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Preface The idea that a book such as Polyhedra Primer would be a useful 

addition to the literature on the geometry of polyhedra arose after 

ten years of study and original work on the geometry of three- 

dimensional space and its application to building systems. These 

studies culminated in a book by Peter Pearce entitled Structure in 

Nature Is a Strategy for Design (MIT Press, 1978)—a large, pro- 

fusely illustrated book that will attract buta small audience because 

of its price and the detailed scope of its subject matter. 

During this period of study countless geometric models were 

built in many different media; numerous discussions were held 

with people knowledgeable in the field; and an extensive and 

thorough search of the literature on polyhedra was undertaken. 

It became clear that accurate, useable sources, other than some 

excellent, high-level, mathematically oriented material, was 

virtually nonexistent. After completing Structure in Nature, it 

seemed appropriate to produce a general interest, low-cost book 

that would be more accessible while maintaining high standards 

of rigor and thoroughness. 

The three-dimensional spatial relationships of polyhedra are 

basically nonabstract and are particularly amenable to visual 

representation and communication. Such geometry, unlike other 

technical subjects, can be illustrated without compromising the 
rigor of the subject matter. Polyhedra Primer is thus conceived 

as a visual attempt to facilitate the understanding of the prin- 

ciples embodied in polyhedra. 

The goal of Polyhedra Primer is to teach the geometry of poly- 

hedra, and as such is a pedagogical presentation, not a philo- 

sophical treatise. It can serve as reference book while at the 

same time providing the reader with new ideas about the 

geometric organization of three-dimensional space. It is designed 

to enable the user to easily locate specific ideas and concepts. It 

is an illustrated glossary organized, not alphabetically, but in a 

hierarchical sequence from the simplest idea to the more com- 

plex. Because of this format, the general reader will be able to 
develop a basic understanding of the fundamental concepts 

without having to be a mathematician. For this reason, we hope 
that the book will fill a niche that is not presently covered by the 
literature in the field. 

vii 



The book contains chapters on polygons, tessellations, finite 

polyhedra, space filling, and open packings. A chapter on the 

construction of geometric models is also included, because we 

believe that the physical manipulation of actual models is a use- 

ful learning experience. 

Written to be understood at the high school and college level, 

Polyhedra Primer will appeal to both academic and general 

audiences. We think it will be especially meaningful for people in 

those professions—architecture, planning, engineering, industrial 

design, and art—where a knowledge of geometry provides a rich 

resource of form and spatial options and is useful as the basis 

for the formulation of new solutions to design problems. It is 
hoped that the book will find further audience among teachers, 

students, and practitioners of mathematics, crystallography, 
general morphology, and other areas of scientific endeavor that 

require a knowledge of spatial geometry. 

We hope that beyond such pedagogical purposes, the reader will 

enjoy our little book and perhaps will be struck, as we have 

been, by the extraordinary spatial diversity that emanates from 

the sublime order and elegant simplicity that is exemplified by 
the subject of polyhedra. 
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Polygons 



Points, Lines, 
and Angles 

Points 

Line 

Parallel 

Angle 

Degrees 
Minutes 

Two points can be connected by a straight line on a flat surface 
or plane. 

Lines are parallel if they lie in a common plane and do not inter- 
sect no matter how far they are extended. 

An angle is the figure formed by two lines meeting at the same 
point. 

Angles are measured in degrees and minutes. There are 60 
minutes in one degree. The symbol for degrees is (°). The 
symbol for minutes is ('). 

There are 360°0!' in a full circle. There are 270°0' in % circle. 

EY 
There are 180°0' in % circle. There are 90°0' in % circle. 



Right Angle A right angle has 90°. 

ee 
Acute Angle An acute angle has less than 90°. 

Obtuse Angle An obtuse angle has more than 90° but less than 180°. 



Polygons Three or more points can be connected by a line. 

Three or more points can be connected by a line to forma 
closed loop. The closed loop is a polygon. A polygon is a 
portion of a plane bounded by three or more lines or seqments. 

Vertex A vertex is a corner of a polygon. (Plural: vertices). The sides of 
Sides a polygon are the segments connecting the vertices. 



Interior 

Interior or 
Face Angles 

Convex 
Polygon 

The interior of the polygon is the plane area bounded by the 
sides. 

L£ be 
The interior or face angles are the angles formed by adjacent 
sides of a polygon and lying within the interior of the polygon. 

C’\ i 
If n is the number of sides of a polygon, the sum of the interior 
angles of a polygon is (n-2) x 180°. 

() | 
(5-2) x 180° = 540° (6-2) x 180° = 720° 

A polygon is convex if each interior angle is less than 180°. 

VALS 



Concave 
Polygon 

Congruent 

Enantiomorph 

A polygon is concave if one of its interior angles is more than 180°. 

Polygons are congruent if they are the same shape and size. 
Congruent polygons will match exactly when placed one on top 
of the other. 

A polygon is an enantiomorph if it exists in a left- and right- 
hand version. Enantiomorphs have all the properties of 
congruence except for handedness. 



Naming 
Polygons 

n-gon Polygons are usually named by the number of sides they have. 
An n-gon is a polygon with an unspecified number of sides. 

A triangle has three sides. 

a ae 

A quadrilateral or tetragon has four sides. 

ae 
A pentagon has five sides. 

Lica 
A hexagon has six sides. 

OOF 
A septagon has seven sides. 

POO 



An octagon has eight sides. 

A nonagon has nine sides. 

A decagon has ten sides. 

OC 
An enneagon has eleven sides. 

ee 
A dodecagon has twelve sides. 

Os 

& 
e 
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Properties of 
Polygons 

Regular A regular polygon has equal interior angles and equal sides. 
Polygons 

Regular Regular 
Triangle Quadrilateral 

Regular Regular Regular 
Pentagon Hexagon Septagon 

Regular Regular Regular 
Octagon Nonagon Decagon 

Regular Regular 
Enneagon Dodecagon 



Nonregular 
Polygons 

A polygon can have equal interior angles and unequal sides. 

Ce 
A polygon can have unequal interior angles and equal sides. 

(s\n 
A polygon can have no interior angles that are equal and no 
sides that are equal. 

ma 



Types of 
Triangles 

Equilateral 

Isosceles 

Scalene 

Right 

The sum of the face angles of any triangle is always equal to 
180°. (3-2) x 180° = 180°. 

90° 
60° 

45° 45° 90° 30° 

Equilateral triangles have equal length sides and equal interior 
angles. They are regular polygons. 

NT 
lsosceles triangles have two sides of equal length and a third 
side—the base—of different length. The two interior angles 
common to the base are equal. 

Zo Tae 
Scalene triangles have three sides of different length and three 
different interior angles. 

