal dipyramid as a die. When we throw the 
pyramid, it comes to rest on one face, and we declare the number on the associated 
face to be the result of the throw. In this way this die becomes a device for generating 
random numbers in base 10. There is a slight bias due to the fact that all but one of 
the faces of the die are covered by exactly three triangles from our original strip, 
whereas one face is covered by four triangles. However, this bias can be virtually 
eliminated by trimming off half of the first and last triangles (so that the pattern piece 
becomes a rectangle) and pretending the whole triangle is there when you assemble it. 

You may wish to figure out how to make the analogous construction of a triangu- 
lar dipyramid from a single strip of 19 equilateral triangles. If you want a fair 
random-number generator for the numbers 0, 1, 2, 3, 4, 5, trim off half of the first 

and last triangles. Knowing that the finished model should appear as shown in Figure 
5.3 and that you should begin by forming the top three faces with one end of the strip 
should get you off to a good start. 

Completed triangular dipyramid. 

You may discover that there are ways of constructing these dipyramids with fewer 

than the number of triangles specified, but the real question is, Will they be balanced, 

in the sense that every face is covered by the same number of triangles? It is not a 

difficult question to answer—and it is therefore left to the reader as an exercise. 

The authors wish to thank FILM IDEAS for granting permission to use ideas in this chapter that 

originally appeared in the booklet accompanying their video tape “Mathematics for Tomorrow’s World.” 





6 Constructing 

Jennifer’s Puzzle 

Required Materials 

L] Strips of paper (preferably of different colors) 
L] Heavy paper, such as lightweight cardboard 
L] Paper clips 

Optional Materials 

C1 Ruler 
[] Compass 

6.1 Facts of Life 

In many instances involving the use of geometry in the real world, we need to make 

adjustments that take into account the realities of life. For example, paper comes in 

various thicknesses (which are never zero!) and the interior of every container must 

be larger than what it contains. These and other very elementary facts of reality affect 

how we are able to take practical advantage of the theorems obtained from our study 

of the geometry of idealized lines, planes, and solids. 

As the section title implies, we concern ourselves here with the details of practical 

construction, in this case of a particular set of nested polyhedra. Namely, we construct 

an octahedron and 4 tetrahedra that fit inside a larger tetrahedron that, in turn, fits 

inside a cube. As you will see—assuming that you become actively involved in 

carrying out these constructions—overcoming the difficulties encountered in using, 

in a real-life situation, a theory that is perfect in principle is very much a skill of the 

eyes and hands as well as of the mind. 

What follows is simply a description of the construction, along with some hints 

about how to solve Jennifer’s puzzle; we do not discuss the many important mathemat- 

ical insights to be gained from the solution. After completing the construction and 

assembling your puzzle, you may wish to consult Chapter 12 for some of the mathe- 

matical consequences of solving the puzzle. The details have, in fact, already appeared 

in a Filipino journal (see the references at the end of this chapter), which may not be 

readily accessible to you. 
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6.2 Description of the Puzzle 

The puzzle consists of 17 strips of paper and an instruction sheet. Figure 6.1 and the 

instruction sheet from Jennifer’ original puzzle identify the 17 puzzle pieces and, 

simultaneously, tell what is required in the solution. 

L 

(a) (8 of these) 

pee. (b) (4 of these) 

(2 of these) 

(d) (3 of these) 

OY (Note: € means a small positive 
number, to be chosen 
experimentally. Not every 
occurrence of € need represent 
precisely the same number.) 

The completed puzzle 

Figure 6.1 

INSTRUCTIONS FOR JENNIFER’S PUZZLE: TRY IT! 

. You get all the little strips of 5 triangles each (there should be 8) and braid 
them into 4 tetrahedra. 

. Then you get the 4 strips of 7 triangles each and braid an octahedron (that is, 
an 8-faced polyhedron). 

. Now you take the 2 big strips of 5 triangles each and braid a large 
tetrahedron as before, but in this one you put the 4 little tetrahedra and the 
octahedron. . 

. Finally, take the 3 strips of 5 squares each and braid a cube, into which you 
put the large tetrahedron. 

GOOD LUCK! 

Jennifer Pedersen 

9th Grade Geometry Project 
Castillero Junior High School 

San Jose, California 
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6.3 How to Make the Puzzle Pieces 

The choice of material for the strips shown in Figure 6.1(a) and (b) is not of great 
importance, as long as the material has enough bulk and crispness to hold a good 
fold. Of course, the puzzle will be more interesting visually if you use paper of 
different colors for different strips; that is, use a different color for each of the two 

strips that form a small tetrahedron, and for each of the four strips that form the small 
octahedron. 

The pattern pieces should be scored so that all the dotted lines are valley folds. 
One way to do this is to start with a strip /onger than you really need and draw an 
angle of 60°, as shown: 

60° 

Then fold the paper down: 

Then unfold: 

x 

crease Ze 

Notice that along the fold line there is a small width (crease) of paper—this crease is 

usually easier to see on the underside of the paper. The width of the crease will 

depend on the thickness of the paper used; for this reason it is very important that the 

next fold line be made precisely as shown: 

\ Avoid covering any part of the crease produced by the previous fold line. 
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Continue folding this way until you have the required number of triangles for steps 1 

and 2 of the instructions for Jennifer’s puzzle. 
For the large tetrahedron and the cube it is necessary to use heavier paper, such as 

lightweight cardboard. Here, again, this poses problems along the fold lines. The 
thicker the paper, the more pronounced these difficulties become. What is required is 

mostly an awareness of the problem so that when you draw the pattern pieces you 
leave room for the hinge. | 

For the large tetrahedron, begin by determining, experimentally, the length 
2L +€, as shown in Figure 6.1(c). This is easily done by placing the completed 
octahedron and its 4 tetrahedra together, as shown in Figure 6.2, and measuring the 
length that will be required in order for them to fit inside the bigger tetrahedron. 
Then, using a ruler and compass or some other method (for example, paper-folding), 
construct, on a lightweight piece of paper, an equilateral triangle of the appropriate 
edge length. This pattern triangle may then be cut out and used to draw the big strip 
of 5 equilateral triangles, as shown in Figure 6.1(c). The width of the space between 

successive triangles may be determined by folding a sample of the heavy paper and 
measuring the width of the resulting crease. The pattern for the strip is then obtained 
by first drawing parallel lines so that the distance between them is equal to the height 
of your pattern triangle. Next, using the pattern triangle, draw the 5 triangles so that 
each one is separated from its neighbor by a pair of parallel lines (providing for the 
crease between them). Score the crease lines firmly so that, when the strip is cut out, 
it will fold easily and smoothly between the triangles. Fold each pattern piece so that 
the score lines will be on the inside of the completed model. 

The 3 strips for the cube are constructed using the same underlying principles, 
with one minor additional feature. Begin by determining, experimentally, the length 
of the diagonal of the required square by placing an edge of the completed big 
tetrahedron along the diagonal of an oversized square. In this way determine the 
appropriate size for a pattern square. From a piece of lightweight paper, cut out one 
pattern square. Then draw parallel lines on the heavy paper so that the distance 
between them is equal to the length of the szde of the pattern square. Then, using 
your pattern square, draw the 5 squares of Figure 6.1(d), so that each square is 
separated from its neighbor by parallel scored lines. But—and this is the additional 
feature to which we referred—in this case you should make the allowance for the 
crease about twice as wide as that for the width between the triangles. This is because 
the strips of the cube must wrap around each other when the model is constructed 
(see the diagram of the completed cube in Figure 6.1). These pattern pieces should 
then be cut out and folded along the score lines so that the score lines will be on the 
inside of the completed model. : 

Now, just in case you forget some of the real-life details and end up with pattern 
pieces that don’t fit together nicely because there was not enough allowance made for 
the hinge, there is a way to salvage your effort. The “way out” does not give as good 
a result as carefully following the original advice, but it is very comforting psychologi- 
cally. It is to trim off from each edge of the defective piece a small amount, as shown: 



Figure 6.2 
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It is not difficult to see that what this does is to truncate at the vertices of the finished 
model; but if only a small width is trimmed off, the effect on the appearance of the 
finished model is not noticeable—especially if it is made from brightly colored paper. 

Of course, the point of the puzzle is first to figure out how to construct each of 
the required polyhedra from the specified number of strips and then to get them to 
fit together as described in the instructions. If you are adventurous, you may wish to 
try this first on your own. Don’t reject this suggestion too quickly; you are very likely 
to be more successful than you would guess. You can always return to the following 
instructions later. 

6.4 Assembling the Braided Tetrahedron 

Figure 6.3 

On a flat surface, such as a table, lay one strip over the other strip exactly as shown in 
Figure 6.3. The fold lines should all be valley folds as viewed from above the table. 
Think of triangle ABC as the base of the tetrahedron being formed; for the moment, 
triangle ABC remains on the table. Then fold the bottom strip into a tetrahedron by 
lifting up the two triangles labeled _X and overlapping them, so that C’ meets C, B’ 
meets B, and D’ meets D. Don’t worry about what 1s happening to the top strip, as 
long as it stays in contact with the bottom strip where the two triangles originally 
overlapped. Now you will have a tetrahedron, with three triangles sticking out from 
one edge. Complete the model by carefully picking up the whole configuration, 

holding the overlapping triangles X in position, wrapping the protruding strip 

around two faces of the tetrahedron, and tucking the Y triangle into the open slot 

along the edge BC. 
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6.5 Assembling the Braided Octahedron 

To construct the octahedron, begin with a pair of overlapping strips held together 

with a paper clip, as indicated in Figure 6.4(a). Fold these two strips into a double 

pyramid by placing triangle a, under triangle Aj, triangle a, under triangle A, and 

triangle under triangle B. The overlapping triangles J and B are secured with 

another paper clip, so that the configuration looks like Figure 6.4(b). Repeat this 

process with the second pair of strips, and place the second pair of braided strips over 

the first pair, as shown in Figure 6.4(c). When doing this, make certain the flaps with 

the paper clips are oriented exactly as shown. Complete the octahedron by following 

the steps indicated in Figure 6.4(c). You will note that after step 1 you have formed 

an octahedron; performing step 2 simply places the flap with the paper clip on it 

against a face of the octahedron; in step 3, you should tuck the flap sside the model. 

Figure 6.4 

When you become adept at this process you will be able to slip the paper clips off 
as you perform these last three steps—but this is only an aesthetic consideration, 

since the clips will be concealed inside the completed model. 
After completing the construction of the 4 small tetrahedra and the octahedron, 

take the models and place a tetrahedron on alternate faces of the octahedron, as 
shown in Figure 6.2(a). Construct the large tetrahedron containing these polyhedra 
by placing this configuration on triangle ABC after the two large strips have been put 
in the position shown in Figure 6.3. | 

6.6. Assembling the Braided Cube 

The cube may be constructed by first taking one strip and clipping together, with a 

paper clip, the end squares. Then take a second strip and wrap it around the outside 

of the “cube” so that one square covers the clipped squares from the first strip and the 

end squares cover one of the square holes. Secure the end squares of the second strip 
with a paper clip. Make certain that the overlapping squares of the second strip do 

not cover any squares from the first strip and that the first paper clip is covered. It 
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should now appear as shown in Figure 6.5(a). Now slide the third strip underneath 
the top square so that two squares of the third strip stick out on both the right and 
left sides of the cube. Tuck the end squares of this third strip inside the model 
through the slits along the bottom of the cube, as indicated in Figure 6.5(b). If you 
now turn the completed cube upside down, it may be opened by pulling up on the 
strip that covers the top face (this square will be attached inside the model by a paper 
clip, so you may have to pull firmly) and folding back the flaps that were the last to 
be tucked inside the model. 

‘A (a) Coe (b) 

Figure 6.5 

If you’ve done this carefully, you can insert the large tetrahedron into the cube 
and close the cube by tucking the flaps back into their original positions. If you have 
trouble placing the tetrahedron inside the cube, take another look at Figure 6.2. Once 
the tetrahedron is placed inside the cube the paper clips are not necessary for holding 
the faces of the cube in place, because the tetrahedron will exert pressure from inside 
that will hold the strips in their proper positions.* 

A Variation 

The given construction of the cube (with a different color on each strip) will yield a 
cube with opposite faces of the same color, because each strip goes alternately over 
and under each successive strip it meets as it travels around the cube. There is another 
construction, using the same strips, that produces a cube in which pairs of adjacent 
faces are the same color. In this construction each strip goes over two strips and then 
under two strips as it travels around the cube. Once you have mastered the idea of the 
first construction, you may wish to assemble your cube strips in this alternative 

configuration. 
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7 Constructing 

Pop-up Polyhedra 

Required Materials 

Piece of brightly colored posterboard 22 in, x 28 in. 
6 rubber bands (about 6 in. in circumference) 
Yardstick 
Ballpoint pen 
Scissors 
Paper clips 
White glue (for paper) on DOO Cees) 

(Measurements are in inches.) 

Figure 7.1 Pattern pieces for the octahedron (top) and cube (bottom). 
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7.1 Preparing the Pattern Pieces 

Begin by drawing the pattern pieces on the posterboard as shown in Figure 7.1. Press 
hard with the ballpoint pen so that the posterboard will fold easily and accurately in 
the final assembly. Label the points indicated A, B, C, D. Be certain to put the labels 

on what will become the cube or the octahedron when the model is finished—not on 
the paper that surrounds it. Cut out the pattern pieces and snip nS notches at A and 
B (but ot the notches at C and D). 

Figure 7.2 

7.2 Constructing the Pop-up Cube 

Figure 7.3 

i Crease the cube pattern piece on all the indicated fold lines, remembering that the 
unmarked side of the paper should be on the outside of the finished cube. Thus 
each individual fold along a marked line should hide that marked line from view. 

. Position the pattern piece so that it forms a cube with flaps opening from the top 
and the bottom, as shown in Figure 7.2. 

. Attach the two rectangles together inside the cube with paper clips (this is tempo- 
rary). Then, with the cube still in its wp position, cut through both thicknesses of 
paper at once to produce the notches at C and D. 

. Connect three rubber bands together, as shown in Figure 7.3. 

GSH=aL ») 

. Slide one end-loop of this chain of rubber bands through the slot at_A and the 
other end-loop through the slot at B, leaving the knots on the outside of the cube. 

