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Mathematics possesses not only truth but 

supreme beauty, a beauty cold and austere, like 

that of sculpture, sublimely pure and capable of 

a stern perfection, such as only the greatest art 

can show. 

Bertrand Russell 
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Preface to 1978 reprint 

The study of polyhedra is one area of mathe- 

matics in which the ordinarily abstract and 

speculative considerations of the subject find 

very pleasing and attractive visual applications. 

It is also an area in which both the amateur and 

the expert in mathematics can work with equal 

delight. 

The enthusiastic response which greeted the 

first publication of this book (1971) provided 

ample evidence of this fact, as well as its appear- 

ance in a paperback edition (1974), reprinted in a 

hardcover edition (1975, 1976) and now in still 

another reprint (1978). 

A book which contains as many geometrical 

drawings as this one, all of which demanded 

careful draughtsmanship in the originals, could 

hardly have been printed without errors in their 

reproduction. Every effort was made to correct 

these where feasible in the reprinted editions. 

Further corrections are being incorporated in 

this present edition. 

A word of caution is in place here for the 

dedicated model maker. Although the original 

intention of the book was to provide patterns 

that can be traced from the book and thus used 
directly in making the models, you may find that 

for best results very careful workmanship still 

Vill 

demands that you make your own full scale 

drawings of all facial planes from which the 

patterns or nets are derived. 

For the beginner or the inexperienced this has 

great educational value. For those who already 

possess the required expertise this will avoid their 

being led astray by the book. On the other hand 

in all cases it must be remembered that a model 

is a model. The full delightfulness of any poly- 

hedron model must ultimately be a matter of 

intellectual insight. 
It may be of interest for readers to know that 

a definitive enumeration of uniform polyhedra 

has now been made. John Skilling of the Depart- 

ment of Applied Mathematics and Theoretical 

Physics at the University of Cambridge has 

shown that ‘the list of Coxeter et al. is indeed 

complete as regards uniform polyhedra in which 

only two faces meet at any edge. The natural 

generalization that any even number of faces 

may meet at an edge allows just one extra poly- 

hedron to be included in the set’ (John Skilling, 

‘The complete set of uniform polyhedra,’ Phil. 

Trans. Royal Society of London. Series A, vol. 

278, no. 1278). 

M.J.W. 
January 1978 



Preface 

This book presents a well-defined set of geo- 

metrical solids, the seventy-five (known) uniform 

polyhedra, together with a representative set of 

stellated forms. A description of the‘underlying 

theory of polyhedra is included to bring out the 

relationships that exist between the various 

solids. But mainly this book is simply a set of 

instructions on how to make models of these 

solids. 

The sources in which you can find an account 

of the mathematical theory of this topic are given 

at the end of the book. If in the past you found 

the study of geometry a bit difficult, or if at 

present you are not particularly attracted by 

geometry, you may wonder if this topic will hold 

your interest. The fact is that you really do not 

need to understand all the theoretical mathe- 

matics involved in the original discovery and 

classification of these solids. On the other hand 

you cannot avoid all the mathematics, especially 

the terminology used here and some of the sym- 

bolism. 

The objective in this book will be to set down 

an explanation of the solids, at once simple and 

practical and not too speculative, one sufficient 

for the purposes of constructing the models. It 

is really surprising how much enlightenment will 

come, following the construction of the models 

rather than preceding it, and once you begin 

making them you may find that your enthusiasm 

will grow. You will soon see that each of these 

solids has a beauty of form that appeals to the 

eye in much the same way that the abstract 

mathematics appeals to the mind of a mathe- 

matician: 

You may find the number of models presented 

here overwhelming, some of them extremely 

complex. Why should anyone want to make 

them? Maybe the answer is to be found in the 

reply of a mountain climber when he was asked, 

‘Why do you want to climb the Matterhorn?’ 

‘The mountain is there, isn’t it?’ There is 

another question many people ask when they see 

these polyhedron models: ‘What do you use 

them for?’ Maybe the answer to this is best 

given by a return question: ‘Does beauty need to 

have uses?’ Admittedly the only use a model has, 

once it has been constructed, is for display pur- 

poses. You can make some very attractive 

mobile models, and generally the constructions 

make lovely mantelpieces or centrepieces for 

tables at a banquet on special occasions. Stars 

seem to go with Christmas and here you have 

many star forms to choose from. 

But on a more technical level you may have 

seen polyhedron forms used for space satellites. 

Then again the geodesic dome is found in archi- 

tecture and in engineering projects. Perhaps the 

polyhedral forms presented in this book have 

never been used simply because they have never 

been widely known. 

I have myself constructed all the models pre- 

sented here and shown in the photographs. How 

long did it take me? My interest in this topic 

began in 1958 with a summer course at Columbia 

Teachers College in New York. During the fol- 

lowing year I made my first set of models, those 

given in section 1 of this book. My main source was 

Mathematical recreations and essays by Coxeter 

and Ball. Then between 1959 and 1961 I made 

all those in Mathematical models by Cundy and 

Rollett. Next I tackled The fifty-nine icosahedra 

by’ Coxeter, Du Val, Flather, and Petrie. I suc- 

ceeded in working out my own nets for each of 

these. The set graced the back wall of my mathe- 

matics classroom, growing as I completed each 

one between 1961 and 1963. The average work- 

ing time spent on each was about eight hours, 

plus three or four hours each to discover suitable 

nets. On the completion of this project I wrote to 

Professor Coxeter asking about Uniform poly- 

hedra. He kindly sent me a complimentary copy, 

one of three he still had in his possession. This 

monograph is a detailed account of the mathe- 

matical theory of uniform polyhedra. But for 

the purposes of making the models I inspected 

the drawings, done by J.C. P. Miller and col- 

“Tected together at the end of the monograph, to 



discover the facial planes from which I derived 

the parts. These facial planes are now being 

presented in this book. A set of photographs was 

also given in the monograph; these show wire 

models made by M.S. Longuet-Higgins, but 

they sometimes represent more than one poly- 

hedron, so they are not the same thing at all as 

the models presented here. 

My working time on the non-convex uniform 

polyhedron models varied greatly. The simpler 

ones took three or four hours each, the average 

would be near eight or ten hours each, a few of 

the complex models took twenty or thirty hours 

work. Two of the non-convex snubs required 

more than one hundred hours work each. Now 

that the work is complete, I must admit I myself 

am amazed. But the Chinese proverb applies: If 

you want to make a journey of a thousand miles, 

you begin by taking the first step. One step leads 

to the next, and soon the beauty of the country- 

side makes you forget the toil of the road. 

A special word of thanks is extended to Mr R. 

Buckley for his truly remarkable calculations on 

the snub polyhedra and for his astoundingly 

detailed drawings of their facial planes. Without 

his help the book could never have been com- 

pleted. Also a word of thanks to Dr H. Martyn 

Cundy for his deep interest in the book at all 

stages of its preparation, and to H. S. M. Coxeter, 

J.C. P. Miller and M. Longuet-Higgins, who did 

the original research for Uniform polyhedra, and 

who have provided the source of inspiration from 

which this book springs. Each in turn provided 

further encouragement and help to complete the 

task. Thanks are also due to Stanley Toogood for 

the photography, to the Syndics of Cambridge 

University Press for accepting the book for 

publication, and to the editorial staff of the 

Press who in an admirable way met the challenge 

of producing it. 



Foreword 

Interest in polyhedra runs through the whole 

gamut of intellectual activity from the two-year- 

old child who plays with wooden cubes to the 

mature mathematician who studies the subtle- 

ties of Branko Griinbaum’s Convex polytopes 

(Wiley, New York, 1967). Some of the regular 

and semi-regular solids occur in nature as 

crystals, others as viruses (revealed by the elec- 

tron microscope). Bees made hexagonal honey- 

combs long before man existed, and in human 

history the making of flat-faced solids (such as 

pyramids) is as ancient as any other kind of 

sculpture. The five regular solids were studied by 

Theetetus, Plato, Euclid, Hypsicles, and Pappus. 

A considerable portion of the present book is 

devoted to ‘uniform’ polyhedra, which have the 

same arrangement of regular polygons at every 

corner. (Such a polyhedron is ‘regular’ if the 

polygons are all alike.) In any convex solid, a 

theorem of Euclid tells us that the angles at a 

corner must add up to less than 360°. After 

making a few models for himself, the reader will 

soon discover that the amount by which the 

angle-sum falls short of 360° is quite consider- 

able when there are few corners (e.g. 90° for the 

cube, which has eight Corners) but much smaller 

when there are many (e.g. 12° for the snub 

dodecahedron, which has sixty corners). This 

observation was fashioned into a theorem by 

René Descartes (1596-1650), who proved that 

the angular defect, added up for all the corners, 

always makes a total of 720°. 
At about the same time, Johann Kepler (1571- 

1630) wrote an essay on The six-cornered snow- 

flake (English edition, Oxford, 1966), in which 

he revealed his fondness for these figures by 

remarking (p. 37): ‘Now among the regular 

solids, the first, the firstborn and father of all the 

rest, is the cube, and his wife, so to speak, is the 

octahedron, which has as many corners as the 

cube has faces.’ It was Kepler who first pub- 

lished a complete list of the thirteen Archi- 

medean solids, giving them the names by which 

they are still known. (The work of Archimedes 

himself had been lost, presumably in the great 

fire of Alexandria, which was so poignantly 

dramatized by Bernard Shaw in Caesar and Cleo- 

patra.) Kepler also proposed the problem of 

enumerating the isozonohedra (convex polyhedra 

whose faces are congruent rhombi), and partially 

solved it by discovering the (first) rhombic dode- 

cahedron and the triacontahedron. But his most 

important contribution to the ideas of the 

present book was his proposal to consider non- 

convex polyhedra whose faces are stellated poly- 

gons such as the pentagram (fig. 21). He was 

probably unaware of the earlier work on stel- 

lated polygons by Thomas Bradwardine (1290- 

1349), who became Archbishop of Canterbury 

for the last month of his life. 

Salisbury Cathedral is such a magnificent 

building, full of interesting relics, that many 

visitors fail to notice the tomb of Thomas 

Gorges, who died in 1610. The stone-carved 

decorations include a dodecahedron, three icosa- 

hedra, and two cuboctahedra, all ‘skeletal’ in the 

style of Leonardo da Vinci (1452-1519) who had 

made skeletal models of many uniform poly- 

hedra using rods to represent the edges. A few 

miles to the south-west is the pleasant village of 

Wimbourne St Giles, where Antony Ashley was 

buried in 1627. His tomb is embellished with a 

truncated icosahedron, not skeletal but a solid 

looking just like the author’s model 9. 

Since the time of Descartes, many other great 

mathematicians have contributed to this subject. 

Euler discovered and proved the famous 

formula y ore re 

which connects the numbers of vertices, edges, 

and faces of any convex polyhedron. Gauss used 

an irregular spherical pentagram (his penta- 

gramma mirificum) to explain Napier’s rules in 

spherical trigonometry. Cauchy proved that 

every convex polyhedron with rigid faces and 

hinged edges is rigid. Hamilton invented the 

Icosian Game (W. W. Rouse Ball, Mathematical 

- recreations and essays, Macmillan, 1967, p. 262). 

Xl 



Von Staudt gave a new proof for Euler’s for- 

mula. Schlafli extended the theory to n dimen- 

sions. Klein wrote a highly influential book 

called Lectures on the icosahedron. Fedorov 

returned to Kepler’s problem of isozonohedra, 

discovering a strangely oblate-looking rhombic 

icosahedron; and Bilinski (as recently as 1960) 

completed the enumeration by discovering a 

second rhombic dodecahedron which would fit 

snugly into a box of unit height, breadth 7 and 

length 7”, where 7 is the number (4/5+ 1)/2 which 

belongs to the celebrated ‘divine proportion’ or 

‘golden section’. 

XII 

In his infectiously enthusiastic style, the 

author gives clear instructions for making 

models of many kinds of polyhedra. These in- 

structions are illustrated by photographs of his 

own collection, including what is almost certain- 

ly the only complete set ever made of the known 

uniform polyhedra. But photographs cannot 

really show the models in their full splendour. 

The most complicated ‘snub’ solids are not only 

extremely difficult to make but also highly decor- 

ative: a perfect instance of the connection 

between truth and beauty. 
2. H.S.M.C. 



Introduction : uniform polyhedra 

If you are being introduced to this topic for the 

first time, your first question might well be 

“What is a polyhedron?’ You may recall that 

geometry itself is sometimes (not ‘too exactly) 

defined as the study of space or of figures in 

space—two dimensional for plane geometry and 

three for solid geometry. The idea of sets is per- 

haps familiar also. If you use the language of 

sets, a plane figure may be defined as a set of line 

segments enclosing a portion of two-dimensional 

space. Such a plane figure is called a polygon. A 

polyhedron is then defined as a set of plane 

figures enclosing a portion of three-dimensional 

space. 
All the terms used in this subject are derived 

from classical Greek. Plato, the famous Greek 

philosopher, left the imprint of this thought 

deeply fixed in Euclid’s Elements. This ancient 

book, for centuries the only textbook of geo- 

metry, was concerned with ‘ideal’ lines and 

‘ideal’ figures. The ideal lines are straight and 

the ideal polygons are regular, that is, they have 

all sides and all angles equal. The simplest 

regular polygon is the equilateral triangle. It is 

the simplest because it has the least number of 

line segments possible to enclose a portion of 

two-dimensional space. It is an interesting fact 

that Euclid’s Elements begins with a proposition 

describing how to construct an equilateral tri- 

angle and ends with a study of the five regular 

solids. Each of these has regular polygons of the 

same kind for all its faces. They are known today 

as the five Platonic solids. The tetrahedron, 

which has four equilateral triangles for its faces, 

is the three-dimensional analogue of the two- 

dimensional equilateral triangle. It is the sim- 

plest polyhedron, since it has the least number of 

faces possible to enclose a portion of three- 

dimensional space. 

With the equilateral triangle the following 

polygons enter the picture: the square (four 

sides), the pentagon (five sides), the hexagon (six 

sides), the octagon (eight sides) and the decagon 

Once you begin to make the models described in 

this book, you will quickly learn to draw all 

these figures accurately and will become ac- 

quainted with important properties belonging to 

each, especially the number of degrees in each 

interior angle. Not all the regular polygons are to 

be found in the regular solids; in fact only three 

are used. The hexahedron (six faces), commonly 

called the cube, has squares; the octahedron 

(eight faces) again has equilateral triangles; the 

dodecahedron (twelve faces) has all pentagons; 

and finally the icosahedron (twenty faces) has 

twenty equilateral triangles. Euclid’s Elements 

closes with a proof that there are only five 

regular polyhedra. 

A little experimenting with cardboard figures 

will soon lead you to see the reasoning behind a 

formal proof. Just as in a polygon two sides 

meet at a point called a vertex of the figure, so in 

a polyhedron two faces meet at or on a line (or 

in a line—the mode of expression is variable). 

Thus each face shares one of its sides as a line in 

common with another face. These lines are 

called the edges of the polyhedron. So each edge 

of a polyhedron belongs to exactly two faces and 

no more. The edges all meet at a point called a 

vertex of the polyhedron. 

In the tetrahedron three edges meet at each 

vertex, or to put it another way, each vertex is 

surrounded by three triangles. It is enlightening 

to lay out these three triangles flat and to notice 

the sum total of the number of degrees in the 

angles at a common vertex. Three sixties give 180 

degrees. If a fourth triangle is introduced the 

total is 240 degrees, but now you have a vertex of 

the octahedron. Introducing a fifth triangle gives 

300 degrees, and you have a vertex of the icosa- 

hedron. A sixth triangle gives 360 degrees and 

you can see immediately that no polyhedral 

vertex arises. Everything stays flat. 

Next you can try squares. A minimum of three 

is required, three 90s give 270 degrees, and a 

vertex of the cube can be formed. Adding a 

(ten sides), all of course only as regular polygons. ° “fourth square brings the total to 360 degrees and 



again you are left—flat. With pentagons the 

minimum of three will give you a vertex of the 

dodecahedron; four are too many, the total 

going beyond 360 degrees. With hexagons the 

minimum of three is already too many, three 

times 120 degrees. So no regular polyhedron 

exists with only hexagons for faces. And simi- 

larly for polygons with any greater number of 

sides. In this way you can see that only five 

regular solids are possible. 

There is another set of solids known as the 

Archimedean or semi-regular solids. These all 

have regular polygons as faces and all vertices 

equal but admit a variety of such polygons in one 

solid. There are thirteen such solids and they are 

ascribed to Archimedes because he first enumer- 

ated them, although his work on them has been 

lost. References to his work on this subject are 

found in the writings of Pappus, a mathematician 

of the third century A.D. Kepler was the first of 

the moderns to formulate a complete theory 

concerning them. 

The Archimedeans can be broken down into 

various subsets. There are first of all the five 

derived by the process of truncation from the five 

Platonic solids. To truncate literally means to cut 

off. Truncation thus implies the removal of some 

portion of a solid, actually the removal of a 

portion near each vertex along with the vertex 

itself. This can be done to the Platonic solids in 

such a way that the new faces are again regular 

polygons while the portions of the former faces 

that are left also form new regular polygons. For 

example the tetrahedron can be truncated so that 

the four triangles become four hexagons and the 

new faces are four new triangles. Five Archi- 

medeans are thus generated. They are named 

simply: the truncated tetrahedron, the truncated 

hexahedron (cube), the truncated octahedron, 

the truncated dodecahedron, and the truncated 

icosahedron. Another subset, containing only 

two members, is that known as the quasi- 

regular polyhedra. The designation ‘quasi-’ 

implies that the solid has only two kinds of 

faces, each face of one kind entirely surrounded 

by that of the other kind. They are the cubocta- 

hedron and the icosidodecahedron. You will find 

a fuller treatment of these two later on in this 
book (see pp. 25 and 26). 

Then there are the two called the rhombi- 

cuboctahedron and the rhombicosidodecahe- 

dron. These two are sometimes named the small 
rhombicuboctahedron and the small rhombi- 

cosidodecahedron to distinguish them from two 

others called the great rhombicuboctahedron 

and the great rhombicosidodecahedron. If trun- 

cation is applied to the two quasi-regular solids, 

the cuboctahedron and the icosidodecahedron, 

the new faces that arise are at best rectangles and 

thus do not Come out as regular polygons. But 

with some modifications these rectangles can be 

turned into squares. Because of this some 

authors refer to the great rhombicuboctahedron 

and the great rhombicosidodecahedron as the 

truncated cuboctahedron and the truncated 

icosidodecahedron. In this book they are named 

the rhombitruncated cuboctahedron and the 

rhombitruncated icosidodecahedron. The prefix 

rhombi- implies extra square faces (across edges) 

of the two quasi-regular solids. With this the 

designation small may be dropped from the 

names of the former two. 

Finally there are two snub versions, one of the 

cube and one of the dodecahedron. This snub 

quality gives these a twisted appearance which 

makes each of them turn out in either of two 

forms—with a right- or left-handed twist. These 

mirror image pairs are also called enantio- 

morphous pairs. 

If you are ambitious enough and systematic 

enough you can also prove to your own satis- 

faction that the total enumeration of thirteen is 

complete, that there are no more, by using the 

same approach here that you used for the five 

Platonic solids. The appropriate theorem from 

solid geometry that applies here states that the 

sum total of the face angles of any convex poly- 

hedral angle is less than 360 degrees. After you 

have tried all possible combinations of regular 

polygons for which this theorem remains true 

you will come up with exactly the thirteen 

Archimedean solids, and two infinite families, 

the prism (with square side-faces) and anti- 

prisms (with equilateral triangular side-faces). 



(For further details see L. Lines, Solid geometry, 

pp. 159-67.) ; 

The union of these two sets, the Platonic and 

the Archimedean solids, together with the two 

infinite sets of prisms and antiprisms, yield the 

set known as the convex uniform polyhedra. A 

polygon is convex if no interior angle is greater 

than 180 degrees. Analogously a polyhedron is 

convex if no dihedral angle (formed by the inter- 

section of two faces with its vertex on or in an 

edge) is greater than 180 degrees. Convex is the 

opposite of concave, bending in on itself. A 

polyhedron with dimples, dents or grooves in it 

would be non-convex or concave. The word 

‘uniform’ implies that all faces are regular poly- 

gons and all the vertices of the polyhedron are 

alike. In a uniform polyhedron the polygons 

around any vertex occur in the same order in 

every other vertex. For example in the rhombi- 

cosidodecahedron the order going around a 

vertex is: a triangle, a square, a pentagon, and 

another square. The same holds true at every 

vertex. 

The word ‘enantiomorphous’ occurs fre- 

quently in the following pages. It simply means 

the property of being right- or left-handed, as ina 

pair of gloves, or in mirror image pairs. In colour 

arrangements, if the order around a vertex of a 

polyhedron is taken in clockwise rotation, the 

enantiomorphous arrangement will be obtained 

by taking the same order of colours in counter-. 

clockwise rotation. 

The following abbreviations will be used for 

colours: Y yellow, B blue, O orange, R red, 

G green, W white, T tan. 

All this terminology and all these classifica- 

tions will undoubtedly become clearer to you 

and more meaningful after you have made the 

models in section 1, the convex uniform polyhedra. 



Mathematical classification 

This section may be omitted at a first reading. 

A uniform polyhedron can be enclosed within a 

sphere, so that its axes of symmetry pass through 

the centre of the sphere. By central projection 

the edges of the polyhedron can then be made to 

generate a network of arcs of great circles de- 

composing the surface of the sphere into spheri- 

cal polygons, one for each face of the polyhedron. 

The planes of symmetry of the solid will like- 

wise decompose the surface of the sphere into a 

network of spherical triangles, four for each 

edge of the solid if it is a Platonic solid. These 
spherical triangles are called Mobius triangles, 

because it was Mdébius (1849) who first ob- 

served this. He illustrated this fact by means 

of his polyhedral kaleidoscope, consisting of 

three mirrors forming a trihedral angle. Given 

certain dihedral angles between these mirrors 

and given an object to mark a point, the 

images of the object (together with the object 

itself) mark the vertices of the polyhedron. 

Another perhaps easier illustration of Mobius 

triangles is simply a special set of great circles 

inscribed with chalk on a slated globe. Some 

of the intersections of the great circles mark 

the vertices of the polyhedron. This tessellated 

network of spherical triangles covers the globe 

once. All the triangles are congruent. 

In symbols one of these triangles can be des- 

cribed by (pqr) where p, q, r are integers and the 

angles of the triangle ares. 7 - Here p, g, r can 

only be 2, 3, 4, or 5. But one or more of p, q, r 

may be rational; that is, certain fractions may be 

used as replacements for p, q, r, leading to 

Schwarz triangles. It was Schwarz (1873) who 

first listed the possibilities. It has been shown 

that a set of Schwarz triangles covering the globe 

more than once but still a finite number of times 

is equivalent to a set of MO6bius triangles. Thus 

Schwarz triangles may be classified as tetra- 

hedral, octahedral or icosahedral, depending on 

the Mdbius triangles to which they are related. 

(For further information see: Coxeter ef al., 

Mathematical recreations and essays, Regular 

polytopes, and Phil. Trans. (1954), 246a, 401. 

These ideas are easier to visualize with the aid 

of models. You can make your own polyhedral 

kaleidoscope with three mirrors cut in the shape 

of circular sectors. The radius must be fairly 

large, twelve inches or more; the central angles 

of these sectors must be as follows: 

for the tefrahedral kaleidoscope 54° 44’, 54° 

44’, 70° 32’; 

for the octahedral 35° 16’, 45°, 54° 44’; 

for the icosahedral 20° 54’, 31° 43’, 37° 23’. 

Interesting as it is to p/ay with these mirrors, they 

are not always so easy to come by, nor are they 

completely satisfactory. So it is just as good or 

better to make models of the spherical triangles 

using the same index card or coloured tag you 

use in the other models. By repeating these 

spherical triangles a sufficient number of times 

you can make a model of the entire sphere as an 

intersecting set of great circles. In fact the 

colours can be worked out so that they illustrate 

the great circles but this calls for more work than 

is needed in a model all of one colour. 

The tetrahedral case is the easiest to begin 

with. The parts are cut as shown in fig. 1. 

Score these parts on the radial lines, then fold 

them forming a model of a spherical triangle. 

The cementing is done using only one tab as 
shown. Twenty-four of these are needed and 
they are simply cemented to each other, flat sur- 
face to flat surface, so that the tab joint dis- 
appears between the two surfaces. You may do 
the work in sections. One of these sections has 
six spherical triangles as shown in fig. 2. The 

angles are 7 * oe Four of these sections 

complete the model. 

For the octahedral case you may follow the 
same procedure with another set of parts shown 
in fig. 3. Forty-eight of these are needed, two 
enantiomorphous sets of twenty-four in each. 
You may make these any convenient size. In fact 





Fig. 7 Fig. 8 

you may make the circular band wider or nar- 

rower as you please, even leaving all the interior, 

which of course will bring you right to the centre 

of the sphere. The sections in this case begin to 

reveal the fact that the octahedron is the dual of 

the cube, since one of these sections may be the 

eight spherical triangles eee as shown in 

ie thf 
fig. 4. The angles are 493? 

sections complete the model. 

The icosahedral case calls for more work 

because of the greater number of parts, but the 

procedure is still the same. It is well worth the 

effort it takes, because it will bring you a great 

deal of enlightenment. The openness of the 

model on the interior has great advantages. One 

hundred and twenty of these parts are needed, 

two enantiomorphous sets of sixty in each. The 

sections are pentagonal, ten seus. triangles 

Six of these 

to a section. The angles are Twelve of 
> 3 3 

these sections (see fig. 6) complete the model. 

There is still another way to make models 

fi 

Fig. 9 

illustrating Mobius triangles. It amounts to 

making a polyhedron whose faces are plane 

triangles wh the same vertices as the spherical 

triangles. If the sides of a spherical triangle are 

P, q, r, namely p, g, r are the angles subtended at 

the centre of the sphere, the corresponding plane 

triangles have sides proportional to 

sin 4p : sin 4q : sin 4r. 

The three cases are shown in figs. 7, 8 and 9 

and of course they call for the same number 

of parts respectively as the spherical triangles 

to which they correspond. The models may also 

be done by following the same sectional pro- 

cedure as for the spherical cases. The numbers are 

approximate measures in linear units of the sides 

of these triangles. If you use centimetres you can 

get satisfactory results. 

You can also get some striking colour effects 

by making one set of triangles all W and then 

the others in the usual colours. The drawings 

below show the respective sections and their 

colour tables. 

MS] Ps 
Fig. 10 tos “AS AAS 

beg2a3 ] asses (See p. 18 for the 

() a¥e BO: (0) > ¥ Be Ougk: icosahedral table.) 
(2)-—¥eR-B (ly) “OR BUY 

(3) BRO (2) “RY¥- OnB 

(4) OR Y (The other three are 
enantiomorphic to these.) 



A. Tetrahedral 

B. Octahedral 

C. Icosahedral 



Note that the tetrahedral case has the sections 

numbered (1), (2), (3), (4). The tetrahedron and 

the truncated tetrahedron are the only uniform 

polyhedra that do not have their vertices distri- 

buted in diametrically opposite pairs. The (0) 

section in the other two cases may be taken as 

the north polar section. Then in the octahedral 

case (1) and (2) are cemented in place something 

like the faces of a cube. These are followed by 

the enantiomorphous arrangement of the same 

two sections, thus completing the four side-faces 

of the cube. The enantiomorph of (0) then com- 

pletes the model. The icosahedral case is the 

most interesting. You may begin with the (0) 

section, cementing together ten triangles alter- 

nating W with one of each of the colours. Follow 

the icosahedral colour arrangement as shown on 

p. 18. Then as you complete each of the other 

6 

Fig. 13 

sections (1), (2), (3), (4), (5), cement it to the (0) 

section first and then to its neighbour in dodeca- 

hedral fashion. The next set of six sections have 

the enantiomorphous order of colours. They are 

placed diametrically opposite their counterparts. 

You will be delighted with the pin-wheel ap- 

pearance that turns up on all three of these cases. 

It is most pronounced in the icosahedral case. 

It is worth mentioning here that these three 

models are actually Archimedean duals. Dual 

solids are those which have the same number of 

edges as the original solids from which they are 

derived, but there is an interchange in the 

number of faces-and vertices. Moreover the 

kinds of faces and vertices are such that an 

n-sided face in the original solid yields an 

n-edged vertex in the dual solid. The three poly- 

hedrons just described thus turn out to be duals 

of 7, 15 and 16, respectively. 

Once you have made these models it is a good 

exercise in spatial imagination to use them, es- 

pecially the spherical models, to locate the faces, 

edges and vertices of the convex uniform poly- 

hedra. The diagrams here may serve as a guide. 

The numbers designate the vertices whose 

images are the vertices of the polyhedron desig- 

nated by the same number in the summary, p. 9. 

The snubs, 17 and 18, are not indicated below. 

The vertices of these depend on a suitable point 

being chosen within the triangles. The exact 

4 

13 ‘ 14 

8 3 2 Tita. 

Fig 14 Fig. 15 

mathematical details can be found in L. Lines, 

Solid geometry, pp. 175-84. The construction 

there relates the snubs to the circumscribed cube 

and dodecahedron, showing how to find the 

vertices of the snubs on the faces of the cube and 

dodecahedron. Then by central projection these 

same points can be located in the spherical 

triangles. 

The summary that follows is an attempt to 
bring together the various aspects relating prin- 

cipally to the symbols used for each polyhedron. 

You need not master this material to make the 



Summary of convex uniform polyhedra together with their symbols 

Regular polygons: 

triangle square 

{3} {4} 
hexagon 

{6} {8} 

Uniform polyhedra: 

Platonic solids (regular solids) 

1. tetrahedron 

pentagon 

{5} 
octagon decagon 

{10} 

3,3} =3/23= 38 
2. octahedron 4354) = 4} Deans? 

3. hexahedron (cube) {4, 3} = 3|24= 48 

4. icosahedron hoy = Selle Bessy 

5. dodecahedron Oo SS See 

Archimedean solids (semi-regular solids) 

6. truncated tetrahedron 

7. truncated octahedron 

8. truncated hexahedron 

9. truncated icosahedron 

13. (small) rhombicuboctahedron 

14/ (small) rhombicosidodecahedron 

15. rhombitruncated cuboctahedron 

t3; Ba=2_3 | 3 =3 .6* 

URS CB es NII eee 

044-3} =: 293.4 938" 

t (3, 5} 

10. truncated dodecahedron t{5, 3} 

11. cuboctahedron (quasi-regular) 

12. icosidodecahedron (quasi-regular) 

=25|3=5.6 
23|5= 3.10 

{4} =2|34= (3.4)? 

G} = 2/3 5=.3.5) 
rG} =34/2= 3.49 
r3} =35|2=3.4.5.4 
to) 123.4 = 46.8 

16. rhombitruncated icosidodecahedron t{3} = 235| = 4.6.10 

17. snub cube 

18. snub dodecahedron 

models in this book, but it is interesting to know 

that the details have been worked out. If you 

should ever want to undertake further investiga- 

tion in this field you would have to be thoroughly 

acquainted with the details. 

The Schlafli symbol is given first, then the 

symbol with dashes, “|” as used in Uniform 

polyhedra, then another symbol as used in 

Mathematical models. In the symbol {p, q}, p 

= 
5G), = 

|234 = 34,4 

| 235 = 34,5 

names the polygon that appears in the vertex 

figure. For an explanation of the dashes, see the 

following page. simply names the two kinds 

of polygons found in the faces of the quasi- 

regular solids. It is an extension of the Schlafli 

symbol. So too are t, r, s to mean truncated, 

rhombic and snub respectively. Rhombic implies 

the existence of extra square faces. Snub implies 

names the polygon that appears in the faces, q- - the existence of extra triangular faces. 



