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Polyhedra have cropped up in many different 

guises throughout recorded history. Ancient 

manuscripts from Egypt and ¢ ‘hina relate ideas 

concerning the calculation of the volumes of poly- 

hedra, while the Greek tradition of geometry gave 

us the construction of the regular polyhedra o1 

Platonic solids. In modern times, polyhedra and 

their symmetries have been cast in a new light 

by combinatorics and group theory. 

Phis book comprehensively documents the 

many and varied ways that polyhedra have come 

to the fore throughout the development of 

mathematics. The author strikes a balance between 

covering the historical development of the theory 

surrounding polyhedra, and presenting a rigorous 

treatment of the mathematics involved. Itis 

attractively illustrated with hundreds of diagrams 

to illustrate ideas that might otherwise prove diffi 

cult to grasp. Historians of mathematics as well as 

those more interested in the mathematics itself, 

will find this unique book fascinating. 
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Preface 

Polyhedra have been a part of the fabric of mathematics for two thousand years 
and have been the inspiration for contributions to many branches of the subject. 
So it seems remarkable that information concerning their history and mathe- 
matical properties is quite difficult to find. The study of polyhedra is still an 

active area of research and, along with other parts of geometry, is currently en- 
joying something of a renaissance. However, it is still possible (even probable) 
that students can complete their education to graduate level and not meet such 
fundamental objects as the five Platonic solids. The lack of adequate sources of 
information may contribute to this state of affairs. This book is my response to 
this vacuum. It tells the story of what people have thought about polyhedra over 
the ages, and explains some of the mathematics that has been developed to study 
them. 

I started the project that developed into this book by chance over seven years 

ago. I had just completed my Ph.D. studies at Liverpool University, where the 

mathematics department had recently begun to build up a collection of mathe- 
matical exhibits. These included models of all the polyhedra labelled regular: the 

five Platonic solids, the four star polyhedra, and five compounds. Each week, one 

departmental seminar was set aside for general interest talks given by members 

of staff and research students so that people could find out what their colleagues 

were thinking about. In one of these sessions I decided to explain some of the 
mathematical properties of the new polyhedral models. Naively expecting to find 

all the information I needed presented in several easily available books, I visited 

the library. The books I found were of three types. Some contained what is often 

referred to as ‘recreational mathematics’. These books often had a chapter or 
two on the basic properties of a few kinds of polyhedra. The more advanced of 

such books mentioned Euler’s formula. The second category of books fell at the 
other end of the spectrum. They concentrated on polytopes in arbitrary dimen- 

sions and occasionally dealt with three-dimensional examples. The other books I 

found were guides for model-making. Even large volumes on the history of math- 
ematics contained few comments on the subject of polyhedra after the Greeks, 
presumably because it is not seen as part of ‘mainstream mathematics’. 

I gleaned all the information I could from these sources, followed up their 

references to journal articles and gradually built up enough material to present a 

survey of the area. I supplemented the display models with some from my own 

collection and talked on ‘The history of polyhedra’. After the seminar several 
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colleagues asked for my sources of information. On hearing of the trouble I had 

had they suggested that I write up the talk. Since then I have searched for 

information to fill in some of the details of my original talk and this book is the 

result. 

I am not a historian and I doubt whether the book should be regarded as 
a history of polyhedra. I have simply collected together the things that I found 
interesting and arranged them by theme in approximate chronological order. My 
aim was to present more than a catalogue of definitions and theorems. The dry 
predigested style commonly used in textbooks tends to ignore the motivation that 
led to the results being described and leaves readers confused by details they see 

no need for. I have tried to place results in context, to trace the development 

of the underlying ideas, and find their influences on, and connections with, other 

subjects both within mathematics and further afield. 

My selection of topics is, of course, a personal choice. Although the work is 

certainly not encyclopaedic, I think the coverage is fairly complete up to the turn 

of the century. I have chosen to concentrate on the three-dimensional, geometric 
aspects of the subject since a large part of the attraction of polyhedra derives from 

making and experimenting with models. Very few topics that could be recast as 
graph theory have been included. This means that many developments made 
this century on the combinatorial properties of polyhedra are not covered. There 

are three major omissions of this kind that I am aware of. The first is Steinitz’ 
theorem, which plays a central role in connecting the geometric and combina- 
torial sides of the subject. A presentation of this theorem is easily available 

in Branko Grinbaum’s book Convex Polytopes. A discussion of Eberhard-type 
theorems and Alexandrov’s theorem is also missing. Perhaps more surprising 
to some readers will be the omission of references to duality. Although we can 
retrospectively find the concept in much early work, it is not clear whether the 
authors were aware of it. In any case, what do we mean by duality? A few pass- 
ing remarks on the reciprocal properties of the Platonic solids could cause more 
confusion than insight: projective and combinatorial duality have been muddled 

for ages. Furthermore, we do not always find duality in places where it might be 
expected. For instance, there is no way to construct the vertex-transitive poly- 

hedra from the face-transitive ones ‘by duality’. To discuss the topic fully would 
take a chapter in itself. . 

Other topics that are not mentioned are space-filling or neighbourly polyhe- 
dra, connections with higher-dimensional polytopes or tilings, woven polyhedra 
of various kinds, polyhedral embeddings of mathematically interesting surfaces, 
or applications to linear programming and computational geometry. 

Skimming through the book you will see it contains many illustrations. I 
think these are essential when discussing a subject so many of whose underlying 
intuitions derive from visual experience. The book also contains proofs. I have 
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Introduction 

Geometry is a skill of the eyes and 
the hands as well as of the mind. 

J. Pederson 

Models of polyhedra adorn the personal spaces of people with a broad range of 

mathematical experience. In the university office of the professional mathemati- 

cian, the teacher’s classroom, and the child’s bedroom, these attractive geomet- 

rical objects have a universal appeal. Their popularity has endured for centuries. 

This book explores how the study of polyhedra has developed, the ways people 

have used them and thought about them over the ages, and how their ideas have 
evolved. 

No science advances in a smooth and continuous way and the study of polyhe- 

dra is no exception. We follow some of the searches for explanations of observed 
or conjectured properties of polyhedra. Sometimes this is a frustrating struggle 

to understand the foundations and limitations of a new concept. What we might 

retrospectively regard as a significant milestone is often the result of the accu- 

mulated effort of many people over a long period. Progress can also be made in 

rapid leaps as a fresh mind brings a brilliant insight to an old problem which then 
throws open a whole new region for exploration. 

We shall see that the study of polyhedra has contributed to several areas of 

mathematics and has connections with many others. However, polyhedra are not 

confined to mathematics. Anything which is bounded by flat surfaces and which 

has well-defined corners has a polyhedral form. It is easy to think of examples 
from architecture. Many more can be found in the three kingdoms of nature 
mineral, vegetable and animal. Polyhedra have been used in philosophical or 

scientific explanations of the world around us. They have even found their way 
into art, literature and theological debate. We will begin with a brief look at 

some of these. 

Polyhedra in architecture 

Examples of polyhedra in architecture are easy to find. The ancient pyramids 
at Giza in Egypt, built over four and a half thousand years ago, are probably 
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the most simple in design. Modern office blocks are often prismatic structures 

of steel and glass. Other buildings combine both elements, placing a pyramidal 

roof structure on a prismatic living space. An octagonal version of this principle 

underlies the Baptistry at Florence in Italy. 

More unusual polyhedral constructions have been used for apartments in var- 
ious parts of the world. A complex of cubes with their diagonals placed vertically 

so that each rests on a corner has been erected in Rotterdam in Holland. In Israel, 

apartments have been made from a complex of dodecahedra. ‘The geodesic domes 

invented by R. Buckminster Fuller in the 1940’s are some of the most remarkable 

forms of polyhedral architecture. These first impressed the world at the Expo 67 

world fair held at Montreal in Canada. They are now used to protect astronomi- 

cal telescopes and radio antennae from the elements. On a smaller scale they are 
used as the frameworks for hemispherical glasshouses and tents, and children’s 
climbing frames. 

Polyhedra in art 

Polyhedra became popular motifs in art when linear perspective was introduced 
by the Italians of the fifteenth century. The flat faces and hard edges of polyhedral 
forms make them very good exercises for those wanting to practice perspective 

constructions, and many painters’ manuals written in the Renaissance include 
instructions for foreshortening the Platonic solids. Finished paintings sometimes 
included polyhedra as ornaments but they were usually disguised as pavilions, 
architecture or headwear. 

Polyhedra also appear in twentieth-century art. The Sacrament of the Last 
Supper by Salvador Dali contains a skeletal outline of part of a regular dodeca- 
hedron—the Platonic symbol of the universe. Several works by the Dutch graphic 
artist M. C. Escher contain polyhedra, often star polyhedra or compounds. Op-art 
designs include many apparently flat-faced objects which cannot be given a con- 
sistent three-dimensional interpretation. These can be regarded as ‘impossible 
polyhedra’. A well-known object of this kind is the Penrose tribar shown in 
Figure I.1. 

Figure I.1. The Penrose tribar—an ‘impossible’ polyhedron. 
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The same properties of polyhedra which made them attractive to the first 
artists who used perspective techniques (the fact the positions of a few vertices 
give enough information to completely describe the solid) make them appealing 
as computer graphics. Computers can manipulate and draw pictures of simple 

polyhedra very quickly. More complex polyhedral meshes are used by computer- 
aided design packages to assist engineers create the bodies of new cars and aircraft. 

In the science-fiction film Tron a man finds himself transported into a com- 
puter where he meets various programs and other elements of computer archi- 

tecture. In one of the more friendly encounters, he has a conversation with a 
floating polyhedron that continually changes shape. After having all his questions 
answered either ‘yes’ (when the polyhedron metamorphosises into a large yellow 

regular octahedron) or ‘no’ (as it becomes an orange stellation of the icosahedron) 
he realises that this object is the most basic element inside the machine—a bit. 

Much modern abstract sculpture has a polyhedral form. Sometimes this is 
as simple as a cube with one corner embedded in the ground. Other sculptors 

use tetrahedra stuck together face to face to make vertical columns or sprawling 
snakelike creatures. One of the largest polyhedral sculptures is in Vegreville, 
Alberta, Canada. It is a huge Easter egg over seven metres high designed and 
built by Ronald Dale Resch. It is constructed from 2732 bronze, silver and gold 
tiles some eighty percent of which are equilateral triangles. The others are non- 
convex equilateral hexagons in the shape of three-pointed stars. The variations 

in the egg’s curvature are achieved by changing the angles in the stars. 

Polyhedra in ornament 

Many ornaments have polyhedral forms. Vases and decorative containers are an 

obvious source. A commonly used shape is the cub-octahedron, probably because 

it is so easy to make. Earrings of this shape dating from 450AD have been found in 
Germany. Cub-octahedra are also found in the decorations on Japanese shrines. 
A large cub-octahedron embellished with chrysanthymums, the emblem of the 
emperor, sits on top of a tea house in the Shugakuin Imperial Villa in Kyoto. 

Sacred lanterns of this shape have been made since the thirteenth century and 
are still used in ceremonies to commemorate the dead. The Koreans use rhomb- 

cub-octahedral lanterns. 

Around fifty bronze ornaments or charms of dodecahedral shape have sur- 
vived from Roman times and can be seen in the museums around Europe. Most 

are hollow with circular holes of various sizes cut in their faces and small balls at- 

tached at their vertices. Some older examples of Etruscan origin are also known. 

A dodecahedron recently discovered in Switzerland has a lead core covered with 

silver and the names of the signs of the zodiac inscribed on its faces. The as- 

sociation of the twelve months with the dodecahedron still continues. One issue 
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Figure I.2. Net for the Tipu Sultan icosahedron. 

each year of Mathematics in School, a magazine for teachers, prints the net of a 
dodecahedron with a calendar printed on it—one month per face. 

Dice are another common form of polyhedral object. All the regular solids 

have been used as dice. A curious icosahedral die was found in the treasure of 
Tipu Sultan in India when he was overthrown by the British in 1799. It is made 
of gold and has an unusual distribution of numbers on it. A net is shown in 
Figure I.2. To obtain a die with ten faces both dipyramids and prisms have been 

used. A very unusual die in the shape of a rhomb-cub-octahedron was unearthed 
at Corfe Castle, southern England, in 1973. It is made from a local black marble 
and is thought to be between two and three hundred years old. Only the square 
faces have markings on them. Pairs of letters are incised in six of them and the 
other squares contain patterns of circles representing the first twelve integers. 

Figure 1.3 contains a net for this solid. Its use is unknown. 

Polyhedra in nature 

The precious gemstones cut and set into rings are sparkling examples of polyhedra 

but their facets are produced artificially. Natural processes can produce equally 

striking results: crystals (Plate 2). Bounded by flat reflective planes, their obvious 
geometric features contrast strongly with the rounded, soft, flexible or irregular 

qualities more frequently found in natural forms. Because of this distinctiveness, 
they have always attracted attention. In the nineteenth century, the study of 

polyhedra and crystals led to the geometric analysis of symmetry. Symmetry 
theory, together with the assumption that crystals are built up as repeating arrays 

of atoms, implies the crystallographic restriction: crystals can only have two-fold, 
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Figure I.3. Net for the Corfe Castle rhomb-cub-octahedral die. 

three-fold, four-fold or six-fold rotational symmetry. For this reason, the discovery 
in 1984 of a crystalline-looking substance with five-fold symmetry caused great 

excitement. These objects are now called quasicrystals. 

The kernels of some nuts and fruits contain many small seeds which grow ina 

restricted space. Pomegranates are one example. As each seed grows it presses up 
against its neighbours. The seeds prevent each other from expanding uniformly 

and they grow to fill the available space producing flat-faced seeds with sharp 
corners. If the seeds had a perfectly uniform distribution before they began to 

grow and were subjected to isotropic compression forces they would end up as 

rhombic dodecahedra. 

The principal of economy—maximising volume from given materials—leads 
to the construction of roughly spherical organisms. These sometimes have poly- 
hedral substructures. Ernst Haeckel on his voyage on H.M.S. Challenger, in the 
1880’s, drew many pictures of microscopic single-celled creatures called radiolaria. 

A radiolarian has a spherical skeleton that is polyhedral in character. Haeckel 

named three of them circoporus octahedrus, circorrhegma dodecahedra and circo- 

gonia icosahedra because he thought they resembled the Platonic solids. His 
illustrations are shown in Figure [.4. 

Spherical cages also form part of simple viruses such as that responsible for 
polio. Viruses reproduce themselves by taking over the protein synthesising equip- 
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Figure I.4. Three of Haeckel’s sketches of radiolaria. 

ment of living cells. The viral nucleic acid introduced into the cell causes the cell’s 
machinery to produce parts for new protein cages which protect the replicated 

RNA in the new viruses. The simplest virus cages are built up from repeat- 
ing units that clump together in groups of five (pentamers) or six (hexamers). 
These pentagons and hexagons then fit together to form spherical capsules with 

approximate icosahedral symmetry. 

The recently discovered allotrope of carbon also forms polyhedral spheres, 

ellipsoids and tubes. In the smallest example, Cgo, the sixty atoms are arranged in 

the same pattern as the vertices of a truncated icosahedron—familiar as a soccer 
ball. These carbon cages have been named Fullerenes in honour of Buckminster 
Fuller but they are colloquially known as ‘Bucky balls’. 

Polyhedral molecules have been known for some time. Organic chemists have 
made carbon—-hydrogen structures such as cubane, CgHg, whose carbon atoms 

lie at the corners of a cube. Many more examples occur in inorganic chemistry, 
particularly with compounds involving the transition metals. In a molybdenum 
chloride ion (MogClg* ) the chlorine atoms form a cubic cage around an octahedron 
composed of metal atoms. Halides of platinum and zirconium provide further 
examples of molecular polyhedra. Compounds of boron and hydrogen, called 
boranes, have triangular-faced polyhedral structures which include some of the 
deltahedra. Molecules of the borane BgHg oscillate back and forth between the 
forms of a Siamese dodecahedron and a square antiprism. 
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Polyhedra in cartography 

Making maps of the world has been a problem ever since we discovered that 
the Earth is not flat. A globe is spherical and can be used to represent the 
world accurately but it provides a limited view: we cannot study the whole of 
the Earth’s surface at the same time. Transferring data from a sphere to a flat 
surface presents great difficulties and always results in some distortion. In the 
commonly seen Mercator projection, invented in the sixteenth century, a cylinder 
is placed around the globe so that the two surfaces touch along the equator. The 
features on the surface of the sphere are then projected outwards until they meet 
the cylinder. The map is an exact representation along the line of contact, but 
away from the equator the map is less precise. The distortion is worse nearest 
the poles; the poles themselves cannot be represented. 

Buckminster Fuller was frustrated by this inaccurate view of the world in 
which Greenland appears three times as large as South America when, in reality, 
the opposite is the case. Distortion must appear in any flat map of the Earth 

but it might be possible to smear it out evenly so that it is less noticeable. 

Fuller sought to show the shape, distribution, and relative sizes of the Earth’s 

landmasses while containing the worst distortion to the seventy-five percent of 

the Earth’s surface covered by water. 

He took a regular solid, the icosahedron, composed of twenty equilateral tri- 

angles and subdivided each face into smaller triangles. Calculating from a similar 
grid superimposed on the Earth he could transfer the data from the sphere to 

the polyhedron. This was all done between the two world wars before computers 
were available to assist with the calculations. ‘The resulting map is unique in its 
lack of visible distortion. Fuller also had to choose the position of the icosahe- 

dron carefully so that it could be cut along its edges and opened out flat without 
creating unnatural breaks in any landmass. The result, known as the Dymazion 

map, is shown in Figure [.5. 

In February 1943, Life magazine included a colour, cut-out version of Fuller’s 

map. Before it was published, the editors had the map examined by a panel of 
experts to certify that it was an accurate representation of the Earth and that 

it was a new discovery. The panel, which included the Chief Geographer of the 
U.S. State department and two mathematicians, could not find geographical or 
mathematical flaws in Fuller’s map but were still uncertain as to how it had 

been created. In terms filled with negative connotations, their report concluded 

that it was ‘pure invention’. When Fuller applied for a patent for his map he 

found a ruling had been issued which decreed all possible projection methods 

used in cartography had been exhausted. Hence his application was rejected. He 

presented the Patent Office with the Life report. The testimony of the experts 

could not be argued with and he was granted the first patent this century for 

innovation in map-making. 
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The word ‘Dymaxion’ and the Fuller Projection Dymaxion Map design are trademarks of the 

Buckminster Fuller Institute, Santa Barbara. © 1938, 1967 and 1992. All rights reserved. 

Figure 1.5. Fuller’s Dymaxion map 
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Polyhedra in philosophy and literature 

Polyhedra have played roles in theories of the universe. Both Plato and Kepler 
made use of the five regular solids. For Kepler, the polyhedra determined the size 
of the known universe, the number and relative distances of the planets. Plato 
associated the solids with the four Empedoclean elements and the heavens, and 
tried to explain the properties of matter. 

Following Isaac Newton’s description of the ‘clockwork universe’ the Design 
Argument for the existence of God became popular: since we see evidence of 

design all around us, there must be a designer. The Natural Theology of William 
Paley (1743-1805) argues this case. In his argument against the existence of 
an inherent, universal ordering principle, Paley used the Platonic solids as the 
archetypal example of order. 

Order is not universal; which it would be if it issued from a constant 

and necessary principle ---.. Where order is wanted we find it; where 

order is not wanted, i.e. where, if it prevailed, it would be useless, 
there we do not find it. --- No useful purpose would have arisen from 
moulding rocks and mountains into regular solids, or bounding the 

channel of the ocean by geometrical curves. ° 

In what must be the earliest work of science-fiction, L’Autre Monde ou Les 

Etats et Empires de la Lune et du Soleil, Cyrano de Bergerac (1619-1655) writes 
about a space flight. He was imprisoned in a tower room and hatched a plan to 

escape. A friend brought him materials and he constructed a flying machine which 
he hoped would carry him to his friend’s estate. The craft was light and strong, 

a crystal globe having many facets, a ball like a blazing mirror, in the shape of 

an icosahedron! It worked by catching as much light as possible to create a void 
which sucked in air and thereby carried the machine upwards. However, the power 

of the sun’s rays was greater than he anticipated and instead of landing safely 
outside his prison, he was carried beyond the Earth’s atmosphere and towards 

the sun. After four months he landed on a sunspot and began an adventure. 

About this book 

The chapters of this book are a series of related essays, each of which explores a 

particular theme. They are arranged in approximate chronological order but are 

largely independent units that can be read in any sequence. ‘The only exception to 

this is Chapter 8 which develops the ideas and notation for describing symmetry. 

This notation is used in the following two chapters. 

As in a piece of music, some themes appear several times in the book, but each 

entry is slightly different from the last. The subject is modified and developed or 
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treated from a new viewpoint which brings previously hidden elements to the fore. 

One such topic is regularity. Regular polyhedra were introduced by the Greeks 

more than two thousand years ago as part of their study of solid geometry. They 

knew the five solids named after Plato. When Johannes Kepler experimented 

with new ways of constructing polyhedra, he found two more which could be 

labelled regular. Two centuries later, Louis Poinsot rediscovered them and found 

another two. The mathematical development of symmetry led to a new way of 

interpreting regularity which had wider applications to compound polyhedra. 

Other themes which recur throughout the book are a part of every branch of 
mathematics—the problems of definition, classification and enumeration. What 
objects are we talking about? When are two objects to be regarded as the same? 
What kinds of object are there and how many are there? Is there any pattern or 

structure in such a diverse collection? 

Even though the study of polyhedra is one of oldest branches of mathemat- 

ics, the theory is still being advanced. However, this does not mean that it is 
necessary to scale high barriers of intimidating mathematics erected over the past 

two thousand years to attain some understanding of what has been achieved and 
what is being investigated today. Because of the geometrical nature of the sub- 
ject, many of the results are accessible to non-specialists. Geometry has a strong 

visual component. It is this which gives the aesthetic appeal to the subject and 

which means many ideas can be communicated with the aid of pictures or models. 
Even though there are many illustrations in this book, sometimes they may not 

be sufficient. At a few places I have suggested that you make your own models 
to enhance your understanding of a particular point. Hands-on experience with 

actual three-dimensional polyhedra is the best way to find out what is going on. 
Once intuition is developed the pictures may suffice as reminders. 

The inclusion of proofs 

Although this book tells a story, it also includes proofs of the theorems. Not 

everyone will want to delve into the fine details of every proof, but the ideas and 
arguments presented in them are a part of the story. It is for the understanding 
provided by these explanations that people have worked so hard. 

Creating a proof is like taking something apart to see what makes it work. 
A good proof well explained shows not only that something is true but also 
why it has to be true. Unfortunately, the language of rigorous argument can be 
intimidating. The reasons for some of the pedantry are often lost on the reader, 
and a mass of details sometimes obscures the flow of ideas. Remember that a 
proof is just an argument designed to convince its intended audience of the truth 
of some statement. As audiences have become more demanding over time, so the 
standards required have been raised. When the oversights in yesterday’s proofs 
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are taken into account, and the errors are removed, today’s level of proof can be 
reached. ‘Tomorrow they will be revised again when the conditions are interpreted 
in new and unforeseen ways and new counter-examples slip round the restrictions. 

Although new ideas are often needed to create an acceptable proof, they do 
not grow out of logical deductions. Behind every proof there is an intuitive feeling 
of what should happen. Mathematicians seek a deeper understanding than a mere 
chain of syllogisms. This intuition is sometimes more convincing and reassuring 
than the proof itself. But proof is essential. The function of argument is to be 
critical and to focus attention on points that have been overlooked. To advance 
mathematics in an original direction requires imagination. Proofs point out where 
limitations and restrictions need to be imposed when our imaginations jump to 

conclusions which are too general. A proof is the check that we have not deceived 
ourselves. 

Approaches to the book 

This is both a mathematics book and a book about how mathematics is done. It 

can be approached on several levels. For readers wishing to trace the evolution 
of ideas over a long period of time, the details in the proofs may be unnecessary. 

Others who want to concentrate on the theory will hopefully find the information 

they desire. I expect most readers will vary their approach according to topic, 

dipping more deeply into the subjects they find attractive. 

Whatever your approach, there are a few things you should note. Unfamiliar 

mathematical ideas cannot be fully understood by just reading about them, no 

matter how good the exposition. Learning mathematics is an active process not 
a passive one. There will be places where you cannot see everything in your mind 

and will need to reach for a pencil or a model to find out why something works. 
You learn through experience—making and handling models, solving problems, 
working through arguments. When you come to the statement of a theorem make 
sure you understand what it means. Identify the conditions and the conclusion. 

Check it out on a few examples to verify it. 

Reading a proof is a skill which has to be learned through practice. If you get 
lost in a proof, try to take a step back and locate the underlying essentials and 
the way they fit together. If you get truly stuck then skip the proof for a while 

and return to it later. (The end of a proof is marked with the symbol m™.) A period 

of incubation allows the new ideas to settle and when you reread the arguments 

you may not see where you had a problem. On the other hand you may still be 

stuck. If this happens you can either omit the proof, work through the whole 

argument on a specific example and follow what happens, or try to create your 

own argument or counter-example. Remember that, ultimately, a proof appeals 

to your imagination and previous experiences. It is an argument to convince an 
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audience. It is subjective and what matters is whether it convinces you. Many 

previously overlooked flaws are discovered because people are skeptical about 

some point of a demonstration. 

Some final remarks on the layout of the text. A few isolated paragraphs 

are marked with a dagger ({) symbol. These clarify or expand some point in the 

preceding text but assume some prior knowledge which not all readers will possess. 

They provide supplementary information only, so if you do not understand them 

skip over them. The sources of the quotations are collected together at the back 

of the book. They are listed by chapter and are indexed by small letters at the 

end of the quotations. Figures and tables and numbered in a single sequence. 

Basic concepts 

There is one rather awkward problem to be overcome in writing a book about 
the history of polyhedra and that is to decide what is meant by the term ‘polyhe- 
dron’. A glance at the figures in this book will give you some idea of the variety 
of objects that have been described as polyhedra. Trying to make a catch-all 
definition is impossible as different writers have applied the same term to several 

different ideas, some of which are mutually exclusive. At the most elementary 
level we can ask whether a polyhedron is a solid object or a hollow surface. The 

answers to such questions depend to a large extent on the period in which the ge- 
ometers lived and the problems that they studied. To a classical Greek geometer 

a polyhedron was solid. Over the past 200 years, it has become more convenient 

to think of polyhedra as surfaces. Today, some mathematicians regard polyhedra 

as frameworks. 

It has been said that the only thing all polyhedra have in common is the 
name. However, there is some common ground to be found. The polyhedra in 

the illustrations clearly share some characteristics. Their most obvious property 

is that they are made of (or bounded by) polygons. This fundamental property 
constituted a definition of ‘polyhedron’ for many centuries, even if it was not 

stated explicitly. As we shall see, such an open-ended definition can be interpreted 
in many ways. It does not supply any restriction on how the polygons are to be 
put together or on what kinds of polygon we can use. This ambiguity has been 

extremely fruitful, allowing the term to evolve in several directions and leading 
to the study of different kinds of polyhedral objects. Because of this, I shall leave 
‘polyhedron’ as this vaguely defined term. Throughout the course of the book, 
we Shall see how its meaning has been refined and altered at various times. We 
shall, however, need some basic terminology to refer to pieces of polyhedra— 
terminology which can be used however ‘polyhedron’ is interpreted. 

I have tried to use the language appropriate to the period under discussion 
but occasionally it is more convenient to use modern terminology. This means 
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that some basic terms must be introduced before their correct place in the story. 
These are listed below and illustrated in Figure 1.6. 

e Each polygon is called a face of the polyhedron. 

e A line segment along which two faces come together is called an edge. 

e A point where several edges and faces come together is called a vertex. 

I shall make a distinction between the constituent parts of polygons and those 
of polyhedra. Thus a polygon has sides and corners whereas a polyhedron has 

faces, edges and vertices. Each edge of a polyhedron is formed from the sides 
of two faces. Faces which have two sides joined to form an edge are said to be 
adjacent. 

vertex 

aN 

Figure I.6. Basic terminology. 

There are also several kinds of angle in a polyhedron. 

e The angle in the corner of a polygonal face is called a plane angle. 

e In a solid polyhedron, the region of the polyhedron near a vertex is called 
a solid angle. It is a chunk of the corner and is bounded by three or more 

plane angles. 

e The angle between two adjacent faces is called a dihedral angle. ‘To find a 
dihedral angle mark a point on the shared edge and a line perpendicular to 
the edge in each of the two faces starting at the chosen point. The dihedral 
angle is the angle between the two lines (see Figure 1.7). 

You will probably be familiar with the names of a few basic polyhedra. A 

pyramid is formed by connecting all the corners of a planar polygon to another 

point not lying in the plane. The polygon is called the base and the extra vertex 

is the apex. All the faces surrounding the apex will be triangular. A prism is 

formed from two congruent polygons lying in parallel planes connected by a ring 

of rectangles. An antiprism is similar except that the connecting ring is composed 

of isosceles triangles. See Figure 2.25 for examples. 
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Figure I.7. A dihedral angle. 

Making models 

At various places in this book you will be encouraged to make a few models to en- 

hance your understanding of the concepts being discussed. In geometry, pictures 

are often better than words, and in the study of three-dimensional geometry, an 

object that you can touch and see from many different angles is better than a 

picture. Experience with a few models will make it easier for you to perceive the 

many figures in the book in a three-dimensional context. 

The suggested models are small and convex and should not present much 
difficulty. However, you may wish to make models of some of the other polyhedra 
shown in the plates and illustrations, some of which are quite intricate. All 

model-makers soon develop their own ways of achieving satisfactory results. The 

variety of instructions given in various books is evidence of this fact. For guidance 
purposes, I shall offer my own techniques used to construct the models shown in 

the colour plates. 

The most important part of any model is the pattern. It is essential that the 

pattern pieces are constructed accurately otherwise they will not meet correctly 
and the model will not close up properly. The kind of pattern pieces needed 

will depend on how you intend to decorate the finished model. If you want to 

use materials of different colours then you will probably need to cut out many 

faces individually. If you are happy with a plain model or want to paint it when 

completed then you can design larger pattern pieces which have several faces in 

each piece. Some polyhedra can be folded up from a single piece. This reduces 

the number of joins that need to be made. 

Having drawn the pattern pieces, the next step is to transfer the designs 
to the material to be used for the model. The models shown in the plates are 
made from thin index card. Several sheets can be marked out simultaneously 
by stapling them together in two opposite corners. The corners of each pattern 

can then be pricked through all the layers of card at once using a pin or other 
pointed implement. Do this on a sturdy flat surface covered with something soft 
to receive the pin. A carpeted floor or a folded towel on a table are good for this. 

When you have pricked out the number of pieces required, separate the sheets 
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of card and lightly sketch on the outlines of each face with a pencil. Decide where 
you need tabs and folds then score along these lines using a steel ruler as a guide. 
An empty ballpoint pen makes an excellent scoring tool. To cut out the pieces 

you can use a craft knife against a steel ruler for accuracy but scissors are usually 
adequate. 

The choice of where to put tabs will depend on several factors. There are 
two methods to make joins: you can put a tab on both pieces to be joined and 
glue the tabs together, or you can put a tab on only one piece and glue the other 
piece onto it. The first method produces a rib inside the model along each edge 

which gives the model added strength. This method is particularly useful when 
the dihedral angle along the join is greater than 180°. The second method is 
the one I usually use. It is a good idea to try to alternate tabs and free sides 
around each face as far as possible as this helps to prevent misalignment. You 

may also find a pair of needle-nose pliers helpful to apply pressure along a tab 

while the glue dries, especially as the model progresses and the interior becomes 
increasingly difficult to get at. 

Models which have both mountain and valley folds are often unstable. ‘They 
can sometimes be deformed unless struts are added in the interior to provide extra 

rigidity. Some kind of internal support is also needed for models in which several 
faces are supposed to be coplanar (star polyhedra and compounds). Deformities 

in such models are usually clearly visible. 

I feel I should offer a word of warning here. Model-making can become 
addictive. Polyhedra tend to come in natural groups and once you have made 
one member of a set you can feel a strong desire to make all the others. With 
large complex models taking many hours, this can become a very time consuming 

obsession. On the other hand, it is cheap, safe, and produces unusual decorative 

ornaments. 
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Indivisible, Inexpressible 
and Unavoidable 

Infinities and indivisibles transcend our finite 

understanding, the former on account of their 

magnitude, the latter because of their smallness; 

imagine what they are when combined.“ 

Galileo 

One of the most basic applications of mathematics is the determination of area 

and volume. This branch of mathematics, known as mensuration, originated in 

the practical problems of everyday life. Measuring, counting, and pattern-making 

are probably the oldest forms of mathematical activity. 

The earliest writing on geometrical problems consists of sets of rules to be 
followed when solving a particular type of problem: How to calculate the area of 

a field, or the quantity of grain that can be stored in a barn, for example. We 
do not know how or when these techniques were developed, just as we can say 
nothing of the origins of language. The early texts that have survived record no 

more than sets of instructions. 

Later generations sought to explain the formulae they used and to find out 
why they worked. This led to several unexpected difficulties. Even the simplest 

of geometrical figures caused problems. In particular, the formula for the volume 
of a pyramid proved hard to establish. 

Castles of eternity 

Planted on the fringe of the Egyptian desert, stark and austere, the pyramids 

dominate the landscape. Rising from a square base, their four triangular faces 

slope inwards to meet at a single point. The clean lines of their geometrical 

form contrast with the amorphous irregularity of their surroundings; their simple 
outward appearance conceals an intricate design within. 
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Yet these huge structures are more than mere monuments: they are tombs 

built to protect mummified pharaohs from disturbance and destruction. The 

Egyptians went to such great lengths to preserve the king’s body because they 

believed that the attainment of immortality depended on the continuing existence 

of his Earthly form. Thus the king’s tomb had to be virtually indestructible—it 

was his ‘castle of eternity’. 

The era of pyramid building spans the Old: Kingdom (2686-2181BC), the 
period of Egyptian history covered by the third to the sixth dynasties of pharaohs. 

The first pyramid was built around 2650Bc. It was a step pyramid produced by 

successive heightening of a flat-topped tomb, a stairway to heaven. As the sun 

god Re became the dominant deity in Egypt some of the pharaohs proclaimed 
their divinity by adjoining the name of the sun god to their own: Khaef-Re and 
Menkau-Re for example. Also about this time the tombs evolved into the smooth- 
faced, geometrically true pyramid. It has been suggested that the pyramid was 

a material representation of the sun’s rays along which the spirit of the deceased 
pharaoh ascended to join the gods. A more recent theory explains the locations of 
the pyramids along the Nile and the positions of their internal shafts by reference 

to the stars. 

The transition from the step to the true pyramidal form occurred in the 

reign of Seneferu. The three pyramids that he erected show the various stages of 
development. The first structure started out as a step pyramid but at some stage 
the steps were filled in with rubble and the whole cased in limestone dressed to 

form a true pyramid. On another site Seneferu built a second pyramid which was 
intended to have the true form from the outset. However, the ground underneath 
the pyramid was unable to withstand the pressure of the stones piled upon it, 

and before the pyramid was completed it started to crack. The building work 

continued but, in an attempt to lessen the weight of the remainder, the angle of 

slope was reduced from 54° to 43° producing an abrupt change of shape midway 
up the pyramid. Having failed, Seneferu tried again, building a third pyramid 
next to the disfigured one. This time he was successful and produced the pyramid 

with the gentlest incline of any now known: 43° compared to the more usual 52° 
of later pyramids. 

Seneferu’s son and successor was Khufu (or Cheops in Greek) who is famous 
for erecting the Great Pyramid at Giza. The two other pyramids in the Giza group 
were built by Khaefre (Chephren) and Menkaure (Mycerinus). These edifices are 
colossal. While on his expedition to Egypt at the end of the eighteenth century, 
Napoleon Bonaparte is said to have calculated that these three mountains of stone 
contain enough material to build a wall along the entire French frontier ten feet 
high and one foot thick. The mathematician Gaspard Monge, who accompanied 
him, is said to have confirmed his calculation. 

Work on the construction of the pyramids was probably carried out during 
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the summer months. The cycle of life in Egypt was dictated by the river Nile. It 
provided an artery for commerce, and made cultivation possible along a narrow 
strip of land. Each year, between August and October, the river would rise and 
flood the surrounding area. After the water had receded, it became possible to 
grow crops, but by March, the ground had dried to a hard-baked mud. When 
farming became infeasible, the people who worked the land were available to 
quarry, transport and position the many tons of stone required to build each 
pyramid. Without the existence of such a large labour force of peasants and 

enslaved foreigners it seems unlikely that such huge structures could have been 
erected. The very existence of the pyramids is a testament to the immense power 
exercised by the pharaohs. 

The shape of a pyramid is extremely helpful in reducing the effort required 
to raise stone for fewer blocks are required at each course. Over 87 percent of 
the volume of the pyramid is in the bottom half. Even so, the pyramids remain 
a remarkable achievement. They display a high standard of craftsmanship. The 

stones could be cut with great precision. The Egyptologist Sir Flinders Petrie 
found that the average gap along joints between the casing stones of the Great 
Pyramid is one-fiftieth of an inch. The bases of the pyramids are levelled to very 
high accuracy, and they are almost perfect squares. 

What level of mathematics did the Egyptians possess to plan and construct 
such structures? What did they know of the geometry of a pyramid? 

Egyptian geometry 

Our knowledge of Egyptian mathematics comes largely from papyri that have 
been preserved by the dryness of the desert climate. They contain various prob- 
lems of a practical nature: the distribution of wages, the conversion of units, the 
calculation of areas and volumes; together with exercises in the use of fractions. 
The principal difficulty in all the problems is the calculation itself. 

In plane geometry the Egyptians knew formulae to find the areas of basic 
polygons: rectangles (length x breadth) and triangles (1/,base x height). To 
calculate the area of a circle they squared 8/9 of its diameter. This rule is equiv- 

alent to using a value of approximately 3.16 for m—a contrast to other early 

civilisations who took z to be 3. They knew how to calculate the area of a 

trapezium and seem to have applied a similar idea to quadrilaterals in general: 

they took the area to be the product of the averages of the lengths of the two 

pairs of opposite sides (see Figure 1.1). The result produced by this procedure 

is usually too large. And yet, 200 years after Euclid taught in Alexandria, this 

inaccurate formula was still in use. It appears among the inscriptions on the 

Temple of Horus at Edfu which records events in the first century BC. 

In solid geometry, the volumes of cylinders, barns, and beams were evaluated 
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b b 

area = !/, (at+b)h area = !/, (a+b) !/, (c+d) 

Figure 1.1. Egyptian formulae for finding the area of a trapezium and a 

general quadrilateral. The second is incorrect. 

as the product of the area of a cross-section and the length (or height). The 
difficulty of the calculation lies in the conversion of units—from volume to grain 
measures, for instance. It is generally accepted (on indirect evidence) that the 
Egyptians could find the volume of a pyramid, and that they also had a rudimen- 

tary notion of trigonometry which allowed them to express the degree of slope, 
or gradient, of a pyramid. 

Since the Egyptians did not possess a symbolic notation in which to express 

their formulae, they had to give a series of worked examples—special cases with 
particular numbers rather than the general case. The same example would be used 
in different contexts. For instance, problems 57 and 58 of the Rhind mathematical 

papyrus both deal with the same pyramid. In the former problem, the height and 

base are the data and the slope is calculated; in the latter, the height is the 

unknown quantity. Problem 56 also concerns the slope of a pyramid. It reads as 
follows: 

Example of reckoning a pyramid. 
height 250, base 360 cubits. 
What is its slope? 

Find half of 360: 180 
Divide 180 by 250: 5 + 3 + = cubits 
Now a cubit is 7 palms. 

Then multiply 7 by ; te : ote a 

[calculation omitted] 

53. palms. This is its slope.’ 

The result means that the pyramid rises 1 cubit for every Dee palms horizontally. 
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The calculation of ee results in the reciprocal of what today is called the gradient. 
Alternatively, it can be thought of as the cotangent of the dihedral angle between 
a face and the base. Notice that they only used fractions whose numerators were 
1. The final part of the calculation alters the units of the measurement. 

The measurements used in the problem are realistic. In the following table 
they are compared to those of the Giza pyramids. 

Height Base Slope 

Khufu LAr €230merrol 52? 

Khaefre 144m. 216m 52 20° 

Menkaure 66m 108m _ 50°47’ 

Problem 56| 131m 188m _ 54°14’ 

Another papyrus also contains a problem relating to the geometry of a pyra- 

mid. The fourteenth problem of the Moscow mathematical papyrus is concerned 

with the volume of a truncated pyramid. This solid is sometimes called the frus- 

tum of a pyramid (from the Latin word for ‘fragment’). The papyrus itself is 
about 8cm wide and over 5m long. It contains 25 problems, many of which are 

unclear because the papyrus is damaged. Figure 1.2 shows the portion containing 
problem 14. The text is written in hzeratic script, a simplified form of hieroglyph- 

ics. In the hieroglyphic transcription shown beneath, the numbers in the problem 

can be picked out: the symbols {) and | stand for tens and units respectively. The 

text is read from right to left. An English translation reads as follows: 

Method of calculating a truncated pyramid. 
If you are told: a truncated pyramid of 6 cubits in height, 
of 4 cubits on the base, by 2 on top 

You are to square this 4: result 16 

You are to double this 4: result 8 
You are to square 2: result 4 

Add together this 16, the 8 and the 4: result 28 

Take ; of 6: result 2 

Take 28 twice: result 56. See, it is 56—you have found it right.“ 

By following the instructions we obtain two intermediate results. Firstly 

AMA 2 xe 2 

= 164-1324. 4 

= 28 

and then 1/; x 6 = 2. Combining these gives the volume as 2 x 28 = 56 cubic 

cubits. 
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Replacing the specific measurements by the symbols h, b and a for the height, 
base and top, respectively, we find that the algorithm evaluates the sum 

sh (b? + ba +a’) 

which is the standard formula for the volume of a truncated pyramid. 

As a corollary of this example, one is led to believe that the Egyptians must 
also have known the formula for the volume of a complete pyramid (1/3 hb*) but 
there is no specific example where it has been used. 

How did the Egyptians discover their formulae and algorithmic procedures? 

In general, we cannot answer this question since the papyri are not concerned with 
such things. They contain neither motivation, nor any justification to validate the 
methods they describe. Their principal function is to communicate knowledge of 

a technique or the rules of calculation to be followed in particular circumstances. 
The Egyptians did not possess a notation in which they could express general 

formulations of their results: 

They were a people who had no plus, minus, multiplication, or division 

signs, no equals or square-root signs, no zero, no decimal point, no 
coinage, no indices, and no means of writing the common fraction 

4 
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Courtesy of the State Pushkin rae of Fine Arts, Moscow. 

Figure 1.2. Problem 14 from the Moscow papyrus. 
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This lack of notation was overcome by giving several worked examples of a similar 
nature using different numbers to illustrate the method of solving a particular 
type of problem. They expected that the general procedure would be abstracted 
from sufficiently many specific examples. In these non-symbolic descriptions, the 
values were taken to be typical; other values can be substituted so that the general 
case becomes apparent. However, descriptions of procedures cannot establish the 
universal validity of a formula. Moreover, in some cases, a systematic derivation of 
a procedure is not possible since the resulting formula is either an approximation 
(as in the case of the area of a circle) or wrong (the area of a general quadrilateral). 

Babylonian geometry 

An ancient civilisation also developed in Mesopotamia, the fertile plain between 
the Tigris and Euphrates rivers, now part of Irag. The mathematics of the 
Babylonians, along with other records, is preserved in the form of clay tablets. 

These tablets were inscribed with wedge-shaped signs by pressing a stylus into 
the surface of the soft clay. The script is now called cuneiform from ‘cuneus’, the 
Latin word for wedge. 

The extant tablets come from two distinct periods: most date from 1800- 
1600BC, a few from 300BC-OAD. The mathematical tablets can be separated 
into problem texts and tables. The latter include multiplication tables, lists of 

squares, cubes, square roots, reciprocals, on so on. Some of the problem texts 

contain examples of elementary geometry. 

In plane geometry, the Babylonians knew formulae for finding the areas of 
rectangles, triangles and trapeziums. In many of the problems concerning circles 
a bad approximation is used: for instance, the area is taken to be one-twelth of 
the square of the circumference, which is equivalent to using 3 for 7. It is obvious 
that this value for 7 is too small since the perimeter of a regular hexagon is three 
times the diameter of its circumcircle. One tablet containing a list of numbers has 
been interpreted as a list of approximations to the ratios of area to length-of-side 

for regular polygons of up to seven sides. It also contains a comparison of the 
perimeters of a hexagon and its circumcircle which leads to a value of 3!/g for 7. 

In solid geometry, the Babylonians considered similar problems to the Egyp- 

tians. Volumes of prisms and cylinders were calculated as the product of base-area 

and height. There are also problems dealing with cones, pyramids, and their frus- 

tums, although in these cases the wrong formulae seem to have been used. The 

method applied in most of these problems concerning frustums is to average the 

areas of the top and base, then multiply by the height. This is certainly wrong 

(even if we assume 7 to be 3) but it is analogous to the formula for the area of a 

trapezium. In one problem, the volume of a truncated square-based pyramid is 
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(31) 
where the second term in the calculation is unclear, the text being damaged. This 

term has been interpreted in various ways: possibly it reads 

if (=) 

in which case the formula is correct, but a more likely reading is 

oe 
which is equivalent to the averaging procedure used in other problems. 

calculated as 

Chinese geometry 

The Chinese are another ancient people who developed mathematics at an early 

date. The oldest surviving and most influential of the ancient Chinese mathemat- 
ics texts is the Chiu-Chang Suan-Shu (Nine Chapters on the Mathematical Art), 
also known as Chiu-Chang Suan-Ching (Mathematical Manual in Nine Chapters). 
It is a collection of problems that probably appeared in its current form in the 

first century AD but which contains older material that some believe to date from 
the third century Bc. Even by the third century AD, the origins of the work were 
uncertain. In the preface to his Commentary on the Nine Chapters (263AD) Liu 
Hui says that the classics were either lost or destroyed when the emperor Ch’in 

Shih Huang (221-209Bc) ordered the burning of all books in 213Bc and the Nine 
Chapters was compiled from the remains of works that survived. The fact that 
some problems refer to contemporary events, ranks, or official titles which belong 

to particular periods helps to date the work and shows that different parts were 
written at different times. 

The Nine Chapters contains a series of 246 problems together with their so- 

lutions. The problems are connected with day-to-day life and it seems that the 

book was intended as a handbook to be used by engineers, architects, and trades- 
men. As in the Egyptian and Babylonian texts, the problems are stated with 

definite numbers. The solutions, however, are presented as general procedures. 
Two of the nine chapters (I and V) treat geometric subjects. The other chapters 
deal with proportions, the distribution of wealth, taxation, and the solution of 
simultaneous linear equations. 

The first chapter, on surveying, gives rules for the calculation of areas: it 
deals with triangles, rectangles, trapeziums, circles and their sectors, and annuli. 
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The ancient Chinese evaluated the area of a circle as either 3/; the square of 
the diameter, or !/,2 the square of the circumference. Both of these formulae 
correspond to using the value 3 for 7. Later Chinese mathematicians improved 

this approximation considerably. Chang Heng (78-139AD) used 10 ~ 3.16. Liu 
Hui described an iterative method to approximate a circle by inscribed regular 

polygons. Starting with a regular hexagon, and repeatedly doubling the number 
of sides so as to produce a regular polygon each time, he compared the perimeter 

of the resulting polygon with the diameter of its circumcircle (see Figure1.3). The 
more times the process is repeated, the more accurate the resulting value of 7. 

After four iterations, the polygon has 6 x 24 = 96 sides. This gives the value of 
m@ as 3.14, which is good enough for practical purposes. 

The fifth chapter ‘Consultations on engineering works’ concerns earthworks 
(walls, dykes, canals) and the labour required to construct them. It also contains 
the formulae giving the volumes of solids: prisms, cylinders, pyramids, cones, 

truncated pyramids and cones, and a particular case of a tetrahedron. 

Although the solutions to the problems are given as general procedures, not as 
particular worked examples, there is no attempt to justify their correctness. In his 

Commentary on the Nine Chapters, Liu Hui supplements the brief discussions in 
the original work with arguments to demonstrate the validity of the algorithms. 
His explanations have a high standard of logical rigour but he does not state 
explicitly all the assumptions on which his derivations are based. Consequently, 

his proofs retain the intuitive element which is often excised by the pedantic 

axiomatic style used in many modern textbooks. 

Figure 1.3. Approximations to the value of m can be calculated by compar- 

ing the perimeter of a regular polygon with the diameter of its circumcircle. 
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To illustrate Liu’s style of proof, the frustum of a square-based pyramid will 
be used as an example. In his derivation of the formulae for the volumes of solids 
Liu uses dissection arguments. This involves splitting up the solid in question 

into pieces of known volume, then combining the formulae of the constituents to 
arrive at a formula for the whole. In order to describe the dissection of a solid 
he uses a set of four standard blocks, each one unit in height, width and length. 
These are illustrated in Figure 1.4. Liu clearly possessed a set of such blocks and 
expected his reader to be familiar with them. He calls them ch”, a name usually 
used for the pieces in a board game such as chess, so it is possible that they were 

part of a game or puzzle with a fairly wide circulation. 

cube ch’ien-tu yang-ma pich-nao 

Figure 1.4. The four Chinese blocks, known as ch’i, used by Liu Hui. 

By restricting his dissections to be composed of these blocks, Liu can treat 
only particular cases of the problems. In the case of a truncated pyramid, he 
considers the special case when the base is 3 units square, the top 1 unit square, 

and the height is also 1 unit. Thus b = 3, a= 1 and h = 1. He needs to show 
that its volume is 

1/3 (ab + a? + b°) h. 

This particular truncated pyramid can be dissected as a cube (in the centre) 
surrounded by four ch’ien-tu (the wedges at the sides) and four yang-ma (one at 
each corner). Figure 1.5 illustrates this dissection. 

Figure 1.5. Liu’s dissection of a truncated pyramid into ch’i. 
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Liu considers each of the terms abh, b?h and a’h in turn finding collections of 
ch’i that have these volumes. The demonstration is completed by observing that 
these same pieces can be arranged to form three frustums. 

Firstly, to construct a figure whose volume is equal to the product of the top 

and base dimensions together with the height, Liu takes the central cube and the 
four ch’ien-tu. These blocks can be rearranged to form a rectangular prism whose 
dimensions are a, b and h (see Figure 1.6). 

To form a figure of volume b*h Liu builds up the truncated pyramid with extra 
blocks to make a cuboid. A ch’ien-tu matched with each one in the dissection 
fills in each side; and two yang-ma can be placed at each corner to complete 
the prism. (That three yang-ma can be fitted together in this situation to form 
a cube is fortuitous—a general cuboid cannot be dissected into three congruent 
pyramids.) The figure is then composed of 12 yang-ma, 8 ch’ien-tu and a cube. 

The central cube in the dissection provides a figure whose volume is a7h. 

We now see that the expression abh + b?h + a*h is the volume of 

cube + 4ch’ien-tu 

+ cube + 8chien-tu + 12 yang-ma 

+ ‘cube 

= 3(cube + 4ch’ien-tu + 4 yang-ma) 

or, in other words, three times the volume of the original figure—the truncated 

pyramid. 4g 

Liu has only dealt with the particular case when b = 3,a = 1 and h =1. In 
the general case when a,b, and h are arbitrary the dissection of the frustum can 
still be performed: the central block becomes a square-based prism; the other 

blocks are also stretched or squashed. Rearranging the pieces of the dissection is 

now not quite so easy. The ch’ien-tu can still be fitted together. The yang-ma, 

however, cannot. Liu shows elsewhere that the volume of a yang-ma is one-third 

Figure 1.6. 
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of the product of its dimensions. In general, this is not easy to prove but, in the 

special case of the dissection into standard blocks, it is simple to demonstrate 

since three of the yang-ma blocks can be placed together to form a cube as shown 

in Figure 1.7. 

Figure 1.7. Dissection of a cube into three yang-ma pyramids 

A common origin for oriental mathematics 

Even though the early civilisations were separated by vast distances, their math- 

ematics has much that is common. Examples of these similarities appeared in the 

geometry discussed above. The Egyptians, the Babylonians, and the Chinese all 

‘treat similar problems with a similar style of approach. Their mathematics texts 

take the form of problems with solutions. The volumes of elementary solids such 
as beams and cylinders are a common feature; perhaps more surprising is that 

they all treat frustums of pyramids or cones. 

Some of the similarities seem to be more than just coincidences. One Baby- 

lonian tablet has the same contents as the fifth of the Chinese Nine Chapters: 
both texts start with problems on dams, walls and the number of men required 
for constructions, and then treat the volumes of solids. Another link between the 

Babylonians and the Chinese is that both use the formula ‘!/i2 the square of the 
circumference’ to find the area of a circle. 

These similarities are just a few of many that have been catalogued by 

B. L. van der Waerden covering diverse areas of mathematics. These parallels 

led him to conclude that the mathematics of these three cultures, and of India 

as well, is interrelated and derives from a common source. Traditionally, schol- 

ars have taken the view that mathematics originated in the Near East and was 
subsequently developed and transmitted to Europe, India and China. Van der 

Waerden maintains that since, for example, the correct formula for the volume of 
a frustum appears in China and Egypt but not in Babylonia, the common source 

cannot be Babylonian. He favours an earlier period: 

I have ventured a tentative reconstruction of a mathematical science 
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which must have existed in the Neolithic Age, say between 3000 and 
2500BC, and spread from Central Europe to Great Britain, to the 
Near East, to India, and to China.° 

He suggests that the mathematical knowledge which existed at this time was 
transmitted by means of problems with solutions and worked examples, that this 
tradition is preserved in the texts of the early cultures, and that the Chinese have 
kept the most faithful copy of this early mathematics for they have retained the 
geometrical imagery and many details whereas the others have recorded only the 
rules and procedures. However, these conclusions are still the subject of debate. 

Greek mathematics and the discovery of incommensurability 

The characteristic of Greek mathematics which distinguishes it from that of ear- 
lier cultures is the notion of proof. It is uncertain whether early civilisations 

could even formulate propositions in a general context, and there are no traces of 

deductive arguments being used to justify methods in any pre-Hellenic culture. 
In all ancient mathematics there is just a description of a process, often given as 

a sequence of worked examples. The Greeks not only stated general propositions 

but furnished them with rational arguments to demonstrate their validity. 

Why did they find it necessary to provide statements with proofs? One pos- 
sibility is that it started as a way of judging between the various results they 
collected abroad. The Greeks themselves wrote that the orient was a major 
source of material for their mathematics and other sciences. There are tales that 

many of the influential Greek mathematicians travelled widely: Thales, Pythago- 
ras, Democritus, and Eudoxus are all reputed to have visited Babylon, Egypt, 

and possibly as far afield as India. Comparing the methods used by different 
cultures dealing with similar problems would have shown up discrepancies and 

inconsistencies. Which of the formulae for the volume of a truncated pyramid is 

correct: the Egyptian or the Babylonian? There was also the need to distinguish 

between formulae that gave exact results and those giving approximations. Given 

two approximations it would also be helpful to determine the relative accuracy 

of the different techniques. 

The knowledge gained through travels in foreign lands would have consisted 
solely of the procedures to be followed in particular circumstances. Any argu- 

ments that had been used in the past to derive the formulae or establish their 

correctness would have been long forgotten. 

The earliest proofs probably consisted in drawing diagrams which exhibited 

the desired result and reasoning from them. The Greek term for ‘to prove’ can 

be translated as ‘to show’, ‘to point out’ or ‘to explain’. Thus, one pointed out 

reasons for believing a statement to be true. Initially, the arguments would have 

made a large use of visual evidence either in dissection arguments where a figure 
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was subdivided to illustrate interrelationships, or by the use of superposition to 

show the equality of different parts. The word ‘theorem’ is derived from the Greek 

for ‘to look at’. 

Later proofs were semantic in nature relying on the meanings of words: ‘odd’, 

‘even’ and ‘add’ for example. Although particular cases of propositions involving 

odd or even numbers can be illustrated by arranging pebbles in rows, the argu- 

ments used to justify the general case need to be visualised in the mind. This 

helped to develop the ability to reason about abstract objects. 

Without abstract thought, such counter-intuitive results as the existence of 
incommensurable line segments could not have been discovered. Common sense 
tells us that any two lines we draw will be integral multiples of some common 

unit segment. But quite early on in Greek history, certainly by the end of the 
fifth century BC, people had found that some pairs of lines have no common 
measure—a discovery which pushed mathematics further away from empiricism 

and towards abstraction. 

The Pythagoreans had a doctrine that ‘number is the essence of all things’, 
by which they meant that everything could be explained using ratios of whole 
numbers. This belief was strengthened by (or perhaps derived from) the dis- 
covery that consonant musical intervals fit into such a pattern. The problem of 

incommensurability becomes apparent when this theory is applied to geometry, 

for the lines in some basic figures do not conform to such a rule. The ratio of 
the lengths of the side and diagonal of a square (or, equivalently, the sides of a 
right-angled isosceles triangle) cannot be expressed using integers. 

A very early proof, if not the original demonstration, of the incommensura- 
bility of the side and diagonal of a square has been preserved in an appendix to 

the tenth book of Euclid’s Elements. It uses an arithmetic argument based on 
the properties of odd and even numbers. It shows that if the two lengths were 
commensurable then a number would exist which is both odd and even—an im- 
possibility. This indirect method of proof requires strict logical reasoning and it 
is only when the contradiction is reached that the hypothesis is established. This 

has led some scholars to suggest that the initial discovery of incommensurability 
was made in a different context. Kurt von Fritz writes 

It is difficult to believe that the early Greek mathematicians should 
have discovered the incommensurability of the diameter of a square 
with its side by a process of reasoning which was obviously so labo- 
rious for them if they had no previous suspicion that any such thing 
as incommensurability existed at all. If, on the other hand, they had 
already discovered the fact in a simpler way, it is perfectly in keep- 
ing with what we know of their methods to assume that they at once 
made every effort to find out whether there were other cases of incom- 
mensurability. The isosceles right-angled triangle in that case was the 
natural first object of their further investigations.! 
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The problem is that the proof is an ‘all or nothing’ affair. There is no intuitive 
basis to guide the reasoning, no picture to suggest the result is true. 

In general, the way a mathematical result is discovered and the form in which 
it is presented are not the same. A formal proof is constructed ‘after the event’. 
Prior to this, the result must have been understood on an intuitive level. There 

is nearly always a picture of what is going on. It may have suggested the result, 
and then guided attempts to find a proof. Unfortunately, in the final proof, this 
initial insight is often lost, smothered in a mass of detail. The question is: What 

image aroused the suspicion that some line segments may not have a common 
measure? 

The side and diagonal of a square are used as the archetypal example of in- 
commensurable lines throughout Greek writings to such an extent that they were 
probably also the first example. However, von Fritz and others have proposed 

that the initial discovery could have involved the golden ratio. Line segments in 
this ratio can be proved incommensurable by geometric arguments. Furthermore, 
the geometry of the regular pentagon leads to the kind of suggestive image we 
seek. A pentagram is the star-shaped figure formed by the set of diagonals of a 
regular pentagon. In the middle of a pentagram, the lines bound another pen- 
tagon. The possibility of repeatedly inscribing pentagrams inside one another is 

the key element in the proof of the following theorem. 

Theorem. The side and diagonal of a pentagon are incommensurable. 

PROOF: Let s; and d,; denote the side and diagonal respectively of the pentagon 
ABCDE (see Figure 1.8). By using elementary geometry, in particular the prop- 
erties of isosceles triangles, it is easy to show that AB = AL and LC = LN. 

Let sp and dy denote the side and diagonal of the inner pentagon JA LMN. 

Then, since 
AG =2VAT-- LC =" AB SL, 

we have 
dy = Chee dy. 

Rearranging, we get that 
dy oil = do. 

Hence, if d, and s; have a common measure then this unit will also measure do. 

We also have that AK = LC = LN and AL = AB. So 

AL = AK+KL 

> AB = IN+KL 

cs 8, = dot 8» 

i o8i = dot 85: 
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aS 
Figure 1.8. 

Since we know that a common measure for s; and d; would also measure do, this 

last equality shows that it would measure s2 as well. Therefore, sy and dz can be 

measured with the same unit as s; and dj. 

This process can be repeated to produce a ceaseless stream of smaller and 

smaller pentagons. A line segment which is a common measure for the side 
and diagonal of the initial pentagon ABCDE would also measure the sides and 
diagonals of all the smaller pentagons. Since these can be made as small as 
desired, this is clearly impossible. Hence such a measuring segment cannot exist 

and s, and d,; are incommensurable.! = 

Tradition assigns the discovery of incommensurability to the Pythagorean, 

Hippasus of Metapontum (early fifth century Bc). The Pythagoreans were famil- 
iar with regular polygons such as the pentagon, and also with the pentagram, or 

star pentagon, which they used as a badge of recognition. 

An argument such as that used to prove the preceding theorem could have 
been understood by the Pythagoreans. It uses only the basic propositions of 

geometry: such fundamental results as the angle sum of a triangle and the prop- 

erties of isosceles triangles. These results would have been known in Hippasus’ 
time even if the arguments used to justify them were primitive and not up to 
the standards demanded by later mathematicians. All that was necessary was to 
present an argument which would convince its intended audience. 

That Hippasus managed to demonstrate the existence of incommensurables 
to his contemporaries is supported by the legend that he perished at sea. Some 

versions say that he was punished by the gods for having done violence to the 

‘A similar argument for showing that the side and diagonal of a square are incommensurable 
is given in T. L. Heath, The Thirteen Books of Euclid’s Elements, Cambridge, Univ. Press 1908, 
volume 3, pp19-—20. 
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Pythagorean dream with the introduction of ‘inexpressible’ ratios, others that 
he attempted to take glory in his discovery when traditionally all results were 
ascribed to Pythagoras himself, or that he betrayed the secret knowledge outside 
the brotherhood. 

The discovery of incommensurability must have been a huge shock to the 
Pythagoreans for it demolished their belief that everything could be expressed in 
integer ratios. It is remarkable that this one result sufficed to end Pythagorean 
numerology, especially when it is realised that incommensurability only makes 
sense aS a part of pure geometry, as an abstract notion in the realm of ideas. 
Incommensurability can only be justified by theoretical constructions, never by 
empirical methods or visual evidence. In a practical sense, the process of con- 
structing ever smaller pentagons must terminate because, at some stage, it be- 

comes physically impossible to construct any more. When this happens, the side 
and diagonal of the pentagon can be considered equal for any practical purpose. 
However, when considered in a mathematical context, the construction is ideal, 

and it is theoretically possible to continue the process indefinitely, constructing 
a never-ending sequence of ever-smaller pentagons. 

This confrontation between practical experience and mathematical idealism 

pushed mathematics further towards the abstract. The visual evidence contained 

in diagrams could no longer be relied upon; empirical methods were rejected as 
people sought a more intellectual approach. 

The nature of space 

The discovery that some geometrical figures contain lines which are incommen- 
surable focused attention on the properties of space. In particular, the problem 

of whether space can be continually subdivided or whether it ultimately becomes 
indivisible occupied the philosophers. 

The notion that a line is composed of points underlies our understanding of 
the terms ‘line’ and ‘point’. Their meanings are derived from the experience of 

drawing diagrams. The dot which we make to represent a point has a certain 
size. But is the mathematical idealisation abstracted from it extended in space? 
Early Greek philosophers seem to have regarded it so. This imparts a granular 

structure to space. If space is quantised into discrete units then a line contains 
only finitely many points. Assuming such points to be uniform in size, all lines 

would be commensurable, and the calculation of area or volume would be reduced 

to counting the number of atomic constituents. 

The hypothesis that space is composed of extended indivisible units is called 

the discrete theory. The alternative, called the continuous theory, 1s to assume 

that space can be subdivided indefinitely. A consequence of this is that any line 

segment, no matter how small, contains infinitely many points. 
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Early Chinese philosophers seem to have recognised the two alternative the- 

ories. The following passage from the Mo Ching, a text believed to date from 

c.330BC, attempts to define a point in the discrete theory of space: 

If you cut a length continually in half, you go on forward until you 

reach the position that the middle [of the fragment] is not big enough 

to be separated any more into halves; and then it is a point. --- Or, if 

you keep on cutting into half, you will come to a stage in which there 
is an ‘almost nothing’, and since nothing cannot be halved, this can 

no more be cut.9 

Another writer describes the continuous theory: 

A one foot-long stick, though half of it is taken away each day, cannot 
be exhausted in ten thousand generations." 

The famous paradoxes of the Greek, Zeno of Elea (c.490—c.425BC) concern 
the problem of the divisibility of space and time. It is difficult to identify the 
original thrust of the thought experiments Zeno described since they only survive 

in abbreviated accounts by later writers. He seems to parody both the discrete 
and continuous theories and deduces that the concept of motion is inconceivable. 

In the ‘paradox of the runner’ Zeno argues against the continuous theory of 

space. In order to run from A to B, the runner must first reach the point halfway 
between. He must then reach the midpoint of the remaining distance, and so on 
passing a never-ending sequence of midpoints. Thus, to complete the course, the 
runner has to cover infinitely many distinct distances. Zeno felt that if something 
involved infinity then he had reached a contradiction. 

In the ‘paradox of the arrow’ he argues against the discrete theory of space and 
time. Under this hypothesis, motion would consist of a succession of small jerks. 
At each instant of time, the arrow is in a particular place. What distinguishes a 

moving arrow from a stationary one? How does the arrow ‘know’ whether or not 
to jerk forward at the next instant? 

When a thought experiment reaches a puzzling or nonsensical conclusion it 
often pays to examine the underlying assumptions on which it is based. If the 

reasoning is correct then what appears at first sight to be paradoxical may be 

resolved if the hypotheses are modified or replaced. The new hypotheses may 
seem strange; we may need to abandon a cherished belief; the conclusion may be 
surprising. Yet, if such changes make the argument consistent, it is an indication 
that our intuitive understanding may be at fault. 

The Greeks found the concept of infinity disturbing. They tried to separate 
notions involving the infinite into ‘potentially infinite’ and ‘actually infinite’. An 
example of the distinction is as follows: A line segment is bounded and of finite 
length. It can be extended by any finite amount an unlimited number of times. 
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The line can be made as long as required but, at every stage, the line always has 
a definite length. This is a potential infinity. To consider the ‘whole line’ would 
be using an actual or completed infinity. 

In his runner paradox, Zeno expressed a finite line segment as a sum of 
infinitely many shorter segments—as a completed infinity. Although this may be 
disquieting, it is a consequence of the continuous theory of space. If we assume 
that any line segment, no matter how small, can be divided to produce two shorter 
segments then we are forced to accept that a line segment contains infinitely many 
points arranged in a continuum. 

The alternative hypothesis (the discrete theory) leads to an even more puz- 

zling situation. Zeno’s arrow paradox leads to the conclusion that rest and motion 
are indistinguishable. We cannot tell whether a body is in motion or not until 
the next instant arrives and we can see whether it is occupying the same position. 

In the realm of mathematics and ideal constructions the continuous theory 
is used. The peculiar nature of this mathematical myth is neatly summed up by 
Aristotle: 

The continuum is that which is divisible into indivisibles that are 

infinitely divisible." 

Democritus’ dilemma 

The problem of repeated subdivision arose not only in plane geometry with the 
construction of ever-smaller pentagons and line segments. It also appeared in 

solid geometry in the calculation of volumes. 

Democritus of Abdera (late fifth century BC) took an interest in both science 
and mathematics. Although none of his works survives, he is known to have 
discussed the atomic theory of matter and contributed to the debate on the 

divisibility of space. He is said to have regarded a sphere as being really a 
polyhedron with imperceptibly small faces. This idea is probably connected with 
the atomic theory of matter rather than space. A material sphere composed of 
indivisible atoms would presumably have this property; a mathematical sphere is 

an ideal object with a perfectly smooth curved surface. ‘The distinction between 

mathematical objects and their imperfect material counterparts was discussed by 

Plato (427-347BC) but was certainly known earlier. According to Archimedes, 

it was Democritus who first understood the problem of finding the volume of a 

pyramid though his arguments did not constitute a rigorous proof. 

The Greeks had no word for volume and so they used the name of the object 

itself to denote its quantity. Thus in Greek mathematics, the pyramid formula 

is expressed as: ‘A pyramid is one third of the prism having the same base-area 

and height’. 
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Suppose, for the moment, that the volume of a pyramid is proportional to 

its base-area and height. (In the light of other volume formulae, this is not 

unreasonable.) If we let V, A and h denote the volume, base-area, and height 

of a pyramid then we have assumed that V = k Ah, where k is.the constant of 

proportionality. Now, Ah is the volume of a prism whose base-area is A and 

whose height is h. There is a straightforward argument which shows that kali 

Theorem. The volume of a pyramid is one-third the volume of a prism having 

the same base and equal height. 

PROoF: Since any polygon can be split up into triangles, it is sufficient to prove 
the theorem for triangular-based pyramids as any other pyramid can be split up 

into these. 

The triangular prism ABC PQR can be dissected into three pyramidal pieces 

as shown in Figure 1.9. If we can show that all three pieces have the same volume 
then it follows that each pyramid has one-third the volume of the prism. 

R E P 

B 

Figure 1.9. Dissection of a prism into three pyramids. 

We are assuming that the volume of a pyramid is proportional to the product 
of its base-area and height. Thus pyramids whose bases and heights are equal 
will have equal volumes. 

First we show that the pyramids ABC'R and PQRB have the same volume. 

Regard the former as having base ABC and apex R, and the latter as having base 
PQR and apex B. Then, since the bases are opposite faces of the prism, they 

have equal area. The heights are equal since they are the height of the prism. As 
the bases and heights are equal, the volumes must also be equal. 

To show that the third pyramid has the same volume as the others, we regard 
the pyramid BPQR as having base BPQ and apex R, and the third pyramid as 
having base APB and apex R. Since the bases are each half the rectangle ABQ P 
they have equal area. And since the bases are coplanar and R is the apex of both 
pyramids, their heights are equal. Hence, they have equal volumes. 

Thus the three pyramids have equal volumes. wm 
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It remains to show that the assumption on which this theorem rests is valid: 
that the volume of a pyramid is proportional to its base-area and height. This 
is not easy to justify rigorously. There is, however, an intuitive argument that 
makes the result seem plausible. If we imagine two pyramids having the same 
base and equal height, each being divided up into thin laminae, then, since the 
sections at equal heights will be congruent (why?), they will have the same volume 
(Figure 1.10). Therefore, the wholes are identical sums of equal volumes, and are 
therefore equal. 

Figure 1.10. Layers at equal heights are congruent. Sliding the layers over 
one another suggests that the pyramids have equal volume. 

However, in order for such a procedure to be ‘accurate’ the sections must 

be ‘infinitesimally thin’ and consequently the pyramid is composed of infinitely 

many such layers. Again we run into the problem of the continuity of space. 
What is the ‘volume’ of each elemental section which has no thickness? 

Although this thought experiment does not furnish a rigorous proof, it does 
give an indication of what might be proved. ‘This is important, for it is easier to 

supply a proof when, from previous experience or reflection, a particular result is 
expected to be true. Archimedes writes 

It is easier to supply the proof when we have previously acquired -- - 
some knowledge of the questions than it is to find it without any previ- 
ous knowledge. That is the reason why, in the case of the theorems the 
proots of which Eudoxus was first to discover, namely on the cone and 
the pyramid, that the cone is one-third of the cylinder and the pyra- 
mid one-third of the prism having the same base and equal height, no 

small share of the credit should be given to Democritus, who was the 
first to state the fact about the said figure|s|, though without proof.’ 

And, as we shall see later, in order to apply Eudoxus’ method of proof, it is 

necessary to know a priori what answer is expected. 

That Democritus argued along lines similar to those outlined above is sug- 

gested in a passage in Plutarch’s De Communibus Notitiis Adversus Stoicos (in 
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which he argued against the common notions used by the Stoic philosophers). He 

records that Democritus raised the following question: 

If a cone were cut by a plane parallel to the base, what must we think 

of the surfaces of the sections, that they are equal or unequal? For if 

they are unequal, they will make the cone irregular, as having many 

indentations, like steps, and unevennesses; but, if they are equal the 

sections will be equal, and the cone will appear to have the property 

of the cylinder and to be made up of equal, not unequal circles, which 

is very absurd." 

The idea that a solid is a sum of infinitely many plane sections, all parallel and of 

negligible thickness, clearly underlies Democritus’ argument. His dilemma again 

centres on the difference between atomism and continuity. Some say that in 

this passage Democritus is not posing a genuine dilemma but is arguing for the 
atomic theory of matter: a cone is obviously not a cylinder and therefore it must 
have ‘steps’. However, his statement applies equally well to ideal mathematical 

cones and imperfect physical ones. This single fragment does not tell us the 
nature of Democritus’ discussions or his conclusions, only that he was aware of 
the conceptual difficulties involved in one of the major problems occupying the 

philosophers of his time. 

Liu Hui on the volume of a pyramid 

Earlier we saw how Liu Hui derived the formula for the volume of a truncated 
pyramid by dissecting it into a central square-based prism, four ch’ien-tu and four 
yang-ma. The formulae for the prism and the ch’ien-tu are straightforward to 
demonstrate. Justifying the formula for the yang-ma proves to be more difficult. 
The procedure described in the Nine Chapters is to multiply the breadth and 
length together, multiply by the height, then divide by three. Liu’s commentary 
on the problem gives an ingenious method for proving this formula is correct. It 
involves the use of repeated dissection which gives rise to a never-ending process. 
Not surprisingly, Liu has some problems trying to express what ultimately hap- 
pens as the pieces become unimaginably minute. That he presents any proof at 
all shows him to be one of the greatest masters of empirical geometry. 

The first part of the demonstration consists of fitting together a yang-ma with 
a pieh-nao as shown in Figure 1.11 to form a wedge (or ch’ien-tu) whose volume 
is known to be !/,abh. If Y denotes the volume of the yang-ma, and P denotes 
the volume of the pieh-nao then 

Y + P = thabh. 
He wants to show that Y = 1/sabh. This would imply that P = 1/,abh or that 
Y = 2P. It is this last equality that Liu attempts to demonstrate. 
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Figure 1.11. Dissection of a ch’ien-tu into a yang-ma and a pieh-nao. 

He proceeds by subdividing the yang-ma and the pieh-nao into smaller com- 
ponents. He writes 

To make a pieh-nao with breadth, length, and height each 2 ch’ih,? 
use two ch’ien-tu and two pieh-nao blocks, all of them red. 

To make a yang-ma with breadth, length, and height each 2 ch’ih, use 

one cubical block, two ch’ien-tu blocks, and two yang-ma blocks, all 

of them black. 

Joining together the red and black blocks to make a ch’ien-tu, the 
breadth, length and height are each 2 ch’ih.' 

These dissections are illustrated in Figure 1.12. 

Figure 1.12. Subdivisions of the yang-ma and pieh-nao into smaller ch’ih. 

To show that Y = 2P we need to show that the volume of the black pieces is 
twice the volume of the red pieces. Liu rearranges the blocks so that the volumes 
of the red and black pieces can be compared. 

The two red ch’ien-tu can be placed together to form a cube. Likewise, the 

two black ch’ien-tu form a cube. The remaining pieces comprise the black cube, 

two black yang-ma and two red pieh-nao. The four latter blocks can be fitted 

together to form a pair of ch’ien-tu coloured in the same way as the original 

2Qne ch’ih is about 21cm. 
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wedge. These two black-and-red wedges can be placed together to form a cube 

having the same volume as the three others. 

We have constructed four cubes: two black, one red, and one mixed. Thus 

three-quarters of the volume of the original ch’ien-tu is of known to be in the 

proportion black:red = 2:1. The remaining quarter of the volume comprises 

two black yang-ma and two red pieh-nao blocks. These fit together to produce 

two scaled down versions of the original black-and-red ch’ien-tu. The dissection 

process can be repeated on each of these wedges. This shows that three-quarters 

of the undetermined volume is in the ratio black: red = 2:1. Theos Be know 

that 3 + ; x 3 of the volume is in the desired ratio; only ; x 7 = 7, 18 lett 

undetermined. 

By repeating this process indefinitely, continually subdividing the yang-ma 

and pieh-nao blocks, the unknown amount decreases, becoming arbitrarily small 

and tending to zero. Liu expresses this idea like this: 

To exhaust the calculation, halve the remaining breadth, length, and 

height; an additional three-quarters can thus be determined. 
The smaller they are halved, the finer are the remaining |parts|]. The 
extreme of fineness is called “subtle” [or intangible]; that which is 
subtle is without form. When it is explained in this way, why concern 

oneself with the remainder?” 

In another problem where Liu is approximating a curved figure by a polygonal 

one to determine its area, he makes a similar remark: 

Although there is something left over it is not worth mentioning.” 

In the commentary to his translation of the derivation of the volume formula 
for the yang-ma, Donald Wagner explores the philosophy behind these ideas. The 

endless process of repeated subdivision is interpreted as follows. The more the 
pieces are subdivided, the smaller they become. Ultimately, they become intan- 
gible and formless. This limit does not comprise a collection of dimensionless, 
infinitely small yang-ma and pieh-nao but rather a collection of formless objects 
which are unimaginable and beyond description. It is meaningless to speak of 
their dimensions. As they cannot be examined, why bother with them? 

These concepts are deeply rooted in Chinese philosophy. Wagner uses an 
extract from Chapter 14 of Lao Tsu’s Tao Te Ching to illustrate the use of the 
ideas in another context:? 

Look, it cannot be seen—it is beyond form. 
Listen, it cannot be heard—it is beyond sound. 

*T have chosen to use a different translation since I find this version more poetic than the 
one used by Wagner. 
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Grasp, it cannot be held—it is intangible. 

These three are indefinable; therefore they are joined in one. 

From above it is not bright; 
From below it is not dark: 
An unbroken thread beyond description. 
It returns to nothingness. 
The form of the formless 
The image of the imageless 
It is called indefinable and beyond imagination? 

Eudoxus’ method of exhaustion 

The problem of how to treat the convergence of infinite processes rigorously was 

solved by Eudoxus of Cnidus (c.408-355Bc). He was a contemporary of Plato 
and contributed to the development of many fields including geometry, medicine 
and astronomy. His method bears the name of ‘exhaustion’ but that is something 

of a misnomer. For although he uses the fact that, by repeated subdivision, the 
difference between an actual volume and a computable approximation to it can 
be made arbitrarily small, he does not need to pursue the calculation to its limit 
and ‘exhaust’ the volume. Rather, to prove that a solid has volume V, he shows 

that any value for the volume other than V can be proved incorrect in finitely 
many steps. 

This technique was seen as an outstanding achievement. The attribution of 

the discovery of the method of exhaustion to Eudoxus was made by Archimedes 
who used it as a standard with which to compare his own work. He regarded his 

own work On the Sphere and Cylinder as his most beautiful mathematical result, 
so much so that he requested to have a figure illustrating the result carved on 
his tombstone. He wrote in the preface to this work that he had no hesitation in 

setting his results alongside those 

theorems of Eudoxus on solids which are held to be most irrefragably 
established, namely that any pyramid is one third part of the prism 

which has the same base with the pyramid and equal height, and that 

any cone is one third part of the cylinder which has the same base 

with the cone and equal height.” 

In order to illustrate Eudoxus’ method we need a dissection of a pyramid into 

parts of known volume and a remainder which can be further subdivided. It is 

sufficient to consider only pyramids on a triangular base for other pyramids can 

be produced as combinations of these. Figure 1.13 illustrates how a triangular- 

based pyramid can be dissected into two smaller pyramids, equal to each other 

and similar to the original one, and two prisms. The vertices of the component 
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pieces bisect the edges of the large pyramid. The volumes of the two prisms 

are equal, and together they occupy more than half the volume of the pyramid. 

Furthermore, it is possible to show that the volumes of these prisms depend only 

on the base-area and the height of the pyramid: if two pyramids have bases of 

equal area and are of the same height, and if each of them is dissected in this 

manner, then the resulting prisms all have the same volume. 

Figure 1.13. Dissection of a pyramid into two similar pyramids and two 

prisms. 

As the two smaller pyramids are just scaled down versions of the original 
one, each of them can be subdivided to produce four more prisms and four more 

pyramids. This process can be continued indefinitely. 

We are now set up to use the ‘method of exhaustion’ to show that the vol- 

umes of two pyramids, equal in height, are in the same ratio as the areas of their 
bases. Hence, when the base-areas are equal, the two pyramids occupy equal 

volumes. As in the previous theorem demonstrating the existence of incommen- 
surable magnitudes, the indirect method of proof is used. The proof also relies 

on the following ‘axiom of continuity’:* 

Given two unequal quantities, U and V, where U is less than V if we 
remove at least half of V, then remove at least half of the remainder, 

and so on repeating the process continually, eventually we will reach 
a quantity less than U. 

In particular, suppose that a pyramid has volume V, and that W is an approxi- 
mation to V which underestimates the volume. Then we can choose U = V —W. 
In the dissection shown in Figure 1.13, the two prisms occupy more than half the 
volume. The axiom states that by repeatedly dissecting the resulting pyramids 
and removing the prisms, we shall eventually arrive at a collection of pyramids 
whose total volume is less than U-—the error in the approximation. 

. * Although this form of the axiom is most convenient for use here, it is worth noting that 
simpler but equivalent statements have been proposed as substitutes. One such is due to 
Archimedes: 
Given two unequal quantities, the larger exceeds the smaller by an amount which if repeatedly 
added to itself will exceed any prescribed quantity. 
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Theorem. ‘Two triangular-based pyramids of equal height have their volumes 
in the same ratio as the areas of their bases. 

PROOF: Let P, and P, be two triangular-based pyramids of equal height whose 
bases have areas B; and Bp, respectively. Let V; and Vj denote their respective 
volumes. Then we need to show that the ratios B,: By and Vj: V2 are equal. 

Suppose that this is not the case. Then there is some volume W such that 

B, 5 By — Vi :W. 

Since W is not equal to Vo, it is either less than or greater than V%. 

Suppose that W is less than Vo. 

The pyramid P», can be dissected into two prisms and two pyramids, the 
latter of which can be further subdivided. The process can be repeated until the 

volume of the remaining pyramids is less than V2 — W (applying the axiom of 
continuity). Then 

V, > (volume of prisms in P,) > W. 

Partition the pyramid P, in the same way repeating the subdivision process 

the same number of times. Now, since the volume of the prisms in such a dis- 

section depends only on the height of the pyramid and the area of its base, and 

since P, and Py, have equal height, 

(volume of prisms in P,) : (volume of prisms in P,) = By: By. 

By hypothesis 
Bree By = Vay 

so, consequently, 

(volume of prisms in P,): V; = (volume of prisms in P,) : W. 

But this leads to a contradiction since 

(volume of prisms in P;) < V, 

which implies 
(volume of prisms in P,) < W, 

and, we know by construction that 

(volume of prisms in P,) > W. 

Therefore, the supposition that W < V2 must be false. 

A similar contradiction can be derived if we assume that W > V2. Since W 

can be neither less than nor greater than V2, the two quantities must be equal. 

