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IMAGINE A SPHERE, THE PERFECT 
symbol of unity. On its. surface, each 

point is identical to every other, equidis- 

tant from the unique point at its center. 

The sphere is the foundation of the five 

Platonic and thirteen Archimedean solids 

—which include the cube, the octahe- 

dron, and the tongue-twisting icosido- 

decahedron. These eighteen shapes are 

the building blocks of three-dimensional 

space, central to architecture, chemistry, 

and atomic physics. 

In this engaging book, geometer and 

artist Daud Sutton reveals the elegant 

simplicity in the relationships between. 

these beautiful forms. Cornerstones of 

mathematical and artistic inquiry since _ 

antiquity, they continue to and will — 

imspire anyone interested in science, 

design, and mathematics. 
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In The Name of God, 

The Compassionate, The Merciful 

This book is dedicated to Professor Keith Critchlow, 

whose teaching made it possible. 

I am indebted to the many geometers, authors, and 

artists who have explored the world of polyhedra. 

Thanks to my family and friends 

for comments and contributions. 
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INTRODUCTION 

Imagine a sphere. 

It is unity’s perfect symbol. Each point on its surface is identical 

to every other, equidistant from the unique point at its center. 

Establishing a single point on the sphere allows others to be 

defined in relation to it. The simplest and most obvious re- 

lationship is with the point directly opposite, found by extending 

a line through the sphere’s center to the other side. Add a third 

point and space all three as far from each other as possible to 

define an equilateral triangle. The three points lie on a circle 

with a radius equal to the sphere’s and sharing its center, an 

example of the largest circles possible on a sphere, known as great 

circles. Point, line, and triangle occupy zero, one, and two 

dimensions respectively. It takes a minimum of four points to 

define an uncurved three-dimensional form. 

This small book charts the unfolding of number in three- 

dimensional space through the most fundamental forms derived 

from the sphere. A cornerstone of mathematical and artistic in- 

quiry since antiquity, after countless generations these beautiful 

forms continue to intrigue and inspire. 

Cairo, Summer 2001 



THE PLATONIC SOLIDS 
beautiful forms unfold from unity 

Imagine you are on a desert island; there are sticks and sheets of 

bark. If you start experimenting with making three-dimensional 

structures you may well discover five “perfect” shapes. In each 

case they look the same from any vertex (corner point), their faces 

are all made of the same regular shape, and every edge is identical. 

Their vertices are the most symmetrical distributions of four, six, 

eight, twelve, and twenty points on a sphere (below). 

These forms are examples of polyhedra, literally “many seats,” 

and, as the earliest surviving description of them as a group is in 
Plato’s Timaeus, they are often called the Platonic solids. Plato 
lived from 427 B.c. to 347 B.c., but there is evidence that they 
were discovered much earlier (see page 20). 

The cube, with its six square faces, is well known. The other 
four have names deriving from their numbers of faces. Three of 
the solids have faces of equilateral triangles: the tetrahedron is made 
from four, the octahedron eight, and the icosahedron twenty. The 
dodecahedron has twelve regular pentagonal faces. The following 
ten pages will describe these striking three-dimensional forms in 
greater detail. 
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THE TETRAHEDRON 
4 faces, 6 edges, 4 vertices 

The tetrahedron is composed of four equilateral triangles, with 

three meeting at every vertex. Its vertices can also be defined by 

the centers of four touching spheres (opposite, bottom right). Plato 

associated its form with the element of fire because of the 

penetrating acuteness of its edges and vertices, and because it is 

the simplest and most fundamental of the regular solids. The 

Greeks also knew the tetrahedron as puramis, from which the 

word pyramid is derived. Curiously the Greek word for fire is 

pur. 

The tetrahedron has three 2-fold axes of symmetry, passing 

through the midpoints of its edges, and four 3-fold axes, each 

passing through one vertex and the opposite face center (below). 

Any polyhedron with these rotation axes has tetrahedral symmetry. 

Each Platonic solid is contained by its circumsphere, which just 

touches every vertex. The solids also define two more spheres: 

their midsphere, which passes through the midpoint of every edge, 

and their insphere, which is contained by the solid, perfectly 

touching the center of every face. For the tetrahedron the 

inradius is one-third of the circumradius (opposite, bottom left). 

edge on : 2-fold face on : 3-fold from vertex : 3-fold 
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THE OCTAHEDRON 
8 faces, 12 edges, 6 vertices 

The octahedron is made of eight equilateral triangles, four 

meeting at every vertex. Plato considered the octahedron an 

intermediary between the tetrahedron, or fire, and the 

icosahedron, or water and thus ascribed it to the element of air. 

The octahedron has six 2-fold axes passing through opposite 

edges, four 3-fold axes passing through its face centers, and three 

4-fold axes passing through opposite vertices (below). Any poly- 

hedron combining these rotation axes is said to have octahedral 

symmetry. 

Greek writings attribute the discovery of the octahedron and 

icosahedron to Theaetetus of Athens (417 B.c.—369 B.c.). Book 

XIII of Euclid’s Elements (see page 14) is thought to be based on 

Theaetetus’ work on the regular solids. 