Fig. 16 

The meaning of the dashes, “|”, may be briefly 

summarized as follows: A spherical triangle 

PQR whose angles are Fe “may also be named 

(pqr). In terms of the polyhedral kaleidoscope: 

The polyhedron whose vertices are the images 

of P is p|qr (or p|rq). 

p\q2 = p\2q = (4, DP} 
q|p2 = 4\2p = {p, 9} 

2|pq = ee 

The polyhedron whose vertices are the images 

of C is gr|p (or rq|p). C is the point of inter- 

section of the bisector PC of the angle QPR 

with the opposite side QR. 

arf Pq| 3 

2q|\pr= (Ap, gs. 

10 

The polyhedron whose vertices are the images 

of D is pgr|. D isthe incentre of the triangle 

POR. 

pqt |= prq| = qt p| = ete. 

2pq|= t i pq| : 

E and F apply only to the non-convex uniform 

polyhedra. They are given here to complete the 

summary. PE is the external bisector of the angle 

at P. F is the excentre. 
1 Dota 

Suppose the angle O’PRis — ; then—+—=1. If pp gleQ p peep 

the angle PRO is 47, then the polyhedron 

whose vertices are the images of E is 2q|p’. 

a eae, 4 
P'q| i 

2q|p’ = t'{p, gq}. 
The polyhedron whose vertices are the images 

of Fis 2 p’q|. 

; ,\P 
2, szit : p'g| q 

The polyhedron whose vertices are the images 

of a suitable point within PQR is | pqr. 

ams). 
The symbols r’ and t’ stand for quasi-rhombic 

and quasi-truncated respectively. 



The Convex Uniform Polyhedra 

The Platonic and Archimedean Solids 
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General instructions for making models 

The first thing you must do to make a model of 

any polyhedron is to make an accurate drawing 

for the required parts. For the convex polyhedra 

these are simply polygons of 3, 4, 5, 6, 8, and 10 

sides. But you must remember that in any one 

polyhedron all the edges must be the same length. 

Hence the polygons belonging to one poly- 

hedron must have sides of the same length. As 

you can see from a drawing, the decagon, for 

example, is very large compared to a triangle 

with the same edge length. You must keep this in 

mind when making the models and choose a 

suitable scale. This will be determined by how 

you want to use the polyhedron and where you 

intend to display it. In the following descriptions 

of the individual models a value is given for the 

circumradius, that is, the radius of a circum- 

scribing sphere, in terms of a polyhedral edge 

length of 2 units. This will help you to determine 

how big the completed model will turn out to be. 

Doubling the radius gives you the diameter and 

this can be taken as an approximate value for 

the height of the completed model. 

Once you have carefully drawn the parts, 

namely the required polygons, it is best to make 

a template. This is done by placing the drawing 

of the polygon over a piece of card or stiff paper. 

Index card stock or coloured tag is recom- 

mended. Then prick through at each vertex with 

a probing needle. The kind found in a biology 

dissecting kit serves the purpose very well. You 

may then draw pencil lines from hole to hole and 

trim the card with scissors leaving about a 

quarter inch border all around outside the 

pencil lines. This is your template. 

It is now a simple and easy matter to multiply 

copies of the parts any number of times. This is 
done by placing the template on top of a number 

of sheets of card. It is best to staple the sheets 

together. Usually four, five, or six parts are your 

requirements at any one time and this will then 

be the number of sheets of card, say one of each 

colour needed, that you may staple together. 

Now again using the probing needle prick 

12 

through at each vertex, using the template for 

this purpose as a guide. You may draw pencil 

lines around the edges of the template before 

you move it to its next position on the sheets of 

card. In this way you can prick as many patterns 

as you need or wish to do at one time. Your next 

step is to cut with scissors along the pencil lines 

left by outlining the template while the sheets of 

card are still held together by the staples. The 

sheets may have a tendency to move slightly 

while you are cutting, but this is not too serious 

because the quarter inch border all around gives 

you a little leeway. But once the pieces have been 

cut in the way just described you will get best 

results from here on by handling each part in- 

dividually. With a sharp pointed instrument such 

as the point on geometry compasses, you must 

now score the card using a set square or ruler for 

a straight edge. If you plan to do a lot of model 

making it will pay you to take the filler from a 

ball-point pen and replace it with the steel point 

from the compasses. A mimeograph stylus also 

serves the purpose very well. You must draw the 

scoring lines to connect the needle holes. Pencil 

lines are not needed, since the process of scoring 

sufficiently outlines the shape of each part. More 

accurate trimming with scissors must now be 

done. As mentioned before you will get best 

results by handling each part separately. Cut 

directly through or into the needle holes and out 

again so that the quarter inch border is left as a 

tab. Then fold the tabs down. The scored lines 

make this a simple and accurate operation. 

These tabs will be used for cementing the parts 

together. Where the parts have more acute 

angles, you must trim the tabs again after the 

folding. If done before, you will find the folding 

more difficult. Experience will teach you how 

much trimming to do and how accurate it must 

be for best results. The rule is to leave as much as 

possible for the cement to hold and to remove 

as much as necessary so no jamming occurs at 

the vertices on the interior of the model. 

A good household acetone cement provides 



the best adhesive since it is quick drying and 

adheres very firmly. The procedure ‘is to apply 

the cement all along one tab, then to join the tab 

from another part to it, to move these parts back 

and forth slightly to help spread the cement 

evenly on both parts, then to manceuvre the 

parts into accurate positions before ‘the cement 

becomes too stiff. You will find a pair of tweezers 

helpful at times, especially as the work pro- 

gresses and the model begins to take shape. 

Clamps are also helpful and even necessary on 

more intricate models. You can make your own 

clamps by taking clothes pegs of the coiled wire 

spring variety and turning them inside out, 

namely separating the parts to get the two 

wooden prongs reversed and then replacing the 

spring between them. 

You will find that the method of assembly for 

polyhedron models suggested here will generally 

give you fairly rigid results, since the tabs serve 

as interior structural ribs along all the edges of 

the model. For this reason it is best to follow the 

general rule of leaving tabs all around on every 

part. It is only occasionally and in fact only 

rarely that you may have to depart from this 

procedure. This occurs only in the more complex 

models described later on in this book. For all 

the convex polyhedra it is best to leave all the 

tabs. ‘ 

The convex uniform polyhedra are presented 

first. They are the easiest to make and you will 

find it best to begin with them. In each case the 

symbol designating the polyhedron is set down, 

followed by the kind and number of polygons 

comprising the facial planes of each polyhedron, 

then the circumradius for the edge length of two 

units and finally the vertex figure. The symbol is 

not too important for the purposes of making the 

models. It belongs more to the mathematical 

analysis and classification of these geometrical 

solids (see p. 9). The number of faces and the 

kind of polygons appearing as faces are given by 

4{3}+4{6}; that is, the polyhedron has four 

triangles and four hexagons for its faces. 

This information will help you to prepare the 

right number and the right kind of polygons in 

each case. In the instructions given for making 

individual models the word net is frequently 

used. In its context it simply means any part or 

parts needed in the construction of a poly- 

hedron. Thus the word, as it is used in this book, 

will mean the drawing of the part or parts 

needed for a template. The vertex figure is also 

given because it is very helpful in giving you 

information about the order in which the poly- 

gons surround each vertex of the polyhedron. 

You may think of the vertex figure as the base of 

a pyramid, all of whose slant edges are of unit 

length. Or to put it another way, you may choose 

any vertex of a polyhedron and take note of the 

edges meeting at that vertex. Then the points on 

these edges each a unit length from the vertex of 

the polyhedron will be the vertices of the vertex 

figure. Every uniform polyhedron is character- 

ized by its vertex figure which is a cyclic polygon 

(cf. Coxeter, 1954, p. 404). 

For colour arrangements the map colouring 

principle generally gives the most striking effects ; 

namely, polygons sharing a common side (meet- 

ing at an edge) must be of different colours. 
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1 The tetrahedron 

The simplest of all polyhedra is the tetrahedron. 

It has four equilateral triangles for faces. This is 

the least number possible to enclose a portion of 

three-dimensional space. Certain properties im- 

mediately appear in it which are characteristic of 

the entire set of uniform polyhedra. All its faces 

are regular and each face shares its edges with 

just one other face. Also all its vertices are alike. 

A model of the tetrahedron can be made by 

using one net for the entire solid as shown. How- 

ever by doing it this way, you will have all faces 

the same colour. So too all the convex polyhedra 

can be made of one net and thus of one colour. 

(See Cundy & Rollett, Mathematical models.) 

But if you want each face of the tetrahedron, and 

more generally each face of any polyhedron, to 

be a different colour, then you should prepare 

individual nets for each face that is a different 

polygon. For the tetrahedron all you need is one 

net, an equilateral triangle. Prepare four parts, 

each one with tabs all around as shown and each 

of a different colour, say Y, B, O, R. Then 

cement these four triangles together in the same 

position as shown. Now bring the remaining tabs 

together, cementing one pair first and letting 

this set firmly. Then apply cement to both re- 

maining tabs and close the triangle down as you 

would close the lid on a box. The model exerts 

its own pressure and your fingers can do the rest 

along the edges until the cement is set. 

14 

3/23 = 3,3} 
4 {3} 
V3 



4|23 = 3,4} 
8 {3} 
ND) 

2 The octahedron 

This is the polyhedron, whose faces are com- 

posed of eight equilateral triangles. Here 

opposite faces lie on parallel planes, so four 

colours serve very well. You may begin the 

construction of a model of this polyhedron by 

cementing four triangles as shown. When the 

remaining tabs between triangles 1 and 4 are 

cemented, you will have a square pyramid with 

triangular slant side faces but without the square 

base. The other tabs remain at the edges of this 

base. This section completes half the model. 

The other half is enantiomorphous to the first 

half. Actually it is simpler to continue your work 

by cementing four triangles, one at a time, to the 

four tabs around the edges of the open square 

base. It is easy to watch the opposite faces to get 

the right colours. Then the tabs between adjacent 

triangles may be cemented and the last triangle 

again closed down like a lid. You may now ob- 

serve that the square which showed its edges on 

the completion of the first section is actually only 

one of three such squares in the completed 

model. The three squares have edges on three 

mutually perpendicular equatorial planes. This 

fact is utilized in one of the non-convex uniform 

polyhedra 67 to be described later. 

oe wd OY mr 
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3 The hexahedron (cube) 

The most commonly known and most widely 

used of all polyhedra is undoubtedly the cube, or 

to give it a fancier name, the hexahedron. Its six 

faces are all squares meeting two at each edge 

and three at each vertex. Since opposite faces are 

parallel, a simple colour arrangement is possible 

using three colours. You may begin the con- 

struction of a model for this polyhedron by 

choosing one square and then cementing four 

others around it as shown. Then you may 

cement the tabs between adjacent squares to 

form the four vertical edges of the cube, again 

with all tabs forming ribs on the interior. Finally 

you may add the last square, and in this case it 

really does answer the description which calls 

it the lid on a box. 3/2 4 = {4, 3} 
6 {4} 
V3 

10,3 AAS 
VIB OMB POLY. 4 4 

4 
The cube may not be a very exciting poly- 

hedron in its own right, but it has some wonder- 

ful properties in relation to the other Platonic 

solids, as well as with some of the Archimedeans. 

A compound of five cubes can be enclosed in a 

dodecahedron and this makes a_ beautiful 

model. (See Cundy & Rollett, Mathematical 

models, pp. 135-6.) 

16 
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20 {3} 
5173 

4 The icosahedron 

The icosahedron is one of the five Platonic 

solids, next in simplicity to the tetrahedron and 

octahedron. It shares with these the fact that all 

its faces are equilateral triangles. In making a 

model of this polyhedron there are two effective 

ways of arranging five colours. They can be 

arranged so that each of the five appears around 

each vertex but then opposite faces will not be of 

the same colour. The second arrangement has 

opposite faces the same but one colour repeats 

itself around each vertex except the two polar 

vertices. Both of these arrangements are very 

useful, because many of the uniform polyhedra 

to be described later in this book have icosa- 

hedral symmetry. So you will find it profitable to 

have two models of the icosahedron illustrating 

both colour arrangements for future reference. 

You may begin both with the same initial ar- 

rangement of five equilateral triangles as 

shown. These form a low pentagonal pyramid 

without a base. The next set of five triangles may 

then be cemented to the pentagonal edge as set 

out in the colour table. Between these the third 

set of five easily find their position because only 

one more triangle is needed to complete the ring 

of five at each vertex. One more set of five then 

completes the model. 

Figst colour arrange- Second colour arrange- 

ment ment 

DY Dursrrd 5 LS Dw aaesS 

YBORG YBORG 

RGYBO BORGY 

ORGY B G Y°B ORR 

Y-B..O- RG R GY BO 

A few comments will be helpful to you in the 

use of the colour tables listed above. The first 

line may be thought of as the set of five triangles 

surrounding the north polar vertex of the icosa- 

hedron. The next two lines actually form an 

equatorial band of ten triangles, alternating with 

each other. The fourth line is the set of five 

- surrounding the south polar vertex. You can 
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also read the order of colours surrounding the 

other ten vertices by following the rotation of 

colours, starting with two adjacent colours in the 

first row, then proceeding into the second row 

and down to the third, then back to the second 

and finally ending in the first where you started. 

For example 

Ys B Y < B 
# Y Y t 
R Gpnore eR: G 
No” No 

This suggests an alternative way of setting out 

the colour tables, a way which will be very useful 

for later models. This is done by listing the 

colours surrounding each vertex and numbering 

the vertices. In doing this each triangle of the 

icosahedron gets named three times, but the 

18 

cyclic permutation of colours is easier to follow. 

The alternative colour tables are: 

First colour arrange- Second colour arrange- 

ment ment 

(0) Y°B OUR 5G ORY BrOsnaG 
Cl)” BeYORZOTG (1) Y¥2BeG7075 

(2) OB GRY (225-0 Y¥AReO 

(3) (RORY Ge B Gi Ok Bo Grr 

(4) GR BY O (QjeeRe Gs OPN 

(5) 3Y GOB rae: (a) Ge “YR Be: 

Only six vertices are listed, the (0) vertex being 

the north polar vertex, but in both cases the dia- 

metrically opposite vertices have the enantio- 

morphous arrangement. You can get this by 

reading the colour table in reverse, that is, from 

right to left. A little experiment with these ideas 

will soon make it clear to you. 



3) 2eae=. {5.50} 

12 {5} 

327 

5 5 

5 

5 The dodecahedron 

The dodecahedron is in some ways the most 

attractive of the five Platonic solids, although 

the icosahedron is a very close second, if second 

at all. The relationship of the dodecahedron to 

its three stellated forms, to be described later, 

probably gives it the advantage for first place. 

A model of this polyhedron can be done in 

four colours in two different ways. With six 

colours opposite faces can be the same colour, 

and this arrangement carries over very well into 

the stellated forms mentioned above. So this 

arrangement is described here. 

You may begin by cementing five pentagons, 

one of each of five colours, Y, B, O, R, G 

around a central pentagon which may be white, 

W. Once the tabs between these five coloured 

pentagons are cemented, half the model is com- 

pleted. This half-completed dodecahedron will be 

mentioned again later in connection with stel- 

lated forms of the icosahedron, where it can 

serve as a construction cradle for other models. 

In such a case the tabs would be turned out- 

ward, but here you have them on the interior as 

usual. The other faces of the dodecahedron now 

easily take their positions so that opposite faces 

are paired according to colour. 

The arrangement of four colours for the 

dodecahedron is shown here. It can also be done 

enaptiomorphously. This four colour arrange- 

ment is sometimes more suitable, especially for 

other models having dodecahedral symmetry. 

Therefore it is given here for future reference. 

CONTE Te) 
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6 The truncated tetrahedron 

For this polyhedron, you may obtain a very 

effective colour arrangement by using the same 

four colours for the hexagons that you used for 

the triangles in the tetrahedron. Then the tri- 

angles here may all be of a fifth colour. Or since 

these triangles are on planes opposite and 

parallel to the hexagon planes you may make 

these parallel planes the same colour. This 

arrangement is shown here. If you cement the 

parts in the order shown you will get them in 

their proper places. Then the remaining tabs are 

cemented, a pair at a time, as described before 

for the tetrahedron. Another way to make the 

model is simply to make a tetrahedral cup to 

begin with as shown below. This has a triangular 

bottom and three hexagons for sides. The tabs 

form ribs on the inside of the cup. Then you 

continue by cementing triangles and hexagons as 

needed. You will find it best to use a triangle as 

the last part and to cement one of the tabs of this 

triangle, first letting it set up firmly, and then 

closing the hole as you would close the lid on a 

box. This is a general procedure to follow for all 

models. 

ran 
20 

2 3/3 = tQ, 3} 
4 {3} +4 {6} 
vs 
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2 4|3 = t{3, 4} 
8 {6} +6 {4} 

4/10 

7 The truncated octahedron 

The way to construct a model of this polyhedron 
is by now becoming familiar to you, if you have 

done the previous ones, The colour arrangement 

of the hexagons follows that of the triangular 

faces of the octahedron, namely four pairs of 

opposite faces using four different colours and 

all the squares using a fifth colour. So you may 

begin here by surrounding a hexagon alternately 

with squares and other hexagons as shown. Then 

the tabs between these are cemented to form a 

cup, completing half the model. 

Once this is done it is easy to continue cementing 

the other parts and watching the opposite hexa- 

gons to get the colours right. A square is added 

last of all. You will undoubtedly observe that 

complete rigidity is not achieved until the last 

edges have been cemented. But once this has 

been done, all the convex polyhedra make very 

rigid models. 

= QN eoIne™) QF Ou aa a) 

21 



8 The truncated hexahedron (cube) 

This polyhedron is a truncated cube, again not 

very exciting as a model, but belonging never- 

theless to the set of uniform polyhedra. The 

colour arrangement for the octagons may follow 

that of the squares in a cube, leaving a fourth 

colour for all the triangles. You may again begin 

your work on this model by surrounding an 

octagon with triangles and other octagons as 

shown. The tabs on the surrounding octagons 

will then be cemented to each other, thus sur- 

rounding the triangles. The tabs on the triangles 

can be cemented as tabs on the lids of triangular 

holes. This is not difficult as long as you can 

work on the inside of the model while it is still 

open and incomplete. The last octagon is Y and 2 3/4 = t{4,3} 

finally four R triangles close the corners. You 8 {3} +6 {8} 

will see that a little more skill is being called for V(1+4/2) 

here to get accuracy in your work, but undoubt- 

edly as you proceed with the work of making 

polyhedron models you are developing this skill. 
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9 The truncated icosahedron 

As a truncated form of the icosahedron, a model 

of this polyhedron may well follow the five- 

colour icosahedral arrangement for the hexagons 

and a sixth colour for all pentagons. You should 

have no difficulty in cementing the parts cor- 

rectly if you follow the icosahedral colour table. 

Thus you may begin with a W pentagon and 

surround it with a set of five coloured hexagons 

Y, B, O, R, G. Then if you keep your attention 

on each ring of hexagons, adding the W penta- 

gon each time at the centre of the ring, you can 

easily complete the next set of five rings. Each 

hexagon of course belongs to three rings. The 

completed model is very attractive with its com- 

bination of hexagon and pentagon faces. 
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1 O The truncated dodecahedron 

This is the polyhedron whose facial planes are 

triangles and decagons. You may again use the 

four-colour dodecahedral arrangement for the 

decagons and make all the triangles a fifth 

colour. Around a R decagon cement in order a 

Y, B, G, B, G decagon alternating with O tri- 

angles. The next set of decagons is Y, R, Y, B, 

R; the first Y of this set adjoining the G that 

comes between the two B decagons in the first 

set. The rest of the O triangles are then cemented 

in place. 

This polyhedron does not have a particularly 

pleasing shape, perhaps because the area of the 

decagons is very large compared with that of the 

triangles. For the same reason a model of this 

polyhedron must be made with the decagons 

reinforced or stiffened on the inside, say with 

double thickness card, otherwise these faces have 

a tendency to sag. On the other hand if you keep 

the model small, this reinforcing is not necessary. 

24 

2°3(5 ="1{5, 3} 
20 {3} +12 {10} 

37+15y/5 
» 



2|3 4 = {3} 
8 {3} +6 {4} 

2 

4 

11 The cuboctahedron 

The name of this polyhedron suggests a close 

relationship to the cube and the octahedron, and 

indeed this is so. The six squares are on the facial 

planes of a cube and the eight triangles on the 

facial planes of an octahedron. You may later 

wish to make a compound of these two Platonic 

solids and then you will observe that the cubocta- 

hedron is the portion of space common to the 

two. 
To make a model of this polyhedron the three 

colours used for the cube may serve here for the 

squares and a fourth colour for all eight tri- 

angles. You may begin with a triangle and 

cement a square to each of its edges as shown. 

Then three more triangles between these squares 

will complete half the model, a kind of cup with 
a triangular bottom and squares and triangles 

alternating for sides. Once this section is com- 

pleted you may now easily continue and get the 

arrangement of colours right by observing the 

opposite squares for the correct colour. 

An important property of this polyhedron is 

the fact that it has two types of faces, each kind 

entirely surrounded by that of the other. As such 

it is designated quasi-regular. 

—— wh Ow mwa 
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1 2 The icosidodecahedron 

This polyhedron is a combinatorial solid, quasi- 

regular, in the same way as the cuboctahedron. 

It is the interior part common to the compound 

of an icosahedron and dodecahedron. If you 

limit yourself to five colours, a suitable arrange- 

ment can be worked out for a model of this 

polyhedron by making all the triangles Y and 

using the other four colours for the pentagons. 

This follows the four-colour arrangement for 

the dodecahedron. 

Thus you may begin with a B pentagon and 

cement five Y triangles to its tabs. Next five 

more pentagons are cemented so each shares 

two of its edges with two adjacent triangles al- 

ready in place around the B pentagon. The 

colours should be O, R, G, R, G. Another set of 

five triangles will then complete half the model, 

leaving a ring of tabs in the form of an equatorial 

decagon. In doing the second half of the model 

you may proceed by adding alternately triangles 

and pentagons to the equatorial edges as just 

described. Place an O pentagon so its vertex 

coincides with the vertex of the G pentagon that 

appears between the two R pentagons. The 

order, repeating the O in naming the five colours, 

is then: O, B, O, R, B. The last G pentagon is 

added as soon as some of the last five triangles 

are in place. The remaining triangles then com- 

plete the model. You will now notice five other 

sets of equatorial edges. This property is used 

for some of the other non-convex uniform poly- 

hedra. 
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1 3 The rhombicuboctahedron 

The name of this polyhedron again indicates its 

nature. The set of squares forming its faces 
break up into two subsets and thus the colour 

arrangement for these may well do the same. 

The triangles may then all be of another colour. 

To make a model of this polyhedron you may 

begin by making a section which forms a 

shallow cup having an octahedral upper edge as 

shown. 

Next a square is cemented to each tab at the 

octahedral upper edge of the cup. These squares 

alternate in colour as set out below. In following 

the map colouring principle you will easily see 

that each R square must share an edge with a B 

triangle, and each Y square must share an edge 

with a R square. The rest of the model is then 

easy to do, one part at a time, and continuing 

with the alternating colour arrangement for the 

squares. This turns out to be a rather attractive 

model even though it is composed of only tri- 

angles and squares. 

It is worth mentioning that a pseudo-rhombi- 

cuboctahedron can be formed by rotating an 

octagonal ‘cap’ of the rhombicuboctahedron 

through an angle of 45° relative to the rest of the 

solid. There then arises a solid with all vertices 

alike but not Archimedean. This is because the 

cubic and rhombic squares get mixed up. 
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1 4 The rhombicosidodecahedron 

This polyhedron is in some ways the most at- 

tractive of the Archimedean solids. The simplest 
and most suitable arrangement of colours for a 

model of this polyhedron is obtained by making 

each of the three different kinds of faces a differ- 

ent colour, say all triangles Y, all squares B, and 

all pentagons O. Then you may work around 

each pentagon and complete the rings with alter- 

nate triangles and squares in such a way that 

adjacent rings share two triangles and a square 

in common. You will find variations of this poly- 

hedron turning up in the non-convex uniform 

polyhedra described later in this book. However, 

other arrangements of colour will be suggested 

there. They could of course also be used here, 

quite effectively. 3 5|2 = r{3} 
20 {3} + 30 {4} +12 {5} 

/(11+4y/5) 

AG? 
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15 The rhombitruncated 

cuboctahedron 

This polyhedron, also known as a truncated 

cuboctahedron, again lends itself to a simple 

colour arrangement. Three colours will serve in 

pairs for opposite octagonal faces, then all hexa- 

gons share a fourth colour and all squares a fifth 

colour. Thus to make a model of this polyhedron 

you may begin as usual with a cup shaped 

section as shown. Once this is completed four 

more octagons are cemented in place as set out 

in the colour table. You will then have no 

further difficulty in completing the model. As 

these models now become more intricate they 

also become more interesting and attractive. 
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1 6 The rhombitruncated 

icosidodecahedron 

This polyhedron is also called the truncated 
icosidodecahedron. Here too the simplest colour 

arrangement turns out to be the best, that is, 

three colours, say Y for the decagons, B for the 

hexagons and O for the squares. You may also 

use the same procedure for constructing this 

model as you used for the last one, working 

around each decagon to make a ring of alter- 

nating hexagons and squares. Again each ring 

shares two hexagons and a square in common 

with adjacent rings. This polyhedron also has its 

analogous forms among the non-convex uni- 

form polyhedra to be described later. Again 

where the decagon plane appears in this model 

you must be sure that it is stiff enough so that it 

will not sag. So here too if you keep the model 

small you will automatically get a better result. 
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1/7 The snub cube 

This polyhedron can be inscribed in a regular 

cube in such a way that its six square faces will be 

coplanar with those of the cube but will be in a 

slightly twisted position (cf. L. Lines, Solid 

geometry, p. 76). Each square is entirely sur- 

rounded by triangles accounting for twenty four 

of these. Then eight more triangles close the re- 

maining spaces to complete the solid. This suggests 

the following colour arrangement. The squares 

may have three colours in opposite pairs. Each of 

these square faces will be entirely surrounded by 

triangles of the same colour. Thus the same three 

colours will occur in the triangles but shifted to 

maintain the map colouring principle. Finally 

the other eight triangles share a fourth colour. 

To make a model of this polyhedron you may 

follow the colour table set out below, showing 

the arrangement for the first three sections. These 

sections must now be cemented together using R 

triangles as connectors between the other tri- 

angles. These three sections complete half the 

model. You can do the other half in the same way 

provided you get the squares in colour pairs 

opposite each other. 
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1 8 The snub dodecahedron 

This polyhedron has the same relation to the 

regular dodecahedron that the snub cube has to 

the regular hexahedron. To get a suitable colour 

arrangement in a model of this polyhedron you 

may make all the pentagons Y. Then each of 

these is to be totally surrounded by triangles, 

each pentagon getting five triangles of the same 

colour. The sets of triangles however may be 

done in four colours. These parts are then as- 

sembléed in the four-colour dodecahedral ar- 

rangement using Y triangles as connectors. The 

colour table shown below will help you. 

This is the last of the set of convex uniform poly- 

hedra. The non-convex uniform polyhedra are 

given after the set of stellations and compounds 

which follows. [23 5 = s {3} 
(20 + 60){3} + 12{5} 
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Commentary on stellations and 

compounds of the Platonic solids 

The word ‘stellation’ comes from the Latin 

word ‘stella’ which means ‘star’. There are star 

polygons as well as star polyhedra. Exactly what 

this means is best understood by drawings and 

models rather than by abstract definitions. You 

can thus begin again with the simplest polygon, 

the equilateral triangle, and see what happens if 

you produce each line segment forming its sides. 

You find that no new portions of two dimen- 

sional space can be enclosed. See fig. 17. The 

lines will forever get farther apart. The same 

thing happens if you try producing the sides of a 

square. The lines are in parallel pairs and will 

never meet to enclose any portion of the plane 

other than the interior of the original square. 

See fig. 18. With the pentagon something more 

interesting begins to happen. The sides of the 

pentagon when produced will meet and enclose 

more space exterior to the original pentagon. It 

turns out to be the well-known five-pointed star, 

also called the pentagram. See fig. 19. It was 

known to the ancients, as is evident from the fact 

that it was used by the Pythagorean brotherhood 

as a symbol of health. Similarly a hexagon leads 

to a six-pointed star or hexagram (really not a 

single polygon but a compound of two equi- 

lateral triangles). An octagon leads to an eight- 

pointed star or octagram; a decagon to a ten- 

pointed star or decagram. The pentagram, octa- 

gram, and decagram can still be considered as 

single polygons of five, eight, and ten sides re- 

spectively, since you can trace out their sides in a 

continuous movement going around the centre 

of the figure twice in the case of the pentagram 

instead of once as in the pentagon. In the figures 

follow the order of the numerals. In the octa- 

gram and decagram a continuous movement 

will take you three times around the centre. Note 
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that the internal points of intersection are dis- 

regarded. These facts are expressed symbolically 

in the fractions used for naming these star poly- 

gons: 3, §, +2. These stars can assume other 

shapes as well, but only these are mentioned here 

because only these appear again later in this 

book. (See Coxeter, Introduction to' Geometry, 

p. 36.) 

If you turn your attention now to the process 

applied analogously to three-dimensional space 

you can begin again with the simplest poly- 

hedron, namely the tetrahedron. Instead of 

producing line segments you must here think of 

extending the facial planes indefinitely. The four 

planes of the tetrahedron enclose only that 

portion of three-dimensional space which be- 

longs already to the original tetrahedron. The six 

planes of the cube come in parallel pairs, mutu- 

ally perpendicular, something like the two pairs 

for the square, the two-dimensional analogue. 

But no new portions of space are enclosed. The 

eight facial planes of the octahedron, however, 

lead to something more interesting. These will 

enclose not only the original octahedron, but 

also other portions of space exterior to this octa- 

hedron. You wil! discover that there is actually a 

set of eight small tetrahedra, like cells, each 

sharing one of its faces with a face of the original 

octahedron. If you row imagine these tetra- 

hedra added to the octahedron so that the faces 

they share internally melt away, leaving all the 

interior hollow, you have a non-convex poly- 

hedron. But you can equally well imagine it as a 

set of intersecting triangular faces, larger tri- 

angles than those belonging to the faces of the 

small tetrahedra. These larger triangles still keep 

the original property of a convex polyhedron, 

namely each edge belongs only to two faces. The 

edges of course also intersect each other, but the 

interior points of intersection on these line seg- 

ments are disregarded, just as in the case of the 

two-dimensional stars. Each side of the penta- 

gram for example crosses two other sides but 

these points are disregarded in counting the sides. 

So in the stellated octahedron, you still have only 

eight faces, and the end points of these edges are 

the vertices of the polyhedron. 

But now a closer examination will reveal to 

you that this polyhedron actually turns out to 

be, not one polyhedron, but a compound of two 

—two larger tetrahedra interpenetrating and 

sharing a common centre, the octahedron’s 

centre of symmetry. Kepler discovered this solid 

(1619) and called it the ‘stella octangula’. It also 

has the property that its eight vertices can be 

made to coincide with the eight vertices of a cube 

while its edges are diagonals of the square faces 

of the cube. 

Further extension of the facial planes of the 

octahedron will not enclose any further space, no 

more cells are formed, so the stellation process 

terminates with only one stellated form for the 

octahedron. 