Hence 
B, : Bo = Vi : Vo. a 
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As a simple corollary to this theorem, we see that two triangular-based pyra- 

mids of equal height and equal base-areas have equal volumes. We saw earlier 

that from this key proposition, it is straightforward to show that a pyramid has 

one third the volume of a prism on the same base and equal height. 

Eudoxus’ method was an outstanding achievement. However, although the 

method is remarkably ingenious, and neatly avoids the problem of never-ending 

calculations, it suffers one major drawback: before the method can be used it 

is necessary to know the target formula. A proof using the method of exhaus- 

tion proceeds by eliminating all possibilities except the desired result, deriving 

a contradiction in a finite number of steps. Such a proof is non-constructive—it 

does not produce an answer. The answer has to be known in advance. Eudoxus’ 

method is useless as a way of discovering new results. It can only be used to pro- 

vide rigorous justification for results already suggested by other evidence. How 

is such prior knowledge obtained? 

Thought experiments of the kind we used earlier are one source of data. Re- 
garding a pyramid as a stack of thin laminae suggested that its volume depended 
only on its height and base measurements—not on its shape. We can imagine 

the pyramid as a stack of infinitely many planar sections so that we are no longer 

using an approximation but the actual volume. 

Arguments such as this may not rest on such a logically firm foundation 
as Eudoxus’ method does, but they do have the big advantage of providing an 
answer. Furthermore, they provide an intuitive picture of why the theorem is 
true, an element missing in the rigorous proof. 

Archimedes used the method of exhaustion to prove many theorems concern- 
ing the areas of curved regions and the volumes of solids. And although no-one 
could doubt the truth of his results, it was impossible to tell how he had discov- 
ered them. He later divulged his secret source in a letter to Eratosthenes. In it 
he described the kind of limiting process we used on the pyramid. We see again 
that, in mathematics, discovery and proof are frequently two different activities: 
‘Democritus has found the theorem, but only Eudoxus has proved it’. 

Hilbert’s third problem 

All the arguments seen so far which attempt to justify the validity of the formula 
for the volume of a pyramid have one thing in common: they all make use of 
infinitesimally small quantities and ability to go to a limiting case. Recall Dem- 
ocritus’ paradox of the cone: is it a cylinder or a ‘devil’s staircase’ whose steps 
are extremely thin? Liu Hui regarded the end of his dissection process as some- 
thing formless, dimensionless, unimaginable and unexaminable. Consequently he 
asks ‘Why concern oneself with it?’. Eudoxus’ method of exhaustion requires 



HILBERT’S THIRD PROBLEM 45 

the existence of a procedure by which pieces of arbitrarily small volume can be 
constructed. Does every proof justifying the volume formula necessarily involve 
such complicated concepts, or is there a subtle argument which avoids the use of 
limits and infinite processes? 

In the geometry of plane figures such processes are not needed. If two poly- 
gons have the same area then they are congruent by dissection or equidecompos- 
able. This means that they can be dissected into the same set of pieces: they are 
both solutions of a common jigsaw. Figure 1.14 shows dissections of some regular 
polygons which can be reassembled to form a square. In fact, to show that every 
pair of polygons are equidecomposable, it suffices to show that any polygon is 
equidecomposable with a square since polygons that are equidecomposable to the 
same thing are equidecomposable with each other. 

AO Os 
AM A & 
This theorem, that any two polygons of equal area are congruent by dissec- 

tion, was proved by several people working independently of one another: William 
Wallace discovered the essential ideas in 1807, and Farkas Bolyai (father of Janos 

Bolyai who did early work on non-Euclidean geometry) and P. Gerwien produced 

their proofs in the early 1830’s. The dissections shown in Figure 1.14 are interest- 

ing in that they use small numbers of pieces. To find a jigsaw with the minimum 

number of pieces requires great ingenuity. However, to prove that any polygon 

can be dissected and the pieces rearranged to form a square requires a general 

strategy that can be applied in all situations. Such a process will not produce 

imaginative, minimal jigsaws. A description of one method for constructing a 

dissection is outlined in Figure 1.15. 

A S 
Figure 1.14. 

Since any polygon can be converted into a square of equal area, and the area 

of a square is easily calculated, a theory of area measurement can be developed 

without recourse to a limiting process. Is the same true for a theory of volume? 
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Are any two polyhedra with the same volume equidecomposable? Can a pyramid 

be dissected and reassembled to form a cube? Is it just that mathematicians 

have not been lucky enough to find, or crafty enough to devise, a method for 

dissecting two given polyhedra into sets of equal pieces, or is such a task not 

always possible? 

First, separate 
the polygon 
into triangles. 

Each of the triangles 
can be dissected into 
a rectangle. 

The rectangle can 
be dissected into 
another rectangle, one 
of whose sides is that 
of the desired square. 

The rectangles produced from 
all the triangles are then stacked 
together to form a square. 

\ 
feeinia oN 

Figure 1.15. How to dissect a polygon into a square of equal area. 
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At the beginning of the twentieth century, David Hilbert (1862-1943) com- 
piled a list of 23 problems which he considered to be the major unsolved problems 
of the time and which most deserved to be worked on in the dawning century. 
He presented them in a famous report to the second International Congress of 
Mathematicians held in Paris in 1900. In his third problem he called attention 
to the fact that some kind of limiting process seemed to be necessary to establish 
a theory of volume for polyhedra. The essence of the problem was to justify the 
use of limits and show that without them a theory of volume is not possible. The 
problem reads: 

In two letters to Gerling, Gauss expresses his regret that certain the- 
orems of solid geometry depend upon the method of exhaustion, i.e., 
in modern phraseology, upon the axiom of continuity (or upon the 
axiom of Archimedes). Gauss mentions in particular the theorem of 
Euclid, that triangular pyramids of equal altitudes are to each other as 

their bases. Now the analogous problem in the plane has been solved. 
Gerling also succeeded in proving the equality of volume of symmetri- 

cal polyhedra by dividing them into congruent parts. Nevertheless, it 

seems to me probable that a general proof of this kind for the theorem 
of Euclid just mentioned is impossible, and it should be our task to 
give a rigorous proof of its impossibility.4 

Hilbert goes on to say that such a proof would be obtained as soon as a counter- 
example were found—when two polyhedra were discovered which could not be 

dissected into congruent pieces and the impossibility of such a dissection demon- 

strated. 

Some polyhedra are equidecomposable. Any prisms of the same height whose 
bases have equal areas are equidecomposable (by the polygon result). In 1844, 
C. L. Gerling had shown that two mirror-image polyhedra are equidecomposable 
by dissecting them into congruent sets of acheiral pieces. (This is what Hilbert 
is referring to when he speaks of dividing symmetrical polyhedra into congruent 
parts.) Other examples of individual cases of pairs of equidecomposable polyhedra 
were known in 1900. In 1896 M. J. M. Hill gave examples of tetrahedra that are 

equidecomposable with a cube. One of these has the form of the ‘pieh-nao’ 

Chinese block. Figure 1.16 illustrates the transition from a pieh-nao to a prism 

with the same base and a third of the initial height. However, Hilbert felt that 

these were special cases, the exception rather than the rule. 

This conjecture was soon confirmed. Even before Hilbert’s problems had 

appeared in print, Max Dehn (1878-1952) announced that he had solved the 

problem and exhibited two polyhedra of equal volume which are not congruent 

by dissection. Following the discovery of an 1896 paper by the French engineer 

Raoul Bricard, the Russian mathematician V. F. Kagan produced a simplified 

and more systematic exposition of the result. Bricard’s work specifies a condition 
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Lies 
Figure 1.16. The ‘pieh-nao’ tetrahedron is equidecomposable with a prism 

on the same base. 

on the dihedral angles of two polyhedra which must be satisfied if they are equide- 
composable. Unfortunately, his proof of the necessity of this condition rests on 

an erroneous assumption. 

The key to Dehn’s proof is to associate a number (now called the Dehn invari- 

ant) to each polyhedron which is left unchanged by dissection and reassembly of 

the pieces: two polyhedra which are congruent by dissection must have the same 
Dehn invariant. The crux is that not all polyhedra with the same volume have 

the same Dehn invariant. This happens for a regular tetrahedron and a cube, for 

example, showing that these two solids are not equidecomposable. The converse, 

that polyhedra with the same Dehn invariant are congruent by dissection, is also 
true. 

Hilbert’s conjecture was correct. Unlike the case of polygons, there are poly- 

hedra of equal volume that are not equidecomposable. Therefore, to formulate 

a theory of volume we cannot use dissection arguments. To rigorously establish 
the volume formulae for some polyhedral solids it is necessary to use some kind 
of non-elementary method: the infinite is unavoidable. 
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Rules and Regularity 

It should be clear that the man who first intro- 

duced the notion of regular solid made a signif- 

icant contribution to mathematics." 

W. C. Waterhouse 

The oldest surviving discussion of polyhedra in a philosophical rather than a prac- 

tical context occurs in one of Plato’s dialogues: Timaeus. This is Plato’s account 
of the world we live in. After a brief introduction, in which the four characters set 

the scene and discuss the mythical island of Atlantis, Timaeus takes the floor to 
tell ‘the story of the universe till the creation of man’. Through the voice of this 
Pythagorean, Plato discusses the origins and workings of natural phenomena. His 
enquiries range from astronomy and the motions of the heavenly bodies to the 
anatomy and physiology of humans. Polyhedra appear in his detailed discussion 

of the structure of matter. 

The Platonic solids 

The idea that matter is composed of a few elemental substances combined in 

different ways had been proposed by writers of the fifth century BC For some, 

a single element sufficed: water, for example, has many forms—ice, steam, rain, 

snow, dew—and is essential to life. Empedocles maintained that there were four 
elements: water, earth, air and fire. He thought that the many different sub- 
stances were formed by combining these in different proportions, like combining 

a few letters in many ways to produce a large variety of words. (The genetic code 
demonstrates the immense variety that can be expressed with a four-letter alpha- 
bet.) Leucippus and Democritus also proposed atomic theories of matter. Plato 

(427-347BC) considered what makes these elements different from each other. 
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He suggested that they correspond to different kinds of fundamental particle. 

(This idea was revived only in the nineteenth century by John Dalton—one of 

the founders of modern chemistry.) 

Plato explained that fire, earth, air, and water are bodies; bodies are solids; 

solids are bounded by plane surfaces, and these are composed of triangles. He 

chose two fundamental triangles, both right-angled: isosceles and scalene. ‘The 

former is unique but of the unlimited number of scalene right triangles he selected 

‘the most perfect --- that of which a pair compose an equilateral triangle.’ He 

then proceeded to construct the four ‘most perfect figures.’ 

(a) (b) 

Figure 2.1. 

We will begin with the construction of the simplest and smallest figure. 

Its basic unit 1s the triangle whose hypotenuse is twice the length of its 
shorter side. If two of these are put together with the hypotenuse as 
the diameter of the resulting figure, and if the process is repeated three 

times and the diameters and the shorter sides of the three figures are 
made to coincide in the same vertex, the result is a single equilateral 

triangle composed of six basic units |see Figure 2.1(a)]. And if four 
equilateral triangles are put together, three of their plane angles meet 

to form a single solid angle --- and when four such angles have been 
formed the result is the simplest solid figure which divides the surface 
of the sphere circumscribing it into equal and similar parts.” 

Prosaic accounts such as this passage by Plato are common in ancient texts. 
Because works did not contain illustrations, the writers’ descriptions had to be 
sufficiently detailed to enable their audience to construct their own diagrams 
where necessary. The polyhedron described in this passage is shown on the left 
of Figure 2.2. When it rests on one of its faces it is more clearly a pyramid—it 
looks the same whichever face it is resting on. 

If all the vertices of a polyhedron lie on a sphere then the sphere is said to 
circumscribe the polyhedron, and is called its circumsphere. The four vertices of 
Plato's pyramid lie on a sphere.-Gonnecting 
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Figure 2.2. 

Plato’s pyramid lie on a sphere. Connecting these four points by arcs of great 
circles divides the circumsphere into four equal parts as shown on the right of 
Figure 2.2. 

Two of the other polyhedra that Plato describes are also constructed from 
equilateral triangles. One has a total of eight faces arranged so that each of the 
six solid angles is surrounded by four plane angles; in the other, the twenty faces 
form twelve solid angles, each bounded by five plane angles. See Figure 2.3. Plato 

continues: 

After the production of these three figures the first of our basic units is 

dispensed with, and the isosceles triangle is used to produce the fourth 
body. Four such triangles are put together with their right angles 
meeting at a common vertex to form a square |see Figure 2.1(b)]. Six 
squares fitted together complete solid angles each composed by three 

plane right angles. The figure of the resulting body is the cube, having 
six plane square faces. 

There still remained a fifth construction, which the god used for em- 
broidering the constellations on the whole heaven.° 

The last sentence in this passage, which seems to have been inserted as an af- 

terthought, refers to a solid formed from twelve regular pentagons. Its inclusion 
reflects the fact that there are precisely five polyhedra bounded by regular poly- 
gons arranged in a regular manner. ‘They are illustrated in Figure 2.3 and are 
collectively known as the Platonic solids, cosmic figures, or regular polyhedra. 

Task. Many mathematicians have been fascinated by this group of five polyhe- 

dra and have studied their properties. They feature prominently in the following 

chapters, both in the theory and as a source of examples. Even if you make no 

other models, you should make yourself a set of Platonic solids. 

Plato’s two fundamental triangles cannot be put together to form a pentagon 
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Figure 2.3. The five Platonic solids. 

he employs it to hold the constellations of stars. Plutarch, in the fifth of his 
Platonic Questions, asks why Plato discarded the most perfect of figures (the 
sphere) and used a rectilinear figure to represent the celestial orb. He suggests 
that the dodecahedron can play the role of the sphere because, like the balls made 

from twelve pieces of leather, it is flexible and on being inflated it would become 
distended and spherical. He also makes the following numerological observation: 

It has been assembled and constructed out of twelve equiangular and 
equilateral pentagons each of which consists of thirty of the primary 

triangles, and this is why it seems to represent at once the zodiac and 
the year in that the divisions into parts are equal in number.¢ 

Figure 2.4 shows one way to decompose a regular pentagon into 30 scalene tri- 
angles (not Plato’s fundamental units). The twelve pentagons of thirty triangles 
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can signify both the twelve houses of the zodiac each of thirty degrees, and the 
twelve months each of thirty days. 

Figure 2.4. 

After constructing his four fundamental particles, Plato goes on to explain 
how the attributes of each solid correspond to the properties of its associated 

element. The stability of the cube he associates with earth. The pyramid, having 

the fewest parts, is lightest. It also has the sharpest corners and so it is the most 
penetrating. These properties make the pyramid the basic unit of fire. By similar 
arguments, he allocates the other figures to air (octahedron) and water (icosahe- 
dron). The models shown in Figure 2.5 have been covered with tessellations of 
birds and fish to illustrate these relationships. A brilliant representation of the 

association of fire with the tetrahedron is provided by John Robinson’s sculpture 

Prometheus’ Hearth shown in Plate 1 but he says this is serendipitous. 

Plato’s associations of the elements with the regular polyhedra have inspired 
many illustrations. The sixteenth century plate by Wenzeln Jamnitzer shown on 

page 50 contains a description of the octahedron in the centre panel surrounded 

by an assortment of things symbolising air: birds, bats, insects, windmills and 
wind instruments. Johannes Kepler (1571-1630) decorated his sketches (see Fig- 
ure 2.6) of the five solids with symbols appropriate to each element—the cube, 
for example, has pictures of a tree, garden tools and a carrot. Kepler gave his 
own account of the connections between the solids and the elements: 

That the cube stands upright on a square base expresses stability, 

which is characteristic of terrestrial matter, whose weight tends down 
to the lowest point, while, it is commonly believed, the whole globe 

of Earth is at rest at the centre of the World. The octahedron, on 

the other hand, is viewed most appropriately suspended by opposite 

angles, as in a lathe, the square which lies exactly midway between 

these angles dividing the figure into two equal parts, just as a globe 

suspended by its poles is divided by a great circle. This is an image 
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of mobility, as air is the most mobile of the elements, in speed and 

direction. 
The tetrahedron’s small number of faces is seen as signifying the dry- 
ness of fire, since dry things, by definition, keep within their bound- 
aries. The large number of faces of the icosahedron, on the other hand, 

is seen as signifying the wetness of water, since wetness, by definition, 

is held within the boundaries of other things.® 

But he also realised the fragility of the connections: 

Although, I say, this sort of analogy is acceptable, yet framed in this 
manner it has no force of necessity; indeed, it admits of other inter- 

pretations, not only because certain properties are at variance within 

the analogy, but also because --- the number of elements and whether 
the Earth is at rest are matters much more open to dispute than is 

the number of figures./ 

The fact that the number of elements did not match the number of solids 

posed a problem. Plato’s evasion of the difficulty by assigning the spare solid to 

the heavens did not satisfy his followers and the subject was a source of much 

Figure 2.5. Two models decorated to illustrate Plato’s associations 
ments with polyhedra. 

of ele- 
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debate at the Academy, even after Plato’s death. In accounts of the theory 

written by later Platonists a fifth element, ether, is postulated. 

Plato did not seek merely to describe nature; he attempted to explain how 
the four elements combine to produce the variety of matter we observe, and 
how the different substances change and interact. He sought a kind of ‘physical 
chemistry’. By allowing the size of his fundamental triangles to vary he thought 

that the quality of the element would alter—his elements did not constitute ‘being 

a thing’ but rather ‘having a quality’. Thus water was a generic form of liquid, 
earth and air corresponded to solid and gaseous phases of matter. He tried to 

explain how substances were transformed into one another. For instance, if water 

is heated by fire, the sharp corners of the fire particles break down the water 
particles into their constituent triangles and the fragments recombine to produce 
two air particles (steam) and a fire particle. To arrive at this ‘chemical equation’ 

Plato has balanced the number of triangles on both sides: 

<liquid> fe —fas> 4 ire 

20 se: DOGO. See 

Even though this was extremely ingenious, it did not go uncriticised. Plato treats 

his elements both as solid particles and as hollow geometric shells that can be 
broken down. His fundamental particles disintegrate, and his elements transmute. 

Nevertheless, Plato’s belief that mathematics can be used to understand nature 

has had far-reaching consequences. 

Figure 2.6. Kepler’s sketches of the Platonic solids showing their associa- 

tions with the elements. 
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The mathematical paradigm 

Although Plato influenced the development of mathematics, this was not due to 

any significant advances of his own discovery but rather because of his enthusi- 

asm for the subject. He encouraged his pupils to study mathematics to discipline 

their minds, to teach them to reason logically and provide sound arguments, as a 

prelude to the study of philosophy. That Plato could use mathematics in this way 

was part of the fall-out of the discovery of incommensurability by the Pythagore- 

ans. This made a big impact on the development of Greek mathematics. It led 

to a distrust of experience and sense data, and to a greater reliance on argument 

to establish propositions. The degree of justification required to prove results 

changed with time. As the corpus of mathematical knowledge grew, mathemati- 

cians sought to verify things that had once seemed undeniable. Mathematics 

grew roots as well as branches. After two centuries of development, logical argu- 
ment had reached the standard we find fossilised in what is probably the world’s 

best known textbook: the Elements of geometry compiled by Euclid (c.300BC). 

This book was to dominate the teaching of mathematics for two millenia. Un- 
fortunately, its very success means that we cannot trace its evolution—Euclid’s 

Elements overshadowed all the previous texts to such an extent that none has 

survived. 

Euclid’s style of presentation set the paradigm for mathematical arguments 
that has been followed ever since: propositions are established by a series of logical 

deductions from explicitly stated hypotheses. This format is not the momentary 
inspiration of one man but was the product of many years of refinement. During 

its gestation, two fundamentally Greek ideas entered mathematics: the power of 
abstraction, and the rules of deductive logic. 

Abstraction 

Abstraction plays an essential role in mathematics. It is applied instinctively to 

generate the concepts of number and shape. Even a people who only have words 
for a few small numbers have identified that two trees, two people, two hands 
share a common property, namely, ‘two-ness’. Our character ‘2’ symbolises the 
many pairs in the world around us. Similarly, the naming of shapes corresponds 
to the abstraction of some common property—a recognition of the key qualities 
of an object and their relevance to other situations. 

The abstraction and naming of a concept implies a purpose. There is no 
name for the set of polygons with a prime number of sides which contain a right 
angle in at least one corner. Although such characteristics could be abstracted 
to define a class of shapes, it has not been done because there is nothing to be 
gained by doing so, no role in any current theory for such polygons to occupy. 
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Only the need to refer to a collection gives the motivation to name it. 

Abstraction can take the form of idealism. Any physical example of a cube, 
whether it be a natural crystal or of artificial construction, will exhibit imper- 
fections. The mathematical notion of a cube is a purified form devoid of the in- 
evitable defects encountered in the material world. For Plato, the idealised forms 
were the reality: permanent, ageless and incorruptible. The material world con- 
tained only distorted images, approximations to the genuine objects, merely rep- 
resentations of reality, but the mind could perceive the true unpolluted archetypal 
forms. 

For all their preoccupation with the Platonic world, the Greeks did not dis- 
pense with sense data. They still used diagrams to assist with their arguments. 

Plato writes in the Republic: 

Do you not know also that although they further make use of the 

visible forms and reason about them, they are not thinking of these 
but of the ideals which they resemble. --- They are really seeking to 
behold the things themselves which can only be seen with the eye of 
the mind.9 

The diagrams served as reminders of the true figures. Curiously, experiments in 
perceptual psychology have shown that the mind ‘cleans up’ the data it receives. 

Even a roughly drawn figure can help to visualise a problem because the mind 
smooths out the irregularities and tries to simplify the image. “The eye perceives 

but the mind will obligingly overlook.’ 

For a mathematician, abstraction is also an active process: it is the search for 

the crucial aspects of a situation. When you reach the heart of a problem, it be- 

comes clear which data are relevant and which are redundant. The critical points 

can be studied in isolation without distraction. It is far easier to concentrate 

on particular features rather than become submerged in a mass of multifarious 
details. This approach has another benefit: any other object that shares the 

studied features will also share the properties derived from them. Discarding the 

inessential is the essence of mathematics. 

Primitive objects and unproved theorems 

The identification of properties shared by several objects leads to definitions: a 

name is given to the collection of all objects with particular properties in common, 

and to any member of it. For example, a triangle is a plane figure bounded by 

three lines. The definition describes how the term ‘triangle’ is to be interpreted, 

it states what the essential characteristics of a triangle are. But this is only useful 

if we understand the terms used in the description. We need to know something 

of plane figures and lines before the definition makes any sense. An attempt 
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could be made to define lines and planes but this would only defer the problem. 

Eventually, if the process is not to result in an unending chain of definitions, 

and we are to avoid circular definitions (in which an object is defined in terms of 

itself), some primitive concepts must be taken as understood. Natural candidates 

for such primitive undefined terms are ‘point’, ‘line’ and ‘space’. 

In addition to accepting a few undefined terms, it is necessary to admit some 

statements concerning the behaviour and interrelationships of these primitive 

concepts. These are required to form the basis of logical arguments. Just as a 

definition must not be circular or infinite, so a proof must terminate. There must 

be some ‘unproved theorems’ which are admitted as hypotheses, initial statements 

taken on trust before a proof can get off the ground. These postulates, or axioms 
usually state things that appear self-evident and which are accepted without 

much trouble. For example, one such axiom states that we can draw a straight 

line joining any two points. 

Ideally, the numbers of primitive terms and of hypotheses should be as small 
as possible. If one of the primitive terms can be defined in terms of the others, 

it is superfluous. Similarly, any axiom that can be derived from the others is 
redundant. The axioms must also be consistent. This means that it is impossible 

to prove contradictory things: every statement must be true or false—not both. 

There is no objective way to choose primitive concepts and axioms. ‘Those 
used by Euclid were distilled over a long period. At the beginning of book I of 
the Elements he lists his chosen axioms and purports to derive all the results of 

his thirteen books from just ten statements. Not surprisingly, after 2000 years, 

it is possible to criticise Euclid’s presentation: standards of what comprises an 

acceptable hypothesis have changed during this time. At the end of the nineteenth 

century, David Hilbert revised the foundations of Euclidean geometry. He added 

extra axioms and supplied proofs of some of the ‘self-evident’ propositions which 
were not so easily accepted. Some of these had been so obvious to the Greeks that 
the possibility of doubting them, and hence needing to add them as hypotheses, 
would not have occurred to them. That two lines which cross have a point 
in common seems obvious—because we automatically attribute the quality of 
continuity to lines. Hilbert found it necessary to include axioms of continuity to 
ensure this. 

In spite of these faults, Euclid’s great achievement was to set the standard that 
succeeding generations of mathematicians would aspire to attain. Even though 
Euclid himself missed the mark on occasions, the axiomatic method developed 
by the Greeks has become the cornerstone of all mathematics. 
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The problem of existence 

The purpose of a definition is to name an object, image, idea or a collection of 
such things. It tells us what a thing is—what properties distinguish it from other 
things so that we can recognise it. A definition does not, however, assert that 
the defined thing actually exists. It may require that the object has incompatible 
properties, in which case the definition is vacuous and meaningless. An example 
(used by Leibniz) is that of a regular polyhedron with ten faces. Any theorems 
about such a polyhedron are nonsense. 

Apart from the primitive concepts, whose existence is assumed and whose 
properties are described in the axioms, the existence of a defined object must 
be demonstrated. This problem can be approached in two ways: in the direct 
approach the object is constructed mathematically and shown to possess the 
desired characteristics; the indirect approach seeks to show that the assumed non- 
existence of the object contradicts an axiom or a previously established fact. The 
psychological advantage of having a concrete example to experiment on, rather 
than just the knowledge that such an example must exist, strongly favours the 
first method. The Greeks certainly preferred this constructive type of existence 
proof. 

The constructions recorded by Euclid describe how, by drawing lines and 

circles, the positions of the important parts of an object can be established. The 

steps that Euclid allowed himself are restricted by his choice of hypotheses. He 

provided three primitive constructions: 

(1) A [unique] straight line can be drawn from any point to any other 
point. 

(2) A straight line segment can be continuously extended by a finite 
amount to produce another straight line segment. 

(3) A [unique] circle may be drawn centred on any point with any 
radius. 

These statements encapsulate the properties of two standard drawing instru- 

ments: compasses and a straight edge. Because their properties provide the 

fundamental constructs in the Elements, these instruments are sometimes called 

the Fuclidean tools. However, the properties abstracted from these implements 

are idealised. The straight edge would have to be unlimited in length to be able to 

join any two points; the compasses would have to be able to draw a circle of any 

radius, however large. It is also important to notice that neither of the Euclidean 

tools can be used to transfer distance: the straight edge is ungraduated and so is 

not a ruler, the compasses collapse when lifted from the page. 

Even with so few operations available, a surprising amount can be achieved. 

Indeed, all the geometrical propositions in the thirteen books of the Elements are 
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derived using only the ability to construct lines and circles. These propositions 

can be classified into two kinds: theorems (which demonstrate properties) and 

constructions (which prove existence). A construction usually has two parts: first 

the construction of an object is described, then the object is shown to possess the 

desired characteristics. The following examples, all of which are taken from the 

Elements, illustrate the process. The first example is Euclid’s opening proposition 

in book I. 

Example 1. To construct an equilateral triangle. 

Given the straight line AB, construct a circle centred on A which passes through 

B (postulate 3 above ensures that this can be done). Construct a second circle 

centred on B which passes through A, and let C' be a point where the two circles 

meet. Draw the straight lines AC and BC (postulate 1). These steps can be 
followed in Figure 2.7. 

Figure 2.7. Construction of an equilateral triangle. 

We now need to show that the triangle ABC is equilateral. Because AB 
and AC are both radii of the same circle (centred on A), their lengths are equal. 
Similarly the lengths of AB and BC are equal. One of Euclid’s axioms is: ‘things 
equal to the same thing are equal to each other’. Therefore AC = AB and 
AB = BC implies AC = BC. Hence all three sides have the same length. 

Once a proposition is established it can be used in other constructions. Euclid 
applies his first proposition when he constructs a perpendicular to a given line. 

Example 2. To construct a perpendicular. 

Suppose that AB is the given line and that the point C on AB is to be the foot 
of the perpendicular. The method is indicated in Figure 2.8. 

Choose a point D on AC and construct a circle centred on C which passes 
through D. Let E be the point where the circle meets CB. Construct an equilat- 
eral triangle on DE whose third corner we shall call F. Then FC is the desired 
line. 
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Figure 2.8. Construction of a perpendicular. 

To show that FC is perpendicular to AB we must prove that angle <ACF 
is a right angle. The lengths CD and CE are equal (by construction) as are 
the lengths FD and FE. Hence the triangles CDF and CEF have sides of the 
same length. In a previous proposition Euclid has shown that the angles in such 
triangles are also equal. In particular, angles DCF and ZECF are equal. They 

are also adjacent to each other, and Euclid defines equal, complementary angles 
to be right angles. & 

This proposition forms part of a small ‘tool kit’ of fundamental constructions 

that are used many times. Other such primary constructions include finding the 
midpoint of a line segment and bisecting an angle. 

Over the 2000 years since Euclid compiled his Elements people have sought 
to find alternatives to some of his constructions and to simplify them. The 

construction of a regular pentagon given below is not that given by Euclid but 

was found by H. W. Richmond at the end of the nineteenth century. 

Example 3. To construct a regular pentagon. 

Given a line AB, let C' be its midpoint. Draw a circle centred on C' which passes 
through B. Construct the perpendicular to AB at C, and let D be the point 

where it meets the circle. Let & be the midpoint of CD and draw the line BE. 

Construct the line which bisects angle 4BEC and let F' denote the point where 

it meets BC (see Figure 2.9). 

Now-construct the perpendicular to BC at F and let G be the point where 

it meets the circle. The points B and G are two corners of a regular pentagon 

inscribed in the circle. The other corners can be found by drawing a few circles. 
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Figure 2.9. Construction of a regular pentagon. 

Problem. Verify that this construction is valid. 

Although a great deal is accomplished in the Elements, Euclid’s decision to 

rely on so few primitive constructions placed limitations on the kind of geometry 

he could perform. For example, it is impossible to construct some regular poly- 

gons using straight edge and compasses alone. A hexagon can be constructed, a 

heptagon cannot. An octagon can be obtained from a square by bisecting arcs 

on its circumcircle, but a 9-gon is impossible. 

The constructibility of regular polygons with up to 25 sides is listed in Ta- 
ble 2.10, together with the propositions in the Elements for the cases covered by 

Euclid. Is there any pattern which separates the constructible polygons from the 

impossible ones? The fourth column of the table shows the decomposition of the 

number of sides into prime factors. The factors of 2 are isolated on the left of the 
column since they can be introduced or removed at will (it is easy to double the 
number of sides of a regular polygon, and the number of sides can be halved by 
joining alternate vertices). The odd primes are sorted: those in the centre of the 

column correspond to the constructible polygons. Are the primes correlated with 

constructibility? The factors 3 and 5 appear to be ‘good’ while 7 and 11 are not. 

The pattern of which polygons are constructible, and the reasons underlying 
it, were unknown until 1796—two millenia after Euclid. Karl Friedrich Gauss 

(1777-1855) made a systematic study of the cyclotomic equation (z” = 1). In 

geometrical terms, the solutions of this equation divide a circle into arcs of equal 
length, and hence locate the vertices of regular polygons. Gauss used this rela- 
tionship to solve the problem of which polygons could be constructed with the 

Euclidean tools: it is possible to construct a regular n-sided polygon if the fac- 

torisation of nm into primes has the form 

n = 2° pi po >>> Dp (+) 
where each of the odd primes p; can be written as 2?” + 1 for some m, and all 
the p; are distinct. Prime numbers of this kind are called Fermat primes after 
the French mathematician Pierre de Fermat (1601—1665)—famous for his ‘Last 
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Theorem’. The first few Fermat primes are 

Las Oa 
5 sue 

Tk aso | 
257 

65537 = 22 41 

Gauss’ announcement that the regular 17-gon is constructible was the first ad- 
vance in this area since the Elements was compiled. When m is between 5 and 

16, 2°" + 1 is not a prime number so any other Euclidean-constructible regular 
polygon must have an enormous number of sides (es ew 020008) Stich aneobyect 

would not be constructible in any practical sense of the word. 

No. sides | Constructible | Elements Prime factors 

3 "4 book 1, 1 | 3 

4 b book Iv, 6 | 2? 
i) v book Iv, 11 5 

6 A HOOK Weslo 2 3 
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18 2 he 
19 19 

20 vA 2 5 
Dil Dae0 
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93 Do 

24 & D8 3 

25 he be 

Table 2.10. The regular polygons marked with a ‘v’ can be constructed 

with the Euclidean tools. 
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The converse of Gauss’ result is also true: if the factorisation of n into prime 

factors is not of the form in equation (*) then a regular n-gon cannot be con- 

structed with straight edge and compasses. This explains why a regular heptagon 

cannot be constructed since seven is not a Fermat prime. The 9-gon cannot be 

constructed because the prime factors of nine are not distinct. 

Constructing the Platonic solids 

Constructions for three-dimensional objects are considerably more involved than 

those for simple planar figures. Indeed, Euclid does not begin his treatment of 

solid geometry until book x1, and the constructions of the Platonic solids are the 

last topic covered in the Elements. Few people would have progressed so far. 

Euclid defines each Platonic solid by describing the number and kind of faces 
that contain it. He concludes the construction of each solid by showing that all 
its vertices lie on a sphere. This is achieved by showing that all the vertices 
lie on semicircles having the same diameter. It is for this reason that Euclid 
gives a rather unusual definition of a sphere as the surface swept out by rotating 

a semicircle about its diameter. From this definition it would appear that the 

generating axis is in some way special whereas, in fact, all the diameters of a 
sphere are equivalent. The definition is more a way of generating a sphere than 
a statement of its essential characteristic: all its points are equidistant from a 

given centre. 

The constructions of the regular polyhedra that follow are not complete and 

merely sketch possible ways of approach. For most of the solids, the methods are 
based on those given in the Elements. 

Construction. ‘To construct a tetrahedron. 

First, take a semicircle of diameter NS. Divide the length NS to produce a point 

Q so that NQ:QS = 2:1. (The length NQ will be the height of the tetrahedron.) 
Construct the perpendicular to NS at @ and let P be the point where it meets 
the semicircle (see Figure 2.11). Draw the line NP (this will be the edge-length 
of the tetrahedron). This has produced what we can think of as an ‘elevation’ 
view of part of the tetrahedron. We shall now construct a ‘plan’ view. 

Draw a circle centred on a point Q’ whose radius has the same length,as QP, 
and inscribe an equilateral triangle inside it. Denote the corners of the triangle 
by A, B and C. Erect a line passing through Q’ perpendicular to the plane 
containing triangle ABC and place the points N’ and S' on opposite sides of Q’ 
so that N’Q! = NQ and S'Q! = SQ. Now, the four points A, B, C and N’ are the 
corners of a tetrahedron and the lines joining them determine its four triangular 
faces: ABC, ABN', BCN' and CAN’. 

It remains to show that these triangles are all equal. The crux of the problem 
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N A 

Figure 2.11. Construction of a tetrahedron. 

is to show that a line such as AN’ has the same length as AB—we shall not 
consider this further. 

To construct the circumsphere, note that the triangle N’Q'A equals triangle 
NQP so A lies on a semicircle with diameter N’S’. The points B and C can 
be similarly shown to lie on semicircles with diameter N’S’. Therefore, rotating 
such a semicircle about N’S" will create a sphere that contains all the corners of 
the tetrahedron. & 

Construction. ‘To construct an octahedron. 

Take a semicircle with diameter NS and let Q@ be the point that bisects NS. 
Construct the perpendicular to NS at Q and let P denote the point where it 
meets the semicircle. Draw the line NP. This completes the ‘elevation’ view. 

N’ 

Figure 2.12. Construction of an octahedron. 

Construct a square with corners A, B, C’, D and with side-length equal to NP. 

Let Q’ be the centre of the square (formed by the intersection of the diagonals). 
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Erect a line perpendicular to the plane of the square which passes through Q' 

and place points N’ and S’ on opposite sides of Q’ so that N' Ose N©@ and 

S'Q' = SQ. Join each of N’ and S" to the four points A, B, C’ and D. The S1x 

points A, B, C, D, N’ and S’ are the corners of an octahedron whose eight faces 

are ABN’, BCN'’, CDN’, DAN’, ABS", BCS’, CDS", and DAS’s It remains to 

show that all these triangles are equilateral. 

As in the case of the tetrahedron, rotating a semicircle about its diameter 

N’'S" will produce a sphere containing all the vertices. 

Construction. ‘To construct a cube. 

Take a semicircle with diameter N.S. Divide NS at the point Q so that NQ AO Fee — 

2:1. Construct the perpendicular to NS at Q and let P denote the point where 

it meets the semicircle. Draw the line NP. 

Figure 2.13. Construction of a cube. 

Construct a square with corners A, B, C, D whose side has length equal to 
NP. Erect a line on A perpendicular to the plane of the square and place a point 
F on the line so that AE = NP. Repeat this at each of B, C and D to give 

points Ff’, G and H respectively, all of which are on the same side of the square 

as £. Connect EL, F', G and H to form a square—this will complete the cube. 

This cube can be inscribed in a sphere of diameter equal to NS. To construct 
this circumsphere, Euclid uses the fact that a right-angled triangle meets the 
semicircle on its hypotenuse (see Figure 2.9). So, for example, since angle <GC A 
is a right angle, C’ lies on a semicircle with diameter AG. Similarly, the five 
corners B, D, E, F and H also lie on such semicircles. The sphere swept out by 
rotating a semicircle about AG passes through all the vertices of the cube. ™ 

A line AB can be divided by a point C into two segments AC and CB so 
that the ratio of the whole to the longer segment and the ratio of the longer to 
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the shorter segment are equal: i.e. so that AB: AC = AC:CB. The Greeks 
called this division into extreme and mean ratio. In the Renaissance it was 
called the divine proportion, and it is also known as the golden section or golden 
ratio. This ratio is approximately 5:3. However, the diagonal and side of a 
regular pentagon are in the golden ratio, and in the Chapter 1 we saw that such 
segments are incommensurable: they cannot be expressed exactly as the ratio of 
whole numbers. The precise value of the ratio is Vy (5 aide) ele 

Figure 2.14. A right-angled triangle meets the semicircle on its hypotenuse. 

Construction. ‘To construct a dodecahedron. 

Euchid’s strategy for constructing a dodecahedron is to start with a cube and 
build a ‘roof’ shaped structure on each face (see Figure 2.15). The problem is to 
find the correct height and length of the ridge of such a roof. 

Figure 2.15. A dodecahedron can be constructed by adding a ‘roof’ to each 

face of a cube. 

To construct a roof, take a square with corners A, B, C, D. Let FE and F be 

the midpoints of AB and CD respectively and connect them by a line. Let G be 

the midpoint of EF. Divide EG in the golden ratio to produce H so that FA is 

the shorter part. Divide FG similarly to produce J. Erect lines perpendicular to 

the plane of the square passing through Hand J and mark off points /y and L so 
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that the lengths HK and JL are equal to HG. The points K and L determine 

the ridge of the roof. 

If this construction is applied to each square face of a cube (being careful 

to orient the roofs consistently) then the result is a regular dodecahedron. To 

prove this, it is necessary to show that the triangular end-piece of one roof and 

the quadrangular piece of the adjacent roof are coplanar—thus fitting together 

to form a pentagon. We also have to show that these pentagons are regular. 

A D 

B iY, 
5 H G J F 

D 

B 

c 
B (e 

Figure 2.16. Construction of a ‘roof’. 

Euclid’s construction for an icosahedron follows along similar lines to those 
of the first three solids. The construction below is more in the spirit of the 
dodecahedron construction: the twelve vertices are located on the surface of a 
cube. 

Construction. To construct an icosahedron. 

The twelve vertices of the icosahedron can be located on the surface of a cube— 
two on each face. To locate such a pair of points in a square with corners A, B, 

C’, D, let E and F be the midpoints of AB and CD respectively and connect 

them by a line. Let G be the midpoint of EF’. Divide EG in the golden ratio to 
produce H so that FA is the shorter part. Divide FG similarly to produce J. 
The required points are H and J (see the left diagram of Figure 2.16). 

Besides being the vertices of an icosahedron, the twelve points also determine 
three mutually perpendicular golden rectangles (see Figure 2.17). ™ 

The discovery of the regular polyhedra 

Almost everyone who encounters the regular solids finds something appealing 
about them. That the Greeks made such detailed and sustained studies of them 
is probably connected with their unexpected finiteness: there are only five of 
them, in contrast to the unlimited number of regular polygons. Fascination with 
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Figure 2.17. Three mutually perpendicular golden rectangles can be 
inscribed in an icosahedron. 

these solids led both Kepler and Plato to use them in their theories of the cosmos. 
Their aesthetic properties attracted Renaissance artists and craftsmen. They are 
also associated with ideas in many areas of modern mathematics from the algebra 

of group theory to the study of geometric singularities. As they have permeated 
so much, it seems worthwhile spending a little time trying to identify their source. 

Although the oldest surviving account of the regular polyhedra is preserved 
in Plato’s Timaeus, Plato should not be credited with their discovery. Solids like 
the cube and the pyramid are such fundamental figures that they were known 

very early on. Perhaps more surprisingly, the dodecahedron is also an ancient 

figure. Etruscan charms and ornaments of dodecahedral form dating from about 
500BC have been found in Italy. Pyrite crystals possibly provided the inspiration 
for these ornaments. Commonly known as fool’s gold, pyrite (FeS») is the most 
common sulphide and today its main use is as a source of sulphur for the pro- 
duction of sulphuric acid. It is often found alongside copper ores and would have 

been familiar to early mine workers. Its crystals are often cubic; another common 

shape has twelve pentagonal facets. These pentagons are not quite regular but 
the Platonic form is easily imagined. Plate 2 shows a group of pyrite crystals. 
Even though the individual crystals have grown into each other, it is still possible 

to identify the dodecahedral forms. 

The southern part of Italy, where the Pythagorean school was situated, is 

particularly rich in pyrite deposits. The eye-catching crystals must have attracted 

the Pythagorean’s attention. Indeed, the Syrian philosopher Iamblichus (¢.250- 
c.330AD) records that Hippasus wrote about a ‘sphere of twelve pentagons’. 

One problem in tracing the history of Greek mathematics is that many results 

are attributed to Pythagoras. The Pythagorean brotherhood ascribed all their 

results to their founder, and later historians faced with material of unknown 

origin followed in this tradition. For instance, in what is known as the ‘Eudemian 
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summary’! we read that 

It was he [Pythagoras] who discovered the subject of incommensurable 

quantities and the composition of the cosmic figures.” 

Fortunately, for the history of the regular solids there is an alternative source of 

information. A scholium to the thirteenth book of the Elements reads: 

In this book, the thirteenth, are treated the five so-called Platonic fig- 

ures which, however, do not belong to Plato, three of the aforesaid five 

figures being due to the Pythagoreans, namely the cube, the pyramid 

and the dodecahedron, while the octahedron and the icosahedron are 

due to Theaetetus. They are named after Plato because he mentions 

them in the Timaeus. This book also carries Euclid’s name because 

he embodied it in the Elements. 

These two passages are the best accounts we have. The former reports the kind 
of history based on legend. The latter is given more credence precisely because 

it goes against such traditions. Its details are not the kind of conjectured facts 
one would invent to fill in an unknown piece of the historical jigsaw. It records 
that the Pythagoreans knew the pyramid, the cube and the dodecahedron which, 
as we have seen, is not improbable. The discovery of the other two is credited 
to Theaetetus (c.415-369BC), a friend of Plato. The major puzzle posed by this 

passage is the date of the octahedron: why is it so late? 

Icosahedra are not found in nature so the late discovery of this form is not 

unexpected. But octahedra, like cubes and almost-regular dodecahedra, occur as 

crystals. Surely they would have been known to the Pythagoreans. 

As William Waterhouse has pointed out, this problem is solved as soon as we 

realise that a crucial part of the history of the regular solids has been overlooked: 
at some point, the notion of regularity itself had to be discovered. Until the 
properties that define a regular solid were isolated, the pyramid, the cube and 
the ‘sphere of twelve pentagons’ were merely useful or interesting shapes; before 
their common features were abstracted they were unrelated individual solids. 
(The reader who is unfamiliar with the definition of a regular polyhedron may 
like to try to find a set of properties that characterise regularity. It is not as easy 
as you may think.) 

With the realisation that the notion of regularity had to be abstracted, the 
lateness of the octahedron does not seem so unnatural. Although the octahedral 
shape may have been familiar, it was only thought worthy of study when its 

i : 
The Eudemian summary is a passage in the prologue to Proclus’ commentary on the first 

book of the Elements. It gives a brief account of the development of Greek mathematics and is 
thought to be based on the now lost History of Geometry written by Eudemus of Rhodes. 
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relationship to other solids was recognised. Only after the concept of regularity 
was invented did it become important. As Waterhouse explains: 

[As T. L. Heath] quite correctly said, the octahedron “is only a double 
pyramid with a square base”; and that is a very good reason why no 
one would have bothered with it. We can readily grant that a man who 
in some sense could construct a dodecahedron could in the same sense 
construct an octahedron—but why should he? Someone thoroughly 
familiar with pyramids would attach no special importance to this 
particular combination of them. He could assemble an octahedron. 
he might even admire its appearance; but mathematically he would 

have nothing to say about it. Only someone possessing the concept of 
regular solid would have reason to single it out. 

(Consider for comparison the quartz crystal. Quartz (SiO) is the 
most common mineral on earth; its crystals are large, unmistakable 

hexagonal pyramids and prisms; the Greek word for it has given us 
the very word “crystal”. Yet in all of the Greek geometry there is 

no special study of hexagonal prisms or pyramids. The shapes were 
familiar enough, but there simply was nothing particular to say about 
them. ) 
The discovery of the octahedron thus was rather like the discovery 
of, say, the fifth perfect number: what required discovery was not so 

much the object itself as its significance. Some Babylonian accountant 
may well have written down the number 33,550,336; but he did not 

thereby discover the fifth perfect number because he did not observe 
the property which distinguishes this number from others. Similarly, 

the octahedron became an object of special mathematical study only 
when someone discovered a role for it to play.' 

The late recognition of the octahedron as a regular solid must be closely connected 
with the discovery of regularity itself. 

Besides the testimony of the scholium, further evidence which supports this 

view can be found in the etymology of the names of the five figures. The modern 

names for the solids derive from Greek roots: the numbers four, six, eight, twelve, 

and twenty, and the word ‘hedr’ meaning seat. Thus octahedron means ‘eight 

faces’. 

The use of this terminology is more than mere descriptive labelling. ‘The 

Greeks only used these names in connection with the Platonic solids. (The hexag- 

onal prism is never called an octahedron, for example, even though it has eight 

faces.) The fact that these names are sufficient to distinguish between the figures 

means that whoever labelled the polyhedra in this way knew several key facts: he 

recognised that the five figures have properties in common and, as such, form a 

family. Moreover, the systematic nomenclature can only have been chosen after 
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an enumeration had been performed to find all the polyhedra sharing these prop- 

erties. Only then is it apparent that no two of them have the same number of 

faces. This marks one of the earliest classifications in the history of mathematics. 

Besides their technical names, the three solids of ancient origin also have 

vernacular names: pyramid, cube, ‘sphere of twelve pentagons’. But it appears 

that the other two (the octahedron and the icosahedron) have only ever had 

scientific names. This suggests that the octahedron and the icosahedron are 

known only as part of the family, and hence their recognition or discovery occurred 

at about the same time as the abstraction of the notion of regular solid. On this 

point, then, the scholiast’s account does not seem so implausible. 

The scholiast’s attribution of the discovery to Theaetetus is also supported by 

circumstantial evidence. Book x1II of the Elements begins with propositions on 

the golden ratio and inscribing regular polygons in circles—topics already covered 
in earlier books. If the presentation were due to Euclid, he could have shortened 
it considerably. This suggests that book XII is based on an earlier treatise which 
was incorporated into the Elements in a largely unrevised and unedited state. 

(The scholiast also comments to this effect.) 

Scholars have found strong stylistic, as well as mathematical, links between 
books XuI and x, connections that are sufficient to suggest that both books are 
based on works by the same author. And it is widely accepted that Theaetetus 
laid the foundations for the tenth book. 

There is one last fragment of information concerning the history of the regular 
polyhedra. A tradition preserved up until the eleventh century AD was recorded 
by the Byzantine writer Suidas. He compiled an encyclopaedia, now known as the 

Suda Lexicon, which covers many topics including history, literature, philosophy, 
and science. It contains the following comments: 

Theaetetus, of Athens, astronomer, philosopher, disciple of Socrates, 
taught at Heraclea. He first wrote on ‘the five solids’ as they are 
called / 

On the whole, the traditions concerning the history of the regular solids agree. 
In an embryonic phase, some of the solids were studied individually for their own 
sake. But people were not yet aware of a family connection—they were not 
studying regular solids since the concept was unknown. The study of the regular 
solids begins with the abstraction of regularity. And we can be fairly confident 
in attributing that achievement to Theaetetus. 

What is regularity? 

What properties did Theaetetus abstract from the regular polyhedra when he 
made his definition? Unfortunately, we do not know. Book xt of the Elements 
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contains definitions of the five individual solids, but Euclid did not state which of 
their shared properties determine their family connection. We can get some idea 
from the final proposition of the Elements, a proposition thought to have been 
appended by Euclid or a scholiast and not part of the original treatise that forms 
the remainder of the book. 

Proposition. No other figure, besides the said five figures, can be constructed 
which is contained by equilateral and equiangular figures equal to one another. 

PROOF: The proof proceeds by examining the different kinds of solid angle that 
can occur. First we note that at least three polygons must meet at any solid 
angle, and that the sum of all the plane angles around a solid angle must be less 
than four right angles. 

If the polyhedron is made of equilateral triangles then a solid angle can be 

surrounded by three, four or five polygons. These are the solid angles of the tetra- 
hedron, the octahedron and the icosahedron. Six equilateral triangles surround 
a point in the plane and so do not form a solid angle. Seven or more triangles 

cannot surround a point because their angle sum is larger than four right angles. 

Three squares around a point form the solid angle of a cube. Four squares 
fit round a point in the plane, and more than four squares cannot fit around a 

point. 

Three pentagons together form the solid angle of a dodecahedron. Four or 
more pentagons cannot form a solid angle since their angle sum is too large. 

No other regular polygons can form a solid angle because of the angle sum 

restriction. 

From the statement of the proposition it is clear that the two following prop- 
erties were associated with regularity: 

(i) the faces must be equal, and 

(17) the faces must be regular polygons. 

However, these conditions are insufficient and, as it stands, the statement of 

the proposition is false. There are other polyhedra besides the Platonic solids 

that are bounded by equal regular polygons. In fact, they are all bounded by 

triangles; together with the tetrahedron, the octahedron and the icosahedron, 

they form the family of eight (convex) deltahedra illustrated in Figure 2.18. The 

name ‘deltahedron’ was used by Martyn Cundy for any polyhedron bounded by 

equilateral triangles: the Greek capital letter delta (‘A’) looks like such a triangle. 

Two of the five non-regular deltahedra are dipyramids. Another is formed by 

attaching three square-based pyramids to the square faces of a triangular prism. 

A fourth is obtained from a square-antiprism by erecting pyramids on both of its 
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square faces. The names given in the figure to these last two deltahedra are due 

to Norman Johnson, who developed a systematic nomenclature for polyhedra 

with regular faces. We shall see more of this below. The remaining solid is 

not described so easily. It has twelve faces and is sometimes called the Siamese 

dodecahedron—a name coined by H. S. M. Coxeter. Johnson called it the snub 

disphenovd. 

pentagonal aaa 

AK 
Siamese dodecahedron 

triangular dipyramid 

triangular pri riangular prism ie: MwA 
square dipyramid 

Figure 2.18. Convex deltahedra. 

These examples show that Euclid’s characterisation of regularity is incom- 

plete. The Platonic solids do have equal regular faces but they are not the only 
polyhedra to do so. Extra conditions are required to capture precisely the aes- 

thetic quality of regularity exhibited by the Platonic solids but which is lacking 
in the deltahedra. 

The lack of clarity displayed in some parts of Euclid’s work has been advan- 
tageous. As regularity was left incompletely defined, people felt free to propose 
their own definitions. This has led to a variety of descriptions of the regular solids 
which provide alternative ways to study them. The different hypotheses can be 
weakened in many different ways and this gives a rich collection of ideas about 
‘semiregular’ polyhedra. (We may note in passing that Euclid did not define 
‘polyhedron’ either—an omission which led to a wide variety of interpretations of 
that term. We shall take this up in Chapter 5.) 

Let us return to our search for the original definition of regularity. Notice that 
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Euclid is careful to show how each solid can be constructed in a circumscribing 
sphere. Plato, too, notes that the tetrahedron is the simplest solid figure which 
divides the surface of its circumsphere into equal and similar parts. The other 
figures he describes are more complex solids having the same property. It seems 
likely that this feature was the third key property required to define regularity: 
the polyhedra with equal regular faces that can be inscribed in a sphere are 
precisely the five regular solids. 

A more modern definition of a regular polyhedron is one whose faces and 
vertex figures are regular polygons. (In this case, the congruence of the faces 
does not need to be specified since it can be deduced from the other conditions.) 
Roughly speaking, a vertex figure is the polygon you see after slicing off a corner 
in a way that removes the same amount of each edge.” 

Many definitions of ‘regular polyhedron’ require the polyhedron to have equal 
regular faces.* Some of the proposals for an extra condition to characterise regu- 
larity are collected in the following theorem. It does not matter which of the five 
statements is chosen to complete the definition of regularity: the theorem shows 

that they all lead to the same set of polyhedra. 

Theorem. Let P be a polyhedron whose faces are congruent regular polygons. 

Then the following statements about P are equivalent: 

1) The vertices of P all lie on a sphere. 

2) All the dihedral angles of P are equal. 

q 

5 

( 

(2) 
(3) All the vertex figures are regular polygons. 

(4) All the solid angles are congruent. 

(5) All the vertices are surrounded by the same number of faces. 

Proor: The proof consists of showing that (1)>(2)=(3)=(4)}(5)=}(1). 

(1)=(2): If two adjacent faces of a polyhedron have all their vertices on the same 
sphere then the dihedral angle between them depends on the radii of the circum- 

circles of the two faces and the length of their common edge. Since all the faces 

of P are congruent, their circumcircles will all be the same size. Furthermore, 

since all the faces are regular polygons, all the edges must have the same length. 

Consequently, all the dihedral angles must be equal. 

2More precisely, I shall take a vertex figure to be the spherical polygon formed by the 

intersection of the faces surrounding a vertex with a small sphere centred on that vertex. 

3 An example of a definition which does not require this explicitly, nor even convexity, is the 

following proposed by H. S. M. Coxeter. A polyhedron is regular if there exist three concentric 

spheres one of which contains all the vertices, one contains the midpoints of all the edges, and 

one meets all the centres of all the faces. 
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(2)=(3): The plane angles that surround a vertex determine the lengths of the 

sides of its vertex figure: a larger angle gives a longer side. Since all the plane 

angles in P are the same, all the vertex figures are equilateral. Moreover, the 

angles in the vertex figures are determined by the dihedral angles of P. If the di- 

hedral angles are all equal then the vertex figures are equiangular. ‘An equilateral, 

equiangular polygon is regular (by definition). 

(3)=(4): A vertex figure cuts off a solid angle from a polyhedron. If the vertex 

figure is a regular polygon then the solid angle has the form of a right pyramid. 

The angles in a vertex figure determine the dihedral angles of the polyhedron, 

and conversely. If all the vertex figures are regular then all the dihedral angles 

must be equal. This means that the vertex figures all have the same number of 

sides, and hence that the solid angles are all congruent. 

(4)=(5): If the solid angles are all congruent then they are surrounded by the 
same number of faces. 

(5)=(1): The remaining implication (as is often the case in this style of proof) 
is far more subtle. In fact, it seems to require the enumeration of all possible 

polyhedra satisfying condition (5) and then verifying that each candidate satisfies 
condition (1). The final proposition of the Elements (see page 75) shows that at 
most five different kinds of solid angle can be formed from regular polygons. In 
the preceding propositions, five polyhedra are constructed in their circumspheres, 

one with each type of solid angle. 

This, however, is not the end of the argument. It is not immediately clear 

why there should be only one polyhedron for each type of solid angle. Is the shape 
of the complete polyhedron constrained by the local behaviour at each vertex to 
such an extent that a single possibility remains? 

It is easy to answer this question when each vertex is surrounded by three 
faces. In this case the solid angles are rigid—they can take only one form. Fitting 
polygons together according to this rule guarantees a unique result. Therefore, 
the tetrahedron, the cube and the dodecahedron are the only polyhedra which 
can be made by fitting three congruent regular polygons around each vertex. 

However, when four or more faces surround each vertex there is no such 
control. The contrast between the two situations is apparent in partly made 
models of polyhedra. Triangular vertex figures give rigidity to the structure so 
that a half-built dodecahedron is stiff and cannot be deformed. On the other 
hand, an unfinished model of an icosahedron is flexible—the local conditions on 
the vertices do not give it any stability until it is practically complete. 

Experimenting with models will probably convince you that the icosahedron 
and the octahedron are unique but to prove this rigorously is not easy. To com- 
plete the proof we need to invoke the Rigidity Theorem—a topic we shall return 
to in Chapter 6. 



BENDING THE RULES 79 

Bending the rules 

Regular polyhedra are often defined as those having the same number of congruent 
regular faces meeting at each vertex. John Flinders Petrie (1907-1972) (son of 
the archaeologist mentioned in Chapter 1) found a new way of interpreting this 
condition. He and H. S. M. Coxeter had known each other since their school days 
and Coxeter recounts how he first heard of his friend’s discovery. | 

One day in 1926, J. F. Petrie told me with much excitement that he 
had discovered two new regular polyhedra; infinite, but without false 
vertices. When my incredulity had begun to subside he described them 
to me: one consisting of squares, six at each vertex {Figure 2.19(a)], 
and one consisting of hexagons, four at each vertex [Figure 2.19(b)]. 
It was useless to protest that there is no room for more than four 

squares round a vertex. The trick is to let the faces go up and down 
in a kind of zig-zag formation so that the faces that adjoin a given 
‘horizontal’ face lie alternately ‘above’ and ‘below’ it. When I under- 
stood this, I pointed out a third possibility: hexagons, six at each 

vertex [Figure 2.19(c)].* 

These structures are not polyhedra in the conventional sense. ‘They do not close 

up, forming a structure with an natural sense of what lies inside and what lies out- 

side. Instead, they can be extended indefinitely in any direction: the ‘complete’ 

polyhedra have infinitely many faces. Furthermore; each one separates space into 

two immense labyrinths, both of the same shape. ‘These ‘polyhedra’ have become 
known as regular honeycombs or sponges. 

The Archimedean solids 

In the fifth book of his Mathematical Collection, Pappus attributes the discovery 

of thirteen polyhedra to Archimedes: 

Although many solid figures having all kinds of faces can be conceived, 

those which appear to be regularly formed are most deserving of at- 

tention. These include not only the five figures found in the godlike 

Plato --- but also the solids, thirteen in number, which were discov- 

ered by Archimedes and are contained by equilateral and equiangular, 

but not similar, polygons.' 

Pappus goes on to describe the thirteen figures. He arranges them in order 

according to the total number of faces, and lists the kinds of face that make 

up each polyhedron. These data are summarised in Table 2.20. Even though 

Archimedes’ own account of them is now lost, the thirteen polyhedra illustrated 
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Figure 2.19. The three regular honeycombs. 

in Figure 2.21 and in Plates 3 and 4 are known as the Archimedean solids. (They 
are sometimes called the semiregular polyhedra.) 

Some of these polyhedra have been discovered many times. According to 

Heron, the third solid on Pappus’ list, the cub-octahedron, was known to Plato. 

During the Renaissance, and especially after the introduction of perspective into 

art, painters and craftsmen made pictures of the Platonic solids. To vary their 

designs they sliced off the corners and edges of these solids, naturally producing 

some of the Archimedean solids as a result. The process of removing all the 
corners in a symmetrical fashion is called truncation. 
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Numbers of 
Faces uaeles| Squares | Pentagons | Hexagons | Octagons | Decagons 

8 4 = 4 
14 8 6 
14 6 8 
14 8 6 
26 8 18 
26 12 8 6 
a2 20 12 
OZ 12 20 
32 20 1 
38 32 6 
62 20 30 i 
62 30 20 12 

(e92 80 12 

Table 2.20. Composition of the Archimedean solids. 

Kepler rediscovered the whole set of thirteen solids and gave them the names 
by which they are known today. The five Archimedean solids obtained by trun- 
cating the Platonic solids are given the obvious names: ‘truncated tetrahedron’ 
for example. For Kepler, parts of the edges are always retained in a truncated 

solid. If we allow deeper cuts to be made, all three of the 14-faced Archimedean 
solids can be obtained by slicing the corners off either a cube or an octahedron 
to varying degrees (see Figure 2.22). The truncated cube and the truncated oc- 
tahedron are most obviously derived from the Platonic solids in their respective 
names. The latter polyhedron is also known as Kelvin’s solid because William 
Thomson (Lord Kelvin) studied its space-filling properties. Kepler gave the name 
cub-octahedron to the solid midway between the cube and the octahedron. 

An analogous situation holds for the three 32-faced solids: the truncated 
dodecahedron, the truncated icosahedron, and the icosi-dodecahedron. (The last 
two of these, especially the truncated icosahedron, may be familiar from the 

patterns on soccer balls.) 

The solids that Kepler calls the truncated cub-octahedron and the truncated 

icosi-dodecahedron are not true truncations. Figure 2.23(a) shows the result 
of truncating a cub-octahedron: not all of its faces are regular polygons. The 
Archimedean figure is obtained by distorting the figure so that the rectangles 
become square. Kepler himself recognised this: 

[.-- a polyhedron] which I call a truncated cuboctahedron: not because 

it can be formed by truncation but because it is like a cuboctahedron 

that has been truncated. ™ 



82 
CHAPTER 2 

truncated tetrahedron 
cub-octahedron truncated octahedron 

& \ 

eee rhomb-cub-octahedron _ great rhomb-cub-octahedron 

icosi-dodecahedron 
truncated icosahedron truncated dodecahedron 

Figure 2.21. The Archimedean solids. 
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snub cube 

great rhomb-icosi-dodecahedron 
snub dodecahedron 

Figure 2.21 (continued). 

Because of this discrepancy, alternative names have been proposed, the most 
common being ‘great rhomb-cub-octahedron’. 

Figure 2.24 shows that the solid Kepler calls the rhomb-cub-octahedron‘ 
(sometimes given the prefix ‘small’) has faces in common with three polyhedra: a 
cube, an octahedron, and the rhombus-faced polyhedron shown in Figure 2.23(b). 

His alternative name for this Archimedean solid, sectus rhombus cuboctaédricus, 
indicates that it is formed by slicing the corners off the rhombic polyhedron. This 
name is translated as ‘truncated solid rhombus’ but Kepler makes a distinction 
between this truncation and the others, for which he uses the adjective truncus 
rather than sectus. 

4The hyphenation of these names is not standard practice but I find it easier on the eye 
when the names become so long. 
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Figure 2.22. The truncated cube, cub-octahedron and truncated octahe- 
dron can all be obtained by slicing through either a cube or an octahedron. 

Problem. The rhomb-icosi-dodecahedron has faces in common with another 

rhombus-faced solid that we shall encounter later. Try to work out what it looks 
like. 

The two remaining Archimedean solids differ from the others in several ways. 
For one thing, they cannot be derived from the Platonic solids by a process of 

simple truncation, and consequently they have been discovered by relatively few 

© 
(a) (b) 

Figure 2.23. 
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Figure 2.24. The rhomb-cub-octahedron has face-planes in common with 

three other polyhedra. 

people. ‘They also lack any mirror symmetry. This causes them to appear twisted, 

and it also means that they can exist in two forms, each a mirror image of the 

other—like left and right hands. Polyhedra related in this way are said to be 
enantiomorphic. 

The solid Kepler called a snub cube actually has faces in common with both 
the cube and the octahedron. For this reason some have suggested that “snub 
cub-octahedron’ would be more appropriate but the name has not caught on. 

Similarly, the snub dodecahedron is related just as much to the icosahedron as to 
the dodecahedron. 

Problem. Explain why there is no ‘snub tetrahedron’. If you try to construct 

one, you should find a familiar polyhedron. 

Kepler also investigated two other families of polyhedra made from regular 

polygons. A prism is formed from two n-sided polygons separated by a ring of 

n squares. An antiprism also contains two n-sided regular polygons, this time 

separated by a ring of 2n equilateral triangles. An example of each kind is shown 
in Figure 2.25: a pentagonal prism and a square antiprism. 

Figure 2.25. Pentagonal prism and square antiprism. 
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Problem. The square prism and the triangular antiprism are better known by 

other names. Identify them. 

Polyhedra with regular faces 

Pappus’ description of the Archimedean solids as figures ‘contained by equilateral 

and equiangular, but not similar, polygons’ is insufficient to characterise them. 

Just as Euclid’s description of the regular polyhedra as solids bounded by regular 

polygons is incomplete, so Pappus’ condition requires only that a polyhedron has 

regular polygons as faces—it does not say anything about their arrangement. 

There are many polyhedra bounded by regular polygons. There are ten whose 

faces are all congruent: the Platonic solids and the deltahedra. Besides the thir- 

teen Archimedean solids, there are about 75 convex polyhedra whose faces are 

regular polygons of more than one kind. One way to construct many of these is to 
dissect the Platonic and Archimedean solids into smaller pieces. The octahedron, 

for example, can be separated into two square-based pyramids. Pentagonal pyra- 
mids can be shaved off an icosahedron in several ways to produce five different 

fragments (see Figure 2.26). 

The regular-faced polyhedra were enumerated empirically by Norman John- 
son: some computer-assisted calculations done by Victor Abramovitch Zalgaller 
showed that his list was complete. Many of these polyhedra are formed by join- 
ing smaller regular-faced polyhedra together and Johnson used this property as 
the basis for a systematic nomenclature. The polyhedra which cannot be sep- 
arated into regular-faced pieces are the building blocks and Johnson calls these 
elementary polyhedra. A regular-faced polyhedron is elementary if it cannot be 
separated by a plane into two smaller regular-faced polyhedra. All the other 
regular-faced polyhedra can be formed by sticking these basic units together in 
different ways. 

The tetrahedron, the cube and the dodecahedron are elementary, as are nine 
of the Archimedean solids. The prisms, and all the antiprisms except the octa- 
hedron furnish further examples of elementary polyhedra. 

The cub-octahedron and the icosi-dodecahedron can both be split into ‘hemi- 
spheres’. In Johnson’s nomenclature, the former hemisphere is an example of a 
cupola, the latter is a rotunda. The general cupola is formed from an n-gon and 
a 2n-gon sitting in parallel planes connected by n triangles and n squares joined 
alternately in a ring. The cub-octahedron hemisphere is a triangular cupola. The 
square cupola and the pentagonal cupola are ‘caps’ off the rhomb-cub-octahedron 
and the rhomb-icosi-dodecahedron, respectively. Other elementary polyhedra are 
produced by removing such caps from these two polyhedra. The removal of oppo- 
site square cupolas from a rhomb-cub-octahedron leaves an octagonal prism. The 
rhomb-icosi-dodecahedron can be ‘diminished’ by the removal of one, two or three 
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pentagonal cupolas. These fragments of the Archimedean solids are illustrated in 

Figure 2.27. 

Besides the fragments of the Platonic and Archimedean solids there are a 
further eight elementary polyhedra. One of these is the Siamese dodecahedron— 
the deltahedron with twelve faces. The other seven, together with Johnson’s 
names, are shown in Figure 2.28. 

The interrelationships between the different families of regular-faced polyhe- 
dra are illustrated schematically in Figure 2.29. 

The 31 elementary polyhedra fit together to produce 71 other polyhedra with 
regular faces. Sometimes the same set of pieces can be put together in more than 
one way. For example, the constituent faces of a rhomb-icosi-dodecahedron can 
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Figure 2.26. Regular-faced fragments of the icosahedron. 
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Figure 2.27. Regular-faced fragments of the Archimedean solids. 

be put together in four other ways. These are most easily described as the effect 
of rotating various ‘caps’ by 36°: 

(2) twist a single cap, 

(21) twist two opposite caps, 

(171) twist two non-opposite caps, 

) (1v) twist three caps. 
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Chemists use the term zsomerism to refer to an analogous situation: molecules can 
differ structurally but be composed of the same set of atoms. Molecules related 
in this way are called isomers (from the Greek words meaning ‘same parts’). 
Adopting this terminology, we can say that the rhomb-icosi-dodecahedron has 
five isomeric forms. Enantiomerism is a special case of isomerism. 

There is one isomeric form of an Archimedean solid that is quite well-known. 

While trying to make a model of the (small) rhomb-cub-octahedron, J. C. P. 
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Miller was surprised to find that he had assembled the pieces incorrectly. The 
polyhedron he made is shown in Figure 2.30. This polyhedron has been discovered 
and rediscovered many times. It is possible that Kepler was familiar with it. It 
has been called by a variety of names: the pseudo rhomb-cub-octahedron, Miller’s 
solid, and elongated square gyro bicupola. The last of these names is Johnson’s 
and it indicates how the solid is constructed from elementary polyhedra: take 
two square cupolas (square bicupola) rotated relative to one another (gyro) and 
separated by a prism (elongated). For brevity I shall refer to it as Miller’s solid. 

Figure 2.30. Miller’s solid has congruent solid angles but they are not all 
equivalent. 

Out of this whole menagerie of polyhedra bounded by ‘equilateral and equian- 
gular, but not similar, polygons’ what is special about the Archimedean solids? 

What distinguishes them from the others? Pappus gives us a hint when he 
says that they are included among the polyhedra ‘which appear to be regularly 
formed’. This is certainly true, but what does ‘regularly formed’ actually mean? 

Earlier in the chapter, we saw that an extra condition was required to com- 

plete Euclid’s characterisation of the regular polyhedra, and that any one of five 

statements ranging from the existence of a circumsphere to the congruence of the 

vertices proved to be adequate. How can Pappus’ statement be extended so that it 

characterises the Archimedean solids? Simply requiring that the polyhedra have 

a circumsphere is not enough since the pyramids and all the isomeric forms of the 

Archimedean solids have this property. Surprisingly, the much stronger condition 

of requiring that all the solid angles are congruent is also insufficient: Miller’s 

solid has this property. Because of this, some writers have suggested that this 

polyhedron should be counted as a fourteenth Archimedean solid. This, however, 

misses the point. The true Archimedean solids, like the Platonic solids, have an 

aesthetic quality which Miller’s solid does not possess. This attractiveness comes 

from their high degree of symmetry—a property that is easily appreciated and 

understood on an intuitive level. It is not the congruence of the solid angles that 

is the important characteristic but rather the fact that the solid angles are all 

indistinguishable from one another. The vertices in an Archimedean solid are 
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surrounded by the same faces arranged in the same way, and each vertex plays 

the same role in the polyhedron as a whole. For Miller’s solid this is not the 
case. The twist allows us to distinguish between two kinds of vertices: those 
near the ‘equator’, and those in the ‘polar regions’. This becomes clear when 
the polyhedron is turned onto its side—we can detect that it has been moved. 

If the true rhomb-cub-octahedron is turned on its side in the same way, it looks 

untouched—if we did not observe the motion take place, we would be unable to 
tell that a change had occurred. 

These observations are the beginnings of a detailed investigation of symmetry. 
Although easy to identify qualitatively, symmetry is quite tricky to quantify. 
The mathematical analysis of symmetry is explored more fully in Chapter 8. 
Applying some of the ideas developed there in Chapter 10, we shall see that the 

Archimedean solids are ‘vertex transitive’. For now, it suffices to recognise, as 

Archimedes and Pappus did, the natural beauty of regularly formed figures. 
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Decline and Rebirth 
of Polyhedral Geometry 

At age twenty, Alexander succeeded his father Philip 11 as king of Macedonia. Two 
years earlier in 338BC Athens had fallen to Philip as he extended his territory 
southwards into Greece. Alexander continued his father’s expansionist conquests. 
Within five years he had established an empire that extended eastwards to India 
and included Egypt, Syria and Persia. He chose a well-placed port on the north 
African coast to be the site of a new city that was to be his capital—Alexandria. 

After Alexander’s death in 323BC, the empire was divided and the Egyptian 
kingdom came under the rule of the Ptolemaic dynasty. The Ptolemies shared 
Alexander’s vision for the new city and it became a great centre of culture and 
learning. To promote science and philosophy, a school and a library were built 

and by 300BC this ‘university’ had attracted a distinguished staff. It is here that 
the last contributions of any significance were made to the history of polyhedra 
for well over a thousand years. In this chapter we trace the steps of our subject 
as the various strands unravel, sleep-walk across vast distances in space and time, 

and then are reunited as the study of polyhedra emerges to flourish once more. 

The Alexandrians 

Alexandria was a prosperous, cosmopolitan city at a junction of several trade 

routes. Jews settled there as merchants and traders. Greeks arrived with Ptolemy 
1. Romans, Persians, Arabs, and Indians also inhabited the city. The Ptolemies 

recognised the importance of the schools of Pythagoras, Plato, and Aristotle and 

sought to provide a climate conducive to scholarship. The teachers at the uni- 

versity they established came from the major cultural centres and many were 

trained in mathematics. Besides mathematics, the students were taught litera- 

ture, medicine and astronomy. The last two subjects also had a mathematical 

content (medicine because it made use of astrology). Although much of the syl- 
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labus was based on Greek learning, other cultures exerted their influence, most 

notably the Egyptian and Babylonian. Where Greek geometry had coucentrated 

on qualitative relationships, the Alexandrians sought something more quantita- 

tive and applicable to the real world. The inductive spirit of mathematics, the 

‘how to’ recipe approach used in the early Egyptian and Babylonian texts re- 

turned, especially in arithmetic. 

Many of the great geometers taught or studied at the university. It is probably 

at Alexandria, with access to the great library, that Euclid compiled his Elements 

of geometry. The final book of the Elements is the high point of the classical 

study of polyhedra. It contains the fundamental properties of the regular solids 

and presents the mathematics of their construction and basic relationships such 

as comparisons of volume. Such was the prestige of the Euclidean canon that 
other books have been appended to it at various times. The first of these, the 

so-called Fourteenth Book of the Elements, is thought to have been written by 

Hypsicles in the second century BC. He was another teacher at Alexandria. The 
book contains further properties of the regular solids. It is based on work by 

Aristaeus and Apollonius. According to Pappus, these were the mathematicians 

who, together with Euclid, comprised the ‘three geometers skilled in analysis’. 

The preface to book XIv recounts a meeting between Basilides of Tyre and 

the author’s father in Alexandria. 

On one occasion, when looking into the tract written by Apollonius 

about the comparison of the dodecahedron and icosahedron inscribed 

in one and the same sphere, that is to say, on the question what ratio 

they bear to one another, they came to the conclusion that Apollo- 
nius’ treatment of it in this book was not correct; accordingly, as I 
understood from my father, they proceeded to amend and rewrite it. 

But I myself afterwards came across another book published by Apol- 
Jonius, containing a demonstration of the matter in question, and I 
was greatly attracted by his investigation of the problem. Now the 
book published by Apollonius is accessible to all; for it has a large cir- 
culation in a form which seems to have been the result of later careful 
elaboration.* 

It appears that Hypsicles’ father saw an early version of Apollonius’ work and 
that a complete proof was widely circulated sometime later as Comparison of the 
Dodecahedron with the Icosahedron. The theorem attributed to Apollonius states 
that the surface areas of the two solids are in the same ratio as their volumes. 

Aristeaus’ contribution to book XIv is a theorem proved in his now lost work 
The Comparison of the Five Figures. It states that if an icosahedron and a 
dodecahedron are inscribed in the same sphere then the same circle circumscribes 
a triangular face of the former solid and a pentagonal face of the latter. 
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Mathematics and astronomy 

Alongside the development of mathematics, the Greeks laid the foundations of 
another science: astronomy. Many early civilisations observed the heavens in 
order to keep track of time. The positions of the planets and the stars established 
their calendar. The desire to record and map the changes in the sky naturally led 
to the study of the geometry of the sphere. The Pythagoreans, who studied the 
properties of great circles, may not have distinguished between astronomy and 
spherical geometry: the word ‘sphaeric’ applied to both. Plato’s insistence that 
nature could be understood through mathematics, and the idea that the perfect 
heavenly bodies would follow paths based on the perfect figure (a circle) led to 
the development of the epicyclic system. 

Many mathematicians spent some time studying astronomical problems. Eu- 
clid wrote about spherical geometry in his Phaenomena. Hypsicles and Apollonius 

are known as astronomers as well as mathematicians. Apollonius was very famil- 

iar with the epicyclic theory and he determined the points of orbits where planets 
appear stationary. In On the Risings of the Stars Hypsicles used the Babylonian 
division of the circle into 360° and divided each degree into sixty subunits, and 
each of these into sixty, and so on. This was the first time that degrees were men- 
tioned in a Greek manuscript. Unlike the Greeks, who were solely interested in 

exact relationships, the Alexandrians also wanted to use physical measurements. 

This desire to be able to calculate the positions of heavenly bodies led to the 

development of trigonometry—work which was done largely by the astronomer 
Hipparchus of Rhodes. He divided the diameter of a circle into 120 units and 
each of these into sixty, and so on. Using this division and the division of the 
circumference into degrees he made a table of chords—what would be equivalent 
in modern times to tabulating the sine function. 

Much of the work on trigonometry and its applications to astronomy was 

collated by Claudius Ptolemy! (c.100—c.168). His Mathematica Syntaxis is now 
usually known as Almagest after its Arabic title. It was the dominant work in 
its field for many centuries and held authority similar to that of the Elements. 

The geocentric epicyclic theory that it contained was not superseded for over a 

thousand years. 

Besides inventing trigonometry, astronomers tackled another mathematical 

problem: how to make a map of a round object on a flat surface. Hipparchus 

used orthographic (or parallel) projection to produce a map of the heavens, a 

task that involves mapping the hemispherical firmament onto a disc. He possibly 

knew the technique of stereographic projection. This was certainly known to 

Ptolemy, who used it in his Planisphaerium, where he describes the mathematics 

underlying the construction of an astrolabe. 

'Not part of the ruling family. 
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Heron of Alexandria 

As has been remarked above, the mathematics of the Alexandrian period had a 

different bias from that produced by the classical Greeks. It is concerned more 

with practical problems than with pure geometry. One person who exemplifies 

this Alexandrian outlook is Heron (c.62AD). Although Heron was familiar with 
Euclidean geometry, he was not a classical geometer. He was more practically 
minded, an engineer and inventor of great ingenuity. The ancient writers attribute 

many treatises to Heron, some of which survive intact, some only in corrupted 

form after revision by later editors, and others not at all. His works are classified 

into two categories: mathematical and mechanical. The latter class contains the 
Pneumatica which describes his well-known water and steam powered automata, 

Mechanica, and the Dioptra which describes a kind of theodolite used for survey- 

ing. In this last work Heron gives details of an eclipse—information that helps 
to determine his approximate dates. 

The most important of Hercn’s mathematical writings is his Metrica. It 
deals with the measurement of area, progresses to volume measurement, and 

then considers the division of figures into parts of a given ratio. It contains the 
following ‘Heronic formula’ for the area of a triangle: if a triangle has sides of 
lengths a, b and c, and if s = 14(a+ b+ c) denotes half the perimeter then its 
area is given by 

area = 1/s(s —a)(s — b)(s —c). 

It also includes a generalisation of the formula for the volume of a truncated 
pyramid. The solid shown in Figure 3.1 has rectangular base and top lying in 
parallel planes. The sides have lengths a, b, c, d as shown and the height of the 
solid is h. Its volume is given as 

volume = h(4/,(a+c)(b+d) + '2(a —c)(b—d)). 

Problem. Verify this is correct. 

In the main, the results presented in Heron’s compendium are taken from 
works by Greek and Alexandrian mathematicians. They are far superior to the 

ots 
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Figure 3.1. 
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traditions preserved by the Egyptian priests as is apparent from the inscriptions 
at Edfu (see Figure 1.1). Unlike the classical writers, who were satisfied to exhibit 
relationships between quantities, Heron was concerned with numerical answers. 
Intermingled with the accurate formulae, some of which are proved, are others 
which give only approximate solutions. The latter would have appealed to crafts- 
men who would have found extracting roots difficult. Like the Arabs after him, 
who continued the development of algebra, Heron was uninhibited by the re- 
strictions of the Greek geometric algebra. He was happy to consider expressions 
equivalent to our 2? + y or x? x y*—things that would have appalled the Greeks, 
the former being an area added to a length, the other a four-dimensional quantity 
without a geometrical interpretation. 

Pappus of Alexandria 

In the 300 years from Apollonius to Claudius Ptolemy, the only mathematicians 
of significance to our story are Hypsicles and Heron. Other mathematicians 
of the period are known mainly through the writings of commentators; their 

original works have not survived. Pappus, a commentator of the early fourth 

century, has been mentioned in previous chapters because of his Mathematical 

Collection. It is only from this work, for example, that we know the discoverer of 
the Archimedean solids. Pappus also wrote commentaries on the Elements, and 

Ptolemy’s Almagest and Planisphaerium. 

The Mathematical Collection provides us with a lot of information. It is 

a handbook to the classics, a systematic account of the most important works 
f Greek mathematics. It includes historical comments and descriptions of the 

contents of many works now lost. Since he finds it necessary to include these, it is 

likely that many of the works were lost or inaccessible even in his own time. When 
an original text is easily available, Pappus gives alternative proofs or extends the 

results in some way. In book tl, for example, he discusses the regular solids. 

Whereas Euclid’s presentation shows how to construct each solid and then its 

circumsphere, Pappus shows how to inscribe each solid in a given sphere. In 

a later book he considers isoperimetric problems. ‘These involve comparisons 

between figures with boundaries of equal size. For example, he shows that a 

sphere has greater volume than any regular solid with the same surface area. 

Pappus precedes his proofs by an analysis which explains how his construc- 

tions arise. This is unusual for, except for the odd hint, the classical writers 

do not say why subjects were investigated nor how results were obtained. Their 

primary objective was to organise their achievements in a systematic fashion and 

to present the formal polished arguments needed to establish their results. Al- 

though concise, this strict deductive presentation style has some disadvantages. 

It can give the impression that mathematics is created in this way. We should 
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not forget that, before such an account can be written, many experiments have 

been tried and paths explored. Conjecture comes before proof. 

Another problem with the Euclidean style of presentation is that it 1s often 

difficult to see how the proofs were discovered. Even if you can decipher the 

arguments, you may not gain any insight as to how a similar problem could be 

tackled. The proofs of all the propositions in the Elements are synthetic: they 

work on the ‘bottom-up’ principle, starting from what is known and building to 

the conclusion. This provides a good basis for logical arguments but rarely allows 

the reader any hint of the steps that led to it. Very often the reverse process 

was involved. The analytic approach uses the ‘top-down’ philosophy. In this 

case we start with the conclusion and work backwards towards what we already 

know. With luck, all the steps involved can then be reversed. These problems 

with the classical texts may go a long way towards explaining the popularity of 

commentaries. 