. Stretch the end-loops of the rubber bands so that they hook into slots C and D, as 
shown in Figure 7.4(a). The bands must produce the right amount of tension in 
order for the model to work. If they are too tight the model will not go flat, and if 
they are too loose the model won’t pop up. You may need to do some experiment- 

ing to obtain the best arrangement. 

. Remove the paper clips when you are satisfied that the rubber bands are perform- 
ing their function. 

. To flatten the model, push the edges labeled E and F toward each other, as shown 
in Figure 7.4(b), and wrap the flaps over the flattened portion, as in Figure 
7.4(c). 
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Figure 7.4 

9. Holding the flaps flat, toss the model into the air and watch it POP UP. If you 

want it to make a louder noise when it snaps into position, glue an additional 

square onto each visible face of the cube in its up position. This also provides the 

opportunity of adding color to the finished model. 

7.3 Constructing the Pop-up Octahedron 

1. Crease the octahedron pattern piece on all the indicated fold lines so that the 

marked lines will be on the inside of the finished model. 

2. Position the pattern piece so that it forms an octahedron, with triangular flaps 

opening on the top and bottom, as shown in Figure 7.5(a). Don’t be discouraged 

by the complicated look of the illustration—the construction is so similar to the 

cube that once you have the pattern piece in hand, it becomes clear how to 

proceed. 
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Figure 7.5 

3. Secure the quadrilaterals inside the octahedron with paper clips and cut through 
both thicknesses of paper to make the notches at C and D. Angle these cuts 
toward the center of the octahedron (so that the rubber bands will hook more 
securely). Gluing the quadrilaterals inside the model to each other in their proper 
position produces a sturdier model. 

4. Connect three rubber bands together as shown in Figure 7.3. 
5. Slide one end-loop of the rubber band arrangement through slot A and the other 

end-loop through slot B, leaving both knots on the outside of the octahedron. 
6. Stretch the end-loops of the rubber bands so that they hook into the slots at C and 

D. Some adjustment in the size of the rubber bands may be necessary, so experi- 
ment to find the best arrangement. 

7. Remove the paper clips when you have a satisfactory arrangement of rubber 
bands. 

8. To flatten the model, put your fingers inside and pull at the points A and D so that 
you are pulling those opposite faces away from each other until each one is folded 
along an altitude of that triangular face. Then wrap the triangular flaps over the 
flattened portion so that it looks like Figure 7.5(b). 

9. Holding the triangular flaps flat, toss the model upwards and watch it POP UP. 
Just as with the cube, this model will make more noise if you glue an extra triangle 
on each exposed face. This again gives you the opportunity of adding color to the 
finished model. See Figure 7.6. 

NOTE If you store either the cube or the octahedron in its flattened position for 

several hours or days, it may fail to pop up when tossed in the air. This is because 
rubber bands temporarily lose their elasticity when stretched continually for long 
periods of time (a hysteresis effect). If the rubber bands have not begun to deterio- 
rate, the model will behave normally if you let the rubber bands contract for a short 
while. 



Figure 7.6 
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Flattened pop-up polyhedra. The same polyhedra one second later. 

The authors wish to thank Les Lange, the Editor of California MathematiCs, for giving permission to use 
some of the ideas that were originally part of Jean Pedersen’s article “Pop-up Polyhedra,” California 
MathematiCs (April 1983), pp. 37-41. 





8 Constructing 

Dodecahedra 

The faces of the 

dodecahedron 

small stellated dodecahedron 

great dodecahedron 

great stellated dodecahedron ots a 

The construction of each dodecahedron described in this section involves the use of 
gummed mailing tape. In each case the tape must first be folded by the U*D? proce- 
dure described in Section 1.4. All the models in this section will have 12 faces, and 

each face will have 5 sides. It is somewhat surprising that 12 of the regular convex 
pentagons (Figure 8.1(a)) can interpenetrate each other to form the great dodecahed- 

von—but it is even more astonishing that 12 of the pentagrams (Figure 8.1(b)) can 
also interpenetrate each other in two very different ways, to form, in one case, the 
small stellated dodecahedron and, in the other, the great stellated dodecahedron. It isn’t at 
all surprising that 12 pentagons with a hole in each (Figure 8.1(c)) can form the 
framework of an ordinary convex dodecahedron—but, in fact, it is very interesting to 
construct this model, the golden dodecahedron, by simply braiding 6 strips of the UD? 
tape (of Section 1.4). The result is very beautiful! However, we should remark that, 
strictly speaking, these fancy dodecahedra are not polyhedra in the precise sense of the 
definition of a polyhedron we gave in Section 4.3. Of course, geometers often use a 
less restrictive definition, by which these models would qualify. 

(a) (b) (c) 

Figure 8.1 

107 
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In this chapter we describe, in detail, how to construct each of these models. In 

each case you will need to know the folding procedure of Section 1.4. We refer to this 

particular folded tape (the UD” tape) as a (/s)-tape, because the smallest angle on the 

tape is 36°, or (7/5) radians (see the final remark of Chapter 2). You may wish to 

refresh your memory by folding a long strip of this tape and creasing it to produce 

each of the pentagons shown in Figure 8.2. 

as HESS 

Figure 8.2 Some pentagons constructed from the (7/5)-tape 

The dodecahedra for which instructions are given next are arranged in ascending 

order of difficulty of construction. In each case it is assumed that you have an ample 

supply of gummed mailing (%/)-tape. 

8.1 The Golden Dodecahedron 

Required Materials 

[1 About 8 yd of gummed mailing (/5)-tape (about 2 in. wide) 

C1 Six different colors of brightly colored wrapping paper. Butcher paper works very 

well and comes in a variety of colors. Construction paper also works well, but | 

sometimes it must be cut into strips and glued together in order to obtain long 

enough pieces (unfolded gummed tape may be used to join the strips). 
Paper clips (at least 30) 

Scissors 

Sponge (or washcloth) 

Shallow bowl 

Water 
Hand towel (or rag) 

Some big (and heavy) books oleh Cap a er Se) 
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Preparing the Pattern Pieces 

From the folded tape cut 6 strips having 22 triangles each, exactly as shown in Figure 
8.3(a). Notice that the cuts occur along the long fold lines. 

Select, or prepare, 6 pieces of colored wrapping paper so that each piece is bigger 
than a single pattern strip. Make certain that the surface on which you are working is 
large enough to accommodate an entire piece. 

Place the sponge (or washcloth) in a bowl. Add water to the bowl so that the top 
of the sponge is very moist. For each of the 6 strips, moisten one end of the strip by 
pressing it onto the sponge; then, holding that end, pull the rest of the strip across 
the sponge. Make certain the entire strip gets wet and then, pulling from both ends, 
place it gently on the colored paper. Use a hand towel or rag to smooth out the piece 
(working from the center toward the ends) and wipe up the excess moisture. Make 
certain every part of the tape bonds to the colored paper. 

Put some books on top of the pattern pieces while they dry to keep them flat. 
When the pattern pieces are dry, cut out each one, trimming off a very tiny amount of 
the gummed tape from the edge (this provides a very neat looking edge). Be careful 
not to cut off too much, as that may make the finished model unstable. Next refold 
each piece on the long fold lines so that a mountain fold is formed on the colored side 
of the strip. Leave the short lines uncreased. 

DZONE SL ONE ON ae 

Figure 8.3 

Braiding the Model 

To complete the construction of the golden dodecahedron, begin by taking five of the 

strips and arranging them as shown in Figure 8.3(b), securing them with paper clips 

at the points marked with arrows. View the center of the configuration as the North 
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Pole. Lift this arrangement and slide the even-numbered ends clockwise over the odd- 

numbered ends to form the five edges coming south from the arctic pentagon. Secure 

the strips with paper clips at the points indicated by crosses. Now weave in the sixth 

(equatorial) strip, shown shaded in Figure 8.3(c), and continue braiding and clip- 

ping, where necessary, until the ends of the first five strips are tucked in securely 

around the South Pole. During this last phase of the construction, keep calm and take 

your time! Just make certain that every strip goes alternately over and under every 

other strip all the way around the model. When the model is complete, all the paper 

clips may be removed, and the model will remain stable. 

8.2 The Small Stellated Dodecahedron 

Required Materials 

About 6 yd of gummed mailing (%)-tape (about 2 in. wide) 

Scissors 
Shallow bowl of water with a sponge (or rag), for moistening the gummed tape 
when necessary 
White glue (for paper) 
Some good books (not merely heavy) 
Colored paper (optional) el te ae ei a 

Instructions 

We first construct a base dodecahedron and then glue a pentagonal pyramid onto 
each face. The dodecahedron constructed from tape, as described in the “Alternative 
Construction” part of Section 4.2 would serve as a suitable base. However, if you do 
not wish to use those instructions, you may construct the base dodecahedron by 
another method, which we now describe. 

(a) 

Figure 8.4 
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First construct 12 pentagons, as shown in step 14 of the instructions of Section 
1.4. As each pentagon is constructed, glue all the overlapping portions in place. Use a 
sponge to moisten the appropriate portion of the tape, bending back the parts that 
are to remain dry so that just the desired parts of the tape come in contact with the 
sponge. As each pentagon 1s completed, put it under (or between the pages of) a 
large book so that it will dry flat. 

While the pentagons are drying, cut 30 tabs from the (/5)-tape, as shown in 
Figure 8.4(a). Notice that all the cuts take place along Jong fold lines of the (7/s)-tape. 
When the pentagons are dry, begin the assembly by taking two pentagons and a tab, 
as shown in Figure 8.4(b), and glue the tab across the two pentagons to form one 
edge of the dodecahedron, as shown in Figure 8.4(c). Complete this phase of the 
construction by continuing to glue pentagons onto free sides of the existing penta- 
gons on the model (so that there are exactly 3 pentagons around each vertex). When 
all 12 pentagons have been glued in place, part of the construction will be complete. 
When you glue on the last pentagon, it is well to proceed by gluing alternate sides 
into position around the pentagon (rather than consecutive sides)—by doing this any 
imperfections in the constuction will be more uniformly distributed on the surface of 
the model (and hence less noticeable). 

The final step is to add the stellations to each face of this dodecahedron. Begin 
this phase by cutting through the small triangles on the (7%s)-tape as shown in Figure 
8.5(a) to form 60 pieces.* Observe that these pieces are not all alike. The (A) pieces 

cut cut 

i 

(a) 

12 of these 

Use 5(B) 
pieces fo 
make this. 

(c) 

Figure 8.5 

*The angle is not crucial and some deviation is easily tolerated here. Just make a cut that roughly bisects 

the angle at the vertex of the triangle through which you are cutting. 
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and the (B) pieces, as shown in Figure 8.5(a), are mirror images of each other. A 

pentagonal pyramid may be made by gluing together five (B) pieces, as shown in 

Figure 8.5(b). When doing this, bend back the tab portion so that you can press just 

that part against the sponge. Glue the pieces together so that the gummed side of the 

tape will be inside the finished model. Recrease each of the fold lines along the hinges 

before joining the last edge (as indicated by the curved arrow of Figure 8.5(b)). Then 

the tabs around the base of this pentagonal pyramid may be glued to form a platform 

around the base of the pyramid. The pyramid may then be glued in place, as shown in 

Figure 8.5(c). This step requires some strong white glue, and for the best results you 

must hold the pyramid in position until it is well bonded. (You might like to read one 

of the “good books” while you wait for each pyramid to dry.) Of course, pentagonal 

pyramids may be made from the (A) pieces as well, and the 60 pieces will provide all 

the parts for the 12 required pyramids. 
The model may be colored by gluing colored pieces of paper to its faces. These 

pieces may be prepared by first cutting strips of colored paper of the same width as 

the tape used for the construction and then folding (*%s)-strips, from which the 

desired 60 triangles may be cut and glued onto the visible faces of the model. Some 

craft paper is available with a gummed backing and is particularly easy to use for this 

purpose. A very attractive coloring is achieved by making all the faces that lie on 

parallel planes the same colors. This, of course, requires exactly six colors. 

8.3 The Great Stellated Dodecahedron 

Required Materials 

About 2 yd of gummed mailing (%/5)-tape (about 2 in. wide) 
Some gummed mailing tape that is not folded 
Scissors 
Shallow bowl of water with a sponge (or rag), for moistening the gummed tape 
when necessary 
White glue (for paper) 
Ruler 
A good book (not necessarily heavy) 
Colored paper (optional) (e) EE yes) C2) ia 

We first construct an icosahedron and then glue a triangular pyramid onto each 
face. Since the base icosahedron must be constructed from equilateral triangles having 

an edge length equal to the short line on the (/)-tape, it is necessary to trim off a 
small amount from the edge of the gummed tape before using it to construct the 

icosahedron. (Do you see why?) This may be done by beginning to fold the 

untrimmed tape to produce equilateral triangles (see Section 1.3) and then placing a 

short fold line from the ("/s)-tape along one fold line of this tape, thereby determining 
how much needs to be trimmed off (see Figure 8.6). Mark the tape with a ruler and 
trim off the necessary amount for about | yard of tape. Continue folding the equilat- 
eral triangles on this trimmed tape. Use this tape to construct the icosahedron accord- 
ing to the instructions given next. 
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Trim this off and continue folding triangles. 

Figure 8.6 Determining the appropriate width of tape to use for constructing the icosahedron. 

Referring to Figure 8.7, first cut a section of 11 equilateral triangles. Glue the 
first triangle over the last to form the equator of the icosahedron (with the gummed 
side of the tape on the msde). Set that aside and cut a strip of 8 triangles. Take that 
strip and fold along the lines (1) and (2), shown in Figure 8.7(b), to obtain the 
hexagon shown in Figure 8.7(c). Glue the overlapping triangles into place and then 
glue the tab over the triangle next to it, as indicated by the arrow in Figure 8.7(c), 

one of these 

(a) 

two of these 

(b) 

+ten of these 

Figure 8.7 
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thus producing the baseless pentagonal pyramid shown in Figure 8.7(d). Then cut 

five 2-triangle tabs, one of which is shown in Figure 8.7(¢), and glue one end of each 

piece onto a face of the pyramid. This pyramid will form the northern (arctic) region 

of the icosahedron, and it is attached to the equatorial region by gluing into position, 

in the order designated, the tabs extending from the edges labeled ap: (3), (5), (2), 

and (4). By following this procedure the imperfections (if there are any) will be 

absorbed around the entire model. The southern (antarctic) region is completed in 

precisely the same way (in fact, you can simply rotate the model so as to exchange the 

North and South Poles and repeat the process of covering the arctic region!). 