= 7S 
Right triangles have one right (90°) angle. They can be isosceles 
or scalene. A right isosceles triangle has one right angle and two 
45° angles. 

a 
11 



Types of Trapezium 
Quadrilaterals 

Trapezoid 

Parallelogram 

Rectangle 

Rhombus 

A trapezium has no parallel sides. 

GS, 
A trapezoid has two parallel sides. 

CV 
A parallelogram has two pairs of parallel sides. 

ee 
A rectangle is a parallelogram with four right angles. 

ma 
A rhombus is a parallelogram with equal sides. 

2 



Square A square is a parallelogram with equal sides and four right 
angles. It is a regular polygon. 

13 



Symmetry and = Mirror A polygon has mirror symmetry, or one mirror plane, if it is the 
Polygons Symmetry same on either side of a line that divides it in half. 

If a polygon with mirror symmetry is folded in half, the two 
folded parts will match exactly. 

Or, if one half of a polygon with mirror symmetry is held up to a 
mirror, its reflection will look the same. 

| Y 

14 



Rotational 

Symmetry 

2-fold 

3-fold 

4-fold 

A figure has rotational symmetry if it repeats itself in one 360° 
revolution about an axis. 

f\ L\ LN 
A polygon has 2-fold rotational symmetry if it repeats itself twice 
in one 360° revolution about an axis. 

| a 
eS 

A polygon has 3-fold rotational symmetry if it repeats itself three 
times in one 360° revolution about an axis. 

Aayey 
A polygon has 4-fold rotational symmetry if it repeats itself four 
times in one 360° revolution about an axis. 

ee 

15 



5-fold A polygon has 5-fold rotational symmetry if it repeats itself five 
times in one 360° revolution about an axis. 

6-fold A polygon has 6-fold rotational symmetry if it repeats itself six 
n-fold times in one 360° revolution about an axis. 

A polygon has n-fold rotational symmetry if it repeats itself n 
times in one 360° revolution about an axis. 



Combinations A polygon can have mirror symmetry and no rotational 
of Symmetries symmetry. 

| 

A polygon can have n-fold rotational symmetry and no mirror 
symmetry. In this case, the polygon will always exist as an 
enantiomorph. 

iG 



A polygon can have mirror symmetry and n-fold rotational 
symmetry. In this case, the polygon will always have the same 
number of mirror planes as n-fold symmetry. 

2-fold 
2 mirror planes 

3-fold 
3 mirror planes 

4-fold 
4 mirror planes 6 mirror planes 

18 



Subdividing Regular polygons can be subdivided into smaller congruent or 
Polygons enantiomorphic polygons. 

a 

2 
OOo Ne oe HO KH PE 
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Star 
Polygons 

Truncating 
Polygons 

If the edges of a regular polygon are bisected, or cut in half, and 

the points of bisection joined between adjacent edges, smaller 

and smaller potygons of the same shape will result. 

Star polygons can be formed from polygons of more than five 
sides either by connecting alternate vertices of the polygon, or 
by extending the sides of the polygon until they intersect. 

A truncated polygon is one whose corners have been cut off. 
Truncation forms a new polygon with more sides than the 
Original polygon. 

20 



Tessellations 



Combining In the plane, polygons can be joined together along matching 
Polygons edges. 

In the plane, the angle between joined polygons is 180°. 

22 



Tile 7 Polygons tile the plane if they fit together without overlaps or 
Tessellation gaps. The resulting pattern is a tessellation or tiling. 

23 



Vertex 

Uniform 

Tiling 

In a tessellation, a vertex is formed when three or more sides of 
the polygons meet at a single point. Three sides meeting at a 
vertex is the minimum condition for tiling. 

In a tessellation, the sum of the angles around each vertex is 
always equal to 360°. 

In a uniform tiling, all vertices are congruent. That is, the 
arrangement of polygons around every vertex is the same. 

24 



Tiling 



Tiling with 
Regular 
Polygons 

Typical 
Vertices 

Of the regular polygons, only triangles, squares, hexagons, 
octagons, and dodecagons can tile in various combinations 
around a common vertex. There are only 14 such combinations 
or typical vertices. 



Regular 
Tessellations 

A regular tessellation is periodic and uniform and consists of 
congruent regular polygons. 

There are only three regular tessellations because there are only 
three regular polygons whose face angles divide evenly into 360°. 

Equilateral triangles and squares can be repeated to form larger 
versions of themselves. 

EN 5 Eee 
27 



Semiregular 
Tessellations 

A semiregular tessellation is periodic and uniform and consists 

of more than one kind of regular polygon. There are eight semi- 

regular tessellations. One of them is an enantiomorph. 

SRT STINT NYS 
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Nonuniform 
Periodic 
Tessellations 
with Regular 
Polygons 

There is an infinite number of nonuniform periodic tessellations 
with regular polygons. However, because 360° is required around 
each vertex, we are still restricted to the 14 typical vertices for 
regular polygons. 
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There is an infinite num of nonuniform nonperiodic tessellations 
with regular polygons. Again, we are restricted to the 14 typical 
vertices. 



Tiling with Any triangle tiles the plane. 
Nonregular 
Polygons 

Any quadrilateral tiles the plane. 

Any hexagon with three sets of equal parallel sides tiles the plane. 

33 



Uniform There is an infinite number of uniform periodic tessellations 
Periodic with nonregular polygons. 
Tessellations 
with Nonregular 
Polygons 

34 



Nonuniform There is an infinite number of nonuniform periodic tessellations 
Periodic with nonregular polygons. 
Tessellations 
with Nonregular 
Polygons 

35 
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Dual A dual tessellation of a tiling is formed by joining the center of 
Tessellation each polygon through its sides to the centers of all neighboring 

polygons. A dual tessellation has as many polygons as the 
Original tessellation has vertices, and as many vertices as the 

Original has polygons. The number of sides remains the same. 

A polygon formed by a dual tessellation has the same number of 
sides as there are edges meeting in its center. 

37 



The two regular tessellations of triangles and hexagons are dual 
to each other. 

Self-Dual A self-dual forms the same polygons as comprise the original 
tessellation. The regular tessellation of squares is a self-dual. 

38 



Dual Tilings 
of the 
Semiregular 
Tessellations 

The dual tilings of the semiregular tessellations form polygons 
that are all nonregular. Because the semiregular tessellations are 
uniform, the polygons formed by the dual tiling are congruent or 
enantiomorphic. The dual tilings are periodic but not uniform. 

39 
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Tessellations In a tiling with congruent polygons, only polygons with the 
and Symmetry following symmetries may be used: no symmetry, mirror 

symmetry, 2-fold, 3-fold, 4-fold, and 6-fold. Polygons with other 
symmetries, such as 5-fold, will not tile the plane. 

41 



Open Patterns _ Periodic The plane can be subdivided periodically without the require- 
ane. In such cases, regular polygons with Regular Patterns 

Polygons 



Concentric Though the regular pentagon does not tile the plane, it can be 
Patterns used for open patterns that form concentrically around a central 

figure. 