The octahedron’s circumradius is bigger than its inradius by a 

factor of V3 (see page 55). The same relationship occurs between 

the circumradius and inradius of the cube, and between the 

circumradius and midradius of the tetrahedron. / 

The tetrahedron, the octahedron and the cube are all found in 

the mineral kingdom. Mineral diamonds often form octahedra. 

ted 

edge on : 2-fold face on : 3-fold from vertex : 4-fold 
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THE [COSAHEDRON 
20 faces, 30 edges, 12 vertices 

The icosahedron is composed of twenty equilateral triangles, five 

to a vertex. It has fifteen 2-fold axes, twenty 3-fold axes, and 

twelve 5-fold axes (below), known as icosahedral symmetry. When 

the tetrahedron, octahedron, and icosahedron are made of 

identical triangles, the icosahedron is the largest. This led Plato 

to associate the icosahedron with water, the densest and least 

penetrating of the three fluid elements—fire, air, and water. 

The angle where two faces of a polyhedron meet at an edge is 

known as a dihedral angle. The icosahedron is the Platonic solid 

with the largest dihedral angles. 

If you join the two ends of an icosahedron’s edge to the center 

of the solid an isosceles triangle is defined. This triangle is the 

same as those that make up the faces of the Great Pyramid at Giza 

in Egypt. 

Arranging twelve equal spheres to define an icosahedron leaves 

space at the center for another sphere just over nine-tenths as 

wide as the others (opposite, lower right). 

ERS  £EX 

QO @ 
edge on : 2-fold face on : 3-fold from vertex : 5-fold 
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THE CUBE 
6 faces, 12 edges, 8 vertices 

The cube has octahedral symmetry (below). Plato assigned it to 

the element of earth due to the stability of its square bases. 

Aligned to our experience of space it faces forward, backward, 

right, left, up, and down, corresponding to the six directions 

north, south, east, west, zenith, and nadir. Six is the first perfect 

number, with factors adding up to itself (1+2+3=6). 

Add the cube’s twelve edges, the twelve face diagonals, and the 

four interior diagonals to find a total of twenty-eight straight 

paths joining the cube’s eight vertices to each other. Twenty- 

eight is the second perfect number (1+2+4+7+14 = 28). 

Islam’s annual pilgrimage is to the Kaaba, literally cube, in 

Mecca. The sanctuary of the Temple of Solomon was a cube, as 

is the crystalline New Jerusalem in Saint John’s revelation. In 

430 B.c. the oracle at Delphi instructed the Athenians to double 
the volume of the cubic altar of Apollo while maintaining its 
shape. “Doubling the cube,” as the problem became known, 
ultimately proved impossible using Euclidean geometry alone. 

2 Re 
edge on : 2-fold from vertex : 3-fold face on : 4-fold 
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THE DODECAHEDRON 
12 faces, 30 edges, 20 vertices 

The beautiful dodecahedron has twelve regular pentagonal faces, 

three of which meet at every vertex. Its symmetry is icosahedral 

(below). Like the:tetrahedron, or pyramid, and the cube, the 

dodecahedron was known to the early Pythagoreans and was 

commonly referred to as the sphere of twelve pentagons. Having 

detailed the other four solids and ascribed them to the elements, 

Plato’s Timaeus says enigmatically, “There remained a fifth 

construction which God used for embroidering the constellations 

on the whole heaven.” 

A dodecahedron sitting on a horizontal surface has vertices 

lying in four horizontal planes that cut the dodecahedron into 

three parts. Surprisingly, the middle part is equal in volume to 

the others, so each is one-third of the total! Also, when set in the 

same sphere, the surface areas of the icosahedron and dodeca- 

hedron are in the same ratio as their volumes. 

“Fool’s Gold,” or iron pyrite, forms crystals much like the 

dodecahedron, but don’t be fooled, their pentagonal faces are not 

regular and their symmetry is tetrahedral. 

edge on : 2-fold from vertex : 3-fold face on : 5-fold 
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A SHORT PROOF 
are there really only five? 

A regular polygon has equal sides and angles. A regular poly- 

hedron has equal regular polygon faces and identical vertices. The 

five Platonic solids are the only convex regular polyhedra. 

At least three polygons are needed to make a solid angle. Using 

equilateral triangles this is possible with three (A), four (B), and 

five (C) around a point. With six the result lies flat (D). Three 

squares make a solid angle (E), but with four (F) a limit similar 

to six triangles is reached. Three regular pentagons form a solid 

angle (G), but there is no room, even lying flat, for four or more. 

Three regular hexagons meeting at a point lie flat (H), and higher 

polygons cannot meet with three around a point, so a final limit 

is reached. Since only five solid angles made of identical regular 

polygons are possible, there are at most five possible convex 

regular polyhedra. Incredibly, all five regular solid angles repeat 

to form the regular polyhedra. This proof is given by Euclid of 

Alexandria (c. 325 B.c.—265 B.C.) in Book XIII of his Elements. 

The angle left as a gap when a polyhedron’s vertex is folded flat 

is its angle deficiency. René Descartes (1596-1650) discovered that 

the sum of a convex polyhedron’s angle deficiencies always 

equals 720°, or two full turns. Later, in the eighteenth century, 

Leonhard Euler (1707-1783) noticed another peculiar fact: In 

every convex polyhedron the number of faces minus the number 

of edges plus the number of vertices equals two. 