Plato’s heritage 

Towards the end of the third century AD interest in Plato’s philosophy began to 

be revived in Alexandria. This Neoplatonism soon spread. Plotinus, its founder, 
travelled to Rome and set up his own school; others took it to Greece and Con- 

stantinople. lamblichus, who was considered a leading authority on Neoplatonism 
for 200 years, introduced a mystical interpretation of some concepts and placed 

an increased emphasis on religious observance. 

The last great Neoplatonist was Proclus. Educated at Alexandria, and by 

Plutarch at Plato’s academy, he later became head of the academy whence he 

received the title ‘Diodochus’, meaning successor. He wrote commentaries and 

critiques on many aspects of Greek culture. His commentary on the first book 
of Euclid’s Elements is invaluable because of its historical passages. He had 
access to many works that have not survived, including the history of geometry 

written by Eudemus and the historical passages in Geminus’ work. He also wrote 
commentaries on many of Plato’s dialogues, including the Timaeus and Republic. 

The Timaeus became one of the most influential works written in antiquity. 
The importance of the original text declined as Greek became less widely un- 
derstood. The language was lost in the West after the separation of the Roman 
empire; in western Asia it became replaced by Syriac. However, the first part 
of Plato’s dialogue passed into Europe in Chalcidius’ Latin version and another 
fragment preserved by Cicero. The Platonic message appealed to many thinkers 
of the Dark Ages and had a strong influence on religious thought. The mixture 
of rational explanation and teleology, and its creator god, fitted well with Chris- 
tian notions and many Platonic ideas were introduced into Christianity. In the 
West this was largely the work of Augustine but Byzantine scholars had a similar 
influence in the East. 
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Copies of Chalcidius’ work could be found in the libraries of many medieval 
monasteries. ‘The monks also kept Neoplatonic works written by Boethius (¢.475-— 
524). He was a Roman, educated in both Latin and Greek, and is best known for 
his book On the Consolation of Philosophy. He also translated most of Aristotle’s 
work on logic into Latin as well as some fragments of Euclidean geometry and 
Nichomachus’ Arithmetic. The paucity of the works is illustrated by his geometry 
text: it contains statements of a few propositions from books 1, 111 and Iv of 
the Elements without proof. Later, these came to be considered the height of 
mathematical achievement. 

The decline of geometry 

In the sixth century, a second book became added to the Euclidean canon. Like 

Euclid’s book x1 and Hypsicles book xIv, this so-called book Xv contains further 

propositions on the regular solids. It has three parts which seem to have been 
written at different times. The first part, which may have been around in Pappus’ 

time, describes how some regular solids can be inscribed in others. In the second 
part the numbers of edges and solid angles of the five solids are given. The third 
part shows how to calculate the dihedral angle between the faces of any Platonic 

solid. This is done by constructing an isosceles triangle whose apex equals the 
dihedral angle. The rules for drawing these triangles are attributed to ‘Isidorus 
our great teacher’. This refers to Isidorus of Miletus, one of the architects of the 
great church of Saint Sophia in Constantinople. He also had a school in the city 
and wrote commentaries on the Elements. 

The fifteenth book does not reach the high standard of the work to which 
it is appended. Mathematics in general, and geometry in particular, had begun 
to decline about the beginning of the first century AD. Few new results were 
obtained and mathematicians were reduced to studying the works of their pre- 
decessors, finding alternative proofs, or filling in gaps where manuscripts had 
been lost. The Greeks had concentrated on geometry and had restricted this to 
deductions from the properties of lines and circles. ‘The main reason for doing 

this was to solve the problem of existence: objects could be constructed using 

simple operations to ensure that definitions were consistent. This narrowness of 

vision and the insistence on completeness allowed a thorough examination of a 

small field to be conducted. But the Greeks’ conception of mathematics had se- 

vere limitations. They valued the aesthetic beauty of abstract mathematics and 

wanted their knowledge to be secured on the solid foundations of obviously true 

axioms. This led them to reject any notion that involved the infinite whether 

it be infinitely large or infinitessimally small objects, or endless processes. Even 

the length of the diagonal of a unit square was never fully accepted as a number, 

Irrational quantities were limited to geometric interpretations. Thus Greek con- 

tributions were mainly in the areas of number theory and geometry. ‘They mined 
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the vein of line and circle geometry so thoroughly that it was hard to see how to 

continue. Further progress in the same direction was very difficult. 

The Alexandrians, and those who followed them, had to broaden their outlook 

in order to proceed. Geometry continued to be studied but it did not make any 

major advances. Instead, people concentrated on arithmetic and algebra (subjects 

where the Greeks felt inhibited) and trigonometry, the mathematics motivated by 

astronomy. These were young subjects for investigation and could be advanced 

relatively easily. 

With the rise of Alexandria, the Greek schools had gone into decline. The 
Romans, who controlled central and northern Italy and the Greek colonies in 
southern Italy and Sicily, conquered Greece in 146BC, and Mesopotamia in 64BC. 
Unable to ignore a major power on the north African coast, they attacked Alexan- 
dria. Part of the library was destroyed when they set fire to the Egyptian fleet 
at harbour in the city. Some of the manuscripts escaped this tragedy only to 
be destroyed later by Christian and then Moslem raids on the city. The first of 
these was a consequence of Theodocius’ order in 392 to destroy Greek temples 
throughout the empire. The spread of Christianity had led Constantine to adopt 
it as the official religion, giving the Christians greatly increased influence. Op- 
posed to any pagan learning (which included much Greek thought) they sought 
to eradicate it. Plato’s academy lasted until 529 but this, too, came to an end 

when the Byzantine emperor Justinian closed all the Greek schools. 

The rise of Islam 

The fall of the Roman empire in the mid-fifth century signalled Europe’s descent 
into the Dark Ages. East-West trade ceased, engineering projects lay abandoned, 
many skills were forgotten. The Church became a powerful body and exerted its 
influence on many aspects of life. Latin, the language of the Church, became the 
language of scholarship. A tiny remnant of the former learning was preserved in 
the monasteries but there was a general disinterest in the physical world. 

Spiritual concerns were not confined to Europe. The seventh century wit- 
nessed intense religious fervour in Africa and western Asia. As Europe was being 
overrun by Huns, Goths and Vandals, the Arabs united under Mohammed and 
began to build the Islamic empire. The capture of Egypt and Alexandria in 640 
meant many of the remaining manuscripts were burned. Most of the scholars fled 
the city. Many, seeking relative safety, travelled to Constantinople taking their 
precious manuscripts with them. 

By 642 the Moslem conquest of Persia was complete. During the next hundred 
years Islam spread east across India to the Chinese border and west across north 
Africa and southern Italy to Spain and southwest France. The early political 
centre of this empire was at Damascus. In 755 the empire split into two kingdoms: 
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the Umayyad caliphate reestablished itself in Cordoba in southern Spain and the 
Abbasids remained in the East. The second Abbasid caliph, al-Mansur, moved his 
capital to Bagdad. The city was to become a flourishing cultural and intellectual 
centre—a new Alexandria. The ambitious programme was carried out by caliphs 
Harun al-Rashid and al-Mamun. They erected a library, an observatory, and an 
institute for translation and research known as the ‘House of Wisdom’. Together 
these housed some of the greatest scholars of the period. Here, they had access 
to all the major Greek works, either in Greek or as translations into Syriac or 
Hebrew. The empire subsumed any Alexandrian learning that had survived. 
People were sent to seek out and buy manuscripts in foreign lands. In fact, 
manuscripts were so highly prized that al-Mamun obtained them as part of peace 
treaties. The classical works of science and mathematics were translated and 
became part of the Arabic heritage. 

Moslem geometry owes most to writers like Euclid, Archimedes and Heron 

but other civilisations also had things to contribute. For example, an approximate 

construction for a regular heptagon in its circumcircle is known as the Indian rule 
which may indicate its origin. The side of the heptagon is taken to be the altitude 
of one of the six equilateral triangles forming a hexagon inscribed in the same 
circle. (Recall that an exact construction for this polygon using the Euclidean 
tools is impossible. ) 

Thabit ibn Qurra 

One outstanding translator, who also made original contributions to algebra and 
geometry, was Thabit ibn Qurra (836-901). He belonged to the Mandaean sect 
whose astrology had much in common with that of the Babylonians. The Man- 
daeans produced many astronomers and mathematicians. Thabit’s gift for lan- 
guages and his mathematical ability gave Arabic some of its best translations. 
They also include fine illustrations. Where men less skilled in mathematics copied 
manuscripts they carefully left spaces for diagrams but, unfortunately, many have 

not been drawn in. 

Thabit’s Kitab al-Mafrudat (Book of data) was very popular during the Mid- 

dle Ages and was included in a compilation volume by Nasir al-Din al-Tusi, 

together with the Elements and the Almagest. It contains problems in elemen- 

tary geometry, geometric algebra and some constructions. Another work, Kitab 

fi Misahat al-Ashkal al-Musattaha wa’l-Mujassama (Book on the Measurement of 

Plane and Solid Figures) contains rules for computing the areas of plane figures 

and the surface areas and volumes of solids. It contains a rule by Thabit (though 

his proof has not survived) for calculating the volumes of truncated pyramids and 

cones. If A and B are the areas of the base and the top, and h is the height of 

such a solid then its volume is given by 
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volume = !/3h (A+ VAB +B). 

He also wrote on the ‘construction of a circumscribed solid with fourteen faces’— 

the cub-octahedron. 

Abu’l-Wafa 

The last great representative of the Bagdad school of mathematicians was Abu’l- 

Wafa (940-998). Of Persian descent, he moved to Bagdad in 959. His work 
Kitab Fi Ma Yahtaj Ilayh al-Kuttab Wa’l-ummal Min Il]m al-Hisib (Book on 

What Scribes and Businessmen Need From Arithmetic) was very popular. In it 
he sets out the methods of calculation used by merchants and finance clerks in a 

systematic manner. He also gives some methods used by surveyors and ridicules 

the 1(a + b)'/(c + d) rule for the area of quadrilaterals. He remarks that it is 
obviously incorrect and rarely corresponds to the truth. 

Another of his works, the Kitab Fi Ma Yahtaj Ilayh al-Sani Min al-Amal al- 

Handasiyya (Book on What the Artisan Needs From Geometry) describes two- 

and three-dimensional constructions. Some of them are original but many are 
taken from Euclid, Archimedes, Heron and Pappus. He includes constructions 
of Platonic and some Archimedean polyhedra in their circumspheres. Most con- 
structions are exact and use the Euclidean tools but a few are good approxi- 

mations such as the construction of a heptagon. However, Abu’l-Wafa is best 
known for his constructions using straight edge and compasses of fixed opening. 
These so-called rusty compass constructions had been studied earler but he con- 
ducted an extensive exploration of the field solving a large number of problems. 
The inclusion of these constructions in a book for craftsmen is easily explained— 

in practical applications they are more accurate than the standard Euclidean 
methods. 

Europe rediscovers the classics 

At the turn of the eleventh century, Christianity began to surge back in northern 
Spain, and the East was overrun by the Seljuk Turks. The following two centuries 
also saw the crusades. ‘Through these, and the revived Mediterranean trade 
routes, northern peoples came into contact with many new ideas. They also 
became aware of the ancient Greek learning. As knowledge of the Greek classics 
began to filter into western Europe, scholars travelled to Africa, Spain, and the 
Near East to buy manuscripts. They sought both Arabic translations of Greek 
texts and Moslem learning. Much of it became easily accessible when Toledo was 
recaptured by the Christians in 1085. Like the ninth century, the twelth century 
became a century of translation. Latin versions of works by Euclid, Ptolemy, 
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Aristotle, and Archimedes soon appeared. Just as the Moslems had sought out 
scientific works, the Europeans also concentrated on science paying little attention 
to literature. 

This influx of Greek learning led scholars to examine the physical world 
around them. Attempts at rational explanations of phenomena became increas- 
ingly more common. Although the first half of the Timaeus had been available in 
Latin since the fourth century, it had not attracted much attention. Now it was 
studied in the cathedral schools and the Platonic vision of understanding nature 
through mathematics reinforced their new way of looking at the world. Chalcid- 
ius’ translation did not include Plato’s own geometric theory of the universe—his 
atomic theory based on the regular solids. The principal source of knowledge of 
this theory came from Aristotle’s criticism in De Caelo et Mundo. This was trans- 

lated into Latin in the early thirteenth century and Aristotle’s vigorous attack 
was almost universally accepted. 

A part of the Timaeus that medieval scholars found more relevant was Plato’s 
discussion of light and vision. The science of optics was virtually unknown in 
medieval Europe but by the Renaissance it had become a university subject. 

Optics 

Speculation on the nature of light and vision goes back to antiquity. Greek 

thought on the subject was collected by Euclid in the third century BC and 
recorded in his Optica. It postulates that light travels in straight lines, and that 

light rays connect the eye and the object being observed. ‘The phenomenon of 
sight was explained in various ways by different schools of philosophy. Some 
proposed that the eye was a source of light rays which then interacted with the 

object; others that the object itself emitted an image-like essence which radiated 
in all directions carrying the form of the object to the eye. Euchd, however, 
does not concern himself with the physiology of sight, but concentrates on the 

geometry. Irrespective of the mechanism involved, if light travels in straight lines 
then the rays which convey the image of an object to the eye can be thought of 

as a pyramid or cone with the eye at the apex and the object as the base. The 

principles of geometry can be applied to this pyramid, and Euclid showed that 

the apparent size of an object depends on the angle at the apex. ‘The larger the 

angle, the larger the object appears to be. 

Claudius Ptolemy also wrote on optics. He discussed reflection and mirrors, 

and refraction. He was also interested in the perception of colour. He noted that 

light rays reflected from a surface take on its colour, and that the more distant 

an object is, the duller it appears. Artists of his day made use of the latter 

phenomenon applying bright colours for near objects and darker shades for those 

farther away. This technique is now called atmospheric perspective. 
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The Moslems investigated mirrors and lenses, spherical aberration, and the 

formation of rainbows. The most influential writer was Abu ali al-Hasan ibn al- 

Hasan ibn al-Haytham (965-1040), known in the West as Alhazen. He maintained 

that light was produced by the sun and candles, and that when an object is 

illuminated by such a source some of the light is reflected towards the eye. Despite 

much experimentation, he was unable to fully explain the properties of refraction. 

However, he used the phenomenon to give an explanation of the visual process. 

Drawing on the writings of Aristotle, Euclid, Ptolemy and Galen, he used the 

visual pyramid and the laws of optical geometry to show how an image could be 

conveyed into the eye from where the form of the object can be recognised by the 

brain. Alhazen’s book Kitab al-Manazir was introduced into Europe in a Latin 

translation entitled Perspectiva. Around 1265 John Peckham wrote Perspectiva 

Communis, which was essentially a summary of Alhazen’s work. It was very 

popular and achieved a wide circulation. 

At this time the Latin word ‘perspectiva’ referred to the study of optics and 
visual perception. It was not concerned with what we think of as perspective: an 

artistic technique for representing space on a flat surface. Later, the notion that 
viewing a painting should be like looking through an open window was connected 
with the visual pyramid of light rays converging on the eye. Mathematics was 
then applied to justify the artistic process: if a painting is to be a cross-section 

of the visual pyramid then natural perspective (optics) explained the geometric 

constructions used in artificial perspective (art). As we shall see below, art was 
one of the important factors in the rediscovery of solid geometry. 

Campanus’ sphere 

The twelth-century translations of scientific and mathematical works were mainly 
from Arabic sources. Translations of the Elements were made by people such as 

Adelard of Bath and Gerard of Cremona. Gerard’s translation was one of the 
better versions since he used one of the best Arabic sources—a translation made 
by Thabit. However, the most widely used edition of the Elements until the 
Renaissance was not a direct translation. It was written in the late 1250’s by 
Campanus of Novara and is a reworking of several earlier editions. At least one 
of his sources seems to be based on Adelard’s translation. Campanus was a 
competent mathematician who understood and communicated Euclid’s geometry 
well. His clear exposition of all fifteen books became the version of Euclid read 
in the Middle Ages and, subsequently, the first to appear in print. It retained its 
position as the definitive version of the Elements until translations from Greck 
sources appeared in the sixteenth century. 

In proposition 17 of book x1 Euclid shows how to construct a polyhedron 
sandwiched between two concentric spheres. (He goes on to apply Eudoxus’ 
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method of exhaustion to this setup to show that the volume of a sphere varies 
as the cube of its diameter.) The construction produces a polyhedron with n 
rings, each containing 2n faces. So the polyhedral sphere has 2n? faces in total. 
The 72-faced example (shown in Figure 3.2) obtained by taking n to be six was 
described by Campanus. During the Renaissance this polyhedron attained a 
status and popularity equal to that of the Platonic solids, as we shall see later. 
The construction of this polyhedral sphere is outlined below. 

Proposition. How to construct a polyhedron which approximates a sphere. 

Let N aiid S be the North and South poles of a sphere and let C be its 

equatorial circle. Inscribe in C a regular polygon with an even number of sides, 
say 2n. We can now construct n circles, each of which passes through the two 
poles and two opposite corners of the equatorial polygon. Into each of these 

circles we can inscribe a regular 2n-gon so that the points N and S appear as 

corners. These correspond to lines of longitude on the sphere. The polyhedron is 

completed by connecting up the vertices of these n polygons with lines of constant 

latitude in planes parallel to the equator. The result when n = 6 is shown in 

Figure 3.2. & 

Figure 3.2. A polyhedron which approximates a sphere. 

Collecting and spreading the classics 

The thirteenth century saw the new universities replace monasteries as the cen- 

tres of learning. The writings of Aristotle became very popular and the revived 

interest in mathematics was transferred to the study of scholastic physics. At 

this time, trade across the mediterranean increased and Italy became the gate- 

way into Europe. Goods from Asia and north Africa entered its seaports, and the 
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banking houses made it a great financial centre. The great wealth this produced 

supported the advance of learning and the arts. 

The passion to rediscover the classics of antiquity led to the rapid growth of 

libraries in the fifteenth century. These collections, much larger than the libraries 

of the Middle Ages, had a strong bias towards classical works and ‘included many 

Greek manuscripts. This was particularly true in the case of mathematics texts. 

Whereas medieval collections contained only Euclid and Archimedes in Latin 

translation, the humanists assembled an almost complete corpus of mathematical 

writings including works by Apollonius, Heron, Proclus and Pappus in the Greek 

language. This endeavour was greatly assisted by the collapse of the Byzantine 

empire. The fall of Constantinople to the Turks in 1453 led to a flood of scholars 

fleeing to Italy bringing their treasured manuscripts with them. 

The fifteenth century also witnessed many other changes in Europe. The 

secrets of making paper and gunpowder arrived from China. Gunpowder radically 
altered the nature of warfare and fortifications had to be redesigned. The study of 
projectiles also became important. Paper replaced parchment and combined with 
the invention of printing with movable type to produce a revolution in the spread 

of information. Although books by both ancient and contemporary writers were 
printed daily in Venice, it was thirty years before a mathematics text appeared. 

This was partly due to the difficulty of printing diagrams but this problem was 
overcome by Erhard Radolt. In 1482, Campanus’ version of the Elements became 
the first mathematics book off the press. 

The restoration of the Elements 

The first translation of the Elements from a Greek source was made by Bar- 

tolomeo Zamberti (1473-c.1539) and printed in 1505. Zamberti sought to restore 
the Elements to their original condition and heavily criticised Campanus for his 
inaccuracies. He realised that books xIv and Xv were not part of the original 
corpus and thought both had been written by Hypsicles. Zamberti’s attack on 
Campanus and his poor grasp of mathematics prompted retaliation. Campanus’ 
edition was defended by Luca Pacioli, who revised it and republished it in 1509. 
Pacioli thought the source of the errors in Campanus’ text did not rest with the 
author but was to be found in the manuscripts he had available: careless copyists 
introduced many mistakes, especially into diagrams. 

Even though Zamberti worked from Greek sources and tried to produce a 
faithful translation, he failed to spot errors in the mathematics. The inade- 
quacy of Zamberti and other translators as mathematicians led to the realisation 
amongst many scholars that good translations of mathematics texts were still 
desperately needed. Ideally, these new translations should be made by mathe- 
maticians who knew Greek. It is part of the beauty of mathematics that the 
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restoration of mathematical texts is possible at all. Translators in other fields 
perpetuated the errors in corrupted texts, often without recognising the faults. 
This was also the case in mathematics, where few translators were expert in 
the field. But the logical development and internal consistency of mathemat- 
ics makes it clear when something is amiss. These same features also allow the 
original meaning of a text to be recovered even if the original words are lost. 

The desire to revive the study of mathematics and repair the ancient texts be- 
came an obsession for many Italian mathematicians. Francesco Maurolico (1494- 
1575) was one such man. His father had left Constantinople and settled in Sicily 
where he taught his son mathematics and astronomy. Maurolico’s knowledge of 
Greek and mathematics meant he had both the linguistic and technical skills to 
reconstruct the classical texts. His translation of the Elements covered all fif- 
teen books but, sadly, his labour contributed little to the revival of mathematics. 

Nearly all his work exists in manuscript form but only books xt to XV on solid 

geometry were published after his death. The translator whose edition of the Ele- 
ments made the biggest impact was Federigo Commandino (1509-1575). He was 
one of the leading translators and editors of Greek classics in the sixteenth cen- 
tury. His version of the Elements was printed in 1572 and it dominated geometry 
until the nineteenth century. 

A new way of seeing 

The new way of looking at the world which arrived with the rediscovery of ancient 
knowledge influenced art. As graven images are condemned in the Bible, the 
decoration allowed in the early churches was strictly limited. Its purpose was 

to glorify God, and Biblical themes were very popular. Paintings were used to 
educate as well as decorate. Many of the Church’s members were illiterate and the 

pictures served as reminders of its teachings. They had to narrate a story simply 
and clearly, concentrating on the essential elements. Generally, the paintings 

have a gold background indicating that something special is happening. The 
scene is not natural, rather something supernatural or miraculous. ‘The characters 

which inhabit these paintings are stiff. They show no emotions and seem lifeless, 

even weightless—a quality which adds to their ethereal appearance. The Greek 

mastery of motion and expression is completely absent. Where there is variation 

in height it conveys the relative importance of objects or some social hierarchy: 

the saints are depicted larger than the people. 

The infusion of classical learning into Europe during the twelth and thirteenth 

centuries, with its emphasis on man and the universe, stimulated artists and 

scholars to study their surroundings. Their new interest in nature and their 

attempts to record it revealed the lack of realism in their art. They became 

aware of the lifelessness of their pictures. Gradually the solid gold backgrounds 
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were replaced by blue, and other features were introduced to suggest a location, 

a room interior for example. Shading was used to give the impression of volume. 

In their early attempts to convey solidity, painters depicted objects as they 

were experienced rather than as they actually looked. A rectangular table would 

be shown as in Figure 3.3(a). The object is drawn as though seen from many 

sides simultaneously instead of from a single fixed viewpoint. This produces a 

result in which there is a diminution in size towards the observer. In contrast 

to the optical perspective which was to come, this tendency is sometimes called 

inverted, or reversed, perspective, although there is no systematic reduction in 

scale as there is in the later mathematically-based system. 

Diagrams of this form continued to be used in mathematical and scientific 
treatises long after optical perspective was introduced into art. A cylinder, for 
example, would be illustrated as shown in Figure 3.3(b) where its most notable 
characteristics, circular ends and parallel sides, are combined. 

r yl OC 
(b) 

Figure 3.3. 

This portrayal of subjective experience gave way to a more objective ap- 

proach. The artist became detached from the scene and observed from a single 
viewpoint rather than imagining himself involved in it. The compositions showed 
more purposeful arrangements of objects and consistency in their spatial relation- 

ships; they were no longer viewed as collections of separate objects, each dealt 
with independently. 

By the fourteenth century, artists had achieved realistic representations of 
space. Objects had mass and volume, and depth was convincingly portrayed. 
There was an intuitive feeling of the geometrically precise perspective to come. 
Lines that were above eye-level sloped downwards as they receded; those below 
eye-level sloped upwards. Lines to the left of centre moved to the right as they 
went into the distance; those on the right inclined to the left. These general 
principles meant that lines which, in reality, were parallel to each other and skew 
to the picture plane, showed a tendency to converge, although not always to a 
single point. Despite what we would regard as a high degree of inaccuracy in these 
constructions, a satisfactory illusion of space can be obtained by following these 
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simple rules of convergence. Oblique views of buildings became popular settings 
because the converging lines they contain produce a strong three-dimensional 
effect. Giotto and Duccio often achieved a good impression of space in this way. 
They were among the first artists to display substantial-looking buildings with 
convincing structures. 

Over this period the idea that a painting should be like a window evolved. The 
observer looking at a canvas should not see a flat image representing the world, 
but rather see through the canvas, as through an open window, to a scene beyond. 
Painters aspired to produce a truly three-dimensional illusion, to portray space 
and not merely suggest it. The ultimate illusion was performed in public on the 
steps of Florence cathedral some time in the first quarter of the fifteenth century. 
In a now famous demonstration, Filippo Brunelleschi (1377-1446) exhibited a 
picture which not only looked realistic but which actually produced the same 
image in the eye as did the real scene. He had painted a picture of the baptistry 
reflected in a mirror so that his painting was a mirror image of the actual building. 
He made a small eye-hole in the board and invited people to look through the 
eye-hole from the back of the board at the real baptistry. He then held a mirror 
in front of the painting so that the observer saw a reflection of the painting. By 
removing and replacing the mirror the observer could compare the painting with 

the real scene. We do not know what motivated Brunelleschi nor how he created 
his picture. However, the results were so convincing that this event is now taken 
to mark the beginning of perspective theory in art. 

Perspective 

Up until the middle of the fifteenth century, the Latin word ‘perspectiva’ was not 
used in connection with artistic attempts to represent space. Earlier treatises on 

the subject dealt with natural perspective, that is, optics and visual perception. 
None were concerned with representing space on a flat surface. At some time, the 

notion that viewing a painting should be like looking through an open window 
must have been connected with the idea of a visual pyramid of light rays con- 

verging on the eye: for the eye to receive the same impression from a painting as 

from the original scene, the picture must be a cross-section of the visual pyramid. 

As an architect, Brunelleschi would have been familiar with making ground 

plans and elevations of buildings. Given the desire to construct a ‘realistic’ pic- 

ture, the information in such plans is sufficient to construct geometrically the 

intersection of a picture plane and visual pyramid. One merely needs to add the 

position of the observer and the picture plane to the plans (see Figure 3.4). Then 

the ground plan (the scene viewed from above) is a horizontal section through 

the visual pyramid, and the elevation (the side view) is a vertical section through 

the pyramid. The picture plane is a transverse section through the pyramid and 
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appears as a line on both plans. The lateral position of a point in the picture 

can be read off from the ground plan, and its height from the elevation. Combin- 

ing these two pieces of information allows the image of the point to be located 

precisely on the picture plane. 

The completed image is dependent on the position of the observer. As the 

distance from the observer to the building changes, the view of the building 

alters in response. The distance of the picture plane from the observer does not 

affect the perspective construction—only the size of the image changes, not its 

proportions. It is this that is the essence of linear perspective. However, the 

distance of the picture from the observer is vital when it comes to viewing the 

resulting painting. If the picture is to produce the same image in the eye as the 

real scene then the eye has to be placed at the apex of the visual pyramid. Thus, 

if a realistic effect is to be achieved, the ratio of the width of the picture to its 

distance from the observer must be the same for both the construction and the 

final viewing. 

After constructing several of these images some shortcuts become apparent. 
Any lines parallel to the picture plane are undistorted; parallel nes which are 

skew to the picture plane converge and meet in a single point. Furthermore, 

all such vanishing points lie on a single line—the horizon. Whether or not 
Brunelleschi went through a process such as this when he discovered artificial 

perspective, this kind of technique was described in later manuals for artists. 

Early perspective artists 

For sometime after Brunelleschi’s demonstration, the techniques of perspective 

painting were passed from one artist to another. The systematic rules are easily 
learned and applied to produce realistic looking structures. However, their use 

does not guarantee aesthetically pleasing or artistic results. Perspective accuracy 

is only one factor influencing the overall impression given by a painting. Achiev- 
ing a unified and balanced composition is far more important than constructing a 
strictly mathematical diagram. Among the first to use perspective constructions 
were Brunelleschi’s friends Masaccio, Masolino and Donatello. Masaccio quickly 
found that strict perspective can give harsh results and he made instinctive ad- 
justments to the rigid formulae to produce more comfortable compositions. Other 
fifteenth-century artists also felt free to accept or ignore perspective as their com- 
positions required. It is the talent of great artists to know when and how to break 
the rules. 

The overpowering impression of depth which can result from strict application 
of perspective can be opposed in a variety of ways. The sense of depth can be 
lessened by reversing the atmospheric perspective—applying bright colours for 
distant objects, dull colours for near ones. Another technique is to choose the 
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Figure 3.4. Using a plan-and-elevation diagram to construct a perspective 

view. 
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vanishing point so that it lies behind (and therefore within the outline of) an 

object in the painting, thus preventing the eye from being drawn into the distance 

by the orthogonals. In fact, a strategic choice of vanishing point can be used to 

control the viewer’s focus of attention. The eye follows the converging orthogonals 

to their natural limit point. If the point of convergence coincides with the main 

centre of activity, it emphasises its importance. Alternatively, if the vanishing 

point is placed some distance from the natural focus, it can highlight a detail 

that might otherwise be overlooked, or create a feeling of conflict and tension. 

We must remember not to regard the introduction of perspective as merely an 
improvement in technique. Masaccio loved to paint naturally falling drapery but 

earlier artists could have looked at drapery for themselves. It is not the artists’ 
technique which changed so much as their intention. The change in artistic style 

came about because they had a new way of seeing the world. 

Leon Battista Alberti 

The conversion of plans and elevations to perspective drawings is a laborious 

process, and it is not particularly well suited to imaginary scenes. A simpler 
construction method was described by Leon Battista Alberti (1404-1472) in his 
De Pictura written in 1435. This was the first treatise to explain the theory and 

constructions of artificial perspective. Alberti’s audience for this Latin volume 

comprised the patrons of the arts. A companion volume in Italian Della Pittura, 

which appeared the following year, addressed the artists themselves. Through 

these works Alberti made the techniques of the new art accessible to many other 
artists. 

Although he uses optical geometry in his treatises, Alberti expresses the ideas 
in terms that would be familiar to craftsmen, not in the abstract terms of math- 

ematicians. 

I wish it to be borne in mind that I speak in these matters not as a 

mathematician but as a painter. Mathematicians measure the shapes 

and forms of things in the mind alone and divorced entirely from 
matter. We, on the other hand, who wish to talk of things that are 
visible, will express ourselves in cruder terms.° 

This approach soon becomes apparent, as does the influence of Euclid. His first 
definitions paraphrase the beginning of the Elements. A mark is anything visible 
to the eye; a point is a mark which cannot be divided into parts; a line is a mark 
whose length can be divided but whose width cannot be split; many lines close 
together like threads in cloth form a surface. 

In order to paint as though the picture were an open window, it is essential 
to be able to judge the position and scale of all the objects in the painting. 
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Alberti established the size and location of objects on a canvas by marking out a 
tessellated pavement to act as a reference grid. The pavement, which is sometimes 
called the ground plane, is regularly subdivided and diminishes correctly as it 
recedes into the distance. It determines the position and proportion of the other 
objects in the scene. The fundamental axiom of perspective is that the image 
of an object is reduced linearly—its proportions remain the same, only the scale 
changes. 

The pavement forms the heart of Alberti’s method so it is fundamental to 
be able to construct it correctly. This is precisely the problem which earlier 
artists had failed to solve adequately. One method in common usage was to make 
constant ratios between adjacent rows of tiles—take a third off the depth each 
time. Alberti’s geometrically-based method which replaced this became known 
as costruzione legittuma—the legitimate construction. 

Paolo Uccello 

The new perspective geometry applied most naturally to objects composed of 

straight lines and plane surfaces. Although the principles of perspective are sim- 

ple, applying them can have problems. As a result the kinds of physical spaces and 
objects which artists dared to tackle were greatly simplified. Fifteenth-century 
pictures contain many more right angles and straight lines than appear in nature 
or earlier paintings. Buildings still provided popular backdrops: external archi- 
tecture and room interiors could be constructed easily and accurately. In some 

cases the grid described by Alberti as part of the construction process appears as 

a patterned floor or pavement in the finished painting. 

Besides buildings, another source of rectilinear objects was provided by solid 

geometry. Polyhedral objects and frameworks were frequently used as exercises 
in perspective construction. Paolo Uccello (1397-1475) took great interest in 
geometry and perspective. He devoted much of his time to the study of per- 

spective problems, constructing complex objects in great detail. In his Lives of 

the Painters, Sculptors and Architects the biographer Giorgio Vasari (1511~1574) 

writes of Uccello 

When Paolo showed his intimate friend, Donatello the sculptor, maz- 

zocchi [polyhedral tori] with projecting points and bosses, represented 

in perspective from different points of view, spheres with seventy-two 

facets like diamonds, and on each facet shavings twisted round sticks, 

with other oddities on which he wasted his time, the sculptor would 

say, “Ah, Paolo, this perspective of yours leads you to abandon the 

certain for the uncertain; such things are only useful for marquetry, 

in which chips and oddments, both round and square, and other like 

things are necessary.’ 
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Vasari was of the opinion that Uccello spent too much time on his perspective 

constructions and that his paintings would be improved if he devoted himself to 

animals and figures in the same way. Notice also the reference to Campanus’ 

sphere. 

Between 1426 and 1431 Uccello was in Venice. It is thought that he was 

involved in designing the patterns in the floor of the Basilica of San Marco. 

Some of the designs have a striking three-dimensional quality due to the careful 

juxtaposition of contrasting shades of marble. In one of the doorways at the 

west end is a panel showing a polyhedron surrounded by a necklace of hexagonal 

prisms (see Plate 7). This design is often attributed to Uccello. 

Polyhedra in woodcrafts 

In the above quotation from Vasari, Donatello mentions perspective in association 

with marquetry. Wood was a popular medium in which the new art was expressed. 
The intarsia craftsmen excelled in the study of perspective, so much so that they 
were often called ‘maestri di prospettiva’. Many inlaid pictures survive to show 

their virtuosic skill. The early panels depicted simple geometrical objects or views 

of buildings in perspective. Some motifs became so popular they were a kind of 
trademark. The relatively simple forms of polyhedra were a favourite theme. 
The Platonic solids and some Archimedean solids were used, as was the 72-faced 

sphere described by Campanus. Another common object was the mazzocchio—a 
kind of polyhedral torus. An example is included in Figure 3.5. The name is 

derived from a form of headwear. Other popular motifs were books, scientific 

instruments such as armillary spheres, and musical instruments like the lute and 
the organ. 

Figure 3.6 shows a still-life design for a marquetry panel by a Florentine 
craftsman, dating from about 1470. To make the construction more difficult, thus 
showing greater skill and technical proficiency with the new techniques, hollow 
forms of the polyhedra were used so that the faces at the rear were made visible. 

These frameworks of edges are called skeletal polyhedra. Polyhedra inscribed in 
each other were also used. These combinations of polyhedra were taken up by 
carvers of wood and ivory. They placed polyhedra inside each other so that the 
smaller ones were imprisoned by the larger ones but rotated freely. 

The best surviving examples of intarsia are in Verona and Urbino. Fra Gio- 
vanni da Verona created some magnificent panels in the choir-stalls and the sac- 
risty in the church of Santa Maria in Organo, in Verona. Two of the scenes in 
the sacristy contain perspective pictures of polyhedra.2 One, containing Cam- 
panus’ sphere, an icosahedron and its truncated form, is shown in Plate 6. The 

*If you want to see them, you will need to ask to be shown the sacristy. 



POLYHEDRA IN WOODCRAFTS Nag 

Courtesy of the Ministero per i Beni Culturali e Ambientali, Urbino. 

Figure 3.5. A panel from Duke Federigo’s study in his palace at Urbino. 

other panel also contains skeletal forms: an augmented cube, an augmented icosi- 
dodecahedron, and a cub-octahedron. 

Duke Federigo’s study in the palace at Urbino is lined with marquetry panels, 

attributed to Baccio Pontelli. Some depict open cupboards containing things such 

as musical and scientific instruments, and books. The one shown in Figure 3.5 

contains a polyhedral torus. Other examples of these mazzocchi can be found in 
the choir-stalls of Modena cathedral. 

There are also examples of polyhedra in the royal palace at El-Escoriel just 

outside Madrid. The palace was erected by Philip 11 (1527-1598), who is said to 

have excelled in mathematical studies as a young prince. ‘The doors to the throne- 

room at the palace were a gift from his father-in-law, Maximilian 1. They were 
ornately carved and inlaid by German craftsmen. The intarsia panels contain 
some of the typical elements (lutes, books) and some polyhedra. 
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Courtesy of The Art Museum, Princeton University. Gift of Frank Jewett Mather, Jr. 

Figure 3.6. A fifteenth-century still-life design for a marquetry panel. 

Piero della Francesca 

The principles set down by Alberti which allowed artists to produce realistic repre- 

sentations of space are not sufficient to enable complex designs such as polyhedra 

to be constructed. Although the methods for constructing polyhedra accurately 
were not included in Della Pittura, it is clear that techniques for doing so were 
known, certainly in the second half of the century if not before. They were first 
written down by Piero della Francesca (c.1410-1492), and after this, perspec- 
tive constructions of polyhedra became a standard feature of painters’ manuals. 
Vasari wrote of him: 
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Piero was, as I have said, a diligent student of his art who assiduously 
practised perspective, and had a thorough acquaintance with Euclid, 
so that he understood better than anyone else all the curves in the 
regular bodies and we owe to him the fullest light that has been thrown 
on the subject.4 

In the early 1470’s Piero gave up his career as an artist and concentrated on 
his studies of the mathematical theory of perspective. His work De Prospettiva 
Pingendi was written some time between 1482 and 1487 but the ideas it contains 
were formed much earlier. He describes two methods of converting plan views 
of objects to perspective views in a picture plane. One of these is similar to the 
method described above by which Brunelleschi might have constructed perspec- 
tive views of buildings. Piero’s other method is an extension of Alberti’s idea 
using a tessellated pavement of square tiles. Alberti and Piero probably met 
quite often at Urbino. 

Figure 3.7 is Piero’s diagram showing how to construct a regular pentagon 
lying in the ground plane. The point labelled A is the central vanishing point, 
and BC'ED is a square projected into the picture plane. Imagine that this square 

is not an image composed of lines in the picture plane but an actual tile existing 

behind the picture plane. If the edge BC is regarded as a hinge then this tile can 
be rotated so that it hangs down under the hinge. To foreshorten a figure, in this 
case a regular pentagon, first draw it in this genuine square on the paper. The 

problem now is to transfer this figure to the image of the square. To facilitate 
this, the diagonal BE is added to both the square BCE'D and its image. 

To show how the image of a point in the figure may be located, the corner 

labelled H will be used as an example. Transferring the lateral coordinate is 
straightforward: construct a vertical line through H until it meets BC, then join 

its end point on BC to the vanishing point A. The image of H must lie somewhere 
on this line. The diagonal BE is used to determine the precise location. First 
construct a horizontal line through H and let N be the point where it crosses BE. 

The image of N can be found easily since its lateral position can be determined 
in the same way as that for H, and its image must lie on the image of the line 
BE. The image of the horizontal line NH is also horizontal. Thus the image of 

H lies at the intersection of the two lines which are known to pass through it. 

Proceeding in this way, all the corner points of the pentagon can be transferred to 

the image plane. Piero goes on to describe how to locate images of points which 

do not lie in the ground plane. This method of constructing an object point by 

point may be tedious and time consuming but it is not difficult. Given sufficient 

patience any point can be constructed and complicated patterns can be properly 

foreshortened. 

Besides being an artist, Piero was also a competent mathematician of his time. 

His two mathematical treatises are Trattato del Abaco written about 1450, and 
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Figure 3.7. Piero’s perspective construction of a regular pentagon. 
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Libellus de Quinque Corporibus Regularibus (Book on the Five Regular Bodies) 
written about thirty years later. The latter work is dedicated to Duke Guidobaldo 
and is concerned with the mensuration of regular polygons and polyhedra. Piero 
takes the fixed proportions between the geometric solids and uses them as arith- 
metic problems. For example, given a cube inscribed in a sphere of diameter 
seven units, find its surface area. Again, if an octahedron is inscribed in a cube 
composed of squares of side 12 units how long is the side of the octahedron? 
Archimedean solids also feature in the exercises: given a polyhedron composed of 
four triangles and four hexagons (a truncated tetrahedron) inscribed in a sphere 
of diameter 12 units, find its sides and surface area. 

Piero’s Trattato del Abaco is one of a long line of abaco texts, all ultimately 
derived from two works by Leonardo of Pisa (c.1170-1250), also known as Fi- 
bonacci. Fibonacci was educated in north Africa and travelled widely. He intro- 

duced Arabic numerals and methods of calculation into Europe in his Liber Abaci 
(1202) and translated some Greek and Arabic geometry and trigonometry into 
Latin in his Practica Geometiae (1220). He lists three of the five Platonic solids 
and refers interested readers to Euclid for further information. Piero must have 

followed this direction and gone to Campanus’ version for he discussed all five 
solids, and some parts of his Quinque Corporibus Regularibus come from book 
XV. 

Abaco texts were primarily concerned with teaching the mathematics of com- 

merce to future merchants. Some were of the recipe type giving rules and worked 

examples; others included the theoretical basis for the rules. At this time there 
were no standardised weights and measures, nor even containers of uniform size. 
Each city also had its own currency. Thus merchants needed to work with propor- 

tions (for rates of exchange) and had to be able to find the volume of barrels and 
other containers quickly and accurately. Graduated rules seem to have been used 
to gauge sizes in northern Europe but in Italy they used geometry. Solids were 

divided up into two categories: pyramidal and columnar. The volume of barrels 

could be found by treating them either as short fat cylinders or as two truncated 

cones stuck end to end. These skills in decomposing complex forms into simpler 

ones were also used by artists. The objects whose volumes are easily calculated 

are also simple to draw. This produced an affinity between the artist and his 

audience for the viewers would be able to analyse a painting into its underlying 

forms. They could see a tent as a cone on a cylinder, or a hat as a prism. 

Like Piero’s book on painting, his abaco is more advanced than similar works 

in its field. He does not restrict his applications of geometry to everyday objects 

but studies abstract polygons and polyhedra. He even considers the regular solids 

and other polyhedra that can be inscribed in a sphere which is certainly far more 

than any merchant ever needed. 
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Luca Pacioli 

Luca Pacioli (1445-1517) grew up in Borgo San Sepolcro in Tuscany, the town 

where Piero had his workshop. It is uncertain whether Piero provided Pacioli’s 

early education but the two were certainly friends in later life. They often met 

at the Urbino court of Duke Federigo de Montefeltro. It is through Pacioli that 

Piero’s work achieved wide circulation. His manuscripts were kept in the Urbino 

library and were only printed because Pacioli incorporated parts of them into his 

own works. 

The well-known portrait of Pacioli shown in Plate 5, originally displayed at 

Urbino, now hangs in the Museo di Capodimonte in Naples. Painted in 1495, 

it shows the master giving a geometry lesson. The organisation of the painting 
resembles that commonly used at the time for the title pages of mathematics 
books. The glass polyhedron floating in the upper left of the picture symbolises 

the pure and eternal truths of mathematics in the Platonic realm of ideas. The 

teacher sees this perfect archetype and tries to explain it to his pupil with the aid 
of books, diagrams and models. The identity of the second figure, who appears 

disinterested in the lesson, is unknown. One proposal is that it is a portrait of 

Duke Guidobaldo; another that the artist included himself. (Who painted the 

picture is another point of debate. It is usually attributed to Jacopo de Barbari.) 
More recently, Nick MacKinnon has proposed that the figure is Albrecht Durer. 

Pacioli was ordained as a Franciscan in the 1470’s and is shown in his friar’s 

robes. Other objects in the picture include geometrical instruments such as com- 
passes, a model of a dodecahedron, and a slate with ‘Euclides’ inscribed on the 

frame. The pages of the book from which he has copied a diagram onto the slate 
contain the words LIBER XIII, which must refer to Euclid’s account of the regu- 
lar polyhedra in the last book of the Elements. Applying perspective geometry to 
the circle on the slate should have produced an ellipse but the oval in the picture 
appears not to be a conic section. The other book in the portrait has the letters 

LI. R. LUC. BUR. inscribed on its spine. This can be decoded as ‘Liber Rev- 
erendi Lucae Burgensis’ (Book by the Reverend Luca of Burgo) identifying the 
work as Pacioli’s encyclopaedia of mathematics Summa de Arithmetica, Geome- 
tria, Proportioni et Proportionalita, which was printed in 1494 and dedicated to 
Guidobaldo. It is a compilation which draws on many sources including Piero’s 
Trattato del Abaco. 

This pattern was adopted for several other portraits of Renaissance mathe- 
maticians. ‘The best-known work of Nicolas Neufchatel is a portrait of the Nurem- 
berg mathematician and calligrapher Johann Neudérfer with his son, painted in 
1561 (Figure 3.8). Neudorfer is shown explaining the geometry of the dodecahe- 
dron, a model of which he is holding, while his son attentively takes notes. The 
Platonic realm is represented by a skeletal cube floating above them. 



LUCA PACIOLI 
ies 

WAU) AL 

oe 

© 

co 
— 

— 
oy 

Courtesy of the Bayerische Staatsgemaldesammlungen, Munich. 

Figure 3.8. Johann Neudorfer and his son (1561) painted by Nicolas 
Neufchatel. 

In 1496 Pacioli was invited to the court of Ludovico Sforza in Milan to teach 
mathematics. He stayed until 1499, when the Duke lost the city to Louis x1 

of France. Here he met Leonardo da Vinci (1452-1519). Amongst many other 
things, Leonardo was interested in geometry, and in particular, the construc- 

tion of regular polygons. He knew approximate constructions used by engineers 

and craftsmen and tried devising constructions of his own, both exact and ap- 
proximate. Pacioli may have given Leonardo lessons in Euclidean geometry. 

Leonardo certainly studied Euclid and would have found the Latin text hard 
to follow. His notebooks show that he studied books I and i on regular poly- 
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gons, books Vv and v1 on the theory of proportions, and book xX also on polygons. 

His notes are supplemented by summarised extracts from De Proportionibus et 

Proportionalitatibus—the second of the two books of Pacioli’s Summa. 

It was at Milan that Pacioli completed work on his Divina Proportione, a 

work probably in progress at the time of the portrait but which was not pub- 

lished until 1509. Written in Italian, the work comprises three books. The first, 

Compendio de Divina Proportione, is dedicated to Ludovico Sforza. It contains a 

summary of the properties of the divine proportion, or golden ratio, and a study 

of polyhedra. The ‘best of all’ properties was that the diagonals of a regular 

pentagon divide each other in the golden ratio. An ‘almost incomprehensible 

effect’ concerned the icosahedron. The five triangles forming a solid angle of the 

icosahedron can be thought of as a pentagonal-based pyramid. A rectangle can 

be inscribed in an icosahedron whose sides are alternately sides and diagonals of 
such pentagons. Thus the sides of the rectangle are in the golden ratio. Three 
such golden rectangles can be simultaneously inscribed in an icosahedron so that 

they are mutually perpendicular (see Figure 2.17). 

The first book also contains studies of the regular solids and other polyhedra 
which can be derived from them. These include the glass polyhedron shown in 
the portrait, the rhomb-cub-octahedron. Pacioli mentions that this solid and 

Campanus’ 72-faced sphere are useful for architectural purposes as they can be 
used to construct hemispherical structures such as the dome of the pantheon. 

Pacioli uses two procedures to generate new polyhedra—truncation and aug- 

mentation. The truncation process is not applied consistently. When pyramids 

are sliced from the corners of the triangular-faced solids then the usual truncated 
tetrahedron, truncated octahedron and truncated icosahedron result. The trun- 

cated forms he gives of the other two regular solids are what we now call the 
cub-octahedron and the icosi-dodecahedron. Augmentation is a kind of dual pro- 
cess in which pyramidal pieces are stuck on to the faces of a polyhedron. Pacioli 

refers to augmented polyhedra as ‘elevated’. Augmentation is applied to the five 

regular solids, the cub-octahedron, the icosi-dodecahedron and the rhomb-cub- 
octahedron. Hlustrations of all these polyhedra were drawn by Leonardo. They 
are depicted in both skeletal (or vacuous as Pacioli puts it) and solid forms. Some 
examples are shown in Figure 3.9. The augmented octahedron can be interpreted 
in several ways and will reappear many times in later chapters. Apart from being 
an octahedron with a pyramid stuck on each face, it can also be thought of as 
two interpenetrating tetrahedra. 

The second book of Divina Proportione is concerned with Vitruvian archi- 
tecture. The third book Libellus in Tres Partiales Tractatus Divisus (Juinque 
Corporum Regularium is an Italian translation of Piero’s (Juinque Corporibus 
Regularibus. The Montefeltro dukes were patrons of both Piero and Pacioli, and 
Pacioli would have had access to the original manuscript in the Urbino library. 
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Pacioli is often accused of plagiarism for his unacknowledged use of Piero’s work. 

However this may be, it is very doubtful whether Piero’s ideas would have reached 

such a wide audience had Pacioli not incorporated them into his printed works. 

Albrecht Durer 

The new style of painting soon spread through Italy and beyond. ‘The person 

who did most to introduce the knowledge of perspective to northern Europe was 

Albrecht Diirer (1471-1528). In his early twenties, he travelled to Venice where he 

was exposed to Italian art—an influence which affected all his subsequent work. 

He became increasingly interested in perspective. When in 1505, an outbreak 

of plague reached his home city of Nuremberg, many of its citizens took flight. 
Diirer took the opportunity to make a second visit to Venice. In the autumn of 

the following year he wrote in a letter that he would ride to Bologna as someone 
there had agreed to teach him the ‘secret of perspective’. It is not known who 

this teacher was but he must have been well informed—familiar with both the 
Milan school and the work of Piero della Francesca. It could have been Donato 

Bramante, or Scipione del Ferro, who taught mathematics. Another possibility 
is Pacioli though he was based in Florence at the time. The knowledge Durer 
acquired in Bologna was theoretical. (It is unlikely that he would have travelled so 
far just to learn the practical tricks of technique.) He gained an understanding of 
the geometry underlying the practice, how the mathematics of the visual pyramid 

and an intersecting picture plane allowed precise constructions to be derived. 

Following his return to Nuremberg in 1507, Durer devoted much of his time to 
the study of perspective. Help in this direction may have come from a handbook 

on the subject, De Artificali Perspectiva by Johannes Viator, which was reprinted 

by a local publisher in 1509. Durer certainly knew Alberti’s treatise on painting 

and was also familiar with some Greek geometry by authors such as Euclid, 
Archimedes and Apollonius. Motivated perhaps by the lack of books on the 

theory of art in languages northern craftsmen could understand, he decided to 
write his own handbook. He had thought about the idea before his second visit 
to Italy but the project did not get off the ground until his return. He planned 
to cover all aspects of art—practical, theoretical and ethical. 

Like Piero, Durer devoted much of the last years of his life to his theoretical 
studies. His project was an ambitious one and he made comprehensive studies of 
classical texts. The manual of instruction for his fellow artists finally appeared 
in 1525: the work in four books was called Unterweysung der Messung mit dem 
Zirkel un Richtscheyt in Linien Ebnen unnd Gantzen Corporen (Instruction in 
the Art of Measurement with Compasses and Ruler of Lines, Planes and Solid 
Bodies). 

. The first book begins by discussing the basics of geometry (point, straight 
line) and progresses to more complicated curves such as conchoids, epicycloids 
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and helices. When dealing with the conic sections Diirer fails to overcome the 
intuitive expectation that an oblique section of a cone must be egg-shaped whereas 
his method of constructing an ellipse should have given the correct symmetrical 
form. 

Book 11 is concerned with regular polygons for which Diirer gives both the- 
oretically exact and also approximate constructions. This is the first time that 
approximate constructions had appeared in print though many of them had been 
known for a long time. He includes a construction used by the craftsmen of his 
day that produces an approximate 9-gon, and he gives the Indian rule method 
of inscribing an approximate heptagon in a circle. Besides a theoretically correct 

construction of a pentagon taken from Ptolemy, he also includes two approxima- 
tions, one of which is still one of the quickest methods known.? Diirer goes on to 
show how regular polygons can be incorporated into ornaments, parquet floors 
and tessellated pavements. Practical problems are also considered in book III, 
which deals with problems in architecture and engineering. 

The fourth book returns to the geometric theme and starts with solid ge- 
ometry. The Platonic solids and several of the Archimedean solids are discussed 

together with some polyhedra of Diirer’s own invention. He introduces a tech- 
nique of conveying information about three-dimensional objects on a flat surface 
via paper-folding which in modern times is called a net. The method involves 
developing the surface of a polyhedron onto a plane sheet of paper so that the 
resulting figure can be cut out as a single connected piece then folded up to form 
a three-dimensional model of the original polyhedron. His illustration for the 

dodecahedron is shown in Figure 3.10. 

The techniques for drawing in correct perspective are also included in this 
book. The notion that a painting can be thought of as the intersection of the 
picture plane with a visual pyramid with its apex fixed at the viewpoint is vividly 
illustrated by a series of woodcuts. In one of these, a man maintains a single view- 
point by placing his eye at the top of a small obelisk placed on the table and paints 
on a glass screen the features of a man sitting on the other side. Although artists’ 
manuals showed how to apply perspective to simple shapes, drawing instruments 

of some kind were often used to render more complex designs. 

The painting-on-glass technique has some limitations. The distance between 

the eye and the picture plane can be at most an arm’s length. This causes 

apparent distortion when an object has a large depth of field (such as a lute 

with a long fingerboard, for example). The parts near to the screen appear too 

large. This can be cured by moving the object further away from the screen, in 

which case the image is reduced in size, or by moving the viewpoint further back 

from the screen. The second approach can be achieved by using a piece of rope 

to follow the path of the light rays from the object to an artificial eye. Jacob 

3See Dan Pedoe, Geometry and the Liberal Arts, Penguin 1976, pp66-67 for details. 
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Figure 3.10. Durer’s net for a dodecahedron. 

de Keyser is credited with inventing an instrument of this type. The second 
of Diirer’s woodcuts (reproduced in Figure 3.11) shows two men using such a 
device to produce a perspective image of a lute—one of the set-piece motifs. 

The complexity of their task is clearly illustrated when we recall that the most 
complex of the regular solids, the dodecahedron, can be completely determined 

by constructing just twenty points. In contrast, Durer’s lute has over 150 points. 

Wenzeln Jamnitzer 

Durer’s influence on the theory and practice of art was enormous. This is par- 

ticularly noticeable in German graphic art. Taking their lead from Pacioli and 
Durer, Nuremberg artists adopted polyhedra for perspective studies. A series 
of books were printed which contained perspective drawings of the Platonic and 
Archimedean solids and many elaborate variations derived from them. Augustin 
Hirschvogel’s Geometria (1543), Lorenz Stoer’s Perspectiva (1567), and Hans 
Lencker’s Perspectiva (1571) are a few examples. 
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Figure 3.11. One of Durer’s woodcuts illustrating the principles of perspec- 
tive. 

The outstanding work of this genre is Wenzeln Jamnitzer’s (1508-1585) Per- 
spectiva Corporum Regularium (Perspective of regular bodies) published in 1568. 
I have used his plates for some of the frontispieces of the chapters in this book. 

Jamnitzer and his brother were accomplished goldsmiths and jewellers. Six- 

teenth-century Nuremberg was renowned as a centre for gold work and its gold- 
smiths worked closely with other local arists such as sculptors and printmakers 

who supplied them with patterns and models. In 1561 Jost Amman (1539-1591), 
one of the best graphic artists, arrived in the city. He was a printmaker and 
designer of jewelry and goldwork, and collaborated with Jamnitzer on several oc- 
casions. He made an engraved portrait of his friend at work in his studio involved 
in a geometric construction (see Figure 3.12). 

It was Amman who turned Jamnitzer’s perspective drawings of polyhedra 

into engravings suitable for publication. The high quality of Amman’s work 

and the sheer variety of Jamnitzer’s designs combined to make the Perspectiva 
Corporum Regularium a masterpiece. The title page of the work is shown in 

Figure 3.13. The frame includes the figures of Arithmetic, Geometry, Architecture 

and Perspective, all depicted with their associated symbols. Notice the visual 

pyramid which is Perspective’s main attribute. These fields echo Diurer’s belief 
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Figure 3.12. Engraving of Wenzeln Jamnitzer in his study. 

that an artisan should understand geometry and proportion (arithmetic) so that 
his work is natural and balanced. Jamnitzer was a great admirer of Durer and 

owned a collection of all his prints in their first editions. 

The main part of the book is arranged in six chapters, each with its own title 

page. The first five show the influence of Plato’s Timaeus and the correspon- 

dence of the regular solids with the four elements (fire, air, earth, water) and the 

heavens. The title page of the chapter on octahedra is shown on page 50. The 
format of a central description of the solid surrounded by objects indicating its 
associated element is repeated for the other chapters. The symbols of fire on the 

title page of the chapter on tetrahedral forms include candles, lanterns, dragons 

and canons. Earth, for chapter three, is symbolised by fruit and vegetables, rab- 

bits, rams and farm tools. Crabs, shells, fish and sea serpents symbolise water; 

and stars, clouds, astronomical instruments and zodiacal figures cover the page 

for the chapter on dodecahedral forms. 

The drawings comprising each chapter are of the Platonic solids, both solid 
and skeletal, and of other polyhedra derived from these fundamental forms by 
augmentation, truncation, cutting notches into the sides or faces, or some combi- 
nation of these, all done in a regular manner. These themes with variations are 
arranged like ornaments on page after page. Figures 3.14-3.16 reproduce typical 
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Figure 3.13. Title page of Jamnitzer’s Perspectiva Corporum Regularium. 
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plates showing variations based on the cube, the dodecahedron and the icosahe- 

drou. Notice the true truncation of the cub-octahedron (Figure 2.23(a)) in the 

lower right of Figure 3.14. 

The final chapter is concerned with mazzocchi, cones, spheres and what are 

best described as polyhedral monuments. (It is this chapter that has provided 

the frontispieces.) Many of the monuments could never be erected as structures. 

Some balance precariously on a single vertex, others are connected only through 

vertices. Some have parts which are not supported at all but which float in space. 

A typical example is shown on page 288. 

Although in one sense Jamnitzer’s book represents the culmination of research 

begun by Piero and Diirer, its purpose is different from theirs. His geometrical 

fantasies are presented simply for what they are—completed designs. He does not 

explain how they were constructed. We can, however, guess at his methods, for 

the pictures themselves tell us something about his technique. The perspective is 
very shallow as though the objects are seen from a relatively distant viewpoint. It 

is probable that he used an artificial eye of the kind described by Durer. Indeed, 
Amman’s portrait of Jamnitzer shows him using something similar to the Durer— 

Keyser device to sketch geometric bodies. As a manufacturer of all kinds of 
scientific instruments he could easily have made such an instrument specially for 

the purpose. Even so, it is unlikely that he made models of all his varied designs. 

His perspective machine, along with a few models, would provide the frameworks 

for his drawings. The rest is pure imagination. 

Perspective and astronomy 

The Platonic themes which so appealed to Pacioli and Jamnitzer were also taken 
up by Daniele Barbaro (1514-1570). He wrote two treatises on perspective with 
almost identical titles. One work La Practica della Prospettiva, which deals with 

the geometry of regular and semiregular polyhedra, exists only as a manuscript. 
The other, La Practica della Perspettiva printed in 1559, covers various aspects 

of perspective. Barbaro was taught perspective geometry by Giovanni Zamberti, 
brother of Bartolomeo, but he also draws on the work of Piero and Diirer. Follow- 
ing their lead, he gives the two standard methods of construction (plan/elevation 
and Alberti’s pavement) and then progresses to the study of polyhedra, a topic 
he covers in more detail than earlier treatises. He deals with the construction of 
regular and semiregular solids, mazzocchio, and some variations. He also includes 
nets and explains the rules for shading and the construction of shadows. 

Besides the projection of shadows, Barbaro also explains the optical geometry 
of sundials and techniques for mapping the celestial sphere. By this time it was 
apparent that perspective geometry was closely connected with the stereographic 
projection used in astronomy. In fact, the two ideas are equivalent. This was made 
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Figure 3.15. Page from Jamnitzer’s Perspectiva Corporum Regularium 

showing polyhedra derived from a dodecahedron. 
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explicit by Commandino in the preface to his edition of Ptolemy’s Planisphaerium 

published in 1558. This text attracted attention not only as a treatise by the 

author of the Almagest but also as a source of the mathematics underlying the 

construction of astrolabes. This involves projecting the tropics of Cancer and 

Capricorn and the circle of the ecliptic onto the equatorial plane using the celestial 

South pole as the centre of projection. These three things, the fixed eye (South 

pole), the picture plane, and the projected object, are the three basic elements of 

perspective. The technique of orthographic (or parallel) projection provides the 

basis for the geometry of sundials and shadows. Commandino treated this aspect 

in a companion volume—a commentary on Ptolemy’s Analemma. 

It is uncertain how soon the connection between perspective and astronomy 

was made. It has been suggested that it may even have played a part in the 

initial process of discovery. Brunelleschi’s training as a goldsmith would have 
included the practical mathematics used by craftsmen and found in the abaco 
texts. As a maker of scientific instruments, he would also need to know the 

projective geometry needed to construct an astrolabe. Unfortunately, there are 

many threads linking perspective to other areas of science and we shall probably 

never know which ones Brunelleschi drew together to make his revolutionary 

discovery. 

Polyhedra revived 

The fifteenth and sixteenth centuries were a time of renewal in Europe. The 

humanists collected, translated and commented on the principal texts of antiquity 

and scholarship began to be revived. Mastery of the new ideas was essential before 
new steps could be taken. But this was not a simple process of assimilation 

or replacing obviously false notions with correct ones. ‘The new philosophies 

and ideas had to be grappled with; inconsistencies in the many different sources 

had to be removed. Amid this uncertainty there was one body of knowledge 

which seemed to offer a secure foothold—the axiomatic truths of mathematics. 
The publishing of mathematics texts played an important role in spreading new 
science. ‘This is particularly true in solid geometry. Increased trade had led to 
great interest in stereometry—the determination of volumes of containers. 

The rediscovery of Plato in the fifteenth century introduced the Pythagorean 
creed ‘Number is the basis of all things’ and the idea that nature could be un- 
derstood through mathematics. 

The Neoplatonist writings of Plotinus were translated into Latin in 1492. Pla- 
tonism came into vogue as the Renaissance thinkers sought to throw off medieval 
scholasticism: it became a major force in the fight against Aristotle. The Platonic 
tradition, though never entirely lost in the West, now acquired many new adher- 
ents with its attractive fusion of rational explanation with theology through the 
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mathematical design of the Creator. Contemplating the universe and uncovering 
the divine plan held great appeal for the Renaissance philosophers. One of the 

most prolific thinkers to explore this idea is the subject of the next chapter. 
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Johannes Kepler. 

Courtesy of the Deutsches Museum, Munich. 
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Fantasy, Harmony 
and Uniformity 

Kepler’s most notable contributions 

to pure mathematics were in the 

geometry of regular polygons and 

polyhedra.® 

H. S. M. Coxeter 

Johannes Kepler (1571-1630) lived in an age of transition, in a turbulent Europe 
with its upheavals of religious and political structures, at the frontier of the 

medieval and modern eras. His theology, belief in God the Creator, coupled with 

his Pythagorean-like mysticism led him to search for the mathematical order 
underlying the phenomena of nature, the Eternal Geometry behind its design. 
Unlike earler philosophers, Kepler also demanded that his theories matched the 

facts. 

Although he is remembered chiefly for his astronomical works, Kepler was a 
prolific author and wrote on many diverse subjects from crystals to optics. His 
interest in polyhedra spans his whole career. ‘They occur in his first published 

treatise, Mysterium Cosmographicum, and also in one of his last major works, 

Harmonices Mundi. Both works exhibit his desire to expose the mathematical 

design of the universe, to find the harmonious and unifying scheme which the 
great Architect used in its creation. 

A biographical sketch 

Kepler was born in Weil, a small town near Stuttgart. After completing his 

schooling he won a scholarship to study at the university in Tubingen. ‘The 

Dukes of Wiirttemberg, having been converted to the Protestant religion, founded 
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the universities at Tiibingen and Wittenberg to train leaders for the Reformed 

Church, and Kepler’s education was to prepare him for the Lutheran ministry. 

Kepler was taught geometry and astronomy by Michael Mastlin, an astron- 

omer with whom he maintained contact after leaving Tiibingen. Although Mastlin 

and Kepler discussed the new Copernican philosophy in private; in his lessons 

Mastlin taught only the traditional astronomy. Kepler graduated from the faculty 

of arts to the faculty of theology, but never completed his training. A Protestant 

school in Graz had asked the university to recommend a candidate to fill a vacant 

teaching position. The university suggested Kepler and, in 1594, he withdrew 

from his studies and moved to the Austrian province of Styria to teach astronomy 

and mathematics. 

While at Graz, Kepler read the Neoplatonic writing of Proclus, whose com- 

mentary on the first book of Euclid’s Elements had been published in a Greek 
edition some sixty years earlier. He also studied Commandino’s Latin transla- 
tions of works by Archimedes, Apollonius and Pappus. It appears that he also 

had access to Franciscus Flussatus Candalla’s Latin version of the Elements. ‘This 

edition purported to be a translation from Greek sources but it seems to be based 

as much on Campanus’ and Zamberti’s editions as on any original manuscript. 

Candalla appended his own work to the canon: propositions showing how the 

regular polyhedra could be inscribed in one another. This may have stimulated 
Kepler’s interest in polyhedra—an interest he was to retain for the rest of his life. 

It was also at Graz that Kepler produced his first treatise. It contained his 
answer to the mystery of the universe. His model of the planetary orbits was an 

attempt to explain the proportions of the known universe and he believed that 

the regular polyhedra played a key role in shaping its design. Now that his future 
career was not to be in the church, he felt his calling was to reveal God’s perfect 
design in nature, to fathom the mind of the Creator himself. 

He sent copies of his Mysterium Cosmographicum to many of the leading 
scholars in Europe including Galileo and the Danish astronomer Tycho Brahe. 

Tycho thought the work original and imaginative and recognised Kepler’s mathe- 
matical ability. When the Protestants were expelled from Graz, Kepler travelled 
to Prague and became his assistant leaving Graz on New Year’s day, 1600. Their 
collaboration lasted only 18 months and ended with Tycho’s death. Kepler suc- 
ceeded him as Imperial Mathematician to Rudolph ul. This gave him access to 
the large collection of astronomical observations Tycho had made during his life. 
Kepler continued to work on the problem he had been set by his late master—an 
analysis of the motion of Mars. Mars has the most eccentric of the planetary 
orbits and thus caused the most problems to the circular motion theories. Even- 
tually these studies led him to the discovery of his first two laws—that plan- 
ets follow elliptical orbits, and that a line from the sun to a planet sweeps out 
equal areas in equal time—thus demolishing the paradigm of circular motion at 
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constant speed. He presented these two laws in his Astronomia Nova published 
in 1609. 

The political situation deteriorated a few years later and, after the emperor’s 
death, Kepler moved to Austria taking a position as Mathematician at Linz. Here 
he wrote two major treatises: Epitome Astronomiae Copernicanae (1618-1622) 
and Harmonices Mundi (1619). The first of these, despite its title, is not on 
Copernican astronomy but is a textbook presenting Kepler’s own astronomical 
laws. ‘The second work is almost a sequel to the Mysterium Cosmographicum 
and, indeed, its conception can be traced back to 1599, just three years later. In 
it Kepler attempts a grand unification of geometry, music, astrology and astron- 
omy; he wants to expose the hidden harmonies of the universe. He aims to derive 
the phenomena included in his survey from the ‘one and eternal Geometry’. The 
first two of its five books are concerned with the mathematics of regular polygons 

and their combinations. The second book contains nearly all Kepler’s writing on 
polyhedra, including his explanation of why each of the Platonic solids is associ- 
ated with a particular element (see Chapter 2). However, Harmonices Mundi is 
not a treatise on pure mathematics and Kepler is not investigating the properties 

of geometrical bodies for their own sake. He is concerned with establishing a 
hierarchy of polygons according to their ‘sociability’—a measure of their capacity 
to combine with other polygons to form tessellations and polyhedra. In a later 

book of Harmonices Mundi this ranking of polygons is used to explain astrological 
phenomena. 

When discussing music he uses the geometry of polygons to explain why 

certain ratios of frequencies are discordant. The Pythagoreans had discovered 

that strings whose lengths are in simple numerical ratios form pleasant chords. 

Thus the octave is 1:2, and the fifth is 2:3. But why are ratios such as 1:7 or 

3:7 discordant? Kepler argues that the answer lies in geometry, not arithmetic, 

and is connected with the constructibility of regular polygons. A heptagon is not 

constructible with ruler and compasses, so it is not truly known and, therefore, 

cannot have been used in a harmonious design of the universe. Kepler also found 
harmonic ratios between the angular velocities of the planets. In amongst all this, 

the work contains Kepler’s third law of planetary motion relating the distance of 

a planet from the sun to its period, the time taken for a complete orbit. 

His efforts were then directed towards completing the task with which he 

had been charged many years earlier by Rudolph —the compilation of new 

astronomical tables to replace the outdated Alphonsine tables. The great work 

was concluded in 1626. Kepler travelled to Germany to supervise their printing 

and at the beginning of 1628 he handed a copy of the Tabulae Rudolphinae to 

the emperor Ferdinand II. 

Kepler lived for another three years. It is fortuitous that we still have his 

original papers for, after his death, his manuscripts suffered several misadventures 
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before finding a safe resting place. They were rescued from a fire, only to be 

pawned and then lost. After their surprise rediscovery nearly 150 years later their 

new owner offered them for sale. Several universities and scientific societies were 

approached but none showed any interest. Eventually scholars at the Russian 

Academy of Science in Saint Petersburg (one of whom was Leonhard Euler— 

a mathematician who also figures prominently in the history of polyhedra, as 

we will see in Chapter 5) convinced the empress Catherine 1 of the value of 

the manuscripts and she agreed to buy them. They are now preserved in the 

Academy’s library. 

A mystery unravelled 

Seldom in history has so wrong a 
book been so seminal in directing 
the future course of science.” 

O. Gingerich 

A precursor to Cosmographical Treatises, containing the Cosmic Mys- 
tery of the admirable proportions between the heavenly Orbits and the 

true and proper reasons for their Numbers, Magnitudes and Periodic 

Motions demonstrated by the five regular geometric solids. 

So reads the full title of Kepler’s treatise Mysterium Cosmographicum—a work 

in which he attempts to recreate the Architect’s design for the universe. Kepler 
records that he began to wonder why the cosmos was as it was. Why are there 
six planets? Why are their distances and speeds what they are? The originality 
of such questions is easily overlooked. Prior to this, astronomers had merely ob- 

served the sky and recorded what they saw. Kepler sought not merely descriptions 
but causal explanations. 

At first he tried to find numerical relationships between the sizes of the orbits 

but without success. He devised various schemes hoping to force sensible ratios 
to appear, even resorting to the addition of several planets, but these also failed. 

Inspiration came while he was giving a lesson. He was explaining how the con- 

junctions of Saturn and Jupiter progress through the houses of the zodiac. He 
marked on a circle the points where such conjunctions occur and connected them 
in sequence. ‘This resulted in a diagram like the one in Figure 4.1. Each line 
spans a gap of eight signs so three lines almost form a triangle. The conjunctions 
progress round the zodiac precisely because the ‘triangle’ does not close up. When 
many of these lines have been drawn in they outline a smaller circle. Studying 
this figure, it suddenly struck him that he could use geometrical relationships 
rather than numerical ones, for the circumscribed circle and the inscribed circle 
of an equilateral triangle were in the same ratio to each other as the orbits of 
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Reproduced from the Dictionary of Scientific Biography with permission of the 

American Council of Learned Societies. 

Figure 4.1. The progression of the conjunctions of Saturn and Jupiter 
through the zodiac. 

Saturn and Jupiter. These were the outermost planets, and the triangle is the 
first figure. Almost instantaneously he reasoned that the next interval, that be- 
tween Jupiter and Mars, must correspond to the next figure, the square—and so 
on. But again he met with failure. He was now thinking in geometrical terms. 
It dawned on him that instead of fitting two-dimensional figures to the orbits in 
space, it was more natural to use three-dimensional forms. And there was the 
answer. For although there are an unlimited number of regular polygons, there 
are only five regular polyhedra. ‘Thus there can be only five intervals between the 
planets and hence only six planets. He writes: 
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We must first eliminate the irregular solids because we are only con- 

cerned with orderly creation. There remain six bodies, the sphere 

and the five regular polyhedra. To the sphere corresponds the outer 

heaven. On the other hand, the dynamic world is represented by the 

flat-faced solids. Of these there are five. When viewed as boundaries, 

however, these five boundaries determine six distinct things—hence 

the six planets that revolve about the sun.° 

Besides answering his question of why there were six planets, his discovery 

could also explain their spacing. Into the sphere which carried Saturn he in- 

scribed a cube, and into the cube another sphere which carried Jupiter. Between 

the spheres of Jupiter and Mars he placed the tetrahedron; between Mars and 
Earth, the dodecahedron; between Earth and Venus, the icosahedron; and be- 

tween Venus and Mercury, the octahedron. The fact that in classical times these 
particular polyhedra had been called the Cosmic Figures gave some credibility 
to their incorporation into the design of the universe. The well-known plate that 

illustrated Kepler’s book is reproduced in Figure 4.2. The polyhedra are dis- 
played in skeletal form, similar to those drawn by Leonardo for Luca Pacioli’s 
book Divina Proportione. The plate appears to depict an actual solid model but 

this cannot be the case since the pieces do not support each other. 

Kepler proceeds to explain why the solids should be placed in just the po- 

sitions they occur by considering various affinities between the planets and the 

polyhedra. Each planet is associated with the adjacent polyhedron nearest Earth. 

Thus Saturn is linked with the cube; Jupiter with the tetrahedron; Mars, the 

dodecahedron; Venus, the icosahedron; and Mercury, the octahedron. The astro- 

logical attributes of each planet are then shown to match the characteristics of 
its associated solid. For example, the Saturnian love of solitude is connected with 
the uniqueness among angles of the right angle—the type of angle in the cube. 
By contrast, Jupiter has chosen from the many acute angles. 

As astrology is geocentric, the Earth has no astrological attributes. Its posi- 
tion among the polyhedra is explained as follows. The polyhedra fall naturally 
into two classes: those whose nature is to float (the octahedron and the icosa- 
hedron) and those whose nature is to stand upright. For if the former are made 
to rest on a face, or the latter on a corner then ‘the eye shies from the ugliness 
of such a sight’. Falling back on the medieval homocentric view of the universe, 
Kepler argues that the most appropriate place for the Earth, home of Man cre- 
ated in God’s image, is so as to separate one sort from the other. By arguments 
of this kind Kepler justifies everything he believes about his model. | 

After all this fantasising and speculation there is an abrupt change in his pre- 
sentation. He announces that the model must be checked against empirical data. 
He knew that the planetary orbits are not circular but oval shaped. The spheres 
which carried the planets had to be thought of as shells of sufficient thickness to 
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Figure 4.2. A plate from Kepler’s Myster1um Cosmographicum illustrating 

his model of the universe. 

to contain the oval orbits, with the innermost wall marking the planet’s mini- 
mum distance from the sun (perihelion) and the outer shell its greatest distance 

(aphelion). These shells are marked in Figure 4.3, which illustrated Harmonices 
Mundi. In some places the model agreed quite well, in others there were signifi- 

cant discrepancies. The problem with Jupiter was attributed to its great distance. 

The shell for Mercury was too small so instead of the inscribed sphere, he used 

the midsphere of the octahedron, that is, the sphere that touches the midpoints 
of all the edges. This is shown in the illustration of the four innermost planets 
(Figure 4.4). 

The Copernican data he was using gave the distances of the planets as mea- 
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Figure 4.3. 

CHAPTER 4 
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Figure 4.4. 

sured from the mean sun—the centre of the Earth’s orbit. This was a mathemat- 

ically convenient origin for Copernicus to choose as it simplified his calculations. 
Kepler, hoping to improve the fit of his model, engaged Mastlin’s help to recalcu- 
late the distances as measured from the actual sun. Even though this change in 
the data did not result in any significant improvement, Kepler continued to use 
his version of the data. His interest was in the actual universe and its properties, 
and he wanted physically meaningful data. When trying to decide whether or not 
the Earth’s shell should include the moon’s orbit, he admits that he will choose 

whichever solution gives the best fit. Convinced that his model has to be right, 
he explains away as many discrepancies as he can, and blames those that remain 
on Copernicus’ faulty data. In his book The Sleepwalkers, Arthur Koestler likens 
it all to a game of ‘Wonderland croquet through mobile celestial hoops’. 

Kepler took the draft of his book back to Wurttemberg for publication. In his 
enthusiasm he persuaded Friedrich, Duke of Wurttemberg, to have a model of the 
universe made in silver showing the positions of each of the five regular polyhedra 
and with the planetary symbols inset in precious stones. It was to be made in 
parts by different silversmiths so that the Duke would be the first to see the 
assembled model. In order to satisfy himself that the project was worthwhile, the 
Duke asked to see a copper version. Kepler, not having sufficient money, made 
a model of coloured paper instead. The Duke asked Mastlin’s opinion of the 
completed model; he commended it, whereupon the Duke consented to the work 

being done. The project was never completed. It appears that the silversmiths 
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had difficulty understanding the design, but the Duke was unwilling to abandon 

the project and it dragged on for several years before lapsing. 

The structure of the universe 

Kepler’s polyhedral model of the universe was motivated by the desire to expose 

its mathematical design, to reveal the plan which its Creator had used in its 

construction. He followed in the Pythagorean tradition and believed that such a 

plan would be expressible in harmonious geometrical relationships reflecting the 

decisions of the Architect. His model attempted to explain the structure of the 
universe and to provide a unified account of some of its properties. This was 

the first time such a system had been proposed. He did not believe that the 

polyhedra and crystal spheres actually existed in space; he thought of them more 
as an invisible skeleton, as part of the perfect design by which each planet was 

allotted its own region of space. 

The illusory and fallacious nature of the planetary model was shown up by 

the discovery of new planets after Kepler’s death. Uranus was found in 1781, 

Neptune in 1846 and Pluto in 1930. Astronomers are currently searching for 

a tenth planet, the so-called planet xX, whose existence has been postulated to 

account for certain discrepancies between the predicted and observed paths of the 
known planets. Similar gravitational anomalies led to the discovery of Neptune. 

Had the planets been discovered in Kepler’s lifetime, he could possibly have 

accommodated them in a revised version of his model. For, although there are 

only five Platonic solids, under a wider definition of regularity there are four other 

regular polyhedra. Kepler discovered two of these polyhedra and tinkered with 

his model to see whether it could incorporate one of them. 

Kepler’s planetary model has been compared to the modern theory of particle 

physics which seeks to explain the number and properties of elementary particles. 

Just as Kepler admired the regularity of the Platonic solids and was attracted 
by the idea that nature must be constructed around such elegant forms, so the 
modern physicist idolises symmetry. Kepler intuitively recognised the high degree 

of geometric symmetry exhibited by the regular polyhedra; the physicist searches 
for more abstract symmetries in nature. Current models of particle physics are 

based on what is known as unitary symmetry, a notion closely related to rotational 
symmetry. 

Unitary symmetry theory suggests that the elementary particles can be ar- 
ranged in families according to their properties and that they display definite 
patterns. The first classification scheme proposed in the 1960’s was based on 
representations of the special unitary group SU(3). It incorporated all the then 
known particles and successfully predicted the properties of new particles which 
were later discovered. Rather surprisingly, Kepler also managed to make a suc- 
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cessful prediction based on his model of the universe. When he heard that Galileo 
had discovered four new planets with the newly invented telescope, he refused to 
accept that they could be planets orbiting the sun as he had proved that there 
could be only six such planets. Thus he deduced that these four astronomical 
bodies must be satellites of the known planets, like the Earth’s moon. Galileo’s 
four planets are, in fact, all moons of Jupiter. 

The patterns shown by the SU(3) model led to the proposal that protons 
and neutrons are not fundamental particles but are composed of smaller entities. 
These constituents have come to be called quarks. The original quark model 
associated with SU(3) required three quarks which were labelled ‘up’, ‘down’ and 
‘strange’. ‘These quarks combine in triplets producing baryons such as the proton 
and neutron, and as quark—antiquark pairs producing mesons such as the pion 
and the kaon. 

In the mid-1970’s a new kind of particle was discovered which did not fit 

the current model. A fourth quark labelled ‘charm’ was postulated to solve the 
problem, and the unitary symmetry theory now considered representations of the 

group SU(4). Unlike Kepler’s polyhedral hypothesis, which was demolished with 
the discovery of the outer planets, the discovery of new particles does not cause 

such a devastating problem to particle physicists. Although the number of regular 

polyhedra is limited to five, there are many groups of symmetries to choose from. 

Fitting things together 

Kepler’s writing on the mathematics of polyhedra is mostly contained in the sec- 

ond book of his Harmonices Mundi. The first two of the five books are concerned 

with polygons and the different ways in which they form ‘congruences’. In book 1 
Kepler defines a polygon to be regular if it is equilateral and has equal angles. He 

then defines a half-regular' polygon to be one which is equilateral, and restricts 

attention to those having four sides. Thus Kepler’s half-regular polygons are, in 

fact, rhombi. 

In the second book he investigates the ways in which regular and half-regular 

polygons can be fitted together around a point. This leads to the construction 

of tessellations of the plane, and of polyhedra. Kepler uses the word congru- 

ence meaning ‘fitting together’ to describe both situations—a tessellation being 

a congruence in the plane, and a polyhedron being a congruence in space. Here 

Kepler is concerned with harmony in its broad sense for the word ‘harmony’ is 

derived from the Greek for ‘fitting together’. He remarks that stacking poly- 

!'This would normally be translated ‘semiregular’. I have used ‘half-regular’ instead because, 

further on, Kepler defines half-regular polyhedra as those composed of half-regular figures. Re- 

taining the conventional translation could be a source of confusion since, in current terminology, 

‘semiregular polyhedra’ refers to the Archimedean and Catalan solids. 
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hedra together to fill space is another form of congruence. He considered such 

space-filling polyhedra in De Nive Sexangula. 

He defines a polyhedron as follows: 

There is a congruence in space, and a solid figure, when the individual 

angles of several plane figures make up a solid angle, and regular or 

half-regular figures are fitted together so as to leave no gap between 
the sides of the figures, which join up on the opposite side of the solid 
figure, or, if a gap is left, it is such that it can be filled by a figure of 
one of the kinds already employed, or, at least, by a regular figure.“ 

To Kepler, then, a polyhedron was a three-dimensional figure composed of regular 

polygons or rhombi fitted together edge-to-edge. He describes polyhedra that do 

not close up completely as semisolid. 