43 



Euler’s 

Theorem 

Euler’s theorem for tilings demonstrates that there is always a 
consistent relationship among the components of a tessellation: 
the number of polygons + the number of vertices = the number 
of edges + 1. 

P+V=E+1 

6+7=12+1 
13-413 

4+10=13+1 
14=14 

44 



Polyhedra 



Polyhedron 

Faces 

Edges 

Vertex 

Dihedral 
Angle 

A polyhedron is formed by enclosing a portion of three-dimensional 
space with four or more plane polygons. (Plural: polyhedra). 

A) KD 
The faces of a polyhedron are polygons. 

The edges of a polyhedron are formed where common sides of 
neighboring polygons meet. 

A vertex of a polyhedron is a point where edges intersect. Three 
or more polygons must meet at each vertex. The sum of the face 
angles of the polygons meeting at a vertex must always equal 
less than 360° | 

A dihedral angle is the angle formed by two polygons joined 
along a common edge. 

46 



Convex 
Polyhedron 

Concave 
Polyhedron 

Uniform 

Euler’s 

Theorem for 

Polyhedra 

A polyhedron is convex if every dihedral angle is less than 180°. 

A polygon is concave if at least one of its dihedral angles is 
more than 180°. 

A polyhedron is uniform if all of its vertices are the same or 
congruent. 

Euler’s theorem for polyhedra demonstrates the constant 
relationship among the components of a given polyhedron: the 
number of polygons + the number of vertices = the number of 
edges + 2. 

Pot Vee Ea! 

6+8=12+2 
14=14 

47 



Naming 
Polyhedra 

n-hedron Polyhedra are usually named by the number of faces they have. An 

n-hedron is a polyhedron with an unspecified number of faces. 

A tetrahedron has 4 faces. 

A pentahedron has 5 faces. 

ZY 
A hexahedron has 6 faces. 

A septahedron has 7 faces. 

PAY 
An octahedron has 8 faces. 

SS 
48 



A decahedron has 10 faces. 

wey 

CW, 

A dodecahedron has 12 faces. 

DY SE 
A tetrakaidecahedron has 14 faces. 

A pentakaidecahedron has 15 faces. ~~ oe 
ey 

A hexakaidecahedron has 16 faces. 

ws 
49 



An icosahedron has 20 faces. 



Polyhedra and 
Symmetry 

The symmetry properties of a polyhedron are determined by 
viewing it from different orientations. The number of orientations 
that produce views of symmetry may vary for different 
polyhedra. Views of symmetry are characterized as rotational 

and/or mirror. A particular view of symmetry may occur more 
than once in a given polyhedron. One possible view of symmetry 
may be determined by looking at a polyhedron toward a 
centered vertex. 

Another view of symmetry may be determined by looking at a 
polyhedron toward a centered edge. 

A third view of symmetry may be determined by looking at a 
polyhedron toward a centered face. 

51 



Regular 
Polyhedra 

Regular polyhedra are uniform and have faces of all of one kind 
of congruent regular polygon. There are five regular polyhedra. 
The regular polyhedra were an important part of Plato’s natural 
philosophy, and thus have come to be called the Platonic Solids. 

In the views of symmetry shown below, each type of rotational 

symmetry and the number of times it occurs is indicated by: 
n-fold(x). The mirror planes are represented by dotted lines. 

Tetrahedron 

Faces: 
4 triangles 

Vertices: 
4, each with 3 

edges meeting 
Edges: 

6 
Dihedral angle: 

70°32’ 
Views of symmetry: 

2-fold (3) | 3-fold (4) 

Cube (hexahedron) 

Faces: 
6 squares 

Vertices: 

8, each with 3 

edges meeting 
Edges: 

12 
Dihedral angle: 

90° 
Views of symmetry: 

2-fold (6) 3-fold (4) 4-fold (3) 

52 



Octahedron 

Faces: 
8 triangles 

Vertices: 
6, each with 4 

edges meeting 
Edges: 

12 
Dihedral angle: 

109° 28' 
Views of symmetry: 

‘ 1 ¢ 

7 
we S : DX 

2-fold (6) 3-fold (4) 4-fold (3) 

Dodecahedron 

Faces: 
12 pentagons 

Vertices: 
20, each with 3 

edges meeting 

Dihedral angle: 
116°34' 

Views of symmetry: 

3-fold (10) 2-fold (15) 5-fold (6) 

53 



Icosahedron 

Faces: 
20 triangles 

Vertices: 
12, each with 5 

edges meeting 
Edges: 

30 
Dihedral angle: 

uickok aha 
Views of symmetry: 

2-fold (15) 3-fold (10) 5-fold (6) 

54 



| Semiregular 
| Polyhedra 

A semiregulai polyhedron has regular polygons as faces, but the 

faces are not all of the same kind. As in regular polyhedra, the 

vertices are congruent. There are thirteen semiregular poly- 

hedra. It is generally believed that they were described by 

Archimedes, and thus are called the Archimedean Polyhedra. 

As in the regular polyhedra, in the views of symmetry shown 

below, each type of rotational symmetry and the number of 
times it occurs is indicated by: n-fold(x), and the mirror planes 

are represented by dotted lines. 

Five semiregular polyhedra are derived by truncating the five 

regular polyhedra. Truncation is done so that all new faces are 

regular polygons. The polyhedra formed are the truncated tetra- 

hedron, truncated cube, truncated octahedron, truncated 

dodecahedron, and truncated icosahedron. 

Truncated Tetrahedron 

Faces: 
4 ese Bota 
4 triangles 

Vertices: 
12, each with 3 

edges meeting 

Dihedral angles: 
70°32’ (hexagon-hexagon) 

109° 28’ (triangle-hexagon) 
Views of symmetry: 

2-fold (3) 3-fold (4) 

55 



Truncated cube 

Faces: 

8 triangles | 14 total 
6 octagons 

Vertices: 
24, each with 3 

edges meeting 
Edges: 

36 
Dihedral angles: 

125°16' (octagon-triangle) 
90° (octagon-octagon) 

Views of symmetry: 

2-fold (6) 

\/ ZS 

3-fold (4) 4-fold (3) 

Truncated octahedron 

Faces: 

6 squares | 14 total 
8 hexagons 

Vertices: 
24, each with 3 

edges meeting 
Edges: 

36 
Dihedral angles: 

125° 16’ (Square-hexagon) 
109° 28' (hexagon-hexagon) 

Views of symmetry: 

2-fold (6) 3-fold (4) 4-fold (3) 

56 



Truncated dodecahedron 

Faces: 
20 triangles 
12 decagons | pea! 