14 
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ALL THINGS IN PAIRS 
Platonic solids two by two 

What happens if we join the face centers of the Platonic solids? 

Starting with a tetrahedron, we discover another, inverted, 

tetrahedron. The faces of a cube produce an octahedron, and an 

octahedron creates a cube. The icosahedron and dodecahedron 

likewise produce each other. Two polyhedra whose faces and 

vertices correspond perfectly are known as each other’s duals. 

The tetrahedron is self-dual. Dual polyhedra have the same num- 

ber of edges and the same symmetries. 

The illustrations opposite are stereogram pairs. Hold the book 

at arms length and place a finger vertically, midway to the page. 

Focus on the finger and then bring the central blurred image into 

focus. The image should jump into three dimensions. 

Dual pairs of Platonic solids can be joined with their edges 

touching at their midpoints to give the compound polyhedra 

shown below. Everything in creation has its counterpart or 

opposite, and the dual relationships of the Platonic solids are a 

beautiful example of this principle. 

16 





AROUND THE GLOBE 

in elegant ways 

Plato’s cosmology constructs the elemental solids from two types 

of right-triangular atoms. The first atom is half an equilateral 

triangle, six of which then compound to produce larger 

equilateral triangles; these go on to form the tetrahedron, 

octahedron, and icosahedron: The second triangular atom is a 

diagonally halved square, which appears in fours, making squares 

that then form cubes. 

The Platonic solids have planes of symmetry dividing them into 

mirror-image halves. The tetrahedron has six, the octahedron 

and cube have nine, and the icosahedron and dodecahedron have 

fifteen. When the tetrahedron, octahedron, and icosahedron are 

constructed from Plato’s triangular atoms, paths are defined that 

make their mirror planes explicit. The cube, however, needs 

twice as many triangular divisions as Plato gave it (top row) to 

delineate all its mirror planes (middle row). 

Projecting the subdivided Platonic solids onto their 

circumspheres produces three spherical systems of symmetry. 

Each spherical system is defined by a characteristic spherical 

triangle with one right angle and one angle of one-third of a half 

turn. Their third angles are respectively one-third of a half turn 

(top row), one-quarter of a half turn (middle row), and one-fifth of 

a half turn (bottom row). This sequence of }, +, and + elegantly 
inverts the Pythagorean whole number triple 3, 4, 5. 

18 
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ROUND AND ROUND 

lesser circles 

Any navigator will tell you that the shortest distance between two 

points on a sphere’s surface is always an arc of a great circle. When 

a polyhedron’s edges are projected onto its circumsphere the 

result is a set of great circle arcs known as a radial projection. The 

left-hand column opposite shows the radial projections of the 

Platonic solids with their great circles shown as dotted lines. 

A spherical circle smaller than a great circle is called a lesser circle. 

Tracing a circle around all the faces of the Platonic solids set in 

their circumspheres generates the patterns of lesser circles, shown 

in the middle column. Book XIV of Euclid’s Elements proves 

that when set in the same sphere, the lesser circles around the 

dodecahedron’s faces (fourth row) are equal to the lesser circles 

around the icosahedron’s faces (fifth row). The same is true of the 

cube (second row) and the octahedron (third row) as a pair. 

Shrink the lesser circles in the middle column until they just 

touch each other to define the five spherical curiosities in the 

right-hand column. Many neolithic carved stone spheres have 

been found in Scotland with the same patterns as the first four of 

these arrangements. The dodecahedral carvings of twelve circles 

on a sphere, some 4,000 years old, are the earliest known ex- 

amples of manmade designs with icosahedral symmetry. 

Large lesser circle models can be made from circles of willow, 

or cheap hula-hoops, lashed together with wire, string, or tape. 

20 
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THE GOLDEN RATIO 
and some intriguing juxtapositions 

Dividing a line so that the shorter section is to the longer as the 

longer section is to the whole line defines the golden ratio (below). 

It is an irrational number, inexpressible as a simple fraction (see 

page 55). Its value is one plus the square root of five, divided by 

two—approximately 1.618. It is represented by the Greek letter 

(phi) or sometimes by T (tau). has intimate connections with 

unity; times itself (?) is equal to @ plus one (2.618 . . . ), and 

one divided by @ equals minus one (0.618 ...). It is innately 

related to five-fold symmetry; each successive pair of heavy lines 

in the pentagram below is in the golden ratio. 

A golden rectangle has sides in the golden ratio. If a square is 

removed from one side, the remaining rectangle is another 

golden rectangle. This process can continue indefinitely and 

establishes a golden spiral (below right). Remarkably, an icosa- 

hedron’s twelve vertices are defined by three perpendicular gold- 

en rectangles (opposite, top). The dodecahedron is even richer. 

Twelve of its twenty vertices are defined by three perpendicular 

° rectangles, and the remaining eight vertices are found by 

adding a cube of edge length © (opposite, bottom). 

22 
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POLYHEDRA WITHIN POLYHEDRA 

and so proceed ad infinitum 

The Platonic solids fit together in remarkable and fascinating 

ways. Page 54 shows many of those relationships. The upper 

stereogram pair opposite shows a dodecahedron with edge length 

one. Nested inside it is a cube, edge length o, and a tetrahedron, 

edge length V2 (see page 55) times the cube’s. The tetrahedron 

occupies one-third of the cube’s volume. 