If you turn now to the dodecahedron and 

produce each facial plane you will find that it 

leads to the formation of three distinct types of 

cells inside the intersecting planes. Besides the 

dodecahedron itself, there will be twelve pentago- 

nal pyramids. These convert the dodecahedron 

into the small stellated dodecahedron. Then 

there will also be thirty sphenoids or wedge- 

shaped pieces which convert the small stellated 

dodecahedron into the great dodecahedron. 

Finally there will be twenty triangular di- 

pyramids which convert the great dodecahedron 

into the great stellated dodecahedron, which 

more literally might be called the stellated great 

dodecahedron. Here the stellation process stops. 

Thus the dodecahedron leads to three stellated 

forms. Two of these were discovered by Kepler 

(1619), the third by Poinsot (1809). 

Even more interesting now is the fact that these 

polyhedra are not compounds as in the case of 

the octahedron but distinct new polyhedra. In 

fact they are regular polyhedra, since in two of 

them the faces are in each case a set of twelve 

intersecting pentagrams, in the third a set of 

twelve intersecting pentagons. It was the mathe- 

matician Cauchy (1811) who pointed out that 

these are in fact stellations of the dodecahedron 

and that these three together with the great 

icosahedron which is a stellation of the regular 

icosahedron are the only regular stellated forms 

‘possible. So to the five regular solids of the 
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ancient world modern mathematics has added 

the four regular star polyhedra, whose facial 

planes are regular polygons or star polygons. 

These faces still meet at the edges by twos but 

they intersect each other before they do so. 

Note that internal lines of intersection are dis- 
regarded. The models will clearly demonstrate 

these facts. 

For the purposes of constructing these models 

it is best to become acquainted with the stellation 

pattern as it is found in one of the facial planes— 

any one, because it is the same in all. For the 

octahedron this is a triangle within a triangle, 

the inner one with its vertices at the midpoints 

of the sides of the outer one. See fig. 24. The 

Fig. 24 
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inner triangle is a face of the original octa- 

hedron, the outer one, of the stella octangula. 

For the dodecahedron a star polygon within a 

star polygon will give the pattern. See fig. 25. 

The numbering reveals which parts form the 

exterior portions of the facial planes. From 

these you can derive the nets required for the 

construction of the models. 

In the following pages the lightly shaded por- 

tion of each facial plane indicates the portion 

which is visible on the top side of the polyhedron, 

and the darker shading, the portion visible on the 

underside of the facial plane. It is from the shaded 

portions that the nets are derived for constructing 

the models. 



1 9 The stellated octahedron 

(Kepler’s stella octangula) 

The octahedron has only one stellated form. It 

turns out to be a compound of two tetrahedra. 

To make a model of this polyhedron all you need 

for a net is an equilateral triangle. The colour 

arrangement for the first four trihedral pyramids 

is given below. These parts each have triangular 

edges and they are cemented to each other in the 

same way as the octahedron itself is assembled. 

The pyramids here may be handled as if they 

were faces. You must see to it that each of the 

facial planes keeps its owncolour. You will also 

find parallel planes having the same colour. 

The other four pyramids are the enantiomorphs. 

You may get these by interchanging columns | 

and 3. 

Simple as this polyhedron is, it is yet very 

attractive. 
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w) O The small stellated 

dodecahedron 

This polyhedron is one of the four Kepler- 

Poinsot solids. All you need for a net is one 

isosceles triangle with angles of 72, 72 and 36 

degrees. This is the triangle found at one star 

arm of the pentagram, the five-pointed star. Five 

of these triangles are cemented together as 

shown below for each vertex part and the colour 

arrangement is given in the colour table. 

The five W triangles must each be cemented to 

the (0) vertex part. If you remember that this 

colour arrangement gives you each star plane of 

the same colour, you will see the W star com- 

pleted and two arms of each of the other star 

planes taking shape. You will find it more inter- 

esting to cement the parts as you complete 

them. The next six vertex parts are enantio- 

morphs and again it is best to place each one in 

position as you complete it. Each of these is 

placed diametrically opposite its counterpart. 

The method of construction described here is 

one which gives you a completely hollow model. 

This may cause it not to be completely rigid. 

Each vertex part is slightly deformable because 

it is in the shape of a pentagonal pyramid with- 

out the pentagonal base. You could therefore 

cement the pyramids to the faces of a dodeca- 

hedron, but you will find that this procedure 

does not give you a neat and satisfactory result. 

You can get a good result with a small hollow 

model. Also if you apply the cement carefully 

along the full length of the tabs, then add 

another drop of cement at the concave (false) 

vertices around the base of the vertex parts, you 

will find the result to be satisfactory. On the 

other hand your own ingenuity may also suggest 

other suitable ways of obtaining the desired 

rigidity. 
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21 The great dodecahedron 

This polyhedron is composed of twelve inter- 

secting pentagon planes. When the model is 

made in six colours, it readily gives the appear- 

ance of a solid star embossed on a pentagon 
plane, but each star shares each of its arms with 

an adjacent star. The net for making a model is 

simply one isosceles triangle with angles of 36, 

36, and 108 degrees. The simplest procedure for 

assembly is to make twenty trihedral dimples 

and to cement them together, very similar to the 

way the twenty triangles of an icosahedron are 

joined. The arrangement and colour table for 

the parts are set out below. 

Triangle 5 is cemented to triangle 2. This com- 

pletes half the model. The rest of the parts are 

the enantiomorphs, and they are placed dia- 

metrically opposite their counterparts. 
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2 2 The great stellated 

dodecahedron 

This is the final stellation of the regular dodeca- 

hedron. A model of this polyhedron can be 

made by cementing triangular pyramids to the 

faces of an icosahedron, but this is not recom- 

mended since it does not give a neat and satis- 

factory result. It is not too difficult to make the 

model completely hollow inside and still rigid, 

since the triangular pyramids are not easily de- 

formable even with their bases missing. The net 

here is simply the 36, 72 isosceles triangle, one of 

the star arms. Cementing is done as shown 

below together with the colour table. 

The first five parts, 1 2 3, are joined in a ring 

with 1 on the outer edge, which becomes pen- 

tagonal. Then the W of the other parts, 4 5 6, is 

cemented to 1. You will notice in doing this that 

the star arms take their positions so that facial 

planes are the same colour. The remaining parts 

are enantiomorphous and are placed diametric- 

ally opposite their counterparts. This model has 

great decorative possibilities. 
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Commentary on the stellated icosahedron 

The meaning of stellation should now be making 

itself apparent to you. Some stellations are com- 

pounds. So far you have seen only one case of 

this, the stellated octahedron. But more are now 

found in the case of the icosahedron. In the case 

of the dodecahedron all three of its stellations 

turn out to be genuinely new polyhedra, in fact 

they all classify as regular. 

The icosahedron has twenty faces and if all 

twenty facial planes are extended indefinitely 

you may well imagine, or more likely you may 

well fail to imagine, the multitude of cells 

enclosed within these intersecting planes. It is a 

fact that stellations of the icosahedron may all be 

derived from the cells enclosed within these 

planes. Besides the icosahedron itself you will 

find 

20+ 30+ 60+ 20+ 60+ 120+ 12+30+60+60 

cells of ten different shapes and sizes. The great 

icosahedron is composed of all but the last sixty 

pieces. In making models of these stellated 

forms, and this holds for the octahedral and 

dodecahedral as well, you can make these cells 

first, once you have worked out their nets, and 

then you can cement the cells to a polyhedron 

base or to each other. But in practice this does 

not give a satisfactory result and would be 

extremely tedious. However, acquaintance with 

the cell forms is very helpful in working out nets 

that are practical. In the following descriptions 

you will find these nets given for you. Once you 

have done some of these, or certainly by the 

time you have done all of them, you will be able 

to find many more on your own. The nets given 

here are not necessarily the only possible ones or 

the best ones. They are merely those actually 

used in the construction of the models pictured 

in the photographs. 

Several compounds occur among the stella- 

tions of the icosahedron. There is a compound of 

five octahedra, a compound of five tetrahedra in 

two forms, enantiomorphs, and a compound of 

ten tetrahedra. Surely this would have greatly 

delighted the mind of Plato had he known of it. . 

After these and some others were discovered the 

question naturally presented itself: how many 

stellated forms are possible? In 1900 M. Briick- 

ner published a classic work on polyhedra 

entitled: Vielecke und Vielflache, in which he 

presented a number of new stellations of the 

icosahedron. Several more are due to A. H. 

Wheeler (1924). In 1938 H.S.M. Coxeter in 

conjunction with P. Du Val, H. T. Flather and 

J. F. Petrie gave the question a systematic in- 

vestigation. By applying a few restrictive rules 

suggested by J.C. P. Miller to determine what 
forms shall be considered properly significant 

and distinctive, Coxeter arrived at a total enum- 

eration of fifty-nine; thirty-two with full icosa- 

hedral symmetry and twenty-seven enantio- 

morphous forms with an attractively twisted 

appearance. Coxeter’s work, The _fifty-nine 

icosahedra is available from the University of 

Toronto Press. 

The stellation pattern for the icosahedron is 

very interesting. It is most easily obtained by 

drawing one large equilateral triangle, one of the 

faces of the great icosahedron. On each side of 

this triangle you may locate two points dividing 

the sides of the triangle in the golden ratio. The 

symbol sometimes used is 7. 7 = 1-618 approxi- 

mately, or T = 4(\/5+1). The Fibonacci series is 

very useful here: 

0 .bt.2-3-5,8- 13-21 34 

The ratio of two consecutive members of this series 

approaches the golden ratioasa limit. Witharuler 

marked in sixteenths of an inch the measures 

34, 21, 13, $ are very useful. Lines radiating 

from these points will give you the pattern. See 

fig. 26. 

The colour arrangement shown in fig. 27 can 

be used to great advantage in every one of the 

stellations of the icosahedron. Fundamentally it 

is the icosahedral arrangement which uses five 

colours in such a way that each of the five is 

found at each vertex but in a different order 

from one vertex to the next. Six vertices are laid 

out and numbered. The other six have the enan- 
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tiomorphous arrangement. This figure amounts 

to a colour table and for that reason it can be 

used again and again for all polyhedra having the 

icosahedral arrangement and symmetry. It is the 

same as the first arrangement, given on p. 18. 
Many of the icosahedral stellations have a 

very marked dodecahedral symmetry, a fact 

(4) 
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which you may find surprising. The explanation 

lies in the principle of duality. The icosahedron 

and the dodecahedron form a dual pair; so too, 

the octahedron and the cube. The tetrahedron is 

self reciprocal, namely its dual is another tetra- 

hedron. (See Cundy & Rollett, Mathematical 

models, p. 116.) 

Fig. 26 



2 3 Compound of five octahedra 

This polyhedron has two equilateral triangles on 

one facial plane, as shown in the first figure. To 

construct the model you may first make thirty 

copies of the net shown, six of each of the five 

colours. First assemble each of these in the form 

of a pyramid but without the rhombic base. 

Each of these will be a vertex of some octa- 

hedron of the compound. Then take a set of five, 

one of each colour, and cement them in the form 

of a ring, following the (0) arrangement of 

colours. Between the extending arms of this ring 

a second set of five vertices is cemented, but their 

orientation is such that the short slant edges of 

each pyramid continue on a line with the 
grooved edge between vertices of the central 

ring. This means that the grooved edge and the 

short slant edge form a straight line, part of the 

edge of an octahedron of the compound. If you 

remember to keep the basic octahedral shapes in 

mind you will see them begin to develop, and the 

colour will then help you to proceed correctly. 

You can in fact find the rest of the icosahedral 

rings beginning to appear, so this may also help 

you. Once you have done this much the rest is 

not hard to follow. This hollow model is not 

completely rigid, but if built on the scale 

indicated by the net, it will prove satisfactory. 

Certainly it is better than trying to add parts toa 

basic octahedron. 
s 
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2 4 Compound of five tetrahedra 

This polyhedron is unusually attractive because 

of its twisted appearance. To make a model of 

this compound all you need is twenty copies of 

the net shown below, four of each of the five 

colours. First make trihedral vertices with the 

bottom edges looking rather jagged. If you begin 

by making a ring of five vertices cemented 

together with the edges that are marked ‘A’ on 

one coinciding with the same edges of another 

you will find the points at the jagged end forming 

a dimple in the centre of the ring. Once you have 

built this much of the model you will easily be 

able to find the right positions for the other 

vertex parts. The colour arrangement here 

makes each tetrahedron entirely of one colour. 

The centre points of each dimple are actually the 

vertex points of the interior icosahedron, which 

of course is not being constructed. But the 

arrangement of colours in each dimple is the 

icosahedral arrangement. The method of assem- 

bly suggested here is perhaps a bit difficult to 

execute, because all the jagged edges and points 

fit into three different and adjacent dimples. The 

secret is to give your attention to cementing the 

tabs at one edge at a time, always beginning 

with the long edge and then working out into 

the dimples. The last vertex part will call for 

considerable skill and patience. You may find it 

better not to cement this part as a pyramid, but 

to leave one section open till last. This makes a 

very rigid model. It is well worth the trouble it 

takes to make it as suggested here. The photo- 

graph proves it can be done. 

44 



2 e) Compound of ten tetrahedra 

This polyhedron is a combination of the two 

enantiomorphous forms of the compound of five 

tetrahedra. A model may be made by using the 

nets shown. If you cut the leftside arm to the 

centre, the triangular wing can be turned down. 

Then another wing as shown, but of another 

colour, can be cemented in place, enantio- 

morphous to the one you folded down. The one 

tab on this part which is left at its shortest side 

can be folded up and cemented to the under 

surface of the other wing. These two parts form 

half the grooved or cupped portion found 

between the sections: one of which is shown 

below. Their remaining tabs are used to cement 

these sections together. Colours for the (0) 

section are shown. Twelve sections are needed 

for the complete model. This makes a very rigid 

and very attractive model. 
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2 6 Triakis icosahedron 

This model is the first stellated form of the 
icosahedron. It can be assembled from twenty 

parts like the net shown. These are low pyra- 

mids without their triangular base. You can get 
a suitable arrangement of colours using the 
icosahedral colour table (fig. 27, p. 42), but if you 

make each part as one colour you will not have the 
facial planes the same colour. To get this each 

triangle of the figure would have to be done as a 

separate part. You may wish to work this out 

for yourself. 
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2/7 Second stellation of the 

icosahedron 

This is a very beautiful model with twelve long 

spikes of pentahedral symmetry radiating from 

the dimples of the compound of ten tetrahedra. 

In the nets shown here you can again work out a 

symmetrical colour pattern that is very suitable 

without having facial planes the same colour. 

The figure shows one face of a pentahedral 

spike, the two smaller triangles attached to it 

being folded up and cemented to form a groove. 

Five of these make one spike with the grooves 

radiating away from it at its base. The other net 

is like the part used in the compound of ten 

tetrahedra except that here it is all of one colour. 

It serves as a connector for the spikes and is 

cemented to the grooves, namely between them. 

Again you may wish to see what colour arrange- 

ments you can discover for yourself from the 

icosahedral colour table. 
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2 8 Third stellation of the 

icosahedron 

This very simple polyhedron is a deltahedron. 

There is a whole family of deltahedra, whose 

common feature is that they all have faces which 

are equilateral triangles. (See Cundy and Rollett, 

Mathematical models, pp. 142-4.) Here three 

equilateral triangles are to be found in each 

facial plane. It has the edges and even the 

appearance of a dodecahedron, but it is actually 

one of the stellations of the icosahedron. It may 

be imagined as a dodecahedron with the penta- 

gons removed, and then pentahedral dimples 

whose faces are equilateral triangles replacing 

the pentagons. This suggests a simple method 

for making a model of this polyhedron. You 

may follow the icosahedral colour arrangement 

exactly as shown on p. 42. The pentahedral 

dimples each form a section, and these sections 

are then cemented together in dodecahedral 

fashion. The colour arrangement suggested here 

will give you the three equilateral triangles on 

each facial plane the same colour. You may there- 

fore consider this polyhedron as a three-dimen- 

sional analogue of the colour table itself. 

Many of the other stellated icosahedra exhibit 

portions of these equilateral triangles in their 

facial planes. This fact makes this model par- 

ticularly useful for its relationship to the other 

forms. In some of the models that now follow, 

you will see how a section of this one can serve 

as a structural mould or cradle. Such a section is 

shown here. The centre can be depressed or 

elevated before cementing, depending on how it 

is to be used. 
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2 9 Fourth stellation of the 

icosahedron 

The stellation process applied to the icosahedron 

leads to ten different types of basic cells, as 

mentioned above. One of these, whose net is 

shown here, can be built into a polyhedron 

which has these cells only vertex connected. It is 

equivalent to a stick model of the regular 

dodecahedron, but the cells here are used in 

place of the sticks. The method of assembly is as 

follows. First make a cradle or mould to hold 

the cells. This is half the deltahedron 28, the 

interior serving as the mould. You will find it 

best to cut holes into the vertices of the cradle 

so the cells will not adhere to it when the 

cementing is done. Once you have this cradle 

ready, make five cells, one of each colour, and 

place them in a ring in the bottom of the cradle. 

The cells have only their vertices touching each 

other. A drop of cement on these vertices will do 

the trick. Let this ring set for a time. Meanwhile 

prepare more cells. When these are ready they 

can be placed with one vertex of each resting on 

the two vertices already cemented, while the long 

edges follow the slant edges of the cradle. Again 

apply a drop of cement. But now this must be 

allowed to set up firmly. After about two hours 

it can be moved and turned in the cradle so that 

other cells can be placed in the bottom to be 

cemented. In this way the rings of cells are com- 

pleted one after the other. A little patience and a 

steady hand should give you a very attractive 

model. The colours can be worked out so that 

diametrically opposite cells are the same colour. 

You can then observe that six cells of one colour 

have the long edges on the faces of a cube, if you 

imagine a cube enclosing the dodecahedral form. 

This is the first example showing dark and light 

shading to illustrate the top and the underside of 

the same facial plane. 
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3 O Fifth stellation of the 

icosahedron 

Many of the stellations of the icosahedron 

appear outwardly very similar to the great icosa- 

hedron to be presented later. One of these whose 

nets are shown here makes a particularly 

pleasing model, because it is again an example 

of a polyhedron whose parts or cells are only 

vertex connected. The triangles that appear in 

the nets are the same as those of the great icosa- 

hedron. For that reason it may be better for you 

to turn to the great icosahedron first and to 

make that model before attempting this one. 

The same technique of cementing the vertex 

parts holds here and the same colour table is 

used here. In both cases it will give you a model 

with each facial plane the same colour. This 

polyhedron differs from the great icosahedron, 

however, in that a vertex part turns out here to 

be a complete polyhedron, actually an enclosed 

set of cells, in the form of an intricate star 

pyramid with convex and concave side faces and 

a pentagram shaped base coming to a blunt 

point at its centre. You should easily recognize 

this base as equivalent to the dimples in the 

compound of ten tetrahedra. Twelve of these 

star pyramids make the complete model. They 

are vertex connected at the five vertices sur- 

rounding the base in such a way that small 

chinks appear through which the interior can be 

seen. The bases of the star pyramids form the 

interior. These star pyramids are easy to as- 

semble. First you must make the five that 

correspond to the numbered vertex parts (1), 

(2), (3), (4), (5). The (0) part is done last in this 

case. When these five pyramids are made they are 

laid out in a ring on a pallet shown on p. 51. 

This pallet may be made out of a heavy piece of 

cardboard. It is the regular pentagram but it is 

best to cut holes in the card at the places indi- 

cated by the small circles. It is at these points that 

the cementing of the sections is to be done. They 

are laid down so two edges coincide with the two 

sides of a star arm. When this is done you will 

find two vertices coming in contact between each 
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section and adjacent sections, one on the plane 

of the pallet and the other directly above it. A 

drop of cement at these vertex contact points 

will do the trick. After about 15 minutes another 

drop of cement will help to give added strength. 

After an hour or two you can carefully move the 

whole ring off the pallet. The surprise is that it 

holds together so that you can now turn it over. 

Then if you have done a careful job the (0) 

section will fit nicely on top with the five corners 

at its base making good contact with the double 

vertices already cemented. So on this (0) section 
you can apply the cement to all five corners at 

once. This completes half the model. The 

second half is enantiomorphous. Getting the 

sections properly oriented is a bit tricky. You 

may have to puzzle over this for a while, but if 

you remember that the arrangement is such that 

each facial plane is of the same colour, passing 

from one section to another, you should get it 

after a little trial and error. Once the second 

ring is done the first half can immediately be 

cemented to it before turning the second ring 

over. Then one more section completes the 

model. 
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31 Sixth stellation of the 

icosahedron 

The parts shown here are the nets for another 

stellated form of the icosahedron. These are easy 

to recognize as the twelve long spikes, radiating 

this time from the dimples of the deltahedron, 28. 

You may begin by assembling a ring of the lower 

parts in the usual icosahedral arrangement of 

colours. Then assemble a spike in the same 

arrangement. It is then a simple matter to insert 

the base of the spike into the hole at the middle 

of the ring and to cement the tabs there one at a 

time with the aid of clamps to hold them till the 

cement is set. The twelve sections are then as- 

sembled in the usual dodecahedral manner. A 

little experimentation will soon show you the 

correct orientation of parts so as to get the 

facial planes each in its own colour. This makes 

a simple and sturdy model which at the same 

time is also very attractive. 
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3 2 Seventh stellation of the 

icosahedron 

The net shown below may be used to make 

twenty parts, each a hexahedral short spike. 

These parts can then be cemented together to 

form another stellated icosahedron. Four of each 

of the five colours may be used to make a suit- 

able model, although in this way it will not have 

facial planes of one colour. You may begin with 

a ring of five parts, cemented so as to have the 

acute angles at the bottom of the parts all point- 

ing inward to the centre of the ring. Once this is 

done the rest is not hard to complete by doing 

each ring in the icosahedral arrangement of 

colours. 

This model is even more attractive when it is 

made showing each facial plane in its own colour. 

See if you can work out this colour arrangement 

for yourself. 
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3 3 Eighth stellation of the 

icosahedron 

The net shown here can be used to make a model 

of a stellated icosahedron that is very similar to 

the great icosahedron. In fact you may imagine 

this polyhedron as being formed by the removal 

of the wedge-shaped cells found around the base 

of the vertex parts of the great icosahedron. 

That is why the net shown here is slightly differ- 

ent at the lower end of the triangle from the 

triangle used for the great icosahedron. Also only 

one such triangle is shown here because the one 

net can serve for all the parts, sixty as shown and 

another sixty enantiomorphous to these. You 

may then follow the same paired arrangement of 

parts as you find given in the colour table for the 

great icosahedron. The sections are a bit more 

difficult to cement to one another because of the 

deeper depressions at the bases of these parts. 

But as you near the end of your work you can 

also change your method of assembly, doing 

these concave edged first and then cementing 

the convex parts where you can more easily 

pinch the parts together from the outside. 
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3 4 Ninth stellation of the 

icosahedron 

The net shown here is again easy to recognize as 

part of the long spikes, only here it is slightly 

longer because the model is made up of twelve 

such spikes and nothing else. So the spikes are to 
be assembled in the usual pentahedral form 

following the usual icosahedral arrangement of 

the colours. Then these parts are cemented to 

one another along the tabs at the base. This 

model can be made so each facial plane has its 

own colour but you may not find this arrange- 

ment immediately. A little searching should 

reveal it to you. Here also the last spike is a bit 

difficult to cement in place since you cannot 

reach the last tabs from the outside. But patience 

will give you a lovely model. 
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3 5 Tenth stellation of the 

icosahedron 

The spike shown opposite is the net for one of 

the basic cells arising from the stellation process 

applied to the icosahedron. It is the only cell that 

comes in two enantiomorphous forms, sixty of 

one form and sixty of the other, and it is simply 

a short tetrahedral spike. But the interesting 

thing about it is that a set of sixty can actually be 

built into a fantastically delicate yet surprisingly 

stable model. Basically these spikes form all the 

edges of the compound of five tetrahedra, meet- 

ing by three’s at each sharp pointed vertex and 

by two’s at one of the base vertices. At first sight 

it looks quite impossible to make a model of this 

polyhedron which shows mostly empty space. 

But with other parts, which are later discarded, 

serving as structural supports, it becomes possible 

to make a model. These structural parts are 

shown opposite. Actually each of these nets can 

be used to construct two other stellated icosa- 

hedra in their own right. These will be described 

later. But the following description will help you 

assemble what may well be called the most un- 

believable of all models. You may begin by 

making sixty spikes, twelve of each of the five 

colours, using the spike as a net. The colour 

arrangement in the completed model will simply 

be that of the compound of five tetrahedra. You 

will then need only five casings and five cores; 

their colour is not important since they are only 

structural and their names here indicate the pur- 

pose they serve. Turn all the tabs out on the 

casing, but cement only the two longer ones to 

form the trihedral angle, congruent to a vertex 

angle of the regular tetrahedron. The three 

quadrilaterals at the bottom should also have 

tabs but no cementing is done; these quadri- 

laterals serve as little trap doors to be opened 

and closed when inserting and removing three 

spikes for cementing and a core to keep the 

spikes in position. You will notice that the 

figures for the casing and the core have an arc 

mark at the vertices. This means that you must 

cut these parts away so as not to interfere with 
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the cementing. The core is made with all tabs 

inside as usual for any convex polyhedron. You 

will no doubt recognize this part as the spike 

found in other stellations of the icosahedron. 

Once all these parts are ready you may proceed 

as follows. Take three spikes of the same colour 

and insert them into the casing so that they fit 

snugly into the three corners, If you now insert 

the core so that it is centrally located inside the 

casing and then adjust the spikes so that their 

blunt ends are in the same facial planes as the 

facial planes on the blunt end of the casing and 

core, you will be able to close the little trap doors 

of the casing so that they fit perfectly. If the tabs 

on the trap doors have been turned outward then 

three clamps will hold everything securely while 

you apply a drop of cement at the point where 

the vertices of the spikes coincide. Repeat this 

with the next set of three spikes of a second 

colour in another casing and with another core, 

and so on until you have five sets of three. After 

about an hour you will find that the spikes may 

be removed from the casing and the one drop of 

cement will prove to be strong enough to hold 

the spikes to the form given to them by the 

casing and the core. Now you must place these 

five sets of triplet-spiked parts on a special plat- 

form or cradle. This is made of one section of 



the deltahedron 28 turned over so the dimple 

becomes a low pentagonal pyramid to which 

at the lower portions of its slant sides five of the 

29 parts are cemented. The five parts may be 

cemented because they need never be removed, 

but it is advisable to cut away the obtuse vertices 

of 29 where cementing of cells is to be done. This 

is your platform or cradle. You will:now find that 

the five sets of triplets may be placed on this 

platform so that the vertices point down and 

coincide with the vertices of the pentagonal base 

of the platform while two other vertices at the 

blunt ends of two adjoining parts will just touch. 

A little experimenting with the parts will make 

this more clear than words can do. Once the 

parts are so placed you can again add a drop of 

The spike 

cement to the points of contact. After two hours 

or so this whole section or ring will be sufficiently 

rigid so that it may be moved and turned. As 

you complete other triplets they are placed on 

the platform and each ring is thus completed 

while the model is turned each time to accom- 

modate the new parts. Admittedly you will have 

to exercise a lot of patience and a very steady 

hand. Also some side supports are helpful but 

not absolutely necessary—the dodecahedron 

shell is adequate and you may be able to devise 

other ingenious ways to get pressure in one 

direction or another, to achieve contact at the 

proper points. The photograph shows that it can 

be done, and it has been done in the manner 

described above. 

The casing 

The core 
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3 6 Eleventh stellation of the 

icosahedron 

A model of 36 can be made using the same plat- 

form and technique as for 35. The net to use is the 

figure called ‘the casing’ in 35. You will notice of 

course that here the cementing of the parts is 

considerably easier. ; 
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37 Twelfth stellation of the 

icosahedron 

The figure shown here is the net for one part of a 

platform needed to support the cells whose net 

was given previously under the caption, ‘the 

core’. Here the core becomes a polyhedral cell, 

so its vertex must not be removed as was done 

when it served only as a structural piece. The 

platform part has wings that belong to the facial 

planes of 32. So here the bottom edge has the 

length of the wedges 29, but not their sides. The 

part makes a low triangular pyramid without a 

base. Five of these pyramids are joined in a ring 

to make the platform. Then if the tabs at the 

pentahedral lower edges are turned up they will 

serve as a groove. The cells may now be placed 

on the platform, but again it is advisable to cut 

away the vertex of the pyramid as shown in the 

figure by the arc mark, because at these points 

the cells will have their vertices coming in con- 

tact and thus at these points the cementing is 

done. Once a ring of cells has been done it must 

be allowed to set up rigidly. Then it can be 

moved and again each ring of cells will be com- 

pleted in a similar fashion by moving the model 

in various stages of completion so that the new 

cells always lie on the platform. A dodecahedral 

shell will again make a good support for stabi- 

lizing the model as it is given its various posi- 

tions, but it may also be dispensed with. This 

means if you use it that the platform may be 

placed in the bottom of a dodecahedral cradle 

with one pentagon removed to make it possible 

for you to work on the parts. This model is 

strikingly pleasing in its simplicity and openness. 
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3 8 Thirteenth stellation of the 

icosahedron 

The net shown here can be used to make a 

beautiful polyhedron with twelve long penta- 

hedral spikes each of which is surrounded at its 

base by five shorter trihedral spikes. You will 

easily recognize both of these, as they have ap- 

peared in previous models. The icosahedral 

arrangement of colours will give you the longer 

spikes with facial planes the same colour, but 

the shorter spikes will be like those described 

for 35. The technique for assembly here is to do 

the short spike first. Cut the card so no tab 

remains on the right side of the long part and 

continue this cut to the first interior line as 

shown. The two triangles on either side may now 

be folded down and their remaining edges 

brought into contact to form the short spike. 

Finally the small triangle at the bottom is folded 

down so the two acute vertices coincide. Now 

five of these parts are joined to make the long 

spike. This will turn out to be a complete poly- 

hedron in itself since the bottom of the spike 

becomes entirely enclosed. But now the five 

parts whose icosahedral colour arrangements are 

(1), (2), (3), (4), (5) can be laid out on the same 

star-patterned pallet used for 30. The obtuse 

vertices around the base of the spikes will then 

be found to be coinciding, one blunt vertex of 

one spike touching one on an adjacent spike. 

Theoretically the small spikes should also have 

acute vertices in contact, but this is almost im- 

possible to achieve in practice on all the small 

spikes at once. So it is advisable to cement the 

obtuse vertices forming a ring of parts and as 

many small spikes as can conveniently be done. 

The rest of the procedure is the same as for 30. 

Once the whole model is finished you can gently 

apply pressure to the smaller spikes and adjust 

them, as needed. 
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3 9 Fourteenth stellation of the 

icosahedron 

The net shown here leads to an attractively 

twisted polyhedron. It has some of the usual 

dodecahedral symmetry, like the deltahedron 

28, but it also has pentagonal holes leaving the 

interior hollow and open to view. The method of 

assembly is to follow the usual icosahedral 

colour arrangement, the same as in the delta- 

hedron 28. You may begin with the (0) section. 