The final step is to add a triangular pyramid to each face of this icosahedron. 

Begin, as for the small stellated dodecahedron, by cutting through small triangles on 

the (%)-tape, as shown in Figure 8.8(a). As we have already noted, these pieces will 

be either (A) pieces or (B) pieces. A triangular pyramid may be made by either gluing 

together three (B) pieces, as shown in Figure 8.8(b), or by gluing together three (A) 

pieces to obtain a mirror image of Figure 8.8(b). In either case, after joining the last 

edge of the pyramid (as indicated by the large arrow in Figure 8.8(b)), snip off the 

excess from the tabs surrounding the base and glue them into position, as shown in 

Figure 8.8(c). Each of the 20 pyramids may then be glued into place, one at a time, 

using a good white glue. You will get a better result if you hold each pyramid in 

position until it is well bonded. (Relax and read the good book!) 

cut cut 
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Figure 8.8 
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The model may be colored by gluing pieces of paper onto its faces by the same 
procedure used with the small stellated dodecahedron. Don’t throw away the small 
colored triangles—you will find them perfect for coloring the faces of the great 
dodecahedron! (See the next construction.) 

8.4 The Great Dodecahedron 

Required Materials 

About 2 yd of gummed mailing (%)-tape (about 2 in. wide) 
Scissors 
Shallow bowl of water with a sponge (or rag), for moistening the gummed tape 
when necessary 
White glue (for paper) 
Colored paper (optional) LPG, Tobie Cg 

Instructions 

This construction 1s based on the fact that the visible surface of the great dodecahe- 
dron may be obtained by replacing each triangular face of the icosahedron by a 
particular triangular pyramid that points toward the center of the icosahedron. 

cut on all short transversals 
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The construction of 20 triangular pyramids from the (%s)-tape is initiated by first 

cutting along short transversals to produce 60 sections, as indicated in Figure 8.9(a). 

The sections produced will be of two types, (A) and (B), which are mirror images of 

each other. Separate the pieces into (A) piles and (B) piles. For each of the 60 pieces 

make an additional fold line, bisecting one angle of the larger triangle, as indicated in 

Figure 8.9(b). Make certain each piece is creased so that it has one valley fold and one 

mountain fold, exactly as indicated in Figure 8.9(c). The triangular pyramids are 

formed by taking three (A) pieces (or three (B) pieces) and gluing them together to 

form a baseless triangular pyramid with tabs protruding from each of its three base 
edges, as shown in Figure 8.9(d). It is important to note that as you look at Figure 
8.9(d), the apex of the pyramid is pointing away from you and the gummed side of 
the tape should also be on the side that is not visible. 

The construction of the great dodecahedron is now completed by gluing these 
triangular pyramids together in such a way that (1) the apex of the pyramid points to 
the center of the polyhedron and (2) the base edges of the pyramids form the edges 
of a regular icosahedron. You will note as you do this that at every edge there is a 
choice of placing the tab on top or underneath. Don’t let this worry you; it makes no 
difference which way you do it. Just proceed calmly, remembering that there should 
be exactly five triangular pyramids around every vertex of the icosahedron. This 
model is very satisfying to make and you may be surprised at how easily it goes 
together. 

The completed model, shown in Figure 8.9(e), may be colored by gluing colored 
pieces of paper onto its faces. In fact, if you have already colored either the small 
stellated dodecahedron or the great stellated dodecahedron and if you saved the pieces 
you did not use for those models, you will find that they are precisely the pieces you 
need to color this model. 

8.5 Magical Relationships Between Special Dodecahedra 

It is a curious fact that the visible faces on the golden dodecahedron, the small 
stellated dodecahedron, and the great stellated dodecahedron are each composed of 

> 

i 

Figure 8.10 
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exactly 60 isosceles triangles. Furthermore, if all three of these dodecahedra are con- 
structed from tape of the same width (so that those 60 triangles are all the same size), 
then the small stellated dodecahedron fits inside the golden dodecahedron with the 
stellations protruding through the holes, touching at the midpoints of the edges of 
those holes (see Figure 8.10); and the great stellated dodecahedron fits entirely inside 
the golden dodecahedron with the vertices of both polyhedra coinciding. Is it any 
wonder that the pentagon and pentagram are associated with magic? 





9 Braiding 
Platonic Solids 

9.1 A Curious Fact 

In Chapter 6 we gave instructions for braiding tetrahedra, cubes, and octahedra. The 
natural question to ask is: Can we construct the other two Platonic Solids by a 
similar technique? In Section 8.1 we described how to braid the skeleton of a 
dodecahedron, which we called the golden dodecahedron, but we would like to braid 
a dodecahedron with no holes in its faces. It turns out that we can braid all five of the 
regular convex solids. In fact, without using any sophisticated mathematics, it is easy 
to verify the following statement for the five Platonic Solids: 

If you make each solid from straight strips of paper fashioned into bands and if you 
require that all strips on a given model are identical to (or mirror images of) one 
another, that every edge on the completed model must be covered by at least one 
strip, that every point on the interior of every face must be covered by at least one 
thickness from the strips, and that the same total area from each strip must show on 
the finished model, 

Then you can braid 
. the tetrahedron from 2 strips 

the hexahedron (cube) from 3 strips 
the octahedron from 4 strips 

the icosahedron from 5 strips 

the dodecahedron from 6 strips 

(The pattern pieces are shown in Figure 9.1.) 

We don’t have any general explanation for this curious fact, but we will show you 

how you can easily demonstrate it. This we do by providing you with instructions for 

constructing the required polyhedra, and once the polyhedra are constructed, you 

may then verify, simply by looking at them, that they satisfy the conditions of the 

preceding statement. To establish the conclusion of the statement, all you need to do 

is take the models apart and count the number of strips for each one—we call this our 

“Proof by Destruction.” The braided solids are shown in Figure 9.2. 

119 
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Tetrahedron 
(2 strips) | 

Hexahedron (Cube) 
(3 strips) 

Octahedron 
(4 strips) 

Icosahedron 
(5 strips) 

Dodecahedron 
(6 strips, 3 of each kind) 

Figure 9.1 
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Figure 9.2 The braided Platonic Solids. 

The instructions for how to braid the tetrahedron, cube, and octahedron are in 

Sections 6.4, 6.6, and 6.5, respectively. What we do in the remainder of this chapter 
is to explain, first, a general procedure for preparing the strips with folded gummed 
mailing tape and, second, how to use these strips to braid the icosahedron and 
dodecahedron in a way that satisfies the hypotheses. 

However, we feel we owe it to you to emphasize that this is not the oly way these 
polyhedra can be braided from straight strips. Thus, for example, the cube can also be 
braided with 4 strips instead of 3, still satisfying the conditions of the statement. In 
order to emphasize this point and to give you an opportunity to see another beautiful 
model, we give the construction of the diagonal cube (braided from 4 strips) in 
Section 9.3, and then in Sections 9.4 and 9.5 we describe how to braid the dodeca- 
hedron and icosahedron, respectively. 

If you wish to be efficient, we suggest that you look over the six models in this 
chapter, the golden dodecahedron in Section 8.1, and the rotating ring in Section 
10.1, and decide at the outset which ones you want to construct. Then prepare all the 
pattern pieces at once. Having prepared the pieces, try braiding them without our 
instructions. In case you have any trouble you can always consult the table of contents 
to find out where the construction is described—but if you don’t need any help, you 
will have the thrill of figuring it all out for yourself. Don’t be too modest; you may 
have more intuition about this than you think. At any rate, you have nothing to lose. 

Let’s get started. 

9.2 Preparing the Strips 

Required Materials 

L] Gummed mailing tape; for a sturdier model, use gummed tape that is reinforced 
with filament. Tape that is about 1% in. to 2 in. wide is easy to handle for 
beginners, but if you want larger models, then 3-in. to 4-in. tape is feasible. 
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C1 Paper (preferably colored), onto which you will glue the gummed tape. Butcher 

paper or gift-wrapping paper is very suitable. Foil wrapping paper can be spectac- 

ular, but it sometimes cracks and peels along the creased edges. Experiment with a 

little piece before making a big investment. 

Scissors 
Sponge (or washcloth) 

Shallow bowl 
Water 
Hand towel (or rag) 
Some heavy books 
Paper clips 
Bobby pins (6 will do) 
Transparent tape (optional) 

Having decided which models you want to build, proceed systematically. Observe 

that the tetrahedron, octahedron, icosahedron, and rotating ring are the only models 

requiring equilateral triangles. In fact, if you count all the triangles required for these 

models, you will find it is precisely 181—but it would be tedious and unnecessary to 

count them as you fold them. It is much easier simply to begin folding the triangles 

(as in Section 1.3) and then, after throwing away the first few irregular triangles, start 

cutting off the required pattern pieces; then (when you have just about used up all 
the folded tape) fold some more triangles, cut off more pieces, . . . until you have all 
the pattern pieces that require equilateral triangles. 

Next construct the pattern pieces for the cube and the diagonal cube. This may be 
done by using the process described in Section 1.7. Since this is an exact process, no 
part of the tape has to be thrown away. Notice that in order to get the pattern pieces 
for the cube with 3 strips we only need to use the short lines on the folded tape, but 
the gummed tape will look like this: 

ia a a EL Ts 

Pattern piece for the cube (requiring 3 strips) 

And to get the pattern pieces for the diagonal cube (with 4 strips), we only need to 
use the long lines on the folded tape, but the.gummed tape will look like this: 

Pattern piece for the diagonal cube (requiring 4 strips) 

Finally, prepare the pattern pieces for the two dodecahedra. Notice that both the 
dodecahedron of Figure 9.1 and the golden dodecahedron require strips that were 
initially folded by the U”D” process of Section 1.4. 
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Notice that in the pattern pieces for the dodecahedron of Figure 9.1, we only 
need to use the short lines on the UD? (5)-tape, but the gummed tape will look like 
this: 

Pattern pieces for the dodecahedron (requiring 3 strips of each kind) 

Similarly, notice that to obtain the pattern pieces for the golden dodecahedron of 
Section 8.1, we only need to use the long lines on the U*D? (*%s)-tape, but the 
gummed tape will look like this: 

Pattern piece for the golden dodecahedron (requiring 6 strips) 

Once you have prepared all the gummed tape pieces, get your colored paper and 
place each of the pieces for a particular model on a different color of paper (to make 
certain they will all fit). Place a sponge (or washcloth) in a bow! with enough water 
so that the top of the sponge is very moist or, as we like to say, squishy. Then take 
each strip (one at a time) and moisten one end by pressing it onto the sponge. Next, 
holding the moist end, pull the rest of the strip across the sponge. Make certain the 
entire strip gets wet and then place it on the colored paper. Use a hand towel or rag 
to wipe up the excess moisture and to smooth the tape into contact with the colored 
paper. (Only now, when the pattern piece is properly glued to the colored paper, 
should you worry about cleaning up yourself or the table!) 

An efficient scheme is to glue all the pieces that go on one color onto that piece 
of paper and then go on to the next piece of colored paper. After all the pieces have 
been glued onto a particular color, put some heavy books on top of the pieces of tape 
so that they will dry flat. The drying process may take several hours—we can’t say, 

even roughly, how long because it depends on your climate! 

When the tape is dry, cut out the pattern pieces, trimming off a very ty amount 
of the gummed tape from the edge as you do so (this serves to make the model look 
neater and, more importantly, it allows for the increased thickness produced by gluing 
the strip to another piece of paper). Then refold each pattern piece so that the raised 
ridges are on the colored side of the paper. For the models involving equilateral 
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triangles you will refold on every line, but it is very important to remember the 

following rule: 

For the refold only on the 

3-strip cube SHORT lines » 
4-strip cube LONG lines 
dodecahedron (of Figure 9.1) SHORT lines 
golden dodecahedron LONG lines 

Now you are ready to assemble your models. We strongly urge you first to try it 

on your own. You may find it useful to clip the beginning and end of each strip 

together with a paper clip so that you can see how the pieces fit together. As you 

become more expert you will figure out how to eliminate the paper clips. But if you 

want more help, turn to the appropriate section for specific instructions. 

9.3 Braiding the Diagonal Cube 

Figure 9.3 

Begin by laying the 4 strips on a table with the colored side down, exactly as shown in 
Figure 9.3(b). The first time you do this it may be helpful to secure the center (where 

the 4 strips cross each other) with some transparent tape. Now think of the center 
square in Figure 9.3(b) as the base of the cube you are constructing and note that the 
strip near the tail of each arrow should go under the strip at the head of the arrow 
(thus the strip near the tail will be on the outside of the model when it crosses the 

vertical edge of the cube). The procedure for completing the cube is now almost self- 

evident, especially if you remember that every strip must go alternately over and 
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under the other strips on the model. It may help to secure the centers of the vertical 
faces with transparent tape as you complete them, but as you become experienced at 
this construction, you will soon abandon such aids. The final tabs will tuck in to 
produce the diagonal cube of Figure 9.3(c). 

9.4 Braiding the Dodecahedron 

Recall that you will need 6 strips as described in Section 9.2. Take two of these strips 
and cross them as in Figure 9.4. 

Figure 9.4 
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Secure the overlapping edge with a bobby pin, and then make a bracelet out of each 
of the strips in such a way that 

(2.) the strip that is under on one side of the bracelet is over on the other side 
(1.) four sections of each strip overlap, and 

of the bracelet. (This will be true for both strips.) 

Use a bobby pin to hold all four thicknesses of tape together on the edge that is 
opposite the one already secured by a bobby pin. 

Repeat the above steps with another pair of strips. You now have two identical 
bracelet-like arrangements. Slip one inside the other one as illustrated in Figure 9.5, 
so that it looks like a dodecahedron with triangular holes on four faces. 