He continues his list of definitions and describes, in turn, the kinds of poly- 

hedra that he is interested in. His classification is summarised by the diagram in 

Figure 4.5. 

Perfect 
(similar vertices) 

ee 

Most Perfect Perfect to a Lower Degree 
(congruent faces) (regular faces of several kinds) 

aa [eR 

Regular Half-regular Archimedean Imperfect 
(Platonic) (Rhombic) (Prismatic) 

Figure 4.5. Kepler’s classification of polyhedra. 

Having defined a perfect congruence as one in which all the vertices are sim- 
ilarly surrounded, he subdivides this class into those that are most perfect and 
those that are perfect to a lower degree. The former category comprises the 
polyhedra whose faces are all the same shape. These are further subdivided into 
regular and half-regular according to whether their faces are regular or half-regular 
polygons. In fact, the rhombic polyhedra are not a subclass of the perfect poly- 
hedra at all because not all the vertices are surrounded by the same number of 
polygons. Kepler knows this but remarks: 

There is no reason why we should not call this congruence most per- 
fect, for its imperfection is in the faces and is not a consequence of its 
being solid but, rather, an accidental feature.° 



RHOMBIC POLYHEDRA 151 

The polyhedra that Kepler calls perfect to a lower degree have regular faces of 
several kinds. We know them as the Archimedean polyhedra and the families of 
prisms and antiprisms. Kepler notes that among the prismatic figures, the trian- 
gular antiprism and the square-based prism belong to the most perfect polyhedra 
(the former being the regular octahedron, the latter the cube). All the other 
prismatic solids are classified as imperfect being either more like plane figures, in 
the case of prisms, or more like parts of figures than whole ones. Kepler’s diagram 
showing an exploded view of an icosahedron shows clearly what he had in mind 
(Figure 4.6). The central section is a pentagonal antiprism. 

Figure 4.6. Kepler’s sketch of an exploded icosahedron shows it decomposed 

into an antiprism and two pyramids. 

Following his definitions, Kepler describes examples of the various kinds of 

polyhedra. He tries to find all the possibilities and then often continues to prove 

that there are no more. ‘The first family that he enumerates are the regular 

polyhedra. He notes that this classification forms the last proposition in Euclid’s 
Elements and his proof follows the Euclidean one: he tries fitting combinations of 
polygons around a point and eliminates all the arrangements whose angle sum is 
greater than 360°. The five remaining possibilities can be realised by the Platonic 
solids. Kepler uses this method of proof consistently in his study of polyhedra. 

He considers all possible ways that a vertex could be surrounded and excludes 

those that are impossible, either because the angle sum is too large or because the 

required pattern cannot be continued. This proof by exhaustion of possibilities 

is long-winded but effective. It has elegance in its uniformity of style rather than 

in any concise ingenious arguments. 

Rhombic polyhedra 

Kepler knew two examples of his half-regular polyhedra. They are shown in 

Figure 4.7. The first is bounded by twelve rhombi whose diagonals are in the 

ratio of 1:,/2. The second rhombic polyhedron is bounded by thirty rhombi whose 
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Figure 4.7. Kepler’s two rhombic polyhedra. 

diagonals are in the golden ratio. They are called the rhombic dodecahedron and 

the rhombic triacontahedron, respectively. 

In an earlier work, Kepler provides a hint as to how he discovered these two 

polyhedra. The De Nive Sexangula, a work written in 1611 as a New Year's gift 

for a counsellor at Rudolph’s court in Prague, is nominally concerned with the 

question of why snowflakes have six corners but it makes frequent diversions and 
touches on many other topics. In one of these asides Kepler considers another 

example of hexagonal forms occurring in nature, namely a honeycomb. He notes 
that a bee’s cell is terminated at the base by three equal rhombi. He continues: 

These rhombi put it into my head to embark on a problem of geom- 

etry: whether any body, similar to the five regular solids and to the 
fourteen Archimedean solids could be constructed with nothing but 
rhombi. I found two, one with affinities to the cube and octahedron, 

the other to the dodecahedron and icosahedron—the cube can itself 

serve to present a third, owing to its affinity with two tetrahedra cou- 

pled es The first is bounded by twelve rhombi, the second by 
thirty. 

The clue is in the reasons given for including the cube as a third possibility. 
Two equal tetrahedra can be placed so that the edges of one meet the edges 

of the other at right angles, and so that the points of intersection bisect the 

edges. Such a pair of coupled tetrahedra is shown in Figure 4.8(a). Kepler 

named this body stella octangula but it was known to many others including 
Pacioli and Jamnitzer. Pacioli called it ‘octaedron elevatum’. The eight corners 
of this compound polyhedron coincide with the corners of a cube, the edges of 
the tetrahedra forming diagonals of the square faces. 

An octahedron and a cube of appropriate sizes can also be coupled together 
so that their edges bisect each other at right angles (see Figure 4.8(b)). The 
relationship between the rhombic dodecahedron and this compound is analogous 
to that between the cube and the compound of two tetrahedra: the corners of 
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(a) 

(c) 

Figure 4.8. Compounds of the Platonic solids. 

the rhombic polyhedron coincide with those of the cube and the octahedron, and 

two intersecting edges of the compound are diagonals of a rhombic face. The 
regular dodecahedron and the icosahedron can also be coupled together to form 
a compound polyhedron (Figure 4.8(c)). This compound shows a similar affinity 
with the rhombic triacontahedron. 

These rhombic polyhedra have some resemblance to the Platonic solids. Like 

them, they are spherical in shape, have congruent faces, and a high degree of 

symmetry. Moreover, the geometry of the Platonic solids limits the number of 

possibilities to only five. Kepler wanted to show that the number of rhombic 
polyhedra is limited and that he had found all the possibilities. To enumerate 
something you need a definition. Kepler’s was as follows: 

The solid formed is half-regular when the plane figures are half-regular. 
Its solid angles are then not all the same, but differ in the number of 
lines they contain, though the angles are not of more than two kinds 
and neither are they distributed on more than two spherical surfaces, 

which are concentric. The number of angles of each kind must be the 
same as the number of angles of one of the regular solid figures.! 
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pers 
oblate 

prolate 

Figure 4.9. Two rhombohedra. 

He then tries to show that the two polyhedra he has discovered are the only ones 

that satisfy this definition. 

First he observes that in any rhombus opposite angles are equal, two being 
acute, the others being obtuse. Furthermore, the sum of an acute angle and an 
obtuse angle is 180°. The obtuse angle must be greater than 90°, hence there 
cannot be four or more obtuse angles surrounding a point because the angle sum 
would be greater than 360°. So, if all the angles bounding a solid angle are obtuse, 
there must be exactly three rhombi forming the solid angle. 

The acute angles of three rhombi can be fitted together to form a solid angle, 
and two such sets can be joined to form a (prolate) rhombohedron (see Figure 4.9). 
Its eight vertices lie on two concentric spheres, six on the inner sphere, and two on 

the outer one. The final clause of Kepler’s definition of a half-regular polyhedron 

excludes this case since no regular polyhedron has two vertices. They are also 
ruled out because the same number of polygons surround every vertex. But, 
Kepler argues, this polyhedron should also be excluded because the six equatorial 

solid angles are ‘mixed’ being composed of both acute and obtuse angles: 

Each of the six obtuse solid angles is formed by two obtuse plane 
angles and one acute one, an irregularity which is once more contrary 
to the definitions.” 

Such ‘irregularities’ are not in fact excluded. Perhaps they are not in the spirit of 
perfection implicit in the definitions. In the remainder of the proof, he relies on 

this extra ‘implicit’ condition: that each solid angle is bounded by a single type 
of plane angle so that acute angles meet only acute angles, and obtuse angles 
meet only obtuse angles. 

If the obtuse angles in the rhombus are greater than 120° then three obtuse 
angles cannot be brought together to form a solid angle. If the obtuse angles are 
exactly 120° then the rhombi can be fitted together to form a tessellation of the 
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plane (Figure 4.10). So, to form a polyhedron the obtuse angles in a rhombus 
must be less than 120° and, consequently, the acute angles must be greater than 
60°. If all the plane angles surrounding a solid angle are acute then there can 
be at most five of them, since if there were six or more, the angle sum would be 
greater than 360°. The case with three acute angles meeting has already been 
excluded, so the only possibilities remaining are for a solid angle to be bounded by 
four or five acute angles. These two possibilities are realised in the two rhombic 
polyhedra. 

There are two points to note arising from this discussion. Firstly, the proof 
is not constructive—it does not tell us what shape of rhombus we need to be 

able to make the polyhedra. Nor does it guarantee their existence. However, 
Kepler already knows that two such polyhedra do exist and only wants to show 
that there are no others. Even so, the question of uniqueness still needs to be 
considered. Is there only one of each kind? 

The second point concerns the definition of half-regular polyhedra. Kepler 
assembled his definition by listing several properties shared by both polyhedra 

and hoped that these would be sufficient to characterise them. In order to exclude 

the rhombohedron, he restricted the number of solid angles of each kind to be 
the same as occurs in one of the Platonic solids. (He applied a similar restriction 
when dealing with the Archimedean solids intending to exclude the prisms and 
antiprisms but, in fact, excluding others as well.) In the course of the proof 

he finds it more convenient to use another property that both of his rhombic 

polyhedra possess but which is not included in the definition. 

As in much of Kepler’s writing, here we can watch thought processes in action. 
At this point, a modern mathematician would go back and alter the definition so 
that it contained the properties needed in the proof. In this case, such a proof 

generated definition could be phrased as follows: a polyhedron is half-regular if 

all its faces are equal half-regular polygons and each solid angle is surrounded 

by a single kind of plane angle. Sometimes the process of juggling definitions 

Figure 4.10. A rhombic tiling. 
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and proofs to achieve the strictest accuracy and widest applicability of theorems 

can take quite a long time and needs to be repeated several times. At the end, 

however, we cover over our early attempts at definitions which do not provide the 

properties we need. This can lead to definitions that appear to be unnecessarily 

complex until the problems which led to them are explained. The definition of 

polyhedron developed in Chapter 5 is an example of this kind. 

Besides the two rhombic polyhedra that Kepler described, and the rhombo- 
hedra, there are two more polyhedra whose faces are all congruent rhombi. ‘They 

do not, however, satisfy his ‘implicit’ condition since some of their vertices are 

surrounded by both acute and obtuse angles. One was discovered by Evgraf 
Stephanovich Fedorov in 1885. It is an oblate solid with twenty faces—a rhombic 

icosahedron (Figure 4.11(c)). It can be derived from the rhombic triacontahedron 
by collapsing a belt of rhombi that run around it. The sequence of polyhedra 

in Figures 4.11(a)—(c) indicates how such a belt collapses. The other rhombic 
polyhedron is formed from Fedorov’s by collapsing another belt of rhombi. ‘This 

is illustrated by Figures 4.11 (c)-(e). This results in another rhombic dodecahe- 
dron, shown again from a different viewpoint in Figure 4.11(f). It was discovered 
in 1960 by Stanko Bilinski when he made an exhaustive enumeration of rhombic 
solids. He called it the rhombic dodecahedron of the second kind to distinguish 
it from the one described by Kepler. 

The Archimedean solids 

Pappus, writing in the fourth century AD, attributes to Archimedes a treatise on 

thirteen polyhedra: ‘Figures contained by equilateral and equiangular, but not 

similar, polygons’. In the fifth book of his Mathematical Collection, he describes 
each of these polyhedra. The revival of interest in solid geometry and the creation 
of new figures for perspective designs led to the rediscovery of some Archimedean 
solids. They appear among the drawings in Pacioli’s Divina Proportione, Diirer’s 

Unterweysung der Messung, and Jamnitzer’s Perspectiva Corporum Regularium 

(see Figures 3.14-3.16). These examples were produced by truncating the Pla- 
tonic solids. However, not all the Archimedean solids can be produced in this way 
and, prior to Kepler, no-one seems to have rediscovered the complete set. It is 
also possible that Kepler found the pseudo-Archimedean solid known as Miller’s 
solid, (Figure 2.30) for in the passage from De Nive Sexangula quoted above 
(page 152) he makes a passing reference to fourteen Archimedean solids. 

From his reference to ‘Archimedean solids’ we can deduce that Kepler was 
aware of Pappus’ work and that, therefore, he knew to search for thirteen poly- 
hedra. However, through his systematic analysis, he found that prisms and an- 
tiprisms also satisfy the definition; the latter had not been described before. 

He defines these figures as follows: 
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A congruence is perfect, but of lower degree, when the plane figures 
are regular and all the angles lie on the same spherical surface and 
are similar to one another, but the faces are of various kinds, though 
the number of each kind must be the same as the number of faces of 
one of the most perfect figures, that is, not less than four which is the 
minimum number of planes to bound a solid figure. 

There is an imperfect congruence or figure when other conditions re- 
main the same but the larger plane figure does not occur more than 
twice.' 

The requirement that the number of faces of each kind in one of these figures is 

the same as the number of faces in a most perfect polyhedron (that is 4, 6, 8, 12, 
or 20 for the Platonic solids, and 12 or 30 if Kepler’s rhombic solids are included) 
is intended to exclude prisms and antiprisms. Kepler regards these as imperfect 

figures being ‘discus-shaped’ rather than ‘globe-shaped’ like a sphere—the most 
perfect of all solids. Rather than insist that the number of each kind of face is 

Figure 4.11. Two rhombic polyhedra can be derived from the rhombic 

triacontahedron by collapsing ‘belts’ of rhombi. 
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at least three, which appears to be a somewhat arbitrary restriction, he links the 

numbers of faces to the perfect solids which seems more legitimate. However, 

the condition is far stronger than is needed and excludes more than Kepler in- 

tended. There are Archimedean solids that do not possess this property—the 

snub polyhedra have more than 30 triangular faces. 

Kepler’s enumeration of these polyhedra proceeds by considering all possible 

ways that a solid angle can be formed from regular polygons. Two simple obser- 

vations make the process easier and Kepler states these as propositions preceding 

the main argument. The first one concerns the number of kinds of face that can 

surround a vertex. 

Lemma. If the faces of a convex polyhedron are all regular polygons then at 
most three different kinds of face can appear around any solid angle. 

Proor: The four regular polygons having the smallest internal angles are the 
triangle (60°), the square (90°), the pentagon (108°), and the hexagon (120°). 
The total sum of these four angles is greater than 360° so these four regular 
polygons cannot all be present around a vertex. With a different set of four or 

more different regular polygons, the total angle sum is even larger. Hence, four 
or more different kinds of polygon cannot surround a vertex. 

Figure 4.12. Two types of the same vertex species. 

Kepler’s second lemma is used to exclude certain combinations of polygons 

containing an odd number of sides. It is necessary for us to make a distinction 
between the set of faces which bound a solid angle and the specific order in which 
they occur. The species of a solid angle is an unordered list of the faces which 
are present, while the type of a solid angle specifies the order in which the faces 
occur around the vertex. For example, the species of solid angle bounded by 
two triangles and two squares comprises two types of solid angle according to 
whether opposite faces are the same or different. The two types are illustrated 
schematically in Figure 4.12. The diagrams represent the region around a vertex 
and the numbers indicate the kinds and relative positions of the polygons which 
surround it. This information can be written in a shorthand fashion as (3,4,3,4) 
and (3,3,4,4), where the lists contain the number of sides of each face in order. 
Kepler appears not to have made a distinction between species and types. He 
enumerates only vertex species, and in the case of the above example, he writes: 
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Two trigon angles and two tetragon angles are less than four right 
angles. Thus eight trigons and six tetragons fit together to form a 
tessareskaedecahedron which I call a cuboctahedron. It is shown here 
with the number eight [see Figure 4.13] 

He does not mention that there are two possible arrangements of the polygons 
around the vertex. The illustration shows how they are to be arranged; the type 
(3,3,4,4) is not considered. This case cannot be realised as a perfect polvhedron. 

Kepler states that three polygons of different kinds cannot form a solid angle 
in a perfect figure if any of them has an odd number of sides. An analogue of 
this result which applies to vertices surrounded by four polygons can be used to 

exclude the case (3,3,4,4) above. These two results are collected together in the 
following lemma. 

Lemma. A polyhedron in which all the solid angles are surrounded in the same 
way cannot have solid angles of the following types: 

(2) where a is odd and b # c. 

where ac. 

PROOF: In the first case, the fact that all the solid angles have the same type im- 
plies that the b-gon faces must alternate with the c-gon faces round the boundary 
of an a-gon face. But, since a is assumed to be odd, this leads to a contradiction. 

This is clearly seen in the example shown in Figure 4.14(a) which illustrates the 
case when a = 7. 

In case (12), we consider the way that the faces must be arranged around the 
3-gon. At each angle, the face opposite the 3-gon is always a b-gon. Since all the 

vertices have the same type, the sides of the 3-gon must be attached to a-gons 

and c-gons, and these must alternate around the 3-gon. This again leads to an 

inconsistency (see Figure 4.14(b)). 

Kepler then states the proposition: 

There are thirteen solid congruences which are perfect to a lower de- 

gree. From these thirteen we obtain the Archimedean solids." 
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Figure 4.13. Pages from Harmonices Mundi showing Kepler’s discussion of 
the Archimedean solids. 
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Figure 4.13 (continued). 
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(a) (b) 

Figure 4.14. 

The following proof is based on Kepler’s ideas, and follows his presentation fairly 

closely. The main difference is that I have distinguished between species and 

types whereas Kepler did not. The proof becomes somewhat repetitive once you 

have the idea. 

Theorem. Suppose that all the solid angles of a convex polyhedron have the 
same type. Besides the two families of types (4,4,n) and (3,3,3,n) there are 
thirteen types of solid angle that can occur. These possibilities are realised by 

the families of prisms, antiprisms, and the Archimedean solids respectively. 

PROOF: The theorem is proved by exhausting all the possible combinations of 

faces which can surround a solid angle and excluding those which cannot be 
extended in the required manner. The first lemma above shows that the species 

of solid angle present can be surrounded by at most three sorts of regular polygon, 
and there must be at least two sorts of polygon (by definition). Following Kepler, 
these two cases are investigated separately. 

First, we consider those species of solid angle where there are two sorts of 
faces. 

(1) species of solid angle bounded by 3-gons and 4-gons only. 

Suppose there is only one 4-gon at each solid angle. Then there can be at 
most four 3-gons since the angle sum of five or more 3-gons and a 4-gon 
is greater than 360°. Thus there are three possible types of solid angle: 

(3,3,3,3,4) which is realised in the snub cube; (3,3,3,4) which forms a square 
antiprism; and (3,3,4) which is excluded because part (7) of the previous 
lemma shows that this type of solid angle cannot be extended. 
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>360° snub cube square antiprism impossible 

Next, suppose that there are two 4-gons in the species of solid angle. Three 

3-gons and two 4-gons fit round a point in a plane so there can be at most 

two 3-gons at the solid angle. The species of solid angle containing two 4- 
gons and two 3-gons comes in two types. One of these (3,3,4,4) is excluded 
by part (a) of the preceding lemma; the other (3,4,3,4) corresponds to the 
cub-octahedron. The remaining case of two 4-gons and a single 3-gon (3,4,4) 
forms a triangular prism. 

SO). impossible cub-octahedron triangular prism 

If there are more than two 4-gons at the solid angle then there is a single 
possibility, namely (3,4,4,4), the rhomb-cub-octahedron. The angle sum of 
three 4-gons and two or more 3-gons is greater than 360°, and four or more 
4-gons suffer the same problem. 

33 || al 

A 

>360° rhomb-cub-octahedron =360" 

(2) species of solid angle bounded by 3-gons and 5-gons only. 

The analysis of this case is the same as the preceding one. If there is only 
one 5-gon at a solid angle then there can be at‘most four 3-gons. The 
three possible types give rise to the snub dodecahedron (3,3,3,3,5), and a 
pentagonal antiprism (3,3,3,5). 
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>360° snub dodecahedron pentagonal antiprism impossible 

If there are two 5-gons in the species of solid angle then there can be at 
most two 3-gons. Again, the species containing two 3-gons comes in two 

types: (3,3,5,5) cannot be extended by part (7) of the lemma; and (3,5,3,5) 
which is the icosi-dodecahedron. The remaining case is excluded by part 

(i) of the lemma. 

There are no other species of solid angle containing 5-gons as even a single 

3-gon with three 5-gons has an angle sum larger than 360°. 

>360° impossible icosi-dodecahedron impossible 

(3) species of solid angle bounded by 3-gons and 6-gons only. 

In the case when the species contains a single 6-gon there can be at most 
three 3-gons as four 3-gons and a 6-gon do not form a convex angle but are 
planar. Three 3-gons and a 6-gon (3,3,3,6) form a hexagonal antiprism, and 
the case of two 3-gons and a 6-gon (3,3,6) is excluded by the lemma. 

6 

=56()e hexagonal antiprism impossible 

If there are two 6-gons at the solid angle then there can be only one 3-gon, 
otherwise the angle sum is too great. This single case (3,6,6) corresponds 
to the truncated tetrahedron. More than two 6-gons cannot form a solid 
angle. 



THE ARCHIMEDEAN SOLIDS 165 

=360° truncated tetrahedron =O 

(4) species of solid angle containing 3-gons and n-gons only where n > 7. 

None of the species of solid angle containing a single n-gon can form an 
Archimedean solid. The only possibility is (3, 3,3,n), the antiprism with an 
n-gon base. 

>360° n-gonal antiprism impossible 

If there is more than one n-gon at the solid angle then the only possibility 

is to have two n-gons and one 3-gon. If n is odd then this type of solid 
angle cannot be extended (by part (7) of the lemma). And if n is even and 
greater than 10, the sum of the plane angles is greater than 360°. This leaves 
the cases (3,8,8) which is the truncated cube, and (3,10,10), the truncated 
dodecahedron. 

>360° truncated cube truncated dodecahedron =36(" 

This completes the analysis of all the species of solid angle containing 3-gons and 

one other type of polygon. Next, the other species which contain only two kinds 

of polygon are investigated. 

(5) species of solid angle containing 4-gons and n-gons only (nm > 5). 

If there is a single n-gon face then the type of solid angle must be (4, 4,7) 
as the sum of the plane angles of three or more 4-gons and an 7m-gon is too 

large. The allowable case is a prism with an n-gon base. 

If there are two n-gon faces then there is only a single 4-gon (otherwise the 
angle sum would be too large). Thus, the type of solid angle is (4,n,71). If 
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n > 8 then the angle sum is too large, and if n is odd then part (7) of the 

lemma shows that no polyhedron is possible. The only remaining case is 

(4,6,6). This is realised as the truncated octahedron. 

The possibility of three or more n-gons together with 4-gons is excluded by 

their angle sum. 

>360° >360° truncated octahedron 

(6) species of solid angle containing 5-gons and n-gons only (n > 6). 

A single n-gon cannot form part of a solid angle, for the angle sum of three 
5-gons and an n-gon is greater than 360°, and an angle of type (5,5,7) is 
excluded by part (i) of the lemma. 

If there are two n-gons then an angle sum argument shows that the solid 
angle must be of type (5,n,n). The smallest value of n gives the truncated 
icosahedron (5,6,6). For any larger value of n the sum of the plane angles 
is more than 360°. 

More than two n-gons leads to an angle sum that is too large. 

>360° >360° truncated icosahedron 

In any other species of solid angle containing only two sorts of polygon the smallest 
possible angle sum arises from two 6-gons and a 7-gon, and this is larger than 
360°. Thus every species of solid angle which contains only two kinds of polygon 
has now been dealt with. It remains to consider the species involving three kinds 
of polygon. 

(7) species of solid angle containing 3-gons, 4-gons and n-gons (n > 5). 

Assume first of all that there is a single n-gon. If there were one 4-gon there 
could be at most two 3-gons; the species containing two 3-gons are excluded 
by part (it) of the lemma above; and the angle type (3, 4,7) is excluded by 
part (2). 
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>360° impossible impossible impossible 

If there are two 4-gons and a single n-gon at the solid angle then there can 
be only one 3-gon, otherwise the sum of the plane angles is at least 360°. 

The angle sum is also too large if n > 6. Thus there are two possible types: 

(3,4,4,5) which is excluded by part (ii) of the lemma; and (3,4,5,4) which is 
the rhomb-icosi-dodecahedron. 

=360° =360° impossible thomb-icosi-dodecahedron 

(8) species of solid angle containing three kinds of face, none of which are 3-gons. 

Suppose that four faces form the solid angle. The smallest possible combi- 
nation is to have two 4-gons, a 5-gon and a 6-gon. The sum of the internal 
angles of these polygons is greater than 360° so there must be three polygons 
forming the solid angle, all of which are different. Part (7) of the lemma 
shows that, in this case, none of the polygons can have an odd number of 

sides. 

The smallest possible combination of faces is (4,6,8) which corresponds to 

the great rhomb-cub-octahedron (or truncated cub-octahedron). The next 
smallest combination is (4,6,10) which corresponds to the great rhomb-icosi- 
dodecahedron (or truncated icosi-dodecahedron). In all other combinations 
of faces the angle sum is too large to produce a solid angle. 

8 10 12 eer 

truncated truncated 

cub-octahedron icosi-dodecahedron =360° >360° 

All the possibilities of placing regular polygons together to form a solid angle 

have now been considered. All the types of solid angle that are not excluded by 

the simple conditions in the previous lemmas are candidates for polyhedra which 

are ‘perfect to a lower degree’. After excluding the prismatic families, the thirteen 
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possibilities that remain are realised by the Archimedean solids. Kepler’s illus- 

trations of them are shown in Figure 4.13. Notice that the order of the polyhedra 

in the figures does not match the order in which they appear in the enumeration. 

Instead, all the truncated solids are grouped together. Furthermore, the trunca- 

tions of the Platonic solids are in the same sequence as the Platonic figures in the 

cosmological model. ™ 

Star polygons and star polyhedra 

Star-shaped polygons such as the pentagram have been known since antiquity. 

A vase dating from the seventh century BC has a pentagram forming part of its 

decoration. Moorish tilings contain a variety of star polygons. Symbolic and 

mystical properties have been attributed to the pentagram in many cultures and 

professions. It has been used as a symbol of recognition, a talisman or charm, 

and is associated with alchemy, astrology and magic. The golden ratio occurs in 

several aspects of its geometry—a fact known to the Greeks and also recorded by 

Pacioli. 

Star polygons were first studied mathematically by Thomas Bradwardine 

(1290-1349) and were later investigated by Charles de Boulles (1470-1533). Kep- 
ler also made a study of them and wrote an account of them in book I of Har- 

monices Mundi. He defines a regular polygon as a figure whose sides are all equal 
in length and whose angles are equal and pointing outwards. He goes on to dis- 
tinguish two kinds of regular polygon: the fundamental or primary ones whose 
sides do not cross; and others of a more general type called stellated polygons 

(stellar meaning starlike). These stellated polygons can be derived from the pri- 

mary ones by extending non-adjacent sides until they intersect. He includes only 

those stellated polygons that can be traced in a single line. Thus the compound 
polygons in Figures 4.15(b) and (c) are excluded. Kepler then generalised this 
procedure so that it could be applied to the regular polyhedra. 

When considering polygons it is clear that the stellated figures are produced 
by extending the sides of the convex figures. But in three dimensions it is less 
clear how to proceed. What should be extended? Which parts of a polyhedron 
are its sides? Kepler gives two alternative generalisations of this idea. Firstly, 
the sides of the faces of the polyhedron can be extended until they intersect. He 
calls a polyhedron produced in this way an echinus (the Latin for ‘hedgehog’ or 
‘sea urchin’), and aptly describes such polyhedra as spiky or prickly. His second 
method involves extending the faces themselves until they intersect, the resulting 
polyhedron being called an ostrea (‘oyster’). These two methods are now called 
edge-stellation and face-stellation, respectively. 

The two star polyhedra which Kepler discovered appear to have been pro- 
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Ww 
(a) (b) 

(c) (d) 

Figure 4.15. Star polygons (a), (d) and compound polygons (b), (c). 

duced by applying the first method to the Platonic solids. In his account of the 

resulting polyhedra he gives descriptions only and, unusually, does not pass on 
any indication of how they were discovered. Extending the edges of a tetrahedron 

does not produce a new polyhedron since the lines do not intersect apart from at 

the original vertices. The same is true of the cube and the octahedron. Applying 
the edge-stellation process to the dodecahedron does produce an example of an 

echinus; the icosahedron furnishes the other example. ‘These two polyhedra are 

shown in Figure 4.16 and Plate 8. Kepler’s own sketches of them are reproduced 

in Figure 4.17. 

Figure 4.16. Kepler’s two star polyhedra. 
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Figure 4.17. Kepler’s sketches of his ‘prickly’ polyhedra. 

In the last few years of his life, Kepler started preparing a treatise on geome- 

try. Among his notes for this unfinished work there is a section entitled De Auctis 
(On Augmented Figures) which deals with the stellation process. In this work 
he calls the twelve-spiked star polyhedron ‘echinus major icosaedricus’ and the 

twenty-spiked one ‘echinus minor icosaédricus’ (larger and smaller icosahedral 

hedgehogs). Kepler also recognised that the larger hedgehog could be derived 
from the dodecahedron via the second process of face-stellation. In fact, both of 
the polyhedra can be produced in this way, and it is the process of face-stellation 

which is referred to in their current English names: the twelve-pointed one be- 
ing the small stellated dodecahedron, the twenty-pointed one the great stellated 
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dodecahedron. ‘These names were introduced by Arthur Cayley in 1859. The 
stella octangula, or compound of two tetrahedra, can also be produced by face- 
stellation, this time by extending the faces of an octahedron. 

All three stellations can easily be regarded as being formed from convex regu- 
lar polyhedra with a suitable pyramid erected on each face. From this viewpoint 
one is led to compare the convex figure with the augmented one. Noticing this, 
Kepler comments that the stellated figures 

are so closely related the one to the dodecahedron and the other to the 

icosahedron that the latter two figures, particularly the dodecahedron, 

seem somehow truncated or maimed when compared to the figures 
with spikes.! 

The process of augmenting convex polyhedra by adding pyramids of various 
heights had been used to generate many new polyhedra in the preceding 200 

years. It is not surprising, therefore, to find that all of Kepler’s stellated forms 

had already been depicted. Earlier sketches of the stella octangula appear in 

the works of Pacioli and Jamnitzer. A picture of the small stellated dodecahe- 

dron dating from the 1420’s can be seen in Saint Mark’s Basilica in Venice (see 
Plate 7). It is inlaid in marble and forms part of the floor decorations in one 
of the main doorways. The design has been attributed to Uccello. The great 
stellated dodecahedron was pictured by Jamnitzer as part of one of his polyhe- 

dral monuments. The spiky component at the core of the monument shown on 
page 288 is an example of this polyhedron. However, Kepler’s interest in these 

figures was not merely aesthetic. He considered them in a mathematical context. 

The two stellations of the dodecahedron can be interpreted in yet another 
way. A close examination of the small stellation reveals that the triangular faces 
are arranged in groups of five so that all the faces in each group lie in a plane. 
Furthermore, each group surrounds a regular pentagon buried under a pyramid. 

Together, a pentagon and its five satellite triangles form a pentagram. There- 
fore, this polyhedron can be regarded as having pentagrams for faces, twelve in 

total, arranged with five meeting at each vertex. The great stellation can also 
be regarded as being built up from twelve pentagrams, meeting in threes at the 

vertices. The models of these polyhedra shown in Plate 8 are coloured so that 

each pentagram is painted in a single colour. 

Under this radically different interpretation the faces of the polyhedra are 

allowed to pass through each other like the sides of a star polygon. ‘The star 

pentagon faces are joined side against side as in conventional polyhedra, yet they 

pass through each other allowing some parts of each face to be seen and confining 

others to the interior of the polyhedron hidden from sight. 

The Dutch artist Maurits Cornelis Escher (1898-1972) used this interpreta- 

tion in some of his work. Figure 4.18 is a preliminary sketch which he made 
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© 1996 M. C. Escher / Cordon Art — Baarn — Holland. All rights reserved. 

Figure 4.18. A sketch by M. C. Escher showing a cut-away view of the 

small stellated dodecahedron. 

showing a cut away diagram of the small stellation. The sketch clearly shows 

the faces continuing under each pyramid. In his 1952 print Gravity, shown on 

page 248, Escher adds twelve animals, one standing on each face and poking four 
limbs and a head tortoise-like through the holes in a pyramid. Escher also made 

a perspex model of the complete polyhedron and engraved a starfish into each of 

the twelve pentagram faces. 

Regarding the faces of these polyhedra as pentagrams forces us to accept 
the following surprising conclusion: they are regular polyhedra, for their faces 

are equal regular polygons and the same number surround each solid angle. In- 

cluding the star polygons among the regular polygons allows a more general 
type of regular polyhedron to be constructed. Kepler does not recognise that, in 
this generalised setting, his new regular polyhedra have the same status as the 
convex regular polyhedra. In the same way that he separated regular polygons 
into primary and stellated, he regards the convex polyhedra as fundamental and 
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their stellations as secondary: ‘nothing but an augmented dodecahedron (but 
augmented most regularly)’. 

Perhaps part of the reason why he was reluctant to raise his star polyhedra 
to the level of the Platonic polyhedra is that it would ruin his solution of the 
cosmic mystery. Even after his work on the elliptical nature of planetary orbits, 
Kepler continued to experiment with his planetary model. In book v of Har- 
monices Mundi he investigates the possibility of replacing the dodecahedron and 
icosahedron by a single ‘echinus major’ with its circumsphere bounding the orbit 
of Mars and its midsphere bounding the orbit of Venus leaving Earth’s orbit free 
and undetermined. But in a later work, Epitome Astronomiae Copernicanae, he 

discards this idea. If such an alteration were made then the reason there are 
but six planets would evaporate, and the whole harmonious nature of his svstem 
would be destroyed. 

This unwillingness to abandon his cherished model may go some way to ex- 
plaining why Kepler did not investigate the properties of his star-faced polyhedra 

more thoroughly. In the case of the two rhombus-faced polyhedra, he proceeded 

to analyse them and show that he had found all the possibilities. In contrast, he 
makes no attempt to establish whether any other polyhedra have properties simi- 

lar to his star polyhedra. ‘The two stellations are composed of pentagrams meeting 

in groups of three or five to form the solid angles. Is it possible to construct a 
polyhedron with four pentagrams surrounding each solid angle? Furthermore, 

the angle in the corner of a pentagram is 36° so up to nine can be fitted round 

a vertex. It is conceivable that polyhedra with up to nine pentagrams per solid 
angle could be constructed. The other star polygons provide further possibilities. 
Are Kepler’s star polyhedra the only ones? Kepler himself is strangely silent on 

this topic. We shall return to the problem in Chapter 7. 

Semisolid polyhedra 

Kepler did experiment with other star polygons. Besides the two pentagram-faced 
polyhedra, he found two semisolid polyhedra: one composed of star octagons, the 

other of star decagons. 

The sides of the first and fourth points of star octagons and star 

decagons lie in a line, which passes through two intermediate points, 

and the stars can be fitted together with such sides joined two by two. 

The star octagons make a kind of cube, and the star decagons a kind 

of dodecahedron, figures which have not angles but ears, for when two 

of the plane angles are fitted together they must leave a gap, which 

can not be closed.” 



174 CHAPTER 4 

Figure 4.19. Kepler’s two ‘semisolid’ polyhedra. 

The ‘eared cube’ and the ‘eared dodecahedron’ are shown in Figure 4.19. Like 
the star polyhedra whose faces are pentagrams, the faces of these incomplete 

polyhedra are star polygons that meet along their edges. As these edges cross 
each other, the faces pass through each other. In each figure, the shaded parts 

are the visible parts of a single face. 

Recall Kepler’s requirement that if a polyhedron does not close up then we 
must be able to fill in any gaps with regular polygons. The two semisolid poly- 

hedra with ‘ears’ can be completed by the addition of regular polygons although 
it is not certain that the way in which it is done is what Kepler had in mind. He 
made no reference to it. 

The ‘eared cube’ is completed by adding eight triangles to the six octagrams. 
The result is shown in Figure 4.20(a)—the visible parts of one triangular face are 
shaded. The sides of the triangles are joined to the unused sides of the octagrams 
so that two polygons meet at every edge. However, this is not possible without 

allowing the triangles to intersect each other. The lines where they meet are not 
counted as edges just as the points where the sides of a star polygon cross are not 

counted as vertices. The compounds of polyhedra mentioned earlier also exhibit 

this phenomenon. In those cases, the faces of one polyhedron pass through the 
faces of another; here the polyhedron intersects itself. 

The other ‘eared’ polyhedron is completed by the addition of twelve pentagons 

(see Figure 4.20(b)). Curiously, both of these figures arise by extending the edges 
of an Archimedean solid. They are edge-stellations of the truncated cube and 
truncated dodecahedron, respectively. This is, perhaps, how Kepler discovered 
them. 
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(a) (b) 

Figure 4.20. Kepler’s semisolid polyhedra can be completed to produce 
uniform polyhedra. 

Uniform polyhedra 

The two polyhedra in Figure 4.20 are examples of uniform polyhedra. These are 
to the Archimedean solids what the star polyhedra are to the Platonic solids. 
All their vertices are surrounded in the same way? and their faces are regular 
polygons (star or convex). Now, however, the faces are allowed to intersect each 
other. Included under this definition are the Platonic and Archimedean solids, 

the prisms and antiprisms, and Kepler’s two pentagram-faced star polyhedra. 
There are new possibilities, too. 

Figure 4.21. Prism and antiprism with star polygon bases. 

For a start, we can form prisms and antiprisms with star polygons as bases. 

An example of each is shown in Figure 4.21. The base for the prism is a penta- 
gram. The sides of the pentagrams are not drawn in full and the top appears as 
a ten-sided non-convex polygon. (This decagon is sometimes called a pentacle.) 

2We also need to impose some kind of restriction on the symmetry of the resulting figure. 
To be precise, the polyhedron must be vertex transitive. 
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However, all the star-shaped polygons in Figures 4.20—4.25 are to be thought of as 

star polygons like those illustrated in Figure 4.15. The square faces of the prism 

are attached along the sides of the pentagrams and intersect each other. The 

visible parts of one of these squares are shaded. The antiprism is based on one of 

the star heptagons and the shaded regions are the visible parts of an equilateral 

triangle. 

Other uniform polyhedra can be derived from the Platonic and Archimedean 

solids. For example, the edge-framework of the rhomb-cub-octahedron can be 
viewed as bounding six octagons which intersect each other (Figure 4.22(a)). Two 
uniform polyhedra can be formed by adding to these either twelve squares, or eight 

triangles and six squares. These two possibilities are shown in Figures 4.22(b) 

and (c). 

(a) 

(b) (c) 

Figure 4.22. Two uniform polyhedra, (b) and (c), with the same edge- 
skeleton as a rhomb-cub-octahedron. 

The edge-framework of an octahedron bounds three squares as shown in Fig- 
ure 4.23(a). By adding four triangles to these we complete another uniform 
polyhedron (Figure 4.23(b)). It is commonly called the heptahedron since it has 
seven faces. 

The cub-octahedron furnishes two further examples. Its edge-framework 
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(a) (b) 

Figure 4.23. Four triangles added to three orthogonal squares form the 
heptahedron. 

bounds four hexagons (Figure 4.24(a)), and uniform polyhedra result by adding 
either the squares or the triangles of the original cub-octahedron (Figures 4.24(b) 
and (c)). 

Apart from the two uniform polyhedra derived from Kepler’s semisolid ones, 
none of these examples contains star polygons. Four uniform polyhedra contain- 
ing star octagons are shown in Figure 4.25. In the first two examples, the six 
octagrams occupy equivalent positions. The polyhedra are completed by the ad- 

dition of (a) six squares and eight triangles, or (b) twelve squares. In the first 
case the squares, lie in planes parallel to the octagrams. In the second example, 

the squares are parallel to planes passing through two opposite edges of the sur- 
rounding cube. Figure 4.25(c) contains eight hexagons and six octagons besides 
its six octagrams, and Figure 4.25(d) is completed with twelve squares and eight 
hexagons. The hexagons in this last example are almost entirely hidden from 
view. The small triangular regions are, in fact, openings which give access to 

large cavities inside the polyhedron whose walls are formed by the hexagons. 

There are many more uniform polyhedra. As well as those listed above, there 
are two more composed of a single kind of polygon (the star polyhedra discovered 

(a) 

(b) (Cc) 

Figure 4.24. Two uniform polyhedra, (b) and (c), with the same edge- 

skeleton as a cub-octahedron. 
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(a) (b) 

(c) 

Figure 4.25. Four uniform polyhedra. 

by Louis Poinsot in 1810 discussed in Chapter 7) and 42 having more than one 
kind of face. Some of them were discovered in the early 1880’s. The Frenchman 
A. Badoureau considered systematically each of the Platonic and Archimedean 
solids, searching for regular polygons in their edge-frameworks or star polygons 
in their faces. He found 37. At the same time, working independently in Austria, 

Johann Pitsch found 18, four of which were not included on Badoureau’s list. 

Fifty years later, H.S. M. Coxeter and J. C. P. Miller used a different method of 
enumeration and added twelve new uniform polyhedra. This brought the total 
to 75, 53 of which were non-convex and non-regular. However, they could not 
prove that they had found all the possibilities. Ten years later M. S. and H. C. 
Longuet-Higgins worked on the problem and rediscovered eleven of the twelve. 
Jean Lesavre and Raymond Mercier concentrated on a special case: they searched 
for uniform polyhedra without reflection symmetry and found five such snub 
polyhedra. Eventually, in 1954, the list of 75 uniform polyhedra was published. 
It was not until the advent of the computer that J. Skilling was able to show that 
the list was complete. 
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The uniform polyhedra were the main subject for Magnus Wenninger’s book 
Polyhedron Models. Starting with the simple Platonic and Archimedean solids, he 
progresses to some stellated models and then to the 53 other uniform polyhedra. 

The work contains photos of completed models and instructions on how to make 

your own. Some of them are extremely intricate. He also names each solid. 
His names for the completions of Kepler’s ‘eared’ polyhedra (Figure 4.20) are 
‘quasitruncated hexahedron’ and ‘quasitruncated small stellated dodecahedron’. 

Kepler’s influence on the subsequent development of mathematics was min- 
imal. His work on star polyhedra was certainly unknown to Poinsot 200 years 
on. Later still, Eugene Charles Catalan was unaware that Archimedean poly- 
hedra had been previously investigated. One reason that Kepler’s results were 
overlooked has to do with the fact that much of his work is not published in the 

form of a scientific exposition, but rather as a saga recording the trials of the 
process of discovery. He includes in his accounts the motivation, the assaults 
he has tried, the failures and dead-ends, the moment of inspiration, his feelings 

when success comes, as well as his solution to the problem at hand. This makes 

it difficult to isolate the useful results from the discussion in which they are em- 

bedded. Consequently, the work of this most creative of people lay neglected for 

many years. 



j CE ae Ore ann Mtoe 
From Perspectiva Corporum Regularium by Wenzeln Jamnitzer, 1568. 



181 

Surfaces, Solids 
and Spheres 

The first important notions in topology 

were acquired in the course of the study 

of polyhedra.“ 

Henri Lebesgue 

The reader who has made several models may have observed the following phe- 

nomenon: as the number of solid angles of a polyhedron increases, the sharpness 

of its corners decreases. Compare a cube with a dodecahedron, for instance. The 

eight solid angles in the cube are all acute whereas the twenty solid angles in a 
dodecahedron are obtuse. This ‘sharpness’ can be quantified if we cut along one 

of the edges and open out the faces so they lie flat (Figure 5.1). In any solid 
angle the sum of its face angles is always less than 360° and it is the size of the 

deficit which determines the sharpness of the solid angle: the larger the deficit, 
the more acute the resulting angle. 

Examining the deficiencies in the two polyhedra more closely reveals another 
phenomenon. Each of the eight angles in a cube has a deficit of 90° and each 

solid angle in a dodecahedron has a deficit of 36°. In both cases, the deficiencies 
of all the solid angles add up to 720°. These observations illustrate a theorem 
discovered by René Descartes (1596-1650). 

Descartes’ theorem appears as part of a work called Progymnasmata de Soli- 

dorum Elementis (Exercises on the Elements of Solids) along with other propo- 
sitions in solid geometry and a section on polyhedral numbers—analogues of the 

familiar triangular and square numbers. He gives formulae for polyhedral num- 

bers corresponding to the five Platonic solids and nine of the Archimedean solids. 
Descartes did not publish this manuscript and it is a quirk of fortune that its 

contents have survived. 

In the autumn of 1649, Descartes went to Stockholm at the invitation of 
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Figure 5.1. Deficiencies of the cube and dodecahedron. 

Queen Christina of Sweden, but the severity of the climate was too much for him 

and he died six months later. His belongings were shipped back to France but 
suffered accident on route, the box carrying his manuscripts ending up in the Seine 

at’ Paris. The papers were rescued from the river, separated and dried. Later, 
some were published and the remainder were made available for consultation. In 

1676 Gottfried Wilhelm Leibniz (one of the founders of the calculus) made copies 
of several of the latter manuscripts including the work on polyhedra. Descartes’ 

original manuscript has vanished and it is only through the copy that the work is 

preserved. Even so, it remained unknown until 1860 when the copy was discovered 
by Comte Foucher de Careil among a collection of uncatalogued Leibniz papers. 

Descartes was the first person to study polyhedra in a general context. Prior 
to this, people had concentrated their attention on specific examples or on par- 

ticular properties shared by a few polyhedra; the idea of investigating the set of 

all polyhedra as a whole does not seem to have occurred to anyone. During the 
two centuries which elapsed while Descartes’ work lay forgotten and unknown, 
another mathematician initiated a general study of polyhedra—a study which 

had far-reaching effects. Leonhard Euler (1707-1783) revolutionised the theory 
of polyhedra by introducing new ideas and a new vocabulary. He discovered a 
formula that related the numbers of the various constituent parts of a polyhedron 

but he could not explain its origin. Many mathematicians after him struggled 
to understand the nature of his discovery and to find its underlying causes, the 
foundations on which it depended. The ensuing debate played a major role in the 
development of mathematics. Out of the original uncertainty arose a new kind 
of geometrical discipline—topology. 
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Plane angles, solid angles, and their measurement 

In order to arrive at Descartes’ theorem it is necessary to explore the problems of 
angle measurement. Once this has been done, and some preliminary results have 
been established, the proof of the theorem becomes almost immediate. 

An angle is a region of a plane contained between two intersecting lines so 
that segments of the two lines and their point of intersection form part of its 
boundary. It is also a measure of the inclination of the lines to each other. 
Since classical times there have been two units of measurement for angles: the 
Babylonian system of degrees used in astronomy and trigonometry, and the right 
angles used in geometry. 

Euclid singles out the right angle as the fundamental angle and expresses 
other angles as multiples of it. The tenth definition of his Elements says that 
when a line stands on another line so that the adjacent angles are equal to each 
other then each of these angles is a right angle; the fourth postulate is that all 
right angles are equal. The sizes of plane angles are then expressed as fractions 
of a right angle. Thus the sum of the interior angles in a triangle is two right 
angles; each of the interior angles in a regular pentagon is one-and-a-fifth right 
angles. 

Proclus extended Euclid’s result on the interior angle sum of a triangle to 
polygons in general. By dividing an n-sided polygon into triangles he showed that 

its interior angle sum is 2(n — 2) right angles. He also proved that the sum of the 
exterior angles in any polygon was equal to four right angles. ‘The exterior angle 

measures the amount by which one arm of an angle deviates from the straight 
course of the other (see Figure 5.2(a)). Therefore, when going round a polygon, 
we would expect that the total sum of all the deviations make a complete turn 
(5.2(b)). Proclus proves this by noting the fact that exterior and interior angles 
are complementary—they add up to two right angles. Thus the sum of all the 
interior and exterior angles in an n-sided polygon is 2n right angles. Deducting 
the 2(n — 2) right angles which comprise the interior angle sum, we see that the 

exterior angle sum is four right angles—a complete turn. 

Another angle that is associated to a plane angle is its supplementary angle. 

This is constructed by erecting a perpendicular on each line forming the angle 

and extending them until they meet (Figure 5.3(a)). It is a simple exercise to 
show that an angle and its supplement come to two right angles and thus they 

are complementary. Therefore, the supplement of an angle and its external angle 

are equal. Hence, all the supplementary angles in a polygon add up to four right 

angles. A different proof of this fact is indicated in Figures 5.3(b) and (c): all the 

‘wedges’ of the supplementary angles can be translated to fit together around a 

point. 

Besides the two traditional ways of measuring angles, there is a third, more 
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aig angle 

(a) 

(b) 

Figure 5.2. Exterior angles. 

modern, measure. It uses the length of the arc intercepted by the angle on a circle 
of radius one unit centred on the point of intersection of the two lines. This is 
called the radian measure, and an angle measures one radian when the length of 
arc is one unit, that is, when it is equal to the radius of the circle. A whole circle 

is 27 radians (or 360° or four right angles). A right angle is 5 radians; the angles 
in an equilateral triangle are each 3 radians. Proclus’ theorems can be restated 
as: the sum of the interior angles in an n-sided polygon is (n — 2)7, and the sum 
of its exterior angles is 27. 

In book XI of the Elements, Euclid begins his treatment of solid geometry. 
He defines a solid angle as the space which is contained by three or more planes 
meeting at a point and not lying in a plane. He then shows that the sum of the 
plane angles forming the solid angle must be less than four right angles, but he 
makes no attempt to quantify the solid angle itself. There is some difficulty in 
this. How should the szze of a solid angle be measured? How can solid angles be 
compared to one another? 

If a plane angle is measured by the arc of a circle then perhaps solid angles 

Sat es 

angle 

(a) (b) (Cc) 

Figure 5.3. Supplementary angles. 
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can be measured by segments of a sphere. To pursue this analogy, imagine a 
sphere of radius one unit centred on the apex of a solid angle. It will intersect the 
plane figures forming the solid angle in arcs of great circles, and these arcs will 
bound a polygon on the sphere which lies inside the solid angle (see Figure 5.4). 
This spherical polygon is a measure of the solid angle. The angles between its 
sides are the dihedral angles between the faces of the solid angle, and the sides 
are a measure of the plane angles of the faces. In fact, the length of a side is the 
radian measure of a plane angle. Just as the length of an arc is used as a measure 
of a plane angle, so the area of a spherical polygon can be used to measure a solid 
angle. The units for this quantity are called steradians. 

Figure 5.4. 

Consider the particular solid angle formed from three mutually perpendicular 

planes. Every plane angle and every dihedral angle is a right angle. ‘The spherical 
polygon which measures this angle will cover one eighth of the surface of the 
sphere. Since the sphere has unit radius, its total surface area is 477, hence the 

measure of this solid angle is 5. This solid angle is an example of a solid right 
angle. (Recall that plane right angles also measure 5.) However, whereas all 
plane right angles are equal (congruent), there are many solid right angles since 

TT the number of spherical polygons whose area is 5 is unlimited. 

The supplementary angle to a plane angle is constructed by erecting lines 

perpendicular to those forming the angle. Similarly, a supplementary solid angle 

can be constructed from a given solid angle by erecting planes perpendicular to its 

faces in such a way that they meet in a point (see Figure 5.5). The dihedral angles 

of this supplementary solid angle are the supplements of the face angles of the 

original solid angle. So, for example, in the figure, @ is the supplement of a and 

hence a+ 3 =7 radians. And, as in the case of the supplementary plane angles 

of a polygon, the supplementary solid angles of a polyhedron can be translated 

to fit together around a point. Therefore, the sum of the supplementary solid 

angles is 47—the whole sphere. 

In order to find an analogy to the exterior plane angle in the solid geometry 
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Figure 5.5. Construction of a supplementary solid angle. 

setting it is helpful to have a slightly different viewpoint. Rather than think 
of the exterior angle as the amount by which a line deviates from a straight-on 
direction, we can see it as the amount by which the interior angle falls short of 
a straight line. Thus an exterior angle measures a deficit. For an analogous idea 
applicable to solid angles we can measure the amount by which they ‘fall short’ 

of being planar. The angle by which the sum of the plane angles around a solid 
angle is less than 27 is called its deficiency. Solid angles with a large deficiency 
(like tetrahedral angles, for example) are sharp while those with small deficiencies 

(dodecahedral angles) are blunt and squat. 

Recall that the exterior and supplementary angles of a plane angle are equal. 

It is a remarkable fact that the deficiency of a solid angle is equal to the size of 
its supplementary angle. This is a consequence of a certain property of spherical 

polygons. Unlike plane polygons, whose area depends on their size as well as their 

shape, the area of a spherical polygon is completely determined by its shape. 

This result first appeared in print in 1629 in a collection of essays by Albert 
Girard. In the third essay, entitled De la Mesure de la Superfice des Triangles 

€§ Polygones Sphericques, Nouvellement Inventée, he showed that the area of 

a spherical polygon equals the sum of its interior angles minus the sum of the 

interior angles in a plane polygon having the same number of sides. To express 
this symbolically, let the angles in an n-sided spherical polygon be ay, a2,---, Qn. 
Then its area is given by the formula: 

area = Q) +Q9+---+Qy (n — 2)n. 

This is called the Spherical Excess formula. 

We are now in a position where we can prove the crux of Descartes’ theorem. 

Lemma. The deficiency of a solid angle equals its supplementary angle. 
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PROOF: Suppose that the solid angle is formed from n faces whose plane angles 
are Q, Q2,°**,Q,. The supplementary solid angle is measured by the area of the 
segment on a sphere of unit radius which it intersects. This segment is a spherical 
polygon whose angles are the dihedral angles of the supplementary solid angle. 
We know that each of these dihedral angles is the complement of one of the plane 
angles of the faces, that is, the dihedral angles are (tT — a1), (m—a),---, (7 —Qp). 
ApRIVINE the spherical excess formula gives the area of the spherical polygon to 
be 

area = (m7 —ay,)+(m—ag)+---+(m—-a,) — (n—-2)z 

dn — (a, +Q2+---+ Qn) 

which is the deficiency of the given solid angle. = 

Descartes’ theorem 

A very beautiful and general theorem 

which ought to be placed at the head 
of the theory of polyhedra." 

E. Prouhet 

The most important result in Descartes’ De Solidorum Elementis is his propo- 

sition concerning the total angular deficiency of polyhedra. His other geometric 
results can be considered as consequences of it. The manuscript begins: 

A solid right angle is one which embraces the eighth part of the sphere 
even though it is not formed by three plane right angles. -- - 
As in a plane figure all the exterior angles, taken together, equal four 
right angles, so in a solid body all the exterior angles, taken together, 
equal eight solid right angles.° 

Although he does not define an exterior solid angle, Descartes does state some of 
their properties. These include the fact that they can be measured by the amount 
by which the sum of the plane angles bounding the (interior) solid angle is less 
than four right angles. Thus we have 

Theorem. The sum of the deficiencies of the solid angles in a polyhedron is 

eight right angles. 

The manuscript contains no proof of this theorem but the results concerning 

angle measurement presented in the previous section were all known by 1630, and 

the proof follows easily from them: the sum of the supplementary solid angles 

of a polyhedron is known to equal eight right angles (the whole sphere) and the 

lemma shows that the supplementary angles equal the deficiencies. 
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Descartes follows his proposition with a simple corollary. Knowing the sum 

of the deficiencies of all the solid angles enables one to calculate the sum of the 

plane angles of all the faces. If S denotes the number of solid angles then the 

sum of the plane angles is 45 — 8 right angles. 

The fact that there can be at most five regular polyhedra can be derived 

from this result as follows. Suppose that a polyhedron has S solid angles, each 

of which is surrounded by q faces, and that each face has p sides. Then the sum 

of the interior angles of each face is 2(p — 2) right angles and hence every plane 

angle measures 

2(p — 2) right angles. 

Since g plane angles come together at each solid angle, there are gS plane angles 

in total and their sum is 

—2 
picid) right angles. 

The above corollary states that the sum of the plane angles is 45 — 8 right angles 

so these two expressions can be equated 

2(p — 2 nl as eee Pail meee) 
Pp 

and then solved for S to get 

4 S = a 
2(p + 4) — pq 

The denominator of this fraction is equal to 4 — (p — 2)(q — 2) from which it is 
clear that (p—2)(q—2) must be less than four. As p and gq must both be integers 
greater than two, the five solutions for (p,q) are (3,3), the tetrahedron; (3,4), the 
octahedron; (3,5), the icosahedron; (4,3), the cube; and (5,3), the dodecahedron. 

In contrast to Euclid’s geometric proof that there are at most. five regular 
solids, this proof is essentially algebraic in nature. We have calculated p and gq. 
Descartes does not offer a complete proof in his manuscript but notes that if a 
regular body has F' faces and S solid angles then both 

25-4 q 2F—A4 
an 

F Pe) 

must be integers, and that this is possible only when S = 4, 6, 8, 12 or 20 and 
F = 4, 8, 6, 20 or 12 respectively. 

This sample of the results contained in De Solidorum Elementis illustrates 
the originality of Descartes’ approach to polyhedral geometry. No-one before him 
had attempted to study polyhedra in general, and some of his results were still 
new to geometers when Leibniz’s copy was discovered two centuries later. Like 
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Kepler’s work, this investigation by Descartes lay dormant for many years and 
did not influence mathematical progress. In the intervening period the theory of 
polyhedra developed in a quite different direction. 

The announcement of Euler’s formula 

With the introduction of printing in the fifteenth century access to information 
was greatly increased. However, the market for mathematics books was limited 
and they were expensive. Neither were books a suitable medium for the dissem- 

ination of new ideas as most results were too short. Even with the advent of 

journals, supported by the rising academies and learned societies, it could take 

several years before a paper appeared in print. Thus mathematicians related their 
discoveries in letters to friends. 

Leonhard Euler and Christian Goldbach corresponded for many years. In 

a letter written in November, 1750 Euler told Goldbach that he had started 

to investigate polyhedra. He wanted to introduce some sort of order into the 

diversity of seemingly unrelated solids. He writes 

Recently it occurred to me to determine the general properties of 

solids bounded by plane faces, because there is no doubt that general 

theorems should be found for them, just as for plane rectilinear figures, 
whose properties are: 

(1) that in every plane figure the number of sides is equal to the 

number of angles, and 
(2) that the sum of all the angles is equal to twice as many right angles 
as there are sides, less four. 

Whereas for plane figures only sides and angles need to be considered, 
for the case of solids more parts must be taken into account.“ 

The parts which Euler considered to be important are: the faces and solid 
angles of the polyhedron, the plane angles and sides of its polygonal faces, and 
the joints where two faces come together meeting side against side. He could 
not find a term which had been previously applied to this last kind of part so he 

chose a name, the Latin word ‘acies’ meaning ridge or sharp edge. This allowed 

him to distinguish between the edges of the polyhedron and the sides of its faces. 

He proceeded to describe how the numbers of these parts were related to one 

another. Letting 

H be the number of faces (hedrae) 
S be the number of solid angles (angulorum solidorum) 
A be the number of edges (acies) 
L_ be the number of sides (latus) 

P. be the number of plane angles (angulorum planorum) 
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he observed that 

In each face the number of sides equals the number of plane angles. 

Therefore L = P. 

Two sides meet at every edge so A = !/L. So L (and hence P) is 

always an even number. 

Every face has at least three sides so L > 3H. 

At least three faces surround each solid angle so L > 3S. 

Besides these rather obvious statements, Euler mentioned two further relation- 

ships which are far more fundamental. Firstly, 

pope h ae ao 

and also 

The sum of all the plane angles equals 4 — 8 right angles. 

The second of these two statements had been previously recorded by Descartes 

but this was not known at the time. The other relation was totally original and 
has become known as Euler’s formula (or his polyhedral formula, to distinguish 

it from other celebrated relationships he discovered). 

It is worth pausing at this point to check some examples. Firstly, we observe 

that Euler’s formula holds for all the Platonic solids. For instance, a cube has 6 

faces, 8 solid angles, making a total of 14, and it has 12 edges. An icosahedron 
has 20 faces, 12 solid angles and 30 edges. As more general examples, there are 
the families of pyramids and prisms. A pyramid with an n-sided base has (n+ 1) 
faces, (n+ 1) solid angles and 2n edges. A prism with an n-sided base has (n + 2) 
faces and 2n solid angles, making a total of 3n + 2, and it has 3n edges. 

An example which verifies the formula in a particular case is included in 
Euler’s letter. He goes on to derive some consequences of his relations, then 
remarks: 

I find it surprising that these general results in solid geometry have 
not previously been noticed by anyone, so far as I am aware; and 

furthermore, that the important ones --- are so difficult that I have 
not yet been able to prove them in a satisfactory way.° 

A few weeks later Euler presented the first of two papers on his polyhedron 
formulae to the Saint Petersburg Academy. In it he expanded the summarised 
account he had sent to Goldbach and verified that the formula holds for several 
families of solids, but admitted that he could not offer a proof of the general case. 
His proposed proof appeared in a second paper which he presented the following 
year. 
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The naming of parts 

The crucial observation that. enabled Euler to discover his formula was the isola- 
tion and labelling of the elements called edges. Prior to this, people had analysed 
polyhedra in terms of bases and solid angles in analogy with the sides and an- 
gles of polygons. Yet Euler did more than merely find a name for something 
previously unlabelled. He needed to find a name because of his radically new 
way of breaking down a polyhedron into its component parts—each of a different 
dimension. In his first paper he writes: 

Three kinds of bounds are to be considered in any solid body; namely 

points, lines and surfaces, or with the names specifically used for this 

purpose: solid angles, edges and faces. These three kinds of bounds 
completely determine the solid. But a plane figure has only two kinds 

of Bounds which determine it; namely points or angles, and lines or 
sides. 

These new elements are tactile, they are differences in texture. If you hold a 

model polyhedron you feel its flat faces, the ridges where they meet, and the 
sharp points at the corners. 

Although Euler created the term ‘edge’ to distinguish the lines in the surface 

of a polyhedron from the lines (sides) bounding its polygonal faces, he retained 
the term ‘solid angle’ giving it a new meaning. The term ‘apex’ had been used 
for the top of a pyramid but there was no separate term for the tip of a solid 

angle. Adrien Marie Legendre continued in this vein using ‘solid angle’ to refer 
to the points where three or more faces come together. Later French mathe- 
maticians introduced the term ‘sommet’ (meaning summit). Perhaps this choice 
was influenced by Legendre’s translation of ‘acies’ as ‘aréte’ (meaning ridge of a 
mountain). The Englishman Arthur Cayley used both ‘summit’ and ‘vertex’; the 

latter has become the standard English name. 

The need to distinguish between different sorts of vertices according to how 
many faces surrounded them produced more terminology. Cayley wrote of ‘trihe- 
dral summits’ to describe vertices surrounded by three faces. In another context, 
in order to emphasise the fact that three edges met at a vertex, he called them 

‘tripleural summits’ (from the Greek work for rib). A different terminology arose 

with the progress of molecular chemistry. 

By the middle of the nineteenth century chemists had distinguished elements 

(containing a single kind of atom) from compounds (composed of atoms of several 

kinds), and it was clear that the constituent elements of a compound substance 

were combined in certain fixed proportions. By comparing these ratios for many 

simple molecules the notion of valence developed. This refers to the capacity for 

the atoms of an element to combine with other atoms. Thus a carbon atom can 
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link to four other atoms, a hydrogen atom to just one. Various kinds of diagrams 

were used to illustrate these relationships, but the most important of these were 

those introduced by Alexander Crum Brown (1838-1922). His graphic notation 

quickly caught on as it neatly explained the phenomenon of chemical isomerism— 

substances having the same composition but different properties. The diagrams 

showed clearly that the same atoms could be linked in different ways producing 

molecules with different shapes and structures (see Figure 5.6). 

Figure 5.6. Brown’s molecular notation explained isomerism. 

These diagrams were not only of interest to chemists but were also studied by 
mathematicians who were interested in finding the number of different isomers 
with a given composition. These studies were part of the origins of graph theory— 
the part of mathematics concerned with the study of networks or graphs. The 

notion of valency is common to both chemistry and mathematics. To a chemist, 
a carbon atom has valence four since it can make four bonds to other atoms. To 
a mathematician, a vertex has valence four if it is the endpoint of four edges. In 

general, a vertex is said to have valence n, or to be n-valent, if it is the meeting 

point of n edges and, therefore, is surrounded by n faces. 

Throughout this book the terms face, edge, vertex and valence are used. (The 
term ‘face’ was favoured by the French writers and has come to replace ‘base’— 
the term inherited from the Greeks.) When symbols are required to express the 
quantities of these various elements, the traditional practice of using the initial 
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letters of the words they represent will be followed. This is, of course, language 
dependent whence Euler’s S, A, H for angulorum solidorum, acies and hedrae, 
and the German E, kK, F for Ecken (corners), Kanten (edges) and Flachen (faces). 
Using symbols corresponding to our chosen English terminology, Euler’s formula 
is expressed 

V+F = £+2 

or alternatively 

Ve a a2 

where the terms on the left-hand side are arranged in order of dimension. 

Consequences of Euler’s formula 

Before examining some attempts to show that Euler’s formula is valid for all 

polyhedra, some of its many consequences will be derived. Using the Vertices, 

Edges and Faces terminology, we write Euler’s formula as 

V+F = B42, (A) 

Some of his other observations can be combined and expressed as 

I Se ave (B) 

2h, > BV. (C) 

One of the consequences of these formulae which Euler mentioned in his letter 

to Goldbach is that a polyhedron cannot have 7 edges. For suppose that there 
exists a polyhedron which has & = 7. Then relation (B) implies that 3F < 14. 
Since F' is the number of faces, it must be an integer greater than 3, therefore 
F = 4. Similarly, from (C), 3V < 14 implies that V = 4. Now substituting V = 4, 
F =4 and EF =7 into formula (A) produces a contradiction: 4+ 4 4 7+ 2. 

The existence of this restriction raises the question of whether there are any 
other combinations of V, & and F' for which there is no corresponding polyhedron. 

Glearly FP 2 4, V 2 4, & 26 are restrictions, and now also # = 7. But 

can any other choice of V,& and F' which satisfies Euler’s formula be realised 
as the number of vertices, edges and faces of some polyhedron? Is there, for 

example, a polyhedron which has 10 faces and 17 vertices? In fact there is no 

such polyhedron: if such a polyhedron satisfied Euler’s formula it would have 25 

edges and these values of V and E do not satisfy relation (C). 

The relationships (A), (B) and (C) above can be combined to produce re- 
strictions on F' and V. Multiplying (A) by two, and combining the result with 

(B) gives 
DV ate ee OA So OE A: 
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Simplifying produces 

2V —4 > fF 

or Ve I P+ 2: 

Similarly, combining twice (A) with (C) gives 

IV AO oe 2B oe COV 4 

and thus 
2h —4 > VV. 

Euler knew both of these corollaries. On the left part of Figure 5.7 the two 

inequalities V > 42F +2 and V < 2F — 4 are show graphically. The shaded 

region indicates combinations of vertices and faces which are impossible. Each 

open circle indicates a point which could correspond to a polyhedron. 

Vv Vv 

Lo 2S 4 6 7 188 SOOM dail 2) 

Figure 5.7. 

There is, in fact, at least one polyhedron corresponding to each circle. To 
prove this it is sufficient to construct a polyhedron having the required numbers 

of faces and vertices for each point indicating a possibility. Firstly, observe that 
any pyramid with a regular n-sided polygon as a base has (n + 1) faces, (n + 1) 
vertices and 2n edges. Therefore, there is a polyhedron corresponding to each 

circle on the line V = F. Polyhedra corresponding to the other circles can be 
formed from these pyramids either by truncation or augmentation. 

Truncation. 

If a 3-valent vertex is truncated then the number of faces is increased by one and 
the number of vertices by two. Every pyramid contains 3-valent vertices, and 
the truncation process creates extra 3-valent vertices, so this procedure can be 
continued indefinitely. 



CONSEQUENCES OF EULER’S FORMULA 195 

Augmentation. 

A low triangular-based pyramid can be erected on any triangular face so that the 
resulting polyhedron remains convex. This increases the number of faces by two 
and the number of vertices by one. This process can be applied to pyramids as 
they contain triangular faces, and the process can be continued since it creates 
extra triangular faces. 

Figure 5.8 shows the results of applying each of these processes to a hexag- 
onal pyramid. On the right of Figure 5.7 the arrows indicate how to get from 
one polyhedron to another by truncation or augmentation. Examples of convex 

polyhedra covering all the possibilities can be constructed. m 

hes 
augmented truncated 

Figure 5.8. The (F',V) coordinates can be altered by augmenting or trun- 
cating a polyhedron. 

Two other consequences that Euler knew are the following: 

A polyhedron must contain at least one 3-sided, 4-sided or 5-sided 

face. 
A polyhedron must contain at least one 3-valent, 4-valent or 5-valent 

vertex. 

In order to deduce these results more easily, two further relations will be derived 

from (A), (B) and (C) above. Multiplying (A) by three gives 

BV = ote — 3b A 6 

and combining this with (C) produces 

2b + 3F S 3-6: 

Simplifying gives 
3F —E > 6 

A similar argument using (A) and (B) shows that 3V —E& > 6. 



196 CHAPTER 5 

To show that every polygon contains a 3-sided, 4-sided or 5-sided face let Fy, 

be the number of faces of the polyhedron which have n sides. Thus F3 is the 

number of triangular faces. Now, the total number of faces is 

bp case AEN AN a chad mle tn et eam at 

and the total number of sides of all the polygons is 

Doubling the relation 3F — F > 6 and substituting these values for F and EF gives 

6 (F3t+Fy+Fst het: :-+Pat-:+) — (86344, +5F5+6Fe+---+nk,+---) = 12. 

The left-hand side evaluates to 

3PF3 +2F,+ Fy — Fy —----—(n—-6)F,--- 

and since this has to be positive (in fact at least twelve) at least one of the terms 
F, Fy or Fs must be non-zero. Thus there must be at least one 3-sided, 4-sided 

or 5-sided face in a polyhedron. 

A similar calculation based on the numbers of vertices of different valence 

and using the relation 3V — EF > 6 yields the second result. 

The fact that there are at most five regular polyhedra can also be derived 

from Euler’s formula. To see this, suppose that every face of a polyhedron has 

p sides. Then there are a total of pF sides joined in pairs to form edges. Thus 

pF = 2E. Suppose also that every vertex is g-valent. Then, since each edge has 
two ends, gV = 2E. The values 

2E 2E 
F SS and V —— 

Dp q 

can be substituted into Euler’s formula to produce 

2E 2E 
SS 
q Dp 

Solving for E’ gives 

2pq 

2(p + q) — pg 
This fraction has the same denominator as the fraction derived earlier in the 
chapter when we were looking at regular polyhedra in the context of Descartes’ 
theorem. The same argument shows that (p — 2)(q — 2) must be less than four, 
and hence the same solutions for p and q are produced, corresponding to the five 
Platonic solids. 
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It is also possible to express F' and V in terms of p and q: 

4 Ar Bion Ves ee 
2(p + q) — pq 2(p + @) — pq 

By substituting the allowed values for p and q into these formulae, the number 
of faces and vertices of each solid can be calculated. 

Euclid’s and Descartes’ enumerations of the Platonic solids rely on the geo- 
metric properties of angles. This deduction from Euler’s formula shows that there 
is a deeper reason why at most five regular bodies can be constructed. No stage 
in the proof uses metric information. The faces are not assumed to be equilateral, 
or equiangular, or even congruent to each other. All that is required is that they 

have the same number of sides. This, together with the requirement that all the 
vertices have the same valency, is sufficient. 

The fact that there are at most thirteen Archimedean solids can also be 
derived from Euler’s formula. These proofs do not, of necessity, imply that all 

five regular and all thirteen Archimedean polyhedra exist, they merely exclude 
any other possibilities. That all the allowable cases can be constructed from 
equilateral, equiangular polygons seems miraculous. 

Euler’s proof 

A year after announcing the discovery of his formula Euler proposed a proof 
of its validity. He described a method for removing sections of a polyhedron 

so that the number of vertices is reduced but so that the sum V — E+ F is 
unchanged. By repeating this process, Kuler hoped that the number of vertices 

could be decreased until only four remained, in which case the polyhedron must 
be a tetrahedron. Since the sum V — E'+ F equals 2 for the tetrahedron and 
is unchanged by the truncation process, the original polyhedron must also have 

satisfied V—-&+F =2. 

To elaborate on this strategy, the process of removing a vertex will be de- 

scribed, although, to simplify the situation, it is assumed that all the faces meeting 
at the vertex are triangular. Let vp be the vertex to be deleted and suppose that 
it is n-valent (Figure 5.9(a)). Let v1, v2,---,Un be the n vertices connected to 
vo by edges of the polyhedron. To form the new polyhedron, remove vp and all 

the edges and faces connected to it. This leaves a (possibly skew) polygonal hole 

with n sides (see Figure 5.9(b)). To form a closed polyhedron with plane faces, 

(n — 3) edges are added across this skew polygon, namely those connecting 1 

with v3, 4,°°*,Un—1- The covering of the wound is completed with the addition 

of (n — 2) triangular faces which span the skew polygon and the new edges (see 

Figure 5.9(c)). 

The amputation of the vertex has reduced V (the number of vertices) by one; 



198 CHAPTER 5 

Figure 5.9. Application of Euler’s algorithm for removing a vertex. 

the number of edges has been changed from E to E —-n+(n—3), or more simply 
to E — 3; the number of faces has changed from F to F —n+(n-— 2) or F —2. 
Although each of V, E and F are altered during the process, the sum V -L + F 
remains unchanged. 

If this procedure were valid in all situations then Euler would have proved that 

his formula held for all polyhedra. However, in certain circumstances the object 

that remains after cutting off a vertex does not really qualify as a polyhedron. 

It is possible to get more than two faces meeting along an edge. A example 
is shown in Figure 5.10: such a multiple edge is produced if the top vertex is 
removed. Technically this is described by saying that Euler’s algorithm does not 
stay within its class. This means that the end result of the process is not always 

the same kind of object that was fed in at the beginning. In this case, various 
‘degenerate’ polyhedra can result. 

wd 
Figure 5.10. Euler’s algorithm can produce degenerate results. 

Legendre’s proof 

The first rigorous proof of Euler’s formula was given by Adrien Marie Legendre 
(1752-1833) in his book Eléments de Géométrie published in 1794. This book 
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was very popular, went through many editions, and was translated into several 
languages. Through its large circulation Euler’s formula became widely known. 

Legendre’s proof is based on the geometry of the sphere and, in particular, 
it makes use of the spherical excess formula for the areas of spherical polygons. 
Before this can be applied, the polyhedron has to be transformed into a network 
of polygons on a sphere. 

Suppose that a convex polyhedron is made so that the interiors of all the 
faces are transparent, but so the edges and vertices are opaque forming a kind of 

framework. Imagine this polyhedron placed inside a sphere so that the centre of 

the sphere lies inside the polyhedron. A light source at the centre of the sphere 

will cast shadows of the edges of the polyhedron onto the sphere. The lines on 
the sphere are shadows of straight line segments and will be arcs of great circles. 
They divide the sphere up into a network of spherical polygons which fit together 

in exactly the same way as the plane polygons in the original polyhedron. This 

method of producing a polyhedral network on a sphere from a given polyhedron 
is called radial projection. A radial projection of the tetrahedron is shown in 
Figure 2.2. 

In order to prove that a polyhedron satisfies Euler’s formula, instead of con- 

sidering the polyhedron itself, Legendre considered its radial projection onto a 

sphere. This polyhedral network on the sphere will be the same as the original 

polyhedron in all the essential respects: it will have the same numbers of faces, 

edges and vertices (though these are now spherical polygons, arcs of great cir- 
cles, and points where more than two such arcs meet, respectively) and these 

constituent parts will be connected together in precisely the same way. 

Assume that the sphere has radius one unit. Then its surface area is 47. ‘The 

surface area is also the sum of the areas of all the faces of the network. As each 
face is a spherical polygon, its area is equal to the sum of its angles minus (n—2)z7, 

where n is its number of sides. The sum of all these areas can be separated into 

three parts: 

(i) the sum of all the angles of all the spherical polygons. This must be equal 
to 27V since there is a contribution of 27 from each vertex. 

(ii) the sum of the numbers of sides of all the polygons is 2/, and each of these 

contributes 7. 

(iii) there is a contribution of 27 from each face. 

Expressed symbolically this becomes 

ys (area of spherical polygon) 

faces 

a ie ((angle sum) — (number of sides)7 + 2) 

faces 
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= S~ (angle sum) — > (number of sides)t = + De si 
faces faces faces 

= ItV = QE e+ @Pi2T 

Thus the total area of the sphere equals 47 and also 27V —27E + 2nF. Equating 

these two results and dividing through by 27 gives Euler’s formula. 

In 1810 Louis Poinsot pointed out that Legendre’s proof apples not only to 

convex polyhedra but also to those non-convex polyhedra that can be radially 

projected onto a sphere such that each part of the sphere is the image of a unique 

point in the polyhedron. This last condition ensures that the projections of the 

faces do not overlap. 

Legendre’s proof contrasts strongly with Euler’s. Euler analyses the way the 
various parts are connected together and makes combinatorial adjustments that 
leave V — E+ F invariant. Legendre adapts the problem so that he can use the 
metric properties of the sphere. At first sight this is surprising. The statement of 
Euler’s formula includes only quantities of various elements; it makes no reference 
to geometric properties and does not prepare the reader for the introduction of 

spherical geometry in order to establish its validity. Henri Lebesgue commented: 

It is certain that when one has read “Theorem: the numbers F’, V, E 

of faces, vertices and edges of a convex polyhedron satisfy the relation 
V+F = E+2? in the moments of reflection one takes before passing 
on to the proof, one does not think of the formula for the area of a 
spherical triangle.9 

Although Legendre’s proof is ingenious, there is an element of mystery about 

it. The demonstration is easily seen to be logically correct and, in this sense, it is 
clear. However, it does not explain the conclusion—the reasons for the truth of 
the theorem remain hidden. Euler’s proof, even though it is incomplete, is much 

more in the spirit of the formula itself. 

Cauchy’s proof 

A proof of Euler’s formula that did not rely on metric properties but on argu- 
ments concerning the way in which the constituent parts are combined together 
was given in 1813 by Augustin Louis Cauchy (1789-1857). He also introduced the 
important notion of deformability. His idea was to choose one face of the polyhe- 
dron and then ‘transport’ the remainingfaces so that they formed a tessellation 
of polygons within this chosen face: 
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Taking one of the faces as a base, and transporting onto this face all 
the other vertices without changing their number, one obtains a planar 
figure composed of several polygons enclosed in a given contour." 

The number of faces (bounded regions), edges and vertices of this planar network 
would then satisfy V+ F = FE +1. 

Joseph Diaz Gergonne thought of this in the following way. Imagine that one 
of the faces of a convex polyhedron is transparent. If your eye were sufficiently 
close to this face you would be able to see the inside surfaces of all the other faces. 
You could take a pen and trace over all the edges. The transparent face would 
then contain a tessellation of polygons fitted together in the same way as the 
polygons of the original polyhedron. (This is reminiscent of the early explanations 
of perspective.) Cauchy seems to have thought in terms of continuously deforming 
(or deflating) the polyhedron so that it lies flat on a plane. 

What Cauchy actually proved is that, for any planar tessellation of polygons, 
V+F= E-+1. He then deduced that polyhedra must satisfy Euler’s formula. 
His demonstration proceeds as follows. 

By adding diagonals to any non-triangular faces, the planar network can be 

altered so that the resulting tessellation contains only triangular faces. This 
modification does not alter the sum V — E+ F since if n diagonals are added 
across an (n +3)-sided polygon, the number of edges increases by n, and n extra 
faces are created. 

The aim now is to remove triangular faces from the boundary of the network, 
and repeat the process until only a single face remains. An outermost triangle 

can have either one or two sides forming part of the boundary contour of the 

network. In the first case, when the triangle is removed, one edge is also removed 
but the number of vertices is unchanged (see Figure 5.11(a)). In the second case, 
the removal of the face entails the deletion of two edges and one vertex from the 
network (see Figure 5.11(b)). In both cases the sum V — E+ F is unchanged. 
Faces can be removed in this way until there is a single face remaining, in which 
case all of its sides belong to the boundary contour. For this last triangular face 

Po lee =o ond. ) 35 andisopVi— FF — 1. Since dismembering the 

network has not altered the left-hand sum, this expression must also hold true of 

the original tessellation. 

This proof was a significant advance for it showed that all polyhedra which 

can be deflated to lie flat after the removal of one face satisfy Euler’s formula. 

What is less clear is that you must choose the triangles you delete with care. Just 

as Euler’s algorithm can lead to degenerate polyhedra, so Cauchy’s algorithm can 

lead to ‘bad’! networks. However, the argument can be extended to cover these 

cases. 

!Graphs with more than one block. 
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Exceptions which prove the rule 

At the same time that Cauchy was developing his proof a Swiss. mathematician 
was compiling a catalogue of polyhedra for which Euler’s formula fails. Simon 
Antoine Jean L’Huilier (1750-1840), professor of mathematics at the Geneva 
Academy, found three different kinds of exceptional case. 

The first kind of exception can occur when two polyhedra are joined to form 

a larger one as when a small cube is placed on top of a larger one, for example. 
If the small cube is placed so that none of its edges meet those of the large 
cube then the new body will have 11 faces—five from the small cube and six 
from the large one (Figure 5.12). All the vertices and edges of the constituent 
cubes are also vertices and edges of the composite body. So for this polyhedron 
V—-—E+F = 16-—24+4+11 = 3. Solids of this kind can be found in naturally 
occurring crystals and L’Huilier acknowledges a friend who had allowed him to 
study his collection of minerals. A similar kind of exception occurs if a depression 

is gouged out of the centre of a face. A common housebrick is a solid body of 
this type, and it too satisfies V -&+F = 3. In fact, the sum V — E+ F' can be 

made as large as desired. L’Huilier gives the example of a tower of prisms piled 
up like a step pyramid. If there are n prisms in the tower then the solid will have 

V=b r= 147. The same is true for the column*on‘thetight of Picureom 

The source of the discrepancy is the same for all of these exceptional polyhe- 
dra: they contain annular faces, that is, faces which have two separate borders. 

The polyhedra considered previously have not contained faces of this kind. 

L’Huilier also described a contrary situation where V — E+ F can be made as 
small as desired, not just zero, but negative. One example he gives is the following. 

Let a prism be cut by a plane parallel to its base. Draw a polygon in this plane 
section which les in the interior of the prism and whose sides are parallel to the 
sides of the prism. Trapeziums can then be added between the bases of the prism 
and this internal polygon (see Figure 5.13). The resulting polyhedron can also 

(b) 

Figure 5.11. 
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Figure 5.12. Counter-examples to Euler’s formula. 

be thought of as a solid prism from which two truncated pyramids have been cut 
out. For this polyhedron V — E+ F = 0. Other examples which exhibit the same 
relationship between V, E and F' can be constructed by removing a prism-shaped 
core from a dipyramid—rather like coring an apple. This time the discrepancies 
arise because there are tunnels through the polyhedron. If n tunnels are bored 
through a solid body then it will satisfy V- E+ F = 2(1—7n). 

A third kind of exception occurs when the polyhedron has internal cavities. 