This will be the usual dimple but with a hole in 

the middle. The tabs are shown on the net to 
indicate how one edge is broken; the upper tab 

of this edge serves to join a ring of five parts 

forming the dimple, and the lower tab serves to 

join edges forming a trihedral angle on the 

interior. One of these trihedral angles is not 

completely formed until three sections are 

assembled. You will need a bit of skill to reach 

the interior as the model progresses, but you can 

apply the cement with a probing needle, working 

it in between the tabs, and then applying pressure 

with your fingers along the interior edges till the 

cement is set. This model calls for patience and 

accurate workmanship, since the assembly is 

very intricate. But it makes a very interesting 

model. 
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40 Fifteenth stellation of the 

icosahedron 

You can use the net shown here to make another 

polyhedron with the same attractively twisted 

appearance as the previous one. This one has the 

sixty short trihedral spikes arranged so that the 

interior of the polyhedron remains hollow and is 

visible only through narrow chinks. You may 

begin by making five parts as shown. The tabs 

are indicated and a special cut as well; the other 
lines are folds in the usual manner. This may 

now be formed into one of the short spikes. 

When you have five of these ready they can be 

assembled to form the usual pentahedral 

dimple from which the spikes radiate. The cut 

will receive a tab which has been turned outward 

from a neighbouring part and the parts may thus 

be cemented with the help of some pressure 

exerted by the fingers or with tweezers from the 

outside. This completes one section. Twelve 

sections are needed. They are assembled with the 

aid of the same deltahedral platform used before. 

A dodecahedral shell may be used so that the 

interior of the shell provides side supports as the 

sections are being cemented. The cementing is 

done at the obtuse vertices which come in con- 

tact. It is not always possible in practice to 

cement all the sharp vertices of the small spikes 

at once. But as the model is completed some 

adjustments become possible after the cement is 

set. Careful workmanship will give good results. 
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41 Great icosahedron 

Of all the polyhedra so far described perhaps the 

most beautiful and attractive is the great icosa- 

hedron, the last of the four regular (Kepler- 

Poinsot) star polyhedra. The vertex figure here is 

a regular pentagram. In this respect it is like the 

great dodecahedron. These two solids stand 

alone as the only regular star-vertexed poly- 

hedra. You will see many with star faces among 

the uniform polyhedra to be presented later in 

this book, but none of them is star vertexed. A 

model of the great icosahedron is not hard to 

make. The nets are simple and when the model is 

assembled as described here it is also very sturdy 

and rigid although it is completely hollow inside. 

Doing it in five colours takes a little more time, 

but it is well worth the effort. The paired 

arrangement of parts and the colour table 

are given below. 

A set of five pairs makes the fan-like form 

shown. You must now see to it that the folding 

is done so that it is down between each member 

of the pairs and up between the pairs, accordion 

fashion. Then by cementing the remaining edges 

a vertex part for the great icosahedron begins to 
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take shape. The smaller isosceles triangles are 

then cemented in place to form a pentagonal 
dimple from which the vertex part rises. Twelve 

of these are needed, the first set of six as set out 

in the colour table and the second set of six in 

the enantiomorphous order. These vertex parts 
are then joined following the icosahedral 

arrangement, enantiomorphous pairs being dia- 

metrically opposite each other. In cementing the 

vertex parts together, give your attention to only 

one edge at a time. Clamps can readily be used 

because the dihedral angle between two adjacent 

facial planes along the pentagonal edges of a 

vertex part is very acute. Even the last vertex part 

goes on in the same way. On the last edges the 

cement is applied carefully to the crack and then 

worked down between the tabs with the probing 

needle before setting the clamps. If you find that 

there are openings or small holes left at the 

corners of the pentagonal edges, do not be dis- 

mayed. You can close these after the model is 

completed by adding a drop of cement to each 

hole, working it in with the probing needle and 

then applying a little pressure when the cement 

begins to harden. You will find that this closes 

the holes successfully and at the same time adds 

rigidity to the model. This model, when it is well 

made, is always a delight to behold. 
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4 2 Final stellation of the 

icosahedron 

This is the final stellation of the icosahedron. It 

is a spiny-looking polyhedron, the spines falling 

into fairly well-defined clusters of five. Twelve 

of these clusters complete the solid. A net for 

making a model of this polyhedron is shown 

below. It will not give the facial planes each its 

own colour, but then the work is reduced by using 

the net as shown. Sixty of these trihedral spikes 

are needed. A set of five joined in a ring makes 
one section or the cluster mentioned above with 

the bottom forming the edges of a pentagon. So 

twelve of these are joined in the usual dodeca- 

hedral fashion. It is best here to reduce the scale 
of the model, unless you want to show its actual 

size in relation to the great icosahedron. If the 

latter is about 10 inches high, the final stellation 

on the same scale is nearly 24 inches high. If the 

model is done as suggested here, completely 

hollow inside, the smaller scale gives a better, 

more stable, result. The sixty spikes radiating 

from the central mass of this polyhedron make 

it look like rays of light emanating from the sun. 

If you are interested in making more of these 

stellated icosahedra you can work out your own 

nets by consulting The fifty-nine icosahedra, by 

Coxeter, Flather, Du Val and Petrie. In this 

booklet all the cases are illustrated with excellent 

drawings of both the solids and their facial planes. 

Eaoh one presents its own challenge and will give 

you a sense of satisfaction upon completion. 
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Commentary on the stellation of the Archimedean solids 

In the previous pages you saw the stellation 

process applied to the Platonic solids. You may 

now be wondering whether the Archimedean 

solids can also be stellated. The answer is that 

they can. The procedure is the same: each facial 

plane must be extended indefinitely to generate 

cells exterior to the original solid. Using these 

cells as building blocks, you can form many new 

solids, theoretically at least. In practice however, 

for the purpose of making models, the stellation 

pattern is more useful, although you will find it 

helpful to have some acquaintance with the cells 

as well. Nets for these cells can easily be found 

from the stellation pattern. But you may be 

asking yourself: why should anyone want to 

stellate the Archimedean solids? Isn’t it a lot of 

work? Yes, the work involved here does begin to 

look overwhelming. It really calls for team work. 

It is hard to find much published material on 

this topic, and undoubtedly it is because of the 

great number of possible forms that come 

crowding up for consideration. A complete 

enumeration of all the possible stellations is a 

mathematical question that has yet to be in- 

vestigated. No doubt some restrictive rules, such 

as J.C. P. Miller designed for the case of the 

icosahedron, would have to be applied here also. 

These forms do not always turn out to be par- 

ticularly attractive or aesthetically pleasing, but 

then again many of them do. The final stellation 

usually seems to be of more than ordinary 

interest. 

A more important question mathematically 

is: Are any of these stellated Archimedeans 

regular or uniform polyhedra? Before attempt- 

ing any answer to this problem, you will find it 

enlightening to see the stellation process applied 

to at least two Archimedeans. 

The cuboctahedron and the icosidodeca- 

hedron are given here because of their close 

relationship to the dual Platonic pairs. Also as 

quasi-regular solids they should prove to be the 

most interesting or the most likely ones to gener- 

ate further regular or uniform polyhedra. 

How is the stellation pattern arrived at? If you 

look back at the case of the octahedron, you will 

notice that the pattern is actually a set of six 

lines. They can easily be counted as they come in 

parallel pairs (see fig. 28). The inner triangle is 

one face of the original octahedron. If you set a 

model of the octahedron on the drawing so that 

one of its faces exactly covers this inner triangle, 

the other lines are easily seen to be the inter- 

sections of the other facial planes with the plane 

of this base triangle. Since the triangle on top is 

directly opposite the base triangle, it is on a 

plane parallel to the plane of the paper and so it 

generates no line on the stellation pattern. Thus 

the eight faces of the octahedron are all ac- 

counted for. 

If you turn now to the dodecahedron, its 

twelve faces ought to give a stellation pattern of 

ten lines. This is indeed the case; five parallel 

pairs appear (see fig. 29). If you set a model of 

the dodecahedron on this drawing, so that one of 

its faces coincides exactly with the innermost 

Fig. 28 
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Fig. 30 

pentagon, you can move your eye into the plane 

of the other faces produced and observe how 

they cut the plane of the paper precisely on the 

other lines of the drawing. 

The icosahedron gives a similar result. Its 

twenty facial planes generate a stellation pattern 

of eighteen lines, nine parallel pairs (see fig. 30). 

You can now see what principle is at work in 

the stellation process. Applying it to the Archi- 

medean solids simply means that two or more 

stellation patterns turn up, one for each face that 

is different. 

The cuboctahedron has eight triangular faces 

and six square faces, a total of fourteen. So it 

will have two stellation patterns, each with 

twelve lines. For the triangular face there are 

three sets of parallel lines, four to a set; for the 

square face there are four sets of parallel lines, 

but they come in one set of two, then a set of 

four, and then a repetition of these, a set of two 

and a set of four (see fig. 31). The cells are easily 

enumerated. There are only four different kinds. 

Besides the cuboctahedron itself you will find 

Fig. 31 

six square pyramids with equilateral triangles 

for side faces, eight triangular pyramids with 

triangular bases and isosceles right triangles for 

side faces, twenty-four dipyramids with equi- 

lateral and isosceles right triangles for faces, 

twenty-four pyramids like the six before, and 

finally twenty-four rhombic pyramids with 

rhombic bases and equilateral and isosceles 

right triangles for side faces. How many solids 

can be formed from these cells? That all depends 

on what restrictive rules you wish to apply. Some 

may be only vertex connected or they may have 

holes leading to the interior, like some of the 

stellated icosahedra. Miller’s rules for the icosa- 

hedron invoke chiefly symmetry requirements 

and accessibility from the outside. The models 

43, 44, 45 and 46 are examples of only four 

possible cases. 

As before, the shaded portions of each facial 

plane show what is visible from the outside of 

the polyhedron. It is also from these shaded 
portions that the nets are derived for the con- 

struction of the models. 

Cee ai 
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4 3 Compound of a cube and 

octahedron 

The first stellation of the cuboctahedron is a 

compound of the cube and the octahedron. This 
makes a very interesting model when done in 

colour. The cube may be done in three colours 

and the octahedron in two more. The nets are 

simply the two different types of triangles shown 

in the facial planes below. Four of the equi- 

lateral triangles are cemented with alternate Y and 

B parts to make a square pyramid without its 

base. Three of the isosceles right triangles make 
a triangular pyramid, again without its base. 

The colours O, R, G are arranged so the oppos- 

ite facial planes of the cube have the same colour. 

Six of the first kind of pyramid and eight of the 

second will complete the model. This hollow 

model gives a neater result than can be obtained 

by cementing pyramids of one kind to a basic 

cube or octahedron. A net with one long tab 

crossing a weak point, as shown here, can also 

be used to make a very rigid model. 
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44 Second stellation of the 

cuboctahedron 

This polyhedron arises as the second stellation 

of the cuboctahedron. Twenty-four dipyramids 

have here been added to the compound of the 

cube and the octahedron. A model of this poly- 

hedron, however, is more easily made using the 

same nets as before. Here it is best to make a 

ring of four parts using the net with one long tab 

crossing a weak point. These four parts form a 

square section prism, the long tabs being at the 

square bottom and the jagged sides coming right 

down to the bottom at the centre point. The top 

of this prism is then closed with eight equi- 

lateral triangles. This completes one section of 

the model. Six of these sections are needed 

altogether. The colour arrrangements of the 

facial planes may follow those of the previous 

model as they extend themselves to this case. 

The final result is easily recognizable as a trun- 

cated form of the stella octangula. 
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4 5 Third stellation of the 

cuboctahedron 

This polyhedron is very interesting in more than 

one way. First of all the square faces stand out 

very plainly falling as they do into three sets of 

pairs. The members of each pair are parallel to 

each other and the sets are perpendicular to each 

other. Secondly the polyhedron is a sort of com- 

pound, composed of six square pyramids, the 

squares mentioned previously serving as the 

bases of these pyramids while the triangular side 

faces quickly disappear into the interior of the 

solid, their vertices coinciding with the middle 

point of the opposite depression. All this is more 

readily seen in a model than it is in words or 

description. 

To construct this model, begin with four 

squares and cement a pair of equilateral triangles 

to each of them. These parts are then cemented 

together by joining the triangles, the squares 

remaining to the outside of the ring. Six of these 

sections are required, and again they are joined 

by the equilateral triangles. Finally, trihedral 

dimples whose faces are the small isosceles right 

triangles, close the holes formed by three of the 

connecting triangles. 
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4 6 Final stellation of the 

cuboctahedron 

The final stellation of the cuboctahedron is par- 

ticularly attractive since it is a compound of two 

tetrahedra, Kepler’s stella octangula being the 

final stellation of the octahedron, and of three 

perpendicular prisms of square cross-section 

whose common portion on the interior is the 

original cube. The outer or end faces of these 

prisms are four rhombic faces forming deep 

tetrahedral dimples. Two very simple nets serve 

here for the parts needed to make a model of this 

polyhedron. The method of assembling in 

sections is the best to use. Four of the chevron- 

shaped parts are cemented in a ring to form a 

prism open at both ends. Four rhombic parts 

are then cemented to form the deep tetrahedral 

dimple and this is used to close the upper end of 

the prism. The cementing is best done one edge 

at a time and clamps can easily be used. Six of 

these sections are needed and they are joined by 

the vertex parts of the stellated octahedron. 

These vertex parts also have rhombic faces, so 

the same net serves for them as for the dimples. 

In doing the last section it is best to cement it in 
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place before closing its end with the rhombic 

dimple. In this way you can still work on the tabs 

through the open end of the prism which can 

easily be closed last of all. 

Youcan see that none of these stellated cubocta- 

hedra is regular or uniform. But maybe some 

others not shown here would turn out to be so. 

To find them you would have to investigate the 

stellation pattern and find regular polygons 

whose line segments coincide with the lines of 

the pattern. The first model given, 43, fulfills 

this requirement. However a second requirement 
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is that the result be a genuinely new polyhedron, 

not a compound. You can see that this is not 

fulfilled. The first model, 43, is a compound of a 

cube and an octahedron. Model 44 has one 

facial plane regular, the octagram, but it is com- 

bined with a truncated triangle which is not a 

regular polygon; so that fails. The third one, 

model 45, also comes out with one face regular, 

the square, but it again is combined with a 

truncated triangle. The final stellation has 

neither of its faces regular. But it does bear some 

resemblance to 92 of the uniform polyhedra. 



Commentary on the icosidodecahedron 

The icosidodecahedron has twelve pentagons 

and twenty triangles as faces, a total of thirty- 

two. This looks a formidable number to investi- 

gate. It will mean studying two stellation 

patterns, each composed of thirty lines. 

As a first step to drawing the patterns it is 

worth noting that an icosidodecahedron is the 

solid that is common to a compound of a 

dodecahedron and an icosahedron. These pat- 

terns are already known. Those to be done now 

must therefore bear some resemblance and ought 

to serve as guides. So proceeding as for the 

stellated cuboctahedra you should be able to 

verify the two patterns given on the following 

pages. 

These two stellation patterns lead to forty 

different kinds of cells. You would have to be 

exceptionally ambitious to verify this, so no 

more will be said about them here, except for 

this one brief remark. Just as the icosidodeca- 

hedral patterns include as a subset the lines of 

the dodecahedral and icosahedral patterns, so 

too the icosidodecahedral cells are building 

blocks for the dodecahedral and icosahedral 

cells. In other words these latter cells are further 
split up and subdivided by the extended facial 

planes of the icosidodecahedron. 

The following polyhedra exhibit only a 

representative sub-set of stellated forms in this 

set. You will quickly notice that some of them 

are compounds or variations of the three stel- 

lated dodecahedra and/or some stellated icosa- 

hedron. This gives many of them the same beauty 

of form. But—the big question—are any uni- 

form polyhedra to be found? The answer seems 

to be—no. Striking resemblances turn up, but 

none of them satisfies the definition of a uniform 

polyhedron. 

As for finding regular polyhedra it has already 

been mentioned that the great mathematician 

Cauchy in 1811 proved that the four Kepler— 

Poinsot solids taken together with the five 

Platonic solids exhaust the list of regular poly- 

hedra. So if you continue to look, you are 

merely joining the ranks of angle trisectors or 

circle squarers or cube duplicators. 

For identification the models are numbered 

47 to 66. 

73 



Fig. 32 

VZY 

INVA 
Sh ~ 

TA 
eS, 
NAN 



Fig. 33 



4/7 First stellation of the 

icosidodecahedron 

This polyhedron is a compound of two Platonic 

solids, the dodecahedron and the icosahedron. 

It is the first stellation of the icosidodecahedron. 

This begins what is called the main line, namely 

the polyhedra derived successively from previous 

ones by adding cells to cover completely all the 

‘outside’ surface area. Thus twelve low pentag- 

onal pyramids and twenty small triangular 

pyramids cover completely the interior icosi- 

dodecahedron. A model, however, can be made 

completely hollow inside. You may make the 

pentagonal pyramids following the icosahedral 

arrangement of colours, but it is best to make all 

the small triangular pyramids the same colour, 

say W. These pyramids, that is both types, are 

left without bases. They are then cemented to 

one another in the same way that you cemented 

the parts for any convex polyhedron. This 

method of construction gives a very neat result. 
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4 8 Second stellation of the 

icosidodecahedron 

This is the second stellation of the icosidodeca- 

hedron in the main line. It is related to the 

small stellated dodecahedron, being in fact a 

special type of truncation of that regular star 

polyhedron. This suggests a method of con- 

struction. 

A net of five parts is shown with the tabs 

illustrated also. The triangles may be arranged in 

the icosahedral colour scheme, ten of them being 

required to close the opening once the ring of 

five parts has been formed. Then these sections 

are cemented as usual in the case of a dodeca- 

hedron. The tabs give it good rigidity since they 

span a crucial weak point. This polyhedron is 

not particularly attractive—merely a stepping 

stone to other forms. 
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4 9 Third stellation of the 

icosidodecahedron 

This is the third stellation in the main line of the 

icosidodecahedron. It is interesting to see a 

pentagon as one face, but the other is not a 
regular polygon. In making a model of this poly- 

hedron it is best to make sets of trihedral parts 

which are vertices of the polyhedron. These are 

formed by using one rhombus and two triangles 

for each part, as shown. Five of these form a 

ring. The rings are cemented together using the 

small dimples and triangles as one connector 

between three rings. This may not be a very 

attractive model, but it helps to illustrate the cell 

formation of polyhedra. You may follow the 

colour arrangement through from the first two 

models, making all the pentagon parts W and 

using the five-colour icosahedral arrangement 

for the rest. 
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5 O Fourth stellation of the 

icosidodecahedron 

This polyhedron is a compound of the small 

stellated dodecahedron and the triakis icosa- 

hedron, both the first stellations of the dodeca- 

hedron and the icosahedron respectively. The 

facial planes shown above make this relationship 

evident. Anattractive model results from following 

the usual colour arrangement used in the original 

separate polyhedra. Thus you may make the vertex 

parts of the small stellated dodecahedron in the 

form of pentahedral angles and the vertex parts of 

the triakis icosahedron as trihedral mounds whose 

faces are three kites. These mounds then become 

the connectors for the other vertex parts. The 

photograph will make the arrangement evident. 

This polyhedron is no longer in the main line 

of stellation. It is more interesting to follow out 

various combinations of compounds. Since the 

dodecahedron has three stellated forms and the 

icosahedron has fifty or more to choose from, 

the results can become something like musical 

“variations on a theme’. 
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51 Fifth stellation of the 

icosidodecahedron 

In this polyhedron the small stellated dodeca- 

hedron penetrates the compound of five octa- 

hedra. To construct a model you may proceed as 

before. First make the pentahedral vertex parts 

of the small stellated dodecahedron in the usual 

colour arrangement. But notice that the shape 

is slightly different toward the bottom. The net 

for the vertex parts of the compound of five 

octahedra is simply a set of four quadrilaterals 

derived from the appropriate facial plane shown 

above. These again form mounds, slightly higher 

than in the previous model. These mounds again 

serve as connectors for the pentahedral vertex 

parts. However they are also connected to each 

other in three’s. This will be evident to you from 

the photograph. The octahedra here can easily 

escape notice. They only become apparent when 

the model is examined at close range. 
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5 2 Sixth stellation of the 

icosidodecahedron 

This polyhedron has two pentagrams coinciding 

with the twelve facial planes of a dodecahedron, 

one of the pentagrams (the larger one) still 

belonging to the small stellated dodecahedron. 

It can be derived from the previous polyhedron 
by the removal of two different types of cells, 

which alter the shape of the compound of five 

octahedra to the resulting form it assumes here. 

The same technique of construction that was 

used in the two previous models can be used 

here. The twelve vertex parts of the small stel- 

lated dodecahedron are done in the usual way 

and a hexahedral mound serves as a connector. 

The faces of this mound are the following: a kite 

from the smaller pentagram, then two triangles 

which are enantiomorphous pairs from the icosa- 

hedral plane, then another repetition of these—a 

kite and a pair of triangles. The drawings and 

the photograph together should make this clear. 
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b 3 Seventh stellation of the 

icosidodecahedron 

This polyhedron is a compound of the great 

dodecahedron, the second stellation of the 

dodecahedron, and 32, one of the stellations of 

the icosahedron. To build a model of this poly- 
hedron the best procedure is to make the dimples 

of the great dodecahedron with a large hex- 

agonal hole in each, following the usual colour 

arrangement. Next prepare the hexahedral 

spikes, whose faces come from the icosahedral 

planes, according to their colour arrangement. 

These spikes are then cemented to the dimples, 
closing the holes. These sections are then as- 

sembled as for the great dodecahedron. The 

single tab crossing the weak point gives the 

rigidity needed for a beautiful model. 
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5 4. Eighth stellation of the 

icosidodecahedron 

This polyhedron is easy to recognize as the 

compound of five tetrahedra penetrated by the 

great dodecahedron. The vertices of the latter 

appear as small rosettes at the bottom of the 

dimples of the former. If you were successful in 

making a model of the compound of five tetra- 

hedra, you will undoubtedly want to attempt 

this one also. The procedure in making this 

model is practically the same. You may begin 

with the trihedral vertices of the compound of 
five tetrahedra and join them in a ring, as before. 

In this case, of course,a decagonal hole is left 

in the centre of the ring. Fill this hole with a 

vertex part of the great dodecahedron, the 

rosette mentioned above. It is easy to see, from 

the pentagon plane, that this has ten triangular 

faces. The secret in cementing these rosettes is 

to do them one tab at a time. You will need con- 

siderable skill and patience toward the end of 

the work. But it is worth the effort, because it 

makes a very beautiful model. The colour 

arrangements are the usual ones used in the 

separate polyhedra. 
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5 5 Ninth stellation of the 

icosidodecahedron 

This polyhedron is the compound of ten tetra- 

hedra, but the ghost of a great dodecahedron 

leaves the traces of its facial planes in the holes 

at the bottom of the dimples and on the interior 

which remains visible through the holes. The 

rosettes used in the previous case would exactly 

fill these holes, but this makes a very interesting 

model as it is. However, it calls for a slightly 

different method of assembly. Two of the butter- 

fly shapes may be joined with two pairs of the 

smaller triangles, the grooves between them 

acting as connectors. The V-cut at the bottom, 

that is, under the groove, then has two of the 

irregular pentagons as faces. These faces 

eventually form the interior surfaces. This 

assembly forms one section. Thirty of these 

sections will complete the model. 
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5 6 Tenth stellation of the 

icosidodecahedron 

This simple polyhedron has the external appear- 

ance of the deltahedron 28, one of the stella- 

tions of the icosahedron. Here the ghost of 4 
small stellated dodecahedron leaves its traces in 

the hole at the bottom of the dimple and on the 

interior. The vertex parts of the small stellated 

dodecahedron would fill these holes. This means 

that the same thing could be done to the com- 

pound of five tetrahedra and the compound of 

ten tetrahedra; the adjustments to be made to 

the nets are easily seen from the stellation 

patterns. 

The method of assembly for this polyhedron 

had best be like that used in the previous model. 

One section has two truncated triangles joined 

along the longest side and two isosceles trapezia 

which eventually become the interior of the 

model. These sections are rather flexible but 

once they are joined rigidity is achieved. Thirty 

sections complete the model. 
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5/ Eleventh stellation of the 

icosidodecahedron 

This polyhedron is truly remarkable because it 

bears such a close resemblance to one of the 

uniform polyhedra. As the drawings here show 

it has one facial plane an equilateral triangle and 

the other a decagram, almost regular but not 

quite. It is actually a truncated form of the great 

stellated dodecahedron, the truncation occur- 

ring very low, near the base of a vertex part. This 

fact suggests a method of assembly for a model. 

You may join three of the parts shown below. 

Keeping one tab long strengthens the weak 

point. Three kites form a dimple and are used to 

close the opening of the truncated pyramid part. 

These parts are then cemented in the same way 

as was done in the great stellated dodecahedron. 

The usual dodecahedral and icosahedral colour 

arrangements can be used very effectively. 
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5 8 Twelfth stellation of the 

icosidodecahedron 

This polyhedron is very attractive. A truncated 

form of the great stellated dodecahedron is here 

making its appearance, penetrating a delta- 

hedron, like the one found among the stellated 

forms of the icosahedron, 28. The icosahedral 

faces are composed of three equilateral triangles, 

slightly larger than those in 28, so that their 

common portion turns out to be the triangular 

faces of the interior icosidodecahedron. The 
dodecahedral faces are decagrams, almost 

regular in appearance but not quite so. It is the 

icosahedral faces which have truncated the great 

stellated dodecahedron. As you will see once you 

have constructed a model of this polyhedron, it 

also gives the appearance of five long cells 

tapered at their outer ends all placed neatly in a 

ring in each dimple of the deltahedron, 28. This 

fact suggests a very simple way to construct a 

model of this solid. Begin by making a set of five 

long cells with the four parts as shown (note that 

they are not closed cells). These cells are then 

cemented in a ring, adjoining each other and 

radiating outward from their blunt ends. 

Portions of the triangular planes are cemented 

between these cells, giving a section reminiscent 

of those used in other stellations of the icosa- 

hedron, in particular 28 and the great icosa- 

hedron 41. Twelve of these sections will com- 

plete the model. 
é 

Portion of triangular plane The four parts for a 

ad long cell (not closed) 
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In the drawings given on the previous page 

only some of the lines from the stellation pat- 

terns are shown. You can easily see for yourself 

how this is so. You will then also notice how the 

vertices of the great stellated dodecahedron just 

manage to make it to the exterior lines of the 

5 9 Thirteenth stellation of the 

icosidodecahedron 

In this polyhedron the great stellated dodeca- 

hedron penetrates 34, one of the stellations of the 

icosahedron. Twenty plus twelve vertex parts are 

thus seen radiating from the central mass. If you 

have succeeded in making models of the two 

separate polyhedra, this compound should not 

give you too much trouble. The vertex parts of 

both typés are first assembled separately and 

then joined to one another. You may use the 

usual colour arrangements and begin by sur- 

rounding an icosahedral vertex part with a ring 

of five dodecahedral vertex parts. Once this is 

completed the rest becomes evident. The secret 

in doing the last part is this: cement the three 

kites of a dodecahedral vertex part separately, 

not as one unit. In this way the three longer 

sides of these kites are cemented last of all and 
can be pinched with the fingers from the outside. 

This makes a very attractive model. 
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dodecahedral pattern. This also means that the 
vertex parts of the solid are dissected into 

numerous cells. Various selections of these cells 

could lead to many different truncated forms of 

the great stellated dodecahedron. 



6 O Fourteenth stellation of the 

icosidodecahedron 

In this polyhedron the great stellated dodeca- 

hedron penetrates a truncated form of the great 

icosahedron. The truncation is effected by 

removal of some of the stellation cells from the 

latter. It certainly gives a spiny result resembling 

a sea urchin. The twelve vertex parts of 34 are 

still seen here surrounded by a ring of five lower 
vertex parts. The vertex parts of the great stel- 

lated dodecahedron exhibit rhombic faces. 

A good method for constructing the model is 

to assemble the three parts needed for the lower 

vertex part, then to assemble a ring of five. This 

ring will have a pentagonal hole at the bottom of 

a depression, its edges formed by the small 

isosceles triangle with base angles 72°. This 

pentagonal hole is closed with the long spiked 

vertex part of the stellated icosahedron 34. This 

is one section of the model. Twelve of these are 

needed and they are joined together using the 

dodecahedral vertex parts as connectors. The 

last part may be completed as in the previous 

model. 
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61 Compound of the 

great stellated dodecahedron 

and the great icosahedron 

The two regular star polyhedra, the great stel- 

lated dodecahedron and the great icosahedron 

are probably the most attractive polyhedra of all. 

Here they are to be found together in one com- 

pound, different from the one given by Cundy 

and Rollett, Mathematical models, pp. 132-3. 

Here they appear together as a stellated form of 

the icosidodecahedron. To make a model of this 
polyhedron you may use the same technique as 

that used for the great icosahedron. The nets are 

shown below. These vertex parts are not as stable 

as the former ones, since some of the lower por- 

tions are missing. But these get their rigidity back 

again when the dodecahedral vertex parts are 

added in rings of five. You will find that it will 

take a great deal of patience to do this model well. 

But then it is also well worth the effort. 

Yes 
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6 2 Fifteenth stellation of the 

icosidodecahedron 

This is a remarkable polyhedron because it so 

closely resembles number 95 among the uni- 
form polyhedra given later in this book. It is not 

itself uniform because the hexagons in its facial 

planes are not regular and the pentagons are 

incomplete or broken at the vertices. The draw- 

ings of the facial planes shown below reveal this 

clearly. But it is not difficult to see what adjust- 

ments are required to achieve uniformity. This 

polyhedron is a truncated version of the great 

icosahedron. The pentagonal planes of the 

icosidodecahedron are here effecting the trunca- 

tion. Number 95 is also a truncated great 

icosahedron, but the truncation is more simply 

effected by a plane parallel to a plane of the 

vertex figure in such a way that the triangles are 

converted to regular hexagons. 

A model of this polyhedron can be assembled 

the same way as that used in the great icosa- 

hedron. The nets for the icosahedral planes are 

shown below; they are merely truncated versions 

of the other nets. After you have assembled a 

ring of these a star-shaped hole is left. This is 

closed with a very elaborately pitted star form. 

Its centre is a vertex part of the small stellated 

dodecahedron turned inside out to form a cup. 

A set of five trihedral dimples forming the star 

arms are cemented to the edges of the cup. This 

completes the pitted star. It is cemented into the 

icosahedral part one edge at a time with the aid 

of clamps. Twelve icosahedral parts complete 

the model. 
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6 3 Sixteenth stellation of the 

icosidodecahedron 

Some of the stellated icosahedra exhibit cells or 

combinations of cells which are connected only 

by the vertices. This gives these polyhedra an 

open, airy quality. The stellation cells of the 

icosidodecahedron can be selected in the same 

way, giving the same result. Three of these are 

presented here, this model and the following 

two. You may imagine this one as resulting 

from the removal of the stellated icosahedron 32 

from the compound polyhedron 53 (see pp. 53 

and 82). The vertex parts of the great dodeca- 

hedron are left, all alone in the form of beautiful 

solid stars, a set of twelve, joined by the vertices. 

The nets for one star arm are shown below. Five 

of these pairs are needed for one solid star. To 

join them at their vertices you will need a con- 

struction cradle. This cradle is one section of the 

great dodecahedron, containing one complete 

pentagonal plane, inverted of course so that it 

becomes a cradle. It is best to cut holes in the 

edges of the cradle at the points where the 

cementing is done. Patience and a steady hand 

will give you the beautiful model shown in the 

photograph. 
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6 4 Seventeenth stellation of 

the icosidodecahedron 

This polyhedron and the next one are closely 

related to the compound of the great stellated 
dodecahedron and the great icosahedron 61. 

You may imagine in this case that the great 

icosahedron has disappeared leaving the traces 

of its facial planes on the interior of this one. 

But to get the remaining cells of the great stel- 

lated dodecahedron to be vertex connected the 

rhombic faces of these cells must be completed. 