Turn and slide inside 
so that AB coincides 
with A’B’ 

Figure 9.5 
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Figure 9.5 cont. 

YU 
~maQde 

Take the last two strips and cross them precisely as you did earlier (reversing the 
crossing would destroy some of the symmetry); then secure them with a bobby pin. 
Carefully put two of the loose ends (either the top two or the bottom two) through 
the top hole and pull them out the other side so that the bobby pin lands on CD. 
Then put the other two ends through the bottom hole and pull them out the other 
side. Now you can tuck in the loose flaps, but make certain to reverse the order of the 
strips—that is, whichever one was on the bottom at CD should be on the top when 

you do the final tucking (and, of course, the top strip at CD will be the bottom strip 
when you do the tucking). 

After you have mastered this construction you may wish to try to construct the 

model with tricolored faces, shown in Figure 9.6. This construction and the one just 

described are both very similar to the construction for the cube in Section 6.6. The 

difference is that in the case of the dodecahedron, the three “bracelets” that are 

braided together are each composed of two strips. This illustrates, rather vividly, 

exactly how to inscribe the cube symmetrically inside the dodecahedron. ‘To put it 

another way, it shows how the dodecahedron may be constructed from the cube by 

placing a “hip roof” on each of the 6 faces of the cube. 

Figure 9.6 
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9.5 Braiding the icosahedron 

Figure 9.7 

Label one of the 5 strips with a “1” on each of its 11 triangles; you should write on 
the side of the paper that will be on the zmside of the finished model. Then label the 
next strip with a “2” on each of its triangles, the next with a “3” on its triangles, the 
next with a “4” on its triangles, and, finally, the last with a “5” on its triangles. 

Now lay the 5 strips out so that they overlap each other precisely as shown in 
Figure 9.7, making sure that the center 5 triangles form a shallow cup that points 
away from you. You may need to use some transparent tape to hold the strips in this 
position. If you do need the tape, it works best to put it along the 5 lines coming 
from the center of the figure (the tape won’t show when the model is finished). 

Now study the situation carefully before ntaking your next move. You must bring 
the 10 ends up so that the part of the strip at the tail of the arrow goes under the part 
of the strip at the head of the arrow (this means “under” as you look down on the _ 
diagram; it is really on the outside of the model you are creating, because we are 
looking at the inside of the model). Half the strips wrap in a clockwise direction and 
the other end of each of those strips wraps in a counterclockwise direction. What 
finally happens is that each strip overlaps itself at the top of the model. But, in the 
intermediate stage, it will look like Figure 9.8(a). At this point it may be useful to put 
‘a rubber band around the emerging polyhedron just below the flaps that are sticking 
out from the pentagon. Then lift the flaps as indicated by the arrows and bring them 
toward the center so that they tuck in, as shown in Figure 9.8(b). 
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lift 

Figure 9.8 

Now simply lift flap 1 and smooth it into position. Do the same with flaps 2, 3, 
and 4. Complete the model by tucking flap 5 into the obvious slot. The vertex of the 
icosahedron nearest you will look like Figure 9.9. 

Figure 9.9 





10 ‘Braiding 

Rotating Rings 

Required Materials 

About 4 yd of gummed mailing (/%)-tape (about 2 in. wide) 
Two different colors of brightly colored wrapping paper or butcher paper 

Scissors 

Sponge (or washcloth) 
Shallow bowl 

Water 

Hand towel (or rag) 
Some big (and heavy) books 
Some bobby pins PTA Tai) ents 

eee mae fold line 
—— — —— mountain fold 

U indicates “under” i o \yre O indicates “over” . 

Figure 10.1 The strips for the rotating ring of tetrahedra ready for braiding. (Note that the letters O and U 

alternate, and the differences between successive subscripts form a sequence of period 4, 

namely, ... 1232°....) 
131 
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10.1 Braiding a Rotating Ring 

Prepare 2 strips, of at least 50 equilateral triangles each, by folding UD, as illustrated 

in Section 1.3. Then glue these folded strips to colored paper and cut them out (see 

Section 9.2 for practical hints about precisely how to do this to get the best results). 

Before beginning the construction of the rotating ring, take each pattern piece 

and fold the paper, very firmly, in both directions, so that the completed model will 
flex more easily. You simply cannot overdo this step—in our experience a rotating 
ring of tetrahedra improves with age due to the increased flexibility of the hinges. 

AG 

w wv 

oO 

\o 

10. 

The construction goes as follows: 

On some fold line near the middle of each strip, cross the 2 strips over each other 

and secure them together with a bobby pin to form a sideways “X” as shown in 
Figure 10.1. 

Label the strips exactly as shown. 
To construct the first tetrahedron, lift the edge AB with the bobby pin and slide 
triangle U, underneath triangle O,; next slide triangle U, underneath triangle O9. 

Notice that the edges marked — - — will always be edges on the tetrahedron 

that are not attached to another tetrahedron. 

Move the bobby pin to the opposite edge of the completed tetrahedron so the 

strips won't slip apart. 

Separate the four ends so that U3, O3 are on one side and U4, O4 on the other, 

forming a sideways “X” under the tetrahedron like the initial configuration in 
Figure 10.1. 

Now repeat the braiding process for the triangles marked U3, O3 and U4, O4. 

Again, move the bobby pin to the edge of the new tetrahedron, separate the 
strips, and repeat the process for triangles U;, O; and Us, O¢, and so on. 

When you have braided 10 tetrahedra, trim off all but two triangles from each of 
the four loose ends at the last edge (which should be secured with the bobby 
pin). 
The arrangement of the strips at the end will look like this: 

Fold back the two triangles, as shown on the left, to get the arrangement on the 

right. 
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11. Place this edge next to the edge AB on the first tetrahedron and tuck the two 
triangles into the openings (or slots) on the edge of this first tetrahedron so that 
they go in the backwards direction. Figure 10.2 shows how the last triangle 
should look as it slides into the slot. 

Figure 10.2 

12. Figure 10.3 shows the finished rotating ring, which consists of 10 tetrahedra. 

Figure 10.3 

Practical Hints 

A common mistake is to fail to cross the strips properly while braiding the model. 

The result is that, although the model looks fine, it comes apart as you rotate it. If 

that happens, undo it and rebraid it. A good rule to remember is that when two strips 

meet at a crossing, 

the strip that came from underneath goes over next, and 

the strip that was on top goes underneath next. 

When you are flexing a new rotating ring of tetrahedra, the paper may have a 

tendency to buckle. Be gentle with it and push the offending edge back into its 

proper position. After a while two things will happen. First, you will become more 

adept at turning the model (because you will have gained a better understanding of 

its mechanical properties) and, second, the model itself will become more pliable. 
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10.2 Variations 

Figure 10.4 

We were not obliged to use exactly 10 tetrahedra. In fact, a rotating ring can be 
constructed of just 8 regular tetrahedra (but not 6—try it and you'll see why). We 
chose to use 10 tetrahedra because we like the symmetry of the final model. 

Rings containing 22 or more tetrahedra can be tied in various knots before 
joining the first and last tetrahedra to each other. These rotating knots form interest- 
ing configurations whose twisting motions are almost hypnotic. 

Why do you suppose it was possible to make this model? Observe that the regular 
tetrahedron is the only one of the Platonic Solids whose opposite edges, when 
extended, do not form parallel lines. In fact, it is this property that makes it possible to 
use these tetrahedra to construct a ring that will rotate. You can produce nonrigid 
rings by joining the opposite edges of other kinds of polyhedra (cubes, for example), 
but they will not rotate unless the opposite edges used for joining the polyhedra lie 
on nonparallel lines. Moreover, if the pair of joining edges on each of several similar 
polyhedra are not on lines that are at right angles to each other in space, the symme- 
tries of the final rotating ring may be quite unusual. 

We suggest that you experiment with different numbers of tetrahedra in your 
rotating rings. Try tying knots before joining the first and last tetrahedra and, if you 
are really interested, make some rotating rings with other polyhedra. Figure 10.4, 
which resembles a holiday wreath in appearance, is made from 14 hexacaidecadelta- 
hedra. (You shouldn’t need the hyphens now!) 

AVA 

LU 
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Some More Fun with Your Rings 

Suppose you wish to number the visible faces of your rotating ring of 10 tetrahedra 
with the consecutive numbers 1, 2, 3, ..., 40. Now 1+2+3+...+40=820. A very 

nice way of seeing this is to rearrange the sum as follows and add vertically: 

ett 2 Ota FeO 

A +3938 +..+ 227 24 

41+41+41+...4+41+41 

We readily see that 41 occurs precisely 20 times. Thus, 

1+2+3+...+40=20(41) =820 

Now, since 820 is exactly divisible by 10 (the number of tetrahedra in our ring), it is 
sensible to ask whether or not it is possible to number the faces of the rotating ring 
with the numbers from 1 to 40 so that the numbers on the four faces of each 
tetrahedron will sum to 82. 

We believe you will be able to answer this question—and that you will also be 
able to ask and answer the corresponding question for rings involving other numbers 
of tetrahedra. It is reported in Mathematical Recreations and Essays by Rouse Ball and 
Coxeter (referenced at the end of this chapter) that a certain R. V. Heath in answering 
the corresponding question for a rotating ring of 8 tetrahedra showed how one could 
assign the numbers 1, 2, 3, ..., 32 (which sum to 528) to the 32 faces so that the four 

faces of each tetrahedron sum to 66, and “corresponding” faces, one from each 
tetrahedron, sum to 132. 

Suppose you consider a rotating ring of N tetrahedra. The sum of the integers 1, 
2, 3, ..., 4N is 2N(4N + 1). Our original question has to do with assigning one of 

these integers to each face so that the sum for each tetrahedron is 2(4N + 1). Heath’s 

refinement would require that the sum of “corresponding” faces be oe plainly 
to achieve this refinement N must be even. 

Doris Schattschneider and Wallace Walker have produced a monograph (see refer- 
ences) that includes die-cut nets from which fascinating solids and rotatings rings can 
be constructed that have Escher-type designs on their faces. Their kit would surely 
give you many ideas for decorating not only rotating rings but many other models 
that you have made from this book. 
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Il Constructing 

Collapsoids 

11.1 What Is a Collapsoid? 

Figure 11.1 

There is an interesting class of polyhdra having the property that all faces are con- 
gruent parallelograms. Since all faces are parallelograms, the polyhedra in this class 

have the property that every edge determines a zone of faces such that each face in the 
zone has two sides equal and parallel to the given edge. Polyhedra having this latter 
property are called zonohedra; we may speak of an n-zonohedron to emphasize that 
the polyhedron in question has ” zones. As interesting examples of polyhedra in this 
class, the rhombic dodecahedron (which has 12 faces and 4 zones) and the rhombic 
triacontahedron (which has 30 faces and 6 zones) appear in Figure 11.1, which is 
based on illustrations by H.S.M Coxeter. 

X\ 
VN Se 

Rhombic dodecahedron (n= 4) Rhombic triacontahedron (n= 6) 

EEX 
In Regular Polytopes, Coxeter describes the general theory of zonohedra and states 

that the angles on the faces of the rhombic dodecahedron are 70°32’ and 109°28', 

while the angles on the faces of the rhombic triacontahedron are 63°26' and 116°34". 

You will readily believe that these angles are not ones that we get easily by folding 

paper (though we could get them in principle!). However, these are beautiful models 

and we can construct polyhedra like them by replacing each of the rhombic faces with 

a four-faced pyramid without its base, which is composed of four equilateral triangles. 

137 
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We call this a cell and refer to each of the triangles as a triangular face of the cell. One 

of the authors (Jean Pedersen) experimented with such cells in the hope that the 

flexibility of the cell might make it possible to approximate the rhombic faces (see the 

references at the end of this chapter). 
The experiment showed that the desired models cannot be made with each pyra- 

mid projecting out from the polyhedron’s center. However, when each pyramid pro- 

jects in toward the center of the polyhedron, you get a pseudo-zonohedron. Further- 

more, the models turn out to have a very surprising property apparently not pos- 

sessed by the real zonohedra, namely, they fold up and lie flat (but see a remark in 

Section 11.5). All we have to do is leave unattached a sequence of edges that go from 

any vertex to the vertex diametrically opposite it. This very surprising and pleasing 

feature was first discovered by the two children of one of the authors (then six and 

nine years old) while they were playing with the partially constructed models (as their 

mother was preparing supper). 
Because these pseudo-zonohedra can fold up flat in various ways, we have named 

them collapsoids—polar if they collapse about an axis between two poles, and equatorial 
if they collapse about a zone (which may be thought of as an equator). In the pages 
that follow we give you step-by-step instructions for constructing and collapsing 
these models. Then, in Section 11.5, we suggest some investigations you might want 
to make for yourself. 

11.2 Preparing the Cells, Tabs, and Flaps 

Required Materials 

[1 Gummed mailing tape; for sturdier models, use gummed tape that is reinforced 
with filament. Any width between 1% in. and 3 in. will be easy to handle. 
Scissors 
Sponge (or washcloth) 
Shallow bowl 
Water 
Hand towel (or rag) 
Colored paper, preferably with a self-adhesive backing (optional) yeh Ei ets 

Begin by taking the gummed tape and folding a strip of 50 or more equilateral 
triangles (as shown in Section 1.3). Leave the folded tape attached to the roll so that 
you can fold more triangles as you need them. Observe that the new triangles you 
fold will become more and more accurate as lgng as you don’t cut off the last triangle 
and start again from scratch. Remember to cut off and discard the first few irregular 
triangles. Once you have the process started you can cut off from the tape the number 
of triangles (specified in Section 11.3) required to construct the cells, tabs, and flaps 
as described in Section 11.3. 

Each of the four collapsoids discussed in this chapter requires a certain number of 
cells, tabs, and flaps, which are described next. A table at the beginning of Section 11.3 
tells you precisely how many cells, tabs, and flaps are required for each of the four 
collapsoids whose construction is outlined in that and the following section. We 
suggest that you look through Sections 11.3 and 11.4 and decide which model, or 
models, you would like to make, then construct all of the required parts, and finally 

turn to the directions that tell you how to glue those parts together. 
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Cells 

Figure Pe 

Each cell is constructed from a straight strip of 6 equilateral triangles that look like 
this: 

/ Fold on this line. 