Such solids arise naturally when one crystal becomes encapsulated within another. 
For example, opaque lead sulphide crystals are sometimes found in translucent 

calcium flouride crystals. The translucent perimorphic part of this double crystal 
is an example of a solid with a cavity. If both its interior and exterior surfaces 

are regarded as cubic then, for this solid, V — E+ F' = 4. If a solid contains n 

internal cavities then V—- E+ F = 2(1+n). 

The different ways that the individual types of exception affect V — B+ F 
can be collected together and incorporated into one formula. If A denotes the 
number of annular faces, 7 the number of tunnels, and C the number of cavities 

in a polyhedron then 

Ve al ee ee. 

More or less complete versions of this formula were discovered and rediscovered 

many times over during the course of the nineteenth century. 

Besides highlighting these exceptions to Euler’s formula, L’Huilier also gave 
a proof that it holds for convex polyhedra. He did this by adding a vertex in 

the centre of the polyhedron and then regarding the solid as being composed of 

pyramids, each with its apex in the centre and a face of the polyhedron as a base 

(see Figure 5.14). He then showed that the formula holds for pyramids and is 

still valid when they are glued together to form the original polyhedron. 

Another example of a polyhedron which fails to satisfy Kuler’s formula is 

Kepler’s ‘larger icosahedral hedgehog’—the small stellated dodecahedron. For 

this pentagram-faced polyhedron F’ = 12, V = 12 and & = 30, and therefore 
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Figure 5.13. L’Huilier’s polyhedral torus. 

V —E+F=-6. This was pointed out (in 1810) by Poinsot, who rediscovered 
Kepler’s pair of star polyhedra along with two more. Of these four self-intersecting 
polyhedra, two satisfy Euler’s formula and two fail. Of course, it is only when 
Kepler’s polyhedron is thought of as having pentagram faces that the discrepancy 

occurs. If it is regarded as a solid body whose surface consists of 60 triangular 
faces then there is no disagreement with the formula. 

In the 1830’s further counter-examples to Euler’s formula were recorded by the 
mineralogist Johann Friedrich Christian Hessel. He had observed double crystals 
and so reproduced L’Huilier’s example of polyhedra with internal cavities. (It 

was Hessel who gave the specific example of a compound mineral cited above.) 

He also found two other kinds of exception which have no tunnels, no cavities 

and no annular faces, and yet still fail to satisfy the formula. Examples can be 

formed by joining two pyramids together either edge to edge, or vertex to vertex 
(see Figure 5.15). The first of these counter-examples contains an edge which is 
a side of more than two faces. It is the possible production of this kind of solid 

Figure 5.14. L’Huilier proved Euler’s formula by building up polyhedra 
from pyramids. 
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a 

Figure 5.15. Hessel’s counter-examples to Euler’s formula. 

that invalidates Euler’s proof and it seems sensible to exclude such things from 
consideration. So, for a solid to be classed as a polyhedron we could stipulate 
that exactly two faces must meet at every edge. 

What about the second of Hessel’s counter-examples—should it be classed as 
a polyhedron? And if not, why not? Several of the beautiful polyhedral forms 

displayed in the stellations of the icosahedron (Chapter 7) are connected in this 
way. Should all the exceptions be ruled out as ‘improper’ polyhedra? Or does the 
fact that Euler’s formula can be generalised to cope with objects having cavities 

and tunnels mean that these more general objects are examples of polyhedra? If 
so, then our notion of polyhedron has certainly stretched a bit. It is in this state 

of uncertainty that we realise we have been using ‘polyhedron’ as an undefined, 
or at best ill-defined, term! 

What is a polyhedron? 

“When I use a word” Humpty Dumpty said, in 

a rather scornful tone, “it means just what I 

choose it to mean—neither more nor less”. 

“The question is”, said Alice, “whether you can 

make words mean so many different things”.' 

Lewis Carroll 

At different times, to different people, the word ‘polyhedron’ has conjured up 

a wide variety of images, some of which are incompatible with each other. It 
is not unknown for the same person to use different interpretations on different 
occasions. It is the lack of a precise definition which led to the misunderstand- 

ings about the domain of validity of Euler’s formula. The list of exceptional 

cases which fail to satisfy it highlighted the problem. Some people regarded such 

examples as ‘pathological’—deliberate attempts at sabotage, created with ma- 

licious intent to discredit a theorem. The exceptions were ignored, hushed up, 

or dismissed as being weird creations to which the theorem was obviously never 

intended to apply. 



206 CHAPTER 5 

It is probably true that the formula holds for everything that Euler had in 

mind at the time he discovered it. The Greeks, and most mathematicians after 

them, restricted their attention to convex polyhedra. Even after the Renaissance 

artists had produced a wide diversity of non-convex polyhedral forms, mathe- 

maticians still concentrated on convexity. Many of the proofs of the validity of 

the formula assume, either implicitly or explicitly, that all polyhedra are con- 

vex. Traditionally this was the case, but later it was recognised that some of 

the proofs applied to some concave polyhedra as well. It became apparent that 

Euler’s formula did not depend on convexity, but corresponded to something 
more fundamental. Trying to discern the essential ingredient upon which the 
all-encompassing proof would rely was not easy as the appropriate concepts had 

yet to be developed. Writing in 1858 Poinsot noted: 

What makes the theory of polyhedra very difficult is that it requires 

an essentially new science, which may be called ‘geometry of position’ 
because its principal concern is not the size or proportion of figures, 

but the order and [relative] position of the elements composing them./ 

And indeed a new discipline was born out of the struggle to find the foundations 
on which the formula rested—a discipline related to geometry as algebra is related 
to arithmetic. It concentrates on the relationships and connections between the 

various constituent elements; specific details such as size, area, angles, and in 

fact all metric properties are ignored, just as algebraic equations express general 

relationships between numbers but do not deal with particular cases. Originally 

called analysis situs (geometrie de situation in French, Geometrie der Lage in 

German), Johann Benedict Listing coined the name topology—the name by which 

this new geometry is now known. 

An important step in the creation of topology, and one which greatly con- 

tributed to a resolution of the Euler formula puzzle, was the paradigm transition 
from solids to hollow shells. For many centuries, ‘polyhedron’ was synonymous 
with ‘convex solid’. Euclid occasionally used the term ‘polyhedron’. For exam- 
ple, in book XII, proposition 17 he constructs a polyhedral solid whose surface 
lies between two concentric spheres. We met an example as Campanus’ sphere in 
Chapter 3. But he does not define the term, leaving its meaning to be abstracted 
from the particular cases he does describe. 

More often, he used the term ‘solid figure’. Later authors also refer to ‘solid 
bodies’ when writing about polyhedra. We still talk of Platonic and Archimedean 
solids even though our models are usually hollow. Descartes and L’Huilier viewed 
the study of polyhedra as part of solid geometry. Legendre defines a polyhedron 
to be a solid whose surface consists of polygonal faces. In contrast, others have 
thought a polyhedron to be the surface itself. 

During the fifteenth and sixteenth centuries artists began to concentrate on 
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the surfaces containing objects, and broke them down into planar pieces to assist 
with their perspective constructions. Albrecht Diirer carried this further and 
created nets which close up to form polyhedral surfaces. Kepler considered the 
ways that polygons can be fitted together to form tessellations of the plane and 
‘congruences in space’. He probably made models in this way reinforcing his 
mental image of a hollow surface. His star-faced polyhedra can only be understood 
as surfaces that pass through themselves. Cauchy certainly regarded polyhedra 
as surfaces composed of polygons. Deforming, or deflating, a polyhedron to lie 
flat in a plane cannot be performed on a solid. In a later paper, Cauchy analysed 
collections of rigid polygons joined by hinged edges-—an idea abstracted from 
paper models, perhaps. Cauchy viewed polyhedra as more than just a surface, he 

saw a potentially flexible, deformable surface (though not yet the ‘rubber sheet’ 
made up of undulating faces with curved edges—this did not appear until the 
1860's). 

Euler, too, recognised that it was the surface of the solid that was important: 

The consideration of solid bodies therefore must be directed to their 
boundary; for when the boundary which encloses a solid body on all 

sides is known, that solid is known." 

After Cauchy’s proof appeared, attention shifted from solids to the consid- 
eration of surfaces. Consequently, the notion of cavity no longer applied. In 

the example of the double crystal, although the outer part is a single solid, its 

boundary consists of two distinct pieces. Each part of its disconnected surface 
satisfies Euler’s formula. By concentrating on connected surfaces (those in one 
piece), cavities ceased to be of interest and were forgotten. 

Solids with tunnels presented more of a problem. It does not make sense to 

speak of tunnels running through a surface, and the notion of tunnels through a 
solid had to be translated into an analogous concept applicable to surfaces. Yet 
even the notion of tunnels is unclear, for if tunnels are branched, how should 

they be counted? Before trying to count tunnels, it would be useful to be able 

to detect them—to know whether there are any tunnels at all. Reinhold Hoppe 

described the essential characteristic of a tunnel: 

Let the polyhedron be of some stuff that is easy to cut like soft clay, 

let a thread be pulled through the tunnel and then through the clay. 

It will not fall apart.' 

If there are no tunnels through a solid then every cut separates it into two pieces. 

The idea of cutting up a polyhedron applies equally to solids and surfaces: 

you cut through a solid, or along a curve in a surface. A closed curve in a surface 

is called non-separating if the surface remains in one piece when the curve is cut. 

Some surfaces possess non-separating curves, in others every curve separates the 
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surface into two pieces. Non-separating curves on a surface correspond to tunnels 

through a solid, and Hoppe defined the number of tunnels as the maximum 

number of cuts which leave the surface connected. 

Although annular faces were incorporated into formulae for many years, in 

the end they, like cavities, were discarded. Faces of the conventional kind could 

be identified in several ways. Firstly, there are curves on an annular face, both 

of whose ends are on the boundary of the face, which do not separate it. If the 

curve is cut, the face remains in one piece. In a conventional face all such curves 

separate it. Alternatively, conventional faces have a single boundary contour 

whereas annular faces have two disconnected boundaries. From this viewpoint 

excluding annuli is analogous to excluding cavities: the boundary of the solid and 

the boundaries of all its faces must be connected. 

Some of the properties of polyhedral solids have now been recast and identified 
with equivalent properties of polyhedral surfaces: tunnels correspond to non- 

separating curves, cavities to disconnected surfaces. Yet the original problem 

remains unresolved—What is a polyhedron? 

August Ferdinand Mobius’ answer to this question appears in an 1865 paper, 
the same one in which he described his famous one-sided strip.? He attempted to 

preclude the problematic polyhedra with the following definition: A polyhedron 

is a system of polygons arranged in such a way that 

(1) The sides of exactly two polygons meet at every edge. 

(17) It is possible to travel from the interior of one polygon to the interior of 
any other without passing through a vertex. 

To Mobius, a polyhedron is a surface composed of polygons; the second condition 

ensures that the surface is connected. Moreover, Mobius has tried to exclude 

singularities (places where the surface pinches together) of the kind seen in Hes- 
sel’s counter-examples. This marks a considerable change in emphasis from the 
‘flat-faced solid’ sort of definition in common use 50 years before. 

If one were introduced to polyhedra for the first time through this definition 
it is probable that the second of Mobius two conditions would appear contrived 
or irrelevant. It is difficult to imagine what purpose such a restriction could serve 
unless one can think of objects that fail to satisfy it. The motivation behind 
it is to exclude singular vertices—those of the form shown in Figure 5.15(b). 
Despite good intentions, however, this kind of behaviour can still slip through 
the net: the ‘croissant’-shaped polyhedron shown in Figure 5.16 satisfies Mobius 
definition. This illustrates the difficulty involved in trying to achieve precision in 
definitions. 

*From entries in his diary we know that he had discovered the ‘Mébius strip’ as early as 
1858. J. B. Listing also discovered it independently around the same time. 
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Figure 5.16. A polyhedral croissant. 

Actually, Mobius’ definition is almost complete. The ‘croissant’ has crept in 

because condition (7) refers to the complete polyhedron. The problem is cured 
by modifying the definition so that it applies locally to each vertex, not globally 
to the polyhedron as a whole. 

We can now give a full answer to the question at hand. 

Definition. A polyhedron is the union of a finite set of polygons such that 

(2) Any pair of polygons meet only at their sides or corners. 

(17) Each side of each polygon meets exactly one other polygon along an edge. 

(177) It is possible to travel from the interior of any polygon to the interior of 
any other. 

(tv) Let V be any vertex and let PF), Fo,---,F, be the n polygons which meet 

at V. It is possible to travel over the polygons F; from one to any other 
without passing through V. 

In this context, polygon means a planar figure bounded by straight lines that 

is topologically equivalent to a disc. The restriction excludes the star polygons 

used by Kepler and polygons such as annuli whose boundaries are not connected. 
The first condition excludes star polyhedra of the kind described by Poinsot 

(see Chapter 7) and other self-intersecting polyhedra. Conditions (7) and (7v) 
exclude singular edges and vertices, and condition (77) ensures that the poly- 
hedron is connected. Of the five original sources of counter-examples to Euler’s 
formula—cavities, annular faces, tunnels, self-intersections, and singularities— 

only one remains: a polyhedral surface can have tunnels. 

With ‘polyhedron’ now well defined, Euler’s formula can be seen to depend 
only on the type (or genus) of the polyhedral surface. L’Huilier’s version of the 

formula can be revised to give the following. If a polyhedral surface has T’ tunnels 
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then 
VS =A 2 

The observation that the number V — E + F does not depend on the particular 

polyhedron, only on the topological type of the underlying surface, was the start- 

ing point for Listing’s investigations. His extensive study was very influential 

and helped to set topology on course as an independent and valuable branch of 

mathematics. 

Von Staudt’s proof 

The search for understanding that surrounded Euler’s formula focused attention 
on several concepts, notably convexity and connectedness (the number of tun- 
nels). The former is a geometric property and is peripheral to the point of being 
a diversion; the latter is a topological notion and lies at the heart of the problem. 

The importance of connectedness and its relevance to the Euler formula was 
first explained by Karl Georg Christian von Staudt (1798-1867) in his book Ge- 
ometrie der Lage published in 1847. His proof is very illuminating—an example of 
what mathematicians consider a good proof. It does not merely demonstrate that 
a theorem is true, but shows why it is true without introducing any extraneous 

ideas. 

The equation V + Ff = E + 2 describes how the quantities of various con- 

stituent parts of a polyhedral surface are related. Since metric properties are not 

mentioned, they should be avoided in a proof. Legendre’s use of spherical geom- 

etry and the areas of spherical polygons introduces ideas which are completely 

foreign to those used to state the theorem. Furthermore, the scope of his proof 
is limited by the need to radially project the polyhedron on to a sphere. 

Various kinds of limitation feature in the many proofs of Euler’s formula. 
These ought to be reflected in restrictions on the type of objects which satisfy 

the hypothesis of the theorem, but the ambiguity in the term ‘polyhedron’ allowed 
each writer to choose a convenient interpretation in his individual circumstances, 

often subconsciously. Even though the theorem statement usually read ‘the num- 

ber of faces plus the number of vertices of a polyhedron exceeds by two the 
number of edges’ the proofs that followed were not all attempts to demonstrate 
the same theorem. 

The following proof does not suffer from these deficiencies. The hypotheses 
of the theorem state necessary and sufficient conditions on the polyhedron for the 
formula to be satisfied, and as a consequence of the proof, the foundations of the 
theorem become clear: the polyhedron must be ‘spherical’. 

Theorem. Let P be a polyhedron (as defined above) such that 

(7) any two vertices are connected by a path of edges, and 



PLATE1 John Robinson's sculpture Prometheus’ Hearth. (Courtesy of the artist.) 

PLATE 2 A group of striated pyrite crystals. (Liverpool Museum collection.) 



PLATE 3 Archimedean solids: cub-octahedron, rhomb-cub-octahedron and great 
rhomb-cub-octahedron. 

PLATE 4 Archimedean solids: great rhomb-icosi-dodecahedron,rhomb-icosi-dodecahedron 
and snub dodecahedron. 



(Courtesy of the Ministero per i Beni 

Culturali e Ambientali, Naples.) 
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PLATE7 A marble tarsia in Saint Mark's Basilica, Venice. 

PLATE 8 The small stellated dodecahedron and great stellated dodecahedron. 



PLATES The great dodecahedron and great icosahedron. 

PLATE10 The complete icosahedron. 



PLATE 11 Compounds of two tetrahedra and four tetrahedra 

ive tetrahedra and ten tetrahedra PLATE 12 Compounds of f 



PLATE 13 Compounds of five octahedra and five cubes. 

PLATE 14 Compounds of three octahedra and three cubes. 



PLATE 15 Compounds of four octahedra and four cubes 

ive dodecahedra PLATE 16 Compounds of two dodecahedra and f 
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(77) any closed curve on the surface separates P into two pieces. 

Then P satisfies Euler’s formula: V + F = FE + 2. 

PROOF: The argument proceeds by dividing the edges of the polyhedron into 
two kinds and counting the number of each sort. To keep a record of which edges 
have been counted we can imagine colouring them in two colours. (In fact, the 
reader may find it helpful to carry out the steps involved in the proof on a model 
of a dodecahedron. ) 

Suppose we colour an edge of P red, say. (In actual fact, since edges are 
lines which have no thickness, we colour a small sausage-like region around the 
edge—see Figure 5.17.) The two vertices at its ends will also have been coloured 
red. Choose another edge which has a red vertex at one end and an uncoloured 
vertex at the other end, and colour this edge red as well. Proceed in this fashion 
until no more edges can be added. 

Figure 5.17. 

When this colouring process has stopped, all the vertices will have been 

coloured red. For, if some vertex remains uncoloured then, by hypothesis (7), 
there is a path of edges which connects this vertex to a red vertex and the num- 
ber of red edges can be increased by colouring this path. Therefore, when the 
process terminates, every uncoloured edge has a red vertex at both ends. 

We now determine the number of edges that have been coloured so far. When 

the first edge was coloured, two vertices were also coloured. In colouring every 

subsequent edge only one extra vertex was coloured. Since all the vertices are 

coloured, the number of coloured edges must be one less than the number of 

vertices. 

The uncoloured portion of the polyhedron is formed from the interiors of all 

the faces and the uncoloured edges. Suppose that this uncoloured part is not 
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connected. Then there must be a loop of red edges separating it into at least two 

distinct pieces. But in order to complete a loop of red edges, the edge between 

two previously coloured vertices must be coloured red, and this was not allowed. 

Hence the uncoloured piece must be connected. 

To examine the structure of the uncoloured part of the polyhedron we can 

colour each face green (say) in turn. To do this, we choose any face and colour 

its interior and any of its sides which are uncoloured edges of P. Then choose an 
uncoloured face which has exactly one green side and colour it green. Proceeding 

in this way, we continue to enlarge the area of green until no more faces can be 
coloured—either because all faces are green, or because the uncoloured faces have 
more than one green side. Suppose that the second case occurs, that is, that an 

uncoloured face meets two or more green faces. Then there would be a closed 
curve running through this face and through the green region that did not cross 
any red edges, and which had vertices lying on both sides of it. By hypothesis 

(12), this means that the curve separates the vertices into two disconnected sets. 
However, all the vertices are part of the red region of P which is connected, giving 

a contradiction. Therefore, the only other possibility is that all the faces have 

been coloured. 

From the method used to colour the faces, we can see that the number of 

green edges must be one less than the number of faces since the colouring of 
every face except the first adds a green edge. 

Let V be the number of vertices and F the number of faces of P. Let Ep 
and Hg be the numbers of red and green edges respectively. Then we have shown 
that 

Le eV and Eg = F-1. 

If & denotes the total number of edges of P then 

Bh = HptEe = (V=1)4+(FP—-1) = V+RF-2 

and hence 

Bi ee ee a 

In the course of the preceding proof, we have divided the polyhedron into two 
parts by colouring it red and green. Both of these parts are connected and have 
a single boundary contour—the line where red and green meet. This means that 
both parts can be deformed into discs. The surface formed by gluing two discs 
together along their perimeters is a sphere, so the polyhedron can be deformed 
into a sphere. On the polyhedron itself the two ‘discs’ will be interleaved in a 
complex pattern. A tennis ball provides a simpler example of a sphere formed 
from two interleaved (topological) discs. 
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If a polyhedron satisfies Euler’s formula it can be deformed into a sphere. The 
converse is also true: if a polyhedron can be deformed into a sphere then it satisfies 
Euler’s formula. One way to prove this is to show that such polyhedra satisfy 
conditions (7) and (ii) of the previous theorem. That this is so is a consequence 
of the famous Jordan Curve Theorem, one of the first results in topology, which 
states that a closed curve in a plane separates it into two pieces. In light of 

this, the first condition also holds since the definition of ‘polyhedron’ being used 
excludes annular faces. 

Alternatively, the attempted proof given by Euler can be reinterpreted in the 
context of polyhedral surfaces in which case it is seen to be valid. 

Problem. Construct your own proof of Euler’s formula by applying his ideas 

to networks on a sphere. An outline of the stages involved in such a proof is as 
follows. 

(1) Assume the polyhedral surface can be deformed into a network on a sphere. 

(2) Show the network can be triangulated without altering V — E+ F. 

(3) Show how to reduce the number of vertices in the network so that the result 
is still triangulated and V — F + F is unchanged. 

(4) Reduce the number of vertices to four and show that the formula holds in 
this case. 

(5) Deduce that the formula holds for the original polyhedron. 

({) Euler’s formula shows no preference for either V or F’, they are both of an 
equal status and the formula is symmetric in these two quantities. However, in 

many attempts to prove the validity of the formula this intrinsic symmetry is 

neglected and therefore is unexplained. Euler concentrated on reducing the num- 
ber of vertices, while Cauchy chose to remove faces. When viewed as a formula 

about networks on smooth surfaces, von Staudt’s proof can be phrased so that 

the origin of this symmetry becomes clear. In this setting the red region is seen to 

be a neighbourhood of a spanning tree of the edge-network, and the green region 

is a neighbourhood of the complementary tree spanning the (combinatorial) dual 

network. 

Complementary viewpoints 

Although Descartes’ theorem and Euler’s formula appear to be concerned with 

different aspects of polyhedral geometry and topology, they are in fact interrelated 

in a very strong way: they are logically equivalent and can be derived from one 

another. 
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Many people have observed that Euler’s formula arises as a simple conse- 

quence of combining two statements in Descartes’ manuscript: 

There are always twice as many plane angles as sides [edges] on the 
surface of a solid body for one side [edge] is always common to two 
faces. 

I always take a for the number of solid angles and @ for the number 
of faces. --- The actual number of plane angles is 26 + 2a — 4.” 

This has led some to conclude that Descartes was aware of Euler’s formula. How- 

ever, Descartes himself does not seem to have connected the two statements. He 

did not possess the requisite concepts to see the benefit of doing so. Leibniz also 

failed to see any connection when he copied the manuscript. 

Conversely, Euler did not notice Descartes’ theorem, nor did any of his suc- 

cessors so that it was still unknown to geometers when the Leibniz’ manuscript 
was unearthed. It is as though the same coin were being viewed from opposite 

sides: Descartes approaching polyhedra with the classical concepts of faces and 

solid angles, deriving metrical properties by analogy with polygons; Euler gain- 
ing information by scientific induction—observing many particular instances and 
extrapolating to polyhedra in general—produced topological results. 

People sometimes state that they find it surprising that Euler’s formula was 
unknown to the Greeks. (Some even assert that Archimedes was aware of it, 
but any evidence would have been destroyed in the fire at Alexandria.) I find 
this extremely improbable since they, like Descartes, were not in possession of 

topological concepts. A more likely person to have discovered the formula before 
Euler is Kepler. He thought of polyhedra as surfaces, he produced stellations by 
extending their edges, and he had an obsession for finding relationships between 
things. However, there is no reason to suppose that he was familiar with Euler’s 
formula. 

Neither Descartes’ theorem nor Euler’s formula is easy to establish directly. 
However, to show that they are logically equivalent is straightforward. The sum 
of all the plane angles of a polyhedron can be found by adding up all the interior 
angles of the faces. The sum of the interior angles of a face with n sides is (n —2)m 
radians. So 

sum of the plane angles = > (interior angle sum) 
faces 

vis ((number of sides) — Qn), 
faces 
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Since the sum of the numbers of sides of all the faces is twice the number of edges, 
this equals 

2hin — F 2r. 

The sum of the plane angles can also be expressed in terms of the deficiencies 
of all the solid angles: 

sum of the plane angles = = Se (2m = (deficiency) 
vertices 

V2n— 5° (deficiency). 
vertices 

Equating these two expressions shows that the sum of all the deficiencies of the 

solid angles equals 27(V — E+ F): 

>~ (deficiency) = 2(V—E+F). 
vertices 

fl 

Now, if it is known that a polyhedron has V — E + F' = 2 (so that it satisfies 
Euler’s formula) then, by applying the above equality, it must also have the sum 
of its deficiencies equal to 27 - 2 which is 47, and hence the polyhedron satisfies 
Descartes’ theorem. Conversely, if it is known that a given polyhedron obeys 
Descartes’ theorem then it must also satisfy Euler’s formula. The two results are 
completely interdependent. 

Furthermore, the argument which shows this equivalence does not require any 
restriction on the topological type of the polyhedron—it can be convex, concave, 

or have tunnels. If the concept of the deficiency of a vertex is interpreted in a more 

general context which allows negative deficiencies when the angle sum is greater 
than 27 radians then the relationship between the Euler number V — E+ F’ and 

the total deficiency still holds. ‘This is closely related to a celebrated result in 

differential geometry—a branch of mathematics in which smooth surfaces (rather 
than polyhedral ones) are studied. 

The Gauss—Bonnet theorem 

In 1827 Karl Friedrich Gauss (1777-1855) introduced the idea that a smooth 
(differentiable) surface has an intrinsic geometry. This geometry is based on 

measuring the lengths of arcs in the surface, and from arclength other geometric 

notions such as angles and area can be defined. Having the notion of arclength 

also means that shortest curves, or geodesics, can be considered. In the plane the 

geodesics are straight line segments; on a sphere the geodesics are arcs of great 

circles. 

The shape and local properties of a surface affect its geometry. We encoun- 

tered an example of this earlier in the chapter: the interior angle sum of a triangle 
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depends on the surface it sits in. That the sum of the interior angles of a spher- 

ical polygon should be related to its area may have seemed puzzling. After all, 

basic dimension analysis suggests that something is amiss since area is a two- 

dimensional quantity whereas angles are one-dimensional. In fact, the angles of a 

polygon are related to its area in almost all geometric surfaces. It is only because 

the most familiar geometry is done on a flat plane that the idea seems strange. 

Gauss introduced a precise measure of the curvature, or non-planarity, of a 

surface. Since a surface can be flatter at some points than at others, this curvature 

is defined for each point on the surface, and can vary from place to place on the 

surface. For a plane it takes the value zero at every point; for the sphere, every 

point has positive curvature. 

There is also another kind of curvature known as geodesic curvature, which 
applies to lines in a surface. It measures how much the line deviates from being 

a geodesic. When the line is a geodesic, its geodesic curvature is zero. 

Now suppose that we have a polygon P sitting in a smooth geometric surface, 

each of whose sides is a smooth curve. The exterior angles of this polygon can 
be defined at each corner. For a conventional planar polygon, the sum of the 

exterior angles is 27. This is a measure of the total angle one turns through when 
traversing the boundary of the polygon. For polygons in non-planar surfaces, it 
is not only the exterior angles which contribute to this total angle—the bending 
or turning of the sides of the polygon has to be taken into account, as does the 
curvature of the surface itself since it affects the amount of turn on each side of 

P. All this information is collected together in the Gauss—Bonnet Formula: 

(exterior angle) + if k, ds + iL KidAl! =" Ras 
aP P 

corners of P 

The first term in this expression is the sum of the exterior angles. The second 
term measures the curvature on the sides of the polygon P: k, stands for geodesic 
curvature, and since this is a continuous rather than a discrete quantity, sum- 
mation is replaced by integration with respect to arclength, ds. The third term 
takes into account the curvature of the surface itself: k is the Gaussian curvature 
and it is integrated over the area (dA) of the polygon. 

Two examples will help to clarify this. If the polygon is bounded by geodesics 
then k, = 0 and the middle term is zero. If the polygon is planar then the Gaus- 
sian curvature is also zero and we have the statement that, for planar polygons 
bounded by straight lines, 

> (exterior angle) +0+0 = 2n. 
corners of P 

If the polygon is on a sphere of unit radius then the Gaussian curvature k — 1 
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and the third term equals the area of the polygon: 

ie Rida = caren or P. 

If the polygon is bounded by arcs of great circles then, again, ke isezero. Rear- 
ranging the order of the terms in the Gauss—Bonnet formula gives 

area of P = 27 — 5° (exterior angle). 
corners of P 

Rewriting this in terms of the interior angles of the polygon rather than its exterior 
angles produces 

area of P = 2n— 5° (mn — interior angle). 
corners of P 

If P is a polygon with n sides, and therefore n corners, then this equals 

areaofP = 5 (interior angle) —(n—2)r 
corners of P 

which is the spherical excess formula for the area of a spherical polygon with n 

sides. 

By covering a geometric surface with a network of polygons, and adding up 
their individual contributions to get the total area (rather like Legendre did) it 
is possible to derive the 

Gauss—Bonnet Theorem. Suppose that a connected network on a smooth 
surface S has V vertices, F edges and F’ faces. Then 

[kaa So (VV 2 Bar) e 
ILS 

This theorem is truly amazing. It defies our intuition. For on the left-hand 

side is a quantity defined completely in terms of the intrinsic geometry of the 

surface: curvature is a metric property. Yet on the right-hand side is an expression 

which is completely independent of any metrical information: the network is 

purely topological. This paradoxical situation reflects the interrelation between 

Descartes’ and Euler’s theorems. Choosing a fixed network and altering the 

geometry of the surface shows that the total curvature is independent of the 

geometry. Conversely, fixing the surface and varying the network shows that 

V — E+ F does not depend on the network chosen—yet another derivation of 

Euler’s formula. 
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Equality, Rigidity 
and Flexibility 

Euclid’s “principle of superposition” --- 

raises the question of whether a figure can 

be moved without changing its internal 
structure.” 

H. S. M. Coxeter 

When are two polyhedra the sane? At first glance this question appears straight- 
forward enough. Two things are the same when no observation can distinguish 
between them. To show that two polyhedra are different it is sufficient to find 
a property of one not possessed by the other. This may be something easily 

determined such as the number of square faces, for example, or it may involve 

the way that the faces are arranged. However, this is not a general solution 
to the problem. Even though it may be easy to find differences, what kinds of 
properties should we allow ourselves to use in order to distinguish between two 

polyhedra? Is it only the combinatorial properties of polyhedra which need to be 

taken into account, or do metric properties matter as well? Are size, or position, 

or orientation in space relevant? 

A definition that tells you whether or not two objects are thought of as 
the same is called an equivalence relation. ‘The definition of equivalence lists 

the properties which are to be regarded as important. These can be anything. 
For example, polyhedra which have the same number of faces can be defined to 

be equivalent. When you have an equivalence relation defined on a collection of 
objects, you can classify them into sets so that all the items belonging to one class 

are equivalent, and things from separate classes are different. In some contexts we 

might want a fairly coarse equivalence relation which regards only a few properties 
as relevant and which leads to large equivalence classes. For example, a topologist 

interested only in combinatorial properties would like any prism on a quadrilateral 
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base to be considered equivalent to a cube. A crystallographer, on the other hand, 

would need to retain the geometric information. 

The question ‘When are two polyhedra the same?’ is a request for an equiva- 

lence relation to be defined on the set of polyhedra. It is the goal of this chapter 

to find one. However, we are not merely searching for a relation which is con- 

venient for some people some of the time, but one which matches our intuitive 

notion of when polyhedra are ‘the same’. 

Disputed foundations 

The problem of how to define equality for polyhedra has a long history. Early 

references occur in Euclid’s definitions in the Elements. The first appears in his 

list of basic premises: axiom 4 states 

Things which coincide are equal. 

This axiom is the basis of proofs which use superposition arguments. These are 

derived from the experience (direct or imagined) of drawing two figures on a piece 
of paper, cutting round one of them and placing it directly over the other. 

This method of proof is used in the very first theorem in the Elements. After 
three propositions which describe constructions, proposition 4 of book I states a 

general result about triangles: If the two sides and the included angle of a triangle 
are equal respectively to two sides and the included angle of a second triangle 
then the two triangles are equal in all particulars. In his Commentary on the 

First Book of Euclid’s Elements Proclus describes the ideas that lie behind the 
proof: 

The proof of this theorem, as anyone can see, depends entirely on the 

common notions [axioms] and grows naturally out of the very clarity of 

the hypotheses. Because two sides are equal respectively to two sides, 

they coincide with one another; and because the angles contained by 

these sides are equal, they also coincide. Since the angle coincides 
with the angle and the sides with the sides, the lower extremities of 
the sides also coincide; and if they coincide, the base coincides with the 

base; and if three sides coincide with three sides, so does the triangle 
with the triangle and everything with everything. Visible equality, 
therefore, in things of the same form is manifestly the ground of the 
entire proof? 

Note that besides using the axiom that things which coincide are equal, the 
discussion also supposes the converse: things which are equal can be made to 
coincide. 
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Even in Euclid’s time, there was an unease about the fourth axiom and its 
connotations. Euclid himself rarely made use of superposition arguments if he 
could avoid them. The unease was still felt 2000 years later. In 1844, the philoso- 
pher Arthur Schopenhauer remarked that he was surprised mathematicians at- 
tacked the parallel postulate rather than the axiom that figures which coincide 
are equal. For, either coincident figures are automatically identical or equal, and 
hence no axiom is required; or else coincidence is something empirical which be- 
longs to external sensuous experience, not to pure intuition. Furthermore, the 
axlom presupposes the mobility of figures, but that which is movable is matter 
and therefore is outside geometry. 

The objection to the definition is fundamental: superposition arguments rely 
on the implicit assumption that a figure retains all its properties (such as size and 

shape) when moved from one place to another. To assume that the properties 

of a figure remain unchanged as it is moved around is to make some strong 
assumptions about the nature of space. 

When Euclid starts to deal with three-dimensional geometry, he introduces 
two further definitions of equality which relate to solid bodies. Definitions 9 and 

10 at the beginning of book XI read: 

9. Similar solid figures are those contained by similar planes equal in 

multitude. 

10. Equal and similar solid figures are those contained by similar 
planes equal in multitude and magnitude. 

The first of these definitions implies that two figures are similar if the faces of 
one can be matched to the faces of the other so that corresponding faces have 
the same shape and are similarly surrounded. The second definition says that if, 

in addition, corresponding faces have the same size, then the figures are identical 

or equal. 

These definitions, too, have received much criticism. ‘The problem is that the 

equality of the figures is defined in terms of the equality of their constituent parts. 

While there is nothing intrinsically wrong in this (we can define an equivalence 

relation however we like), the usefulness of a definition is determined by the extent 

to which it agrees with our intuition. A problem arises because there are some 

polyhedra which definition 10 asserts are equal but which we intuitively regard 

as different. 

One such pair is shown in Figure 6.1. Each of the polyhedra has twenty 

triangular faces: the one on the left is the regular icosahedron, the other has a 

depression where the top has been pushed in. In this case, the confusion can be 

avoided if, besides giving information on the size, shape and arrangement of the 

faces, we specify the convexity characteristic of each edge—whether the edges are 

mountain folds or valley folds. However, even such a detailed description is not 
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Figure 6.1. The Platonic icosahedron and a non-convex isomer. 

always sufficient to uniquely determine a polyhedron. The net shown at the top 

of Figure 6.2 can be folded up to give two distinct models. Both are derived from 

a triangular prism by twisting the top relative to the base. In fact, if you make a 

model out of thin card, you will find that the two positions are interchangeable— 

under light pressure the polyhedron will jump from one state to the other. This 

‘jumping octahedron’ was discovered by Walter Wunderlich. Its two positions are 
illustrated in Figure 6.2, both from above and from a more general viewpoint. 

Two more examples of nets which can be folded up in more than one way were 

described by Michael Goldberg. They have similar architecture and properties. 
One is built from 20 equilateral triangles and looks like two dipyramids stuck to- 

gether (Figure 6.3(a)). Its three stable positions can be interchanged by applying 
light pressure. The second example has twelve isosceles triangular faces whose 
apex angle is slightly more than 103°. This tristable dodecahedron is shown in 
Figure 6.3(b). 

An example of a ‘flexible’ deltahedron was discovered by Paul Mason. It is 
formed by erecting a pyramid on each face of a cube and separating one of them 
by a square antiprism (Figure 6.4). (In fact, the model remains flexible if the 
isolated pyramid is replaced by a square face.) A model of this polyhedron can 

be easily manipulated and we cannot tell by playing with it how many genuinely 

stable positions it has. But by applying powerful mathematical methods, we can 
prove that some part of the model must be distorted very slightly as it is flexed. 
Examples of this kind are sometimes called shaky polyhedra (or are said to be 
infinitesimally flexible). 

It is probable that Euclid was thinking only of convex solids when he made 
his definitions. However, even by restricting attention to convex figures, it is 
not obvious that two figures comprised of similar faces similarly arranged are 
necessarily ‘equal’. How can we be certain that a situation analogous to those 
described above is impossible after convexity has been imposed? Our experience 
with models does suggest that convex figures cannot be assembled in more than 
one way. Even so, definitions 9 and 10 are not as self-evident as other definitions 
or axioms. The ideology underpinning mathematics demands that any assertion 
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mountain fold 

valley fold 

Figure 6.2. Wunderlich’s bistable octahedron. 
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(a) 

Figure 6.3. Goldberg’s tristable polyhedra. 

that is not immediately acceptable must be proved. Adrien Marie Legendre 

remarked: 

Definition 10 is not a proper definition but a theorem which it is 
necessary to prove, for it is not evident that two solids are equal for 

the sole reason that they have an equal number of equal faces, and if 

true should be proved by superposition or otherwise.“ 

Legendre himself made some progress in trying to convert this definition into a 
theorem by proving its truth in special cases. Building on this work, Augustin 
Louis Cauchy (1789-1857) was able to show that Euclid’s definitions do agree in 
the case of convex polyhedra—that is, convex figures built in the same way can 
be superposed on one another. 

Figure 6.4. Mason’s ‘flexible’ deltahedron. 
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Stereo-isomerism and congruence 

Before discussing Cauchy’s work, it is necessary to introduce a few definitions of 
our own which allow more precise expressions of the content of Euclid’s definitions 
to be formulated. 

In Chapter 2 the notion of isomerism was borrowed from chemistry to de- 
scribe the relationship between two polyhedra which have the same constituent 
faces. Miller’s solid and the rhomb-cub-octahedron are one example of a pair 
of isomers, and some of the other Archimedean solids also have various isomeric 
forms. In the two isomeric forms of Wunderlich’s ‘jumping octahedron’ the faces 
are even assembled in the same way. Adopting further chemical nomenclature, 
two polyhedra which are related in this way are called stereo-isomers: their faces 
differ only in their positions in space, not in their relative positions in the poly- 
hedra. Stereo-isomers can be unfolded to produce the same net. 

The pair of icosahedra in Figure 6.1 are examples of stereo-isomers. The 
various forms of Goldberg’s tristable polyhedra are also stereo-isomers. Miller’s 
solid and the rhomb-cub-octahedron are not stereo-isomers: even though they 
are comprised of the same faces they cannot be made from the same net. If we 
are allowed to turn a net over and convert valley folds into mountain folds then 

mirror-image polyhedra such as the two snub cubes become stereo-isomers. 

The two icosahedra in Figure 6.1 cannot be interchanged without being dis- 
mantled then reassembled. Isomers of this type are called configurational isomers. 

The two forms of the jumping octahedron can be interchanged: by adding en- 
ergy to the system, it can be forced to flip over into the opposite state—all the 
intermediate positions are unstable. ‘This behaviour occurs because the material 

from which the model is made is easily deformed. As the model jumps, the faces 

buckle. If the model were made from a stronger material so that the faces could 

not be distorted then the two forms of the polyhedron would both be rigid—the 

‘excited’ intermediate states would no longer be accessible. So, strictly speaking, 
these polyhedra must be considered as configurational isomers. 

This terminology is again borrowed from chemistry. In that, context, stereo- 
isomers are categorised into two types according to the ease with which they 
can be interconverted. Those which can only be interchanged by breaking and 
remaking bonds are called configurational isomers. This requires the input of a 

substantial amount of energy (sufficient to break bonds) and so each form of the 

isomer tends to be stable. 

The interconversion of two isomeric molecules can occur in ways that do not 

require bonds to be broken. Simple rotation about a bond produces molecules 

with different shapes. This kind of continuous deformation requires very little 

energy and isomers of this kind are relatively unstable and interconvert freely. 

This raises the question of whether some kind of continuous deformation can 
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occur in polyhedra. Is there something like Mason’s deltahedron which is truly 

flexible? 

The reader who has made models will probably have noticed that a partly 

made model is often flexible. It can be deformed with very little effort, the edges 

between adjacent faces acting as hinges. This situation may continue until the 

addition of the final face, after which the model becomes more rigid and stable. 

This is especially true of small convex models when no flexing at all can be 

detected in the completed model. If the model has a large number of faces, or 

if it is ‘angular’ and non-convex with re-entrant angles some movement may be 

seen. But the deformations of these polyhedra are not continuous motions of the 

polyhedral surface. They can usually be traced to a distortion of the model— 

often a separation of the faces at a re-entrant vertex, or the bending of edges 
and faces. This is the case with the jumping octahedron. We shall insist that 
the faces remain rigid throughout the deformation, only the dihedral angles may 

vary with the edges acting as hinges. 

Experience of polyhedral models (convex ones at least) suggests that poly- 
hedra are rigid—they cannot be deformed without being broken apart. Suppose 

for a moment that a flexible polyhedron did exist. Then it could be continuously 

deformed from one position into another. Its initial and final forms would not 
be coincident so, by Euclid’s fourth axiom, these two forms are not equal. But 

the two forms are derived from the same polyhedron by flexing so they must 
have equal faces similarly arranged. Hence by definition 10 of book X1, they are 
equal. The two polyhedra are simultaneously equal and not equal; the same yet 
different. 

This paradox may lead one to believe that flexible polyhedra do not exist. 

However, the contradiction does not arise from the assumption that flexible poly- 

hedra exist, but from the assumption that the two definitions of the word ‘equal’ 
are equivalent and can be used interchangeably. We have already seen from the 
examples above that the two definitions do not always agree. However, in this 
case it is not clear which definition is intuitively correct. 

In this situation, it is essential to understand precisely what is meant by 
‘equal’ each time it is used. This will depend on the definition being invoked at 
the time. In definition 10 of book XI of the Elements, two polyhedra are defined 
to be equal if they are stereo-isomers. The other definition, Euclid’s fourth axiom, 
corresponds to our modern notion of congruence. 

The term ‘congruence’ can be defined in various ways and these differ in their 
choice of primitive concepts. Congruence itself can be used as an undefined term 
in the same way as ‘point’ or ‘line’. In this case a list of statements must be 
given which describes the way in which congruence is assumed to behave. These 
axioms of congruence include: 
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A thing is congruent to itself. 

Things congruent to the same thing are congruent to each other. 

These two together replace the fourth axiom since they imply that things which 
coincide are congruent. The axioms also list some basic objects that are taken to 
be congruent. One such axiom is 

If two sides and the included angle of a triangle are congruent respec- 
tively to the two sides and their included angle of a second triangle 
then the two triangles are congruent. 

This last statement was given in the form of a theorem by Euclid which he proved 
using superposition but, as we have seen, such an argument relies on unstated 

assumptions. David Hilbert (1862-1943), whose research into the foundations of 
mathematics led to formal systems of axioms for several areas of mathematics 
including geometry, realised that it had to be treated as an axiom if congruence 
were taken to be an undefined term. 

If motion is regarded as an undefined term then superposition arguments 

can be made rigorous and Euclid’s fourth axiom can be taken as a definition of 
congruence. Of course, some axioms of motion are needed to specify the properties 
that motion is assumed to possess: figures must retain their shape and metric 

properties during motion, for example. Alternatively, distance can be taken as 

an undefined term. A motion of space can then be defined as a continuous one- 
to-one transformation which associates to each point of space a unique image 

point. The motions which preserve the distances between points are called rigid 

motions (or isometries) and these can be used to model superposition arguments. 
Whichever of these formal definitions of congruence is used, the intuitive idea of 
placing one cut-out figure over another so that they coincide is made explicit, 
and this provides a solid basis for investigation. 

If two polyhedra are congruent then clearly they are also stereo-isomers. How- 

ever, the converse is not necessarily true. When discussing equality, it is essential 

Figure 6.5. 
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to know which equivalence relation is being used: what does ‘equal’ mean in the 

current context. Euclid’s two definitions give rise to two different equivalence re- 

lations, and the conflict concerning a possible flexible polyhedron arose because 

the two were mixed. All that can be said about two forms of a flexible polyhedron 

is that they would be stereo-isomers but would not be congruent. 

Cauchy’s rigidity theorem 

Cauchy’s most important contribution to 
geometry is his proof of the statement that 

up to congruency a convex polyhedron is 

determined by its faces.“ 

H. Freudenthal 

The proof that Euclid’s two different definitions of equality are consistent when 

restricted to convex polyhedra came in 1813 when Cauchy proved what is known 

as the Rigidity Theorem: a closed convex polyhedron is rigid. Although it is 
often expressed in these terms, the proof actually shows the stronger result that 

convex stereo-isomers are congruent. From this it is easy to derive the rigidity of 
convex bodies: a flexible convex polyhedron would still be convex after a slight 
deformation. Thus there would be two convex stereo-isomers which were not 

congruent and this violates the theorem. Hence, a flexible convex polyhedron 

does not exist. 

Theorem. Closed, convex polyhedra which are stereo-isomers are congruent. 

PROOF: The theorem is proved by assuming that a pair of convex stereo-isomers 
exists which are not congruent, and then deriving a contradiction. ‘This is 
achieved by analysing the relationship between local geometrical properties and 
the global topological nature of the polyhedra. 

So suppose there exist two convex polyhedra which are stereo-isomers but 
which are not congruent. They are bounded by the same kinds of faces similarly 
arranged and corresponding faces are congruent. If every dihedral angle in one 
polyhedron were congruent to the corresponding dihedral angle in the other then 
the two polyhedra would be congruent. So, since the two polyhedra are assumed 
not to be congruent, they must differ in at least one of their dihedral angles, 
and consequently some of their solid angles must differ as well. The differences 
between the two polyhedral isomers manifest themselves at the solid angles, so 
studying the variety of solid angles and their combinations provides information 
about what sorts of isomers are possible. 

‘The properties of a solid angle can be represented by a polygon on a sphere. 
As in Chapter 5, a sphere of radius one unit is placed with its centre at the vertex 
of the solid angle. The faces of the polyhedron surrounding this vertex intersect 



CAUCHY’S RIGIDITY THEOREM 229 

the sphere in arcs of great circles forming a spherical polygon (Figure 6.5). The 
lengths of the sides of this spherical polygon are a measure of the plane angles of 
the faces which form the solid angle, and the angles of the polygon are equal to 
the dihedral angles between these faces. 

Corresponding faces of the two stereo-isomers being considered are congruent, 
so corresponding plane angles must also be congruent. Therefore, the spherical 
polygons formed from corresponding solid angles must have sides of the same 
length. Any differences between the two polygons must be in their angles, which 
vary as the dihedral angles of the polyhedron vary. 

As an example to show the power of this method of description, consider a 
convex polyhedron in which every vertex is 3-valent. In this case, there are three 
faces meeting at every solid angle, so all of the spherical polygons which describe 
these solid angles are triangles. As with planar triangles, a spherical triangle is 
completely determined by the lengths of its three sides. This means the spherical 

polygon associated to a solid angle of any convex stereo-isomer of this polyhedron 
must be congruent to the spherical polygon of the corresponding solid angle in 
the original polyhedron because corresponding sides must have the same length. 
This means that their corresponding angles are also congruent, and therefore the 
dihedral angles of the two isomers are congruent, implying the congruence of the 
two polyhedra. 

To apply this idea to polyhedra in general, it is necessary to know how other 

kinds of spherical polygon with sides of fixed length can be deformed. In partic- 
ular, it is useful to know how the angles may change as this gives information on 
the way in which the dihedral angles of the polyhedron can vary. This motivates 

the following discussion and lemma. 

The spherical polygon can be thought of as a chain of rigid rods connected by 
hinged vertices. We are interested in the different ways in which this chain can be 
placed so that it forms a convex polygon, and also in the relationships between 

corresponding angles of the various positions. An initial reference position can be 
chosen for the polygon and then other positions can be compared to it. In this 
way, the angles of the polygon in any of its positions can be labelled ‘+’ or *—’ 
according to whether they are larger or smaller than their corresponding angles 

in the reference polygon. 

Lemma. When reading round the labels on the angles of the polygon in cyclic 

order, at least four changes of sign must be encountered. 

PRroor: There must be an even number of changes of sign when reading round 

the polygon since the sets of ‘+’ labels and ‘—’ labels must alternate. So to show 

that there are at least four it is sufficient to show that there cannot be zero or 

two changes of sign. 

Firstly, consider a polygon in which all the sides except one have fixed length. 
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(In the ‘closed chain of rods’ image, one of the rods has been replaced by an 

elasticated cord.) If the polygon is triangular then it is clear that as the angle 

between the two rigid sides varies, the length of the variable side also changes, 

increasing or decreasing as the angle increases or decreases. If the polygon has 

n sides and all the angles between the rigid sides are varied together then the 

length of the variable side also changes—increasing when all the angles increase, 

and decreasing when they all decrease.’ So, if the variable length side is now 

made rigid, all the angles between the rods cannot simultaneously all increase 

nor all decrease. 

Therefore, if the angles do change, some must increase and others decrease. 
This means that both ‘+’ labels and ‘—’ labels must appear at the vertices. 
Therefore, there are at least two changes of sign around the polygon. Suppose 

that there are exactly two. Then the polygon can be divided by a line into two 
parts so that all the angles in one part are labelled ‘+’ and all the angles in the 
other part are labelled ‘—’ (see Figure 6.6). If all the angles labelled ‘+’ were to 
increase then the length of this diagonal line would also increase; and if all the 
angles labelled ‘—’ were to decrease then the length of the line would decrease in 
response. But the line cannot grow both longer and shorter at the same time, 

therefore the angles of the polygon cannot be separated into the two sets and 
there must be at least four changes of sign around the polygon. 

Figure 6.6. 

Until now, it has been assumed that all the angles are labelled so that none 
of the corresponding angles are equal. But suppose that only some of the angles 
alter while the others remain unchanged. Another polygon can be inscribed in the 
first by connecting the labelled vertices with lines (see Figure 6.7). The shaded 
regions in the figure are rigid because their sides in common with the original 
polygon are rigid, and the angles between these sides do not change. Hence the 
sides in common with the inscribed polygon are also rigid. Thus all the angles 
of this inscribed polygon are labelled and all of its sides are rigid. The same 
argument as above shows that there must be at least four changes of sign around 

‘ Although this is easily believable, it is tricky to establish rigorously as we shall see in a 
later section. 
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this inscribed polygon, and hence at least four changes of sign around the original 
polygon. 

Figure 6.7. 

This lemma provides sufficient information to complete the proof of the the- 
orem. 

Suppose that one of the two non-congruent stereo-isomers is taken as the 

reference point and the other is compared to it. Then its dihedral angles can 
be labelled ‘+’ or ‘—’ according to whether they are larger or smaller than the 
corresponding dihedral angles in the reference polyhedron. These labels can also 
be attached to the angles in the spherical polygons since they are equal to the 
dihedral angles. We now proceed to count the total number of changes in sign 
(denoted by 7’) which are encountered when reading round all of the spherical 
polygons in turn. This will be done in two ways one of which produces a lower 
bound and the other an upper bound. Further analysis leads to the following 
contradiction 

T < (upper bound) <_ (lower bound) <_ T. 

STEP 1. The lower bound. 
The lemma shows that there must be at least four changes of sign when reading 
round each spherical polygon, so the total number of changes of sign must be at 

least four times the number of vertices. Letting V denote the number of vertices, 

this gives the lower bound for T’ as 

i NY (A) 

STEP 2. The upper bound. 
To calculate an upper bound for JT’ we look at the faces of the polyhedron. Sup- 

pose, initially, that every dihedral angle of the polyhedron is labelled. Two edges 

of the polyhedron which are adjacent sides of a face are also adjacent edges at 

a vertex of the polyhedron. Suppose that a face is triangular and has edges e;, 

e) and e3. The labels on the dihedral angles associated with the edges can be 
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used to label the edges themselves. Suppose that e; is labelled ‘+’. In order that 

the maximum number of changes of sign occur around the vertices, the edges 

adjacent to e, must be labelled ‘—’. This forces both e2 and e3 to be labelled ‘—’. 

There is now no change of sign between the two edges meeting at the third corner 

of the triangle (see Figure 6.8). So at most two changes of sign are contributed 

to T by triangular faces. 

Figure 6.8. 

A four-sided face or a pentagonal face can contribute at most four changes 
of sign to T (see Figure 6.9), and similarly a hexagonal or heptagonal face can 
contribute at most six changes of sign, and so on. 

Figure 6.9. 

Adding all these contributions together gives an upper bound for T. Let F, 
denote the number of faces of the polyhedron which have n sides. Then 

STEP 3. The contradiction. 
To show the contradiction contained in statements (A) and (B), Cauchy used 
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Euler’s formula (of which he had recently given a proof). Let the number of 
edges and faces of the polyhedron be denoted by E and F respectively. Then 

F = fg+h,+Ph, + Fe + Fe +--- 

B= 1(3F3 + 4Fy + 5F5 + 6F5 + 7F, + ---). 

Euler’s formula can be written V = 2+ EH —F. Multiplying this by four and 
substituting in the above values for and F gives 

A straightforward comparison shows that the expression on the right-hand side 

of this equation is strictly greater than the upper bound for T derived in B. But 

AV is a lower bound for 7’, so the contradiction has been established. 

The extension of this proof to the case where only some of the dihedral angles 

differ (and hence not all of the edges are labelled) is analogous to the extension 
of the polygonal case in the previous lemma. The edges which are associated 
to labelled dihedral angles can be labelled themselves. There are at least four 
changes of sign round a vertex so if one edge incident to a vertex is labelled then 
at least three other edges incident to that vertex must also be labelled. Hence, the 

labelled edges form a network which partitions the faces of the polyhedron into 
groups, each of which is rigid. The above method of proof can now be applied 
to this polyhedral network. All its edges are labelled and its ‘faces’ comprise 
the rigid groups of faces. Euler’s formula applies to this network and the same 

contradiction is reached. 

Cauchy’s early career 

In 1805 Cauchy entered the Ecole Polytechnique aged 16. Two years later he 

graduated to the Ecole des Ponts et Chaussées and was trained in civil engi- 
neering. After finishing his education he was employed on some major building 

projects: the construction of the Ourcq canal, and the harbour at Cherbourg 
which was to be Napoleon’s naval base for his assault on England. It was the 
influence of Joseph Louis Lagrange which set Cauchy on a mathematical path. 

Cauchy’s work on polyhedra was the first research he undertook. Lagrange 

suggested that he investigate how to enumerate the regular star polyhedra— 

a problem posed by Louis Poinsot in 1810. His solution (which is discussed 

in Chapter 7), together with his derivation of Euler’s formula, formed his first 

paper. He submitted it to the Institute de France (which took over the functions 

of the Académie des Sciences during the Napoleonic era). The commission that 

evaluated his work comprised Legendre and Etienne-Louis Malus (1775-1812). 

They gave Cauchy a very favourable report and suggested that he continue his 
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studies of polyhedra. A year later he submitted his proof that Euclid’s definitions 

of equality agree for convex polyhedra. This time Malus was harder to convince. 

Cauchy wrote to his father who was acting as intermediary: 

If M. Malus seemed unsatisfied with the proof I sent you it probably 

has to do with the fact that you did not advise him of what I had 

taken care to tell you; namely, that my proof rests on several lemmas 

that are easy to prove. It does not, therefore, surprise me in the 

least that M. Malus has concluded that I assumed what could not be 

assumed. But, that is not the question: if I had the time, I would 

have sent you the proofs of the lemmas I used. Today, I will reduce 
the question down to the matter of knowing whether or not my proof 

is acceptable, assuming the lemmas are established. As to the form of 

the proof that I used, I think it would be not only difficult to change 

it, but downright impossible. The reason is that until now a geometric 
argument has not been given, except in terms of reductio ad absurdum, 

of the theorem that in 2-dimensional geometry is analogous to the one 
in 3-dimensional geometry that I dealt with: I mean the theorem by 
which it is proved that two triangles are equal if their three sides are 
equal. If one should establish this latter theorem without using either 
trigonometry or reductio ad absurdum, I would agree that my proof 

ought not to be admitted. It thus seems impossible to banish the 
reductio ad absurdum proof from geometry; and this is particularly 

true in the present case. In fact, in order to prove that under certain 

conditions only one polyhedron can be constructed, it 1s necessary 

to see that after the first figure has been constructed subject to the 
given conditions then one cannot construct a second figure without 

encountering a contradiction. I insist on this argument because the 
type of proof I gave seems to me to be inherent in the nature of the 
theorem in question. Moreover, it is precisely what M. Legendre used 
in establishing several particular cases of the same theorem.° 

Four weeks after Cauchy submitted his paper, the evaluating commission (com- 
posed of Legendre, Carnot and Biot) gave it a glowing report. 

Once Cauchy’s proof had been accepted and appeared in print, it became 
highly regarded and was reproduced in several nineteenth-century geometry books. 
It displayed originality and ingenuity and did not require a mastery of difficult 
techniques to be able to follow. Even so, developing the brilliant insights which 
make it work required the mind of a fine mathematician. 

Cauchy went on to make numerous contributions to many branches of math- 
ematics. The sheer volume of his output, second only to Euler, is made up of 
several books and around 800 papers which occupy the two dozen volumes of his 
collected works. His huge productivity led to a rule still enforced by the Académie 
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des Sciences limiting papers in its journal Comptes Rendus to a maximum length 
of four pages. Cauchy submitted articles so frequently that the Académie could 
not keep up with the rising cost of printing. 

Cauchy’s two landmark papers on polyhedra were the only work he did in 
the field. His later works were mainly in analysis (the study of convergence or 
divergence of infinite series), functions of real and complex variables, differential 
equations and mathematical physics. But he is probably best remembered by the 
mathematical community for his demands for rigour in analysis and calculus. His 
inspiration helped to convince many of the need to banish the intuitive arguments 
which often led to false conclusions. 

Steinitz’ lemma 

In spite of Cauchy’s great achievement in proving the rigidity theorem, as time 
went by, small cracks appeared in his argument. The most serious flaw went 
unnoticed for more than a century. In the 1930’s Ernst Steinitz noticed a defect 

in the very foundation of the theorem—the lemma concerned with the effects of 
varying the angles in a polygon. The entire proof rests on this one result: 

If, in a plane or spherical convex polygon ABCDEFG all of whose 

sides AB, BC, CD, -::, FG with the exception of AG have fixed 

length, one increases (or decreases) simultaneously the angles B, C, 

D, E, F, G between these same sides then the length of the variable 

side increases in the first case, and decreases in the second. 

Cauchy thought that changing the varying angles one at a time would produce 
the same effect as making all the changes simultaneously. In this way he could re- 
peatedly use the analogous result for triangles (proved by Legendre) to show that 
altering each angle in turn increases the length of the extendable side. However, 

because the lemma deals with convex polygons, it is necessary to ensure that 
all the intermediate stages are also convex. The example shown in Figure 6.10 

illustrates this point: when only one angle is changed and the polygon becomes 
non-convex. Steinitz, who was first to notice this deficiency, provided a correct 

proof. His proof, however, is quite long and this has prompted others to search 

for shorter ones. The version given below is due to Issai J. Schoenberg. 

Lemma. Let Aj, A2,---,A, and B,, Bo,---,B, be the corners of two convex 

n-sided polygons whose sides are such that A;Aj, = B,B2, A2A3 = ByB3, ---, 

An-1A4n = Bn-1Bn and whose angles are such that 4A, < £By, 4A3 < 4Bs, 

LAn-1 < £Bn-1, where at least one inequality is strict. Then A;A, < B,B,. 

PRooF: The proof uses induction on the number of sides of the polygon. As 

Cauchy observed, the lemma is true for triangles—the case n = 3. We now assume 
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Figure 6.10. 

that the lemma holds for all polygons with fewer than n sides and establish the 

result for n-gons. 

STEP 1. Suppose that at least one of the angle relations is an equality so that 
LA; = £B;. The triangles with vertices A;_;, A;, Aj4; and B;1, B;, Bi44 are 

congruent so the lengths A;_,A;;,; and B;_,B;4; are equal. Therefore, the poly- 

gons 
A eae Are Aa ere anda ata aa Be ee 

are both convex and satisfy the conditions of the lemma. They have (n — 1) sides 
and so, by the inductive hypothesis, we have A, A, < B,B,,. 

STEP 2. Assume now that all the angle inequalities are strict so that <A; < 
4B; for all 1 = 2,3,---,(n — 1). Let 6 be an angle between <A,_; and £<B,-1. 
Consider the polygon whose vertices are A;, Ao,---,An—1, 49, where the angle 

An-2An—-1A9 = 8 and the side A,_;Ag = An_1 An (see Figure 6.11). While this 

polygon remains convex we have that A; A, < A,Ag (by step 1). 

If the polygon Aj, Ao,---,An—1, Ag is convex for all values of @ then when 
6 = £B,_, it has one angle in common with the polygon B,,---,B,. Applying 
step 1 again we see that A,;A,g < B,B,. Hence 

ATAy A,iAg < Bis 
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Figure 6.11. 

STEP 3. We have still to deal with the case when the polygon Aj, Ao,---, An—1, Ap 

is not convex for all values of 9 between £A,,_; and “B,,_,. Let @ be the last value 

of 6 for which the polygon is convex (Figure 6.12). By step 1 we have 

Aiann =< aA; (A) 

The angle at A, is now 180° so 

AyAS =) ApAs Ap Ay: (B) 

The two polygons whose vertices are A», A3,---,An—a,A¢ and Bo,--- Bb, 21,8, 

are convex and both have (n — 1) sides. Applying the induction hypothesis to 

these polygons gives 
AgA,” << 1923; (C) 

Since B, B2B,, is a triangle, its sides satisfy 

By, Bo pp, = Bobo. (D) 

Putting all this together gives the following: 

A, An <K Ara, from (A) 

= A,Ag— Ai A from (B) 

<< BoB, —- B, By from (C) 

< BB. from (D) 

The proof is now complete. 

Rotating rings and flexible frameworks 

There are some kinds of structures of a polyhedral nature which are not rigid but 

which move freely in some way. One kind of these flexible structures seems to have 

been discovered several times over. An example was described by Max Bruckner 
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Figure 6.12. 

in his 1900 compendium on polyhedra Vielecke und Vielflache. These structures 

are formed by joining identical tetrahedra together in a chain. A tetrahedron is 
attached to two others along opposite edges so that the connecting edges act as 
hinges. When the chain of tetrahedra is sufficiently long the two ends can be 
brought together to form a closed ring. The flexibility of the hinged joints allows 
the ring to move and it can be rotated continuously through its centre. A ring 
of as few as six tetrahedra has this remarkable property. You can verify this by 
making a model from the net shown in Figure 6.13. (Each column of triangles 
folds up into a tetrahedron. The net will naturally form a chain and you will need 

to join the two ends together.) Examples can also be constructed from irregular 
tetrahedra or sphenoids. Rings of scalene sphenoids have a twisted appearance 
and when they are rotated the tetrahedra tumble into the centre in sequence. 

Doris Schattschneider and Wallace Walker have covered the faces of various 

rings of tetrahedra (along with the Platonic solids and the cub-octahedron) with 

Figure 6.13. A net for a rotating ring of six tetrahedra. 
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some of the repeating patterns drawn by M. C. Escher. These retail under the 
name ‘Kaleidocycles’. I also have an educational ring of tetrahedra marketed 
as a “Techtonocycle’. This is a ring of six tetrahedra which have a hexagonal 
appearance like the model made from Figure 6.13. Each of the four apparent 
hexagons contains a map of the Earth at a particular era in history. By rotating 
the ring so that different faces become visible, the movement of landmasses under 
the influence of plate techtonics can be traced. 

An attempt to construct ordinary polyhedra which flex was made by a French 
engineer named Raoul Bricard. In 1897 he discovered some flexible ‘octahedra’. 

However, his examples of flexible polyhedra all possess self-intersections: models 
cannot be made without some face passing through another. The flexibility of 
these polyhedra can be demonstrated by models in which the interiors of the 

faces are omitted. The resulting skeletal framework of edges and vertices can be 
thought of as a set of rods joined at the vertices so that they can rotate freely. 
Each face of the polyhedron is a triangle so the faces are rigid even though their 
interiors are missing. ‘Two of Bricard’s three flexible octahedra are described 
below. 

Bricard’s first flexible octahedron. 

Figure 6.14. Construction of Bricard’s first flexible octahedron. 

To construct the first type of octahedron start with a quadrilateral ABC'D 

which is non-planar and such that the pair of opposite edges AD and BC’ have 

the same length, and similarly for the pair AB and CD. Even though the quadri- 

lateral is not planar, it still has 2-fold rotational symmetry. The vertices U and V 

lie above the quadrilateral and are chosen so that the rotational symmetry is pre- 

served. Four of the faces of this octahedron are the triangles of the pyramid with 

base ABC'D and apex U. The other four faces are the triangles of the pyramid 

on the same base with apex V. This construction is illustrated in Figure 6.14. 

Notice that the sides of the triangular faces ADV and BCU are linked so these 

faces must intersect. (These faces have been omitted in the figure.) A model 
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of the edge-and-vertex framework can easily be made from drinking straws and 

string. The straws form the bars of the framework and a single piece of string 

can be threaded through all the straws (because the octahedron 1s 4-valent) and 

knots placed at the joints. 

Bricard’s second flexible octahedron. 

Figure 6.15. Construction of Bricard’s second flexible octahedron. 

To construct the second example, choose four points P,Q, R,T on a circle 

with centre O such that the arc PQ has the same length as the arc RT. A 
quadrilateral which has vertices PQ RT can be inscribed in the circle as shown in 
Figure 6.15. Let L be a line perpendicular to the plane of the circle which passes 

through O. Choose two points N and S on L which lie on opposite sides of O 
and which are equidistant from O. Again, the faces of the octahedron are formed 
from the triangular faces of two pyramids—one with apex N and base PQ RT 
and the other on the same base with apex S. In the figure faces QRN and PST 
are omitted. 

Are all polyhedra rigid? 

The flexible structures described in the preceding section are not genuine poly- 
hedra. Cauchy’s proof of the equivalence of Euclid’s two definitions implies that 
convex polyhedra must be rigid. But what about polyhedra in general—are 
they all rigid? People had speculated that this was the case long before Cauchy 
provided the first mathematical evidence in favour of the conjecture. In 1766 
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Leonhard Euler wrote 

A clones spatial figure allows no changes as long as it is not ripped 
apart. 

The conviction that all polyhedra are rigid became known as the Rigidity Con- 
jecture. 

Research on rigidity developed in many directions as people sought to extend 
Cauchy’s theorem. Some people adapted Cauchy’s ideas to differential geometry 
and proved analogous results about the rigidity of smooth surfaces. This led to 
the study of infinitesimal rigidity. Something which is infinitesimally rigid is also 
rigid in the normal sense. Polyhedra which are not infinitesimally rigid are called 
infinitesimally flexible or shaky. Mason’s deltahedron shows that the two kinds 
of rigidity are not identical for it is both shaky and rigid. 

People have also studied the rigidity of the edge-skeletons of polyhedra. A 
convex polyhedron with triangular faces has a rigid skeleton. Other skeletons, 
like that of a cube for example, are flexible. Since any polygon can be cut up 

into triangles by adding diagonals, any convex skeleton can be triangulated by 
adding extra edges. Alexander Danilovich Alexandrov modified Cauchy’s theorem 
and showed that a convex skeleton which is triangulated by adding extra edges 
becomes rigid. The additional edges must end at the original vertices or at new 
vertices on the original edges. If new vertices are added in the interior of a face 
then an infinitesimal flexing can occur. 

Herman Gluck studied Alexandrov’s work and in the early 1970’s he proved 
that, for non-convex polyhedra, almost all triangular skeletons are infinitesimally 

rigid. This curious result implies that almost all polyhedra are rigid. The Rigidity 

Conjecture was now known to be true in nearly every case. Gluck remarked 

Euler’s conjecture in this case is therefore “statistically” true.4 

The reader may feel that expressions such as ‘nearly every’ and ‘almost all’ are 

too vague to appear in the statement of a theorem. However, they can be given 

precise interpretations. As an example to illustrate this usage, imagine part of a 

plane is coloured white and that a mathematical figure composed of points and 
lines lies in this plane and is coloured black. We can think of this as a diagram on 
a page. The expression ‘almost all’ can be used in the same way it is used above 

to describe the relative numbers of black and white points: almost all the points 

on the page are white. The probability that a point of the page chosen at random 

is coloured black is given by the ratio of the area of the diagram to the area of 

the page. But since mathematical lines are idealised and have no thickness, the 

diagram has zero area. So ‘statistically’ all the points are white. 

The technical statement of Gluck’s theorem requires a knowledge of the topo- 

logical notion of an open dense set. (In the above example, the white points form 
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an open dense subset of the plane.) The theorem states that the infinitesimally 

rigid polyhedra are open and dense in a space of all polyhedra. Gluck’s proof 

uses methods from algebraic geometry. Ethan Bolker used the same machin- 

ery to derive properties which a flexible polyhedron would be forced to possess. 

For example, the flexing would only stop when one face collided with another. 

Mason’s deltahedron does not have this property. Its apparent motion cannot 

be continued this far without some edges tearing and the polyhedron breaking 

apart. Therefore, it must be rigid. 

Just as the observation that almost all points on a page are white does not 

allow one to conclude that every point is white, so Gluck’s proof that almost all 

polyhedra are rigid does not imply that flexible polyhedra cannot exist. It does 
mean, however, that if such polyhedra do exist then they are extremely rare. 

This tantalisingly small window of opportunity attracted the attention of 
a young American Ph.D student: Robert Connelly resolved to find the elusive 
missing piece of the jigsaw. The fact that almost all polyhedra are rigid means 

that it is extremely unlikely that a flexible polyhedron can be found by accident. 

Such a thing would need to be explicitly constructed to break the conjecture. 
Connelly started investigating skeletons or frameworks. In particular, he studied 
frameworks constructed from planar polygons by adding two extra vertices, one 

on either side of the plane—a process called suspension. He wanted to discover 

which polygons have flexible suspensions. 

Using suspension and other constructions, Connelly found several classes of 
flexible frameworks including Bricard’s flexible octahedral skeletons. Unfortu- 
nately, all of them suffered from the problem that the faces could not be filled 

in. There were always places where faces had to pass through each other for 
the mechanism to flex. Connelly asked himself how bad these self-intersections 
needed to be. Was there anything in his catalogue of flexible frameworks which 
could be considered as having the fewest self-intersections? He found that one of 
Bricard’s octahedra can be adapted to produce an immersed polyhedral surface 
with only two self-intersections, and these were particularly nice: places where 
edges crossed through each other; there were no intersections in the interiors of 
the faces. All he needed was some way to remove these last two obstructions. 

At a 1975 topology conference in Cornell University, Connelly heard that an- 
other mathematician, working in different area of mathematics, had been working 
on the same problem and had found a flexible polyhedron. Disheartened by the 
news, but curious to find out more, Connelly traced the rumour back to its source. 
Eventually he discovered that it referred to himself! 

Two years after this meeting, Connelly was back at Cornell after taking vis- 
iting fellowships at Paris and Syracuse. He was puzzling over his lists of flexible 
frameworks once more. Then, in one of those rare moments when fortune smiles 
on the prepared mind, things clicked into place. He recalls vividly this moment of 
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illumination. It was a warm June day and he glanced up at the clock: it was 3pm. 
He spent the next few weeks working with renewed enthusiasm checking every 
detail to make sure nothing had been overlooked, to ensure that his quest was 
really over. It was true. He had constructed a genuinely flexible polyhedron— 
one without self-intersections. He had created a counter-example to the Rigidity 
Conjecture; a black point in the vastness of the white page. . 

The Connelly sphere 

Connelly constructed his flexible polyhedral sphere as follows. 

Take a planar framework of twelve edges and six vertices like that illustrated 
in Figure 6.16(a)—the two crossover points in the interior are not vertices. This 
framework is flexible and is one of Bricard’s first type of octahedra. In this 
case some of the edges intersect other edges, and the whole of every face meets 
parts of some other faces. The polyhedron does not remain planar when it is 
flexed. This polyhedron can be converted into one with fewer self-intersections 

and which is still flexible. To achieve this, each triangular face is replaced by a 

group of three triangular faces forming a pyramid without a base. The four faces 
which surround vertex V are replaced by four pyramids lying above the plane 
of the framework like mountains, and the four faces surrounding U are replaced 
by pyramids beneath the framework forming pits (Figures 6.16(b) and (c)). The 
resulting surface has two points of self-intersection which occur where one edge 

passes through another. The regions of the polyhedral surface around each of 
these points is illustrated in Figure 6.16(d). 

The next stage in the process is to find a way of removing these two remaining 
intersection points. This is achieved by the insertion of what Connelly calls cerin- 

kles. A crinkte is derived from Bricard’s second type of octahedron by removing 
two faces. This creates a flexible surface with no self-intersections, and which has 

a boundary that can be attached to another surface. 

A crinkle can be inserted into the edge of a polyhedron as follows. Let EF’ be 
the edge and let F, and F, be the faces which are joined along EL. Let C bea 

circle which meets F in two points, P and R, such that the plane containing the 

circle bisects the angle between the two faces F, and Fy. Let N be a point on F{ 
and S be a point on F> such that the line NS passes through the centre of the 
circle C and is perpendicular to the plane of C’. Remove the triangles PRN from 

F, and PRS from F» as shown in Figure 6.17(a). Choose two points @ and T’ on 

C with Q under FE and T above EF so that the distance from P to @ is the same 

as the distance from R to T. A crinkle can then be constructed from the points 

P,Q,R,T,N and S which plugs the hole in F; and fy. The crinkle is isolated 

in Figure 6.17(b) and shown inserted into the fold in 6.17(c)). As the crinkle is 

constructed from a flexible octahedron, the edge F still acts as a hinge between 

the two faces attached to it. 
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(d) 

Figure 6.16. Construction of the Connelly sphere. 

The construction of the flexible polyhedron is completed by inserting a crinkle 

into one of the two edges at each intersection point in the surface. 

Further developments 

Connelly sent a detailed description of the flexible sphere to his colleagues at the 

Institute des Hautes Etudes Scientifiques in Paris. They held a contest to see 
whether simpler examples could be found. Connelly had paid little attention to 

the complexity of his polyhedron. He was satisfied just to have found just one 
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(c) 

Figure 6.17. Inserting a crinkle into a fold. 

example. Nicolaas H. Kuiper and Pierre Deligne modified Connelly’s example by 
expanding the crinkles and amalgamating some of the vertices. They obtained 
a flexible polyhedron with 18 faces and 11 vertices. Klaus Steffen took a more 
independent approach and found an example with only 14 faces and 9 vertices. 

A net for this polyhedron is shown in Figure 6.18. The reader is encouraged to 
make a model and work out how it flexes. Observe how the flexing is limited 
by the collision of several faces. Earlier, we noted that this must be the case for 
a genuinely flexible polyhedron. A Russian mathematician I. G. Maksimov has 
recently shown that all polyhedral spheres with triangular faces and fewer than 

nine vertices are rigid. This implies that Steffan’s flexible polyhedron has as few 

vertices as possible. 

An intriguing property of all the known flexible polyhedra is that their volume 

does not change as they are flexed. This raises the question of whether or not it is 
possible to construct polyhedral bellows—does there exist a flexible polyhedron 

whose volume varies as it is flexed? Dennis Sullivan conjectured that no such 
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mountain fold valley fold 

Figure 6.18. A net for Steffan’s flexible polyhedron. 
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bellows exist and that all flexible polyhedra flex with constant volume. Connelly 
has nicknamed this the Bellows Conjecture.” 

When are polyhedra equal? 

At the beginning of this chapter we started on a quest to search for an equivalence 
relation defined on polyhedra which captures our intuitive idea of when two poly- 
hedra are the same. The superposition arguments used in Greek times convey 
a great deal of what is involved perceptually and, until the discovery of flexible 
polyhedra, congruence was probably the best choice of equivalence relation. 

However, the existence of flexible polyhedra leads us to reconsider whether 
congruence still matches our experience. For surely, one of these polyhedra re- 
mains the same polyhedron while it is being flexed, even though it passes through 

a continuum of non-congruent positions during the process. Our equivalence re- 

lation needs to be modified to take this into account. We define two polyhedra 
to be equal if one is congruent to the other, or if one can be deformed into a 

polyhedron congruent to the other by flexing. 

Definition. ‘Two polyhedra P, and Py, are equal if either 

(7) P, is congruent to Py, or 

(ii) there is a continuous deformation of P, which preserves the metric proper- 

ties of the faces and which results in a polyhedron congruent to P». 

With this definition, a rigid polyhedron is equal only to itself and is the unique 

member of its equivalence class. The equivalence class of a flexible polyhedron 

contains all of the polyhedra into which it can be deformed and these are all 
regarded as equivalent forms of one polyhedron. We could remove the dependence 

on scale by replacing congruence with similarity. Then polyhedra of different sizes 

would also be equivalent. An unfortunate aspect of this equivalence relation is 

the complexity which can be involved in deciding whether two stereo-isomers can 
actually be interconverted by a continuous deformation. To prove that Mason’s 

deltahedron is rigid takes a lot of high powered mathematics. 

We can again adapt some chemical terminology to describe the way in which 

the different positions of a flexible polyhedron are related. Isomers of a molecule 

which differ only by a rotation of one part of the molecule about a bond are called 

rotational isomers, or rotamers for short. By analogy, we can call isomers of a 

polyhedron which are related by a continuous deformation flerimers. With this 

terminology our equivalence relation becomes easy to state: two polyhedra are 

equal if, and only if, they are fleximers. 

2This has recently been established by R. Connelly, I. Sabitov and A. Walz. 



© 1996 M. C. Escher / Cordon Art — Baarn — Holland. All rights reserved. 



249 

Stars, Stellations 
and Skeletons 

In Chapter 4 we saw how Kepler produced two starlike polyhedra by extending 

the edges of some of the Platonic solids (see Figure 4.17). These figures can be 
regarded as regular polyhedra but, to give this interpretation, the figures must 
be seen as being composed of star pentagons rather than naively from triangles. 
The faces then seem to pass through one another even though they still meet 
edge to edge. We have also seen examples of a generalised kind of Archimedean 
polyhedron that are constructed from regular polygons (convex or star like) but 

whose faces intersect in places that are not edges. These are the uniform poly- 
hedra (also discussed in Chapter 4). The Russian Evgraf Stephanovich Fedorov 

called such self-intersecting, or re-entrant, polyhedra koilohedra (from the Greek 

for concave). 

In these examples, the term ‘polyhedron’ is interpreted in a broader sense 

than the topologist’s polyhedral surface defined in Chapter 5. This more general 
type of polyhedron is the subject of this chapter. As a polyhedron will always be 
some kind of collection of polygons, whatever other conditions are imposed, we 

shall begin by studying the kinds of building blocks available. 

Generalised polygons 

A polygon is often visualised as a fragment of a plane bounded by segments of 
straight lines. However, a polygon can also be viewed as a collection of distinct 

points (called vertices) connected by straight lines with the constraint that exactly 
two lines meet at every vertex. The lines are the sides of the polygon. ‘This 

transition from a filled-in polygon to one which is a circuit of edges is analogous 
to the transition from a solid polyhedron to a surface discussed in Chapter 5. 

For the moment, we shall restrict attention to planar polygons, those whose 

vertices lie in a plane. Some examples are illustrated in Figure 7.1. At first sight, 
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it appears that some of the polygons in the figure do not satisfy the requirement 

that exactly two sides meet at every vertex. However, the points where four line 

segments meet are not vertices; they are points where two sides pass through each 

other. 

Figure 7.1. Some general polygons. 

In the special case of a regular convex polygon, all of the vertices le on a 

circle and are equally spaced around it. The sides of the polygon join adjacent 
vertices on the circle. If these vertices are connected in any other way then the 

resulting polygon must have some sides which pass through each other. If all 

the sides are the same length, so that they connect vertices which are the same 
distance apart on the circle, then a regular star polygon is formed. For example, 
in a pentagram the five vertices are equally spaced around a circle and the sides 

connect every second vertex. 

Regular star polygons share many of the properties of the traditional (convex) 

regular polygons: equal angles at the vertices, equal length sides, the vertices all 
lie on a circle, as do the midpoints of all the sides. One feature which distinguishes 
a convex polygon from a star polygon is the number of times it winds around a 
point in its interior. If you trace along the sides of a regular convex polygon then, 
when you return to the starting point, you will have encircled the centre point of 
the polygon exactly once. However, if you repeat this procedure on a regular star 

polygon, you will wind around the centre more than once before retracing your 

path. In the case of the star pentagon, you go round twice. The star pentagon is 

said to cover its centre point twice. 

Another way to find this covering number is to count the number of times 
a line from the centre of the polygon to a point outside it crosses the sides of 
the polygon. The line should avoid vertices and places where sides pass through 
one another. For a convex polygon, the line has to cross one side to reach the 
exterior. For the star pentagon it must cross two. This method works for any 
polygon so long as all the interior angles are less than 180°.! 

"It can be made to work for general polygons by careful counting. The polygon has to be 
oriented and the direction taken into account each time a side is crossed. 
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Figure 7.2. A pyramid with a pentagram base. 

The notion of covering number can be extended to polyhedra. Here, we will 
restrict attention to polyhedra whose dihedral angles are all less than 180°. We 

say that a polyhedron covers a point in its interior n times if a line from the 

centre of the polyhedron to the exterior intersects n faces of the polyhedron. As 

before, the line should avoid the vertices, edges and other places where the faces 

intersect each other. For example, M. C. Escher’s cut-away diagram of the small 

stellated dodecahedron (Figure 4.18) helps us to see that it covers an interior 
point twice. 

Poinsot’s star polyhedra 

Early in the nineteenth century, unaware of the previous work by Kepler, Louis 

Poinsot (1777-1859) investigated the possibility that polyhedra could be built 

from these generalised polygons. He allowed star polygons to be used as faces 

but, unlike Kepler, he also investigated the possibility that vertex figures could be 

star polygons. Recall that a vertex figure is a (spherical) polygon which describes 
how the faces are arranged around a vertex. It is formed as the intersection of the 
faces that meet at a vertex with a small sphere centred on that vertex. Figure 7.2 
shows an inverted pyramid with a pentagram base. The vertex figures at the base 

are all isosceles triangles, and the vertex figure of the apex is a star pentagon. 

Since the pentagram covers its centre point twice, we say that the triangular faces 
cycle around the vertex twice. In general, if a vertex figure covers its centre point 
n times then the faces meeting there will cycle around the vertex n times. 