Vertices: 
60, each with 3 

edges meeting 
Edges: 

90 
Dihedral angles: 

116°34' (decagon-decagon) 
142°37' (decagon-triangle) 

Views of symmetry: 

2-fold (15) 

Truncated icosahedron 

Faces: 
12 pentagons ‘ 
20 hexagons ee 

Vertices: 
60, each with 3 

edges meeting 

Dihedral angles: 
138°11' (hexagon-hexagon) 
142°37' (hexagon-pentagon) 

Views of symmetry: 

2-fold (15) 3-fold (10) 5-fold (6) 

Vf 



Quasiregular 
Polyhedra 

A quasiregular polyhedron has two kinds of faces, with each 
face of one kind being entirely surrounded by the face of the 
other kind. Two semiregular polyhedra are quasiregular: the 
cuboctahedron and the icosidodecahedron. 

Cuboctahedron 

Faces: 
8 triangles | Ta total 
6 squares 

Vertices: 
12, each with 4 

edges meeting 
Edges: 

24 
Dihedral angle: 

120 a6: 
Views of symmetry: 

< /X 

2-fold (6) 3-fold (4) 4-fold (3) 
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60 

The snub cuboctahedron (also known as the snub cube) and the 
snub icosidodecahedron (also known as the snub dodecahedron) 
are derivations of the cuboctahedron and icosidodecahedron 
respectively that are formed by adding extra equilateral tri- 
angles to the original polyhedron. 

Snub cuboctahedron 

Faces: 
32 triangles | 38 total 
6 squares 

Vertices: 
24, each with 5 

edges meeting 
Edges: 

60 
Dihedral angles: 

142°59' (square-triangle) 
153° 14’ (triangle-triangle) 

Views of symmetry: 

3-fold (4) 4-fold (3) 



Snub icosidodecahedron 

Faces: 

80 triangles ] 92 total 
12 pentagons 

Vertices: 
60, each with 5 

edges meeting 

Edges: 
150 

Dihedral angles: 
152°16' (pentagon-triangle) 
164°11' (triangle-triangle) 

Views of symmetry: 

2-fold (15) 3-fold (10) 5-fold (6) 

61 



| Truncated cuboctahedron 
(Greater rhombicuboctahedron) 

Faces: 
12 squares 

8 hexagons | 26 total 
6 octagons 

Vertices: 
48, each with 3 

edges meeting 
Edges: 

72 
Dihedral angles: 

135° (octagon-square) 
125° 16' (octagon-hexagon) 
144° 44" (hexagon-square) 

Views of symmetry: 

Po 

2-fold (6) 3-fold (4) 

62 

Truncating the cuboctahedron in two different ways gives rise 
to the truncated cuboctahedron (also known as the greater 
rhombicuboctahedron) and the rhombicuboctahedron. 

4-fold (3) 



Rhombicuboctahedron 

Faces: 
8 triangles | 96 total 

18 squares 
Vertices: 

24, each with 4 
edges meeting 

Dihedral angles: 
135° (square-square) 
144°44' (square-triangle) 

Views of symmetry: 

2-fold (6) 3-fold (4) 4-fold (3) 
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Truncating the icosidodecahedron in two different ways gives 
rise to the truncated icosidodecahedron (also known as the 
greater rhombicosidodecahedron), and the rhombicosidodeca- 
hedron. 

Truncated icosidodecahedron 
(Greater rhombicosidodecahedron) 

Faces: 
30 squares 
20 hexagons 62 total 
12 decagons 

Vertices: 
120, each with 3 

edges meeting 
Edges: 

180 
Dihedral angles: 

148° 17' (decagon-square) 
142°37' (decagon-hexagon) 
159°6’ (hexagon-square) 

Views of symmetry: 

2-fold (15) 3-fold (10) 5-fold (6) 
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Rhombicosidodecahedron 

Faces: 
20 triangles 
30 squares | 62 total 
12 pentagons 

Vertices: 
60, each with 4 

edges meeting 
Edges: 

120 
Dihedral angles: 

148°17' (pentagon-square) 
159°6' (triangle-square) 

Views of symmetry: 

2-fold (15) 3-fold (10) 5-fold (6) 



Prism 

Antiprism 

A prism is a polyhedron with two congruent and parallel faces 
that are joined by a set of parallelograms. The prism is semi- 
regular if all the polygons are regular. A cube can be considered 

a square prism. 

An antiprism is a polyhedron with two congruent and parallel 
faces that are joined by a set of triangles. The antiprism is 
semiregular-if all the polygons are regular. The octahedron can 
be considered a triangular antiprism. 

Prisms and antiprisms correspond to the infinite number of 
possible polygons. 
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Deltahedra Deltahedra are convex polyhedra whose faces consist entirely of 
equilateral triangles. The deltahedra are the only polyhedra, beside 
the regular polyhedra, that have faces consisting of only one kind 
of regular polygon. Three of the eight deltahedra are regular 
polyhedra. The remaining five do not have congruent vertices. 

Tetrahedron (4-hedron) | | 

Triangular Dipyramid (6-hedron) 

Y @ 
Octahedron (8-hedron) Pentagonal Dipyramid (10-hedron) 

B&Q 
12-hedron 14-hedron 

& @ 
16-hedron Icosahedron (20-hedron) 
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Other Convex 
Polyhedra with 
Regular Faces 

In addition to the regular and semiregular polyhedra, the deltahedra, 
and the infinite class of prisms and antiprisms, there are 87 more 
convex polyhedra whose faces are entirely regular polygons. These 
polyhedra do not have congruent vertices. Only regular triangles, 
squares, pentagons, hexagons, octagons, and decagons may be 
used for the formation of polyhedra with regular faces. Some of 
these additional polyhedra are shown below. 
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Stellated 
Polyhedra 

A stellated polyhedron is formed by extending in the same plane 
each face of a convex polyhedron until the faces intersect to 
form a new enclosing shape. Usually stellations are performed 
on polyhedra whose faces are all alike, but the operation can be 

done on other polyhedra. 

Stella 
Octangula 

The stella octangula is the polyhedron formed by stellating an 
octahedron. The stella octangula can also be thought of as an 
intersection of two tetrahedra. 
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Kepler- 
Poinsot 

Solids 

The stellations of the dodecahedron and icosahedron are called 

the Kepler-Poinsot Solids. The regular dodecahedron can be 
stellated to form the small stellated dodecahedron. 

The regular dodecahedron can be stellated in a different manner 
to form the great dodecahedron. 
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The dodecahedron can again be stellated to form the great 
stellated dodecahedron. 
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Dual Polyhedra 



Dual Polyhedra A dual polyhedron is formed by joining a point that is perpen- 

dicularly above the center of each face of a polyhedron to 

equivalent points above all neighboring faces. The new edges 

connecting these points intersect the edges of the original 
polyhedron. A polyhedron and its dual each have the same 

number of edges. A dual polyhedron has as many vertices as the 

original polyhedron has faces, and the dual has as many faces 

as the original has vertices. The symmetry of a dual polyhedron 

is the same as that of the original polyhedron. 