Pattern piece for a cell 

Fold this strip as indicated and glue the overlapping portions together (if the sticky 
sides are not together, fold the paper in the other direction) .* It should look like 
Figure 11.2. 

Becoming a cell. 

As the bubble in Figure 11.2 indicates, this piece really aspires to be a “baseless” 
pyramid. To achieve such a pyramid, overlap the triangle labeled tab with the triangle 
indicated by the arrow. Once you see that your result looks like that shown in the 
bubble, glue the overlapping triangles together. 

We call this baseless pyramid a cell. Notice that each cell may be pressed flat in 
two directions. As you make each cell lay it flat, first in one direction and then in the 
other, and while it is flat, crease the two edges very firmly. Then place the cells on a 
table to dry. You may wish to stack them on top of each other in piles that make it 
easy for you to keep track of how many you have constructed (say, 5 or 6 to a pile). 

*Moistening the required triangles may be done by patting the gummed side of the triangle that will be 
Glued against a moist sponge. 
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Tabs 

Figure 11.3 

Flaps 

Figure 11.4 

Tabs, those pairs of triangles that will be used to connect the cells together, are the 

easiest parts to construct—you simply cut off sections containing two triangles each. 

A word of caution is required here, however. We should remind you that, because 

of the way the tab fits on the completed model, the hinge should be creased so that 

the sticky sides of the tape come together (see Figure 11.3). 

When you have made the tabs, stack them in a pile. 

A tab doing its work. 

The purpose of the flap, which is a tab that only gets attached to a cell by one of its 

triangles, is to hold the model together when it is expanded. Flaps allow us to open 

up some edges of the polyhedron and fold it flat for storing. Since the flap will stay 

in place only if it is fairly stiff, we need to make it sturdier. Here is one way to do it. 

Begin with a 3-triangle piece of tape and a 2-triangle piece of tape. Glue one 

triangle of the 2-triangle piece to the center triangle of the 3-triangle piece as shown 

in Figure 11.4(a). Make certain the sticky sides of the tape are facing you. Then wrap 

the end triangles of the 3-triangle piece over the center triangle, as shown in Figure 

11.4(b), and glue them in place, as shown in Figure 11.4(c). Press the three thick- 

nesses flat and crease the remaining edge firmly. Stack the flaps in a pile separate from 

the tabs. 

Begin with sticky side up. 

sticky side 

3 thicknesses 

(a) (b) (c) 

Constructing a flap. 
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11.3 Constructing 12-, 20-, and 30-Celled Polar Collapsoids 

Collapsoid Number of cells | Number of tabs | Number of flaps 

20-celled polar 

Constructing the 12-Celled Polar Collapsoid 

ons. cell like this 

Figure 11.5 

Figure 11.5 represents a net of baseless pyramids. Each rhombus in the figure signi- 

fies one cell. Begin the construction by joining 6 cells together in a string. They will 

look like this: 

B A B’ 

Then join the cells on the right and left so that, as you look down on the figure, 

(1) you are looking into each cell and (2) the outline of the cells looks precisely like 

the net in Figure 11.5. 

At this point it may help you to label the triangles at the head and tail of each 

arrow with an identifying number (as suggested by the numbers next to the curved 

arrows). Then use the tabs to join together the cells with like numbers. The vertices 

of the cells labeled with heavy dots will then be next to each other. You will notice 

that an edge going from one heavy dot to A(A’) to B(B’) to C(C’) and ending at the 

other heavy dot will remain open. 
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Figure 11.6 

Figure 11.7 

Constructing Collapsoids 

Your model should now look like Figure 11.6. 

The 12-celled collapsoid, without flaps. 

At this point we suggest you try collapsing your model. It should fold flat in the 
shape of % of a regular hexagon. Press it fairly gently into the flattened position and 
bring it back into its expanded shape several times so that you get the feel of the 
mechanical motion. Now all that remains is to attach the flaps. 

Flaps should be attached to provide a covering for the four open edges. One very 
effective way is to attach flaps alternately to one or other of the loose sides along the 
open edge. More precisely, think of the edges as labeled 1, 2, 3, and 4 as you traverse 

from North Pole to South Pole on this model; then attach flaps to the left-hand side 
on edges | and 3 and to the right-hand side on edges 2 and 4. The effect of this is 
that the flaps zmterlock and hold the model together better than they would if all the 
flaps had been attached to the same sides of the open edge. 

Practical Hint 

It may happen that, as you complete the model by sliding the flaps into place, you 
observe that a triangular face of the cell into which you want to tuck the flap seems a 
little flimsy. If so, glue another tab around this face. The result will be a very sturdy 
cell into which you can now tuck the flap. This hint is useful for making any of the 
collapsoids (see Figure 11.7). 

<t— fhis flap tucks in and is held by friction. 
Glue this side in place. —» 

act alt 

VA AN 

This triangle may need extra strength. 

A flap in position. 



11.3. Constructing the 12-, 20-, and 30-Celled Polar Collapsoids 143 

Constructing a 20-Celled Polar Collapsoid 

Figure 11.8 

SR cell like this 

As before, Figure 11.8 represents a net of baseless pyramids. Begin this construction 
by joining 8 cells together in a string. These are the cells in the zone going from B'C’ 
to BC in the net diagram. Then continue by joining the cells on the right and left so 
that, as you look down on the figure, (1) you are looking into each cell, and (2) the 
outline of the cells looks precisely like Figure 11.8. 

If you feel it would be helpful, label the triangles at the head and tail of each 

arrow with an identifying number (as shown in Figure 11.8). Then use the tabs to 

join together the cells with like numbers. The vertices of the cells labeled with heavy 

dots will then be next to each other. You will notice that an edge going from one 

heavy dot to A(A’) to B(B’) to C(C’) to D(D') and ending at the other heavy dot will 

remain open. » 

Collapse the model into % of a regular hexagon and bring it back into expanded 

position several times until you understand the mechanics of its motion. 

Attach the flaps alternately to one or the other of the loose sides along the open 

edge. Think of the edges as labeled 1, 2, 3, 4, and 5 as you traverse from North Pole 

to South Pole; then attach flaps to the left-hand side on edges 1, 3, and 5 and attach 

flaps to the right-hand side on edges 2 and 4. 

You may need to reinforce the triangular faces onto which the flaps fit in the cells, 

as described in the earlier Practical Hint. 
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Constructing a 30-Celled Polar Collapsoid 

Figure 11.9 

LA. cell like this 

Figure 11.9 represents a net of baseless pyramids. Begin this construction by joining 
10 cells together in a string. These are the cells that go around the model from C'D’ 
to CD. Then join the cells on the right and left of this zone so that as you look down 
on the figure you are looking into the cells, and the outline of the cells looks precisely 
like Figure 11.9. 

Next, the sides of the cells at the head and tail of the arrows should be joined to 
each other (so that the vertices of the cells bearing a heavy dot come together). The 
edge going from one heavy dot to A(A’) to B(B’) to C(C’) to D(D') to E(E’) and 
ending at the other heavy dot will remain open. This model collapses into the shape 
of a complete regular hexagon. 

Flaps may be attached to the open edge in the same alternating fashion as 
described for the 12- and 20-celled collapsoids. That is, think of the open edges as 
though they were labeled 1, 2, 3, 4, 5, and 6 as you traverse from North Pole to 

South Pole on this model; then attach flaps to the left-hand sides on edges 1, 3, and 5 
and to the right-hand sides on edges 2, 4, and 6. As before, it may be necessary to 

reinforce a triangular face of a cell before tucking in the flap. 

11.4 Constructing the 12-Celled Equatorial Collapsoid 

Figure 11.10(a) represents a net of baseless pyramids. Each parallelogram in the net 
represents one cell. Begin the construction by joining 6 cells together in a string. 
These are the cells that go along one zone (the equator of this model) between B’C’ 
and BC. 
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Next join the cells on the right and left so that as you look down on the figure 

you are looking into the cells, and the outline of the cells looks precisely like the net 

in Figure 11.10(a). 
Now join the side B'C’ to BC and then the side A’B’ to AB. You now have a 12- 

celled collapsoid, as shown in Figure 11.10(b), that will fold flat about the ring of 6 

cells forming the equatorial zone. 
Flaps added to the three cells on either side of the equatorial zone will help to 

keep the model in its inflated form. Make the flaps all go in either a clockwise or a 

counterclockwise direction about each pole. And, as with the other models, you may 

wish to reinforce the triangle onto which the flap falls when it is in its final position. 

1.5 Challenges 

Now that you have constructed your polyhedra, you should get to know them. If you 

color them in various ways you will learn a great deal about their symmetries and 

how they are related to other polyhedra you have constructed. 

One way to color the models is to get some gummed colored paper, available at 

art stores or office supply stores, and prepare a number of 2-triangle tabs in assorted 

colors. These may then be glued on top of the faces you wish to color. If gummed 

paper is not available, ordinary colored paper may be glued onto the faces. 

When we talk of coloring an edge, we mean gluing a colored tab over that edge. 

The effect of this gluing will be that two adjacent triangles on the surface of the 

collapsoids are colored. 

We now give you some specific suggestions for coloring. 
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For any collapsoid 

Color the zones: Color one convex edge* red, for example; then color the edge 

opposite that edge red, and the edge opposite that edge red, . . . until you have 

colored all of the edges in that zone. Then begin again on any uncolored edge and 

repeat the process with another color. Repeat two or three more times and you will 
have colored all edges (and, hence, all faces!). You will then be able to see the zones of 
the collapsoid very clearly. 

For the 12-celled collapsoid (polar or equatorial) 

Color the cube: About a vertex where 4 convex edges come together, color each of 
those edges red, for example, and also color red the 4 convex edges surrounding the 
diametrically opposite vertex. Then begin again at any other uncolored vertex sur- 
rounded by 4 convex edges and color those edges blue, for example, and also color 
blue the 4 convex edges surrounding the opposite vertex. There will remain just two 
diametrically opposite pairs of vertices surrounded by 4 uncolored convex edges. 
Color those 8 edges with a third color. Compare this model with a cube! 

Color the octahedron: About a vertex where 3 convex edges come together, color 
each of those edges red, for example, and also color red the 3 convex edges surround- 
ing the diametrically opposite vertex. Then begin again and repeat the process with 
another color. Do this two more times. Compare this model with an octahedron! 

For the 30-celled collapsoid 

Color the dodecahedron: About a vertex where 5 convex edges come together, color 
each of those edges red, for example; then color red the 5 edges surrounding the 
diametrically opposite vertex. Repeat this process, using a new color each time, until 
you have colored all 60 convex edges. Compare this model with a dodecahedron! 

Color the icosahedron: About a vertex where 3 convex edges come together, color 
each of those edges red, for example; then color red the 3 edges surrounding the 
diametrically opposite vertex. Repeat this process, using a new color each time (you 
will need 10 colors), until you have colored all 60 convex edges. Compare this model 
with an icosahedron! 

Other Equatorial Collapsoids (for the expert) 

Both the 20- and the 30-celled collapsoids can be made in an equatorial form—but 
not with equilateral triangles. To see this, notice that the 20-celled collapsoid has 8 
cells in each zone, and the 30-celled collapsoid has 10-cells in each zone. Thus the 20- 
celled equatorial collapsoid must be made from cells that are parts of an octagon, and 
the 30-celled equatorial collapsoid must be made from cells that are parts of a decagon. 
In each case, when you construct the model with the appropriate cells, you proceed as 

*By a convex edge, we mean an edge that would be in contact, along its entire length, with a tight elastic 
material sheathing the collapsoid. Alternatively, we call an edge of a collapsoid convex if we can rest the 
collapsoid on a flat surface with that edge touching the surface. 
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before. The only difference is that, just as in the case of the 12-celled equatorial 
collapsoid, you ignore the arrows and, instead, connect the ends of the principal zone 
(the one you first constructed). In this way you get a flowerlike arrangement about 
both poles, which may be held shut with paper clips; the entire model will collapse 
about the equatorial zone. Since you know (from Chapter 1) how to fold both 8- 
gons and 10-gons, we may confidently leave the exploration of these models to our 
very enthusiastic readers! See Figures 11.11 and 11.12. 

(b) Partly collapsed. 

(c) Collapsed. 
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(a) 12-celled equatorial collapsoid, partly collapsed. 
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(b) Collapsed. 

Figure 11.12 
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Other Polar Collapsoids 

There are many other polar collapsoids. Perhaps the most spectacular one is the 90- 
celled one, which may be colored to bring out its relationship with the dodecahedron 
(or the icosahedron). A brief description of how to construct it appears in Jean 
Pedersen’s article “Collapsoids.” (See the references at the end of this chapter.) 

Another Very Easily Constructed Collapsoid 

Figure 11.13 

You may have realized that the ordinary regular hexahedron, or cube, is a zonohe- 
dron. So it is natural to ask: Will the cube collapse if we make it like our other 
collapsoids? The answer is both yes and no. It is impossible to replace each face with 
one of our cells (why?), so in this respect we get a negative answer. However, it is 
possible to construct the cube from a special net (as in Section 4.2) on which each 
face has been folded along the diagonal lines before we assemble it. If such a cube is 
constructed and then cut apart along the line indicated in Figure 11.13, it wall 
collapse in the expected manner. Try it! 

& 
cut 

Of course, this brings up another question: Would the rest of the ordinary 

zonohedra collapse if they were made from faces that were scored along both 

diagonals and then cut apart along a line following an edge from one vertex to its 

diametrically opposite vertex? (The answer is yes!) 
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12 Some Mathematics 
of Polyhedra 

In this final chapter we give you some of the mathematics associated with the poly- 
hedra you constructed in the previous chapters. In fact, we give you a very small part 
of the mathematics, but enough, we hope, to convince you of the mathematical 

richness of the ideas with which you have become familiar. We hope to leave you with 
the awareness that the models you have constructed are not only aesthetically pleasing 
but also an excellent source of mathematical ideas. We want to emphasize that it is no 
coincidence that the study of polyhedra can play this second role, too. For mathemat- 
ics is the only science capable of fulfilling the function of elucidating and analyzing 
the remarkable phenomena around us and explaining why those phenomena exhibit 
the features that we notice. Thus there is always some mathematics to be discovered 
in anything that commands our attention; and by subjecting these phenomena— 
cosmic rays, weather patterns, the spread of contagious diseases, Platonic Solids—to 
mathematical analysis, we enrich our appreciation of their significance, and thereby 
improve our control of our environment. 