Poinsot begins his paper by discussing the properties of generalised polygons. 
When he turns his attention to polyhedra, he notes that the proofs which show 

that there can be at most five regular polyhedra depend on an implicit assump- 

tion: 

Until now, we have known only five perfectly regular bodies, that is to 
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say those formed from equal regular polygons, equally inclined to one 

another, and assembled with the same number around each vertex. 

By imposing these conditions, we suppose it is impossible to construct 

any more and that the ancient geometers were able to make a complete 

enumeration. First, it is necessary to have at least three planes to form 

a solid angle, and then the sum of the plane angles which form the 

solid angle must be less than four right angles. --- 

However, I observe that of these two conditions, only the first is abso- 

lutely necessary, the other is associated in general with what is called 

convexity. I say in general because this condition, that the sum of the 

angles around each vertex is less than four right angles, does not al- 
ways lead to a convex surface: one which has the property that no line 
cuts the surface in more than two points. But one tacitly supposes this 

third condition, so much so that we only make the five combinations 

which give rise to the five regular bodies that we know. 

But if, while conserving the general definition of regular solid, we ex- 
tend the idea of convexity, we see the possibility to construct new 

regular polyhedra, not only with the new polygons I have just consid- 

ered but even with the ordinary regular polygons.® 

For Poinsot, there is the hidden assumption that regular polyhedra are con- 

vex. In the above passage he states the modern very restrictive definition of 
convexity: no straight line meets the polyhedron in more than two points. This 

definition can be applied to any geometric object. However, in his discussion 
of polygons, he suggests that an alternative definition of convexity would be to 

require that all the interior angles of a polygon be less than 180°. Under this 

notion of convexity, the regular star polygons would then be considered convex. 

He proposes a similar alternative for polyhedra: a polyhedron is convex if all 
its dihedral angles are less than 180°. Under this definition, polyhedra like Kep- 

ler’s pair made up of pentagrams are convex. Poinsot describes another example. 

Recall that the Platonic icosahedron can be decomposed into a pentagonal anti- 
prism and two pentagonal pyramids. This shows that a pentagon can be inscribed 
in the icosahedron (see Figure 7.3(a)). Do this in as many ways as possible and 
you end up with twelve pentagons which pass through each other (Figure 7.3(b)). 
If we define an edge to be the line where the sides of two pentagons are joined, and 
ignore the other intersections, then we get a polyhedron. Its edges and vertices 
happen to be the same as those of the original icosahedron. Furthermore, all its 
dihedral angles are equal and are less than 180°. So, according to Poinsot, this 
is another regular convex polyhedron. Curiously, a very similar looking figure 
can be found among Wenzeln Jamnitzer’s sketches in his Perspectiva Corporum 
Regularium: the frontispiece on page 248 has been extracted from his plate re- 
produced in Figure 3.16. 
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In Legendre’s proof of Euler’s formula (see Chapter 5), the polyhedron is 
projected onto an enclosed sphere to produce a network of spherical polygons. 
The areas of these polygons can be expressed in terms of the numbers of vertices, 
edges, and faces of the original polyhedron. Equating their total area to the area 
of the sphere produces the proof. Poinsot used a similar idea to derive a formula 

which must be satisfied by his generalised regular polyhedra. This then allowed 
him to deduce some possible structures for them. His argument runs as follows. 

Suppose that the faces of a star polyhedron are equal regular polygons of 
the conventional kind, and that the vertex figures are allowed to be any regular 
polygon—simple or star. Suppose that all the faces of such a polyhedron are 

p-gons, and that all the vertices are surrounded in the same manner with q faces 

coming together at each vertex and cycling around it n times. Suppose also that 
the whole polyhedron covers an interior point N times. This polyhedron can 

be projected onto an inscribed sphere to give a network of vertices, edges, and 
spherical polygons. The spherical polygons are all equal and regular so all the 

interior angles of these polygons are equal. Let @ denote this common interior 

angle. At the vertices of the network, g spherical polygons come together and the 

total angle formed by all the polygons at the vertex is ga. These faces make n 
complete cycles around the vertex so the total angle is also 27n. Equating these 

gives e 

20 =O which implies Ge = 2h. 
q 

The area of each of the spherical p-gons is given by 

n 
pa— (p—2)\n B= pe2n— = pr => 27. 

q 

Suppose that the polyhedron has F' faces. Then the sum of the areas of these 

(a) (b) 

Figure 7.3. The great dodecahedron (right). 
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faces must equal the area of the sphere multiplied by the number of times it is 

covered by the polyhedron. ‘Thus 

F(p ies pm + 2rr) = wATIN 
q 

and dividing through by 7 gives 

F(2p—-p+2) = 4N. 
q 

Poinsot used this last formula to deduce possible forms of star polyhedra. 

The formula has five variables so, in order to explore the possibilities, some of 

them must be fixed and the consequences of the choice followed through. We 

can choose to concentrate on a particular kind of face, or covering, or any other 

combination of the variables. 

Firstly, we can check that the formula holds for conventional polyhedra. In 

this case, a polyhedron covers its insphere once and the faces cycle around each 

vertex once so we substitute N = 1 and n = 1. If we further suppose that all the 
faces are equilateral triangles then p is set to 3. Substituting all these values into 

the formula gives 

F(2x3x=-3+2) = 

Rearranging this, we get a formula relating the number of faces of the polyhedron 
to the valency of its vertices. 

eee 
oe 

There must be at least three faces around any vertex so g > 3. For g = 3 we 

have F = 4 giving the regular tetrahedron. When q = 4 we get F = 8 giving 
the regular octahedron, and when q = 5, we get F' = 20, the regular icosahedron. 

For any other value of qg, F’ is undefined or negative which does not make sense 

for a polyhedron. Varying the value of p while keeping N and n fixed at 1 shows 
(yet again) that there are at most five Platonic polyhedra. 

New possibilities arise when the traditional viewpoint is enlarged to allow 
star polygons as vertex figures. The simplest such figure is the star pentagon. If 
a polyhedron has star pentagon vertex figures then five faces meet at every vertex 
and they cycle around it twice. This gives us gq = 5 and n = 2. If we continue 
to concentrate on polyhedra whose faces are equilateral triangles then, again, we 
have p = 3. Substituting these values into Poinsot’s formula gives 

F(2x3x 2-342) = ai 

which reduces to 

TEs Q0N 
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The smallest values of F and N which satisfy this equation are F = 20 and 
N = 7. This suggests the possible existence of a polyhedron having twenty 
triangular faces which come together at the vertices in sets of five arranged to 
give star pentagon vertex figures. This polyhedron would cover an enclosed sphere 
seven times. Remarkably, such a polyhedron does exist! It is shown in Figure 7.4 
and Plate 9. The shaded regions in the figure are the visible parts of one of the 
triangular faces. 

Figure 7.4. The great icosahedron. 

Continuing this investigation of polyhedra with triangular faces, the next 

simplest star polygon which could appear as a vertex figure is a star heptagon. 
There are two star heptagons, one which covers an inscribed circle twice, the 

other three times. Substituting the values p = 3, g = 7, n = 2 into the formula 

leads to the equation 
OF t= 28N 

and substituting the values p = 3, g = 7, n = 3 gives 

LE ee SNe 

The problem now arises as to whether or not polyhedra can be constructed which 

have the required properties. Poinsot’s formula gives conditions which must be 

satisfied by a generalised regular polyhedron, but does every set of values for p, 

q, n, N, and F which satisfy the formula correspond to an actual polyhedron? 

In particular, can either of these potential polyhedra with star heptagon vertex 

figures be realised? We shall return to this problem later. 

The investigation can be continued using other star polygons as vertex figures 

and different polygons for the faces. In the case of pentagonal faces meeting with 
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star pentagon vertex figures we get p = 5, q = 5 and n = 2. These values 

substituted into the formula give F = 4N. The solution Ff = 12 and Ni=33) of 

this equation corresponds to the polyhedron described earlier (see Figure 7.3). 

Poinsot also considered whether the star polygons can be used as faces of 

polyhedra and rediscovered the two polyhedra described by Kepler 200 years 

earlier. However, they are not produced through a careful analysis like the other 

two star polyhedra but are introduced as completed objects. He notes that they 

can be constructed by extending the sides of the pentagons in both the Platonic 

dodecahedron and his new star dodecahedron to form star pentagons. This is 

perhaps how he discovered them. 

He therefore knew of four star polyhedra: two with star pentagon faces one of 

which has three faces surrounding a vertex, the other has five faces surrounding 
each vertex; one with triangular faces meeting in fives so that the vertex figures 
are star pentagons; and one with pentagonal faces also having star pentagon 

vertex figures. 

Poinsot’s conjecture 

Here is a question which deserves investi- 

gation but which seems difficult to resolve 

rigorously.” 

L. Poinsot 

Having found four star polyhedra, Poinsot naturally desired to know whether he 

had found all the possibilities. He observed that the face planes of each of these 

four polyhedra coincide with those of a Platonic solid (either the dodecahedron 
or the icosahedron) and he wondered whether this would be true of all regular 
star polyhedra. He put forward evidence for and against this hypothesis but was 
unable to decide one way or the other. 

First he argued that one can start to build a model of any regular star poly- 
hedron. Imagine constructing a model of a triangular-faced polyhedron where 
seven faces meet at each vertex and so that they cycle around a vertex twice. 
Start with seven equilateral triangles and arrange them around a vertex so that 
they are equally inclined to each other, and proceed to build up the model by 
attaching triangles, completing vertices or forming new ones. If this assembly of 
triangles closes up then the number of faces will be a multiple of 28 and the result- 
ing polyhedron will cover an inscribed sphere the same multiple of 5 times. The 
crucial point is whether the polyhedron ever closes up or whether an unlimited 
number of triangles can be assembled without this happening. 

If such a polyhedron does exist then its inscribed sphere will touch the centre 
of every face, and these touching points will be evenly and uniformly distributed 
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over the sphere. These points can be regarded as the vertices of a convex? poly- 
hedron sitting inside the sphere. Poinsot is now caught in a dilemma. On one 
hand he cannot see any reason why this convex polyhedron, whose vertices are 
uniformly and regularly distributed over the sphere, should be anything other 
than a regular polyhedron. This would resolve the problem of whether or not the 
polyhedron imagined above can be constructed. If such a polyhedron did exist, 
the number of its faces, and hence the number of vertices of the convex polyhe- 
dron inside the sphere, would be a multiple of 28. But none of the convex regular 
polyhedra has a number of vertices which is a multiple of 28, so the polyhedron 
cannot exist. 

On the other hand, what does it mean to say that a set of points is regularly 
distributed on a sphere? Is a convex polyhedron which has such a set of points 

for vertices necessarily a regular solid? After all, the 30 midpoints of the edges of 
a regular icosahedron all lie on a sphere, and this is surely an evenly distributed 
arrangement of points. However, these points are not the vertices of a Platonic 

figure but of an Archimedean solid—the icosi-dodecahedron composed of trian- 
gles and pentagons. Another Archimedean solid results from the midpoints of 
the edges of a cube: the cub-octahedron. If the face centres of a regular star 
polyhedron were distributed over a sphere like the 30 midpoints of the edges of 

an icosahedron then his previous argument would not apply. 

In this discussion, Poinsot displays two competing thought processes which 

mathematicians go through when trying to determine the truth of a conjecture. 
While considering a possible method for proving his conjecture, Poinsot is also 
looking for obstacles to his strategy. A knowledge of the situations where a 
method fails is often very useful. Sometimes the obstacles can be overcome; 
sometimes a new strategy of attack is required; in other situations they can 

lead to new examples which require the original conjecture to be modified or 
abandoned. As Poinsot remarks, one of the things which makes the theory of 
polyhedra so difficult is the ease with which the study of a few isolated examples 
leads to speculation and conjecture about polyhedra in general. 

Cayley’s formula 

An appendix to Poinsot’s paper shows how Euler’s formula can be generalised so 

that it applies to polyhedra with star polygon vertex figures. Suppose a polyhe- 

dron covers an enclosed sphere N times and that the faces which meet at a vertex 

cycle around it n times. Using Legendre’s proof as a basis, Poinsot showed that 

HV aol) =. fb - 2N. 

2Fyom here onwards, convex has its modern restrictive meaning: an object is convex if it 

meets any straight line in at most two points. 
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where V, E and F denote the number of vertices, edges and faces (as usual). 

When N and n equal one this reduces to Euler’s original formula. The formula 

fails to work when the faces are star polygons. 

Some 50 years later, Arthur Cayley presented a different way of measuring 

the number of times a star polyhedron covers an enclosed sphere. This number 

has come to be called the density of a polyhedron. Density is calculated in a 

similar way to the covering number: we count the number of times a line from 

the centre of the polyhedron to its exterior cuts the faces. The difference is that 

we take into account how many ‘layers’ of each face the line goes through. Convex 

polygons have only a single layer so the density of a polyhedron with convex faces 

is the same as its covering number. For star polygon faces, the number of layers 
depends upon which point of the polygon the line passes through. 

The sides of a planar polygon divide up the plane into regions, and the number 

of layers is constant in each region. To work out how many layers of a polygon 

cover a region, trace a path around the polygon and count how many times you 

wind around a point inside the region before retracing your steps. For example, 

the five corner regions of a pentagram have only one layer, but the central region 

has two layers (see Figure 7.5). We also define the density of a polygon to be its 
greatest thickness. For star polygons this is the same as its covering number. 

ay 
Ve 

Figure 7.5. The layers of a pentagram. 

With this new way of counting the intersections of the faces with a line, we 
can find the density of the star polyhedron in Escher’s sketch (Figure 4.18). A 
line from the interior of the polyhedron will pass through the central region of 
one face, and a corner region of another. The first intersection passes through 
two layers, and the second intersection contributes only one layer. Therefore, the 
density of the polyhedron is 3. 

Using the idea of density, Cayley was able to obtain a generalised version of 
Euler’s formula which is satisfied by all four of Poinsot’s star polyhedra and in 
which the symmetry between V and F is restored. If dy and dp are the densities 
of the vertex figures and of the faces respectively, and D is the density of the 
polyhedron then | 

dvV +dpk = FE Op) 

Again, when all the densities are 1, this reduces to Euler’s original formula. 
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The names which Cayley used for Poinsot’s four star polyhedra have become 
their accepted English names. The one with 20 triangular faces is called the great 
icosahedron, the one with 12 pentagonal faces is called the great dodecahedron. 
The two polyhedra which have 12 star pentagona! faces are called the small 
stellated dodecahedron and the great stellated dodecahedron, the small one having 
12 vertices, the great having 20 vertices. 

Cauchy’s enumeration of star polyhedra 

The problem of how many regular star polyhedra can be constructed was resolved 
by Augustin Louis Cauchy in 1812. His solution, together with his proof of Euler’s 
formula, formed the contents of his first paper. Using concepts that we would 
now call symmetry and transitivity, he interpreted what is meant by regularity 
in a new way. However, it is important to remember that the fundamentals of 

symmetry were not fully developed until later in the nineteenth century when 

crystallographers used symmetry to explain the shape and structure of crystals. 

Cauchy applied the principles of rotational symmetry in an intuitive way. 
Rather than use the standard definition of regularity, which requires the con- 
gruence of the faces, solid angles and dihedral angles, he observed that all the 
Platonic solids can be superposed on themselves in more than one way. For ex- 

ample, let P and Q be two cubes of equal size. We can choose a face of each 

cube and then superpose P on Q so that the chosen faces are also superposed. 
This is possible because all the faces of a cube play equivalent roles in its struc- 
ture. Furthermore, having aligned the chosen faces, we can choose a side of each 
face and superpose the cubes in such a way that both the chosen faces and their 
chosen edges coincide. 

The classical definition of regularity forces a regular polyhedron to possess 
Cauchy’s ‘multiple coincidence’ property. The defining properties are sufficiently 

explicit to be used as a set of instructions for making a regular polyhedron. All 
you need to know is what kind of polygon to use for the faces and how many to 
place around each vertex. You start by taking a regular polygon to form the first 

face. Then take another polygon and attach it to the first. Since both polygons 

are the same, and both are regular, it makes no difference which two sides are 

joined to make the first edge. A vertex can be built up by surrounding it with 

the appropriate number of polygons. Since all the dihedral angles must be the 

same, each vertex figure must be a regular polygon. Thus, there is no choice in 

the shape of the solid angle. Continue to add faces building up the model until it 

closes up. At no stage in the process is there a choice: the faces are all the same, 

the solid angles are all the same, the faces are rigid, the vertex figures are rigid. 

When you examine the completed model, you cannot tell how the polyhedron 

was constructed. All the faces and vertices are equivalent. Knowing the instruc- 
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tions does not help because everything looks the same. You cannot tell which 

was the first face. It is because the construction could have started with any face, 

and the rules completely determine the rest of the shape, that the polyhedron 

can be superposed on itself in the way Cauchy observed. 

With a slight modification to the rules, this description of building up a 

regular polyhedron applies to star polyhedra as well as to the Platonic solids. To 

describe Poinsot’s polyhedra, it is no longer sufficient to give only the valence of 

the vertices: one must give the vertex figure. 

This property of regular polyhedra can also be used in reverse as a definition 

of regularity. The fact that any face can be superposed on any other means 

that all the faces are congruent. Furthermore, since each face can be rotated to 

superpose one side on any other side, the faces must be regular polygons. By 

combining these operations we can superpose an edge of the polyhedron on any 

other so all the dihedral angles must be the same. In this way, we can recover the 

classical definition from Cauchy’s observation—the two viewpoints are equivalent. 

With this new way of thinking about regularity we can now turn our attention 

to Cauchy’s solution of Poinsot’s question. 

Lemma. The face-planes of a regular star polyhedron coincide with those of a 
Platonic solid. 

PROOF: Suppose you have two copies of a regular polyhedron. One can be 
brought into coincidence with the other in several ways. Firstly, a face of one can 
be superposed on any face in the other. Furthermore, any side of the face in the 

first polyhedron can be paired with any side of the chosen face in the second copy 
of the polyhedron. This is possible for both convex and star regular polyhedra. 

Now imagine yourself transported to the centre of a regular star polyhedron. 
If the faces are opaque then your view of the polyhedron will be limited to a 
convex kernel whose faces lie in the face-planes of the star polyhedron. 

What happens to this kernel when the star polyhedron is superposed on a 

second star polyhedron? The face-planes of the second star polyhedron are the 
same as those of the first so the kernels of the two polyhedra coincide. Since a 
face of the first star polyhedron can be superposed on any face of the second star 
polyhedron, a face of the first kernel can be superposed on any face of the second 
kernel. Therefore, the faces of the convex kernel are all congruent. This implies 
(via a corollary of Euler’s formula) that its faces have three, four or five sides. 

Because we can align a given side of a face in the first star polyhedron with 
any side of the chosen face in the second, a face of the kernel can be superposed 
on itself in more than one way. If the faces of the star polyhedron have n sides 
then each face of the kernel can be rotated onto itself in at least n ways. If the 
faces of the kernel have p sides then p must be a multiple of n. But Die 4108 
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9 and n is at least 3. So, in fact, p= n. This means that a side of a face of the 
first kernel can be superposed on any side of the chosen face in the second kernel. 
Thus, the kernel is a convex regular solid. 

This lemma answers Poinsot’s question ‘Do the face-planes of a regular star 
polyhedron have to coincide with those of a Platonic solid?’ in the affirmative 

and so excludes his two hypothetical examples having triangular faces and star 
heptagon vertex figures. However, we still need to show that he found all the 
possibilities. 

To enumerate the star polyhedra, Cauchy analysed the faces of the Platonic 
solids to see which could be extended to bound regular polygons. In the case of 
the cube it is easy to see that its face-planes never meet again when they are 

extended. They bound only the cube. The same is true of the tetrahedron. The 
other cases need more careful consideration. 

First, we observe that the face-planes of the octahedron, dodecahedron, and 
the icosahedron come in parallel pairs. If we place a model of one of them on a 

table, there is a natural choice of a base face (in contact with the table surface) 
and a top face (opposite the base). To construct regular star polyhedra we shall 
examine the possible ways that groups of faces can be extended to bound a regular 
polygon in the top face-plane. For a set of face-planes to intersect the top face- 

plane in lines that bound a regular polygon, they must be arranged symmetrically 

around the axis passing through the centres of the top and the base. We shall 

refer to such a symmetrically placed set of faces as a group. 

The faces of the octahedron can be divided into four groups: the top, the 
base, the three faces adjacent to the top, and the three adjacent to the base. ‘The 

base and the top are parallel and do not meet. The faces adjacent to the top 

bound only the top face and do not give anything new. The three face-planes 
adjacent to the base do bound a new regular polygon in the top face-plane—a 
triangle whose sides are twice as long as those of the octahedron (Figure 7.6). 
Four of these triangles form a Platonic tetrahedron. When all eight of the faces 

of the octahedron are extended to form these triangles, Kepler’s stella octangula 

is formed. This is a compound polyhedron and not what we are searching for. 

Figure 7.6. 
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Figure 7.7. 

The faces of the dodecahedron can also be divided into the same four groups: 

top, base, the five faces adjacent to the top, and the five adjacent to the base. 
Again, the base and the top are parallel and do not meet. The face-planes adjacent 

to the top bound the top pentagonal face and also bound a pentagram in the same 

face-plane (Figure 7.7(a)). This star pentagon is formed by extending the sides 
of the top face. Twelve of them form the small stellated dodecahedron. The 
five face-planes adjacent to the base also determine a pentagon and a pentagram 
in the top face-plane (Figures 7.7(b) and (c)). These are the faces of the great 
dodecahedron and the great stellated dodecahedron, respectively. This exhausts 
the dodecahedral family of regular polyhedra. 
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Figure 7.8. 

The faces of the icosahedron divide into eight groups. As usual, the top, the 
base, and the three faces adjacent to the top are three of them. To see the others, 
label each of the faces adjacent to the base ‘A’, and apply successive letters to 
the faces around its top vertex as shown in Figure 7.8. Each set of three face- 
planes labelled with a given letter forms a group. When searching for regular 
polygons in the top face-plane we need only consider these five lettered groups of 

face-planes—the other groups clearly do not bound any new polygons. 

Figure 7.9 shows the polygons formed by groups ‘A’, ‘C’ and ‘E’. The shad- 
ing indicates which faces belong to the group. The three face-planes labelled 
‘A’ bound a large triangle which is the face of the great icosahedron (see Fig- 
ure 7.9(c)). The three face-planes of group ‘C’ or of group ‘D’ determine a 
smaller triangle (Figure 7.9(a)), eight of which fit together to form a Platonic 
octahedron. When all the faces are extended in this manner a compound of five 

octahedra is produced (see Plate 13). The three face-planes of group ‘B’ or of 
group ‘E’ determine another triangle, one of intermediate size (Figure 7.9(b)). 
Four of them fit together to form a Platonic tetrahedron. Extending all the faces 
in this way produces a compound of five tetrahedra (see Plate 12). 

This completes Cauchy’s exhaustive search for regular star polyhedra. Only 

the four described by Poinsot are produced. 

Face-stellation 

The process of producing new polyhedra by extending the faces of a given one is 
called face-stellation. It was first described by Kepler. Although he probably dis- 
covered his star polyhedra by extending edges rather than faces, he knew that the 
small stellated dodecahedron could be obtained from the Platonic dodecahedron 

by face-stellation. 

The stellation process may seem clear enough but there is some ambiguity 

about how we should interpret the result. For example, is the great dodecahedron 

composed of twelve regular pentagons, or 60 isosceles triangles. Is a stellated 

polyhedron a solid whose face-planes coincide with those of the original (solid) 
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(b) 

Figure 7.9. 

polyhedron, is it the bounding surface of such a solid, or is it a set of intersecting 

polygons. 

This freedom of interpretation means that there are complementary ways to 

think about the process of face-stellation. Cauchy’s approach is essentially two- 
dimensional: choose one face-plane and see how the others intersect it. From the 

information in this one plane, we then deduce possible faces for stellated forms. 
Another approach is three-dimensional: the stellations are thought of as being 

built up from layers of solid cells. To show how these different means of expression 
are related we will examine the stellations of the dodecahedron. 
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The three-dimensional approach. 

Each face of a convex polyhedron lies in a unique plane, and the set of all these 
face-planes partitions space into a collection of cells. The original polyhedron 

must be one of the cells, and there will always be some unbounded cells. The 
situation becomes interesting when there is more than one bounded cell. This 
happens when the dihedral angles of the polyhedron are greater than 90°. 

The bounded cells come in layers surrounding the central, core polyhedron. 
They can be stuck together to form new polyhedra whose faces will lie in the 
same planes as those of the original polyhedron. 

A regular dodecahedron is surrounded by three kinds of finite cell. The 
first layer consists of twelve pentagonal-based pyramids (see Figure 7.10). The 

second layer consists of 30 wedges that sit between the pyramids (Figure 7.11). 

Notice how each successive layer completely covers the faces of the previous layer. 
The final layer of cells is a set of 20 spikes each of which is an asymmetric 
triangular dipyramid. These fit into the hollows between the wedges. On the left 
of Figure 7.12 the sharp end of the spike points backwards, and the spike fits in 

a depression hidden from view on the upper right of the second stellation. ‘The 
figures are all drawn to the same scale. 

O if 
Figure 7.10. The first stellation of the dodecahedron is built from a layer 

of 12 pyramids. 

Figure 7.11. The second stellation of the dodecahedron is built from a layer 

of 30 wedges. 
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Figure 7.12. The third stellation of the dodecahedron is built from layer of 

20 spikes. 

The two-dimensional approach. 

If we place a dodecahedron on a table, there is a unique plane parallel to the table 
top containing its top face. The plane containing the base does not meet this top 

face-plane, but each of the other ten face-planes do. The five planes adjacent 

to the top face intersect the top face-plane in five lines. These lines bound the 

top pentagonal face and also form a star pentagon (Figure 7.7(a)). When the 
five planes containing the faces adjacent to the base are extended to meet the 
top face-plane, five more lines of intersection are produced which pass through 
the vertices of this pentagram (Figure 7.7(c)). These ten lines of intersection 
form a pattern called a stellation pattern. It is shown in Figure 7.13. As the 
dodecahedron is regular, all its faces are equivalent and the stellation patterns 

formed in all the face-planes are all the same. 

The stellation pattern contains four kinds of bounded region. In this case, 
each kind of region corresponds to a dodecahedral form. Take the central pen- 
tagon from each face-plane and you reconstruct the original dodecahedron. Take 
all the small acute-angled isosceles triangles from each face-plane and the first stel- 
lation appears. The obtuse-angled isosceles triangles form the second stellation— 
the great dodecahedron. The remaining triangles form the great stellated dodec- 
ahedron. The lines in the stellation pattern do not bound any more finite regions 
and so this is the last of the dodecahedron stellations. 
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Figure 7.13. The stellation pattern of the dodecahedron. 

In a more complex stellation pattern, such as that of the icosahedron, the 

regions have to be chosen carefully. Just selecting corresponding regions in each 
face-plane may result in a set of disconnected polygons with free edges not at- 
tached to other faces. To enumerate the stellated forms, it is necessary to work 

out which sets of regions fit together to form closed polyhedra. 

Stellations of the icosahedron 

All the stellations of the dodecahedron happen to be regular star polyhedra. Stel- 
lating the icosahedron, on the other hand, is far more challenging. Its stellation 
pattern is shown in Figure 7.14. It consists of the 18 lines where a face-plane is 
met by the face-planes of all the faces except the opposite one (which is parallel 

to it). These lines divide the face-plane into 66 finite regions. Try to imagine 

how many face patterns can be built by piecing these together in different ways. 

We can also consider this abundance of possibilities from the three-dimensional 

viewpoint. The 20 face-planes of the icosahedron partition space into 473 bounded 

cells of some 11 or 12 kinds (depending on whether you class mirror images as 
the same or different). With such a large number of blocks from which to start 
building up stellations, some care is needed in deciding which sets of cells are 
to be counted as proper stellated forms. Although we can construct 2!7 — | 
combinations of cells from the icosahedral decomposition of space, this does not 

mean we can build over 4000 stellations of the icosahedron. We need to decide 

which combinations should be included. What should be the acceptance criteria 

by which we judge their validity? What properties should a stellation possess? 
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Figure 7.14. The stellation pattern of the icosahedron. 

A few examples of stellations of the icosahedron were known, and recog- 

nised as such, at the turn of the twentieth century. Some are identified in Max 
Bruckner’s book Vielecke und Vielflache published in 1900. Besides the great 
icosahedron (Plate 9) and the compounds of five octahedra (Plate 13) and five 
and ten tetrahedra (Plate 12) known to Cauchy, he described six others. They 
are Shown among the Figures 7.15-7.33 and Plate 10. All the stellations in the 
figures are drawn on the same scale and from the same viewpoint. 

Nine more stellations were discovered by Albert Harry Wheeler bringing the 
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total to 19 stellated forms plus the icosahedron itself. Most of his stellations are 
shown in the figures. One of them (Figure 7.27) is cheiral like the compound of 
five tetrahedra. 

Inspired by Wheeler, an exhaustive search was made for more stellations. As 
mentioned above, in order to perform such an enumeration, a definition of what is 
meant by ‘stellation’ is required. The following criteria were proposed by J. C. P. 
Miller. 

(7) The faces of the stellated form must lie in the face-planes of the original 
polyhedron. 

(iz) All the regions composing the faces must be the same in each plane; these 
regions need not be connected. 

(121) The regions included in a plane must have the same rotational symme- 
try as a face of the original polyhedron. Together with (77), this implies 
that the stellation process preserves the rotational symmetry of the original 
polyhedron. 

(iv) The regions included in a plane must be accessible in the completed stella- 
tion. 

(v) Compounds of simpler stellations are excluded. More specifically, we disal- 
low unions of two stellations with no face-to-face contact except combina- 
tions of mirror images. 

Applying these rules to the manifold possibilities reduces their number substan- 

tially. There remain 31 stellations with mirror symmetry, and 27 cheiral stella- 
tions (or pairs of enantiomorphs). 

The complete list was published in 1938 in a delightful little booklet called 

The Fifty-nine Icosahedra. Of the four authors J. F. Petrie produced the fine 
illustrations, H. T. Flather made a complete set of models which are now housed 

in the Mathematics Department at Cambridge®, and H. S. M. Coxeter and Patrick 

Du Val wrote the text each supplying a different method of enumeration: Coxeter 
used the two-dimensional approach and Du Val worked with cells. 

Another problem to be overcome is how to describe each stellation in a sys- 

tematic and economical way. The method Du Val used to solve this problem was 

to classify the cells into their various kinds and then list the combination of cell 

types which forms each stellation. As an example, we shall apply the method to 

the dodecahedron to see how it works. 

A number can be associated with each cell which is a measure of its distance 

from the central cell—the dodecahedron itself. The index of a cell is the number of 

’They can be viewed by appointment. Write to the Head of the Department of Mathematics, 

University of Cambridge, 16 Mill Lane, Cambridge. CB2 1SB. England. 
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face-planes a straight line from the cell to the centre passes through (compare this 

with the definition of covering number or density). So, for example, dodecahedron 

cells have following indices: 

0 : the dodecahedron 

1 : the 12 pyramids 

2 : the 30 wedges 

3: the 20 spikes. 

A layer of cells is defined to be all the cells that have a given index. These layers 

form a series of concentric shells which envelop the core. Each layer is denoted 

by a lower-case letter running in sequence from the centre outwards. ‘Thus the 

dodecahedron is layer a, the pyramids are layer b, the wedges are layer c, and the 

spikes are layer d. When describing stellations it is also helpful to have symbols 

for the set of all cells with index less than or equal to a given number. These 

are denoted by upper-case letters. The set of all cells of index at most 0 (which 

is just the central dodecahedron) is denoted A. The set of cells with index at 
most 1 (the small stellated dodecahedron) is denoted B. Similarly, the great 
dodecahedron, denoted C, is formed by adding layer c to B. The third stellation, 

D, is the set of all (bounded) cells taken together. 

For any initial polyhedron, the stellations A, B, C, D, E, ... are called the 

main sequence. They form a natural progression and are the only stellations 
that can be sensibly ordered: B is the first stellation, C is the second, and so on. 

Notice that Wheeler did not find the entire main sequence for the icosahedron—he 
missed E (Figure 7.18). 

All the stellations in the main sequence of the icosahedron are illustrated 

here. Figure 7.15(b) shows stellations A, B and C. The triakis icosahedron, 
B, is formed by erecting a pyramid on each face of the icosahedron. (The term 

‘triakis’ is borrowed from crystallography.) C is the compound of five octahe- 
dra. Figure 7.17 shows the result of extending the faces of this compound until 
they meet again. Figure 7.20 shows the sixth stellation, G, familiar as Poinsot’s 

great icosahedron. The final stellation, H, composed of all the cells, is shown in 
Plate 10. It is known as the complete icosahedron. 

This system of nomenclature can be used to label the cells and their com- 
binations which arise by stellating any convex polyhedron. In the case of the 
icosahedron the situation becomes more complicated, and more interesting, be- 
cause three of the eight layers contain different kinds of cell. One layer even 
contains cheiral cells. Layers e and g can both be separated into two kinds of 
cells. These are denoted e; (shown in Figure 7.21) and eg, gi (shown in Fig- 
ure 7.30) and gz. All four of these stellations exhibit an unusual feature which 
has not appeared in stellations seen earlier. They are not polyhedra in the sense 
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of the polyhedral surfaces described in Chapter 5 but have singular points where 
they are vertex-connected. Other stellations of the icosahedron, such as f;, are 
edge-connected having more than two faces meeting at an edge. These are nat- 
urally occurring instances of Hessel’s counter-examples to Euler’s formula (see 
Figure 5.15). 

Layer f is the most unusual of all. The cells in one set, fz, are completely 

disconnected (see Figure 7.33). The remaining cells, f,, can be split into two 
mirror-image forms. One cheiral set is shown in Figure 7.32. It is denoted f,— 

note the change in typeface. It is the inclusion of just one of these two cheiral 

sets that produces the cheiral stellations such as the compound of five tetrahedra, 
Ef,. 

By comparing the figures with one another you may begin to be able to 
visualise the different building blocks and the ways they combine. For example, by 

adding cells g1 (7.30) to Fg (7.31) we get the great icosahedron G (7.20). Adding 
gi to the compound of ten tetrahedra (7.22) produces a non-convex deltahedron 

(7.24). The inclusion of the twelve spikes of fz is especially easy to identify. 
Wheeler’s cheiral stellation (7.27) is formed by adding them to a compound of 
five tetrahedra. Figures 7.24 and 7.25 show a similar relationship. The last 
polyhedron in Table 7.16, e,f1g1, has tunnels through it. It is not shown here 

but is easily described: it is the figure formed by removing Degf. (Figure 7.29) 

from Fg, (Figure 7.25). 

These examples must suffice though there are many more. Some are poly- 
hedral surfaces which are not spherical but have tunnels through them. Some 

are very intricate and simple line drawings of them are difficult to interpret. As 
usual, the best way to understand is to play with models. 

A B 

Figure 7.15. The icosahedron and the first two stellations in its main se- 

quence. In the Du Val notation these are labelled A, B and C. The first 

stellation is sometimes called the triakis icosahedron, and the second is 

familiar as the compound of five octahedra. 
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Table 7.16. 

Figure 7.17. Icosahedron stellation D. 



Figure 7.18. Icosahedron stellation E. 

Figure 7.19. Icosahedron stellation F. 



Figure 7.21. Icosahedron stellation e; 
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Figure 7.24. Icosahedron stellation Ef,;g;. This is also an example of a 

non-convex deltahedron: all its faces are equilateral triangles. 

Figure 7.25. Icosahedron stellation Fg. 
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Figure 7.26. Icosahedron stellation Ef, (dextro). This is the compound of 
five tetrahedra. 

Figure 7.27. Icosahedron stellation Ef|fz (deztro). 
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stellation f; (deztro). Figure 7.32. Icosahedron 

stellation fo. Figure 7.33. Icosahedron 
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Bertrand’s enumeration of star polyhedra 

More than forty years after Cauchy’s solution to Poinsot’s problem, Joseph Bert- 
rand considered it from a complementary point of view. Whereas Cauchy ex- 
amined face-planes and reduced the problem to looking for regular stellations of 
the Platonic solids, Bertrand concentrated on the vertices of star polyhedra and 
ended up searching for regular polygons inside the Platonic solids. He claimed 
that his method is easier to visualise than the stellation process and I am inclined 
to agree. 

The enumeration is based on a lemma which is dual to Cauchy’s lemma: ‘face’ 
and ‘kernel’ are replaced by ‘vertex’ and ‘convex hull’, respectively. The convex 
hull of a set of points is the smallest convex polyhedron that contains them. The 
vertices of the hull always belong to the given set of points. The convex hull of 
a non-convex polyhedron is the just convex hull of its vertices. For example, the 
convex hull of the stella octangula is a cube. 

Lemma. The vertices of a regular star polyhedron coincide with those of a 

Platonic solid. 

PROOF: Let P be a regular star polyhedron and let Q be its convex hull. The 

vertices of P all lie on a sphere so all of them are also vertices of Q. 

Now, P can be superposed on itself in many ways. We can rotate P so that a 

given vertex of P can be aligned with any designated vertex of Q. Furthermore, 

after the two vertices have been matched, there are at least three ways that P can 

be superposed on itself (because the vertex must be at least 3-valent). Therefore, 
all the solid angles of the convex hull are congruent, and each solid angle can be 
superposed on itself in at least three ways. A corollary of Euler’s formula implies 

that the vertices of Q are 3-valent, 4-valent or 5-valent. These last two facts 
imply that each of the plane angles forming the solid angle can be superposed 
on any of the others, and similarly for the dihedral angles. Hence, each solid 
angle of the convex hull is formed from equal plane angles equally inclined to one 

another. Moreover, all the edges of @ have the same length. Since all the solid 

angles of Q are congruent, the plane angles in the corners of a face of ( are all 
equal. Therefore, the faces of @ are regular polygons and the convex hull is a 

Platonic solid. m 

The next step in Bertrand’s enumeration of the regular star polyhedra is to 

search for regular polygons inside the Platonic solids. This step, called facetting, 

is easier to visualise than the stellation process. The possibilities are illustrated 

in Figure 7.34. There are no facetted forms of the tetrahedron since the only 

regular polygons spanned by these vertices are the original faces. The vertices of 

a cube span a triangle (Figure 7.34(b)) and four of these triangles form a regular 
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tetrahedron. The vertices of an octahedron bound three squares (Figure 7.34(c)) 

but these do not form a polyhedron since they do not share common sides. 

Potentially the most fruitful case is the dodecahedron. Its vertices span five 

distinct regular polygons besides the original pentagons. Some of its vertices can 

be taken as the corners of a square (Figure 7.34(d)). This is clear from Euclid’s 

construction which circumscribes a dodecahedron about a cube. There are also 

two kinds of triangular face (7.34(e)-(f)). The triangles of one kind do not join 

up, the others form tetrahedra. Another subset of the dodecahedral vertices are 

the corners of a pentagon and pentagram (7.34(g)-(h)). Only the star pentagon 

can be used to form a polyhedron—the great stellated dodecahedron. The convex 

pentagons do not have sides in common. 

All the polygons in an icosahedron give rise to star polyhedra. As Poinsot 

noted, an inscribed pentagon is a face of the great dodecahedron (7.34(i)). A 
pentagram with the same vertices gives the small stellated dodecahedron (7.34(j)). 
There is also a triangle which is a face of the great icosahedron (7.34(k)). 

This exhausts the possibilities. Hence there are only four regular star poly- 

hedra. 

Regular skeletons 

Poinsot worked on his star polyhedra in the first decade of the nineteenth century. 
This was part of the period when people were trying to find a basis for Euler’s 
formula, and, although the term ‘polyhedron’ was interpreted in a variety of ways, 
it was always thought of in terms of a surface—either hollow or as the boundary 
of a solid. This may go some way to explain why Poinsot is not consistent in his 

use of the term ‘polygon’. When he is considering polygons for their own sake, he 

is happy to think of them as collections of line segments in the plane, but when 
it comes to building polyhedra, he uses the conventional filled-in kind of polygon 
for the faces, and uses his star polygons only to describe the vertex figures. 

The two star-faced polyhedra that he discovered do not arise out of a de- 
tailed analysis like the other pair. He simply states that they exist, and they 
can be formed by extending the sides of pentagons in polyhedra already known. 
Since he mentions the number of times that they cover an inscribed sphere, we 
must assume that he thought of them as being constructed from some kind of 
filled-in polygons. Had he been consistent, Poinsot would have constructed his 
polyhedra from the polygons he discussed in the first part of his paper. In that 
case, a polyhedron would still be built up by attaching polygonal faces to each 
other, gluing their sides together to form edges, but the result would be a skeletal 
polyhedron—an edge framework. However, it is only recently that mathemati- 
cians have discarded the psychological crutch of filled-in polygons and started to 
investigate such skeletal polyhedra in any depth. 
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(d) (e) (f) 

(g) (h) 

(1) (j) (k) 

Figure 7.34. Facets of the Platonic solids. 
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The polygons that Poinsot used were all planar. In this case, it is sometimes 

helpful to ‘fill-in’ the faces of a polyhedron to show how it is put together. For 

example, the edge-skeleton of the Platonic icosahedron looks the same as that. 

of the great dodecahedron. How are we to know whether to interpret it as a 

collection of 20 triangles or 12 pentagons or, indeed, in some other way? Filling 

in the faces is one way that its internal structure can be conveyed. 

Spanning a polygon by a piece of the plane is possible (if not desirable) when 

the polygon is planar. However, the definition of what constitutes a polygon can 

be expanded in several directions, and in some cases there is no natural choice 

of a spanning membrane and even if one can be found, its addition often creates 

more problems than it solves. 

As before, we think of a polygon as a set of distinct points (vertices) connected 
by line segments (sides) so that every line joins two vertices, and every vertex 
meets two sides. If the sides intersect only at the vertices then we have a simple 
polygon. If the vertices do not all lie in a plane then we have a skew polygon. 

Figure 7.35 shows (a) a simple skew hexagon inscribed in a cube, and (b) a 
self-intersecting skew hexagon inscribed in a triangular prism. 

Figure 7.35. Skew hexagons. 

Figure 7.36 shows how three skew 4-gons can be joined to form a (skeletal) 
polyhedron. The completed edge-skeleton looks the same as that of the Platonic 
tetrahedron. In fact, both the skew 4-gons and the polyhedron itself can be 
regarded as regular. The polygons are equilateral and their angles are all 60°. 
All the faces of the polyhedron are congruent, all its vertices are surrounded by 
three polygons, all the dihedral angles are equal, and so on. 

Branko Grunbaum discovered nine such regular skeletal polyhedra whose faces 
are regular skew polygons. In fact, one can be constructed from each of the five 
Platonic solids and the four star polyhedra. To find a skew face in one of these 
more familiar polyhedra, trace a path along its edges such that each pair of 
adjacent edges are sides of a face of the polyhedron, but no three consecutive 



REGULAR SKELETONS we) CO on 

Figure 7.36. 

edges are sides of a single face. A polygon constructed in this manner is called 
a Petrie polygon after its discoverer. The skew 4-gons in Figure 7.36 are Petrie 

polygons of the tetrahedron, and the skew hexagon in Figure 7.35(a) is a Petrie 
polygon of the cube. 

Table 7.37 lists the properties of Griinbaum’s nine regular skeletal polyhedra. 

The first three columns describe how many faces are used, how many sides each 

face has, and the angle at the corner of each face. The symbol 10/3 designates 
a skew polygon with ten sides which, when viewed from ‘above’, looks like the 
star decagon formed by connecting every third point on a circle. The fourth 
column states how many faces come together at each vertex of the polyhedron. 
The symbol 5/2 indicates that the vertex figure is a pentagram. The last column 
gives the Platonic or star polyhedron from which the skew-faced polyhedron is 

derived. 

A further generalisation of a polygon would be to allow an infinite number 
of vertices. In this case, we can impose the restriction that the polygon is locally 

No. faces | No. sides | Angle | Valence Relative 

pares 4 a COP ams tetrahedron 

4 6 90° 5) cube 

4 6 60° 4 octahedron 

6 10 108° ss dodecahedron 

6 10 60° 5 icosahedron 

10 6 36° 5 small stellated dodecahedron 

10 6 108° 5/2 | great dodecahedron 

10/3 36° S ereat stellated dodecahedron 

10/3 108° 5/2 | great icosahedron 

Table 7.37. The composition of Grunbaum’s regular skeleta. 
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finite in the sense that every bounded portion of space meets only finitely many 

sides of the polygon. The regular infinite polygons can be straight, zig-zag or 

helical. Using only a single kind of polygon, an infinite polyhedron can be con- 

structed either from an infinite number of bounded polygons, producing objects 

like tilings and honeycombs (Figure 2.19), or from infinite polygons producing 

tubes or lattices. Griinbaum listed examples of regular infinite polyhedra along 

with his other examples of regular skeletal polyhedra. Later, Andreas Dress per- 

formed a systematic enumeration and showed that this empirically discovered list 

was complete. 

We could also relax the condition that vertices are distinct points. This means 

that different vertices can occupy the same position in space, not that a polygon 

can visit the same vertex more than once. Although we defined a polygon to have 
distinct vertices, Poinsot did not make this explicit in his definition. He, Cauchy, 

and many others seem to have regarded it as an implicit condition. Grunbaum 
noticed this in 1990. More recently he remarked: 

The Original Sin in the theory of polyhedra goes back to Euclid, and 
through Kepler, Poinsot, Cauchy, and many others continues to afflict 

all work on this topic. --- The writers failed to define what are the 

‘polyhedra’ among which they are finding the regular ones. © 

Frustrated by the use of implicit assumptions, the inconsistent use of terms 

like ‘polygon’ and ‘polyhedron’, and the imposition of unnecessary restrictions in 

the work of many authors, he developed extremely general definitions of polygon 
and polyhedron. His definitions are abstract and describe ‘probably the most 

general type of object one may wish to call a polyhedron’. Starting from this 

baseline, the more familiar ways of interpreting what is meant by ‘polyhedron’ 

can be recovered by adding extra conditions. Grtinbaum calls the polyhedral 
surface described in Chapter 5 an acoptic polyhedron—one which does not cut 
itself. A polyhedron all of whose faces are planar is called epipedal. 

At last there is now some means of describing which particular family of poly- 
hedra one is studying. This is important when trying to enumerate polyhedra 
with particular properties. Even trying to list the regular polyhedra is problem- 
atic unless you know which set of polyhedra you are investigating. Although 
this sounds obvious, authors rarely state in sufficient detail (if at all) the kinds 
of polyhedra that they are interested in. This means that results are unclear 
and proofs are incomplete. As Griinbaum remarks, the complete enumeration of 
regular polyhedra can still be considered an outstanding problem. 
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symmetry, Shape 
and Structure 

Symmetry is to the geometry of 

polyhedra what number theory 

is to arithmetic.“ 

A. Badoureau 

A friend once remarked on seeing my collection of models of some of the stella- 
tions of the icosahedron (Figures 7.15-7.33) that they were like three-dimensional 
snowflakes. Apart from their white colour, what had triggered this analogy was 

their high degree of regularity and order. Snow crystals often have six similarly 
shaped spikes radiating out from a central point, equally spaced around it. This 

remarkable hexagonal symmetry is the same in many snowflakes even though they 

have such a diversity of forms, and it reflects the underlying order of their atomic 
structure. All the stellations of the icosahedron are also highly symmetrical and, 
although each stellation is unique and difters from each of the others, the nature 
of this symmetry is the same in every case. To appreciate what it means to say 

that two polyhedra have the same type of symmetry it is necessary to find a way 

to describe and quantify this aesthetic quality of polyhedra. 

What do we mean by symmetry? 

To the Greeks symmetry meant balanced and well proportioned. It was an ideal 

that signified perfection. In a geometric context symmetry was associated with 
commensurability. It also implied a regularity of form, and the harmonious re- 

lationship exhibited between the different parts of a whole. In the nineteenth 
century attempts to explain the physical properties and shapes of crystals led to 

the development of a more precise notion of symmetry. ‘The scientific terminology 
captured the intuitive notions expressed in the Greek ideal and provided a basis 

for a mathematical theory of symmetry. This made it possible to compare the 
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symmetry properties of two objects and clarify the meaning of statements like 

‘A dodecahedron is more symmetrical than a square-based pyramid’. We begin 

our discussion of symmetry with a fundamental question: What distinguishes a 

symmetrical object from an irregular one? 

Suppose that you have a model of a symmetrical polyhedron (such as one of 

the Platonic solids) which is well constructed so that there are no blemishes on 

the faces to distinguish one from another. The model can be moved to a new 

position which cannot be distinguished from its original one. If your eyes were 

closed while the motion took place, when you opened them again, examining the 

polyhedron in its surroundings would not enable you to tell whether the model 

had been rotated. 

A symmetrical polyhedron is characterised by the fact that it looks the same 

from different viewpoints. Alternatively, a polyhedron is symmetrical if it is pos- 
sible to perform certain operations (such as rotation) which change the positions 
in space of individual faces but which leave the polyhedron in a position that 1s 

indistinguishable from its original position. 

The number of different but indistinguishable positions in which a polyhe- 

dron can be placed is a measure of the amount, or degree, of symmetry which it 
possesses. For example, a regular tetrahedron can be placed in 12 different posi- 

tions: any of the four faces can be placed on a table, and any of the three edges 
of this base face can be placed at the front. A hexagonal dipyramid can also be 
placed in 12 different positions since it can rest on any of its 12 faces in a unique 

way. Although these two polyhedra have the same amount of symmetry, they do 
not appear to have the same kind of symmetry. The dipyramid has two apices 

which differ from its other vertices imparting a definite direction to it, whereas 
the tetrahedron is more isotropic with all its vertices having an equal status. The 
symmetry of a polyhedron needs to be qualified as well as quantified. 

To describe the different kinds of symmetry, it is helpful to investigate the 
operations which carry a polyhedron into its indistinguishable positions. Such 
an operation is called a symmetry of the polyhedron. A symmetry is determined 
by its effect on the polyhedron; it is not the action of moving the polyhedron 
or the route taken which are important, but rather the relationship of its initial 
and final positions. Using ‘symmetry’ as a noun in this way is justified by the 
fact that the more symmetrical a polyhedron is in the everyday sense, the more 
symmetries it has in this technical sense. 

The symmetries of a polyhedron are rules which describe the relationships 
between its various parts. It has been said that the aesthetic appeal of symmetri- 
cal objects results from the psychological process of discovering these rules. They 
imply an orderly structure, the existence of an organising principle. In the fol- 
lowing sections, the different kinds of symmetry operation are described, and the 
ways in which they can be combined to produce different systems of symmetries 
are investigated. 
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Rotation symmetry 

The action of picking up a model of a polyhedron and repositioning it so that it 
appears not to have been moved is an example of a direct symmetry operation. 
The polyhedron is physically carried to a different but indistinguishable position. 
In later sections indirect symmetries will be encountered; the effect of these cannot 
be seen by manipulating a model but require the aid of a mirror. 

The actual motion of a polyhedral model during a direct symmetry operation 
may be very complicated and difficult to describe, but since it is the difference 
between the initial and final positions which characterises a symmetry, the com- 
plexity of the motion is irrelevant—it is the effect which is important. To describe 
a Symmetry we can choose a particular motion that produces the desired effect 

to represent the symmetry operation. The conventional motion is that of simple 

rotation. 

The notion of rotation is a natural one. The Earth rotates around an axis 
which joins the north and south poles; a wheel rotates about an axle. In these 
physical examples of rotations there is always a part which remains fixed during 
the motion. For example, a point on the axle does not leave its position whereas 
a point in the wheel describes a circle as it rotates around. A direct symmetry 

operation for a polyhedron is a rotation about an axis through a certain angle. 

The symmetry element associated with a symmetry operation is the set of points 

not affected by the operation—the points which remain fixed. For a rotation, the 
symmetry element is the axis. (Later, we shall see that the symmetry element 

for an indirect symmetry is a plane or a single point.) 

Mathematically, a rotation is described by giving a straight line (which forms 

the axis) and an angle. For example, the motion that the Earth makes in one 

hour about its axis is a rotation of 15°. (Of course, it has also rotated about 
the sun during that time as well.) Leonhard Euler showed that every direct 
symmetry of a polyhedron can be achieved by a rotation about some axis. A 
polyhedron can have more than one axis of rotational symmetry; Euler showed 

that in such circumstances all the axes must intersect at a point in the centre of 

the polyhedron. 

A rotational symmetry of a polyhedron carries it from its original position to 

a second position. Because this new position is indistinguishable from the original 

one, the symmetry operation can be applied again, and the polyhedron rotated 

to a third position—also indistinguishable from the original one. Indeed, if the 

symmetry is rotation by 180° then it will be identical to the original position. It 

is often helpful to regard the act of moving a polyhedron and placing it back in 

an identical position as a symmetry operation. Such an operation is called the 

identity symmetry. 

The fact that a symmetry can be repeatedly applied to a polyhedron pro- 
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vides an alternative method of describing the magnitude of a rotation. Rather 

than specifying the size of the angle, we can state the number of times that the 

rotation needs to be repeated to return the polyhedron to its starting position. 

For example, if a rotation of 90° is applied four times, the total angle through 

which the polyhedron is rotated by the combined rotation is 360°—a complete 

turn. Thus a rotation of 90° is also called a 4-fold rotation because a four-fold 

application of the symmetry is the same as the identity symmetry. In general, a 

rotation of (2°)° is called an n-fold rotation. 

An axis of n-fold rotational symmetry is sometimes called an n-fold axis. 

Care has to be taken when labelling axes in this way because the same axis can 

be associated with different rotations. A 4-fold axis must also be a 2-fold axis, 

for example. It is the convention that the largest possible value of n is chosen to 

label the axis. 

Now that the terminology of rotational symmetry has been established let us 

see what it means and how it is applied in practice. 

Systems of rotational symmetry 

We already know that the number of distinct but indistinguishable positions 

in which a polyhedron can be placed is a measure of the degree of symmetry. 
Identifying the axes of rotational symmetry in a polyhedron gives us a way of 

distinguishing different kznds of symmetry. Thus a hexagonal prism and a regular 
tetrahedron have different types of symmetry even though they have the same 
degree of symmetry. 

In order to gain a good understanding of the various kinds of rotational 
symmetry it is helpful to locate the positions of the axes on models of polyhedra. 
In simple cases, where there is a single axis, a picture may suffice but, as the 

number of axes increases, it becomes more difficult to imagine the way in which 
they are interrelated. In the case of the Platonic solids, in which there are many 
axes, the rotational symmetries form a complex, strongly interconnected system. 

In the following examples, a variety of polyhedra are examined and the com- 
binations of rotation axes that occur are recorded. You may find it helpful to 
rotate models of polyhedra between your fingertips as you read the text. 

Cyclic symmetry. 

The simplest system of rotational symmetry that a polyhedron can have is exhib- 
ited by the pyramids; they have a single axis of rotational symmetry. A hexagonal- 
based pyramid, for example, has an axis which passes through the apex and the 
centre of the base (Figure 8.1). The rotations about this axis which carry the pyra- 
mid onto itself are all the multiples of (28°)°, namely 60°, 120°, 180°, 240°, 300°, 
and 360°—the last symmetry being the identity. Phis and of symmetry is called 
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Figure 8.1. A rotation axis in a cyclic system. 

cyclic. ‘The pyramid is said to have 6-fold cyclic symmetry, or just Cs symmetry 
for short. If the pyramid has a regular n-gon as its base then it has a single axis 
of n-fold rotational symmetry and has C,, symmetry. 

Dihedral symmetry. 

The triangular prism is another polyhedron which, like the hexagonal pyramid, 

has six rotational symmetries . However, unlike the pyramid, the prism has more 

than one axis of rotational symmetry. In fact, it has four such axes. One axis 
passes through the centres of the two triangular faces (as shown on the left of 

Figure 8.2). A rotation of 120° about this axis carries the prism to a different 
but indistinguishable position. Repeating this operation twice more returns the 
prism to its starting position as three rotations of 120° are the same as a rotation 
of 360° or the identity symmetry. Therefore, this axis is a 3-fold axis. 

The other rotational symmetries of the prism turn it over so that the two 

triangular faces are interchanged. The rotations which invert the prism in this 
way have axes that pass through the centre of one of the rectangular faces and 
the midpoint of the opposite edge (Figure 8.2). There are three such axes and 
they are all 2-fold axes. 

These then are the four axes of symmetry of a triangular prism. The 3-fold 

axis is called the principal axis of the system, and the three secondary 2-fold 

axes lie in a plane perpendicular to it. It is the principal axis which gives the 

directional nature to the symmetry of polyhedra such as prisms and dipyramids. 

This type of symmetry is called dihedral and is denoted D,, where n is the order 
of the principal axis. In the example given here, the prism has D3 symmetry since 

the principal axis is 3-fold. In the general case of a prism with a regular n-gon 
base, the principal axis is an axis of n-fold rotational symmetry and there are n 
secondary axes of 2-fold symmetry lying in a plane perpendicular to it which are 
all equally spaced around it at intervals of (182)°. 

Tr 

A closer study reveals that when n is odd (as for the triangular prism) all of 

the secondary axes are equivalent. However, when n is even, they separate out 
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Figure 8.2. Principal and secondary axes in a dihedral system. 

into two sorts. This can be seen in a hexagonal-based prism: half of the 2-fold 
axes join the centres of opposite faces, the others join the midpoints of opposite 
edges (Figure 8.3). When n is odd any secondary axis can be carried on to the 
position of any other by a rotation about the principal axis, but when n is even 

the two sorts of secondary axis cannot be interchanged in this way. 

A special case of dihedral symmetry occurs when the principal axis is a 2-fold 
axis. In such circumstances it is not sensible to speak of a ‘principal’ axis since all 

the three axes are 2-fold, and they are mutually perpendicular—there is nothing 

to distinguish one axis from another. Examples of polyhedra with this type of 

symmetry are shown in Figure 8.4. Another example is a prism on a rectangular 
base whose width, length and height measurements are all different. This type of 
symmetry is usually classified along with the other dihedral types of symmetry 
and is labelled Dj. However, it should be remembered that in this case all of the 
axes have equal status. 

Besides Do, there are other types of symmetry where there is no preferred 
axis. ‘These types of symmetry are collectively known as spherical (or polyhedral) 

Figure 8.3. When n is even, the secondary axes in D,, can be separated 
into two kinds. 
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Figure 8.4. Polyhedra with Dz symmetry. 

types.' The Platonic solids are examples of polyhedra with spherical symmetry 
and we now turn our attention to some of these. 

Tetrahedral symmetry. 

The regular tetrahedron has seven axes of rotational symmetry—four 3-fold axes 
and three 2-fold axes (Figure 8.5). Each 3-fold axis passes through the centre of 
a face and the opposite vertex. Each 2-fold axis passes through the midpoints of 
opposite edges. Any polyhedron which has this system of rotational symmetries 
is said to have tetrahedral symmetry. This type of symmetry is denoted by the 
label T. 

Figure 8.5. Rotation axes in the tetrahedral system. 

Octahedral symmetry. 

The regular octahedron has three sets of rotation axes (Figure 8.6). Firstly, 
there are three mutually perpendicular axes of 4-fold symmetry. Each of these 

passes through two opposite vertices. There are also four 3-fold axes each passing 

through the centres of a pair of opposite faces. Lastly there are six axes of 2-fold 

symmetry. These axes pass through the midpoints of pairs of opposite edges. 

1Some mathematicians find it convenient to include the cyclic and dihedral cases as spherical 

- systems. In the more restricted meaning used here, only the D2 type is spherical; the term 

‘prismatic’ is applied to the other systems . 
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Figure 8.6. Rotation axes in the octahedral system. 

Any polyhedron which has this system of rotational symmetries has octahedral 

symmetry. This system is denoted by O. 

Icosahedral symmetry. 

The regular icosahedron has axes of 2-fold, 3-fold and 5-fold rotational symmetry 
(Figure 8.7). A 5-fold axis passes through each pair of opposite vertices; a 3-fold 

axis passes through the centres of each pair of opposite faces; a 2-fold axis passes | 

through the midpoints of each pair of opposite edges. Thus there are six 5-fold 

axes, ten 3-fold axes and fifteen 2-fold axes. This system of rotational symmetries 
is called the zcosahedral system and is denoted by I. 

Figure 8.7. Rotation axes in the icosahedral system. 
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How many systems of rotational symmetry are there? 

So far, every polyhedron that has been examined has given rise to a new type of 
symmetry. The pyramids, prisms, and some Platonic solids all have different sys- 
tems of rotational symmetry. It is quite surprising to find that these are the only 
systems of rotational symmetries which a polyhedron can have. Any polyhedron, 
if it has rotational symmetry at all, must have one of the five types described 
above: cyclic, dihedral, tetrahedral, octahedral, or icosahedral. A cube, for ex- 
ample, has the same symmetry as an octahedron. So do some of the Archimedean 
solids such as the snub cube and the rhomb-cub-octahedron. Kepler’s star-faced 
polyhedra have icosahedral symmetry. Miller’s solid has dihedral symmetry. 

Before proving that there are no other systems of rotational syminetry, it will 
be helpful to study the way in which the rotations in a particular system are 
related to each other. The tetrahedral system is used as an example. 

The two points where the Earth’s axis pierces its surface are called poles. 

By analogy, the set of points where the axes of rotational symmetry pierce a 

polyhedron are also called poles. Each axis punctures the polyhedron at two 
points so there are twice as many poles as axes. The poles can be split up into 

different kinds. Firstly, a pole which lies on an n-fold axis is called an n-pole. 

The tetrahedron, for example, has 2-poles and 3-poles. All the 2-poles are the 

same but the 3-poles can be separated into two sets: four 3-poles are situated at 
the face-centres, four more 3-poles lie at the vertices. Two poles are said to be 
equivalent if there is a rotational symmetry of the polyhedron which carries one 

pole to the other. So, for example, all the 2-poles of a tetrahedron are equivalent, 

but its 3-poles fall into two equivalence classes as no symmetry carries a vertex 

onto a face-centre. 

The number of poles in an equivalence class is related to the total number 

of symmetries and the kind of pole. The number of 2-poles in the tetrahedral 

system 1s 2 = 6. The number of poles in each of the two equivalence classes of 3- 

poles is = = 4. In general if a polyhedron has a total of N rotational symmetries 

(including the identity symmetry) then an equivalence class of n-poles contains x 
poles. To see that this is the case, place a point close to an n-pole and apply each 

symmetry to the point in turn marking the image point on the polyhedron. In 

Figure 8.8 this has been done with the 3-poles at the face-centres of a tetrahedron. 

This results in a total of N points being placed on the polyhedron arranged in 

groups of n around each pole in the equivalence class. Thus there are ~ poles. 

Knowledge of the number of poles in each equivalence class enables the num- 

ber of rotational symmetries to be calculated. Ignoring the identity symmetry, 

there are (n — 1) rotations associated with an n-pole. These are the rotations of 

1 en ead le es ie Rese 
OU) ee OU ron ae 5 SB bU": 
nN a ut) 
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Figure 8.8. 

For a 3-pole these are 120° and 240°. In the tetrahedral system the sum 

(number of 2-poles) x ( number of rotations associated with each 2-pole) 

+ (number of 3-poles) x ( number of rotations associated with each 3-pole) 

equals twice the number of (non-identity) rotations because each rotation has 
been counted twice—once at each pole on its axis. Now, the number of n-poles in 

an equivalence class is a and the number of rotations associated with an n-pole 
is (n — 1). So, by separating the term concerning 3-poles into its two classes of 

poles, the above sum becomes 

(=) x (2-1) + (=) x @=1) “ (=) x (3 — 1) 

which evaluates to 22—twice the number of non-identity rotations. 

Repeating this analysis in the general case leads to an equation relating the 
number of rotations in a system to the types of poles (and hence types of rotations) 

that the system can contain. By finding all the solutions of this equation, all the 

different systems of rotational symmetry can be deduced. 

Theorem. The system of rotational symmetries of a polyhedron must be one 
of the following types: cyclic, dihedral, tetrahedral, octahedral or icosahedral. 

PROOF: Consider a general system of rotational symmetries and assume that it 
contains a total of N rotations. Choose a polyhedron which exhibits this type of 
symmetry and examine the equivalence classes of poles. An equivalence class of 
n-poles contains x poles, and associated to each n-pole there are (n — 1) non- 
identity rotations. Adding up all of these rotations associated to the poles gives 
twice the number of non-identity rotations since each is counted twice. Thus 

2) ae au ea 
poles ie 
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which can be rewritten as 

2 
i = © (1--). (A) 

poles Hl 

If N = 1 then the only symmetry in the system is the identity symmetry. So we 
can assume that N is at least 2. This means that 

2 
Lt < 2—-— = 2. 

N 

The values of n in the summation must all be at least 2 (why?), hence 

i 
V/p < 1-—- << ite 

n 

Suppose that the system of rotations contained only one equivalence class of poles. 
Then the right hand side of (A) would be less than 1, which contradicts the fact 
that the left-hand side of (A) is at least 1. Therefore, there must be at least two 
classes of poles. 

Also, the system of rotations cannot contain four or more equivalence classes 
of poles for then the left-hand side of (A) is less than 2 while the right-hand side 
of (A) is 

SS (1 ~) Mie Lee ee) oile= nto 
RNA) aa re 

poles 

Thus the possibilities are narrowed down to either two or three equivalence classes 

of poles. 

Suppose that the system contains two equivalence classes of poles—one of 
p-poles and one of g-poles. Then substituting these values into (A) gives 

B= (G2) 
Rearranging gives 

Q 

Now, the equivalence class of p-poles contains = poles and hence = is an integer 

not equal to zero. Similarly ~ is a non-zero integer. Therefore — a == bee wits 

hence N = p =q. Thus the system has two poles (one in each equivalence class) 

and, therefore, a single axis. Both poles are p-poles so the axis is p-fold, and the 

system of symmetry is cyclic, Cp. 

Now consider the remaining case when there are three equivalence classes of 

poles. Suppose these are p-poles, q-poles and r-poles. Then substituting these 
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into (A) gives 

Rearranging gives 

EN: jie Chew Ue 

If all of p,q and r were at least 3 then 

1h peal 2 if m 1 2 1 

p i iit sea wiS et 

However, 1 + 2 is always greater than 1, so at least one of p,q, or r must be 2. 

Choose r = 2 and assume also that p > q. Thus 

2 jo ee eal 
a9 oe oe (B) 
av De ty 2 

Rearranging this expression gives 

@-2@-2) = 4(1-%) < 4 (©) 
which implies that (p — 2)(q — 2) is 0, 1, 2 or 3. 

In the first case, when the product is zero, q = 2. Substituting this into (B) 
gives F == 2, which implies N = 2p. Thus this system has three equivalence 

classes of poles, one of p-poles, and two others of 2-poles. Each class of 2-poles 

contains * =p poles. This is the dihedral system D,. 

The other solutions to (C) are (p,q) = (3,3), (4,3) and (5,3). These solu- 
tions correspond to the systems 7’,O and J respectively. There are no other 
possibilities. 

Reflection symmetry 

The symmetry operations discussed in the previous sections were all direct sym- 

metries—they could all be physically applied to a model. The symmetries to be 
considered now are indirect and require a mirror to visualise the results. The 
polyhedron shown in Figure 8.9 does not have any rotational symmetry but it is 
not asymmetric. It has bilateral symmetry—the sort of symmetry seen approx- 
imately in a human face. This means it can be split into two halves which are 
mirror images of each other. The plane which separates the polyhedron in this 
way is called a plane of symmetry or a mirror plane. The polyhedron has mirror 
or reflection symmetry. 
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Figure 8.9. A polyhedron with bilateral symmetry. 

Most everyday objects have reflection symmetry and objects without it, such 
as a corkscrew, can look twisted. Polyhedra which do not possess reflection 
symmetry are called cheiral (from the Greek word for ‘hand’). They come in two 
forms which are related like a left and right hand—they are mirror images of each 
other. Such a pair of polyhedra are called enantiomorphs. The snub cube and 
the compound of five tetrahedra are two examples of cheiral polyhedra. 

Bilateral symmetry is the simplest type of reflection symmetry as there is only 
one mirror plane. This type of symmetry is given the label C,. (The subscript 

comes from ‘Spiegel’, the German word for mirror.)*? When a polyhedron has 

more than one mirror plane, it must have rotational symmetry as well because 
the line in which the mirrors meet acts as a rotation axis. If a polyhedron is 

reflected first in one mirror plane and then in another, it is changed from being 

right handed to left handed and back to right handed again, so the composite 
effect must be a rotation. Thus all the types of symmetry (except C’,) which 
contain reflection symmetries must also contain one of the systems of rotational 

symmetries described above. 

Prismatic symmetry types 

The types of symmetry described in this section have a principal axis of rotation 

and their rotational symmetry type is either cyclic or dihedral. Examples of 

polyhedra exhibiting each of these types of symmetry can be made by decorating 

prisms with various patterns. Thus these symmetry types are collectively known 

as prismatic. The decorations can take the form of selective augmentation or 
truncation, making incisions or cutting out notches, or simply by painting on a 

design. 

Patterns are occasionally seen on the faces of crystals. The facets are corru- 
gated having tiny ridges and channels running across them. Such markings are 

called striae or striations. Examples can be seen on some facets of the pyrite 

crystals shown in Plate 2. These patterns reveal the symmetry of the underlying 

structure of the crystals. 

2Several alternative labelling schemes are compared in Appendix 1. 
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(a) (b) (c) 

p 

| 
WV 

(f) (g) 

Figure 8.10. Polyhedra with prismatic symmetry. 

The best way to gain a good understanding of the different symmetry types is 
to study a set of models. A set of small hexagonal prisms is easily made from thin 
card and patterns can be drawn on their surfaces so that they exhibit the various 
types of symmetry. Careful examination of such models allows the symmetries 

in each system to be identified, and the various systems to be compared with 
one another so that their differences become apparent. The reader is strongly 
encouraged to make such a set. 
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Symmetry type D,,,. 

Figure 8.11. 

First, the set of symmetries of an unmarked prism will be examined. A hexagonal- 
based prism will be used as a specific example (Figure 8.11). Its rotational sym- 
metry type is dihedral since it has a principal axis of 6-fold rotational symmetry 
and six secondary axes of 2-fold rotational symmetry. Assume that the prism is 
resting on a hexagonal face so that the principal axis is vertical. Then there is 
a mirror plane which lies horizontally and cuts the prism in half. Other mirror 
planes are arranged vertically and they each contain the principal axis. The lines 
where the six vertical mirror planes meet the horizontal mirror plane are axes of 

rotational symmetry and form the 2-fold axes of the dihedral system. This is the 
complete system of mirror planes and rotation axes of an unmarked prism. 

The label given to this system is Dg,. The Dg refers to the type of rotational 
symmetry, and the subscript h refers to the existence of a horizontal mirror plane. 

The horizontal mirror cannot be the only mirror plane and the symmetry elements 

named in the label force the existence of the vertical mirrors. Another polyhedron 

which has this symmetry type is the hexagonal dipyramid (see Figure 8.10(a)). 

Symmetry type Dny- 

Figure 8.12. 

If a hexagonal prism is decorated with chevrons that point up and down on alter- 

nate faces round the prism, as shown in Figure 8.12, then some of the symmetry 

elements of the unmarked prism are destroyed. The horizontal plane is no longer 

a plane of symmetry, neither are the vertical planes which pass through opposite 

edges. The 2-fold axes which join opposite face centres have been destroyed as 

_ well. The principal axis has been reduced to an axis of 3-fold rotational symme- 

try. This system of symmetry elements is labelled D3,. The system of rotational 
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symmetries is D3 and the subscript vu indicates the existence of vertical mirror 

planes. (Some authors use the label D3q to denote this system. ) 

A polyhedron with symmetry type Dg, is the hexagonal antiprism. It has 

the same rotational symmetries as an unmarked hexagonal prism. However, the 

horizontal mirror plane has disappeared and, instead of the 2-fold rotation axes 

being contained in the vertical mirror planes as they are in the D,,;, system, the 

axes and the planes are interleaved around the principal axis. Another polyhedron 

with Dg, symmetry is the hexagonal isosceles trapezohedron (see Figure 8.10(b)). 

Symmetry type D,,. 

Figure 8.13. 

If a hexagonal prism is decorated as shown in Figure 8.13 then all the reflec- 
tion symmetries are destroyed but the complete system of rotational symmetries 

remains intact. This system of pure rotational symmetry is labelled Ds. The 
hexagonal scalene trapezohedron (Figure 8.10(c)) has this symmetry type. 

Symmetry type Chy-. 

Figure 8.14. 

The hexagonal prism can be decorated as shown in Figure 8.14 where all of the 
chevrons point upwards. In this case, the 2-fold rotations cease to be symmetries. 
This means that the rotational symmetry type has been reduced from dihedral 
to cyclic. The vertical mirror planes are still symmetries but the horizontal! plane 
is not. (If both vertical and horizontal mirror planes were present then the 2-fold 
axes would also be present.) This type of symmetry is labelled C,,. The Cy shows 
the rotational symmetry type and the v refers to the vertical mirror planes. An 
elongated hexagonal pyramid has this type of symmetry (Figure 8.10(f)). 
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Figure 8.15. 

Symmetry type C;». 

If the pattern shown in Figure 8.15 is applied to the prism then, again, the rota- 
tional symmetry is reduced to the cyclic system. This time the vertical reflection 
symmetries are destroyed and the horizontal mirror plane remains. This system 
is labelled C¢,. Figure 8.10(e) shows a polyhedron with this symmetry type. 

Symmetry type C,,. 

Figure 8.16. 

When the prism is decorated as shown in Figure 8.16, all the symmetries except 

the axis of 6-fold rotational symmetry are destroyed. This system is just C,. See 
Figure 8.10(h) for an example. 

Problem. Identify the symmetry types of the polyhedra in Figures 8.10 (d) 

and (g). 

Problem. Identify the symmetry types of the five octagonal-based prisms which 
are formed by applying each of the following patterns in turn to their rectangular 

x AE) HIN||P 
Do any of the other letters of the alphabet give a symmetry type which is different 

from each of these? 

Compound symmetry and the Sz, symmetry type 

What is the symmetry type of the hexagonal-based prism decorated with a pat- 

tern like the one shown in Figure 8.17? It has no planes of reflection symmetry 
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and only one axis of rotational symmetry which is 3-fold. So, in the above list, 

it has symmetry type C3. Yet this symmetry type recognises only the fact that 

alternate faces have the same pattern whereas, in fact, the same motif appears 

on all the rectangular faces, and there seems to be a higher degree of symmetry 

than the straightforward cyclic type. 

Figure 8.17. 

There is an analogy between this kind of symmetry of a solid and the sym- 
metry of a linear pattern known as glide-reflection. Suppose that we choose a 
scalene triangle as a motif since it is asymmetric. Then reflection symmetry re- 
peats the motif but with the opposite handedness (see Figure 8.18). A second 
kind of symmetry (called translation) repeats the motif in an equally spaced linear 

pattern. These two symmetries can be combined to produce a single compound 

operation—a reflection and a translation together. To carry one copy of the motif 
onto the next one along, you translate it and then reflect it. This motion is called 
a glide-reflection. It is the symmetry of a line of footprints on a beach. 

Now, let us take a section of the linear pattern with glide-reflection symmetry 
and join the ends together to form a loop (see Figure 8.19). If the section contains 
six copies of the triangle then the resulting loop will have the same symmetry as 
the decorated hexagonal prism above. The translational symmetry of the strip 

pattern has been converted into rotational symmetry of the loop, and the glide 
line of the strip pattern is now a plane. The symmetry which carries one face onto 
the next is a combination of a rotation about the principal axis by 60° followed by 

a reflection in a horizontal mirror plane. This operation is a compound symmetry 
and is called a rotation-reflection. The principal axis is called an axis of rotation- 
reflection, and in this example it is a 6-fold axis since the operation has to be 
carried out six times before the polyhedron returns to its original position. The 
label given to this type of symmetry is S,,. The example here has Sg symmetry. 

For this type of symmetry, n must be an even number otherwise it is the same 
as a Cp, type of symmetry. When n is 2, the strip has only two motifs on it, and 
there is no rotational symmetry. In this case, the symmetry is often described by 
a different operation, which is called central inversion or reflection in a point. 

To see why the latter name is appropriate consider what happens when an 
object is reflected in a plane. The distance from the mirror plane to a point in 
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mirror 

line 

> 
translation vector 

glide 

line 

Figure 8.18. A glide-reflection is a compound symmetry made up of a 

translation and a reflection. 

the object equals the distance from the mirror plane to the point’s reflection in 
the mirror image (Figure 8.20). In an Sy symmetry, there is a central point which 
functions in the same way as a mirror plane: the distance from the centre to a 
point in the object equals the distance from the centre to the point’s image. ‘This 
symmetry operation need not occur in isolation and is included in other, more 
complex, systems of symmetry. The cube, for example, has inversion symmetry. 
The regular tetrahedron, on the other hand, does not. 

Figure 8.19. 
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If the system of symmetries of a polyhedron contains only inversion symmetry 

then it could be labelled Sy. However, by convention, this type of symmetry 1s 

denoted by C;. 

mirror 
plane 
tee 

7 image 

seed points 
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reflection in a plane reflection in a point 

Figure 8.20. 

Cubic symmetry types 

All the polyhedra considered in this section have the same axes of rotational 

symmetry as a cube although, in some instances, an axis of 4-fold symmetry is 

reduced to a 2-fold axis. As in the case of prisms, each of the types of cubic 
symmetry can be illustrated by decorating a cube with an appropriate pattern. 
It will be helpful to make some small cubes and apply patterns to them so that 

the differences in symmetry can be clearly seen. 

Symmetry type O,. 

Firstly, the complete set of symmetry elements of an undecorated cube will be 

described. There are three axes of 4-fold rotational symmetry which join the 
centres of opposite faces; four axes of 3-fold rotational symmetry which join 

diagonally opposite vertices; and six 2-fold rotation axes joining the midpoints of 
opposite edges. This system of axes is identical to that of the octahedron, so the 
rotational symmetry system possessed by a cube is O. 

The system of reflection symmetries is equally rich. There are three mirror 
planes, each of which contains two of the 4-fold axes, and which together form 
a system of mutually perpendicular planes (see Figure 8.21(a) and (b)). There 
are also six other mirror planes, each of which contains two of the 3-fold axes 
(Figure 8.21(c)). The cube also has a centre of inversion. 

The axes of rotational symmetry of highest degree in this system are 4-fold. 
If one of these primary axes is placed vertically then there is a plane of reflection 
symmetry which les horizontally. This system of symmetry is given the label Oj. 
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(a) 

(c) 

Figure 8.21. The reflection planes of a cube. 

Symmetry type O. 

If the pattern shown in Figure 8.22 is applied to the faces of the cube so that all 
the 3-fold axes of rotational symmetry are preserved, then the whole system of 

rotational symmetry is preserved as a consequence. However, all of the reflection 
symmetries are destroyed. So the label of this symmetry type is O. The snub cube 

has this type of symmetry, as does the octahedron covered with the tessellation 
of birds (Figure 2.5). 

Figure 8.22. 

Symmetry type 7),. 

Suppose that the cube is decorated with the pattern shown in Figure 8.23. Again, 
the pattern respects the axes of 3-fold rotational symmetry. The other rotational 
symmetries have been altered or destroyed: the axes of 4-fold symmetry of the 



310 CHAPTER 8 

Symmetry type T)},. 

Figure 8.23. 

Suppose that the cube is decorated with the pattern shown in Figure 8.23. Again, 

the pattern respects the axes of 3-fold rotational symmetry. The other rotational 

symmetries have been altered or destroyed: the axes of 4-fold symmetry of the 

unpatterned cube have been reduced to 2-fold axes, and the axes which join the 

midpoints of opposite edges are no longer elements of rotational symmetry. The 

system of rotational symmetries therefore consists of four axes of 3-fold symmetry 
and three axes of 2-fold symmetry. This is, in fact, the same system as that of a 

regular tetrahedron. 

Ey 

Figure 8.24. Polyhedra with 7), symmetry. 

The decorated cube still retains some reflection symmetry. The three mutu- 
ally perpendicular mirror planes are still planes of reflection symmetry; the other 
planes do not function as symmetry elements. This symmetry type is labelled 
I}, The two dodecahedra shown in Figure 8.24 are examples of polyhedra with 
this symmetry type. 

Polyhedra with this symmetry type also have inversion symmetry. This fea- 
ture can be used to distinguish easily between T;, and the following symmetry 
system which does not contain a centre of inversion. 
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Figure 8.25. 

Symmetry type 7. 

When the pattern shown in Figure 8.26 is used to decorate the cube, all the 
reflection symmetries are destroyed. The only remaining symmetries are the set 
of rotations of a tetrahedron. This symmetry type is labelled T. A polyhedron 
with this system of symmetry can be formed by suitably twisting and deforming 
an icosahedron to produce a ‘snub tetrahedron’ (Figure 8.27). 

icosahedral symmetry types 

The analysis of the symmetry types of polyhedra having the icosahedral symme- 
try system is much easier than the preceding analyses of the prismatic and cubic 
systems. In fact, there are only two types. One of these contains planes of reflec- 

tion symmetry and is labelled /;,; the other contains rotational symmetries only 

and is labelled J. The dodecahedron and the four Kepler—Poinsot star polyhedra 

have symmetry type J,. The snub dodecahedron, the compound of five tetrahe- 
dra (Plate 12), and the icosahedron decorated with fish motifs (Figure 2.5) have 
symmetry type [. 

Problem. The system of rotational symmetries of an icosahedron (J) was de- 
scribed above. Find the planes of reflection symmetry of a regular icosahedron 

and thus describe the system [). 

Figure 8.26. 
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Figure 8.27. A ‘snub tetrahedron’. 

Determining the correct symmetry type 

The above list of symmetry types of polyhedra is complete except for one further 

type—the system containing no symmetry operations at all. In such a situation 

the polyhedron is called asymmetric. The symmetry type is labelled C; since 

an axis of 1-fold symmetry implies that a polyhedron has to be rotated through 

a complete turn of 360° before its position is indistinguishable from its start- 

ing position. Every line meeting an asymmetric polyhedron is an axis of |-fold 

symmetry and these are the only ‘symmetries’ it has. 

So, a polyhedron can have one of 17 types of symmetry. (The prismatic types 
are actually families containing an unlimited number of closely related systems. ) 

The 17 types of symmetry are 

Ci ) GC Cs ) 
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With so many classes, it is important to be able to correctly identify the sym- 

metry type of a polyhedron in a straightforward manner. A simple scheme for 

doing this is shown in Figure 8.28. By answering a series of simple yes/no ques- 
tions about the polyhedron in question, a path is traced through the decision 

tree which (provided no mistakes are made) leads to the correct symmetry type 

being obtained. When one of the prismatic types is obtained and the principal 

axis has n-fold rotational symmetry, the n part of the label should be replaced 
appropriately. 

Problem. Find the symmetry type of any models which you have made. Also, 
try to find the symmetry types of some of the polyhedra depicted in this book. 
For example: the Archimedean solids, the deltahedra, and other regular-faced 
polyhedra (Chapter 2), and the rhombic polyhedra (Chapter 4). 
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. a no 
Is there a rotation axis? 

ves Is there a mirror plane?}~= @ 

no 

: * ° yes 
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ii 

Figure 8.28. A decision tree to determine the symmetry type of a polyhe- 

dron. 
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Groups of symmetries 

A striking example of the development 

of a Platonic vision is the mathematical 

analysis of symmetry which has led to 

the theory of groups.? 