A pair of dual polyhedra must enclose a common sphere that 
is tangent to both at the points where their respective edges 
meet. 
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Duals of the 
Regular 
Polyhedra 

The dual of a regular tetrahedron is another regular tetrahedron. 
It is a self-dual. 

Tetrahedron: 
4 faces, 4 vertices, 6 edges 

The cube and the octahedron are dual to each other. 

Cube: 
6 faces, 8 vertices, 12 edges 

Octahedron: 
8 faces, 6 vertices, 12 edges 

pf x 

eZ UF ain 
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The dodecahedron and the icosahedron are dual to each other. 

Dodecahedron: 
12 faces, 20 vertices, 30 edges 

Icosahedron: 
20 faces, 12 vertices, 30 edges 
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Duals of the 
Semiregular 
Polyhedra 

Each dual of the semiregular polyhedra has congruent faces, 
but none of the faces are regular polygons. The faces of the 
dual are congruent because the vertices of the original poly- 

hedron are congruent. The dual polyhedra of the semiregular 
polyhedra are analogous to the dual networks of the semiregular 
tessellations. 
Again, in the views of symmetry shown below, each type of rota- 

tional symmetry and the number of times it occurs is indicated 

by: n-fold(x), and the mirror planes are represented by dotted 
lines. 

Triakis tetrahedron: dual of truncated tetrahedron 

Faces: 
12 

Vertices: 
4, each with 6 

edges meeting 
4, each with 3 

edges meeting 
Edges: 

18 
Dihedral angle: 

1292325 
Views of symmetry: 

8 total 

OEE 4 

2-fold (3) 3-fold (4) 
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Triakis octahedron: dual of truncated Cube 

Faces: 

24 

Vertices: 

8, each with 3 
edges meeting | 14 total 

6, each with 8 
edges meeting 

Dihedral angle: 
147°21' 

Views of symmetry: 

Vertices: 

6, each with 4 
edges meeting | 14 total 

8, each with 6 
edges meeting 

Dihedral angle: 
143°8' 

Views of symmetry: 

3-fold (4) 4-fold (3) 
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Triakis icosahedron: dual of truncated 
dodecahedron 

Faces: 
60 

Vertices: 

20, each with 3 
edges meeting | 32 total 

12, each with 10 
edges meeting 

Edges: 
90 

Dihedral angle: 

160° 36' 
Views of symmetry: 

2-fold (15) 3-fold (10) 5-fold (6) 

Pentakis dodecahedron: dual of truncated 
icosahedron 

PS 
Vertices: ‘ 

12, each with 5 ] 
edges meeting | 309 total 

20, each with 6 
edges meeting 

Edges: 
90 

Dihedral angle: 
156° 43’ Ld 

Views of symmetry: 

Oo © 
2-fold (15) 3-fold (10) 5-fold (6) 
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Rhombic dodecahedron: dual of cuboctahedron 

Vertices: 

8, each with 3 
edges meeting | 14 total 

6, each with 4 
edges meeting 

Dihedral angle: 
1205 

Views of symmetry: 

4-fold (3) 

Rhombic triacontahedron: dual of icosido- 

decahedron 

Faces: 
30 

Vertices: 
20, each with 3 

edges meeting 32 total 
12, each with 5 

edges meeting 

Dihedral angle: 
144° 

Views of symmetry: 

2-fold (15) 3-fold (10) 5-fold (6) 
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Pentagonal icositetrahedron: dual of the 
snub cuboctahedron 

Faces: 

24 

Vertices: 

32, each with 3 

edges meeting 38 total 
6, each with 4 

edges meeting 

Dihedral angle: 
136°19' 

Views of symmetry: 

2 © © 
2-fold (6) 3-fold (4) 4-fold (3) 

Pentagonal hexecontahedron: dual of the 
snub icosidodecahedron 

Vertices: 
80, each with 3 

edges meeting | 92 total 
12, each with 5 

edges meeting 

Edges: 
150 

Dihedral angle: 
NOB < did: 

Views of symmetry: 

eo & 
2-fold (15) 3-fold (10) 5-fold (6) 
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Hexakis octahedron: dual of truncated 

cuboctahedron 

Vertices: 
12, each with 4 

edges meeting 
8, each with 6 26 total 

edges meeting 
6, each with 8 

edges meeting 

Dihedral angle: 
Loom 

Views of symmetry: 

2-fold (6) 3-fold (4) 

Trapezoidal icositetrahedron: dual of 
rhombicuboctahedron 

Faces: 

24 
Vertices: 

8, each with 3 
edges meeting | 96 total 

18, each with 4 
edges meeting 

Dihedral angle 
13830 

Views of symmetry: 

3-fold (4) 
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Hexakis icosahedron: dual of truncated 
icosidodecahedron 

Faces: 

120 

Vertices: 

30, each with 4 

edges meeting 
, each with 6 62 total 
edges meeting 

, each with 10 
edges meeting 

KA 
2 

Dihedral angle: 
164°54’ 

Views of symmetry: 

2-fold (15) 3-fold (10) 5-fold (6) 

Trapezoidal hexecontahedron: dual of 
rhombicosidodecahedron 

Vertices: 
20, each with 3 

edges meeting 
30, each with 4 62 total 

edges meeting 
12, each with 5 

edges meeting 
Edges: 

120 
Dihedral angle: 

154° 8’ 
Views of symmetry: 

2-fold (15) 3-fold (10) 5-fold (6) 
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Duals of 

the Prisms 

Duals of the 
Antiprisms 

The duals of the prisms are dipyramids and have faces that are 

congruent isosceles triangles. 

hyo 
The duals of the antiprisms are trapezohedra and have faces that 

are congruent trapezia. 

> 4 
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Space Filling 



Combining 
Polyhedra or congruent faces. 



Space 
Filling 

Space filling occurs when polyhedra are packed together ina 
repeating array so that all volume is occupied and there is 
no left-over space. 

87 



Dihedral 
Angles and 
Space Filling 

Network 

In order for polyhedra to fill space with each other, the sum of 

those dihedral angles that occur around a common edge must 

equal 360°. This is analogous to the 360° requirement around 

a single point in a plane tessellation. The dihedral angle of a 

tetrahedron is 70°32’ so it will not fill space alone because there 

is no multiple of its dinedral angle that equals 360°. It will fill 

space, however, with octahedra whose dihedral angles are 

109°28'. 109° 28’ + 70°32’ + 109°28' + 70°32’ = 360°. 

LE 
IM 

The dihedral angle of the cube is 90°, and since 90° = 4 = 360°, 

the cube will fill space. 

A network is formed by the edges of the polyhedra in a space 

filling array. 
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Uniform 



Uniform Space Regular Of the regular polyhedra, only the cube will fill space by itself. 
Filling with 
One Kind of 
Polyhedron 

Semiregular Of the semiregular polyhedra, only the truncated octahedron 
will fill space by itself. 
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Prisms The triangular prism will fill space. 