Thus, while we would understand and sympathize if you decided to skip this 
chapter, we would advise against it. We’re sure you would regret it if you never made 
the effort to understand the mathematics contained in the fascinating models you 
have so conscientiously constructed. 

12.1 Mathematical Applications of Jennifer’s Puzzle 

Volumes of Some Related Polyhedra 

Recall that Jennifer’s puzzle was the subject of Chapter 6. We will first show how the 

puzzle may be used to calculate some volumes of Platonic Solids. We start from the 

following three facts about volumes: 

The volume of a rectangular parallelepiped of sides a, , c is abc. 

The volume of a pyramid of height / standing on a base B is 

sh x (area of B) 

If the linear dimensions of a figure are multiplied by d, the volume is multiplied 

by a’. 
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Figure 12.1 

Figure 12.2 

Now, it follows immediately from the first fact that the volume of a cube of side a 

is a°. It is perfectly possible to use the second fact to compute the volume of a regular 
3 

tetrahedron of side a to be Pur However, this calculation requires us to calculate the 
6V2 

B 2 

area of an equilateral triangle of side a—which is wie - —and the height of the 

regular tetrahedron—which 1s p a. There is, in fact, an easier method provided by 

thinking of a regular tetrahedron placed inside the cube, as in Jennifer’s puzzle. The 
empty space inside the cube and outside the regular tetrahedron then consists of four 

congruent tetrahedra; and if the regular tetrahedron has side a, the box has side at 

as can be seen from Figure 12.1. Moreover, each of the four tetrahedra is an upright 
wedge, as shown in Figure 12.2. 

Sle 

SIP 

Thus the volume of each wedge is, according to the second fact, 

1s a(ey 
BA/2 \2NND)) = ADV 

Since the volume of our original regular tetrahedron (which we call V;(a)) is equal to 
the volume of the cube minus the volume of the four wedges, we see that it may be 

‘calculated as 

i) (ee ee 
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Notice that this is the same as the result we claimed earlier. Notice, too, that we have 

proved the following: 

The volume of a regular tetrahedron is = of the volume of the smallest cubical 
box it sits 1n. 

3 

For, as we calculated, our box had a volume of = 
OND 

It is now very simple to compute the volume of the regular octahedron of side a. 
For, as observed in Jennifer’s puzzle, we may place regular tetrahedra on four of the 
faces of the regular octahedron to obtain a regular tetrahedron of side 2a. Thus if 
V,(a) is the volume of the regular tetrahedron (of side a) and Vo(a) is the volume of 
the regular octahedron (of side a), then 

Vo(a) + 4V;(a) = V;(2a) (V) 
Then, using the known value for V;, we obtain 

a ak (2a)? 

ea 6s 
yielding 

han V 208 
Vo (a) oN 6\V/2 aa 3 

Notice that this last argument also shows the following: 

The volume of the regular octahedron of side a is 4 times the volume of the 
regular tetrahedron of side a. 

Despite this result you would be doomed to failure if you tried to construct a 
regular octahedron of side a by putting together four regular tetrahedra of side a—it 
just can’t be done! The volume measures are the same, but that is not enough. We 
observe, however, that to prove our last result it is quite unnecessary to calculate the 
volume of the tetrahedron; we simply apply (V), knowing that by doubling the 
length of each edge on any polyhedron, the volume of that polyhedron is increased by 
a factor of 2°, or 8. And this, of course, we know by virtue of the third fact in our 

original list of facts about volumes. 
However, if we put together the two results displayed (in boxes) earlier, we obtain 

a third interesting comparison: 

The volume of the regular octahedron of side a is 5 of the volume of the regular 

tetrahedron of side 2a and hence “ of the volume of the cube in which the 

octahedron sits with its vertices at the midpoints of the faces of the cube. 
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If we glue a regular tetrahedron onto each face of a regular octahedron (of side 2), 

we obtain a figure called the Stella Octangula by the great astronomer Johannes 

Kepler (see Figure 12.3). This may be thought of as two interpenetrating regular 

tetrahedra of side 2a, intersecting in the regular octahedron. These facts allow us to 

deduce immediately that the volume of the Stella Octangula is 12 times the volume of 

the regular tetrahedron of side a, or 3 times the volume of the regular octahedron of 

side a. Even more interesting, we have the next result: 

The volume of the Stella Octangula is 5 that of the smallest cube into which it 
can be placed. 

Figure 12.3 Stella Octangula 

Symmetries of a Cube 

We next consider the symmetries of a cube. After talking (rather a lot) about this 
important geometrical concept, we will again go back to Jennifer’s puzzle to see how 
it casts light on the relation of the symmetries of a cube to the symmetries of a regular 
octahedron and those of a regular tetrahedron. 

We picture the cube occupying a certain part of space; by a symmetry we mean the 
effect of a rotation of the cube about its center that brings it into a position occupy- 
ing the same original part of space. Thus, for example, we may rotate the cube 
through 90° about an axis passing through the midpoints of two opposite faces; this 
is a symmetry of the cube. It is plain that: 

1. if we follow one symmetry by another, the composite effect 1s again a 
symmetry, 

2. if we reverse a symmetry we again get a symmetry, and 
3. the “zero” rotation, that is, the “rotation” that holds every point fixed, is 

trivially a symmetry. 

_ These three facts allow us to talk of the group of symmetries of the cube (or, more 
generally, of the group of symmetries of any polyhedron). Notice that a symmetry is 
completely determined when we describe the position of the points of the cube after 
the rotation—it is thus sufficient to describe the destinations of each vertex. 
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Figure 12.4 

Now, a classical way to study the group of symmetries of the cube is to look at the 
4 main diagonals of the cube, that is, the 4 straight-line segments that pass from a 
vertex of the cube to the diametrically opposite vertex. It is plain that any symmetry 
of the cube permutes these 4 main diagonals, in the sense that, on executing the 
rotation, some main diagonal (perhaps the original one) comes to occupy the posi- 
tion in space originally occupied by any given main diagonal (see Figure 12.4 for an 
example). 

rotate 

Rotation through 90° about the axis joining the midpoints of front and back faces. 

15 26 

Diagonal a moves into the position originally occupied by diagonal a 

48 IS 

The following notation is often used to specify a permutation. We refer to the 
main diagonals 15, 26, 37, and 48 as D,, D2, D3, and D4, respectively. Then the 

permutation described in Figure 12.4 may be written 

Dats De :) 
D,D3D4D, 

indicating that 

D, moves into the position originally occupied by D). 
D, moves into the position originally occupied by D3 

However, an even more convenient notation for this permutation (which we adopt in 
Section 12.4) is 

(D\D2D3D4) 
This is the cyclic notation; you should think of the symbols D), D2, D3, D4 written, in 

that order, around a circle, and the notation indicates that each element (diagonal) 1s 
replaced, in the permutation, by its successor in the given cyclic order. This permuta- 
tion is, then, a ale of length 4. 

Let us give another example. The permutation written in the more cumbersome 
notation as 

Dy, D, D3; D4 

D3 D,D,D, 

appears, in cyclic notation, as 

(D,\D3) (D2D4) 
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Figure 12.5 

for D, “goes to” D3, which goes to D,, and D, goes to Dg, which goes to D>. This 

permutation is thus a composition of 2 cycles, each of length 2. Every permutation 

can be written in cyclic notation as a composition of cycles. If some element is fixed 

under the permutation (for example, a rotation about a main diagonal fixes that 

diagonal), we think of that element as constituting a cycle of length 1. The permuta- 

tion that moves nothing is called the identity; in cyclic notation it is (D;)(D2)(D3) (D4). 

We have seen then that every rotation of the cube induces a permutation of the set 

of 4 main diagonals. It is less obvious that given any permutation of the 4 main 

diagonals, there is exactly one symmetry of the cube that effects this permutation. Let 

us give you just one key argument leading to this important conclusiun. Let us ask: 

What symmetry could transform each main diagonal into itself? If such a symme- 

try sends vertex 1 to vertex 1, we claim it must send vertex 2 to vertex 2. For, if not, it 

sends vertex 2 to vertex 6, and this is impossible because 12 is an edge of the cube 

and 16 is not. Likewise it must send vertex 3 to 3 and vertex 4 to 4. In other words, 

it is the zero movement (or rotation). Thus it follows that the only nontrivial symme- 

try leaving the diagonals alone, if it existed, would have to send vertex | to vertex 5, 

vertex 2 to vertex 6, vertex 3 to vertex 7, and vertex 4 to vertex 8. 

We are going to use the idea of orientation to show that there is no such symme- 

try. If we orient the faces of the cube so that opposite orientations are induced in the 

common edge of two faces—this is called “orienting the cube”—and if we orient the 
—> <—_—_—_ 

face 1234 by 1234, then we must orient the face 2358 by 2358, so that we induce 

opposite orientations in their common edge 23. Likewise, we must orient the face 
<q—_ 

5678 by 5678. Figure 12.5 shows this orientation of the cube (one of the two 

possible orientations). Precisely, it shows the faces of the cube of Figure 12.4 drawn 
in net form with the orientation of each face indicated by the circular arrows. Notice 
that an orientation of the cube is determined by the orientation of any one face. It is 
now plain that 1234 cannot be moved by a symmetry to 5678, since a rotation must 
preserve orientation; so that there is zo nontrivial symmetry leaving the 4 main 
diagonals alone. A consequence of this is that distinct symmetries must produce 
distinct permutations of the main diagonals. 



Figure 12.6 
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It is not difficult to see that there are precisely 4! = 4-3-2-1 =24 permutations of 4 
objects. And there are also precisely 24 symmetries of the cube! You should experi- 
ment with one of the cubes you have constructed. We suggest that you first use it to 
verify that a cube really does have 24 symmetries. One way to do this is to suppose 
you have a cube with each face colored a different color—for the sake of discussion, 
say the colors are red opposite blue, green opposite orange, and white opposite 
purple. Further, suppose your cube lives in an imaginary cubical drawer that is only 
slightly larger than the cube. Figure 12.6 shows how it might look when you open 
the drawer. 

Now, if you want a particular face, say red, to show at the top of the drawer, then 
there are exactly 4 ways you can achieve this, since you can then have green, orange, 
white, or purple against the handle of the drawer. (Why can’t blue be against the 
handle of the drawer?) Once you have decided which color you want at the top of the 
drawer and which color is against the handle, the position of the cube will be 
completely determined. Do you see why? Since we may choose the top face in 6 ways 
and then choose the front face in 4 ways, it follows that the cube can be set down in 
the drawer in exactly 24 different ways. 

It now follows that the symmetries that produce the 24 possible positions of the 
cube in the drawer really do correspond to the 24 permutations of the 4 main 
diagonals of the cube. You will find it very instructive to complete the table in Section 
12.4, which describes each symmetry geometrically (for example, a rotation about the 

axis through the centers of the faces 1234 and 5678 so that 1 moves to 2, 2 moves to 

3, ...). The very important zero rotation, which 1s also called the identity, is listed last 

in that table. Naturally, it induces the identity permutation of the vertices and the 

main diagonals. The force of our earlier arguments is that the group of symmetries of 

the cube is isomorphic to (that is, structurally equivalent to) the group of permutations 

of 4 objects, usually written S,. 

The table and accompanying exercise in Section 12.4 contain even more informa- 

tion about symmetry. For example, if, in addition to the data about how the vertices 

and the main diagonals are permuted, you record the number and length of the 

various types of cycles in these permutations, you may be able to observe a very 

interesting pattern that is part of a much bigger picture. 
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Symmetries of the Regular Octahedron and Regular Tetrahedron 

There is a very nice geometrical argument that now allows us to determine the 

symmetries of the regular octahedron; for, as you will recall from Jennifer’s puzzle, a 

regular octahedron can fit inside a cube with its vertices at the midpoints of the faces 

of the cube. Thus every symmetry of the cube will send the’ octahedron into the space 

it originally occupied within the cube. | 

But it is also true that the midpoints of the faces of a regular octahedron are the 

vertices of a cube. Thus every symmetry of the octahedron will send this cube into the 

space it originally occupied within the octahedron. 

It therefore follows that the symmetry group of the regular octahedron is the 

same as (or isomorphic to) that of the cube. You may be interested to know that the 

full group of all permutations of 7 objects is called the symmetric group of n objects and 

is written S,. Thus, as we have shown, the group of symmetries of the cube and hence 

also of the octahedron is $4, which is, of course, a group having 24 elements. In fact, 

S4 is also known as the octahedral group. 

It is particularly revealing to relate the symmetries of the cube to the diagonal cube 

you constructed in Section 9.3; for you constructed the diagonal cube with 4 strips of 

paper—and these strips are objects that are permuted by each rotation of the cube! 

Thus the abstract notion of the permutation of the 4 main diagonals becomes much 

more vivid when you think of the 4 strips that form the surface of the diagonal cube 

as the objects that are being permuted. 
Now let us again return to Jennifer’s puzzle. In particular, let us suppose you 

place the big tetrahedron inside the cube with the vertices of the tetrahedron at the 

vertices 2, 4, 5, 7 of the cube. Then consider the symmetries of the cube. We claim 

the following: A symmetry of the-cube either permutes the vertices 2, 4, 5, 7 among 

themselves (in which case it also permutes the vertices 1, 3, 6, 8 among themselves) or 

it exchanges each of the vertices 2, 4, 5, 7 for one of the vertices 1, 3, 6, 8. Moreover, 

exactly half of the symmetries of the cube fall into the first class and exactly half into 

the second. You can verify these facts in a number of ways. If all else fails, use the 

table of symmetries of the cube that appears in Section 12.4. 