In the lower stereogram pair opposite, the six edge midpoints 

of the tetrahedron define the six vertices of an octahedron. As 

well as halving the tetrahedron’s edges this octahedron has half its 

surface area and half its volume, perfectly embodying the musical 

octave ratio of 1:2. Similarly the twelve edges of the octahedron 

correspond to the twelve vertices of a nested icosahedron. The 

icosahedron’s vertices cut the octahedron's edges perfectly into 

the golden ratio. 

Imagine these two sets of nestings combined to give all five 

Platonic solids in one elegant arrangement. Since the outer do- 

decahedron defines a larger icosahedron by their dual rela- 

tionship, and the inner icosahedron likewise defines a smaller 

dodecahedron, the nestings can be continued outward and 
inward to infinity. 

The tetrahedron, octahedron, and icosahedron, made entirely 

from equilateral triangles, are known as convex deltahedra, after the 

Greek letter A (delta). The five other possible convex deltahedra 

are shown in the bottom row opposite. 

24 





COMPOUND POLYHEDRA 
a stretch of the imagination 

The interrelationships on the previous page generate particularly 

beautiful compound polyhedra. Fix the position of an icosa- 

hedron, and octahedra can be placed around it in five different 

ways, giving the compound of five octahedra (top left). Similarly 

the cube within the dodecahedron, placed five different ways, 

generates the compound of five cubes (top right). The tetra- 

hedron can be placed in the cube two different ways to give the 

compound of two tetrahedra shown on page 16. Replace each 

of the five cubes in the dodecahedron with two tetrahedra to give 

the compound of ten tetrahedra (middle left). Remove five of the 

tetrahedra from the compound of ten, to leave the compound of 

five tetrahedra (middle right). This occurs in two versions, right- 

handed, or dextro, and left-handed, or laevo; the two versions 

cannot be superimposed and are described as each other’s 

enantiomorphs. Polyhedra or compounds with this property of 

“handedness” are referred to as chiral. 

Returning to the cube and dodecahedron, and this time fixing 

the cube, there are two ways to place the dodecahedron around 

it. The result of both ways used simultaneously is the compound 

of two dodecahedra (bottom left). In the same way the octahedron 

and icosahedron pair gives the compound of two icosahedra 

(bottom right). Many other extraordinary compound polyhedra 

are possible; for example, Bakos’s compound of four cubes is 

shown on the first page of this book. 

26 
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THE KEPLER POLYHEDRA 
the stellated and great stellated dodecahedron 

The sides of some polygons can be extended until they meet 

again; for example, the regular pentagon extends to form a five 

pointed star, or pentagram (below). This process is known as 

stellation. Johannes Kepler (4571-1630) proposed its application 

to polyhedra, observing the two possibilities of stellation by 

extending edges, and stellation by extending face planes. 

Applying the first of these (below) to the dodecahedron and 

icosahedron he discovered the two polyhedra illustrated opposite 

and named them the larger and smaller icosahedral hedgehogs. 

Their modern names, the stellated dodecahedron (opposite, top) 

and the great stellated dodecahedron (opposite, bottom), reveal that 

these polyhedra are also two of the face stellations of the do- 

decahedron. Each is made of twelve pentagram faces, one with 

five, the other with three to every vertex. They have icosahedral 

symmetry. 

Although its five sides intersect each other, the pentagram has 

equal edges and equal angles at its vertices and so can be 

considered a nonconvex regular polygon. Likewise, these 

polyhedra can be regarded as nonconvex regular polyhedra. 

“ase 
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THE POINSOT POLYHEDRA 
the great dodecahedron and the great icosahedron 

Louis Poinsot (1777-1859) investigated polyhedra indepen- 

dently of Kepler. He rediscovered Kepler’s two icosahedral 

hedgehogs and also discovered the two polyhedra shown here: 

the great dodecahedron (opposite, top) and the great icosahedron 

(opposite, bottom). Both of these polyhedra have five faces to a 

vertex, intersecting each other to give pentagram vertex figures. 

The great dodecahedron has twelve pentagonal faces and is the 

third stellation of the dodecahedron. The great icosahedron has 

twenty triangular faces and is one of an incredible fifty-nine 

possible stellations of the icosahedron, which also include the 

compounds of five octahedra and of five and ten tetrahedra. 

A nonconvex regular polyhedron must have vertices arranged 

like one of the Platonic solids. Joining a polyhedron’s vertices to 

form new types of polygon within it is known as faceting. The 

possibilities of faceting the Platonic solids produce the 

compounds of two and ten tetrahedra, the compound of five 

cubes, the two Poinsot polyhedra (below left) and the two Kepler 

star polyhedra (below right). The four Kepler-Poinsot polyhedra 

are therefore the only nonconvex regular polyhedra. 