The hexagonal prism will fill space. 
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Uniform Space Regular 
Filling with 
Two Kinds of 
Polyhedra 

Regular/ 
Semiregular 

Tetrahedra/octahedra. The relative numbers of each polyhedron 

that will combine to fill space is expressed as a space filling 

ratio. In this case, the ratio of tetrahedra to octahedra is 2:1. 

Tetrahedra/truncated tetrahedra. Space filling ratio — 1:1 

oe 



Octahedra/truncated cubes. Space filling ratio — 1:1 

Octahedra/cuboctahedra. Space filling ratio — 1:1 
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Semiregular/ Truncated cuboctahedra/octagonal prisms. Space filling 
Prisms ratio — 1:3 
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Uniform Space Regular/ Truncated cuboctahedra/truncated octahedra/cubes. Space 
Filling with Semiregular filling ratio — 1:1:3 
Three Kinds of 
Polyhedra 

Rhombicuboctahedra/cuboctahedra/cubes. Space filling 
ratio — 1:1:3 
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Rhombicuboctahedra/cubes/tetrahedra. Space filling ratio — 
tales 

Semiregular Truncated cuboctahedra/truncated cubes/truncated tetrahedra. 
Space filling ratio — 1:1:2 
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Truncated octahedra/cuboctahedra/truncated tetrahedra. Space 
filling ratio — 1:1:2 
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Uniform Space Regular/ 
Filling with 
Four Kinds of 
Polyhedra 

Semiregular/ 
Prisms 

Rhombicuboctahedra/truncated cubes/octagonal prisms/cubes. 
Space filling ratio — 1:1:3:3 

Uniform space filling systems, in which two or more kinds of 
semiregular prisms are combined, correspond to the semiregular 

tessellations. In order to visualize these systems refer to the 

illustrations of semiregular tessellations on pages 28-29. 
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Nonuniform 
Space Filling 

In the case of the plane tessellations, there is an infinite number 
of nonuniform tilings with regular polygons. However, in the 
case of space filling with regular and semiregular polyhedra 
there are no nonuniform space filling systems. All of the possi- 
bilities of space filling with regular and semiregular polyhedra 
have been shown above. There can be an infinite number of 
nonuniform space filling systems, however, using other than 
regular and semiregular polyhedra. 

Rhombic dodecahedra — the only Archimedean dual that will 
fill space alone. 

Trapezohedra 
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Truncated rhombic dodecahedra/cubes/tetrahedra 
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Dual Space 
Filling 

A dual space filling network is formed by joining the center of 
each polyhedron in a space filling array with the centers of all 
of its neighboring polyhedra. A dual network will have as many 
different kinds of vertices as there are different polyhedra in 
the original space filling array. 

Self-Dual A space filling array of cubes is the only case in which the 
Space Filling dual network consists of the same polyhedra as the original 

array. It is a self-dual. 
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Complementary | The space filling systems of triangular prisms and hexagonal 
Prisms prisms are dual to each other. 

Polyhedra A tetragonal disphenoid is formed by the dual network of the 
Formed by space filling of truncated octahedra. This dual network is 
Dual Networks | uniform. 
of Uniform 
Space Filling 
Systems 

Rhombic dodecahedra are formed by the dual network of the 
space filling of tetrahedra/octahedra. 

Sy 
Rhombic hexahedra are formed by the dual network of the 
space filling of tetrahedra/truncated tetrahedra. 

<> 
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Square pyramids are formed by the dual network of the space 
filling of octahedra/truncated cubes. 

al 
Tetragonal octahedra are formed by the dual network of the 
space filling of octahedra/cuboctahedra. 

Quadrirectangular tetrahedra are formed by the dual network 
of the space filling of truncated cuboctahedra/octagonal prisms. 

a MS 
Right isosceles triangular prisms are formed by the dual net- 
work of the space filling of octagonal prisms/cubes. 

Rhombic prisms are formed by the dual network of the space 
filling of triangular prisms/hexagonal prisms (2:1). 
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Acute pentagonal prisms are formed by the dual network of 

the space filling of triangular prisms/hexagonal prisms (8:1). 

I 
Birectangular pentagonal prisms are formed by the dual net- 
work of the space filling of triangular prisms/cubes (2:1). 

i 
Obtuse pentagonal prisms are formed by the dual network of the 
space filling of triangular prisms/cubes (2:1). 

ae 
Isosceles prisms are formed by the dual network of the space 
filling of triangular prisms/dodecagonal prisms. 

ee 

Trirectangular tetrahedra are formed by the dual network of 
the space filling of truncated cuboctahedra/truncated octahedra/ 

cubes. 
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Right triangular pyramids are formed by the dual network of the 
space filling of truncated cuboctahedra/truncated cubes/ 
truncated tetrahedra. 

/} \\ 

fal 

Trirectangular dipyramids are formed by the dual network of 
the space filling of rhombicuboctahedra/cuboctahedra/cubes. 

Trigonal dipyramids are formed by the space filling of 
rhombicuboctahedra/cubes/tetrahedra. 

> 
Rhombic pyramids are formed by the dual network of the space 
filling of truncated octahedra/cuboctahedra/truncated 
tetrahedra. 

Birectangular quadrilateral prisms are formed by the dual net- 
work of the space filling of hexagonal prisms/triangular prisms/ 
cubes. 

a 
105 



Right triangular prisms are formed by the dual network of the 

space filling of hexagonal prisms/dodecagonal prisms/cubes. 

Right square pyramids are formed by the dual network of the 
space filling of rhombicuboctahedra/truncated cubes/octagonal 
prisms. 
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Open Packings 



Open packings are arrays of polyhedra in which all space is not 
filled. Some open packings are derived from space filling 
systems such as the truncated octahedra/truncated cubocta- 
hedra/cubes. In this case, the open packing is formed by omit- 
ting the truncated cuboctahedra. 

Open Packings 
Derived from 
Space Filling 
Systems 
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Open Packings 
Derived from 
Non-Space 
Filling Systems 

Open packings can also be directly assembled as non-space 
filling arrangements of polyhedra. In this example of the open 
packing of hexagonal prisms and truncated octahedra, the 
prisms are attached to 4 out of 8 hexagonal faces on the 
truncated octahedra. 

In this example of hexagonal prisms and truncated octahedra, 
the prisms are attached to all 8 hexagonal faces of the truncated 
octahedra. 
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Truncated tetrahedra and hexagonal prisms. The hexagonal 
prisms are attached to all 4 hexagonal faces of the truncated 
tetrahedra. 