It now follows that the group of symmetries of the regular tetrahedron is precisely 

the same as the subgroup of the group of symmetries of the cube consisting of those 

symmetries that lie in the first class described earlier. As we pointed out, this group 

has half of the elements of $4, that is, 12 elements. In fact, this is the subgroup of S4 

called the alternating group, written A, (see the reference at the end of this chapter for 

further details). It is also known, particularly among geometers, as the tetrahedral 

group. 
An equivalent way to identify the subgroup A, is to ask the question: Which 

permutations of the main diagonals of the cube move vertex 2 to-one of the 

vertices 2, 4, 5, 7 and which move it to one of the vertices 1, 3, 6, 8? Once again, 

those in the first class constitute the symmetries of the regular tetrahedron. 

Remark on Orientation and Symmetry 

In our study of the symmetries of the cube, you will remember that we used a rather 

sophisticated argument about the orientation of the cube (to show that no symmetry 

of the cube could send each vertex of the cube to the diametrically opposite vertex). 
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We would like to clarify this argument for you by describing the analogous situation 
for the symmetries of an equilateral triangle (regular 3-gon): 

] 

2 3 

If we allow only planar symmetries of the triangle (that is, rotations that take place in 
the plane of the triangle), then all we can do is to rotate through + 120° about the 
center of the triangle—or, of course, to carry out the zero rotation. Thus the only 
permutations (in our first cumbersome notation) of the vertices are the following 
three: 

123 12.3 Lees 

Toa ak Sale 

It is obvious that these all maintain the orientation of the triangle. However, if we 
allow a rotation in space (of 3 dimensions), then, by rotation through 180° about the 
line joining vertex 1 to the midpoint of side 23, we may achieve the permutation 

123 
Ld 2 

which, as you may observe, reverses the orientation of the triangle. Thus in talking 
about the symmetries of the regular 3-gon (and a similar remark applies to the 
symmetries of the regular 7-gon), we should specify whether we insist on planar 
symmetries or allow rotations in 3-dimensional space. 

Now comes the crucial point! In talking of the symmetries of the cube, we should 
also specify whether we confine our rotations to the 3-dimensional space of the cube 
(as we have, in fact, done) or allow rotations in a 4-dimensional space! In the former 
case, Orientation is preserved, but it is not necessarily preserved in the latter. It is a 
tribute to our awareness of the 3-dimensional world in which we live that we adopt 
(mathematically) different conventions in discussing symmetries of planar and non- 
planar figures. In fact, by rotation in 4-dimensional space, we can achieve the appar- 
ently impossible symmetry of the cube described in this section. Do you see how? 

12.2 Euler’s Formula and Descartes’ Angular Deficiency 

Let us look at the five Platonic Solids and record, for each of them, the number of 

vertices (V), edges (E), and faces (F). The result is the following table: 

Vis oF 

Tetrahedron 4 6 4 

Hexahedron (cube) 8 12 6 
Octahedron 6... 12 8 

Dodecahedron 20 30 12 

Icosahedron 12-930". 20 
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We notice that, in all cases, we have the formula 

V-E+F=2 

This formula is called Euler’ Formula for polyhedra, and Euler produced arguments to 

show that the formula holds for any polyhedron in our sense (as defined in Chapter 

4). For example, for the pentagonal dipyramid, we have 

V=7, £E=15, F=10, and 7-15+10=2 
as promised by Euler’s Formula. 

We will not prove the formula here—a logically satisfactory proof is rather diffi- 

cult—but we will show you, by means of a modified version of an argument due to 

George Pélya, that Euler’s Formula is equivalent to a very deep result, due to the 

French mathematician and philosopher of the sixteenth century, René Descartes. 

Consider any of the convex polyhedra you have constructed in the course of 

studying this book. If you consider all the faces that come together at a particular 

vertex and lay them out flat, they will leave a gap. Thus, for example, for the regular 

tetrahedron, we would get, at any vertex, this picture: 

gap 

This leaves a gap of 180° at this vertex. For the cube we would get, at any vertex, this 

picture: 

gap 7 

which leaves a gap of 90° at this vertex. In fact, it was Euclid who pointed out (see 

Section 4.3) that there would always be such a (positive) gap for any convex polyhe- 

dron. Descartes called this gap the angular deficiency of the polyhedron at the particu- 

lar vertex. Let us number the vertices of a given polyhedron and write 8,, for the 
angular deficiency of the polyhedron at the n” vertex. However, we prefer to measure 
the angular deficiency in radians rather than degrees (remember, 7 radians = 180°), 
so that, for example, the angular deficiency at each vertex of a regular tetrahedron is 

a, and the angular deficiency at each vertex of a cube is = 

Descartes studied the total angular deficiency of a convex polyhedron, that is, the 

sum of the angular deficiencies at each vertex. Let us write A for the total angular 

deficiency so that z 

A=8,+84- +5,= > 5, 
n=] 

-He proved the remarkable fact that, for any convex polyhedron, 

A=4q 

Again, we will not attempt to prove this, but we will follow Polya’ line of reasoning 
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to show that V—E+F=2 and A=4m are equivalent statements. In the course of 
doing so, we obtain a result that takes us far beyond the domain of convex polyhedra 
as we defined them in Chapter 4. In fact, what we will prove is that 

A = 2n(V—-E+F) 

and you should immediately see that this identity establishes the equivalence of 
V—E+F=2 and A=4m. However, we will make no use of convexity in our argu- 
ment, and we will not need to assume that our polyhedron is deformable into the 
surface of a sphere; it will suffice that it is constructed out of polygonal faces, where 
two faces are put together by “gluing” a side of one to a side of the other to form an 
edge of the resulting surface. This last condition has the following important conse- 
quence. Let S be the total number of sides of the faces of our surface; then 

S = 2E 

For example, a tetrahedron consists of 4 triangles and each triangle has 3 sides; thus 
S=12, while E =6. Or, for the dodecahedron, we have 12 pentagons and each 

pentagon has 5 sides; thus $= 60, while E = 30. 
We are now ready to prove A=21(V—E+F). What we do is to count the sum of 

all the face angles (which we will call A) in two different ways. We first count by 
vertices. Now, since the angular deficiency at the ” vertex is 8,,, the sum of the face 
angles at the n” vertex is 21 —8,,. Thus 

V 

A= > (Qa -58,) =2nV-A 
n=1 

We next count by faces. Now, if a face has m sides, then the sum of the interior angles 
is (m— 2), since, as we showed in Section 2.1, the sum of the exterior angles is 27. 
Thus, if our polyhedron has F,,, m-gons among its faces, those m-gons contribute 
(m—2)F,,7 to the sum of all the face angles. We thus arrive at the key formula 

A = Fyn + 2Fqn + 3Fsn + = >) (m—-2)Fy tt = (SLMEm — 2>\F mt 

Now 

F =F, +F,+ Fs + = > Fy 

Also, each m-gon has m sides, so that the contribution to the number of sides from 

the m-gons is mF,,. Thus 

S = 3F; + 4F, + 5F; pO = SIME 

We put together these last three formulas, along with the fundamental relationship 
S=2E, to infer that 

A = (S—2F)n = (2E-2F)a 

Comparing this with the earlier formula for A, obtained by counting by vertices, we 
conclude that 

2uV — A = 2n(E-F) 

or 

A = 20(V—-E+F) 

as claimed. 
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We repeat that this result is very general and takes us well beyond the very 

restricted class of (convex) polyhedra that has been our main concern in this book. Of 

course, we have to allow “negative angular deficiencies” if we no longer insist that 

our polyhedra be convex. 
An interesting nonconvex example is furnished by the 12-celled collapsoids of 

Sections 11.3 and 11.4. You may count the constituent parts to see for yourself that 

V =26, E=72, and F=48, so that V—E+F=2. The different kinds of angular 

deficiencies are listed next: 

12 vertices, nurRHDAEH by 4 equilateral triangles, contribute an angular 

deficiency of = = each, 

8 vertices, coined by 6 equilateral triangles, contribute an aagalar 

deficiency of 0 each, 

and _6 vertices, surrounded by 8 equilateral triangles, contribute an angular 

deficiency of — = each (that is, an angular excess of =), 

Thus we see that the sum of all the angular deficiencies for the 12-celled collapsoid is 

12) + 8(0) + 6( 22) = 62) = 4n 

so that A=27(V—E+F) holds in this nonconvex case, too, as promised. 

Another interesting example is furnished by our rotating ring of tetrahedra (see 

Section 10.1). We imagine each of the “linking edges” between adjacent tetrahedra, 

which enable us to rotate the ring, pulled apart into two edges; this is necessary in 

order to retain the relationship S= 2E. If our ring is made up of & regular tetrahedra, 

then you may verify that 

V = 2k E=6k F=4k 

so that V-E+F=0. On the other hand, 6 equilateral triangles come together at 
every vertex, so that the angular deficiency at each vertex is 0! Again, we see that for 
the rotating ring of tetrahedra the formula A= 21(V —E + F) is splendidly vindicated, 

this time in a case in which the surface is definitely not deformable into a sphere, since 
our ring has a different Euler characteristic, namely, 0. 

In fact, the configuration we get when we pull apart the linking edges is what we 
would call a rectilinear model of a torus (or bicycle tire). That is to say, just as our Platon- 
ic Solids, if made out of a malleable material, could be deformed into the shape of a 
sphere, so could our rotating ring be deformed into a torus, usually depicted like this: 
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We come now to an interesting point about the relationship A =27(V—E+F), 
which will, we hope, appeal to the more mathematically (or more philosophically) 
minded of our readers. It is not just a matter of the two sides of our relationship, 
A=21(V—E+F), being equal. The Euler characteristic is obviously a combinatorial 
mvariant, that is, it depends on the way our configuration is broken up into faces, 
edges, and vertices. In fact, we know that it depends on far less—for example, the 
value is always 2, provided only that the configuration can be deformed into a sphere. 
It is an example of a topological invariant (see the references at the end of this chapter). 
It is, at any rate, obvious that the quantity V—E + F is unaltered if we distort the 
polyhedron somewhat (for example, if we massage a cube so that the faces are simply 
quadrilaterals). It is, however, by no means obvious that A is unaffected by such a 
distortion, since the angular deficiency at any particular vertex would certainly be 

expected to undergo change. Thus, A=27(V —E + F) tells us that, although A is 
defined by means of certain angular measures, it is in reality independent of those 
measures and depends only on the topological type of the polyhedron. 

12.3 Some Combinatorial Properties of Polyhedra 

We continue here to think of a polyhedron in the more general sense considered in 
the previous section; such a polyhedron may be described as a closed, rectilinear surface. 
Thus, as before, our surface has V vertices, E edges, F faces, S sides, and F,,, m-gonal 

faces, so that 

FE => Fy aS = DE, & Sos 25 

We now prove two further basic relationships. They are so important that we call 
them theorems. 

Theorem 1 2E=3F; equality holds of and only if each face 1s a triangle. 

Theorem 2 2E=3V; equality holds of and only if exactly 3 faces come together at each 
vertex. 

Before proving these theorems, we invite you to verify them for the Platonic 
Solids, using the table provided at the start of Section 12.2. You can also verify them 
for the convex deltahedra discussed in Chapter 4 and for the collapsoids discussed in 
Chapter 11. 

Proving Theorem 1 is very easy in view of the relationships we gave just before its 

statement. Remember that, in forming the sums S‘E,, and >\mEF,,, the number m 
m m 

takes values 3, 4, 5, .... Thus 

SimE,,2=>, 3F,,, equality holding if and only if Fy=F; =~ =0. 

It follows that S=3F, equality holding if and only if each face is a triangle. Since 

S=2E, Theorem | is proved. 
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Our argument suggests that, to prove Theorem 2, we want to break up the 

vertices in a way analogous to that in which we classified the faces into m-gons for 

various m. Thus we write V,, for the number of vertices at which m faces come 

together, and we then want to prove that 

Ve ER mn 

Given these equalities, Theorem 2 is proved just as we proved Theorem 1. Since the 

first of these equalities is easily seen to be true, we concentrate on the second. We 

first remark that if m faces come together at a vertex, then m edges come together at 

that vertex (indeed, the analogy with the earlier classification of faces would perhaps 

have been better illustrated by talking of the number of edges coming together at a 

vertex rather than the number of faces). Thus if we count by vertices, we count in all 

SmV,, edges, but each edge is counted twice since an edge joins two vertices. Thus 
m 

S| mV _ = 2E 

as claimed. If we want an analog of the idea of a side as used in Theorem 1, it is that 

of a ray, emanating from a given vertex. If R is the number of rays, then 

Ve Re LE 

But, although R =S, there is no sense in trying to think of each ray as a side or each 

side as a ray. 
The proof of Theorem 2 is now easily completed (compare the proof of Theorem 

1). We have 

2E = SMV, = 3>Vn = 3V 

and equality holds if and only if V4=V5=...=0, that is, if and only if exactly 3 faces 

come together at every vertex. 

In comparing the proofs of these two theorems, we find ourselves on the thresh- 

old of an exciting idea, that of a polyhedron and its dual. This is a pairing of 

polyhedra such that, if P and Q are dual polyhedra, then 

Vil P) = Fil Q) cc Pd P)= Vil Q), py BE), 5 BQ) 
For example, the cube and the octahedron are dual; so, too, are the dodecahedron 

and icosahedron. The tetrahedron is dual to—itself! Actually, the duality is richer 

than we have indicated, but we have probably said enough! 

The duality of the cube and the octahedron is a special case of the duality between 

a dipyramid having an m-gon for its equator and the prism having 7-gons for bases. 

Likewise, the self-duality of the tetrahedron is a special case of the fact that every 

pyramid having an #-gon for a base is self-dual. You may check these statements in 

the following tables. (We haven’t done all the work for you; you should work out the 

values of F,, and V,,,, for various m, yourself.) 

Having made these observations you might like to try to find other families of 

dual polyhedra. (Many exist.) After you have contemplated this question it may 

‘ become clear why the duality between the dodecahedron and the icosahedron is seen 

as such a special relationship—there is no generalization available! 
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_ PAIRS OF DUAL POLYHEDRA 

DIPYRAMIDS 

SELF-DUAL POLYHEDRA 

PYRAMIDS 

Let us close this section by drawing your attention to certain very concrete 

consequences of our theorems; these might be called corollaries. 

Corollary 1 If all faces on a surface are triangles, then the number of. ‘faces is even and the 

number of edges is divisible by 3. 