30 
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THE ARCHIMEDEAN SOLIDS 
thirteen semiregular polyhedra 

The thirteen Archimedean solids (opposite) are the subject of 

much of the rest of this book. Also known as the: semiregular 

polyhedra, they have regular faces of more than one type, and 

identical vertices. They alk fit perfectly within a sphere, with 

tetrahedral, octahedral, or icosahedral symmetry. Although their 

earliest attribution is to Archimedes (c. 287 B.c.—212 B.C.), 

Kepler seems to have been the first person since antiquity to 

describe the whole set of thirteen in his Harmonices Mundi. He 

further noted the two infinite sets of regular prisms and antiprisms 

(below), which also have identical vertices and regular faces. 

Turn one octagonal cap of the rhombicuboctahedron by an 

eighth of a turn to obtain the pseudorhombicuboctahedron 

(below). Its vertices, while surrounded by the same regular 

polygons, are of two types relative to the polyhedron as a whole. 

There are fifty-three semiregular nonconvex polyhedra, one 

example being the dodecadodecahedron (below). Together with 

the Platonic and Archimedean solids, and the Kepler-Poinsot 

polyhedra, they form the set of seventy-five uniform polyhedra. 

, ig seudo 
heptagonal prism heptagonal antiprism Pies: apie ss S dodecadodecahedron 
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FIVE TRUNCATIONS 

off with their corners! 

Truncate the Platonic solids to produce the five equal-edged 

Archimedean polyhedra shown here. These truncated solids are 

the perfect demonstration of the Platonic solids’ vertex figures: 

triangular for the tetrahedron, cube, and dodecahedron; square 

for the octahedron; and pentagonal for the icosahedron. Each 

Archimedean solid has one circumsphere and one midsphere. 

They have an insphere for each type of face, the larger faces 

having the smaller inspheres touching their centers. Each 

truncated solid therefore defines four concentric spheres. 

The five truncated solids can each sit neatly inside both their 

original Platonic solid and that solid’s dual. For example, the 

truncated cube can rest its octagonal faces within a cube or its 

triangular faces within an octahedron. 

The truncated octahedron is the only Archimedean solid that 

can fill space with identical copies of itself; leaving no gaps. It 

also conceals a less obvious secret. Joining the ends of one of its 

edges to its center produces a central angle that is the same as the 

acute angle in the famous Pythagorean 3 : 4 : 5 triangle, beloved 

by ancient Egyptian masons for defining a right angle. 

34 
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THE CUBOCTAHEDRON 
14 faces, 24 edges, 12 vertices 

The cuboctahedron combines the six square faces of the cube 

with the eight triangular faces of the octahedron. It has octahedral 

symmetry. Joining the edge midpoints of either the cube or the 

octahedron traces out a cuboctahedron (shown below as a stereogram 

pair). According to Heron of Alexandria (10-75), Archimedes 

ascribed the cuboctahedron to Plato. 

Quasiregular polyhedra such as the cuboctahedron are made of 

two types of regular polygon, each type being surrounded by 

polygons of the other type. The identical edges, in addition to 

defining the faces themselves, also define equatorial polygons. 

For example, the cuboctahedron’s edges define four regular 

hexagons. The radial projections of quasiregular polyhedra 

consist entirely of complete great circles (opposite, bottom left). 

The maximum number of identical spheres that can fit around 

a central sphere of equal size is twelve. Arranged symmetrically 

so that their centers define the vertices of a cuboctahedron, they 

each touch four neighbors (opposite, bottom right). 

36 
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A CUNNING I[WIST 
and a structural wonder 

Picture a cuboctahedron made of rigid struts joined at flexible 

vertices. This structure was named “the jitterbug” by R. 

Buckminster Fuller (1895-1983), and is shown opposite with the 

rigid triangular faces filled in for clarity. The jitterbug can be 

slowly collapsed in on itself in two ways so that the square 

“holes” become distorted. When the distance between the 

closing corners equals the edge length of the triangles, an 

icosahedron is defined. Continue collapsing the structure and it 

becomes an octahedron. If the top triangle is then given a twist 

the structure flattens to form four triangles that close up to give 
the tetrahedron. 

Geodesic domes are another of Buckminster Fuller’s structural 

discoveries. These are parts of geodesic spheres, which are 

formed by subdividing the faces of a triangular polyhedron, 

usually the icosahedron, into smaller triangles, and then 

projecting the new vertices outward to the same distance from 

the center as the original ones (below). A distant relative of the 

geodesic sphere is the popular Renaissance polyhedron of 

seventy-two sides known as Campanus’s sphere (below right). 

38 
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THE [ICOSIDODECAHEDRON 
32 faces, 60 edges, 30 vertices 

The icosidodecahedron combines the twelve pentagonal faces 

of the dodecahedron with the twenty triangular faces of the 

icosahedron. Joining the edge midpoints of either the dodec- 

ahedron or the icosahedren traces out the quasiregular icosi- 

dodecahedron (both shown below as a stereogram pair). Its edges 

form six equatorial decagons, giving a radial projection of six 

great circles (opposite, bottom left). 

The earliest known depiction of the icosidodecahedron is by 

Leonardo Da Vinci (1452-1519) and appears in Fra Luca 

Pacioli’s (1445-1517) De Divina Proportione. Appropriately this 

work’s main theme is the golden ratio, which is perfectly 

embodied by the ratio of the icosidodecahedron’s edge to its 

circumradius. 