This is evident from the drawings below when 

you compare them with the drawings of the com- 

pound. Completing the faces means adding cells 

to bring the vertices into contact. You can makea 

model of this polyhedron by using the net shown 

below. Three of these make one vertex part for 

the great stellated dodecahedron, a completely 

enclosed cell trifurcated at its base. Here again a 

construction cradle is needed to join the cells. 

This is simply one ring of five vertex parts of the 

regular great stellated dodecahedron. Again it is 

best to cut holes in the edges at the points where 

the cementing is done. You must also leave three 

face triangles of the cradle uncemented, other- 

wise the model cannot be removed and turned in 

the cradle as the work proceeds. The completed 

model holds together surprisingly well, a little 

springy but well able to support its own weight, 

much like the models 35 or 29. 
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6 5 Eighteenth stellation of the 

icosidodecahedron 

In this polyhedron the ghost of a great stellated 

dodecahedron leaves its traces in the holes and 

in the interior of the great icosahedron. The 

decagram, really the truncated pentagram, 

which appears so clearly in the drawing below is 

virtually lost in the polyhedron because the eye 

is arrested by the exterior triangular planes. 

Only close inspection will reveal the true nature 

of the interior surfaces. A model of this poly- 

hedron is easily made in the same way that you 

assembled one of the stellated icosahedra, a 

vertex-connected model like this one. In fact if 

you make it the same size as 30 you can lay out 

the cells on the same pallet. A net for one part of 

such a cell is shown here. Ten of these are 

needed, five enantiomorphous pairs, for one 

vertex part. The same colour arrangement as that 

used for the great icosahedron serves very well 

here. As you can easily see, twelve of these cells 

or vertex parts will complete the model. You 

will also see that the contact points are different 

here. This makes the model slightly more difficult 

to construct, but it still comes out quite rigid, 

surprisingly enough. 

94 



6 6 Final stellation of the 

icosidodecahedron 

The stellation patterns for this model are given 

on pp. 74 and 75. 

The final stellation of any polyhedron is usually 

of more than ordinary interest. Here is the final 

stellation of the icosidodecahedron. It gives the 

appearance of twelve bursting sprays, like fire- 

works in a night sky, emanating from a central 

mass, but here all the sprays have mathematical 

precision. The final stellation of both the dodeca- 

hedron and the icosahedron are evident in this 

polyhedron. The great stellated dodecahedron 

just manages to reach the exterior as small tri- 

hedral cells, almost lost, like blades of grass at 

the foot of giant oaks. The final stellation of the 

icosahedron is itself a set of twelve clusters of 

five long spikes to a cluster. Here five thin cells 

fill some of the space between these spikes, 

giving the whole section the spray-like effect 

mentioned above. This suggests a method for 

constructing a model of this polyhedron. 

Begin by making a cup or tapered prism, open 

at both ends, one end very jagged and the other 
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in the form of a regular pentagon. Five of the 

parts marked A are used for this. Then five pairs 

of the parts marked B, ten trapezia, are cemented 

together, being joined at the lower, short, blunt 

ends. These parts fold up, accordion fashion, 

enantiomorphous pairs facing each other. Next 

cement five rhombic parts so their lower acute 

vertices go between the openings of the accordion 

folds. Once this is done you have the deeply 

pitted interior of a cup or tapered prism. This 

can now be cemented into the cup, one edge at a 

time. It is best to do the rhombic edges first 

since clamps can easily hold at these edges, the 

dihedral angles here being very acute. The other 

edges along the centre spike on each of the five 

sides of the cup can then be cemented, and held 

in place with your fingers until the cement is set. 

This completes one section. Twelve sections are 

needed and these are joined together in dodeca- 

hedral fashion. Finally the small vertex parts of 

the great stellated dodecahedron are cemented 

in place after all the rest is complete. It is easiest 
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to leave all the tabs on these parts and simply 

apply cement to all six tabs of one part and 

press it in place between three of the cups. The 

shaded portion of the net A shows the area that 

is covered by these parts. This model calls for 

careful workmanship. The final result can be 

very attractive in the usual icosahedral colour 

arrangement with W for all the dodecahedral 

planes. 

You should now be able to discover other Stel- 

lated forms of the cuboctahedron or the icosi- 

dodecahedron by yourself. This can be done if 

you are acquainted with the stellation cells and 

see how their faces are found in the stellation 

patterns. In fact you should now also be able to 

stellate other Archimedean solids by yourself: 

You do not need complete stellation patterns to 

begin. These are put together as you proceed, by 

trial and error if by no other way, something like 

a crossword puzzle or, even more so, like a 

three-dimensional jig-saw puzzle. 
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Commentary 

You have now seen the stellation process applied 

to the Platonic solids and two of the Archi- 

medean solids. You have also seen that it leads 

to very few uniform polyhedra. In fact only the 

three dodecahedral stellations and one icosa- 

hedral stellation turn out to be uniform. You 

may recall that a polyhedron is uniform if all its 

faces are regular polygons (these now include 

the regular stars) and all its vertices are alike. 

The list so far contains the five Platonic solids, 

the thirteen Archimedean solids and the four 

Kepler—Poinsot solids. Are there any more uni- 

form polyhedra? It may surprise you to learn 

that there are at least fifty-three more! How were 

they ever discovered? Thirty-seven of them are 

due to Badoureau (1881) who systematically 

considered each of the Platonic and Archi- 

medean solids in turn with a view to finding 

regular polygons or regular stars on their facial 

planes or cutting through the interior of these 

solids. This is a different approach from that of 

stellation. If such a polygon is found, it is evident 

that its vertices coincide with some of the ver- 

tices of the related convex polyhedron. The 

planes of these polygons may intersect. If por- 

tions of the solid are removed symmetrically, 

another uniform polyhedron may result. This 

process is called faceting, a sort of reverse of 

stellating. Stellating implies the addition of cells 

to a basic polyhedron which serves as a core. 

Faceting implies the removal of cells, so that the 

basic polyhedron may still be imagined as a case 

or enclosing web for the new one. If you examine 

Kepler—Poinsot solids from this point of view 

you will see that the small stellated dodeca- 

hedron and the great dodecahedron can both be 

derived by faceting an icosahedron. The vertices 

of the former and the edges of the latter coincide 

respectively with the vertices and edges of an 

icosahedron imagined as a case enclosing them. 

If you examine the models you will see this very 
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plainly. The great stellated dodecahedron is a 

faceted dodecahedron as well as a stellated one. 

If you imagine straight lines joining each vertex 

to three adjacent ones, the whole set of these line 

segments forms the edges of a regular dodeca- 

hedron. Thus the vertices of the great stellated 

dodecahedron coincide with those of a dodeca- 

hedron encasing it. The great icosahedron is a 

faceted icosahedron as well as a stellated one, 

for the same reason. Many of the models now to 

be presented will amply illustrate this principle 

of faceting. 

Badoureau was mentioned above. Other in- 

vestigators include Hess (1878), who discovered 

two new uniform polyhedra. (Notice the earlier 

date.) Pitsch (1881) working independently dis- 

covered eighteen, some of them not contained in 

the list by Badoureau. Then between 1930 and 

1932 Coxeter and Miller discovered twelve other 

uniform polyhedra not previously known, but 

publication was put off in the hope of obtaining 

a mathematical proof that there are no more. 

Independently M. S. Longuet-Higgins and H. C. 

Longuet-Higgins between 1942 and 1944 re- 

discovered eleven of these twelve. These two 

teams learned of each others work in 1952. 

Meanwhile Lesavre and Mercier (1947) re- 

discovered five of the twelve. In Uniform poly- 

hedra, published 1954, from which these facts 

have been culled, the total now stands at 

seventy-five uniform polyhedra. But here it is 

admitted: ‘it is the authors’ belief that the 

enumeration is complete, although a rigorous 

proof has still to be given’ (p. 402). 

The method used by these recent investigators 

differs from that of the previous ones. It is based 

on a systematic investigation of all possible 

Schwarz triangles as they apply to the poly- 

hedral kaleidoscope. Schwarz triangles are 

related to the Mdbius triangles mentioned 

previously (see pp. 4-6). 
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Examples of how metrical properties are found in 

non-convex uniform polyhedra 

Polygons found as faces: {3}, {4}, (5. {6}, {8}, {10}, 

to which you must now add the three star polygons: {3}, {8}, {42 

one 

unit 

Fig. 34 

2(22— v2) 

41GV 2-4) 

43/2—4) 

2(7—3/5) 

(V5—2) 
one 

unit 

(7-375) 
(5-2) 
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General instructions for making models of 

non-convex uniform polyhedra 

The non-convex uniform polyhedra are des- 

cribed, each showing the facial planes required 

and the pattern of parts arising from the inter- 

section of the facial planes. No specific dimen- 

sions or measurements are given for any of these 

drawings because there is a very simple relation- 

ship which will give you the key to all of them. 

It lies in the fact that the pentagram or five- 

pointed star and the decagram or ten-pointed 

star both exhibit the golden ratio in their dimen- 

sions. Thus whenever these stars are found along 

with other regular polygons these polygons have 

their edges divided according to the golden ratio 

7 = 1-618 approximately. This is illustrated by 
way of the examples on p.99. The octagram or 

eight-pointed star exhibits the famous 1/2 in its 

metrical properties, «1/2 = 1-414 approximately. 

Thus once you have drawn these three stars 

accurately you have all the measurements in the 

line segments of the stars themselves. It is only 
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in the more intricate models that some further 

points on the edges will be needed, but again you 

will find that the golden ratio turns up once 

more in these smaller segments. Thus a careful 

study of the drawings will enable you to make 

the models of any desired size. 

The facial planes of the non-convex uniform 

polyhedra are not always entirely visible. 

Sometimes some portion of the plane is hidden 

in the interior of the solid, or a portion is visible 

as the upper part of the surface while another is 

visible as the lower or reverse side of the same 

surface. The light shading is used to show the 

upper surface, the dark the lower surface, while 

the invisible portion of the facial plane is left 

unshaded. When the entire polygon is exterior 

it is left unshaded. The nets for constructing the 

models are derived from these visible and in- 

visible portions. 



6 7 Tetrahemihexahedron 

This simple polyhedron is easily recognizable as 

a faceted form of the octahedron. Topologically 

it is the famous one-sided heptahedron, homo- 

morphic with the one-sided surface named after 

Steiner. (See Cundy and Rollett, p. 193.) In this 

polyhedron three equatorial squares lie in three 

perpendicular planes sharing their edges with 

four triangles. 

To construct a model of this polyhedron four 

colours may be used. The equilateral triangles 

may all be the same colour, say R. Cement the 

isosceles right triangles to the edges of the equi- 

lateral triangle as shown, and make four of these 

units, all with the same colour arrangement. 

These parts must then be given the form of tri- 

angular pyramids, the R triangle serving as the 

base and the Y, B, O triangles as slant sides. 

Now a special cementing technique must be em- 

ployed. Some of the tabs must be turned out- 

ward and cemented to form a tongue running 

along the slant edges of the pyramid, while other 

a tabs are turned inward as usual but left un- 

cemented to form a groove into which the 

tongue tab of another part can be inserted. If 

you remember while assembling the parts that 

each square in the completed model must be the 

same colour, you can join two appropriate 

3 pyramids by applying cement on both sides of a 

tongue tab before inserting it into the groove of 

the other part. When you have done this you 

should have two half-squares, whose planes 

Le 
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bisect each other at right angles along the line of 

the tongue and groove edge. The third pyramid 

may now similarly be cemented in place, and 

finally the fourth pyramid. You must exercise 

your own judgement on which tabs to use as 

tongues and which as grooves. Once you see the 

model taking shape this will not be hard to do. 

An alternative method of construction, also 

useful for other models, is to make four tri- 

hedral cups as shown. All the tabs are turned 

outward to form ribs on the outside of the cup, 

which is actually a triangular pyramid without 

its base. These ribs can then be properly trimmed 

and manceuvred to serve as double thickness 
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tabs to join the cups together so that an edge of 

one cup may be made to coincide with that of 

another. The four R triangles are then added 

last, cementing one edge at a time and then 

closing it like a lid in the usual manner. You will 

find that the acute dihedral angles at the edges 

make it an easy matter to cement these last 

equilateral triangles, although your work on the 

cementing of the cups must be very accurate to 

make these last triangles fit well. From this point 

of view the first method of construction is prob- 

ably better or easier to execute. Your own 

experience will tell you which one you may 

prefer. 
~ 



6 8 Octahemioctahedron 

This polyhedron is a faceted cuboctahedron, 

also called an octatetrahedron. Four equatorial 

hexagons share their edges with eight triangles. 

Here again two methods of construction are 

possible. You can make eight tetrahedra, the 

first four having the colour arrangement set out 

below. 

Buwuww: KQAOKN aOKOY Wm maS 

The other four also will all have a B triangle as 

base, but they will have the enantiomorphous 

arrangement of side faces. Actually this amounts 

to reversing only two colours, namely 2 and 3 

become 3 and 2. These tetrahedra are then 

joined to one another by the tongue and groove 

technique. Again you must exercise your own 

judgement to decide which tabs to turn in and 

which to turn out. The completed model will 

have all outer triangles B and the hexagon planes 

Y, O, R, G. If you keep this in mind while you are 

cementing the parts you should have no diffi- 

culty in arranging them in the proper positions. 

The alternative method of construction is to 

make six tetrahedral cups, the first three in the 

colour arrangement shown. 

s 
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The other three are again enantiomorphous to 

the first set of three. As before in this method of 

construction all the tabs will be exterior to the 
cups. Thus they can serve as double thickness 

tabs, and be suitably trimmed and disposed so 

that they can be cemented to join the cups along 

common edges. Then all the B triangles are 

added last of all. 
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6 9 Small cubicuboctahedron 

This polyhedron is a faceted version of the 

rhombicuboctahedron. The squares lie in the 

facial planes of a cube, the octagons lie on 

parallel planes below the squares, and the tri- 

angles are the same as those of the rhombi- 

cuboctahedron. Since the cube needs only three 

colours, a very effective colour arrangement can 

be obtained here by using the other two colours 

for the triangles. Use the square, rectangle and 

two triangles shown in the facial planes for nets. 

Begin the construction of this model by making 

four triangular pyramids as set out opposite. 

3 3 4/4 
8{3} + 6{4} +6{8} 
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Cement all the tabs outward on the slant edges to 

form tongues. Next construct an open prism as 

shown below. This is the upper part of the 

model, so the B and O rectangles must be turned 

down in the first part, and the other rectangles 

treated in a similar fashion. The four pyramids 

can now be cemented at the four corners of the 

prism, the tabs between the B and O rectangles 

forming the groove to receive the tongue tabs of 

the pyramids. You must of course orient them 

according to their appropriate colours, keeping 

the Y triangles below. Now add a ring of four 

more prisms. They are arranged as set out in the 

second and third line of the colour table that 

follows, two of each. 

oil Alec oe. ea 
WY O° BO 'B 

OFYOB Y B 

Be’y'"O Y"O 

The remaining four pyramids and three prisms 

are identical in colour arrangement and the tech- 

nique of assembly is the same. Actually you will 

discover that the rectangles from the prisms can 

simply be turned into place so that the tabs on 

their edges easily make contact with the tongue 

tabs of the pyramids without worrying about 

the groove arrangement. The end result is equi- 

valent to the groove but it is achieved in a 

different way. This will become clear as the 

model takes shape. This turns out to be a very 

sturdy and attractive model. 
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70 Small ditrigonal 
icosidodecahedron 

This polyhedron has twelve pentagrams in the 

same facial planes as the dodecahedron and 

twenty triangles in those of the icosahedron. As 

is evident from the vertex figure they meet in 

alternate sets of three around each vertex of the 
polyhedron. So it can be called a ditrigonal 

icosidodecahedron. The pentagrams may be 

done in six colour pairs, but to preserve the map 

colouring principle you will have to use the 

second or alternative icosahedral arrangement 

for the triangular planes. This can be achieved 

most easily by working around each star, 

cementing the smaller triangular pairs as di- 

hedral grooves between the star arms. The 

arrangement and colour table are set out opposite. 

As soon as you have completed the grooves 

around the W star, you can immediately add the 

next five coloured stars. To get these correctly 

placed, put the G star opposite the Y triangle, 

and so on around with Y, B, O, R, G. 

Nin 
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Star 01 23 45 67 89 
GY RG OR BO YB 
GB OG GO RG BR 
YO RY YR GY OG 
BR GB BG YB RY 
OG YO OY BO GB 
RY BR RB OR YO QAxPOWXs 

In the colour table it is evident that each colour 
pair is named twice. This makes it simpler to 

follow, because you can actually work in that 

order, surrounding each star with the dihedral 

grooves. Undoubtedly you have by now ob- 

served the cyclic permutation of colours. This is 

also evident in the colour table if, disregarding 

the first line, you read down each column 

successively. 

Once this much of the model has been com- 

pleted you should have no more difficulty. The 

remaining pentagrams should be placed in 

opposite colour pairs and the grooves are all 

determined by watching the triangular planes to 

see that they are kept in their colour sequence. 

You will find it easier to cement these triangle 

pairs together first, and then to cement them 

between the star arms. All the remaining tri- 

angles can be completed in this way. Thus a W 

star is cemented last of all. 
This is best done in stages; cement only one 

tab first and let this set up firmly, then work on 

one edge at a time. As the openings at the edges 

begin to narrow, apply the cement carefully and 

work it in with the probing needle. Deft fingers 

and a little patience will do the rest. 
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71 Small icosicosidodecahedron 

In this polyhedron the twenty triangles are on 

facial planes above and parallel to twenty hexa- 

gons. This means that the first icosahedral 

colour arrangement will do very well here with 

its five colours, parallel planes being the same 

colour, leaving white for all the stars. The tri- 

angles have edges in common with the hexagons, 

and vertices in common with the stars. This 
leaves grooves between the star arms, each 

groove being formed of two trapezia coming 

from intersecting hexagon planes which suggests 

the following method of assembly. Make five 

grooves as illustrated below following the (0) line 

in the colour table. These are cemented so that 

they radiate outward and downward between the 

W star arms. Triangles are then cemented between 

the grooves, each colour being determined by the 

hexagon plane below it. In the colour table each 

groove is mentioned twice, but again this is easier 

Dewi? 12211212 
(0) YG BY OB ROGR 
(1) YG RY BR OB GO 
(2) BY GB OGRO YR 
(3) OB YO RY GR BG 
(4) RO BR GB BG OY 
(5) GROG YO BY RB 
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to follow from the point of view of construction. 

If you work systematically around each star the 

colour arrangements are easy to follow and you 

can cement the grooves in place as you deter- 

mine their colour and position. The grooves and 

triangles thus help to determine each other as far 

as colour is concerned. You will find that opposite 

grooves on the model are enantiomorphs, but 

in cementing the trapezia pairs it ‘does not 

matter too much. Turning the pairs end for end 

will reverse the colours as required. 

This model requires a bit of patience to com- 

plete, since each star with its ten edges has ten 

trapezia joined to it, that is, five grooves. The 

secret is not to try to do too much at once. One 

edge cemented at a time is the best rule to 

follow. If you keep five clamps handy, you can 

keep moving them around and by the time you 

finish cementing the tabs at a fifth edge you can 

remove the clamp from the first edge. Also it is 
generally easier to cement the longer edges of the 

trapezia first to the triangles which they sur- 

round and then the shorter edges or ends of the 

grooves to the star arms, 
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12 Small dodecicosi- 

dodecahedron 

This polyhedron is easily recognizable as a 

faceted rhombicosidodecahedron. The six colour 

dodecahedral arrangement can be used for the 

pentagons and the decagons which lie on 

parallel planes one above the other. Thus the 
procedure for constructing this model is to begin 

with a W pentagon to which five trapezia are 

cemented as shown. Turn the tabs on these 

trapezia inward but leave them uncemented to 

serve as grooves into which the tongue tabs of 

the small triangular pyramids must be inserted. 

The colour tables for both these parts are set out 

below. 

You must now follow the second icosahedral 

arrangement to place the triangular pyramids in 

their correct positions. The colour tables below 

give only half the required parts, but again the 

rest are all enantiomorphous to these and they 

each take their positions diametrically opposite 

their counterparts. In this way the map colouring 

principle is preserved. 

(0) 
(1) 
(2) 
(3) 
(4) 
(5) <ieeex- DPOWKQWN WwKAROOY OwWKQORRA KaRPOwWOY - QPOWKES 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 

(10) QPOWKQAROWKS AOwKO eZeeeer7 WK AROWKOWON KOPOTOWK ORY 
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7, 3 Dodecadodecahedron 

This polyhedron has twelve stars in the same 

facial planes as the dodecahedron, but on parallel 

planes below these stars are twelve pentagons 

each sharing edges with five surrounding stars 

and intersecting each other. To construct a 

model of this polyhedron, begin by cementing a 

set of five trihedral dimples between the arms of 

a W star. The arrangement is shown in the 

colour table. 

The first set of five dimples are cemented so that 

the rhombus 1 is below the W star, forming a 

white pentagon plane parallel with the star. The 

other colours begin the next five intersecting 

pentagon planes so that two rhombi appear with 

the same colour along the straight line between 

alternate star arms. The next five stars may now 

be cemented in place, their colours being deter- 

mined by the two rhombi just mentioned. The 

next set of five dimples are then added, (6) below 

(1), and so on for the rest. Enantiomorphism 

applies for the remaining parts. 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 

(10) wKeQAF OZ eZee =E™ BROWKQQROWKN OPOWKRPOWKOY 

N GN 
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74. Small rhombidodecahedron 

This polyhedron is another version of the 

rhombicosidodecahedron, Here the pentagons 

are removed giving place to shallow pentagonal 

cups whose bottoms, also pentagons, belong to 

the decagon planes. The triangles, as well, are 

removed leaving shallow dimples whose faces 

are also part of the decagon planes. The squares, 

however, are retained. The dodecahedral colour 

arrangement works well for the decagon planes 

and suggests the following method of assembly. 

Begin with a W pentagon and cement five 

trapezia to it forming a shallow pentagonal cup 

as shown. You can follow the same colour table 

as that used for the small stellated dodeca- 
hedron. All twelve cups can be cemented to- 

95 3 gether to form an interior dodecahedron. This 

2 leaves the spaces between the trapezia to be 

30{4} + 1210} filled alternately with squares and shallow tri- 

V1 +4v5) hedral dimples. The colour tables set out below 

give a remarkable result. Cement the Y square 

between the W and R pentagons, with the other 

squares following round in order, the B square 

between the W and G pentagon, and so on. This 

gives a ring of squares at the top in the usual 

10 10 order: Y, B, O, R, G. The next five rings are: 

4 4 (1), (2), (3), 4), (5). 

Pentagons Squares 

(0) W ¥eB-O BR G 
(1) »R YB G-W Oo 

(2) G BOY WR 
(3) Y OR BWG 
(4) B RGOWY 

(SJ GYR WB 
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You will note that the rings have squares in 

common, so each square is listed twice in the 

table. Again enantiomorphism applies to the 

remaining rings of squares. The remarkable 

result mentioned above can now be observed. 

The five W squares alternate with the other five 

coloured squares as an equatorial skew band 

when the polyhedron is held so that the two W 

decagons are at the poles. The same relationship 

holds for each of the six colours. 

The trihedral dimples have the same colour 

arrangement and even the same shape as those 
of the great dodecahedron. However, because of 

the shallowness it is advisable to eliminate the 

tabs altogether by cementing the tab of one tri- 

angle directly to the under surface of another as 

shown. Their positions are not hard to locate on 

the model. 
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7 5 Truncated great 

dodecahedron 

The same colour arrangement may be used here 

as for 21. The stars and decagons being on 

parallel planes should be the same colour. The 

best method for constructing this model is 

simply to make the trihedral dimples following 

the colour table for the great dodecahedron. 
Cement these dimples together along their re- 

maining long edges and add stars at the short 

edges as required. The arrangement for one 

dimple is shown. 
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16 Rhombidodecadodecahedron 

This lovely polyhedron is almost as spherical as 

a beach ball and with the arrangement suggested 

here is equally as colourful. Its name suggests 

its relation to earlier models. This model has a 

great number of parts, a total of 312, to cut, 

trim, and cement. The usual technique of pro- 

viding all the parts with tabs all around will 

produce a fairly good model, if it is not too 

large. The squares can be arranged as in 74, but 

here the planes intersect each other so that the 

skew band is all the more delightful. An arrange- 

ment of parts and a colour table are set out 

opposite to help you get started. 

With these parts cemented you will have no 

trouble finding the right colours for the smallest 

parts belonging to the pentagon planes. These are 

cemented in place at once. Continue to work on 

the rest of the model and complete it except for 

the small triangular holes that will be left. These 

holes are closed with small shallow trihedral 

dimples whose three triangles come from the 

square planes. Again the colours for these are 

now not hard to determine. One extra word of 

advice. It is usually easier to cement concave 

parts together first, then to cement them to the 

model as you near the end of your work. The 

triangles 11-15 thus become folded rhombi in two 

colours and serve as connectors between sections. 
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G/T: Great cubicuboctahedron 

This polyhedron is a faceted cube. Each octa- 

gram lies on the face of a cube which you may 

imagine as enclosing the polyhedron. Then each 

corner gets a tetrahedral dimple and each edge 

gets a dihedral groove. The dimples and grooves 

alternate between the star arms. Since the cube 

can be done with three colours the octagrams 

can follow the same arrangement. Six stars are 

thus paired and six squares get the same colours 

because they are parallel to the stars and below 

them. The triangles can then use the other two 

colours alternately. 

Begin constructing this model with a Y octa- 

gram. Then make four dimples as shown, also 

four triangle pairs. Note that these triangles are 

slightly larger than those used in the dimples. 

Cement the dimples and grooves alternately 

between the star arms, seeing that the colours 

run on their respective planes. 

With this done you should have no further 

difficulty. The colours are easily determined for 

the stars, the second Y star being cemented last, 

one edge at a time. 

BARS KKK OwWown DOWOw QF aAR- BORAX 
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7] 8 Cubohemioctahedron 

This polyhedron is another faceted version of 

the cuboctahedron and thus the same construct- 
ion methods are applicable here as in 68. Prepare 

your nets from the facial planes. You may make 

six pyramids with square bases, three as set out 

below and the other three their enantiomorphs. 

Assembly of these pyramids is by the tongue and 

groove technique. 

The alternative method of assembly has eight 

trihedral cups, the first four arranged as shown 

and the other four as their enantiomorphs. As 

usual all tabs are turned outward, then the 

double tab of one cup is cemented to the under- 

surface of another to make the edges coincide. 

The squares are added last to complete the 

model. 

Or) Tee2owBie 4 
Bany.) O. ‘REG 

BAY ARLOKG 
BenY¥e ReGeO 

nec) (Or zc G) G) G) < tw 7OKOw 
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9 9 Cuboctatruncated 

cuboctahedron 

This polyhedron is a faceted octahedron. The 

dihedral grooves between the star arms are parts 

of hexagon planes. The relationship to the octa- 

hedron suggests a very effective colour arrange- 

ment. The eight hexagons can be parallel pairs 

in four colours, and all six octagrams are a 

fifth colour. The stars may all be white or 

the same colour as the octagrams since they are 

on planes parallel to and above the octagram 

planes. To construct a model of this polyhedron, 

begin by surrounding triangles, the central part 

of the hexagon, with the parts coming from the 

octagon planes as shown. The shortest edges of 

these surrounding parts should then be cemented 

to form a shallow cup. Next the grooves are 

made as shown and these two parts cemented 

alternately around an octagram. 

OF 1 2.3 4 5 

Ve GaGeG.  Yark 

Be Gl, GaG_] Bay 

O GGG OB 

Recut to? eae 

The next four octagrams can be added immedi- 

ately. After this four more grooves form an 

equatorial band connecting these octagrams. 

Their colours are 

é 

WK WOR BOWK 

aS GN 

You will have noted that the last two of these 

pairs are enantiomorphs of the first two. They 

appear of course diametrically opposite on the 

model. The next set of four shallow cups and 

their four connecting grooves may then be 
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cemented in place. The cups are each opposite 
their respective colours and the grooves opposite 

their enantiomorphs. In cementing the pairs that 

form the grooves you need not worry about right 

122 

or left because turning this part end for end will 

give you the desired order. A final octagram then 

completes the model. This makes an attractive 

and rigid polyhedron. 
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8 O Ditrigonal dodecahedron 

This polyhedron is especially interesting because 

of its close relationship to the great stellated 
dodecahedron. It may be thought of as this 

latter solid with the embossed stars of the great 

dodecahedron removed from their pentagonal 

planes, then turned over and set down to make 

the vertices of these embossed stars coincide 

with the points between five vertex parts of the 

great stellated dodecahedron 22, the edges 

being shared in common. This sounds a bit com- 

plicated in words, but once the model is com- 

pleted you will readily see it for yourself. This 

model can also be thought of as a faceted version 

of 70. The dihedral triangular grooves of 70 are 

here removed to give place to deep holes between 

the star arms. These holes are formed by the 

intersecting pentagon planes, and thus their faces 

are the familiar 72°, 36° and 36° 108° isosceles 

triangles. The relationship of this polyhedron to 

the two stellations of the dodecahedron means 

that the same colour arrangement is suitable 

here. 

To make a model of this polyhedron, prepare 

twelve pentagrams, two of each of the six 

colours. Next prepare a set of five hexahedral 

cups, the holes described above, whose parts 

are shown on p. 124. A complete colour table 

for two more sets of five is set out on the same 

page. 

Turn the tabs to the outside of these cups, which 

are then cemented between the star arms. The 

first set of five cups will surround the W penta- 

gram. After these are in place add the five 

coloured pentagrams. The Y star must lie on a 

plane above the Y pentagon, which shows only 

two parts of its area in the cups. These are the 
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triangles 1 or 2. Once you locate the correct 

position for this first star the others follow 

around in order as Y, B, O, R, G. Then the 

second set of five cups can be prepared and used 

as connectors. Cup (6) goes between the G and 

Y star, (7) between the Y and B star, and so on 

around in order. The third set of five cups will 

complete half the model. Their positions are 

easily found by watching the pentagon planes to 

see that they keep their respective colours. The 

second half of the model is enantiomorphous to 

the first, the parts being diametrically opposite 

their counterparts. The W star is cemented last. 

This makes a very sturdy model, but as you 

approach the end of your work it requires very 

careful cementing to make the stars fit well. 
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81 Great ditrigonal dodec- 

icosidodecahedron 

This polyhedron is a member of the icosidodeca- 

hedral family. This suggests the usual colour 

arrangement, six colours in opposite pairs for 

the decagrams and the pentagon planes parallel 

to them, and the second five-colour icosahedral 

arrangement for the triangles, making opposite 

triangular planes the same colour. 

The simplest method of assembly for a model 

of this polyhedron is to make the dimples and 

grooves and cement them alternately between 

the star arms. Start with a W decagram cement- 

ing the parts as shown, and continue in the 

same way to complete the model. 

a tae: 1 2-6 
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8 2 Small ditrigonal dodec- 

icosidodecahedron 

This is a most remarkable polyhedron because it 

was discovered in our own century and pub- 

lished for the first time in 1954 (see Coxeter, op. 

cit.), yet it is closely related to the stellated 

dodecahedra. From this point of view it is 

strange that it should have been missed by the 

earlier investigators. But then the stellated 

dodecahedra themselves were missed until 

Kepler’s time. This polyhedron can be thought 

of as a truncated form of the great stellated 

dodecahedron with the embossed or solid stars 

of the great dodecahedron taken from their 

planes and turned over here to fill the spaces 

between the stumps remaining after truncation. 

This relationship is helpful in making a model of 

this polyhedron. 

Make twenty truncated pyramids as shown. 