Corollary 2 If 3 faces of a surface come together at each vertex, then the number of vertices 

is even and the number of edges is divisible by 3. 
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Corollary 3 A polyhedron (tn the strict sense) cannot have 7 edges. 

We will be content to prove the third corollary, confidently leaving the proofs of 
the other two corollaries to you (remember that they are consequences of Theorems 1 
and 2). 

To prove Corollary 3, we suppose that E = 7 and hope that this will lead to a 
contradiction. Since 2E>3F, we have 3F<14, so that F<4; similarly (using Theorem 
2 instead of Theorem 1), V<4. But then 

V—-E+Fs4—-7+4=1 

contradicting Euler’s Formula, V—E + F =2, for a polyhedron. Corollary 3 is proved. 
Suppose you try the same argument with E = 10; we again assume we have a 

polyhedron in the original, strict sense. We have 3F<20, so that F<6; likewise V<6. 
Then 

V-E+F=6- 10+652 

Since, in fact, V-—E+F=2, we must have F=6 and V=6. From the equations 

3F, + 4F, + 5Fs + 6Fsg+ -- = 20 

PS Fy +s Fe t = 6 

we infer (subtracting 3 times the second equation from the first) that 

Pesala ole ae 

Thus F, = F7 = ** = 0 and we have just two possibilities: 

F,=0, F;=1, giving F3=5 

or 

F,=2,  Fs=0, giving F,=4. 

The former possibility is realized by a pentagonal pyramid and the latter by the 
polyhedron shown on the right. 

Are these polyhedra self-dual? 
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12.4 The Symmetries of the Cube 

Type I 

Type 2 

Geometric description of the 
type of symmetry (where the 
numbers I, 2, ..., 8 refer to 
vertices as labeled above). 

A 90° rotation in either direction 
about the axis through the centers 
of opposite faces; for example, 
through the centers of the front 
and back faces in one direction. 

(There are 6 of these; find the other 5.) 

A 180° rotation through the 
centers of opposite faces; for 
example, through the centers of 
the front and back faces in one 

direction. 

(There are 3 of these: find the other 2.) 

Diagonal 15 is D, 
26 is D2 
37 is D3 
48 is Dy 

Type of 
permutation of 
the vertices 

Two 4-cycles. 
In our example, 
(1234) 
(5678)* 

Four 2-cycles. 
In our example, 

(13) 
(24) 
(57) 
(68) 

Type of 
permutation of 
the main 
diagonals 

One 4-cycle. 
In our example, 

(D\D,D3Ds4) 

Two 2-cycles. 
In our example, 

(D,D3) 
(D2D4) 

*This would normally be written (1234) (5678); the vertical format is merely for typographical reasons. 
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Type 3 

Type 4 

Type 5 

Some Mathematics of Polyhedra 

A 120° rotation in either direction Two 3-cycles and 
about the axis through opposite two l-cycles. 
vertices; for example, through In our example, 
vertices 1 and 5 in one direction. (247) 

(368) 

(1) 
(9) 

(There are 8 of these; find the other 7.) 

A 180° rotation in either direction Four 2-cycles. 
about the axis through the centers In our example, 
of opposite edges; for example, (12) 
through the centers of edges 12 (73) 
and 65. (84) 

(56) 

(There are 6 of these; find the other 5.) 

No movement. Eight 1-cycles. 
(This is called the zdentity or zero 
rotation.) 

(Of course, there is just one of this type.) 

REFERENCES 

One 3-cycle and 
one 1-cycle. 
In our example, 

(D2D4D3) 
(D,) 

One 2-cycle and 
two l-cycles. 
In our example, 

(DD2) 
(D3) 
(Ds) 

Four 1-cycles. 

Courant, R., and H. Robbins. What Is Mathematics? New York: Oxford University Press, 
1978. 

Hilton, Peter, and Jean Pedersen. “Discovering, Modifying and Solving Problems: A Case 
Study from the Contemplation of Polyhedra.” Teaching and Learning: A Problem-solving 
Focus, ed. Frances R. Curcio. Reston, VA: NCTM, 1987, pp. 47—71. 



What Next? 169 

What Next? 

Let us whet your appetite for further studies by showing you another, remarkable 
way in which paper-folding leads to interesting number theory. 

On page 56 we described, with the example of the regular 11-gon, how to create the 

folding instructions for a regular star {2}-gon. Here is a symbol that encodes the 

moves tabulated at the beginning of page 56. 

] 5 3 | 

Peres s oo) 
ll | 

Thus, we subtracted the fraction “ from | to get > and bisected (halved) once to 

get 2, and so on (see below). The (*) is a particular example of a symbol 

a, a : : : a, 

b (**) 
ky ky ; 4 : h, 

where 0 is odd, each a; is odd, relatively prime to 4, and less than 5; and 

b lh — 2s l- (ke) 

Moreover, there are no repeats of the a,’s (so that a, , ; = 4). 

We call r the period (of the paper-folding instructions) and, for convenience in the 
number theory we are about to explain, we set 

Rey SRI he at tt 

You may now wish to turn again to page 56 to see if you understand how the symbol 
relates to the procedure that was used in order to obtain the folding instructions 
D°U'D'U°D'U'. If you can see this, you will probably be well on your way to under- 
standing how to construct the general symbol. We'll explain the symbol (%) fully now, 
just in case! 

We will describe the process of constructing the symbol (#*) without actually refer- 
ring to the tape. Start with 6 = 1] anda, = 1 (this will, in fact, uniquely determine the 
completed symbol) and write 

1 
ll 

Now we compute: 11 — 1 = 10, x = 5 (and STOP, because 5 is odd) and observe 

that this tells us that, in this instance, (**«*) takes the form 11 — 1 = 2'5,so record 

k, ( = 1) anda, ( = 5) to get 

] 5 

1 

Again we compute: 1] — 5 = 6, ‘ = 3 (and STOP, because 3 is odd), so that, in 

this instance, (#4) takes the form 11 — 5 = 2'3, so we record k,( = 1) and 

ll | 
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az( = 3) to get 

] 5 3 
Le 

] 1 

Repeating the process, we compute 11 — 3 = 8, : = 4, ; =, ; = | (and STOP, 

because 1 is odd), so that, in this instance (4+) takes the form 11 — 3 = 2°1, so we 
record k;( = 3) and, since a, ( = 1) would be the same as a, we STOP and draw the last 
vertical line to indicate that the symbol—which now appears as (*)—1s complete. 
The numbers in the bottom row, when attached as superscripts to the sequence 
DUDUDU . . ., tell precisely how to fold tape, which can be used to construct the 

regular 11-gon (and, in fact, the regular {>} and {}-gons). Furthermore, we can see, 

knowing where the a; in the top row came from on the tape, that this tape can also be 

used to fold regular star {= }- and {= }-gons. 

Now for the surprise. The information in this symbol tells us the smallest number k 
such that either 2‘ + 1 or 2* — 1 will be exactly divisible by 11. In fact, in our particular 
example, k = 5 and the symbol tells us, since r = 3, that 2° — (— 1)*, that is, 2° + 1, is 

exactly divisible by 11—and that for no power of 2 less than the fifth can this be true, 
with + 1 or — 1. This is an example of the more general fact that for the variables in the 
symbol (**), generated as described, for given 0 and any suitable m, it is always the 

case that 

2* - (— 1)’is exactly divisible by 4 

and there is no smaller power / of 2 such that 2’ + 1 or 2'— 1 is divisible by &. We call 
k the Quasi-order of b mod2 and refer to the result as the Quast-order Theorem (see the 
reference below for a proof of this theorem). 

Here is a particularly interesting example of the Quasi-order Theorem—we'll explain 
why. Choose 6 = 641, and a, = 1 and construct the symbol. Try constructing the 
symbol for yourself before you look carefully at it, to give you some practice with the 
algorithm involving repeated use of (***) 

] 5 ESO ee 2 Ce eke Le ke 

7 2 ] 4 3 2 2 2 9 
641 

Wetan now calculate thatk = 7+2+4+1+44+3+2+4+2+2+9= 32,and 

observe that 7 = 9, so that the Quasi-order Theorem tells us that 

2” — (— 1)’ = 2” + Lisexactly divisible by 641! 

We have just proved that the fifth Fermat number 2” + lisNOT prime. This fact 
was originally discovered by Leonhard Euler (see the footnote on page 7). 

If you feel you are now ready for a proof of the Quasi-order Theorem and for further 
ideas in the same direction, along with some interesting questions that you could think 
about, you should consult 

Hilton, Peter, and Jean Pedersen, “Geometry in Practice and Numbers in Theory,” 

Monographs in Undergraduate Mathematics 16 (1987), 37 pp. (available from the 
Department of Mathematics, Guilford College, Greensboro, NC, 27410). 
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Cube (cont.) 
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Pop-up octahedron, 103-104 
Pop-up polyhedra, 101ff. 
Practical hints, 82 
Prime section of folding number, 60 
Prisms, 164, 165 

Proof by Destruction, 119 
Proper section of folding number, 60 
Pseudo-zonohedron, 138 

Pushing and pulling, 83 
Pyramid, volume of, 151 
Pyramids, 165 

baseless, 139ff. 

Quadrilateral, regular, 8 

Quasi-order, 170 
Quasi-order Theorem, 170 

Radian measure, 61 

Ray, 164 
Readers, | 

Realities of life, 93 

Rectangular parallelepiped, volume of, 151 
Rectilinear model (of torus), 162 
Regular convex (2” + 1)-gons, 34 
Regular convex polygon, 7ff., 34 
Regular convex polyhedron, 85 
Regular decagon, 8 
Regular dodecagon, 8 
Regular {b/a}-gon, 53 
Regular 9-gon, 51 
Regular 10-gon, 25 
Regular 11-gon, 56 
Regular N-gon, 8 
Regular p-gon 

exterior angle of, 52 

interior angle of, 52 

Regular heptagon, 8 
Regular hexagon, 8 

Regular nonagon, 8 
Regular octagon, 8 
Regular octahedron, volume of, 153 
Regular pentagon, 8 
Regular pentagon, by tying a knot, 26-27 
Regular convex polygon, 7ff., 34 
Regular polygon, 7ff. 
Regular polyhedron, 83ff. 
Regular Polytopes, 137 
Regular quadrilateral, 8 
Regular star polygon, 9, 35, 54 

Regular tetrahedron, volume of, 152—153 

Repeating pattern (of folding numbers), 59 
Reverse pass-through flex, 72 
Rhombic dodecahedron, 137 

Rhombic triacontahedron, 137 

Robbins, H., 168 

Rotating ring of tetrahedra, 162 



Rotating rings, braiding, 131ff. 
Rotation, 154 

identity, 168 
zero, 154, 168 

Rouse Ball, W.W., 135 

S4, 157, 158 
Schattschneider, Doris, 135 

Second reading, 10 

Secondary fold line, 15, 16 

Section, 60 

prime, 60 
proper, 60 

Self-dual polyhedra, 164-165 
Self-respecting human being, 2. 
Short-line 9-gon, 33 
Short section (of tape), 82 
Side, analog of, 164 

Sides, 7, 83 

Simple folding procedure, 57 
Small stellated dodecahedron, 107, 110—112 

Sn, 158 
Solid, 83 
South Pole, 110 

Spherical surface, 83 

Square, 8, 40ff. 

Star {74}-gon, 39 

Star {7/}-gon, 39 
Star polygon, 34-35, 52 

regular, 9, 35, 54 

Stella Octangula, 154 

volume of, 154 

Stellations, 111 

Stone, Arthur H., 64n. 

Straightedge, 7 
Straight flex, 70—71 
Sum of exterior angles, 51, 161 

Sum of face angles, 161 
Sum of interior angles, 161 
Supplement, 58 

Supplementary angles, 54 
Surface, 83 

closed rectilinear, 163 

Symbol, 169 
Symmetric group, 158 
Symmetries 

group of, 154 

planar, 159 

Symmetries of the cube, 154ff., 167 

Symmetries of the equilateral triangle, 159 

Symmetries of the regular octahedron, 154, 158 

Symmetries of the regular tetrahedron, 154, 158 

Symmetry, 154, 158 

geometrical description of, 157 

Tabs, 76, 138ff. 

Tape, LOff. 

%s-, 108 

Tetracaidecadeltahedron, 79 

Tetracaidecahedron, 84 

Tetraflexagon, 45, 63 

Index 175 

Tetrahedral group, 158 
Tetrahedron, 77, 84, 86, 119 

braided, 97 
symmetries of regular, 154 
volume of regular, 152—153 

Tetraoctaflexagon, 69 
Topological invariant, 163 

Torus, 162 

Total angular deficiency, 160-161 
Triacontahedron, rhombic, 137 

Triangle 
equilateral, 8 
symmetries of equilateral, 159 

Triangles, folding, 11 ff. 
Triangular dipyramid, 78, 91 
Trihexaflexagon, 65 
Tuckerman, Bryant, 64n., 65 
Tuckerman Traverse, 65 

Tukey, John W., 64n. 

Tying a knot, 27 

Uncreased lines, 109 

UP fold, 11 

Valley fold, 64n. 
Vertices, 17, 159 

Volume of cube, 152 

Volume of pyramid, 151 
Volume of rectangular parallelepiped, 151 
Volume of regular octahedron, 153 
Volume of regular tetrahedron, 152—153 
Volume of Stella Octangula, 154 
Volumes of Platonic Solids, 151 

Volumes of polyhedra, 151 

Walker, Wallace, 135 

Zero rotation, 154, 168 

Zone (of faces), 137 
Zonohedron, 137, 149 

n-zonohedron, 137 
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This book will help you to reel by DO aces _ 

OA ek : 

¢ build from easily Pere ek Rants 
intriguing three-dimensional shapes 

e find out why these shapes are OSL L 2 
both esthetically and mathematically = 

© be introduced to the symmetry of raat a ety ae 
and discover relationships between the 
vertices, edges, and faces of ae ee 
models oo 

Using this book eae help ou to: 

¢ enrich your geometrical experience 
e deepen your spatialintuition —— 
¢ communicate the joy of Club lG ocete trie 

¢ enjoy mathematics 
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Is there a more pleasurable way to discover the properties 
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This clearly written, marvelously illustrated book brings 
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solids, flexagons, rotating rings ALC Sm 
and other ee objects. 
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