F. E. Browder and S. Mac Lane 

All the possible systems of symmetries of polyhedra have now been described. 

This was accomplished by describing the symmetry elements (axes, planes, and 

point of symmetry) present in each system, together with their relative positions. 

However, not all of these elements are mutually independent. Sometimes the 

presence of particular elements in a system forces the existence of another. For 

instance, two planes of reflection symmetry determine an axis of rotation sym- 
metry. This is because the act of successively applying a reflection in one mirror 

plane and then in a second carries the polyhedron to a position indistinguishable 

from its original (via an intermediate such position) and it can be shown that the 
resulting symmetry operation is a rotation whose axis is the line of intersection 

of the two mirror planes. 

The process of applying two symmetry operations to produce a third leads to 
the idea of a rule of combination—a rule that describes the effect of combining 
two symmetry operations. The set of all such rules describes the structure of the 
system. As an example, the rules of combination for the symmetries in the Cop, 
system will be derived. 

The defining elements of symmetry in the C2, system are an axis of 2-fold 
rotational symmetry and a mirror plane perpendicular to the axis. The two corre- 

sponding symmetry operations are a rotation of 180° and a reflection. When these 
two symmetry operations are combined so that the reflection follows the rotation, 
the combination is a compound symmetry: it is a 2-fold rotation-reflection. This 
symmetry is normally called inversion, and the point where the axis intersects 
the mirror plane is also an element of symmetry—it is the centre of inversion or 
point of reflection symmetry. If the symmetries are combined in the reverse order 
then the same result is produced. It is important to note that this is not always 
the case: the order in which operations are applied can affect the result. 

Suppose the symmetry operations discovered so far are denoted by letters: let 
r denote the rotation, m denote the reflection, and i denote the inversion. Then 
the two rules of combination just determined can be written as 

r-m=% and “Wr. 

As the result may depend on the order in which the operations are carried out, it 
is important to establish a convention as to which is done first. In the examples 
here, the leftmost operation is applied first. (The convention chosen varies from 
one author to another.) 
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Other rules of combination can be worked out. For example, what are the 
results of r-2,7-m and m-m? In fact, none of these combinations leads to new 
elements of symmetry; the resulting operation is always r, m, 7 or the identity 
symmetry. If the reflection is applied to a polyhedron twice in succession then 
the polyhedron returns to its original position. Denoting the identity symmetry 
by 1, this rule can be written 

ee: oa 

The symbol 1 is chosen because of the analogy with combining numbers using 
multiplication. Multiplying any number by 1 has no effect. Likewise, combining 
any symmetry with the identity symmetry leaves it unchanged. Thus 

Lehi if Nema oN 

All of these rules of combination can be summarised in a table which gives the 

result of combining any two operations. Such a table is very like the multiplication 
tables which school children use. However, there is one important difference: the 

product of two numbers does not depend on their order whereas changing the 

order of two symmetry operations can produce different results. We shall use the 
convention that the symbols at the side of the table indexing the rows are the 

first operation and the symbols across the top of the table indexing the columns 

are the second. The table below shows the rules for Cop. 

A table of rules can be worked out for any symmetry system. Two more 
examples deal with the cases of the S4 system and the D» system. 

In the 5, system there is a single defining symmetry element: an axis of 

rotation-reflection symmetry. Let s denote the symmetry operation of rotating a 

polyhedron by 90° about this axis then reflecting in a mirror plane perpendicular 

to the axis. If this operation is performed twice in succession, it is equivalent to 

rotating the polyhedron by 180° about the axis. If r denotes a 2-fold rotation 

about the axis then s-s = r. The combination of r and s is a rotation of 270° 

about the axis followed by a reflection and this operation is denoted by t. Thus 

r-s =t. Applying s for a fourth time results in a rotation of 360° sot: s = 1. 

The complete set of rules for these operations is shown in the table. 
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The symmetry elements in the D, system are three axes of 2-fold rotation 

which are mutually perpendicular. These axes can be labelled X, Y and Z as 

shown below. The operation of rotating a polyhedron by 180° about the \-axis 

can be denoted x. Likewise, y and z denote the 2-fold rotations about the Y and 

Z axes respectively. The combination table for this system is then 

Zs 
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These tables, which provide a description of the structure of a symmetry 

system, are examples of the abstract mathematical concept called a group. A 

group is formed from a set of objects and a procedure which tells you how to 

combine any two objects to produce another. In our case, the objects of the 

group are symmetry operations and the combination procedure is ‘apply the 

two symmetries one after the other’. For a set and its associated combination 

procedure to form a group, it must have several specific properties. 

Firstly, the combination of any two objects must result in another object in 

the set. For example, the set of reflection symmetries of a cube do not form a 

group since the composition of two reflections is not a reflection but a rotation. 
The set of all rotational symmetries of a cube is a group since the composition of 
any two rotations always results in another rotation. 

Secondly, there must be an object which acts like the identity symmetry. This 

object is usually denoted by 1. Then, if g is any other object in the group, both 
of the following rules must be true: 

Guo ane eg 

The third property that a group must have is exhibited in the groups of 
symmetries by the fact that any symmetry operation can be undone. The effect 
of a symmetry can be neutralised by applying a second symmetry so that their 
combined result is the identity symmetry. For example, in the S, system, the 
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operation denoted by s is undone by the operation ¢ since s-¢ = 1 (check the 
table). This property is expressed abstractly by requiring that, for every object 
g in the group, there exists an object h so that g-h = 1. 

The last property of a group allows lengthy expressions involving many com- 
positions to be evaluated in any order. (This is not the same as allowing the 
order of the objects to be changed.) Using the $4, system as an example again, 
the expression r - s-t can be evaluated in two different ways. These are 

(7) Evaluate the left-hand composition first: (r+ s) - t 

(sae and then WL 

(iz) Evaluate the right-hand composition first: r - (s - t) 

Egy = II and then foils 

Both give the same result as required. 

These four requirements on the objects of a set are the axioms of a group. 
When studying groups in this abstract sense, it is only the structure which is 

taken into account. The objects are not interpreted as any physical operation 

which can actually be carried out. All that is used is the knowledge of the way 

in which they combine. The tables which express this structure are called group 

tables. In this abstract sense, the structures of the Cy, and the D, systems of 

symmetries are the same. ‘Their group tables have the same pattern and thus the 

same abstract structure. The groups are said to be tsomorphic, meaning ‘same 

form’. However, this structure is interpreted in two different ways. In the Dp» 

case, all of the objects are realised as rotations, but in the realisation as Cp), 

indirect symmetries also appear. 

The other group table found so far is that of the S, system of symmetries. 

This group is abstractly different from those of the Dy and the Cy, systems. The 

patterns in the tables are different. ‘This can be easily checked by noticing that in 
the Dy group table, the composition of every symmetry with itself is the identity, 

whereas in the 5, system there are only two such symmetries. ‘This property of 

the patterns in the group tables shows that the groups are abstractly different 
and that the symmetry systems have different structures. 

In groups with a large number of objects, the structure can be very complex. 

For example, the group table of the symmetry system J), is an array of 120 x 120 

elements. The abstract structure of the dihedral symmetry system Ds is shown 

below. The objects of this group can be interpreted as the rotations of a triangular 

prism: the 2-fold rotations correspond to p, q and r while a and 0 are rotations 

round the principal axis. Notice that this group contains examples of composition 

where the order of the objects is important. For instance, a-p =r but p- a= q. 
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People were using groups long before they had been formally defined. In the 

problems being studied, such as the symmetries of polyhedra, the axioms of a 

group are automatically satisfied. It was only after much experience of these and 

other similar structures that the four properties listed above were distilled out as 

their characteristic features and abstract groups were defined axiomatically. The 

term group was first used to describe such structures in 1869 by Camille Jordan 

(1838-1922), although he used only the first property, that of closure of the 
system, to define a group. He was studying groups of symmetries and the other 

three axioms follow automatically from the way that symmetries combine. He 
did notice that every symmetry had an ‘equal and opposite’ symmetry associated 

with it, that is, an inverse. In 1854, Arthur Cayley recognised the need for 

the fourth property (associativity) and the existence of an identity. He defined 

a group using abstract symbols and expressed rules of combination as a group 

table. In 1856, William Rowan Hamilton gave one of the first presentations of a 

group—a method of describing a group without writing out its complete group 

table. He gave a presentation of the icosahedral group which can be written on 
a single line (a considerable saving of space and effort when compared to the 
60 x 60 group table) and called his system ‘icosian calculus’. The four properties 

listed above, which are the modern axioms of a group, were first published in 

1882 independently by both Walter von Dyck and Heinrich Weber. 

The analysis of abstract groups is called group theory and the area now 
forms a very important branch of mathematics. It has applications in many 

disciplines including subatomic particle physics, molecular bonding schemes in 

chemistry, classification of patterns and ornamental designs, the description of 
different kinds of geometry, and crystallography. 

Crystallography and the development of symmetry 

The development of the mathematical theory of symmetry groups spanned the 
nineteenth century and much of the motivation came from investigations into the 
nature of crystals. 

Crystals have always attracted man’s attention. The flatness of their surfaces, 
their precise geometrical shapes, their translucency and light refracting properties 
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distinguish them from the other amorphous forms found in nature. The Greeks 
confused the clear crystals of quartz with glaciers, thinking them to be water 
which had been congealed by the intense cold in the mountains. The Greek word 
‘krystallos’ means ice. 

Until the seventeenth century the only crystals known were those visible to 
the naked eye, and crystals were thought to be rare and something of a curiosity. 
The invention of the microscope enabled naturalists to see that many fine grained 
minerals contain crystals. The early chemists watched solids crystallising out 
of solutions, the plane faces and symmetrical shapes appearing spontaneously. 
Observations like these hinted at an orderliness to the structure of crystals. 

One of the first to suggest that internal structure accounts for the external 
form was Robert Hooke (1635-1703). In his Micrographia, or some Physiological 
Descriptions of Minute Bodies (1665) he suggested that crystals were stacks of 
small spherical particles packed closely together. The fact that crystals fracture 
easily in certain directions leaving flat faces led Christiaan Huygens (1629-1695) 

to propose that these cleavage planes are natural divisions between sheets of par- 

ticles. Domenico Guglielmini (1655-1710), a professor of mathematics at Bologna 
and Padua, observed that the directions of the cleavage planes were always the 

same in any given substance and he believed that the fundamental units from 
which a crystal is built must themselves be miniature crystals with plane faces. 

In 1772, Jean-Baptiste Louis Romé de I’Isle (1736-1790) published his Essai 
de Cristallographie. In his view, the chief characteristic for classifying minerals 
was their external geometrical shape, and his essay contains detailed descriptions 

of over 100 crystal forms. In a later work (1783) he expanded this list to more 
than 450. Precise measurements were taken of each crystal described and this 
led to the discovery of the constancy of interfacial angles. 

René Just Haiiy (1743-1822) also wrote on the structure of crystals. In an 
essay that appeared in 1784 he put forward ideas which also arose from the 

contemplation of cleavage planes. There is a story that he accidentally dropped 

a large calcite crystal which belonged to a friend who thereupon presented him 
with the resulting fragments. Hay noticed that the cleavage planes were not the 
same as the face planes and that if the crystal were split apart sufficiently, a small 

core would be left, all of whose faces were parallel to cleavage planes. In the case 

of calcite, this core is rhombohedral in shape. He went on to show how units of 

this shape could be stacked up to produce faces with different slopes by supposing 

that rows were omitted in a regular fashion in successive layers. The idea that 

a crystal was built from tiny identical building blocks arranged in an array that 

can be finished off in different ways accounted for the variety of external forms 

in crystals of a single mineral. At one time the existence of different forms of 

the same crystal had been used as an argument against internal structure. ‘The 

diagram reproduced in Figure 8.29 is from Hatiy’s Traité de Mineralogie published 
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in 1801. It shows how small cubes can be stacked to produce shapes with the form 

of a rhombic dodecahedron and a pyritohedron. The faces are stepped because 

the ratio of the size of the solid to the size of the building block is large. In 

real crystals the blocks are submicroscopic and the faces are apparently planar. 

The importance of this building block theory of crystal structure has led to Hauy 

being called the ‘Father of crystallography’. 
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Figure 8.29. Diagram from Haiuy’s Traité de Mineralogie showing how 

various crystal shapes can be formed by stacking up many small congruent 
blocks. 

At first, Hat had just six building blocks but later the set was enlarged to 
eighteen. He also allowed his blocks to be modified so that new faces appeared but 
he imposed a law of symmetry to restrict the possibilities: parts of the initial form 
that were indistinguishable to the eye had to be modified in the same fashion. This 
gave Hatiy an intuitive understanding of some of the different symmetry types 
of solid objects. Mathematicians of the time had not ventured beyond simple 
mirror symmetry. 
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A problem with Haiiy’s theory is that the fundamental units formed by cleav- 
ing a crystal cannot always be stacked up to fill space in the way that cubes can. 
This led to debates about the reality of Haiiy’s building blocks. Some suggested 
replacing each block by a point at its centre of gravity which resulted in a lattice 
of points distributed through space in a pattern that repeated itself over and 
over in all directions. Others replaced the blocks by spheres, reviving Hooke’s 
idea. Gabriel Delafosse (1796-1878) proposed that Haiiy’s blocks be replaced 
by ‘polyhedral molecules’ which had spherical atoms at their vertices. These 

molecules were to be arranged in a lattice (like Hatiy’s blocks) and their shape 
would determine the external form and physical properties of the crystal. 

Understanding this new structure required a detailed analysis of the symme- 
tries of the molecules themselves, of the lattice structure, and of their interre- 
lationships. These problems were attacked by Auguste Bravais (1811-1863). In 

a paper that appeared in 1849 he defined axes, planes and centres of symmetry 

and distinguished between principal and secondary axes. By considering the var- 
ious combinations of symmetries, he enumerated the list of symmetry types of 

polyhedra presented earlier in the chapter apart from one exception: he missed 

the type Sy, when n is even. (His list of symmetry operations did not include 

rotation-reflections. When n is odd, So, can be generated from rotations and 

inversion. ) 

The mathematician and astronomer August Ferdinand Mobius (1790-1868) 

also investigated the possible systems of symmetries which a polyhedrally shaped 
object can have. His definition of symmetry is the same as that used today: a 
figure is symmetrical if it is congruent to itself in more than one way. He entered 
his work for a prize offered by the Paris Academy in 1861 for ‘work perfecting some 
aspect of the theory of polyhedra’. Among the other entrants was Eugene Charles 
Catalan, who enumerated some semiregular polyhedra including the Archimedean 

solids. None of the entries was judged to be of sufficient quality to be awarded 

the prize. 

The first enumeration of the symmetry types that the external form of a 

crystal can have was achieved earlier than this. The mineralogist Johann Friedrich 
Christian Hessel (1796-1872) classified the 32 kinds of symmetry that a crystal 

can have in 1830, but his work went unnoticed until Leonhard Sohncke (1842- 

1897) drew attention to its importance. It was republished in the 1890's as part 

of a collection of papers on crystallography. 

In 1850 Bravais continued his own investigations and studied the symme- 

tries of points arranged regularly in space. He found seven different lattice sys- 

tems, now called the cubic, hexagonal, tetragonal, rhombohedral (or trigonal), 

orthorhombic, monoclinic, and triclinic systems. He followed this with a finer 

classification which produced fourteen different types of lattice. 

The lattice structure of a crystal restricts the kinds of rotational symmetry 
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that can appear to 2-fold, 3-fold, 4-fold and 6-fold. This crystallographic re- 

striction is implicit in Haiiy’s work. A consequence is that crystals cannot have 

icosahedral symmetry since this system contains forbidden 5-fold symmetry axes. 

The rotational symmetries of a cube are not excluded and cubic crystals occur 

in nature. Of the infinite families of symmetry types in the prismatic systems 

of symmetry, only those whose principal axis is 2-fold, 3-fold, 4-fold or 6-fold 

can occur as the symmetry type of a crystal. Hence there are only finitely many 

possibilities for the symmetry types of the external forms of crystals. These 32 

symmetry types are called the crystal classes. 

Crystallographers separate the 32 crystal classes into seven kinds correspond- 

ing to Bravais’ original classification of lattices. Each lattice is built up by re- 

peating a fundamental unit, and the shape of the building block determines the 
type of lattice. Haiiy’s diagram shows how cubic blocks can produce crystals 
having cubic symmetry types Op, (the cube and rhombic dodecahedron) and Ty), 

(the pyritohedron). The other kinds of building blocks and the related symmetry 
groups are shown in Table 8.30. One is a square-based prism with rectangular 

sides. This is a building block for the tetragonal systems. If the fundamental 
units are shaped like bricks in which the height, width and length measurements 
are all different then the orthorhombic symmetry types are created. If the brick is 
sheared in one direction it becomes the building block for the monoclinic systems, 
and if it is sheared in two directions to produce a skew parallelopiped then it is 

the fundamental unit for the triclinic systems. The two kinds of symmetry which 
contain 3-fold rotational symmetry are the rhombohedral (or trigonal) and the 
hexagonal systems. The building blocks for these systems are a rhombohedron 

and a rhombus-based prism respectively. 

The variety of external forms which crystals of the same species can exhibit 
means that classification systems based on geometrical shape are not very useful. 
However, all crystals of a given species have the same internal structure and this 

makes a better basis for classification. For this reason investigations into the 
possible structures continued in the second half of the nineteenth century. 

In his classification of patterns in space, Bravais had assumed that every 
molecule in the lattice had the same orientation so that they were all aligned in 
the same direction. This restriction was relaxed and replaced by the condition 
that each molecule had the same relation to the pattern as a whole, irrespective 
of its orientation. This meant that direct symmetries in general needed to be 
considered, not just translations. 

Louis Poinsot studied screw motions, another type of direct symmetry Op- 
eration. A screw is a compound operation involving a rotation followed by a 
translation along its axis. Building on Bravais’ and Poinsot’s work, Camille 
Jordan investigated systems of direct symmetries in a group theoretical manner 
(although groups were not yet formally defined). He examined the ways that ro- 
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Table 8.30. 

tations, translations and screw symmetries could be combined. Sohncke reworked 

Jordan’s ideas in the less abstract form of repeating patterns in space. He com- 

pleted the list of groups extending it from 59 to 66 (two of these were later found 
to be the same). 

Indirect symmetries such as rotation-reflection and rotation-inversion had 

been neglected in these classifications and the resulting crystallographic theory 

was unable to account for certain directional properties of crystals. Some crys- 
tals become polarised when they are subjected to changes in temperature or 
pressure—two opposite faces acquire positive and negative charges. The pyro- 
electric property was known since at least 1757 when Franz Aepinus found that 

tourmaline became polarised after being placed in hot water. These pyro-electric 
and piezo-electric properties led Pierre Curie (1859-1906) to study crystal sym- 

metry, and he drew attention to the omission of indirect symmetries. 

The inclusion of indirect symmetries raises the number of groups of sym- 
metries that a three-dimensional repeating pattern can have to a total of 230. 
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The enumeration of these ‘space groups’ was carried out in the early 1890's by 

the Russian Evgraf Stephanovich Fedorov (1853-1919), who extended Sohncke’s 

work, and simultaneously by the German mathematician Arthur Moritz Schoen- 

flies (1853-1928), who, under the influence of Felix Klein, followed the group 

theoretical approach of Jordan. Both men missed a few cases but when they 

became aware of each other’s work they corresponded to check that their lists 

agreed. They finally produced a list of 230 groups. The same problem was being 

worked on independently by the Englishman William Barlow (1845-1934), who 

published his classification in 1894. Like Sohncke and Fedorov, he thought in 

terms of lattices and he made models by arranging gloves on a rack to help him 

visualise the regular patterns in space. He also studied the ways that spheres 

can be packed together in an economical manner and found five dense or close 
packings which he believed represented the structures of some crystals. 

This achievement was the climax of the golden age of theoretical crystallo- 
graphy—a complete mathematical classification of crystal structures based on 

the assumption that crystals are built of units stacked up in a repetitive manner. 
The theory was written up by Harold Hilton and published as Mathematical 

Crystallography and the Theory of Groups of Movements in 1903. Near the close 
of his book Hilton remarks 

The geometrical theory of crystal-structure now seems to be fairly 

complete; it is probable that further advance is to be expected on the 
physical or mechanical side.“ 

At the turn of the century, the physical composition of crystals was undecided 
although it was frequently stated that all crystals possessed a periodic structure. 

Another unsolved problem at that time was to determine the nature of the ra- 

diation discovered by Wilhelm Conrad Rontgen in 1895. It had been suggested 
that these x-rays were very short wavelength electromagnetic radiation. Max von 
Laue (1879-1960), who had been working on the interference patterns formed 
when light passes through a diffraction grating, realised that if both assump- 
tions were correct then a similar phenomenon should occur if x-rays were passed 
through a crystal. Walter Friedrich and Paul Knipping tested his idea experi- 
mentally by irradiating a copper sulphate crystal. The photographic plate placed 
behind the crystal revealed a set of regularly ordered dark patches. This was the 
first x-ray diffraction pattern and provided the key experimental evidence for a 
repeating structure on the atomic scale. The announcement of success was made 
in 1912 and the significance of this discovery was recognised with the award of a 
Nobel prize in 1914. 
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Counting, Colouring 
and Computing 

A mathematician, like a painter or a poet, 

is a maker of patterns. --- The mathe- 

matician’s patterns, like the painter’s or 

the poet’s, must be beautiful; the ideas, like 

the colours or the words, must fit together 

in a harmonious way. Beauty is the first 

test: there is no place in the world for ugly 

mathematics.“ 

G. H. Hardy 

One way of enhancing the aesthetic qualities of polyhedral models is to paint 

them. Besides adding to their visual appeal, colour can be used to highlight 
various relationships between the component parts of a polyhedron since the eye 

is drawn to elements of like colour. This technique has been used to colour 

the models shown in some of the colour plates. In many of the models of the 
Archimedean solids (Plates 3 and 4) faces of like shape have the same colour 
showing how each type of face is distributed over the polyhedron. In each of 
the compound polyhedra (Plates 11-16) all the visible parts of a component 
are coloured the same and each individual component has a separate colour. 

Likewise for the star polyhedra (Plates 8-9) where each face is monochromatic: 
even though the accessible parts of a face are physically disconnected, they are 
linked by colour and are seen as parts of a planar whole. 

The faces of a polyhedron can also be embellished with markings or patterns. 
Some of the oldest examples of this are a pair of Roman icosahedral dice found in 
Egypt, now in the British Museum, which date from the Ptolemaic dynasty. The 
tessellations of the octahedron with bird motifs and of the icosahedron with fish 

- shown in Figure 2.5 are further examples of decorated polyhedra. However, in the 

present investigation these kinds of pattern will be ignorea; we shall concentrate 
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on colourings in which each face is coloured in a single colour. Furthermore, we 

shall restrict attention to ‘spherical’ polyhedra, that is, to polyhedral Sees! 

which can be continuously deformed into a sphere. It is sometimes necessary to 

appeal to this property to show that particular kinds of colouring are possible, 

as for instance when Euler’s formula is applied. 

Colouring the Platonic solids 

The first mathematical question relating to coloured polyhedra appeared in 1824 

in Joseph Diaz Gergonne’s journal Annals de Mathematique, Pures et Appliqueées. 

It concerned the number of different ways each of the Platonic solids can be 

coloured if all of their faces receive different colours. Implicit in this question is 

the problem of deciding whether two colourings are different. 

As an illustration we shall examine the possibilities of colouring a cube with 
six colours, each face receiving a different colour. The six faces of the cube can 
be labelled ‘top’, ‘bottom’, ‘left’, ‘right’, ‘front’, and ‘back’. When colouring the 

cube, the faces are to be coloured in this order. We can choose from six colours 

for the top face. There is a choice of five unused colours remaining for the bottom 
face, four for the left face, and so on until only one colour remains unused and 

this is applied to the back face. Therefore the number of possibilities for assigning 
the colours to the faces is 

Gro ee ot el LS ee 

This result is not yet the final answer to our question. For the purposes of 

calculation the faces of the cube were labelled so that they could be distinguished 
but, when studying a model of coloured cube, all the faces are alike. Apart 

from colour, there is nothing to distinguish between them. If you were handed 
two coloured cubes and asked whether they were coloured in the same way, you 
would turn them and try to match the patterns. Because the cube is symmetrical, 

the same pattern of colours can occur in several orientations, and rotating one of 
the cubes would allow you to see all the possibilities. 

The above calculation did not take into account the symmetry properties of 
the cube. The answer of 720 is too large because colourings which one intuitively 
thinks of as being the same have been counted more than once. The cube has 24 
rotational symmetries so each particular pattern of colours can be placed in any 
of 24 orientations. Each pattern will appear in the list of 720 colourings 24 times 
over. ‘Therefore, the number of different colourings of the cube using six colours 
is actually 2? = 30. 

This ee can be applied to the other Platonic solids. Suppose that the 
polyhedron has F faces and that each face is given a unique label. Colour each 

"See the definition of ‘polyhedron’ in Chapter 5. 
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face choosing from a palette of F colours so that no two faces have the same 
colour. Then the number of distinct colourings of the labelled polyhedron is 

SESE TET STAY DNS FEO Benue GON 

This expression is usually written in the shorthand notation F! (read ‘F’ facto- 
rial’). 

At this point it is necessary to decide which colourings count as being the 
same. ‘This became hidden in the discussion of the cube and the definition will 
be isolated here since it is used throughout the chapter. 

Suppose that two models of a polyhedron have been coloured. Then the two 
colourings are the same if one of the models can be rotated and repositioned so 
that it looks identical to the other with corresponding faces having like colour. 
This can be restated as follows: 

Definition. Two colourings of a polyhedron are equivalent if there is a rota- 
tional symmetry of the polyhedron which carries one colouring onto the other. 

The same pattern of colours can appear in various orientations and the num- 
ber of these different positions is equal to the number of rotational symmetries 

of the polyhedron. Arthur Cayley observed that, in the case of a Platonic solid, 

the number of rotational symmetries equals twice its number of edges.” In the 

cube example, there are 12 edges and 24 symmetries. If & denotes the number 

of edges of a polyhedron, each colouring can occur in 2F different orientations. 
Each of these is counted as a distinct colouring when the faces of the polyhedron 
are labelled, so every pattern is repeated in the list 2F times over. ‘To find the 
number of different colourings of the unlabelled polyhedron we divide the num- 

ber of colourings of the labelled polyhedron by the repeat frequency. Thus the 

number of different colourings of a Platonic solid using a different colour for each 

face is 
F! 

2E 

Problem. The 30 differently coloured cubes form the pieces of a puzzle.’ The 

aim is to select any cube from the set then find eight of the remaining 29 cubes 

which can be put together to form a cube twice as high as the original pieces 

which is coloured the same as the chosen cube on the outside, and so that the 

touching faces of adjacent cubes have the same colour. 

2The Platonic solids are special in this respect—they are edge-transitive as we shall see in 

Chapter 10. 

’This puzzle, together with its solution, is discussed in A. Ehrenfeucht, The Cube Made 

Interesting, translated from the Polish by W. Zawadowski, Pergamen Press 1964, pp53-58. 
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How many colourings are there? 

In the previous section a particular case of the question ‘How many colourings are 

there?’ was considered, namely, ‘How many different ways are there to colour a 

polyhedron with F faces if no two faces have the same colour?’. The answer was 

shown to be fr where n is the number of rotational symmetries of the polyhedron. 

The more general problem of finding the number of different ways to colour 

a polyhedron where the colour of each face can be freely chosen from a given set 

of colours is more difficult. For example, how many indistinguishable colourings 

of a square-based pyramid are there using only black and white? Ignoring the 
symmetries of the pyramid, we see that there can be at most 2° = 32 such 

colourings since the pyramid has five faces and each of them can be either black 
or white independently. In fact, there are only 12 indistinguishable colourings 

and the situation is simple enough that they can all be found by hand. The four 
triangular faces can be coloured either all white, three white and one black, two 
white and two black, one white and three black, or all black. The case where 

there are two faces of each colour produces two types of pattern according to 
whether opposite faces have the same colour or not. Each of the other cases gives 
rise to a single type of pattern. All six pattern types are shown in Figure 9.1. 

Each can occur whether the square face is black or white, so there is a total of 
12 different colourings. 

Figure 9.1. Overhead views of six coloured pyramids. 

The problem of determining the number of different colourings becomes more 
difficult as the number of faces of the polyhedron increases. A large number of 
colours, or a high degree of symmetry of the polyhedron also complicates the 
problem. For instance, try to imagine how many different colourings of a cube 
there are which use at most five colours. Fortunately, we do not have to make 
an exhaustive search and list all the possibilities to answer this kind of question. 
There is a technique which allows us to calculate the number of different colourings 
of any polyhedron with any number of colours. By applying this method, we shall 
see that the cube has 800 such colourings. 
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A counting theorem 

Trying to determine the number of ways a polyhedron can be coloured is an 
example of a more general class of problems that concern the number of ways 
in which something can happen. Counting the number of chemical isomers of a 
molecule is another example. This kind of problem can often be solved by using 
group theory. 

The method described below is an application of an abstract result in group 
theory generally known as Burnside’s Lemma or Burnside’s Counting Theorem 
after William Burnside (1852-1927), although the theorem originates in work by 
G. Frobenius. The theorem is not stated in its general context here, neither is 
a proof given for the special case of colourings. Rather, the black and white 

colourings of the square-based pyramid are analysed in detail to show how the 
resulting formula is derived and illustrate why the method works. 

For the purposes of the following discussion it is necessary to make a distinc- 
tion between colourings of labelled and unlabelled polyhedra. The term colouring 
will be used when referring to labelled polyhedra (those in which all the faces can 
be distinguished regardless of symmetry), and colouring type when referring to 
unlabelled polyhedra. Thus a colouring is a particular assignment of colours to 
labelled faces, and colouring type refers to the pattern so produced; different 

colourings may have the same colouring type. 

When asking how many different ways a polyhedron can be coloured we want 

to know the number of colouring types. Burnside’s theorem gives a formula for the 

number of colouring types in terms of the numbers of colourings with particular 
properties. The latter quantities are straightforward to calculate and this makes 

the formula effective. 

Example. Re-analysing the pyramid. 

To simplify the situation slightly, assume that the base of the square-based 
pyramid has been coloured white. Each of the other four faces can be either 
black or white independently. This results in a set of 24 = 16 possible colourings 
of the pyramid. We now make a list of the symmetries which each of these 

coloured polyhedra possesses. The (direct) symmetries of the pyramid comprise 

the identity and three rotations about the axis joining the centre of the base 

to the apex. Two of the rotations are 4-fold, the other is 2-fold. A symmetry 

operation in this set is a symmetry of a coloured pyramid if it carries the coloured 

pyramid to a position indistinguishable from its original one. This requires that 

the faces are carried onto faces of like colour. 

The list of the 16 colourings and their symmetries is given in Table 9.3. The 

first column assigns a number to each colouring. The next column describes the 

colours of each of the four triangular faces. These faces cf the pyramid can be 
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Figure 9.2. 

labelled ‘front’, ‘back’, ‘left’, and ‘right’ as shown in Figure 9.2. The symbol in the 

second column of the table gives the (initial letters of the) colours of the faces in 

the cyclic order: ‘front’, ‘left’, ‘back’, ‘right’. Thus the colouring in the sixth row 

is a pyramid whose ‘front’ and ‘back’ faces are coloured black, and whose ‘left’ 

and ‘right’ faces are white. The third column indicates the symmetries possessed 

by each particular colouring. The symmetries are labelled 1 for the identity, ro 

for the 2-fold rotation, r, for the 4-fold rotation clockwise, and r;' for the 4-fold 

rotation counter-clockwise. A tick (Vv) under a particular symmetry indicates 

that a colouring possesses that symmetry. The horizontal lines divide up the 
colourings into the six colouring types found previously, and the final column 

describes each of these types. 

The aim now is to calculate the number of ticks in the table. This will be 

done in two ways: first by adding the totals of each column, and second by adding 

the totals of each horizontal division. Since these two calculations must give the 
same result, they can be equated and a formula deduced for the number of types 
of colouring. 

The number of ticks in each column is the number of colourings which have 
a particular symmetry. Every colouring has the identity symmetry; four colour- 

ings have 2-fold rotational symmetry; only two colourings have 4-fold rotational 
symmetry. The total number of ticks in the table is 

(the number of colourings with symmetry 1) 

+ (the number of colourings with symmetry r2) 

+ (the number of colourings with symmetry r4) 

+ (the number of colourings with symmetry r;'). 

The sum can be written in a concise form using the summation notation: 

= (the number of colourings with symmetry s) 
sin C4 

where the summation variable s ranges over all the symmetries of the polyhedron. 
This sum is quite easy to calculate for a given polyhedron and any set of colours: 
it is this that makes the resulting formula useful. 
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Z Colouring i Piemieg sos Colouring type 

1 (W,W,W,W) Labi ent: all white 

2 (W,W,W,B) x 

3 (W,W,B,W) v three white and 

4 (W,B,W,W) of one black 

S (B,W,W,W) WA 

6 (B,W,B,W) eae Auto: two white, two black, 

7 (W,B,W,B) van opposite faces the same 

8 | (B,B,W,W) y 
9 (B,W,W,B) if two white, two black, 

10 (W,W,B,B) v opposite faces different 

i (W,B,B,W) A 

1 (B,B,B,W) a 

13 (B,B,W,B) of one white and 

14 (B,W,B,B) Mi three black 

15 | (W,B,B,B) v 
16 | (B,B,B,B) ante dent Ps Ba all black 

Table 9.3. The symmetries of the different colourings of a pyramid. 

The second part of the analysis consists of calculating the number of ticks in 

each horizontal division, then adding the results. For this we need an important 
result from group theory which is known as the Orbit-Stabiliser Theorem." Its 
technicalities need not concern us since its consequences are clearly visible in the 

table: in each of the horizontal divisions which correspond to a colouring type 
there are precisely four ticks. The reason that four occurs here is that the pyramid 
has four symmetries. More generally, the theorem implies that 

number of colourings ries eee of cette) 
a particular colouring type of that colouring type 

6 number of symmetries of ) 
the uncoloured polyhedron/ ° 

In the pyramid example, there are two colourings which have the colouring type 

‘two black, two white, opposites the same’, namely colourings 6 and 7. Each of 

4This theorem is discussed in Appendix 2. 
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these colourings has two symmetries: 1 and rz. The product 2 x 2-=-A-is the 

number of symmetries of the pyramid. 

As the number of ticks in each horizontal division of the table is constant, and 

the number of divisions equals the number of colouring types, the total number 

of ticks in the table equals 

number of symmetries of ) Wiss of Bea) 

the uncoloured polyhedron of colouring 

This expression contains the quantity that we want to know (the number of types 

of colouring) together with a quantity which is easily calculated (the number of 

symmetries of the polyhedron). Equating this result to the previous one, and 

writing G for the symmetry group of the polyhedron gives 

Ss eee of dene) 
with symmetry s 

Gea of ees) 2 ane . 

of colouring number of symmetries of 
the uncoloured polyhedron 

This is the required formula. It is not difficult to calculate both of the quantities 
on the right-hand side and the following examples show how this is done. 

Applications of the counting theorem 

Example. The number of colourings of a square-based pyramid. 

In this first example, the square-based pyramid is analysed again, this time 

considering the general case of how many colourings with n colours are distin- 

guishable. We need to determine the number of colourings which possess each 
type of symmetry. Every colouring has the identity symmetry, and the total num- 
ber of colourings is n° since there is a choice of n colours for each of the five faces 
of the pyramid. How many colourings have 2-fold rotational symmetry? This 

symmetry places a restriction on the arrangement of the colours on the triangu- 
lar faces: the front and back faces must be of the same colour, and so must the 
left and right faces. There are three choices to be made: a colour for the base, a 
colour for the front—back pair, and a colour for the left-right pair. Each of the 
three choices is made from n colours so there are n? colourings which have 2-fold 
symmetry. If a colouring has 4-fold rotational symmetry then all of the triangular 
faces must have the same colour. There are two choices to be made: a colour for 
the base of the pyramid, and a colour for the other four faces. Thus there are n2 
colourings with 4-fold symmetry. Both of the 4-fold symmetries contribute the 
same number of colourings to the summation. Substituting these values into the 
above formula, and recalling that the pyramid has four symmetries gives that the 
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number of different colourings of a square-based pyramid using n colours is 

mtn +n? + n? 

4 
=4 il Diao = IWyn*(n?+n-+ 2). 

When n is 2 this evaluates to 12, which is the same result as before. 

Example. The number of colourings of a regular tetrahedron. 

choice = 

~~ choice 
choice 

(a) (b) 

Figure 9.4. 

Firstly, we need to calculate the number of colourings which have a given 
symmetry of the tetrahedron. Again, the number of colourings using at most n 
colours will be found. The regular tetrahedron has 12 direct symmetries: the 
identity, eight 3-fold rotations, and three 2-fold rotations. 

The number of colourings with the identity symmetry is n* since there are 

four faces and there is a choice of n colours for each face. A 3-fold rotation 
axis passes through the centre of one face (which will be called the base) and 
the opposite vertex. For the colouring to have 3-fold symmetry, the three faces 
adjacent to the base must all be the same colour. So there are only two choices 
of colour: one choice of colour for the base, and one for the other three faces 

(Figure 9.4(a)). As each of the choices can be made independently from the set 
of n colours, there are n? colourings with 3-fold symmetry. 

The 2-fold axes pass through the midpoints of opposite edges. ‘Therefore, 
both faces adjacent to an edge which meets the axis must have the same colour. 

The faces separate into two pairs, and again there are two choices of colour, one 

for each pair (Figure 9.4(b)). So there are n? colourings with 2-fold symmetry. 
The formula now gives the number of indistinguishable ways to colour a regular 
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tetrahedron using at most n colours: 

tho (n* + 8n? + 3n?) 

=o. (a 2 11). 

Problem. Find the five different colourings of the tetrahedron using black and 
white. 

Example. The number of colourings of a cube. 

The 24 symmetries of a cube can be broken up into five families, each of which 
must be considered individually. Since the cube has six faces, the total number 

choice 

choice 

choice choice 

(a) (b) 

choice 

choice 

choice choice 

(d) 
(c) 

Figure 9.5. 
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of colourings (all of which have the identity symmetry) is n°. There are six 4-fold 
rotations. An axis of one of these symmetries joins the centres of opposite faces. 
Assume that the axis is vertical. There are three choices of colour: one each 
for the top and bottom faces, and one for the other four faces which must all 
be the same colour (Figure 9.5(a)). So n° colourings have this 4-fold symmetry. 
Each of the three 4-fold axes is also an axis of 2-fold rotational symmetry. There 
are now four choices of colour: one each for the top and the bottom: the four 
other faces divide into two pairs of opposite faces, and a colour can be chosen 
for each pair (Figure 9.5(b)). There are eight 3-fold rotations whose axes are 
the diagonals of the cube joining opposite vertices. With this axis in a vertical 
position, the two choices of colour are: one for the upper three faces, and one for 
the lower three (Figure 9.5(c)). Thus there are n? colourings preserved by this 
3-fold symmetry. Lastly, there are six more 2-fold rotations to consider whose 
axes join the midpoints of opposite edges. With one of these axes vertical, the 
three independent choices of colour are: one for the two upper faces which meet 
the axis, one for the two lower faces meeting the axis, and one for the remaining 

pair of opposite faces (Figure 9.5(d)). Thus there are n?® colourings which have 
this 2-fold symmetry. Substituting all these data into the formula gives that the 
number of different ways to colour a cube in at most n colours is 

Log (n® + 6n® + 3n* + 8n? + 6n?) 

= ton? (n* + 3n? + 12n + 8). 

As mentioned above, substituting n = 5 into this formula shows there are 800 

colourings using at most five colours. 

Problem. Find the ten different colourings of the cube using only black and 

white. 

Problem. The adventurous reader who wants to try out this technique may 

like to verify that the number of ways to colour a regular octahedron with at 

most n colours is 

V4 n? (n° ae 17n? Fr 6). 

Proper colourings 

The only restriction placed on the colourings in the previous sections was that 

each face be coloured in a single colour. This allowed the whole polyhedron to 

be painted in a single colour which does not show up any structural features 

of the polyhedron. In this section, an additional requirement is forced upon the 

colouring: faces that share a common edge must have different colours. One result 

of this is that the outlines of the faces stand out and their individual shapes show 

up. A colouring which has this property is called a proper colouring. 
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As before, the question can be asked ‘How many different proper colourings 

of a polyhedron are there which use a given number of colours?’. As might 

be expected, this extra restriction on the behaviour of a colouring substantially 

reduces the number of possibilities. Among the 57 colourings‘of a cube which 

use at most three colours, there is a unique proper colouring. Out of almost 60 

million colourings of the icosahedron using at most three colours, only 144 are 

proper colourings. Some of them are illustrated schematically in Figure 9.6 and 

the others can be obtained from these by permuting the colours and taking their 

mirror images. The first seven are unchanged by swapping pairs of colours but 

do change when the colours are cycled. Reflections also give new colourings so 

these patterns contribute 42 colourings. For the next two patterns, swapping 

two colours or taking a reflection achieves the same result. This gives another 
12 colourings. The next pattern is the only one which has mirror symmetry. All 
six permutations of the colours give different colourings. For the remaining seven 

patterns, all permutations of the colours and reflections give different colourings— 

84 in all.° 

It may seem surprising that, in some situations, it is impossible to find a 

proper colouring of a polyhedron with the given number of colours. For example, 
the tetrahedron cannot be properly coloured with three or fewer colours since 
each of its four faces touches all of the others, forcing every face to have a dif- 
ferent colour. With four colours, however, there are two enantiomorphic proper 

colourings. This shows that four colours are necessary to colour the tetrahedron. 
Rather than investigate how many proper colourings are possible using a given 
number of colours, it is perhaps more pertinent to ask whether a proper colouring 

is possible at all. 

We have already seen that the tetrahedron requires four colours. The cube 

cannot be properly coloured with two colours since three faces meet at a vertex 
and each of them must be coloured differently. However, three colours are suffi- 

cient. For the regular octahedron, only two colours are required, and it can be 
properly coloured in the manner of a chessboard. 

It would be nice to be able to determine how many colours are necessary to 
properly colour a given polyhedron by inspection, that is to say, just by checking 
whether the polyhedron has particular properties. An example of this was used 
above to show that the cube could not be properly coloured with two colours—its 
faces meet wrongly at the vertices. This observation can be extended to provide 
a complete characterisation of properly 2-colourable polyhedra. This means that 
there is a property which is shared by all polyhedra that can be properly coloured 
in two colours and which only they possess. 

°For further information on how to enumerate these colourings see W. W. R. Ball and 
H. S. M. Coxeter, Mathematical Recreations and Essays (thirteenth edition), Dover, New York 
1987, pp239-242. 
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Figure 9.6. Schematic diagrams showing the proper colourings of the icosa- 
hedron. 

Theorem. A polyhedron can be properly coloured with two colours if, and only 
if, every vertex is surrounded by an even number of faces. 

PROOF: Suppose that a polyhedron is properly coloured with two colours. Then 
the colours must alternate on the faces around any vertex. This implies that 
there is an even number of faces around each vertex. 

To show the converse, it is sufficient to describe a method for colouring an 
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even-valent polyhedron in two colours. To start the procedure, choose a face of 

the polyhedron and colour it white. This face will be denoted by Fy. Those faces 

that share an edge with this face must be coloured black so that now the patch 

of coloured faces has a black border. All the faces adjacent to a black face which 

are still uncoloured can be coloured white leaving a white border to the patch. 

To ensure that the patch of colours can be extended in this way by adding white 

and black faces alternately until the whole polyhedron is coloured, we must show 

that a contradiction cannot arise: at no time is an uncoloured face adjacent to 

both a black and a white face. 

Let Fy be an uncoloured face of the polyhedron. A line on the polyhedron 
joining Fw to Fy which does not pass through any vertices, and which crosses 

each edge at most once, is called a route from Fy to Fy (see Figure 9.7(a)). Since 
the faces along the route will be coloured alternately white and black, the colour 
given to Fy depends on the number of edges of the polyhedron crossed by the 
route: if the route crosses an even number of edges then Fy will be white, if an 

odd number then black. We need to show that all routes from Fy to Fy, cross 

an even number of edges, or all routes cross an odd number of edges. 

Choose two routes from Fy to Fy. Since the polyhedron is spherical, one of 

these routes can be deformed (or rerouted) so that it coincides with the other. 
While this deformation is performed, the route line will pass through some vertices 
of the polyhedron (Figure 9.7(b)). But since an even number of edges meet at 
every vertex, the parity of the length of the route remains constant: if the length 

were odd going around the vertex one way, it would also be odd via the other; 
similarly for even length paths. Therefore, the colour given to face Fy; does not 
depend on the route chosen. No ambiguity can result. 1m 

This theorem was known over a century ago and was discussed by Peter 
Guthrie Tait in 1880. It provides an easily verifiable prescription to test whether 
a polyhedron is 2-colourable. Furthermore, the test is conclusive: if a polyhedron 
passes then a 2-colouring exists; if it fails then such a colouring is impossible. 

Having obtained such a complete solution to the problem of identifying those 
polyhedra that can be properly 2-coloured, it is natural to progress to a slightly 
more complex situation and ask whether it is possible to characterise the 3- 
colourable polyhedra. 

Clearly, a polyhedron which is properly coloured in two colours can also be 
properly coloured in three colours just by recolouring any one of the faces with 
a third colour. Hence, any even-valent polyhedron can be properly 3-coloured. 
It is also clear that the even-valent polyhedra do not exhaust all the possibili- 
ties. The cube, for example, can be properly coloured in three colours. Perhaps 
it is too optimistic to expect that a simple criterion can be found which will 
determine whether or not any polyhedron can be properly coloured with three 



PROPER COLOURINGS wal 

colours. However, in two families of polyhedra a characterisation has been found. 
These are the 3-valent polyhedra, and the polyhedra whose faces are all trian- 

gles. These families are sometimes called the simple, and the simplicial polyhedra 
respectively. 

Theorem. A 3-valent polyhedron can be properly coloured with three colours 

if, and only if, each face has an even number of sides. 

PROOF: Suppose that a 3-valent polyhedron has been properly coloured with 
three colours red, green and blue. Choose a red face and look at the faces which 
are adjacent to it. They must be either blue or green. As three faces meet at every 

vertex, the colours must be alternately blue and green around the boundary of 
the red face. Hence, the red face has an even number of sides. A similar argument 
can be applied to every face. 

(a) 

(b) 

Figure 9.7. 
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The converse is proved by describing a colouring procedure and then showing 

that it cannot lead to inconsistencies. The first stage in the colouring procedure 

is to label the vertices of the polyhedron. The current situation is the reverse of 

that considered in the preceding theorem: here every face is bounded by an even 

number of sides; previously, an even number of edges met at every vertex. Just 

as it was possible to colour the faces in two colours so that every edge separated 

the two colours, so a similar argument shows (in the current context) that it 
is possible to label the vertices with (say) ‘+’ and ‘—’ signs so that every edge 

connects a vertex labelled ‘+’ to one labelled ‘—’. 

With the vertices labelled in this fashion, the faces can be coloured as follows. 

Choose a face and colour it red. The colours of the remaining faces are deter- 
mined from the faces already coloured and the ‘+’ and ‘—’ labels of the vertices 
by applying the following rule: the colours appear in the order red-green-blue 
clockwise round the ‘+’ vertices and counter-clockwise round the ‘—’ vertices. 

Notice that, for example, this ensures that the faces adjacent to the initial red 

face are coloured alternately blue and green. 

We need to show that the patch of coloured faces can be extended to cover 
the whole polyhedron without giving rise to a contradiction. As in the proof of 
the previous theorem, we let Fy be an uncoloured face and let Fp denote the 

starting face coloured red. We need to show that all the routes from Fp to Fy 

lead to the same colouring of Fy. 

Again, we choose two routes from Fr to Fy and investigate what happens 
when one is deformed into the other. When a route crosses an edge of the polyhe- 

dron the colour of the next face is determined by the colouring rule. The possible 

patterns are shown in Figure 9.8. Convince yourself that, as a route is deformed 
and passes through a vertex, the outcome is not affected. m 

If the polyhedron is not 3-valent then the hypothesis that the polyhedron 
can be 3-coloured is not enough to guarantee all faces have an even number of 
sides. The rhomb-icosi-dodecahedron is 4-valent and is composed of triangles, 

Blue | Green 

Red 

Figure 9.8. 
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squares, and pentagons. If each type of face is coloured differently then a proper 
3-colouring results. However, not all of the faces have an even number of sides. 

The condition of 3-valency is also important for the converse. There are 
examples of polyhedra, all of whose faces have an even number of sides, which 
cannot be properly coloured with three colours. An example is shown in Fig- 
ure 9.9. It can be viewed as a hexagonal prism from which two wedges have been 
shaved off. Its faces have either four or six sides but it is not 3-valent. Suppose 
the base is coloured red. The six vertical faces must be coloured alternately (in 
blue and green, say) if only three colours are to be used. One of the top faces can 
be coloured red, but there is no colour remaining for the last face since it meets 
faces of all three colours. 

Figure 9.9. This polyhedron cannot be properly 3-coloured. 

The other family of polyhedra to be considered are those with triangular 
faces. To prove the following theorem, which characterises which of these poly- 
hedra are 3-colourable, we need to know how many different routes there are 
on a polyhedron from one face to another. Recall that a route is a line on the 
polyhedron joining two faces which does not pass through any vertex, and which 
crosses each edge at most once. It follows from work done in the early 1930’s by 
Hassler Whitney that on any convex polyhedron® there are at least three distinct 

routes between any pair of faces. (Two routes are distinct if the only faces they 
have in common are their end faces.) 

Theorem. Let P be a polyhedron all of whose faces are triangular. Then P 

can be properly coloured with three colours if, and only if, P is not a tetrahedron. 

PROOF: We have already seen that a tetrahedron requires four colours to colour 

it properly. So we need to show that every other triangular-faced polyhedron 

can be properly coloured with three colours. In the proofs of the two preceding 

theorems, a method of colouring was described which was then shown to produce 

a proper colouring. A different approach will be used in this proof. Here, we will 

6 Convexity is not the critical point here. What we are using is the fact that the edge-skeleton 

of the combinatorial dual is 3-connected. 
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start with a proper colouring which contains too many colours (in this case four) 

and then show how to rearrange them so that their number can be reduced. 

The faces of P can be coloured with the four colours red, green, blue, and 

yellow to produce a proper colouring of P as follows: start at any face and apply 

any colour to it; this forms the initial patch of colour. This patch can be extended 

by colouring a face which adjoins the patch. Since the face is triangular, it meets 

at most three different colours and so there is always a fourth colour which can 

be used to colour it. In this way the patch of coloured faces can be extended to 

cover the whole polyhedron. 

The aim now is to rearrange the colours on some of the faces of P while 

maintaining the properness of the colouring, so that the number of yellow faces is 

reduced. Eventually no yellow faces will remain and P will be properly coloured 

with three colours. 

If there is a yellow face which meets fewer than three colours then there is 

a third colour which can be used to recolour the yellow face. For example, if 
a yellow face meets two red faces and a green one, it can be recoloured blue. 
By using this observation, the yellow faces can be made to wander around on 

P so that they migrate towards a central place. Eventually a single yellow face 
remains. This then wanders to a place where it can be recoloured. The details of 

this process will now be described. 

Suppose that at least two faces of P are coloured yellow, and choose a route 
joining two of them. A route can be described by listing the faces which it passes 

through in order. So suppose our chosen route is F; > Fh > F3 > --: > Fh, 

where F and F,, are yellow. The first two faces can be recoloured so that F) is 

not yellow: simply uncolour the faces F\ and F 5, then F, can be recoloured in 

a non-yellow colour since it meets only two other colours, and Fy can then be 

recoloured, possibly with yellow. This process is illustrated in Figure 9.10. The 
effect of this is to shorten the length of the route between the two yellow faces, or 

to remove one of them. This trick can be repeated so that the face F) which has 

just been coloured yellow can be recoloured non-yellow and the (possibly) yellow 
face migrates to F3 again reducing the distance between the two yellow faces. At 
the last stage, the face F,_; can be coloured non-yellow since it is adjacent to a 
yellow face and at most two other colours. Thus the number of yellow faces of 
P can be reduced by one. This process can be repeated with any pair of yellow 
faces until eventually a solitary yellow face remains. 

Now there is a single face of P coloured yellow. Let F be a face of P which is 
not adjacent to the yellow face, and let A, B,C be its three neighbouring faces. 
At least two of these neighbours must have the same colour because the three 
non-yellow colours are used up by the face F itself and two of its neighbours. 
Suppose that faces B and C have the same colour. Let Fy be the yellow face 
of P. From the remark that preceded this theorem we know that there are 
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Figure’ 9:10: 

three distinct routes on P which connect Fy to F’, one passing through each of 
A,B, and C. The route which we need is the one passing through A, that. is, 
Fy —.---— A- F. The same procedure that was used above can be repeated 

on this route so that the yellow face migrates along the route towards F’. This 

time, when we reach the end, there is certain to be a non-yellow colour with which 
to label F. Its two neighbours, B and C, did not appear on the route and so have 



346 CHAPTER 9 

not been recoloured. Therefore, they still share the same colour. This means that 

at most two different colours are adjacent to F and there is a non-yellow colour 

with which it can be coloured. 

All of the yellow faces have now been removed from P and it is properly 

coloured in red, green and blue. & 

Problem. If this construction were applied to a tetrahedron to produce a proper 

3-colouring, it would fail. Why? More specifically, the proof uses a property of 

polyhedra which all triangle-faced polyhedra have except the tetrahedron. What 

is the property and where is it used? 

Although we have established a few useful results, the general problem of de- 
termining whether an arbitrary polyhedron can be properly coloured with three 
colours is not easy. One result in this direction concerns the number of places 
in a polyhedron where three colours are essential. Such places occur at 3-valent 

vertices where each of the three incident faces has an edge in common with the 

other two, thus forcing three colours to be used around the vertex. Another situ- 
ation where three colours are essential occurs when three faces form a triangular 
tube. In both of these situations, there is a set of three faces which are mutually 
adjacent. Such a set is called a 3-cycle of faces. The two forms are illustrated in 
Figure 9.11. 

Figure 9.11. A 3-valent vertex and a triangular tube both contain 3-cycles 
of faces. 

In the late 1950’s Herbert Grétzsch proved that polyhedra which do not 
contain any 3-cycles of faces can be properly coloured with three colours. Later 
(1963) Branko Griinbaum extended the theorem to the following. 

Theorem. Every polyhedron which contains at most three 3-cycles of faces can 
be properly coloured with three colours. 

In some respects this is the best result possible. A further increase in the number 
of 3-cycles allowed is not possible since the tetrahedron has four 3-cycles (one at 
each vertex) and it cannot be properly coloured in three colours. On the other 
hand, this is not the complete set of properly 3-colourable polyhedra since the 
cube has six 3-cycles and is still properly 3-colourable. 
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How many colours are necessary? 

As the number of available colours is increased further, one might think that 
the problem of determining which families of polyhedra can be properly coloured 
would get still more difficult. In fact, this is not the case. If your paint-box is 
sufficiently large then you can properly colour every polyhedron placed before 
you. It is a simple consequence of Euler’s formula that a palette containing six 
colours is large enough to properly colour any polyhedron. 

Theorem. Every polyhedron can be properly coloured with at most six colours. 

PROOF: A colouring of the faces of P is a topological property. Therefore, no 
relevant information is lost if P is continuously deformed, and we can assume 
that P is a coloured network on a sphere. We shall prove the theorem for such 
spherical networks. 

Let F' be the number of faces of P, and suppose that we have established that 
all spherical networks with fewer than F faces can be properly coloured with at 
most six colours. 

One of the corollaries of Euler’s formula is that every polyhedron contains at 
least one face with fewer than six sides. For the purposes of illustration, assume 
that P contains a pentagonal face. There is a polyhedral network, Q, which has 
F — 1 faces, and which is the same as P except near this face where the two 

networks differ as shown in Figure 9.12. Since @ has fewer than F’ faces, it can 
be properly coloured with at most six colours (by hypothesis). The corresponding 
faces of P can, therefore, also be coloured using at most six colours leaving just the 
pentagonal face uncoloured. Since this face meets at most five different colours, 
there is always a spare colour for it. Hence P can be properly coloured with six 

or fewer colours. 

This analysis has reduced the problem of colouring a network with F' faces 

in six colours to colouring a network with F' — 1 faces in six colours. If we can 

solve the latter (less complicated) problem then we can solve the former. The 

Figure 9.12. 
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argument can be repeated to show that Q can be properly 6-coloured if we can 

colour all networks with F — 2 faces in six colours. Proceeding in this fashion we 

can reduce the complexity of the problem (number of faces) as far as we wish. 

Once we reach the situation where ‘We can colour P if we can colour a network 

with six faces’ the problem is solved because every polyhedral network with six 

or fewer faces can be properly coloured using at most six colours: each face can 

be painted a different colour. 

(This strategy is called the inductive method of proof. In this case we used 

induction on the number of faces.) 

This theorem raises a new question: if six colours are sufficient to colour 

every polyhedron, how many are necessary? Determining how many colours are 

required is a problem with a history dating back to the middle of the nineteenth 

century. It has been known since the 1890’s that any polyhedron can be properly 

coloured with five colours. But trying to decide whether every polyhedron can 
be properly coloured with four colours turned out to be very complex. It became 

one of the best known unsolved problems in mathematics, and in the end was 

resolved only with the aid of a computer. 

The four-colour problem 

The problem of finding proper colourings of polyhedra is a particular case of a 

more general topological problem, namely, colouring the faces of a polyhedral 

network on a sphere. Another case of this problem is colouring maps on a globe, 

and indeed, this is the original setting of the four-colour problem. Alfred Bray 
Kempe (1849-1922) writing in Nature in 1880 described it like this: 

The problem is to show how the districts of a map may be coloured 
with four colours, so that no two districts which have a common 

boundary or boundaries shall be of the same colour. The object of 

this colouring being to make the division of the map into districts 
clear without reference to boundary lines which may be confused with 
rivers, etc., 1t is obvious that nothing will be lost if districts which are 
remote fom each other, or touch only at detached points are coloured 
the same colour.? 

Kempe’s article goes on to describe his proposed solution to the problem which 
we shall see later. 

The origin of the problem has been traced back a further 25 years to Francis 
Guthrie (1831-1899). He observed that he needed only four colours to colour a 
map of the English counties and wondered whether this would always be the case, 
whatever the map. He wrote to his younger brother, then at university in London, 
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who raised the problem with Augustus De Morgan (1806-1871). De Morgan could 
not solve it and wrote of it in a letter to William Rowan Hamilton in the autumn 
of 1852. This is the earliest documented reference to the four-colour problem. 

A major source of confusion and misunderstanding of this problem stems 
from the fact that no arrangement of five faces exists so that each is adjacent 
to the other four, thus forcing five colours to be used. De Morgan proved that 
it is impossible to construct five mutually adjacent faces. Prior to this, in the 
1840’s, Auguste Ferdinand Mobius teased his students by asking them to divide 
a kingdom into five parts, each having a border with the other four, so that the 
land could be shared between the king’s five sons. 

To see why this fact is not sufficient to solve the problem, consider an anal- 

ogous situation involving only three colours. The presence of four mutually ad- 

jacent faces in a polyhedral network prevents or obstructs attempts to properly 
colour the network in three or fewer colours. The obstruction is localised and is 

due to the arrangement of only four faces of the whole network. A pentagonal- 
based prism does not have any set of four mutually adjacent faces and thus has 
no local obstructions to proper colouring in three colours. However, four colours 

are still required to achieve a proper colouring. In this case there is a global 
obstruction to proper colouring in three colours—the nature of the polyhedron 

as a whole prevents a proper colouring in fewer than four colours. De Morgan 

and Mobius knew that five mutually adjacent faces cannot exist. So there are 
no polyhedral networks that contain a local obstruction to proper colouring with 

four colours. This does not prove the four-colour problem is true in every case 

because there may be an example of a global obstruction. 

Problem. Convince yourself that a pentagonal prism cannot be properly col- 

oured with only three colours. 

The four-colour problem received little attention until it was publicised by 
Arthur Cayley. At a meeting of the London Mathematical Society in 1878, he 
asked whether anyone could solve it. This prompted Kempe to work on the 

problem and the following year he proposed a solution. His argument is similar 

to the proof of the 6-colour theorem above, though he describes a procedure by 

which the colours can be rearranged so that fewer than six colours are required. 

Kempe’s argument. 

The structure of Kempe’s proof is the same as that in the preceding theorem: he 

uses induction on the number of faces. The tetrahedron, with four faces, provides 

a foundation for the induction since it can clearly be properly coloured with four 

colours. Given a polyhedron with F' faces, we assume that every polyhedron 

having fewer than F’ faces can be properly coloured with four colours. In the 

same way as before, we can colour all but one of the faces using at most four 
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colours. The problem is to show that the colouring can be extended to cover the 

last remaining face. 

If the uncoloured face has fewer than four sides then it is clear that this is 

possible. 

Suppose that the uncoloured face has four sides. If the four adjacent faces do 

not use all four colours then there is a colour left over which can be used to colour 

the final face. If all four colours do appear on the adjacent faces then Kempe 

showed how to rearrange some of the colours to overcome this problem. 

Suppose that the colours surround the uncoloured face in the order red, blue, 

yellow, green. Kempe’s idea was to look at areas coloured in two colours. In 

this example, areas coloured red-or-yellow and areas of blue-or-green. This can 

be thought of as red—yellow continents and islands, and blue-green oceans and 

lakes. These two-coloured regions are now called Kempe chains. It is possible that 
the blue face and the green face adjacent to the uncoloured face both belong to the 
same sea, or that the red face and the yellow face adjacent to the uncoloured face 
both belong to the same landmass but, since the network is drawn in a sphere, it 

is impossible for both of these to happen simultaneously. So assume, for example, 

that the red face and the yellow face are in different islands. Then the colours 
red and yellow can be interchanged on one of the islands without destroying the 
properness property of the colouring. When this is done the uncoloured face is 
adjacent only to blue, green and yellow faces and so red can be used to colour 
the final face. This process is illustrated in Figure 9.13. The square face in the 
upper diagram meets all four colours. The faces on the left and right of this 
square belong to the same Kempe chain so interchanging the colours in this chain 
will not help. However, if the colours in the Kempe chain above the square are 
interchanged, a colour becomes available to colour the square (as shown in the 
lower diagram). 

This trick can be applied when the uncoloured face has five sides. However, 
this only reduces the number of different colours adjacent to the uncoloured face 
to four. Kempe assumed that the trick could be repeated on different pairs of 
colours so that the uncoloured pentagon was adjacent to at most three different 
colours. However, there is a flaw in this assumption. It went unnoticed for more 
than a decade, but in 1890 Percy John Heawood (1861-1955) found an example 
for which Kempe’s method fails. Kempe’s argument does show, however, that 
five colours are always sufficient to colour any polyhedral network on a sphere. 

Although Kempe’s proof turned out to be incomplete, it contains the basis 
of the technique which was used to solve the problem. The idea is to contract a 
subset of faces, colour the remaining faces (by induction), replace the contracted 
faces, then show how to extend the colouring to the whole network. This process 
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is called reduction, and the patch of faces, or configuration, for which this method 

works is said to be reducible. Kempe found two reducible configurations. In both 

of his examples the configuration consists of a single face: either triangular or 

four-sided. His argument failed to show that pentagons are reducible. 

Reducible configurations are one of the twin pillars on which the final proof 

stands. The other is the notion of unavoidability. A set of configurations is un- 

avoidable if every polyhedral network must contain at least one of them. Kempe’s 

unavoidable set, derived as a consequence of Euler’s formula, contained three 

configurations: a triangle, a quadrangle, and a pentagon. One way to solve the 

four-colour problem is to find an unavoidable set in which every configuration is 

reducible. Unfortunately Kempe’s set is not sufficient since the pentagon is not 

known to be reducible. 

Figure 9.14. 

George David Birkhoff (1884-1944) analysed Kempe’s work and, after con- 
tributing some new ideas of his own, was able to show that some larger config- 
urations were reducible. An example is the diamond configuration of pentagons 
shown in Figure 9.14. Building on this work, Philip Franklin (1898-1965) proved 
that a smallest counter-example to the four-colour problem must have at least 

26 faces, and consequently every polyhedral network with 25 faces or fewer can 
be properly coloured with four colours. In subsequent years this bound was in- 
creased. In 1926 C. N. Reynolds showed a counter-example must have at least 
28 faces; in 1936, Franklin raised this to 32 faces; in 1938 C. E. Winn reached 
36 faces. In 1968, Oystein Ore and Joel Stemple proved that every polyhedral 
network with 40 or fewer faces can be properly coloured with four colours, so a 
counter-example has at least 41 faces. Through this collective effort many config- 
urations had been shown to be reducible, but the number of these was nowhere 
near sufficient to form an unavoidable set. 

Heinrich Heesch began working on the four-colour problem in the 1930’s. 
He became convinced that it could be solved by finding an unavoidable set of 
reducible configurations. In the 1950’s he estimated that such a set would be 
quite large, possibly containing 10000 configurations, but that each configura- 
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tion would be limited in size. At the time, this strategy seemed to offer little 
prospect of producing a solution because of the huge amount of calculation in- 
volved. However, the arrival of computers and their rapid development meant 
that this kind of attack became feasible. 

In surveying the known techniques for proving that a configuration was re- 
ducible, Heesch noticed at least one procedure was mechanical enough to be 
performed by machine. His student Karl Diirre wrote a program to test the re- 
ducibility of configurations. As with many techniques, when the program was 
successful, the configuration was reducible, but a failure signified only that the 
method was not powerful enough, not that no way of reducing the configuration 
existed. During the testing of many configurations, Heesch noticed that config- 
urations containing particular patterns were never reduced by the program. He 
found three such obstacles to reduction and all of them are easily described. No 

configuration which contains one of these obstacles has yet been reduced. 

Heesch also developed a technique for producing unavoidable sets. The 
method is based on the idea of moving charge around an electrical network. 
A discharging procedure is an algorithm for redistributing initial charges in a net- 

work. Charge cannot be created or destroyed in the process and the algorithm 
must stop, and not circulate charge forever. By analysing the possible outcomes, 
the places where charge accumulates can be used to construct an unavoidable set 
of configurations. Changing the algorithm produces different sets. 

In 1970, Wolfgang Haken noticed ways to improve Heesch’s discharging pro- 

cedures. He hoped that such improvements might be sufficient to solve the four- 
colour problem. His planned attack on the problem is outlined schematically in 
Figure 9.15. Before embarking on such a programme it is helpful to have some 

kind of indication that such a strategy is likely to succeed. What if the unavoid- 

able set is very large? What if checking for reducibility takes so long that the 
project would take decades or centuries to complete? What if an unavoidable set 

of reducible configurations does not exist and the process never stops? 

In 1972 Haken was joined by Kenneth Appel and they began computer ex- 
periments to try to answer some of these questions and to search for an effective 

discharging procedure. After some months of experimenting, gathering informa- 

tion about the likely sizes of configurations in an unavoidable set and the size 

of the set itself, they decided to prove that their method of attack had a rea- 

sonable chance of success. This involved arguing from certain assumptions that 

a discharging procedure which produced an unavoidable set of reducible config- 

urations was ‘overwhelmingly likely’ to exist. Their first observation was that 

for configurations with a given perimeter, the likelihood of reducibility increases 

with the complexity of the interior. This means that when configurations are 

sufficiently large they are almost certain to be reducible. This makes it very 

unlikely that the process can run forever. The next step was to show that ‘suf- 
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Figure 9.15. 

ficiently large’ configurations are actually small enough to be manageable and 

that, therefore, the process would finish in a reasonable amount of time. 

In 1975 their attention turned to developing computer programs that would 
test configurations for reducibility. By 1976 they were ready to start constructing 
a suitable set of configurations. The discharging procedure used to generate the 
unavoidable set was implemented by hand. This meant that the procedure was 
more flexible and could be modified as required. Over the first six months of 1976 
the discharging procedure was refined until at last an unavoidable set of reducible 
configurations was produced. The final set contained almost 2000 configurations. 

What is proof? 

When Appel and Haken announced their proof it caused much controversy in the 
mathematical community. The fame of the problem and its apparent simplicity 
have led many mathematicians to try to settle it. The announcement of a proof led 

people to expect that some brilliant insight had been discovered, and many were 

dismayed and disappointed to find that it involved analysing hundreds of cases 
by computer. Also people became suspicious when they realised that computer 
calculations were essential to the proof. Although the discharging procedure can 
be performed by hand and the generation of the unavoidable set can be checked, 
most of the configurations are so complicated that proving reducibility can be 
achieved only with the use of a computer. Appel and Haken themselves remarked 
‘It does not seem possible to check the reducibility computations themselves by 
hand.’ | 
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This raises philosophical questions concerning the nature of proof. A mathe- 
matical proof is supposed to leave no room for doubt, to deduce guaranteed con- 
clusions from an agreed starting point. Prior to the introduction of computers, 
the arguments used in proofs could always be verified by other mathematicians; 
each step in the deduction from hypothesis to conclusion could be checked ei 
its logical validity. When many of these steps are performed by a computer, and 
the calculations can be verified only by other computers, a mathematician has to 
ask himself whether his faith that computers behave as they ought is equal to his 
faith in his own reasoning ability. 

Three other examples of computer-assisted proof have been mentioned in 
earlier chapters. Both V. A. Zalgaller’s enumeration of convex polyhedra with 
regular faces (Chapter 2) and J. Skilling’s enumeration of uniform polyhedra 
(Chapter 4) used a computer to search for new possibilities. In both cases, a 
previously known list was shown to be complete. Unlike the four-colour problem, 
neither of these problems was particularly well-known and so these confirmations 

did not attract much attention. Maksimov’s proof that all polyhedra with fewer 
than nine vertices are rigid (Chapter 6) also made use of a computer. 

Another use of computers in mathematics is to test large numbers for primal- 

ity. In a computational sense there is no difference between a computer calcula- 

tion which shows that a large number is prime and another which shows that a 
configuration is reducible. The difference lies in the interpretation of the results. 
Both types of calculation can be seen as establishing certain facts whose truth 
depends on the correct working of the computer. In the first case, these facts 

are treated as data from which one can draw opinions or conjectures—about the 
distribution of prime numbers, for instance. The data do not constitute a proof, 
merely an indication of what one might try to prove, so a small risk of error is 
tolerable. In the second case, an accumulation of computed facts 7s the proof. 

It can be argued that the nature of the calculations involved in the proof 
of the four-colour theorem is so mechanical and repetitive that, if they could be 
performed by hand, a human attempting the task would, in all probability, make 

more errors than a computer. However, this does not eliminate the possibility 
of errors occurring, of either human or computer origin. At this point Appel 
and Haken’s methodology provides a way out. If one accepts the assumptions 

underlying their probability argument that the method must succeed then there 
are many different proofs of the theorem depending on the choice of discharging 
algorithm and the resulting set of configurations which is used. So if there is 
an error in the published proof, there is almost certain to be another similar set 

which will suffice. The theorem is ‘overwhelmingly likely’ to be true. 

Another objection to computer proof is that it violates the aesthetic quality of 

- mathematics. Mathematicians are not concerned merely with facts and answers: 

but with understanding; not only with truth but also with beauty. A good proof 
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is supposed to expose the underlying reasons of why a result is true. When most 

of a proof is hidden away in a machine this psychological requirement is denied. 
A computer provides no insight, just a mechanical verification. 

History has shown that the accepted standard of proof varies with time. It 
is probable that this new style of proof will become accepted as it is used to 
solve other problems in the future. In fact, such proofs may be necessary to solve 
some problems. At the turn of the century, it was generally believed that any 

mathematical problem could be solved by using sufficiently powerful techniques. 
But, in the 1930’s, it was shown that there are true statements for which no 

proofs exist, and others whose proofs are so long that it is impracticable to write 

them down. It is possible that a conventional short topological proof of the four- 

colour theorem will be found. However, Appel and Haken estimate that over ten 

million man-hours of effort have been spent trying to find such a solution. It is 

conceivable that their method is the only way and that we are witnessing the 
birth of a new style of proof. 





Les 
From Perspectiva Corporum Regularium by Wenzeln Jamnitzer, 1568. 



399 

Combination, Transformation 
and Decoration 

The whole is more than the 

sum of its parts. “ 

Aristotle 

Some of the most fascinating polyhedral models to play with are compounds. 
As you turn them in your hands, the individual components catch your eye in 

turn, and your attention jumps from one to another as you study the intriguing 
way they are interlocked. The easiest examples to appreciate are those in which 
the individual components stand out clearly and are quickly recognised. For this 
reason compounds of regular polyhedra are particularly striking, especially when 

each component is painted in a different colour. 

Examples of compound polyhedra have appeared in earlier chapters. Com- 
pounds of two tetrahedra, a cube and octahedron, and a dodecahedron with 

| an icosahedron were known to Kepler (Chapter 4). Compounds of five and ten 
tetrahedra, and of five octahedra occur among the stellations of the icosahedron 
(Chapter 7). We will now construct more examples. 

| Making symmetrical compounds 

VA compound polyhedron is a set of distinct polyhedra, called the components 
lof the compound, which are placed together so that their centres coincide. If 

‘the component polyhedra are of similar sizes then they will probably intersect 
each other, the faces of one component passing through the faces of the others. 

Although it is possible to make compounds of any polyhedra, we shall restrict 

‘attention to compounds of Platonic solids and in which all the components are 
ithe same. These can have a high degree of symmetry which makes them very 

attractive. 
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(a) (b) 

Figure 10.1. A tetrahedron can be inscribed in a cube in two ways. 

Consider the compound of two tetrahedra shown in Figure 10.1. It can be 

inscribed in a cube so that the 4 +4 vertices of the two tetrahedra coincide 

with the eight vertices of the cube. This shows that a single tetrahedron can 

be inscribed in a cube in two different ways. The compound results from doing 

this in both ways simultaneously. This method of inscribing one polyhedron in 
another in several ways is a quick way to generate compound polyhedra. 

Recall Euclid’s construction of a dodecahedron. He started with a cube and 
erected a ‘roof’ on each face in such a way that the sloping parts on adjacent faces 

were coplanar and formed regular pentagons (Figure 10.2(a)). There are two ways 
to erect a roof on the face of a cube. Using both simultaneously produces the 
compound of two dodecahedra shown in Figure 10.2(b) and Plate 16. 

(a) (b) 

Figure 10.2. A dodecahedron can be circumscribed about a cube in two 
ways. 

This idea of placing one polyhedron in another in different ways can also 
be used the other way round. Euclid’s construction also shows that a cube can 
be inscribed in a dodecahedron. To form a compound, we do this in as many 
different ways as possible, simultaneously. How many cubes can be inscribed in 
a dodecahedron? Each of the 12 edges of the cube is a diagonal of one of the 12 
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faces of the dodecahedron. There are five choices for the diagonal of a pentagonal 
face, and therefore five different ways to inscribe a cube in a dodecahedron. All 
of these cubes taken together form a compound of five cubes. The compound is 
shown in Plate 13. 

We know that a tetrahedron can be inscribed in a cube in two ways. Unfor- 
tunately, trying to reverse the situation does not produce a new compound: the 
cube can be circumscribed about a tetrahedron in only one way. 

Symmetry breaking and symmeiry completion 

The question of how many times one polyhedron can be inscribed in (or cir- 
cumscribed about) another polyhedron in a particular way is closely related to 

symmetry. More precisely, it is connected with the symmetry of three things: the 

inscribed polyhedron, the circumscribed polyhedron, and the compound of the 

two taken together. We need to introduce some terminology: the inscribed poly- 
hedron will be called the kernel, the circumscribed polyhedron will be called the 
shell, and the compound of the kernel and the shell will be called the amalgam. 

In the cube-in-dodecahedron example, the cube is the kernel and the dodec- 

ahedron forms the shell. The (rotational) symmetry groups of the kernel, shell 
and amalgam are O, I and T respectively. Notice that the amalgam has a lower 

degree of symmetry than either the kernel or the shell alone. Some of the symme- 
try has been destroyed. However, in the resulting compounds of five cubes and 
of two dodecahedra, the lost symmetry has been reinstated: the five cubes have 
icosahedral symmetry; the two dodecahedra have octahedral symmetry. 

This is not a coincidence and the idea of reinstating destroyed symmetry can 

be used to create a variety of compounds. The cube-in-dodecahedron example 

_ will be examined in more detail so that the relationships between the symmetry 

I 

groups of the kernel, shell, amalgam and their compounds become apparent. ‘Then 
this process of symmetry completion will be used to generate more compound 

polyhedra. 

Example. A cube in a dodecahedron. 

symmetry groups: kernel (cube) O 
shell (dodecahedron) — 
amalgam iT 

The symmetries of the kernel can be divided into two sets: those that are 

also symmetries of the amalgam, and those that are not. The first set will form 

a group, in this case the tetrahedral group, T. The other set contains the sym- 

-metries of the kernel which are destroyed in the amalgam. This set is not a 

group since, for one thing, it does not contain the identity symmetry. If these 
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destroyed symmetry operations are performed on the amalgam then the kernel 

will remain unchanged because these operations are symmetries of the kernel. 

However, they are not symmetries of the shell so the shell will be carried to 

new positions different from the original one. In our example, the rotations of 

90°, which are symmetries of the cube, are not symmetries of the amalgam. They 

carry the dodecahedron to a second position. This compound of dodecahedra will 

then have the same symmetry as that of the kernel. Furthermore, the number of 

components can be worked out from the sizes of the groups involved: 

number of components in the (number of symmetries of the kernel) 

Caer of shell Secs ~ (number of symmetries of the amalgam) 

This process can be applied using the symmetries of the shell in place of those 

of the kernel. This results in a compound of kernel polyhedra which has the same 
symmetry as the shell. The number of components is then: 

(ie of components in He) G (number of symmetries of the shell) 

compound of kernel polyhedra (number of symmetries of the amalgam) 

The examples here have produced compounds of o shells (that is two dodecahe- 

dra) and & kernels (five cubes). 

Example. A tetrahedron in a cube. 

symmetry groups: kernel (tetrahedron) T 
shell (cube) O 
amalgam P 

The point to notice here is that the symmetry groups of the kernel and the 
amalgam are identical. Therefore, although applying the symmetries of the shell 

to the amalgam produces a compound of two tetrahedra, applying the symmetries 
of the kernel to the amalgam does not produce anything new. 

Example. A cube in an octahedron. 

symmetry groups: kernel (cube) O 
shell (octahedron)  O 
amalgam D, 

A cube can be inscribed in an octahedron as shown in Figure 10.3(a). Both 
the kernel and the shell have octahedral symmetry. However, they are arranged so 
that only one pair of 4-fold axes match up in the amalgam, the other 4-fold axes 
are reduced to 2-fold axes. This means that the amalgam has dihedral symmetry 
of type Ds. Some symmetries of both the shell and the kernel are destroyed in 
the amalgam and both sets can be used to generate compounds. Reinstating 
the symmetry of the shell gives a compound of three cubes (Figure 10.3(b)) and 
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(b) (c) 

Figure 10.3. 

completing the symmetry of the kernel produces a compound of three octahedra 
(Figure 10.3(c)). Both compounds have octahedral symmetry and are shown in 
Plate 14. 

Example. An octahedron in a cube. 

symmetry groups: kernel (octahedron)  O 
shell (cube) O 
amalgam Ds 

An octahedron can be inscribed in a cube as shown in Figure 10.4(a). The 
symmetry of the amalgam is again dihedral but is now of type D3. Completing 
the symmetry of the shell gives a compound of four octahedra, and completing 
the symmetry of the kernel produces a compound of four cubes. These are shown 
in Figures 10.4(b) and (c), and in Plate 15. 

In the above examples, the amalgam of the two polyhedra is formed by in- 
scribing one polyhedron in another. The fact that the two polyhedra share such 
a close relationship is not essential to the process of generating new compounds. 
All that we are doing is using a set of rules (the symmetries) to repeat a given 
object. One of the polyhedra is a template for the components of the compound, 
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(b) (Cc) 

Figure 10.4. 

and the other acts merely as a reference marker to indicate how the template is 

situated with respect to the symmetry elements which are used to generate the 

compound. We can choose any polyhedron to be the template and repeat it using 
the symmetry operations in any symmetry group. However, the most interest- 

ing compounds arise when some of the symmetries of the template coincide with 

those being used to generate the compound. 

The following example illustrates some of these points. Figure 10.5 shows 
two tetrahedra with a common vertex. The larger one is the template and the 
symmetries of the other determine how it is to be repeated to generate a com- 
pound. The result is the compound of four tetrahedra shown in Plate 11. Models 

of other compound polyhedra are shown in the plates. These include compounds 
of five octahedra and five dodecahedra. 
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Figure 10.5. 

Are there any regular compounds? 

Do any of the compounds described above (or any others) deserve the prestigious 
label of ‘regular’? Clearly, since all the components of these compounds are 
Piatonic solids, all their faces are equal regular polygons and the same number 
meet at every vertex. Even so, some are still ‘more regular’ than others. This 
can be seen most clearly by examining the visible parts of the faces. In some 

compounds the same regions are visible whichever face is looked at. Others have 
more than one kind of face pattern. In the three octahedra, for example, all the 

faces are equivalent whereas the compound of three cubes has two kinds of face. 
These are shown in Figure 10.6—the shaded parts are visible. In this latter case, 
the faces do not all play the same role because we can distinguish the two kinds. 

We can also consider the vertices. They are all similarly surrounded but are 
they all indistinguishable? Do they all play the same role? In the compound of 

four cubes there are two kinds of vertex: some are surrounded by three kite-shaped 
portions of the square faces, others by an ‘L’-shaped piece and two triangles. 

Figure 10.6. 
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The fact that, sometimes, some things cannot be distinguished hints that 

there is an aspect of symmetry involved. This is not surprising since regularity 

and symmetry are closely related concepts. 

Regularity and symmetry 

When considering the Platonic solids the terms ‘regular’ and ‘symmetrical’ are 

often regarded as synonyms but, if the words are taken in their technical sense, 

this is incorrect. The definition of regularity requires that the same number 

of congruent regular polygons surround every vertex. This is a local condition 

which specifies how an individual face is situated with respect to its neighbours. 

It restricts the way that faces can meet. On the other hand, symmetry operations 

consider the polyhedron as a whole; they take a global viewpoint. 

The difference between local order properties and global symmetry becomes 
noticeable when the conditions are applied in a wider context. The rhomb-cub- 
octahedron and Miller’s solid have the same local order properties: their solid 
angles are all congruent. However, their symmetry properties are different. In 
the rhomb-cub-octahedron all the vertices are equivalent, but in Miller’s solid 
this is not the case: we can distinguish two kinds of vertex when we look at their 
position in the polyhedron as a whole. 

The contrast between local and global viewpoints has recently become the 

focus of attention in various subjects. In crystallography, for example, symmetry 
groups have proved very useful in describing the internal structure of crystals, 

and they convey information about global properties. However, as a crystal 
grows, the molecules or ions joining the crystal align themselves according to the 
configuration of those molecules already belonging to it. The atomic forces which 
govern the building of a crystal are of a local nature. When confronted with the 
differences between the rhomb-cub-octahedron and Miller’s solid it seems rather 
fortuitous that the resulting crystal structure has a strong global symmetry. Why 
should local ordering rules that are effective over a short range produce a structure 
with long range symmetries? 