Truncated cuboctahedra and hexagonal prisms. The prisms are 
attached to all hexagonal faces. 
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Constructions 



Basic 
Constructions 

Bisecting 
a Line 

The characteristics of polyhedra cannot be adequately conveyed 

in two dimensions. The physical manipulation of actual three- 

dimensional polyhedra models is an important part of under- 

standing them. An accurate polyhedron model begins with 
properly constructed faces or polygons. In order to draw poly- 
gons, you will need to understand some basic geometric con- 
structions. A compass and a straight-edge ruler are the only 
items of equipment you will need for the basic constructions and 
for the construction of the polygons. 

Draw a line of desired length. Place the compass on one end of 
the line and swing an arc above and below the line. Place the 
compass on the other end of the line and repeat the procedure 
until the arcs intersect. Connect the points made by the arcs. 
The new line marks the point of bisection of the original line. 

118 



Bisecting 
an Angle 

Constructing 
Perpendiculars 

From the vertex of the angle, swing an arc AB across the angle. 
From point A swing an arc and repeat the procedure from point 
B until the arcs intersect at C. Connect point C with the vertex. 

To a line at a given point in the line: From desired point A, 
swing an arc BC. From point B swing an arc. Repeat the proce- 
dure from point C until the arcs intersect at D. Connect points 
A and D. 
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To a line through a point not in the line: From point A above the 

line, swing an arc BC below the line. From point B swing an arc 

below the line. Repeat the procedure from point C until the arcs 

intersect at D. Connect points A and D. 
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Constructing 
Polygons 

Equilateral 
Triangle 

Right 
Triangle 

Draw a straight line and mark off the desired edge length. 
Spread the compass the same edge length and swing intersect- 
ing arcs from each end of the line. Connect the points. 

Construct two lines perpendicular to each other. Measure 
desired edge length along each line and connect the points. If 
the two sides of the right triangle are equal, a right isosceles 
triangle is formed. 
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Isosceles 

Triangle 

Square 

Draw a straight line and mark off desired length of base. Spread 

compass desired length of sides and swing intersecting arcs 

from both ends of the base. Connect the points. 

Draw two lines perpendicular to each other and mark off desired 
edge length along both lines. Spread the compass the same 
length. Swing intersecting arcs from the ends of each side and 
connect the points. 
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Square 
Inscribed 

in a Circle 

Regular 
Pentagon 

Draw two lines perpendicular to each other. With their point of 
intersection as the center, draw a circle with the compass. Con- 
nect the points where the lines intersect the circle. 

Draw a circle with horizontal diameter CD, vertical diameter AB, 
and center 0. Bisect line OC and call it E. With E as the center 
and EA as the radius, draw an arc cutting OD at F. Line segment 
AF will equal one side of a regular pentagon. Swing successive 
arcs of the dimension AF along the circle. Connect the points. 

\ 
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Regular 
Hexagon 

Regular 
Octagon 

Draw a circle of radius X. The radius equals one side of a regu- 

lar hexagon. Draw successive arcs of the length X. Connect the 

points. 

Construct a square in a circle. Bisect the central angles of the 

square. Connect the vertices of the square and the points of 

bisection where they intersect the circle. 
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Regular Construct a regular pentagon in a circle and draw and bisect the 
Decagon central angles. Connect the vertices of the pentagon and the 

points of bisection where they intersect the circle. 

Regular Construct a regular hexagon in a circle and draw and bisect the 
Dodecagon central angles. Connect the vertices of the hexagon and the 

points of bisection where they intersect the circle. 
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Modeling 
Polyhedra 

Making a 
Template 

Accuracy is important in the construction of polyhedra models. 
Also it is important that your hands are clean since the model 
materials can easily pick up smudges and fingerprints. The 
materials you will need are an X-acto knife with a Number 11 
blade, a metal straight-edge, a cutting surface, and either cover 
stock, lightweight cardboard, tag board, or rigid plastic sheet. 
Further discussion of the type of model materials will follow in 
particular sections. 

Construct the required polygons on lightweight cardboard or 
tag board. Make sure that for any given polyhedron the edge 
lengths of all the faces are the same. We find that a two-inch 
edge length makes a model of a convenient size. Construct the 
polygons as precisely as possible, since their accuracy will 
determine the precision of the finished models. 

Carefully cut out the polygons with the X-acto knife and straight- 

edge. Make sure that the blade remains parallel to the edge of 

the straight-edge as you are cutting. Hold the straight-edge 
firmly so it will not slip since it serves as a guide for the cutting 

line. Using a slight pressure against the straight-edge, cut each 

edge with several sure strokes of moderate pressure until the 

edge is cut completely through. Always cut against a backing 

sheet, such as heavy chipboard, to avoid cutting table surfaces 

and to prolong the life of the knife blade. 
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Paper 
Models 

Scoring 

Using the templates, carefully trace the polygons on to the paper 

or cardboard you are using for your finished model. Carefully 

cut out the polygons as described above. We find that a white 
cover stock or tag board works best, resulting in a satisfying 

model in which the volume is easily perceived. Keep in mind that 

the cardboard should not be too thick as error will accumulate 

and the faces will not fit together precisely. 

Often it is easy to construct a polyhedron model by drawing a 
network and folding the faces to meet one another instead of 
cutting each face out individually. Lay out the network. Using a 
blunt instrument such as a ball point pen or other paper-scoring 
tool, and with the straight-edge as guide, score along the fold 
lines. Cut out the network along the outside edges and fold the 
faces until they meet. 
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Plastic 

Models 

Tetrahedron 

Octahedron 

Polyhedra models are especially attractive and durable when 
made from plastic. We recommend a rigid vinyl sheet plastic, 
.030” thick. The plastic comes in transparent or opaque. The 
transparent plastic results in models that are easy to perceive 
and understand in three dimensions. It is not practical to score 
and fold plastic models as you might with paper models. There- 
fore, each polygonal face must be cut out individually. 

Using the knife and straight-edge, score the plastic by making 
several passes with the knife blade along the polygon edge. 
Keep scoring until you have a cut that is approximately halfway 
through the plastic. Grasp the plastic firmly with both hands, 
and using a swift, sure motion, bend back and snap the plastic 
apart at the cut. The plastic will snap apart giving a clean, 
straight cut. Cut out the remaining polygons. 
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Taping 

For paper models, the best tape to use is Scotch Brand Magic 
Tape, No. 810, 1/2” wide. For plastic models, use Scotch Brand 
Polyester Tape, No. 853, 1/2" wide. Make sure your hands are 
clean as the tape will pick up any dirt. 

Cut off a piece of tape slightly longer than the edge length of 

the polygon. Lay half the tape on one edge of a polygon. Bring 

another polygon up to the tape and join the two. Using a blunt 

tool, burnish the tape. (Special burnishing tools are available at 

art supply stores.) Cut off the extra lengths of tape. A hingeable 

joint will be formed that will bend to the appropriate dihedral 

angle as the polyhedron takes shape. Continue in a logical 

sequence to join all the polygons to complete the polyhedron. 