Defining the icosidodecahedron with thirty equal spheres 

leaves space for a large central sphere that is V5 (see page 55) times 

as large as the others (opposite, bottom right). 
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FOUR EXPLOSIONS 
expanding from the center 

Exploding the faces of the cube or the octahedron outward until 

they are separated by an edge length (below) defines the rhom- 

bicuboctahedron (opposite, top left). The same process applied to 

the dodecahedron or icosahedron gives the rhombicosi- 

dodecahedron (opposite, top right). The octagonal faces of the 

truncated cube, or the hexagonal faces of the truncated 

octahedron, explode to give the great rhombicuboctahedron 

(opposite, bottom left). The decagonal faces of the truncated 

dodecahedron, or the hexagonal faces of the truncated 

icosahedron, explode to give the great rhombicosidodecahedron 

(opposite, bottom right). 

Kepler called the great rhombicuboctahedron a truncated cuboc- 

tahedron, and the great rhombicosidodecahedron a truncated 

icosidodecahedron. Truncating these polyhedra, however, does not 

leave square faces, but V2 and rectangles. 

These four polyhedra have face planes in common with either 

the cube, octahedron, and rhombic dodecahedron (see page 47), 

or the icosahedron, dodecahedron, and rhombic triaconta- 

hedron (see page 47), hence the prefix “rhombi-” in their names. 
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TURNING 
the snub cube and the snub dodecahedron 

The name “snub cube” is a loose translation of Kepler’s name 

cubus simus, literally “the squashed cube.”” Both the snub cube 

and the snub dodecahedron are chiral, occurring in dextro and 

laevo versions. Both versions are illustrated opposite with the 

dextro versions on the right. The snub cube has octahedral 

symmetry, and the snub dodecahedron has icosahedral symmetry. 

Neither has any mirror planes. Of the Platonic and Archimedean 

solids the snub dodecahedron is closest to the sphere. 

The rhombicuboctahedron (see page 43) can be used to make a 

structure similar to the jitterbug (see page 39). Applying a twist to 

this new structure produces the snub cube (below). Twist one 

way to make the dextro version and the other to make the laevo. 

The corresponding relationship exists between the rhombicosi- 

dodecahedron and the snub dodecahedron. 

The five Platonic solids have been truncated, combined, 

exploded, and twisted into the thirteen Archimedean solids. 
Three-dimensional space is revealing its order, complexity, and 

subtlety. What other wonders await? 
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THE ARCHIMEDEAN DUALS 
everything has its opposite 

The duals of the Archimedean solids were first described as a 

group by Eugéne Catalan (1814-1894) and are positioned 

opposite to correspond with their partners on page 33. To create 

the dual of an Archimedean solid, extend perpendicular lines 

from its edge midpoints, tangential to the solid’s midsphere. 

These lines are the dual’s edges, the points where they first 

intersect each other are its vertices. Archimedean solids have one 

type of vertex and different types of faces, their duals therefore 

have one type of face but different types of vertices. 

The two quasiregular Archimedean solids, the cuboctahedron 

and the icosidodecahedron, both have rhombic duals that were 

discovered by Kepler. The Platonic dual pair compounds (pages 

16, 36, and 40) define the face diagonals of these rhombic 

polyhedra, which are in the ratios V2 for the rhombic 

dodecahedron and for the rhombic triacontahedron. Kepler 

noticed that bees terminate their hexagonal honeycomb cells 

with three such V2 rhombs. He also described the three dual 

pairs involving quasiregular solids (below), where the cube is seen 

as a rhombic solid, and the octahedron as a quasiregular solid. 
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MORE EXPLOSIONS 
and unseen dimensions 

Exploding the rhombic dodecahedron, or its dual the 

cuboctahedron, results in an equal edged convex polyhedron of 

fifty faces (opposite, top right). The exploded rhombic triaconta- 

hedron, or exploded icosidodecahedron, has one hundred and 

twenty-two faces (opposite, bdttom right). 

Ludwig Schlafi (1814-1895) proved that there are six regular 

four-dimensional polytopes (generalizations of polyhedra): the 

5-cell made of tetrahedra; the 8-cell, or tesseract, made of cubes; 

the 16-cell made of tetrahedra; the 24-cell made of octahedra; the 

120-cell made of dodecahedra; and the 600-cell made of 

tetrahedra. The rhombic dodecahedron is a three-dimensional 

shadow of the four-dimensional tesseract analogous to the 

hexagon as a two-dimensional shadow of the cube. In a cube two 

squares meet at every edge. In a tesseract three squares meet at 

every edge. Squares through the same edge define three cubes 

(shaded below with an alternative tesseract projection). Schlafi also 

proved that in five or more dimensions the only regular polytopes 

are the simplex, or generalized tetrahedron, the hypercube, or 

generalized cube, and the orthoplex, or generalized octahedron. 
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FLAT-PACKED POLYHEDRA 

If a polyhedron is “undone” along some of its edges and folded flat, the 

result is known as its net. The earliest known examples of polyhedra 

presented this way are found in Albrecht Diirer’s Painter’s Manual, from 

1525. The nets below are scaled such that if refolded the resulting 

polyhedra would all have equal circumspheres. 