The side faces follow the colour arrangement of 

the great stellated dodecahedron. Leave the tabs 

at the slant edges uncemented but turned in to 

serve aS grooves into which tongue tabs are in- 

serted. The triangles follow the first icosahedral 

arrangement. 

QnOWK Qn7OWKN RODKQY KORWOWS 

You will at once see that the map colouring 

principle is abandoned here, but only in the first 

ring of five parts. Also once you have cemented 

these parts as a ring, you will see the position at 

their centre for the first solid star part. These 

solid stars are made following the colour ar- 

rangement of the great dodecahedron. Cement 

one short edge of the 36°, 108° triangles between 

the star arms of the pentagram, but turn the tabs 

on the longer edges out to form tongue tabs. 

The other short edges are turned in and cemented 

to each other, thus forming a sort of star pyramid 
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with concave edges as usual, but with ribs on the 
outside at the convex edges. These solid stars 

can now be easily cemented into their respective 

places by inserting the five tongue tabs into the 

five grooves made by the tabs of the trapezia 2, 

3, 4 shown opposite. The W pentagram, call it 

the base of the solid star pyramid, should lie on a 

plane above and parallel to the W decagon, 

whose parts appear alternately with upper and 

then lower surface visible. The procedure will 

become apparent as the work proceeds. This 

makes a very sturdy, rigid, and interesting 

model. 

Ay 
oF 
ee 
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83 Icosidodecadodecahedron 

This polyhedron is very much like 76 but the 

squares there are replaced with hexagons here, 

giving it a more fascinatingly dimpled character 

and also adding greater rigidity and beauty. 

Once you begin to make this model you will be 

surprised to see how easily it can be assembled 

despite its complicated structure. 

To simplify construction, the procedure has 

been broken down into four steps or parts. 

Solid stars, called part I, are built first. Begin 

with a regular pentagram and fill the spaces 

between the star arms with triangles belonging 

to the hexagon plane to make a low inverted star 

pyramid. The longest tabs on these triangles are 

turned out to form ribs along the slant edges 

leading from the star points to the central vertex. 
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The figure shows a plan of this part and a colour 

table for six such parts. . 

Part I , 

iat eee e Ae se — 9 <8 - 10 

Oe WateG en ey “O BR’ O'°-G-R 

axe nao Be R Yo O-R GO 

Cy-b Greys BOO: GB RG Y R 

OO hep Oun -—Y O - Gey: BG 
MR Gaoe R7G.BeR--Y BO. Y 

Po ey the Gyo O G- BO RB 

Part Il is a sort of wedge or open trihedral scoop. 

The sides belong to the hexagon planes and the 

central triangle comes from the pentagon plane. 

The colour table follows: 

ewes? 1. 21) 3 
(seGOry R-BG-0.Y RB Ww 
(On (G8 RB On Ye; GRY B O..Y 
OER ayYaGO RB YG o/R \B 
GMOIBEY R-GO BY RG 6 
@BRAOCB G YR OB GY R 
eGR yO-Y BUG RO, ¥ BG 

Part 11 is cemented so that it shares its acute 

vertex with the central point of the solid star and 

its longer edges run along the ribs of the solid 

star filling the spaces between the star arms. In 

each case the first-named colour pair of part 1 

goes between sections 7, 8 of part I and the rest 

follow round in order. If you use clamps, part 1 

can easily be kept in place. In effect you have 

here the tongue and groove technique but 

achieved in a different manner. It is this different 

method of assembly which makes this model 

surprisingly easy. Parts 1 and | make a section. 

Twelve sections complete the model. These 

sections are joined together using part II as con- 

nectors. These are the same colour pairs as in 76, 

and their position is now easy to determine. 

Finally twenty more small trihedral dimples, 

part Iv, are needed to close the small triangular 

Openings at the base of part u. Their colour 

arrangement also is easily determined from the 

hexagon planes. 

You will notice that the map colouring prin- 

ciple has again been abandoned. You may wish 

ieee 

YN 
3 | Part II 

Part I | Part Iv 

to experiment on your own with more colours to 

get a better effect, although the arrangement 

described above is very satisfactory. Only a 

trained eye would notice the colour defect, if it 

may be so called. This model takes a great deal of 

time to assemble because of its many parts. 

Again you may wish to experiment on your own 

by making other nets combining more of the 

parts to save labour. You will have to be the 

judge of whether the result is more pleasing. 

Undoubtedly this model is one of the most satis- 

factory of the whole set of uniform polyhedra 

from the point of view of being easy to make yet 

being complex in appearance. It is easy to make 

from the point of view of assembly, not of time 

involved. It turns out also to be a very rigid 

model. 

hy 4 
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84 Icosidodecatruncated 

icosidodecahedron 

This polyhedron is to the icosahedral group, 

what 79 is to the octahedral. The construction 

technique remains the same. To make this 

model, build shallow triangular cups and di- 

hedral grooves and cement these alternately 

between the star arms of the decagrams. A suit- 

able colour scheme is given opposite. 

The first five of these cups surround the W deca- 

gram, the paired dihedral grooves connecting 

adjacent cups. 

The first set of five grooves extends radially 

downward from between the star arms. The next 

set of five can now be cemented along their 

edges, the Y star above the Y decagon plane 

which at this stage of construction shows only 

two of its five parts. The other stars follow 

around in the usual order. Now the third set of 

shallow cups may be added, (6) below (1), and so 

on. The colours of the second set of grooves are 

determined by the triangles at the bottom of the 

cups. So too with the third set of grooves. Again 

the map colouring principle has been over- 

looked, but this must happen when the dodeca- 

hedral and icosahedral colour arrangements are 

both used in one model, while keeping to only 

six colours. Here the second icosahedral arrange- 

ment is used. To complete the model make the 

remaining parts enantiomorphous to those tabu- 

lated. The numerous edges around each deca- 

gram require perseverance in cementing the tabs. 

Also these decagrams may need some backing, to 

make them stiffer, when the scale of the model is 

fairly large, in which case the parts are also 

easier to cement. 
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8 5 Quasirhombicuboctahedron 

This polyhedron is very similar to 77. The octa- 

grams of that polyhedron are removed here with 

only the edges retained making it deeply 

dimpled and cupped. It has two different sets of 

intersecting squares. If you follow the colour 

arrangement of 77 for the triangles and corner 

dimples used there, you will again get an effective 

arrangement. However, with more squares in 

this model, you cannot preserve the map colour- 

ing principle with only five or six colours. In fact 

the many parts required here call for a great deal 

of perseverance to complete a model in colour. 

You may therefore find it more satisfactory to 

make a model in one colour first, to see what 

colour possibilities you can work out for your- 

self. 

Suitable nets, combining many parts in one, 

for such a model are given opposite. The letters 

identify the individual nets shown separately at 

full working scale. You will need six of part 1, 

the central portion of the faceted octagram. 

Leave tabs all round. The broken lines should be 

scored on the reverse side and the folding along 

these lines is up instead of down. Cut twenty-four 

star arms, part 11. You will also need eight of 

part 11, the dimpled corner portions, and twelve 

of part Iv. Assemble parts 1 and 1 first and then 

use parts III and Iv as connectors. 

3 4|2=1'B 
8{3} +(12+ 6){4} 
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8 6 Small rhombihexahedron 

This polyhedron is another faceted rhombi- 

cuboctahedron very much like 69. The triangles 

found there are here removed and the set of 

squares found there, are here replaced with a 

different set of squares. You can use the same 

set of open prisms in constructing this model as 

you used in 69. The triangular pyramids there 

will now give their sides to trihedral dimples 

with the same colour arrangement. The square 

prisms are cemented first to form an interior 

cube; then the set of squares, which may all be 

one colour either R or G, are cemented along 

opposite sides to the edges of the prisms. 

Finally the dimples are cemented in place. You 

must of course see to it that the double tabs 

below the dimples are properly trimmed and ad- 

justed so they do not jam. This makes a very 

rigid model. 

134 

31 
24 ri 

2 

12{4} + 6{8} 

V(3+2V7 2) 



Lj 
_ SMUG) 

Wj 

7] Dy, 

3/3 5 
20{3} + 12{5} 

/3 

_ 

WY 

S/ Great ditrigonal 

icosidodecahedron 

This polyhedron is another ditrigonal icosido- 

decahedron like 70. It differs from 70 in that here 

the pentagrams are removed and pentagons 

replace them on a parallel plane closer to the 

centre of the solid. The twenty triangular planes 

have exterior parts made up of two sizes of 

equilateral triangles, and the twelve pentagon 

planes have the usual 36°, 72° and 36°, 108° 

isosceles triangles. The colour arrangement can 

also follow that used in 70. 

To make a model of this polyhedron begin by 

making a pentahedral cup or inverted pyramid, 

the same as that used for the small stellated 

dodecahedron, but turned inwards so the tabs 

form ribs on the outside of the cup. The same 

colour scheme works here but turning the parts 

inside out, you may note, is equivalent to build- 

ing the enantiomorphous arrangement. Next it 

will be best to prepare a set of five trihedral 

dimples, following the colour table on p. 136. 

These dimples are cemented to the edges or lip of 

the cup. The structure is a bit unstable at this 

stage, but if you press this whole section as com- 

pleted so far against a pane of glass and look 

through from the other side you will see a per- 

fectly faceted five pointed star. Pairs of equi- 

lateral triangles must next be cemented between 

the star arms, just as in 70. These begin to give the 

model some rigidity, but it will be advisable to 

add more backing inside the star along the edges 

from point to point. If you make the model 

without this, you may find these edges are 

slightly out of line. 

The colour arrangement for six faceted stars is 

shown in the figure and table on p. 136. 

The procedure is to continue making the faceted 

stars and to use the triangle pairs as connectors, 

as in 70. Again, the second half of the model is 

made enantiomorphously. The fact that the map 

colouring principle is violated is not too notice- 

able in the completed model. Also it may be 

easier to follow the model itself as it grows 

rather than the colour table. 
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8 8 Great icosicosidodecahedron 

This polyhedron is related to 81, the difference 

being that here the decagrams are gone and the 

edges alone are retained, while the addition of 

hexagons introduces multifaceted decagrams in 

place of plane decagrams. And multifaceted is 

literally true! To make a model of this poly- 

hedron you will have to prepare 76 parts for 

each faceted decagram alone, not to mention the 

other parts which serve as connectors. It may 

interest you to know that the total number of 

individual small segments of surface area gener- 

ated by all the intersections of the three regular 

polygons belonging to the facial planes of this 

polyhedron reaches the imposing figure of 1232. 

This is a real challenge to the perseverance of 

any model maker! Because some of the parts are 

so small, the model must be on a scale suffi- 

ciently large to enable you to handle them. Also 
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some stiffening is required along the internal 

decagram edges to keep them straight. The 

various parts are set out in the figures and a 

complete colour table is given. You will find it 

best to keep all pentagon planes W and to use 

the five colours Y, B, O, R, G for the hexagons 

and triangles. 

Begin with the cup shown in part I. This shows 

the small triangles needed between 1 and 2, 2 and 

3, etc. Part 11 is a deep cup with a pair of very 

small triangles at the bottom, which is cemented 

so the edge of the 0 portion is placed with the 

edge of 1 2 3 45 in part 1. The star-arm dimples 

are shown as part III in enantiomorphic forms 

since their colour arrangement is not enantio- 

morphous when they are adjacent. The edges of 

A 

aCae, 
a 
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2 and 6 of part mi are cemented to 1 and 2 of 

part 1. A set of small trihedral dimples will now 

close the spaces between the star arm pairs and 

the small triangle mentioned in part 1. This last 

set of dimples is part Iv. This completes one 

faceted decagram. Twelve of these are needed 

and are joined together with the same dimples 

and grooves as in 81, except that here the penta- 

gon planes are all W. 

The rest of the model again follows enantio- 

morphically. All you need is about 30 hours. 

Once you get working systematically each face- 

ted decagram may take about 2 hours, a total of 

24 hours for all, and then another 6 hours to get 

all parts joined with the paired triangular 

grooves and corner dimples. 

1 WAV? 
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8 9 Small icosihemidodecahedron 

This polyhedron and 91 are both faceted versions 

of the icosidodecahedron. The decagons cut 

right through the centre of the solid on equatorial 

planes. This polyhedron has deep pentahedral 

cups or inverted pyramids all of which have 

their apex at the centre of the solid. As for colour 

arrangements, each of the decagons can have a 

colour of its own W, Y, B, O, R, G. Then the 

triangles should follow the usual icosahedral 

order, namely the second alternative. Again you 

have a choice of two techniques for construction; 

the tongue and groove arrangement for twenty 

triangular pyramids, each of which has the 

colour arrangement of the great stellated dodeca- 

hedron; or the double tabs turned outward as 

ribs on twelve pentahedral pyramids, as in the = 35 
small stellated dodecahedron. The triangles are 20{3} + 6{10} 

added last of all in this latter method, which is DE 

probably the easier to execute. If you try both 

you can see for yourself which gives the best 

result. This makes a very rigid model. 

10 X10 
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9 O Small dodecicosahedron 

This polyhedron forms a pair with 82 in that it 

was also published for the first time in 1954. 

(See Coxeter, op. cit.) Faceted stars are again 

found here, formed by the intersection of only 

two types of planes, hexagons and decagons. The 

first icosahedral arrangement of colours may be 

used effectively for the twenty hexagon planes 

and the dodecahedral arrangement for the deca- 

gons. The method of assembly for this model is 

to make the faceted stars whose central facets 

follow the order of the six colours used in 20, but 

forming cups or inverted pyramids. The star 

arms have dimples made of small equilateral 

triangles belonging to the hexagons and two 

isosceles triangles belonging to the decagons. 

You can get these dimples arranged correctly by 

following the colours from the cups outward to 

the star arms, only you must give the equilateral 

triangles a turn counterclockwise two places to 

begin with, as shown below. Pairs of trapezia 

form dihedral grooves between the star arms 

with the usual arrangement. The shallow tri- 

angular cups have their vertices in common with 

the vertices of the star arms and their side faces 

continue the facial planes of the side faces of the 

star arm dimples, so the colours are not hard to 

match. In the next set of five faceted stars you 

will find the Y hexagon sharing one of its edges 

with a Y decagon, and so on around for the 

other colours. This defect in the map colouring 

principle again does not seriously affect the end 

result. 

The rest are done in the usual cyclic permutation 

of colours, with opposite parts enantiomor- 

phous. You should now be able to complete the 

model without further directions. The faceted 

stars are not entirely rigid and so some internal 

stiffening may be required. However, this is not 

needed if the model is small. 

[eck Ate bee hee MO 
()) YeB- OR G UR-G Y B20 
Cy WeyeR° G-O-OR Y O[BEG 
(2) (ete., in cyclic order down each column.) 

ay ee 
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9 1 Small dodecahemi- 

dodecahedron 

The relation of this polyhedron to 89 and to the 

icosidodecahedron has already been mentioned. 

The cups or inverted pyramids are trihedral 
holes with vertices at the centre of the polyhedron. 

The double tab or ribbed technique is the best to 

follow in making the model. Twenty triangular 

pyramids, identical to those of the great stellated 

dodecahedron 22 must be made with all double 

tabs turned outward to form ribs. The first ring 

of five pyramids can then be cemented together 

and a W pentagon added to serve as a base. This 

is actually the exterior surface of the completed 

solid. The pentagons are on planes parallel to 

the equatorial decagons and so should be the 

-°5|5 same colour. If you keep 89 in front of you as 

12{5} + 6{10} you work and remember that the triangles there 

2r are replaced here by the pentagons you should 

find it easy to complete the model. Again this 

makes a very rigid model. 

10 10 
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9 2. Quasitruncated hexahedron 

This polyhedron is a quasitruncated cube. Six 

octagrams lie on the facial planes of an interior 

cube sharing their edges with the eight triangles 

whose planes intersect the cube. By using three 

colours for the octagram pairs and the other two 

colours for the triangles you can achieve a very 

suitable arrangement. To make a model of this 

polyhedron assemble the parts as shown. 

Part 1 forms a cup with four pointed side faces 

and a square bottom. Part m forms a four-sided 

box, open at both ends, the bottom end straight 

and the top end jagged. Part 1 is cemented as a 

dimple into the jagged end of part 11 to form one 

section. Six of these sections complete the solid, 

the three described below in the colour table and 
their three enantiomorphs. You must be sure 

that part I is properly orientated before cement- 

ing it into part 11, so the colours are correctly 

arranged. The sharp dihedral angles at these 

edges make cementing an easy process. This 

makes an attractive and rigid model. 
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9 3 Quasitruncated 

cuboctahedron 

This polyhedron has six octagrams in the same 

facial planes as a regular octahedron. The set of 

twelve squares intersect each other by threes in 

such a way that a set of eight small triangular 

holes provide openings that penetrate deeply 

into the interior of the solid. The sides and 

bottoms of these holes belong to the facial planes 

of the intersecting hexagons. Thus the sides of 

these holes are in fact a truncated version of the 

stella octangula and the bottoms coincide with 

the interior regular octahedron. This suggests 

the following method of assembly. 

Begin by making the truncated pyramids 

shown, but turn all the tabs out, because this 

23 4|= t'43} part is one of the holes. Since in an ordinary 
8{6} + 12{4} + 6{8} sized model the holes admit very little light, all 

a the parts may as well be W. Double tabs are V(13 —6/2) 
needed at the bases of part 1, and are used to 

cement the parts together as in the regular octa- 

hedron. All these should be completed before 

proceeding to part 11. Part 11 contains the central 

portion of the square planes, which can be given 

the colours Y, B, O, R and the two side wings 

which are W because they come from the hexa- 

gon planes. This part can then be cemented at its 

short edges to the edges of the small triangular 

holes of part 1. Next, complete another set of 

these as colour pairs to the first four. A third set 

of four forms an equatorial band of squares. 

Finally pairs of triangles which belong to the 

corners of the square planes are cemented 

Part I 

Part I 
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between alternate spaces around the octagram. 

If you watch the model as you complete it up to 

this point, it will not be difficult to determine the 

correct colours for these. This octagram, with its 

set of triangular grooves, can now very easily be 

cemented in place. The very acute overhang that 

occurs in this model makes it a simple matter to 

146 

handle, provided again that you finish an edge at 

a time. This makes a very sturdy model, because 

it already has an elaborate interior structure, but 

it also takes very careful work on this interior to 

get the exterior parts to fit well. It is interesting 

to note that the holes in this model generally go 

unnoticed by the inexperienced observer. 



23 4-( 
20{3} +1243} 

27-1 

Nin 

Nn 

9 4 Great icosidodecahedron 

This polyhedron is called the great icosidodeca- 

hedron because it has twenty triangles and 

twelve pentagrams in the same facial planes as 

the regular icosidodecahedron, yet it is not a 

stellation of the latter. A suitable colour scheme 

is to make all the pentagrams W and use the five 

colours for the triangles in the usual icosahedral 

order. 

To construct a model of this polyhedron begin 

with the cups whose sides belong to five inter- 

secting triangles and whose bottom is the small 

pentagon from the pentagram plane. 

Next it is best to prepare the W star arms in sets 

of three, forming shallow trihedral dimples with 

the star arms pointing outwards as shown. These 

then serve as connectors between pentahedral 

dimples or cups. Enantiomorphism again applies 

to the second half of the model. This makes a 

very attractive model and proves to be very 

rigid. 

Qari Gad 5 
0): WY BOR G 
(1) wyBGoR \4 }{2/ 
@) “WB O-Y RG { 0 \ 
3) WORBGY 
(4) WRGOYB 
("WG Y°R BO 
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9 5 Truncated great icosahedron 

This polyhedron is a truncated version of the 

great icosahedron. It may therefore follow the 

same colour arrangement. The hexagonal planes 

here take the place of the triangular planes. The 

method of assembly is therefore very similar. All 

the pentagrams may be W. 

Begin with a W star and cement the parts 

shown below between the star arms. Follow the 

same paired arrangement as in the colour table 

for the great icosahedron 41. When the isos- 

celes triangles have been cemented you will have 

completed one section of the model, a penta- 

hedral dimple serving as a sort of tray for a 

raised star. The next five sections are done in the 

same way, each with a W star. These sections are 

then cemented to each other in the same way as 

the vertex parts of the great icosahedron. 

Equally you may choose to do all the stars in the 

dodecahedral arrangement using opposite stars 

of the same colour and requiring six colours in 

all. But then you cannot avoid having each star 

share one of its edges with a hexagon of the same 

colour. However this does not detract from the 

beauty of this model, because the two planes 

make a sharp angle, almost a 90° turn, at these 

edges. 
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9 6 Rhombicosahedron 

This polyhedron is closely related to 76 and 83. 

They all have the same set of thirty intersecting 

skew squares forming equatorial bands. The 

hexagons take the place of the pentagons and 

thus the star planes become faceted stars. Also a 

set of thirty shallow cups appear here directly 

over the middle section of each square, the 

bottom of each cup being part of the square 

plane, and its four sides, each deeply recessed, 

being part of four hexagon planes. It would be 

more tedious than necessary to make a model of 

this polyhedron while maintaining the same 

colours for each plane. The method of assembly 

suggested here will maintain different colours 

for the squares and the upper surface of the 

hexagon planes. This will still give a very attrac- 

tive result and only an informed observer would 

notice the colour discrepancies since they occur 

only on the deeply overhanging underside of 

the hexagons and thus are hardly visible. You 

may find even the suggested method of assembly 

tedious enough because of the large number of 

parts involved, so again your perseverance will be 

put to the test if you wish to complete the entire 

model. 

Begin by assembling a faceted star as shown. 

Each of these has a central cup made of five 

equilateral triangles in the first icosahedral 

arrangement. The isosceles triangles in the star 

arms are next cemented to the edges of the cen- 

tral cup. These are parts of the square planes. A 

colour table for six parts follows. 

1 2: Wii SAN eT aeP Oma 
O) DEB AGF RIG: FREGIY ABO 
(Lie YorR 0: GAB GU. OinWiaeeR 
Q) eBaiGe ROY LOLPY RE Wane 
3) OYGBR BGWOY 
(4) RBYOG OYWRB 

G O-BR Y RBWGO 
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When you have assembled these ten parts of a 

faceted star, you will have no difficulty cementing 

the pairs of obtuse triangles that finish the 

dimples in the star arms. These pairs lie in the 

planes of the equilateral triangles in the central 

cup and so the colours are determined by follow- 

ing the plane out to the star arm. Again these 

faceted stars lack rigidity, so it is better to add 

some backing. The pairs shown below, as part I, 

are cemented between the star arms. They have 

the same colour arrangement as in 76, but here 

the shape is different. You will notice a small 

triangle at the blunted vertex of this part. It is a 

tiny portion of the underside of the hexagon 

planes, so the colour will not have to be the 

same as the upper side of these planes. Assembly 

is greatly simplified if it is cut in one piece with the 

quadrilateral to which it is attached. Part I! is 

also best done as one net. You will need thirty of 

Part II 
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Part I 

these, five of each of the colours W, Y, B, O, R, G. 

Part 111 forms a shallow cup with deeply recessed 

sides which are almost invisible when viewed 

straight on. Cement five of these cups between the 

pairs in part 1. The colour sequence is determined 

by the corners of the squares formed by part I. 

Continue making faceted stars, each with a set 

of five of part 1 between the star arms and 

cement them together using the cups of part m 

as connectors. Finally the small triangular holes 

left at the blunt ends of three of part 1 are closed 

last of all with the small trihedral dimples shown 

in part Iv, the faces of which belong to the 

square planes. The dimples are best cut without 

tabs as they will then easily fit into their posi- 

tions. The colour arrangement is followed by 

watching the order of colours in the intersecting 

squares. This makes a fairly rigid model and is 

certainly noteworthy for its complexity. 

perely oS 



9 7 Quasitruncated small 

stellated dodecahedron 

This polyhedron is a quasitruncated version of 

the small stellated dodecahedron. A model can 

easily be assembled in twelve sections whose 

base edges are equivalent to the edges of the 

dodecahedron. The colour arrangement is the 

usual six-colour dodecahedral one, set out in the 

table below. 

The top edges of 6,7, 8, 9, 10 are cemented to 

1, 2, 3, 4, 5. The section then has a pentagonal 

edge at the bottom. The tabs at these edges are 

cemented to each other as if the sections were 

faces of a dodecahedron. Notice that 1 is on a 

plane parallel to 6, 2 to 7, and so on, making 

decagram and pentagram planes the same 

254 = t.-{5, 5} colour. This makes a very attractive and rigid 
12{5} + 12{77} model. 

17—5V a 
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9 8 Quasitruncated dodecahedron 

This polyhedron is to the great stellated dodeca- 

hedron what 88 is to the stellated octahedron. 

Here the decagrams replace the octagrams. A set 

of thirty squares intersecting by threes appears 

here, just as twelve squares appeared in 88, 

forming twenty small triangular holes which 

penetrate deeply into the interior. The facial 

planes of these holes belong to the intersecting 

decagons. 

The simplest way to make this model is to use 

only three colours, one for each type of polygon. 

Begin as in 88 where you built the interior trun- 

cated version of the stellated octahedron. Here 
you build the interior truncated version of the 

great stellated dodecahedron to form the sides of 

the holes, but the bottoms are equivalent to the 

surface of the great dodecahedron. Since this 

will all be one colour, one net serves for all 

twenty parts (part 1). Remember to turn the tabs 

out so these parts can be cemented together. All 

twenty are best completed before continuing 

with the rest of the model. 

Next, prepare the central parts of the squares 

with their adjoining wings, the squares of a 

second colour, the wings of the same colour as 

part I. The figure shows the arrangement of nets 

for part 1. Part 1 is then cemented to straddle 

from hole to hole. Next the decagrams are pre- 

pared with the triangle pairs from the square 

plane corners cemented between every other star 

arm. This is analogous to the procedure followed 

in 88. The deep recess of part 11 makes it easy to 

cement these decagram parts, although the large 

number of edges will take some time. With per- 

severance you will finish a sturdy and pleasing 

model. 
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9 9 Great dodecicosido- 

decahedron 

This polyhedron is very attractive when done in 

colour because it readily appears as a set of 

highly embossed and richly designed solid stars 

on decagram planes. It is easy to make this 

model by the usual sectional method of assem- 

bly. Part 1 is shown with its chevron-shaped faces. 

These form trihedral dimples with the same 

colour arrangement as the great dodecahedron 

21, so you may refer back to it for your 

requirements here. Part 11 is made up of star arm 

pairs and these serve as connectors for part I. 

Each of these is cemented so the star arm 

colours are on planes above and parallel to the 

same colour of the chevron-shaped faces of part I. 

The five rhombi from the triangle planes, part 3 $|$ 

i, form a rosette. Part 111 follows the first icosa- 20{3} + 12{3} + 12(29 

hedral arrangement of colours. As soon as you / (11 —4y/5) 
have cemented a ring of five of each of part 1 and 

part 1 alternating, the first rosette can be 

cemented to fill the hole at the centre. Once this 

has been done the colours for the other pairs of 

part II are easy to determine because the parallel 

planes take the same colour. In cementing the 

rosettes keep an eye on the triangular planes. 

Part I | 

Part 1 2 

Part Il 
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1 O O Small dodecahemi- 

cosahedron 

This polyhedron has twelve pentagrams on the 

facial planes of a dodecahedron and ten equa- 

torial hexagons whose centre points all coincide 

with the centre of the solid. It is related to 73 

whose dimples are here replaced with deep hexa- 

hedral holes or inverted pyramids. These holes 

may be thought of as the twelve vertex parts of 

the great icosahedron, all inverted and turned 

inwards. The colour arrangement suggested be- 

low will show very effectively an important feature 

of polyhedral symmetry, namely the generation of 

spherical lunes. 

Turn all the tabs outward to form ribs and 

then use these to cement the parts to each other, 

the tabs of one under the surface of the other so 

the edges coincide. W pentagrams are cemented 

as needed. The usual enantiomorphism applies, 

and you should have no difficulty completing 

the model. This makes a very rigid model, but 

care must be exercised to make the pentagrams 

accurately so they fit well. The final result also 

depends on the accuracy of the inverted pyra- 

mids. 
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1 O01 Great dodecicosahedron 

This polyhedron is like 81 except that the 

dimples and grooves there are here replaced 

with deeper holes and cups, nonahedral and 

tetrahedral. The usual dodecahedral and icosa- 

hedral arrangement of colours applies again. 

The model can be assembled by making the parts 

as shown. These alternate between the star arms 

and serve as connectors. 

You can easily see which position each part I 

should take if you keep the intersecting hexa- 

gons, each its own colour. You will also find the 

cups sharing edges internally but the tabs on 

these edges need only be adjusted, not cemented. 

33 
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1 O 2 Great 
dodecahemicosahedron 

This polyhedron is a faceted version of the 

dodecadodecahedron. The facial planes of the 

faceted stars are a combination of the inter- 

secting pentagons and hexagons, whose parts 

are easily recognizable. The hexagons are in the 

same planes as those of 100. To make a model of 

this polyhedron make the faceted stars using the 

colour table given below. 

The figure is merely a plan and does not show 

the exact shape of each part, only its relative 

position. The 0 and 6 7 8 9 10 parts belong to 

the pentagon, the rest to the hexagon. These 

faceted stars are then joined by using the 

dimples between star arms as in 73. This makes 

a very attractive model and is very rigid without 

any further internal support. 

(0) 
(1) 
(2) 
(3) 
(4) 
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1 O 3 Great rhombihexahedron 

This polyhedron is closely related to 77. The 

tetrahedral dimples and dihedral grooves of that 

solid are here replaced with deeper nonahedral 

cups and tetrahedral dimples. Three colours can 

again be used for the octagrams, making op- 

posite pairs the same colour. All the other planes 

are squares intersecting internally. Since there 
are twelve of these, six colours will serve as six 

pairs. This means of course that the Y squares 

must meet the Y stars along at least one edge, 

and so on for each of the other colours, but the 

sharp angle at these edges helps greatly to make 

this violation of the map colouring principle 

almost unnoticable. 

The best method of construction is to make 

the cups and dimples first, then to cement them 

alternately between the star arms. You will find 
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that adjoining cups and dimples share common 

edges internally but the double tabs at these 

edges need only be adjusted, not cemented. 

If you watch the parts of the square planes to see 

that each keeps its own colour you should have 

no trouble finding the correct position for each 

part. All the parts listed above are cemented to a 

Y octagram. Once this is done you are ready to 

cement the next four octagrams, O, B, O, B. 

These will then be completely surrounded by 

cups and dimples whose colour arrangement is 

enantiomorphous to the first set and diagonally 

opposite their counterparts on the completed 

model. Another Y octagram is added last, one 

edge cemented at a time in the usual manner. 

The deeper cups and dimples make this model 

even more attractive than 77. 
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1 O 4 Quasitruncated great 

stellated dodecahedron 

This polyhedron is a quasitruncated version of 

the great stellated dodecahedron. The triangle 

planes cut the vertices of the latter almost at 

their bases, so that the pentagrams are trans- 

formed into decagrams. Trihedral dimples close 

the cut ends. Begin this polyhedron by making 

the truncated pyramids, one of whose side faces 

is shown below. The colour arrangement for 

these is the same as that for the great stellated 

dodecahedron 22, so you may simply refer 

back to it for the colour table to be used here. 

The trihedral dimples have the icosahedral 

arrangement of colours, as given in the table. 