Placement of the last polygon will require attention and a bit of 
finesse. 

ZILY 
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index Angle, 2; bisecting, 119; dihedral, 
46; interior, 5; measurement of, 

2; types of, 3 
Antiprism, 66; duals of, 84 
Archimedes, 55 

Bisecting: a line, 118; an angle, 119 

Compass, 118 
Concave: polygon, 6; polyhedron, 47 
Congruent polygons, 6 
Constructions, 117-129 
Convex: polygon, 5; polyhedra with 

regular faces, 68; polyhedron, 47 
Cube, 52; dual to octahedron, 75; in 

space filling, 90, 95-96, 98, 100 
Cuboctahedron, 58; dual of, 80; in 

space filling, 93, 95, 97 

Decagon, 8; construction of, 125 
Decahedron, 49 
Degrees, 2 
Deltahedra, 67 
Dihedral angle, 46; and space filling, 

88 

Dodecagon, 8; construction of, 125 
Dodecahedron, 49; as dual, 76; as 

regular polyhedron, 53; stellation 
of, 70-71 

Dual: space filling, 101; tessellations, 
37; tilings of semiregular tessel- 
lations, 39-40 

Duals: of polyhedra, 75-76; of semi- 
regular polyhedra, 77-83 

Dual polyhedra, 73-84; definition 
of, 74 

Enantiomorph, 6 
Enneagon, 8 
Euler's Theorem: for polyhedra, 47; 

for tessellations, 44 

Hexagon, 7; construction of, 124 
Hexahedron, 48 

Hexakaidecahedron, 49 
Hexakis icosahedron, 83 
Hexakis octahedron, 82 

|lcosahedron, 50; as dual, 76; 
as regular polyhedron, 54; in 
open packings, 111, 113, 114-115; 

stellation of, 72 

Icosidodecahedron, 50, 59; dual of, 80 

Ilcosioctahedron, 50 

Interior: of polygon, 5 
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Kepler-Poinsot Solids, 70-71 

Line: connecting two points, 2; 
bisecting, 118 

Minutes, 2 
Models: paper, 127; plastic, 128; 

scoring, 127; taping, 129 

Naming: polygons, 7-8; polyhedra, 
48-50 

Network, 88; uniform, 89 
n-gon, 7 
n-hedron, 48 
Nonagon, 8 
Nonregular polygons, 10; in tessella- 

tions, 34-36; tiling with, 33 

Octagon, 8; construction of, 124 
Octagonal prisms: in space filling, 

94, 98 

Octahedron, 48; as dual to cube, 75; 
as regular polyhedron, 53; in 
open packings, 111-112, 115; in 
space filling, 92-93 

Open packings, 107-115; from non- 
space filling systems, 109; from 
space filling systems, 108; of 
tetrahedra, icosahedra, octahedra, 
111-115 

Open patterns: concentric, 43; 
periodic, 42 

Parallel, 2 
Parallelogram, 12 
Pentacontahedron, 50 
Pentagon, 7; construction of, 123 
Pentagonal hexecontahedron, 81 
Pentagonal icositetrahedron, 81 
Pentahedron, 48 
Pentakaidecahedron, 49 
Pentakis dodecahedron, 79 
Perpendicular, 119-120 
Plato, 52 
Polygons, 1-20; combining, 22; 

definition of, 4; in dual 
tessellation, 37-38; nonregular, 
10, regular, 9; star, 20; 

subdividing, 19; truncating, 20 

Polyhedra, 45-71; combining, 86; 

dual, 73-84; formed by dual 
networks of uniform space filling 
systems, 102-106; modeling, 126- 
129; quasiregular, 58; regular, 
52-54; semiregular, 55-65; 

stellated, 69 
Prism, 66; duals of, 84; in space 

filling, 91, 94, 98 



Quadrilateral, 7; types of, 12 

Ratios: in space filling, 92-98 
Rectangle, 12 
Regular polygons, 9; in open 

patterns, 42, 43; in tessellations, 

26-32 
Regular polyhedra, 52-54; in space 

filling, 90, 92-93, 95-96, 98 
Regular tessellations, 27 
Rhombic dodecahedron, 80; in space 

filling, 99 

Rhombic triacontahedron, 80 
Rhombicuboctahedron, 63; dual of, 

82; in space filling, 95-96, 98 
Rhombicosidodecahedron, 65; dual 

of, 83 
Rhombus, 12 

Self-Dual: space filling, 101; 
tetrahedron, 75; tessellation, 38 

Semiregular polyhedra, 55-65; duals 
of, 77-83; in space filling, 90, 
92-98 

Semiregular tessellations, 28-29 
Septagon, 7 
Septahedron, 48 
Snub cuboctahedron, 60; dual of, 81 
Snub icosidodecahedron, 61; dual 

of, 81 
Space filling, 85-106; definition 

of; 87; dual, 101; nonuniform, 99; 
uniform, 90-98 

Square, 13; construction of, 122-123 
Stella octangula, 69 
Straight-edge, 118 
Symmetry: and polygons, 14; and 

polyhedra, 51; and tessellations, 
41; combinations of, 17-18; 
mirror, 14; rotational, 15 

Template, 126 

Tessellations, 21-44; and symmetry, 
41; dual, 37-38; regular, 27; 
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self-dual, 38; semiregular, 28-29 

Tetragon, 7 
Tetrahedron, 48, 52; as self-dual, 

75; in open packings, 111; in 
space filling, 92-96 

Tetrakaidecahedron, 49 
Tetrakis hexahedron, 78 
Tiling: periodic, 25; uniform, 24: 

with nonregular polygons, 33; 
with regular polygons, 26 

Trapezium, 12 
Trapezohedra, 84; in space filling, 99 
Trapezoid, 12 
Trapezoidal hexecontahedron, 83 
Trapezoidal icositetrahedron, 82 
Triakis octahedron, 78 
Triakis icosahedron, 79 
Triakis tetrahedron, 77 

Triangle, 7; types of, 11; construction 
of, 122 

Truncated cube, 56; dual of, 78; 
in space filling, 93, 96, 98 

Truncated cuboctahedron, 62; dual 

of, 82; in space filling, 94-96 
Truncated dodecahedron, 57; dual 

of, 79 
Truncated icosahedron, 57; dual 

of 79 
Truncated icosidodecahedron, 64; 

dual of, 83 

Truncated octahedron, 56; dual of, 
78, in space filling, 90, 95, 97 

Truncated rhombic dodecahedra: in 
space filling, 100 

Truncated tetrahedron, 55; dual of, 
77; in space filling, 92, 96, 97 

Uniform: network, 89; polyhedron, 
47; space filling, 90-98 

Vertices: typical with regular 
polygons, 26 

Vertex: of polygon, 4; of polyhedron, 
46; of tessellation, 24 
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