De a ee 
tetrahedron truncated tetrahedron 

octahedron truncated octahedron 

T Y ; oe 

cube truncated cube 

icosahedron truncated icosahedron 
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DES © Sox 
dodecahedron truncated dodecahedron 

cuboctahedron icosidodecahedron 

rhombicuboctahedron rhombicosidodecahedron 

great rhombicuboctahedron great rhombicosidodecahedron 

i | ‘ CK 

snub cube snub dodecahedron 
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ARCHIMEDEAN SYMMETRIES 

The diagrams below show the rotation symmetries of the Archimedean 

solids and the two rhombic Archimedean duals. 

truncated tetrahedron 

= KS2\ FS OOH &68Oe 
truncated octahedron truncated icosahedron 

—— ae. 

yp \ PX 

HMO OG re KAY Oy 
truncated cube truncated dodecahedron 

er] a As LEAN AD BX 
Ww) QO SO) raw Yay LY 

cuboctahedron icosidodecahedron 

a; Co ch LAN bos) Nese Ee, 
rhombicuboctahedron rhombicosidodecahedron 

—— YZaZON 

“an ES ED eee Ex) ey 
pk SOT EY 

great rhombicuboctahedron great rhombicosidodecahedron 
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snub cube 

OBS 
rhombic dodecahedron 

snub dodecahedron 

es LE 
mS & 

rhombic triacontahedron 

THREE-DIMENSIONAL I ESSELLATIONS 

Of the Platonic solids only the cube can fill space with copies of itself 

and leave no gaps. The only other purely “Platonic” space filling 

combines tetrahedra and octahedra. One Archimedean solid, the 

truncated octahedron, and one Archimedean dual, the rhombic 

dodecahedron, are also space-filling polyhedra. 

truncated octahedra 

55 

rhombic dodecahedra 



EACH EMBRACING EVERY OTHER V
e
Z
o
e
e
o
 

Y
O
O
 

O
e
 

Y
S
O
o
e
e
s
 



EXPANSIONS AND FORMULAS 

A recurring theme in the metric properties of the Platonic solids is the occurrence of the 

irrational numbers phi (0), and the square roots V2, V3, and V5. They are surprisingly 

elegant when expressed as (infinitely) continued fractions: 

d=1+4, v2=1+4, V3 =14—— ¥5=2+1, 
1+ l 
2 

1+ al 1 2 7 1+, 4+ 
rei se Cre ee 

ad rat raat 

Their decimal expansions to twelve places, together with that of 7 are 

o = 1.618033988750 V2 = 1.414213562373 V3 = 1.732050807569 

V5 = 2.236067977500 Te = 3.141592653590 

The table below gives volumes and surface areas for a sphere radius r, and Platonic solids, 

edge length s. Also included are the proportional pathways joining each vertex to every 

other in the Platonic solids. 

Volume Surface Area Number of Pathways, Length 

Sphere ann 4nr? n/a 

Tetrahedron ee Ge V3.5? 6 edges, s 

Octahedron 2 ie 2V 35? 12 edges, s 

3 axial diagonals, V2s 

Cube c= 65? 12 edges, s 

12 face diagonals (inscribed tetrahedra), V 2s 
4 axial diagonals, V 3s 

Icosahedron 2 75° 5V 35? 30 edges, s 

30 face diagonals, os 

6 axial diagonals, V(?+1)s 

Dodecahedron 2 6453 3V (25+10V S)is2) =S0redges,. 5 

60 face diagonals (inscribed cubes), s 

60 interior diagonals (inscr. tetrahedra), V 2s 

30 interior diagonals, 7s 

10 axial diagonals, V 3s 
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Symmetry’ Vertices Edges Faces Faces 
DATA (total) (types) 

TAB i E Tetrahedron Tetr. 4 6 4 4 triangles 

Cube Oct. 8 12 6 6 squares 

Octahedron Oct. 6 12 8 8 triangles 

Dodecahedron Icos. 20 30 12 12 pentagons 

Icosahedron Icos. 12 30 20 20 triangles 

Stellated Dodecahedron Icos. 12 30 i 12 pentagrams 

Great Dodecahedron Icos. 12 30 12 12 pentagons 

Great Stellated Dodecahedron Icos. 20 30 12 12 pentagrams 

Great Icosahedron Icos. 12 30 20 20 triangles 

Cuboctahedron QGct. 12 24 14 8 triangles 

6 squares 

Icosidodecahedron Icos. 30 60 32 20 triangles 
12 pentagons 

Truncated Tetrahedron Tetr. 12 18 8 4 triangles 
4 hexagons 

Truncated Cube Oct. 24 36 14 8 triangles 
6 octagons 

Truncated Octahedron Oct. 24 36 14 6 squares 
8 hexagons 

Truncated Dodecahedron Icos. 60 90 32 20 triangles 
12 decagons 

Truncated Icosahedron Icos. 60 90 32 12 pentagons 
20 hexagons 

Rhombicuboctahedron Oct. 24 48 26 8 triangles 
18 squares 

Great Rhombicuboctahedron Oct. 48 72 26 12 squares 
8 hexagons 
6 octagons 

Rhombicosidodecahedron Icos. 60 120 62 20 triangles 
30 squares 
12 pentagons 

Great Rhombicosidodecahedron Icos. 120 180 62 30 squares 

20 hexagons 
12 decagons 

Snub Cube Oct.-* 24 60 38 32 triangles 
6 squares 

Snub Dodecahedron _ Icos.-# 60 150 92 80 triangles 

12 pentagons 

* Symmetries: Tetrahedral: 4 x 3-fold axes, 3 x 2-fold, 6 mirror planes. Octahedral: 3 x 4-fold axes, 4x 3-fold, 6 x 2-fold, 9 mirror planes. 