Returning to the case of polyhedra, it seems clear that the local and global 
viewpoints are different responses to the same problem. They are both ways 
of trying to express the same visual property of the Platonic solids—namely, 
that they look the same from different directions. When you turn a model of a 
Platonic solid in your hands then whenever you see it face first, the same image 
is presented to the eye no matter which face is at the front. Similarly, when 
viewed edge on, or vertex first, the picture does not depend on the edge or vertex 
that you choose to look at. This aesthetic quality can be expressed by saying 
that all the faces are congruent, that the dihedral angles are equal, and that. all 
the vertices are similarly surrounded. It can also be expressed by noting that 



TRANSITIVITY SO 

the model has a particularly strong kind of symmetry. The idea involved in this 
second case can be made precise using the notion of transitivity which unites the 
concepts of regularity and symmetry. 

Transitivity 

The notion of transitivity makes explicit the intuitive idea that certain objects 
(such as faces or vertices) are equivalent or indistinguishable, that they all look 
the same no matter which is focused on. The transitivity properties of a polyhe- 
dron describe the different directions from which the polyhedron looks the same. 
The word ‘transitive’ has the same root as the words ‘transit’ and ‘transition’, 

commonplace words that convey ideas of motion, of change of place, of passage 
from one state to another. This is appropriate because transitivity concerns the 
possibility of moving objects around. 

A polyhedron is said to be face-transitive if, for any pair of faces, there is a 
symmetry of the polyhedron which carries the first face onto the second. Phys- 
ically, this means that the polyhedron looks the same when viewed face on, no 
matter which face is presented to the eye. Every time the model is rotated so 
that it is seen face first, the rotation involved is a symmetry of the polyhedron 
so the initial and final positions are indistinguishable. (Face-transitive polyhedra 
are sometimes called isohedral.) 

Examples of face-transitive polyhedra include the Platonic solids, and the 

dipyramids and trapezohedra (Figure 8.10(a)—(c)). Another thirteen examples, 
which include Kepler’s two rhombic polyhedra, are shown in Figure 10.7. They 

are related to the Archimedean solids and were first described by Eugene Charles 
Catalan (1814-1894). 

Polyhedra which are not face-transitive are easy to find since the faces of a 
face-transitive polyhedron must be all the same shape. Therefore the prisms and 

Archimedean solids cannot be face-transitive. The faces of the Siamese dodeca- 
hedron are all congruent equilateral triangles, but it is still not face-transitive. Its 
symmetry group (C2,) contains only four symmetries: the identity, two reflections 

in perpendicular mirror planes, and a 2-fold rotation about the line common to 

both mirrors. So any one of the 12 faces can be carried to at most three other 

faces by the symmetry operations in this group. 

Many non-convex polyhedra are face-transitive. The four regular star poly- 

—hedra are examples. The stellations of the dodecahedron are still face-transitive 

- when we interpret them as spherical polyhedral surfaces each composed of sixty 

isosceles triangles. If the octahedron is augmented by regular tetrahedra then we 

see that the stella octangula can be interpreted as a spherical surface composed 

- of 24 equilateral triangles. Other compounds give examples of non-convex face- 

transitive polyhedra when seen in this naive way. In this light the ‘five tetrahedra’ 
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Figure 10.7. The Catalan solids. 

is composed of sixty non-convex pentagons. Some of the other stellations of the 
icosahedron provide further examples of face-transitive polyhedra. 

General properties of face-transitive polyhedral surfaces have been investi- 

gated by Branko Grunbaum and Geoffrey Shephard. They found that all such 
polyhedra must be star-shaped (that is, there must be a point in the interior from 

which it is possible to get an unobscured view of the whole surface). The faces 
of these polyhedra can be triangles, convex quadrilaterals, or star-shaped! pen- 
tagons. Some of Grinbaum and Shephard’s examples are shown in Figure 10.8. 

‘Do not confuse star-shaped polygons and polyhedra with star polygons and star polyhedra 
in the Kepler—Poinsot sense. 
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Figure 10.7 (continued). 

A polyhedron is vertez-transitive (or tsogonal) if any vertex can be carried 
to any other by a symmetry operation. This corresponds to the fact that a 

polyhedron looks the same when viewed with any of its vertices directed forwards. 
The Archimedean solids are all vertex-transitive. However, Miller’s solid has 

symmetry group D4, and these 16 symmetries are insufficient to carry a vertex 

onto each of the 23 others. The Greeks did not express the aesthetic quality they 
saw sufficiently well to ensure that all the semiregular polyhedra allowed under 
their definition looked the same from every vertex. The fact that Archimedes 

did not record Miller’s solid among his list of semiregular pclyhedra may indicate 
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Figure 10.8. Some face-transitive polyhedra. 

that he was intuitively searching for vertex-transitive solids. However, his list did 
not include the prisms either and these are vertex-transitive. Perhaps he, like 

Kepler, did not find polyhedra with prismatic symmetry so pleasing on the eye. 

Rather surprisingly, there are examples of vertex-transitive polyhedra which 

are not spherical. Unlike the face-transitive polyhedra, they cannot be deformed 
into a sphere but have tunnels running through them. These vertex-transitive 
polyhedra were discovered by Griinbaum and Shephard. Some can be obtained 
from prisms. Figure 10.9(a) shows a polyhedron which has the same vertices as 
the octagonal prism shown in Figure 10.9(b) but which has been ‘twisted’ so that 
each of the eight square faces has become a pair of triangles. Combining the 
squares of the prism with the sixteen triangles of the ‘twisted prism’ produces a 
vertex-transitive polyhedral surface which is topologically a torus. 
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Other examples can be constructed which have higher genus (more tunnels). 
Figure 10.9(c) shows a polyhedron which is combinatorially equivalent to a snub 
cube. Its convex hull, shown in Figure 10.9(d), has the same set of vertices and is 
also equivalent to a snub cube but geometrically the two polyhedra are different. 
If the square faces are removed from each polyhedron and the two remaining 
pieces glued together, a vertex-transitive polyhedron of genus five is produced. 

Other examples can be constructed which have genera 3, 7, 11 and 19. 

A polyhedron is edge-transitive (or isotoxal) if any edge can be carried to any 
other by a symmetry operation. This corresponds to the fact that the polyhe- 

dron looks the same when viewed edge on, from any edge. Edge-transitivity differs 
from the two previous kinds of transitivity in that it cannot occur alone. Every 
edge-transitive polyhedron has to be either face-transitive or vertex-transitive 

(possibly both). For example, the rhombic dodecahedron is edge-transitive and 
face-transitive. Examples of polyhedra which are both face-transitive and vertex- 

transitive but not edge-transitive are the irregular tetrahedra known as sphenoids 

(see Figure 10.10). These have isosceles or scalene triangles for faces. The com- 

aa a 

oO 
(c) (@) 

Figure 10.9. Constructions of two aspherical, vertex-transitive polyhedra. 
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Figure 10.10. Isosceles and scalene sphenoids. 

plete icosahedron (Plate 10) provides another example if its faces are interpreted 

as irregular star 9-gons which pass through each other. 

The three basic elements of a polyhedral surface used to define transitivity 

properties can be combined to produce even stricter kinds of transitivity require- 

ments. Cauchy observed that, in a Platonic solid, any face can be rotated to 

the place of any other and, following that, any side of that face can be rotated 

to the position of any other of its sides. This can be thought of as transitivity 

of (face-edge) pairs. Cauchy used this property to characterise regularity in his 

enumeration of regular star polyhedra. Bertrand, on the other hand, used tran- 
sitivity of (vertex—edge) pairs in his proof of the same result. In fact, restating 

their theorems in these terms shows that the two theorems are not equivalent. 

Cauchy enumerated polyhedra which are (face-edge)-transitive, and Bertrand 

enumerated polyhedra which are (vertex—edge)-transitive. It happens that the 
two sets of polyhedra are the same, and correspond to the polyhedra discovered 

by Poinsot. But the two men interpreted ‘regular’ in different ways, so the two 

theorems are not actually proving the same result. 

Crystallography is another area where large groups of symmetries are used 

to generate transitive sets of points. Bravais’ investigation of space lattices was 
effectively a study of this kind. We must remember, however, that all these 

mathematicians applied transitivity arguments intuitively. The technology of 

symmetry groups was not far enough developed for them to use it explicitly. 

Another kind of transitivity often used in connection with regularity is called 
flag-transitivity. A flag is a (face-edge—vertex) triple in which the edge is a side 
of the face, and the vertex is an end of the chosen edge. A polyhedron is flag- 
transitive if any one of these flag triples can be carried onto any other flag by 
a symmetry operation. This is a very strong requirement and, in fact, if only 
rotational symmetries are allowed no polyhedron is flag-transitive. If indirect 
symmetries are included then ten polyhedra are flag-transitive: the five Platonic 
solids, the four Kepler—Poinsot star polyhedra, and the stella octangula. 
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Polyhedral metamorphosis 

Transitivity properties are particularly nice features of polyhedra. They make 
descriptions very easy to state. Instead of describing the positions of all the 
parts, we can give the position of just one of them and the rules for repeating 
it. A vertex-transitive convex polyhedron can be completely specified with just 
two pieces of information: the coordinates of one vertex and the symmetry group 
of the polyhedron. A cub-octahedron, for example, might be given by the pair 
((1,1,0), O;,). Of course, the amount of information required has not been re- 
duced: we still need to know three real numbers to position each vertex. The 
difference is in how the information is presented. A lot of information is encoded 
into the symbol for the symmetry group and this is what makes the description 
so concise. The repetition rules of the symmetry group describe how the set 

of vertices is related to the given point and, because we are assuming that the 

polyhedron is convex, the faces can then be filled in in a unique way. 

This notation for describing particular polyhedra can also be used in reverse. 
The given information consists of a point in space and a symmetry group and 

these data can be used to generate a polyhedron: apply the symmetries to the 
given point to produce a set of vertices and form their convex hull to make a 
polyhedron. Which polyhedra can be created in this way? The seed point and 

the group can both be changed—the point can move continuously in space and 

there are several symmetry groups to choose from. How do these parameters 
affect the resulting polyhedron? 

For the moment we shall restrict our attention to one symmetry group and 

investigate what effects the choice of seed point has. We shall concentrate on the 
group O,. If the seed point is moved along a line that passes through the centre 
of symmetry then all that changes is the size of the polyhedron. Since changes of 

scale are not very interesting we can ignore how far away the seed point is from 
the centre of symmetry and just record its direction. This can be achieved by 

restricting the seed point to le on a sphere centred at the centre of symmetry. 

Choosing different points on this sphere should give rise to different polyhedra. 

The mirror planes of the O;, symmetry system intersect the sphere in great 

circles. They divide up the sphere into a network of 48 spherical triangles (shown 

in Figure 10.11) and these act as a reference grid to indicate where the symmetry 

elements are situated. Where two great circles intersect, a 2-fold rotation axis 

_pierces the sphere. Similarly, the 3-fold and 4-fold axes occur where three or 

four great circles meet. If the seed point is chosen to le on an axis then the 

polyhedron which results is either an octahedron (4-fold axis), a cube (3-fold 

(axis) or a cub-octahedron (2-fold axis). 

When the seed point lies inside a triangle we get a polyhedron which has 48 

‘vertices—there will be one vertex in each triangle. For one special point inside 
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Figure 10.11. 

each triangle, the generated polyhedron will have regular faces: it will be the great 

rhomb-cub-octahedron, an Archimedean solid. All the other polyhedra generated 

from points inside the triangle will be like the great rhomb-cub-octahedron in 

many respects (some examples are shown in the centre of Figure 10.12). They 

are all made up of six octagons, eight hexagons, and twelve rectangles, and every 

vertex is surrounded by one of each of the three kinds of face. The shapes of the 

faces change as the seed point is varied but the way that they are put together 

is preserved. All the polyhedra have the same combinatorial structure. Such 

polyhedra are said to be isomorphic.* This word is derived from the Greek for 

‘same form’ and is used in many areas of mathematics when objects have a 

common structure. 

There are other points on the parameter sphere which have not been investi- 

gated yet. These are the points that lie on exactly one great circle. The points 
on any one of the sides of a spherical triangle generate a family of polyhedra 

which are all isomorphic. The points on a line connecting a 2-fold axis to a 3-fold 
axis are isomorphic to a truncated cube, the points on a line connecting a 2-fold 
axis to a 4-fold axis are isomorphic to a truncated octahedron, and the points on 

a line connecting a 3-fold axis to a 4-fold axis are isomorphic to a rhomb-cub- 
octahedron. One point on each line generates a regular-faced Archimedean solid. 
Examples from these isomorphism classes are illustrated around the edge of Fig- 

ure 10.12. The diagram is a schematic map of one of the spherical triangles. The 
polyhedra illustrated show what kinds of polyhedron are generated by choosing a 
seed point in various regions. Studying the differences in these figures and their 
relative positions gives a good idea of how the polyhedron varies with the choice 
of seed point. 

. A better way to get a feel for the variety of polyhedra and their interrelation- 
ships is to use a computer (if your machine and programming skills cope with the 

?Note that some authors describe polyhedra which have the same net as isomorphic. In this 
book, such polyhedra are called stereo-isomers. 
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challenge). Interactive graphics provide an excellent tool for understanding these 
changes in a very direct way. Using a mouse to drag the seed point about inside 
a triangular region, you can watch as the polyhedron changes shape in response. 
You actually experience the metamorphosis of polyhedral forms. 

What happens if we change the symmetry group? If we replace O), by the 
group containing only the rotations of a cube, O, then many of the polyhedra that 
appear are the same as those generated by the O; group. The point on the 3-fold 
axis still produces a cube, for example. In fact, all the points which lie on one or 
more of the great circles produce a polyhedron with mirror symmetry. The only 
differences between the O and O) groups occur in the interiors of the spherical 
triangles. Instead of generating isomorphs of the great rhomb-cub-octahedron, 
isomorphs of the snub cube appear. Some examples are illustrated in Figure 10.13. 

There are two enantiomorphic forms of the snub cube. Which one is produced 
depends on where the seed point is located. Half of the triangles give one form, 
and the rest give its mirror image. It is apparent from these examples that 
the spherical triangles in the parameter space are more than just a convenient 

reference system. Knowing how the polyhedra are related to the seed points 

in any one of these triangles is sufficient to understand the whole behaviour. 
Each triangle is called a fundamental region for the group O;: each triangle can 

be carried to any other by a symmetry in the group, and together they cover 

the whole sphere. All the triangles are equivalent because they are all in the 

same transitivity class. For the group O there are two transitivity classes of 

triangles which are mirror images of each other. Taking one triangle from each 
— class produces a fundamental region for O. 

The analysis of the symmetry groups J, and J is analogous that for O,, and 

QO. Schematic diagrams showing the relative positions of the various polyhedra 
_ would exhibit the same general features. The three tetrahedral groups are more 
interesting. Figures 10.14-10.16 are schematic diagrams showing the kinds of 
polyhedron which are generated by seed points in a spherical triangle using the 
symmetry groups 7’, Ty and T;,. Notice the appearance of the Platonic icosahe- 

dron. It lies on the great circle connecting the cub-octahedron to the octahedron 
in Figures 10.14 and 10.16. The squares of the cub-octahedron are folded along 
a diagonal to produce a polyhedron isomorphic to the icosahedron but which has 

| obtuse-angled isosceles triangles for some of its faces. As the seed point progresses 

towards the 4-fold axis these triangles become acute-angled and finally vanish to 

become an edge of the octahedron. Somewhere along this route, all the triangles 

| are equiangular and the icosahedron is regular. 

The spherical triangles in these figures are still the fundamental triangles 

| shown in Figure 10.11. It is sufficient to study just one of these even though all 

| the tetrahedral groups have fundamental regions which are larger than this. The 

fundamental regions for the groups Ty and J), are formed from two of the triangles. 
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Seed points in the two triangles produce mirror-image polyhedra but because 

these polyhedra are not cheiral we cannot tell them apart. The rotation group 

T does produce cheiral polyhedra—what we might call ‘snub tetrahedra’. Its 

fundamental region is made up of four triangles but again, if we ignore cheirality, 

it is sufficient to consider only one of them. 

The space of vertex-transitive convex polyhedra 

A mathematician who asks “what space 

you are working in?” is not referring to 

the size of your office.” 

Ian Stewart 

Traditionally, space is where the objects of geometry live and have extension. 

The structural properties of this Euclidean space are set out at the beginning of 

the Elements. For the modern mathematician, the word ‘space’ is not limited 

to the conventional notions of a three-dimensional space of points. It is used to 

refer to the collection of objects being considered, and the structure of the space 
reflects the relationships between these objects. 

In the previous section, polyhedra were generated by choosing a seed vertex 

from a spherical triangle. The point chosen is a variable parameter and the 

triangle is the collection of all the possible values it can take. The triangle is an 
example of a parameter space. There is a one-to-one correspondence between the 

points in a triangle and the convex vertex-transitive polyhedra with a particular 

symmetry group. We can also interpret the triangle as a space of polyhedra: each 

‘point’ (or element) in the space is a polyhedron. Furthermore, the structure of 
the space has a useful interpretation: polyhedra which are almost the same are 

very close together in this space. The distance between two points of the space 

(that is, two polyhedra) gives a measure of how different they are. 

The idea of a space of polyhedra can be made very precise. Using a parameter- 

space aS an example of how such a space can be constructed is somewhat mis- 

leading but it does give the flavour of what is involved. We want a space of 
polyhedra to have a structure which reflects the relationships between polyhedra. 
We can give a qualitative description of such a space which exhibits its primary 
features. This is rather like a map of an underground rail network. In this case, 
the important points which need to be recorded are things like the order of the 
stations along each track and the crossover stations where you can change lines. 
The actual physical layout of the tracks through the city is irrelevant to the pas- 
sengers. All that they need to know is that nearby points on the map correspond 
to nearby points in the city. How can we make a schematic map of the space of 
polyhedra? 

To simplify the problem greatly, we shall restrict our attention to convex 
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pe | 

Figure 10.17. These polyhedra are ‘close’ in the Hausdorff metric. 

polyhedra. The combinatorial properties of polyhedra do not depend on scale so 

we shall regard polyhedra which are similar (in the geometric sense) as being the 

same. In our map, size is not important. In order to know which polyhedra should 

be placed close together on the map we need a measure of distance on the space 

of (similarity classes of) polyhedra. We think of two polyhedra as being ‘almost 

the same’ if the vertices of one are close to the vertices of the other, and vice 

versa. This idea can be made explicit using what is called the Hausdorff distance 

between two sets. In this sense the two polyhedra shown in Figure 10.17 are close 
together: each vertex of the wedge is close to a vertex of the other polyhedron. 
Notice that the polyhedra are not isomorphic. In fact, objects classed as close 

by the Hausdorff metric need not even have the same dimension. A very shallow 

square prism and a square polygon are ‘nearby’ in this sense. 

To make it possible to draw pictures of the resulting map, we shall narrow 

down the field of interest even further and focus attention on vertex-transitive 

polyhedra which have a spherical symmetry group. In this special case, there is 

some nice structure of the space of polyhedra which can be indicated on the map. 
In particular, it is possible to divide up the map into regions of polyhedra with 

similar features. We shall concentrate on two properties: the symmetry group 
and the number of vertices. 

The desired map can be constructed by gluing together the triangles described 
in the previous section. The examples of polyhedra drawn in each triangle and 

their relative positions illustrate the kinds of polyhedra which are ‘nearby’ in 

the technical sense of our space of polyhedra and which must therefore be close 
together on the map. Furthermore, we can observe that the same polyhedra 

appear in more than one triangle. For example, the triangles for the groups Op, 
and O have the same sequence of polyhedra along their boundaries but differ in 
their interiors. We can glue these two triangles together to form (topologically 
speaking) a sphere as shown in Figure 10.18. Around the equator there are three 
points, called nodes, which correspond to the cube, the octahedron and the cub- 
octahedron. These have 8, 6 and 12 vertices respectively. All the other polyhedra 
on the equator have 24 vertices but they are not all the same. Some are isomorphic 
to the truncated cube or the truncated octahedron, others to the rhomb-cub- 
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Figure 10.18. A map of the space of convex, vertex-transitive polyhedra 

with octahedral symmetry groups (O and Oj). 

octahedron. The three nodes divide the equator into three line segments—one line 

corresponds to each isomorphism class. In the upper hemisphere are polyhedra 

with 48 vertices and O;, symmetry; in the lower hemisphere are polyhedra with 
24 vertices and symmetry group O. 

A similar analysis of the polyhedra with icosahedral symmetry can be used 
to construct another sphere for the groups J; and J. Such a sphere is shown in 
the upper-right part of Figure 10.20. The numbers on the nodes, lines and faces 
match the polyhedra listed in the ‘Table 10.21. 

The triangles containing the polyhedra with one of the tetrahedral symmetry 
groups contain examples from both the octahedral and icosahedral spheres. In 
fact, the three triangles in Figures 10.14-10.16 can be joined into a large region 

whose boundary is the same as the equator of the sphere of octahedral symmetries 
(see Figure 10.19). This region also contains a point corresponding to the regular 
icosahedron. So we must wrap this region around the equator of the octahedral 

sphere and attach it to the icosahedral sphere at a single point. This completes 
our map of the space of vertex-transitive convex polyhedra whose symmetry group 
is one of the seven spherical groups. 

The map is shown in Figure 10.20. The upper hemisphere of the octahedral 

sphere which contains polyhedra with O; symmetry (coloured grey in the figure) 
has been flattened so that the tetrahedral part of the map can be attached to its 

equator. The points, line segments, and regions of the map delineate its structure. 

They mark places where there is a discontinuity in the space—either a jump in 
the number of vertices or a switch of symmetry group. This division of the space 
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of polyhedra produces 24 types. These are indicated by the numbers on the 

diagram and the data about each type are displayed in Table 10.21. The number 

of vertices and symmetry group are listed in the first two columns but these alone 

are not enough to distinguish between the types. The structure of the space is 

richer than that. All the polyhedra in each class are isomorphic to each other 

and to one of the Platonic or Archimedean solids. The last column contains the 

name of that solid, and the third column contains a tick if the regular-faced one 

is actually a member of the class. 

The first seven polyhedra in the table lie at the nodes of the map. These 
points correspond to the five Platonic solids together with the cub-octahedron 
and the icosi-dodecahedron. The next ten rows of the table deal with the line 
segments in the map. Seven of these lines contain an Archimedean solid. The 
other three classes are not covered by the classical discussions because none of 
the polyhedra on these lines is regular-faced. Notice the icosahedra with isosceles 
triangular faces are separated into two kinds in the space of polyhedra. Those 
with ‘fat’ triangles (row 10) and those with ‘thin’ triangles (row 11). The apex 
angle in a fat isosceles triangle is larger than 60°, in a thin triangle it is less than 
60°. In this context the special angle is not the right angle which gives rise to 
the acute/obtuse classification of triangles in Euclid’s Elements but the angle in 
an equiangular triangle. The last seven rows of the table contain the polyhedra 

in the regions of the map. Four of the regions contain a familiar Archimedean 
solid, the others contain more examples of polyhedra unknown in ancient times. 

Notice how the icosahedron plays a crucial role in making the space connected. 
Because it is possible to connect any two points in the map by a line, it is possible 

cub-octahedron 

cube 

octahedron 

Figure 10.19. A map of the space of convex, vertex-transitive polyhedra 
with tetrahedral symmetry groups (T, and Ty and 159) 
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A map of the space of convex 
vertex-transitive polyhedra with 
a spherical symmetry group. 

Figure 10.20. A map of the space of convex, vertex-transitive polyhedra 

with a spherical symmetry group. 

to continuously deform any one of these polyhedra to any of the others in such a 

way that all the polyhedra it passes through are also convex and vertex-transitive. 

A more detailed and rigorous study of this space was carried out by Stewart 
Robertson, Sheila Carter and Hugh Morton in 1970. They also analysed the 

prismatic groups. This is more awkward to describe since there are infinitely 

many prismatic groups. However, the map of the spherical groups is connected 

to the prismatic part of the map through the tetrahedron, the octahedron, and 
the cube. 

Totally transitive polyhedra 

We now return to the problem of finding compound polyhedra which are regular. 

The definition of a regular polyhedron can be recast using transitivity. The condi- 
tions of equal faces, equal dihedral angles, and congruent solid angles correspond 
to face-, edge-, and vertex-transitivity. A polyhedron that is face-transitive, edge- 

transitive and vertex-transitive is said to be totally transitive. 

The totally transitive polyhedra include the Platonic solids and the four 

Kepler-Poinsot star polyhedra—the polyhedra we call regular. The advantage 

of the transitivity interpretation of regularity is that it applies to compounds. 
The transitivity properties of the examples of compounds described above are 

listed in Table 10.22. Five of them are totally transitive. The compound of two 
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| | Number of | Symmetry | Regular- Familiar member of ] 

vertices group faced isomorphism class 

1 4 se "4 7 tetrahedron 

2 6 Op, es octahedron 

3 8 Op, v cube 

4 ie O;, ve cub-octahedron 

5 12 1G rs icosahedron 

6 20 Vie vi dodecahedron 

an 30 is v icosi-dodecahedron | 

8 12 | Ty pai v truncated tetrahedron 

9 1 18 cub-octahedron 

10 i ts icosahedron 

ill 1 dG. icosahedron 

12 2A O;, i truncated octahedron 

13 24 Op, vs truncated cube 

14 24 Op, v rhomb-cub-octahedron 

15 60 ils we truncated icosahedron 

16 60 1B va truncated dodecahedron 

Ge 60 es v rhomb-icosi-dodecahedron 

18 12 IE icosahedron 

19 24 Li truncated octahedron 

20 24 Ie rhomb-cub-octahedron 

21 24 O A snub cube 

22 48 On, v great rhomb-cub-octahedron 

aS 60 if v snub dodecahedron 

24] 120 | th |_| great thomb-icosi-dodecahedron _| 
Table 10.21. Classes of vertex-transitive polyhedra. 

tetrahedra was first depicted in Pacioli’s Divina Proportione. The compounds of 
five and ten tetrahedra, of five cubes, and of five octahedra were first described 
by Edmund Hess in 1876. The last example in the table, the compound of two 
sphenoids, is obtained by stretching the stella octangula along one of its axes 
(Figure 10.23). It is interesting in that it is face- and vertex-transitive but not 
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tetrahedra 2 v 

Components | Quantity | Vertex-trans | Edge-trans Face-trans 

Vv J 

4 

o Vv Vv ¥ 

10 eae v Vv 

cubes v 

Vv v Vv 

octahedra | 

J 

Jv v Vv 

dodecahedra v 

v 

sphenoids i 

Table 10.22. Transitivity properties of some compounds. 
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edge-transitive. The compound of four tetrahedra has no transitivity properties 
at all. 

The remainder of this section will be spent proving that all the totally tran- 

sitive polyhedra have been found. To do this correctly we need to state the kind 
of polyhedra we are interested in. Only when this is done can we begin to look 
among them for those that are totally transitive. Since the primary motivation 

Figure 10.23. A compound of two sphenoids. 



388 CHAPTER 10 

for introducing transitivity was to study compounds, we shall allow the poly- 

hedra to have self-intersections where faces pass through each other. The faces 

are to be planar polygons whose sides may pass through each other. Thus our 

objects of study include the star polyhedra described in Chapter 7 together with 

compounds of such polyhedra. With this understanding, the only possibilities 

are the five Platonic solids, the four Kepler-Poinsot star polyhedra, and the five 

compounds listed above. 

Lemma. The faces of a polyhedron that is edge- and vertex-transitive are reg- 

ular polygons. 

Proor: As the polyhedron is vertex-transitive, all of its vertices lie on a sphere. 

A face of the polyhedron can be thought of as the base of a pyramid whose apex 

is the centre of this sphere (see Figure 10.24). All the sides of the base of the 
pyramid are the same length because the polyhedron is edge-transitive. So, the 
other faces of the pyramid are all congruent isosceles triangles. This forces the 
pyramid to be a right pyramid on a regular polygon base. J& 

Figure 10.24. 

A simple corollary of this lemma is that the convex totally transitive polyhe- 
dra are precisely the Platonic solids. Edge- and vertex-transitivity imply that the 
faces are regular polygons, face-transitivity means that the faces are all equal, and 
vertex-transitivity implies that all the vertices lie on a sphere and are similarly 
surrounded. ‘Thus we have recovered the ancient definition. | 

To enumerate the other totally transitive polyhedra we shall use some group 
theory, in particular, the notion of a stabiliser. This is a sort of localised symmetry 
group. The stabiliser of a particular face of a polyhedron is the set of symmetries 
of the polyhedron which carry the face to itself. These symmetries leave the face 
unchanged or ‘stabilise’ it. The stabiliser of a face is always a subgroup of the 
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symmetry group of the polyhedron and it always contains at least one symmetry: 
the identity. 

Stabilisers of edges and vertices can be defined in the same way. 

Theorem. There are fourteen totally transitive polyhedra: the five Platonic 
solids, the four Kepler—Poinsot star polyhedra, and five compound polyhedra. 

PROOF: The preceding lemma showed that the faces of a totally transitive poly- 
hedron must be regular polygons. Face-transitivity forces all the faces to be 
congruent. 

The proof of the theorem proceeds in several steps and combines ideas from 

both Cauchy’s and Bertrand’s enumerations of the star polyhedra. The first step 
is to show that (at least) one of the following holds: 

(2) there is a rotation which carries a face onto itself, or 

(12) there is a rotation which carries a vertex onto itself. 

In the first case, we can show that the face-planes of the polyhedron bound one 

of seven possible convex kernels. Searching their stellation patterns for regular 

polygons produces candidates for totally transitive polyhedra. This is Cauchy’s 

method. Case (77) corresponds to Bertrand’s method: totally transitive polyhedra 
can be produced by facetting any of seven convex solids. 

STEP |. The stabiliser of a face contains a rotation. 

Since the polyhedron is face-transitive, the stabilisers of the faces are all the same 

size. (In fact, the subgroups are all conjugate.) Similarly, all the stabilisers of 

the edges are the same size. Let ¢ be the number of symmetries in the stabiliser 
of some face, and let 7 be the number of symmetries in the stabiliser of an edge. 

If we can show that ¢ is at least three then the stabiliser of a face must contain 

rotations which carry the face onto itself and therefore an axis of rotation must 

pass through the face. 

We now apply the Orbit—Stabiliser theorem. This implies that the number 
of faces multiplied by the number of symmetries which stabilise a face equals the 

number of symmetries of the polyhedron. Similarly for the edges. If we write F’ a 

and E for the numbers of faces and edges of the polyhedron then 

the number of symmetries of the polyhedron = F'- @ 

and also 

the number of symmetries of the polyhedron =~ L-7). 

-Equating these two things and rearranging gives 

n F 

aaah sok 
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The ratio of faces to edges is easy to calculate. All the faces are regular n- 

sided polygons, for some n > 3, and two sides are brought together to form each 

edge. So nF = 2H. This implies that 

n FP 

b E 
7 2 

Se oo 
When these fractions are in their lowest terms, all except one have a denominator 

bigger than two. Hence ¢ must be at least three in every case except when the 

faces are squares. 

We shall see later that if the polyhedron had square faces and the stabiliser 
of a face did not contain a rotation then case (72) would hold: its vertices would 
le on rotation axes. 

STEP 2. Every vertex lies on a rotation axis. 

Since the polyhedron is vertex-transitive, the stabilisers of the vertices all contain 

the same number of symmetries. Let w be the number of symmetries in the 
stabiliser of a vertex. As in the case of faces, if we can show that w is at least 

three then the stabiliser must contain rotations which carry the vertex onto itself 
and therefore the vertex must lie on the axis of one of these rotations. 

Writing V for the number of vertices of the polyhedron and applying the 
Orbit-Stabiliser theorem again we see that 

the number of symmetries of the polyhedron = V-w. 

As before, equating this statement with the analogous one about edges, we deduce 
that 

n V 

1D EB 

All the vertices have the same valency (because the polyhedron is vertex- 
transitive). Assume that m edges meet at each vertex. Then mV = 2E. This 
implies 

n 7 ae ae 

Wy) = E = om 

2 Z » 2 

Se) Bee ope 
When these fractions are in their lowest terms all except one have a denominator 
bigger than two. Hence 7 must be at least three in every case except when the 
vertices are 4-valent. 

There are two situations that are problematic. Step 1 did not deal with the 
case of square faces and step 2 has not dealt with 4-valent vertices. However, it is 
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impossible to construct a polyhedron which has square faces and 4-valent vertices 
SO both situations cannot occur together. Therefore, at least one of statements 
(z) and (iz) above is true. 

STEP 3. There are seven possible kernels for stellating. 
Suppose a rotation axis passes through every face. A symmetry which carries one 
face onto another must also carry one axis onto another. So, as the polyhedron is 
face-transitive, the axes piercing the faces must be of the same kind. That is, they 
must all be 2-fold, all be 3-fold, all be 4-fold, or all be 5-fold. The convex poly- 
hedra which satisfy these properties are the upper seven shown in Figure 10.25. 
They are the five Platonic solids together with the rhombic dodecahedron and 
the rhombic triacontahedron. The systems of rotational symmetry in which all 
the axes of a given kind lie in a plane cannot occur. The remaining possibilities 
mreo>. 1s Orand i. 

STEP 4. There are seven possible shells for facetting. 
A symmetry which carries one vertex onto another must also carry one axis onto 

another. If the polyhedron is vertex-transitive, its vertices must all lie on axes of 

the same kind. The convex polyhedra which satisfy these properties are the five 
Platonic solids, the cub-octahedron, and the icosi-dodecahedron. They are the 

lower seven figures in Figure 10.25. 

STEP 5. The enumeration. 

Of the nine convex polyhedra shown in Figure 10.25, only the Platonic solids 
are totally transitive. The other four are sometimes called quasiregular. The 

rhombic solids are not vertex-transitive, and the Archimedean solids are not face- 

transitive. Notice that they are all edge-transitive. 

We have shown that the faces of a totally transitive polyhedron must lie in 

the face-planes of one of the first seven solids, or can be found by facetting one 

of the last seven solids. 

So to find the possibilities we can scan stellation patterns looking for regular 

polygons. This was done for the Platonic solids in Chapter 7. The stellation 
patterns for the two rhombic solids are shown in Figure 10.26. ‘The rhombic 
dodecahedron does not have any totally transitive stellations. ‘The square in the 
stellation pattern of the rhombic triacontahedron gives rise to the compound of 

five cubes. 

The other method of generating totally transitive polyhedra is to facet one of 

seven solids. The Platonic solids were covered in Chapter 7. ‘The cub-octahedron 

cannot be facetted: the only regular polygons it contains are equatorial hexagons 

and triangles. Besides equatorial 10-gons and pentagons, the icosi-dodecahedron 

‘contains triangles. Eight of these close up to form an octahedron (Figure 10.27), 

and inscribing all the triangles produces the compound of five octahedra. All the 
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Figure 10.25. 

totally transitive polyhedra must be generated by at least one of these methods. 

Curiously, they all appear on both lists. 

The totally transitive polyhedra are listed in Table 10.28. The kernels of 

stellated forms are listed in the second column; the shells of the facetted forms 

are given in column three. 

One last comment on this proof. Recall from Chapter 7 Poinsot’s confusion 
over when a set of points is regularly distributed on a sphere. He thought that 

the vertices of the Platonic solids and also the midpoints of their edges should be 
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Figure 10.26. Stellation patterns for two rhombic polyhedra. 

examples of such sets. We can now see that these are the places where the rotation 
axes of the polyhedra puncture the sphere. Only the 3-fold, 4-fold and 5-fold axes 

- can be derived from the vertices. The 2-fold axes come from the midpoints of the 
edges or alternatively from the vertices of two of the quasiregular solids. 
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Figure 10.27. 

Symmetrical colourings 

Compound polyhedra are often painted in a way which displays their composite 

nature very clearly. The components are painted in a different colours, and each 

component is monochromatic. (The compounds illustrated in Plates 11-16 are 

coloured in this way.) When the uncoloured compound has a high degree of 
symmetry, one would expect that such a systematic method of colouring would 

produce a highly ordered and symmetrical colouring. 

In Chapter 8 we studied the symmetry of an object by finding different po- 
sitions from which the polyhedron appeared the same. Describing how these 

indistinguishable positions are related to each other gave us a symmetry group. 
A similar technique can be applied to study the coloured compounds. This time 

we want the polyhedra to be indistinguishable as coloured objects—the symme- 

Polyhedron Kernel Shell 

tetrahedron i 

cube 

octahedron 
dodecahedron 

icosahedron 

small stellated dodecahedron | dodecahedron icosahedron 
great dodecahedron dodecahedron icosahedron 
great stellated dodecahedron | dodecahedron dodecahedron 
great icosahedron icosahedron icosahedron 
compound of two tetrahedra | octahedron cube 
compound of five tetrahedra | icosahedron dodecahedron 
compound of ten tetrahedra _ | icosahedron dodecahedron 
compound of five cubes rhombic triacontahedron | dodecahedron 
compound of five octahedra | icosahedron icosi-dodecahedron 

Table 10.28. The totally transitive polyhedra. 
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tries must preserve the pattern of colours. Such symmetries are called colour- 
preserving symmetries, and together they form a structure called the colour- 

preserving group. 

It is important to differentiate between the symmetry group of a coloured 
object and the symmetry group of the underlying uncoloured polyhedron. For 
example, the compound of three cubes shown in Plate 14 has colour-preserving 

group D» but has octahedral symmetry as an uncoloured object. The number 
of rotational symmetries has been reduced from 24 to 4. The colour-preserving 
groups of the coloured compounds of five tetrahedra (Plate 12), of five cubes 

(Plate 13), and of four cubes (Plate 15) are all trivial: the only colour-preserving 
symmetry for these coloured polyhedra is the identity! The following examples 
show other ways in which the colour-preserving group can differ from the ordinary 
geometric symmetry group. 

Example 1. 

The simplest polyhedron, the regular tetrahedron, can be coloured with four 
colours, one per face. Only one of the twelve rotational symmetries of the 
tetrahedron, the identity, preserves the arrangement of the colours. So the 

colour-preserving group is the trivial group, C;. The identity is always a colour- 

preserving symmetry. 

Example 2. 

At the other extreme, every symmetry of the uncoloured polyhedron can also be 

a colour-preserving symmetry. For example, if a low, rhombus-based pyramid 

is added to every face of a rhombic triacontahedron then a polyhedron with 120 
faces is obtained (see Figure 10.29). It can be properly coloured with two colours. 

In this case, the group of colour-preserving symmetries is the whole icosahedral 
group, J, the same as the group of the underlying polyhedron. 

Figure 10.29. An augmented rhombic triacontahedron. 
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Example 3. 

The octahedron is another polyhedron which can be properly coloured with two 

colours. Here, the group of colour-preserving symmetries is the tetrahedral group. 

This can be seen by extending all the faces of either colour until they meet 

forming a tetrahedron. This shows that the tetrahedral group is a subgroup of 

the octahedral group. This relationship is often written as T < O. 

Example 4. 

A cube can be coloured with three colours so that opposite faces have the same 

colour. The colour-preserving symmetries are the 2-fold rotations about axes 

joining opposite face centres, so the colour-preserving group is Dy. 

A pyritohedron is a dodecahedron with irregular pentagons for faces (Fig- 
ure 10.30). Its symmetry group is the tetrahedral group. It can be coloured so 

that from a distance, it looks similar to the colouring of the cube described above: 
three colours are used and the faces of each colour fall into two pairs of adjacent 
faces on opposite sides of the polyhedron. The colour-preserving group is again 

D». These two examples show that Dz < O and also Dg < T. 

er 

er Porree (g 

Figure 10.30. 

Example 5. 

A pyramid with a regular hexagon base can be coloured with two colours so 
that the colours alternate round the sloping sides, and either colour occurs on 
the base. The colour-preserving group is C3 and the symmetry group of the 
uncoloured pyramid is Cs. Similar colourings of pyramids can be devised to show 
that Cy < Cnp, where p is any integer. 

Problem. A hexagonal dipyramid has symmetry group Dg. Find three colour- 
ings of this polyhedron which have the following colour-preserving groups: Cs, 
Ce, and Ds. 

| These examples illustrate that groups of colour-preserving symmetries are 
often much smaller than the geometric symmetry groups, even when the colours 
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are distributed in a regular and systematic pattern. Clearly, the colour-preserving 
group does not capture our intuitive idea of what a symmetrical colouring is like. 

The problem stems from the definition of what we mean by a symmetrical 
colouring. The definition uses geometrical symmetries such as rotations to try 
to describe a non-geometric situation. Geometrical symmetries are good at de- 
scribing the symmetrical nature of shape, but they are not sufficient to describe 
the symmetry of a pattern formed by an arrangement of colours. The problem, 
then, lies not in the desire to use groups of symmetries to describe the degree 
and structure of the symmetry of an arrangement of colours, but in the use of 
geometric symmetry operations. The concept of a symmetry needs to be enlarged 

to include non-geometric operations. 

Colour symmetries 

In general, an operation is described as a symmetry of a system if no change 

can be detected in the system after the operation has been performed. The 
rotations which carry a polyhedron onto itself are symmetries under this definition 
since they carry the polyhedron to a position indistinguishable from its original 

position. They are geometric symmetries of a geometric object. 

Examples of non-geometric symmetries appear in physics. When measuring 

certain quantities in physical systems, the choice of the zero-level on the gauge 

or scale is not important. The origin can be placed anywhere and the scale can 

be translated. A physical system which is invariant under a translation of a 

measuring scale is said to have a gauge symmetry. An example is the scale of 
voltages. The choice of where to place zero volts on the scale does not matter since 
only differences in voltage levels can be measured. The equations of electrical 
systems deal with voltage differences and they have a gauge symmetry. ‘This 
kind of non-geometric symmetry has far-reaching consequences: in the case of 
voltage, it leads to the law of conservation of electric charge. 

In order to improve our mathematical description of the symmetrical nature 

of a coloured object or pattern, we need a better understanding of the way in 

which the eye—brain system interprets coloured images. ‘This will lead to another 

kind of non-geometric symmetry called a colour symmetry. 

When faced with a coloured scene, one of the things the mind does is to 

study each colour separately against the background formed by the others. This 

gives an impression of the distribution of each colour within the scene. Attention 

can be switched from colour to colour quite rapidly. Painters make use of this 

response to link areas of a picture together: areas of the same colour become 

associated in the mind. In view of this, it seems reasonable to assume that when 

the brain is processing the image formed by looking at a coloured polyhedron, 

the following properties of the colouring play a role in determining the brain’s 
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assessment of the degree of structure in the pattern formed by the colours: 

(7) the structure of the monochromatic patterns formed by each colour taken 

individually, 

(ii) the variety of these structures and their interrelationships, 

(iii) the positions of the colours in relation to one another. 

To some extent, the first of these properties is described mathematically by 

the colour-preserving symmetries. A colour-preserving symmetry carries each 

face to one of like colour so it is also a symmetry of each of the monochromatic 

patterns. However, the set. of colour-preserving symmetries may not be the whole 

set of symmetries which preserve a pattern of a particular colour. For example, 

if a cube is properly coloured with three colours so that opposite faces have the 

same colour then the group of colour-preserving symmetries is D2 comprising the 

2-fold rotations about each of the three axes joining opposite face centres. The 
symmetries which preserve the faces of a given colour, red (say), also include 

4-fold rotations so the red-preserving group is D4. 

The second property concerns the variety and interrelationships of these 

single-colour structures. In the coloured models which we intuitively regard as 
highly ordered or symmetrical (such as the compounds), all of the monochromatic 
structures are the same. After the eye has picked out one component (being all 

of one colour) it then moves on to another colour and identifies another copy of 
the same thing. Whilst scanning the patterns formed by each colour individually, 
the structure abstracted from the pattern does not change. This may be why 
the brain interprets these colourings as having a high degree of symmetry. If this 
property can be described mathematically, it may capture the intuitive idea of 

what we regard as a symmetrical colouring. 

The fact that there is something here which is the same in different situations 
suggests that a symmetry could be used to describe it. (Recall that, when used in 
a technical sense, a symmetry is an operation which cannot be detected or which 

leaves something unchanged.) When observing a coloured compound, the struc- 
ture of the pattern formed by any one colour does not depend on the colour you 
choose to look at. Even though your attention shifts from one colour to another, 
from the point of view of their structure, the patterns are indistinguishable since 
all the components are the same. 

A symmetry operation can be defined which models this consistency of struc- 
ture to some degree. It is analogous to the way that the structure in the individual 
monochromatic patterns is partially modelled by the colour-preserving symme- 
tries of a polyhedron. Like the colour-preserving symmetries, it is related to the 
geometric symmetries of the (uncoloured) polyhedron, and a restriction is placed 
on the way in which it can affect the colouring: the colours can be reallocated 
but the overall pattern must not change. For example, a rotation of a polyhedron 
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may result in every red face being carried onto a green face, every green face to 
a blue face, and every blue face to a red face. This rearrangement of the colour 
scheme is called a permutation of the colours. This particular permutation can 
be written 

(red — green, green — blue, blue > red). 

The rotation is said to have induced the permutation of the colours. Clearly, for 
this to happen, the structure of the monochromatic patterns formed by the red, 
green, and blue faces individually must be the same since the rotation carries one 
pattern onto another. Such an operation is called a colour symmetry. 

Definition. A colour symmetry of a coloured polyhedron is a geometric symme- 
try of the (uncoloured) polyhedron which induces a permutation of the colours. 

The set of colour symmetries of a polyhedron forms a group which is called 
the colour symmetry group or simply the colour group. The colour-preserving 
symmetries carry faces to ones of like colour so they induce the identity permuta- 

tion of the colours. Therefore, they can also be interpreted as colour symmetries 
and a copy of the colour-preserving group is contained in the colour group. 

An example which illustrates the differences between the three kinds of sym- 
metry is provided by the following colouring of a regular octahedron. Regard 
the octahedron as a triangular-based antiprism and colour the base and the top 
red, the faces adjacent to the top white, and those adjacent to the base black. 

This results in a proper 3-colouring of the octahedron. The rotational symmetry 
group of the underlying polyhedron is the octahedral group consisting of 24 ro- 
tational symmetries. The colour-preserving symmetries are the rotations about 
the axis joining the centres of the red faces, so the colour-preserving group is C3. 
The colour symmetries include the three colour-preserving symmetries and also 
three others: these are the 2-fold rotations about axes which join the midpoints 
of opposite edges and which are parallel to the base. They all induce the same 
permutation of the colours: 

(red — red, black — white, white > black). 

Therefore, the colour group contains six colour symmetries and is Ds. (There is 

a subtle change of interpretation hidden in the last sentence. In Chapter 8, we 
defined D3 to be a group of rotational symmetries. In the current context, the 

elements of the group are realised as colour symmetries, not geometric ones.) 

The third property which may influence the brain’s interpretation of an ar- 

rangement of colours is the way in which the monochromatic patterns are phys- 

ically related. This has more to do with the local properties of the colouring 

than with the global symmetry of the pattern. The jump between cases (77) and 
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(ii) is larger than that between the first two cases, both perceptually and math- 

ematically. This is reflected by the fact that mathematicians have only beget 

begun to study the problem of when two colourings have the same ‘pattern type ; 

The following example illustrates that the above groups of symmetries are inade- 

quate to give a complete account of a colouring. Figure 10.31 shows two identical 

pyramids with irregular hexagons for bases viewed from above. Although they 

are coloured differently, their colour groups are the same, as are their colour- 

preserving groups and symmetry groups. And in both cases, a clockwise rotation 

of 120° induces the same permutation: 

(black + white, white — grey , grey — black). 

Figure 10.31. 

Perfect colourings 

A colouring of a polyhedron is called a perfect colouring if every (rotational) sym- 
metry of the underlying polyhedron is also a colour symmetry. The colouring of 
the octahedron in the previous example is not perfect since its colour group (D3) 

and symmetry group (OQ) are different. A tetrahedron which is properly coloured 

(in four colours) is perfectly coloured even though its colour-preserving group is 
trivial. The coloured compounds are also examples of perfectly coloured poly- 
hedra. This confirms that colour symmetries capture something of our intuitive 
idea of a systematic pattern. 

The coloured polyhedra described in Examples 1-5 above provide further ex- 
amples of perfectly coloured polyhedra. Earlier, these examples were used to 
illustrate the kinds of colour-preserving group that can occur and their relation- 
ships to the rotational symmetry groups. As all the colourings are perfect, these 
examples also show the variety of ways that a group of colour-preserving symme- 
tries can sit inside a colour group. Besides the cases where the colour-preserving 
group is either trivial or the whole of the colour group, the following relationships 
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appeared in these examples: 

i Re TOC Fan Broad 0 Pala © Haas 6 np* 

The exercise on colouring a dipyramid gave examples of two more relationships: 
Y 

C. =< Dierg Ld — dacs 

Examining a large number of coloured polyhedra leads to the observation that 
these seem to be the only relationships which occur. The colour-preserving group 
always sits inside the colour group in one of these ways. 

One thing to notice about this list is the absence of the icosahedral group. 
This seems strange since, for all the other types of groups (the octahedral, tetra- 
hedral, dihedral and some cyclic groups), examples of coloured polyhedra can 
be found where the colour-preserving group is non-trivial and yet neither is it 
the complete set of colour symmetries. But for the icosahedral group, no such 

intermediate groups occur. For any coloured polyhedron with icosahedral colour 

group, the group of colour-preserving symmetries is either trivial (the compound 

of five cubes) or else it is the whole colour group (the polyhedron in Example 2). 

This phenomenon is a consequence of the internal structure of the icosahedral 

group. On one hand, as the icosahedral group is large (having 60 elements), one 
might expect that it has the potential to contain a lot of subgroups that can 

arise as groups of colour-preserving symmetries. On the other hand, there is a 
tendency for some kinds of systems to become more complex as they become 
larger. When there is sufficient space within a system, its elements can become 

tangled and intertwined to produce a complicated structure. The icosahedral 

_ group fits into the latter category. When the members of the icosahedral group 
| are interpreted as colour symmetries, its internal structure is such that none of 

its proper subgroups can occur as groups of colour-preserving symmetries. This 
| property of the subgroups of the icosahedral group can be identified abstractly 
and can be demonstrated to be an algebraic property of the group structure itself. 

) (7) The reader who is familiar with elementary group theory will have realised 
| that the structure being referred to is a lack of normal (or invariant) subgroups. 
| In fact, the above list of colour-preserving groups is based on an enumeration of 
| the normal subgroups of the rotation groups. In the examples, all of the colour- 
| preserving groups are normal subgroups of the symmetry group of the underlying 

polyhedron. This happened because all of the colourings are perfect and because 

| of the following fact: 

Theorem. A colour-preserving group is always a normal subgroup of the colour 

| group. To see this let G be the colour group and let S,, be the group of permuta- 

| tions of n objects. There is a natural homomorphism from G to S,,. ‘The kernel 

). of this map, the group of symmetries which map onto the identity permutation, 

-is the colour-preserving group. A fundamental theorem in group theory states 
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that the kernel of a homomorphism is a normal subgroup. It is also well-known 

that the only normal subgroups of the icosahedral group are itself and the trivial 

group. 

The solution of fifth degree equations 

The complexity of the structure of the icosahedral group has deep implications 

in another area of mathematics, namely the theory of equations. This branch of 

mathematics is concerned with finding solutions of polynomials. 

Methods for solving polynomial equations date back to antiquity. The Greeks 

were able to solve quadratic equations using geometrical constructions. Before 
them, the Babylonians (and possibly the Egyptians too) could solve problems 
requiring the solution of a quadratic equation, although they did not have the 

notation to express their method. An algebraic formulation did not appear until 

after the first century AD. The Chinese also studied the theory of equations and 
by the thirteenth century their techniques for finding solutions were way ahead 

of those in the West. 

We can find the two solutions of the quadratic equation ax? + br + c = 0 by 

using the formula 

—b + Vb? — 4ac 

2a 

A similar method for solving cubic equations was unknown in Europe until the 
sixteenth century. At the end of his Summa de Arithmetica (1494) Luca Pacioli 
remarked that solving the equations 7° + cr = d and x* +d = cx with the 
current state of knowledge was as impossible as squaring the circle. Yet within 
fifty years, the cubic could be solved. In 1545, the physician Girolamo Cardano 
published his Ars Magna in which he gave a complete discussion of the solution 

of cubic equations. The methods are ascribed to Niccolo Fontana (also known by 
his nickname ‘Tartaglia’, the stammerer) who had discovered them at least ten 
years earlier. He had refused to reveal the details and was persuaded to divulge 

them to Cardano only after having sworn him to secrecy. The Ars Magna also 
contains a method of reducing equations of degree four to cubics which is due to 
Ludovico Ferrari. 

The methods resulted in formulae similar to that above for the quadratic. The 

solutions are expressed in terms of the coefficients of the equations combined using 

only the four basic operations of arithmetic (addition, subtraction, multiplication 

and division) and the extraction of roots. All polynomials of degree less than five 

could now be solved by formulae of this kind, and the search started for a formula 
which would solve quintic (degree five) equations. 

Despite great effort no progress was made, and by the nineteenth century 
people were beginning to speculate that a formula might not exist. Joseph-Louis 
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Lagrange (1736-1813) observed that the method for solving a cubic equation is 
to reduce the problem to that of solving a quadratic, and that solving a quar- 
tic proceeds using essentially the same idea to reduce the problem to a cubic. 

However, applying the trick to quintic equations did not reduce the scale of the 
problem, but produced a polynomial of degree six. 

The first proof that a formula for finding the solutions of a general equation 
of degree five does not exist was given in 1799 by the Italian physician Paolo 
Ruffini (1785-1822). However, some people remained unconvinced by Ruffini’s 
arguments, especially those professional mathematicians who had devoted a lot 

of time to the problem. The discussion was ended in 1824 when the Norwegian 
Niels Henrik Abel (1802-1829) gave a conclusive proof. 

After it was known that a general formula for solving all quintic equations 
was not possible, attention shifted to the problem of finding necessary and suf- 

ficient conditions for determining whether or not a formula for the solutions of 
a particular equation existed. Underlying the arguments used by Ruffini and 

Abel is a relationship between the radicals (n*" roots) and certain subgroups of 
permutation groups. At that time, the group concept had not been isolated and 

the ideas involved were not sufficiently well understood for a general theory that 
applied to arbitrary equations to be worked out. A major step in this direction 
was taken by a young Frenchman named Evariste Galois (1811-1832). He also 
realised the importance of ‘normal subgroups’ and this enabled him to answer 

completely the problem of which equations can be solved by a formula. 

Galois’ idea was to associate a group with the equation which described the 
way that its solutions are related to each other. The properties of this group of 
‘algebraic symmetries’ reflected the properties of the solutions. In particular, if 

a formula for finding the solutions of the equation exists then the group can be 

decomposed into smaller groups in a special way. The structures of the Galois 

groups associated with the equations of degree less than five can be decomposed in 

the required way, and knowledge of these decompositions allows the formulae to be 

reconstructed. However, the group associated with most equations of degree five 

contains the icosahedral group and the structure of this group is too complicated 
to be split up in the required way. So there is no formula to solve equations of 

degree five. 

In the sixteenth century Francois Viete had shown that cubic equations can 

be reduced to a form where only one of the coefficients is unknown. This enabled 

him to express its solutions in terms of trigonometric functions. In 1786 E. 5S. 

Bring showed how to reduce quintic equations to a similar form, but his work 

went unnoticed for fifty years. The reduction of a general quintic equation to one 

having a single parameter meant that its solutions could be found by applying a 

technique analogous to Viéte’s solution of cubics. This was achieved in 1858 by 

Charles Hermite (better known for proving the transcendence of e). Following 
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a hint of Galois, he showed that the solutions of a quintic could be found using 

elliptic functions in place of trigonometric ones. 

These many strands—the symmetries of polyhedra, group theory, the solution 
of equations, and elliptic functions—were all woven together by Felix Klein in his 

Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree. 
This illustrates the remarkable unity of mathematics. On some occasions similar 
ideas will occur to different groups of people working in different disciplines. 
For a while they develop in parallel, then unexpected connections are found; 
eventually the unifying theme is identified and abstracted. ‘The group concept, 

for instance, arose in algebraic equations and geometric symmetries. At other 
times, many pieces of the patchwork of mathematics are brought together and 
produce a coherent and beautifully interwoven whole. In the prologue to his 
famous lecture of 23 problems David Hilbert commented on this unexpected unity 
and used Klein’s work as an illustration: 

It often happens --- that the same problem finds application in the 
most unlike branches of mathematical knowledge. -- - 
How convincingly has F. Klein, in his work on the icosahedron, pic- 

tured the significance which attaches to the problem of the regular 
polyhedra in elementary geometry, in group theory, in the theory of 

equations and in that of linear differential equations.° 

Like the components of a compound, the branches of mathematics interlock in 
intriguing ways. 
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Appendix | 

Because symmetry groups have been studied in so many areas of mathematics, 
and also in crystallography, several notations have been developed to denote them. 
Each notation has its own rules and internal consistency which comes from the 
kind of analysis used to study the symmetry groups. Some are compared in the 
table below. 

5 

C; filles 

Ge [1] 

C, (2+, 2+] 
Ge ne2 Felis 

(Ca ee 2. | \n] 

Cz, es (2, me 

Son 2 [2a 

n TRIOS alah 

nv ne 2 Pas 2n| 

JD Ss We 2 (2, n| 

ee ee oem A 

ip [3, 3]* 
Ta [3, 3] 
Li, [3a e4| 
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In the first column is the notation used in this book (described in Chapter 8). 
It is essentially that used by Arthur Schoenflies in his Kristallsysteme und Krys- 
tallstructur and described by Harold Hilton in his Mathematical Crystallography 
and the Theory of Groups of Movements. Its labels are derived from the kinds 
of symmetry elements (axes and mirror-planes) which are present. 

The second column lists the notation used by H. S. M. Coxeter and W. O. J. 
Moser in their book Generators and Relations for Discrete Groups. Their labels 
indicate how the groups can be generated as subgroups of reflection groups. A 
plus sign (+) indicates that only the rotational symmetries contributed by certain 
generators are to be included. 

The labels in the third column are described by A. V. Shubnikov and V. 
A. Koptsik in Symmetry in Science and Art. As with Schoenflies’ notation, the 
symbols indicate some of the symmetry elements which are present. The letter 

m denotes the presence of a mirror-plane, a single dot (-) means that it contains 
a rotation axis, and two dots (:) means that it is normal to a rotation axis. The 
tilde symbol (~) over a number indicates an axis of rotation-reflection. 

The notation in the fourth column was derived by John Conway and William 
Thurston from the topological features of quotient orbifolds. Numbers following 
an asterisk (*) refer to the angles at the corners of the orbifold’s boundary, other 
numbers indicate the kinds of cone-points, and a cross (x) indicates a cross-cap. 

For a more complete explanation see Conway’s account: ‘The Orbifold Notation 
for Surface Groups’ published in the Proceedings of the 1990 Durham Conference 
on Groups, Combinatorics and Geometry, Cambridge Univ. Press 1992. 

The final column lists the notation used by L. Fejes Toth in his book Regular 

Figures. Rather than concentrate on reflections as the previous notations do, 

the structure underlying this notation comes from rotations and inversion. ‘This 
causes a discrepancy in the cases of some cyclic and dihedral groups as to when 
two groups belong to the same kind of system. This shows up in the table as odd 

and even cases of n being listed separately. 



Appendix II 

Chapters 9 and 10 made use of a group theoretic result known as the Orbit— 

Stabiliser theorem. It was quoted in the form: 

( the number of ) ey number of eaten! 
equivalent objects of each object 

on (ids number of eee aia 
. of the polyhedron 

In Chapter 9 the objects were coloured polyhedra and we were counting equivalent 
colourings; in Chapter 10 the objects were faces, edges or vertices, and the right 
hand term (the number of symmetries of each object) was called the stabiliser. It 
will be no surprise to learn that the other term (number of equivalent objects) is 
called an orbit. The purpose of this appendix is to give a proof of this theorem. 

Suppose that we have a polyhedron and we wish to study some component 

or property of it which we will denote by A. Thus A might be a particular face 
or a colouring. Let G be the symmetry group of the polyhedron. 

The stabiliser of A, written stabg(A), is the set of all symmetries of the 
polyhedron which carry A to itself: 

stabg(A) = {gin G such that g(A) = A}. 

In the earlier examples, the stabiliser was the set of symmetries which fixed a face, 

or the (colour-preserving) symmetries of a coloured polyhedron. The stabiliser 

is a subgroup of G. For convenience we shall write H for stabg(A) and suppose 
that it contains m symmetries: 

Hf = {itis a yellen ts 

One of these must be the identity and we can choose h, = 1. 

The orbit of A, written orbitg(A), is the set of all the places A is carried to 
by the symmetries of the polyhedron: 

orbitg(A) = {g(A) for all gin G}. 

In the colouring example, the orbit consists of the different orientations of a 
coloured polyhedron. In the transitivity examples, all the faces of a face-transitive 
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polyhedron form a single orbit. Suppose that there are n different things in the 
orbit of A: 

orbite(A) s= 4A As eA). 

One of these must be A itself so we can choose A; = A. 

Choose n symmetries 91, 92,-:-,9n in G such that g;(A) = A;. There may 
be several symmetries to choose from in each case. For example, any element of 
stabg(A) can be chosen as 4). 

Writing |X| to denote the number of members of the set X, we can state the 
Orbit-Stabiliser theorem as follows. 

Theorem. 

[Gl =. Slorbite(A) =x |stabe(A) |: 

PRooF: To prove the theorem we split up the symmetries of the polyhedron into 

several sets. We can form a new set (denoted gH) of elements of G as follows: 

uae = AU Moly, 8 lie, |e 

All the products g-h; are distinct because the h; are distinct. 

Consider the following n such sets: 

no = { gia, Gila, Gian } 

gH = { gohi, Oahig, 7, gon } 

Grid = { gnhi, Gnhe, ETS On lim } 

These n sets are called cosets of H. The first one is H itself since g; is in 

H. If we can show that all these sets are disjoint and that every element of G 
appears in some coset then we will have proved |G| = n x m which is what we 
need. 

STEP 1. All elements of G can be written in the form g;h,. 

Given any symmetry g in G we consider g(A) in orbitg(A). Now g(A) must 

equal A; for some 2. Hence 

g(A) = G,(A) for some 1 

=> Oh TMI 
= G0 me for some fh in H 

=> g = gih. 
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We have written g in the required form. 

STEP 2. The sets 9;H are disjoint. 

Suppose some element is in two different sets so that g;x = g;y, where x and 

y are some elements of H. Then 95 Gi = yx~'. Now yx~! is a product of elements 

of H and is therefore also in H. So 95 Gi = h for some h in H and thus g; = g;h. 

We now consider the action of these elements on A. 

gi(A) = gjh(A) 
= Gi A) eg; A) because /, is in stabg(A) 

=> A; = A; 

But this is a contradiction since the g;’s were chosen so that this could not happen. 
E 
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Subject Index 

Read the symbols » and p as ‘see’ and ‘see also’ respectively. 

3-cycle 346 

abstraction 58 

acoptic » polyhedron, acoptic 

Almagest 97, 99, 103, 132 

Analemma_ 132 

angle 

> solid angle 

-, complementary 183 

—, dihedral 13 

—, exterior 183 

-, plane 13 

measurement of 182 

antiprism 6, 13, 85, 156, 163 

with star polygon base 175 

Archimedean solids 79-86, 91, 99, 104, 

1165127, 132, 156-167, 174,079, 181, 
197, 225, 249, 327, 367, 384, Ig. 2.21, 
Pies. 
> cub-octahedron, 

> great rhomb-cub-octahedron, 

> great rhomb-icosi-dodecahedron, 
> icosi-dodecahedron, 

> rhomb-cub-octahedron, 

t> rhomb-icosi-dodecahedron, 

t> snub cube, 

> snub dodecahedron, 

> truncated cube, 

> truncated dodecahedron, 

> truncated icosahedron, 

> truncated octahedron, 

> truncated tetrahedron 

enumeration of 162-167 

fragments of 86 
Ars Magna 402 
astronomy 96 

augmentation 124, 194 

axioms 60 

—, Archimedean 42 

-, Euclidean 61, 62, 220 

group 316-317 

of congruence 226 

of continuity 42, 60 

axis 291 

—, principal 293 

—, rotation-reflection 306 

-, secondary 293 

=, n-told ~ 292 

bellows conjecture 245 

Book of Data 103 

Book on the Measurement of Plane and 

Solid Figures 103 

Book on What Scribes and Businessmen 

Need From Arithmetic 104 

Book on What the Artisan Needs From 

Geometry 104 

brick 202 

Burnside’s lemma 331 

Campanus’ sphere 106, 116, 124 

Catalan solids 367, Fig. 10.7 

Cauchy’s lemma 229, 235 

cavity 203, 207 
Cayley’s formula 257 
ch’i blocks 25, 

> ch’ien-tu, 

> cube, ch’i block, 

> pieh-nao, 

> yang-ma 
ch’ien-tu 25 

cheiral 301 

circumsphere 52 



444 SUBJECT INDEX 

colouring 331 of icosahedron 70 
Stype 331 of octahedron 67 

—, perfect 400-401 of pentagon 63 
—, proper 337 of perpendicular 62 

with 2 colours 338 of tetrahedron 66 

with 3 colours 341 with rusty compasses 104 

with 4 colours 348 convex 252 
with 5 colours 350 convex hull 281 

with 6 colours 347 counting theorem 330 

equivalence of 329 covering number 

symmetry of 393-396 > density 

Commentary on the Nine Chapters 24 of polygon 250 

Comparison of the Dodecahedron with of polyhedron 250, 258 

the Icosahedron 96 crinkle 243 ¢ 
complete icosahedron » icosahedron, com- crystal 4, 202, 203, 318, 366 

plete = class: 321 | 

compound 327, 359, Pl. 11-16 and symmetry 318-324 
= regular 304,380, 399 pyrite (Fd 

2 dodecahedra 360 quartz 73 
2 tetrahedra > stella octangula striated 301 ne 
3 cubes 362 crystallographic restriction 321 

voctahedra 9362 cub-octahedron 3, 80, 86, 104, 124, 163, 

eubes 363 176, 257, 312, dd, 60, 002,004" 09m 
APoctahedra 363 cube 152, 181, 373, 382, 

Atetrahedra 364 > Platonic solids 

Peubes e260 ch’i block 25 
proctahtcdraeeo6s colouring of 336, 396 
Prierrancdri 6) construction of 68 

facets of 281 

in Piero exercise 119 

puzzle 329 

stellations of (none) 261 
symmetry of 296, 308 
with ears 173 

cubic equation 402 

cuneiform tablet 23 

curvature 216 

cheiral 301 

symmetry of 311 

component of 359 

cube+octahedron 152 

dodecahedron+icosahedron 152 

configuration 350 

—, reducible 350 

-, unavoidable 352 

Oca teks cyclotomic equation 64 
> equivalence relation 

as in Kepler 149 De Caelo et Mundo 105 
congruent by dissection 45 De Nive Sexangula 149, 152, 156 
connectedness 210 De Pictura’ 114 
construction De Prospettiva Pingendi 119 

of cube 68 deficiency » solid angle, deficiency 
of dodecahedron 69 definition 59 
of equilateral triangle 62 degenerate » polyhedron, degenerate 



Dehn invariant 48 
Della Pittura 114 

deltahedron 75, 86, Fig. 2.18, 

> dodecahedron, Siamese, 
> octahedron 

=) Mason's? 222.241) Fig6x) 

icosahedron stellation 271 
density 258, 

> covering number 
of polygon 258 

Descartes’ theorem 187 

devil’s staircase 36, 44 

dice. 327 

dihedral angle » angle, dihedral 
dipyramid 367 

colouring of 396 

symmetry of 302 
discharging procedure 353 

Divina Proportione 124, 144, 156, 385 

dodecahedron 122, 152, 181, 

> great dodecahedron, 

> great stellated dodecahedron, 
> Platonic solids, 

> small stellated dodecahedron 
-, Goldberg’s 222 
= oramese 6, Fomor, 301 hig. clo 

—, rhombic » rhombic polyhedron, do- 

decahedron 

ancient 71 

and calendar 3 

construction of 69, 282, 360 

facets of 282 

stellations of 261 

with ears 173 

eared cube 173 
eared dodecahedron 173 

echinus 168 

edge 13, 189, 191, 192 
edge-stellation » stellation, edge 
edge-transitive » transitive, edge 

elementary » polyhedron, elementary 

Elements 30, 57, 63, 96, 97, 99, 103, 

106, 108, 114, 151, 183, 220, 376, 384 
-, book 1 60, 61, 100, 122, 140 

~, book 11 122 
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Doom  &LO0 

-, book Iv 100 

—,00k V 122 

= book C122 

= DOOK EX) a4, 022 

—-, book x1 66, 184, 226 

-, book xm 106, 109 

= DOOK KITE be) 2e(4. oh Ol ala? 

—-, book xIv_ 96, 101, 108 

=, book Xv 101, 108, 109, 121 

restoration of 108, 

enantiomorphism 84, 301 

epipedal » polyhedron, epipedal 

equidecomposable 45 

equivalence 

=class 219 

—relation 219 

face 

—, adjacent 

congruence 

similarity 

D2 le 2203241 

221 

stereo-isomerism 225 

Euclidean tools 

Euler’s algorithm 197 

Euler’s formula 

O21 7 O40. soz 

exceptions to 

13, 192 

61, 64, 103 

190, 193, 233, 252, 257, 

201 

13 

face-stellation » stellation, face 

face-transitive » transitive, face 

facetting 281 
Fermat prime 

flag 372 
flag-transitive » transitive, flag 

fleximer 247 

fold-out » net 

fool’s gold » crystal, pyrite 

four-colour problem 348 

frustum 21 

volume of 

64 

98, 103 
fundamental region 375 

Gauss-Bonnet formula 216 

genus 209 

geodesic 215 

geodesic dome 2 
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golden ratio 68, 74, 124, 151, 168 

golden rectangle 70, 124 

graph theory 192 

great dodecahedron 252, 258, 261, 265, 

ZO) e282, gale 
skeletal form 282 

great icosahedron 254, 258, 263, 270, 

282,500.44 
great rhomb-cub-octahedron 81, 167, 373 

great rhomb-icosi-dodecahedron 167 

great stellated dodecahedron 169, 258, 

261, 265,270, 282, Fag. 4.16 
Greeks 

> Pythagoreans 
and infinity 34 

and proof 29 

group 316 

—isomorphism 317 

— presentation 318 

—table 317 

Co, 315 
Dz 316 
Ds ali 
Sq, 315 

-, colour 399, 400 

—, colour-preserving 400 

-,normal 401, 403 

—, permutation 403 

axioms of 316-317 

identity 316 

Harmonices Mundi _ 139, 141, 168 

Hausdorff metric 376 

heptahedron » polyhedron, heptahedron 

Heronic formula 98 
honeycomb 79 

House of Wisdom 102 

icosahedron 152, 252, 254, 375, 383, 

> great icosahedron, 
> Platonic solids 

=, complete 270, 371, Pl. 10 

—, rhombic » rhombic polyhedron, icosa- 
hedron 

—, triakis 270 

construction of 70 

SUBJECT INDEX 

Dymaxion map 7 

facets of 282 
fragments of 86 
skeletal form 282 

spaceship 9 
stellations of 3, 262, 267-281, 289 

symmetry of 296 
with golden rectangles 70, 124 

icosi-dodecahedron 81, 86, 124, 164, 257, 

384, 391 
icosian calculus 318 

identity 

of a group » group, identity 
symmetry » symmetry, identity 

incommensurability 30, 57 

Indian rule 103, 127 

intarsia 116 
inversion » symmetry, inversion 

isogonal » transitive, vertex 

isohedral » transitive, face 

isomer 225 

—, configurational 225 

-, rotational 247 

—, stereo 225, 373 

counting of 330 
isomerism 88, 191 

isomorphism 

of groups 317 

of polyhedra 373 

isotoxal » transitive, edge 

Jordan curve theorem 212 

kaleidocycle 238 

Kelvin’s solid » truncated octahedron 

Kempe chain 350 

Kepler—Poinsot polyhedron » star poly- 
hedron 

koilohedron » polyhedron, koilohedron 

lattice 3207521 

Lectures on the Icosahedron 404 

Liber Abaci 121 

main sequence > stellation, main sequence 

marquetry 116 



Mathematical Collection 79, 99, 156 
mazzocchio 116 

mensuration 17 

method of exhaustion 41, 106 

Metrica 98 
midsphere 144 

Miller’s solid 89, 156, 225, 366, 369, 
Pig 2-30 

symmetry of 296 
mirror plane 300 

Mo Ching 33 
Mobius strip 208 

model 226, 292, 302, 308, 327, 
> net 

—, straw framework 239 

net 

flexible polyhedron 244 

icosahedral die 4 
rhomb-cub-octahedral die 4 

ring of tetrahedra 237 
Wunderlich octahedron 221 

tips for making 13-15 

Moscow papyrus » papyrus, Moscow 

Mysterium Cosmographicum 139, 140, 

142-147 

Neoplatonism 100, 136 

mets sh2 i, 206, 225, 

> model 
Nine Chapters 24, 28, 38 

non-separating curve 207 

octahedron 86, 152, 176, 254, 373, 375, 

382, 

t> Platonic solids 

—, flexible (Bricard) 239 
-,jumping 221 

colouring of 337, 395 

construction of 67 

facets of 281 

in Piero exercise 119 

stellations of 261 

symmetry of 295 

On Risings 97 
Optica 105 
orbit—stabiliser theorem 332, 389, 408 

ostrea 168 

papyrus 19 

—, Moscow 21 

-, Rhind 20 

paradox 

-, Zeno 34 

parallel postulate 220 

parameter space 376 

pentagram 168, 250 

and incommensurability 31 

density of 258 

permutation 398 

Perspectiva Corporum Regularium 128, 
156, 252 

perspective 

—, artificial 106, 112 

—, atmospheric 105, 112 

—, inverted 110 

=, linear ~111 

=natural 106, 111 

—, reversed 110 

Petrie polygon 284 

Petrie—Coxeter polyhedron » honeycomb 

Phaenomena 97 

pleh-nao 25, 47 

plane angle » angle, plane 

Planisphaerium 97, 99, 132 

Platonic solids 2, 9, 51-57, 80, 86, 96, 

99: 101,104, 100,116; 12 24. 127. 

130,132, 041. 143, lod. Vol 209, 
366, 372, 384, 385, 388, 389, 391, Fig. 2.3, 

> cube, 

t> dodecahedron, 
> icosahedron, 

> octahedron, 

> regular polyhedron, 

> tetrahedron 

colouring of 328-329 

constructions of 66-70 

cosmic figures 144 

definition of 76 

discovery of 70-74 

edge stellation 249 
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Platonic solids (continued) —, degenerate 198, 204 

enumeration of —, elementary 86 

Descartes 188 —, epipedal 286 

Euclid 75 —, flexible 226, 243 

Euler 196 —, impossible 2 

Poinsot 254 —, isogonal » transitive, vertex 

etymology 73 —, isohedral » transitive, face 

Euler’s formula for 190 —, isotoxal » transitive, edge 

symmetry of 290 —, quasiregular 391 

Poinsot formula 254 —, regular-faced 86-92 

pole 297 —, semisolid (Kepler) 150, 173-174 

polygon —, shaky 222 

—-, Petrie 284 -,simple 340 

—, generalised 249 —, simplicial 340 

-, infinite 285 —, star-shaped 368 

—, regular 168 covering number of 250, 258 

—,simple 284 croissant 208 

~, skew 284 cupola 86 

-, spherical 184, 199, 228 definition of 205 
area of 186 Griinbaum 286 

-, star 250 Kepler 150 

—, star-shaped 368 Mobius 209 

—, stellated 168 density of 258 
covering number of 250 heptahedron 176 
density of 258 koilohedron 249 

polyhedra pyritohedron 319, 396 

equality of 219, 247 rotunda 86 
polyhedron Polyhedron Models 178 

> antiprism, polynomial 402 

> Archimedean solids, postulate 60 
> Catalan solids, Practica Geometiae 121 

> compound, primitive concept 59 
> deltahedron, prism 13, 35, 85, 86, 156, 163, 369 

> dipyramid, ch’i block » ch’ien-tu 

t> Miller’s solid, Euler’s formula for 190 

> Platonic solids, in Nine Chapters 25 

> prism, symmetry of 293, 301-308 

> pyramid, with star polygon base 175 

> regular polyhedron, Proclus’ theorem 183 

> rhombic polyhedron, proof 10, 29, 354 

> sphenoid, — by contradiction 30 

> star polyhedron, = by induction 235, 348 

> trapezohedron, -, analytic 100 

> uniform polyhedron -, existence 61 

, acoptic 286 —, synthetic 100 



and computers 354 

how to read one 11 

pseudo rhomb-cub-octahedron » Miller’s 
solid 

pyramid 13, 35, 194, 

> tetrahedron 

-, Egyptian 17 

=) Giza. Vere 71 

-, step 18 

—, visual » visual pyramid 

ch’i block » yang-ma 

colouring of 331, 334, 396 

devil’s staircase 36 

Kuler’s formula for 190 

in Nine Chapters 25 

symmetry of 292 

volume of 

Eudoxus 41 

Liu Hui 38 

with star polygon base 251 

pyrite » crystal, pyrite 

pyritohedron » polyhedron, pyritohedron 

Pythagoreans 32, 71, 96, 148 

doctrine 30, 136 

on music 141 

quadratic equation 402 

quasicrystal 4 

quasiregular » polyhedron, quasiregular 

Quinque Corporibus Regularibus 119, 

124 
quintic equation 402 

radial projection 199 

radian 183 

radiolarian 5 

reduction 350 

reflection 
in a plane » symmetry, reflection 

in a point » symmetry, inversion 

regular polyhedron 172, 389, 

> compound, 

> honeycomb, 
t> Platonic solids, 

> skeleton, 

> star polyhedron 

449 

Cauchy on 259 
Coxeter on 77 

Poinsot on 251 

regular-faced » polyhedron, regular-faced 
regularity 9, 74, 77, 372 

and symmetry 366 

and transitivity 367-372, 385 

Republic 59, 100 

Rhind mathematical papyrus » papyrus, 

Rhind 

rhomb-cub-octahedron 3, 83, 86, 124, 

163, 1/6; 225,9860783 (4.9382 

rhomb-icosi-dodecahedron 8&6, 87, 167, 

342 

rhombic polyhedron 151-156, Fig. 4.11 

dodecahedron 

first) kind. 5,83,  hode oO oh 
gee? 

second kind 156 

icosahedron 156 

rhombohedron 154, 156, 319, Fig. 4.9 

triacontahedron 151, 156, 391, 395, 

Fig. 27 

rigidity conjecture 241 

rigidity theorem 228 

rotamer » isomer, rotational 

rotation » symmetry, rotation 

semisolid » polyhedron, semisolid 

shaky » polyhedron, shaky 

Siamese dodecahedron » dodecahedron, 

Siamese 

simple » polyhedron, simple 

simplicial » polyhedron, simplicial 

singularity 208 
skeleton 116, 124, 282 

-, regular 284 

small stellated dodecahedron 169, 250, 

208, 201, 265, 270, 2825) ig 22-16 

Escher sketch of 171 
snub cub-octahedron » snub cube 

snub cube 85, 162, 370, 375 

cheiral 301 

symmetry of 309 

snub dodecahedron 85, 163 

symmetry of 311 
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snub icosi-dodecahedron » snub dodec- notations 406 

ahedron —operation 291 

snub tetrahedron 85, 375 = abstract 148 

solid angle 13, 189, 191, 228 —, algebraic 403 

bilateral 300 

colour 399 
colour-preserving 398 
compound 305-308 

cubic 308-311 

=, right 185 =) 

—, supplementary 185 a7 

deficiency of 181, 185, 215 > 

measurement of 184 = 

space -, 

continuous 33 =, CyClitsezo2 

discrete 33 —, dihedral 293 

species » vertex, species =, directiy 290 

sphenoid 237, 371, 385, -, gauge 397 
> tetrahedron —, geometric 148 

spherical excess formula 186, 199, 217 ; icosahedral 296, 311-312 

sponge » honeycomb , indirect 300 

stabiliser 388 —, octahedral 295 

star polyhedron 168-173, 203, 233, 256, -, prismatic 301-308 
258.311, 3270301, 072) 609 o09, F189 -, rotation 148, 259 

enumeration of tetrahedral 295 

Bertrand 281 -, unitary 148 

Cauchy 259 glide-reflection 306 

Steinitz’ lmma 235 identity 291 

stella octangula 124, 152, 169, 261, 362, inversion, 306) 312 
3 ea) 82 esl | reflection 84, 300 

acl rotation 290 
-,edge 168 systems of 292-300 

E: face 168.263 rotation-reflection 306, 321 

main sequence 270 pee i Loe 

Miller’s rules for 269 ransiation 

nomenclature 269 Toh Te Ching a0 

stellation pattern 265 tetrahedron 152, 254, 
of dodecahedron 266 

of icosahedron 267 

of rhombic polyhedra 391 

> Platonic solids, 

> sphenoid 

ch’i block » pieh-nao 
steradian 184 colouring of 335, 395 
stereo-isomer » isomer, stereo construction of 66 
striation 301 facets of (none) 281 
Summa de Arithmetica 122, 402 rotating ring of 237 
summit » vertex skeletal form 284 
suspension 242 stellations of (none) 261 
symmetry 289, 290 symmetry of 295, 310 

— breaking 361 The Comparison of the Five Figures 96 
-element 291, 314 The Fifty-nine Icosahedra 269 
— group Timaeus.. ol, 71, A00, 1054130 



topology 182, 206 yang-ma 
totally transitive » transitive, totally 
transitive 367 

= edge: 371. 

—,face 367 

Sas ore 

-, totally 385 

=, vertex 92, 174, 3609, 

> antiprism, 

t> Archimedean solids, 

> prism, 

> uniform polyhedron 
trapezohedron 367 

isosceles 302 

scalene 304 

Trattato del Abaco 119, 122 

triakis icosahedron p icosahedron, tri- 

akis 

truncated cub-octahedron » great rhomb- 

cub-octahedron 

truncated cube 80, 165, 174, 374, 382 

truncated dodecahedron 81, 165, 174 

truncated icosahedron 6, 81, 124, 166 

truncated icosi-dodecahedron » great rhomb- 

icosi-dodecahedron 
truncated octahedron 124, 165, 374, 382 

and Lord Kelvin 80 

truncated tetrahedron 80, 124, 164 

in Piero exercise 119 

truncation 80, 124, 194 

tunnel 207 

type » vertex, type 

undefined term 59 
uniform polyhedron 174-178, 249 

Unterweysung der Messung 126, 156 

valence 191, 192 

vertex 13, 191, 192 

=figure 77, 251 

—species 158 

—type 158 
deficiency of » solid angle, deficiency 

vertex-transitive » transitive, vertex 

Vielecke und Vielflache 237, 267 

visual pyramid 105, 111, 129 

20 

451 
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