. a You must watch carefully how you orient these 

23/3 +t (2 3} dimples before cementing them into their 

20{3} + 12403" positions closing the jagged end of the trun- 
ei 37—15y/5 cated pyramids. (1) must have its Y arm cemented 

2 between the B and G of the pyramid, and so on 

round. Once you have completed the first ring 

of truncated pyramids and their dimples, the 

other parts are easier to locate. Since opposite 

dimples are not enantiomorphs the complete 

colour table is given. a/  \g 
nora £11903 
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1 O 5 Quasirhombicosi- 
dodecahedron 

This polyhedron is very similar to 99, except 

that here the decagram planes give way to a 

fantastically intricate network of intersecting 

planes generating a very interestingly faceted 

structure. Fortunately it is not too difficult to 

make and only requires plenty of perseverance to 

cut and join the numerous parts. The arrange- 

ment of colours for triangles and pentagrams 

used in 99 can be retained here, but the squares 

are best in white. This vastly simplifies the 

assembly. 

Begin with a dimpled rosette of five colours as 

in 99. Surround this with five parts, all W and of 
one net as shown for part 1. Cement a set of five 

star arms to the side parts. The Y star arm 3312 = eb ' 

shares its vertex with the Y rhombus of the 2 Ba 2 

rosette, and so on for the other colours. Then WS} +3 Os} + 12S} 
make a set of paired wedges, as shown for part nl, Vv Gl-4v5) 

whose triangular faces are very small parts of 

the square and triangle faces. The tabs on the 

shortest sides of these triangles are cemented to 

the tabs at the small cut-out of part 1. The best 

way to handle these wedges is to cement the W 

first, one tab at a time, then both coloured tabs 
at once using tweezers, since the parts are so 

small in a normal sized model. The last parts to 

be cemented for this section can now be done, 

one edge at a time. These are the ten pieces, shown 

as part Ia, belonging to one facial plane of the 

pentagram. Once these are added you should 

have a fairly rigid structure whose projection on 

the plane of the pentagram is shown opposite. 

This completes one section of the model. 

A total of twelve are required altogether. The 

first or (0) section has the first set of five sections 

surrounding it. These are cemented by one of 

r=Ky $+)D=1-618 

=Ky5—1)=0618 
r= 009 
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= AEN 

a | Sa 

BA 
the blunt star arms to the blunt star arms of the 

(0) section, and these five all join blunt star 

arms with each other, the intersecting penta- 

grams giving full length to the star arm. You 

Z will then see between these sections open holes 

whose edges make a skew hexagon. These should 

be filled with the cupped structure shown as 

part Ul. 

Part i Three pairs of W triangles are cemented to the 

edges of triangles 2, 3, 4. Be careful to dis- 

1. Of 34 tinguish between the upper and lower edges of 

ox (O°B.oG these W triangles. Part 111 may now be cemented 

M™BROY to fill the skew hexagonal holes. If you watch the 
(3) O GR B /\ triangles 2, 3, 4 so that their colours agree with 

i. fo i-G-O those in the rosette you can get part 1 correctly 
om Grs ¥ & /w\ placed. The triangle 1 of part m1 belongs to the 

(6) Y RBO central portion of the triangle plane. 

CYB GOR This turns out to be a very beautiful model, so 

(8) O YRG <W]w> it is well worth the time it takes to assemble it. 

hx B GY You may expect to spend at least 30 hours to 

ao G0 Y-B Part 11 complete it. 

The rest are the enantiomorphs. 
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1 O 6 Great icosihemi- 
dodecahedron 

This polyhedron is closely related to 94. The 

pentahedral dimples or rosettes formed by the 

triangle planes are still here, but the pentagrams 

have disappeared giving way to equatorial 

decagrams whose facial planes form shallow 

cups where the star arms used to be. The bottom 

of each cup is a trihedral dimple. This suggests 

a method of assembly. Make the cups first, each 

with double tabs turned out to form ribs in the 

usual manner. Use these ribs as tabs a second 

time to cement a set of five cups in a ring. The 

colour arrangement for these follows: 

i ones aes eats 
(oR R OG Y= ss 
Oy OTC Yi vB. O 
3B) RYB BOR 
Gran OO RG bY] 
Oy ork ReG"Y Or 
(eG RY O1WweG Ad BN 
(eXEG IB “RW Y 
(3) SEaNe Onn CaWen 
(9) OBR YWO 

G0) R1O°G BaW'R 
The rest are the enantiomorphs. 

The same icosahedral arrangement as in 94 is 

also used here for the rosettes. These may be 

cemented in place as each ring of cups is com- 

pleted. Keep your attention on the facial planes, 

both for the cups and the rosettes to see that each 

decagram plane and each triangle plane keeps its 

own colour. 
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1 O7 Great dodecahemi- 

dodecahedron 

This polyhedron is closely related to 94 and to 

106. It is simple and very rigid in its structure, 

with equatorial decagrams on planes parallel to 
and midway between pairs of opposite penta- 

grams. This is beautifully brought out in the 

colour arrangement. To make a model of this 

polyhedron begin with the pentagonal cups as 

listed in the colour table below. 

Cement each cup of part I using the double tabs 

as connecting tabs, turned slightly and brought 

under the surface of its neighbour, to make the 

slant edges of the cups coincide. Then make 

twenty star arm dimples, the trihedral arrange- 

ment being the same as the colour table used for 

eae the great dodecahedron. These are used to close 

12{3} + 6{473 the holes between the cups, matching the same 
iF planes for colour. This model is very attractive. 

(0) 
(1) 
(2) 
(3) 

Sra 
: GS 
The rest are the enantiomorphs. Part I 
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1 O 8 Great quasitruncated 

icosidodecahedron 

This polyhedron has very many parts, and in a 

model of ordinary scale the faceted star parts are 

very small. For this reason a full colour model 

would entail a very tedious amount of work. The 

method of assembly described here limits the 

colours to three, one for each of the three types 

of polygons that appear as facial planes. A good 

colour combination is obtained by using Y for 

the hexagons, R for the squares, and B for the 

decagons. Begin by making a set of five parts of 

each of the pairs shown, parts I (a) and (5). These 

ten parts are cemented alternately in a ring, 

leaving a star shaped hole in the centre. This 

hole is now filled with a tiny faceted star or 

pentagram. They are shown full scale for a 234|=0 (| 

model of 8 inches on an edge. Make the central 2 

pentahedral dimple first. Then cement the small 20{6} + 30{4} + 12(42 

triangles to its edges. Next add the pairs of tri- Vv (31 — 12/5) 

angles completing the star arm dimples and 

finally add the other paired triangles between 

the star arms. This dimpled or faceted star can 

now be cemented to close the star shaped hole 

left in the ring of part I parts. You will have to 

make a total of twelve rings and twelve faceted 

stars for the complete model. These twelve sec- 

tions are joined with three types of connectors, 

a nonahedral cup, of six side faces and three 

bottom faces (part m1 a), a dihedral groove (part 

ut b), and a tetrahedral dimple (part 11 c). These 

are shown in full scale as part m1 a, b, c. These 

connecting parts help to give some rigidity to the 

model, but for best results some further interior 

supports are needed, especially under the edges 

of part I. 
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1 O 9 Great rhombidodecahedron 

This polyhedron has the same decagrams as 99, 

but the pentagrams and triangles there are 

replaced by squares here. The intersection of 

these squares with one another introduces deep 

holes at the places where the twin star arms and 

triangle rosettes occurred in 99. In place of the 

twin star arms you will find hexahedral cups 

whose four sides belong to the facial planes of 

four squares and whose bottom is a pair of small 

isosceles triangles of the 36°, 72° variety belong- 

ing to the facial planes of two decagrams. In 

place of the rosettes you will find a fascinatingly 

complex structure of cavities which fortunately 

is not too difficult to construct. As for colour 

arrangements you undoubtedly will agree that it 

would be much too tedious to use six colours for 

the squares. So the suggestion here is to make all 

the squares W and then distribute the six colours 

Y, B, O, R, G, and W according to the usual 

dodecahedral arrangement as in 99. In this way 

the chevron-shaped parts are used once more 

here. Thus you may begin the construction of 

this model with a set of five trihedral chevron- 

shaped dimples as in 99. These are part 1. The 

other parts are also set out full scale for a model 

whose edges will be 8 inches. 

Part m1 shows the hexahedral cup, the sides 

being one net for parts all W. The small triangles 

must be done in colour pairs determined by their 

position relative to part I, so you should need no 

specific directions to get them right if you work 

systematically. Since they are so small it is 

easiest to cement them as pairs, then each pair is 

cemented as a bottom to the W cups. Five of 

part 1 and five of part 11 then form a ring with a 
hole in the centre. This hole is in the shape of a 

skew decagon. Next you must make five of part 

ill as shown. All have the paired triangles in W as 

one net with the other part from the decagram 

planes in the usual dodecahedral order of 

colours. When completed part m forms a tri- 

hedral cup pointed at the bottom, the upper 

edges having the shape of a skew quadrilateral. 

These parts are then immediately cemented so 
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the angle formed by the W edges is vertically 

opposite the angle formed by the two sides of 

the part 11 cups. You will now see the decagram 

planes being filled in, so you can get the parts 

placed correctly by watching this. When these 

parts have all been cemented you will still find a 

hole in the centre, still a skew decagon but 

deeper down. This hole is now again filled with 

another cup shown as part Iv. A net for the sides, 

all W, is shown p. 169, part v. You must be careful 

to distinguish between the upper and lower ends 

of the series of ten trapezia, because they are not 

the same, but very nearly so. The series makes a 

ring in the form of a ten sided tube or prism. It is 

all W since all these trapezia belong to the facial 

planes of ten intersecting squares. The ring of 

irregular pentagons shown as part IV is also one 

net all W since they belong to the facial planes of 

five more squares. You can see now why it would 

be tedious to make all of these square planes a 

different colour. The ring of irregular pentagons 

may now be cemented to the lower end of the 

ten sided prism. The regular pentagon then 

forms the bottom and closes off that end. It 

170 

takes the colours of the decagram planes since it 

is the central portion of those planes. The tabs 

on this multifaced cup are of course all turned 

outward as ribs on the outside of the cup, which 

is then gently forced down the remaining central 

hole left by the five parts of part 11 and cemented 

an edge at a time. The reason for exerting 

‘gentle force’ is that this cup has vertical sides 

which just fit into the hole so you must adjust the 

outer ribs while you are placing it in its position. 

Clamps are helpful in cementing twenty sets of 

tabs, and with a little skill and perseverance you 

should succeed. 

You may actually complete the whole model 

as a shell without filling any of the central holes. 

This has the advantage of giving you the overall 

colour scheme, especially for parts 1 and Iv. 

However, complete rigidity is not achieved until 

all the central holes are closed. Once this is done 

you have a very attractive model, very interesting 

because of its intricate structure. Since all the 

squares are W, their facial planes are not too 

evident, but with the model in your hands they 

are not hard to locate. 



Commentary on non-convex snub polyhedra 

There are two convex snub polyhedra, the snub 

cube and the snub dodecahedron. Among the 

non-convex polyhedra there are at least nine, ten 

if you count 119, which is rather different from 

the others. The snub quality manifests itself in 

the two convex cases, in the twisted way in which 

the squares and pentagons are related to a cir- 

cumscribing cube and dodecahedron respective- 

ly. The twist introduces dextro and /aevo, right- 

and left-handed varieties in each case, and also a 

special set of triangular faces, the snub triangles. 

The same twisted characteristic is found in the 

non-convex cases and also sets of snub triangles. 

Model 119 is special in that the diametral 

squares may be considered as the snub faces. 

The patterns on the facial planes of these non- 

convex snubs are tantalizingly irregular. None of 

the usual symmetry manifests itself, except, sur- 

prisingly enough, in 110 which is very simple 

and in 118 which is very complex. Because of 

this lack of facial symmetry (the solids as such 

have rotational symmetry), the intersections of 

the facial planes determining the pattern on 

these faces can only be found by calculation. 

This involves the use of analytic or coordinate 

geometry. The use of the usual Euclidean tools, 

ruler and compasses alone, will not suffice 

Mr R. Buckley of, Windsor, Berks, England, 

has recently performed these calculations, ob- 

taining all the numerical data by programming 

a computer to work out the analytic equations. 

Briefly stated, his method involves a system of 

spherical coordinates, the polar axis being along 

an axis of rotational symmetry and the zero 

meridian through a vertex of the polyhedron. 

Then with right and left specified, polar co- 

ordinates for all vertices can be calculated. These 

are translated into the usual Cartesian co- 

ordinates to obtain equations for the facial 

planes. Then the line of intersection of a pair of 

facial planes is readily obtained by solution of a 

system of equations. The computer supplied 

numerical results correct to six significant 

figures. For the purposes of model-making this 

degree of accuracy is unnecessary. 

The drawings given here were derived from 

large-scale drawings, edge length 20 cm (for 117 

and 118, 20 inches) supplied by Mr Buckley. Only 

some of the principal lines of intersection are 

given. The exterior portions of each facial plane 

are shaded as usual, light grey for the upper side 

and dark grey for the under-side. Numerical data 

has been reduced to two figures. All the models 

shown in the photographs are less than 12 inches 

in height, except for 117 and 118 which are nearly 

24 inches tall for an edge length of 20 inches. The 

nets included in the instructions will give you 

models on this scale. 
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11 O Small snub icosicosi- 

dodecahedron 

This is the first of the non-convex snub poly- 

hedra, and it is the simplest to make. Twenty 

pairs of equilateral triangles, forty in all, share 

icosahedral facial planes, giving this polyhedron 

the appearance of having twenty hexagram 

faces. But these hexagrams are not quite regular, 

although the triangles from which they are 

formed are equilateral, as they must be in a 

uniform polyhedron. The twelve pentagrams are 

completely surrounded by another set of tri- 

angles, sixty in all. This suggests a simple method 

of construction. 

Begin by cementing the scalene triangular 

parts as dihedral grooves between pentagram 

star arms, following the icosahedral arrange- 

ment of colours. The pentagrams are all the 

same colour, W. This is part 1 of the model. The 

first section is shown below, the (0) section. Five 

hexagrams (part 11) are then cemented around 

part 1. These may be a seventh colour or the 

usual Y, B, O, R, G arranged to maintain the 

map-colouring principle. The next five sections 

of part 1 are then cemented in place. You will 

now see openings between the hexagrams. 

Close these with pairs of small equilateral tri- 

angles, part 111, each the colour appropriate to 

the facial plane to which it belongs. Cement the 

pairs together first and then cement them to 

close the openings between the hexagrams. 

Edge length=6-6 cm 
a—2) 
b=23 
C=25 

Part I 

Part 1 
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1 1 1 Snub dodecadodecahedron 

This polyhedron has twelve pentagrams on 

facial planes that lie above and parallel to 

twelve pentagons, very much like 73, only here 

the pentagrams share edges with sixty equi- 

lateral triangles that give it the snub quality. As 

you can see from the drawings of the facial 

planes the triangles and pentagons intersect in 

such a way that tiny slivers appear on one side of 

the triangles and on all five sides of the penta- 

gons. You will therefore need a great deal of 

patience to make this model properly. 

Begin the same way as in 110, surrounding W 

pentagrams with the appropriate scalene tri- 

angular dihedral grooves between the star arms, 

following the same icosahedral arrangement of 

colours. This is part 1 of your work. Part 1 con- 

sists of a rather complex assembly of parts that 

eventually turns out in the shape of a skew-sided 

equilateral triangle having three grooves running 

from its vertices toward a point near the incentre 

and three slivers radiating from near the in- 

centre out toward the sides. The figure opposite 

will give you some idea of its appearance. 

fos 5 
12{3} + 60{3} + 12{5} 

2°54887 97641 

a=40 

c=43 

ad=3'3 
isa 

x=0'3 

Edge length=11-3 cm 
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Assembly of part 11 can be done in steps. First 

cement a triangular sliver of the appropriate 

colour to the triangular part also of the appro- 

priate colour, as shown here. Then cement a 

pentagon sliver to its triangular part. Tabs are 

shown for these slivers because trimming is 

important here. Now join these parts and form 

the sliver ridge between them. Clamps or 

tweezers are helpful. Three of these assemblages 

are needed for one skew triangular part, and a 

total of twenty skew triangular parts are needed. 

With a little patience you should be able to get 

them together. Only work on one edge at a time 

and do the best you can with the small tabs on 

the blunt ends of the slivers, working them into 

place with needle-point tweezers. If you trim the 

tabs on the triangular parts as shown you can 

now join them into one tab enclosing the pointed 

Pentagon part 
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end of the sliver. This gives added strength and 

rigidity to this edge. Once you have completed 

five of part 1, they may be cemented in a ring 

around the (0) section of part 1. A colour table 

follows for all twenty skew triangular parts. The 

subscript colour is that of the colour sliver. Since 

pentagon parts are all W they are not in the table. 

As FD 23 me 6 
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A simpler approximate model of this poly- 

hedron can be made with the twenty skew tri- 

angular parts omitting the slivers. The figure 

should give you the idea. These can be used as 

part 11 and cemented to part I in the way ex- 

plained above. Approximate facial planes are 

shown below. The scale of this approximate 

model may be much smaller, in fact on a small 

scale it gives good results. See the photograph. 
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11 2? Snub icosidodeca- 

dodecahedron 

This polyhedron, like 111, has pentagrams on 

planes above and parallel to pentagons, but here 

the pentagrams are twisted with relation to the 

pentagons, the twist making room for twenty 

triangles in addition to the sixty triangles 

sharing edges with the pentagrams. 

An alternative method of assembly is best 

used in making a model of this polyhedron, by 

cementing the pentagrams last because of the 

intricate understructure. The work may there- 

fore be done as follows, Use the icosahedral 

arrangement of colours for the sixty triangles 

associated with the pentagrams, all of which are 

ia W. The other twenty triangles had best be a 

[3 35 seventh colour, say T (for tan), because a small 

12{3} +(20 + 60){35 + 12{5} central portion of these triangles appears in the 

25ST) S820 bottom of a trihedral dimple whose faces are the 

corner portions of three different pentagon 

planes all of which are W. Single polyhedral 

vertex parts may be constructed in the arrange- 

ment shown in the figure. The colour arrange- 

ment for the (0) section alone is set out on p. 178. 

The other sections are in the usual cyclic per- 

mutation of colours. 

Nil 

> 

Edge length= 10 cm 

i=S) 

be=3-) 

G=3:8 

d=2-6 



fag, 

(Oly 2a: 30 Ae ees, 

RYT Ys OW say 

GBTBWGB 
Y¥-O TO Weyano 

/\ BRIRWBR 
O GT GS We OG 

Triangles 1 and 7 must be turned up and over 2 

and 6, and then the tabs between 1 and 2 and 

between 7 and 6 are used again as double thick- 

ness tabs and cemented to form a vertex part, 

the centre point being raised in doing this. Tri- 

angles 1 and 7 will later become the under sur- 

face of one star arm. Five of these vertex parts 

are joined in a ring to form one section. The tab 

at the blunt end of triangle 7 is cemented to the 

upper surface of triangle 1 whose tab is best 

removed to eliminate the ribs here which would 

interfere with the pentagram. This pentagram is 

now added as a cap completing this section. 
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Clamps can easily be used in doing this since 

there is an acute overhanging edge to work on. 

If the pentagrams tend to sag do not be dis- 

mayed, gentle pressure can be exerted to 

straighten them after the cement is well set or 

after the model is completed. Twelve of these 

sections complete the model. Admittedly these 

sections have many jagged edges, but you will be 

amazed at the way they all fit neatly together. 

The alternative method of construction is 

reminiscent of that used in 83. If you use this 

method begin by first cementing the triangles 1 

and 7 between the star arms, then fold them 

under and turn the other long tabs outward to 

form ribs radiating from the centre out to the 

star points. Next the triangle pair 2 and 6 form 

grooves between the solid star arms, the ribs 

serving as cementing tabs for these triangles. 

Finally the remaining parts 3, 4, 5 complete the 

vertex parts around the star points and complete 

one section as before. This second method of 

assembly assures a better fit for the pentagrams, 

because in this method there is less tendency for 

them to sag. 



Edge length=14 cm 

a=24 
b=3-8 
c=0-4 

d=2-4 
f=35 
g=46 

h=0-7 

j= 16 
KD 
1=0:9 

m=1-4 

n=2-0 

x=3-9 
y=033 

Z—2-6 
a+c+h=f 

k+l+m=g 

[233 
(20 + 60){3} + 12{3} 

1:63216 13496 

11 3 Great inverted snub 

icosidodecahedron 

This polyhedron is another snub that is simpler 

in construction than most of the others in this 

set. The reason is that it does not have a crossed 

vertex figure, so its vertex parts are thereby 

simplified. Thus a model can easily be made by 

simply joining the sixty vertex parts following 

the arrangement set out below, showing one 

vertex part. Make five such parts and then join 

them in a ring to form one section. Twelve of 

these sections complete the model. The central 

dimples in these sections will remind you of the 

analogous dimples in the compound of five 

tetrahedra. Dimples like these appear also in 115 

and 116. The colour arrangement may again be 

icosahedral. The colours for only one section, 

the (0) section, are set out below, because the rest 

follow the usual permutation pattern. All the 

pentagrams are W. 

These sections have very jagged edges and 

several very small tabs, so you will need patience 

and care in building this model. 
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11 4 Inverted snub 

dodecadodecahedron 

This polyhedron has a very unusual feature in 

that the star arms of the pentagrams are slightly 

nicked by the facial planes of the pentagons and 

one set of triangles. This introduces a very com- 

plex structure near the polyhedral vertices. The 

pentagons are also on planes parallel to the 

pentagrams but very deep down near the equa- 

torial planes of the polyhedron. The under- 

structure of the pentagrams is reminiscent of 

that found in 83 and in the snub 112. This fact 

suggests a method of constructing a model of 

this polyhedron, like the alternative method 

mentioned for 112. 

Begin by cementing triangles 1 and 2 to the star 

arms of the pentagram (see opposite), then turn 

them under and cement the other long tabs 

turned out as ribs. It is not necessary to cut the 

nicks into the star arms, although after the 

cementing is completed on triangles | and 2 and 

the solid star has been constructed, the nick in 

triangle 2 should be cut and removed without 

severing the rib tab. This will make it easier for 

the nick in the pentagon corner portion, part 5, 

to fit later without further cementing, as will be 

explained shortly. The usual icosahedral colour 

arrangement is used, with all the pentagrams W. 

Your next task is to prepare the parts needed 

between the star arms. The arrangement of these 

parts is shown opposite. Here too the usual icosa- 

hedral colour arrangement is used, and so only 

the (0) section is given. The usual permutations 

apply to the rest. 

Tabs are shown because trimming is import- 

ant. 

Edge length= 14 cm 
a=2-0 
b=0-7 
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First cement the colour pairs, parts 3 and 4. Then 

cement part 5 which is W to part 6 which is of an 

icosahedral colour. Next cement the tabs a, b, c 

which join these paired parts. A sharp pointed 

ridge or dihedral angle is thus formed between 

parts 5 and 6 and the whole assemblage takes on 

some rigidity. Your final task is to cement these 

assemblages between the solid star arms. 

The ribs under the star take the tabs e and f. 

Apply the cement to these tabs. Then manceuvre 

the assemblage into place, and clamp before the 

cement sets. The small nicked triangle of part 3 

dangles at the star point but being attached by 

(Gy eeed 3°25 
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one continuous tab to the larger portion it is easy 

to handle. It will get more attention later, but 

now you must give special attention to the nick 

in the pentagon corner portion, part 5. Gently 

ease the upper point over the star arm while the 

lower point stays below. You need not worry 

about cementing these since the little nicks have 

no tabs. The upper point will get further atten- 

tion later. Once you have placed five of these 

assemblages between the star arms one section 

of the work is completed. Twelve sections are 

needed to complete the model. 

Now it is rather a complex task to get the 

sections joined. The secret is always to cement 
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first the tab at g from part 6 of one section to the 

tab at h from part 4 of another section. The tabs 

at d are joined next. Only when the entire model 

has been completed should you attempt to get 

the final tabs at k and m adjusted. It is useless to 

attempt it earlier. You will need tweezers and a 

probing needle to manceuvre the parts gently 

into place, then add a drop of cement and fix 

them with a clamp. The edge here is just acute 

enough to take a clamp until the cement is set. A 

good-quality paper ‘heals’ itself after the clamps 

are removed or you can help by smoothing it 

with the probing needle. This model calls for 

much patience, so good luck to you on this one! 
> 



11 5 Great snub 

dodecicosidodecahedron 

This polyhedron has the special feature of paired 

pentagrams on common facial planes, found also 

in 119. Here the twisted arrangement in the 

twelve dimples is found, as it is in 113 and again 

in 116. However the crossed lines of the vertex 

figure in this case give this polyhedron a more 

complex structure for the vertex parts than that 

found in 113. The crossed lines appear again in 

116. 

To make a model of this polyhedron it will be 

best to depart from the dodecahedral sections 

used before and to use an icosahedral assembly 

technique instead. In this way the crossed facial 

planes under one star arm can be more easily 

ees executed, As for colour the crossed triangular 

(20 + 60){3} +(124+ 12){$ planes (parts 1-5) can well be all one colour, say 

/2 T (for tan), reserving W for the paired penta- 

grams and the usual Y, B, O, R, G for the penta- 

hedral dimples, the usual icosahedral arrange- 

ment and permutation of colours applying. 

Notice that in the parts used for assembly pur- 

poses triangles 1 and 2 are interchanged from the 

positions they occupy on the facial planes in the 

polyhedron itself. This is because these parts will 

be folded back to form the understructure of one 

star arm. Join three of the parts 1, 3 to form a 

Edge length=20 cm 
g= 51 
b=43 
c=2-4 

d=—!-5 
Sa 
ese, 

h=48 
k=41 
p=43 
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sort of three-bladed propeller. Leave tabs all 

around, except at x. This tab may be removed 

because no cementing is done along this edge. 

Triangle 1 folds neatly under a star arm, as 

explained later. 

Next prepare three pairs of the pentagram 

parts shown as part 7. Fold the lower star arm 

shown in fig. (a) up and then cement the cross- 

hatched part shown in fig. (6) to the under- 

surface of the upper star arm allowing the lower 

part to protrude as shown in fig. (c). 

The shaded area in fig. (6) and (c) will later be 

hidden, so it need not be marked in any way. In 

fact it is best not to score the paper for this area 

but only for the tabs. Although the tab at h is 

cut it will serve as a single tab, as will now be 

explained. 

Three of these pentagram parts must now be 

cemented around the three-bladed propeller. 

First join the tabs h, allowing the lower star arm 

of fig. (a) to dangle forward, that is, above the 

propeller blades. As soon as the cement has set 

along these edges give the pentagram parts a 

sharp crease downward. You will then be able 

to bring the tabs k into contact, so they may be 

cemented. Now the tab m of triangle 1 on the 

propeller blades is ready to be cemented to the 
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dangling star arm. The sharp overhanging edge 

along the star arm makes clamping possible 

while the cement is setting. When you have done 

this on all three star arms you should have a very 

rigid assembly, the central portion of an icosa- 

hedral section which already shows the vertex 

points of three adjacent polyhedral vertices. 



The next step is to cement three of parts 2, 4 

to the appropriate edges of the icosahedral 

assemblage you have just completed. Join the 

tabs n. Once the cement is set, triangle 2 is 

folded under the star arm, to bring the tabs p 
into contact so that they can be cemented. You 

will now see the intersection of the crossed tri- 

angular planes clearly formed where the fold 

between parts 1, 3 and between 2, 4 occur. Tabs 

k and p hold these planes in rigid position so no 

further joining at the folds is needed. No tab is 

required at x of triangle 2, since the same 

situation occurs here as at x of triangle 1. You 

will now also see how the shaded area in fig. (b) 

is hidden. 

The last step of the work is now simple to 

execute. Add the parts 5 and 6 to complete each 

of the three vertex parts of the section, matching 

the tabs q, r and s. Part 5 is T in colour, like the 

parts 1, 3, since it belongs to the same facial 

planes, but part 6 in this first assemblage should 

be Y. In fact all three of part 6, completing each 

of the three vertex parts of this first assemblage, 

(a) 

q 
h 

(6) 
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are Y. Since a total of twenty such assemblages 

are needed to complete the model, the colours 

Y, B, O, R, G serve in turn for part 6, three of 

the same colour to each assemblage. 

You will find it best to cement the sections to 

each other as you complete them, first a ring of 

five with the (0) arrangement of colours in the 

dimple in the centre of the ring. Always cement 

the longer tabs first, beginning with tab t of part 

5 from one assemblage and cementing it to tab t 

of part 6 from an adjacent assemblage. The 

other tabs then fall readily into place. In doing 
the last, the twentieth section, leave the tabs s 

without cement, so these parts on the sixtieth 

vertex part can be temporarily folded back 

giving you room to work with a probing needle 

or tweezers on the other tabs. Cement the tabs s 

last of all. 

This should be a very successful model. The 

method of construction suggested here can lead 

to remarkably good results. [f you work alone it 

will take you about 40 or 50 hours to complete 

the task! 
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11 6 Great snub 
icosidodecahedron 

This polyhedron has some very small areas 

which must technically be considered as the 

exterior portions of its facial planes, but they are 

so small that the drawings shown below do not 

reveal them. Some features of 115 repeat them- 

selves here, the twelve pentahedral dimples, the 

sixty polyhedral vertices, but instead of paired 

pentagrams single pentagrams intersect each 

other in a similar icosahedral fashion. This 

suggests the use of the same assembly technique 

in making a model of this polyhedron as that 

used in 115. A few compromises will be intro- 

duced in the construction work for the sake of 

practicality, compromises which barely betray 

themselves in the finished model. 

Some enlargements are set out opposite to 

reveal the detailed parts of the facial planes and 

the parts numbered for reference. 

Edge length=20 cm 
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The parts for constructing this polyhedron are 
set out below, each part identified by a number 

and each tab by a letter. These parts form an 

icosahedral section or assembly, like that in 115, 

but this one is slightly more complex. The colour 

arrangement for one section follows; the rest are 

derived by the usual permutations of colours. 

The use of the same colour for parts 3 and 5 

cannot be avoided since these belong to the snub 

triangle faces. 

KKK QxwN QR we Ke Qnwy mel te) mel sol ash oli cae ie 

Leave tabs around all parts except at edges 

marked x, where no tabs are needed. Begin by 

cementing the pairs 1 and 3, and 4 and 2. Then 

cement part 7 to part 1, at edges marked p. 

Part 8 is ingeniously contrived to get a small 

spiked wedge to raise its ridge above the star arm 

or pentagram plane. Both sides of the wedge are 

small triangles, one of which actually belongs to 

the snub triangle plane and technically should be 

one of the five colours. Technically it also cuts 

slightly into part 4. However, the compromise 

of making both triangles W and letting the 

wedge touch part 4 without cutting it simplifies 

the work of construction, and you will see later 

that this cannot readily be seen because it is 
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well hidden under a star arm in the completed 

model. Also, although tab a of part 8 is cut 

to shape the wedge its two segments are 

treated as one tab and cemented to part 4 as 

shown. The next step is to fold up parts 1 and 7 

and to cement tab b of part 3 to tab b of part 7. 

This forms a small but deep trihedral cup, the 

bottom of which should technically be closed 

with a tiny triangle coming from the snub tri- 

angle plane and a tiny quadrilateral from the 

pentagram plane. However, omitting these again 

simplifies the work. So simply cement the tiny 

tabs at the bottom of part 1, 3, and 7 as best you 

can and let the trihedral cup have a roughly 

pointed bottom. This will never be seen in the 

completed model. 

Parts 2 and 8 are now similarly folded up and 

tab c of part 2 is cemented to tab c of part 8. The 

two very tiny shaded areas, one on part 2 and 

the other on part 8 need not be cut or marked. 