Icosahedral: 6 x 5-fold axes, 10 x 3-fold, 15 x 2-fold, 15 mirror planes. 

* The snub solids have no mirror planes. 
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Inradius * 

Circumradius 

0.3333333333 

0.5773502692 

0.5773502692 

0.7946544723 

0.7946544723 

0.4472135955 

0.4472135955 

0.1875924741 

0.1875924741 

0.8164965809 
0.7071067812 
0.9341723590 
0.8506508084 
0.8703882798 
0.5222329679 
0.9458621650 
0.6785983445 
0.8944271910 
0.7745966692 
0.9809163757 
0.8385051474 
0.9392336205 
0.9149583817 
0.9108680249 
0.8628562095 
0.9523198087 
0.9021230715 
0.8259425910 
0.9659953695 
0.9485360199 
0.9245941063 
0.9825566436 
0.9647979663 
0.9049441875 
0.9029870683 
0.8503402074 
0.9634723304 
0.9188614921 

+ From the polyhedron’s center the inradius is measured to the various face-centers, 
#4 Tn Archimedean solids the larger dihedral angles are 

Midradius * 

Circumradius 

0.5773502692 

0.8164965809 

0.7071067812 

0.9341723590 

0.8506508084 

0.5257311121 

0.8506508084 

0.3568220898 

0.5257311121 

0.8660254038 

0.9510565163 

0.9945340337 

0.9596829823 

0.9486832981 

0.9857219193 

0.9794320855 

0.9339488311 

0.9764509762 

0.9746077624 

0.9913166895 

0.9281913780 

0.9727328506 

Edge Length * 
Circumradius 

1.6329931619 

1.1547005384 

1.4142135624 

0.7136441795 

1.0514622242 

1.7013016167 

1.0514622242 

1.8683447179 

1.7013016167 

1.0000000000 

0.6180339887 

0.8528028654 

0.5621692754 

0.6324555320 

0.3367628118 

0.4035482123 

0.7148134887 

0.4314788105 

0.4478379596 

0.2629921751 

0.7442063312 

0.4638568806 

Dihedral 

Angles ** 

70°31'44" 

90°00'00" 

109°28'16" 

116°33'54" 

138°11'23" 

116°33'54" 

63°26'06" 

63°26'06" 

41°48'37" 

12515522 

142°37'21" 

70°31'44" 
109°28'16" 
90°00'00" 
125°15'52" 
109°28'16" 
125°15'52" 
116°33'54" 
142°37'21" 
138°11'23" 
142°37'21" 
135°00'00" 
144°44'08" 
125°15'52" 
135°00'00" 
144°44'08" 
148°16'57" 
153°56'33" 
159°05'41" 
142°37'21" 
148°16'57" 
159°05'41" 
142°59'00" 
153°14'05" 
152°55'48" 
164°10'31" 

Central 
Angle ** 

109°28'16" 
70°31'44" 
90°00'00" 
41°48'37" 
63°26'06" 

116°33'54" 
63°26106" 
138°11'23" 
116°33'54" 

60°00'00" 

36700100" 

50°28'44" 

32°39'00" 

36°52'12" 

19°23'15" 

23°16'53" 

41°52'55" 

24°55'04" 

25°52'43" 

15°06'44" 

43°41'27" 

26°49'17" 

the midradius to the edge midpoints, and the circumradius to vertices. 

found between smaller pairs of faces. 

“The central angle is the angle formed at the center of a polyhedron by joining the ends of an edge to that center. 
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FURTHER READING 

If you have enjoyed this Wooden Book, others in the series that may be of 

interest include Sacred Geometry by Miranda Lundy and Useful Mathematical 

& Physical Formule by Matthew Watkins. 

For those looking for more things polyhedral, Keith Critchlow’s Order In 

Space (Thames & Hudson) and Peter R. Cromwell’ Polyhedra (Cambridge) 

are both highly recommended. H. S. M. Coxeter’s Regular Polytopes (Dover) 

is the classic twentieth-century mathematical text on the subject, and 

Norman Johnson’s forthcoming Uniform Polytopes (Cambridge) promises to 

become an indispensable addition to the literature. Those with access to a 

manuscript library are well advised to seek out Wenzel Jamnitzer’s Perspectiva 

Corporum Regularium (1568). 

For those wishing to make models, Magnus J.. Wenninger's Polyhedron 

Models (Cambridge), Dual Models (Cambridge), and Spherical Models (Dover) 

cover their respective areas very thoroughly. Shapes, Space and Symmetry by 

Alan Holden (Dover) is also good. A range of cut-out-and-make-polyhedra 

books is published by Tarquin Books. 

George Hart’s excellent online Encyclopedia of Polyhedra contains over 

1,000 virtual reality polyhedra, with many accompanying articles and links. 

It can be found at www.georgehart.com. 
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