You will see after folding that the wedge butts 

against the shaded area of part 2 and the edge at 

x of part 2 crosses into the shaded area of part 8 

but no cementing is needed at these places. This 

folding also forms a trihedral cup, this one both 

technically and actually pointed at the bottom or 

base of part 8. The cup formation gives both 

these partially completed sections a fair amount 

of rigidity. 

The next step calls for some very intricate 

work, almost impossible to describe in words 

without an illustration but not impossible to 

execute. You will have to determine for your- 

self, by trial and error, the best way to manipulate 

the parts mentioned in the following description. 

Take the B, Y, W section of parts 2, 4, 8 and 

join the R, Y, W section of the same parts 2, 4, 

8 to it, matching the tabs d of parts 2 and 8. Let 

the cement set and give the edge between the B 

and W a good crease downwards. Then join the 

third, the G, Y, W section to the R, Y, W 

section in the same way, tab d to tab d. Let the 

cement set and give the edge between the R and 

W a good crease downwards. Now manceuvre 

the final G and W edges into position and 

cement the tabs d, using clamps if necessary at 

the sharp overhanging edge. If you have been 
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successful you should now see the central portion 

of this first icosahedral section well formed. 

Three vertex points become evident, which will 

eventually belong to three adjacent polyhedral 

vertices, and a sort of three-bladed pin wheel 

formed in the centre of the section by the three 

intersecting edges of three star arms. You should 

now also see the ridges of the little wedges at the 

base of the star arms fairly well in line with 

the edges just cemented. 

The next step is much simpler. Cement 

together tabs f of parts 1 and part 8, making sure 

that the colour of part 3 corresponds to that of 

part 2, B with B, R with R, G with G, around 

the pin wheel section. As soon as the cement is 

set give these edges a good crease down. This 

should bring the tabs, already cemented, be- 

tween parts | and 3 into contact with the tabs 

between parts 2 and 4 behind or below the star 

arms. These tabs now serve as double-thickness 

tabs and are cemented to form the line of inter- 

section of the snub triangle planes which cross 

behind the star arm. 

The final step is the simplest of all. Cement 

parts 4 and 6 at the tabs marked h and join parts 

5 and 6 at the tabs marked k. The tab k of part 5 

is broken into two segments; the smaller tab 

will be cemented later on to its mate on part 7 

when the sections are joined. When this has been 

done the three vertex parts of one section are 

complete. You may find that the central part of 

the pin wheel is not entirely rigid. This is due to 

the fact that no cementing was done here. As 

the model develops and the sections are added 

one after the other, they exert their own pressure 

inwards and the final result is satisfactory. In 

joining the sections, always cement the longer 

tabs first. Five sections form a ring with the 

pentahedral dimple in the (0) arrangement of 

colours in the centre. The remaining tabs require 

some care and patience, some being so small 

that you may find they do not need cement. The 

neatness of the finished model depends on the 

attention you give to each detail. A total of 

twenty sections are needed to complete the 

model. If you do all the work alone you may 

expect to spend about 50 hours on this one! 



Icosahedral triangle 
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11/7 Great inverted retrosnub 

icosidodecahedron 

This polyhedron is truly remarkable in its com- 

plexity. Deep pentahedral cups display deeply 

recessed decagrammic rosettes which close off 

their tapered central portions. These cups have 

steep outside facial planes that are fantastically 

intricate. The vertex figure shows how two tri- 

angle faces meet just beyond the central portion 

of a star arm. This introduces very slender spiked 

wedges whose vertices coincide with the vertices 

of the pentagrams and which then continue 

down toward the central portions of the penta- 

gram faces but are cut into two more segments 

before disappearing into the interior of the solid. 

You will see this better from the model once you 

start making it than from any description of it in 

words. So if you want to attempt this one, here 

is an assembly technique. 

Pentagram 
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Begin work with the interior parts of one 

pentahedral cup. Throughout the following des- 

cription it is assumed that you will be able to 

recognize the parts by their shape and to see 

where they are found in their respective facial 

planes. As for colour, all pentagram planes are 

W, one set of triangles are all T, and the other 

set of triangles take the icosahedral arrangement 

of five colours. Only one section of part I is 

shown. First prepare the rosette parts and cement 

them to their respective larger parts at tabs 

marked a. Fold the rosette parts alternately up 
and down, up between the central Y and T parts 

whose tabs band c then fit the corresponding tabs 

on the larger Y part. Tab d then matches tab d. 

Prepare five of these sections in the (0) arrange- 

ment of the colours, the rosettes following their 

own cyclic permutation. The colour O is shown, 

so repeating this with the others the order is: 

O R G Y B, while the larger parts follow the 

order: Y BOR G respectively. The five sections 

are cemented in a ring, the tab at x from one is 

cemented to the tab at y from the neighbouring 

part, and so on around. This completes part 1: 

the pentahedral cup with the decagrammic rosette 

at the bottom. 

One of the five sections of part 11 is laid out 

opposite. The W parts belong to one star arm, the 

T and B parts between them form a slender spiked 

wedge cutting through the face of the star arm. 

First cement these four upper parts. Notice that 

the W part on the left has a shaded area joining 

a small attached triangle. This should not be cut. 

Later the second segment of the spiked wedge 

will be cemented at x to cover this area. But 

before doing this it is easier to cement the paired 

triangles of colour B into place along the tabs 

marked a, b, d, f. Next the second segment of 

the spiked wedge is cemented in place. When 

this is done you will see how this spiked wedge 

seems to penetrate the paired triangles through 

their shaded areas which should also be left un- 

cut. The paired triangles meet at a very acute 

angle along their common edge and they are 

held in a rigid position by the V-cut near the base 

of the star arm. Next cement the Y triangle at 

tabs marked | and m. When this is done turn the 
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Y triangle up and cement the next set of tabs, v 

and w, of Y to B. You will then see how the end 

part of the second segment of the spiked wedge 

covers the shaded area of the Y triangle, so this 

should also be left uncut. Repeat this section five 

times, each in its permutation of colours. The 

five sections are then cemented to part I, first by 

the tabs p and when these are set, by the tabs q. 

You will see that part 1 has the effect of filling 

the spaces between the steeply projecting points 

of part I, revealing more clearly but still in an 

unfinished way a ring of five polyhedral vertices. 

These polyhedral vertices will be finished or 

completed by the addition of part m1, now to be 

described. 

One of the five sections of part m1 is laid out 

opposite. All the shaded areas should be left un- 

cut because various wedges will cover and so 

hide these areas. Also full tabs are shown for the 

W part because these will be needed for joining 

sections and it is important to have them done 

correctly. Notice that the largest part, B in 

colour, has a smaller B part attached to it. This 

means it can be cut as one piece of paper, but a 

T part comes between the two small B parts, as 

shown. The W part will give some rigidity to the 

T and B upper parts, shaping them into a 

shallow groove. Once you have cemented these 

parts, the two lower wedges are assembled and 

cemented as shown, the shaded areas marked y 

are cemented to eachother and then the shaded 

areas marked z. These wedges can be done as 

small irregular polyhedra in their own right, but 

generally their end faces need not be closed. The 

T and Y wedge is the third segment of the 

slender spiked wedge lying on the face of the star 

arm, the paired O parts will eventually be the 

continuation of the paired O triangles, like the 

paired B triangles in part 1. This section is 

repeated five times using the appropriate permu- 

tation of colours. Then each is cemented so tabs 
s and r of part mI go with those at s and r of 

part 1. A pair of very tiny triangles forming a 

very small wedge is shown in part m1, but this 

need not be added until further sections are 

completed. In fact it is so small that for practical 

reasons it could be omitted and never be missed. 

This completes one section, namely one ring 

of five polyhedral vertices. Twelve such sections 

are needed to complete the model. To join these 

cement the tab h in part m of one section to 

tab g of another section. A third section added 

to the first two will show that this portion of the 

pentagram planes near the tabs h and g forms a 

shallow trihedral dimple, occurring twenty 

times on the completed model. Your patience 

and perseverance will have to hold out for more 

than 100 hours if you want a complete model of 

your own. 
However, you can introduce some com- 

promises to simplify and shorten the work. You 

might for example design the parts to omit the 

decagrammic rosette and all the wedges. Your 

model will then have the same vertices as the 

original, but only some of the major portions of 

the facial planes will be left. A set of simplified 

parts is shown below, together with a photograph 

of this simplified model. 
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11 8 Small inverted retrosnub 

icosicosidodecahedron 

This complex polyhedron has one thing in com- 

mon with 110, namely it has facial symmetry as 

you can easily see from the drawings of the facial 

planes. But here you will notice a great deal more 

complexity. Hence for this model, as for the 

previous one, 117, you will need unusual 

patience and perseverance to complete a model. 

The assembly method outlined here will make 

use of only three colours, Y, R, W, one for each 

of the three kinds of facial planes. 

| 33 
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Part I 

Begin with three sets of the parts shown as 

part I, cementing the tab a of one part to the 

tab b of another, then c from one to d from 

another. After the third set has been added, you 

will have a deep cup whose trihedral bottom is 

composed of three W rhombi and its sides of six 

Y quadrilaterals. Twenty of these will be needed 

to complete the model. 

A good way to proceed with the construction 

of part Il is to begin with the larger parts shown as 

(a) on p. 196; the layout of pieces is shown on 

p. 197. The R quadrilateral forms a dihedral 

groove with the large Y piece. The small R and W 

pieces form a small wedge and when this is 

cemented in place at the corresponding tabs g, h, 

k, it gives some rigidity to the R quadrilateral. 

The pieces at the bottom of (a) will eventually fold 

up, but before this is done it is better to assemble 

all the small pieces in (6). These turn out to be a 

sort of butterfly embossed on a shallow dihedral 

groove. The plan for this is shown in (c) where the 

dihedral groove is cross-hatched. The quadri- 

lateral and the Y triangle at the top of part 1 (b) 

can be left uncut as one piece of paper. This Y 

portion should be given a very sharp fold down- 

wards to make cementing easier or even un- 

necessary. 

Once you have completed the unit shown in 
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part 11 (b) it is cemented first by tab p of part 1 (a). 

Turn the Y parts of part 1 (6) sharply down to 

form a very acute dihedral angle, and cement the 

tabs at y. You will then find that the tabs v and w 

can more easily be joined or may not need any 

cement. The tabs r can be cemented next and then 

the very small W triangle positioned to close the 

bottom of the long narrow trihedral hole by 

matching the tabs marked s. For practical reasons 

this triangle may be omitted, since it is almost 

impossible to see from the outside. 

The bottom half of part m1 (a) may now be 

folded up and the appropriate tabs at p are 

again cemented first, then those at y. Finally the 

small hole at the bottom is closed with the kite 

shaped W part, shown in II (a), tab q going with 

tab q at the bottom of 11 (6). All of part 1 will thus 

give you a large butterfly section. Three of part II 

are cemented around each part I joined by the tabs 

marked i. Since the model calls for a total of 

twenty of part 1, you will need sixty of part I. 

And part 11 is still to come. You can of course 

proceed to part Il at once and join parts as they 

are completed. 

One section of part III is set out on p. 198. The 

pieces of part m1 (6) form a dihedral wedge and 

this is cemented by tabs a, b, c, d, f to the larger 

triple R pieces of part m1 (a). It is easiest to begin 

with tab b, then the R parts with tabs d and f are 

folded up to form a deep groove surrounding 

the W part of part m (b). The pieces shown in 

part m1 (c) and (d) are wedges. It is best to 

assemble these as shown, leaving the shaded 

pafts x and y uncut. You can then spread 

cement over the shaded areas of these wedges 

and cement them in place over the corresponding 

areas of part 1 (a). The bottom part of part m1 

(a) may now be folded up. The wedges will then 

be deeply embedded in the narrow groove that is 

formed. 

Repeat the instructions for part m1 (a), (5), (c), 

(d) to build a second section. Then these two are 

joined at the tabs marked j, using the piece 

shown in part mI (e) as a connector. Part mm is 

now complete. It forms a sort of wedge-shaped 

sandwich, the ‘bread’ being two equilateral tri- 

angles of colour R, joined at their bases and 
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diverging slightly toward their vertices to show 

the ‘meat’, an assortment of smaller wedges. 

You will need a total of thirty of these wedge- 

shaped sandwiches to complete the model. Once 

you have completed three of them you can of 

course cement them around the completed parts 

1 and 1. You will then have completed three 

polyhedral vertices and have the beginnings of 

three others. As the model grows it is not hard to 

see how parts I, ll, and ml are fitted together. 

Parts 11 and mi alternate in a ring, their edges 

forming a set of ten lines sloping gently inwards 

and meeting at the central point of a dodeca- 

hedral section. This would suggest an alternative 

assembly technique. The long edges of all the 

parts make any order of assembly easy. 

An alternative colour arrangement is sug- 

gested by the twenty cups of part 1, namely the 

usual icosahedral arrangement. The six quadri- 

laterals of part I could be YB, YG YR, to name 

colours for only the first cup. The others would 

be derived from the usual permutations. You 

could work out the colours for parts 11 and m by 

following the facial planes through from part I as 

the work progresses. 

Admittedly this polyhedron will take a long 

time to assemble. As in the previous model you 

can expect to spend more than 100 hours on this 

one. However, some simplifications are possible 

here also. They are as follows: in part m1 omit 

the small wedges of part mi (c) and (d), and 

simply make 1 (b) pointed at the bottom near tab 

y of part m (a); in part 1 omit the embossed 

butterfly assemblage of part 11 (c) and make I (c) 

a simple shallow dihedral groove pointed at the 

bottom filling in the area near q of I (a). Part I 

remains the same. This simplified model will 

have the same vertices as the original and only 

some small, scarcely noticeable portions of the 

facial planes will be missing. 
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11 9 Great dirhombicosi- 

dodecahedron 

This polyhedron is remarkable in more ways 

than one. First the symbol |} 3 3 3 shows 

that it differs from every other uniform poly- 

hedron, in that all the others have a symbol 

made up of only three numbers, either integers 

or fractions or both. These three numbers relate 

them to Schwarz triangles on a spherical surface. 

The existence of this polyhedron indicates that 

there is in general no reason for the restriction to 

triangles. Does this mean that possibly other 

uniform polyhedra may still be discoverable? A 

quotation from the paper by Coxeter and others, 

Uniform polyhedra (p. 427), will answer this 

question: ‘We can only say that higher spherical 

polygons would have to satisfy various con- 

ditions which are almost always incompatible.’ 

So the most that can be said is that the list is 

probably complete with this as the seventy-fifth 

of the set of uniform polyhedra. 

Edge length=20 cm 
a=42 

ll Si to 

TQS Qs & ou ue uel bei [Oe oO. mon 

200 

cE eh LS 
Ded 2 

40{3} + 60{4} + 24{5} 

/2 



Another way in which this polyhedron differs 

from all the others is that it is the only known 

polyhedron that has more than six faces at each 

vertex. In fact it has eight. These faces occur in 

coplanar pairs, twelve pairs of pentagrams, 

twenty pairs of triangles and thirty pairs of dia- 

metral squares. The vertex figure shows how 

they are ordered in rotation at each vertex; the 

squares occurring alternately with the other 

faces. 

In making a model of this polyhedron a 

method of assembly by dodecahedral sections is 

suggested. The central dimples of these sections 

are reminiscent of similar dimples that occur in 

the compound of ten tetrahedra, one of the 

icosahedral stellations. Begin by cementing a 

ring of five of part 1 in the icosahedral (0) 

arrangement of colours. You should have no 

difficulty in identifying this part and the others 

referred to, from the drawings of the full facial 

planes. When the ring is completed you will havea 

dimpled five-pointed star. 

It will be simplest to make all the squares one 

colour, T. So the next step is to cement the small 

V-shaped pieces, part 2, between the dimpled star 

arms, first by the tab a and when this is well set, by 

the tab b. You should now have a lip all around 

the dimpled star, like the lip on a slip-cap cover. 

Part 3 is joined next, by the tabs at c and d. The 

colours of part 3 should correspond to those of 

part 1. They are easy to get right because you 

can see them as the continuation of the facial 

planes of part 1, half a dimpled star arm forming 

a dihedral wedge apparently protruding through 

these planes. When this is done cement tabs t 

and you will see that the spaces between the 

dimpled star arms have been filled; the outer 

edges at tabs e and f form a skew decagon. This 

completes the dimpled star, the central portion 

of one dodecahedral section. 

Continue now with the assembly of parts 4, 5, 

6, 7 and 8. Parts 4, 5, 7 all belong to the facial 

planes of the squares, so their colour is T. 

Dotted lines are scored on the reverse side and 

the fold is made upwards. Part 6 belongs to the 

triangle planes and hence it will require colour 
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pairs. Although the drawing shows the 6 joined 

to 5, and 7 to 8, these parts must actually be 

prepared separately because they are different 

colours. The colours for 6 are not hard to get 

right once you see the permutation pattern. For 

the first set of five, the (0) set, they go like this: 

YR BG OY RB GO. The order is Y, B, O, R, G 

for the left member of each pair, starting at the 

beginning of the line. Then, Y, B, O, R, G for the 

right member but starting at the third pair and 

continuing the cyclic order from the end of the 

line to the beginning. The other sections later 

follow the same pattern. For example the (1) 

section is: BO YG RB OY GR where the cyclic 

order is B, Y, R, O, G. And so on for the rest. 

In constructing this section, leave tabs all 

round for all parts. The shaded area of part 4 

need not be scored or marked in any way and it 

needs no tab. The next step is, as in the case of 

116, difficult to describe in words without actual 

demonstration, but some trial and error on your 

part should lead to success. Start with the left- 

hand side. Give parts 6 and 7 a good crease 

downwards to form a triangular wedge or di- 

hedral angle. Spread a drop or two of cement on 

the tabs at g and h. Then fold 4 and 5 up and 

manceuvre the tabs g and h on to the shaded area 

of 4. Clamp with tweezers and allow the cement 

to set. Then perform the same operation on the 

right. If you have succeeded you will now have a 
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sort of butterfly section, deeply grooved between 

parts 4 and 5, with 6 and 7 forming a wedge 

apparently penetrating the surface of 4 through 

the shaded area. Part 8 is now added, by joining 

the tabs at j and k. Part 8 is W, since it belongs 

to one of the paired pentagram planes. All these 

will be the same colour, W. 

When you have completed five of these butter- 

fly sections cement them around the dimpled 

star, tabs e and f of part 5 to e and f of part 3; 

namely at the skew decagon edges. Cement one 

set of tabs at a time. Say those at e first, let them 

set up well, then give the butterfly section a good 

crease downwards and cement the tabs at f. You 

can now:use clamps at these edges because there 

is an acute dihedral angle. 

As this is completed you will see the outer 

edges forming a new skew decagon at the tabs | 

and m. You will also see that the fold between 

parts 4 and 5 from one butterfly section come 

into contact, or nearly so, with the corresponding 

fold in an adjacent section. At this stage you 

might want to join these parts along the line of 

contact, but this is not really necessary. Star 

arm sections must still be added, as will be 

explained presently, and then a third line of 

contact will appear in the same place. Since all 

this will eventually be hidden inside the model 

and since the completed model will have suffi- 

cient rigidity without joining these parts along 



this line of contact, it simplifies the work to 

proceed to the next step. 

The star arm sections, parts 9 and 10, belong 

to the paired pentagram planes and part 11 to 

the paired squares. So 9 and 10 are both W and 

11 is one piece, colour T, scored along the 

dotted line. Leave tabs all around as usual. The 

tabs at n and p are of special design. The pro- 

truding segments will later join one section to 

the next to form a single tab with its neighbour. 

The fold in 11 forms the third line of contact 

referred to above. 

This star arm section is very simple. First it 

will be best to cement the tabs q and r to forma 

deep dihedral groove. Then cement this section 

by tabs | and m to tabs | and m of the two parts 4. 

Cement | first and, when this is set, cement m. 

Once you have done this all around the skew 

decagon edges, the protruding tabs at n and p 

are joined across the pointed end of part 8. This 

completes one dodecahedral section. The joined 

tabs, n and p, now give this section distinctly 

pentagonal edges, except that the corners have 

V-cuts left from part 9. If you were to complete 

three dodecahedral sections, joining them along 

the tabs n and p, you would see that a hexagonal 

hole would be left centrally between these 

sections. This central hole is closed with the 

section composed of parts 12 and 13. The six 

quadrilaterals, part 12 (all T) belong to six dif- 

ferent paired square planes, forming the sides of a 

cup which is pointing directly toward the centre of 

the polyhedron. It is cut off, not very far down, 

by the isosceles hexagon, part 13 (colours Y, B, 

O, R, G), which belongs to the exact centre 

portion of the paired triangle planes. 

The best procedure here is to make five of 

these cups (twenty in all will be needed) and to 

add them immediately to the (0) dodecahedral 

section just completed. You can determine the 

colour of 13 by aiming the point z of part 13 at 

the point z of part 1, and thus getting the 

colours to correspond. 

Twelve dodecahedral sections are needed for 

the complete model. Always fill in the V-cuts left 

by part 9 around these sections as each part is 

cemented in place. The assembly will remind you 

of the way in which the regular dodecahedron is 

assembled, but what a difference! Where the 

regular dodecahedron has twelve faces, here 

there are twelve multifaceted sections of a most 

intricate design. Truly, a remarkable. poly- 

hedron! It will take you at least 50 hours work 

to complete this model. 



A final comment 

Even if you have now made only a few of the 

non-convex uniform polyhedra, you can see 

from the models what properties belong to the 

set as a Whole. The most interesting fact is that 

all of them are derived from Schwarz triangles— 

except one, model 119. It is exceptional in 

another way. It is the only known polyhedron 

that has more than six polygons surrounding 

each vertex, four squares alternating with two 

triangles and two pentagrams. All the squares 

are on planes through the solid’s centre of 

symmetry. It is classified as a snub polyhedron 

because here the squares may be regarded as 

snub faces instead of the usual triangles as in 

other cases. The existence of this polyhedron 

indicates that spherical polygons as well as 

spherical triangles may give rise to other uniform 

polyhedra. However it is a complex task to in- 

vestigate the possibilities. It still remains to be 

done. 

Epilogue 

This book has presented only some polyhedral 

forms. For anyone acquainted with the field 

there are obvious omissions, the two infinite sets 

of prisms and antiprisms, all the Archimedean 

duals (except for the three given on pp. 6-8), 

and many other polyhedral forms. Among the 

Archimedean duals two are especially note- 

worthy, the rhombic dodecahedron and the 

rhombic triacontahedron. The former is given in 

Cundy and Rollett along with the stellated 

forms worked out by Dorman Luke. Stellated 

forms of the latter are presented in summary 

fashion without drawings except for the stella- 

tion pattern by J. D. Ede in the Mathematical 

Gazette, XLil (1958). All the Archimedean duals 

can be stellated, as indeed any polyhedron can. 

In the light of what you have now learned, you 

can discover the stellation patterns by yourself, 

and thus make models of all these polyhedra 

using the methods and techniques described. So 
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You may be wondering why the stellation pro- 

cess was treated so thoroughly in Section 1. This 

was done, first of all, because in some ways it is 

breaking new ground. Secondly, it is intrinsic- 

ally a simple process, although it may indeed 

lead to polyhedral forms almost too numerous to 

detail. With enough perseverance you can dis- 

cover any number of these forms by yourself. 

Lastly, it should help you to understand another 

kind of stellation, namely edge stellation. Edge 

stellation is that in which the edges of a polyhe- 

dron are produced to generate the edges of a new 

polyhedron. A simple example is found in the 

dodecahedron, whose edges if produced generate 

the edges of the small stellated dodecahedron. 

Stick models can show this very plainly. Many 

uniform polyhedra are edge stellations of other 

uniform polyhedra. But it must be left for you to 

pursue this matter further on your own. 

beyond the models presented here, there are 

more, and more and more! The object of an 

investigator would not be to multiply forms but 

to arrive at the underlying mathematical theory 

that unifies and systematizes whole sets of poly- 

hedral forms. 

From this point of view the mathematical in- 

vestigation takes its origin from an inductive 

process, akin to the scientific method; namely, to 

observe individual instances of any phenomenon, 

then to classify and systematize in order to 

arrive at general principles which serve as the 

basis of a deductive process. Many people are 

not aware of this aspect of mathematics, but the 

history of mathematics is full of instances bear- 

ing this out. (See G. Polya, Mathematics and 

plausible reasoning.) 

So, to end on the same metaphor as that used 

in the preface, the road still stretches on before 

you. Why don’t you continue your journey ? 



y yy 
Wy, 

A faceted form of the small stellated dodecahedron 

(from Briickner: VIII, 14) 

A stick model of the icosahedron 

A stick model of the dodecahedron 
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List of Models 

The figures in parentheses refer to the number of the 

model in the paper by Coxeter et al. ‘Uniform 
Polyhedra’. 

1 Tetrahedron (15) Page 14 

2 Octahedron (17) 15 

3  Hexahedron (18) 16 

4 Icosahedron (25) 17 

5 Dodecahedron (26) 19 

6 Truncated tetrahedron (16) 20 

7 Truncated octahedron (20) 21 

8 Truncated hexahedron (21) D2, 

9 Truncated icosahedron (27) 23 

10 Truncated dodecahedron (29) 24 

11 Cuboctahedron (19) 25 

12 Icosidodecahedron (28) 26 

13. Rhombicuboctahedron (22) DG 

14 Rhombicosidodecahedron (30) 28 

15 Rhombitruncated cuboctahedron (23) 29 

16 Rhombitruncated icosidodecahedron (31) 30 

17. Snub cube (24) 31 

18 Snub dodecahedron (32) 32 

19 Stellated octahedron or ‘stella  oct- 
angula’ ai 

20 Small stellated dodecahedron (43) 38 

21 Great dodecahedron (44) 39 

22 Great stellated dodecahedron (68) 40 

23 Compound of five octahedra 43 

24 Compound of five tetrahedra 44 

25 Compound of ten tetrahedra 45 
26 Triakis icosahedron—First stellation of 

the icosahedron , 46 

27 Second stellation of the icosahedron 47 

28 Third stellation of the icosahedron—A 

deltahedron 48 

29 Fourth stellation of the icosahedron 49 
30 ©Fifth stellation of the icosahedron 50 

31 Sixth stellation of the icosahedron 52 

32 Seventh stellation of the icosahedron 53 
33 Eighth stellation of the icosahedron 54 

34 Ninth stellation of the icosahedron 55 

35. Tenth stellation of the icosahedron 56 
36 Eleventh stellation of the icosahedron 58 

37 Twelfth stellation of the icosahedron 59 

38 Thirteenth stellation of the icosahedron 60 

39 Fourteenth stellation of the icosahedron 61 

40 Fifteenth stellation of the icosahedron 62 

41 Great icosahedron (69) 63 

42 Final stellation of the icosahedron 65 

43 First stellation of the cuboctahedron— 

Compound of a cube and an octa- 

hedron 68 

54 

55 

56 

i 

58 

59 

60 

61 

62 

63 

64 

Oo Nn = 

Second stellation of the cuboctahedron 

Third stellation of the cuboctahedron 

Final stellation of the cuboctahedron 

First stellation of the icosidodecahedron 

Second stellation of the icosidodeca- 

hedron 

Third stellation of the icosidodecahedron 

Fourth stellation of the icosidodeca- 
hedron 

Fifth stellation of the icosidodecahedron 

Sixth stellation of the icosidodecahedron 

Seventh stellation of the icosidodeca- 
hedron 

Eighth stellation of the icosidodeca- 
hedron 

Ninth stellation of the icosidodeca- 
hedron 

Tenth stellation of the icosidodeca- 
hedron 

Eleventh stellation of the icosidodeca- 
hedron 

Twelfth stellation of the 
hedron 

Thirteenth stellation of the icosidodeca- 
hedron 

Fourteenth stellation of the icosidodeca- 
hedron 

Compound of the great stellated dodeca- 
hedron and the great icosahedron 

Fifteenth stellation of the icosidodeca- 
hedron 

Sixteenth stellation of the icosidodeca- 
hedron 

Seventeenth stellation of the icosidodeca- 
hedron 

Eighteenth stellation of the icosidodeca- 
hedron 

Final stellation of the icosidodecahedron 
Tetrahemihexahedron (36) 
Octahemioctahedron (37) 

Small cubicuboctahedron (38) 

Small ditrigonal icosidodecahedron (39) 

Small icosicosidodecahedron (40) 

Small dodecicosidodecahedron (42) 

Dodecadodecahedron (45) 
Small rhombidodecahedron (46) 

Truncated great dodecahedron (47) 
Rhombidodecadodecahedron (48) 

Great cubicuboctahedron (50) 
Cubohemioctahedron (51) 
Cuboctatruncated cuboctahedron (52) 
Ditrigonal dodecahedron (53) 

icosidodeca- 

69 
70 
71 
76 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

101 
103 
104 
106 
108 
110 
un? 
113 
115 
116 
118 
120 
121 
123 
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Great ditrigonal dodecicosidodecahedron 

(54) 
Small ditrigonal dodecicosidodeca- 

hedron (55) 

Icosidodecadodecahedron (56) 

Icosidodecatruncated icosidodecahedron 

(57) 
Quasirhombicuboctahedron (59) 

Small rhombihexahedron (69) 

Great ditrigonal icosidodecahedron (61) 
Great icosicosidodecahedron (62) 

Small icosihemidodecahedron (63) 

Small dodecicosahedron (64) 

Small dodecahemidodecahedron (65) 

Quasitruncated hexahedron (66) 

Quasitruncated cuboctahedron (67) 

Great icosidodecahedron (70) 
Truncated great icosahedron (71) 

Rhombicosahedron (72) 

Quasitruncated small stellated dodeca- 
hedron (74) 

Quasitruncated dodecahedron (75) 

Great dodecicosidodecahedron (77) 

Small dodecahemicosahedron (78) 

29) 

126 
128 

130 
132 
134 
135 
137 
140 
141 
143 
144 
145 
147 
148 
149 

151 
52 
154 
55 

101 
102 
103 
104 

105 
106 
107 
108 . 
109 
110 
111 
112 
113 

114 
iS 

116 
117 

118 

119 

Great dodecicosahedron (79) 

Great dodecahemicosahedron (81) 

Great rhombihexahedron (82) 

Quasitruncated great stellated dodeca- 

hedron (83) 
Quasirhombicosidodecahedron (84) 

Great icosihemidodecahedron (85) 

Great dodecahemidodecahedron (86) 

Quasitruncated icosidodecahedron (87) 

Great rhombidodecahedron (89) 

Small snub icosicosidodecahedron (41) 
Snub dodecadodecahedron (49) 

Snub icosidodecadodecahedron (58) 
Great inverted snub icosidodecahedron 

(73) 
Inverted snub dodecadodecahedron (76) 

Great snub  dodecicosidodecahedron 

(80) 
Great snub icosidodecahedron (88) 
Great inverted retrosnub icosidodeca- 

hedron (90) 

Small inverted retrosnub icosicosidode- 
cahedron (91) 

Great dirhombicosidodecahedron (92) 

156 
158 
159 

161 
162 
164 
165 
166 
168 
2 
174 
TA 

179 
180 

183 
186 

189 

194 
200 
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MAGNUS J. WENNINGER 

Models of the regular and semiregular polyhedral solids 

have fascinated people for centuries. The Greeks knew 

the simplest of them. Since then the range of figures 

has grown; 75 are known today and are called, more 

generally, ‘uniform’ polyhedra. 

The author describes simply and carefully how to make 

models of all the Known uniform polyhedra and some 

of the stellated forms. Fully illustrated with drawings and 
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these intricate and beautiful solids. 

‘The general effect of this book is to create a desire in 

the reader to become involved with these gracefully 

symmetrical figures; it is very pleasant reading indeed.’ 
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